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Abstract

Smart Thermal Grids are a novel way to design our heating system and are based on bi-directional water
flows between prosumers. The dual role of prosumers and the bi-directional heat transfer make controlling
the system crucial to meet temperature and heat flow requirements. For this purpose, a weighted PID field
control approach has already been devised and tested. The aim of this work resides in providing a formal
stability analysis of the control system.

For this, we first establish a model of the simplest Smart Thermal Grid case of two prosumers and imple-
ment the field control approach. Regarding the stability analysis, different methods shall be investigated
especially Lyapunov’s direct and indirect method and Nyquist’s stability criterion. To account for the lack of
accuracy of the linearization of the Smart Thermal Grid over all possible inputs, a statistics based Monte-
Carlo approach is further studied in combination with previously mentioned methods. Moreover, the idea
of replacing the closed-loop control system by an equivalent open-loop one – referred to as extended
state-space – to apply open-loop stability methods in combination with the Monte-Carlo approach is also
introduced.

The different approaches have not proven to be successful in the scope of this work and would need to
be further investigated in future work. Thus, some empirical considerations shall be made to account for
experimental findings on the stability.

keywords - Smart Thermal Grids, bi-directional heat transfer, temperature and heat flow control, stability
analysis, Monte-Carlo approach
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TOPIC FOR A STUDENT THESIS / PROJECT 

Formal stability analysis of a PID-based control system for bidirec-
tional heat transfer stations 

Motivation and Background 

Bidirectional heat transfer stations 
are an essential element to enable 
prosumer behavior in thermal net-
works as a part of smart energy sys-
tems. Previous research focuses on 
the operation of these transfer sta-
tions in networks where the thermo-
hydraulic system state is dominated 
by central plants and thus transfer 
stations hardly influence each other. 
However, this is significantly differ-
ent in thermal networks with a focus 
on the flexible energy exchange be-
tween peer prosumers. In former 
studies we proposed suitable net-
work and substations designs and 
have shown that distributed actua-
tors in the substations mutually influ-
ence each other. Further, it was 
shown that the overall thermohydraulic state is quite sensitive to the control of the distributed 
actuators and characterized by changing flow directions and velocities. This imposes new chal-
lenges for the network control and leads to the need of new control strategies for bidirectional 
transfer stations that meet the requirements of flexible prosumer energy exchange. 

We propose a field-level control approach for pumps and valves of bidirectional heat transfer 
stations in prosumer-based heat networks. The control approach is based on PID controllers for 
the primary and secondary side of each substation. Weighted error-functions consider heat trans-
fer setpoints and temperature objectives at the same time, thus relaxing the control problem. 

Objectives and Tasks 

The objective of this work is to perform a formal analytical stability analysis for a nonlinear control 
system that comprises bidirectional heat transfer stations (see example above) and proposed 
PID-controllers with weighted error functions. 

1. Familiarization with the theory of formal stability analysis and the control system. 

2. Mathematical representation of the controlled system by a system of equations and deri-
vation of a suitable transfer function for the controlled system. 

3. Mathematical representation of the whole control system by transfer functions. 

4. Formal analytical stability analysis of the control system. 

5. Conclusions on the conditions for system stability (& operability), on improvements of the 
control approach and on the behavior of more complex prosumer configurations 

 Requirements 

• Profound knowledge in control theory and mathematical affinity 

• Technical background in energy systems and thermal engineering 

Contact for application: Thomas Licklederer ( thomas.licklederer@tum.de ) 

Figure 1: Illustration of the controlled system under investigation 
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INTRODUCTION

Introduction

With the rapid expansion of renewable energies in the past decades, we face the challenge of integrating
those fluctuating energy sources with low energy densities and high space requirements into the distri-
bution grid. The local operation of PV panel and wind turbines, among the most widespread renewable
energy generators, has brought up the idea of a decentral integration mechanism driven by sector coupling
and an avoidance of long distance energy transport. Smart Grids then serve as a way of implementing
these decentralized energy systems, by enabling local control and coordination between generation, trans-
port and consumption. More precisely, Smart Grids are an infrastructure consisting of a grid for energy
transport, sensor technology for recording the grid status in real-time and information and communication
technologies for controlling the grid.

A fundamental aspect of those Smart Grids is the bi-directional energy flow between producers and
consumers, which are able to change their role according to the current needs, in order to obtain a more
optimal operation of the grid. The CoSES laboratory at the TU Munich [1] analyzes and simulates this concept
on a small urban neighborhood scale of five buildings. Additionally to the integration of electricity and
electric mobility, heating and cooling are also part the grid, which is the aspect we will be inspecting further
in this report.

Indeed, Smart Thermal Grids aim at transforming our way of heating ourselves thanks to the bi-directional
flow of water between neighborhood buildings. As a specific type of Smart Grid, it thus does also need to
be controlled so as to ensure reliable water flows and accurate heating. A control approach for this has
already be developed and tested by the CoSES laboratory, however, guaranteeing its stability is a crucial
step to ensuring the reliability of the whole system. This thesis thus aims at conducting a formal stability
analysis on the devised control approach with the objective to find out under which conditions the Smart
Thermal Grid control system is stable.

The report has been written in the context of a Research Internship at the Munich Institute for Integrated
Materials, Energy and Process Engineering. It reflects the work of 9 weeks worth of full-time research on
the subject and complies with the internship conditions of the M.Sc. Electrical Engineering and Computer
Science.
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CHAPTER 1. THE BI-DIRECTIONAL HEAT TRANSFER SYSTEM

Chapter 1

The bi-directional heat transfer system

We look at the heat supply of residential buildings in an urban area. In the classical sense, such buildings
are furnished with warm water by an external heater. The warm water inflow is not regulated with respect
to the specific needs of the building, which might vary according to the time of day or season but also the
individual actions of its inhabitants. An alternative heat transfer system, which favors a more optimal warm
water flow by complying with specific building needs, has been introduced in the context of Smart Thermal
Grids. In the following, we will be studying and deriving a model for this novel heat transfer system.

1.1 Concept and simplest case
The key idea behind Smart Thermal Grids is that a building can either be:

• a producer – the building does not need all the heat it has produced at a specific moment: it has a
heat excess;

• or a consumer – the building has a lack of heat and cannot ensure the necessary heat supply for its
inhabitants at a specific moment: it has a heat deficit.

We call a building capable of operating in both modes a prosumer. In our novel concept, all prosumers of
a residential area – e.g. a neighborhood – are linked by a network of pipes, which allow a bi-directional
water flow. This results in a heat exchange between prosumers according to their current mode – producer
or consumer. Of course prosumers may also be idle, meaning that they neither need nor give heat and no
water flow is associated with them, but we will not be considering this case in the framework of this report.

Indeed, in this report, we will be concentrating on what is to be considered the “simplest case” with only
two buildings, as depicted in Figure 1.1. Building 1 functions as a producer and building 2 as a consumer.
They are connected by one cold water and one warm water pipe. As said before, the water flow can be bi-
directional in each pipe, however, as we fixed the role of the buildings in our setup, its direction is known
to us: the warm water flows from building 1 to 2 and the cold water in the opposite direction. Each building
has its own heating system, likewise comprised of one cold and one warm water pipe – further details
are not of interest to us – and which communicates with the network via a plate heat exchanger. Heat is
then transmitted from one side of the heat exchanger to the other without the pipes on either side being
connected.

Looking back at the operating modes of our buildings, it can be seen that for building 1 heat is transferred
from the warm water pipe of the secondary (building) side to the cold water pipe of the primary (network)
side. This process heats up the cold water of the network, which is then conveyed to building 2 as warm
water. Arriving at building 2, the heat is transmitted from the warm water pipe of the primary side to the cold
water pipe of the secondary side. The water in the primary side being cold again it flows back to building 1,
where the process is repeated. Building 2 now has warm water available.

Temperatures and thus heat exchange – as will be shown later on in the system model – can be regulated
by the volume flow of the water. Pump and valves on each building and on each side let us control the
volume flow in the network. On the network side, the producer is equipped with a pump and the consumer
with a valve both located on the warm water pipe. On the secondary side, each prosumer has a pump on
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CHAPTER 1. THE BI-DIRECTIONAL HEAT TRANSFER SYSTEM

Figure 1.1: Simplest case scenario of a prosumer network

the cold water pipe, however, those are of little interest to as we do not look at the heating system of the
building.

1.2 Deriving a model
The main feature of the system is that it is thermohydraulic. A model will accordingly be derived for both the
hydraulic and the thermal system separately. The heat exchanger serves as link between both systems. The
model that is derived in the following comes directly from [2], where the steady-state equations describing
the system are set up. Notations used for deriving the model are summarized in Table 1.1, while configuration
specific parameters are given in Table 1.2.

It shall also be noted that vectors will be indicated by lower case and matrices by upper case underlined
symbols.

Physical variables

a hydraulic parameter
cp specific heat capacity of the fluid
κ control variable for valve opening
∆p pressure difference
¤Q heat flow
ρ fluid density
T , ∆T temperature, temperature difference
τ time delay
v control variable for pump speed
¤V volume flow

Superscripts

1 building 1
2 building 2
n network
p primary side
s secondary side

Subscripts

c cold
hx heat exchanger
hyd hydraulic
is current value
lin linearized system
max maximal value
nlin nonlinear system
nom nominal value
pi pipe
pu pump
rand random
set setpoint, desired or given value
ss steady-state
tot total
va valve
w warm

Table 1.1: Notations used for modeling the system

9 / 39



CHAPTER 1. THE BI-DIRECTIONAL HEAT TRANSFER SYSTEM

1.2.1 Hydraulic subsystem
In a first step, we look at the hydraulic part of the heat transfer system. Applying Kirchhoff’s mesh rule for
electrical circuits to the heat network, we get that the sum over all pressure differences in the system must
be zero ∑

i

∆pi = 0 (1.1)

Looking at our heat transfer system in Figure 1.1, we thus get that

∆p (1p )︸ ︷︷ ︸
∆p
(1p )
pu +∆p

(1p )
hx +∆p

(1p )
piw
+∆p (1p )pic

+ ∆p (2p )︸ ︷︷ ︸
∆p
(2p )
va +∆p

(2p )
hx +∆p

(2p )
piw
+∆p (2p )pic

+ ∆p (n )w︸︷︷︸
∆p (n )piw

+ ∆p (n )c︸︷︷︸
∆p (n )pic

= 0 (1.2)

Each pressure difference located in the network can further be decomposed into the pressure differences
relative to each component present in the considered pipe portion, as done in (1.2). Ergo, we need to express
the pressure difference associated with each hydraulic component – pump, valve, pipe and heat exchanger.
In general, pressure differences can be directly linked to the volume flow by a function ∆p = f

(
¤V
)
, hence,

we will be expressing f for each component. We further consider the following assumption on the volume
flow.

Assumption 1 (Delay) We only consider a delay in the volume flow through pumps and valves, while we
assume pipes and heats exchanger to have an immediate volume flow. We also take that this delay in due
to the volume flow in itself and not due to the actuation of pumps and valves.

Pump We make use of pumps with variable speed drives, which can be controlled by the unified control
variable vpu – the normalized fluid speed. The pressure difference can be expressed with respect to the
volume flow as follows

∆ppu = a1pu

(
¤Vpu

)2
+ a2pu

(
vpu

)2
− τpu

d ¤Vpu

dt
(1.3)

where

a1pu =

∆ppuref,1 −
(
vpuref,1
vpuref,2

)2
∆ppuref,1(

¤Vpuref,1

)2
−

(
vpuref,1
vpuref,2

)2 (
¤Vpuref,2

)2 and a2pu =

(
1

vpuref,1

)2 [
∆ppuref,2 −

(
¤Vpuref,2

)2
a1pu

]

are hydraulic parameters. It shall further be noted that unlike [2] and in accordance with Assumption 1, we
added a delay in (1.3) to account for dynamics in the system as done in [3]. It has been modeled according
to the characteristic curve of a pump – as the volume flow increases the pressure difference decreases –
and can be tuned via τpu.

Valve We further use control valves for which we can address the drive by controlling the stroke. More
precisely, we consider the control variable κva, which we take as the normalized flow factor of the stroke.
The influence of the stroke on the volume flow and pressure difference is the following

∆pva = ava
1

(κva)2
(
¤Vva

)2
− τva

d ¤Vva
dt

(1.4)

with the hydraulic parameter
ava = −103hPa ρ

1000kg/m3

1

(Kvs)2

Again, we added the delay expressed by τva complying with Assumption 1 and the characteristic curve of
the valve – as the volume flow increases the pressure difference decreases.
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Pipe We model pipes according to the Darcy-Weisbach equation as explained in [2] and get

∆ppi = api

(
¤Vpi

)2
(1.5)

with

api = −
8ρ

π2
(
dpi

)4 [
Lpi
dpi

fD + ζinst

]
where the Darcy-Weisbach friction factor fD depends on the nominal Reynolds number Renom =

ρvpinomdpi
µ .

Based on the Reynolds number range and thus the type of flow, fD is expressed as follows:
• laminar flow (Renom ≤ 2000) – fD = 64

Renom

• turbulent flow (Renom ≥ 4000) – fD = 0.25log©« ε
3.7dpi

+ 5.74

(Renom)0.9
ª®¬

2

• transition regime (2000 < Renom < 4000) – fD then is the linear interpolation result between laminar
and turbulent flow.

Heat exchanger Last but not least, we consider plate heat exchangers, for which the pressure difference
is quadratically proportional to the volume flow

∆phx = ahx
(
¤Vhx

)2
(1.6)

with the hydraulic parameter

ahx = −
��∆phxnom

��(
¤Vhxnom

)2
Looking back at the pressure mesh rule in (1.2), we can insert equations (1.3) - (1.6), which leads us to the
following equation for the volume flow

a
(1p )
1pu

(
¤V (1p )

)2
+ a (1p )2pu

(
v
(1p )
pu

)2
−τ (1p )pu

d ¤V (1p )
dt +a (1)hx

(
¤V (1p )

)2
+ a (1p )piw

(
¤V (1p )

)2
+a (1p )pic

(
¤V (1p )

)2
+a (2p )va

1(
κ
(2p )
va

)2 (
¤V (2p )

)2
−τ (2p )va

d ¤V (2p )
dt +a (2)hx

(
¤V (2p )

)2
+ a (2p )piw

(
¤V (2p )

)2
+a (2p )pic

(
¤V (2p )

)2
+ a (n )piw

(
¤V (2p )

)2
+a (n )pic

(
¤V (1p )

)2
= 0

(1.7)

Since we are only considering the simplest case with two prosumers, the volume flow through building 1
must be equal to the one through building 2. Adapting Kirchhoff’s junction rule to hydraulic systems, we
thus get that

¤V (1p ) − ¤V (2p ) = 0 (1.8)
Now, let us define the volume flow through the entire network as ¤V (n ) = ¤V (1p ) = ¤V (2p ) , then (1.7) becomes

−
(
τ
(1p )
pu + τ (2p )va

)
︸               ︷︷               ︸

τhyd

d ¤V (n )
dt +

(
a
(1p )
1pu
+ a (1)hx + a

(1p )
piw
+ a (1p )pic

+ a (2)hx + a
(2p )
piw
+ a (2p )pic

+ a (n )piw
+ a (n )pic

)
︸                                                                                  ︷︷                                                                                  ︸

ahyd

(
¤V (n )

)2

+a (1p )2pu

(
v
(1p )
pu

)2
+ a (2p )va

(
¤V (n )

)2 1(
κ
(2p )
va

)2 = 0

(1.9)

This equation describes the dynamics of the volume flow in the hydraulic subsystem. Due to the simpli-
fications, which can be done in our case scenario, this dynamic is sufficient for describing the hydraulic
behavior of the heat-transfer system.
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T1out

T1in

¤V1

T2out

T2in

¤V2

Figure 1.2: General heat exchanger scheme

1.2.2 Thermal subsystem
Now, let us have a look at the thermal subsystem. We make the following assumption for simplification
purposes.

Assumption 2 (Losses) We do not consider losses in the pipes, hence, we assume ¤Q loss = 0 for heat flow
losses.

However, do note that losses do occur and this assumption lowers our precision in estimating temperatures.
We can now assume that we only have a single warm and cold water temperature in the entire network,
which we will denote T

(n )
w and T

(n )
c respectively and which can be expressed as

T
(n )

w = T
(1p )

w = T
(2p )

w and T
(n )

c = T
(1p )

c = T
(2p )

c (1.10)

Moreover, we assume that there are no losses in the heat exchanger either, meaning that power is fully
conveyed from building to network or vice-versa. As a result of this and Assumption 2, the heat flow that
goes from building 1 into the network must be wholly conducted to building 2. Thus, we have a single heat
flow through the entire system

¤Q (n ) = ¤Q (1) = ¤Q (2) (1.11)

Heat exchanger We model the counter current flow of the heat exchanger using the general nomenclature
of Figure 1.2 as a reference – the subscript 1 refers to the source side and 2 to the sink side. It has to hold
that

T1in > T1out > T2out > T2in (1.12)

The resulting general dynamics stem from [2] while adding a delay as in [4]. We thus get for the heat
exchanger in Figure 1.2

τhx
dT1out

dt +T1out =

(
1 − χ1

(
¤V1, ¤V2

))
T1in + χ1

(
¤V1, ¤V2

)
T2in (1.13)

τhx
dT2out

dt +T2out = χ2

(
¤V1, ¤V2

)
T1in +

(
1 − χ2

(
¤V1, ¤V2

))
T2in (1.14)

where χ1

(
¤V1, ¤V2

)
and χ2

(
¤V1, ¤V2

)
are functions of the volume flows on either side of the heat exchanger

χ1

(
¤V1, ¤V2

)
=

1 − exp
[( ¤V1
¤V2
− 1

)
khxAhx
ρcp ¤V1

]
1 − ¤V1

¤V2
exp

[( ¤V1
¤V2
− 1

)
khxAhx
ρcp ¤V1

] and χ2

(
¤V1, ¤V2

)
=

1 − exp
[( ¤V2
¤V1
− 1

)
khxAhx
ρcp ¤V2

]
1 − ¤V2

¤V1
exp

[( ¤V2
¤V1
− 1

)
khxAhx
ρcp ¤V2

]
Adapting this general scheme to our scenario, we get:

• Building 1 – source: secondary side ¤V1 = ¤V (1s ) ; T1in = T
(1s )
w ; T1out = T

(1s )
c

sink: primary side ¤V2 = ¤V (n ) ; T2in = T
(n )
c ; T2out = T

(n )
w
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Pump

vpuref,1 1 - control var. ref. op. state 1
¤Vpuref,1 0 L/min volume flow ref. op. state 1
∆ppuref,1 402.21 hPa pressure diff. ref. op. state 1
vpuref,2 1 - control var. ref. op. state 2
¤Vpuref,2 55.33 L/min volume flow ref. op. state 2
∆ppuref,2 0 hPa pressure diff. ref. op. state 2
τpu 35 s delay

Valve

Kvs 2.5 m3/h flow coeff. at full opening
τva 35 s delay

Heat ex.

∆phxnom 155 hPa loss at nom. mass flow rate
¤Vhxnom 21.504 L/min nom. volume flow rate
Ahx 1.13 m2 heat transfer surface
khx 5270 W/(m2 K) nom. heat transfer coeff.
τhx 10 s delay

Pipe 1

Lpi 50 m pipe length
dpi 0.022 m inner pipe diameter
ε 0.011 mm roughness of inner pipe surface
ζinst 10 - pressure loss coeff. for inst. in pipes
upinom 0.22 m/s nom. flow velocity

Pipe 2

Lpi 10 m pipe length
dpi 0.022 m inner pipe diameter
ε 0.011 mm roughness of inner pipe surface
ζinst 3.5 - pressure loss coeff. for inst. in pipes
vpinom 0.22 m/s nom. flow velocity

Fluid

ρ 1000 kg/m3 density of fluid
µ 1.0016 mPa s dynamic viscosity
cP 4200 J/(kg K) specific isobraric heat capacity

Table 1.2: Setup parameters

• Building 2 – source: primary side ¤V1 = ¤V (n ) ; T1in = T
(n )
w ; T1out = T

(n )
c

sink: secondary side ¤V2 = ¤V (2s ) ; T2in = T
(2s )
c ; T2out = T

(2s )
w

Hence, we get four dynamic equations describing the four – under Assumption 2 – temperatures in the
system. In total we now have five dynamic equations describing the whole thermohydraulic heat transfer
system and which will serve for setting up a state-space model in section 1.3.

1.2.3 Remarks on the setup
However, before that, let us make a few remarks on our specific configuration. Most details on specific
values can be gathered from Table 1.2, yet some clarifications remain to be made.

Concerning the pipes, we differentiate two types of pipes in Table 1.2: pipe 1 refers to the pipes of the
network i.e. the warm or cold water pipe, while pipe 2 refers to the pipe portion liking the network to
the building. Here, pipe 2 includes both the warm and cold water pipe so the hydraulic parameter sums
a
(1p )
piw
+ a (1p )pic

and a
(2p )
piw
+ a (2p )pic

in equation (1.9) are described by this single pipe.
It shall also be noted that all pumps, valve or heat exchangers in the setup are chosen to be identical

and can thus be described by this single parameter set.

1.3 State-space representation
In order to design a controller and evaluate the stability of the system in later steps, we need to express
the system behavior in a state-space representation of the form

¤x = f
(
x ,u

)
(1.15)

y = h
(
x ,u

)
(1.16)

f and h are nonlinear function which need to be determined, while x ∈ X ⊆ Òdim(x ) are the states, u ∈ U ⊆
Òdim(u ) the inputs and y ∈ Y ⊆ Òdim(y ) the outputs of the system. We further highlight that in our framework
we have a time-invariant system.

1.3.1 Nonlinear model
The nonlinear state-space model stems directly from the dynamics equations – (1.9), (1.13) and (1.14) – set
up in the previous section.
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States We define the five changing variables as our states, hence, we get the following state vector

x =


x1
x2
x3
x4
x5


=



¤V (n )
T
(n )
w

T
(n )
c

T
(1s )
c

T
(2s )
w


(1.17)

Inputs It is possible for us to control pump speeds and valve openings. Nonetheless, as we consider the
building heating system to be a “black box” to us, we assume for the model that we control its volume
flow as a whole and not the individual pumps. For the same reason, we cannot influence the inlet building
temperatures with our heat transfer scenario; still we regard them as inputs due to their influence on our
system. This leads us to the following input vector

u =



u1
u2
u3
u4
u5
u6


=



v
(1p )
pu
κ
(2p )
va
¤V (1s )
¤V (2s )
T
(1s )
w

T
(2s )
c


(1.18)

Outputs Finally, we express the output vector1 as

y =


y1
y2
y3
y4
y5


=



¤Q (n ) = ρcp ¤V (n )∆T (n )
T
(2s )
w

∆T (n ) = T
(n )
w −T (n )c

∆T (1s ) = T
(1s )
w −T (1s )c

T
(n )
w


(1.19)

From this we directly get our nonlinear state-space representation in the form given in (1.15)

¤x =


¤x1
¤x2
¤x3
¤x4
¤x5


=


f1

(
x ,u

)
f2

(
x ,u

)
f3

(
x ,u

)
f4

(
x ,u

)
f5

(
x ,u

)

=



− ahyd
τhyd

x 2
1 −

a
(1p )
2pu
τhyd

u21 −
a
(2p )
va
τhyd

x21
u22

1
τhx

(
χ
(1)
2 (x1,u3) u5 +

(
1 − χ (1)2 (x1,u3)

)
x3 − x2

)
1
τhx

((
1 − χ (2)1 (x1,u4)

)
x2 + χ (2)1 (x1,u4) u6 − x3

)
1
τhx

((
1 − χ (1)1 (x1,u3)

)
u5 + χ (1)1 (x1,u3) x3 − x4

)
1
τhx

(
χ
(2)
2 (x1,u4) x2 +

(
1 − χ (2)2 (x1,u4)

)
u6 − x5

)



(1.20)

with

χ
(1)
1 (x1,u3) =

1 − exp
[(

u3
x1
− 1

)
khxAhx
ρcpu3

]
1 − u3

x1
exp

[(
u3
x1
− 1

)
khxAhx
ρcpu3

] ; χ
(1)
2 (x1,u3) =

1 − exp
[(

x1
u3
− 1

)
khxAhx
ρcpx1

]
1 − x1

u3
exp

[(
x1
u3
− 1

)
khxAhx
ρcpx1

]

χ
(2)
1 (x1,u4) =

1 − exp
[(

u4
x1
− 1

)
khxAhx
ρcpu4

]
1 − u4

x1
exp

[(
u4
x1
− 1

)
khxAhx
ρcpu4

] ; χ
(2)
2 (x1,u4) =

1 − exp
[(

x1
u4
− 1

)
khxAhx
ρcpx1

]
1 − x1

u4
exp

[(
x1
u4
− 1

)
khxAhx
ρcpx1

]
1Explanations concerning the choice of the output variables will later be given in chapter 2.
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The output vector (1.19) is already formulated as required from (1.16)

y =


y1
y2
y3
y4
y5


=


h1

(
x ,u

)
h2

(
x ,u

)
h3

(
x ,u

)
h4

(
x ,u

)
h5

(
x ,u

)

=


ρcpx1 (x2 − x3)

x5
x2 − x3
u5 − x4

x2


(1.21)

1.3.2 Linearizing the system
While the previously derived nonlinear system dynamics are a fairly accurate representation of the Smart
Thermal Grid behavior, they are not easily manipulable in the context of stability analysis. For this reason,
we aim at expressing our nonlinear state-space equations (1.20) and (1.21) as an LTI2 system.

For this, we redefine our states as having a large signal and a small signal component, so that x = x ∗+∆x .
The large signal term x ∗ is to be the understood as the operating point around which we linearize. The same
partition holds for the inputs and outputs, thus we get u = u∗+∆u and y = y ∗+∆y . By approximation of (1.15)
and (1.16) by a Taylor series around the operating point, we get the following expression for the linearized
(small signal) model (see [5] for more details on the procedure)

∆ ¤x = A ∆x + B ∆u ⇒ ¤x = A
(
x − x ∗

)
+ B

(
u − u∗

)
(1.22)

∆y = C ∆x + D ∆u ⇒ y = C
(
x − x ∗

)
+ D

(
u − u∗

)
+ y ∗ (1.23)

under the assumption that ¤x ∗ = 0. We further introduce A ∈ Òdim(x )×dim(x ) as the system matrix, B ∈
Òdim(x )×dim(u ) as the input matrix, C ∈ Òdim(y )×dim(x ) as the output matrix and D ∈ Òdim(y )×dim(u ) as the
feedthrough matrix. Those matrices are different Jacobians of f and h.

We establish the general expression of the Jacobian through the computation of the state matrix A. It is
defined as follows and evaluated at a chosen operating point denoted as before as x ∗, u∗

A =
∂f

∂x

�����
x ∗, u∗

=


∂f1
∂x1

. . . ∂f1
∂xi

. . . ∂f1
∂xdim(x )

...
. . .

...
∂fdim(x )
∂x1

. . .
∂fdim(x )

∂xi
. . .

∂fdim(x )
∂xdim(x )



����������
x ∗, u∗

(1.24)

Taking our nonlinear state-space equations (1.20) and applying the formula above, we get the following
system matrix

A =



−2 ahyd
τhyd

x1 − 2 a
(2p )
va
τhyd

x1
u22

0 0 0 0

∂χ
(1)
2 (x1,u3 )

∂x1
(d1−x3 )

τhx
− 1

τhx

1−χ (1)2 (x1,u3 )
τhx

0 0
∂χ
(2)
1 (x1,u4 )

∂x1
(−x2+d2 )

τhx

1−χ (2)1 (x1,u4 )
τhx

− 1
τhx

0 0
∂χ
(1)
1 (x1,u3 )

∂x1
(−d1+x3 )

τhx
0

χ
(1)
1 (x1,u3 )

τhx
− 1

τhx
0

∂χ
(2)
2 (x1,u4 )

∂x1
(x2−d2 )

τhx

χ
(2)
2 (x1,u4 )

τhx
0 0 − 1

τhx



����������������������
x ∗, u∗

(1.25)

The remaining matrices of the LTI system (1.22), (1.23) can be computed in a similar way. Indeed, the input
matrix equals to the Jacobian of (1.20) with respect to the input

2Linear Time-Invariant.
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B =
∂f

∂u

�����
x ∗, u∗

=



−2a (1p )2pu
τhyd

u1
−2a (2p )va
τhyd

x21
u32

0 0 0 0

0 0

∂χ
(1)
2 (x1,u3 )

∂u3
(d1−x3 )

τhx
0

χ
(1)
2 (x1,u3 )

τhx
0

0 0 0

∂χ
(2)
1 (x1,u4 )

∂u4
(−x2+d2 )

τhx
0

χ
(2)
1 (x1,u4 )

τhx

0 0

∂χ
(1)
1 (x1,u3 )

∂u3
(−d1+x3 )

τhx
0

1−χ (1)1 (x1,u3 )
τhx

0

0 0 0

∂χ
(2)
2 (x1,u4 )

∂u4
(x2−d2 )

τhx
0

1−χ (2)2 (x1,u4 )
τhx



����������������������
x ∗, u∗

(1.26)

Meanwhile, the output and feedthrough matrices stem from the nonlinear function h in (1.21)

C =
∂h

∂x

�����
x ∗, u∗

=


ρcp (x2 − x3) ρcpx1 −ρcpx1 0 0

0 0 0 0 1
0 1 −1 0 0
0 0 0 −1 0
0 1 0 0 0



������������
x ∗, u∗

(1.27)

D =
∂h

∂u

�����
x ∗, u∗

=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0


(1.28)

1.3.3 Evaluation of the linearized model
As a linearization is only a planar approximation of the system dynamics around an operating point, we
should evaluate its quality. By quality we understand the difference between the nonlinear and linearized
system behavior at points other than the operating point especially when reaching steady-state. Hence, we
choose to examine the absolute error of the steady-state value of each state. Due to the different natures
of the states, we need to define two types of errors:

• the volume flow steady-state error – ess, ¤V = ¤Vss,nlin − ¤Vss,lin ;

• the temperature steady-state error – ess,T = Tss,nlin −Tss,lin .

We aim at comparing these errors for two different operating points, which are given in Table 1.3. Operating
point 1 linearizes the system around high pump/valve openings, volume flows and temperature inputs
whereas operating point 2 does this for low volume flows and temperatures. The operating point states
come from the simulated steady-state values of the nonlinear system for the given inputs.

Errors for random inputs In order to compare the quality of the operating points, we look at both the
linear and nonlinear system response for 500 uniformly distributed random draws of the input vector u .
Individual inputs are drawn in the following intervals

u1 ∈ [0.1, 1] , u2 ∈ [0.1, 1] , u3 ∈ [2, 15] L/min , u4 ∈ [2, 15] L/min , u5 ∈ [40, 90] ◦C , u6 ∈ [30, 70] ◦C

For each simulation, we then compute the errors as defined above. Figure 1.3 shows these errors for the 500
random draws for each state. The mean error for each state as well as its standard deviation are additionally
indicated by the black errorbars and their values provided in Table 1.3.

Looking at the results in Figure 1.3, we can stem that the error for the volume flow ess, ¤V is very low for both
operating points – indeed the mean error is

��0.02L/min
�� and the standard deviation inferior to 0.1L/min in

both cases. Furthermore, the highest error value is of −0.59L/min for operating point 1 and of −0.57L/min for
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u1 u2 u3 u4 u5 u6 x1 x2 x3 x4 x5

OP 1
Value 0.8 0.9 12L/min 12L/min 75◦C 65◦C 8.56L/min 74.83◦C 65.17◦C 68.11◦C 71.89◦C
Mean error −0.02L/min −1.71K 1.68K 2.11K −2.22K
Error stand. dev. 0.06L/min 4.62K 4.59K 5.64K 5.70K

OP 2
Value 0.4 0.5 5L/min 5L/min 60◦C 45◦C 4.27L/min 59.88◦C 45.12◦C 47.40◦C 57.60◦C
Mean error −0.02L/min −1.75K 1.43K 3.03K −2.98K
Error stand. dev. 0.05L/min 5.10K 4.34K 8.68K 9.34K

Table 1.3: Comparison of two operating points (OP)

(a) Operating point 1 (b) Operating point 2

Figure 1.3: Absolute steady-state errors ess, ¤V and ess,T obtained by randomly generating 500 input vectors u
from a uniform distribution. The black errorbars represent the mean error and standard deviation.

operating point 2; we deem this to be still close to the nonlinear system dynamics and thus both operating
points to be a good linear approximation for the volume flow.

Now looking at the error for the temperature ess,T , the mean error reaches up to
��2.22K

�� for operating
point 1 and up to

��3.03K
�� for operating point 2. While this can still be considered to be close enough to the

nonlinear steady-state value, the standard deviation for both operating points for the network tempera-
tures – T

(n )
w and T

(n )
c – is of approximately 4 − 5K. In addition for the building temperatures – T

(1s )
c and

T
(2s )
w – it is of around 5.7K for the first operating point and 9K for the second one. In both cases, we hence

reach high errors, even more so for operating point 2. This difference in the absolute building temperature
errors between both operating points might be explained by the lower volume flow value around which we
linearize for operating point 2.

Finally, we consider operating point 1 to be the better linearization choice according to our study, as
statistically it has the lower temperature error.

Errors for individual inputs In a second step, we aim at understanding the influence of individual inputs
on the errors. For this, we set each input to their operating point value as given in Table 1.3 and vary a
single input in the allowed interval given above. The resulting volume flow and temperature errors of this
procedure are plotted for each input separately in Figure 1.4.

First of all, looking at the plots, we see that the error values obtained in Figure 1.4 tend to confirm
our previous analysis. We can further make some general findings on both operating points. It is thus
particularly striking that the inputs u5 and u6, which correspond to the secondary side input temperatures,
generate no steady-state errors whatsoever on the considered interval. This can be explained by the fact
that the nonlinear system is linear with respect to these two inputs when considering the other inputs to
be constant. Moreover, the errors are smallest/ null around the operating point, as is to be expected as by
linearizing we create a planar approximation of the nonlinear system around the operating point.

Overall, the errors are low for operating point 1 and high for operating point 2 for high pump/ valve
openings and high secondary side volume flows and vice-versa. This is hardly surprising since operating
point 1 linearizes the system around high input values and operating point 2 around low input values. Yet
it can be observed that the error absolute values tend to be much higher for operating point 2 (with the
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exception of the volume flow error for state x1 which reaches up to
��0.5L/min

�� for operating point 1 for small
valve openings u2). Indeed, for high pump openings u1, temperature errors can go up to

��17K
�� for operat-

ing point 2, which is due to the much higher network volume flow this generates in comparison with the
operating point network volume flow. Similarly, as the relation between temperatures and volume flows is
highly nonlinear, the temperature errors reach up to

��17K
�� for very high building input volume flows u3 and

u4. It can also be noticed that this extreme error is achieved for the temperature state corresponding to
the same building as the varied input – i.e. the error for state x4 = T

(1s )
c for a big volume flow u3 = ¤V (1s ) is

approximately −17K.

Ultimately, this analysis confirms that the linearization around operating point 1 tends to be more ac-
curate than the one around operating point 2 on the overall considered intervals. Yet, the high errors we
can achieve for temperatures even for this “better” operating point, raises the question of the relevance
of the linearization and thus the validity of our linearized state-space representation on the entire set of
possible inputs U. Indeed, due to this inaccuracy, we prefer not to use a sole linear model for the entire
set U for the upcoming stability analysis. We will prefer another approach, which we will detail later on.
Further details on the linearization results for both operating points can be found in Appendix A.1.
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(a) Operating point 1

(b) Operating point 2

Figure 1.4: Absolute steady-state errors ess, ¤V and ess,T obtained by varying individual inputs. All other inputs
are set to be at their operating point value.
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Chapter 2

A PID-based control system for Smart
Thermal Grids

As the Smart Thermal Grid should be operable in two directions, we need to make sure that the heat is
indeed conveyed as desired. For this purpose, an Energy Management System determines the optimal
energy exchange and checks the feasibility of the planned energy exchange. In case of a feasible solution,
power setpoints are transmitted to the field controllers. The goal of these field controllers is then to meet
both the temperature and heat transfer requirements simultaneously. For this pumps and valves in the
system can be actuated.

In [6], a weighted PID-control approach has been developed to meet the combined control targets for
both the primary and secondary side. In the following, this concept will be presented in more details.

2.1 Field control approach for the simplest case
The simplest case is constrained by some boundary conditions. Indeed, the temperatures coming into the
buildings and flowing through the network must meet some physical value requirements in order to have
a feasible system

T
(1s )
w > T

(1s )
c > T

(n )
w > T

(n )
c > T

(2s )
w > T

(2s )
c (2.1)

Even though heat will shift from building 1 to building 2, the condition in (2.1) must also be met during the
transfer process.

Setpoints We aim at regulating the warm water temperature at the consumer side. This temperature
requirement is notated as T

(2s )
w,set. However, this setpoint alone does not constitute enough information for

the Smart Thermal Grid to be able to reach it. Hence, setting a cold water temperature requirement on
the producer side controls the heat that is fed into the network. This setpoint is set as the difference
between the warm and cold temperatures at building 1: ∆T (1s )set . Analogously, on the network side, we set
the warm water temperature requirement as T (n )w,set and the heat that is to be fed to the consumer as ∆T (n )set .
At the same time, we control the heat flow that is exchanged through the heat exchangers. As we assume
no losses according to Assumption 2, we have only one setpoint notated as ¤Q (n )set . The resulting vector of
setpoints r is thus

r =


r1
r2
r3
r4
r5


=



¤Q (n )set
T
(2s )

w,set
∆T (n )set
∆T (1s )set
T
(n )

w,set


(2.2)

The attentive reader will notice that these correspond to the output variables chosen in section 1.3.1. Indeed,
this set of setpoints explains the selected outputs, that had previously been chosen to match the given
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setpoints.

Weighted errors In general, we define the error vector e as being the difference between setpoints and
outputs: e = r − y . We further differentiate two types of errors: temperature errors eT and heat flow errors
e ¤Q , which are computed as follows

eT =
(∆)Tset − (∆)Tis
|∆Tnom |

and e ¤Q =
¤Qset − ¤Q is��� ¤Qnom

��� (2.3)

Here we talk about normalized errors as they are further devided by their nominal value. For each set of
temperature and heat flow setpoints, hence normalized error, the resulting weighted error function etot is
computed as

etot = ±αe ¤Q ± (1 − α) eT with α ∈ [0, 1] (2.4)

We call α a weighting factor whose value can be chosen between 0 and 1 and serves to nuance the impor-
tance of the heat flow control with respect to the temperature control. As we have four different temperature
requirements, we get four weighted error results, which are all obtained with respect to the sole heat flow
requirement.

PID controllers These weighted errors are further used as input to the PID controllers. Here, we choose
to set their derivative term to zero, hence we get “only” PI controllers, which have the following generic
transfer function

GPI (s) = KP + KI ·
1

s
=

KP s + KI

s
(2.5)

KP and KI represent the controller gains, that are used to tune the controller. In our case, we assume that
those gains are equal for all four controllers.

The output values from the PID controllers represent the system inputs u . Since, we expect bounded
inputs into the Smart Thermal Grid (e.g. the normalized pump and valve control variables), we add a sat-
uration to the PID-controllers, so that their output is always comprised between 0 and 1 – realistically to
account for the feasibility of the simulation, we set the lower bound to 0.1 instead of 0. For the secondary
side volume flow inputs, however, values can go from zero to a system dependent maximal value ¤Vmax,
which is the same in our case for both buildings. We then scale the normalized PID-controller output with
this maximal value to obtain a valid volume flow input.

Block diagram Finally, the completed block diagram for the previously presented control approach can
be found in Figure 2.1. Inputs associated with the consumer/ producer side are separated by a dashed line.
The block Smart Thermal Grid is represented by the nonlinear state-space representation established in
section 1.3.1 or can be replaced by its linearized equivalent from section 1.3.2. The different values used as
control parameters in our setup are given in Table 2.1.

Nominal values
¤Vmax 8.5 L/m nom. sec. side volume flow
¤Qnom 1 kW nom. heat flow
∆Tnom 3 K nom. temperature diff.

PID controller

KP 1.5 - proportional gain
KI 1/35 1/s integral gain

Table 2.1: Control setup parameters

2.2 Temperature and heat flow control
As mentioned before the weighting factor α serves to modulate the weight of the temperature error eT as
opposed to the heat flow error e ¤Q in the weighting error function etot. As a result of having four weighted
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α (2s )

| ¤Qnom |

1−α (2s )
|∆Tnom |

PID 1

¤Q (n )set +

+

T
(2s )

w,set −

+

α (2n )

| ¤Qnom |

1−α (2n )
|∆Tnom |

PID 2

+

+

∆T (n )set −

+

α (1s )

| ¤Qnom |

1−α (1s )
|∆Tnom |

PID 3

+

+

∆T (1s )set −

+

α (1n )

| ¤Qnom |

1−α (1n )
|∆Tnom |

PID 4

+

+

T
(n )

w,set −

+

Smart Thermal Grid

¤Vmax

¤Vmax

κ
(2p )
va

¤V (1s )

¤V (2s )

v
(1p )
pu T

(n )
w,is

+

∆T (n )is

+

∆T (1s )is

+

T
(2s )

w,is

+ ¤Q is

−

−

−

−

Consumer

Producer

T
(2s )
c

T
(1s )
w

Figure 2.1: Weighted PID-based control approach for the simultaneous regulation of heat flow and temper-
atures

errors, we can choose four different values for α thus modifying the importance of buildings or network
sides – secondary or primary side – in addition to the temperature/ heat flow compromise in the control
process. It is possible to tune the following α parameters:

• α (1n ) – error weight for the primary side of building 1 i.e. the producer;

• α (1s ) – error weight for the secondary side of building 1 i.e. the producer;

• α (2n ) – error weight for the primary side of building 2 i.e. the consumer;

• α (2s ) – error weight for the secondary side of building 2 i.e. the consumer.

The exact role of these parameters in the control approach can be found in the block diagram in Figure 2.1.
We can hence check the validity of our control approach by simulating different scenarios: 1) a tem-

perature control only scenario, 2) a heat flow control only scenario and 3) a split control scenario. For the
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following three scenarios, we set the setpoints to

¤Q (n )set = 5kW ; T
(2s )

w,set = 40◦C ; ∆T (1s )set = 10K ; ∆T (n )set = 14K ; T
(n )

w,set = 43.5◦C

and the secondary side input volume flows to

u5 = T
(1s )
w = 45◦C ; u6 = T

(2s )
c = 30◦C

Temperature control only scenario First, we simulate a temperature only control approach, since our ulti-
mate goal is to regulate the warm water temperature on the consumer side. The weighting factors are thus
set as

α (1n ) = α (1s ) = α (2n ) = α (2s ) = 0

This means that the weighting error function is solely constituted by the temperature errors. The system
response of this scenario can be found in Figure 2.2a. It can be seen that except for the network warm water
temperature none of the temperature objectives are reached. This is due to the fact that the system does
not have enough information on the heat flow between the pipes, as is shown be the actual heat flow being
far off from its target. Hence, heat flow control is also crucial for regulating the system temperatures.

Heat flow control only scenario For this reason, we further try simulating a heat flow control only scenario
with weighting factors

α (1n ) = α (1s ) = α (2n ) = α (2s ) = 1

The resulting weighting error function is only comprised of the heat flow error and Figure 2.2b shows the
system response of the scenario. It becomes apparent that the heat flow objective is met quite precisely
without any overshoot. However, the temperatures are far off from their respective setpoints. This is not
surprising since in this scenario the PID-controllers have no information on the temperature errors and
thus cannot regulate them. The importance of controlling both the temperatures and heat flows has been
illustrated.

(a) Scenario 1 – Temperature control only

(b) Scenario 2 – Heat flow control only

(c) Scenario 3 – Split control

Figure 2.2: System response (blue line) for each output of the nonlinear simulation model. The setpoint
value is represented by a dashed red line.
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Split control scenario Finally, we try controlling both heat flow and temperature at the same time by
setting the weighting factors between 0 and 1

α (1n ) = 0.2 ; α (1s ) = 0.8 ; α (2n ) = 0.8 ; α (2s ) = 0.2

Here, we come up with a configuration that prioritizes absolute temperature objectives over temperature
difference objectives. In parallel, the heat flow requirement becomes more important when having to meet
a temperature difference setpoint, as it is more accurate to regulate the amount of heat that is transferred
from one side of the heat exchanger to the other, as has been shown in the previous scenarios.

The resulting system responses are shown in Figure 2.2c. It can be seen that most requirements are
met with only small deviations between desired and actual values. Especially the prioritized setpoints –
the absolute temperature and heat flow requirements – are very close to their objectives. The still present
errors are probably due to the “freedom” allowed by not considering the whole weight of the individual
errors in the weighting error function etot. Concerning the less prioritized objectives, i.e. the temperature
differences, we see that the temperature difference of the network is very close to the set requirement; thus
it managed to mostly “regulate itself” by reaching the more important objectives as these are intricately
linked. On the other hand, the temperature difference for the producer building 1 is far off from its objective.
This is probably due to the fact that the setpoint is not reachable in combination with our other conditions.
We also find that the temperatures overshoot before reaching steady-state, which is not very problematic
as our system is not sensible in this aspect.
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Chapter 3

Stability analysis of the control system

Running the Smart Thermal Grid with the field control approach we defined in the previous chapter, it is
primordial to us to ensure a stable behavior of the system hence preventing e.g. oscillating temperatures.
Goal of this chapter and more largely of the whole Research Internship is to find a method for proving (or
not) stability of the grid. For this, we will first go through classical methods and their applicability to our
case. We will then go on to statistical methods.

3.1 Formal stability criteria and applicability
Formal stability criteria are used for proving stability in any case taking into account some assumptions
depending on the method. We will further investigate the relevance of some selected and more well-known
methods to our study case.

3.1.1 Lyapunov’s direct and indirect method
Very commonly used methods for proving stability are Lyapunov’s stability methods, which comprise the
direct and the indirect method.

Lyapunov’s direct method We will first give the theorem as has been enunciated in various literature
articles – [7] and [8] being just some of them.

Theorem 1 (Lyapunov’s direct method) Consider an unexcited time-invariant nonlinear system ¤x = f
(
x ,u = 0

)
and x ∗ = 0 an equilibrium point. Let V (x ) be a continuously differentiable and locally positive definite Lya-
punov function.

• If ¤V (x )1 ≤ 0 holds locally, then x ∗ is locally stable in the sense of Lyapunov.

• If ¤V (x ) < 0 holds locally, then x ∗ is locally asymptotically stable in the sense of Lyapunov.

Should the assumptions above hold globally and should the system be radially unbounded, i.e. for
x→∞

it follows thatV (x ) → ∞, then x ∗ is globally (asymptotically) stable in the sense of Lyapunov.

The difficulty of this method resides in finding an appropriate Lyapunov function V (x ) which becomes in-
creasingly more complex with the complexity of the considered system. Now, taking our own nonlinear
state-space as formulated in (1.20), we quickly see that setting the input to zero to get the required unex-
cited system leads to a mathematical inconsistency. Indeed, for the first state we have

¤x1 = f1
(
x ,u

)
= −

ahyd
τhyd

x 2
1 −

a
(1p )
2pu

τhyd
u21 −

a
(2p )
va
τhyd

x 2
1

u22

1 ¤V stands here for the derivative of the Lyapunov function and has nothing to do with the volume flow even though the notation
is identical.
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Yet it becomes quickly apparent that setting u2 = 0 would lead to dividing by zero. Hence, we discard this
method as inappropriate in our case, further keeping in mind that finding a suitable Lyapunov function
would be close to impossible.

Lyapunov’s indirect method This method makes use of the linearization process of a nonlinear system to
conclude on stability according to the eigenvalues of the system matrix A. According to [8], the theorem
can be formulated as follows.

Theorem 2 (Lyapunov’s indirect method) Again we take a time-invariant nonlinear system ¤x = f
(
x ,u

)
with

its equilibrium point x ∗ = 0. We further require f (x ,u) to be twice continuously differentiable with respect
to x . Then the small signal behavior of the system around the equilibrium x ∗ can be written as follows (see
section 1.3.2 for more details)

∆ ¤x = A ∆x with A =

[
∂f (x ,u)

∂x

]
x=x ∗

(3.1)

The following conclusions can made on the equilibrium x ∗:

• If all eigenvalues of A have a negative real part, then x ∗ is locally asymptotically stable in the sense of
Lyapunov;

• If at least one eigenvalue of A has a positive real part, then x ∗ is locally unstable;

• If at least one eigenvalue of A has a null real part and no eigenvalue has a positive real part, then no
conclusion can be drawn regarding the stability of x ∗.

Having successfully managed to linearize the system in section 1.3.2, this method is in theory applicable
to our problem. However, two major problems arise. The first one is that we saw that the linearization of
the system generates high temperature errors for inputs far from the operating point. Hence, looking at
the stability of the system via the indirect method of Lyapunov would only allow a local analysis around
the operating point. The second more problematic issue lies in the fact that Lyapunov’s stability analysis
only takes into account the system in itself and not the control approach. Yet we would like to conclude on
the control system in its whole as in Figure 2.1. For these two reasons we conclude that the method is not
suitable for our needs.

3.1.2 Nyquist’s stability criterion
Another widely used method is Nyquist’s stability criterion. Now, as we consider a MIMO2 system, we will
directly present the generalized Nyquist criterion for MIMO systems (see [9, 10]), as it the one relevant to
us. The more widely known criterion for SISO3 systems can be found in [5].

Take a MIMO system described by a matrix of transfer functions G (s) as drawn in Figure 3.1. L (s) further
defines the control transfer function matrix such that u = L (s)e . Thus we can write

y = G (s)u = G (s)L (s)︸     ︷︷     ︸
H (s )

e (3.2)

with H (s) the loop matrix.
2Multiple Input Multiple Output.
3Single Input Single Output.

L (s) G (s)
r e u y

−

Figure 3.1: Considered setting for the generalized Nyquist criterion
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r

D

D

Re

Im

Figure 3.2: Definition of the contour D and its complement D
in case H (s) has one marginally unstable pole at the origin.

The MIMO Nyquist criterion, as we will present it in the following, has been formulated in [10] and uses
Cauchy’s principle of the argument [11]. Let it also be said before that a Nyquist diagram is represented for
positive and negative frequencies by substitution of s by j ω, with −∞ < ω < ∞.

Theorem 3 (Generalized Nyquist criterion) Consider the closed-loop unity negative gain feedback transfer
function S (s) =

(
I + H (s)

)−1. We further define D as the contour comprising possible unstable poles. It
corresponds to the right-half plane including a small radius r = ε with ε → 0 indentation into the left-half
plane around marginally stable poles of H (s) – i.e. around poles with a null real part – in order to include
them as unstable poles. D is the complement set to D. Figure 3.2 illustrates this contour definition in the
case that H (s) has one marginally unstable pole in the origin.

The closed-loop system S (s) is exponentially stable if the following two conditions hold:

(i) det
(
I + H (s)

)
, 0, [s ∈ D;

(ii) the contour i.e. Nyquist diagram of det
(
I + H (s)

)
encircles the origin pD times in a counter-clockwise

direction, where pD is the number of poles of H (s) in D.

However, this method requires to have a linearized system. In our case, even though it is possible
to convert the linearized state-space representation to a transfer function matrix G (s) and thus use the
criterion accordingly, we will not be using this method directly as we do not consider our linearization to
be representative of the whole system.

3.2 Monte Carlo based stability algorithms
We have seen that the most commonly used methods for assessing the stability of a system have proven to
be unsuitable in our case in their “standard” form. This is especially due to the high nonlinearities in our
system, which make a linearized version of it inaccurate over the whole considered interval of inputs. Yet,
as we have seen in section 1.3.3 and A.1 and by definition, the linearization represents the system accurately
in the operating point around which we linearize. Hence, by sampling the system over a high number of
linearizations and assessing the stability for each linearization using the methods mentioned before, we
should get a statistically accurate representation of the stability of the system and the input intervals on
which it applies. The idea for this Monte-Carlo approach has been inspired by [12] and its basic functioning
is presented in Algorithm 1.

We will now be applying (attempting to apply) this procedure using the stability criteria, we have dis-
cussed before and which apply to linear system i.e. Lyapunov’s indirect method and Nyquist’s stability
criterion. We will further investigate using an extended state-space – the benefits of it shall be given in due
course in section 3.2.3.
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Algorithm 1: Monte-Carlo stability approach
Data: N > 0 ; /* N should have a high value e.g. 1000 or 10000 */
Result: vector of Booleans b stable ; /* indicates the stability for each iteration */
for i = 1→ N do

sample u rand uniformly in U;
simulate the nonlinear system with u rand and get x ss;
set the operating point to x ∗ = x ss , u

∗ = u rand ;
linearize the system around x ∗,u∗ ;
conduct a stability analysis on the linearized system ; /* specified in the following */

if the linearization is stable then
b stable (i ) ← TRUE ;

else
b stable (i ) ← FALSE ;

end
end
return b stable

3.2.1 Using Lyapunov’s indirect method
As stated before, this method is solely useful for assessing the stability of the system in itself without
including the control system as in Figure 2.1. So even though it does not suit our needs, it can give a first
good indication on the stability, which is why we still mention it here.

We choose N = 1000 due to the limitations of the used hardware. Following the procedure of Algorithm
1, we get b stable (i ) = TRUE , [i ∈ [1,N ], which means that for all randomly sampled inputs u ∈ U the Smart
Thermal Grid is locally stable. We judge N = 1000 to be statistically meaningful enough to conclude that
the system in itself as modelled in 1.2 is stable. This might not be true anymore if we do not consider all
made simplifications e.g. if we account for losses or other delays in the model or if we consider more than
just two prosumers.

3.2.2 Using the Nyquist criterion
As shown in [12], using Nyquist’s stability criterion is manageable in this context. In order to be able to use
the stability criterion as given in Theorem 3, we first need the control transfer function matrix L (s) so that
the block diagrams in Figures 2.1 and 3.1 coincide. The error vector e stems from the difference between the
reference and output vectors

e = r − y =



¤Q (n )set − ¤Q
(n )
is

T
(2s )

w,set −T
(2s )

w,is
∆T (n )set − ∆T

(n )
is

∆T (1s )set − ∆T
(1s )

is
T
(n )

w,set −T
(n )

w,is


(3.3)

The matrix L (s) is defined as given in section 3.1.2 such that u = L (s)e . However, in our system, we have two
inputs – u5 and u6 – which are in reality disturbances since we cannot control them. For now, we discard
these two inputs and define a new input û =

[
u1 u2 u3 u4

]T
= L (s)e . The expression of matrix L (s) stems

directly from Figure 2.1

L (s) = GPI (s) Llin = GPI (s)



α (1n )

| ¤Qnom | 0 0 0 − 1−α (1n )
|∆Tnom |

α (2n )

| ¤Qnom | 0 − 1−α (2n )
|∆Tnom | 0 0

¤Vmax
α (1s )

| ¤Qnom | 0 0 − ¤Vmax
1−α (1s )
|∆Tnom | 0

¤Vmax
α (2s )

| ¤Qnom | −
¤Vmax

1−α (2s )
|∆Tnom | 0 0 0


(3.4)
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Figure 3.3: Nyquist diagram of det
(
I + H (s)

)
for N = 7 random input draws

The loop matrix H (s) = Ĝ (s)L (s) is then computed using the undisturbed system’s transfer function ma-
trix Ĝ (s) – the state-space

{
A,B ,C ,D

}
is converted to a transfer function matrix G (s), where the columns

associated with the disturbances are truncated to form a new matrix Ĝ (s), which does not consider the
input-disturbances u5 and u6.

As defined in Theorem 3, we plot the Nyquist diagram of det
(
I + H (s)

)
in the hope of assessing its stabil-

ity. Figure 3.3 shows this diagram for N = 7 iterations of Algorithm 1. The frequencies ω are split into three
intervals drawn separately and the direction of the contour goes from ω → −∞ to ω → +∞ as indicated by
the arrows. As defined in Theorem 3 and Figure 3.2, the ε arc goes to the left of any poles on the j ω-axis.
The critical origin point is indicated by a red cross. We can gather from the results in Figure 3.3 that the
Nyquist diagram takes on a different shape depending on the random draw: it is thus particularly difficult
to automate counting the number of couter-clockwise encirclements of the origin for a high number of
Monte-Carlo algorithm iterations. Furthermore, we have 156 poles in our loop matrix H (s) from which 40
are marginally stable i.e. in D. This magnitude of poles and the varying shapes make concluding solely
“visually” on the Nyquist diagram an impossible task especially for the high number of iterations, which
would be necessary to make statistically sound deductions.

In [13, 14], an equivalence between the Nyquist and Bode diagrams is proposed as a way to circum-
vent counting the number of couter-clockwise encirclements of the critical point, which gets increasingly
complicated when the order of the system increases as in our case.

Theorem 4 (Generalized Bode criterion) For this criterion, we require the loop matrix in (3.2) to be written
in the following form H (s) = N (s )

D (s ) with N (s) a transfer function matrix and D (s) a polynomial. It is further
required to be in Smith-McMillan form [14, 15], i.e. the denominator D (s) should be a polynomial equal to
the least common multiple of the denominators of all elements in H (s). The generalized Nyquist criterion
then states that, provided there are no hidden unstable modes in the system, we can compute the number
of closed-loop unstable poles pC , i.e. the number of poles in the right-half plane, as

pC = pO − nA (3.5)

with pO the number of unstable poles in the open-loop transfer matrix and nA the total number of counter-
clockwise encirclements around the critical point (−1, 0j ) of the Nyquist curves of all eigenvalues of H (s).

Let us now trace an auxiliary ray in a random direction starting at (−1, 0j ). The crossings between the
Nyquist diagram and this ray can be used to rewrite the Nyquist criterion in (3.5) as

pC = pO −
(
n+C − n

−
C

)
(3.6)
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where n+C represents the number of crossings between the Nyquist diagram and the ray when the phase is
increasing and n−C when it is decreasing. The positive angle is defined in the counter-clockwise direction.
Moreover, n+C and n−C have to be calculated for each eigenvalue of H (s) and summed up in order to get the
total number of encirclements.

As proposed in [13], tracing the ray starting from (−1, 0j ) on the real axis in direction of the negative
values, allows for n+C and n−C to be counted using the Bode diagram. They can hence be counted as crossings
of the phase plot with ±(2k + 1) · 180◦, k ∈ Ú – n+B indicating the crossings when the phase is increasing and
n−B when it is decreasing. The Nyquist criterion (3.6) can be reformulated as

pC = pO −
(
2
(
n+B − n

−
B

)
+ n0B

)
(3.7)

The parameter n0B accounts for eigenvalue crossings with ±(2k + 1) · 180◦ that may occur at 0Hz and cannot
be counted in the Bode diagram. It can be taken from [14] how to determine this parameter.

Aiming at applying the generalized Bode criterion and already having an expression of the loop matrix
H (s), the next step consists in converting H (s) to its Smith-McMillan form, which we attempt to do using
the function smform of [15] in Matlab. However, this creates an error which we did not manage to solve.

3.2.3 Using an extended state-space
We have seen that assessing the stability of the closed-loop system has proven difficult in our case espe-
cially due to the complexity of the system even using a linearization. We have further seen that employing
system driven open-loop stability assessment methods – i.e. Lyapunov’s indirect method – has proven
much more convenient in our case. The purpose of using an extended state-space (see [16, 17]) then is to
convert our closed-loop system to an equivalent open-loop one so as to use open-loop stability evaluation
methods on it. This method also aims at circumventing the discarding of the disturbances as done before
with the Nyquist criterion in section 3.2.2. This is crucial for the stability evaluation as the disturbances are
part of the functioning of the Smart Thermal Grid.

For this, we need to separate our disturbance-inputs u5 and u6 from the rest of our inputs û . The distur-
bances shall be denoted in the following as

d =

[
d1
d2

]
=

[
u5
u6

]
(3.8)

Hence, the linear state-space representation of (1.22), (1.23) can be rewritten as

∆ ¤x = Â ∆x + B̂ ∆û + E ∆d ⇒ ¤x = Â
(
x − x ∗

)
+ B̂

(
û − û∗

)
+ E

(
d − d ∗

)
(3.9)

∆y = Ĉ ∆x + D̂ ∆û + F ∆d ⇒ y = Ĉ
(
x − x ∗

)
+ D̂

(
û − û∗

)
+ F

(
d − d ∗

)
+ y ∗ (3.10)

Due to our new “input distribution” as well as the new operating point x ∗, û∗, d ∗ that arises from it, we get
new expressions for the matrices in the representation

Â =
∂f

∂x

�����
x ∗, û∗, d ∗

, B̂ =
∂f

∂û

�����
x ∗, û∗, d ∗

, E =
∂f

∂d

�����
x ∗, û∗, d ∗

, Ĉ =
∂h

∂x

�����
x ∗, û∗, d ∗

, D̂ =
∂h

∂û

�����
x ∗, û∗, d ∗

, F =
∂h

∂d

�����
x ∗, û∗, d ∗

We further denote the resulting extended state-space representation as
¤̃x = Ã x̃ + B̃ ũ (3.11)
ỹ = C̃ x̃ + D̃ ũ (3.12)

Figure 3.4 illustrates via block diagrams the extended state-space approach: the closed-loop system is con-
verted to an equivalent open-loop extended state-space. Now, we shall compute the equivalence leading
to the extended state-space representation in (3.11) and (3.12). Two assumptions are to be made for this.

Assumption 3 (Extended state-space) In order to be able to find an extended state-space, two assumptions4

shall be made so as to facilitate the upcoming computational steps. First, we assume no change over time
in the reference signal, i.e. ¤r = 0, and, second, we assume this as well for the disturbances, i.e. ¤d = 0.

4These assumptions are not necessarily sensible with respect to the reality of the system, but shall still be made for now for
simplification purposes.
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L (s) ∆ ¤x = Â ∆x + B̂ ∆û + E∆d
∆y = Ĉ ∆x + D̂ ∆û + F∆d

r e û y

−

dExtended state-space

¤̃x = Ã x̃ + B̃ ũ

ỹ = C̃ x̃ + D̃ ũ

r

d

ỹ = y

Figure 3.4: Block diagram of the extended state-space and its equivalence with the original closed-looped
system

We know that û = L (s) e with L (s) as defined in (3.4). L (s) is the multiplication of the PI-transfer function
GPI (s) in (2.5) with a matrix Llin, hence we can write

û = L (s) e = GPI (s) Llin e = KP Llin e + KI Llin

∫
e dt (3.13)

From this, we can find an expression for the evolution of the error with respect to time, which translates
the feedback loop of the system

¤e = ¤r − ¤y (3.14)

Under Assumption 3, we have that ¤r = 0, so this yields an expression for ¤e

¤e = − ¤y = −Ĉ ¤x − D̂ ¤̂u − F ¤d︸︷︷︸
=0

(Ass. 3)

= −Ĉ Â
(
x − x ∗

)
− Ĉ B̂

(
û − û∗

)
− Ĉ E

(
d − d ∗

)
− D̂ ¤̂u

= −Ĉ Â
(
x − x ∗

)
− Ĉ B̂

(
KP Llin e + KI Llin

∫
e dt − û∗

)
− Ĉ E

(
d − d ∗

)
− D̂

(
KP Llin ¤e + KI Llin e

) (3.15)

To get this expression we used the fact that the operating point does not change in time hence ¤x ∗ = ¤̂u∗ =
¤d ∗ = ¤y ∗ = 0. Let us now introduce a new variable e ′ =

∫
e dt . Equation (3.15) then becomes

¥e ′ = −Ĉ Â
(
x − x ∗

)
− Ĉ B̂

(
KP Llin ¤e

′ + KI Llin e ′ − û∗
)
− Ĉ E

(
d − d ∗

)
− D̂

(
KP Llin ¥e

′ + KI Llin ¤e
′
)

⇔ ¥e ′ = −
(
1 + KP D̂ Llin

)−1 [
Ĉ Â

(
x − x ∗

)
+ Ĉ B̂

(
KP Llin ¤e

′ + KI Llin e ′ − û∗
)
+ Ĉ E

(
d − d ∗

)
+ KI D̂ Llin ¤e

′
] (3.16)

Analogously to the error time derivative, it is possible to thus get an expression for the states and outputs
of the system

¤x = Â
(
x − x ∗

)
+ B̂

(
û − û∗

)
+ E

(
d − d ∗

)
= Â

(
x − x ∗

)
+ B̂

(
KP Llin ¤e

′ + KI Llin e ′ − û∗
)
+ E

(
d − d ∗

)
(3.17)

y = Ĉ
(
x − x ∗

)
+ D̂

(
û − û∗

)
+ F

(
d − d ∗

)
+ y ∗ = Ĉ

(
x − x ∗

)
+ D̂

(
KP Llin ¤e

′ + KI Llin e ′ − û∗
)
+ F

(
d − d ∗

)
+ y ∗ (3.18)

From these three equations – (3.16), (3.17) and (3.18) – we can get an extended state-space representation
in the form (3.11), (3.12). We set our new state vector as x̃ =

[
x e ′ ¤e ′

]T as well as our new input vector as

ũ =
[
d x ∗ û∗ d ∗ y ∗

]T
. Thus, we get the new state and input matrices

Ã =


Â KI B̂ KP B̂
0 0 1

−
(
1 + KP D̂ Llin

)−1
Ĉ Â −KI

(
1 + KP D̂ Llin

)−1
Ĉ B̂ Llin −

(
1 + KP D̂ Llin

)−1 (
KP Ĉ B̂ + KI D̂

)
Llin

 (3.19)

B̃ =


E −Â −B̂ −E 0
0 0 0 0 0

−
(
1 + KP D̂ Llin

)−1
Ĉ E

(
1 + KP D̂ Llin

)−1
Ĉ Â

(
1 + KP D̂ Llin

)−1
Ĉ B̂

(
1 + KP D̂ Llin

)−1
Ĉ E 0

 (3.20)

31 / 39



CHAPTER 3. STABILITY ANALYSIS OF THE CONTROL SYSTEM

along with our new output and feedthrough matrices

C̃ =
[
Ĉ KI D̂ Llin KP D̂ Llin

]
(3.21)

D̃ =
[
F −Ĉ −D̂ −F 1

]
(3.22)

Having established the equivalence between the extended state-space and the closed-loop system, the
next step consists in simulating both systems in order to find out if they really behave the same. Due to time
constraints, this could not be part of the Research Internship anymore. We further attempted to compute
the symbolic eigenvalues of the state matrix Ã for applying Lyapunov’s indirect method theoretically on the
extended state-space representation. However, the computation proved to be too complex to do by hand
or even on Matlab even considering that in our case D̂ = 0 which allows for some simplifications.

3.3 Empirical considerations
Since during the time of the Research Internship we have not managed to conduct any satisfactory stability
analysis, we want to make a few empirical considerations of the control system without following any formal
method. We have seen in section 2.1, that we add a saturation to the PID-controller output such that its
value stays in a range from 0 to 1 respectively ¤Vmax. Considering this, it is thus impossible for our grid
inputs and thus the whole system to diverge if the input-disturbances u5 and u6 stay in an acceptable range
and follow condition (2.1). Indeed, theoretically, we could only observe for some cases a marginally stable
behavior i.e. an oscillating behavior. Having thought of this control system property, a “proof” for having
a marginally stable system could be to find one case where the system response oscillates. This would at
least show that for our simplest case the Smart Thermal Grid is not entirely stable and would by extension
not be for any more complex case.

Following this reasoning, we conduct a simple experiment which consists in simulating a high number of
system responses of the control system in Figure 2.1 with uniformly randomly drawn setpoints, disturbances
and weighting factors α , whereas condition (2.1) is ensured to be met. We then evaluate a possible marginally
stable behavior visually. In our case, we impose the following conditions on the random draws

¤Q (n )set ∈ [140, 63000]W , Tw,set ∈ [40, 90]◦C , Tc,set ∈ [30, 70]◦C , α ∈ [0, 1] s.t. (2.1) holds

Figure 3.5 shows the output responses for 100 draws of this experiment. Even though the curves for each
output vary considerably especially due to the different setpoints, none of them seem to show any abnormal
behavior i.e. the output reaches steady-state without diverging or oscillating in any way. While this is by
far not a proof of stability, we cannot prove any instability with this either. Appendix A.2 shows some
further results of this experiment. It shall also be mentioned that when not ensuring condition (2.1),Matlab
stops the simulation due to the system being unstable and diverging. We can conclude from this that the
feasibility condition (2.1) is thus a crucial condition for stability.

We further simulated the system response with steps/ ramps for the disturbances and steps for the
setpoints instead of them remaining constant, but again this did not lead visually to any instability.

Figure 3.5: Output response for the closed-looped system in Figure 2.1 with 100 uniformly random draws of
setpoints, disturbances and weighting factors. Setpoints and disturbances are constant.
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Conclusion

In this report and more exactly during this Research Internship, we inspected a bi-directional heat transfer
system linking different prosumers in an urban area. This setup enables a more optimal way of controlling
a heating grid and is part of the process of local decarbonization through Smart Grids. Throughout the
report, we only considered the simplest case of two prosumers, one acting as a producer and the other as
a consumer. Hopes of extending our findings to more than two prosumers could not be met due to time
constraints but could, however, be investigated in further work.

Our contribution to the analysis of Smart Thermal Grids was to assess (attempting to assess) the stability
of the control of such a system. In order to do so, we proceeded in three steps which were modeling the
simplest case of a bi-directional heat transfer system, setting up the field control approach and applying
stability analysis methods on the system.

Modeling the simplest case In a first step, we sought to model the Smart Thermal Grid in case of two
prosumers. For this, we established the equations for the hydraulic and the thermal subsystems separately
– both subsystems are linked through the heat exchangers. We considered the grid’s components individu-
ally and applied Kirchhoff’s mesh and junction rules to obtain an overall representation with five dynamic
equations describing the whole thermohydraulic heat transfer system. It shall also be mentioned that we
did not account for any losses in the system and considered a delay in the volume flow through pumps and
valves only for simplification purposes. However, these simplifications do not reflect reality and should be
taken into account for more a more meaningful analysis.

We then converted the dynamic equations to a nonlinear state-space representation after having de-
fined our states, inputs and outputs. As for many stability evaluation methods, one needs a linear system,
we aimed at linearizing the nonlinear system around an operating point. However, a linearization only rep-
resents a planar approximation around the operating point and can differ considerably from the nonlinear
system when straying away from this operating point. For this reason, we evaluated the steady-state errors
in our states following the linearization for the whole considered set of acceptable inputs. We compared
two operating points – one with high volume flows and temperatures and one with lows volume flows and
temperatures – and found that for either linearization the resulting errors were too important to consider
the linearization as valid on the entire input interval. Only very close to the operating point did the linear
system response coincide with the nonlinear one.

Field control approach Controlling the Smart Thermal Grid is crucial for a successful heat transfer since the
network can be operated in two directions. For this a weighted PID-control approach has been developed for
meeting both the temperature and heat flow requirements of both building sides. The weighted normalized
errors of temperatures and heat flow – instead of the “usual” feedback errors – were used as an input to
PID-controllers with a null derivative term. The PID-controller outputs then functioned as the system’s
inputs and were further bounded so as to comply with the physical limitations of the system. A simulation
of the control system showed the role of the weighting factors for meeting the requirements.

Stability analysis The core of the Research Internship resided in assessing the stability of the field con-
trol approach. Such an evaluation is important to ensure the reliable and accurate behavior of the Smart
Thermal Grid. For this, two criteria were important to us: 1) evaluating the stability of the whole control
system not only the Smart Thermal Grid and 2) evaluating the stability for the entire set of possible inputs.
Different methods have been investigated without leading to satisfying results, however, they could lay the
foundation for future work on the subject.
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The only contemplated approach that can be directly applied to nonlinear systems has been Lyapunov’s
direct method, which, however, solely enables to asses the stability for the unexcited thermohydraulic
system. Moreover, it requires finding a suitable Lyapunov function, which in light of the complexity of the
Smart Thermal Grid system we contemplated – even if we only considered the simplest case – proved to
be almost impossible. Furthermore, for this method, we needed to work with the unexcited system which
further lead to a mathematical incoherence rendering the use of Lyapunov’s direct method impossible in
our case.

Other formal methods like Lypunanov’s indirect method and Nyquist’s stability criterion can only be
applied on linear systems, yet we have deemed our linearization not to be meaningful enough on the entire
set of possible inputs to apply these criteria. Moreover, with Lyapunov’s indirect method as for Lypunov’s
direct method only the stability of the thermohydraulic system in itself can be investigated.

Due to the lack of accuracy of the linearized system over the whole considered interval of inputs, we
next thought about a Monte-Carlo approach, where we randomly sampled a great number of operating
points and linearized the system around them. As we have seen that around the operating point, linear and
nonlinear system behavior coincides, evaluating the stability of a lot of linearizations on the allowed set
of inputs gives a statistically good indication on the stability of the whole nonlinear system. In this sense,
we have devised an algorithm for applying this approach – the only problem that remained to be solved
was which method to apply for analyzing the stability of one linearization. A first method, we applied was
Lyapunov’s indirect method. We found that for all sampled linearizations the thermohydraulic system in
itself proved to be stable. Even though this was a first good indication on the stability of the whole system
it did not fit with our criteria, hence we sought to apply other methods better suited to our needs.

As Nyquist’s stability criterion fitted all our requirements, we tried to apply it to our system. The latter
having multiple inputs and multiple outputs, however, we needed to use the generalized Nyquist criterion.
Even though we succeeded in plotting the Nyquist diagram for the system, it proved to be too complicated
and different for each sample to automate the process of counting the number of counter-clockwise en-
circlements of the origin. Hence, we looked for another way to apply the criterion, which we found in the
generalized Bode criterion. Indeed, by drawing up an equivalence between Nyquist and Bode diagram, it is
possible to find a more systematic way of counting the number of unstable poles of the system. However,
this method required to find the Smith-McMillan form of our transfer function matrix. We did not succeed
in this as we suspect that the system we considered was too complex. Another problem with Nyquist’s
stability criterion resided in including disturbances in our analysis, as indeed two of our six defined in-
puts could be more accurately referred to as disturbances since they were not directly controlled by our
weighted PID-controller approach.

Our final idea was to convert our closed-loop system to an equivalent open-loop one, in order to ap-
ply open-loop stability methods like Lyapunov’s indirect method on the equivalent open-loop system. We
called this equivalent open-loop system extended state-space. We were successful in computing the equiv-
alence between both representations, however, due to time constraints, we could not simulate them to find
out if indeed they showed equivalent system responses. Attempts to apply Lyapunov’s indirect method the-
oretically were not fruitful as the computations were too complicated to do symbolically. Moreover, some
simplifications were again made in order to find the equivalence between both representations, which do
not necessarily reflect reality.

In the end, we resorted to conduct a few empirical considerations. So we summarized that due to the
bounded PID-controller outputs, the system could not diverge but only be marginally stable i.e. oscillating.
Yet, we could not experimentally find a case where the system showed such a behavior when the feasibility
of control requirements was guaranteed. This however is by no means a proof of stability.

Future work Considering all our findings, we want to make a list of possible approaches and starting points
for future work on the subject:

1. Find a way to convert the loop transfer function matrix to its Smith-McMillan form in order to be able to
apply the generalized Bode criterion. If such can be done, deal with including the disturbance-inputs
of the system in the analysis.

2. Confirm by simulation the equivalence between the extended state-space and the original closed-
loop system. If an equivalence can indeed be shown, Lyapunov’s indirect method might be suitable
to account for the stability of the system in the context of the devised Monte-Carlo approach. If this
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is successful, a new equivalence could be found without the assumptions made on the system for
simplification.

3. Investigate new possible stability assessment methods such as a passivity analysis or splitting the
system into interconnected subsystems.

4. Should it be possible to assess the stability for the simplest case, it could be expanded to cover more
prosumers – proving the stability additionally for three prosumers in line and in a triangle should
be enough to account for every possible formation of two or more prosumers. Moreover, losses and
further delays could be added to the model of the grid.

In any case succeeding in assessing the stability of the field control approach for Smart Thermal Grids is a
necessary step for paving the way for Smart Grids in general. Indeed, if we want to implement such grids
in reality, we have to make sure of their reliable operation, which also passes through the stability of the
system and its control. As it is, we also need to make sure that we conduct our stability analysis on a model
as close to reality as possible so as to make it a conceivable and mature solution for the future.
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APPENDIX

Appendix

A.1 Further details on the linearization analysis
This appendix aims at providing more details on the linearization evaluation discussed in section 1.3.3. We
consider the same two operating points as defined in Table 1.3 of before mentioned section.

This further analysis is based on a visual evaluation of the system behavior of the nonlinear and linear
state-space representations for both operating points. Figure A.1 shows the time response for each state
and model and figure A.2 their output behavior. The state and output dynamics are seemingly identical
for both operating points and both representations. This is to be expected since the input vector u used
for simulation is the same as used for linearizing the system. Indeed, in this case, we are located at the
intersection between planar approximation and nonlinear multidimensional system dynamics surface. This
visual evaluation shows us that our linearization is valid around the operating point.

This fact is of further interest to us for the stability analysis in chapter 3, as we can model our nonlin-
ear system by a linear system around a given operating point and thus facilitate the stability analysis for
this operating point. Doing this for a large set of operating points, we can have a statistical conclusion
concerning the stability of our (controlled) system.

A.2 Further details on the empirical considerations
This appendix is a complement to the empirical considerations in section 3.3 and shows the results for
some more precise experiments.

Random disturbances First, we consider an experiment with random disturbances drawn from a uniform
distribution, yet, we still ensure that condition (2.1) is met. The setpoints are identical and constant, having
the same value as defined in section 2.2, for each draw. The weighting factor values are set to α (1n ) =
0.2, α (1s ) = 0.8, α (2n ) = 0.8, α (2s ) = 0.2. Figure A.3a shows the results of the experiment for 100 random
disturbance draws. It can be seen that even though depending on the disturbances the target values are
more or less met, the system behavior is stable and always shows a similar response shape. It is interesting
to notice that since we chose setpoints at low temperature levels, the steady-state is often reached at higher
temperatures but never below the setpoints. We conclude from this that it seems like the disturbances do
not influence the stability of the system but only the quality of the control when they are set such that the
feasibility of the system is guaranteed.

Random weighting factors As a second experiment, we want to see if random weighting factors α can
“destabilize” the system. Hence, we set the factors randomly in their allowed interval [0, 1]. The distur-
bances are set as defined in section 2.2 as are the setpoints. Figure A.3b shows the results for 100 draws.
Again we do not distinguish any unstable system behavior even though the target values are seldom met.
This could be expected since the weighting factors only play a role in the computation of the error inputs
for the PID-controllers by giving either the temperature error or the heat flow error more weight. Hence,
they can only play a role in the control quality but cannot render the system to be unstable.

37 / 39



APPENDIX

(a) Operating point 1

(b) Operating point 2

Figure A.1: System response for each state of the nonlinear and linearized model. The system is actuated
by constant inputs fixed at the operating point value.

(a) Operating point 1

(b) Operating point 2

Figure A.2: System response for each output of the nonlinear and linearized model. The system is actuated
by constant inputs fixed at the operating point value.
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(a) With random disturbances d

(b) With random weighting factors α

Figure A.3: Output response of the closed-looped system of Figure 2.1 when choosing one randomly drawn
parameter from a uniform distribution. 100 draws (blue lines) were made for these plots. The setpoints
stay the same in both experiments and are indicated by a red dashed line.
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