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Abstract

During flight conditions in the transonic regime, large amplitude and self-sustained shock
oscillations as well as boundary layer separation can appear. This instability, commonly
referred to as transonic buffet or shock buffet, defines a limit of the flight envelope of
modern passenger aircraft. Due to buffet, passenger comfort during flight is drastically
decreased and the wing structure is susceptible to material fatigue. Therefore, the deter-
mination of buffet loads on the wing structure is crucial for the design and qualification
process of an aircraft. However, although considering state-of-the art numerical meth-
ods as well as experimental facilities, the determination of buffet loads is time and cost
consuming. Therefore, the use of both numerical and experimental methods for buffet
load computation is limited, especially in an industrial context.

In order to present a solution for this issue, model-order reduction methods based on
long short-term memory (LSTM) neural networks, convolution neural networks (CNN)
as well as autoencoders (AE) are developed and applied in the present thesis in order to
allow for an accurate and efficient alternative computation of buffet loads. The trained
reduced-order models (ROMs) based on a LSTM are able to predict integral buffet
characteristics due to pronounced shock motions, varying freestream conditions as well
as forced vibrations. In contrast, CNN and AE-based ROMs enable the determination of
buffet pressure distributions due to varying flight conditions and structural vibrations.

The proposed ROM methods are tested and validated by considering a two-dimensional
and two three-dimensional test cases. For performance evaluation, the results obtained
by the ROMs are compared to either full-order reference computational fluid dynamics

(CFD) or experimental solutions.






Zusammenfassung

Wihrend des Fluges im transsonischen Bereich kénnen selbsterregte Stofsschwingungen
mit grofser Amplitude sowie Ablésungen der Grenzschicht auftreten. Diese Instabil-
itat, die allgemein als transonisches Buffet oder Stofi-Buffet bezeichnet wird, stellt eine
Grenze fiir den Flugbereich moderner Passagierflugzeuge dar. Durch das Auftreten von
Buffet wird der Komfort der Passagiere wiahrend des Fluges drastisch verringert und
die Fliigelstruktur ist anfallig fiir Materialermiidung. Daher ist die Bestimmung der
Buffetlasten auf die Fliigelstruktur fiir den Entwurfs- und Qualifikationsprozess eines
Flugzeugs von entscheidender Bedeutung. Trotz modernster numerischer Methoden und
experimenteller Einrichtungen ist die Bestimmung von Buffetlasten jedoch sehr zeit- und
kostenaufwendig. Daher ist der Einsatz von numerischen und experimentellen Methoden
zur Berechnung von Buffetlasten begrenzt, insbesondere im industriellen Kontext.

Um eine Losung fiir dieses Problem zu prasentieren, werden in der vorliegenden
Arbeit Modellordnungsreduktionsverfahren auf der Basis von neuronalen Netzen mit
Langzeitgeddchtnis (LSTM), neuronalen Faltungsnetzen (CNN) sowie Autocodierern
(AE) entwickelt und angewendet, um eine genaue und effiziente alternative Berechnung
von Buffetlasten zu erméglichen. Die trainierten Modelle reduzierter Ordnung (ROMs),
die auf einem LSTM basieren, sind in der Lage, integrale Buffet-Charakteristika aufgrund
ausgepragter Stokbewegungen, variierender Anstrombedingungen sowie erzwungener Vi-
brationen vorherzusagen. Im Gegensatz dazu erméglichen CNN- und AE-basierte ROMs
die Bestimmung von Buffetdruckverteilungen aufgrund variierender Anstrombedingun-
gen und Strukturvibrationen.

Die vorgeschlagenen ROM-Methoden werden anhand eines zweidimensionalen und
zweier dreidimensionaler Testfille getestet und validiert. Zur Leistungsbewertung wer-
den die mit den ROMs erzielten Ergebnisse entweder mit den Ergebnissen der nu-

merischen Stromungsmechanik (CFD) oder mit experimentellen Losungen verglichen.
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1 Introduction

In order to enable the design and certification process of a civil aircraft, an efficient
and accurate determination of the flight envelope boundaries is mandatory. Besides
engine-related restrictions, the flight envelope is limited by the appearance of unsteady
phenomena, which result from the interaction of aerodynamic, elastic and inertia forces.
The coupling between these three types of forces is defined by the well-known triangle
of forces proposed by Collar [14], as shown in Figure 1.1.

Aerodynamic Forces

/1N

Static Aeroelasticity Flight Dynamics

Dynamic
/ Aeroelasticity \

Elastic Forces <> Structural Dynamics <=  Inertia Forces

Figure 1.1: Collar’s triangle of forces, adapted from [14].

The interaction of aerodynamic and inertia forces leads to rigid body motions, which
are summarized by equation of motions related to flight dynamics. The interaction be-
tween inertia and elastic forces results in vibrations, which are covered by the discipline
of structural dynamics. Static aeroelasticity is defined by the coupling between aerody-
namic and elastic forces, whereas the discipline of dynamic aeroelasticity accounts for
all three types of forces.

In general, unsteady phenomena resulting from dynamic aeroelasticity can be cate-
gorized in stability - and response problems. The stability problem is represented by
flutter, whereas response problems are associated to limit-cycle oscillations (LCO), con-
trol surface buzz and aerodynamic buffeting. Here, buffeting is defined as the interaction
of the wing or tail structure of the aircraft with surface pressure and fluctuations, which
result from an instability referred to as buffet. The transonic buffet phenomenon is de-
fined by the interaction between intermittently separated shear layers and shock-waves,
which result in large amplitude, self-sustained shock oscillations. Negative effects of this
self-sustained unsteadiness range from reduced aerodynamic performance to structural

failure due to material fatigue.
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1.1 Motivation

Within the framework of this thesis the focus is put on exactly this phenomenon - tran-
sonic buffet. In the following, the motivation is given and the research objectives that
arise are formulated. Furthermore, an outline of the thesis is presented.

The buffet phenomenon can be differentiated into two types, depending on the flight
speed of the aircraft. In the low speed regime, local flow separation due to high lift
results in low-speed buffet. The resulting turbulent flow interacts with the wing and /or
the tail surface, leading to increased accelerations at the wing and/or the horizontal tail
plane (HTP). In contrast, considering transonic flow conditions, the buffet phenomenon
occurs due to shock-boundary layer interaction on the upper surface of the wing. In
this thesis, the focus is put on the characterization of transonic buffet, which is also
commonly referred to as shock buffet.

The unsteady flow characteristics associated to transonic buffet can be investigated
by high-fidelity numerical methods such as unsteady Reynolds averaged Navier-Stokes
(URANS) simulation, detached-eddy simulations (DES) or large-eddy simulations (LES).
In particular, the formation and motion of the shock, as well as the development of the
boundary layer and its separation must be adequately captured by the applied numer-
ical solver. However, applying state-of-the-art computational fluid dynamics (CFD)
solutions for an aeroelastic buffeting analysis increases computational time and costs
drastically. Even with the nowadays available computing capacities, the application of
higher fidelity methods such as DES and LES is a challenging task, especially when
considering multiple variations of flow conditions.

In addition to the application of numerical methods, experimental investigations are
a common tool for the characterization of transonic buffet. However, similar to numer-
ical investigations, the experimental determination is time and cost consuming, due to
the high requirements of the aircraft model to be tested, the test equipment as well
as the operation of the wind tunnel in order to achieve atmospheric settings and flow
similarities (e.g. Reynolds number).

A faster and less expensive alternative to the application of the aforementioned high-
fidelity solutions and experimental investigations is given by system identification meth-
ods, which are also referred to as reduced-order models (ROM). These models have
become increasingly popular in recent years, since they allow for the representation of a
given aerodynamic system, which is defined by a certain number of inputs and outputs.
Considering the representation of unsteady flow features associated to transonic buffet,
the input is commonly defined by external or body related motion of the investigated
airfoil or wing. The output is represented by the corresponding integral or local aerody-
namic loads like aerodynamic coefficients or pressure distributions. A ROM can either
be conditioned by means of numerical and experimental data or by a combination of

both data types. If the ROM is accurately trained, it is applicable for the computation
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of buffet flow features at flow conditions which are not necessarily included in the train-
ing data set. Further, the prediction can be achieved within a fraction of computational
time and cost compared to extensive numerical and experimental investigations. There-
fore, the application of a ROM for transonic buffet analysis potentially enables a faster

and less expensive investigation, especially if various flow parameters are considered.

1.2 Thesis Outline and Research Objectives

In order to enable a fast and cost efficient determination of transonic buffet loads in the
earlier stages of the aircraft development process, model-order reduction frameworks
based on recurrent neural networks (RNN), convolutional neural networks (CNN) and
autoencoders (AE) are developed and applied in this thesis. Therefore, the main objec-
tive is the development of fast and accurate deep learning frameworks for the prediction
of two - and three-dimensional integral and local buffet characteristics. In particular,
the frameworks should be able to model buffet characteristics due to freestream param-
eter variations, rigid body motions as well as eigenmode-based structural deformations.
For the training of the ROM approaches, both full-order CFD solutions or experimental
data sets are applied, in order to enable the ROMs to learn the underlying flow physics
as accurate as possible. By applying the trained ROMs, a reduction in computational
time by several orders of magnitude is pursued, which enables the implementation of the
developed methods in early stages of the aircraft design process. Therefore, the following

questions can be defined as the overall research objectives approached in this work:

e Research Objective 1: To what degree is it possible to predict unsteady integral

and local buffet loads due to freestream parameter variations?

e Research Objective 2: To what degree is it possible to predict unsteady integral

and local buffet loads due to rigid body motions and eigenmode-based deflections?

e Research Objective 3: Is it possible to train and apply a ROM by means of

experimental data, which are characterized by a high noise content?

e Research Objective 4: How much reduction in computational time can be
achieved by the application of a trained ROM compared to a full-order CFD or

experimental solution?

For demonstration purposes, several well-established test cases are considered, includ-
ing a basic airfoil geometry (NACA0012) and two transport-aircraft-type configurations.
In particular, the Airbus XRF-1 and the NASA Common Research Model (CRM) con-
figuration are considered here. In order to evaluate the performance of the developed
and trained ROMs, both the prediction accuracy as well as the computational efficiency

compared to full-order CFD simulations and experimental investigations, are applied.
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The following thesis is divided into seven chapters. A schematic overview of the
research activities is given in Figure 1.2, highlighting the connections between the chap-

ters.

( Chapter 1: Motivation and Research Aim

“Development of deep learning frameworks for the prediction of two- and three-

L dimensional integral and local buffet characteristics®

v
(" )
Chapter 2: State-of-the-Art
* Introduction to transonic buffet
*  Numerical and experimental investigations of two-dimensional buffet
*  Numerical and experimental investigations of three-dimensional buffet
L *  Data-driven modeling of unsteady aerodynamics )

¥

(c

*  Recurrent neural network (RNN)
*  Training/optimization algorithms
*  Error/activation functions

*  Long short-term memory (LSTM)

*  Convolutional neural network (CNN)

*  Autoencoder (AE)

. Data sets and preprocessing

\° Evaluation metrics Y,

hapter 3: Deep Learning Approaches

~N
J

rChapter 4: Airfoil Buffet Prediction

“Prediction of motion-induced integral airfoil buffet characteristics”

& J

(Chapter 5: Wing Buffet Prediction

“Prediction of integral and local wing buffet characteristics due

to freestream parameter variations*
. J

(Cha,pter 6: Wing Buffet Prediction Due to Forced Vibrations

“Prediction of integral and local wing buffet characteristics due
to rigid body motions and eigenmode-based deformations®

. J

¥

/Cha,pter 7: Conclusion and Outlook A
*  Results analysis with regard to research objectives
*  Adaption of proposed ROM methods for the computation of structural loads due
to transonic buffeting
*  Outlook in potential performance improvements of proposed ROM approaches
L ° Overview of further promising ROM approaches )

Figure 1.2: Overview of the chapters of this thesis.
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In Chapter 1, the motivation and outline of the thesis are described. Further, the
four main research objectives are introduced, which will be considered in Chapter 4 to
Chapter 6.

Chapter 2 gives an overview of the state-of-the-art related to the aim of the thesis.
In the first part, the focus is put on a general definition of the transonic buffet insta-
bility. Following the general definition, a detailed literature review on both numerical
and experimental studies on buffet on airfoils and wings is presented. The third section
of the chapter covers an introduction to data-driven modeling, with special focus on
unsteady aerodynamic modeling. The chapter is concluded with a brief literature re-
view on the application of data-driven modeling methods for the prediction of transonic
buffet aerodynamics.

In Chapter 3, the applied data-driven modeling methods, in the following referred
to as deep learning approaches, are classified and introduced. In the first section of this
chapter, a basic introduction to deep learning is provided. In the second section, the
architecture of a RNN is explained. Referring to the RNN architecture, the training
algorithm applied in this thesis is outlined. Besides a detailed description of the training
algorithm, a comprehensive guide for the selection of error and activation functions as
well as hyperparameters is given. Further, applied optimization algorithms and normal-
ization techniques are introduced. In the third part of chapter 3, the architecture of the
long short-term memory (LSTM) neural network is described. In the fourth and fifth
section, the working principles of CNN and AE are outlined, respectively. In the sixth
section, different data sets applied for the training and performance evaluation of a neu-
ral network are briefly introduced and differences between the data sets are highlighted.
Within the last part of this chapter, different metrics for ROM performance evaluation
applied in the present thesis are introduced and explained.

Chapter 4 covers the prediction of airfoil buffet characteristics. The training and
application process of a LSTM-based ROM for the computation of lift and pitching
moment coefficient trends on the NACAO0012 airfoil are outlined. Further, an accurate
reproduction of the two-dimensional buffet characteristic lock-in phenomenon is pur-
sued. The prediction accuracy as well as the computational speed-up of the proposed
ROM are compared to full-order CFD simulation results.

In Chapter 5, the focus lies on an accurate and efficient computation of both integral
and local wing buffet characteristics due to freestream parameter variations. Therefore,
two different ROM approaches are developed and applied. For training and evaluation
purposes, experimental data obtained during a wind tunnel test campaign are used.
The wind tunnel model represents the Airbus XRF-1 configuration. Although the ex-
perimental data are characterized by a high noise content, an accurate ROM training

and application are intended.
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In Chapter 6, two different ROM approaches for the computation of integral and
local wing buffet characteristics due to rigid body motions and eigenmode-based struc-
tural deformations are introduced. The ROMs are conditioned by means of high-fidelity
numerical data sets. As a test case, the NASA CRM configuration in combination with
the FERMAT structural model is chosen.

In Chapter 7, the performed studies and their results are analyzed and summa-
rized with regard to the research objectives. Conclusions on the applied ROM methods
are given and major outcomes are highlighted and summarized. Further, the chapter
includes a discussion of potential performance improvements of the proposed ROM meth-
ods as well as the applicability for coupling with a structural solver in order to enable
the computation of structural loads due to transonic buffeting. Last, an overview of

further promising deep learning approaches for buffet and buffeting analysis is provided.






2 State-of-the-Art

In the following chapter, an introduction to the transonic buffet phenomenon is given.
Following the introduction, a review of both numerical and experimental studies of buf-
fet is presented. Here, differences between buffet on airfoils and wing buffet are clearly
highlighted. The chapter is concluded with a general definition of data-driven model-
ing, followed by a literature review of data-driven methods applied for the prediction of

unsteady aerodynamic characteristics.

2.1 Introduction to Transonic Buffet

The transonic buffet phenomenon, which is also commonly referred to as shock buffet,
was first observed by Hilton and Fowler [48] in 1947. Examining the flow physics of
buffet, two distinct types of buffet are identified, defined as Type 1 and Type 2. Type 1
buffet is characterized by shock oscillations on both the lower and upper surface of the
airfoil, typically if the airfoil has zero incidence. In contrast, Type 2 buffet occurs at
higher angles of attack and is associated with self-sustained cycles of shock movement
and flow separation only on the upper airfoil surface. Further, the freestream Mach
number as well as the geometry of the airfoil have an influence on the origin of Type 2
buffet. Within the scope of this thesis, the focus will be on Type 2 buffet.

In order to establish a better understanding of the governing physics of the buf-
fet Type 2 instability, several models have been proposed. Lee [67,68] introduced an
acoustic wave-propagation feedback model in order to describe the oscillating shock
motion. In Lee’s model, pressure waves, which are generated by the moving shock
wave, travel down - and upstream and generate a buffet cycle by interacting with each
other [53]. Later numerical studies [25,145] showed good agreement with the assump-
tions made by Lee [67], however, some studies |36, 55| reported considerable deviations
in the buffet characteristics, which led to a suggested revision of Lee’s model by Jacquin
et al. [55]. The application of the new developed wave-propagation model showed better
agreements with the experiments, however, differences in the buffet characteristics still
remained [40,53].

In addition to the study of Lee [67,68], Crouch et al. [16,17] proposed a model based
on global mode decomposition. The results indicated that buffet onset is linked to a
global mode instability. In contrast to the mechanism proposed by Lee [67, 68|, the
pressure waves travel around the entire airfoil, instead of oscillating only on the upper
airfoil surface. Based on numerical studies by Crouch et al. [17], good agreement with
experimental studies [85] was indicated. Following the global mode instability analysis,
further numerical studies revealed similar results [62,112] on Type 2 buffet.

Following the studies mentioned above, Raghunathan et al. [98] and Iovnovich and
Raveh [53] revealed flowfield studies of a single buffet cycle on various airfoils. Due to

their findings, the buffet phenomenon was described as an unstable interaction of the
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shock-wave and flow separation. The buffet cycle can be classified as a transonic pre-
stall, self-sustained instability. In Figure 2.1, a shock buffet cycle on the NACA0012
airfoil, divided by four time steps, is visualized. Here, the buffet instability is computed
using an URANS approach in combination with the Spalart-Allmaras (SA) turbulence
model. For the SA model, the Edwards modification [29] has been activated.

Ma:

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

Figure 2.1: Mach number and flow streamline plots of the buffet cycle of the NACA0012
airfoil (May, = 0.72, Re = 107, a = 6°).

Based on the investigations of the characteristics of the buffet cycle on the NACA0012
airfoil by Iovnovich and Raveh [53], the following stages of the buffet cycle can be sum-
marized: The onset of buffet is typically linked with the formation of a shock at the
position of maximum curvature on the suction side of the airfoil (see Figure 2.1 (1)).
Downstream of the shock, a flow separation bubble develops, which interacts with the
shock. Due to the pressure increase in the area of separated flow, the shock travels

upstream, which leads to an increase in shock strength and separated shear layer (see
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Figure 2.1 (2)). As the shock weakens, the separated boundary layer behind the shock
starts to reattach, while the flow at the trailing edge (TE) is still characterized by large
separated areas (see Figure 2.1 (3)) [53]. Due to this large separation area at the TE,
the circulation around the airfoil is decreased. As soon as the separated flow starts to
reattach, the shock travels back downstream and strengthens (see Figure 2.1 (4)) [53].
As the shock reaches its initial position, the separation bubble behind the shock initiates
a new buffet cycle [53].

Due to the repeating cycle of shock movement and flow separation at buffet condition,
the corresponding aerodynamic coefficients are characterized by a periodic behavior. Ex-
amining the resulting time-series of the aerodynamic coefficients, the buffet oscillations
can be characterized by a characteristic frequency, which is referred to as the buffet
frequency wpyffer- In the context of a buffet analysis, the buffet frequency is commonly

expressed as a nondimensional, reduced frequency kycq puffet, Which is defined as follows:

WBuffet * Cref
Uso

with Uy denoting the freestream velocity. C¢s is defined as the geometric reference

kred,Buffet = (21)

length, which is defined as the mean aerodynamic chord (MAC) for wing buffet investi-
gations or the root chord for investigations on airfoils. Instead of the reduced frequency,
another key figure, namely the Strouhal number Sr (see Equation 2.2), is commonly

applied for the characterization of the buffet flow physics.

WBuffet * Cref
Sr=——-— 2.2
Uso (2:2)
Typically, the shock-buffet reduced frequency is comparable to low-frequency elastic

modes of transport aircraft [40,53].

2.2 Two-Dimensional Buffet

In the following section, an overview of numerical and experimental studies of buffet on
airfoils, is given. Further, a phenomenon referred to as lock-in is addressed, which is

important for understanding the influence of external motion on the buffet instability.

2.2.1 Numerical Investigations

In order to capture the unsteady flow features associated to transonic buffet on airfoils,
numerical computations including scale-resolving mechanisms are required. Although
due to the averaging process of URANS methods only large turbulence scales are re-
solved, several studies showed that by applying URANS simulations the fundamental
buffet flow physics can be represented with a sufficient degree of accuracy [29,53]. In
addition to the application of URANS simulations, scale-resolving methods have also

been used for the computation of transonic buffet. Deck [25] investigated the influence
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of DES and LES compared to URANS on transonic buffet on the OAT15A airfoil. Fur-
ther, Deck proposed a novel simulation approach based on the combination of URANS
and LES, defined as Zonal Detached-Eddy Simulation (ZDES). By applying ZDES, a
more precise prediction of pressure fluctuations and general flow field characteristics was
indicated.

Although numerical methods with higher fidelity are available, most of the numeri-
cal studies on transonic buffet apply an URANS solver for buffet simulation. However,
URANS simulations have shown to be quite sensitive to various simulation parameters,
in particular the applied turbulence model, the discretization as well as the numerical
scheme [40]. A study by Barakos and Drikakis [4] assessed the influence of several turbu-
lence models, in particular eddy-viscosity models, on the computation of transonic buffet
on airfoils. Their study revealed that the application of the Spalart-Allmaras (SA) [120]
turbulence model gained the best results in terms of replicating shock unsteadiness and
buffet frequency prediction. Further, the Shear-Stress Transport (SST) k-w turbulence
model proposed by Menter [86] also indicated good correlations with experiments. A
later study by Goncalves and Houdeville [41] underlined the findings of Barakos and
Drikakis [4], indicating good agreement between the SA and Menter SST model and
experimental investigations.

Besides the influence of the selected turbulence model, several studies evaluated the
influence of the numerical discretization scheme for the convective fluxes [40]. Goncalves
and Houdeville [41] revealed that the upwind Roe [104] with Monotone Upstream-
Centered Scheme for Conservation Laws (MUSCL) [69] scheme and the Jameson scheme
outperform the Advective Upstream Splitting Method (AUSM+-) [72] with MUSCL ex-
trapolation scheme concerning the reproduction of characteristic buffet features. A study
by Soda and Verdon [119] underlined the theory of Goncalves and Houdeville [41]. How-
ever, compared to the influence of turbulence closure, the effects of the applied convec-
tive schemes are smaller, with variations in buffet frequency and amplitude of less than
10% [40]. However, as shown by several studies, with an appropriate choice of turbulence
model, the buffet instability is reproducable with the Roe, Jamson as well as the AUSM
scheme [40].

In addition to the choice of the numerical discretization scheme, special attention
has been given to the assessment of the spatial and temporal discretization. Studies by
Rouzaud et al. [107] and Rumsey et al. [109] compared an explicit temporal formulation
and an implicit Dual Time Stepping (DTS) scheme in terms of computational efficiency
and accuracy. Based on those studies, the DTS method indicated better agreement with
experiments, while at the same time using less computational resources [40]. Therefore,

the implicit formulation has been employed in various numerical studies [41,62].
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2.2.2 Dynamic Interaction Phenomena at Buffet Condition

Besides the buffet instability, transonic aeroelastic response phenomena, such as LCO or
single degree-of-freedom (DoF) flutter, are often characterized by the presence of shock-
boundary layer interaction [102|. Since shock buffet frequencies are typically in the order
of elastic structural frequencies, several studies suggested that they may contribute to
the development of LCO on airfoils.

In order to gain a better understanding of the nature of shock oscillations in dynamic
systems, a number of experimental and numerical studies investigated the influence of
external motion on shock oscillations developed during transonic buffet. Experimental
studies by Davis and Malcolm [23] and Despre et al. [26] evaluated the resonance of a
NACA64A010 airfoil, excited with pitching motions at varying frequencies. Based on
their studies it was shown that the maximum amplitude of the shock-wave oscillations
occurred at excitation frequencies close to the buffet frequency [40].

A numerical study by Nitzsche |90] revealed a commonality between shock buffet and
a single DoF oscillator. The resonance of shock buffet was shown to be independent of
the excitation mode, however, the buffet frequency was encountered when the shock mo-
tion changed to a regular mode [40]. Raveh [101] investigated the influence of external
harmonic plunge excitations on shock buffet on the NACA0012 airfoil, revealing results
that are consistent with findings obtained by Nitzsche [90]. Examining the resulting
aerodynamic responses, a phenomenon commonly referred to as lock-in effect, was iden-
tified. Here, in the presence of certain excitation frequencies and amplitudes, the buffet
flow response synchronizes with the motion of the airfoil. In addition, Raveh [101] sug-
gested that the occurrence of lock-in may encourage LCO. Buffet shock oscillations may
excite a damped structural mode near the stability boundary, resulting in increasing
amplitude oscillations [40].

Further numerical studies by Raveh and Dowell [102] aimed at analyzing the inter-
action of pre-buffet response and external motion as well as the influence of lock-in on
the flow field around the NACA0012 airfoil [40]. Increasing the angle of attack towards
buffet onset yielded an increase in the resonance frequency and decrease in damping,
whereas at buffet onset zero damping occurred. At a developed buffet condition, pres-
sure fluctuations at the TE are present, resulting in vortex shedding into the wake
region [40]. Further, a dependency between the resulting aerodynamic responses and
the level of the excitation frequency was observed. Excitation frequencies higher than
the buffet frequency lead to harmonic aerodynamic responses, whereas lower frequen-
cies result in large fluctuations in the responses due to large-scale shock motion. These
findings are in good agreement with a more recent study of the OAT15A airfoil by Gian-
nelis and Vio [38]. Continuing investigations on the lock-in phenomenon, Iovnovich and

Raveh [53| revealed that pitch excitations result in developed buffet flow and significant
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flow fluctuations, supporting earlier findings by Raveh [101]. However, although the lock-
in phenomenon has mainly be investigated using numerical methods, an experimental
study by Hartmann et al. [44] also indicated lock-in [40].

Besides a general characterization of the lock-in phenomenon, recent studies dealt
with the influence of structural parameters, such as mass ratio and structural damping,
on the lock-in mechanism [39,97]. In addition, several studies also found some degree
of commonality between shock buffet and other aeroelastic phenomena, such as single
DoF flutter [11,154]. However, within the scope of this thesis, the results of the studies

mentioned above are not further discussed.

2.2.3 Experimental Investigations

Although the majority of studies on buffet characterization is based on numerical mod-
eling, a number of comprehensive experimental studies are available in the literature
to gain further insight of the underlying buffet flow physics. Early studies by McDe-
vitt et al. [84], Mabey et al. [78] and Finke 33| examined the buffet instability using
different airfoil geometries. Further, an extensive wind tunnel test campaign has been
undertaken by ONERA, resulting in a fundamental experimental database of the super-
critical OAT15A airfoil [21]. The results of the test campaign are presented by Jacquin et
al. [55]. Based on a spectral analysis of the unsteady pressure measurements, a dominant
frequency was extracted, which supports the global mode instability theory proposed by
Crouch et al. [16,17]. In contrast to the results of the spectral analysis, oil flow visualisa-
tion indicated the presence of additional three-dimensional structures, which lead to the
suggestion of a superposition of both two- and three-dimensional modes [40]. Similar
to the wave-propagation model proposed by Lee [67], Jacquin et al. [55] developed a
modified version, assuming different disturbance convection timescales. Based on their
results, a more precise representation of buffet flow characteristics using the updated
propagation model, was indicated. However, the authors concluded that the description
of the buffet instability using a single model is a challenging task. Besides the study of
Jacquin et al. [55], Hartmann et al. [44] presented another modified propagation model,

defining the buffet shock oscillations as an acoustic phenomenon.

2.3 Three-Dimensional Buffet

Considering the studies of transonic buffet on airfoils outlined in the previous section,
the buffet instability is essentially a two-dimensional phenomenon. However, although
finding some degree of commonality, numerical and experimental investigation of buffet
flow on three-dimensional wings yielded flow characteristics that are different compared
to two-dimensional buffet [40]. In the following section, an overview of numerical and

experimental investigations on the three-dimensional buffet instability, is given.
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2.3.1 Numerical Investigations

Due to recent advances in computational resources, three-dimensional effects of the buf-
fet instability have been extensively investigated by URANS or scale-resolving methods.
Early studies by Brunet and Deck [10] and Sator and Timme [113,114] revealed that,
similar to airfoil buffet investigation, the application of URANS, DES, DDES and ZDES
enables an accurate reproduction of the characteristic shock motion. However, results of
DES and DDES computations showed a better agreement with experimental studies by
Lawson et al. [64] in terms of mean and root mean squared (RMS) pressure distribution
levels as well as the position of the shock. Further, their studies revealed that only using
a RANS approach results in lower separation levels, which leads to the assumption that
turbulent scales must be accurately resolved in order to model the three-dimensional
buffet instability [40].

Based on their studies it was shown that the buffet shock unsteadiness starts to form
at the wingtip, moving in spanwise direction towards the wing root with increasing inci-
dence. In addition, with increasing incidence the frequency developed more broadband,
while at the same time the dominant buffet frequency reduces [40]. This result high-
lights a fundamental difference between two- and three-dimensional buffet, since the
shock oscillations on airfoils are typically characterized by a periodic behavior repre-
senting a single, characteristic frequency. Examining the resulting time histories and
spectra of the aerodynamic coefficients, oscillations with low-frequency peaks between
150 and 300 Hz are indicated, which are consistent with experimental studies by Lawson
et al. [64] and Koike et al. [59]. With special focus on turbulence modeling, the work
by Sator and Timme [113] additionally revealed that both the k-w Shear-Stress Trans-
port (SST) model and the SA model produced results which are most consistent with
experimental studies.

In order to investigate distinct differences between the two-dimensional and three-
dimensional buffet instability mechanism, Iovnovich and Raveh [54| conducted a numer-
ical URANS simulation-based study using three different wing geometries. In particular,
an infinite-straight, an infinite-swept and a finite-swept wing with constant airfoil sec-
tion, were considered. Analysis of the infinite-straight wing model yielded shock motion
mainly in chordwise direction, with only small disturbances in spanwise direction [40].
Further, the shock motion amplitude and frequency was found to be consistent with
two-dimensional buffet simulations. However, with increasing sweep angle (A > 20°),
an increase in pressure disturbance propagation in spanwise direction from wing root to
wing tip, was observed. This spanwise pressure convection is clearly distinctable from
the two-dimensional buffet mechanism and is termed as a convection of so-called buffet
cells. The spanwise propagation of these buffet cells is linked to lower amplitude shock
motions compared to the two-dimensional buffet instability, however, the corresponding
oscillation frequencies were found to be higher and developed more broadband, with Sr

numbers ranging from 0.2 to 0.7 [20].
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Besides a physical description as provided by Iovnovich and Raveh [54], modal de-
composition of the three-dimensional buffet instability has been in focus in recent years.
A study by Timme and Thormann [128] focused on global mode stability analysis at
pre-buffet conditions, considering frequency sweeps at four angles of attack. By applying
a low-frequency torsional mode excitation, a distinct peak in the low-frequency range at
Sr = 0.11 was observed, which potentially indicates a destabilising aerodynamic mode
that was also observed in two-dimensional stability analysis of airfoils [16,17]. Besides
this two-dimensional frequency characteristic, peaks at higher frequency levels occurred,
with Sr ranging from 0.3 to 0.7. These additional peaks were assumed to reflect the
presence of further unstable aerodynamic modes. Another mode-based buffet model was
proposed by Crouch et al. [18], including a global stability analysis of swept and unswept
wings [30]. For the numerical simulations, an URANS approach was applied. Consis-
tent with findings of Timme and Thormann [128|, higher frequency characteristics were
observed, which was associated with the occurrence of a global flow instability.

Later studies by Ohmichi et al. [92] and Timme [127] investigated the buffet insta-
bility mechanism by means of Proper Orthogonal Decomposition (POD) and Dynamic
Mode Decomposition (DMD), concluding that buffet onset is connected with a single,

unstable oscillatory eigenmode.

2.3.2 Experimental Investigations

Besides an extensive number of computational investigations, wind tunnel experiments
have been conducted for the exploration of the three-dimensional buffet mechanism.
Early studies by Roos [105] and Benoit and Legrain [6] revealed chordwise and span-
wise pressure perturbations, with large-scale unsteadiness starting at the wing tip. In
addition, characteristic frequencies yielded values higher compared to two-dimensional
buffet, which correlates well with numerical studies. Further, Steimle et al. [124] ap-
plied fast-response pressure sensitive paint (PSP) measurements for buffet investigation.
The resulting time sequences of pressure distributions yielded severe shock motion at
the wing tip with a highly aperiodic character, which was also validated by numerical
studies by Brunet and Deck [10] and Sator and Timme [113,114].

Similar to numerical studies, mode decomposition methods have been applied for the
evaluation of experimental buffet data. Using flow field data obtained from experimental
investigations by Lawson et al. [64], Masini et al. [83] applied POD in order to identify
dominant buffet flow features. By combining the extracted modes for the reconstruction
of the corresponding pressure field, inboard propagating pressure perturbations were
found, moving from wing root to wing tip. This phenomenon can be described as the
movement of buffet cells proposed by Iovnovich and Raveh [54]. Consistent with the
findings of Roos [105] and Benoit and Legrain [6], a study by Dandois [20] revealed a
characteristic frequency spectra of the buffet instability, defined by Sr numbers between
0.2 and 0.6.
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Using the well-known NASA CRM geometry [131], Koike et al. [59] applied unsteady
pressure measurements for buffet investigation. The application of cross-correlation and
analysis of coherence provided further insights into the origin of spanwise pressure fluc-
tuations [40]. Considering several incidences, pressure perturbations originated near the
wing root and moved to the wing tip. A later study by Sugioka et al. [146| verified the
results of Koike et al. [59] through analysis of fast-response PSP buffet data originated
from experimental investigations of the NASA CRM.

2.4 Data-Driven Modeling of Unsteady Aerodynamics

Within this section, an introduction to data-driven modeling and a fundamental classifi-
cation of data-driven methods is given. Following the introduction, a literature overview
of data-driven methods applied for unsteady aerodynamic modeling is provided. The
section is concluded with a summary of studies focusing on data-driven transonic buffet

prediction.

2.4.1 General Introduction

Motivated by the emerging amount of available flow field data, increasing research inter-
est originated in the field of nonlinear system identification and data-driven modeling.
The purpose of data-driven modeling is the construction of a ROM, which enables a re-
duced representation of a given aerodynamic system. Due to the reduction in complexity,
the application of a ROM aims for reducing cost and time compared to extensive com-
putational and experimental studies. Therefore, a ROM can be conditioned by means
of either numerical and/or experimental flow field data. Commonly, flow field quantities
are represented by samples defined in time and space as well as integrated aerodynamic

forces and moments and flow field quantities [61].

Data-Driven Modeling

System-Identification Feature-Extraction

Proper Orthogonal
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Figure 2.2: Classification of data-driven modeling.
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In general, data-driven modeling methods can be differentiated into two types, de-
pending on the type of data applied for training. The first category is defined by system-
identification methods, whereas the second category is denoted by feature-extraction
methods, as depicted in Figure 2.2.

By applying system-identification methods, the underlying aerodynamic system can
be defined as a black-box or grey-box model, constructed by input-output data, with-
out any or partial physical insights of the system [61,88]. Considering an unsteady
aerodynamic system, the inputs are commonly represented by external or self-sustained
motions, whereas the outputs are defined by the corresponding integral quantities, such
as force and moment coefficients [61]. Based on a numerical and/or experimental data
set, the parameters of the system-identification model are determined. For performance
evaluation, the trained model is validated using an unknown dataset, including similar
system features as used for model training. Based on the structure of the underlying
model, system-identification approaches can be further categorized in parametric and
non-parametric models [34,61|. Parametric models are defined by a known mathemati-
cal structure, whereas the structure of non-parametric models needs to be defined prior
to the training process [61]. Representatives of parametric models are empirical aero-
dynamic models, whereas non-parametric models are represented by neural networks
(NN).

In contrast to system-identification methods, feature extraction approaches are ap-
plied for high-dimensional, nonlinear flow field quantities, aiming for the representation
of coherent structures and modes in the data [61]. These flow field quantities are defined
by velocity, pressure or density. Modal analysis tools for the extraction of flow modes
are defined by POD [7,75] and DMD [116]. Using POD, the characteristic structures
are filtered based on their energy content, whereas DMD makes a selection based on the
frequency content of the respective modes.

In the following, a literature overview of recently developed unsteady aerodynamic
ROM methods is given. Here, both system-identification and feature-extraction ap-

proaches are considered.

2.4.2 Application to Unsteady Aerodynamics

In order to accurately capture the unsteadiness of nonlinear flows, early studies proposed
several dynamically nonlinear system-identification models, including nonlinear auto-
regressive with exogenous input (NARX) [155], nonlinear autoregressive moving average
with exogenous input (NARMAX) [15,100], Kriging as well as Volterra series [99] mod-
els. In addition, radial basis function neural network (RBFNN) identification approaches
gained increasing attention for unsteady aerodynamic modeling. Won et al. [143] and
Yao and Liou [147] employed a RBFENN for the representation of motion-induced forces of
different wing configurations. Zhang et al. [155] applied a recurrent RBFNN to identify

unsteady aerodynamics of the NACA0012 airfoil at large amplitude motions in transonic
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flow. Ghoreyshi et al. [37] used a RBFNN for capturing airfoil motion in subsonic flows.
Further, Winter and Breitsamter [137] trained a RBFNN using an orthogonal least-
squares algorithm [13| and applied the trained model for the prediction of forces and
moments acting on an airfoil excited by a defined external motion. Kou and Zhang [60]
adapted a RBFNN in order to enable an incorporation of asymmetric wavelet kernels.

Besides RBFNN-based ROMs, several studies covered the application of multi-layer
perceptron (MLP) [46] and RNN for unsteady aerodynamic modeling. Studies by Faller
and Schreck [31,32] focused on the application of a recurrent MLP neural network for
the prediction of time series trends of aerodynamic coefficients. Similar to the work of
Faller and Schreck [31,32|, Marques and Anderson [82] applied a feedforward multi-layer
neural network for the prediction of unsteady forces on the NACA0012 airfoil. Fur-
ther, Mannarino and Mantegazza [80] used a recurrent MLP neural network in order to
approximate aerodynamic coefficients of the NACA64A010 airfoil. Suresh et al. [125]
modeled the lift coefficient of an airfoil using a RNN. Further, Mannarino and Man-
tegazza [81] adapted a RNN for capturing aeroelastic behavior of different airfoils. In
addition to standard RNN, LSTM neural networks have been applied to some extent for
unsteady aerodynamic modeling. Zhang et al. [70] developed a LSTM for the prediction
of aerodynamic and aeroelastic airfoil characteristics considering flow conditions with
varying Mach numbers.

Another field of nonlinear ROM methods, which has been used in the context of un-
steady aerodynamic modeling, originated from the fundamentals of fuzzy logic theory.
Winter and Breitsamter [138] proposed a neuro-fuzzy (NF) neural network for the pre-
diction of the flutter boundary of the AGARD 445.6 wing, considering multiple Mach
numbers. A study by Tatar et al. [77] used a NF-based ROM for capturing dynamic
stall conditions of a blade. Based on a series connection of a NF model and a MLP,
Winter and Breitsamter [141] proposed a novel method for an accurate representation
of unsteady aerodynamics. Further, the hybrid model yielded precise prediction results
of aerodynamic coefficients of the NLR7301 airfoil undergoing user-defined pitch and
plunge motions in transonic flow [140].

Summarizing the aforementioned ROM approaches, a variety of efficient nonlinear
system identification methods is available. However, if the prediction of spatio-temporal
characteristics such as unsteady pressure distributions is considered, the application of
the aforementioned nonlinear ROM approaches is not feasible. Spatio-temporal data is
commonly represented by a grid-like topology, which drastically increases the number of
output variables compared to time-series prediction tasks. As a solution for this remedy,
recent studies dealt with the application of feature extraction methods such as POD and
DMD. Park et al. [94] applied POD in combination with a neural network for wing design
optimization tasks. Walton et al. [111] used a hybrid POD-RBF model for modeling the
motion of the ONERA M6 wing in unsteady flows, whereas San et al. [91] combined POD
with an artificial neural network (ANN) for modeling unsteady flows. Xiao et al. [145]
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applied a similar hybrid model for modeling fluid-structure interaction. Further, Lind-
horst et al. [56] employed a hybrid model based on POD and a non-recurrent RBFNN
for the representation of aeroelastic behavior of the HIRENASD wing-fuselage configu-
ration. Winter and Breitsamter [139] combined POD with a NF model to reconstruct
wing pressure distributions on a civil aircraft configuration. Shifting the focus to DMD,
Wu et al. [144] applied DMD for transition prediction on an airfoil. Further, Dawson et
al. [24] used DMD for predicting force and pressure characteristics of a pitching airfoil
in unsteady flow.

In addition to the application of dimensionality reduction techniques, deep learn-
ing methods such as CNNs and AEs have been applied to some extent for capturing
spatio-temporal characteristics of unsteady, high-dimensional flow field data. A study
by Afshar et al. [1] proposed a CNN-based ROM for the prediction of the velocity and
pressure field around an airfoil, depending on the shape of the airfoil and correspond-
ing flow parameters. Sekar et al. [117] used a CNN for feature extraction of an airfoil
and further processed them as an input for a MLP neural network in order to predict
unsteady flow field characteristics.

In order to improve the prediction performance using deep learning architectures,
several studies proposed the application of hybrid deep learning models. In particular,
series connected ROMs based on CNN and RNN have been used for a more efficient
handling of high-dimensional flow field data. By using a CNN-based architecture for the
reduction of high-dimensional flow field data and the RNN for the evolution of the re-
duced flow field, a faster training procedure is achieved. A study by Li et al. [71]| applied
a convolutional long short-term memory (ConvLSTM) neural network for the prediction
of supersonic cascaded channel flow. Hasegawa et al. [45] proposed a series connected
ROM based on a convolutional autoencoder (CNN-AE) and a LSTM for the predic-
tion of unsteady-flow characteristics around bluff bodies with different shapes. Further,
Nakamura et al. [87] applied the proposed CNN-AE/LSTM model for the prediction of

turbulent channel flow.

Modeling of Unsteady Buffet Aerodynamics

Regarding the application of ROM methods for the prediction of buffet flows, only a small
amount of studies originated in the last years. Gao et al. [35] applied an ARX-ROM for
predicting the aerodynamics of the NACAO0012 airfoil and further used them for aeroe-
lastic analysis. Winter and Breitsamter applied the series connected NFM-MLP [141]
for the prediction of aerodynamic forces and moments on the NACAQ012 airfoil, un-
dergoing user-defined pitching motions beyond the critical buffet angle of attack [142].
Their study revealed that the hybrid ROM is able to capture buffet characteristics on
the airfoil, however, the representation of the lock-in effect seems to be a challenge for
the applied ROM. A study by Candon et al. [12] compared three deep learning architec-
tures, namely a RNN, a LSTM neural network and a bidirectional LSTM concerning the
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prediction of buffet loads. Based on their investigations the bidirectional LSTM yields
the best prediction capability regarding structural dynamic responses of a high-agility
aircraft during buffet critical maneuvers.

Based on the aforementioned studies it was shown that only a few amount of studies
dealt with ROM-based modeling of transonic buffet aerodynamics. So far, none of the
ROM approaches was shown to provide an efficient and accurate prediction of integral
quantities such as force and moment coefficient trends as well as unsteady pressure dis-
tributions. Therefore, in order to close this gap, this thesis focuses on the development
of a ROM-based framework for modeling two- and three-dimensional integral and local

buffet characteristics.






3 Deep Learning Approaches

In this chapter, the deep learning (DL) approaches applied for modeling buffet aerody-
namics are introduced and explained in detail. In the first section, a general introduction
and classification on the applied DL methods is given. Following the general introduc-
tion, an introduction to the architecture of RNNs is presented in Section 3.2. Based on
the structure of a RNN, the training process as well as a guideline for the definition of
suitable hyperparameters and activation functions is provided in Section 3.2.1 to Sec-
tion 3.2.3. Further, an overview of available optimization algorithms and normalization
techniques is presented in Section 3.2.4 and Section 3.2.5, respectively. Following the
basics of NN theory, a detailed introduction to LSTM neural networks, CNNs and AEs
is provided in Section 3.3 to Section 3.5. In Section 3.6, a description and classification
of data sets used for training and performance evaluation of NN is given. The chapter
is concluded with an overview of metrics applied for performance evaluation of a NN.
To some extent, the underlying theory has been explained in publications of the author,
see references [149, 150,152, 153|.

3.1 Introduction to Deep Learning

DL is a subfield of Machine Learning (ML), associated with algorithms, structures and
capabilities inspired by the human brain. These algorithm and structures are represented
by artificial neural networks (ANN), which are also known as NNs.

In general, the structure of a NN is defined as a certain number of processing units,
referred to as neurons, which are connected with each other [136]. Further, each NN
architecture is composed of three different types of layers, defined as input, hidden and
output layer [9,47], as depicted in Figure 3.1.

Input Hidden Output
Layer Layer Layer

Figure 3.1: Structure of a simple neural network including one hidden layer (h) and
connecting several inputs (x;) to several outputs (y).
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The input layer @ receives all elements in the input data and passes them to the hid-
den layer h. Depending on the network architecture and the underlying mathematical
working principle, the data is processed within the hidden layer. Considering a single
layer architecture, the data is passed to the output layer y, whereas in deep NN, the
data is passed to multiple consecutive hidden layers [136]. During the training of the
NN, the weights W defining the contribution of each element on the resulting output
are updated and optimized.

Based on the training procedure, NNs can be classified into supervised and unsu-
pervised learning methods. The main distinction between the two approaches is the
use of datasets with labeled inputs and outputs: While supervised methods use labeled
datasets for classification and regression problems, unsupervised methods are trained by
unlabeled datasets in order to cluster data or reduce its dimensionality.

In the present thesis, supervised as well as unsupervised DL algorithms are applied.

In Figure 3.2, an overview of the DL approaches employed in the present thesis is given.

Supervised Learning Unsupervised Learning
Recurrent Neural Long Short-Term Convolutional Neural Autoencoder (AE)
Network (RNN) Memory (LSTM) Network (CNN)

Backpropagation Through Time (BPTT) Backpropagation (BP)

Hyperparameter & Activation Functions

Figure 3.2: Overview and categorization of applied deep learning approaches.

Further, the applied DL methods can be categorized, depending on the structure of
the input data and their target task. RNNs and LSTM neural networks, which repre-
sent a special type of RNN, are mainly used for representing time-series data or data
that involves defined sequences [42]. In contrast, CNNs [66] are commonly applied for
processing and predicting data arranged in a grid-like topology, such as images. AE [65]
architectures as the main representative of unsupervised learning in this thesis are used

for filtering important features of various data structures.
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3.2 Recurrent Neural Network (RNN)

A RNN is a special type of an ANN, characterized by internal self-connections, which
allow for the representation of time series data [8,115]. In contrast to ordinary feed
forward neural networks (FFNN), which are only applicable for the representation of
independent data points, RNNs have the concept of memory that helps them store the
states or information of previous inputs to generate the next output of a sequence. At
each timestep, previous inputs, the activation of the neurons, as well as past compu-
tations define the current output, allowing the network to develop a memory based on
several previous timesteps [8].

Similar to an ANN architecture, a common RNN architecture is composed of an

input, hidden and output layer, as depicted in Figure 3.3.

W,

Figure 3.3: Architecture of a RNN including an input, hidden and output layer.

Here, x represents the input vector, y the output vector and h denotes the hidden
state vector. W, is defined as the weight matrix connecting the inputs to the hidden
layer, while W}, is the weight matrix connecting the hidden layer to the output layer.
W), represents the weight matrix connecting the hidden state from the previous timestep
to the hidden state of the current timestep.

The input and output layer are defined by feedforward connections, while the hidden
layer is characterized by a recurrent connection [8]. In Figure 3.4, an unfolded RNN ar-
chitecture, representing four consecutive timesteps (¢t — 2, ..., t + 1), is visualized. Based
on the description proposed by Bianchi et al. [8], the following processing steps apply
for a RNN: At each timestep ¢, an input «; is processed by the input layer, summed
with a bias vector b, and multiplied with the input weight matrix W,;,. The internal
state of the network from the previous timestep h;_; is summed with a bias b, and is

multiplied with the corresponding weight matrix of the recurrent connections Wj,.
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Within the hidden layer, the input of the current timestep and the previous network
state are combined and processed by the neurons by applying a linear activation [§|.
For the computation of the output y;, the current hidden state h; is multiplied with the

matrix including the output weights W, and summed up with a bias vector b,,.
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Figure 3.4: Architecture of the unfolded RNN representing three consecutive time steps.
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The equations which define the update of the hidden state and the output processing
are summarized in the following, with a defining an activation function which is chosen
depending on the target task of the RNN.

he = a(Wp(2; + by) + Wi(he1 + by)) (3.1)

Y = a(Why(ht + by)) (3.2)

3.2.1 Training of Neural Networks

The training of a NN is performed by a modification of its parameters, in particular
the weights W and biases b, by applying a gradient descent (GD) [103] optimization
algorithm [8]. Therefore, a loss function L, which quantifies the accuracy of the net-
work, is minimized. The loss function L is typically composed of an error function F,
which evaluates the performance of the NN based on the entire training set, as well as

an additional regularization term R)y:

L = E(y.g,W) + R\(W) (3.3)

More specifically, the error function E evaluates the difference between the output y

that the network should reproduce and the predicted value of the network 4.
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The regularization term R) depends on the hyperparameter A, which controls the
contribution of the regularization on the total loss the NN produces [8]. In Section
3.2.2, different regularization methods are introduced and discussed in more detail.

During the training of a NN, the GD optimization algorithm performs two consecu-
tive steps, until a desired convergence is reached [8|. In the first step, a set of input data
@ is processed through the network (forward pass), configured with weights W and the

error function at each timestep t is evaluated.

T

E(yg,W) =Y E(y.,9:;, W) (3.4)

t=1
In Equation 3.4, T refers to the total number of considered timesteps. In the second
step, at each timestep t, the weights are updated based on the error the current weights

produce due to deviation from the target output y.

Wi =W, + AW (3.5)
Therefore, the partial derivative of the error function with respect to all weights 83—5,

is evaluated. By back-propagating [108] the gradient through the NN (backward pass),
the error is minimized by finding the updated values of the weights AW
oF
AW =n(——— 3.6
=) (36)
In Equation 3.6, n is a hyperparameter defined as the learning rate.
By defining and inserting an arbitrary error function, Equation 3.6 can be re-written
as follows:
dy

AW = n(—5) (3.7)

with ;—Vy‘, denoting the partial derivative of the output with respect to each weight.

This partial derivative defines the gradient of the weight, which is commonly referred to

as o0:
Jy
0= —=— 3.8
oW (38)
The elements of the gradient d are computed by applying the chain rule:
0 ", Jy Oh;
§=Y Y (3.9)

OW ~ £ Oh,OW

However, when training a RNN or LSTM, the principle of back-propagation (BP) [108]
can be applied, but with a small conceptual change. The process is similar to the one
used for a standard NN, with the exception that instead of a single timestep several pre-
vious timesteps must be considered. Therefore, the training procedure applied for RNN
and LSTM is commonly referred to as back-propagation through time (BPTT) [134].
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Considering the unfolded structure of the RNN as shown in Figure 3.4, three weight
matrices (W, Wy, Wp,) must be adjusted when training a RNN. The partial deriva-
tive of the error function with respect to Wp, can be computed by a simple one step
chain rule. For an arbitrary timestep ¢, the gradient calculation for the update of Wy,

is defined as follows:

8Et _3Et 8yt
8Why ayt GWhy

In contrast, for the calculation of the partial derivative of the error function with

(3.10)

respect to W, all hidden states contributing to the output need to be considered.
Therefore, the partial derivatives calculations are accumulated. Mathematically, the

adjustment of W), using BPTT can be written as follows:

t

ok, Z OE; 0y, Oh;
i=1

oW, Dy, Oh; OW,, (3.11)

Equal to the adjustment of W),, the partial derivatives calculation associated to the

update of W, are defined as follows:

OE, <~ 9E; dy, Oh,
anh B i=1 ayt ahz anh

(3.12)

3.2.2 Error Function and Regularization

As already stated in Section 3.2.1, the task of training a NN is to minimize a loss func-
tion, which quantifies the prediction performance of a NN. The error function E, which
evaluates the difference between a target output y and the output as predicted by the
NN g, can be defined in different ways. The most commonly applied error functions are
the mean squared error (MSE) and the root mean square error (RMSE). The MSE is

defined as follows:

MSE = —> (4 —y)’ (3.13)

with Ng representing the number of sample points in the available numerical or ex-
perimental data set. Similar to the MSE, the RMSE is defined as follows:

Ng

1
RMSE = FS Z@z —y;)? (3.14)

i=1
For all investigations as presented in this thesis, the MSE is applied as the error

function.
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The regularization term R) in Equation 3.3 introduces a bias in order to improve the
prediction performance of the NN by a reduction of overfitting [8]. In the following, the

commonly applied regularization methods are introduced and briefly described:

e L,: By applying L, regularization, the sums of the absolute values of all weights
are added and multiplied with the hyperparameter A\ [89]. Therefore, the reg-
ularization term in Equation (3.3) is defined as Ry(W) = A(Jwy,...,wn|). Ly
regularization enforces higher sparsity of the network parameters, ensuring that
weights which are rarely used are driven to zero [8]. Therefore, L; reduces the set

of weights, which enables a better performance for feature selection.

e L,: Compared to L; regularization, L, regularization adds the sum of the square
of the weights, resulting in a regularization term of Ry(W) = A;(w?,...,w?) [89].
Lo maintains all weights on a homogeneously small level, which makes the regu-
larization more stable for network training. Therefore, the use of Ly regularization
is preferred. However, a simultaneous application of L; and Ly regularization is
possible, with different coefficients selected for each network layer. In particular,
the input and output weights should be treated differently, if both regularization
methods are applied [5].

e Dropout [123]: During network training, the contribution of the weights on the
training process changes. This results in parts of the network which have a higher
influence on the training process than other parts. In order to circumvent this
issue, a probability for the activation of a selected neuron can be implemented in
the forward pass. More specifically, a probability factor pg,, which is defined by
values between [0,1], is applied to the output of the neurons in the hidden layer.
After the training process is completed, the activations are scaled by the defined

factor in order to regulate the output [8].

3.2.3 Neural Network Architecture

Besides the definition of an error function and a regularization term, the architecture
of the NN needs to be defined. Therefore, different hyperparameters as well as layer

activation functions are introduced and discussed in this subsection.

3.2.3.1 Hyperparameters

In the following, the hyperparameters which are necessary for applying deep learning
models are divided into two groups. The first group is defined by optimizer hyperpa-
rameters, representing variables which are more related to the training and optimization
process rather than the model itself. This category is represented by the learning rate
7, the size of the batches as well as the number of training iterations, also referred to as

epochs.



3.2. RECURRENT NEURAL NETWORK (RNN) 29

The second group is defined as model hyperparameters, which are applied for defin-
ing the structure of the NN. Considering RNN and LSTM neural networks, this group
includes the number of hidden layers as well as the number of hidden units, which are
also referred to as neurons, in each layer. In the following, a brief introduction of both
optimizer and model hyperparameters is given, including a basic guideline how to define

these parameters.

Optimizer Hyperparameters

e Initial learning rate 7: The correct definition of the learning rate is impor-
tant since it is the parameter with the highest impact on the networks efficiency.
Typically, values between 0.001 and 10~ are chosen for training, depending on
the complexity of the model [5]. If the learning rate is chosen too large, gradient
descent can inadvertently increase rather than decrease the training error. If the
learning rate is too small, the training speed is not directly affected, however, it
may become permanently stuck in a local optimum associated with a high training

error.

In order to improve the convergence during training without increasing the train-
ing time, the learning rate can be adapted during the training process. If training
and validation losses do not change over a defined number of epochs, the learning
rate can be reduced, which is commonly referred to as learning rate decay or step
decay. Therefore, the learning rate can either be reduced linearly or exponentially

after a defined number of iterations.

e Batch size: The size of the batches is typically chosen as a value between 23
and 28, representing powers of two. In general, small values result in the computa-
tion of matrix-vector products, whereas larger values enable a faster matrix-matrix
multiplication [5]. Therefore, increasing the batch size results in faster computa-
tion but requires more input data, since less updates are performed within a single
epoch. Further, the use of larger batches provide in general a more accurate ap-
proximation of the gradient [42]. In contrast, small batches are characterized by
a regularization effect [135] due to the noise they add to the training process. If
the batch size is chosen very small, an additional reduction of the learning rate
might be necessary in order to maintain stability due to high variance in the gra-
dient estimation [42]. Further, computational time is increased due to the reduced

learning rate and the increasing number of iterations.

e Number of epochs: This hyperparameter can be optimized using the principle
of early stopping. By monitoring the development of the validation error during
the training process, the training can be finalized if the validation loss does not

improve for a user-defined number of epochs.
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Model Hyperparameters

e Number of neurons: The number of neurons in a multi-layer or stacked NN is
the main measure of the NNs learning capacity. Depending on the complexity of
the prediction problem, the number of processing units has to be chosen. Defining
a size which is too large for the application case typically does not decrease the
generalization performance [5], however, computational time is increased. In gen-
eral, a different number of neurons can be selected for each hidden layer, however,
a study by Larochelle et al. [63] has shown that an equal number performs better
than individually increasing and decreasing the number of the hidden units in the

layers.

e Number of hidden layers: Similar to the definition of the number of hidden
units, the selection of the hidden layers strongly depends on the complexity of the
system the network should reproduce. Therefore, NNs with a deeper architecture
commonly result in a better generalization for a variety of tasks [42]. However, in
order to find the optimal number of layers, systematic experimentation is required

in order identify how many layers are needed for the specified dataset.

3.2.3.2 Activation Functions

The activation function in a NN defines how the weighted inputs are transformed into
an output from each node in a layer of the network. More specifically, the activation
function is applied to the data which has been internally processed by each neuron of the
network. In general, the same activation functions are applied for all neurons included
in either the hidden or output layer.

The choice of the activation function applied in the hidden layer has a high impact
on the training process, whereas the choice of the activation function in the output layer
defines the type of predictions the trained model can make. Therefore, it is common
practice to use different activations functions in different parts of the model. However,
as already stated above, the hidden layers typically use the same activation function,
which differs from the activation function applied in the output layer.

Since NNs are trained by means of BP, which requires the computation of derivatives,
the chosen activation function must be differentiable [42]. Typically, a nonlinear, differ-
entiable activation function is applied in the hidden layers, since this enables the NN
to learn more complex functions compared to a model trained with a linear activation
function. In the following, a short overview of activation functions applied in the present

thesis, is given.

e Sigmoid (o): The nonlinear sigmoid activation function, also sometimes referred
to as logistic function, is often applied in NN architectures. The input values are

rescaled to values between [0,1].
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Therefore, large values are set to one, whereas very small values are defined as

zero. The mathematical expression of the sigmoid is defined as follows:

B 1
C l4e®

o()

(3.15)

In addition, a visualization of the sigmoid function is provided in Figure 3.5.

> U

Figure 3.5: Visualization of the sigmoid function.

e Hyperbolic tangent (tanh): Similar to the sigmoid activation function, tanh
rescales the given values between [-1,1]. The larger the input, the closer the out-

put will be to 1, whereas small values are defined close to -1.
et —e™®

tanh(z) = pr—
et +e "

(3.16)

The hyperbolic tangent is visualized in Figure 3.6.

Figure 3.6: Visualization of the hyperbolic tangent function.

By applying both the sigmoid and hyperbolic tangent activation function in RNN ar-
chitectures, an issue known as vanishing gradient [95] is likely to occur, which results in
an insufficient training process after a certain number of training iterations. Since both
activation functions limit the given input values, they are susceptible to saturate in the
early stages of the training process [42]. Further, they are only sensitive to changes in
certain areas of their input. Therefore, due to the limited sensitivity and the saturation,
the weights are not updated in an efficient way anymore, which results in a performance
loss of the model.
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e Rectified Linear Unit (ReLU): The rectified linear activation function, also re-

ferred to as ReLLU, is the most common activation function used in NN, especially
in CNNs. It is defined as a piecewise linear function, since it returns the same
value, if the input value x is positive. If the input value x is negative, the return

value is zero [42].

zifxz >0
relu(z) = (3.17)
0Oifz <0

A visualization of the ReLLU function is provided in Figure 3.7.

Y
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Figure 3.7: Visualization of the rectified linear unit (ReLU) function.

Compared to the sigmoid and tanh activation function, the ReLLU function is less
susceptible to the vanishing gradient problem [42]. Since the derivative is one if
the input values is positive, the application of the ReLU can improve the train-
ing significantly. Further, ReLU offers the advantage of computational simplicity,

since it does not require the use of an exponential calculation.

However, a drawback of ReLU is that if the activation is zero, a gradient-based
optimization is not applicable anymore [42]. Therefore, variations of this activa-
tion function such as leaky ReLLU and parametric ReLLU originated, which enable
the use of gradient-based methods. Further, they speed up the learning process

and activate each neuron differently.

3.2.4 Optimization Techniques

In general, gradient based optimization algorithms applied for NNs can be divided in

two groups. The first group, which uses the entire available training data set, is referred

to as batch or deterministic gradient method, since it processes all available training

samples simultaneously in one large batch. In contrast, the second group of optimiza-

tion techniques only processes a small subset of the available data at a time. Therefore,

they are referred to as stochastic or online optimization methods. In the framework of

this thesis, the focus will be on stochastic optimization algorithms. Therefore, the most

commonly used ones are introduced and discussed in detail in the following:
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e Stochastic Gradient Descent (SGD): One of the most applied gradient-update
method is the SGD. By applying SGD, the available data set is split into small
subsets of data, also referred to as mini batches, rather than evaluating the loss
function over the entire training data set [8]. Each batch is individually forwarded
through the network, the error and its gradient is calculated and back-propagated
to update the corresponding weights. Based on the updated weights, the consecu-
tive batch is run through the NN. Following the nomenclature of Bianchi et al. [§],
the update equation for using SGD is defined as follows:

WtJrl = Wt — T]VLt(W/t) (318>

with the term VL;(W;) denoting the gradient of the loss function with regards
to all weights. However, even if SGD usually represents a safe and efficient opti-
mization technique, its rate of convergence is slow and the gradient computation

is likely to get stuck in a local optimum [22,42].

e Momentum: The Momentum method, as proposed by Polyak [96], is defined as
a first-order optimization method which introduces a hyperparameter S for the
update of the weight. More specifically, the weights W are updated based on the
sum of the current gradient V L,(W}) and the previous weight update W;_;, which
is additionally scaled by 5 [8]:

Wt,update = ﬂv‘/t—l + nVLt<Wt)

(3.19)
Wt+1 = Wt - W/t,update

Therefore, updates associated to previous timesteps are accounted for in the cur-
rent weight update process. However, weight updates from timesteps that hap-
pened a longer time ago are less weighted than the ones happened recently. The

values of 3 are defined between [0,1], however, a common choice is to set 5 =0.9 [42].

e Adaptive Gradient (Adagrad): In comparison to the previous discussed ap-
proaches, the Adagrad [27] approach adaptively scales the learning rate for each
parameter. It performs smaller updates on parameters which are frequently up-
dated and larger updates for parameters associated to less frequently updates [42].
Given the updated weights from previous iterations VL,W; (j € {0,1,....,t }), each

parameter of the weight matrix is updated as follows [8]:

VL (W)

Wii=W,—n ; 5
Voo VL (W) +

(3.20)

In Equation 3.20 € defines a hyperparameter which is introduced in order to avoid

a division by zero.
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However, the main weakness of Adagrad is the accumulation of the squared gra-
dients over time, causing the learning rate to shrink and becoming infinitesimal
small [42].

Root Mean Square Propagation (RMSprop): In order to solve the issue
of the diminishing learning rate encountered when using Adagrad optimization,
Tieleman and Hinton [126] introduced a method called RMSprop. RMSprop uses
an exponential decaying average of the square gradients, which leads to decreasing

shrinkage of the learning rate [8]:

5 v+ (1—=08)VL (W,)*  if VL, (W;) >0

UV =
0 v otherwise (3.21)

Wi = W, —nu,

According to Equation 3.21, the learning rate is reduced by the factor 1 —§ if there
are large variations in the gradient updates [8,126]. Otherwise, the learning rate

is increased by the decay rate 9§, which is commonly defined as 6 = 0.01.

Adaptive Moment Estimation (Adam): Another approach called Adam,
which was proposed by Kingma and Ba [57|, combines the principles of the Ada-
grad and Momentum optimizer. In addition to applying an exponentially decaying
average of the square gradients, Adam also keeps an exponentially decaying av-
erage of the gradients [8,57]. The update equation using Adam are defined as
follows [§]:

n -
Wi =W, — m 3.22
t+1 t \/m t ( )

To estimate the moments, Adam utilizes exponentially moving averages, computed

based on the gradient of the current mini-batch [8]:

my = Bimir + (1 — 61V L (W}”) (3.23)

vy = Bovi1 + (1 — 32) VL, (“/t(i)>2 (3.24)

In Equation 3.23 and 3.24 (31, B2 and € are hyperparameters with values g; = 0.9,
Ba = 0.999 and ¢ = 1078, Due to the initialization of m and v as zero vectors,
they diverge to zero during the first training epochs [8]. In order to avoid this

issue, both terms are corrected as 7 and o [§]:

my

15

A~

my;

(3.25)
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N Uy
Vs =
1— 5

(3.26)

The methods discussed above only considered first-order derivatives of the loss func-
tion, which could lead to reduced optimization and a slow training progress. However,
second-order methods include the computation of the Hessian matrix, which increases
computational time even for small and medium size networks [8,42|. Therefore, they are

not considered and discussed in detail within the frame of the present thesis.

3.2.5 Normalization Techniques

During the training of NNs, the weighted input distribution into each layer changes
during the training process [52]. The inputs to each layer are highly affected by the
output parameters of the previous layers, resulting in an increasing sensitivity towards
the network parameters. This effect further intensifies with an increasing depth of the
network. Therefore, an adaption of the learning rate as well as a more conservative
parameter initialization is required, which increases training time and reduces the per-
formance quality of NN, in particular those representing large nonlinearities [52|. This
phenomenon is also referred to as internal covariate shift [118]. In order to solve this
issue, a common approach is the normalization of the layer inputs during the training

process. The two most commonly applied methods are briefly described in the following:

e Batch Normalization (BN): BN was proposed by loffe and Szegedy [52] and
defines a normalization technique applied to the input of each layer, in particular
to each training batch. More specifically, BN standardizes each summed input
x; of the current batch B using its mean up (see Equation 3.27) and standard

deviation op (see Equation 3.28) across the available training data [52].

1 m
m =1
o = l Xm:(ilil — /LB)Q (328)
m

=1

In Equation 3.27 and 3.28, m is defined as the number of values included in the
batch B. Following the computation of the mean and variance, the input is nor-

malized by means of the batch statistics [52]:

. L; — 4B

(3.29)
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In Equation 3.29, ¢ is a constant added to the variance in order to ensure numer-
ical stability [52]. In the last step, the normalized input & is transformed into an

output y; [52]:

y; =& + 8 = BN, s(x:) (3.30)

In order to adapt the mean and standard values to each layer, additional learnable

parameters (7, ) are introduced in Equation 3.30.

By applying BN, small changes to the parameters which result in large changes in
the activations in gradients, are prevented. Therefore, BN allows for the usage of
higher learning rates, enabling a faster and more regularized training process [52].
In addition, a larger decay rate for the adaption of the learning rate can be ap-
plied. Further, the stability during the training makes the NN less sensitive to the
selection of the weight initialization method. If BN is applied, the use of dropout
for regularization is not recommended, since the random dropping may cause noisy
batch statistics [52].

However, although BN enables a more robust training process, some disadvan-
tages are given. Since BN calculates the statistics of batches at every training
epoch, large batch sizes are required for an effective approximation of the batch
statistics [3|. Therefore, the application of BN is limited to models which do not
include very small batches. Another drawback of BN is the limited use in RNN
and LSTM. During training of RNN, the inputs fed to the recurrent neurons of
the hidden layer often vary depending on the selected sequence length, which re-
quires different statistics for different time-steps [3]. Therefore, v and ( need to be
adapted for each time-step, which instead adds complexity rather than simplicity

to the network training process.

Layer Normalization (LN): Due to the above mentioned disadvantages of BN,
Ba et al. [3] proposed a normalization technique called LN. Compared to BN, LN
computes the statistics of the summed inputs to the neurons within a hidden layer
instead of the batch statistics. Therefore, the computation of the mean pyy and
the standard deviation oy over all hidden units h in a single layer is defined as

follows:

h
1 .
=1
1 h
OLN — E Z(.’i)@ — ,uLN)2 (332)
=1
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In contrast to the computation of ugy and opgy, all hidden units in a single layer
share the same statistics py and oy [3]. However, different training cases are as-
sociated with different statistics. Therefore, the application of LN does not impose
a constraint on the size of the batches [3|. Further, since the normalization terms
only depend on the layer inputs of the current time-step, LN is easier applicable
to RNN and LSTM.

3.3 Long Short-Term Memory (LSTM)

The LSTM neural network architecture has been proposed by Hochreiter and Schmid-
huber [50] and represents a special type of a RNN, which has proven to be powerful
for time-series prediction tasks. While a standard RNN only provides the capability
of a short-term memory, which allows the use of previous information to some extend,
the LSTM architecture additionally enables the prediction of long-term dependencies in
time-series data. Considering the application for unsteady aerodynamic modeling, the
representation of time-delayed effects can also be captured by the LSTM. Further, the
application of the LSTM solves for the problem known as vanishing gradient [95], where
the training of the network saturates in the early stages of the training procedure.

The hidden layer of a LSTM neural network consist of recurrently connected blocks,
which are referred to as memory blocks or cells. Each cell is defined by a characteristic
gate structure, which processes the incoming information in several steps. Each cell of
the LSTM hidden layer is defined by three gates. These three gates, as shown in Figure
3.8, are defined as the forget gate f, the input gate ¢ and the output gate o.

\ G Cii1

ht ht+1

2NN _

NN

LTt-1

Figure 3.8: Architecture of a LSTM memory cell representing the characteristic gate
structure.



38 3. DEEP LEARNING APPROACHES

The forget gate f collects the input of the current time step @x; as well as the vector

representing the output from the previous time step h;_i:

fi = a(Wyz, + Wih; | + by) (3.33)

The output from the previous time step h;_; is also referred to as the hidden state
of the LSTM cell. Both inputs of the forget gate are multiplied with a set of weights
W} and a bias by is added. By means of an activation function a, which is typically im-
plemented as the sigmoid o function (see Section 3.2.3.2), the forget gate decides which
information is discarded from the cell.

Equal to the forget gate f, the current time step x; as well as the hidden state
from the previous time step h;_; are combined and processed in the input gate 2. The

mathematical formulation can be written as follows:

’I:t = a(VVia:t + “/iht—l + bz) (334)

with W and b; defining the weight matrix and the bias of the input gate, respectively.
Further, an activation a is applied, which is also commonly defined by a ¢ activation.

Based on the selected inputs, a new cell state vector ¢; is created:

ét = (I(tht + Whhtfl + bh) (335)

The activation function a in Equation 3.35 is commonly implemented as a hyperbolic
tangent (tanh) activation. W), and by, defining the weight matrix and the bias of the
hidden state, respectively.

Based on the new cell state ¢;, the current cell state ¢;, which defines the long-term
memory of the LSTM neural network, is updated with new information. Therefore, the
cell state from the previous time step c;_; is multiplied with the forget gate vector f,

and the current cell state is updated with the input gate vector 2;:

¢ = fici 1 + 46 (3.36)

After passing the input gate, the data of the current input ax;, the previous hid-
den state h;_; as well as the current cell state ¢; are processed by a sigmoid and tanh

activation:

Oy = O'(Womt + Woht—l + bo)

(3.37)
ht = Oy - tanh(ct)

with W, and b, denote the weight matrix and the bias of the output gate, respectively.

The new cell state ¢; denotes the previous cell state ¢;_; for the consecutive LSTM
cell, whereas the updated hidden state h; becomes the previous hidden state h;_;. These
gate processing steps are repeated until all sequences of the input data are processed by
all including LSTM cells.
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3.4 Convolutional Neural Network (CNN)

A CNN [66] is a type of NN mainly developed for processing data represented by a grid-
like topology [42]. The underlying mathematical principle is defined by a convolution
operation. Although CNNs are applicable to time-series data, they are mainly used for
image data, which is characterized as a 2D or 3D grid of pixels.

In general, in addition to the input and output layer, a CNN includes three layers: a
convolutional layer, a pooling layer and a fully-connected (FC) layer, as shown in Fig-
ure 3.9. Each CNN architecture includes a convolutional layer as the layer following the
input layer and a FC layer as the last layer before the output layer. Between these two
layers, additional convolution and pooling layers can be added in order to increase the
complexity of the model. In the earlier layers, basic features such as colors and edges
are identified, while the subsequent layers focus on extracting larger parts of the input
data [42]. However, the convolutional layer represents the main building block of each
CNN architecture.

Input layer Convolutional layer Pooling layer ~ Fully connected Output layer
layer

Figure 3.9: Architecture of a basic convolutional neural network (CNN).

Assuming an input data set defined by 2D arrays, the elements are stored in a grid-
like layout and the position of each element can be defined by an index (i,7) [106].
Following the nomenclature of Goodfellow et al. [42] and Rosov and Breitsamter [106],

the corresponding convolution operation can be written as follows:

Hy—1Wj,—1

Yij= > Y TivmjenWinn + by (3.38)

m=0 n=0

with «; ; denoting the input at index (7,j) of the two-dimensional input &. W, , is
defined as the weights at point (m,n) of the corresponding filter, which selects impor-
tant features of the input data. Commonly, the filter is also referred to as kernel and
is defined by a size of H;, x Wj. Depending on the size of the input data, the height
(Hy) and width (W}) of the kernel are defined by a matrix of size 2 x 2 or 3 x 3. The
kernel slides stepwise over the input data, performing element-wise multiplications with
each entry of the input data. At each step, the results are summed up and stored as

a new output. Therefore, the original input data is converted from a 2D matrix into
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another, reduced 2D matrix of features, which essentially represent the weighted sums
of the input feature. The output of the 2D convolution operation is defined by y; ;.
Besides a 2D data set, the input data can be defined by a 3D matrix [42]. Therefore,
the 2D input representing both spatial dimensions is extend with a third dimension,
which is referred to as the channel dimension C [106]. The convolution operation as-

suming a three-dimensional input is defined as follows [106]:

Cin—1Hg—1W—1

Yijo Z Z Z Litm,j+n,0 m n,l,0 + bk (339)

m=0 n=0
The size of the input @ is defined by the number of input channels, the height and
the width (Cy, x H, x W,), whereas the size of the corresponding kernel is defined
s (Ci x Coyy X Hy, x Wy). Cj, represents the number of input channels, whereas
C,.: denotes the number of outputs arranged along the channel dimension in the output
y [106]. Equation 3.39 can be further extended by a parameter referred to as stride s,

which defines the number of elements the filter selects at each step:

Cin—1Hp—1W,—1

Yijo= Z Z Z wlzxs+m,]><5+nWo,l,m,n +bk (34())

m=0 n=0

By applying the striding technique, the output size can be decreased compared to
the input size. The idea of the stride is to skip some of the slide locations of the kernel.
By using a stride of one, slides are picked an entry apart, so basically every single slide,
acting as a standard convolutional operation (see Equation 3.39). If the stride is chosen
as two, slides two entries apart are picked, reducing the size of the input data by a factor
of two and so on. Therefore, the higher the size of the stride is chosen, the smaller the

corresponding output.

Max pooling
28 | 43 |

28 4 35 8 / 24 | 64

151 1 | 31 Average pooling
19 | 24 | 64| 11 \ 10 24|
15 | 28

Figure 3.10: Schematic of max and average pooling.

Similar to the convolutional layer, the application of a pooling layer aims at reducing
the spatial size of the input data. The main reason for using a pooling operation is

the reduction of computational time and power for processing the data. Further, it is
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useful for the extraction of data features which are invariant against translation and
rotation [42]. In general, two types of pooling are applicable: Max pooling and average
pooling. Max pooling returns the maximum value of the image part covered by the
kernel, whereas average pooling return the average of all elements. In Figure 3.10, the
schematic of max and average pooling is visualized.

For some applications, the size of the filter does not fit the size of the input data.
Therefore, a technique referred to as zero padding, is applicable. Considering a standard
convolution, the data points on the edge of the input matrix get trimmed off, if the filter
does not have the correct size. Since these trimmed data points are at the edges of the
matrix, the output size reduces compared to the input size, which is not beneficial in
some cases. Padding solves this issue by adding extra pixels (usually of value 0, which
often refers to as zero-padding) at the edges of the input matrix. By doing so, the orig-
inal edge pixels are allowed to be at the center of the kernel, producing an output the
same size as the input.

As the last processing step in a CNN, a FC layer is applied in order to connect the
data to the output layer. This layer performs the classification part based on the features
extracted from previous layers and their corresponding filters. However, in comparison
to the convolutional and pooling layer, which mostly use ReLU activation functions, FC

layers apply tanh or sigmoid activation functions [42].

3.5 Autoencoder (AE)

An AE [49,65] is a type of NN generally used for data denoising, dimensionality reduc-
tion or feature learning [42]. AEs are trained in order to reconstruct a given input to
its output in an unsupervised way, using the principle of BP. The architecture of an AE
is defined by three parts, the encoder, decoder and a latent representation, also referred

to as bottleneck. In Figure 3.11, the basic architecture of an AE is visualized.

Latent
Representation Reconstructed
Original Input Output
— Encoder —_ — Decoder —_
x Y
h

Figure 3.11: Architecture of an autoencoder (AE).
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The encoder compresses the input & into a low dimensional representation, also re-
ferred to as latent representation h (h = f(x)). The latent representation contains the
important, filtered content of the input data. After passing the encoder, the decoder
reconstructs an output y (y = f(h)) from the most important input features extracted
by the encoder.

In general, AEs can be differentiated into AEs composed of either convolutional or
FC layers. AEs with FC layers are represented by single or multilayer AEs, including one
or more hidden layers, respectively. However, within the frame of this thesis, the focus
will be on convolutional AE (CNN-AE). Similar to a classical CNN architecture, both
the encoder and decoder of a CNN-AE are composed of one or several convolutional and
pooling layers as well as selected activation functions.

Besides a classification of AEs based on their layer structure, AEs can be further
differentiated by the way the data is encoded and decoded. The most popular repre-
sentatives are defined by sparse, denoising and variational AEs [42]|. In the following, a
more detailed description of variational AEs (VAR-AE) is given.

A VAR-AE is defined as an AE with a regularised training procedure, aiming to avoid
overfitting and improving the latent representation of the input data [42]. In compari-
son to a standard CNN-AE, the input is encoded as a distribution over the latent space,
rather than a single data point. In practice, a normal distribution is selected, defining
the mean p and variance o of the latent state distribution as the output. After the
encoding process, a data point from the latent representation is randomly sampled from
the input distribution and fed into the decoder. In Figure 3.12, the working principle of
a VAR-AE is depicted.

Latent Sample
Distribution from Reconstructed

Original Input Distribution Output

/ EI \O — Decoder —
N ]—
h

— Encoder

Figure 3.12: Architecture of a variational autoencoder (VAR-AE).

Since the data from the defined distribution is randomly selected, a small modification
in the training process is required, which is commonly referred to as reparameterization.
By applying reparameterization, a random value ¢ sampled from a unit Gaussian is

shifted by the mean and scaled by the variance of the latent distribution:

h=p+o-¢ (3.41)

Applying this reparameterization step enables a random selection, which is indepen-

dent of the parameter optimization during training.
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3.6 Data Sets and Preprocessing

In order to accurately train a NN and verify its performance quality, different data sets
including different system features are required. In the following, three different data
sets are introduced and characterized, which are typically applied for training, validation
and testing of NNs.

e Training Data: In order to train a NN, an initial set of data, referred to as
training data, is required. This data set, which determines the parameters of the
applied model, acts as a baseline for further application and utilization of a NN.
Based on the training data, the algorithm recognizes patterns in the dataset, which
should cover all important system features. Therefore, the quality as well as the
quantity of the training data set determine the accuracy and the performance of
the model. The amount of training data which is needed to build an accurate ML
model depends on the complexity of both the system as well as the structure of
the algorithm itself. One possible way to test how much training data is required
is building the model and evaluate the performance based on the available data. If
the model is applied for the prediction of the output of the training case, the model
should be able to reproduce the desired information. Otherwise, the training data
set includes too few data for an adequately description of the underlying system.
Further, also the model structure including the characteristic parameters could be

inefficient.

e Validation Data: Besides the training data set, an additional data set, which is
considerably smaller than the training data set, is introduced to the NN during
the training process. This data set is commonly referred to as validation data set

and is used to evaluate the performance of the model during the training process.

On the one hand, the validation data is used to avoid overfitting. If the model is
overfitted, it includes the system characteristics and the noise in the training data
to an extent that the performance of the model on an unknown data set is nega-
tively impacted. On the other hand, the validation data set is applied to monitor
the loss of the error function during the training. If the progress of the training is
only monitored by means of the error function evaluated on the training data, the
error commonly decreases with increasing number of training iterations [42, 136].
In contrast, the error computed based on the validation data set does not neces-
sarily show a comparable convergence improvement [136]. Therefore, in general
the convergence of the validation data set error is applied as a measure for the
termination of the overall training process. Here, the model with the smallest vali-
dation error is selected for further applications. Consequently, since the validation
data has already been introduced to the model during training, it should not be

used for further performance assessment of the trained model [136].
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e Test Data: In order to assess the prediction quality of the trained model, a third
data set, referred to as test data, is applied. The test data set contains information
which was neither applied for defining the model structure nor for hyperparameter
tuning. However, the test set should include similar system features in order to be
representative for the investigated system. If the test set differs to a large extent
from the training and validation data, the prediction performance of the trained

model might decrease.

Within the present thesis, the available numerical or experimental full dataset is di-
vided into training, validation and test dataset. Prior to the segmentation, each data
set is preprocessed. In practice, it is nearly always advantageous to apply preprocessing
transformations to the data before it is presented to the NN. Generally, data prepro-
cessing is accomplished by either normalization or standardization. In the present work,
data normalization is applied. The normalization technique rescales the data from the
original range in a way that all vales are within a defined range, i.e. [0,1] or [-1,1]. It
should be noted for completeness that the predicted data must be re-normalized in order

to obtain consistent output values.

3.7 Evaluation Metrics

In order to provide a quantitative measure between the results predicted by a trained
NN applied to a test data set and the reference CFD - or experimental solution, different
evaluation metrics are applied within this thesis.

For the computation of integral buffet characteristics such as force and moment co-
efficient trends, both the deviation in amplitude and phase between the original and
predicted time-series must be considered. Therefore, an evaluation metric as proposed
by Russel [110], which accounts for an amplitude and phase error in transient data, is
applied. The proposed error metric is defined by a comprehensive error C,,,., which is

defined as follows:

(3.42)

err 67‘7‘)

Cupr = %(AQ + P2

The comprehensive error is composed of two terms, defining the amplitude error A,
and a phase error P,... The definition of the phase and amplitude error are given in

Equation 3.43 and Equation 3.44, respectively.

(3.43)

P..., = —cos
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Aerr = sign(RM E)Logio(1 + |RM E)) (3.44)

In addition, the computation of a relative magnitude error (RME), as defined in
Equation 3.45, is necessary for the definition of the A.,.. In Equation 3.42 to Equation
3.45, the reference CFD or experimental solution is denoted by ¢, whereas the sample
predicted by the NN is represented by y. Ng defines the number of samples included in
the applied data set.

Ng
Zy?—Z@?

(3.45)

Following the definition of Russel [110], the phase error is defined by values between
0 and 1. Here, a phase error of P... = 0 indicates two signals without a phase error,
whereas P,,. = 1 corresponds to two signals being completely out of phase. In contrast,
a RME value of RM E = 1 indicates that the magnitude of a signal s, is ten times larger
than the magnitude of a signal s; (s; = 10-s3), whereas a RM E = 2 defines s; = 100- s5.
With increasing RME, the value of the amplitude error also increases. Consequently,
a large phase and amplitude error result in an overall increasing comprehensive error.
Therefore, in general, the smaller the comprehensive error, the smaller is the phase shift
and the amplitude shift between the reference and modeled data.

In addition to the application of the C.,., the fit factor @ as introduced by Ljung [74|
is applied in this thesis. The fit factor between a reference solution y and the results g
modelled by the NN is defined as follows:

VSN - 9(9))2
VEN (y(s) - 9)?

In order to compute the fit factor, the mean response g (see Equation 3.47) of the

Q=100%- |1

(3.46)

NN is inserted as the model output §. In general, a fit factor of 100% indicates an exact

agreement between the reference solution and the NN response |74, 136].

g=—> 3 (3.47)

In order to provide a better classification of the proposed error metrics, three sine
signals representing different amplitudes and phases, are compared in the following. The

signals s are defined as follows:

s(t) = A - sin(wt — @) (3.48)
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with w and ¢ defining the angular frequency and the phase angle, respectively.

Focusing on the amplitude error, Figure 3.13 shows three different sine signals with
amplitudes A = [0.5, 1, 1.25], while the differences in the phase is ¢ = 0. In contrast,
Figure 3.14 depicts three sine signals representing an amplitude of A = 1, whereas the
phase is varied as follows: ¢ = [0, 0.57, 7|. In Figure 3.15, sine signals with both vary-
ing amplitudes and phases compared to the reference sine signal (4 = 1, ¢ = 0) are
depicted. Here, the amplitudes are chosen as A = [0.5, 1.25], whereas the corresponding

phases are defined as ¢ = [—0.57, 0.37].

Amplitude

Time
— A=1,¢=0 — A=125¢=0 — A=050¢=0

Figure 3.13: Sine signals representing three different amplitudes A = [0.5, 1, 1.25] at a
constant phase of ¢ = 0.
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Figure 3.14: Sine signals representing three different phases ¢ = [0, 0.57, 7| at a constant
amplitude of A = 1.
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Figure 3.15: Sine signals representing three different amplitudes A = [0.5,1,1.25] and
phases.

In Table 3.1, the computed error metrics for the considered sine signals with respect
to the reference signal (A = 0, ¢ = 0) are summarized. Considering the signals with a
variation in the amplitude it is shown that an increase in amplitude results in a positive
Aerr, Whereas a negative A,,, with respect to the reference signal indicates a reduction in
the amplitude. Depending on the magnitude of the A.,,, the C¢,, changes accordingly.
Further, the fit factor ) reduces with increasing C.,.,.

Based on the computed P.,,. for the signals with a phase variation it becomes clear
that with increasing phase shift the P, also increases. As already mentioned above, if
P... = 1, both signals are completely out of phase [110]. With increasing P, Ce also
increases. In contrast to () computed for the single amplitude variation, () is represented
by negative values if the signals are out of phase. With increasing P.,, the fit factor
becomes more negative, indicating the increasing out-of-phase behavior of both signals.

Focusing on the sine signal with both varying amplitude and phase it is shown that
C.,, increases with increasing A.,, and P,... Since the signals are phase shifted with

respect to the reference signal, () is defined by negative values.

Amplitude A Phase ¢ Agrr P, Cepr Q
1.25 0 0.16 0 0.14 75%
0.5 0 -0.39 0 0.35 50%
1 0.5m 0 0.5 0.44 -41%
1 T 0 1 0.88 -100%
1.25 0.37 0.16 0.33 0.32 -14%
0.51 -0.57 -0.67 0.5 0.74 -3%

Table 3.1: Amplitude-, phase-, comprehensive error and fit factor between sine signals
representing different amplitudes and phases.






4 Airfoil Buffet Prediction

In this chapter, a LSTM neural network architecture as introduced in Section 3.3 is
applied for the prediction of aerodynamic forces and moments at transonic buffet con-
dition. As a test case, the NACAQ0012 airfoil is chosen, which is excited by forced pitch
and simultaneous pitch and plunge motions beyond the critical buffet angle of attack.
In this regard, the training and application procedures of the LSTM-based NN are pre-
sented. The content of this chapter is mainly based on the author‘s publications, see
references [153] and [149].

In the first section, the geometric properties of the NACAO0012 airfoil are defined
and a brief analysis of the buffet flow characteristics of the test case are given. The
second section covers the numerical setup of the conducted URANS simulations for the
training, validation and test data sets. Subsequent, the generation of the CFD-based
training and validation data set is discussed in Section 4.3, followed by a description of
the training and validation procedure (see Section 4.4). In Section 4.5 and Section 4.6,
the prediction results of the LSTM-ROM are presented. In this regard, the LSTM is
used for the prediction of buffet forces and moments due to harmonic motions, cover-
ing different reduced frequencies and amplitudes. The results of the trained LSTM are
compared to the full-order reference CFD solutions. The chapter is concluded with a
comparison of the computational effort of the full-order reference CFD simulations and
the training and application of the LSTM-ROM.

4.1 Test Case: NACAO0012 Airfoil

For demonstrating the performance of the LSTM neural network, the NACA0012 air-
foil at buffet condition is chosen. According to a numerical study by Raveh [101], the
buffet condition of the NACAO0012 airfoil is defined by a freestream Mach number of
Mas, = 0.72, a Reynolds number of Re = 107 and an angle of attack of o = 6°.
The geometrical properties of the NACA0012 airfoil are defined by a chord length of
¢ref = 1 m, whereas the axis for the considered pitch and plunge motion is set at 25%
of the chord length of the airfoil.

In Figure 4.1, the flow field of the NACA0012 airfoil at buffet condition is visualized
by means of Mach number contour plots. Here, four timesteps within a single buffet
period T, frer are shown. In addition, the distribution of the pressure coefficient (c,)
for each respective timestep of the buffet cycle is illustrated. As shown in Figure 4.1,
the selected flow condition leads to a cyclic change in the shock position. Consistent
with studies by Raghunathan et al. [98] and Iovnovich and Raveh [53], the formation
of the shock starts almost at maximum thickness (=~ 0.3 z/l) of the airfoil. By moving
fore and aft within a buffet cycle, the shock position varies approximately between 20%
and 40% of the airfoil chord length. In addition, the shock intensity only slightly varies
around Ac, = 0.6 — 0.8 within one buffet period.
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Figure 4.1: Mach number contour plots showing the buffet cycle of the NACA0012 airfoil
(Mas = 0.72, Re = 107, a = 6°, no external excitation, URANS, SA tur-
bulence model). In addition, the corresponding distribution of the pressure
coefficient (c,) for each timestep is visualized. Tgyf e refers to the buffet
period.

Due to the movement of the shock, the boundary layer downstream of the shock
separates and exhibits a periodic thickening and thinning. At the beginning of the buf-
fet period, only a small boundary layer separation is visible. With the shock moving
towards the leading edge (LE) of the airfoil, the separation intensity increases and the
area of separation extends towards the trailing edge (TE). As the shock travels back
downstream, the area of separated flow at the TE decreases. By examining the cor-
responding response of the lift coefficient, the characteristic reduced frequency of the
buffet condition of the NACA0012 airfoil is identified as Kyequsfer = 0.43.
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4.2 Computational Setup

In order to capture the buffet characteristic shock motion and boundary layer separa-
tion, the numerical simulations of the NACA0012 airfoil are conducted using an URANS
approach. In the present investigation, the URANS simulations are performed using the
Triangular Adaptive Upwind (TAU) [19] flow solver developed by the German Aerospace
Center (DLR). With regard to the computation of the training, validation and test data
sets, the same computational setup is selected.

Using TAU, the URANS equations are solved in conservation form using a shock-
capturing finite volume scheme. Further, a dual grid approach is used for the unstruc-
tured mesh. In the present investigation, the temporal integration is performed using a
backward Euler implicit scheme, while the embedded pseudo-time solution is computed
by means of a lower-upper symmetric Gauss-Seidel (LU-SGS) algorithm. In addition,
a multigrid approach is applied to accelerate convergence. The spatial discretization is
accomplished by a central scheme with matrix dissipation. For the discretization of the
convective fluxes, a second-order central scheme is used, whereas the reconstruction of

the gradients is accomplished by means of a Green Gauss scheme.

Figure 4.2: Geometry of the NACA0012 airfoil embedded within a block-structured grid
for the CFD-based simulations.

Following the numerical studies by Raveh [101] and Barakos and Drikakis [4], the SA
model is applied for turbulence modeling. More specifically, the SA model with Edwards

modification 28] is used in order to improve the near-wall resolution.
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The mesh deformation for the respective single and simultaneous pitch and plunge
motion of the NACA0012 airfoil is implemented by the application of a RBF-based grid
deformation using a TAU-Python interface.

With respect to the viscid CFD simulations, a block-structured computational grid
applied in a previous study by Winter and Breitsamter [142|, is used. The grid has
been generated using the commercial meshing software ANSYS ICEM CFD [2]. The
computational grid as shown in Figure 4.2 is composed of 8.8 - 105 elements arranged in
an O-type topology. The airfoil surface is resolved with 500 cells and the height of the
first surface cell is defined to 5- 10~ m in order to define a dimensionless wall distance
of y* < 1.

In order to ensure the independence of the solution from the grid resolution, a steady
as well as an unsteady grid sensitivity study are performed. Therefore, five grid lev-
els with the respective halved and doubled number of edge nodes relative to the basis
grid are considered. In Figure 4.3, the time-series of the lift coefficient at a devel-
oped buffet condition is presented for the applied grid levels. Since the relative error
between the grid levels including 1.7 - 10 and 8.8 - 10° number of cells is given as
0.13% and 0.12% with respect to the minimum and maximum amplitude of C7, the
grid with 8.8 - 105 elements is chosen to be adequate for the following computations. In
addition, a steady state grid study is performed, resulting in the same sufficient grid
resolution. Based on an additional convergence study, the physical timestep for the sim-
ulation is defined by At = 0.0005 s, which corresponds to a nondimensional timestep
(1 = (t - Uso,Busfet) / Cres)) of AT = 0.11. Here, Us puffer represents the freestream
velocity at buffet condition, which is defined as Uso pufrer = 238 m/s.

0.8
0.71 Number of cells:
— 1.1-10°
4001 — 22.10°
O - s
0.51 4.4-10
————— 8.8 107
0.41 1.7 106
0.3

100 120 140 160 180 200 290
Nondimensional Time 7

Figure 4.3: Results of the grid sensitivity study based on the time series of the unsteady
lift coefficient C';, at a developed buffet condition.
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4.3 CFD-Based Data Set Generation

For the generation of a sufficient training, validation and test data set, forced motion
CFD simulations are performed, in order to model the pitch and plunge deflection of the
NACAO0012 airfoil at buffet condition. The resulting aerodynamic response of the airfoil
is recorded by means of the lift (C) and pitching moment coefficient (Cyyy).

The excitation of the aerodynamic system is accomplished by several smoothed am-
plitude modulated pseudo random binary signals (SAPRBS) [88|, which are generated
for a single and simultaneous excitation of the pitch and plunge degree of freedom (DoF).
This type of signal is chosen for the following investigation, since it is characterized by
a high information content per signal length. Hence, it is able to cover a large range
of various frequencies and amplitudes [88,136]. This aspect is in particular important

concerning the limitations of computational time and costs.
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Figure 4.4: SAPRBS for the prescribed excitation of the pitch degree of freedom
(NACA0012, AT = 0.11).
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Figure 4.5: Amplitude spectrum of the SAPRBS for the prescribed excitation of the
pitch degree of freedom (NACA0012, AT = 0.11).
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Considering only the excitation of the pitch DoF, ten different SAPRBS including
10000 data points each, are randomly generated. Therefore, the overall number of avail-
able data points for training the LSTM is summed up to 1 - 10°. Since all signals
are smoothed, the minimum and maximum pitch amplitude are defined as 0,in maz —
+1° . For smoothing the signals, Gauss filtering as described in Winter and Breit-
samter [136,141], is applied. In Figure 4.4, one of the applied SAPRBS is visualized.
Therefore, the excitation amplitude 6 is plotted over the nondimensional time 7. In
addition to the time-domain representation, the amplitude spectrum of the SAPRBS
shown in Figure 4.4 is visualized in Figure 4.5. As shown, the plateaus of the signal are
designed in order to cover reduced frequencies in the range from 0 < k.4 < 1.

In contrast, considering the excitation of both the pitch and plunge DoFs, three dif-
ferent SAPRBS are randomly defined, including 15000 time steps each. Analogous to
the single pitch excitation, the pitch amplitude is limited to #= 4+1°, whereas the plunge
amplitude is defined as h—= %1 - ¢,o¢. In Figure 4.6, the time-domain response of one
of the three applied SAPRBS for the simultaneous excitation of the pitch and plunge
motion, is visualized. As shown, the first and last part of the SAPRBS are constructed
for a separate excitation of the pitch and plunge DoF, respectively. In between these
two time instances, an overlapped excitation of both DoFs is accomplished in order to
capture the nonlinear interactions caused by a combined input. The separate excitation
for the pitch and plunge DoF is defined by 6000 time steps each, whereas the combined

excitation includes 4500 time steps.
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Figure 4.6: SAPRBS for the prescribed excitation of the pitch and plunge degrees of
freedom (NACA0012, AT = 0.11).

The amplitude spectra of the SAPRBS shown in Figure 4.6 are visualized in Fig-
ure 4.7. As it is the case for the SAPRBS for the pitching motion, the signals are

designed in order to represent reduced frequencies in the range from 0 < k,.q < 1.
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Figure 4.7: Amplitude spectra of the SAPRBS for the prescribed excitation of the pitch
and plunge degrees of freedom (NACA0012, A7 = 0.11).

4.4 Training of the LSTM-ROM

Given the training data set including the buffet forces and moment characteristics of
the pitch and plunge excited NACA0012 airfoil, the LSTM-ROM training is performed.
Considering the simulated CFD data set in Section 4.3, the system inputs consist either
of the pitch (6) or the pitch and plunge (h) excitation amplitudes, whereas the sys-
tem outputs are given by the lift and pitching moment coefficient. With ¢ defining the
time dependency of each amplitude, inputs and outputs of the LSTM can be defined as

follows:

@y = [0(t), (h(t))]"
Y = [CL(t),Cw, (8)]"

Prior to the training process, the available CFD data set is segmented. Considering

(4.1)

the application case including the individual excitation of the pitch DoF, seven out of
the ten simulated SAPRBS are used for training, whereas the remaining three are used
for validation. Hence, 70% of the data points are chosen for the training of the ROM,
whereas the remaining percentage is used for validation purposes. Considering the ap-
plication of the LSTM for the computation of harmonic motions covering individual and
simultaneous pitch and plunge motions, two of the three available SAPRBS are applied
for training. Therefore, 66% of the data is applied for training, whereas 33% are used
as the validation data set.

For both individual training processes of the LSTM neural network, several hyper-
parameters are identified based on a detailed parameter study. In the following, all

parameters of each LSTM neural network are summarized.
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Therefore, LSTMginge is referred to the LSTM-ROM applied for modeling harmonic
pitch motions, whereas LSTM ombineq is defined as the LSTM-ROM applied for harmonic

pitch and plunge motions:

o LSTMgingle: The number of hidden layers is varied between two and four, how-
ever, three hidden layers are chosen for the following application. A two-layered
LSTM indicates a lower prediction quality, whereas the implementation of four
hidden layers intensively increases the training time. For each of the three selected
hidden layers, the following number of neurons are tested: [128, 256, 512|. Since
the implementation of 512 neurons results in a training time increase without any
considerable performance improvement, the number of neurons per layer is set to
256. The initial learning rate for the optimizer is defined as n = 1-107%. An in-
crease of the learning rate to 7 = 1-1073 results in an acceleration of convergence,
however, the training performance decreases. Reducing the learning rate to n =
1-107° leads to a deceleration of convergence and therefore a considerable increase
in training time. The size of the input sequence has been varied between 32, 64,
128 and 256. Based on the results the signals are divided in sequences including

128 timesteps each, with a batch size defined as one.

® LSTMcombinea: Analogous to the LSTMgiygle, three hidden layers have been imple-
mented, including 256 neurons each. Further, the initial learning rate is set to
n = 1-107%. The batch size is defined as one, with each sequence in the batch
including 128 timesteps.

In Table 4.1, the final hyperparameters for both LSTM-ROMSs are summarized.

LSTMsingle LSrI\l\/[cornbined

Hidden layers 3 3
Neurons per layer 256 256
Batch size 1 1
Sequence length 128 128
Initial learning rate 1-107* 1-107*
State activation tanh tanh
Gate activation o o

Table 4.1: Hyperparameters of the LSTMgingle and LSTMcombined-

As the state activation function, a tanh is selected, while the gate activation function
is chosen to be the sigmoid function ¢. In Figure 4.8, the convergence trends of the
training and validation losses of both LSTM neural networks are shown. Therefore, the
decrease in MSE (see Equation 3.13) is plotted over the number of epochs. As shown,
the training process of the LSTMjnge-ROM is terminated after 1500 epochs, whereas
the LSTM ombinea i trained for 800 epochs. Examining the convergence of the validation

losses, no overfitting occurs during the training process.
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Figure 4.8: Convergence trends of training and validation losses of the LSTMgpge (left)
and LSTMcombined (Tlght)

Multi-Step Predictions

Prior to the application of the trained LSTM-ROMs to a test data set, the trained mod-
els are evaluated based on the validation data set by performing recurrent multi-step
predictions. For the initialization of the multi-step mode, the first 32 time steps of the
SAPRBS response are provided to the trained LSTM. As the prediction proceeds, the
numerical data is successively substituted by the data points predicted by the LSTM.
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Figure 4.9: Lift coefficient response induced by a validation SAPBRS. The simula-
tion result of the LSTM-ROM is compared to the CFD reference solution
(NACA0012, May = 0.72, Re = 107, a = 6°).

In the following, only the results of the trained LSTM,g1. are presented. There-

fore, the aerodynamic responses due to one of the three SAPBRS applied for validation,
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are considered. In Figure 4.9 and Figure 4.10, the lift and pitching moment coefficient

trends as obtained by the LSTM compared to the CFD reference solution, are shown,
respectively.
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Figure 4.10: Pitching moment coefficient response induced by a validation SAPBRS. The

simulation result of the LSTM-ROM is compared to the CEFD reference so-
lution (NACA0012, May, = 0.72, Re = 107, a = 6°).

In addition to the multi-step predictions using the validation data set, the trained
LSTMgingle-ROM is applied to reproduce the buffet characteristics in the absence of any
external excitation of the airfoil. In Figure 4.11, the resulting lift coefficient response as
obtained by the LSTM compared to the reference CFD solution, is shown. As indicated,
the LSTM is able to accurately capture the lift coefficient response at buffet condition.

0.8

e
\]
L

1
1
1
|
1
1
1
1
1
\
\
\
\
\
1

——

0.4 . . .
100 125 150 175

200 995 250 275
Nondimensional Time 7

300

— CFD  ----- ROM/LSTM

Figure 4.11: Lift coefficient response at buffet condition. The result of the LSTM-ROM

is compared to the CFD reference solution (NACA0012, Ma,, = 0.72,
Re = 107, a = 6°, no excitation).
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In order to quantify the prediction performance of the LSTMginge, the evaluation
metrics introduced in Section 3.7, are applied. In Table 4.2, the errors for both the
validation data set and buffet condition application, are summarized. Based on the
computed errors it is shown that the error in amplitude and phase shift is rather small,

resulting in an overall fit of up to 97%.

Prediction Aerodynamic Acrr P.,. Cepr Q
mode coefficient

N Cr -0.023 0.012 0.023 97%
Validation data Chty 0028 0016 0.028  96%
Buffet condition Cr, -0.019 0.027 0.029 95.5%

Table 4.2: Evaluation metrics computed for the validation data set and buffet condition
prediction (LSTMjgipgle-ROM).

4.5 Performance Evaluation: Single Sinusoidal

Excitation

Following the application of the trained LSTM-ROM on the validation data set, the
final capability test is conduced by the prediction of time-series trends of lift and pitch-
ing moment coefficient due to harmonic pitch motions. Further, the focus of the ROM
application is on the representation of the lock-in effect (see Section 2.2.2). Therefore,

harmonic excitations covering different frequencies and amplitudes, are considered.

4.5.1 Sinusoidal Excitation with Varying Frequencies

In a first step, the NACA0012 airfoil is excited with harmonic motions covering four
different reduced frequencies: kyeqme: = [0.2, 0.4, 0.6, 0.8]. Analogous to the excita-
tion using the SAPRBS (see Figure 4.4), the pitch amplitude is defined as 8 = £ 1°.
The reference full-order CFD simulations for the considered harmonic motions are con-
ducted using the TAU solver setup as described in Section 4.2. In order to guarantee
a fully developed solution without any initial transient influence, 30 excitation periods
are computed with both the CFD solver and the LSTM-ROM for each of the considered
harmonic motions. Here, a fully developed buffet condition is applied for initialization
of the harmonic computations. For the initialization of the recurrent multi-step predic-
tions, a sequence of 32 time steps originated from the CFD solution is provided to the
trained LSTM.

For a clear comparison and evaluation of the results, frequency-domain as well as
time-domain responses are presented in the following. The frequency-domain responses
are visualized using a fast-Fourier transformation (FFT) of the aerodynamic coefficients
(Cr, Cu,), plotted over the reduced frequency ky.q. Evaluating the frequency- and time-

domain responses of the lift coefficient (see Figure 4.12 and Figure 4.14), a nonlinear and
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frequency-dependent interaction between the airfoil motion and the buffet instability is

clearly indicated. This frequency dependent interaction is also visible in the selected

frequency - and time-domain responses of the pitching moment coefficient, as shown in
Figure 4.13 and Figure 4.15.
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Figure 4.12: Frequency domain responses of the lift coefficient resulting from harmonic

pitch motions with k,eq gy

[0.2, 0.4, 0.6, 0.8]. The results of the LSTM-

ROM are compared to the reference CFD solution (Mas, = 0.72, Re = 107,

a= 6°, 0= +1°).

Considering the reduced excitation frequency kyeq gz — 0.2, which is smaller than the
buffet frequency of the NACA0012 airfoil (kyeq pusre = 0.43, without pitching motion),
the buffet characteristics are to a certain extent disturbed by the pitch excitation.
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In the corresponding spectra of the lift and pitching moment coefficient shown in
Figure 4.12 and Figure 4.13, no peak at k.4 g, — 0.2 is visible. However, a distinct peak
representing the buffet frequency and a peak at k;eq g, — 0.8 are indicated.

Examining the excitation with a reduced frequency k.4 g, — 0.4, which almost rep-
resents the buffet frequency, the buffet flow response synchronizes with the pitch motion

of the airfoil. Therefore, the presence of lock-in is clearly indicated in the frequency

responses of the lift and pitching moment coefficient.
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Figure 4.13: Frequency domain responses of the pitching moment coefficient resulting
from harmonic pitch motions with k4 g, = (0.2, 0.4, 0.6, 0.8]. The results of
the LSTM-ROM are compared to the reference CFD solution (Mas, = 0.72,

Re = 107, a = 6°, 0 = +1°).
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Figure 4.14: Time domain responses of the lift coefficient resulting from harmonic pitch
motions with kyeq g = [0.4, 0.8]. The results of the LSTM-ROM are com-
pared to the reference CFD solution (May = 0.72, Re = 107, a = 6°,

0 = £1°).
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Figure 4.15: Time domain responses of the pitching moment coefficient resulting from
harmonic pitch motions with k,cq g, = [0.4, 0.8]. The results of the LSTM-
ROM are compared to the reference CFD solution (Mas, = 0.72, Re = 107,
a=60 = +1°).
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Further, the time-domain responses of the aerodynamic coefficients (see Figure 4.14
and Figure 4.15) also clearly show a harmonic response for k.4 g, = 0.4. Consequently,
the influence of the buffet frequency is considerably smaller compared to the other fre-
quency cases and the system is predominantly influenced by the pitch motion of the
airfoil. Considering the harmonic motion test cases with frequencies above the buf-
fet frequency (kyeqpe = [0.6, 0.8]), effects due to the buffet itself as well as the pitch
excitation are again clearly differentiable.

Focusing on the harmonic motion test case with k;cqr, — 0.6, only a small peak at
kreq = 0.6 is visible in Figure 4.12 and Figure 4.13. However, as shown in the spectra
of kreapr — 0.2, a large peak around the buffet frequency and the second harmonic of
the buffet frequency are visible. Further, a distinct peak at the second harmonic of the
pitch excitation (k.q = 1.2) is indicated.

Compared to the test cases with k,cq g, = 0.2, 0.6], the test case with k,cq g, = 0.8
shows a less significant interaction between both buffet and airfoil motion frequency re-
sponses. Further, the peak at buffet frequency appears to be more broadband compared
to the other test cases. In addition, a peak at k..q = 0.8 is shown.

By comparing the responses of the trained LSTM with the reference CFD solution it
is shown that the LSTM is able to capture the lift - and pitching moment trends due to
the harmonic motions. Distinct peaks and their amplitudes in all spectra are correctly
represented by the trained ROM. Further, the LSTM is able to reproduce the lock-in
effect in the presence of external motions. In order to emphasize the performance of the
LSTM for all considered test cases, the corresponding evaluation metrics are summarized
in Table 4.3. Based on the computed errors it is shown that both the error in amplitude

and phase is considerably small, resulting in a fit of about 92% to 93%.

Excitation Aerodynamic A P, Copr Q
Frequency (kyed, i) Coeflicient
0.9 Cr -0.048 0.011 0.043 92.7%
' Cury -0.041 0.013 0.038 93.3%
04 Cr -0.053 0.013 0.048 92%
' Cury -0.05 0.016 0.046 92.3%
0.6 Cr -0.043 0.015 0.04 92.9%
' Cury -0.051 0.017 0.047 92.1%
0.8 Cr -0.048 0.013 0.044 92.5%
' Cury -0.045 0.017 0.042 92.9%

Table 4.3: Amplitude, phase, comprehensive error and fit factor of the LSTM-ROM ap-
plied to harmonic pitch motions covering varying excitation frequencies.
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4.5.2 Sinusoidal Excitation with Varying Amplitudes

Following the excitation of the NACAO0012 airfoil considering different excitation frequen-
cies, the trained LSTM-ROM is applied for the prediction of harmonic pitch motions
covering varying amplitudes: 6 = [+ 0.1°, £ 0.5°, £+ 1°|. In addition, an excitation
amplitude of § = £ 1.5° is considered in order to investigate the prediction performance
of the LSTM-ROM outside the training range. For each harmonic motion, the excitation
frequency is defined as the buffet frequency (kyeq,pe = Kred,Bufrer = 0.43). Analogous to
Section 4.5.1, 30 excitation periods are computed with the TAU solver and the LSTM
for each selected harmonic motion. Further, for the start of the recurrent multi-step
predictions, a batch size of 32 timesteps is defined.

Evaluating the frequency-domain responses of the lift and pitching moment coeffi-
cient, as shown in Figure 4.16 and Figure 4.17, a synchronization between the airfoil
motion and the buffet frequency response is indicated. In all spectra, a distinct peak at
the buffet frequency kyeq purfer = 0.43 is visible. Further, second and third harmonic re-
sponses of the buffet frequency are indicated. Considering the responses due to harmonic
excitations included in the range of the training amplitude (07,4, = =+ 1°), a good
agreement between the CFD reference solution and the prediction of the LSTM-ROM is
given. In contrast, considering the test case with an excitation amplitude of § = + 1.5°,
the prediction seems to be a challenge for the trained LSTM. As shown, the frequency
amplitudes as well as the phase of the lift and pitching moment coefficient responses
are not correctly reproduced by the LSTM. These higher deviations in the responses are
also highlighted by the amplitude and phase errors summarized in Table 4.4.

Considering the test cases covering the smaller excitation amplitudes, error values and
an overall fit of about 92% similar to the results presented in Section 4.5.1 are given.
In contrast, deviations of approximately 70% are indicated for the high amplitude test
case. Therefore, the test case outside the training range clearly represents a challenge
for the trained LSTM-ROM.

Excitation Aerodynamic Agrr P, Cepr Q
Amplitude (6) Coefficient

101° Cr -0.042 0.011 0.038 93.3%

‘ Cary 0.044 0011 004  92.9%

1050 Cr 0.043 0.01 0.039 93%

’ Chy 0.041 0.013 0.038 93.3%

IR Cr 0.057 0.015 0.052 91.2%

Chry 0.06 0.016 0.055 89.4%

e . 0.56 0.41 0.61 32%

) Chy -0.61 0.44 0.66 28.6%

Table 4.4: Amplitude, phase, comprehensive error and fit factor of the LSTM-ROM ap-
plied to harmonic pitch motions covering varying excitation amplitudes.



4.5. PERFORMANCE EVALUATION: SINGLE SINUSOIDAL EXCITATION 65

o f = £0.1° f = +0.5°
10 10°
3 SEl
o 10724 o
< ! S|
E e
2 2102
E E
-3
E 10 E 109
F F
1074 . - 10~* . .
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Reduced Frequency k;.q Reduced Frequency k,¢q
. 0 ==+1° . 0 =4+1.5°
10 10
o o 1072
o o
3 2
210 2
z E
e c, 1079
—4
= v 2
107° . ; 1074 - -
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Reduced Frequency k;qq Reduced Frequency k;qq
— CFD ---- ROM/LSTM

Figure 4.16: Frequency domain responses of the lift coefficient resulting from harmonic
pitch motions with 6§ = [+0.1°, £0.5°, £1°, +1.5°]. The results of the
LSTM-ROM are compared to the reference CFD solution (Mas, = 0.72,
Re = 107, o = 607 kred,E:p — O43)
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Figure 4.17: Frequency domain responses of the pitching moment coefficient resulting

from harmonic pitch motions

with § = [£0.1°, £0.5°, £1°, +1.5°|. The

results of the LSTM-ROM are compared to the reference CFD solution

(Mas, = 0.72, Re = 107, a =

6°, kredq,pe = 0.43).
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4.6 Performance Evaluation: Combined Sinusoidal

Excitation

Besides the prediction of coefficient time-series trends due to harmonic pitch motions,
the trained LSTM_ompbinea-ROM is applied for modeling time-series trends due to an
individual and simultaneous pitch and plunge motion. Therefore, harmonic motions
covering the same reduced excitation frequencies as in Section 4.5.1, are applied. In
order to avoid any initial transient influence, 13 excitations periods are computed for
each individual DoF with both the TAU solver and the trained LSTM. Further, the
excitation period including a simultaneous excitation of the pitch and plunge DoF is
represented by seven cycles. Analogous to the training signal, the pitching amplitude is
defined as @ = £ 1°, however, the plunge motion is limited to A = £ 0.1 - ¢,¢f in order
to ensure a stable numerical computation. In Figure 4.18, the signal for an individual
and simultaneous excitation of both DoFs is exemplary shown, representing a reduced

excitation frequency of kyeq pr = 0.2.
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Figure 4.18: Harmonic signal for the prescribed excitation of the pitch and plunge DoF
(kred,E:I: — 02)

As shown in Figure 4.18, both the excitation of the pitch and plunge DoF are defined
by a ramp-up amplitude, in order to enable a stable numerical simulation.

Analogous to the previous section, both frequency-domain responses of the lift (see
Figure 4.19) and pitching moment coefficient (see Figure 4.20) indicate a clear interaction
between the responses of the buffet motion and the excitation of the airfoil. However,
compared to the responses of the single pitch excitation, a more broadband range of
frequencies is present in each of the spectra. Considering the response of the harmonic
motion with k,.qp, = 0.2, the spectra of both coefficients are dominated by the pitch

and plunge excitation. Compared to the spectra shown in Figure 4.12 and Figure 4.13,
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a distinct peak at k,.q = 0.2 and k,.q = 0.6 is indicated. Further, peaks at the buffet

frequency and its second harmonic are present.
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Figure 4.19: Frequency domain responses of the lift coefficient resulting from harmonic
pitch and plunge motions with k.4 g, = [0.2, 0.4, 0.6, 0.8]. The results of
the LSTM-ROM are compared to the reference CFD solution (Mas, = 0.72,
Re = 10", a = 6°, 0= £ 1° h = £0.1 - ¢,ep).
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Figure 4.20: Frequency domain responses of the pitching moment coefficient resulting

from harmonic pitch and plunge motions with kcq £y

0.2, 0.4, 0.6, 0.8].

The results of the LSTM-ROM are compared to the reference CFD solution

(Maws = 0.72, Re = 107, a —

6°,0= +1° h==+01" crep).
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Figure 4.21: Time domain responses of the lift coefficient resulting from harmonic pitch
and plunge motions with kyeq g, = [0.4, 0.8]. The results of the LSTM-
ROM are compared to the reference CFD solution (Mas, = 0.72, Re = 107,
a= 6°60= +1° h==201"-c.y).
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Figure 4.22: Time domain responses of the pitching moment coefficient resulting from
harmonic pitch and plunge motions with k,cq g, = [0.4, 0.8]. The results of
the LSTM-ROM are compared to the reference CFD solution (May, = 0.72,
Re =107, a = 6°,0= £ 1°, h = £0.1 - ¢pep).
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However, compared to the responses of the single pitch excitation, the peaks appear
to be more broadband, which is assumed to result from the additional plunge excitation.
Examining both the frequency - and time-domain responses (see Figure 4.19 - Figure
4.22) of the harmonic motion with k,eq g, = 0.4, lock-in is clearly indicated. Further,
some small peaks at various frequencies are shown in the FFT spectra. Considering the
spectra with kyeqpe. = [0.6, 0.8], effects due to buffet and the harmonic excitation are
visible.

Analogous to the results presented in Section 4.5.1, it is shown that the trained
LSTM-ROM is able to model the time-series coefficient trends due to harmonic pitch
and plunge motions. In addition, the lock-in effect is correctly reproduced. Comparing
the evaluation metrics in Table 4.3 and Table 4.5 an overall increase of about 2-3% in
the error metrics is presented for the results due to the combined DoF excitation. It is
assumed that the loss in performance is due to the increased nonlinear behavior which
must be covered by the trained LSTM-ROM. However, in general the errors are still
small, underlying the good performance quality of the LSTM-ROM. Here, an overall fit
of about 89% to 92% is achieved.

Excitation Aerodynamic Ao P, Corr Q
Frequency (kyed gx) Coefficient
0.2 CL -0.053 0.018 0.049 91.7%
' Chry -0.055 0.017 0.051 91.2%
04 CrL -0.05 0.019 0.047 92.1%
’ Chry -0.053 0.02 0.05 90.6%
0.6 CL -0.058 0.021 0.055 89.4%
’ Chry -0.058 0.02 0.054 90%
0.8 Cr -0.055 0.023 0.052 91.2%
' Chry -0.055 0.02 0.051 90.4%

Table 4.5: Amplitude, phase, comprehensive error and fit factor of the LSTM-ROM
applied to harmonic pitch and plunge motions covering varying excitation
frequencies.

4.7 Efficiency Evaluation

Last but not least, the reduction in computational time due to the application of the
LSTM-ROM, compared to a reference full-order CFD analysis, is summarized.

Each fully resolved numerical simulation with the DLR-TAU code has been per-
formed on the SuperMUC-NG of the Leibniz Supercomputing Centre (LRZ). Here, six
nodes with 48 cores each have been applied, resulting in a total number of 288 applied
cores per simulation. In contrast, the training, validation and test computations of the
LSTM-ROM have been performed on a workstation equipped with an Intel Xeon 2.2

GHz processor. For comparability, only a single CPU core has been used.
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As a first step, the numerical effort related to the training of both the LSTMgingie-
ROM and LSTM _ombinea-ROM is outlined. The computation of each SAPRBS designed
for the excitation of the pitch DoF required approximately 50 hours on the SuperMUC-
NG. Considering the number of training signals (= 10) and the number of applied cores,
an overall computational time of 144000 (= 10 - 50 - 288) CPU hours results. The com-
putation of the three SAPRBS selected for the individual and simultaneous excitation
of the pitch and plunge DoF required approximately 60 CPU hours, resulting in a total
computational time of 51840 (= 3-60-288) CPU hours. In contrast, the training of the
LSTMgingle-ROM and LSTMcompinea-ROM were each conducted within approximately
ten and eight CPU hours on the workstation, respectively. Therefore, the overall com-
putational training costs sum up to 144010 and 51848 CPU hours, with the CFD-based
forced-motion SAPBRS simulations holding the highest share on the overall training
procedure.

In the framework of an aerodynamic airfoil buffet analysis, the application of the
trained ROM for various test cases, covering different frequencies and amplitudes, is
of interest. Therefore, in the following, a comparison between the application of the
LSTM in contrast to the fully resolved URANS simulations, is given. To summarize the
CPU time of the LSTM, the SAPRBS simulations, the training of the LSTM, the CFD
computations of the initial LSTM input solutions as well as the LSTM application on
the test data set are required. In contrast, the CPU time of the URANS computations
includes the CFD simulations of all required test cases.

Considering the excitation of only the pitch DoF, the application of the LSTM in-
cludes the amount of CPU hours for the SAPRBS simulations (= 144000), ten CPU
hours for the training, a batch of initial time steps for the multi-step predictions for
each harmonic motion and about 0.015 CPU hours for the application of the trained
LSTMgingie itself. In contrast, the URANS simulation sum up to approximately 8640
(= 30 - 288) CPU hours for each harmonic pitch motion. Since the oscillation period
is dependent on the excitation frequency, a different number of computed time steps is
set for each harmonic motion. Therefore, an averaged computation time of 30 hours
required with the DLR-TAU solver is assumed. With an average of 8640 CPU hours, 30
excitation cycles with an average number of 3000 time steps are assumed. Therefore, for
the computation of the initialization batch (= 32 time-steps), approximately 92 CPU
hours are required.

Shifting the focus to the excitation of both the pitch and plunge DoF, the LSTM ap-
plication is defined by 51840 CPU hours for the SAPBRS simulation, eight CPU hours
for the training, 32 initial time-steps for the LSTM initialization and approximately
0.015 CPU hours for LSTM application itself. Assuming an averaged computation time
of 30 hours for each test case, the fully resolved CFD simulations for each combined
DoF excitation also sum up to approximately an average of 8640 CPU hours. Therefore,

the simulation time for the initial test sample batch is also defined by approximately 92
CPU hours
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In Table 4.6, the number of CPU hours for the application of both the LSTMg;ygie-
ROM and LSTMcompinea-ROM are summarized. Further, the CPU hours for the fully
resolved URANS simulations are included. Here, the CPU hours for the computation of

a single harmonic motion test case are considered.

LSTMsingle LSTMcombined
SAPRBS simulation 144000 51840
ROM training 10 8
ROM ROM initialization 92 92
ROM application 0.015 0.015
Fully resolved URANS simulation 8640 8640

Table 4.6: Comparison of CPU hours for the LSTMgingle and LSTMcombined and the fully
resolved URANS simulations.

Considering a fair amount of harmonic motions for a detailed analysis, covering the
frequency (e.g. kyeq g = [0.2:0.1:0.8]) and amplitude range of interest (e.g. § = [ £ 0.1°,
+ 0.5°, £1°]), a number of 24 simulations needs to be performed. Therefore, the num-
ber of ROM related CPU hours for the LSTMjj,g1. sum up to approximately 144000 for
the SAPRBS simulation and 2208 (= 24 - 92) CPU hours for the computation of the
initialization batch for each harmonic test case. In contrast, the fully resolved CFD
simulations would take up to 207360 (= 24 -30-288) CPU hours. For the LSTM combined,
approximately 51840 CPU hours for the SAPBRS simulation as well as 2208 (= 24 - 92)
CPU hours for the ROM initialization solutions are mandatory. In contrast, the CPU
hours for the URANS simulation are also summed up to 207360 CPU hours.

LSTMSinglo LSTMcombined
200000 A 200000 A
150000 1 150000 1
= =
5 S
T )
— 100000 1 — 100000 1
ol ol
@) (@)
50000 1 50000 1 / / /
0 - - 0 - :
0 10 20 0 10 20
Number of Test Cases Number of Test Cases
—— URANS —— ROM vz ROM fixed

Figure 4.23: Comparison of CPU hours required for the fully resolved URANS simula-
tion and the LSTM-ROM simulations (LSTMgingle (left) and LSTMcombined

(right)).
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In order to visualize the reduction in computational costs, a comparison between
the required CPU hours of the full-order URANS simulations and the application of
both LSTM-ROMs for the considered test cases are provided in Figure 4.23. Here,
the grey shaded area marks the number of CPU hours required for the training of the
LSTM-ROM. The black line defines the additional CPU hours for the computation of
the initialization solution as well as the application of the LSTM-ROM to the test data
set. In contrast, the blue line denotes the number of CPU hours required for the fully
resolved URANS simulations of the considered test cases. As shown, after the com-
putation of a couple of test cases, the application of an URANS approach drastically
increases the CPU hours compared to the application of a trained LSTM-ROM.

In order to further reduced computational time and costs, the number of training
samples included in the SAPRBS could be decreased. Here, a reduction in the size of
three to four orders of magnitude is assumed, depending on the number of considered

test cases.

4.8 Summary

Within this chapter, a LSTM neural network-based ROM has been applied for the predic-
tion of buffet force and moment coefficient time-series trends on the NACA0012 airfoil.
Therefore, the airfoil has been excited with user-defined harmonic pitch and simultane-
ous pitch and plunge motions beyond the critical buffet angle of attack. The harmonic
excitations have been defined in order to cover different frequencies and amplitudes. For
modeling both the coefficient time-series trends due to single and simultaneous pitch
and plunge motions, two different LSTM neural networks have been trained.

For the training, an optimized set of hyperparameters has been defined. In particular,
the number of hidden layers, the number of neurons in each layer, the sequence length
as well as the initial learning rate have been varied in order to find the best combination
of parameters. The number of hidden layers and neurons in each layer should be chosen
in order to enable a good prediction performance, while at the same time keeping the
training time as low as possible. The size of the sequence is defined in order to provide
a sufficient number of training samples to the network. With increasing sequence size,
more information is fed into the neural network at the same time, however, the training
time is also increased. Besides the definition of hidden layers, neurons and the length of
the sequence, the initial learning rate must be set. Here, starting with a learning rate of
n = 1-107* is the preferred choice. In order to adapt the learning rate, the convergence
trends of training and validation loss should be monitored. If the convergence is very
slow, the learning rate could be increased to speed up the process, however, overfitting
can appear more easily. In contrast, if the convergence saturates at a rather high value,

decreasing the learning rate can be helpful.
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By comparing the time-series trends computed by CFD and the results of the LSTM-
ROM, an accurate prediction is indicated for all considered test cases. Considering the
different test cases, an overall fit between 89% and 93% has been achieved. Further,
the LSTM is able to capture the lock-in effect as well as strong nonlinearities due to
a simultaneous excitation of the pitch and plunge DoF. Besides the good prediction
performance, the developed ROMs gained significant numerical cost and time savings
compared to the full-order reference CFD solutions. Consequently, a robust and accurate

framework for modeling integral airfoil buffet characteristics has been proposed.






5 Wing Buffet Prediction

This chapter deals with the ROM-based prediction of buffet characteristics due to vary-
ing freestream conditions on a civil aircraft wing. Therefore, the Airbus XRF-1 config-
uration is chosen as a test case. For modeling the wing buffet characteristics, a LSTM-
based ROM and a hybrid ROM are applied. The hybrid ROM is defined by a series
connection of a convolutional variational autoencoder (CNN-VAR-AE) and a LSTM.
Experimental data obtained by two measurement campaigns in the European Transonic
Wind Tunnel (ETW) is used for the training and performance evaluation of the proposed
ROM methods. The content of this chapter is based on the author’s publications, see
references [150] and [152], and is structured as follows:

In the first section, the Airbus XRF-1 configuration as well as the experimental setup
are introduced. Following the general introduction, a detailed buffet flow character-
ization based on the experimental data sets is presented in Section 5.2. In Section
5.3, the training and application procedure of a LSTM-based ROM for modeling local
pressure characteristics at varying flow conditions and wing positions, is presented. In
Section 5.4, the hybrid CNN-VAR-AE/LSTM is employed to predict surface pressure
distributions at varying buffet conditions. For performance evaluation, the results of

both ROM methods are compared to the reference experimental data.

5.1 Test Case and Experimental Setup: Airbus XRF-1

As a test case for the following investigations, a wind tunnel model representing the
Airbus XRF-1 configuration is applied. The XRF-1 model represents a long range, twin
engine aircraft test case. Similar to a modern transonic transport aircraft, the XRF-
1 configuration is defined by a design Mach number of Ma = 0.83 and a design lift
coefficient of C, = 0.5 [43,79].

During several consecutive wind tunnel test campaigns, two different XRF-1 config-
urations were considered. Both configurations include a fixed vertical tailplane (VTP)
and a horizontal tail plane (HTP) as well as adjustable ailerons. The HTP was installed
with a fixed incidence angle of a@ = - 2°. The wing of the model is defined by an aspect
ratio of AR = 9.302, a mean aerodynamic chord of ¢,y = 0.1965 m and a leading edge
sweep of ¢ = 30° [132]. In Table 5.1, basic geometric properties of the XRF-1 wind

tunnel model are summarized.

Quantity Symbol Value
Aspect Ratio AR 9.302
Mean aerodynamic chord Cref 0.1965 m
Sweep angle ) 30°

Table 5.1: Geometric properties of the Airbus XRF-1 wind tunnel model.
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In addition to the tail planes and ailerons, each wing includes four flap track fairings,

as depicted in Figure 5.1. Furthermore, one of the models is equipped with ultra high

bypass ratio (UHBR) engine nacelles [122], as shown in Figure 5.2.

Figure 5.1: Front view of the Airbus XRF-1 wind tunnel model with clean wings
(©Airbus/ETW).

Figure 5.2: Front view of the Airbus XRF-1 wind tunnel model with UHBR engine na-
celles installed ((©Airbus/ETW).

The wind tunnel model is mounted on a straight sting entering the lower fuselage
with a cavity. The offset of the model/sting configuration is defined by an angle of 5°.

The experimental buffet data has been obtained during several experimental cam-
paigns in the cryogenic wind tunnel ETW [132] in Cologne, Germany. The wind tunnel
facility enables the installation of both half-span and full-span models. Besides integral
force and moment measurements, several further measurement techniques can be applied
in the ETW. The ETW can be operated in a Mach number range of 0.15-1.35 and a
Reynolds number up to 50 Mio per meter. Further, an independent variation of Mach
and Reynolds numbers as well as dynamic pressures is possible. These conditions are
set by pressurizing the test section up to 450 kPa and operating at low temperatures

around 110 K due to the injection of liquid nitrogen [132].
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Dynamic Data Acquisition

During the wind tunnel tests, both steady and unsteady data were acquired. However,
in the following the focus lies on dynamic pressure data acquisition. Therefore, the
wing and HTP were instrumented with unsteady pressure transducers, referred to as
Kulites (KUP), located at different span - and chordwise positions on the upper wing
surface. Further, unsteady pressure transducers were mounted on the lower wing sur-
face, however, they are not considered in the following. In Figure 5.3, the positions of

the unsteady pressure transducers on the wing upper side are depicted.

KUP10401
KUP10402

n=26%---- T
KUP10802
KUP10803 KUP10801
n=47%----
0= 1A% KUP11001
n=>544% -~~~ KUP11201
KUP11402
n = 58.4%---- —e KUP11401

KUP11801

n = 63.8%----
KUP11802

KUP11803

Figure 5.3: Pressure sensor positions on the wing upper side.

The sensors are located at six spanwise positions n=[26%, 47%, 51.4%, 54.4%, 58.4%,
63.8%]|. The installation of the pressure sensors aims for capturing shock movement and
flow separation at different flow conditions and incidence angles. The pressure sig-
nals are recorded with a high speed data acquisition system with a sampling rate of
fs = 10000 Hz. All measurements are synchronized with a common time stamp. Fur-
ther, the data is low-pass filtered at a frequency of f = 4000 Hz, which is lower than the
Nyquist frequency fy (fy < %) The length of each sensor signal was defined by the
duration of additional pressure sensitive paint (PSP) measurements, with the pressure
sensor being active during each run [132|. Therefore, the time for each run was set to

3.86 seconds, resulting in 38600 samples included in each signal.
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In addition to the pressure transducers, several accelerometers are placed inside the
model. In order to provide a separate signal for the z-,y-, and z-direction, a three-
component accelerometer is located in the balance. Further, the nose, fuselage rear
part, the port as well as the flap track fairings beneath the wings are equipped with

devices measuring the acceleration in z-direction.

Pressure Sensitive Paint Measurements

In addition to the pressure sensor data acquisition, optical measurements using the pres-
sure sensitive paint (PSP) technique and time-resolved PSP, in the following referred to
as iPSP [73,148|, were conducted. The measurements were obtained by the DLR and
the ETW test teams. Here, the unsteady pressure sensor signals define reference mea-
surements for iPSP data. With the iPSP setup, upper wing surface pressure image
acquisition with a sampling frequency of 1000 or 2000 Hz was possible. All iPSP mea-
surements were conducted in a pitch/pause mode, enabling a fixed incidence at each

run.

Buffet Flow Conditions

During the tests, different buffet conditions were considered. The measured flow condi-
tions were defined in order to enable the analysis of isolated effects due to changes in
Mach and Reynolds number as well as the angle of attack [132]. The Mach number was
varied between Ma.,, = [0.84, 0.87, 0.9], whereas the Reynolds number was set to Re
= [3.3 Mio., 12.9 Mio., 25 Mio.|. Further, two levels of dynamic pressure ratios ¢/E =
[0.2 -1075, 0.4 -107%] were applied. In the following, flow conditions defined by Mas,
= 0.78 and Re = 3.3 Mio. are not considered, since no unsteady data was acquired at
these conditions. In Table 5.2, the flow conditions considered for the investigations in

this thesis are summarized.

Mas, = 0.84 Mas, = 0.84 Mas, = 0.9 Mas, = 0.9
Re = 12.9 Mio. Re = 25 Mio. Re = 12.9 Mio. Re = 25 Mio.

a ] 3,3.5,4 3,3.5,4,45,5 5,6,6.5,69,7 25,4,5,6

Table 5.2: Investigated buffet flow conditions in the ETW for the XRF-1 configuration.
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5.2 Buffet Flow Characterization

In the following section, a comprehensive characterization and analysis of the buffet in-
stability on the XRF-1 configuration is presented. In the first part of the section, the flow
topology of the buffet flow is discussed. Here, differences between the flow characteris-
tics of the clean wing and the wing with the UHBR nacelle are highlighted. Following
the general characterization, the data obtained by the pressure sensors is examined and
presented. In the third subsection, a shock-motion analysis is conducted by means of

cross spectra and coherence of the unsteady pressure samples.

5.2.1 Flow Topology

In the following section, iPSP surface pressure data is analyzed. Due to Airbus disclosure
restrictions, the visualizations of contours can be solely presented non-dimensional and
without the corresponding legend. Further, it has to be noted that the LE and TE of the
wing are subject to higher measurement errors due to the iPSP measurement limitations,
which result in flawed data. Therefore, the data near the LE and TE are neglected in
the following investigation. In all figures, the surface pressure distribution is visualized
using the mean of the pressure coefficient ¢,, computed based on 500 c,-snapshots of

each flow condition. The ¢, is defined as follows

500
D — Poo _
cp = ) Cp = E Cp, 5.1
P %pooUgO P p Pi ( >

with peo, poo and U, denoting freestream static pressure, density and freestream flow
velocity, respectively.

Prior to a detailed flow characterization considering different Mach and Reynolds
numbers as well as angle of attacks «, a general characterization of the buffet flow topol-
ogy is presented. In Figure 5.4, the mean pressure distribution on the wing suction side
at a flow condition of Ma,, = 0.84, Re = 25 Mio. and an angle of attack of a = 4°,
is depicted. Here, the clean wing without UHBR nacelle is considered. Further, it has
to be noted that the large green dots on the entire wing represent areas where no data
has been obtained by the optical iPSP measurement. In contrast, the smaller green dots
arranged in lines on the TE are defined as the position of the unsteady pressure sensors.

As shown in Figure 5.4, a distinct A-shaped two-shock pattern across the entire wing
span is clearly visible. The main shock, which is marked in yellow, spreads over the rear
part of the chord from wing root (inboard region) to the wing tip (outboard region),
whereas a second shock (marked in orange) is visible at the inboard region of the wing.
Here, it originates near the LE at the root of the wing towards the midspan region of
the wing. Behind the main shock, the flow is separated along the whole span. The area

of separated flow is visualized by a black dotted line in Figure 5.4.
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Figure 5.4: Mean surface ¢, on the clean wing suction side at Ma., = 0.84, Re = 25
Mio. and o = 4° (iPSP).

Following the general characterization of the flow topology at buffet condition on the
clean wing configuration, varying flow conditions are considered in the following. In
Figure 5.5, the mean pressure distributions on the wing suction side at a flow condition
of Mas = 0.84, Re = 25 Mio. and varying angles of attack o = [3°, 3.5°, 4°, 4.5°, 5°|
are visualized.

For each flow condition, the characteristic A-shaped two-shock pattern is visible, how-
ever, clear changes due to varying « are indicated. With increasing incidence, the main
shock position at the inboard region slightly shifts aft, while the shock position in the
midspan and outboard region moves towards the LE. The sweep angle of the second
shock increases and the intersection point of both shocks moves inboard. Further, the

intensity of both shocks increases with increasing incidence.

Figure 5.5: Comparison of surface ¢, at varying angles of attack (clean wing,
Mas, = 0.84, Re = 25 Mio., iPSP)
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Considering a flow condition with a higher Mach number Ma,, = 0.9 and Re = 25
Mio. kept constant, as shown in Figure 5.6, similar changes in the span-wise two-shock
pattern become apparent. With increasing «, the intensity and position of both shock
changes, however, the main shock movement in the midspan and outboard region is less

pronounced compared to the lower Mach number flows visualized in Figure 5.5.

o = 2.5° oa=4° o =5 o= 06°

Figure 5.6: Comparison of surface ¢, at varying angles of attack (clean wing, Ma,, = 0.9,
Re = 25 Mio., iPSP)

Besides the influence of increasing «, the influence of changes in the Re number on
the pressure distribution are investigated in the following. In Figure 5.7, wing suction
side pressure distributions for two Re numbers Re = [12.9, 25] Mio. for two specific
Mach and a combinations (Mas = [0.84, 0.9], o = [4°, 5°]) are exemplary visualized.
As shown, compared to the influence of varying angles of attack, changes in the Re

number do not affect the position and the intensity of the spanwise two-shock pattern.

May =084, a =4"/ May, =09, a =5
Re = 12.9 Mio. Re = 25 Mio. Re = 12.9 Mio. Re = 25 Mio.

\\\

Figure 5.7: Comparison of surface ¢, at varying Reynolds numbers Re = [12.9, 25| Mio.,
Mas, = [0.84, 0.9] and a = [4°, 5°] (iPSP).
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Shifting the focus to the surface pressure distribution of the wing with the UHBR na-
celle installed, a general characterization of the flow topology is visualized in Figure 5.8.
Here, a flow condition with Ma., = 0.84, Re = 25 Mio. and a = 4° is considered. Sim-
ilar to the flow topology of the clean wing (see Figure 5.4), the characteristic A-shaped
two-shock pattern along the wing span is again clearly visible. In addition, a third shock
(marked in red) originates from the position of the UHBR nacelle to the root of the wing

and intersects with the other inboard shock.

Inboard
region

Shock 2

Shock 3

Midspan
region

Outboard
region

Figure 5.8: Mean surface ¢, on the UHBR wing suction side at Ma, = 0.84, Re = 25
Mio. and a = 4° (iPSP).

Following the general presentation of the UHBR wing buffet flow topology, changes
in surface pressure due to varying flow conditions are analyzed in the following. In Fig-
ure 5.9, changes in surface pressure due to changes in the angle of attack at Ma,, = 0.84
and Re = 25 Mio., are shown. Consistent with findings referred to the flow topology on
the clean wing, with increasing « the terminating inboard shock position moves towards
the TE, while the shock position in the midspan and outboard region is shifted forward
towards the LE. However, compared to the clean wing configuration, the movement of
the inboard shock position is less distinct. Further, the magnitude of the main and
second shock increases with increasing incidence, while the strength of the third shock
remains unchanged. In addition, focusing on the intersection of shock 1 and shock 2, a
similar behavior as on the clean wing is indicated. With increasing «, the intersection

of both shocks moves towards the inboard region.
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\\\\

Figure 5.9: Comparison of surface ¢, at varying angles of attack (UHBR wing,
Mas, = 0.84, Re = 25 Mio., iPSP).

In Figure 5.10, the surface pressure distributions at Ma,, = 0.9, Re = 25 Mio. and
varying a = [2.5°, 4°, 5°, 6°] are depicted.

o = 2.5° a =4

Figure 5.10: Comparison of surface ¢, at varying angles of attack (UHBR wing,
Ma, = 0.9, Re = 25 Mio., iPSP).

Analogous to the lower Mach number cases, the inboard shock position moves to-
wards the TE, whereas in the midspan and outboard area the main shock moves to the
LE. However, compared to the surface pressures shown in Figure 5.9, the shift towards
the LE is less pronounced than for the lower Mach number pressure distributions.

To summarize the results presented within this section in Figure 5.5 to Figure 5.10,
distinct buffet flow characteristics are captured by the optical iPSP measurements. Fur-
ther, clear differences between the flow topology of both the clean wing and UHBR wing
configuration, are presented.
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5.2.2 Unsteady Pressure Sensor Analysis

In order to identify characteristic features of the buffet instability, pressure sensor data
is analyzed in the following. Here, only pressure data measured on the clean wing
configuration are considered for simplification. For the analysis, flow conditions at
Mas, = [0.84, 0.9] and Re = 25 Mio. are investigated. Further, the pressure spec-
tra at different span - and chordwise positions are evaluated. Analogous to the data
presented in Section 5.2.1, the following figures are shown without the corresponding

legend on the y-axis due to Airbus closure restrictions.

n = 47%, KUP10802 n = 51.4%, KUP11002

PSD ¢, []
PSD ¢, [-]

102 10~ 100 102 10~ 100
Reduced Frequency k,eq Reduced Frequency k;.q
n = 58.4%, KUP11402 n = 63.8%, KUP11802

PSD ¢, []
PSD ¢, [-]

102 10! 10° 102 10! 10°
Reduced Frequency k;..q Reduced Frequency k;.cq
—a=3 — a=35° —a=4° o =45° a=25°

Figure 5.11: Power spectral densities of ¢, at varying a obtained by dynamic pressure
sensors at spanwise positions n = [47%, 51.4%, 58.4%, 63.8%| (M a = 0.84,
Re = 25 Mio.).
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In Figure 5.11, the power spectral densities (PSD) of the pressure data at Ma,, = 0.84
and Re = 25 Mio are plotted over the reduced frequency, considering different spanwise
positions n = [47%, 51.4%, 58.4%, 63.8%]|. In all spectra, a variety of peaks at different
reduced frequencies, are visible. At low frequencies around 0.01 < k.4 < 0.1, higher
amplitude peaks dominate the spectrum, especially at lower angles of attack of o = [3°,
3.5°, 4°]. With increasing incidence, the amplitude peaks at lower frequencies are less
pronounced. Besides the low frequency peaks, a significant peak at a reduced frequency
of kreq =~ 0.13 (marked in orange) is present for almost all angles of attack. Especially
for lower angles of attack, this peak dominates the spectra.

Apart from the narrowband, low frequency peaks, broadband fluctuations occur at
higher frequencies with a wide peak (marked in red) emerging. At a spanwise position
of n = 47% and « = 3.5°, this peak occurs at roughly k.. = 0.8 and shifts to lower
frequencies of k..q = 0.4 at a = 5°. A similar trend is visible at n = 51.4%, with
the broadband frequency bump shifting from k,.; = 0.7 at @ = 3.5° to k,..q = 0.4 at
a = 5°. However, the amplitude of the broadband frequency bump is larger compared
to the frequency bump at n = 47%. Consistent with findings of recent numerical and
experimental studies [54,59,93|, these broadband fluctuations are assumed to be related
to aerodynamic buffet oscillations. At o = 3°, almost no broadband frequency peak is
visible in the spectra, which might results from buffet onset at this angle of attack [132].

With increasing spanwise position, the amplitude of the broadband frequency bump
starts to decrease. Further outboard at n = 63.8%, the broadband frequency range is
not as easily distinctable from the remaining higher frequency content. There is some
indication of a high frequency bump at lower incidences, however, it is less distinct than

at the other spanwise positions.

e KUP10802 eKUP11002 e KUP11402 KUP11802

Figure 5.12: Mean pressure distribution ¢, on the upper wing surface at varying angles
of attack o = [3°, 3.5°, 4°, 4.5°,) 5°| (Mas = 0.84, Re = 25 Mio.).

Examining the shock position at each respective flow condition relative to the sensor
position at KUP11802 (n = 63.8%), as shown in Figure 5.12, a larger distance between



88

5. WING BUFFET PREDICTION

shock position and sensor position is visible for increasing angles of attack. Due to the

increased distance, the buffet oscillations might be less visible in the spectrum compared

to the other sensor positions.

Shifting the focus to the pressure data obtained at Ma,, = 0.9 and Re = 25 Mio.,

as shown in Figure 5.13, a similar but less pronounced characteristic, as presented in

Figure 5.11, is visible.

n = 47%, KUP10802

n = 51.4%, KUP11002
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PSD ¢, [-]

1072 1()I—1 1I0()
Reduced Frequency kyeq
n = 58.4%, KUP11402

102 10! 10°
Reduced Frequency kg
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Figure 5.13: Power spectral densities of ¢, at varying a obtained by dynamic pressure
sensors at spanwise positions n = [47%, 52.4%, 58.4%, 63.8%| (M as = 0.9,

Re = 25 Mio.).

At low frequencies (0.01 < k.4 < 0.1), high amplitude peaks are present, with the am-
plitudes reducing with increasing angles of attack. The characteristic peak at k,.q &~ 0.13

(marked in orange) is also indicated in all spectra. At a lower angle of attack a@ = 2°,
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a broadband frequency bump (marked in red) at 0.3 < k,.q < 0.8 is visible, with a
comparatively larger amplitude at n = [47%, 51.4%]| than at Ma., = 0.84. As shown in
Figure 5.14, at a = 2.5° the sensors are located close to the shock, which might cause the
larger increase in the amplitude. Similar to the spectra at Ma,, = 0.84, the frequency
bump slightly shifts towards lower frequencies with increasing incidence, however, the

overall fluctuations are more broadband.

¢ KUP10802 eKUP11002 e KUP11402 e KUP11802

Figure 5.14: Mean pressure distribution ¢, on the upper wing surface at varying angles
of attack o = [2.5°, 4°, 5°, 6°] (May = 0.9, Re = 25 Mio.).

Besides the visualization of the sensor spectra at varying angles of attack, a com-
parison of the spectra at Ma,, = [0.84, 0.9], Re = 25 Mio. is depicted in Figure 5.15.
Here, angles of attack of o = [4°, 5°] measured at the same sensor position as shown
in Figure 5.11 and Figure 5.13, are considered. By comparing the spectra it becomes
clear that at Mas, = 0.84, the overall level of PSD at the sensor positions KUP10802,
KUP11002 and KUP11402 is higher over the entire reduced frequency bandwidth. In
contrast, the spectra at KUP11802 show an overall higher PSD level for Ma,, = 0.9.
Further, as already shown in Figure 5.11 and Figure 5.13, for the lower Mach number
spectra, the broadband buffet frequency peak is more pronounced and shifted towards
higher reduced frequencies.

Since the experiments were conducted using a full aircraft model, which is mounted
on a sting, structural vibrations need to be taken into account if frequency spectra are
analyzed. Besides aerodynamic phenomena, pressure fluctuations and corresponding
frequencies due to structural eigenfrequencies need to be identified.

A ground vibration test (GVT) is preferred to give insights into the structural be-
havior of the model. Based on the GVT, a number of modes and their corresponding
frequencies have been identified and provided by the DLR and ETW test teams. In Ta-

ble 5.3, the modes and frequencies are summarized. In order to determine the origin and
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differences of various peaks in the pressure and acceleration sensor spectra, the spectra

of the acceleration signals are investigated in the following.

n = 47%, KUP10802 n = 51.4%, KUP11002

0.01

Ceq E"egl

Reqg,

1

le Q>
DCJ/ ’%r@d ?5

n = 63.8%, KUP11802

—— Ma=084 - Ma = 0.9

Figure 5.15: Power spectral densities of ¢, at o = [4°, 5°] and Ma., = [0.84, 0.9] obtained
by dynamic pressure sensors at spanwise positions n = [47%, 52.4%,58.4%,
63.8%| (Re = 25 Mio.).

In Figure 5.16, the spectra of the nose-, rear-, starboard- as well as the triax balance
accelerometers are depicted, considering Ma., = [0.84, 0.9], Re = 25 Mio. and o = 4°.
Although different flow conditions are considered, similar spectra results, with distinct
peaks at a wide range of frequencies. However, most dominant is the peak at k,.4 = 0.13,
that is also visible in most of the pressure spectra of the sensor signals shown in Figure
5.12 and Figure 5.14.
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Figure 5.16: Power spectral densities of accelerometer signals obtained at Ma., = [0.84,

0.9], Re = 25 Mio. and o = 4°.
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Name Frequency [Hz] Damping [%]
A/C asymmetric y-translation 7.39 0.61
A/C symmetric heave 8.121 0.25
A/C asymmetric yaw 10.59 0.34
A /C symmetric pitch 13.15 0.23
A /C asymmetric roll 24.96 0.12
A/C symmetric x-translation 61.14 0.76
Asymmetric sting bend 25.71 1.34
Symmetric 2°¢ wing bending 42.12 0.24
Symmetric sting bending 45.41 2.04
Asymmetric 3' wing bending 63.34 0.23
Asymmetric 2"¢ sting bending 70.84 1.42
Asymmetric lateral sting bending 107.08 1.17
4™ wing bending 126.72 0.31
Asymmetric 5" wing bending 153.68 0.76
Asymmetric fuselage bending 196.04 1.31
Symmetric fuselage bending 205.19 1.31
Asymmetric 1% wing inplane 237.61 1.18
Symmetric 2°¢ wing inplane 249.25 0.65
Symmetric 6*" wing bending 309.25 0.72
Asymmetric 7" wing bending 330.39 0.55
Asymmetric 2°¢ sting bend 365.69 1.12
Symmetric 3'¢ fuselage bend 382.86 1.91
Asymmetric wing torsion 421.26 0.85
Symmetric wing torsion 425.98 0.70
Asymmetric 3'¢ fuselage bend 467.75 0.74
Symmetric 8" wing bending 486.19 1.00

Table 5.3: Modes and corresponding frequencies of the XRF-1 wind tunnel model as
obtained by a ground vibration test (GVT).

In order to compare the frequency peaks of both acceleration and pressure sensor
signals, the spectrum of the starboard accelerometer signal and the pressure sensor
KUP11002 are shown in Figure 5.17. For a better assignment of the GVT modes listed
in Table 5.3, the spectra are represented using the frequency instead of the reduced
frequency. As indicated, several frequencies related to GV'T modes can be identified in
both spectra.

In the lower frequency range at 8-13 Hz, frequencies related to sting induced heave
and pitching oscillations are indicated. At frequencies of 20-45 Hz, oscillations and sym-
metric wing bending frequencies are visible in both spectra. At a frequency of 127 Hz,
a distinct peak is shown in both spectra, which corresponds to the peak at k,..q = 0.13,
visible in most of the pressure sensor spectra. Therefore, this peak clearly shows a
structural related frequency associated to wing bending. Further, a second larger peak
at a frequency of 154 Hz is visible, which is assumed to be additionally related to wing

bending.
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Figure 5.17: Power spectral density of the starboard accelerometer signal (top) and the
pressure sensor KUP11002 (bottom) obtained at Mas = 0.84 , Re = 25
Mio. and o = 4°.

As a conclusion, based on the comparison of the accelerometer and pressure sensor
spectra, frequencies related to structural vibrations as well as buffet frequencies can be
identified and distinguished. The lower frequency range covers clear structural frequen-
cies, whereas the buffet frequencies are present at a higher frequency range with a larger

bandwidth compared to the structural frequencies.

5.2.3 Shock Motion Analysis

Following the investigation of the buffet characteristics, cross-spectra analysis is per-
formed in order to quantify the buffet wave-propagation speed in spanwise direction.
Following the studies by Koike et al. [59] and Masini et al. [83], data measured by the
unsteady pressure sensors is used to determine the buffet propagation speed.
Considering two pressure signals x; and y; obtained at buffet condition and includ-
ing a certain number of timesteps ¢, the statistical relation between the signals can be

expressed by their magnitude squared coherence C,, at a defined sampling frequency

f183]:
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| Sy (I
Saw(£)Syy(f)

with Sy, (f) and Sy,(f) denoting the PSD estimates of each signal, calculated by

means of Welch’s method. S,,(f) is defined as the cross-spectrum, which is computed

using the cross-correlation of both signals. The phase shift ¢,,(f) between the two

signals can be evaluated as follows [83]:

_ Re(Sqy(f))
Guy(f) = arctan <—Im(Smy(f))) (5.3)

Based on the physical distance between the pressure sensors As, the frequency range
Af at high coherence as well as the phase shift at the frequency range ¢.,(Af), the
convection velocity U, can be computed as follows [83]:

Af

UC = QWASM (54)

For the wave speed computation, data obtained at Ma,, = 0.84 and Re = 25 Mio.,
is selected. In Figure 5.18 and Figure 5.19, five snapshots of the pressure distribution
on the upper wing surface are shown for Ma., = 0.84, Re = 25 Mio. and a = 4° and
Mas = 0.9, Re = 25 Mio. and a = 4°, respectively. These five snapshots represent a
buffet period.

By comparing the change in pressure distribution along the span, a more pronounced
motion of the shock front for Ma,, = 0.84 is indicated. Especially at a spanwise po-
sition between roughly 60% to 80%, the motion of the buffet instability is visible. For
clearance, the area of shock motion is marked with a black circle. Further inboard and
outboard, almost no buffet oscillations are indicated. At May, = 0.9, a buffet cell motion

is indicated at 70% spanwise position, however, the shock motion is less pronounced.

t t+1 t+2 t+3 t+4

Figure 5.18: Surface pressure distribution ¢, representing a buffet period on the wing
suction side at Mao, = 0.84, Re = 25 Mio. and a = 4° (iPSP).
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t t+1 t+2 t+3 t+4

Figure 5.19: Surface pressure distribution ¢, representing a buffet period on the wing
suction side at Ma, = 0.9, Re = 25 Mio. and a = 4° (iPSP).

Since the largest buffet motion is indicated at Ma. = 0.84 between 60% and 80%
spanwise position, the signals obtained by the sensors KUP11002 and KUP11802 are
used in the following for the computation of the spanwise shock motion. Therefore, the
magnitude squared coherence C' (see Equation 5.2) and the phase angle ¢ (see Equation
5.3) between both sensor signals are computed. In Figure 5.20 (left), the coherence and
the phase angle between the sensors at Ma,, = 0.84, Re = 25 Mio. and o = 4° are
visualized. For comparison, coherence and phase angle at Ma,, = 0.84, Re = 25 Mio.

and o = 5° between both sensors are additionally depicted in Figure 5.20 (right).
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Figure 5.20: Magnitude squared coherence C' and phase angle ¢ between pressure sensors
KUP11002 and KUP11802 (Ma, = 0.84, Re = 25 Mio., a = [4°,5%]).

The range of frequencies, which are distinct for the propagation of the buffet motion,
are defined by regions of high coherence [83]. For o = 4°, high coherence is given at
kreqa = 0.4 - 0.6, whereas at o = 5° the highest coherence occurs at k,..q ~ 0.25 - 0.5. At
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the selected frequency ranges, the phase shift shows an almost linear behavior, indicating
a constant buffet propagation speed. Since the slope of the phase angle is negative, the
shock propagates outboard towards the wing tip.

Applying Equation 5.4, the propagation speed in spanwise direction is Ug = 48.6 m/s
= 0.27 Uy, for @ = 4° and Us = 59.4 m/s = 0.33 U, for a = 5°. Comparing the computed
velocities with recent findings of numerical and experimental studies, a good agreement
is indicated. Paladini et al. [93] evaluated velocities in the range of Uy /Uy =~ 0.23 - 0.26
on different wings with moderate sweep. More specifically, two different half wing/-
fuselage body configurations based on the OAT15A airfoil, a half wing/fuselage body
configuration from Dassault Aviation as well as a generic half wing/fuselage body model
from the FLIRET (Flight Reynolds number testing) project have been investigated. A
study by Masini et al. [83] obtained a similar value of U /U, = 0.26, considering the
RBC12 aircraft configuration. Sugioka et al. [146| derived a propagation speed of U, /U,
= 0.53, studying a 80% scaled NASA CRM configuration. Further studies on the NASA
CRM by Timme [127] and Ehrle et al. [30] revealed propagation speeds of U /U, = 0.26
to 0.32 and U /U, = 0.24 to 0.28, respectively. In Table 5.4, convection speeds as

obtained by the studies mentioned above, are summarized.

Publication Propagation Speed Uy /U Test Case
Paladini et al. [93] 0.26 OAT15A
Paladini et al. [93] 0.24 OAT15A
Paladini et al. [93] 0.23 Dassault model
Paladini et al. [93] 0.26 FLIRET model
Masini et al. [83] 0.26 RBC12 wing
Sugioka et al. [146] 0.53 80% CRM
Timme et al. [127] 0.26-0.32 CRM
Ehrle et al. [30] 0.24-0.28 CRM

Table 5.4: Overview of buffet wave-propagation speeds obtained by recent numerical
and experimental studies.

Besides the computation of the buffet propagation speed in spanwise direction, the
propagation speed in chordwise direction is additionally investigated. Therefore, the
signals obtained by the sensor KUP10803 and KUP10802 are applied. Analogous to the
investigation of the spanwise propagation speed, data obtained at Ma., = 0.84, Re = 25
Mio. and o = [4°, 5°] are used. In Figure 5.21, coherence and phase angle between both
sensors for a = 4° (left) and o = 5° (right) are depicted. As shown, for a = 4° an
increase in coherence is indicated at k,.q =~ 0.2 - 0.5, whereas at o = 5° the highest
coherence occurs at k,.g &~ 0.3 - 0.5. In addition, the phase shift at the frequencies with
the highest coherence values is almost linear, which indicates a propagation speed in
chordwise direction. Applying Equation 5.4, the propagation speed in chordwise direc-
tion is computed as U, = 43.2 m/s = 0.24 Uy, and U, = 52.2 m/s = 0.29 U, for a = 4°

and a = 5°, respectively.
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Figure 5.21: Magnitude squared coherence ' and phase angle ¢ between pressure sensors
KUP10802 and KUP10803 (Ma., = 0.84, Re = 25 Mio., a = [4°,5°]).

In Figure 5.22, a schematic summary of the propagation speeds as well as the related

reduced frequencies in chord - and spanwise direction, is visualized.

a=4° o =5°

chordwise
U.=0.29 - U,
koo 0.3 -0.5

chordwise
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kreqs = 0.4 - 0.6

Sspanwise
U; =0.33 - Uy
Keqs = 0.25 - 0.5

Figure 5.22: Buffet propagation speed and frequency in chord - and spanwise direction
for a = 4° (left) and a = 5° (right) (Maw = 0.84, Re = 25 Mio.).
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5.3 Prediction of Local Pressure Characteristics

Following the introduction of the Airbus XRF-1 wind tunnel model and the flow analy-
sis, the following section presents the training and application process of a LSTM neural
network for the prediction of local pressure characteristics measured by the unsteady
pressure sensors. In the first part of this section, the preprocessing steps of the exper-
imental data are outlined. The second section includes a detailed description of the
LSTM training procedure as well as the selection of the hyperparameters. In the third
part, the trained LSTM is applied for the prediction of unsteady pressure data, which
is not included in the training data set. Here, pressure data obtained at different flow

conditions and sensor positions are used for performance evaluation.

5.3.1 Data Preprocessing

Prior to the training of the LSTM, the experimental data sets need to be preprocessed.
Based on the measurements in the ETW, the signals of each sensor are provided as
sensor output voltage time-series. Therefore, in the first step, the data is processed into
pressure readings, using calibration coefficients provided by the ETW test team.

In the second preprocessing step, the corresponding coefficient ¢, measured at a lo-

cation P and time ¢ is calculated as follows

p(Pat) — Poo

cp(Pt) = T
2PV

(5.5)

with test section static pressure, density and flow velocity po, poo and U, respec-
tively. Subsequent, the mean pressure ¢, is subtracted from all samples, resulting in the

pressure fluctuation coefficient ¢, (Pt):

¢ (Pit) = c,(Pit) — &(P.t) (5.6)

In the last step, all data sets are normalized using the minimum and maximum values
of the pressure fluctuations ¢y in(P;t) and ¢ ma(Pit) as calculated from the data set.

Therefore, all data values are rescaled to [-1,1].

5.3.2 Training of the LSTM-ROM

The aim of the LSTM neural network is the prediction of local pressure fluctuations at
different span - and chordwise positions. For the training of the LSTM, pressure data
obtained at two different flow conditions at a single sensor position is used. In particular,
data measured at Ma., = 0.84, Re = 25 Mio., and a = [4°, 5°|] by the sensor KUP11002
(n = 51.4%) is used. These flow conditions and the sensor position are selected since the
spectra (see Figure 5.11, top right) clearly represented characteristic buffet frequencies,

while at the same time the influence of structural frequencies is moderate.
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Prior to the training process, the experimental data sets are split into two parts for
training and validation purposes. Consistent as in Section 4.3, 70% of the data points
included in each data set are taken for the training of the LSTM, whereas the remaining
points are applied for validation. During the training, the pressure samples are fed into
the LSTM in sequences, including 256 data points each. The batch size is defined as
one. A stacked LSTM with three consecutive layers is applied, with each layer including
200 neurons per layer. Analogous to previous application cases of the LSTM, a hyper-
bolic tangent (tanh) is selected as the state activation function, while the gate activation
function is chosen as sigmoid (o). The initial learning rate is set to 10~* and the training
of the LSTM is terminated after 600 epochs. During the training, the MSE between the
experimental pressure samples and the LSTM predictions, is minimized. In Figure 5.23,

the convergence trends of the training and validation loss are visualized.
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Figure 5.23: Convergence trends of training and validation loss.

In Table 5.5, the optimized hyperparameters for the training of the LSTM are sum-

marized.

Hidden layers 3
Neurons per layer 200
Sequence length 256
Batch size 1
Initial learning rate 1-107*
State activation tanh
Gate activation o

Table 5.5: Hyperparameters of the LSTM.
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5.3.3 Performance Evaluation

As a first step for the performance evaluation of the trained LSTM-ROM, the LSTM is
applied for the prediction of unknown pressure samples obtained from sensor KUP11002
at May = 0.84, Re = 25 Mio. and « = [3.5°, 4.5°]. Therefore, the LSTM is applied in a
recurrent multi-step prediction mode. To start the iteration of the recurrent multi-step
predictions, the first 100 time steps of the unknown sensor data are provided to the
LSTM for initialization. As the multi-step prediction proceeds, the experimental data
set input is successively substituted by pressure samples predicted by the LSTM itself.

In Figure 5.24 (left) and Figure 5.24 (right), a comparison of the experimental data
and the data obtained by the LSTM at o = 3.5° and @ = 4.5° is visualized, respectively.
Therefore, the data is presented by means of the PSD of ¢,, plotted over the reduced

frequency kieq.

a=3.5° a = 4.5°
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Figure 5.24: Comparison of experimental and predicted PSD of ¢, at o = 3.5° (left) and
a = 4.5° (right) (Mas = 0.84, Re = 25 Mio., KUP11002).

As shown, the trained LSTM is able to capture the trends of the pressure data at both
flow conditions. Almost all frequency peaks are correctly represented, however, there
is a slight shift towards lower amplitudes of the predicted data at higher frequencies.
Further, the broadband frequency bump at 0.3 < k,..q < 0.8, which is related to buffet
oscillations, is captured by the LSTM-ROM at both conditions.

In order to quantify the error between the experimental data and the data computed
by the LSTM-ROM, the error metrics as introduced in Section 3.7 are applied. In Ta-
ble 5.6, amplitude, phase and comprehensive error as well as the corresponding fit factor
for the considered test cases are summarized. As shown, an overall fit of about 80% is
achieved by the trained LSTM-ROM.
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o [°] AGTT‘ Perr Ce'r'r Q
3.5 -0.098  0.084  0.11  80.4%
45 -0.087  0.092  0.11  80.4%

Table 5.6: Amplitude, phase, comprehensive error and fit factor of the LSTM-ROM ap-
plied to a = [3.5°, 4.5°] (May = 0.84, Re = 25 Mio., KUP11002)

Prediction of Pressure Characteristics at Varying Flow Conditions

Besides the application of the trained LSTM-ROM for the prediction of pressure data
at different angles of attack, the LSTM-ROM is used for multi-step predictions of sen-
sor data obtained at different flow conditions. Therefore, pressure samples obtained at
May = 0.9, Re = 25 Mio, a = [4°,5°] and Ma., = 0.84, Re = 12.9 Mio, o = [3°, 4°| are
provided as an input for the multi-step computations.

As already outlined, the first 100 data points of each data set are provided as input
for the LSTM-ROM predictions. In Figure 5.25 and Figure 5.26, the experimental result
are compared to the LSTM-ROM predictions. Similar to the results presented in Figure
5.24, the trained LSTM-ROM is able to capture the pressure trends at each considered
test condition. However, compared to the previous test cases, some frequency peaks are
not captured correctly. Further, the amplitude shift between the experimental data and
the predicted data points is larger, especially in the high frequency region. However,
the broadband frequency bump related to aerodynamic buffet oscillations is captured
for each of the considered test cases. Examining the corresponding errors of the selected
test cases summarized in Table 5.7, slightly higher errors compared to the previous test

cases result. However, the decrease in the fit factor is only around 2-3%.

I
Ut
o

a=4° o

PSD ¢, [-]
-P"SD e [

102 10~ 10 102 10~ 107
Reduced Frequency k,¢q Reduced Frequency kg
—— Experimental Data ~ ----- ROM/LSTM

Figure 5.25: Comparison of experimental and predicted ¢, at a = 4° (left) and o = 5°
(right) (Maw = 0.9, Re = 25 Mio., KUP11002).
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PSD ¢, [
PSD ¢, []

102 10~ 107 102 10~ 10°
Reduced Frequency kg Reduced Frequency K eq
— Experimental Data ~ ----- ROM/LSTM

Figure 5.26: Comparison of experimental and predicted ¢, at a = 3° (left) and o = 4°
(right) (Mas = 0.84, Re = 12.9 Mio., KUP11002).

May, Re [Mio.| a |’ Arr P... Cerr Q
0.9 95 4 -0.102 0.087 0.12 79.3%
' 5 -0.097 0.088 0.12 79.3%
3 -0.098 0.09 0.13 78.5%
0.34 12.9 4 -0.097 0.094 0.12 79.3%

Table 5.7: Amplitude, phase, comprehensive error and fit factor of the LSTM-ROM ap-
plied to varying flow conditions at a fixed sensor position KUP11002.

Prediction of Pressure Characteristics at Varying Sensor Positions

In addition to the application of the trained LSTM towards test cases with varying flow
conditions, the LSTM is applied for the prediction of pressure data as obtained at differ-
ent sensor positions. Therefore, sensors which are located at the same spanwise position
(n = 51.4%) as well as sensors which are located closer to the wing root and wing tip,
are selected. In particular, the following sensor positions are selected for performance
evaluation: KUP11001, KUP10801, KUP11402, KUP11802. The flow condition of the
test cases is selected as Mas, = 0.84, Re = 25 Mio. and o = [4°, 5°|. In Figure 5.27
and Figure 5.28, power spectra of the original sensor signals and the signals predicted
by the LSTM are compared for each considered sensor position at @« = 4° and o = 5°,
respectively. In addition, the mean pressure distribution of the considered flow condition
is visualized, with a black and red marker indicating the selected sensor position and

the reference training position, respectively.
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KUP11001

102 107! 10¢
Reduced Frequency k;eq
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1072 10! 107
Reduced Frequency kyeq

KUP11402

101 107
Reduced Frequency k;eq

KUP11802

1071 10°
Reduced Frequency kycq

Experimental Data ~ ----- ROM/LSTM

Figure 5.27: Comparison of experimental and predicted power spectral densities of ¢,
at varying sensor positions (black marker) (May = 0.84, Re = 25 Mio.,
a = 4°). The reference training sensor location is marked in red.
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KUP11001
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Figure 5.28: Comparison of experimental and predicted power spectral densities of ¢,
at varying sensor positions (black marker) (Mao, = 0.84, Re = 25 Mio.,
a = 5°). The reference training sensor location is marked in red.
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Examining the results, an overall good agreement between the original and predicted
signals is indicated. Compared to previous application cases, several peaks in the low
frequency range are not correctly captured by the LSTM-ROM. However, the charac-
teristic broadband buffet frequency bump is represented by the LSTM. Further, there
is some indication of an amplitude shift in the high frequency range, as already shown
for previous test cases. In Table 5.8, the errors and fit factors for each test case are
summarized. Compared to the previous test cases, a slight decrease of about 3-4% in

the overall fit in indicated.

a |’ Sensor Position Ay P.., Cerr Q
KUP11001 -0.11 0.093 0.127 77,5%

4 KUP10801 -0.109 0.099 0.13 76,8%
KUP11402 -0.115 0.1 0.135 75,8%
KUP11802 -0.108 0.095 0.127 77,5%
KUP11001 -0.099 0.096 0.122 77,9%

5 KUP10801 -0.11 0.102 0.132 76,2%
KUP11402 -0.113 0.098 0.132 76,2%
KUP11802 -0.114 0.1 0.134 76%

Table 5.8: Amplitude, phase, comprehensive error and fit factor of LSTM-ROM appli-
cation for pressure data obtained at different sensor positions (Ma,, = 0.84,
Re = 25 Mio., a = [4°, 5°]).

Keeping in mind, that the LSTM-ROM has been trained using data sets including
different frequency content, the overall prediction performance of the LSTM applied to
various test cases is assumed to be accurate and efficient. Although some frequency
peaks in both the low and high frequency range are not correctly captured, the overall
trends of the sensor spectra are well covered. Further, the relevant broadband frequency

peaks related to aerodynamic buffet oscillations are captured by the proposed ROM.
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5.4 Prediction of Buffet Surface Pressure Distributions

Following the prediction of local buffet pressure characteristics on the basis of the mea-
sured unsteady pressure data, this section deals with the prediction of surface pressure
distributions obtained by the iPSP measurements. Here, iPSP data from both the clean
wing and the UHBR wing configuration are considered. For this task, a hybrid model
based on the combination of a convolutional variational autoencoder (CNN-VAR-AE)
and a LSTM neural network is developed and applied. In the first part, the architecture
of the hybrid neural network is introduced. The second part covers a description of the
preprocessing steps applied to the iPSP data sets, followed by the training process of
the hybrid ROM. In the last part, application results of the trained hybrid ROM are

presented and compared to the reference experimental data.

5.4.1 Hybrid ROM Architecture

The hybrid ROM applied for the following investigation is defined by the combination
of a CNN-VAR-AE and a LSTM neural network. Here, the CNN-VAR-AE enables a
reduction of the high-dimensional flow field data into a reduced latent space, whereas
the LSTM is applied in order to predict the temporal evolution of the buffet instability.
Therefore, the hybrid ROM is used for the prediction of buffet pressure distributions at
time steps k+1 to k+m based on several previous snapshots of the pressure distribution
at time steps k —n + 1 to k. Here, n denotes the number of training samples applied
for the prediction, whereas m defines the number of time steps ahead which should be
predicted by the trained model. The architecture of the hybrid model is illustrated in
Figure 5.29.

CNN-VAR Encoder | [ CNN-VAR Decoder l
J J J
2 ~ 2J+1 N B 2J+1 2 2 C
J L gJ+iglti J
(o] N [l
‘;N ;N >T>< »-.->.T>< > = LSTM - » R ‘>< > EN »;N >;N
X X Zm “ X X X
& A IV
snapshots of snapshots of
experimental predicted
cp-distribution cp-distribution
C
» Conv2x2 - BN — ReLU =l Tensor with shape CxHxW
Feature definition é Encoder
> ConvTranspose2x2 - BN - ReLU C

> FC layer

> Convlxl - Tanh

=  Tensor with shape CxHxW
2 Decoder

C
latent space vector with
Shape Nsnapshots xC

Figure 5.29: Architecture of the hybrid deep learning model.
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The CNN-VAR-AE is defined by an encoder, decoder and a latent space vector. Both
the encoder and decoder of the CNN-VAR-AE are divided into a pre-defined number
of levels. At each level, several operations are performed on the input data, which is
fed into the encoder. Defining the input of the CNN-VAR-AE, snapshots of pressure
distribution ¢, (7,x,y) at each measured time step 7 are combined into an array along the
channel dimensions C. Therefore, the size of the input array is defined as C' x H x W.
H and W denote the spatial resolution of each ¢, snapshot, which are defined by powers
of two.

As the first processing step of the encoder, the number of input features, which is also
referred to as the input channel dimension Cj,, is upsampled to 27. The initial channel
dimension is defined as three, including the time step 7 and the spatial resolution (z,y)
of each pressure coefficient snapshot (c,(7,2,y)). J is set as an integer value in order to
define each following channel dimension by a power of two. After the definition of the
input features, a multi-channel convolution with a kernel size of 2 x 2 and stride s = 2
is performed. Following the convolution, the input is normalized by applying batch nor-
malization (BN) (see Section 3.2.5). In the last encoder step, an activation function is
applied to each element of the incoming array. Within the scope of this thesis, a rectified
linear unit (ReLU) is used.

The sequence of operations described above is applied at each level of the encoder.
Therefore, the output of each encoder level has twice as many channels as the input. In
addition, the size of the spatial dimensions (H,W) is reduced by a factor of two at each
level of the encoder. As the last encoder processing step, the data is fed into a FC layer
in order to reduce the channel dimension. Since a variational AE is used, the resulting
reduced latent features are sampled from a normal distribution.

After the input data has been processed by the encoder, the data is reshaped and fed
into the LSTM. In Figure 5.30, the schematic of the multiple time steps ahead prediction
obtained by the LSTM model is depicted.

C](DTk-—n) Cg—k) C](kaJrl) CZ()Tk+2) CéTk+er)
t t t t t
——f—> — —_— —— f—>
LSTM A LSTM ] LSTM N LSTM i LSTM
t - 1 ) 1 t 1
CZ()Tk—n-H) p k=1 C]()Tk) C](kaH) céT}H»mfl)

time evolution of ¢,-distribution

Figure 5.30: Prediction of time evolution of the c,-distribution as obtained by the LSTM
neural network.
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As soon as the prediction of the LSTM is finalized, the output is fed into the decoder.
Therefore, the low-dimensional data is reconstructed to the original high-dimensional
flow field. At each level of the decoder, a transposed convolution is applied to upscale
the spatial dimension. The corresponding kernel size and stride values are chosen equally
to those of the encoder. In addition, BN is applied at each level of the decoder. In order
to obtain the final prediction, an activation function is applied to the output of the
last decoder level. Therefore, a hyperbolic tangent (tanh) is chosen, which reshapes all

predicted elements to [-1,1].

5.4.2 Data Preprocessing

In order to feed the experimental data obtained from iPSP measurements into the deep
learning model, the data needs to be preprocessed accordingly. All preprocessing steps
are accomplished using the Python library flowTorch [133]. Based on the geometry
of the XRF-1 wind tunnel model and the iPSP measurement technique, the pressure
distribution on the upper wing surface is discretized by 465 x 159 data points.

Due to measurement errors during the wind tunnel measurement campaign, the data
set includes a small amount of non physical ¢, values. Therefore, in the first prepro-
cessing step, the experimental data is cleaned by applying a weight mask, which defines
values of ¢, > 1.5 as 1 and values of ¢, < —1.5 as 0.

In the second step, the number of data points representing the pressure distribution is
downscaled by linear interpolation from 465 x 159 to 256 x 128 (28 x 27). In Figure 5.31,
a comparison of the pressure distribution on the clean wing configuration represented
by the original amount of data points (left) and the interpolated data points (right) is
provided.

Original Resolution Interpolated Resolution

Figure 5.31: Original (left) and interpolated (right) number of data points representing
the buffet pressure load distribution on the upper wing surface of the XRF-1
configuration (clean wing, May, = 0.9, Re = 25 Mio., a = 4°).



5.4. PREDICTION OF BUFFET SURFACE PRESSURE DISTRIBUTIONS 109

The reduced resolution still maintains a high level of detail of the spatial resolution.
The characteristic A-shaped two shock pattern along the wingspan is still clearly visible.
In the final step, the data set is normalized based on the minimum and maximum
pressure values in the data set (¢pmin,Cpmaz)- Therefore, the resulting value range of all

¢p-snapshots is rescaled to [-1,1].

5.4.3 Training of the Hybrid ROM

The training of the hybrid deep learning model includes two consecutive steps. In the
first step, the CNN-VAR-AE is trained independently from the LSTM, using ¢, - snap-
shots representing one or more flow conditions. In the second step, the LSTM is trained
based on a set of reduced c,-snapshots, which have been encoded by the trained CNN-
VAR-AE.

Since the application of the trained hybrid ROM aims for the prediction of buffet
pressure distributions at unknown flow conditions, snapshots representing several flow
conditions are applied for the training. Within the scope of this thesis, the focus is on
the prediction of buffet pressure characteristics considering a flow condition measured
at a different angle of attack as applied for the training of the model.

In order to evaluate the performance of the hybrid ROM for the computation of var-
ious unsteady flow fields, iPSP data obtained from both the clean wing and the UHBR
wing configuration are applied for ROM training and evaluation. Therefore, two hybrid
deep learning models are individually trained and applied.

The CNN-VAR-AE is trained using snapshots representing two different flow condi-
tions, defined by Mas, = 0.9, Re = 25 Mio. and o = [4°, 6°]. For the training of the
CNN-VAR-AE, in total 2000 ¢,-snapshots are considered, including 1000 ¢,-snapshots
for each flow condition. For hyperparameter tuning and validation, in total 400 c,-
snapshots are used. During the training, the c,-snapshots are fed into the encoder in
batches, including 128 time steps each. For both the encoder and decoder, four convo-
lution levels are applied. By means of the convolution operation, the input array size is
reduced from 256 x 128 to 32 x 16, while the channel size is increased from 3 to 512. By
passing the FC layer, the channel size is downscaled from 512 to 256 features. The initial
learning rate is set to 10~ and the training of the CNN-VAR-AE for the clean wing and
UHBR wing data is terminated after 1000 and 1500 epochs, respectively. In order to
achieve an appropriate model performance, the MSE between the reference experimental
data and the predictions, is minimized. In Figure 5.32, training and validation losses of
the CNN-VAR-AEs trained with the clean wing data (left) and the UHBR wing data
(right) are visualized. In Table 5.9, the hyperparameters for the training and application
of both CNN-VAR-AEs are summarized.

Besides the evaluation of the corresponding convergence trends, the training perfor-

mance of both CNN-VAR-AESs is assessed based on a visual comparison of an original
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cy-snapshot included in the validation data set and the corresponding c,-snapshot pre-

dicted by the CNN-VAR-AE.

Clean Wing

500 750

0 250
Number of Epochs

— Training Loss

1000

1072 i

10—3.

MSE

1074.

UHBR Wing

0 500 1000
Number of Epochs

1500

Validation Loss

Figure 5.32: Convergence trends of training and validation losses of the individually
trained CNN-VAR-AEs (left: clean wing, right: UHBR wing).

Encoder convolution layers
Decoder convolution layers

Latent dimension
Kernel size
Stride

Batch size

Initial learning rate
Activation function

4

4

256
2x2

2

128
1-1074
ReLU

Table 5.9: Hyperparameters for the training of the CNN-VAR-AEs.

Therefore, one original snapshot and the corresponding predicted snapshot are ex-

emplary visualized in Figure 5.33 and Figure 5.34 for the clean wing and UHBR wing

configuration, respectively. Here, an angle of attack of @ = 4° (Ma., = 0.9, Re = 25
Mio.) is considered for both cases. In addition to the ¢, - distribution, the MSE between
the original and predicted ¢, - distribution is visualized in Figure 5.33 and Figure 5.34

on the right wing surface. Here, the legend only refers to the MSE. Based on a visual

comparison and the corresponding level of the MSE, which is almost zero on the entire

wing, an overall sufficient training is indicated.

Equal to the training of the CNN-VAR-AE, 2000 snapshots are used for training the
LSTM. The overall amount of training snapshots is divided in sequences of 128 snap-
shots, while the batch size is defined as one. For the training, a stacked LSTM with two

layers is applied, with each layer including 256 neurons.
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Analogous to the training of the CNN-VAR-AE, the initial learning rate is defined as
10~*. The LSTM is trained for 5000 epochs, until a sufficient convergence is reached. In
Figure 5.35, the convergence trends for the individually trained LSTMs are visualized. In
Table 5.10, the hyperparameters for the training and application of both LSTM-ROMs

are summarized.

Experimental Data CNN-VAR-AE

Figure 5.33: Comparison of an original validation cp-snapshot and a c,-snapshot
predicted by the trained CNN-VAR-AE (clean wing, Ma., = 0.9,
Re = 25 Mio., o = 4°).

Experimental Data
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CNN-VAR-AE MSE

0.043
0.036
0.029
0.021
0.014
0.007
0.0

Figure 5.34: Comparison of an original validation c,-snapshot and a ¢,-snapshot
predicted by the trained CNN-VAR-AE (UHBR wing, Ma, = 0.9,
Re = 25 Mio., o = 4°).
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Figure 5.35: Convergence trends of training and validation losses of the individually
trained LSTM (left: clean wing, right: UHBR wing).

Hidden layers 2
Neurons per layer 256
Batch size 128
Initial learning rate 1-1074
State activation tanh
Gate activation o

Table 5.10: Hyperparameters for the training of both LSTM-ROMs.

5.4.4 Performance Evaluation

In order to evaluate the performance of the individually trained hybrid ROMs, the ROMs
are applied for the prediction of buffet pressure distributions at flow conditions which
are not included in the training data set. Since c,-snapshots obtained at Ma,, = 0.9,
Re =25 Mio. and a = [4°, 6°] are used for training, c,-snapshots representing Ma., = 0.9,
Re = 25 Mio. and o« = 5° are applied for performance evaluation. Analogous to the
training procedure, the performance evaluation of the hybrid ROM is performed in two
consecutive steps. First, the trained CNN-VAR-AEs are applied for the reconstruction
of the unknown buffet pressure loads. In the second step, the pressure samples are en-
coded and used as an initialization input for the LSTM. In Figure 5.36 and Figure 5.37,
a comparison between an original and reconstructed c,-snapshot of the clean wing and
UHBR wing configuration, is visualized, respectively. In addition, the MSE between the

original and predicted c,-distribution is presented in both figures.
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Experimental Data CNN-VAR-AE MSE 0.05
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Figure 5.36: Comparison of an original c,-snapshot and a c,-snapshot predicted by the
trained CNN-VAR-AE (clean wing, Ma., = 0.9, Re = 25 Mio., a = 5°).
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Figure 5.37: Comparison of an original c,-snapshot and a c,-snapshot predicted by the
trained CNN-VAR-AE (UHBR wing, Ma,, = 0.9, Re = 25 Mio., o = 5°).

Examining the c,-distribution as computed by the trained CNN-VAR-AESs, an overall
good agreement is indicated. The characteristic A-shaped shock patterns, as discussed in
Section 5.2.1, are correctly captured by the CNN-VAR-AE for both experimental config-
urations. Although the chord - and spanwise position of the shock is in good agreement
with the original data, larger MSE values for both test cases yield slight deviations along
the shock position, especially in spanwise direction. However, it has to be emphasized
that the application of the ROM aims for representing the characteristics buffet flow
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physics, such as the propagation speed in chord- and spanwise direction as well as dy-
namic loads in terms of c,, rather than a completely correct local representation of the
shock position on the wing.

In order to identify if the trained CNN-VAR-AEs are able to reproduce the main
buffet flow physics to some extent, both experimental and computed c,-snapshots are
compared by applying a proper orthogonal decomposition (POD). By using POD, im-
portant modes of the buffet instability are extracted. The order of occurrence of the
modes yields the level of contribution to the buffet flow. In Figure 5.38 and Figure 5.39,
power spectra of the first six POD modes of the experimental clean wing and UHBR
wing data and the corresponding predictions of the trained CNN-VAR-AESs, are visu-
alized, respectively. For the POD, 500 c,-snapshots are applied. As shown in Figure
5.38 and Figure 5.39, the trained CNN-VAR-~AEs are able to capture both the low and
high frequency peaks of each mode with a high degree of accuracy. At higher modes,
some peaks are not correctly represented. However, the overall trend is predicted by the
trained CNN-VAR-AEs.

In order to evaluate the performance of both the trained CNN-VAR-AE and LSTM,
the ROM is applied for the prediction of surface pressure distributions, which represent
the temporal evolution of the buffet instability. Therefore, the test data sets are en-
coded by the trained CNN-VAR-AEs and processed as an input to the LSTM. For the
initialization of the recurrent multi-step predictions, the first 32 encoded timesteps are
provided to the LSTM. The LSTM is applied for the prediction of 250 timesteps ahead.

Analogous to the performance evaluation of the CNN-VAR-AEs, POD is applied for
the performance assessment of the hybrid ROM. Therefore, a comparison between the
experimental and predicted modes of the clean wing and UHBR wing data is depicted
in Figure 5.40 and Figure 5.41, respectively. Here, only the first six modes are visual-
ized, since deviations between the experimental and ROM solutions increase for higher
modes. Examining the resulting spectra, a good agreement between the reference and
ROM-based data is indicated. Similar to the results presented in Figure 5.38 and Figure
5.39, peaks in both the low and high frequency range are captured by the hybrid ROM.
Besides the mode comparison, a visual comparison between experimental and predicted
cp-snapshots at two timesteps ¢t = [150,200] obtained by the recurrent multi-step pre-
diction mode is presented. In Figure 5.42 and Figure 5.43, the results of the clean wing
data are presented, whereas Figure 5.44 and Figure 5.45 show the results of the UHBR
wing data. As shown, besides the replication of the modes, the hybrid ROM is able to
capture the surface pressure distribution on the wing, with only minor deviations in the

position of the shock.
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Figure 5.38: Power Spectra of the first six POD modes of the buffet cycle (clean wing,
Mas = 0.9, Re = 25 Mio., @ = 5°). The experimental results are com-
pared to the results predicted by the CNN-VAR-AE.
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Figure 5.39: Power Spectra of the first six POD modes of the buffet cycle (UHBR wing,
Ma., = 0.9, Re = 25 Mio., @ = 5°). The experimental results are com-
pared to the results predicted by the CNN-VAR-AE.
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Figure 5.40: Power spectra of the first six POD modes of the buffet cycle (clean wing,
Mas, = 0.9, Re = 25 Mio., « = 5°). The experimental results are compared
to the results predicted by the hybrid ROM.
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Figure 5.41: Power spectra of the first six POD modes of the buffet cycle (UHBR wing,
Mas, = 0.9, Re = 25 Mio., @ = 5°). The experimental results are compared

to the results predicted by the hybrid ROM.
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Figure 5.42: Comparison of an original c,-snapshot and a c,-snapshot predicted by the
hybrid ROM at timestep ¢t = 150 (clean wing, Ma., = 0.9, Re = 25 Mio.,
a = 5°).

Experimental Data Hybrid ROM
. A

Figure 5.43: Comparison of an original ¢,-snapshot and a c,-snapshot predicted by the
hybrid ROM at timestep ¢t = 200 (clean wing, Ma, = 0.9, Re = 25 Mio.,
a = 5°).
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Figure 5.44: Comparison of an original c,-snapshot and a c,-snapshot predicted by the

hybrid ROM at timestep ¢t = 150 (UHBR wing, Ma,, = 0.9, Re = 25 Mio.,
a = 5°).
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Figure 5.45: Comparison of an original c,-snapshot and a c,-snapshot predicted by the

hybrid ROM at timestep ¢t = 200 (UHBR wing, Ma,, = 0.9, Re = 25 Mio.,
a = 5°).
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5.5 Summary

In the first part of this chapter, an overview and analysis of the buffet instability on the
Airbus XRF-1 configuration was given. For the analysis, experimental pressure sensor
and iPSP data obtained during two measurement campaigns in the ETW were applied.
Based on the results, it was shown that the buffet phenomenon can be captured by
both the unsteady pressure sensors and the iPSP measurements at varying freestream
conditions. Examining the spectra of the sensor signals, frequency peaks related to
structural excitations were found and separated from peaks due to aerodynamic effects,
like buffet pressure oscillations. In order to determine the propagation speed of the buf-
fet instability in spanwise direction, cross-spectra analysis was applied using the signals
of the pressure sensors. The computed velocities agree very well with earlier findings of
comparable numerical and experimental studies.

Following the general characterization of the buffet instability on the XRF-1 config-
uration, ROM methods for both the prediction of three-dimensional integral and local
buffet characteristics have been proposed. Therefore, in the second part of this chapter,
the training and application of a LSTM neural network for the prediction of pressure
signals obtained by the pressure sensors was presented. For the training of the LSTM,
data obtained at different flow conditions have been applied. Analogous to Chapter 4,
an optimized set of hyperparameters has been defined. Due to the large number of
samples in the training data set, a three layered LSTM with 200 neurons in each layer
has been applied. Further, the input sequence has been defined as 256 in order to fed
an appropriate amount of information into the LSTM. An examination of the conver-
gence trends revealed that a learning rate of n = 1-107* is the preferred choice. For
performance evaluation, the trained LSTM has been used for the prediction of pressure
signals at varying freestream and sensor positions. A good agreement with the reference
data was indicated, with an overall fit between 75% and 80%. Characteristic peaks in
the pressure spectra related to structural vibrations and aerodynamic oscillations have
been correctly captured by the proposed ROM method for all applied test cases.

Focusing on the computation of local buffet characteristics, the last section of this
chapter described the application of a hybrid ROM for the prediction of buffet pressure
distributions on the XRF-1 wing. The hybrid ROM is composed of a series connection of
a CNN-VAR-AE and a LSTM. For training and performance evaluation, surface pressure
data measured by iPSP was used. Prior to the training of the hybrid ROM, a tailored
preprocessing routine has been applied to the experimental data sets. In order to high-
light the performance capability of the proposed ROM for modeling high-dimensional
flow field data, both the iPSP data measured on the clean wing and the UHBR wing
configuration have been examined. Therefore, two different hybrid ROMs were trained

and applied.
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For training the hybrid ROM, several hyperparameters have been defined. Consid-
ering the CNN-VAR-AE, the number of convolutional levels, the kernel size of each
convolution, the batch size as well as the initial learning rate have been set. The num-
ber of convolutional levels as well as the kernel size are chosen in order to extract the
most important features of the input data by reducing the dimensionality of the data.
However, if too many convolutions are applied, important features of the data get lost.
The batch size must be defined in order to provide a sufficient amount of data to the
ROM, while at the same time keeping the training time as low as possible. Further,
concerning the initial learning rate, n = 1-10~% is chosen.

For the evaluation of the performance of the proposed ROM, the results have been
compared using a POD. A comparison of the experimental and predicted modes shows
that the proposed ROM method is able to reproduce the first six POD modes with a
high degree of accuracy, covering the buffet instability to a sufficient extent. Both the
low and high frequency content are correctly represented by the hybrid ROM.






6 Wing Buffet Prediction Due to

Forced Vibrations

In the preceding chapter, both integral and local buffet characteristics of the XRF-1
configuration due to varying freestream conditions have been computed using two dif-
ferent ROM approaches. In this chapter the focus lies on the prediction of both integral
and local wing buffet characteristics due to rigid-body motions and eigenmode-based
deformations. The NASA Common Research Model (CRM) is selected as the test case
in this chapter, since a structural model is available for this aircraft configuration. Anal-
ogous to the previous chapters, a LSTM-ROM is applied for the prediction of integral
characteristics, whereas a hybrid ROM is used for the prediction of the buffet pressure
distributions. Similar to the previous chapter, the hybrid ROM is defined by a combi-
nation of a convolutional autoencoder (CNN-AE) and a LSTM-ROM. For the training
and generalization of both ROMs, numerical data computed with the DLR-TAU code,
are applied. Some content of this chapter is based on the authors publication, see refer-
ences [151].

The chapter is structured as follows: In the first section, the selected configuration
of the NASA CRM is introduced, followed by an overview of the numerical setup given
in Section 6.2. Further, the developed buffet instability on the CRM is briefly analyzed.
In Section 6.3, the training and application of a LSTM-based ROM for the computation
of integral wing buffet characteristics due to forced rigid-body motions, is presented. In
Section 6.4, a hybrid CNN-AE/LSTM-ROM is employed for the computation of unsteady
pressure distributions due to eigenmode-based deflections. Therefore, both symmetric
and asymmetric mode shape deflections are implemented in the DLR-TAU solver and
the aerodynamic responses are simulated. In order to evaluate the performance quality
of both ROM methods, a comparison with reference high-fidelity numerical solutions is

provided.

6.1 Test Case: NASA Common Research Model

For demonstrating the performance of the selected ROM approaches for capturing wing
buffet characteristics due to forced motions, the NASA CRM is chosen. The CRM con-
figuration, which represents a modern commercial transport aircraft configuration, has
been developed by NASA’s wing aerodynamics technical working group in collabora-
tion with the committee of the drag prediction workshops [130,131|. The design cruise
condition of the model is defined by a freestream Mach number of Ma,, = 0.85 in
combination with a design lift coefficient of C;, = 0.5. Considering the investigation of
the three-dimensional buffet instability, the CRM configuration has already been applied

in several numerical [30,59, 128] and experimental studies [76].
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The CRM configuration investigated in the present thesis represents a wing/body
model with a horizontal tail plane (HTP). For the studies in this thesis, both a half- and
a full-span model of the CRM configuration are used. In Figure 6.1, the geometry of the

full-model is visualized using an isometric, a top as well as a front and a back view.

a) Isometric view b) Top view

c) Front view d) Back view

Figure 6.1: Geometry of the selected NASA CRM configuration.

6.2 Computational Setup

The computational grid employed for all following simulations has already been applied
in a numerical buffet study by Ehrle et al. [30]. The purpose of the simulations is the
replication of conditions of a corresponding wind tunnel test campaign in the ETW fa-
cility [76]. Based on the 2.7% scaled wind tunnel model, the wing is defined by a mean
aerodynamic chord of ¢,.; — 0.189 m. The aspect ratio AR is defined as 9, whereas the
sweep angle of the wing is given as ¢ = 35°. Further, the reference area of the wing
and the wing span are defined by 0.280 m? and 1.586 m, respectively. The geometrical
parameters of the CRM configuration, which are based on the wind tunnel model, are

summarized in Table 6.1.

Quantity Symbol Value
Aspect Ratio AR 9
Mean aerodynamic chord Cref 0.189 m
Sweep angle [0) 35°
Wing reference area Avey 0.280 m?
Wing span b 1.586 m

Table 6.1: Geometric properties of the NASA CRM configuration.
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The grid has been generated using the commercial meshing software Pointwise. The
half-span model grid is composed of approximately 36 - 10° elements, whereas the full-
span model grid includes around 70 - 10° elements. The cells around the wing, fuselage
and HTP have a structured topology, whereas the farfield is composed of unstructured
cells. The farfield is defined by a hemisphere with a radius equal to approximately
50 times of the model length. In addition, a proper boundary layer resolution with a
minimum wall distance of the first cell of y* < 1 is accomplished on the fuselage and
the surface of the wing. In addition, a refinement block containing uniform hexahedral
elements is set above the boundary layer elements on the wing suction side (see Figure
6.2). This refinement ensures a sufficient spatial resolution of the area of the estimated
shock motion and flow separation. The size of the block elements was defined according

to a local convective Courant-Friedrichs-Levy (CFL) number of 1.
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Figure 6.2: Hybrid numerical grid of the CRM configuration with a refinement block
containing hexahedral elements on the upper wing surface.

According to the experimental investigations in the ETW facility |76], the buffet
condition of the applied CRM configuration is defined by a freestream Mach number of
Ma., = 0.85, a Reynolds number of Re = 30-10° and an angle of attack of o = 5°. In or-
der to approximate the conditions as experienced in the corresponding wind tunnel test
campaign, nitrogen including a viscosity correction based on Sutherland’s law is chosen
as the working fluid. The corresponding parameters for the application of Sutherland’s

law are summarized in Table 6.2.
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Quantity Symbol Value

Gas constant R 296.8 kgiK
Sutherland‘s constant C 111 K
Reference temperature Tres 300.55 K
Reference viscosity fref 17.81-107% Pa - s

Table 6.2: Sutherlands parameters for nitrogen.

During the wind tunnel tests, aeroelastic deformations were measured on the model
due to aerodynamic forces acting on the model. In order to match the deformations, a
twist of 2° and an upward bending of 30 mm near the wingtip are incorporated in the
numerical grid by means of a static mesh deformation prior to the simulations.

All simulations of the CRM configuration in the present study are performed using
the DLR-TAU code and an URANS approach. Following the study of Ehrle et al. [30],
the following settings are applied: The spatial discretization is accomplished by a central
differencing scheme. In order to reduce numerical dissipation of small scale structures,
a ratio of 0.4 between matrix and scalar dissipation in combination with a fourth or-
der dissipation coefficient of 1/256 are chosen [30]. A Kok skew symmetric scheme is
applied for the discretization of the mean flow fluxes, whereas the discretization of the
turbulence fluxes is accomplished by a first order Roe scheme. A Green Gauss scheme
is applied for the reconstruction of the gradients. Time integration is achieved using an
implicit backward Euler scheme, whereas a lower-upper symmetric Gauss-Seidel (LU-
SGS) scheme is chosen as a linear solver. Further, a 3v multigrid cycle is applied to the
grid in order to accelerate convergence [30].

A dual time stepping approach is applied for all simulations with a physical time
step of 1-107° s and 100 inner iterations per time step. Further, a CFL number of the
implicit pseudo time steps of two is chosen. For turbulence modeling, the SA model
without trip-term f; and turbulence suppression term f;; is employed. In addition, a
quadratic constitutive relation (QCR) [121] extension is activated for the SA model. As
shown by Togiti et al. [129], the combination of an eddy-viscosity turbulence model and
the QCR leads to a reduced corner flow separation, which was observed by a numerical
study at flight Reynolds number of the CRM by Illi et al. [51].

The applied computational setup indicates a clear buffet instability on the wing suc-
tion side, as represented by the series of cp,-snapshots shown in Figure 6.3. Therefore,
a buffet cycle (Tgyffet), which is defined by a time period of 0.00665s, is divided by
six timesteps. Consistent with findings of previous numerical studies [54,127]|, a varia-
tion in surface pressure in spanwise direction, as defined by the black dotted lines (see
Figure 6.3) is clearly visible, which indicates the convection of buffet cells. Further, a
characteristic A-shaped two shock pattern develops on the wing surface. The URANS
simulation reveal a characteristic buffet Strouhal number of Sr = 0.25 - 0.65 [30], which
is also consistent with findings of numerical and experimental studies summarized in
Section 2.3.
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t = O'TBuffet t:0-2'TBuffet

t=0.4- TBuffet t=0.6" TBuffet

t=0.8Thuster t=1-TBusse
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Figure 6.3: Pressure coefficient (c,) contour plots showing the buffet cycle of the NASA
CRM (Mas = 0.85, Re = 30 -10% a = 5°). Tgusse refers to the buffet
period.
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Further, a comparison of the mean pressure coefficient ¢, obtained by the URANS
simulation with experimental data [76] showed a good agreement in the region of the
shock. In Figure 6.4, a comparison between numerical and experimental ¢, at a span-
wise position of n = 60% is visualized. As shown, the URANS result represent the

experimental data with sufficient accuracy.
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Figure 6.4: Comparison of numerical and experimental ¢, at a spanwise position of
n = 60% (May = 0.85, Re = 30-10° o = 5°).

Further, an examination of the resulting time-series of the lift coefficient, as shown
in Figure 6.5, reveals an aperiodic behavior. Compared to the lift coefficient time-series
of an airfoil at buffet condition (see Chapter 4, Figure 4.3), the change in C}, is less

pronounced for the three-dimensional buffet instability.
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Figure 6.5: Time-series of the lift coefficient C'y, of the NASA CRM at a developed buffet
condition (Mas = 0.85, Re = 30-10°% o = 5°).
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6.3 Prediction of Motion-Induced Integral Buffet

Characteristics

In the following section, a LSTM-based ROM is trained and applied for the prediction
of motion-induced integral buffet characteristics of the CRM configuration. In particu-
lar, the aerodynamic characteristics of the wing are considered. In the first part of this
section, the generation of the training and validation data set as well as the selection
of the LSTM hyperparameters are outlined. The second part covers the performance
evaluation of the selected ROM. Therefore, the trained LSTM-ROM is applied for the
prediction of time-series coefficient trends due to harmonic motions with varying frequen-
cies and amplitudes. The section is concluded with an examination of the reduction in

computational time compared to the simulation results obtained by CFD.

6.3.1 CFD-Based Data Set Generation

For the generation of the training and validation data set, forced-motion CFD simula-
tions are performed. Analogous to the deformations of the NACA0012 airfoil grid (see
Chapter 4), a RBF-based grid deformation using Python is applied. Further, similar to
Section 4.3, a smoothed APRBS (SAPRBS) is used for the excitation of the pitch degree
of freedom (DoF) of the wing structure. However, due to limitations of computational
time, for the following ROM training only a single SAPRBS covering 10000 timesteps is

used. The applied excitation signal is visualized in Figure 6.6.
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Figure 6.6: SAPRBS for the prescribed excitation of the pitch degree of freedom of the
wing structure.

In addition to the time-domain representation, the spectrum of the SAPRBS visual-
ized in Figure 6.6 is presented in Figure 6.7. Based on the frequency content it is shown

that the signal covers reduced frequencies in the range of 0.1 < k.4 < 10.



6.3. PREDICTION OF MOTION-INDUCED INTEGRAL BUFFET
CHARACTERISTICS 131

FFT Amplitude
(@)
()
Z

10'_1 100 101
Reduced Frequency k;q

Figure 6.7: Amplitude spectrum of the SAPRBS for the prescribed excitation of the
pitch degree of freedom of the wing structure.

Based on the information of the system excitation and the corresponding coefficient
time-series trends, the training of the LSTM-ROM is performed. Therefore, the system
input is represented by the pitch excitation of the wing structure, whereas the system

outputs are defined by the corresponding lift and pitching moment coefficient responses:

@, = [0(1)]

(6.1)
Y = [CL(t),C, (1)]"

6.3.2 Training of the LSTM-ROM

The computed CFD data set is divided into two data sets prior to the training of the
LSTM-ROM. The first data set, including 80% of the data points, is applied for training,
whereas the remaining data points are used for validation and hyperparameter tuning.

Based on a detailed parameter study, the following hyperparameters are selected: The
number of hidden layers is defined as three, with 128 neurons in each layer. The data is
fed into the network in sequences, including 64 samples each. Analogous to the previous
applications of the LSTM, the batch size is defined as one. The initial learning rate is
defined as n = 1-10~%. Analogous to Chapter 4, the state activation is chosen as tanh,
while the gate activation is defined as sigmoid. In Table 6.3, the final hyperparameters
applied for the training of the LSTM are summarized.

Hidden layers 3
Neurons per layer 128
Sequence length 64
Batch size 1
Initial learning rate 1-107%
State activation tanh
Gate activation o

Table 6.3: Hyperparameters for the training of the LSTM.
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The training is terminated after 750 epochs, reaching a sufficient convergence of the
training and validation loss. In Figure 6.8, the convergence trends of the training and

validation loss are visualized.
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Figure 6.8: Convergence trends of training and validation loss of the LSTM-ROM.

Prior to the performance evaluation of the trained LSTM-ROM using an unknown
test data set, the LSTM is applied for the prediction of the lift coefficient data points
included in the validation data set in a recurrent multi-step prediction mode. In Fig-
ure 6.9, a comparison between the reference CFD solution and the data predicted by the
LSTM, is visualized. Applying the error quantification metrics as introduced in Section
3.7, a good agreement between the CFD solution and the prediction of the LSTM is in-
dicated. The corresponding error values and the fit factor for the multi-step prediction
mode on the validation data set are summarized in Table 6.4. As shown, an overall fit
of almost 78% is accomplished for both the lift and pitching moment coefficient trends.

Aerr Perr Cerr Q
Cy -0.109 0.089 0.124 77.8%
Chuy -0.111 0.093 0.128 77.2%

Table 6.4: Amplitude, phase, comprehensive error and fit factor of the multi-step pre-
diction mode on the validation data set.
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Figure 6.9: Lift coefficient response due to the SAPRBS excitation (CRM, Ma,, = 0.85,
Re =30-105 a = 5°, 6 = £1.0°). Besides the CFD reference solution, the
simulation results of the LSTM-ROM are shown.

6.3.3 Performance Evaluation

For performance evaluation, the trained LSTM-ROM is applied for the prediction of
lift and pitching moment coefficient responses due to harmonic wing pitching motions,
covering different frequencies and amplitudes. The reduced excitation frequencies are
chosen as kyeq g = [0.25, 0.6], which corresponds to Srg, = [0.25, 0.6]. Further, for both
selected frequencies, two different excitation amplitudes are considered: § = [£0.5°, +1°|.

For a comparison of the results, four excitation periods are computed with the TAU
solver for the respective harmonic motions. The number of excitation cycles is limited
due to the large computational time necessary for the mesh deformation mechanism
included in every computed time step. For the initialization of the recurrent multi-step
predictions, 128 numerical timesteps are provided as an input to the LSTM.

In Figure 6.10 and Figure 6.11, both time - and frequency-domain responses of the
lift coefficient as obtained by the trained LSTM-ROM compared to the reference CFD
solution are visualized. In addition, in Figure 6.12 and Figure 6.13, the results of the
pitching moment coefficient trends are shown. As it can be seen, the LSTM is able to
reproduce the trends of both coefficients with sufficient accuracy. Further, focusing on
the frequency spectra, it is shown that the trained LSTM is able to capture most of the
frequency content. Based on the corresponding error values summarized in Table 6.5, a
good agreement between the CFD and ROM solution is emphasized. An overall fit of
about 73% is achieved with the application of the trained LSTM-ROM.

Further, in Figure 6.14 and Figure 6.15 the LSTM-based modeled lift and pitching
moment coefficient trends compared to the reference CFD solution with an excitation
amplitude of § = £0.5° are shown. Similar to the results of the larger amplitude test

cases, a good prediction performance of the trained LSTM is indicated.
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Figure 6.10: Time domain responses of the lift coefficient resulting from harmonic pitch-
ing motion with kyeq g, = [0.25, 0.6]. The results of the LSTM-ROM are
compared to the reference CFD solution (Mas, = 0.85, Re = 30-10°, o = 5°,

0= +1°).
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Figure 6.11: Frequency domain responses of the lift coefficient resulting from harmonic
pitching motion with kyeqme = [0.25, 0.6]. The results of the LSTM-ROM
are compared to the reference CFD solution (Mas, = 0.85, Re = 30 - 106,
a=5,0= +1°.
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Figure 6.12: Time domain responses of the pitching moment coefficient resulting from
harmonic pitching motion with kyeqp, = [0.25, 0.6]. The results of the
LSTM-ROM are compared to the reference CFD solution (Mas, = 0.85,
Re=30-10% a =5° 0= &+ 1°).
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Figure 6.13: Frequency domain responses of the pitching moment coefficient resulting
from harmonic pitching motion with kyeq g, = [0.25, 0.6]. The results of the
LSTM-ROM are compared to the reference CFD solution (Mas, = 0.85,
Re=30-10% a =5° 0= +1°).
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Figure 6.14: Time domain responses of the lift coefficient resulting from harmonic pitch-
ing motion with kyeq g, = [0.25, 0.6]. The results of the LSTM-ROM are
compared to the reference CFD solution (Mas, = 0.85, Re = 30-10%, a = 5°,
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Figure 6.15: Time domain responses of the pitching moment coefficient resulting from
harmonic pitching motion with kyeq g, = [0.25, 0.6]. The results of the
LSTM-ROM are compared to the reference CFD solution (Mas = 0.85,
Re=30-10% o = 5°, 6 = + 0.5°).
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However, slightly higher deviations around 3-4% are indicated when comparing the

corresponding error values with the errors from the previous test cases.

Excitation Excitation Aerodynamic Agpr P,,, Cepr Q
amplitude frequency coefficient

o Cr -0.131 0.12 0.157 69.5%
+0.5 0.25 Chry -0.128 0.119 0.154 70.1%
o CrL -0.118 0.11 0.143 73.5%
+1 0-25 Chry -0.119 0.117 0.147 72.9%
o Cr -0.125 0.118 0.152 70.3%
+0:5 0-6 Chry -0.127 0.12 0.154 70.1%
110 0.6 Cr -0.123 0.108 0.145 73%
) Chry -0.121 0.109 0.144 73.3%

Table 6.5: Amplitude, phase, comprehensive error and fit factor of the harmonic excita-
tion with varying reduced frequencies and amplitudes.

6.3.4 Efficiency Evaluation

Within the last part of this section, the gain in computational efficiency by applying the
LSTM-ROM for motion-induced integral wing buffet characteristic prediction compared
to a full-order CFD analysis, is quantified.

Each fully resolved numerical simulation with the DLR-TAU solver has been per-
formed on the SuperMUC-NG of the LRZ. Since the numerical grid of the CRM con-
figuration includes a large number of elements, 10 nodes with 48 CPU cores each are
applied, resulting in a total number of 480 CPU cores. Analogous to the training, valida-
tion and test computations of the LSTM-ROM performed in Chapter 4, a workstation
equipped with an Intel Xeon 2.2 GHz processor has been used. In order to provide
the CPU hours as wall clock times, only a single CPU core has been selected on the
workstation.

In the first step, the numerical effort due to the training procedure of the LSTM-ROM
is analyzed. The computational time required for the SAPRBS simulation is defined by
approximately 80 hours on the SuperMUC-NG. Considering the number of applied cores,
an overall computational time of 38400 (= 80-480) CPU hours results. Besides the com-
putational time required for the SAPRBS simulation, the training of the LSTM-ROM
on the workstation was accomplished within approximately six CPU hours. Therefore,
the total computational effort for the training of the LSTM-ROM sums up to 38406
CPU hours, with the full-order SAPRBS simulation defining the highest share on the
overall training costs.

Considering a comprehensive motion-induced wing buffet study, various frequencies
and amplitudes for the excitation of the wing structure are of interest. Therefore, the
efficiency evaluation is provided in terms of a comparison of the application time of
the trained LSTM-ROM and the computational costs of the fully resolved URANS sim-
ulations. As already summarized in Section 4.7 of Chapter 4, the CPU time of the
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LSTM-ROM is defined by the simulation of the SAPRBS, the training of the LSTM
on the workstation, the computations of the initial numerical LSTM input solutions as
well as the application of the LSTM on a set of test samples. In contrast, the CPU
time of the URANS simulations is defined by the fully resolved CFD computations of
all required test cases.

Considering the training and application of the LSTM-ROM as provided in the
present chapter, the following CPU hours apply: The application of the LSTM includes
the CPU hours for the SAPRBS simulation (= 38400 CPU hours), six CPU hours for
training the LSTM, a batch of test samples for the initialization of the recurrent multi-
step prediction as well as 0.01 CPU hours for the application of the trained LSTM itself.
In contrast, the CFD simulations sum up to approximately 9600 (= 20-480) CPU hours
for each harmonic excitation, assuming an averaged computational time of 20 hours.
With an average of 9600 CPU hours, a number of approximately 2000 timesteps is ac-
complished. Therefore, the computation of the timesteps for the LSTM initialization,
which are defined by a sequence length of 128, required approximately 614 CPU hours.

In Table 6.6, the number of CPU hours required for the application of the LSTM
in contrast to the CPU time of the URANS computations, are summarized. Here, the

CPU hours for the computation of a single harmonic motion test case are considered.

SAPRBS simulation 38400

ROM training 6
ROM ROM initialization 614

ROM application 0.01
Fully resolved URANS simulation 9600

Table 6.6: Comparison of CPU hours for the LSTM and the fully resolved URANS sim-

ulations considering a single harmonic motion test case.

In the framework of a more detailed buffet analysis, harmonic motions covering dif-
ferent frequencies and amplitudes are of interest. Considering the harmonic motion test
cases as defined in Section 4.7 in Chapter 4, a number of 24 simulations is required.
Therefore, the number of CPU hours related to the application of the LSTM sum up
to 38400 CPU hours for SAPRBS simulation and 14736 (= 24 - 614) CPU hours for the
computation of the initialization test samples for each harmonic test case. In contrast,
23 -10* (= 24 - 9600) CPU hours are required for the full-order URANS simulations of
all considered test cases. In order to emphasize the reduction in computational time by
applying the trained LSTM for a detailed wing buffet investigation, a comparison of the
CPU hours for the full-order URANS simulation and the application of the LSTM-ROM

is visualized in Figure 6.16.



6.3. PREDICTION OF MOTION-INDUCED INTEGRAL BUFFET
CHARACTERISTICS 139

250000

200000 1

150000 1

100000 1

CPU Hours

50000 1

5 10 15 20
Number of Test Cases
—— URANS —— ROM vz ROM fixed

Figure 6.16: Comparison of CPU hours required for the fully resolved URANS simulation
and the LSTM-ROM simulations.

Analogous to Figure 4.23 presented in Section 4.7, the grey area defines the compu-
tational effort for the training of the LSTM-ROM, whereas the black line represents the
additional CPU hours required for the computation of the initial test samples. The blue
line indicates the amount of CPU hours required for the full-order CFD simulations of
all test cases. As shown in Figure 6.16, with increasing number of test cases the number
of CPU hours for the URANS simulation drastically increases compared to the CPU
hours required for the LSTM application. By applying the trained LSTM, a reduction

in computational time by one order of magnitude is possible.
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6.4 Prediction of Surface Pressure Distributions Due

to Structural Eigenmode-Based Deformations

Within this section, the training and application process of a hybrid ROM for the predic-
tion of unsteady buffet surface pressure distributions due to structural eigenmode-based
deformations is presented. The architecture of the hybrid ROM is similar to the hybrid
ROM introduced in Section 5.4.1, however, there are some conceptual changes in the
setup. In the first part of this section, a comprehensive overview of the architecture of
the hybrid ROM is given. The second part covers a description of the applied structural
model and the implementation of symmetric and asymmetric eigenmode-based defor-
mations. In the third and fourth section, the generation of the training and validation
data set is outlined and the preprocessing steps applied to the numerical data sets are
briefly summarized, respectively. Following the description of the data preprocessing,
the training procedure of the hybrid ROM is outlined and the performance of the ROM
is evaluated in detail. This section is concluded with an analysis of the computational
efficiency of the hybrid ROM compared to the high-fidelity reference CFD simulations.

6.4.1 Hybrid ROM Architecture

The architecture of the hybrid ROM applied in the following is defined by a convolutional
autoencoder (CNN-AE) and a LSTM. Analogous to the hybrid CNN-VAR-AE/LSTM
introduced in Section 5.4.1, the CNN-AE is used for the reduction of the flow field data,
whereas the LSTM is applied in order to predict changes in the surface pressure distri-

bution due to the eigenmoden-based structural deformations. The architecture of the
hybrid ROM is visualized in Figure 6.17.
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Figure 6.17: Architecture of the hybrid deep learning model.
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Similar to the architecture described in Section 5.4.1, the encoder and decoder of
the CNN-AE are divided into several convolution and de-convolution levels. The model
receives a sequence of numerically computed ¢, values of the wing suction side, which
is defined by a tensor of N;, x C;, x H x W. Here, N;, the defined as the number of
input time steps, C;,, denotes the number of input channels and H and W represent the
number of grid points in span - and chordwise direction, respectively. Following common
practice, C;,, H and W are defined by powers of two.

At each level of the encoder, a multi-channel convolution with a kernel size of 4 x 4,
a stride s = 2 and padding of one is applied. Following the convolution operation, the
input data is normalized using batch normalization (BN) [52|. Subsequent, a ReLU ac-
tivation is applied to each element of the input data. Due to this sequence of operations,
the output channel size at each level is defined as two times the input channel size of
the respective convolution level. In contrast, the size of the spatial dimensions (H,IW)
is reduced by a factor of two at each level of the encoder. After passing the different
encoder levels, a second ReLLU activation is applied to the input data. In the last steps,
the data is flattened and passed through a FC layer and a tanh activation layer.

Before passing the encoded data into the LSTM, the information concerning the
deformation ¢ and the ¢, data are combined. The aim is the prediction of pressure dis-
tributions at timesteps k+m based on several previous c,-snapshots at timesteps k—n+1
to k. Here, n defines the number of timesteps used for the prediction operation, whereas
m denotes the number of timesteps to be predicted ahead. Concerning the deformation,
incidence amplitudes at timesteps Kk —n+2 to k+ 1 are considered. The scalar deforma-
tion values are concatenated to the end of the vector containing the ¢, values, as shown
in Figure 6.18. The resulting latent vectors including both the ¢,-distribution and the

deformation information are passed sequentially into the LSTM.
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t t t t
LSTM —/f~ LSTM — LSTM —/~— LSTM

t t t t

C}()Tk—nﬂ) C(Tk—1) C(Tk) Cl()Tk-Hn—l)

- -

\‘ VA AANINAVANDAN
(7) \/

q(7k77z+2) q q(Tk:+1)

Figure 6.18: Concatenation of deformation ¢ and surface c,.
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After applying the LSTM, the predicted data is fed back into the decoder. At each
level of the decoder, a transposed convolution is applied to upscale the spatial dimen-
sion. The corresponding kernel, stride and padding are chosen equally to those of the
encoder. Further, a BN is applied at each decoder level. At the final level, the decoded

data is activated by a tanh function.

6.4.2 Implementation of Eigenmode-Based Deformations

For structural modeling, the FERMAT configuration proposed by Klimmek [58] is ap-
plied. The finite element model (FEM) was developed in order to allow static and
dynamic aeroelastic investigations on the basis of the CRM geometry, referring to a full
scale aircraft. The FERMAT model allows the representation of two different set-ups,
namely the C1 case representing the maximum zero fuel weight configuration, as well as
the C2 case, defining the configuration with maximum take-off weight (100% fuel). For
the following investigation, the C2 mass configuration is applied. The C2 configuration
includes in total 56 modes, containing six rigid body modes and 50 elastic eigenmodes.

The FEM of the FERMAT configuration includes nodes modeling the fuselage, the
wing, the VTP, the HTP as well as the pylons. Since the numerical grid of the CRM
does only include the fuselage, wing and HTP, the FEM is reduced for the surface in-
terpolation between the structural and the aerodynamic surface grid. In Figure 6.19, a

comparison of the original (left) and reduced (right) structural FEM is depicted.

a) Original FEM b) Reduced FEM

Figure 6.19: Comparison of the original structural FEM (a) and the reduced structural
FEM (b) [136].

Prior to the interpolation between the numerical and structural grid, the aerodynamic

grid (grid,) needs to be upscaled in order to match the dimensions of the structural grid:

grida,scaled = grida : Js,maz (62)

a,mazxr
In Equation 6.2, Y4 maez and Ys mas define the maximum wing spans of the aerodynamic

and structural grid, respectively.
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The deformation of the CFD grid is performed by a nearest neighbor search. Each
node of the structural grid is linked to a node of the aerodynamic grid located at the
minimum euclidean norm between both grid nodes. The interpolation of the model
deflections onto the surface grid is achieved using a thin-plate splines algorithm. Since
particular focus is on the deformation of the wing structure, the intersection between the
wing root and the fuselage needs a special treatment. In order to avoid any deformation
of the fuselage and the generation of negative volume cells, interpolated node deflections
at spanwise position Ynoge < Yiimar (With yimi = 0.085 m) are defined as zero. Further,
the wing area close to the fuselage is divided into five sections in spanwise direction.
Within this sections, which are depicted in Figure 6.20, the interpolated deflections
Ointerp are linearly faded in using a dimensionless fading factor vy, resulting in the final
deflections 6 f;nq of the nodes:

5final = 5interp s (63)

In Figure 6.20, the selected areas close to the wing root are depicted. In addition,

the corresponding fading factors vy for each section are listed.

Y

ko

Figure 6.20: View of the upper wing surface with marked fading sections.

Following the work of Winter and Breitsamter [136,139], the mode deflections are
scaled proportional with respect to the reference chord length ¢,.¢. The resulting scaling
factor SF is defined as follows:

SF=f- j"—ef (6.4)

with A4, defining the maximum deflection amplitude of the considered mode and
f denoting the reference scaling factor, which is chosen as f = 0.01 (1%). The factor is

defined in order to guarantee a stable numerical simulation.
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Based on the developed deformation framework, symmetric as well as asymmetric
mode shapes of the wing have been implemented and simulated. In Figure 6.21, an

overview of some of the selected, implemented wing modes shapes is given.

Elastic mode 11 Elastic mode 14
15 symmetric wing bending 1s* asymmetric wing bending

Elastic mode 13 Elastic mode 25
2nd symmetric wing bending 2nd asymmetric wing bending

Elastic mode 27 Elastic mode 28
3" symmetric wing bending 15t asymmetric wing torsion

Figure 6.21: Overview of selected structural-eigenmode-based surface deformations of
the FERMAT-C2 configuration (red) and the non-deformed aircraft geom-
etry (grey). For a clear comparison, increased deflections are visualized.

It has to be mentioned that the implemented simulation framework allows for the
simulation of further symmetric and asymmetric wing shapes. However, the maximum
deflection amplitude needs to be chosen individually for each mode in order to guarantee

a stable numerical simulation.
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6.4.3 CFD-Based Data Set Generation

For the training and the performance evaluation of the hybrid ROM, pressure data ob-
tained from simulations due to one symmetric and one asymmetric mode shape deflection
are considered. Therefore, mode shape 11 and 14 (see Figure 6.21, top left and right) are
selected. For the generation of the training and validation data set, the modes shapes
are excited, with the amplitude defined by a SAPRBS as depicted in Figure 6.22. As
shown, the minimum and maximum deformation amplitude of the modes are chosen as
one. Due to the limitation of computational resources, the SAPRBS sequence is limited

to 2000 timesteps, with a timestep equal to the one of the numerical simulation.
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Figure 6.22: SAPRBS for the prescribed deformation of the mode shapes.

In addition to the SAPRBS time-domain signal, the frequency content of the SAPRBS

shown in Figure 6.22 is visualized in Figure 6.23.
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Figure 6.23: Amplitude spectrum of the SAPRBS for the prescribed deformation of the
mode shapes.

Due to the structural deformation, distinct changes in the surface ¢, on the wing

suction side are present. In Figure 6.24 and Figure 6.25, a series of six consecutive
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cp-snapshots of the simulation results of deflections with mode shapes 11 and 14 are

depicted, respectively.

-1.2 -1 -08 -06 -04 -02 0 0.2

Figure 6.24: Pressure coefficient (¢,) contour plots of mode shape 11 due to the SAPRBS
excitation (Ma, = 0.85, Re = 30 - 10°, o = 5°).
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Figure 6.25: Pressure coefficient (c,) contour plots of mode shape 14 due to the SAPRBS
excitation (Mas, = 0.85, Re = 30 - 10°, a = 5°).

Compared to the pressure distribution at buffet condition (see Figure 6.3), larger
fluctuations of the pressure in span - and chordwise direction are clearly indicated. Es-
pecially at the wing tip and the mid-span area, the largest fluctuations in the surface c,

are visible.
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6.4.4 Data Preprocessing

Prior to the training of the hybrid ROM, two preprocessing steps are applied to the
numerical data. Due to the discretization of the wing suction side, the c,-distribution
on the upper wing is represented by 168686 data points. Therefore, in the first step, the
size of the data is reduced by linear interpolation. The surface of the wing is divided

into two parts, as shown in Figure 6.26.

128

128

Figure 6.26: Division of the wing suction side for pressure distribution interpolation.

For each part, a grid with 256 nodes in spanwise and 128 nodes in chordwise direction,
is defined. The pressure distribution is linearly interpolated on the new grids. By stack-
ing both grids together, the resulting pressure distribution resolution on the surface is
defined by 128 x 512 (27 x 2%) data points. Equal to the data representing the half-span
model, both wings of the full-model are separated in two parts. Therefore, the resulting
pressure distribution on the full-span model is defined by 128 x 1024 (2% x 2!0) data
points.

In Figure 6.27, the wing pressure distribution due to mode shape 11 in combination
with the SAPRBS excitation is depicted at two different timesteps. As shown, although
the interpolation has been applied, a high level of spatial resolution is maintained. The
characteristic A\-shaped two-shock pattern as well as changes in the spanwise pressure
distribution, in particular in the mid-span and tip region are still clearly visible.

In the second step, the data set is normalized to [-1,1| using the minimum and max-

imum pressure values of the numerical data set (¢, min, Cp.maz)-
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Figure 6.27: Interpolated and normalized surface ¢, resolution on the wing suction side
at two selected timesteps (mode 11, SAPRBS excitation).
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6.4.5 Training of the Hybrid ROM

Analog to the training procedure of the hybrid CNN-VAR-AE/LSTM, as described in
Section 5.4.3, the CNN-AE and LSTM are trained separately in two consecutive steps.
In the following, two separate models for the symmetric and asymmetric mode shape
cp-distributions are trained.

Prior to the training, the data set is split into a training and validation data set.
Therefore, 80% of the c,-snapshots are used for training, whereas the remaining 20%
are applied for validation and hyperparameter tuning. The CNN-AE is trained using
batches, including 32 ¢,-snapshots each. For both the encoder and decoder, four con-
volution levels are applied. Considering both the data representing the symmetric and
asymmetric mode shape pressure distributions, the spatial dimension of the input data
is reduced from 128 x 512 to 4 x 16 and 128 x 1024 to 4 x 32, respectively. The channel
size is increased from 3 to 512. By passing the FC layer, the latent size is reduced from
512 and 1024 to 256 features, respectively. The initial learning rate is defined as 1074
In Table 6.7, a summary of the hyperparameters of the CNN-AE training are provided.

Encoder convolution layers 4
Decoder convolution layers 4
Latent dimension 256
Kernel size 4x4
Stride 2
Batch size 32
Initial learning rate 1-107*
Activation ReLU

Table 6.7: Hyperparameters for the training of the CNN-AE.

The training of both CNN-AEs is terminated after 15000 epochs. In Figure 6.28,
the trends of the training and validation losses of both CNN-AEs are visualized. As
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shown, the training and validation loss of mode 11 show a clear convergence, whereas

the validation loss of mode 14 stays constant after an initial number of epochs.

Mode 11 Mode 14
1071 10775
1072 1072
2103
= 1
10—4.
107°
0 5000 10000 15000 0 5000 10000 15000
Number of Epochs Number of Epochs
— Training Loss ~ ----- Validation Loss

Figure 6.28: Convergence trends of training and validation losses of both trained CNN -
AFEs (mode 11 (left) and mode 14 (right)).

In addition to monitoring the convergence trends of the training and validation losses,
a visual comparison between a numerical ¢,-snapshot from the validation data set and the
corresponding CNN-AE prediction is provided. In Figure 6.29, a numerical c,-snapshot
(left) and the corresponding prediction of the CNN-AE (middle) are exemplary visual-
ized for mode shape 11. Based on the distribution of the MSE (right), which is almost
zero on the entire wing surface, a precise reconstruction quality of the trained CNN-AE

is indicated.

Numerical Data CNN-AE MSE
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Figure 6.29: Comparison of a numerical validation c,-snapshot (left) and a c,-snapshot
obtained by the trained CNN-AE (middle) (mode 11, SAPRBS excitation).

The corresponding MSE is shown on the right wing surface.

In Figure 6.30, a comparison between the numerical and CNN-AE solution for mode

shape 14 is visualized. Although the convergence of the validation loss saturates in the
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early stages of the training process, the trained CNN-AE is able to reconstruct the nu-
merical pressure distribution. Based on the MSE (Figure 6.30 (right)), which is almost

zero on the entire wing, a sufficient reconstruction capability is indicated.

Numerical Data ¢, 0.9 CNN-AE PR MSE 0.05726
0.0 0.0 0.05010
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Figure 6.30: Comparison of a numerical validation ¢,-snapshot (left) and a c,-snapshot
obtained by the trained CNN-AE (middle) (mode 14, SAPRBS excitation).
The corresponding MSE is shown on the right wing surface.

Equal to the training of the CNN-AE, 80% of the data points are applied for the
training of the LSTM. The data is fed into the LSTM in sequences, including 32 data
points each, whereas the batch size is defined as one. A stacked LSTM with three layers
is applied, containing 256 neurons per layer. Analogous to the training of the CNN-AE,
the initial learning rate is defined as 10~%. The training of the LSTM is terminated after
15000 epochs. In Table 6.8, a summary of the LSTM hyperparameters is provided.

Hidden layers 3
Neurons per layer 256
Sequence length 32
Batch size 1
Initial learning rate 1-107*
State activation tanh
Gate activation o

Table 6.8: Hyperparameters for the training of the LSTM.

Prior to the application of the trained hybrid ROM to an unknown test data set, the
ROM is applied on the validation data set in a recurrent multi-step prediction mode.
Therefore, an initial sequence of 32 c,-snapshots is fed into to the trained model. In
Figure 6.31, a comparison between a c,-snapshot of the fully resolved CFD simulation
(left) and the corresponding prediction of the hybrid ROM (middle) for mode shape 11
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is provided. Compared to the pressure distribution as modelled by the CNN-AE (see
Figure 6.29), minor deviations between the numerical and ROM solution are indicated.
The position of the shock is captured by the hybrid ROM, however, the predicted magni-

tude of the shock is less pronounced compared to the numerical solution. The deviation
in shock intensity is defined by slightly higher MSE values.

Numerical Data O 9 Hybrid ROM MSE 0.9147
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Figure 6.31: Comparison of a numerical validation c,-snapshot (left) and a ¢,-snapshot
obtained by the trained hybrid ROM (middle) (mode 11, SAPRBS excita-
tion). The corresponding MSE is shown on the right wing surface.

Similar to mode shape 11, a comparison between a numerical c,-snapshot of mode 14
and the corresponding prediction of the hybrid ROM as presented in Figure 6.32 shows
minor deviations at the shock position. Examining the corresponding MSE (Figure 6.32,

right), increased MSE values along the shock position in the midspan and tip region,

@02 MSE 0.05784
0.0 0.05061
0o 0.04338

0.03615
04

especially on the starboard wing, are present.
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J

Figure 6.32: Comparison of a numerical validation ¢,-snapshot (left) and a c¢,-snapshot
obtained by the trained hybrid ROM (middle) (mode 14, SAPRBS excita-
tion). The corresponding MSE is shown on the right wing surface.
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6.4.6 Performance Evaluation

In order to evaluate the performance of the trained hybrid ROM on an unknown data
set, the ROM is applied for modeling the surface c,-distribution at buffet condition in
combination with a mode shape deformation excited by a harmonic oscillation. In or-
der to represent a typical wing buffet frequency of the CRM configuration, the reduced
frequency of the harmonic oscillation is defined as k,.q = 0.6. Further, two deformation
amplitudes, which are equal to reference scaling factors of f = [0.5%, 1%)], are defined for
the harmonic excitation. Due to computational constraints concerning the fully resolved
simulations, only a single oscillation period is computed with both the CFD solver and
the trained ROM for each harmonic motion.

In the first step, the trained CNN-AEs are applied in order to reconstruct pressure
distributions due to the harmonic deformations. In Figure 6.33, a numerical ¢,-snapshot
(left) included in the test data and the corresponding, reconstructed c,-snapshot (mid-
dle) for mode shape 11 are compared. Here, the test case with a deflection amplitude
of f = 1% is considered. Similar to the results presented in Figure 6.29 it is shown that
the trained CNN-AE is able to reconstruct the pressure distribution with a high degree
of accuracy. As depicted in Figure 6.33 (right), the MSE on the entire wing surface is

almost zero.
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Figure 6.33: Comparison of a numerical ¢,-snapshot (left) and a c,-snapshot obtained by
the trained CNN-AE (middle) (mode 11, harmonic deformation, f = 1%).
The corresponding MSE is shown on the right wing surface.
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In Figure 6.34, a comparison between the numerical and reconstructed solution of
mode shape 14 is provided. Analogous to Figure 6.33, the test data set based on the
scaling factor of f = 1% is applied. As shown, the MSE on the port side indicates minor
deviations along the shock position, whereas the MSE on the starboard side is almost
zero on the entire surface. However, although some disagreement between the numerical
and CNN-AE solution are indicated, the CNN-AE is able to capture the overall pressure
distribution on both the starboard and port wing.
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Figure 6.34: Comparison of a numerical ¢,-snapshot (left) and a ¢,-snapshot obtained by
the trained CNN-AE (middle) (mode 14, harmonic deformation, f = 1%).
The corresponding MSE is shown on the right wing surface.
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For the performance evaluation of the hybrid ROM, the c,-samples representing both
test data sets are encoded and applied as an input to the trained LSTM. The LSTM is
applied in a recurrent multi-step prediction mode. For the initialization of the multi-step
predictions, a sequence of ten encoded numerical ¢,-snapshots is provided to the LSTM.
In addition, the corresponding initial 10 timesteps of the harmonic deformations signal
are concatenated with the pressure samples. Based on the initialization solution, the
trained ROM is applied for the prediction of 150 timesteps ahead.

In order to compare the c,-distributions as modelled by the hybrid ROM with the
reference numerical data, chordwise c,-distributions at two different spanwise positions 7
= [70%, 80%]| are considered. These positions are chosen since they mark locations with
distinct changes in the surface pressure distribution. At each position, the c,-distribution
at four timesteps included in the multi-step predictions is evaluated. The timesteps are
set as t, = tog + At-n, with At defined by 30 timesteps. In Figure 6.35, a comparison of
the numerical and predicted c¢,-distributions of mode shape 11, simulated with a scaling
amplitude of f = 0.5%, is provided. Considering a spanwise position of n = 80%, a good
agreement between the numerical and ROM solution is indicated for timesteps ¢y, t; and
to. As the multi-step prediction advances, increased deviations in both the magnitude of
¢, and the shock position, as shown at timestep ¢3, occur. Similar to the data obtained
at 7 = 80%, an overall good agreement of the reference and modelled data at n = 70% is
indicated. Although increased deviations including the representation of a double shock
front at timesteps t, and t3 are shown, the hybrid ROM is able to capture the overall

trends of the pressure distributions.
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Figure 6.35: Comparison of numerical and predicted c,-distributions at two spanwise
positions n = [70%, 80%] (mode 11, harmonic excitation, f = 0.5%).
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Figure 6.36: Comparison of numerical and predicted c,-distributions at two spanwise
positions n = [70%, 80%]| (mode 11, harmonic excitation, f = 1%).

In addition, in Figure 6.36, a comparison of the numerical and predicted mode shape
11 pressure data, simulated with a scaling factor of f = 1%, is presented. Similar to the
results presented in Figure 6.35, the hybrid ROM is able to capture the c,-distributions
at 7 = 80% obtained at all timesteps. Here, only minor deviations in the ¢,-magnitude
are visible, whereas the shock position is correctly captured by the trained ROM. Con-
sidering the spanwise position 7 = 70%, the c,-distribution modelled by the hybrid ROM
at timesteps £y, and t; agree very well with the numerical solution. In contrast, the pre-
diction of the ¢,-distribution at the advanced timesteps seems to be a challenge for the
trained ROM. Here, both deviations in the shock position as well as in the c,-magnitude

are indicated.
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Shifting the focus to the test data sets representing mode shape 14, in Figure 6.37,
a comparison of numerical pressure distributions and the corresponding predictions is
provided. Here, pressure data obtained with a scaling factor of f = 0.5% is considered.
At both spanwise positions, an overall good agreement in terms of shock position and
cp,-magnitude at timesteps ty and ¢, is indicated. In contrast, considering the increased
timesteps t, and t3, the hybrid ROM is not able to capture either the magnitude of
the c,-distribution nor the position of the shock in a correct way. In Figure 6.38, a
comparison between the numerical and ROM solutions, computed with a deformation
factor of f = 1%, is provided. Similar to the results presented in Figure 6.37, the hy-
brid ROM provides a good prediction performance for the c,-distribution at timestep
t = [to, t1] at both selected spanwise positions. As the timestep advances, the error
of the multi-step predictions accumulates, resulting in increased deviations between the
reference and modelled c,-distributions.

In addition to a comparison of the chordwise ¢,-distributions at the selected spanwise
positions, a comparison of the surface ¢, is provided for all four test cases at timestep
to, as depicted in Figure 6.35 - 6.38. In Figure 6.39 and Figure 6.40, a comparison of the
surface ¢, due to the mode shape test cases with f = 0.5% and f = 1% is visualized,
respectively. As shown, the hybrid ROM is able to capture the pressure distribution
on the wing with a high degree of accuracy. However, consistent with the predicted
chordwise c,-distributions shown in Figure 6.35 and Figure 6.36, minor deviations in the
shock position compared to the reference numerical solution are indicated. This is also
emphasized by the increased MSE values at the position of the shock.

In Figure 6.41 and Figure 6.42, a visualization of the numerical and modelled c,-
distributions of the mode shape 14 test cases with f = 0.5% and f = 1% is provided,
respectively. Consistent with the findings presented in Figure 6.37 and Figure 6.38,
larger deviations at the shock position on the starboard side are indicated by the in-
creased MSE values. However, besides the deviations in the c,-distribution in the tip
region, the hybrid ROM is able to model the c,-distribution close to the wing root.
Further, it has to be mentioned that both the c,-distribution on the starboard and port
side are captured by the hybrid ROM. However, the prediction of the c,-distribution
imposes a challenge on the proposed ROM compared to the prediction of mode shape

11 ¢,-distribution.
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Figure 6.37: Comparison of numerical and predicted c,-distributions at two spanwise

positions n = [70%, 80%]| (mode 14, harmonic excitation, f = 0.5%).
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Figure 6.39: Comparison of a numerical c¢,-snapshot (left) and a c,-snapshot obtained
by the trained hybrid ROM (middle) (mode 11, harmonic excitation,
f = 0.5%). The corresponding MSE is shown on the right wing surface.
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Figure 6.40: Comparison of a numerical ¢,-snapshot (left) and a c,-snapshot obtained by
the trained hybrid ROM (middle) (mode 11, harmonic excitation, f = 1%).
The corresponding MSE is shown on the right wing surface.
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Figure 6.41: Comparison of a numerical c¢,-snapshot (left) and a c,-snapshot obtained
by the trained hybrid ROM (middle) (mode 14, harmonic excitation,
f = 0.5%). The corresponding MSE is shown on the right wing surface.
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Figure 6.42: Comparison of a numerical ¢,-snapshot (left) and a c,-snapshot obtained by
the trained hybrid ROM (middle) (mode 14, harmonic excitation, f = 1%).
The corresponding MSE is shown on the right wing surface.
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6.4.7 Efficiency Evaluation

Within the following section, the reduction in computational costs by applying the pro-
posed hybrid ROM in the framework of an aeroelastic analysis compared to URANS
simulations, is quantified.

Analogous to previous numerical simulations presented in this thesis, the SuperMUC-
NG of the LRZ has been used for the URANS computations with the DLR-TAU code.
Equal to the computations presented in Section 6.3, 10 nodes with 48 cores are selected
for the half-span model, resulting in a total number of 480 cores for each simulation.
In contrast, the simulations of the full-span model have been conducted using 16 nodes
with 48 cores each. Therefore, 768 cores are applied for the full-span model simulations.
The training, validation and test computations of the hybrid ROM have been conducted
on a workstation equipped with an Intel Xeon W-2295 3 GHz processor. Here, a single
CPU core has been applied in order to provide the simulation time in terms of wall clock
time.

As a first step, the costs for the training procedure of the hybrid ROM are analyzed.
Considering the half-span and full-span model, the SAPRBS simulations for the genera-
tion of the training data set took approximately 38 and 97 hours on the SuperMUC-NG,
respectively. Hence, considering the number of applied cores, the computational costs
are summed up to 18240 (= 38 - 480) and 74496 (= 97 - 768) CPU hours. The training
of the CNN-AE with the data representing mode 11 and mode 14 took around 30 hours
on the workstation, while the training of the LSTM was summed up to approximately
20 hours for each respective mode. Therefore, the computational time for training the
hybrid ROM on a single CPU is defined by 50 CPU hours. Considering the simulation
time of each SAPRBS, the computational costs for the overall training are represented
by 18290 and 74546 CPU hours for the half- and full-span model, respectively.

Following the efficiency evaluations provided in Section 4.7 and Section 6.3.4, a
detailed overview of required CPU hours for the hybrid ROM and the fully-resolved
URANS simulation is given. Considering the half-span model applied for symmetric
mode simulations, the application of the hybrid ROM includes approximately 18240
CPU hours for the SAPRBS simulation, 50 CPU hours for the overall ROM training,
a small number of initial timesteps for the multi-step predictions and about 0.03 CPU
hours for the application of the hybrid ROM on a test data set. In contrast, the full
URANS simulation comes up with a total of approximately 10000 CPU hours for each
frequency-amplitude variation. Here, 10000 CPU hours are assumed as an average com-
putational time, keeping in mind that each frequency is characterized by a different
number of resolved timesteps. With a computational time of 10000 CPU hours, ap-
proximately 2000 timesteps are computed. Therefore, since a batch of 32 timesteps
is provided for ROM initialization, approximately 160 CPU hours are required for the

computation of the ROM initialization input.
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Focusing on the full-span model, the ROM application is defined by approximately
74500 CPU hours for the SAPRBS simulation, 50 CPU hours for training of the ROM,
initial time-steps for ROM initialization and approximately 0.04 CPU hours for the ap-
plication of the ROM. The fully-resolved URANS simulations of the harmonic motions
sum up to approximately an average of 20000 CPU hours. Therefore, 320 CPU hours are
necessary for the timestep computations for ROM initialization. In Table 6.9, the num-
ber of CPU hours required for the application of the hybrid ROM and the full-resolved
URANS computations are summarized. Here, only a single harmonic motion test case

is considered.

Half-span model Full-span model
SAPRBS simulation 18240 74500
ROM training 50 20
ROM ROM initialization 160 320
ROM application 0.03 0.04
Fully resolved URANS simulation 10000 20000

Table 6.9: Comparison of CPU hours of the half- and full-span model, considering a
single harmonic motion test case.

Considering a proper aeroelastic analysis, a set of approximately 50 symmetric and
asymmetric modes needs to be analyzed using URANS computations. Further, a fair
amount of parameter variations for each mode would be needed, covering the frequency
range of interest (e.g. Kyeq g = 0.2:0.1:0.8]) and a minimum number of two amplitude
variations (f = [0.5%, 1%]). Therefore, a number of 16 simulations must be conducted
for each respective symmetric and asymmetric mode.

Focusing on the half-span model simulations, the number of ROM related CPU hours
sum up to 18290 for the training of the hybrid ROM and 2560 (= 16 - 160) CPU hours
for the computation of the initial test data set solution for each frequency-amplitude
variation. Further, the application of the ROM itself is defined by approximately 0.5 (=
16 - 0.03) CPU hours. In contrast, the full URANS simulation would take 16 - 10* (=
16 - 10000) CPU hours.

For the full-span model simulations, 74546 CPU hours for the training of the hybrid
ROM as well as 5120 (= 16 - 320) CPU hours for the initial test data set timesteps are
required. In addition, approximately 0.65 (= 16 - 0.04) CPU hours are set for the ap-
plication of the hybrid ROM. For the full URANS simulation, in total, a computational
time of 32 - 10* (= 16 - 20000) CPU hours would be required.

In Figure 6.43, a comparison between ROM- and URANS-required CPU hours for
both the half-span and full-span model is provided. Here, the CPU hours for a single
mode computation are considered. As shown by the blue line, the increase of CPU hours
required for the URANS simulations is very high compared to the CPU hours necessary

for the ROM application, even after only a couple of test cases.



164 6. WING BUFFET PREDICTION DUE TO FORCED VIBRATIONS

200000 Half-span model Full-span model
300000 A
150000 1
3 2 200000 1
= 1000001 a
- -
[l (ol
O (@)
500004 100000 1
7 7 / / /
0 ! ' f 0 T T T
0 5 10 15 0 5 10 15
Number of Test Cases Number of Test Cases
—— URANS —— ROM v ROM fixed

Figure 6.43: Comparison of CPU hours required for the fully-resolved URANS simula-
tion and the hybrid ROM simulations (half-span model (left) and full-span
model (right)).

Comparing the CPU hours required for the URANS simulations and the ROM ap-
plication, a reduction in computational time by one order of magnitude is possible.
However, if the CPU hours for the training data set simulations are neglected, computa-
tional time can be reduced by up to three orders of magnitude. Further, a reduction in
computational costs could be achieved by training a hybrid ROM by means of superposed

symmetric and asymmetric modes.

6.5 Summary

In this chapter, a LSTM-based ROM and a CNN-AE/LSTM-based hybrid ROM have
been applied for the prediction of motion-induced integral and local wing buffet char-
acteristics. As a test case, the NASA CRM configuration in combination with the
FERMAT structural model has been selected.

In the first part of this chapter, the training and application of a LSTM-ROM for
the prediction of integral wing buffet characteristics due to wing pitching motions was
described. For the training of the LSTM, an optimized set of hyperparameters in terms
of number of hidden layers, number of neurons, sequence length as well as initial learning
rate has been defined. Equal to the analysis in Chapter 4, for performance assessment the
trained LSTM has been used for the computation of lift and pitching moment coefficient
trends due to prescribed harmonic pitching excitations, covering different frequencies
and amplitudes. A comparison with the reference, high-fidelity fully resolved simula-

tions showed that the LSTM is able to capture the trends of the resulting aerodynamic
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coefficients to a sufficient extend. In particular, an overall fit in terms of the fit factor
of 69% to 73.5% was achieved.

Further, it was shown that a hybrid CNN-AE /LSTM-based ROM approach is appli-
cable for the prediction of wing buffet pressure distributions due to structural eigenmode-
based deformations. However, compared to the analysis in Chapter 5, some conceptual
changes have been applied to the architecture of the hybrid ROM. Instead of using a
VAR-AE, only a standard AE has been used. In order to create data sets for differ-
ent symmetric and asymmetric modes, a structural deformation framework based on
the FERMAT structural model has been developed and implemented in the DLR-TAU
solver. For the training and performance evaluation of the hybrid ROM, one symmetric
and one asymmetric wing bending mode shape have been considered. Based on the
results of the hybrid ROM application and a comparison with the fully resolved URANS
simulations, it was shown that the hybrid ROM is able to capture the deformation-based
pressure distributions of the symmetric mode shape. Further, a comparison between
the pressure distributions of the asymmetric mode and the numerical solution revealed
higher deviations, especially for advancing timesteps of the multi-step prediction mode.
However, in general it was shown that the proposed ROM is also able to model asym-
metric mode shape pressure distributions at a developed buffet condition. Besides the
evaluation of the prediction performance it was shown that the application of the hybrid
ROM, especially in the context of an aeroelastic analysis, potentially enables a saving
of computational costs by several orders of magnitude.

To mitigate the deviations between the results of the ROM and the reference URANS
solution, several strategies could be employed in the future: Firstly, increasing the in-
formation content of the training signal by increasing the number of training samples
as well as incorporating additional physical parameters through enlarging the amplitude
and frequency content of the applied signal. Secondly, taking advantage of advanced
CPU or GPU hardware for both the ROM and URANS simulation could further accel-

erate and improve the training and application process.






7 Conclusion and Outlook

In the following final chapter, a recapitulation of this thesis is presented. The key
findings are briefly outlined and summarized with respect to the research objectives
as defined in Chapter 1. Further, an outlook on potential future reduced-order model
(ROM) applications and their possible performance improvement is given.

As already motivated in the introduction, the focus of the present thesis was put on
a fast and accurate computation of both integral and local two- and three-dimensional
buffet characteristics using deep learning-based ROM methods. In particular, the focus
lies on the computation of the buffet flow features due to varying freestream condi-
tions as well as external excitations based on rigid body motions and eigenmode-based
structural deformations. Besides an accurate prediction of the buffet characteristics, a
reduction in computational time was pursued. For the training and evaluation of the
proposed ROM methods, high-fidelity numerical and experimental data sets have been
used. In order to obtain the data sets representing the relevant buffet flow physics,
fully resolved Computational Fluid Dynamics (CFD) simulations using an Unsteady
Reynolds-Averaged Navier-Stokes (URANS) approach have been performed. The exper-
imental data sets have been obtained during several wind tunnel test campaigns at the
European Transonic Windtunnel (ETW) facility.

The ROM approaches proposed in the present work are based on long short-term
memory (LSTM) neural networks, convolutional neural networks (CNNs) and (varia-
tional) autoencoder (VAR-AE). Further, hybrid ROMs combining these architectures
have been employed. The LSTM neural network has been applied for time-series pre-
diction tasks, such as the trends of the unsteady aerodynamic forces and moments. In
contrast, the CNN and AE enabled the computation of unsteady buffet pressure distri-
butions and the reduction of the high-dimensional flow field data, respectively. For a
comprehensive evaluation of the proposed ROMs, three unsteady buffet test cases have
been taken into account.

As a first research task, outlined in Chapter 4, an accurate computation of two-
dimensional buffet characteristics was pursued. As a test case, the NACAO0012 airfoil
has been selected. In particular, the aim was to predict changes in the lift and moment
coefficient trends due to prescribed pitching and combined pitching and plunge exci-
tations covering varying frequencies and amplitudes. Further, special focus was on an
accurate reproduction of the lock-in effect, where the frequency of the buffet instabil-
ity and the excitation frequency synchronize. For this task, a LSTM-based ROM was
trained and applied. In order to generate an accurate training data set, URANS sim-
ulation using the DLR-TAU solver have been computed in order to capture the shock
motion and the resulting separation and reattaching of the boundary layer. For per-
formance evaluation, the results obtained by the trained LSTM have been compared to
the reference full-order CFD solutions, using both time-domain and frequency-domain

representations. Based on the results it was shown that the trained LSTM is able to
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capture the trends of the aerodynamic coefficients. In addition, the lock-in effect was
accurately modelled. Further, a detailed analysis of the application of the LSTM-ROM
for reducing computational time compared to the full-order CFD simulations has been
conducted. As shown, the application of a ROM compared to full-order CFD simula-
tions for airfoil buffet analysis enables a computational speed-up of approximately one
to two orders of magnitude.

In Chapter 5, an efficient computation of wing buffet characteristics at varying
freestream conditions was presented. Therefore, a LSTM-based ROM has been applied
for capturing local pressure fluctuations, whereas a hybrid CNN-VAR-AE /LSTM-based
ROM has been used for the computation of unsteady wing pressure distributions. For the
training and evaluation of both ROMSs, experimental data measured during wind tunnel
test campaigns in the ETW facility has been employed, with a wind tunnel model repre-
senting the Airbus XRF-1 configuration. Prior to the ROM application, a flow analysis
based on the experimental pressure data revealed that the measured data include a high
amount of noise. Besides the characteristic buffet frequencies, frequencies due to model
vibrations have been captured in the pressure measurements. Therefore, applying the
experimental data imposed a challenge to the training and application process of the
ROMs. For performance evaluation, the results obtained by both ROMs are compared
to the data obtained by the experiments. Based on the results it was indicated that both
ROMs are able to model wing buffet characteristics due to varying freestream conditions
with a high degree of accuracy.

In Chapter 6 the ROM methods introduced in Chapter 4 and Chapter 5 were ap-
plied for the prediction of wing buffet characteristics due to rigid body motions and
eigenmode-based deformations. For the computation of motion-induced force- and mo-
ment coefficient trends, a LSTM-based ROM has been applied, whereas for the prediction
of pressure distributions due to the structural deformations a hybrid CNN-AE/LSTM
has been used. Here, both symmetric and asymmetric eigenmode-based deformations of
the wing have been considered. For the training and validation, full-order CED solutions
have been applied, with the NASA CRM configuration as a test case. For structural
modeling, the FERMAT structural model has been used. An examination of the results
yielded an overall good agreement between the reference CFD solution and the results
modeled by the trained ROMs. Further, computational time was reduced compared to
the usage of extensive CFD simulations in the framework of an aeroleastic analysis.

Based on the previous outlined work packages, an evaluation of the research objectives

is performed on the basis of the key findings in this thesis:
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Research Objective 1: To what degree is it possible to predict unsteady integral

and local buffet loads due to freestream parameter variations?

The data and discussion to answer this research objective is given in Chapter 5, where an
accurate computation of unsteady integral and local buffet loads at varying freestream
conditions was performed. Both pressure fluctuations measured at different span - and
chordwise positions as well as pressure distributions on the entire wing are accurately
modeled. Focusing on the locally measured pressure data, the characteristic, broadband
buffet frequency content can be captured by a trained LSTM-ROM, although other fre-
quencies related to structural vibrations are present in the data. A comparison between
the experimental data and the data predicted by the LSTM-ROM revealed an overall fit
between 76% to 80%. Similar findings apply for the computation of pressure distribu-
tions at buffet condition. A comparison with the reference experimental data revealed
a good prediction capability of the proposed hybrid ROM for nonlinear flow field pre-
diction. Considering both XRF-1 test cases with a different flow topology, the hybrid
ROM was able to accurately model the pressure distribution on the clean wing and the
wing with the UHBR nacelle installed. Further, a comparison of the POD modes of the
original and predicted data showed that the hybrid ROM is able to capture the first six
modes of the buffet instability with a high degree of accuracy. Both the low and high
frequency content are correctly represented by the trained hybrid ROM.

Research Objective 2: To what degree is it possible to predict unsteady integral

and local buffet loads due to rigid-body motions and eigenmode-based deflections?

Based on the results presented in Chapter 2 and Chapter 6, the proposed ROM meth-
ods are applicable for predicting motion-induced buffet characteristics. By means of a
trained LSTM-ROM it was shown that it is possible to capture both lift and moment
coefficient trends due to harmonic pitching and simultaneous pitching and plunge exci-
tations on an airfoil and on an aircraft wing. A comparison of the ROM results and the
reference CFD solutions indicated a fit of 90% - 93% and 70% - 73% for the prediction
of airfoil and wing buffet aerodynamics, respectively. Further, focusing on airfoil buffet
aerodynamics, the trained LSTM-ROM is able to capture the lock-in effect at harmonic
excitations with frequencies close to the buffet frequency. Here, the synchronization of
both frequencies is reproduced by the trained LSTM-ROM.

Focusing on pressure distribution modeling due to eigenmode-based deformations,
the results presented in Chapter 6 revealed an efficient application of the hybrid CNN-
AE/LSTM architecture. By extending the hybrid ROM architecture with the informa-
tion regarding the structural deformations it was shown that it is possible to model the
pressure distributions due to both symmetric and asymmetric eigenmode-based defor-

mations. A comparison with the reference URANS solutions yielded that the trained
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ROM is able to capture both the spanwise and chordwise c,-distribution of the symmet-
ric mode shape in terms of magnitude and shock position. In contrast, the application
to the asymmetric mode test case yielded higher deviations between the numerical c,-
distribution and the ¢,-distribution modelled by the hybrid ROM. Despite the challenge
posed by the asymmetric mode deformation, it is important to emphasize that the ap-
plication of the proposed ROM remains valid, and the overall prediction performance is

deemed sufficient.

Research Objective 3: Is it possible to train and apply a ROM by means of ex-

perimental data, which is characterized by a high noise content?

In general, using data including a high amount of noise impose a challenge on the
training and application of a ROM. Based on the experimental data analysis presented
in Chapter 5, it was shown that besides buffet related frequencies, frequencies due to
model vibrations are included in the experimental data. Removing nonphysical values
is an important preprocessing step, when focusing on data gathered by optical measure-
ments. However, as shown by the ROM results summarized in Chapter 5, an accurate
computation of both integral and local wing buffet characteristics using experimental
data, is achievable. Although a broadband noise content is present in all considered
data spectra, the trained ROMs are able to capture both buffet- and structural-related

frequencies with a high degree of accuracy.

Research Objective 4: How much reduction in computational time can be achieved
by the application of a trained ROM compared to a full-order CFD or experimental

solution?

Based on the results presented in Chapter 4 and Chapter 6, a detailed analysis re-
garding the efficiency of the ROM approaches relative to the full-order CFD application
chain has shown that accelerations of one to two orders of magnitude in computational
efficiency can be achieved. However, this factor is highly dependent on the number and
complexity of the considered test cases. In general, it was shown that the generation
of the reference or training input high-fidelity data set hold the highest share on the
overall computational time which is necessary for the training of a ROM. Therefore, if
the applied ROM method can amortize the time used for training, which is the case for
the investigation of a large number of buffet freestream parameters or in the framework
of an aeroelastic analysis, the usage of the proposed ROMs is profitable.

In contrast, a comparison of the computational effort of the ROM application with
experimental investigations is more challenging, since it is highly dependent on the ap-
plied measurement technique. Considering the application of unsteady pressure sensors,
data acquisition and storage time is very small compared to the training time of a ROM.

Here, the computational efficiency of a ROM could be referred to the computation of
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data if a sensor gets damaged during a test run or the data is insufficient for further
analysis. Considering the application of optical measurement techniques such as iPSP,
the saving in data acquisition costs compared to the ROM application is assumed to
be very beneficial. Further, costs and time due to the intense preparation of the wing
coating as well as the acquisition and preparation of the camera equipment could be

saved by the application of a trained ROM.

Following the recap of this thesis, an outlook on ROM-based buffet and buffeting analysis
is briefly given in the following. Driven by the progress in high-performance comput-
ing as well as artificial intelligence algorithms, various new deep learning (DL) methods
originated within the last years. Besides the application of CNN-based ROMs, ROMs
based on generative adversarial networks (GANs) represent a promising approach for
the reconstruction and prediction of nonlinear flow fields. Further, DL methods such
as convolutional LSTM (ConvLSTM) neural networks as well as temporal convolutional
networks (TCN) are a promising method for the prediction of spatio-temporal flow field
data. Further, coupling the proposed aerodynamic ROM approaches with structural
dynamics or flight mechanics models enables the simulation of aeroelastic and aeroser-
voelastic problems, such as transonic buffeting. However, due to the computationally-
intense simulations and the need of a sufficient data set covering the overall design space,
the training and validation effort would drastically increase.

Besides the application of different or newly developed ROM approaches, the per-
formance of the proposed ROM approaches could be further improved by the following
measures: Instead of only using data from one source, data from different sources could
be applied for the training of a ROM. It is assumed that a fusion of experimental and
numerical data improves the training performance, due to the decreasing amount of
noise in the data. However, combining data from different resources could also impose
a challenge for a ROM, which has to be accounted for with a tailored preprocessing
routine. Another approach for noise reduction in experimental data could be the appli-
cation of modal analysis techniques such as POD and DMD prior to the training process.
Therefore, only buffet relevant modes are considered for training and application. Fur-
ther, as discussed before, the observed deviations between the ROM predictions and the
reference data, which are most likely attributed to factors such as limited training data,
data quality issues, and disparities in modeling assumptions between the neural network
and the underlying models, underscore the need for a comprehensive solution. These
issues could be tackled by advanced CPU or GPU hardware, enabling both optimized
neural network implementations and applications as well as increased resources in terms
of full-order reference data.

Incorporating the mentioned strategies for future improvements, the ROM methods
developed in this thesis can be further adapted and applied to various new aerodynamic

and aeroelastic problems.
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