Technical University of Munich School of Engineering and Design Department of Mobility Systems Engineering Chair of Traffic Engineering and Control

Interpretable ML for Mode Choice Modeling on Tracking-based Revealed Preference Data Victoria Dahmen, Simone Weikl, Klaus Bogenberger

INTERPRETABILITY

An in-depth interpretability analysis was performed for the best-performing model.

SHAP values measure the relative contribution of a feature to the model output [1].

Features considered in each model				
Group	Feature	Example		
Socio-demo-	Age	32 years		
graphic	Income	0		
	Employment status	1		
	Gender	1		
	Car ownership	0		
Neather	Precipitation	2 mm		
	Temperature	16 °C		
	Rel. humidity	82 %		
	Wind speed	1.5 m/s		
Estimated	Time by car	17min		
ravel time &	Time by PT	34 min		
cost	PT transfers	1		
	PT cost	5.6€		
Ггір	Length	8,700 m		
nformation	Trip start time	15:00 hr		
	Day of week	6		
nfrastructure	Bike racks	2		
	PT stop density	1		
	Bike infra. quality	0.24		

Mode-specific interpretability

····· CH
-4 -3 SHAP valu

Contact & Download Victoria Dahmen

Chair of Traffic Engineering and Control Technical University of Munich <u>v.dahmen@tum.de</u>

TRBAM-24-03845

SENSITIVITY ANALYSIS

	Comparison of input data scenarios				
cult to	Input data scenario	XGBoost	RF	MNL	
ata,	Benchmark	79.0	76.3	57.7	
del when ct to ?	No survey based data*	-3.0	-3.1	-0.9	
	No infrastructure data	-1.6	-1.3	-2.8	
	No weather data	-0.6	0.8	-0.2	
	No alternative travel time data	-0.5	0.5	-4.4	
	Only trip data**	-25.5	-28.3	-11.0	
or ad of ed.	Incl. all collinear features	0.0	-2.6	-3.9	
	Fully-passive tracking	-2.6	-3.4	-4.1	
	*(socio-demographic, PT monthly-pass and car ownership)				
	**(length, time of day, weekda	y)			

- short duration PT trips, cycling decreases (negative SHAP values).
- , For each mode (output class) we can plot the distribution of SHAP values for each feature.

E.g., we observe negative SHAP values for low temperatures, indicating that for these the mode "bike" is less likely

