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Calibrating a process-based simulation model  
for the Acadian forest region 

 
by Susan Willis,1,* A. R. Taylor,2 Dominik Thom,3,4 and L. D’Orangeville1

ABSTRACT 
Climate change is projected to have profound impacts on Canada’s Acadian Forest Region (AFR). However, large uncer-
tainties arising from climate change and increasing disturbance activity pose challenges for forest management decisions. 
Process-based (mechanistic) simulation models offer a means by which vulnerabilities and different management strate-
gies can be tested under multiple climate and disturbance regimes. However, applying these complex models can be daut-
ing, especially for novice modelers and forest practitioners; nonetheless, this complexity is increasingly necessary to more 
realistically project changes in forest growth and composition, ecosystem services, biodiversity, disturbance regimes, and 
the spread of forest pests. Here, we present a methodology for calibrating and validating iLand (v1.1.1), a landscape-scale, 
process-based forest model that offers a novel approach for assessing the feedback between individual trees and their 
environment (ecosystem processes, climate, and disturbance). For the first time, 18 tree species were parameterized and 
calibrated for the AFR and model performance was evaluated against independent field observations at the tree popula-
tion and stand level. iLand was able to accurately emulate the dynamics of individual tree species populations as well as 
the succession of mixed-species forest stands across a range of soil conditions and is now ready to be used to simulate 
future forest dynamics of the AFR. We also discuss calibration method selection and the potential impacts of model and 
project structure in relation to our project.  As the accessibility and usability of process-based forests models increases, 
our work provides a unique case study for forest managers looking to expand their toolbox.  
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RÉSUMÉ 
Les changements climatiques devraient avoir un large impact sur la forêt acadienne du Canada (FAC). Cependant, de 
larges incertitudes découlant des changements climatiques et des perturbations accrues posent des défis importants pour 
la prise de décision des gestionnaires forestiers. Les modèles de simulation basés sur les processus (mécanistiques) offrent 
un moyen de tester les vulnérabilités et les différentes stratégies de gestion selon différents régimes climatiques et de per-
turbations. Cependant, l’application de ces modèles complexes peut être intimidante, surtout pour les modélisateurs 
novices et les praticiens forestiers. Néanmoins, cette complexité est de plus en plus nécessaire pour projeter de manière 
plus réaliste les changements dans la croissance et la composition des forêts, les services écosystémiques, la biodiversité, 
les régimes de perturbations et la propagation des ravageurs forestiers. Dans cet article, nous présentons une méthodo-
logie pour calibrer et valider iLand (v1.1.1), un modèle forestier basé sur les processus à l’échelle du paysage qui offre une 
approche novatrice pour évaluer les rétroactions entre les arbres individuels et leur environnement (processus écosysté-
miques, climat et perturbations). Pour la première fois, 18 espèces d’arbres ont été paramétrées et calibrées pour la FAC, 
et la performance du modèle a été évaluée par rapport à des observations indépendantes sur le terrain au niveau des 
populations d’arbres et des peuplements. iLand a pu reproduire avec précision les dynamiques des populations d’espèces 
d’arbres ainsi que la succession des peuplements forestiers mixtes dans une gamme de conditions de sol, et est mainte-
nant prêt à être utilisé pour simuler les futures dynamiques forestières de la FAC. À mesure que l’accessibilité et l’utilisa-
bilité des modèles forestiers basés sur les processus augmentent, notre travail constitue une étude de cas unique pour les 
gestionnaires forestiers qui cherchent à élargir leurs options. 
 
Mots clés : aménagement, calibration, validation, changements climatiques, forêt tempérée, forêt boréale
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Introduction  
Projecting the long-term effects of forest management efforts 
under climate change, and increasing disturbance is vital to 
guiding future forest conditions and availability of resources. 
Fortunately, recent developments in process-based forest 
landscape modelling, combined with access to more powerful 
computers and simpler user interfaces, now allow forest man-
agers to assess the joint impacts of management actions and 
climate change on future forest conditions. Process-based 
models simulate forest landscapes using the first principles of 
ecology (Marquet et al. 2014) to reproduce interactions of 
ecosystem processes and environmental conditions (Battaglia 
and Sands 1998). Contrary to pattern-based or so-called 
empirical models, this approach allows for increased confi-
dence of model results when extrapolating forest response to 
novel environmental conditions (Cuddington et al. 2013).  

Decision making in forest management has grown more 
complex given changes in climate (Contosta et al. 2019), 
invasive species (Gandhi and Herms 2010; Miller et al. 2021), 
and disturbance regimes (Dhar et al. 2016; Wang et al. 2017; 
Boucher et al. 2018a), coupled with a transition in manage-
ment objectives from high production sustained yield 
forestry through multi-use sustained yield forestry, to a more 
holistic approach of “ecological forestry” (Long 2009; 
MacLean et al. 2022). Under these constraints, forest man-
agers must divide limited forest resources for harvesting 
(McEwan et al. 2020), carbon storage and climate change 
mitigation (Anderegg et al. 2020; Zhao et al. 2022), conserva-
tion (Golloday et al. 2016), and social values (Lidestav et al. 
2019) while maintaining ecosystem services (Biggs et al. 
2012). In the past, management for sustainable yield relied on 
expert opinion (Drescher et al. 2008) and empirical growth 
models to project future stand conditions based on historical 
trajectories (Korzukhin et al.1996; Gustafson 2013). How-
ever, climate change challenges the traditional empirical 
management approach based on the fundamental assump-
tion that the past can inform the future (Millar et al. 2007; 
Achim et al. 2022). To better understand and predict the 
impacts of these stressors on forest management outcomes, it 
has become necessary that process-based modelling be added 
to the managers toolkit (Battaglia and Sands 1998).  

Process-based models, also referred to as mechanistic 
models, combine our understanding of physiological and 
ecosystem functions through a series of equations and algo-
rithms to represent forest change over time (Taylor et al. 

2009). Development of the process-based model type began 
about 50 years ago with JABOWA, the first functional forest 
succession model, created to model the mixedwood forests of 
the northeastern United States (Botkin 1972, 1993) and FOR-
EST, which used distance dependent competition indices to 
modify tree growth and mortality (Ek and Monserud 1974). 
Since that time, innovation in process-based modelling has 
tracked the exponential increase in computational power, 
development of complimentary software (e.g., GIS, database 
management), and continued work in applied ecological sci-
ence enhancing the empirical data available for model devel-
opment and calibration (Bugmann 2001; Johnsen et al. 2001; 
Shifley et al. 2017). The advancements in model applications 
and efficiency, combined with more user-friendly software 
design, have allowed the use of process-based models to 
begin to bridge the gap between researchers and applied for-
est managers.  

Process-based models of forest development have histori-
cally been divided by spatial scale, such as stand-level forest 
models (e.g., JABOWA-3, PICUS) and landscape-level forest 
models (e.g., LANDIS, LandClim). Stand-level models are 
further defined by their spatial resolution, that is individual 
tree-based or cells of varying sizes. In effect, stand models 
represent the forest at a higher resolution using more com-
plex and detailed ecological processes than landscape models 
(Baker and Robinson 2010). Computational demand has tra-
ditionally limited the spatial extent to which these models can 
be applied to (e.g., < 100 hectares; Baker and Robinson 2010). 
In comparison, landscape models use a coarser representa-
tion of the forest—typically aggregating whole stand charac-
teristics such as age class, species composition, or manage-
ment technique. Thus, simulation of forest landscape 
dynamics relies more on abstract, empirical representation of 
whole stand dynamics rather than finer-scale interactions 
between individual trees, as typically found in stand-level for-
est models (Taylor et al. 2009). As a result, forest landscape 
models can emulate forest change and disturbance over 
much larger spatial and temporal scales but are limited in the 
representation of individual species or stand dynamics.  

With many different models available, each with unique 
design and function, the task of selecting the appropriate 
model is a challenge for novice modelers and forest practi-
tioners (Keane et al. 2019). Resources such as Taylor et al. 
(2009), which provides a comprehensive review of forest suc-
cession models for forest management, or Keane et al. (2019), 
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which targets spatially explicit, process-based models, pro-
vide detailed insight on the model selection process. After a 
suitable model has been selected, a time and resource inten-
sive process to parameterize, calibrate, and validate its func-
tionality against observational data must be completed before 
the model may be applied. The process can be information-
ally and technically complex, is subject to disagreement, and 
is seldom described in detail in the literature (but see: Shifley 
et al. 2000; Forrester et al. 2021; Suárez-Muñoz et al. 2021). 
Nonetheless, growth in data availability for model calibration 
and improved complimentary software (e.g., spatial data 
management) has improved accessibility (Shifley et al. 2017) 
but, for process-based modelling to fully transition from the-
oretical research to the forest managers’ toolbox, each step of 
the model preparation requires clarification and examples. 

In this study, we calibrated iLand (v1.1.1), an individual-
based forest landscape and disturbance model. Released in 
2012, iLand offers a novel approach for simulating the inter-
action between individual trees (demographic processes) and 
their environment (ecosystem processes, climate, and distur-
bance) in a scalable manner, bridging previous gaps between 
the traditional stand and landscape models (Seidl et al. 
2012a). It operates at the individual-tree level while simulta-
neously modelling dynamic ecosystem processes at the land-
scape scale, allowing for explicit spatial projection of forest 
development and disturbance. iLand was initially shown 
effective in replicating the unique forest conditions of an old-
growth forest in the Cascades of Oregon, along an elevational 
gradient transect in Oregon, USA, and along a second tran-
sect in the east Austrian Alps (Seidl et al. 2012a). Since then, 
it has been used to model forest growth and the impact of cli-
mate change and disturbance in the temperate forests of cen-
tral Europe and western USA e.g., Old Growth Dynamics 
(Seidl et al. 2012b), climate change and disturbance interac-
tions (Thom et al. 2017b), wildfire (Braziunas et al. 2018), 
wind disturbance (Seidl et al. 2014b), bark beetle (Seidl and 
Rammer 2017), and other disturbances (Honkaniemi et al. 
2021). Greater detail regarding the function of the model can 
be found in the Methods section, in Seidl et. al (2012a), and 
on the comprehensive online resource (iland-model.org).  

 Previous process-based modeling studies in the AFR have 
calibrated and used a variety of models such as PICUS (Tay-
lor et al. 2017), LANDIS-II with PnET-II (Steenberg et al. 
2013), JABOWA-3 (Ashraf et al. 2012), and LanDSET 
(Bourque et al. 2010), each with unique functions and appli-
cations. The addition of iLand is of interest in the AFR 
because its fine-scale spatial resolution is designed for highly 
heterogeneous environments, both in species and environ-
mental variation. As well, the use of daily climate data and the 
functionality of individual tree competition and disturbance 
response dynamics are unique to iLand and important for 
future modelling of an area that is likely to experience dra-
matic impacts from climate change (Evans and Brown 2017). 
The iLand software is open-source and functions with the use 
of additional open-source software resources.  

The objective of this study was to demonstrate a robust 
methodology for the parameterization, calibration, and vali-
dation of a process-based forest landscape model for the 
AFR. We parameterized 18 of the most common species of 
the AFR, many of which are also common throughout all 
eastern Canada and beyond. We then calibrated and verified 
the model performance in replicating (1) individual tree 

species population dynamics, (2) stand level dynamics 
(growth and yield), and (3) forest landscape dynamics (suc-
cession). A manual multistep iterative process was used, 
comparing model outputs to empirical data from the AFR 
and repeatedly adjusting species parameters. The resulting 
parameter set is ready for initial application to modelling sce-
narios in the AFR and will provide a starting point for some 
species for further calibrations throughout Canada. 

 
Methods 
Model calibration review 
The requirements to set-up and apply a process-based model 
can be broken down into a few general steps regardless of 
model specifics (Fig. 1). The terms calibration and validation 
are often used interchangeably but, in this paper, calibration 
will refer to the iterative process of adjusting model parame-
ters based on repeated output analysis, while validation will 
refer to the overall evaluation of model performance before 
declaring it fit or unfit for application (Rykiel 1996). The cal-
ibration and validation processes must be done over all the 
spatiotemporal scales that the model operates on—for exam-
ple, examining model dynamics at each the tree population, 
stand, and landscape level.  

One of the largest hurdles to overcome in using a process-
based model is the collection of information required to 
parameterize, initiate, calibrate, and validate a model before it 
can be applied to a forest. Species-specific parameter infor-
mation is highly technical and difficult to obtain from pub-
lished literature or intensive measurement, often resulting in 
the need to estimate some parameters (Forrester et al. 2021). 
Although, development of publicly available databases, such 
as the TRY database (Kattge et al. 2020), has improved acces-
sibility. Parameterization is further complicated by the tem-
poral and spatial extents over which individuals and species 
persist, where intraspecific variation may be high (Johnson et 
al. 2001). Environmental and forest data including climate, 
soil conditions, and empirical data from tree, stand, and 
landscape development over time are also required for model 
initialization to represent the simulated environment. The 
availability and format of these data can vary depending on 
the collection agency and scale of the data, for example, in 
Canada, climate data collected by federal government spans 
coast to coast with standardized formats, while forest inven-
tory data is generally collected by the forest management 
branch of each province and differs greatly in the data collec-
tion protocol. For spatially explicit models (i.e., those that 
account for the distribution of landscape characteristics and 
spatially dependent biological processes), the necessary data 
can be difficult to obtain at an appropriate spatial resolution 
due to cost or logistical constraints, as many environmental 
conditions such as soils or microclimate can vary greatly over 
short distances (Petter et al. 2020). In many cases, it will be 
necessary to gather data from many sources and apply spatial 
joins and estimations to form a complete dataset (Ruiz-Ben-
ito et al. 2020; Suárez-Muñoz et al. 2021). Climate data avail-
able through the long-term monitoring of weather stations 
often contain gaps and does not identify local variations and 
microclimates that are altered by vegetation, water bodies, 
and terrain (Petter et al. 2020). Spatially aggregated data from 
historical or projected modelling (e.g., BioSIM; Régnière et al. 
2014) is a valuable resource to be used in addition to local 
observational data. Due to the influence of the input data on 
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model performance and outcome, it 
is important to maintain trans-
parency in the assumptions and pro-
jections used in the initialization 
process and acknowledge that model 
outputs depend on the initialized 
model condition (Temperli et al. 
2013).   

Empirical forest data is also uti-
lized for calibration and validation 
purposes. Depending on the jurisdic-
tion or forest type, this information 
may be readily available; but if not, it 
may be expensive and difficult to 
obtain, particularly for highly com-
plex or remote forests. Often, there 
are more data available for commer-
cial species and plantations, mainly 
because of the historic wide use of 
empirical growth and yield models 
(Landsberg 2003; Pitt and Lanteigne 
2008). To permit comparisons with 
model outputs, forest measurement 
datasets must be processed and 
cleaned to conform with model out-
puts for meaningful comparison, 
which represents a large investment 
of time and requires skill and under-
standing in both data management 
and interpretation of forest charac-
teristics and dynamics (Shifley et al. 
2017). Existing data is also subject to 
potential quality issues from collec-
tion or record errors and may not 
encompass all the information 
required, such as poor representation 
of certain species, stand types, or age 
classes, or inability to account for 
confounding impacts such as harvest 
or natural disturbance. The quality 
and replication of empirical data 
available for comparison must be 
considered when choosing a calibra-
tion technique. 

The calibration and validation of models can be a con-
tentious topic due to subjectivity in the process depending on 
the assessment method used (Yang et al. 2004). It must be 
clarified for ecological models that valid does not equal a uni-
versal truth, but rather asserts acceptable model conformance 
with “specified criteria based on the current knowledge and 
data available for the system of study” (Rykiel 1996). Criteria 
used to assess model validity can include not only confor-
mance with empirical data but also qualitative assessment of 
biological realism and consistency with expectations of forest 
growth and management response (Vanclay and Skovsgaard 
1997; Soares et al. 1995). The calibration and validation of a 
model, or at least portions of the process, must be repeated 
each time a model is applied with a new condition such as 
additional species or in a different geographic location.  

Qualitative methods for validation include subjective 
assessments (e.g., face validity or Turing tests) where model 

results are judged based on expert opinion or visual compar-
ison of predicted versus observed data, while quantitative 
methods include statistical testing and measures of deviance 
(Rykiel 1996; Van Oijen et al. 2005). Qualitative methods are 
widely accepted, more straightforward to apply, and rely less 
on the availability of observed data, however, there are con-
cerns regarding misinterpretation and personal bias (Mayer 
and Butler 1993). Quantitative methods require more refined 
and independent empirical data for comparison and are 
viewed by some as a stronger indication of model perfor-
mance, but they can be heavily influenced by biases present 
in the observed data and different tests run on the same sim-
ulation results can produce different results, simultaneously 
validating and invalidating the model (Yang et al. 2004).   

 
Case study model: iLand 
iLand uses a novel, multi-hierarchical scaling approach based 
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Fig. 1 Overview of the steps involved in the preparation, calibration, validation, and applica-
tion of a process-based forest model. 
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in ecological field theory to simulate the demographic pro-
cesses (growth, mortality, regeneration) at the individual tree 
level (Seidl et al. 2012a). Competition for light is modelled 
through a Light Interference Pattern (LIP) library that is 
derived for each species during a pre-processing routine from 
height and crown size relationships (i.e., representation of a 
tree’s field of shading influence). This library is then accessed 
for trees at each annual time step of the modelling routine, 
thus reducing real-time computational load. The LIP of all 
the trees on the landscape are combined to calculate a contin-
uous Light Interference Field (LIF) representing crown 
height and density. The tree’s height and location within the 
LIF determines their Light Resource Index (LRI, i.e., poten-
tial to intercept radiation) and modifies their growth.  

Light, water availability, and climate are considered on a 
daily timestep, while nutrient availability and atmospheric 
CO2 are applied monthly, to calculate annual tree growth and 
mortality. Climate variables include minimum and maxi-
mum temperature (°C), precipitation (mm), solar radiation, 
and vapor pressure deficit (VPD). Basic soil data required 
includes available nitrogen, effective soil depth, and percent 
sand/silt/clay for each resource unit. Full carbon and nitro-
gen cycles can be simulated by iLand however these cycles 
require extensive parameterization and calibration and will 
not be used here as it is outside of the scope of this study. 
Atmospheric CO2 can be held at a constant value or changed 
along a time series to represent the changing climate.  

The default spatial units are 2x2m grid cells for individual 
tree location and competition for resources, nested 
within10x10m cells for stand initialization, which are further 
nested within 100x100m cell resource units (homogeneous 
soil and climate). More than 60 individual parameters are 
used for each species to modify these interactions and deter-
mine allocation of carbon (C) within the tree. A descriptive 
list of parameters is available in the online resource (iland-
model.org/species + parameter). Tree mortality occurs 
intrinsically from age-related decline in C-use efficiency (i.e., 
productivity potential), through C starvation due to stress, or 
from disturbance. Growth and mortality outputs are 
recorded on an annual timestep. 

Landscapes can be initialized from “bare ground” (devoid 
of vegetation) by seed, by species cohort information for trees 
and saplings, or by individual trees with coordinate locations. 
Throughout the simulation, regeneration arises from spa-
tially explicit seed dispersal, resprouting, environmental con-
straints, and light availability. Multiple age cohorts of differ-
ent species may establish on one 2x2m cell (one cohort per 
species) and are each represented by a “mean tree” method 
where all stems of each species in a single cohort are the same 
size. New cohorts may establish on a cell each year until the 
mean tree of any one cohort exceeds a height of 1.3m; at this 
time shading is considered excessive for additional establish-
ment to occur. Competition between saplings is not calcu-
lated explicitly but rather emerges through height growth 
potential, radiation utilization, and environmental modifiers 
of sapling growth and survival, such as water and tempera-
ture limitations. When the mean tree of any one species 
reaches >4m in height the cell is “won”, and individuals of 
that species will be recruited into the tree layer while the rest 
of the saplings are removed, and the establishment process 
may begin again.  

The model can also optionally simulate disturbances. 
Available modules include fire, wind, bark beetles, and other 
biotic disturbance agents including browsing, as well as 
generic user-defined “timed” disturbances allowing to con-
trol individual disturbance processes, such as disturbance 
size, frequency, and extent (Seidl et al. 2014a, 2014b; Seidl 
and Rammer 2017; Thom et al. 2017a; Honkaniemi et al. 
2021). The disturbance modules are spatially explicit and 
dynamic, arising from the interaction between individual 
trees and climatic conditions. Each module requires a sepa-
rate parameterization and calibration process which will be 
considered in future studies of AFR. 

Some additional software is required for the management 
of the input and output data of the model including a text 
editor (e.g., Notepad++; Ho 2023), an SQLite database man-
ager (e.g., SQLiteStudio; Salawa 2020), and GIS software (e.g., 
ArcMap; ESRI 2018).  

 
Study area 
The AFR extends through the maritime region of Canada 
encompassing the provinces of New Brunswick (NB), Nova 
Scotia (NS), and Prince Edward Island (PEI; Fig 2). The forest 
is composed of 36 tree species in varying abundance accord-
ing to topographic, soil, and local climate conditions (Rowe 
1972). The typical temperate species of the AFR include red 
spruce (Picea rubens Sarg.) along with a significant shade-tol-
erant hardwood component of sugar maple (Acer saccharum 
Marsh.), yellow birch (Betula alleghaniensis Britt.), American 
beech (Fagus grandifolia Ehrh.), and red maple (Acer rubrum 
L.). Other prevalent conifers in the region include eastern 
hemlock (Tsuga canadensis L.), eastern white pine (Pinus 
strobus L.), red pine (Pinus resinosa Ait.), tamarack (Larix 
laricina (Du Roi) K. Koch), and eastern white cedar (Thuja 
occidentalis L.). Additional hardwood species include white 
ash (Fraxinus americana L.), balsam poplar (Populus balsam-
ifera L.), and red oak (Quercus rubra L.). Cold-adapted, typi-
cally boreal species, also found throughout the AFR, include 
balsam fir (Abies balsamea (L.) Mill.), white spruce (Picea 
glauca (Moench) Voss), black spruce (Picea mariana Mill.), 
white birch (Betula papyrifera Marsh.), and trembling aspen 
(Populus tremuloides Michx.) (Basquill and Baldwin 2020).   

Current climatic conditions are relatively mild winters 
and cool summers with mean temperatures from -2 to -8°C 
in the winter and 15 to 18°C in the summer; precipitation 
varies from 800–1500 mm with higher amounts falling along 
the coast and drier conditions inland (Environment Canada 
2021). The cool climate and high rainfall lead to soil pod-
solization and nutrient-poor acidic soils in coastal areas, but 
soil quality varies with topography, resulting in well-drained 
and fertile upland ridges and river valleys. (Loo and Ives 
2003). The large amount of coastline and general proximity 
to the Atlantic Ocean has a moderating effect on both tem-
perature and precipitation, but prevailing westerly winds 
counter that effect, resulting in frequently fluctuating weather 
conditions (Loo and Ives 2003). Gap disturbances of small, 
infrequent fires, windthrow events, and endemic insect dam-
age are most frequent in the AFR (Basquill and Baldwin 
2020), however larger wind events, fires, and insect outbreaks 
also occur throughout the region and are expected to increase 
in frequency and severity (Taylor et al. 2020). 
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Environment settings  
iLand requires parameterization at the landscape, stand, and 
individual tree levels prior to model initialization. Landscape 
parameters include values such as CO2 concentration, base-
line temperature for growing degree days, and external seed 
input. These types of values are based on the geographic loca-
tion of the landscape to be modelled and were determined 
based on literature review where information was available, 
or default values are available within the model. Site level 
parameters include climate and soil characteristics, as well as 
the establishment of the starting tree and sapling populations.  

Throughout model calibration, the same representative 
climate and site condition inputs were used. Daily climate 
estimates were generated using historical monthly values 
obtained from high-resolution interpolated climate data pro-
vided by Natural Resources Canada (McKenney et al. 2011) 
and daily observed data from Environment and Climate 
Change Canada weather stations on PEI. The dataset, repre-
senting 1970 to 2010, was randomly sampled by the model to 
extended over the simulation periods. Three stand soil condi-
tions were used, based on Nova Scotia (NS) permanent sam-

ple plot (PSP) observations, with different soil composition 
and available nitrogen values (kg•ha-1year-1) to represent low, 
moderate, and high productivity sites (Table S1). All simula-
tions were initialized from bare ground conditions using seed 
from unlimited “outside” sources; seed remains available 
from outside sources throughout the simulation in addition 
to local seed rain as the forest develops.  

The initial growth and life history parameters required by 
each of the 18 species (Table 1) were based on a previous cal-
ibration of the individual tree-based forest gap model PICUS 
by Taylor et al. (2017) for the AFR, the TRY database (Kattge 
et al. 2020), and an extensive literature review. A full list of 
the required parameters with descriptions can be found at 
https://iland-model.org/species+parameter. The final species 
parameter set is available in the supplementary material. 

 
Permanent sample plot data 
Tree and stand information were obtained from the PSP net-
works of NS, PEI, and NB (Porter et al. 2001; NSDNR 2004). 
The NS PSP network was initially established in 1965 with 
1765 plots located randomly throughout the province in all 
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Fig. 2 Map of the study area indicating the extent of the Acadian Forest Region (AFR) in purple across the Canadian provinces of New 
Brunswick (NB), Nova Scotia (NS), and Prince Edward Island (PEI). The gray dots show the distribution of permanent sample plots 
(PSPs) across the region.   

T
he

 F
or

es
tr

y 
C

hr
on

ic
le

 D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ci

f-
if

c.
or

g 
by

 1
38

.2
46

.3
.4

8 
on

 0
8/

28
/2

3
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



forest types including disturbed and harvested areas, silvicul-
ture treatments, as well as natural forest, on Crown and Pri-
vate land. In 1998 the network was expanded to include 2139 
additional plots (NSDNR 2004). The NB PSP network was 
established in 1987 and includes 2499 PSPs distributed 
throughout the province, excluding private and industrial 
freehold land (Porter et al. 2001) with 532 additional plots 
established from 2000–2010.  For both networks, the plots are 
remeasured every five years. The PEI PSP network was ini-
tially established in 1976 and includes 959 plots, 563 of which 
are considered active, with a 3-year remeasurement cycle (M. 
Angus, Forest Inventory Analyst, PEI Resource Inventory 
and Modelling, personal communication, November 2022). 
The plots are located largely in softwood plantations on 
Crown land, with a few distributed in natural forests on 
Crown or private lands (M. Angus, Forest Inventory Analyst, 
PEI Resource Inventory and Modelling, personal communi-
cation, November 2022).  

For individual species comparisons, all the PSP datasets 
were filtered for live stems of the target species with observa-
tions of age, diameter at breast height (DBH, cm) and height 
(m) resulting in 85 to 6303 observations by species (Table 
S2). All three of the PSP datasets were used for the individual 
species calibration of growth measurements to ensure ade-
quate representation of less common species and to capture 
the widest range of individual variability. However individual 
species density for mature stems and saplings was assessed 
using the NS PSP data only as the plots are consistently mea-
sured as 0.04 ha fixed-area plots allowing for the consistent 
calculation of density, while NB varies plot type and size by 
forest type, and plot specifications were not available for PEI. 
Stand densities were obtained from the NS PSP dataset by  
filtering for plots with > 75% basal area (m2•ha-1) contributed 
by the target species and calculating density (stems•ha-1) 
using the fixed-area expansion (NSDNR 2004).   

For mixed-species landscape comparisons, plot summary 
data was created only for NS PSP plots containing tree ages, 

as the NS dataset was the largest and most complete overall. 
In the NS dataset, there were 3259 plots available with tree 
ages, of which 3153 have been measured more than once, 
resulting in 20 487 observations. Each observation was then 
filtered for live trees of the 18 target species and the individual 
ages were averaged to represent stand age. Average DBH and 
height were summarized; volume per hectare (m3•ha-1), and 
stem and sapling density (stems•ha-1) were calculated using 
the fixed-area expansion factor (NSDNR 2004).  

A discrepancy exists in the definition of saplings and trees 
between iLand and the PSP inventory protocols. iLand moves 
stems from the sapling to tree stage at >4m height, regardless 
of their DBH. This results in many very small stems (mini-
mum ~3 cm DBH) present in the tree output. The NB dataset 
defines trees as DBH > 5.1cm and does not record saplings, 
PEI measures trees > 7cm and does not record saplings, while 
NS defines trees as DBH > 9.1cm and records saplings by 
count per species in 4, 6, and 8 cm DBH classes. To account 
for this difference in tree and stand dynamic calculations in 
the evaluation, the iLand output and the NB and PEI PSP 
data were filtered to remove stems < 9.1 cm to match the 
sampling design of the NS PSP plots. Once removed as trees, 
the stems < 9.1cm were added directly to the sapling counts 
in both the individual species and stand calibrations. 

 
Simulation analysis 
Analyses of model results were conducted through a combi-
nation of visual assessment and descriptive statistics compar-
ing simulated and empirical data available for the AFR. Tree 
population and stand dynamics were assessed visually using 
time series plots, overlaying model outputs with empirical 
data for individual species as well as stand values. The target 
for these plots was to ensure model results fell within the 
observational data ranges for all measures and represented 
well-known developmental patterns. Further qualitative 
assessment of individual species growth included compari-
son of average and maximum model results with observed 
values and available literature. Succession was assessed 
through the relative abundance (RA) of species by shade tol-
erance group. RA was calculated as the percentage of total 
volume represented by each species on the landscape as:  

 
1) 

 
Where, RAiy is the relative abundance of shade tolerance 

group i in year y, Viy is the volume (m3•ha-1) of shade toler-
ance group i in year y, and Vy is the total volume (m3•ha-1) in 
year y (Ricklefs 2006). 

For the individual species calibration process, a single 1-
ha monospecific stand was initiated for each of the three soil 
conditions from bare ground (i.e., three stands) using the 
provided species parameters for a period relative to the max-
imum age of the species under consideration. Simulations of 
individual species were run using “torus” mode activated in 
iLand which allows multiple discrete stands to be run in par-
allel while remaining self-contained. The full simulation out-
put was then reviewed, particularly to ensure species were 
reaching the expected maximum age and size. For direct 
assessment against the PSP observations, only zero to 200 
years of each simulation were used due to the low represen-
tation of very old trees in the PSP datasets. The 200-year 
results were compared visually by time-series with the indi-
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Table 1. Calibrated species common name, scientific name, 
four letter iLand code, and shade tolerance class 
 
Common                                                                   iLand         Shade   
Name                             Latin                                   Code          Tolerance 
 
balsam fir                     Abies balsamea               abba           high 
red maple                     Acer rubrum                    acru            mod 
sugar maple                 Acer saccharum              acsa            high 
yellow birch                 Betula alleghaniensis      beal            mod 
white birch                   Betula papyrifera            bepa           low 
American beech         Fagus grandifolia            fagr             high 
white ash                      Fraxinus americana       fram           low 
tamarack                      Larix laricina                   lala              low 
white spruce                Picea glauca                     pigl             high 
black spruce                 Picea mariana                 pima          high 
red spruce                    Picea rubens                     piru            high 
jack pine                       Pinus banksiana             piba            low 
red pine                        Pinus resinosa                  pire             low 
white pine                    Pinus strobus                   pist             mod 
trembling aspen         Populus tremuloides       potr            low 
red oak                          Quercus rubra                 quru           mod 
eastern white cedar    Thuja occidentalis           thoc            high 
eastern hemlock         Tsuga canadensis            tsca             high 
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vidual trees from the PSPs. Adjustments to various model 
parameter values were made based on these comparisons, 
until model outputs conformed sufficiently with species-spe-
cific empirical observations. Results were also compared 
quantitatively to the NS, NB, and PEI datasets by calculating 
the average and maximum DBH, height, volume per tree, 
and age over the 200-year simulation. Available literature 
describing species life history characteristics such as Honer et 
al. (1983), Burns and Honkala (1990) and Farrar (1995) were 
also consulted throughout the process to augment the 
observed data for less common species.  

To assess stand dynamics, 100 1-ha stands were estab-
lished for each of the three soil conditions using the adjusted 
species parameters running the simulations for 200 years 
(i.e., 300 stands). The output data was then compared visually 
to NS plot data. Measures that were assessed for stand 
dynamics included average DBH, height, volume per hectare, 
as well as density of all stems and stems > 9.1 cm only, and 
sapling density over stand age. To assess succession patterns, 
relative abundance by species and shade tolerance class 
(Table 1) were calculated for the combined 300 simulated 
stands and the NS observational data and compared by early, 
mid, and late successional stages. Successional stages were 
divided by stand age with 0–40 years, 41–100 years, and 100+ 
years representing early, mid, and late succession, respec-
tively. Once again, adjustments to various parameter values 
were made based on the results of the comparisons until 
model outputs conformed sufficiently with observations of 
the evaluation dataset.  

 

Results 
Population dynamics 
When visually assessing individual species’ growth patterns 
over time, it was found that the model correctly reproduced 
the rapid increase in diameter, height, and volume (Fig. 3) 
early during the simulation. Results for all species are avail-
able in the supplementary material. Growth patterns con-
formed to the observed data of all species across the environ-
mental gradient and study period, with a decreased growth 
rate in the mid- to late term. Growth responses to increasing 
nitrogen levels were species-specific, but displayed a com-
mon positive, initial response which declines under increas-
ing N. For all species, stand densities peaked early in the sim-
ulations as stands colonized rapidly, followed by a decline 
and subsequent plateau in the mid- to late term (Fig. 3). 
Sapling densities followed a similar pattern, with an early 
peak with densities dropping to near zero before starting to 
increase as tree mortality occurred and secondary regenera-
tion began (Fig. 3).  

Each species was compared numerically against the 
empirical observations by averaging DBH, height, volume, 
and age for the complete 200-year simulation data and NB, 
NS, and PEI datasets (Table S2). In the observed data, the NB 
average values were higher than the NS and PEI values in 
nearly all species, except white pine and American beech, for 
both DBH and height measures. Overall, the DBH and height 
averages in the iLand simulations were closer to the NS aver-
ages but fell within the interquartile ranges (i.e., between the 
25th and 75th percentile) of all observed data, with few excep-

8 2023, VOL. 99, No2 — THE FORESTRY CHRONICLE

Fig. 3 Simulated iLand average diameter at breast height (DBH; cm), height (m), volume (m3•ha-1), density of stems > 9.1 cm 
(stems•ha-1), and density of saplings < 4m in height (stems•ha-1) by nitrogen class (NClass) and tree age over observed data from the 
New Brunswick (NB), Nova Scotia (NS), and Prince Edward Island (PEI) permanent sample plot (PSP) networks for balsam fir and red 
maple. Results for all 18 species available in the supplementary material Fig. S1-S5)
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tions. The simulated DBH and height results for red pine, red 
oak, and hemlock were close to the NS observations, but 
much lower than the NB and PEI averages. Volume compar-
isons between the iLand results and NS averages across 
species are congruous with the DBH and height compar-
isons, suggesting that the height to diameter ratios and vol-
ume calculation parameters in iLand are appropriate.  

Maximum individual measurements simulated in iLand 
over the 200-year simulation period were compared with the 
NB, NS, and PEI observations, where available. The largest 
and oldest simulated individuals were generally represented 
in the empirical observations, and all were within species 
maxima documented in the literature (Table S3; Honer et 
al.1983; Burns and Honkala 1990; Farrar 1995). The largest 
difference in DBH growth was seen in American beech 
(+28.5 cm) and white ash (+23.0 cm). White ash showed the 
largest difference in maximum height growth at +7.3 m. The 
“aging” parameter, which is used to calculate a decline in 
gross primary production with age relative to 
a maximum age and height, was adjusted so 
that approximately 7–10 stems per ha would 
reach the maximum species age on long sim-
ulations which is not able to be observed on 
the 200-year simulation for long-lived species 
but was tested throughout the process with 
longer simulations. For example, red spruce 
has a lifespan of 400+ years (Burns and 
Honkala 1990) and had a maximum of 13 
individuals per ha > 400 years of age over an 
800-year simulation, with a maximum age of 
502 years. Some typically short-lived, shade-
intolerant species, such as jack pine, were 
observed to live longer than expected in the 
monospecific simulations, but as their overall 
growth was as expected, no further adjust-
ments were made and in later simulations, 
with mixed species competition, their life span 
was shorter, within normal range (i.e., < 150 
years of age). 

 
Stand structure 
Stand dynamics were well represented in the 
multi-species simulations when compared to 
the NS observational data. Stand dynamics 
were assessed visually by comparing the aver-
age DBH, height, volume, density of stems > 
9.1cm, and sapling density (Fig. 4) of each 
simulated stand at 10-year increments against 
NS observations. The 300 simulated stands 
displayed less variation in growth than the 
observed stands, with simulated DBH and 
height (Fig. 4) trending in the mid-to-high 
range of the observed data. Average stand 
density (DBH < 9.1 cm) showed a similar pat-
tern as in the monospecific stands where the 
initial density peaked high, but the stands 
quickly thinned to an expected tree number 
(Fig. 4). Density trended low in the observed 
data which is not unexpected considering the 
moderate–to-high diameter range recorded 
(Fig. 4; Westoby 1984). Sapling densities were 

variable between stands, but conformed well to the observed 
data, averaging 1742 stems/ha to the observed 1844 stems/ha 
(Fig. 4).  
 
Succession 
During early succession (0–40 years), the simulation was 
comprised of 59.4% relative abundance of low shade-toler-
ance, pioneer species such as white birch, tamarack, and jack 
pine. In comparison, young stands in the NS observational 
data were dominated by 63.5% high shade-tolerance species, 
made up largely of balsam fir and white, black, and red spruce 
(Fig. 5). During mid-succession (41–100 years), the simula-
tions showed a dramatic reduction in low shade-tolerance 
species to 3.9%, a 14.3% increase in moderate shade-toler-
ance, and a 41.4% increase in high shade-tolerance species, 
bringing it closer in line to the NS data which included 9.2% 
low, 29.8% moderate, and 60.9% high shade-tolerance 
species (Fig. 5). In late-stage succession (101+ years), the 
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Fig. 4 Simulated iLand average diameter at breast height (DBH; cm), height (m), 
volume (m3•ha-1), density of stems > 9.1 cm (stems•ha-1), and density of 
saplings < 4m in height (stems•ha-1) for each of the 300 simulated stands  
at 10-year intervals over observed data from the Nova Scotia (NS) permanent 
sample plot (PSP) network.

T
he

 F
or

es
tr

y 
C

hr
on

ic
le

 D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ci

f-
if

c.
or

g 
by

 1
38

.2
46

.3
.4

8 
on

 0
8/

28
/2

3
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



model closely matched observations of relative abundance 
for both moderate and high shade-tolerance species (Fig. 5). 
A larger difference was seen in the relative abundance of low 
shade-tolerance species in late succession, which was 0.04% 
in iLand, but was substantially higher in the NS data at 8.4%, 
made up of 5.2% tamarack and 2% or less white ash, white 
birch, red pine, and trembling aspen. 
 
Discussion 
Given the large challenges faced by forest managers today, 
such as global climate change and biodiversity loss, process-
based modelling is becoming an increasingly valuable tool in 
the decision-making toolkit (Cuddington et al. 2013). Com-
plex process-based models are also becoming increasingly 
accessible and have been used in a variety of climate sensitive 
landscape projections, the results of which have been used to 
inform policy and decision making (e.g., Ashraf et al. 2012; 
Steenberg et al. 2013; Rammer and Seidl 2015; Seidl et al. 
2017; Taylor et al. 2017; Boulanger et al. 2018; Dobor et al. 
2018). Despite improvements in data availability and compli-
mentary software, the task of calibrating and validating a pro-
cess-based model remains unfamiliar to most forest profes-
sionals, necessitating the presentation of methodologies such 
as this one to facilitate the transition from theoretical 
research to general application.  

iLand provides an excellent example of the power of pro-
cess-based models and is well-suited to use in the AFR 
because of its suitability to heterogeneous environments – 

both in species composition and environmental conditions – 
with its unique combination of dynamic interactions 
between individual trees and their environment across simu-
lated landscapes. Although the model is very complex in 
detail and requires many species and environmental param-
eters variables, it has a user-friendly graphical interface, uses 
open-source software, and has extensive online-resources, 
making it accessible for experienced forest professionals with 
adequate resources and good understanding of modelling 
concepts.  

As this was the first application of iLand in the AFR, cali-
bration was required. There are many potential methods of 
calibration, including qualitative and quantitative options, 
and selecting the appropriate model is impacted by the qual-
ity and quantity of the empirical data available, as well as the 
format and function of the model in question. In this 
instance, formal statistical tests were not used after careful 
consideration of the observational data available for the AFR. 
The AFR and adjacent regions have been subject to timber 
exploitation and land clearing since the 17th century but have 
only had widespread intensive forest management for less 
than 100 years (Loo and Ives 2003; Noseworthy and Beckley 
2020). As a result, there is substantial growth and yield data 
available only for the most commercialized species while 
many other species have had little direct sampling (e.g., Plon-
ski 1974; Honer 1983). However, large databases are available 
from wide-scale growth and yield data collection using PSP 
networks throughout the AFR (e.g., Porter et al. 2001; 
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Fig. 5 Relative abundance by species shade tolerance for the combined 300 simulated stands and Nova Scotia (NS) permanent sample 
plot data (PSP) compared between early, mid, and late successional stages. Successional stages were divided by stand age with 0–40 
years, 41–100 years, and 100+ years representing early, mid, and late succession, respectively.
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NSDNR 2004). These PSP networks represent a significant 
investment and effort in data collection and are indispensable 
for many aspects of growth and yield and forest health mon-
itoring. Unfortunately, the representation of many species 
and stand types is still low, and remeasurement represents a 
relatively short timeframe compared to the lifespan of many 
of the species. Further, there were concerns regarding the 
validity of some records with extremely large or small mea-
surements in relation to recorded tree age that could not be 
verified but were not removed from the overall dataset. In 
addition, our method of initialization from bare ground 
results in very low variability between stands, which did not 
reflect the natural condition where legacy effects of establish-
ment and unique forest communities create more variation 
within and between actual stands. These combined factors 
make formal statistical validation inappropriate for a gener-
alized calibration across the entire AFR. 

Qualitative validation methods, including visual assess-
ments, are sometimes discounted due to the subjectivity of 
the observer, however identifying natural patterns, and 
ensuring realism, are integral parts of model validation that is 
difficult to accomplish with statistical methods (Grimm et al. 
2005). The large number of parameters results in complex 
interactions which may result in parameter trade-offs, where 
improving the fit of one variable may result in the poorer fit 
of another. Visual assessment allows for more nuanced 
understanding of these relationships, as patterns and trends 
can be observed and interpreted in context. Most impor-
tantly, calibrations and parameter values are not static and 
can continue to be improved as the model is applied to more 
specific regions, undergoes sensitivity analyses, and further 
empirical research becomes available for specific parameter 
values (McKenzie et al. 2019).  

In the assessment of tree population dynamics, simulated 
diameter, height, and volume growth for all species fell 
within the ranges of observed natural variation. Increased N 
levels from low to moderate produced a noticeable increase 
in growth, but only a slight further increase was observed 
from moderate to high N levels, reflecting known soil N sat-
uration trends (Aber et al. 1989). Tree ages were also well 
represented, although for many long-lived species there were 
limited observations in the upper ages; simulated averages 
remained within known species maxima (Burns and 
Honkala 1990; Farrar 1995). However, certain differences 
were noted between the observed data and simulated results, 
relating to model function, characteristics of the observa-
tional data sets, and project design.   

In some cases, differences identified between simulated 
and observed species average growth were influenced by fac-
tors not accounted for in the model. For example, simulated 
American beech was able to obtain larger maximum diame-
ters and longer life spans than observed, possibly due to the 
influence of beech bark disease in the AFR (Cale et al. 2017) 
which is currently unaccounted for in the model (Le Guerrier 
et al. 2003). Adjustments were made to decrease the produc-
tivity of beech to reflect the impact of beech bark disease, 
however, large individuals were still able to occur with a fre-
quency that is now rarely observed in the AFR (Taylor et al. 
2013). Awareness and special considerations need to be made 
in the application of iLand and analysis of results for biotic 
disturbance agents that are having a significant impact on 

species in the area of interest. There are several methods that 
can be used to replicate the impact of disturbance agents in 
iLand, including the bark beetle module (Seidl and Rammer 
2017) and biotic disturbance engine (BITE; Honkaniemi et 
al. 2021). 

Comparisons were also impacted by the uneven repre-
sentation of species in the observational data. Observational 
averages for DBH and height were much higher for white 
ash, red pine, and red oak in NB, and white pine, red oak, 
and hemlock in PEI. The NB observations for those three 
species were limited to 39 records in total, none of which 
contained stems younger than 50 years, while the PEI obser-
vations totaled only five, ten, and one older stems for each of 
the three species, respectively, which may have inflated the 
observational average values. The quality and quantity of 
forest inventory data will vary depending on the scale, juris-
diction, and heterogeneity of the area of interest but should 
be assessed critically when being used in model validation or 
initialization to evaluate characteristics of the data that may 
not be reflective of field conditions. Models are a representa-
tion, not a replication of ecosystems and comparison with 
biological realism should be considered in addition to direct 
comparison to existing inventory data (Vanclay and Skovs-
gaard 1997).  

While modeled stand structure (i.e., DBH, height, vol-
ume) was generally reflective of the observed data, model 
results were limited to the mid- to high range of the obser-
vations with very little variation. This trend fits expectations 
as the simulated stands do not include disturbance or 
exceptionally low productivity sites such as bogs (e.g., 
observed plots > 130 years of age with average DBH < 15cm 
of pure black spruce) which are the result of a great varia-
tion in natural establishment conditions. Simulated tree 
establishment and regeneration patterns were also reflective 
of natural trends, with simulated densities over time dis-
playing the expected pattern of high stand initiation den-
sity, followed by self-thinning as age and average DBH 
increased (Westoby 1984).  

However, despite reflecting the natural pattern of estab-
lishment, overall, the simulated stand densities were substan-
tially lower than the observed values from NS. This may be 
attributed to the establishment routine used in the model and 
the exclusion of forest disturbances from the initial calibra-
tion (Valle et al. 2009). Using the bare ground establishment 
routine, the model showed consistently high establishment 
densities both in the individual and multi-species testing sce-
narios, which were characteristic of natural establishment 
patterns following stand replacing disturbance (Bartels et al. 
2016). However, large-scale stand replacing disturbances are 
not widespread in the AFR, with return intervals for high 
severity fires and hurricanes estimated at 250–600 years and 
1 250 years, respectively (Taylor et al. 2020). The AFR has 
many disturbance agents that interact to create canopy gaps, 
allowing for continuous regeneration throughout stand 
development (Amos-Binks and MacLean 2016), whereas 
without the inclusion of disturbance in the model of any type, 
regeneration is reduced as the forest develops and competi-
tion for light precludes the establishment of new cohorts.  

In addition, the bare ground establishment routine used 
had external seed input from all 18 parameterized species 
simultaneously, which continued throughout the simulation, 
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in addition to dynamic seed rain from the forest as it devel-
oped. This creates a more consistently homogeneous envi-
ronment across the simulated landscape with stand types and 
species mixtures that would not typically develop in a natural 
forest. With these considerations, the emergence of natural 
patterns of stand structure supports the validation of the 
model calibration. When applying the model in a new forest, 
typically forest inventory data is used to inform stand delin-
eation, species composition, size, and density, optionally 
along with a “spinup” routine (i.e., a process of combining 
multiple model initializations to reduce idiosyncrasies associ-
ated with the random element of initialization to create a 
more stable environment) to better characterize natural con-
ditions (Thom et al. 2018) and mitigate the impacts of initial-
ization on the simulated future conditions (Temperli et al. 
2013). 

Sapling density remained steady throughout the simula-
tion, which is to be expected when modeling without distur-
bance or ungulate browsing. Observed data was not available 
or plentiful for all species and understory regeneration is 
highly variable and dependent on many factors (Paluch 
2004); therefore, in addition to direct comparison with 
observed data, the pattern we were expecting to observe in 
the simulated data was a secondary increase in sapling den-
sity beginning between 50 and 100 years and reaching 500–
3000 saplings/ha which was represented in all species 
(Brisette 1996; Angers et al. 2005; Leak 2006).  

The simulation results showed marked difference from 
the NS PSP results for composition by species and shade tol-
erance group in the early and into the mid-successional 
stages despite reflecting the well-documented successional 
pathway of early successional species dominating at estab-
lishment with a gradual transition favouring more shade-tol-
erant, late-successional species in the mid- to late-term 
(Fraver et al. 2009; Gauthier et al. 2010; Basquill and Baldwin 
2020). This expected pathway is not reflected in the NS obser-
vations, which showed a consistent presence of high-toler-
ance species across successional stages.  

However, the apparently disproportionate presence of 
high-shade-tolerance species such as balsam fir and white 
spruce in young PSP plots is not unexpected due to the com-
plex interactions of disturbance size and severity, time since 
disturbance, and biological legacies in the long-term stand 
development. As extreme disturbances are rare, stands 
throughout the AFR are often regenerating on secondary 
successional pathways which are influence greatly by biolog-
ical legacies such as seed beds, stump sprouting, and 
advanced regeneration allowing the maintenance of consis-
tent species composition, especially for shade tolerant species 
(Frelich and Reich 1995). In addition, the phenomenon of 
“borealization” that has been identified through the AFR as a 
result of the impact of previous land clearing for settlements, 
timber exploitation and agriculture, and more recent indus-
trial forest management leading to an overall increase in the 
presence of conifers (Noseworthy and Beckley 2020).  

The NS observations also showed a higher prevalence of 
low-shade-tolerance species in the late successional stage, 
made up largely of tamarack. Tamarack is highly intolerant of 
shade and cannot reproduce under a full canopy; it must 
establish early and become dominant to survive in the 
canopy of a stand (Burns and Honkala 1990). Due to the 

prevalence of shade-tolerant species in all stands and lack of 
disturbances in the iLand simulations, tamarack was unable 
to compete with other species. However, when assessed with 
fewer species, it was able to persist. 

Overall, for initial calibration purposes, the representation 
of the well-known successional pathway by the model and 
the agreement between the simulation data and the observed 
data for species and tolerance composition in the late succes-
sional stage are considered successful because the replication 
of the current state of NS forests was not the overarching goal 
and would require more specific stand initiation techniques 
to replicate.  

 
Conclusion 
In this study, we successfully calibrated iLand, closely 
approximating observed patterns for both individual species 
and stand dynamics in the AFR. By demonstrating a robust 
methodology of the calibration and validation of a novel pro-
cess-based model we hope to contribute to the increased use 
of modelling in the forest management context. Based on our 
results, this calibration of the iLand model is currently suit-
able for application throughout the AFR and it is very likely 
that many species will provide a starting point for further cal-
ibrations throughout their Canadian range. However, in all 
cases when a model is applied to a new geographic range fur-
ther testing should be done with local growth and yield data. 
The model is calibrated only for general landscape character-
istics and is not currently verified to represent specific stand 
types that represent a smaller proportion of the forest, such as 
bogs or coastal krummholz stands. At this stage, iLand is 
ready to be used in general modelling projects throughout 
the AFR and to undergo more region-specific evaluation.  
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