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Abstract

The Spectral Element Method (SEM) is a well-established high-order variant of the Fi-
nite Element Method (FEM) used for dynamic problems. It can be combined with the
Finite Cell Method (FCM), an immersed boundary method, which eliminates the need for
cumbersome mesh generation. The resulting method is called the Spectral Cell Method
(SCM). It is applied to wave propagation problems. However, it has two main drawbacks.
First, the mass matrix is no longer diagonal if cells are cut by the boundary. This limits the
computational efficiency of time integration since a diagonal mass matrix enables time
integration without solving any systems of equations. Second, cut cells typically have high
eigenfrequencies and thus small critical time step sizes. Therefore, badly cut cells restrict
the time step size for the explicit integration of the whole domain.
This thesis addresses both drawbacks by developing and comparing time integration
methods. Among those are a split solver, a leapfrog solver, an implicit method, and Implicit-
Explicit (IMEX) methods. One of the IMEX solvers is based on Newmark methods, the
other on Runge-Kutta-Nyström (RKN) methods. The different time integration algorithms
are profiled on two benchmark examples. The IMEX methods perform best in terms of
accuracy per runtime, particularly the Newmark IMEX variant.
Following the comparative study, the Newmark IMEX algorithm is applied to the Full
Waveform Inversion (FWI) to accelerate the wave simulations. Compared to the results
in [1], a speed-up of factor 2.85 is achieved while simultaneously improving the quality of
the inversion result.
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Zusammenfassung

Die Spektrale Elemente Methode ist eine bewährte Variante hoher Ordnung der Finite
Elemente Methode, die für dynamische Probleme verwendet wird. Sie kann mit der Finiten
Zellen Methode, einer Methode mit eingebettetem Rand, kombiniert werden. Dadurch
entfällt die Notwendigkeit einer umständlichen Netzgenerierung. Die daraus resultierende
Methode heißt Spektrale Zellen Methode, welche auf Probleme der Wellenausbreitung
angewendet wird. Sie hat jedoch zwei wesentliche Nachteile. Erstens ist die Massenmatrix
nicht mehr diagonal, wenn Zellen durch den Rand geschnitten werden. Dies limitiert die
Effizienz der Zeitintegration, da eine diagonale Massenmatrix die Zeitintegration ohne die
Lösung von Gleichungssystemen ermöglicht. Zweitens haben geschnittene Zellen meist
hohe Eigenfrequenzen und damit geringe kritische Zeitschrittgrößen. Daher schränken
schlecht geschnittene Zellen die Zeitschrittgröße für die explizite Zeitintegration des
gesamten Gebiets ein.
In dieser Arbeit werden beide Nachteile durch die Entwicklung und den Vergleich von
Zeitintegrationsmethoden angegangen. Dazu gehören ein Split Löser, ein Leapfrog
Löser, eine implizite Methode und Implizit-Explizit (IMEX) Methoden. Einer der IMEX
Löser basiert auf Newmark Methoden, der andere auf Runge-Kutta-Nyström Methoden.
Die verschiedenen Zeitintegrationsalgorithmen werden anhand von zwei Benchmark-
Beispielen getestet. Die IMEX Methoden schneiden in Bezug auf die Genauigkeit pro
Laufzeit am besten ab, insbesondere die Newmark IMEX Variante.
Im Anschluss an die vergleichende Studie wird der Newmark IMEX Algorithmus auf die
volle Wellenforminversion (FWI) angewendet, um die Wellensimulationen zu beschleuni-
gen. Im Vergleich zu den Ergebnissen in [1] wird eine Rechenzeitverringerung um den
Faktor 2,85 erreicht, wobei zusätzlich die Qualität des Inversionsergebnisses verbessert
wird.
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Notation

Definition Notation Example

scalar lower case wave speed c

vector bold lower case position x

discrete scalar ⋆̂ lower case degree of freedom ûi

discrete vector ⋆̂ bold lower case degrees of freedom û

matrix bold upper case mass matrix M

Exceptions include commonly used symbols, e.g., σ for the stress tensor.
In chapter 3, the ⋆̂ notation is dropped since all relevant quantities there stem from a spatial
discretization and are discrete by nature. Matrices, e.g., the mass and stiffness matrices
M and K, are also typically discrete in the context of time integration. For the sake of
less deviation to the notation in the literature, the superscript ⋆̂ is neglected here, too.
Furthermore, a matrix A may also be expressed in indicial notation aij . This is especially
common in the context of Runge-Kutta methods.
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Chapter 1

Introduction

1.1 Motivation

Time integration is an essential topic in many fields of engineering and science. It is often
the procedure of choice when the problem at hand is time-dependent and too complex to be
solved analytically, which is almost always the case for cases of practical relevance. Such
problems arise, for example, in computational fluid dynamics [2], structural dynamics [3],
and wave propagation in Structural Health Monitoring (SHM) [4].
To solve the physical problem, it has to be transferred to a numerical model. In the first
step, an Initial Boundary Value Problem (IBVP) is derived that is characterized by the
underlying Partial Differential Equation (PDE) and the corresponding initial and boundary
conditions. The PDE is then often discretized in space using the Finite Element Method
(FEM) [5], which is a versatile and accurate method for the solution of PDEs. However,
its major drawback is that it requires boundary-conforming elements in its conventional
form. This, in turn, often results in a time-consuming and cumbersome meshing process
for complex geometries [6]. For practical problems that utilize the FEM, often up to 80% of
overall analysis time is spent generating a suitable mesh [7].
Immersed boundary methods like the Finite Cell Method (FCM) [8–10] offer the opportunity
to circumvent the generation of a complicated mesh. The FCM does not rely on a boundary-
conforming mesh but instead uses a comparatively simple mesh - often cartesian - and
captures the boundary by adaptive integration methods like quad-/octree partitioning [11]
of the cut cells. Cut cells are a reference for cells that are neither completely inside nor
completely outside the physical domain.
The SCM [4] is a combination of the FCM and a high-order variant of the FEM, the Spectral
Element Method (SEM). Due to the choice of Lagrange basis functions on Gauß-Lobatto-
Legendre (GLL) points and GLL integration for the mass matrix, the SCM achieves a
diagonal mass matrix for Degrees of Freedom (dofs) of uncut cells. Systems with a
diagonal mass matrix are well suited for explicit time integration, e.g., with the established
Central Difference Method (CDM), since no systems of equations need to be solved. This
results in a fast and accurate time integration. However, the SCM is hindered by the fact
that cut cells contribute non-diagonal element matrices and thus destroy the diagonality of
the global mass matrix. To recover this diagonal property, mass matrix lumping [12, 13]
can be utilized. However, in the context of the SCM, Kelemen [14] observed that lumping
cut cells does not yield accurate results for wave propagation due to spurious oscillations.
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Explicit time integration, while in general very computationally efficient, is only conditionally
stable. Thus, there is a critical time step size ∆tcrit beyond which the time integration
is not stable anymore [5]. In practical examples, the proportion of cut to uncut cells is
often small. Still, the cut cells are decisive for which time step size is to be used. Badly
cut cells typically possess a much higher eigenfrequency than uncut ones. The highest
eigenfrequency ωmax is inversely related to the critical time step size [5]

∆tcrit,CDM =
2

ωmax
. (1.1)

Therefore, the cut cells require a smaller time step size to avoid introducing stability
problems to the time integration. The ratio between the critical time step size for uncut
versus for cut cells can be very high, thus limiting the computational efficiency of the time
integration. To illustrate the severity of the problem, a simple demonstration example is
constructed; see Figure 1.1.

dp

lx

ly

Figure 1.1: Drawing of the cut cell

Considering a unit square 2D domain with a
homogeneous density ρ(x) = 1 and shear
stiffness µ(x) = 1, a horizontal cut is intro-
duced at various heights dp to define the fill
ratio η =

dp
ly

. Figure 1.2 shows that cells with
small fill ratios, i.e., cells that only marginally
belong to the physical domain, have high
eigenfrequencies and thus require small time
step sizes. A cell that is cut such that it is

mostly in the physical domain is not as critical but still possesses a significantly larger
eigenfrequency than a full cell. This effect worsens as the polynomial degree increases.
Increased eigenfrequencies for cut cells of higher polynomial degrees represent a limita-
tion to explicit time integration in the SCM. Due to their good approximation abilities, high
polynomial degrees are otherwise desirable in the context of the accuracy/cost trade-off [1].
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The aforementioned is generally valid, but the illustrated eigenfrequencies also depend on
many other factors, like the exact shape of the cut, the depth of the quadtree integration,
and the integration order. In Figure 1.2, the quadtree depth was set to dquad = 13 and
the integration order to pint = p + 1 to diminish the influence of numerical errors in the
integration.

1.2 Applications

As mentioned at the beginning of section 1.1, fields of application for time integration are
vast and include, for example, fluid dynamics [2], structural dynamics [3], and SHM [4].
A review of the current state of the art in Computational Fluid Dynamics (CFD) is given
in [15]. For example, Persson applied implicit-explicit time integration to an airfoil simula-
tion [16]. Furthermore, He and Fadl solved a transient conjugate heat transfer problem
using multi-scale time integration [17]. A rigorous introduction to structural dynamics is
given by Gérardin and Rixen in [3]. Time integration in the context of structural dynamics
can be leveraged to predict the collapse of buildings due to earthquake loads [18]. It is
also extensively used when fluid domains and structural domains are coupled with each
other. This field is called Fluid-Structure Interaction (FSI) [19], and examples include the
aeroelastic simulation of a wing [20] or biomechanical simulations of intraventricular blood
flow [21] and lung deformation [22].

In this thesis, the field of application is SHM. It generally entails the continuous supervision
of structures, the detection of damage onset, its localization and assessment, and the
estimation of a structure’s remaining life [23–25]. Experimentally, the use of ultrasonic
phased arrays is well established; see [26] for a review. These arrays consist of several
elements that can act both as a sender and receiver individually. The excitation is
implemented using piezoelectricity. Each element excites the structure one at a time, while
the remaining elements measure the response of the structure. The response data is
stored in a Full Matrix Capture (FMC) [27]. The reconstruction of defects can be achieved
with imaging or wave integration techniques. A popular imaging technique is the Total
Focusing Method (TFM), which points an ultrasonic beam at every point of the sample
and evaluates the reflections [27, 28]. Examples of its use include Cassels [29], who
detected weld anomalies, and Ohara et al. [30], who localized delamination in concrete
structures. However, the TFM is limited by complex geometries, scattering, and multiple
wave reflections [28]. In contrary, wave integration-based methods like the Reverse Time
Migration (RTM) [31] can resolve much more complex details like irregularly shaped
notches. The RTM achieves this by cross-correlating forward propagated wavefields from
the source with time-reversed backward propagated wavefields from the scatterer [28]. Liu
et al. [32] detected a void defect in concrete-filled steel tubes. However, it is not possible
to meaningfully quantify material parameters using the RTM [33].
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The Full Waveform Inversion (FWI) [34–36], the main application in the scope of this thesis,
is able to do so. FWI is also a wave integration-based method but forms an optimization
problem with the material distribution as the optimization variable. The misfit between
known measurement signals and simulated wave responses is iteratively minimized. In
earlier work, the number and shape of defects needed to be assumed a priori, like a circle
in [37] or a polygon in [38]. Bürchner et al. generalized this approach in [1, 33] such that
any number of voids with arbitrary shapes and positions can be reconstructed. Section
5.1 gives a more detailed presentation of the method.

1.3 Aims of this Thesis

Section 1.1 explained that cut cells limit the computational efficiency of time integration for
systems discretized with the SCM. Thus, the primary goal of this thesis is to investigate
different possibilities to efficiently deal with the dofs of cut cells in time integration. CDM
time integration with and without lumping is considered as a reference. Leapfrog and IMEX
schemes are the main subjects. A leapfrog scheme [23, 39] integrates some dofs with a
smaller time step size than others, whereas an IMEX scheme [40–45] integrates some
dofs explicitly and some implicitly. This way, stability issues can be mitigated, and efficient
algorithms for the time integration of systems discretized by the SCM can be found.

FWI requires numerous wave field integrations in time. Therefore, a more efficient time
integration method reduces the overall computation times of the FWI. The improvement of
the FWI by a more efficient time integration algorithm is the secondary goal of this thesis.

1.4 Outline

Chapter 2 gives the theoretical background of essential concepts for this thesis. First, the
scalar wave equation - the PDE under consideration - is derived. Then, different methods
of spatial discretization are introduced. Among those are the FCM, the SEM, and the
SCM. Furthermore, mass lumping is discussed as it offers the possibility to recover a
diagonal global mass matrix in the SCM.
Chapter 3 presents different methods of time integration for the spatially discretized
systems covered in chapter 2. The main focus lies on exploiting advantageous properties
of the SCM and building upon the well-established CDM. Among the investigated time
integration algorithms are a split solver, a leapfrog solver, and IMEX solvers. IMEX solvers
based on the Newmark method and on RKN methods are derived.
In chapter 4, the algorithms are applied to two benchmark problems. They are evaluated
in terms of accuracy, computational cost, and stability depending on the time step size.
Chapter 5 presents the theory of FWI and shows how the findings of chapter 4 can be
leveraged to improve the efficiency of FWI.
Finally, chapter 6 summarizes the results of this thesis and gives suggestions for future
research.
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Chapter 2

Fundamental Concepts

2.1 The Wave Equation

In the FWI, the simulation of wave propagation is crucial. The underlying physics are
governed by the wave equation.

The balance of linear momentum in a continuum with initial and boundary conditions is

ρ(x)ü(x, t)−∇ · σ(x, t) = f(x, t), x ∈ Ω, t ∈ [0, T ], (2.1)

σ · n = 0, x ∈ ΓN , t ∈ [0, T ], (2.2)

u = uD x ∈ ΓD, t ∈ [0, T ], (2.3)

u = u0, x ∈ Ω, t = 0, (2.4)

u̇ = u̇0, x ∈ Ω, t = 0. (2.5)

The spatial domain Ω is partitioned such that ∂Ω = Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅,
where ΓN and ΓD are the Neumann and Dirichlet boundaries, respectively. The temporal
domain is defined from t = 0 to the end time T . The vector n is the unit outward normal
to the boundary ∂Ω. The symbol ρ(x) denotes the density, u the displacement, ü the
acceleration, σ the Cauchy stress tensor, uD the Dirichlet boundary conditions, u0 the
initial displacements, u̇0 the initial velocities and f(x, t) a volumetric force. In conjunction
with the linear kinematic law

ϵ =
1

2
(∇u+∇uT ) (2.6)

and the linear constitutive law

σ = C : ϵ, (2.7)

the elastic wave equation is defined. The linear strain is represented by ϵ and the
constitutive tensor by C.

Generally, the elastic wave equation describes three-dimensional deformations in three-
dimensional space, i.e., x ∈ R3 and u ∈ R3. The time integration algorithms presented
in chapter 3 can be applied to the elastic wave equation without major adaptations.
However, without loss of generality, this thesis is restricted to the use of the scalar wave
equation in two dimensions, i.e., x ∈ R2 and u ∈ R. The scalar wave equation only
considers deformations in one direction. It represents a reasonable simplification when the
spatial domain can be feasibly approximated as two-dimensional, and the displacement is
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perpendicular to the two non-neglected dimensions. In practice, this occurs, for example,
when thin plates or membranes are excited perpendicularly to their orientation. The scalar
wave equation can be parameterized with the density ρ and the wave velocity c as [33]

ρ(x)ü(x, t)−∇ · (ρ(x)c(x)2∇u(x, t)) = ft(t)fx(x), x ∈ Ω, t ∈ [0, T ], (2.8)

∇u · n = 0, x ∈ ΓN , t ∈ [0, T ], (2.9)

u = uD x ∈ ΓD, t ∈ [0, T ], (2.10)

u = u0, x ∈ Ω, t = 0, (2.11)

u̇ = u̇0, x ∈ Ω, t = 0. (2.12)

Here and henceforth, a potential time dependence of the material parameters is neglected,
and an isotropic heterogenous medium is assumed. Furthermore, the force term f(x, t) is
assumed to be separable into a temporal term ft(t) and a spatial contribution fx(x). Other
parametrizations of the scalar wave equation, e.g., in terms of the shear stiffness µ = ρc2

or the impedance I = ρc, are also possible.

2.2 Spatial Discretization

The following section is derived from the equivalent sections in [5, 14].
To achieve a spatially discretized version of the scalar wave equation (equation 2.8),
its weak form is required. Therefore, it is multiplied with a test function v(x) from an
appropriate ansatz space V and integrated over the domain Ω∫

Ω
v(x)ρ(x)ü(x, t)dΩ−

∫
Ω
v(x)∇·

(
ρ(x)c(x)2∇u(x, t)

)
dΩ = ft(t)

∫
Ω
v(x)fx(x)dΩ. (2.13)

Integrating the second term by parts yields

−
∫
Ω
v(x)∇ ·

(
ρ(x)c(x)2∇u(x, t)

)
dΩ = −

∫
Γ
v(x)ρ(x)c(x)2∇u(x, t)dΓ+ (2.14)∫

Ω
∇v(x)Tρ(x)c(x)2∇u(x, t)dΩ

Here and in the following, Dirichlet boundary conditions are neglected. The boundary
is entirely modeled as a free boundary, i.e., with homogeneous Neumann conditions.
Thus, Γ = ΓN and the integration over the boundary Γ vanishes since it represents a
homogeneous Neumann boundary condition. Therefore, the weak form of the scalar wave
equation is∫

Ω
v(x)ρ(x)ü(x, t)dΩ+

∫
Ω
∇v(x)Tρ(x)c(x)2∇u(x, t)dΩ = ft(t)

∫
Ω
v(x)f(x)dΩ. (2.15)

Next, the displacement and test fields are substituted by linear combinations of ansatz
functions Ni(x) ∈ V , also called basis functions. Here, the Bubnov-Galerkin approach is
used, i.e., both the ansatz functions and the test functions stem from the same function
space. Until this point, no approximation has been introduced. The approximation emerges
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only when the space of ansatz functions is constrained to a finite-dimensional subspace,
e.g., to the space of polynomial functions up to some order p in the case of the FEM. The
restricted ansatz space is called Vh ⊂ V . The solution and test fields are written as

u(x, t) ≊
∑
i

Ni(x)ûi(t) (2.16)

v(x) ≊
∑
i

Ni(x)v̂i. (2.17)

The notation ⋆̂ denotes a discrete quantity in contrary to a continuous field, Ni(x) the i’th
basis function and ûi the i’th dof, where i ∈ {1, ..., n}. The variable n represents the total
number of dofs. Inserting the approximations in the weak form results in

ft(t)

∫
Ω
fx(x)

n∑
i=1

Niv̂idΩ =

∫
Ω

n∑
i=1

Niv̂iρ(x)

n∑
j=1

Nj
ˆ̈ujdΩ+ (2.18)

∫
Ω

n∑
i=1

(∇Niv̂i)
Tρ(x)c(x)2

n∑
j=1

∇Nj ûjdΩ.

Exploiting the fact that the above must hold for any v ∈ Vh and thus also for all combinations
of v̂i, the spatially discretized form of the scalar wave equation is written as

ft

∫
Ω
fx(x)NidΩ =

∫
Ω
ρ(x)Ni

n∑
j=1

Nj
ˆ̈ujdΩ+ (2.19)

∫
Ω
ρ(x)c(x)2(∇Ni)

T
n∑

j=1

∇Nj ûjdΩ, ∀i ∈ {1, ..., n}.

Equation 2.19 is commonly given in matrix notation as

M ˆ̈u(t) +Kû(t) = ft(t)f̂x, (2.20)

with the mass matrix M , the stiffness matrix K and the spatial load vector f̂x

Mij =

∫
Ω
ρ(x)NiNjdΩ, (2.21)

Kij =

∫
Ω
ρ(x)c(x)2(∇Ni)

T∇NjdΩ, (2.22)

f̂i =

∫
Ω
fx(x)NidΩ. (2.23)

In practice, the above quantities are constructed for each element of the mesh and then
assembled

M =AM e, (2.24)

K =AKe, (2.25)

f̂x =A f̂
e
x. (2.26)
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The superscript ⋆e denotes a quantity corresponding to a single element. This approach
simplifies the integration since the element quantities are integrated in the standardized
element coordinate system

ξ = [ξ, η]T , [ξ, η]T ∈ Ωe = [−1, 1]× [−1, 1] (2.27)

and mapped to the physical coordinate system x by the Jacobian J = ∂x
∂ξ .

The element quantities are obtained by integration over the element domain Ωe

M e =

∫
Ωe

ρ(ξ)NTNdet(J)dΩe, (2.28)

Ke =

∫
Ωe

ρ(ξ)c(ξ)2BTBdet(J)dΩe, (2.29)

f̂
e
x =

∫
Ωe

fx(ξ)N
Tdet(J)dΩe. (2.30)

Hereby, N is a vector in which the shape functions are arranged such that the dofs of the
displacement vector û match the corresponding shape functions

N =
[
N1, N2, ... Nne

]
, (2.31)

where ne is the number of dofs in an element.
The strain-displacement matrix B is defined by

B =

[
dN1
dx

dN2
dx ... dNne

dx
dN1
dy

dN2
dy ... dNne

dy

]
. (2.32)

The integrals on element-level are typically evaluated using a numerical quadrature rule.
A numerical integration scheme of order pint, e.g., the Gauß-Legendre (GL) integration,
is defined in terms of integration weights wi and integration points ξi for i ∈ {1, ..., nint}.
The variable nint denotes the number of integration points. An integral of some arbitrary
integrand a(ξ) can be stated as

∫
Ωe

a(ξ)dΩe =

nint∑
i=1

wia(ξi). (2.33)

9



2.3 The Spectral Element Method

The SEM was introduced by Petera in [46] and builds the basis for its immersed adaption,
the SCM. Its superiority when compared to the conventional low-order FEM in terms of
accuracy and efficiency is demonstrated in [47, 48]. Among other applications, it was
successfully applied to wave propagation by Seriani and Priolo in [47]. In these earlier
works, a Chebyshev nodal distribution was used. However, later, GLL points were used as
support points [23, 49–52]. In conjunction with a GLL quadrature rule for the mass matrix,
a diagonal mass matrix is obtained. This is referred to as lumping by nodal quadrature or
by integration [23, 53, 54]. The optimal convergence rate of the method is not hindered by
this fact [23, 49, 53, 55].

This section follows the derivation in [23]. The type of basis functions and their support
points is paramount for the definition of a spatial discretization method. In the conventional
FEM, the basis functions are Lagrange polynomials with equidistantly distributed support
points [5]. The SEM defines its basis functions on the GLL points. The GLL points of
order p are defined in the local coordinate system ξ ∈ [−1, 1] as the roots of the completed
Lobatto polynomials [56]

(1− ξ2)Lp−1(ξ) = 0. (2.34)

The vertices {−1, 1} are always roots. The remaining roots are found as the roots of the
Lobatto polynomial Lp−1, which is obtained by

Lp−1(ξ) =
dPp(ξ)

dξ
, (2.35)

where Pp is the Legendre polynomial of order p. The Legendre polynomial of order p can
be stated as [57]

Pp(ξ) =

⌊ p
2
⌋∑

k=0

(−1)k
(2p− 2k)!

(p− k)!(p− 2k)!k!2p
ξp−2k. (2.36)

The element shape functions of order p in 1D are given by Lagrangian interpolation with
support at the GLL points ξpi

Np,i =

p+1∏
j=1,j ̸=i

ξ − ξpj
ξpi − ξpj

. (2.37)

The above derivation can be extended to multiple dimensions by the sparse product of the
one-dimensional system.

Np,q(ξ, η) = {{Np,1(ξ), Np,2(ξ), ..., Np,p+1(ξ)}×{Nq,1(η), Nq,2(η), ..., Nq,q+1(η)}} (2.38)

Equation 2.38 is written exemplarily for a 2D quadrilateral element of orders p and q in
the element coordinate system ξ = [ξ, η]T . For the sake of consistent notation, shape
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functions of a 2D element with orders p and q are also written as

Ni(ξ), i ∈ {1, ..., ne = (p+ 1) · (q + 1)}. (2.39)

Figure 2.1 presents the four shape functions of a third-order spectral element in one
dimension. It also illustrates why Lagrange polynomials on GLL points integrated by GLL
quadrature yield a diagonal mass matrix. Recalling the definition of the mass matrix in
equation 2.28, the following holds for its integrand [14]

Ni(ξk)Nj(ξk) = 0, ∀i ̸= j, ∀k ∈ {1, ..., nint}, (2.40)

i.e., the product of mixed ansatz functions evaluated at the GLL points ξk vanishes and
results in zero off-diagonal entries. Figure 2.1 illustrates the concept for one dimension,
but equation 2.40 generalizes to multiple dimensions. As mentioned in section 1.1, a
diagonal mass matrix is desirable for efficient time integration.
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Figure 2.1: Lagrange polynomials on third-order GLL points

However, the SEM also has a major drawback. Lumping by integration represents an
underintegration of the mass matrix. The integration order of the GLL integration scheme
is

pGLL
int = 2nint − 3 = 2p− 1 (2.41)

per direction [14, 58]. The number of integration points nint in the GLL scheme must be
chosen equal to the number of GLL points ξpi , e.g., to nint = p + 1 for a 1D element of
order p. This way, the diagonal property of the mass matrix remains intact. The integrand
in the mass matrix (equation 2.28) is at least of order 2p per direction. Additionally, with a
non-constant density distribution ρ(x), it might even be considerably higher. Therefore,
the mass matrix is not integrated exactly. It is mentioned in [14, 59] that this error might
alleviate other errors originating from the spatial discretization. However, in general, it is
still to be seen as an additional error source.
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The stiffness matrix (equation 2.29) and spatial load vector (equation 2.30) are integrated
with the more accurate GL scheme since lumping by nodal quadrature is not desired there.
The GL integration scheme is accurate up to order

pGL
int = 2nint − 1 (2.42)

per direction. Here, other than increased computational cost, no restrictions are placed on
the number of integration points nint.

2.4 The Finite Cell Method

The FCM is the second foundational method for the SCM. For a more detailed overview,
the reader is redirected to [8, 14] from which this section is derived. Further literature is
given by Düster et al. in [9], who applied the FCM to 3D solid mechanics problems. In [4],
wave propagation problems are solved with the FCM, whereas Zander et al. utilize it for
heat flow simulation in [10].
The FCM relies on hierarchical shape functions based on integrated Legendre polynomials,
which allows for h- and p-refinement [60, 61]. However, the primary motivation for the FCM
instead of the classical FEM is that the latter generally requires a boundary-conforming
mesh. As mentioned in section 1.1, such a mesh is often very cumbersome to obtain with
sufficient quality. In contrast, in the FCM, the physical domain Ωp is embedded in a larger
domain Ω of simpler geometry that can be easily meshed, e.g., with a cartesian mesh.

(a) Physical domain (b) Embedded domain

Figure 2.2: Exemplary FCM mesh with a physical domain [14]

This is illustrated in Figures 2.2a and 2.2b. The domain is partitioned in the physical
domain Ωp and the fictitious domain Ωf such that

Ωp ∪ Ωf = Ω. (2.43)

The material is scaled with an indicator function

α(x) =

1 x ∈ Ωp

αf = 10−β x ∈ Ωf

. (2.44)
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For the most accurate capture of the boundary, the choice of β ↣ ∞ and thus α(x) → 0

for x ∈ Ωf seems plausible. However, a too large β leads to ill-conditioning. Thus, as a
compromise in practice, β is often set as β ∈ [3, 10] . The scaled material properties, here
the density ρ(x) and the shear stiffness µ(x), are written as

ρ(x) = α(x)ρp(x) (2.45)

µ(x) = α(x)µp(x) (2.46)

Due to the scaling of the material properties with the discontinuous indicator function α(x),
the integrands of the element quantities (equations 2.28 to 2.30) are also discontinuous.
Thus, an adaptive integration scheme is used to capture the boundaries of the physical
domain Γp up to a sufficient accuracy [11]. Typically, this is done by a quadtree/octree par-
titioning, with the help of which the standard integration points are accordingly distributed
on the subcells. Figure 2.3 shows such a quadtree partitioning.

Figure 2.3: Adaptive subdivision of a cartesian mesh with a quadtree of depth 3 [14]

With a partitioned domain, the integration for any continuous integrand a(x) scaled with
the indicator α(x) can be separated into the integration over the physical and the fictitious
domain∫

Ω
α(x)a(x)dΩ =

∫
Ωp

1 · a(x)dΩp +

∫
Ωf

10−βa(x)dΩf . (2.47)

In this way, discontinuous integrands are avoided. When the partitioning is sufficiently
accurate and captures the boundaries exactly, the integration order is not affected nega-
tively. However, obtaining such an accurate partition in practice is very computationally
expensive, representing the main drawback of the FCM.
In the literature, approaches aiming to diminish this drawback exist. Among others, there
are moment fitting and smart quad-/octree [62].
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2.5 The Spectral Cell Method

The SCM merges the SEM (section 2.3) and the FCM (section 2.4). It aims to combine
the advantages of both, i.e., the excellent convergence properties of the SEM and the
immersed nature of the FCM. It was introduced by Duczek et al. in [4] for wave propagation.

The choice of basis functions and support points is analogous to the SEM, i.e., Lagrange
polynomials on GLL points. The SCM adapts its quadrature rule depending on whether
a cell is cut or not. If a cell is cut, the quadtree integration adjusts the integration points.
Therefore, its elemental mass matrix is not diagonal anymore, even with GLL quadrature.
Thus, employing the less accurate GLL quadrature no longer makes sense. Instead, GL
quadrature is used; see section 2.3 for a comparison. The stiffness matrix and the load
vector are always integrated using GL quadrature.

An important consequence of using the SCM for spatial discretization is the resulting
structure of the mass matrix

M =

[
Mdd 0

0 M cc

]
. (2.48)

Equation 2.48 shows that the dofs that have support in a cut cell - here denoted by the
superscript ⋆c for cut - are not coupled to the dofs that do not belong to any cut cell -
denoted by the superscript ⋆d for diagonal. Furthermore, as the name suggests, the
submatrix Mdd is diagonal, i.e., each dof in that subgroup is not coupled to any other dof
by the mass matrix. The submatrix M cc is not diagonal, i.e., dofs that have support in a
cut cell are coupled to each other. However, they are never coupled to dofs in the diagonal
subgroup by the mass matrix. Figure 2.4a illustrates the described properties using a
small example.
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(a) Mass matrix M
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(b) Stiffness matrix K

Figure 2.4: Typical matrix structures for a SCM discretization
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Similar properties do not hold for the stiffness matrix K as illustrated in the same small
example as above in Figure 2.4b. The stiffness matrix can be decomposed as

K =

[
Kdd Kdc

Kcd Kcc

]
. (2.49)

Due to the symmetric nature of the stiffness matrix, Kdc = (Kcd)T holds. The submatrices
Kd and Kc are introduced for future use as

Kd =
[
Kdd Kdc

]
(2.50)

Kc =
[
Kcd Kcc

]
. (2.51)

Similarly, the spatial force vector f̂x is partitioned as

f̂x =
[(
f̂
d
x

)T
,
(
f̂
c
x

)T ]T . (2.52)

How to efficiently exploit the partial diagonality of the mass matrix M for time integration
is the subject of discussion in chapter 3.
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2.6 Mass Lumping

Before chapter 3 presents different possibilities of time integration for the system with the
partially diagonal mass matrix M of the SCM, this section introduces different methods to
lump the mass matrix to a fully diagonal matrix M̃ . There are multiple proposed ways of
lumping in the literature. This section closely follows the definitions in [14].

2.6.1 Row-Summing

As the name implies, Row-Summing defines the diagonal entry of the lumped mass
matrix M̃ as the sum of the corresponding row in M , i.e.,

M̃ii =

n∑
k=1

Mik. (2.53)

Row-Summing can be executed both on global and element level. For polynomial or-
ders p > 2, it may lead to negative entries on the diagonal, which cause numerical
instability [63].

2.6.2 Density Scaling

Density Scaling is an approach specific to immersed boundary methods described in [64].
The lumped element mass matrices are composed of the diagonal of uncut cells scaled to
preserve the mass of the cut cell. Formally, this is stated as

M̃ e
ii =

me∑ne
k=1M

e,u
kk

M e,u
ii , (2.54)

where me is the mass of the corresponding uncut cell. The superscript ⋆u denotes a
property of the uncut cell. Density Scaling has the drawback that the geometric information
of the exact boundary is lost in the lumping process. Furthermore, it cannot be performed
on the global mass matrix.

2.6.3 HRZ Lumping

Hinton-Rock-Zienkiewicz (HRZ) lumping [12] scales the diagonal terms of the cut element
mass matrix such that its total mass is preserved while discarding off-diagonal entries, i.e.,

M̃ e
ii =

me∑ne
k=1M

e
kk

M e
ii. (2.55)

According to [53], HRZ lumping reduces convergence rates. On the contrary, unlike
Row-Summing, it guarantees positive diagonal components and captures the material
distribution in the cell more accurately than Density Scaling. HRZ lumping also performed

16



the best in the investigations of [14]. Therefore, HRZ lumping is the only lumping method
used in conjunction with CDM explicit time stepping as a reference for the time integration
benchmarking in chapter 4.

2.7 Other Methods for Spatial Discretization

Other than the presented methods for spatial discretization, there are a plethora more.
This section serves as a brief overview of alternative methods that could be applied to
similar problems. As such, the focus lies on methods that provide further functionality than
the conventional FEM. The presented methods need not necessarily but can be used in
an immersed setting.

The Generalized Finite Element Method (GFEM) is an instance of partition of unity
methods [65], which include the finite element space knowledge about the PDE be-
ing solved [66]. It uses enrichment functions to define patch approximation spaces. The
local approximation spaces are concatenated using a partition of unity, e.g., the con-
ventional FEM shape functions. Sanchez-Rivadeneira and Duarte were able to resolve
solutions with singularities in their spatial gradient using this method [66]. The Exten-
dended Finite Element Method (XFEM) [67, 68] uses local enrichment functions to capture
discontinuities and singularities. According to [69, 70], the XFEM and GFEM are mainly
differentiated by historical differences but can be regarded as methodically identical. Both
are predominantly but not exclusively used for crack propagation problems; see, e.g., [69].

The CutFEM is another immersed boundary method that uses a background grid and
represents the domain boundary with a level set function [71]. The solution is found on the
same grid. In [72], high-order cut finite elements are developed specifically for the solution
of the elastic wave equation.
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Chapter 3

Time Integration

3.1 State of the Art

Many popular and straightforward time integration schemes are based on Finite Difference
approximations. As the name implies, they substitute the derivatives in Ordinary Differential
Equations (ODEs) by finite differences [5]. Famous examples are the forward Euler, the
Crank-Nicholson, and the backward Euler schemes. Although simple, these schemes are
still widely used. However, there are more sophisticated schemes to be investigated.

The Generalized-Alpha method [73] is commonly applied for time integration in linear or
non-linear structural dynamics. Its main selling point is the ability to control numerical
dissipation. High frequencies are purposefully dissipated strongly, whereas dissipation
for low frequencies is minimized. While this is a desirable feature for structural dynamics,
where high frequencies are often non-physical, it is not for wave propagation problems. In
the context of wave propagation, the frequency content of a system is often dominated by
a high excitation frequency. Therefore, numerically damping the high frequencies is not
sought after.

Runge-Kutta methods are used in various contexts. They are powerful because they
can be constructed to reach almost arbitrarily high convergence orders. Examplary
fields of application include aerodynamics [16], chemistry [42], weather forecasting [41],
acoustics [44] and continuum mechanics [74].

Contrary to Finite Difference-based methods, it is also possible to discretize the time with
FEM basis functions, known as space-time FEM. Frank covered its implementation in the
AdhoC++ framework in his master’s thesis [75].

The currently hugely influential topic of machine learning is also present in time integration.
A survey for machine learning in physical contexts is given in [76]. It mentions the
papers [77, 78] that use neural networks to accelerate the solution process. Machine
learning was also applied to guided wave propagation, e.g., in [79].

In this thesis, the focus lies on Newmark and Runge-Kutta methods as they are the most
promising. The reasons therefore are explained in the following of the chapter. This scope
is by no means exhaustive, i.e., there might exist even better time integration methods for
systems discretized with the SCM. Some suggestions for further research are given in
section 6.2.1.
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3.2 Preliminaries

3.2.1 General Definitions

Several terms in the context of time integration are extensively used in this thesis. There-
fore, they are briefly defined here.

Notation

For ease of readability, the superscript ⋆̂ denoting a discrete quantity is dropped in this
chapter. In the context of time integration, all quantities are obtained by a prior spatial
discretization and are thus discrete. Therefore, the distinction between continuous and
discrete quantities adds no value. The distinction between vectorial (u), matrix (K) and
scalar (β) quantities remains.

Implicit and explicit

The terms implicit and explicit are most often defined on the sample first order system

ẏ = g(t,y). (3.1)

This does not restrict their applicability to the second-order system of the scalar wave
equation as the second-order system can be transformed into a first-order system by [14]

ẏ :=

(
u̇

ü

)
=

(
0 I

−M−1K 0

)(
u

u̇

)
+

(
0

ftM
−1fx

)
= g(t,y). (3.2)

Gérardin and Rixen define implicit and explicit time stepping on a general direct multistep
integration method [3]

yn+1 =
m∑
j=1

αjyn+1−j −∆t
m∑
j=0

βjẏn+1−j =
m∑
j=1

αjyn+1−j −∆t
m∑
j=0

βjg(tn+1−j ,yn+1−j).

(3.3)

Hereby are αj and βj coefficients of the method and m is the number of steps.

- If β0 = 0, the solution at time step n + 1 only depends on previously computed
solution steps. The method is called explicit.

- If β0 ̸= 0, the solution at time step n+ 1 depends on its own derivative at tn+1, which
is equivalent to evaluating the right-hand side at tn+1. Such a method is called
implicit.

Some papers and books, e.g., [5], describe a method only as explicit if it fulfills the
aforementioned criterion and additionally does not require any equation solving. This

19



implies a diagonal mass matrix M for second-order systems in structural dynamics. In
this thesis, this terminology is not adopted. Here, the term explicit refers strictly to the
presented criterion, and the distinction between solving a system of equations or simply
iterating is mentioned separately if necessary.

Stability

Stability conditions are usually obtained by modal analysis or the energy method [80]. The
strategy is to show that the solution is bounded, i.e., does not diverge. An algorithm that
is stable regardless of time step size ∆t is called unconditionally stable [5]. If its stability
depends on the time step size ∆t, it is called conditionally stable. The time step size
beyond which the method is no longer stable is called critical time step size ∆tcrit.

3.2.2 Critical Time Step Size

The critical time step size for a CDM discretization is [5]

∆tcrit =
2

ωmax
. (3.4)

The highest eigenfrequency ωmax is obtained from the generalized eigenvalue problem

det(K − ω2
iM) = 0. (3.5)

The critical time step size can be computed on the global level with the global matrices
M and K or on cell-level with M e and Ke for all cells. The global critical time step
size is decisive for the stability of explicit algorithms that integrate the system globally,
i.e., algorithms that do not partition the system. The critical time step size of a cell is
important for algorithms that integrate some regions of the domain differently than others,
e.g., leapfrog or IMEX algorithms. Calculating the critical time step size for a single cell
at a time is a simplification in the sense that it neglects the coupling between adjacent
cells. The discussion on global and cell-specific critical time step sizes will be continued in
section 4.2.

As shown in section 1.1, cut cells generally possess higher eigenfrequencies than uncut
ones. As a result, their critical timestep size is smaller than the one of uncut cells. With
a global CDM discretization in time, the maximum globally permissible time step size
∆tglobalcrit is typically in the same order of magnitude as the critical time step size of the worst
cut cell. Furthermore, evaluating the critical time step size of all cells is computationally
cheaper than calculating the global critical time step size. Thus, Nicoli et al. proposed the
conservative estimate [23]

∆tglobalcrit ≈ min
cells

{∆tcrit}. (3.6)

Section 4.1 checks the validity of this estimate on two benchmark examples.
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3.2.3 Dof Partitioning

Most of the following algorithms require a partitioning of the dofs. For a SCM discretization,
it is natural to split the dofs into two subsets, depending on whether the mass matrix has
off-diagonal entries in the row of the corresponding dof or not. The non-diagonal rows
correspond to the dofs with support in at least one cut cell. Dofs that do not have support
in any cut cell belong to the diagonal subset. The diagonal and cut dofs sets are denoted
by Id and Ic, respectively.

There are multiple ways to generate these index sets. If one has access to the assembly
process, it is easiest to recognize if a cell is cut and save its location map. The location
map consists of the global indices corresponding to the local element indices of the cut
cell. At the end of the assembly, the union of all saved location maps is generated and
forms the index set Ic. If void dofs are present, the index set must be shifted accordingly.
If the set of all global indices is written as Iglobal, the diagonal index set can be found by

Id = Iglobal \ Ic. (3.7)

If one cannot access the assembly process, the index sets can also be directly found from
the global mass matrix M . It is commonly saved in a sparse format. Due to its symmetric
property, it is not methodically relevant for the following algorithm if it is a Compressed
Sparse Row (CSR) or Compressed Sparse Column (CSC) storage format. The only
difference would be the row pointer changing to a column pointer. Here, the procedure
is illustrated on a CSR matrix M . The following C++ code snippet exploits the fact that
the row pointer is incremented by more than one if M has off-diagonal entries in that row.
The variable n refers to the global number of dofs.

for ( s i z e _ t i = 0 ; i < n ; ++ i ) {
i f ( rowPtr [ i +1] != rowPtr [ i ]+1 ) {

no tD iagona l Ind ices . push_back ( i ) ; } }

Any index for which this condition is true belongs to the set Ic. The diagonal set Id can
again be found as the subset of all dof indices that are not in the Ic subset.

It is important to note for the following flowcharts that ud and uc reference subsets of the
full solution vector u. This implies that a change in entries of, e.g., ud is also present at
the corresponding indices in u. The same holds for any other variables appearing both
with and without ⋆d and ⋆c superscripts.
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3.3 Explicit Methods

Generally, explicit methods are computationally cheaper per time step than implicit methods
but only conditionally stable. However, if the time step size restriction is not too drastic,
explicit methods and especially the CDM represent a very good trade-off between accuracy
and computational cost [5].

3.3.1 Central Difference Method

This subsection follows the corresponding derivation in [14]. Newmark’s time integration
formulas [81] are well established and often used in many fields of scientific computing.
They can be written as

un+1 = un +∆tu̇n +∆t2((
1

2
− β)ün + βün+1) (3.8)

u̇n+1 = u̇n +∆t((1− γ)ün + γün+1) (3.9)

The two parameters β and γ define weights for the acceleration calculation, β for the
displacement, and γ for the velocity estimation, respectively. Depending on the choice of
these parameters, the method is either explicit or implicit. The CDM, which is explicit, is
obtained by setting β = 0 and γ = 1

2 . The formulas then simplify to

un+1 = un +∆tu̇n +
∆t2

2
ün (3.10)

u̇n+1 = u̇n +
∆t

2
(ün + ün+1) (3.11)

The CDM is second-order accurate and does not possess numerical dissipation [82].
For application in wave propagation problems, it is often not required to compute the
velocities u̇. Thus, they are eliminated by substitution, resulting in the two-step scheme

un+1 = 2un − un−1 +∆t2ün. (3.12)

Equation 3.12 will be referred to as CDM sum step. The accelerations ü are calculated
from the spatially discretized equations of motion

Mü = ftfx −Ku. (3.13)

The acceleration calculation together with the CDM sum step will henceforth be called
CDM step. As the mass matrix is constant, it can be factorized once outside the time
integration loop, e.g., with an LU-factorization. Inside the loop, the system of equations is
solved using backward and forward substitution. From now on, this type of time stepping
is denoted by the standard or conventional CDM. It is extensively used in this form, e.g.,
in [1, 33, 64]. Furthermore, it is also the reference time integration method for application
to the FWI in chapter 5.
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3.3.2 Split Solver

The split solver aims to improve on the standard CDM by exploiting the partial diagonality
of the mass matrix M obtained by spatial discretization with the SCM. For reference on the
partial diagonality, see section 2.5. The split solver still utilizes the CDM but implements
the acceleration calculation differently for the subsets of diagonal dofs Id and cut dofs Ic.
If the mass matrix M is diagonal, the acceleration is most efficiently obtained by direct
inversion of the mass matrix

ü = M−1(ftfx −Ku). (3.14)

This is especially efficient because the inverse of a diagonal matrix can be obtained by
inverting each diagonal entry separately


a1

a2
. . .

an


−1

=


1
a1

1
a2

. . .
1
an

 . (3.15)

Therefore, the inverse of a diagonal matrix is saved only as a vector containing the
inverted diagonal entries. Then, equation 3.14 can be implemented as an elementwise
vector-vector multiplication. If M is not diagonal, the system of equations

Mü = ftfx −Ku (3.16)

has to be solved for ü. The nomenclature is summarized in table 3.1

M diagonal? Equation(s) nomenclature

yes ü = M−1(ftfx −Ku) diagonal acceleration calculation

no Mü = ftfx −Ku (general) acceleration calculation

irrelevant un+1 = 2un − un−1 +∆t2ün CDM sum step

yes
ü = M−1(ftfx −Ku)

un+1 = 2un − un−1 +∆t2ün

diagonal CDM step

no
Mü = ftfx −Ku

un+1 = 2un − un−1 +∆t2ün

(general) CDM step

Table 3.1: Overview of nomenclature

Integration using diagonal CDM time stepping is computationally much cheaper than the
general case with a non-diagonal mass matrix since no system of equations must be
solved.
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The split solver calculates the acceleration of dofs in the subset Id using diagonal acceler-
ation calculation, whereas the acceleration of dofs in the set Ic is obtained by a general
acceleration calculation. Hereby, the partitioned system matrices presented in equations
2.48 to 2.52 are used. Consequently, a CDM sum step is executed for all dofs. The
procedure is illustrated in Figure 3.1.

M ,K, ft,fx,u0, Id, Ic
System description

tn+1 = tn +∆t
Time increment

n = n+ 1

yes
no end

üd
n = (Mdd)−1(ft(tn)f

d
x −Kdun)

Acceleration of diagonal dofs
M ccüc

n = ft(tn)f
c
x −Kcun

Acceleration of cut dofs

un+1 = 2un − un−1 +∆t2ün

CDM sum

tn+1 ≤ T?

Figure 3.1: Flowchart for the split solver
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3.3.3 Leapfrog Scheme

A leapfrog time integration algorithm aims to integrate some subset of the dofs with a
smaller time step size than the rest of the dofs. This approach has been presented by Liu
and Belytschko in the context of transient structural analysis [39] or by Nicoli et al. for wave
propagation [23]. For the sake of simple coupling between the sets, the ratio between the
fine and the coarse time step sizes, ∆tf and ∆tc, is chosen as a fixed integer m, i.e.,

∆tc = m ·∆tf . (3.17)

The procedure is to first perform a coarse step on a subset of the system, followed by m

fine steps on the remaining subset, where the contribution of the coarsely integrated dofs
is interpolated for the fine time step size. Synchronization in both directions is done at
each coarse step by the multiplication of the off-diagonal blocks in the stiffness matrix. In
detail, Kdc includes the contribution of non-diagonal dofs for diagonal dofs and Kcd vice
versa. Figure 3.2 illustrates this procedure.

t

t

∆tc ∆tc

∆tf ∆tf ∆tf ∆tf ∆tf ∆tf ∆tf

tn tn+1

tn tn+1

tn+2

tn+2

Figure 3.2: Time stepping in a leapfrog scheme

Hereby, the time step ratio is chosen as m = 3. Solid arrows denote a CDM step with
the denoted time step size. On the other hand, dotted arrows indicate a synchronization
between the timelines of the coarse and fine dofs. A square on the line above signifies
that there is no real solution data at this point in time. Instead, it is generated by linear
interpolation of the two nearest points in time. Since one of these two points lies in the
relative future, performing the coarse step before the m fine steps is necessary.

In the application of SCM, the dofs that have support in cut cells typically have lower
critical time step sizes, as shown in section 1.1. Thus, they are chosen as the subset that
is integrated with the smaller time step size ∆tf . The diagonal dofs are integrated with the
larger time step size ∆tc.

The coarse time integration is implemented using diagonal CDM time stepping since the
corresponding block in the mass matrix Mdd is diagonal. This is not the case for the dofs
integrated with the fine time step size ∆tf , which require a general CDM step. In that
sense, it generalizes the split solver by integrating the cut dofs in m substeps.
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Figure 3.3 illustrates the procedure. The displacements discretized with the fine timestep
size ∆tf are denoted with uc,f . The interpolated displacements of the diagonal dofs are
called ud

interp. They are overwritten for each step of the inner loop. Initial conditions must
be assigned to both the fine and the coarse timeline.

M ,K, ft,fx,u0, Id, Ic
System description

tn+1 = tn +∆t
Time increment

tn+1 ≤ T?

yes
no

üd
n = (Mdd)−1(ft(tn)f

d
x −Kdun

ud
n+1 = 2ud

n − ud
n−1 +∆t2cü

d
n

Coarse CDM step

end

i = 1

∆ud = ud
n+1 − ud

n

Interpolation preparation

i ≤ m?

yes
no

Interpolation and concatenation
ud
interp = ud

n + i−1
m ∆ud

ũ = [(ud
interp)

T , (uc,f
n·m+i−1)

T ]T

M ccüc,f
n·m+i = ft(tn + (i− 1)∆tf )f

c
x −Kcũ

uc,f
n·m+i = 2uc,f

n·m+i−1 − uc,f
n·m+i−2 +∆t2f ü

c,f
n·m+i

Fine CDM step

i = i+ 1

uc
n = uc,f

n·m
n = n+ 1

Figure 3.3: Flowchart for the leapfrog solver
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3.4 Implicit Methods

Most implicit schemes used in practice are unconditionally stable. In this way, larger time
step sizes can compensate for their higher cost per time step. One of the most often
used implicit schemes is the Newmark trapezoidal scheme [83]. In this section, only this
scheme will be presented, although implicit schemes are, of course, not limited to the
Newmark family. Implicit variants of RKN methods are presented in section 3.5.2. The
Newmark trapezoidal scheme was chosen as it is unconditionally stable, non-dissipative,
and second-order accurate [3, 5, 84]. It is implemented as a predictor-corrector scheme
and obtained from the general Newmark formulas (equations 3.8 to 3.9) by setting

β =
1

4
, γ =

1

2
. (3.18)

Figure 3.4 illustrates the procedure.

M ,K, ft,fx,u0, u̇0

System description

Mü0 = ftfx −Ku0

Calculation of initial acceleration

tn+1 = tn +∆t
Time increment

upred = un +∆tu̇n + (12 − β)∆t2ün

u̇pred = u̇n + (1− γ)∆tün

Prediction

Sün+1 = ft(tn+1)fx −Kupred

Acceleration calculation

un+1 = upred + β∆t2ün+1

u̇n+1 = u̇pred + γ∆tün+1

Correction

S = M + β∆t2K
Calculation and factorization of system matrix

tn+1 ≤ T?

n = n+ 1

yes

no
end

Figure 3.4: Flowchart for the trapezoidal Newmark scheme adapted from [3]
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3.5 Implicit-Explicit Methods

First work on IMEX in structural dynamics was published by Belytschko and Mullen
in [85]. They recognized that it can be beneficial to integrate different parts of the domain
with different methods. In this way, an inexpensive but only conditionally stable explicit
algorithm could be combined with a more expensive but unconditionally stable implicit
algorithm [80]. For this purpose, they partitioned the mesh into explicit, implicit, and
interface elements. Hughes and Liu improved upon this approach by avoiding interface
elements and the associated coupling problems in [82]. They divided the mesh strictly
into explicit and implicit elements, whose coupling was automatically accounted for by
the assembly procedure. In [80], they showed that the overall IMEX scheme generally
retains the stability and convergence properties of both separate schemes combined.
Their implementation strategy was based on the Newmark methods. They constructed
a pseudo-static system for each time step with a predictor-corrector approach. In this
way, the algorithm still allows a free choice of the parameters β and γ. However, the
parameters of the implementation in this thesis are fixed to obtain the CDM and the
trapezoidal Newmark method, which is more efficient. The implementation is presented in
section 3.5.1. Furthermore, the partitioning in an explicit and an implicit group is executed
on dof-level. In the case of wave propagation problems discretized with the SCM, the
implicit dofs are those of cut cells, and the explicit dofs the diagonal ones. By doing so,
the penalty of the small critical time step size of cut cells is circumvented, as implicit time
integration does not need to comply with stability constraints. Furthermore, the remaining
dofs can still be integrated very efficiently with explicit time integration.

IMEX methods are not limited to combining different algorithms from the Newmark family.
The other families of methods often utilized for IMEX Methods are Runge-Kutta (RK) and
Runge-Kutta-Nyström (RKN) methods. The main advantage of those families is that very
high convergence orders can be achieved. The papers [16, 41–44, 86–88] serve as
exemplary references for RK-based IMEX algorithms and their applications. In section
3.5.2, an IMEX algorithm based on the family of RKN methods is presented.
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3.5.1 Newmark IMEX

Figure 3.5 shows a flowchart of the IMEX scheme based on the Newmark methods. First,
a diagonal CDM step is executed for the diagonal dofs. Then, the cut dofs are integrated
in time with a predictor-corrector implementation of the trapezoidal Newmark method.

M ,K, ft,fx,u0, Id, Ic

System description

Müc
0 = ft(0)fx −Kcu0

Calculation of initial acceleration for cut dofs

tn+1 = tn +∆t
Time increment

ud
pred = ud

n+1

uc
pred = un +∆tu̇c

n + (12 − β)∆t2üc
n

u̇c
pred = u̇c

n + (1− γ)∆tüc
n

Prediction

Süc
n+1 = ft(tn+1)f

c
x −Kcupred

Acceleration calculation

uc
n+1 = uc

pred + β∆t2üc
n+1

u̇c
n+1 = u̇c

pred + γ∆tüc
n+1

Correction

S = M cc + β∆t2Kcc
Calculation and factorization of system matrix

tn+1 ≤ T?

yes

no

üd
n = (Mdd)−1(ft(tn)f

d
x −Kdun

ud
n+1 = 2ud

n − ud
n−1 +∆t2üd

n

Diagonal CDM step

end

n = n+ 1

Figure 3.5: Flowchart for the Newmark IMEX scheme
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3.5.2 Runge-Kutta-Nyström IMEX

Runge-Kutta Methods

RK methods are one-step integration methods for ordinary differential equations of first
order [89]. According to Butcher [90], a RK method is characterized by a tableau, later
called a butcher tableau.

c1 a11 a12 ... a1s
c2 a21 a22 ... a2s
...

...
...

. . .
...

cs as1 as2 ... ass
b1 b2 ... bs

Table 3.2: A generic Butcher tableau

The time integration scheme for the generic first-order ODE

ẏ = g(t,y) (3.19)

can be written as [91]

ki = g(tn + ci∆t,yn +∆t

s∑
j=1

aijkj) (3.20)

yn+1 = yn +∆t

s∑
j=1

bjkj . (3.21)

The coefficients ci illustrate where between tn and tn+1 the right-hand side g(t,y) is
evaluated. There are s stages ki with i ∈ {1, ..., s}, for the calculation of which aij are the
quadrature weights. The coefficients bi are the quadrature weights for the computation of
yn+1 with respect to the intermediate stages ki. However, since discretizing the scalar
wave equation in space yields a system of second-order ODEs

Mü+Ku = ftfx, (3.22)

first-order RK methods are not directly applicable.

Runge-Kutta-Nyström Methods

While it is possible to transform equation 3.22 into a first-order system and apply RK
methods, RKN methods are preferable due to efficiency gains, lower storage requirements,
and higher continuity of the solution [92, 89, p. 283-285, 44, 93].
RKN methods directly solve the second-order system

ü = f(t,u, u̇). (3.23)
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They are especially superior if the equations of motion do not contain terms proportional
to velocity, like a structural damping matrix C, which applies here. An RK method can be
transformed into an RKN method, which is described in [89, p. 283-285]. The conversion
formulas are

aRKN
ij =

s∑
k=1

aRK
ik aRK

kj , (3.24)

ḃRKN
i = bRK

i , (3.25)

bRKN
i =

s∑
j=1

bRK
j aRK

ji . (3.26)

As differentiation with respect to time is denoted with the ⋆̇ symbol, the coefficients b′i in
the literature are written as ḃ here for the sake of consistency. With these transformed
coefficients, a RKN method is characterized by

ki = f(tn + ci∆t,un + ci∆tu̇+∆t2
s∑

j=1

aijkj), (3.27)

un+1 = un +∆tu̇n +∆t2
s∑

j=1

bjkj , (3.28)

u̇n+1 = u̇n +∆t
s∑

j=1

ḃjkj . (3.29)

A generic tableau of a RKN method is shown in Table 3.3.

c1 a11 a12 ... a1s
c2 a21 a22 ... a2s
...

...
...

. . .
...

cs as1 as2 ... ass
b1 b2 ... bs
ḃ1 ḃ2 ... ḃs

Table 3.3: A generic Butcher tableau for RKN methods

Runge-Kutta-Nyström IMEX

For simple synchronization between the two schemes, the implicit and the explicit RKN
schemes should have the same coefficients ci, i.e., their stages should be evaluated at the
same points in time. Henceforth, the coefficients of the implicit subscheme are marked
with the superscript ⋆c as the implicit subscheme is applied to the cut dofs. Analogously,
the explicit subscheme is denoted with the superscript ⋆d. The number of stages s should
either be the same, or the explicit sub-scheme can have one more stage, as long as cd1 = 0

and cc1 ̸= 0 [16]. For the explicit part of the IMEX scheme, an Explicit Runge-Kutta-Nyström
(ERKN) scheme of fourth order as presented in [94] is chosen. Its Butcher tableau is given
by Table 3.4.
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0 0 0 0
1
2

1
8 0 0

1 0 1
2 0

1
6

1
3 0

1
6

4
6

1
6

Table 3.4: Butcher tableau of the chosen ERKN4 method [94]

The explicit nature of this scheme can be inferred from the fact that the matrix aij is lower
triangular. This means that every stage can be calculated purely from previous stages,
fulfilling the core property of an explicit scheme.

For the implicit subscheme, Diagonally Implicit Runge-Kutta-Nyström (DIRKN) schemes [95]
are favored. Diagonally implicit implies that the coefficient matrix aij is restricted to not
have any upper-triangular entries, i.e.,

aij = 0 for j > i. (3.30)

This has the advantage that the system of equations for each stage ki (equation 3.27)
can be solved individually instead of solving all stages simultaneously, which would be the
case for a fully populated aij . The latter case would imply solving a system of equations
of size s× nc, whereas the former means solving a system of size nc up to s times. The
variable nc represents the number of cut dofs. From a runtime and ease of implementation
perspective, DIRKN methods are, therefore, the schemes of choice.

Since no suitable DIRKN scheme was found, a Diagonally Implicit Runge-Kutta (DIRK)
scheme is selected and converted to a DIRKN method. The tableau of the chosen DIRK
scheme [95, p. 71] is presented in Table 3.5.

0 0 0 0

2γ γ γ 0

1 1− b2 − γ b2 γ

1− b2 − γ b2 γ

Table 3.5: Parametrized Butcher tableau of the chosen DIRK scheme [95, p. 71]

The parameters γ and b2 are free. To match the coefficients ci of the ERKN4 scheme
to the DIRK scheme, γ is chosen as γ = 1

4 . Furthermore, to achieve an L-stable and
second-order accurate scheme, b2 must be selected according to

b2 =
1− 2γ

4γ
= 0.5. (3.31)

The unparametrized DIRK tableau is given in Table 3.6.
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0 0 0 0
1
2

1
4

1
4 0

1 1
4

1
2

1
4

1
4

1
2

1
4

Table 3.6: Unparametrized Butcher tableau of the chosen DIRK method

The transformation to a DIRKN scheme according to equations 3.24 to 3.26 yields the
tableau shown in Table 3.7.

0 0 0 0
1
2

1
16

1
16 0

1 3
16

1
4

1
16

3
16

1
4

1
16

1
4

1
2

1
4

Table 3.7: DIRKN tableau converted from the DIRK tableau in Table 3.6

Implementation

The system of equations for the stages ki (equation 3.27) could be solved by Newton
iterations as suggested in [96]. However, due to the runtime implications and as our
system of equations is linear, it was instead chosen to reformulate it such that it can
be solved more efficiently. This reformulation is detailed in equations 3.32 to 3.39. The
equations for the stage calculation of the cut dofs read

tn,i = tn + ci∆t, (3.32)

un,i = un + ci∆tu̇+∆t2
i∑

j=1

acijkj , (3.33)

M cckc
i = ft(tn,i)f

c
x −Kcun,i. (3.34)

The terms tn,i and un,i are the stage evaluation time and the approximate solution to
evaluate the right-hand side in equation 3.27. As written in equation 3.33, the approximate
solution un,i used for evaluating the stage ki depends on ki itself. Therefore, it is split as

un,i = un + ci∆tu̇+∆t2
i−1∑
j=1

acijkj︸ ︷︷ ︸
:=ũn,i

+∆t2aciiki = ũn,i +∆t2aciiki (3.35)
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The term ũn,i only depends on previously computed stages ki. Inserting equation 3.35
into equation 3.34 yields:

M cckc
i = ft(tn,i)f

c
x −Kc(ũn,i +∆t2aciiki) (3.36)

M cckc
i = ft(tn,i)f

c
x −Kcũn,i −∆t2aciiK

cki (3.37)

M cckc
i = ft(tn,i)f

c
x −Kcũn,i −∆t2acii(K

cckc
i +Kcdkd

i ) (3.38)

(M cc +∆t2aciiK
cc)︸ ︷︷ ︸

:=S

kc
i = ft(tn,i)f

i
x −Kcũn,i −∆t2aciiK

cdkd
i (3.39)

Equation 3.38 utilizes the partitioning of the stiffness matrix as introduced in equation
2.51. The term kd

i is already known at the time of computation of the implicit stages, as
the explicit stage is computed beforehand. The RKN IMEX algorithm is summarized in
Figure 3.6. The matrix S is the same for the first and the second stage since ac22 = ac33 in
the chosen DIRKN scheme. It can be factorized once outside the time integration loop.
However, to keep the flowchart applicable to a general combination of ERKN and DIRKN
schemes, the calculation and factorization of the matrix S is left in the implicit stage step.
It is important to note that there is no coupling in the direction from the first to other stages
due to ac1i = ad1i = 0, ∀i ∈ {1, ..., s}. Thus, only the equation system with M cc instead of
S as a system matrix for cut dofs has to be solved for the first stage of the implicit scheme.
Nevertheless, other stages are coupled with the first stage the other way around.
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tn+1 ≤ T?

yes
no end

Stage 1
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1 = (Mdd)−1(ft(tn)f

d
x −Kdun
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x −Kcun
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c
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Figure 3.6: Flowchart for the RKN IMEX algorithm
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Chapter 4

Benchmarking

4.1 Setup

This section introduces two examples on which the time integration algorithms are bench-
marked. Furthermore, the error measure is defined.

4.1.1 Plate with Random Holes

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

x [m]

y
[m

]

Figure 4.1: Geometry of the random holes benchmark problem

The domain is a 2D plate with lx = 10 [m] and ly = 4 [m]. There are 10 randomly
distributed circles embedded in the domain, which compose the fictitious domain Ωf . Their
center points [xc,i, yc,i] and radii ri are drawn from the uniform distributions

xc,i ∈ U(2, 10) [m], (4.1)

yc,i ∈ U(0, 4) [m], (4.2)

ri ∈ U(0.2, 0.6) [m], i ∈ {1, ..., 10}. (4.3)

Void cells, i.e., cells inside the circles that have no contribution to the physical domain, are
removed. The polynomial degree p is chosen to p = 5, the quadrature order to pint = 6,
the quadtree partitioning depth to dquad = 6, and the scaling for the fictitious domain to
αf = 1 · 10−6. The wave speed c is constant with c = 1 [ms ], whereas the density ρ(x) is
scaled as

ρ(x) =

1 x ∈ Ωp

αf x ∈ Ωf

. (4.4)
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This implies scaling the shear stiffness µ(x) in the fictitious domain. The simulation end
time T was chosen such that the wave propagates approximately once through the domain,
i.e.,

T =
lx
c
= 10 [s]. (4.5)

For a good representation of the excitation signal, the spatial discretization should be
chosen to have at least 2 elements per wavelength λ of the excitation. For a wave speed
c = 1 [ms ] and a dominant frequency of fs = 2 [Hz], the dominant wavelength λ is

λ =
c

f
=

1

2
[m]. (4.6)

Therefore, the number of elements has been chosen to 40 elements in x-direction and 16

elements in y-direction. Henceforth, this is abbreviated by the notation of [40, 16] elements.
With the cell sizes

∆x = ∆y =
10

40
=

4

16
= 0.25, (4.7)

the requirement of

λ

∆x
=

λ

∆y
= 2 (4.8)

is fulfilled. The boundaries of the geometry are modeled as perfectly reflective, i.e., as
homogeneous Neumann conditions. The initial conditions describe the 2D domain at
complete rest, i.e.,

û0 = ˆ̇u0 = 0. (4.9)

The sample is excited in time by a Gaussian derivative

ft =
−(t− t0)√

2πσ3
t

e

(
−(t−t0)

2

2σ2
t

)
(4.10)

with standard deviation σt and start time t0 defined as

σt =
1

2πfs
, (4.11)

t0 =
1

fs
. (4.12)

The spatial excitation fx describes a scaled Gaussian bell centered around the source
position [xs, ys] = [1, 2] [m] with the standard deviation σs = 0.06 [m]

fx = 10 · e
(
− (x−xs)

2+(y−ys)
2

2σ2
s

)
. (4.13)
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This form of spatial excitation is preferable to single-node excitation as it avoids introducing
singularities. Furthermore, it is more flexible and closer to a real-life scenario in which a
true point source does not exist either.
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Figure 4.2: Histogramm of fill ratios η for the random holes benchmark

Figure 4.2 shows a histogram of the cell fill ratios. Approximately 80% of cells are full. The
most problematic cells in terms of critical time step size ∆tcrit are the ones in [ϵ, 0.1], as
shown in section 1.1. The parameter ϵ = 1 · 10−10 is the threshold below which cells are
considered empty. The smallest cell fill ratio is ηmin = 7.66 · 10−4. In Figure 4.3, the cells
are color-coded according to their critical time step size. When compared to the geometry
in Figure 4.1, it is confirmed that very few cells are marginally cut, but those have a very
low critical time step size.

0.110 [s]

0.536 [s]

0.962 [s]

1.387 [s]

1.813 [s]
·10−2

Figure 4.3: Cells color-coded according to critical time step size ∆tcrit for the random
holes benchmark

The extrema in the cell-specific critical time steps are

∆tuncutcrit = 1.8131 · 10−2 [s], (4.14)

∆tmin
crit = 1.1027 · 10−3 [s], (4.15)

r :=
∆tuncutcrit

∆tmin
crit

= 16.443. (4.16)
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With HRZ lumping, the extrema change slightly to

∆tmin
crit,HRZ = 1.3033 · 10−3 [s], (4.17)

rHRZ :=
∆tuncutcrit,HRZ

∆tmin
crit,HRZ

= 13.912. (4.18)

The critical time step sizes of the global system differ strongly, which shows that the
cell-specific values are only an estimate of the total system’s stability behavior

∆tglobalcrit = 2.1282 · 10−3 [s], (4.19)

∆tglobalcrit,HRZ = 1.4205 · 10−3 [s]. (4.20)

The global critical time step size of the lumped system ∆tglobalcrit,HRZ is smaller than the
global critical time step size of the consistent matrices ∆tglobalcrit , albeit lumping improves
the critical time step sizes on cell-level.
There are nd = 11936 diagonal and nc = 3473 cut dofs.

4.1.2 Rotated Plate

In this section, only parameters that changed with respect to the example in section 4.1.1
are mentioned. Not mentioned parameters remain unchanged.

0 1 2 3 4 5 6 7

0

1

2

3

4

x [m]

y
[m

]

Figure 4.4: Geometry of the rotated plate benchmark problem

The rectangle has the dimensions lx = 7 [m] and ly = 2 [m]. It is rotated by the angle
θ = 18◦ and embedded in a mesh of dimensions lmesh

x = 10 [m] and lmesh
y = 5 [m]

discretized by [60, 30] elements. The excitations are set to ft = fx = 0. Instead, initial
conditions are non-zero. A Gaussian curve that is constant along the width of the rotated
plate is released in the longitudinal direction of the rotated plate from the left side. The
initial conditions are derived in a plate-aligned coordinate system - denoted with x̃ - and
then transformed to the [x, y] domain. To account for wave reflections on the boundaries,
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the curve is modeled as a superposition of two Gaussian waves, i.e.,

u(x̃) = ul(x̃, t) + ur(x̃, t), (4.21)

ul(x̃, t) = e

(
− (x̃+ct)2

2σ2

)
, (4.22)

ur(x̃, t) = e

(
− (x̃−ct)2

2σ2

)
. (4.23)

The transformation between the domains is given byx̃
ỹ

 = RT

x− lysin(θ)

y

 , (4.24)

where the rotation matrix R is

R =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 . (4.25)

The initial displacement is obtained by evaluating expression 4.21 at t = 0. The initial
velocity is specified by the analytically available time derivative of equation 4.21, which
vanishes.
Figure 4.5 shows a histogram of cell fill ratios. The overall cell fill ratio distribution is similar
to the one in 4.2. However, the smallest fill ratio ηmin = 5.99 · 10−5 is considerably smaller
here, translating to the smallest cell-specific critical time step size.
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Figure 4.5: Histogramm of fill ratios η for the rotated plate benchmark
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Figure 4.6 illustrates the cell-specific critical time step sizes.

0.047 [s]
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Figure 4.6: Cells color-coded according to critical time step size ∆tcrit for the rotated plate
benchmark

The cell-specific critical time step sizes and their ratios are

∆tuncutcrit = 1.2088 · 10−2 [s], (4.26)

∆tmin
crit = 4.7220 · 10−4 [s], (4.27)

r = 25.598, (4.28)

∆tmin
crit,HRZ = 5.9761 · 10−4 [s], (4.29)

rHRZ = 20.226. (4.30)

Again, lumping improves the cell-specific critical time step sizes but worsens the stability
condition of the global system.

∆tglobalcrit = 1.1457 · 10−3 [s] (4.31)

∆tglobalcrit,HRZ = 9.9377 · 10−4 [s] (4.32)

Concluding from the two benchmark examples, the estimate of Nicoli et al. in [23], equation
3.6, is very conservative. They suggested that the global critical time step size ∆tglobalcrit

could be estimated by the critical time step size of the worst cut cell ∆tmin
crit . In this example,

there is a factor of more than 2.4 between the two quantities. For the random holes
example, it was around 1.9. Nevertheless, both quantities are useful for the stability
discussion in section 4.2.
There are nd = 10626 diagonal dofs and nc = 4026 cut dofs.
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4.1.3 Error Measure

Before profiling, an appropriate error measure must be found. The time of flight error
measurement was used in [14]. However, it is not well applicable to problems with wave
reflections. Reflections severely impede finding a suitable envelope and thus the correct
arrival time. Therefore instead, an L2 error norm is computed similarly to [13].
Both the numerical solution u and a reference solution uref are evaluated on many
evaluation points inside the physical domain Ωp at the end time t = T . The evaluation
points are sampled from uniform distributions of the domain dimensions. Then, those
points not lying inside the physical domain Ωp are discarded. In the random holes example,
np = 8572 points were used for the error evaluation. In the rotated plate example, the
number of evaluation points was np = 2827. The error eL2 is defined by

eL2 =

√∑np

i=1(u(xi, yi)− uref (xi, yi))2∑np

i=1 uref (xi, yi)
2

. (4.33)

The reference can either be a known analytical solution or a numerical overkill solution. For
the random holes benchmark, an overkill solution is utilized. It was generated by increasing
the number of elements to [100, 40] and decreasing the time step size to ∆t = 5e− 5[s]. All
other parameters were held constant in comparison to the profiled runs. In the case of the
rotated plate example, an analytical reference is available. Similarly to the initial condition
in 4.21, it is constructed from the superposition of multiple Gaussian curves. Compared to
the initial condition, the change is the addition of a wave traveling leftwards starting from
x̃d = 2lx. This additional component aids in emulating the reflection at the right side of the
rectangle at t = T .

uref (x̃) = ul(x̃, t) + ur(x̃, t) + ud(x̃, t) (4.34)

ul(x̃, t) = e

(
− (x̃+ct)2

2σ2

)
, (4.35)

ur(x̃, t) = e

(
− (x̃−ct)2

2σ2

)
, (4.36)

ud(x̃, t) = e

(
− (x̃+ct−2lx)2

2σ2

)
. (4.37)

The transformation to the coordinate system [x, y] applies as in section 4.1.2.

4.2 Results

The algorithms presented in chapter 3 are profiled for their error at specific time step sizes
and their runtimes. Results showing instability are discarded from the plots. All profiling
results were obtained on a machine equipped with a Ryzen 7 2700x CPU and 32GB of
2933MHz RAM running Windows 10.
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4.2.1 Plate with Random Holes

Forward Simulation

For a better visualization of the example, an exemplary time integration run is shown in
Figure 4.7. The displacement solution is displayed at three different time instants. The first
illustrates the plate shortly after excitation, with the first reflections already occurring. In
the second, the wave field spreads further. At t = T , it has been reflected so many times
that no clear wavefront is visible anymore.

(a) t = 1.5 [s]

(b) t = 3 [s]

(c) t = T

Figure 4.7: Displacement u in the random holes benchmark for CDM time integration and
time step size ∆t = 1 · 10−3 [s]
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Comparison of Algorithms

In Figure 4.8, the algorithms are compared in terms of computational cost - measured
in runtime [s] - per time step size ∆t. For the leapfrog algorithms, the time step size ∆t

refers to the coarse time step size ∆tc.
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Figure 4.8: Runtime plotted over time step size ∆t for the random holes benchmark

The cheapest algorithm is the CDM applied to a lumped system. The CDM on the
conventional SCM system is the next cheapest. The modifications from the CDM to the
split solver do not result in a runtime cost reduction. Evidently, the repeated indexing for
the partitioned dof groups bears more overhead than the size reduction of the system to
solve saves. This is probably because the Scipy LU solver [97] already deals efficiently
with partially diagonal matrices. The Newmark IMEX is the next more expensive algorithm.
Then, in order of increasing computational cost are the leapfrog algorithm with m = 5

substeps, the RKN IMEX, the implicit method, and the leapfrog with m = 17 substeps.
Interestingly, the leapfrog with m = 5 is cheaper than the RKN IMEX, even though the
latter only has s = 3 stages. This can be explained by the fact that the leapfrog integrates
the diagonal dofs in one step and only the cut dofs with m = 5 steps, whereas the RKN
IMEX integrates all dofs with s steps. However, when m increases even further, e.g.,
m = 17, the leapfrog algorithm is the most expensive. The thought behind choosing
m = 17 was that since ⌈r⌉ = 17, the diagonal dofs could be integrated with a time step
size ∆t = ∆tc only slightly below the critical time step size of uncut cells ∆tuncutcrit and
the critical time step size of the worst cut cell ∆tmin

crit would still be respected. The red
lines indicate different relevant critical time step sizes. For different algorithms, different
stability limits apply. For example, the CDM applied to the lumped system is only stable for
∆t < ∆tglobalcrit,HRZ , whereas for the standard CDM and the split solver ∆tglobalcrit is the stability
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limit. The stability of the leapfrog method depends on both the time step size ∆t and the
number of substeps m. It effectively has two stability conditions

∆tc < ∆tuncutcrit , (4.38)

∆tf =
∆tc
m

< ∆tmin
crit . (4.39)

If either or both conditions are violated, the leapfrog integration is unstable. All IMEX
methods are stable for a ∆t < ∆tuncutcrit since the cut dofs are integrated implicitly. Thus,
only the uncut cells impose a stability limit. The implicit Newmark method is unconditionally
stable, albeit very computationally expensive. Even for a time step size ∆t = 0.05 [s], it is
slower than the Newmark IMEX with a time step size ∆t = 1.8 · 10−2 [s].

The critical time step sizes are calculated for CDM-type methods, i.e., they are not valid
for the RKN IMEX variant. Apparently, its critical time step size lies somewhere in the
vicinity of the critical time step size of uncut cells ∆tuncutcrit since the next larger time step
size introduces stability problems to the integration with the RKN IMEX.

Figure 4.9 illustrates the L2 error for each algorithm depending on the time step size ∆t.
Apart from the CDM algorithm applied to the lumped system, all methods converge to
the error limit imposed by the chosen spatial discretization. This confirms the findings of
Kelemen in [14] that mass lumping does not work well for wave propagation problems
in the SCM. The RKN IMEX is the most accurate for a given time step size ∆t, followed
by the Newmark IMEX, the leapfrog algorithms, and the implicit method. The split solver
has an error eL2 very close to the spatial discretization error espatialL2 and performs better
than the conventional CDM. This can only be attributed to floating point errors, as both
methods fundamentally solve the same equations. The two leapfrog methods are almost
equally accurate because the error evaluation points are randomly distributed in the
physical domain and thus predominantly located in uncut cells. The dofs of uncut cells
are integrated in the same way regardless of the number of substeps m. The increased
number of substeps m is important in terms of stability but not significantly in terms of
accuracy. The error of the implicit method is generally high, especially for large time step
sizes.
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Figure 4.9: L2 error plotted over time step size ∆t for the random holes benchmark
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Figure 4.10: L2 error plotted over runtime for the random holes benchmark

Figure 4.10 combines the information of Figures 4.8 - 4.9 and is decisive for the selection
of the best investigated algorithm. The RKN IMEX and the Newmark IMEX have the best
accuracy for a given runtime. Generally, the Newmark IMEX performs the best, especially
since it is not yet clear how accurate a time integration method for the FWI has to be. If a
bit of temporal error is acceptable, it is by far the fastest.
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In [98], Rostami and Kamgar proposed to alter the parameters of implicit Newmark time
integration to

β = 0.4, γ = 0.75. (4.40)

As this could potentially also improve the until here best algorithm, the Newmark IMEX, this
is investigated in Figure 4.11. The error eL2 is the only relevant metric since the runtime
and stability properties are equal to those of the already presented implicit method.
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Implicit
Implicit [98]
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Figure 4.11: L2 error plotted over time step size ∆t for the two implicit algorithms

On the benchmark example at hand, the proposed variant is generally less accurate.
One possible explanation here is that according to [5], a value of γ > 0.5 introduces
numerical dissipation to an implicit Newmark algorithm. In this benchmark example,
artificial dissipation is not desirable. Therefore, the in [98] proposed parameter changes
are not adopted.
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4.2.2 Rotated Plate

Forward Simulation

The wave field is shown in Figure 4.12. The Gaussian curve travels along the rotated plate
and meets the end at t = T .

(a) t = 0 [s]

(b) t = 3 [s]

(c) t = T

Figure 4.12: Displacement u in the rotated plate benchmark for CDM time integration and
time step size ∆t = 1 · 10−3 [s]
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Comparison of Algorithms

Figure 4.14 shows the runtimes per time step size ∆t.
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Figure 4.13: Runtime plotted over time step size ∆t for the rotated plate benchmark

The order of the algorithms is unchanged compared to section 4.2.1. One of the leapfrog
variants uses m = 21 substeps to match the ratio ⌈r⌉ of the critical time step size of uncut
cells to the worst cut cell. Furthermore, the CDM algorithm applied to the lumped system
only has one data point since its global critical time step size ∆tglobalcrit,HRZ is slightly smaller
than 1 · 10−3 [s], at which the next evaluation would have taken place. The CDM and the
split solver do not suffer from this problem as their global critical time step size ∆tglobalcrit is
larger than 1 · 10−3 [s].

Concerning the error eL2 for a given time step size ∆t, illustrated in Figure 4.14, the implicit
and the RKN IMEX methods perform the best. This differs from the previous example,
where the two IMEX variants had the lowest errors for a given time step size ∆t. Due to
its high computation cost, the implicit algorithm is not a favorite in terms of error eL2 per
runtime; see Figure 4.15. There, the Newmark IMEX has the best properties, followed by
the RKN IMEX.

In conclusion, the Newmark IMEX outperformed all other algorithms in both benchmarks
for the decisive criterion of the lowest error for a given runtime. Therefore, it is selected for
application in the FWI detailed in chapter 5.
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Figure 4.14: L2 error plotted over time step size ∆t for the rotated plate benchmark
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Figure 4.15: L2 error plotted over runtime for the rotated plate benchmark
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Chapter 5

Full Waveform Inversion

5.1 Theory

5.1.1 Working Principle

Full Waveform Inversion (FWI) was first introduced as a seismic imaging technique by
Lailly in [99] and Tarantola in [100]. It enables the discovery of material information from the
knowledge of excitation signals and measured wave fields. This is achieved by simulating
wave propagation from the known excitation signals and positions utilizing a numerical
material model. The responses of the numerical model are compared to the measured
wave fields. The numerical model is updated iteratively to minimize the misfit between the
simulated wave fields and the measurements.

(a) Numerical model (b) Experimental model

Figure 5.1: Comparison between experimental and numerical model in the FWI adapted
from [101]

Figure 5.1 shows a numerical model corresponding to an experimental test setup. In this
example, the goal is to identify cracks or voids in the sample. The red dot is the sending
array, whereas the green dots denote measurement positions. For details concerning
experimental practice, the reader is referred to section 1.2.

A nonlinear optimization problem can be formulated, considering the material distribution
as optimization variable. Since problems of practical relevance generally come with a
large number of discretized optimization variables and an expensive objective function,
gradient-based optimization algorithms are the most efficient choice [102]. The gradient
is computed using the adjoint method; see [103] for reference. The structure of an FWI
algorithm is summarized in Figure 5.2.
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Figure 5.2: Structure of an FWI algorithm [33, 36]

5.1.2 Related Work

In [104], Fichtner gives an extensive overview of FWI. Reviews can be found in [105, 106].
While FWI originated in the field of geophysics [99, 100], its application is not limited to
this field. It is also a relevant topic in biomedicine for imaging of breasts [107, 108], and
the brain [109]. Furthermore, it is a useful tool in non-destructive testing [34–36].

5.1.3 Spatial Discretization

The 2D scalar wave equation in isotropic heterogeneous media parametrized using density
scaling is written as [33]

γ(x)ρ0ü(x, t)−∇ ·
(
γ(x)ρ0c

2
0∇u(x, t)

)
= f(x, t). (5.1)

There are many possibilities for spatial discretization. For example, in [33], Bürchner
et al. investigated FWI using linear FCM. In the follow-up paper [1], the wave field is
discretized using a high-order approach, i.e., Isogeometric Analysis (IGA). The material
is discretized using piecewise constant voxels as illustrated in Figure 5.3. Every cell
incorporates multiple voxels, here nv = 3 per spatial direction. In this thesis, the material
is also discretized by voxels, and the wave field is discretized using the SCM.
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Figure 5.3: Wave field mesh (blue) and material mesh (black) adapted from [1]

5.1.4 The Inverse Problem

Optimization

This section closely follows the derivations in [1, 33]. The nonlinear optimization problem
can be stated as

minimize
γ(x)

χ(γ(x)) (5.2a)

subject to γ(x) ≥ γmin, (5.2b)

γ(x) ≤ 1. (5.2c)

For a single source, the objective function χ(γ(x), u(x, t)) is defined as the summed mean
square error of all nr receiver signals over time T . For multiple sources, the single source
objective function is summed again for all ns sources.

χ(γ(x), u(x, t)) =
1

2

ns∑
s=1

nr∑
r=1

∫
T

∫
Ω

[(
us(γ(x),x, t)−um,s(xr, t)

)2
δ(x−xr)

]
dΩdt. (5.3)

The um,s(xr, t) notation specifies the measurement at the reciever position xr correspond-
ing to the excitation by source s. The simulated wave field due to excitation of sender s
is written as us(γ(x),x, t) To solve the optimization, the limited-memory BFGS algorithm
from the Python library Scipy [97] is utilized. It is a quasi-Newton method, i.e., it calculates
the update step ∆γ̂(x) from the gradient and an approximate Hessian of the objective
function

γ̂(x)k+1 = γ̂(x)k +∆γ̂(x)k, (5.4)

∆γ̂(x)k = −Ĥ
−1

(γ̂(x)k)∇γ̂ χ̂(γ̂, û(x, t)). (5.5)
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Gradient Computation

As the derivation of the gradients does not lie in the central scope of this thesis, this section
is kept very brief. Details can be looked up in [1, 33, 110, 111].

The Fréchet kernel for ρ-scaling is given by

Kγ =

ns∑
s=1

∫
t

[
−ρ0u̇

†
su̇s + ρ0c

2
0∇u†s · ∇us

]
dt. (5.6)

Hereby, the scaling factor α(x) has been omitted, as the optimization and thus also the
gradient computation is only carried out in the physical domain, where α(x) = 1.
The u†s notation denotes the adjoint solution for source s and can be interpreted as a
time-inverted wave propagation. It is obtained by a backward simulation with a force
term f †

s that contains the difference between simulated and measured responses

f †
s = −

nr∑
r=1

(us − um,s)δ(x− xr) (5.7)

and the same boundary conditions as in the forward wave propagation problem. The
material field γ(x) is discretized using constant basis functions defined on a voxel grid.
The gradient with respect to the discrete voxel values γ̂(x) is approximated by evaluating
the discretized Fréchet kernel K̂γ at the voxel mid positions xγ̂,i

dχ

dγ̂i
≈
∫
Ω
K̂γδ(x− xγ̂,i)dΩ = K̂γ(xγ̂,i), i ∈ {1, ..., nglobal

v }. (5.8)

The total number of voxels in the domain is called nglobal
v . Rewriting the discrete sensitivity

kernel K̂γ with N and B defined as in equations 2.31 and 2.32 yields

dχ

dγ̂i
≈

ns∑
s=1

∫
Ω

∫
T

[
−ρ0(ˆ̇u

†
s)

TNTN ˆ̇u
†
s + ρ0c

2
0(û

†
s)

TBTBû†
s

]
dtδ(x− xγ̂,i)dΩ. (5.9)

5.1.5 Potential for Improvement

In each iteration step of the FWI, evaluating the objective and the gradient requires
numerous wave simulations. Thus, an efficient time integration scheme is paramount for
the FWI. Chapter 4 showed that the Newmark IMEX method performs exceptionally well
for wave propagation problems discretized with the SCM. In the upcoming section 5.2, the
goal is to decrease the runtime of the FWI while maintaining accurate inversion results.
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5.2 Application

5.2.1 Benchmark Problem

The immersed benchmark problem of [1, 33] is utilized.

Figure 5.4: Benchmark problem for immersed FWI [1, 33]

A 2D domain with lx = 100 [mm] and ly = 50 [mm] is considered. A circular hole with
radius rc = 7.5 [mm] and center point [xc, yc] = [35, 20] [mm] is embedded into the
rectangular domain. Furthermore, the lower boundary is defined by cubic splines. Their
control points are located at [0, 10], [10, 1], [25, 7.5], [35, 2], [50, 15], [60, 3], [75, 12], [90, 1] and
[100, 10] [mm]. The aforementioned geometric features are known a priori. However the
by 67.5◦ rotated ellipse with the semi-axes a = 6 [mm] and b = 1 [mm] is located at
[63, 18] [mm] and unknown to the optimization problem. It represents the geometric feature
to be detected.

The density is set to ρ = 2700 [ kg
m3 ] and the wave speed to c = 6000 [ms ]. The density in the

a priori known void domain is scaled by αf = 1 · 10−5. The critical time step sizes for an
initial material distribution of γ̂ = 1 are

∆tuncutcrit = 1.5528 · 10−7 [s], (5.10)

∆tmin
crit = 5.6788 · 10−9 [s], (5.11)

r = 27.344, (5.12)

∆tmin
crit,HRZ = 7.1294 · 10−9 [s], (5.13)

rHRZ = 21.781, (5.14)

∆tglobalcrit = 1.0243 · 10−8 [s], (5.15)

∆tglobalcrit,HRZ = 7.8569 · 10−9 [s], (5.16)

∆tIGA
crit = 5.32919 · 10−8 [s] (5.17)

The values for the system with HRZ lumping are only kept for the sake of consistency with
chapter 4. Neither the reference in [1], nor this thesis employ lumping methods for the FWI
due to their unsatisfactory performance. The time step size for the system discretized with
IGA ∆tIGA

crit is mentioned for the reference time integration.
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5.2.2 Adjustment of Dof Partitioning

As outlined in chapter 3, the Newmark IMEX utilizes a partitioning of the dofs into the two
subgroups of diagonal dofs Id and cut dofs Ic. In chapter 4, these two subgroups are
equivalent to the groups of dofs that are explicitly and implicitly integrated, i.e., Iex and Iim.
This works well because regions of varying material parameters are known a priori by the
scaling parameter α(x). However, in the application to the FWI this is no longer the case
as the material distribution γ(x) changes iteratively. This additional scaling influences
the system matrices M and K. A variation in the material field γ(x) can cause a sharp
interface between material and void and thus lead to a decrease of the critical timestep
sizes of dofs near the reconstructed interface. Those dofs introduce stability issues to the
time integration. All dofs for which the above is true comprise the set Iγ . The implicit and
explicit index sets are obtained by

Iim = Ic ∪ Iγ , (5.18)

Iex = Iglobal \ Iim. (5.19)

A criterion for identifying the set Iγ can be found in two ways:

- As formulated in section 3.2.2, the critical time step size of a cell is obtained by
solving

∆tcrit =
2

ωe
max

, (5.20)

where the highest eigenfrequency ωe
max is obtained from the cell-specific generalized

eigenvalue problem

det(Ke − ω2M e) = 0. (5.21)

Thus, for each optimization iteration the critical time step size of each cell could be
calculated. If it is smaller than the chosen time step size, the dofs of that cell are
added to the set Iγ .

- Similarly, the critical time step size could be investigated not on cell-, but on dof-
level. This is equivalent to treating each dof with index i as an uncoupled single-dof
spring-mass system, whose eigenfrequency is calculated with

ωi
sdof =

√
Kii

Mii
. (5.22)

The critical time step size of dof i is then estimated as

∆ticrit ≈
2

ωi
sdof

. (5.23)

If the chosen time step size ∆t is larger than the estimate ∆ticrit, the index i is added
to the set Iγ .
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The first approach is more accurate as it considers the coupling between dofs at least
within the cell. On the other hand, it introduces a considerable computational overhead as a
generalized eigenvalue problem must be solved for each cell in each iteration. Furthermore,
the element stiffness and mass matrices are currently not easily accessible in AdhoC++.
Therefore, one would either have to make architectural changes to the code or recalculate
the element matrices adding even more overhead.
In comparison, the second idea is computationally cheap and easy to implement. On its
own, it is not very accurate since all coupling is neglected. However, using a conservative
approach with an additional safety factor σ∆t ∈ [1.2, 2] has proven to work well and with
very little computational overhead. The approach is illustrated in the following C++ code
snippet, where n is the global number of dofs.

for ( s i z e _ t i = 0 ; i < n ; ++ i ) {
t C r i t E s t i m a t e ( i ) = 2 . 0 / s td : : s q r t (K( i , i ) /M( i , i ) ) ;
i f ( t C r i t E s t i m a t e ( i ) < de l taT * sa fe tyFac to r ) {

i m p l i c i t I n d i c e s . push_back ( i ) ; } }

For the parameters chosen in the next section, the presented approach with a safety
factor σ∆t = 1.2 enables the selection of a time step size of up to ∆t = 1.5 · 10−7 [s], which
is just below the critical time step size of uncut cells ∆tuncutcrit (γ̂ = 1) = 1.5528 · 10−7 [s].
Theoretically, even higher time step sizes are possible, especially with higher safety factors.
However, eventually, the algorithm degrades to a purely implicit time integration scheme
since all dofs fulfill the criterion for implicit integration. Without the adjustment of dof
partitioning, even a time step size of ∆t = 8 · 10−8 [s] becomes unstable.
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5.2.3 Results

The FWI depends on many parameters that significantly influence the inversion quality.
Among those are the number of elements [ne

x, n
e
y], the number of voxels per element

direction nv, the polynomial degree p, the lower bound of the material representation γmin

and the time step size ∆t.

Here, the number of elements is set to [40, 20] and nv = 4 per element direction, i.e.,
each element incorporates 42 = 16 voxels. The polynomial degree is set to p = 2. This
represents the middle ground regarding spatial resolution in [1]. For a parameter study
concerning the parameters of spatial resolution [ne

x, n
e
y], nv and p, the reader is referred

to [1], in which the following remarks are made. If the wave field discretization is too coarse,
dispersion errors cause imprecise wave simulations and consequently large artifacts in
the material reconstruction. However, the voxel discretization should not be chosen too
fine since then the computation of the sensitivity kernel dominates the computational cost
of the overall inversion.

A lower lower bound for the material scaling γmin leads to a more accurate capture of
the boundaries. On the contrary, a higher lower bound results in faster wave propagation
simulations since it leads to higher critical time step size values, and thus fewer dofs
need to be integrated implicitly. However, a higher lower bound, e.g., γmin = 0.01, causes
problems for the optimizer, requiring significantly more objective and gradient evaluations
than iterations. This renders any meaningful interpretation of inversion runtimes for different
time step sizes ∆t impossible. Therefore, the lower bound is fixed at γmin = 1 · 10−5.

Here, the influence of the time step size ∆t is mainly investigated. Simulations of [1] are
taken as a reference, which use a combination of FCM and IGA for spatial discretization
of the wave field. The parameters of spatial resolution are chosen as detailed above. Time
integration is implemented by the conventional CDM. The runtime results of this section
are generated by a laptop with an Intel Core i7-6700HQ and 24GB of 2133MHz RAM
running Ubuntu in the WSL2 environment.
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(a) Initial material (b) Material at iteration 5

(c) Material at iteration 10 (d) Material at iteration 25

Figure 5.5: Material field γ(x) at different iterations for the reference inversion (IGA-CDM)
with time step size ∆t = 2 · 10−8 [s]

Figure 5.5 shows the inversion process for a time step size of ∆t = 2 · 10−8 [s]. The
material reconstruction at iteration 10 is more accurate than at iteration 25, suggesting
overfitting. Figure 5.6 illustrates the normalized objective value for the reference simulation.
The objective value decreases fast initially, but its convergence rate decreases soon after.
Combined with the visual judgment in Figure 5.5, iteration 10 is a suitable limit after which
the inversion is stopped. Similar convergence behavior is observed for all other FWI runs.
Therefore, all runs are terminated after 10 iterations.
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Figure 5.6: Normalized objective value during the optimization of the reference inversion
(IGA-CDM) with time step size ∆t = 2 · 10−8 [s]
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The critical time step size for the reference FWI run with initial material is

∆tIGA
crit = 5.32919 · 10−8 [s]. (5.24)

Considering instabilities caused by the reconstruction of material interfaces, the largest
stable time step size lies around ∆t = 5 · 10−8 [s]. An additional reference run with
∆t = 5 · 10−8 [s] is performed. The inversion result deteriorates slightly, as illustrated by
the larger artifacts of the run with the larger time step size in Figure 5.7.

(a) ∆t = 2 · 10−8 [s] (b) ∆t = 5 · 10−8 [s]

Figure 5.7: Comparison of IGA-CDM inversion results for different time step sizes ∆t after
10 iterations

The use of the SCM in conjunction with the Newmark IMEX solver enables the use of
larger time step sizes. The safety factor is set to σ∆t = 1.2. Figure 5.8 illustrates the
runtimes for different time step sizes.
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Figure 5.8: Runtimes for different time step sizes ∆t and 10 iterations

60



The runtimes decrease drastically when a larger time step size is used. The SCM-Newmark
IMEX inversion achieves much lower runtimes than the IGA-CDM inversion. The largest
stable time step size for the IGA-CDM is around ∆t = 5 · 10−8 [s], for the SCM-Newmark
IMEX it is approximately ∆t = 1.5 · 10−7 [s]. These time step sizes are slightly smaller than
the critical time step sizes of the respective systems with an initial material distribution
due to the instabilites caused by dofs near reconstructed material interfaces. Around
the time step size ∆t = 1.5 · 10−7 [s], the runtime curve is already close to horizontal,
indicating that not much further runtime is to be saved by using a larger time step size.
Other aspects of the FWI dominate the computational cost and are independent of the
time step size. Furthermore, an increase beyond the critical time step size of uncut cells
∆tuncutcrit,SCM = 1.5528 · 10−7 [s] is not feasible, as the Newmark-IMEX would degenerate to a
purely implicit method. Even for ∆t = 1.5 · 10−7 [s], the number of implicitly integrated dofs
is already significantly increased compared to runs with smaller time step sizes. Table 5.1
illustrates the inclusion of additional dofs to the implicit set Iim.

∆t [s] 2 · 10−8 4 · 10−8 6 · 10−8 8 · 10−8 1 · 10−7 1.2 · 10−7 1.5 · 10−7

|Ic| 594 594 594 594 594 594 594

|Iim| 604 603 605 606 606 608 1259

Table 5.1: Number of cut and implicit dofs for different time step sizes

The SCM-Newmark IMEX run with time step size ∆t = 1.5 · 10−7[s] represents a speed-up
by factor 2.85 compared to the reference IGA-CDM run with time step size ∆t = 5 · 10−8[s].
This is remarkable, especially since the inversion quality is even improved compared
to the reference. Figure 5.9 illustrates the inversion quality for different time step sizes.
The IGA-CDM inversion overestimates the width of the ellipse. Only with a finer spatial
resolution is the width of the ellipse reconstructed correctly as illustrated in [1]. This
could be due to the higher continuity and fewer dofs of IGA compared to the SCM. The
SCM-Newmark IMEX estimates the width of the ellipse more accurately. Its reconstruction
resembles more the reconstruction of the finest spatial resolution in [1]. Additionally, fewer
and smaller artifacts are generated in the SCM-Newmark IMEX inversion. Concerning the
error per runtime comparison in Figure 4.10, it was stated that the Newmark IMEX is by
far the fastest if some degree of temporal error is acceptable. The findings of the current
section suggest that the FWI is very resilient against reasonable errors originating from
the temporal discretization.

In conclusion, the use of the SCM and the Newmark IMEX method severely enhances the
efficiency of the FWI. While the inversion quality is improved, the runtime is decreased by
a factor of 2.85 compared to the reference IGA-CDM discretization in [1].
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(a) Reference with ∆t = 5 · 10−8 [s] (b) Newmark IMEX with ∆t = 2 · 10−8 [s]

(c) Newmark IMEX with ∆t = 4 · 10−8 [s] (d) Newmark IMEX with ∆t = 6 · 10−8 [s]

(e) Newmark IMEX with ∆t = 8 · 10−8 [s] (f) Newmark IMEX with ∆t = 1 · 10−7 [s]

(g) Newmark IMEX with ∆t = 1.2 · 10−7 [s] (h) Newmark IMEX with ∆t = 1.5 · 10−7 [s]

Figure 5.9: Comparison between the reference inversion result and the results of the
SCM-Newmark IMEX inversion after 10 iterations for different time step sizes ∆t
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Chapter 6

Conclusion

6.1 Summary

This thesis presented several approaches for time integration of wave propagation prob-
lems that are spatially discretized with the Spectral Cell Method (SCM). The SCM is the
method of choice for spatial discretization because it combines the excellent convergence
properties of the Spectral Element Method (SEM) with the advantages of an immersed
method, the Finite Cell Method (FCM). This way, complex geometries can be meshed
quickly, and initial-boundary value problems in those domains can be solved efficiently.

This thesis addresses its main drawbacks, the small critical time step sizes in cut cells
and the loss of full diagonality of the mass matrix M due to the contributions of cut cells.
While the full diagonality of the mass matrix M can be recovered by lumping the cut
cells, Kelemen showed in [14] that this leads to unsatisfactory results. Therefore, other
approaches to deal with the partial diagonality are investigated. One of those is a split
solver, which partitions the system matrices into subgroups of diagonal and cut dofs.
Hereby, linear equations only need to be solved for the time integration of cut dofs, the
diagonal dofs are integrated purely by iterating. The leapfrog solver adopts this concept
and also addresses the issue of low critical time step sizes in the cut cells. It achieves this
by using a smaller time step size for the integration of cut cells. Hence, as long as the fine
time step size is small enough, the integration of the diagonal dofs is only restricted by the
critical time step size of uncut cells.

The aforementioned time integration methods are explicit, i.e., they are subject to stability
conditions. As an implicit method, the Newmark trapezoidal method was explained and
tested. While it is unconditionally stable, it is also very computationally expensive.

Implicit-Explicit (IMEX) methods promise to combine the best of both worlds. By implicitly
integrating the dofs of cut cells, the issue of small critical time step sizes is avoided. The
diagonal dofs are integrated with a cheap and accurate explicit method.

Two IMEX methods were presented, one derived from Newmark methods, the other from
Runge-Kutta-Nyström (RKN) methods. The former is composed of the explicit CDM and
the implicit trapezoidal Newmark method. RKN methods are derived from Runge-Kutta
methods but are specially adapted to solve second order ODEs efficiently. The explicit
part of the RKN IMEX is a RKN method of fourth order, whereas the implicit algorithm is a
Diagonally Implicit Runge-Kutta-Nyström (DIRKN) algorithm of second order.
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In chapter 4, all developed algorithms were compared on two benchmark examples.
Hereby, the most decisive criterion is the error for a given runtime. In this criterion, the
two IMEX algorithms were consistently the best. Among those two, the RKN IMEX is
more accurate but also significantly more expensive per time step size than the Newmark
IMEX variant. Converted to accuracy per runtime, the Newmark IMEX is the overall best
investigated algorithm.

Chapter 5 demonstrated the FWI as an application for efficient time integration. A 2D
benchmark example from [1] was investigated. There, the domain was discretized using
an immersed variant of IGA and integrated in time utilizing the CDM. With the help of the
SCM and the Newmark IMEX method, the inversion process was accelerated by a factor
of 2.85 while simultaneously improving the quality of the inversion result.

6.2 Future Work

6.2.1 Further Time Integration Methods

In addition to the time integration methods already presented, other methods could be
explored.

Runge-Kutta-Nyström IMEX Methods

Even though a variant of RKN IMEX methods has already been implemented, many others
remain to be tested. The framework of implementation does not need to be adapted. It
suffices to select different Butcher tableaus for the implicit and the explicit subschemes.
Different tableaus imply different convergence order, stability, dispersion, and dissipation
properties. Many papers propose tableaus optimized for different purposes, e.g., [94] for
high dispersion order and [74] for high dissipation order.

Furthermore, embedded Runge Kutta schemes use an additional set of coefficients b̃i to
compare a solution of higher order to the recently computed step and produce an error
estimate with it [112]. Based on the error estimate, the time step size can be controlled
adaptively. Such an error estimate e could be written as

e =

∥∥∥∥∆t

s∑
j=1

(bj − b̃j)kj

∥∥∥∥
L2

. (6.1)

Concerning this proposition, how well this error estimate correlates with an accurately
calculated error measure would need to be tested.
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Bathe Methods

The Bathe method is an implicit time integration scheme [83]. It was specially designed
to conserve energy and momentum for cases where the trapezoidal Newmark method is
not conservative. The Bathe method combines the trapezoidal Newmark method and the
three-point Euler backward formula. Considering the underwhelming performance of the
trapezoidal Newmark method in the benchmarks of this thesis, the Bathe method could
take its place in the Newmark IMEX algorithm to improve it further.

Furthermore, Noh and Bathe developed the Noh-Bathe method [113], which is an explicit
second-order scheme with an additional sub-increment aiming to filter out undesirable
oscillations [114]. It is more accurate than the CDM, albeit more expensive. An IMEX
method comprised of the Bathe and the Noh-Bathe method could be another promising
option.

Fully-Automatic Dof Partitioning

In [115], Soares proposed a time integration scheme for wave propagation analysis
that does not require the calculation of accelerations. In [116], two parameters, α(x, t)
and γ(x, t) are introduced. The parameter α controls the numerical dissipation of the
algorithm, whereas γ assures desired stability properties. Both parameters may vary in
space and time and are adjusted automatically. The papers [45, 117, 118] extend the
methodology to an automatic IMEX algorithm. For a certain set of parameters, both the
CDM and the trapezoidal rule can be reproduced, so the proposed formulation can be
regarded as a generalization of different second-order algorithms. Its main advantage
is that by estimating an oscillatory parameter, the implicit and explicit subgroups are
partitioned automatically and do not require any prior selection. The oscillatory parameter
is an estimation of the element-specific highest eigenfrequency, i.e., Soares utilizes an
approach similar to the first proposition in section 5.2.2.

The algorithms of Soares could be implemented and compared against the time integration
methods of this thesis on the same benchmark examples. Since the automatic partitioning
could account for instabilites caused by the reconstruction of material interfaces, the
algorithms of Soares seem well-suited for application in the FWI, too.

6.2.2 Damping

In this thesis, damping was not considered. In reality, every physical system possesses
damping properties, which dissipate energy. For numerical time integration, damping is
usually considered by a structural damping matrix C that premultiplies the velocities in the
equations of motion

Mü+Cu̇+Ku = ftfx. (6.2)
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Some time integration algorithms, e.g., the implicit Newmark method in [98] or the
Generalized-Alpha method in [73], purposefully introduce numerical dissipation. Their
performance on systems with and without damping could be assessed. To which degree
numerical dissipation can be used to emulate physical damping without considering a
damping matrix C is a further open question. The use of a structural damping matrix
C significantly increases the computational cost of time integration and additionally de-
creases the critical time step sizes [5]. Therefore, it would be desirable to reproduce its
effects by utilizing a comparatively cheaper dissipative algorithm without considering the
damping matrix C. Matching numerical simulation data to a physical experiment would be
necessary for validation. This way, accuracy and performance could be compared to a
non-dissipative algorithm that does not neglect the damping matrix C.

It is possible to construct IMEX variants of both dissipative algorithms. To replace the trape-
zoidal Newmark method in the Newmark IMEX solver with the dissipative algorithm in [98],
only a parameter change is required. An IMEX variant of the Generalized-Alpha algorithm
is presented in [119].

6.2.3 3D Full Waveform Inversion

The SCM with the Newmark IMEX method improved the runtime and inversion quality in
the 2D FWI example of [1]. As a next step, the more complex 3D example in the same
paper, the reconstruction of flaws in bridge pillars, could be implemented with the SCM
and the Newmark IMEX algorithm. It could be investigated whether a similar speed-up
and improved inversion quality as in the 2D example can be achieved. If so, the FWI using
the SCM and the Newmark IMEX method may be able to solve problems that are too
computationally expensive to solve with the reference FWI method of [1].
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