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Multi-fidelity Optimization of an Acoustic
Metamaterial using Model Order Reduction and
Machine Learning
Problem Description
Metamaterials are structures that are artificially designed to
show properties which cannot be observed in conventional
materials. Here, acoustic metamaterials that have a stop
band are investigated. This is a frequency range where no
waves can propagate freely. A common design strategy to
generate such structures is repeating a unit cell infinitely
often in 2 dimensions according to a rectangular lattice:
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Figure 1: Schematic sketch of a metamaterial generated by
periodic repetition of a unit cell.

Due to the periodicity it is sufficent to regard only one unit
cell, which is discretized using the Finite Element Method
(FEM). According to Bloch’s theorem [Bloch 1929] the
discretized undamped equation of motion then becomes the
so-called dispersion eigenvalue problem with respect to the
angular frequency ω and the wavenumbers, which are
contained in the wave propagation constants (WPCs) µx and
µy:

(K(µx,µy)−ω
2M(µx,µy))q = 0, (1)

with K being the stiffness matrix, M the mass matrix and q
the vector of degrees of freedom (DOFs). To obtain the stop
band (SB), all values along the so-called irreducible Brillouin
contour (IBC) shown in the top right corner of Fig. 2 need to
be prescribed for the WPCs and equation (1) has to be
solved for the frequency. This results in the dispersion curve,
where a SB appears as gap in frequency:
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Figure 2: Dispersion curve of investigated metamaterial for
a = 6.7mm and b = 5mm and its irreducible Brillouin contour.

Low-fidelity Models
Computing the dispersion curve is a computationally
expensive task since an eigenvalue problem has to be solved
multiple times. Therefore, three models of different lower
fidelity can be derived:

• Reduced Order Model (ROM): Krattiger and Hussein [2018]
proposed a projection-based, modal method in which the
full order model (FOM) is projected onto the first few
eigenmodes of the interior DOFs and the first few
eigenmodes of the boundary DOFs.

• Surrogate Modeling: Radial Basis Function (RBF)
interpolation with cubic kernel functions is used to predict
the width and center of the SB for unsampled parameters.

• Relevant Wave Propagation Constants (RWPC): As can be
seen in Fig. 2 the SB can be computed by solving the
dispersion eigenvalue problem only twice, namely for
(µx,µy)

SB,min and for (µx,µy)
SB,max, which are in the following

called the relevant WPCs. To predict these values for
unsampled parameter points, the following machine
learning model is trained for all four µ
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Figure 3: Flow chart of machine learning model for prediction
of relevant WPCs.

Multi-fidelity Optimization
The objective of the optimization is to maximize the SB width,
while the SB center is constrained to lie in a given frequency
interval. As design variables the geometric parameters a and
b of the unit cell from Fig. 1 are used with b ∈ [2,9]mm and
b
a ∈ [0.2,0.9]. The three models of different fidelity are
combined in the optimization as follows:

Figure 4: Flow chart of the optimization procedure. Text, Text

The initial samples are hereby created using Latin
Hypercube Sampling (LHS). The method used to find the
next sample point is the trust-region based adaptive radial
basis function algorithm by Liu et al [2021].

Results
To assess the accuracy of the three models of lower fidelity,
10 samples are generated using LHS as training data. For
the test data, b = 3mm is fixed and the fraction b

a is varied
linearly from 0.2 to 0.9 in 50 samples. Fig. 5 shows the

prediction of the machine learning model for µ
(SBmin)
y . It can

be seen that the neural network classifies almost all test
samples correctly and the polynomial regression model
approximates the true response very well, especially for
lower values of b

a. Fig. 6 shows the accuracy and the
required time for the SB computation of all available models
averaged over the 50 test samples in a logarithmic scale.
Using the prediction of the relevant WPCs is both more
accurate and faster than the ROM.
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Figure 6: Accuracy and required computation time of the stop
band for full order model and the three models of lower fidelity
shown in a logarithmic scale.

These results are also reflected in the optimization. When
using all three models of lower fidelity, the optimization
converges twice as fast compared to when using only the
ROM and the Surrogate Model. Additionally, the true
objective function value computed with the full order model is
higher for the solution found by the optimization with all three
models of lower fidelity compared to the solution found when
using only the ROM and the Surrogate Model.

Conclusion
A new model of low fidelity to compute the stop band of an
acoustic metamaterial is derived and succesfully combined
with two other models of low fidelity to accelerate an
optimization. In future work, the procedure will be tested on
higher-dimensional input spaces.
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