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How Light Scalars Change the Stellar Landscape

Wie leichte Skalarfelder die stellare Landschaft verändern

Konstantin F. Springmann

Abstract

Light scalar fields are the essence of many well-motivated theories beyond the Standard
Model of particle physics. In this thesis, we study the rich phenomenology of the interplay
between these fields and the finite baryon density present in astrophysical environments
such as stars and supernovae. The emerging phenomena range from changes in QCD axion
couplings to phase transitions from stars to changing the stellar landscape. Compatibility
with observations allows us to put stringent constraints on such models.

Zusammenfassung

Leichte Skalarfelder sind die Essenz vieler motivierter Theorien, die über das Standard-
modell der Teilchenphysik hinausgehen. In dieser Dissertation untersuchen wir die reich-
haltige Phänomenologie des Zusammenspiels zwischen diesen Feldern und der endlichen
Baryonendichte, die in astrophysikalischen Umgebungen wie Sternen und Supernovae
vorhanden ist. Die aufkommenden Phänomene reichen von Veränderungen in QCD-
Axionkopplungen über Phasenübergänge durch Sterne bis hin zu Veränderungen der stel-
laren Landschaft. Die Kompatibilität mit Beobachtungen ermöglicht es, solchen Modellen
strenge Einschränkungen aufzuerlegen.
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Chapter 1

Introduction

The discovery of the Higgs boson in 2012 at the LHC [1,2] is one of the crowning achievements in
modern physics. It constitutes the last missing piece in the complete and consistent description
of all known forces and particles of nature, the Standard Model of Particle Physics (SM), and
concludes the monumental theoretical as well as experimental effort that made sense of the
’particle zoo’ in the 1960s. The spontaneous symmetry breaking of the Higgs gives mass to the
electroweak (EW) gauge bosons and leptons and explains the short range of EW interactions.
The Higgs also addresses the unitarity violation in the perturbative scattering of massive gauge
bosons [3].

However, the SM including the Higgs boson, despite its amazing success, together with
the non-observation of new physics around the EW scale, fails to answer many longstanding
theoretical questions. The mass of the Higgs boson is sensitive to ultra-violet (UV) radiative
corrections and should therefore be orders of magnitude above its measured value, a problem
commonly referred to as the EW Hierarchy Problem. None of the proposed solutions beyond the
SM (BSM) with symmetry-based mechanisms, like Supersymmetry or Composite Higgs, were
found at the LHC.

But this is not the only problem the SM cannot address. There is compelling evidence that
SM matter only constitutes a small fraction of the matter abundance in the universe. The lack of
a dark matter (DM) candidate is another shortcoming of the SM. Furthermore, the Cosmological
Constant (CC) comes with another Hierarchy Problem similar to the EW Hierarchy Problem: It
is not protected from UV contributions and should therefore be much larger than the observed
value.

Continuing the list of shortcomings of the SM, quantum chromodynamics (QCD), the theory
of strong interactions in the SM, is invariant under simultaneous Charge Conjugation and Parity
CP (or equivalently Time Reversal T ) transformations, a problem known as the Strong CP
Problem. An alternative formulation of the problem is the question of why θ̄-parameter is so
extremely small, measured via the electric dipole moment of the neutron to be

∣∣θ̄∣∣ < 10−10 [4].
Given that the SM does violate CP in the EW sector this is in stark contrast to the order one
value one would expect from an effective field theory (EFT) point of view.

The above-mentioned issues clearly call for the necessity for BSM physics and suggest inter-
preting the SM as an EFT which needs to be replaced at energy scales above some cut-off. Very
often, light scalar fields give compelling solutions to these problems. Perhaps the most moti-
vated candidate is the QCD axion which can solve the DM as well as the Strong CP Problem.
The idea is to promote the θ̄-parameter to a dynamical field that gets a mass around the scale
where QCD confines and thereby dynamically relax θ̄ to zero. The original works by Peccei,
Quinn, Weinberg and Wilczek (PQWW) [5–8] coupled the QCD axion decay constant to the
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Chapter 1. Introduction

EW scale which sets the coupling strength to SM particles and was hence ruled out soon after.
Invisible QCD axion models are straightforward generalizations of the original PQWW axion
but with much larger decay constants and correspondingly weaker couplings to the SM, while
solving both the DM as well as the Strong CP Problem.

Light scalar fields can also address the Hierarchy Problems of the SM. Instead of relying on
symmetry, the dynamical evolution of light scalars scans the problematic parameter during the
evolution of the early universe. A light scalar field can scan the magnitude of the Cosmological
Constant during the evolution of the universe, leading to a small observed value as first brought
up in [9]. The relaxion [10] scans the Higgs mass parameter during inflation while a backreaction
mechanism, in the simplest realization QCD, stops the evolution around the origin.

In this thesis we study the phenomenology of such light scalar and pseudo-scalar particles
and their interaction with SM matter, focusing on astrophysical environments such as neutron
stars and supernovae.

We start Chap. 2 by introducing the Strong CP Problem and the QCD axion as its solution.
We further generalize to axion-like particles (ALPs). In particular, in Sec. 2.1 we review the
vacuum structure of Yang-Mills theories, where we see that non-perturbative topological terms
contribute to the theory. In Sec. 2.2 we see how these non-topological terms give rise to experi-
mentally measurable quantities in the presence of fermions. In order to see that we review the
axial anomaly in QCD which naturally brings us to the formulation of the Strong CP Problem.
Sec. 2.3 is devoted to the QCD axion solution to the Strong CP Problem. We discuss both
the original PQWW axion as well as two benchmark models of invisible axions in the UV. In
Sec. 2.4 we derive the effective theory of the QCD axion at low energies i.e. the infrared (IR)
with the use of chiral perturbation theory (ChPT) and precisely determine its couplings to SM
matter, focusing on the couplings to nucleons. In order for the effective theory for nucleons to be
valid they have to be non-relativistic which leads us to explore heavy baryon chiral perturbation
theory (HBChPT) with the QCD axion. In Sec. 2.5 we review an ALP which behaves similarly
to the QCD axion except that its mass can be orders of magnitudes below the vanilla prediction.
We conclude the chapter with a discussion on bounds on axions from astrophysical environments
such as stellar remnants and supernovae in Sec. 2.6.

In Chap. 3 we review the landscape of stellar remnants. In Sec. 3.1 we review the physics
of White Dwarf (WD) stars and discuss various refinements of their equation of state (EOS),
while Sec. 3.2 is devoted to Neutron Star (NS) physics. We discuss the difficulties that arise in
determining the NS EOS, such as the potential shortcomings of the SM i.e. the hyperon puzzle.

Next up, in Chap. 4 we study the effect of finite baryonic density on the QCD axion-nucleon
coupling. We start in Sec. 4.1 to review HBChPT at finite density by deriving the nucleon
propagator in a finite density background using real-time thermal field theory. In Sec. 4.2
we calculate the density contributions to the QCD axion-nucleon vertex up to next-to-next-to-
leading (N2LO) in the power counting scheme of chiral perturbation theory. We show the results
for two benchmark QCD axion models and finish the chapter in Sec. 4.3 with a discussion on
the implication for stellar bounds from Supernova (SN) and NS cooling.

In Chap. 5 we study the possibility that the QCD axion develops a condensate at baryonic
densities such as found within NSs. We start with a review of quantum field theories with a
chemical potential, review the basics of meson condensation and study the QCD axion potential
with Nf = 2 light flavors in the presence of a pion condensate in Sec. 5.1. In Sec. 5.2 we extend
the study of the QCD axion potential at finite baryonic densities to Nf = 3 light flavors and
entertain the possibility of kaon condensation which might trigger condensation of the QCD
axion. In Sec. 5.3 we go to asymptotic densities where QCD is in a color-flavor-locked (CFL)
phase and explore the potential of QCD axion in this phase, finding that condensation is possible.
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In Chap. 6 we study the backreaction, neglected in Chap. 5, that scalar condensation induces
on the stellar object and find that scalar condensate significantly change the stellar landscape.
In Sec. 6.1 we study how light QCD axions change the stellar composition of WD stars. We find
that the axion triggers an instability in the EOS of the WD that translates to a gap in the mass
radius (M − R) curve. The confrontation of the modified M − R relation with observational
data is not compatible with large parts of unexplored axion parameter space, allowing us to set
stringent constraints. In Sec. 6.2 we show how light scalar fields change the stellar composition
of NSs. Employing a simple free Fermi gas we show that the sourcing of light scalars can both
stiffen and soften the EOS of NSs depending on the parameters of the model. In particular, we
study QCD axions, lighter variations thereof as well as scalars linearly and quadratically coupled
to nucleons.

In Chap. 7 we study density induced instabilities of scalar fields with meta-stable minima in
vacuum. In Sec. 7.1 we find that in such theories the scalar bubble does not stay confined to the
compact object, as previously in Chap. 6, but might in fact escape and permeate indefinitely
throughout the universe. We analytically determine (and verify numerically) conditions for such
a bubble to escape the object for a simple two minimum potential with a Z2 symmetry φ→ −φ
that is explicitly broken by a linear term. These late-time phase transitions, seeded by stars,
come with a change of the CC and early vs. late-time measurements thereof allow us to place
bounds in the parameter space of these models. In Sec. 7.2 we formulate the Higgs Hierarchy
problem and introduce the relaxion in Sec. 7.3. Relaxion models exactly satisfy the conditions
needed for such a phase transition to be triggered: the field always stops in a meta-stable
minimum. We use our density effects to destabilize this minimum and investigate under which
conditions a phase transition in the entire universe is triggered with our findings from Sec. 7.1.
For several benchmark relaxion models, this allows us to set stringent bounds from forbidden
late-time phase transitions.

Finally, we conclude in Chap. 8, where we summarize our main results and discuss future
directions.
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Chapter 2

The QCD Axion and ALPs

In this chapter we introduce the strong CP puzzle and present the QCD axion as a solution.
The foundation of the strong CP puzzle is the non-trivial vacuum structure of QCD, which we
will discuss in Sec. 2.1. Expanding on that knowledge, we formulate the strong CP puzzle in
Sec. 2.2 and introduce the QCD axion as a solution in Sec. 2.3. In Sec. 2.4 we derive its couplings
to matter within ChPT and discuss astrophysical bounds. In Sec. 2.5 we explore a version of
the QCD axion with seemingly fined tuned mass but the same couplings as the ordinary QCD
axion.

2.1 The Yang-Mills Vacuum

The discovery of instanton solutions in Euclidean Yang-Mills theories by Belavin, Polyakov,
Schwarz, and Tyupkin [18] implies the existence of a non-trivial vacuum structure discovered
in [19, 20] and allows to interpret instantons as tunneling solutions between energy-degenerate
vacuum states. Since this lies at the heart of the strong CP problem, let us consider a pure
Yang-Mills theory for the gauge group SU(N). Note, however, that it is straightforward to
generalize the following discussion to arbitrary non-abelian groups. The Lagrangian reads

LYM = −1

4
GaµνG

a,µν , (2.1)

where Gaµν = ∂µφ
a
ν −∂νAaµ + gfabcAbµA

c
ν is the gluon field strength tensor with Aaµ in the adjoint

representation of SU(N), g the gauge coupling and fabc the corresponding structure constants.
In what follows it is useful to switch to temporal gauge A0 = 0, such that we can write down
the Hamiltonian

H =
1

2

∫
d3x

(
E2 +B2

)
, (2.2)

where E2 = Ea · Ea with Ea = Ȧa and B2 = Ba · Ba are the squares of chromoelectric
and chromomagnetic fields, respectively. First, we note that the above Hamiltonian does not
fix Gauss law but has to be imposed by hand on the Hilbert space of the theory. Second,
we note that picking the temporal gauge leaves us free to perform time independent gauge
transformations. Under a generic, time independent gauge transformation U(x) ∈ SU(N) the
gauge fields transform as

Ai(x)→ A′i(x) = U(x)Ai(x)U−1(x) +
i

g
U(x)∂iU

−1(x), (2.3)

11
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where we defined Ai = Aai T
a with T a a SU(N) generator. As is clear from Eq. (2.2), the

minimum energy configuration or vacuum has Ai(x) = 0 but can still be a non-trivial pure
gauge configuration of the form

Ai(x)|vac =
i

g
U(x)∂iU

−1(x). (2.4)

We aim to study local effects and therefore require

U(x)→ 1 for |x| → ∞. (2.5)

This effectively compactifies our three-dimensional space at |x| → ∞ and we note that this is
topologically equivalent to a three sphere S3

R. Let us work out the details for N = 2 which
becomes particularly simple since SU(2) is also topologically equivalent (or diffeomorphic) to
S3
SU(2). Mathematically, the gauge transformation U(x) constitutes a mapping from S3

R →
S3
SU(2), which fall into equivalence classes called elements of the homotopy group, which for

SU(2) gives [21]
π3(S3) = Z. (2.6)

What this simply means is that the continuous map of S3
R → S3

SU(2) depends on how many
times the sphere in group space is covered while x is wound once around the coordinate sphere.
Therefore, each function U(x) depends on the number of windings n[U(x)] which is given by

n[U(x)] =
1

24π2
εijk

∫
d3xTr

[
U(∂iU

−1)U(∂jU
−1)U(∂kU

−1)
]
. (2.7)

Note that, winding is additive n[U1U2] = n[U1]+n[U2] as one would naively expect. We continue
by defining a gauge dependent Chern-Simons current

jµA =
g2

16π2
εµνρσTr

[
AνGρσ +

2ig

3
AνAρAσ

]
(2.8)

whose divergence gives the gauge invariant contribution

∂µj
µ
A =

g2

16π2
TrGµνG̃

µν , (2.9)

where G̃µν = εµνρσG
ρσ/2 is the Hodge dual to the gluon field strength tensor. The associated

topological charge Qφ is not conserved since ∂µj
µ
A 6= 0 and given by

Qφ =

∫
d3xj0

A =
g2

16π2

∫
d3xεijkTr

[
AiGjk +

2ig

3
AiAjAk

]
. (2.10)

Consider again zero energy configurations Ai = i
gU∂iU

−1, for which Gjk = 0, we find a con-
nection between the winding number and the (unconserved) charge associated with the Chern-
Simons current, namely

Qφ = n[U(x)]. (2.11)

Therefore, we have seen that there exist degenerate vacua, classified by their winding number
or topological charge, which cannot be transformed into each other by continuous gauge trans-
formations. The fact that they are not continuously deformable into each other implies that one
cannot find a set of infinitesimal gauge transformations that rotate them into each other and
therefore they have to be treated as being separated by energy barriers. Hence, topologically
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2.2. Anomalies and the Strong CP Problem

distinct vacua are classically stable, however, there exist field configurations that interpolate
between degenerate minima. Consider a finite energy solution that describes such a transition
Aµ(t,x), then indeed Qφ is not conserved

g2

16π2

∫
d4xTrGµνG̃

µν =

∫
d3x

(
j0
A

∣∣
t2
− j0

A

∣∣
t1

)
= Q

(2)
φ −Q

(1)
φ = n2 − n1, (2.12)

where the gradient terms vanish as ∂iAi → 0 for |x| → ∞. These field configurations are
perfectly valid solutions to the Euclidean equation of motion, have finite energy, and are the
aforementioned instantons that can be interpreted as tunneling solutions between vacua of dif-
ferent topological charges.

The presence of instantons changes the interpretation of the vacuum. Previously, we classified
a degenerate vacuum |n〉 of the system by the number of windings, which can now be accessed
by tunneling processes. As a consequence we should define the vacuum as a superposition of all
winding numbers, usually called the θ-vacuum (the |n〉 states are sometimes called pre-vacua)

|θ〉 =
∞∑

n=−∞
e−inθ |n〉 , (2.13)

where θ is an angle, which is a physical parameter. Universes with different values of θ cannot
be accessed

〈θ′| e−iHt |θ〉 =
∑
n1,n2

ein2(θ′−θ)eiθ(n2−n1) 〈n2| e−iHt |n1〉 = δ(θ′ − θ)
∑
∆n

ei∆nθ 〈∆n| e−iHt |0〉 ,

(2.14)
where we used the fact that transition amplitudes correspond to large energy processes and that
the Hamiltonian commutes with such operators. The last expression can be pleasingly rewritten
in terms of a path integral∑

n

einθ 〈n| e−iHt |0〉 =
∑
n

einθ
∫

[DAµ]n exp

{
i

∫
d4xL [Aµ]

}
=

∫
DAµ exp

{
i

∫
d4xL [Aµ] +

θg2

16π2
TrGµνG̃

µν

}
.

(2.15)

Therefore, we conclude that for Yang-Mills theories, even though not arising in perturbation
theory, topological non-trivial configurations are important and that one should therefore work
with the modified Lagrangian

LYM = −1

4
TrGµνG

µν +
θg2

16π2
TrGµνG̃

µν , (2.16)

where the second term is sometimes called θ-term. Importantly, in theories involving Fermions,
it leads to physical effects which we will explore in the next section.

2.2 Anomalies and the Strong CP Problem

Now that we have established the necessity to include the topological θ-term, let us explore its
implications for QCD, i.e. the case of the color gauge group SU(3). First of all, we note that
our new term violates CP. In order to understand this fact it is useful to write GG̃ in terms
of chromoelectric and chromomagnetic fields, GG̃ ∼ Ea · Ba. While Ea stays invariant under
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Chapter 2. The QCD Axion and ALPs

time reversal T , Ba → −Ba. Using the CPT theorem we conclude that the θ-term violates CP.
QCD also involves Nf fermions qi in the fundamental representation of SU(3)

L ⊃ iq̄ /Dq − (q̄LMqqR + h.c.) = q̄
(
i /D −mqe

iγ5θq
)
q, (2.17)

where Dµ = ∂µ − igAaµT a, Mq = mqe
iθq is the quark mass matrix and θq a CP violating flavor

matrix. In the limit mq → 0 the theory is invariant under the symmetry group

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)L × U(1)R, (2.18)

at the classical level. Of particular interest are rotations of the global axial symmetry group
U(1)A = U(1)L−R which are explicitly broken at the classical level by the quark masses as can
be seen by considering

U(1)A : q → eiγ5αQφq, (2.19)

where Qφ is an arbitrary Nf ×Nf matrix in flavor space. The above transformation generates
a non-vanishing divergence in the associated axial current jµ5 at the classical level

∂µj
µ
5 = 2imq q̄γ5Qφq. (2.20)

However, this is not the only source of explicit breaking since U(1)A is also broken at the quantum
level by the chiral Adler-Bell-Jackiw anomaly [22, 23]. The Adler-Bell-Jackiw anomaly is also
the solution to the U(1)A or so-called ’missing meson’ problem. In Nf = 3 the spontaneous
breakdown of the global symmetry to the diagonal subgroup U(3)L×U(3)R → U(3)L+R due to
confinement should give rise to 8 + 1 = 9 pNGBs with masses much lighter than the breaking
scale. However, the η′, the would-be pNGB has a mass that lies close to the cut-off of the
effective theory which can be directly linked to the presence of non-perturbative effects [24].
After this short digression, we realize that we should write the divergence of the axial current
as

∂µj
µ
5 = 2imq q̄γ5Qφq +

g2

8π2
Tr[Qφ]TrGµνG̃

µν , (2.21)

which includes a piece explicitly breaking the U(1)A by the topology of the QCD vacuum. The
breaking due to quantum effects can also neatly be understood as the transformation of the
fermion measure in the path integral which is also called Fujikawa method [25]. Now, under a
global axial U(1)A transformation on the quark fields Eq. (2.19) the QCD Lagrangian transforms
as

L ⊃ q̄
(
i /D −mqe

iγ5θq
)
q +

θg2

16π2
TrGµνG̃

µν

→ q̄
(
i /D −mqe

iγ5(θq+2αQφ)
)
q +

g2

16π2
(θ + 2αTr[Qφ]) TrGµνG̃

µν .

(2.22)

Now several remarks are in order. The first is to observe that with the appropriate rotation we
can completely remove the topological θ term from the Lagrangian and move the θ parameter
effectively into the quark masses. This has the important consequence that if one of the quark
masses were zero, one could remove the θ dependence completely and it would not generate any
physical effects. We also note that due to axial transformations only the linear combination

θ̄ = θ −Arg DetMq, (2.23)

where Arg DetMq = Tr[θq] is physical, i.e. basis independent. Now that we know the physical
parameter that measures CP violation in the strong interaction, we need to find an observable
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2.2. Anomalies and the Strong CP Problem

that we can measure. We remove Lθ from the QCD Lagrangian by an axial rotation on the
quark fields, and assuming θ̄ � 1 we obtain a CP violating operator for Nf = 3 flavors [26]

OCP = iθ̄
mumdms

mumd +mums +mdms

∑
q=u,d,s

q̄γ5q. (2.24)

which contributes to an electric dipole moment of the neutron (nEDM) dn (see e.g. Refs. [27–29]).
The nEDM is defined via the non-relativistic Hamiltonian

H = −dnE · Ŝ (2.25)

where the current best experimental bound is [4]

|dexp
n | < 1.8 · 10−26 e cm (90% CL). (2.26)

One can write Eq. (2.25) in terms of a Lorentz covariant Lagrangian

L = − i
2
dnn̄σµνγ5nF

µν . (2.27)

The actual calculation of the nEDM can be done via different techniques, i.e. chiral perturbation
theory, QCD sum rules, on the lattice, holography, which all show an overall agreement. As
usual, however, one can understand the order of magnitude by simple NDA. The dipole is a
dimension 5 operator which is naively suppressed by one order of mn. However, in order to
contribute to the nEDM we need a quark mass insertion and therefore find the scaling

L ∼ e

16π2

imq sin θ̄

m2
n

n̄σµνγ5nF
µν ' θ̄ e

16π2

imq

m2
n

n̄σµνγ5nF
µν , (2.28)

which implies that the contribution to the nEDM is

|dn| ∼ θ̄
e

8π2

mq

m2
n

' 10−4 θ̄ eGeV−1. (2.29)

This already gives a good feeling for the smallness of θ̄ but using a precise sum rule calculation
[30] one obtains a bound

|θ̄| < 10−10. (2.30)

The puzzling smallness of θ̄ is what is called the strong CP problem. The parameter θ̄ could take
any value from 0 to π and according to the EFT paradigm should rather be ∼ O(1) than this
small. The strong CP problem hence begs for a natural explanation of why the θ̄-parameter is
so small. One could of course naively argue that the smallness of θ̄ is not a naturalness problem
because if θ̄ → 0 then CP is conserved in the strong sector and the theory would be considered
technically natural. However, if we remember that we actually deal with the linear combination
θ̄ = θ − Arg DetMq, where the second term comes from the CP violating phases in the quark
mass matrix and that CP is actually violated in the weak sector of the SM, then the smallness
of θ̄ implies a cancellation of two terms that a priori have nothing to do with each other.

We would also like to argue that similar problems for the electroweak sector do not appear
since the corresponding angle can always be made unphysical by the appropriate rotation. Imag-
ine the operator from the weak sector ∼ θw TrWW̃ . Due to the chiral nature of SU(2)L we can
first remove the topological term from the Lagrangian by performing an axial rotation on the
left-handed fields. But then we can remove the phase simply by performing a rotation on the
right-handed fields without re-introducing the topological term.
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Chapter 2. The QCD Axion and ALPs

One of the easiest solutions to the strong CP problem would be to set one of the quark
masses to zero. In this case, we could rotate θ̄ into the phase of the massless quark thereby
removing it from any physical observable. However, lattice simulations seem to suggest that
none of the light quark masses are compatible with zero within the SM [31].

While there exist many different approaches to the strong CP problem we will in the following
focus on a particularly thrilling and simple approach that promotes the constant θ̄ to a dynamical
field φ(x) called the axion.

2.3 The QCD axion

The basic idea behind the axion solution to the strong CP problem relies on the observation
that the QCD vacuum energy depends on θ̄. In ChPT, taking Nf = 2 one can calculate the
energy density explicitly to find [32]

ε(θ̄) = −m2
πf

2
π

(√
1− 4mumd

(mu +md)2
sin2

(
θ̄

2

)
− 1

)
, (2.31)

where mπ, fπ are the mass and decay constant of the pion and mu, md the up- and down-quark
mass respectively. Note that one can also calculate the energy density using a dilute instanton
gas approximation, which yields a similar periodic result, see Ref. [33]. In any case, we can make
the important observation that the the energy density is minimum if θ̄ = 0. This was proven by
Vafa and Witten in Ref. [34]. Note that the proof does not rely on the explicit evaluated form
of the energy density. Thus if θ̄ was a dynamical variable, it would naturally be relaxed to θ̄ = 0
which is exactly what the QCD axion exploits.

The mechanism that first realized this idea was introduced by Peccei and Quinn [5, 6] and
who introduced an additional axial U(1)PQ symmetry which effectively allowed to shift the θ̄ by
an arbitrary phase which they set to cancel θ̄. It was later realized by Weinberg and Wilczek [7,8]
that the U(1)PQ symmetry, despite being explicitly broken by non-topological effects, is broken
spontaneously, giving rise to a pNGB, the PQWW QCD axion φ(x). The axion transforms
under U(1)PQ as

φ→ φ− αfφ, (2.32)

where fφ is the axion decay constant and couples due to the U(1)PQ -QCD anomaly as

Lφ =

(
φ

fφ
+ θ̄

)
g2

16π2
TrGµνG̃

µν . (2.33)

The shift symmetry can be used to eliminate θ̄ from Eq. (2.33) in the UV. In the IR, i.e. below the
QCD phase transition, instanton effects break the shift symmetry and give rise to a potential for
the QCD axion, which takes exactly the (generalized) form of Eq. (2.31) but with θ̄ → φ(x)/fφ

V (φ) = −m2
πf

2
π

(√
1− 4mumd

(mu +md)2
sin2

(
φ

2fφ

)
− 1

)
, (2.34)

which is minimized at 〈φ〉 = 0 therefore dynamically solving the strong CP problem and pre-
dicting the existence of a light new scalar with mass

m2
φ =

mumd

(mu +md)2

m2
πf

2
π

f2
φ

. (2.35)
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The early realization by Peccei, Quinn, Weinberg, and Wilczek (PQWW) tied the breaking of
U(1)PQ to the spontaneous symmetry breaking of the electroweak sector in a two Higgs doublet
model where the anomaly is generated by SM quarks charged under U(1)PQ. Since the breaking
is fixed at the electroweak scale fφ ' vEW ' 246 GeV, which sets the interaction scale with SM
particles as well as implying mφ ' 20 keV, laboratory searches quickly excluded the PQWW
axion, see Ref. [29] and references therein.

Even though the original PQWW axion was soon ruled out it is straightforward to generalize
the original idea and tie the U(1)PQ breaking to a higher scale. Since the couplings to SM
particles are now much suppressed by a large scale they can easily evade most laboratory bounds
and are sometimes called invisible axion models.

Before discussing the effective axion Lagrangian in the IR we now move on to discuss ex-
plicit realizations of benchmark invisible QCD axion models. UV completions can broadly be
divided into two groups classified by how the QCD anomaly of the U(1)PQ is realized. Models,
where SM quarks carry the anomaly, are called Dine-Fischler-Srenicki-Zhitnitsky (DSFZ) [35,36],
while models where the QCD anomaly is carried by additional colored fermions are called Kim-
Shifman-Vainshtein-Zakharov (KSVZ) [37,38] type.

2.3.1 KSVZ axion

In KSVZ axion models [37, 38] the QCD anomaly is carried by additional vector-like fermions
in the fundamental of SU(3)c and singlet under SU(2)L Q = QL +QR. In addition, the SM is
also extended by a complex SM singlet scalar Φ. For a massless fermion the KSVZ Lagrangian

LKSVZ = |∂µΦ|2 + Q̄i /DQ− (yQΦQLQR + h.c.)− V (Φ) (2.36)

with the potential

V (Φ) = λ

(
|Φ|2 −

v2
φ

2

)2

(2.37)

is invariant under the U(1)PQ symmetry

Φ→ eiαΦ, QL → eiα/2QL, QR → e−iα/2QR. (2.38)

One can impose that Q stays massless by a discrete gauge symmetry [37]: QL → −QL, QR →
−QR. The potential Eq. (2.37) features a spontaneous symmetry breaking at the scale vφ and
decomposing the complex scalar field into an angle and a radial mode

Φ =
1√
2

(vΦ + rΦ)eiφ/vΦ (2.39)

we find that the axion φ appears as the (at tree level massless) GB of the U(1)PQ, while both the
radial mode rφ and the fermion pick up a mass of the order ∼ vΦ. To be precise mrφ =

√
2λvΦ

and mQ = yQvΦ/
√

2. It is the mass term of the fermion

LKSVZ ⊃ −mQQ̄LQReiφ/vΦ + h.c., (2.40)

that both, gives rise to the topological term by a (axion) field dependent axial U(1)PQ transfor-
mation

Q → e−iγ5φ/2vΦQ → δLKSVZ =
g2

16π2

φ

vΦ
TrGG̃. (2.41)

and removes the interaction via the mass term with the fermion. Here we can identify vΦ = fφ
and note that we can use the axion shift symmetry to remove the θ̄ angle, solving the strong CP
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problem. We also generate an axial current interaction with the fermion ∼ ∂µφQ̄γµγ5Q because
we performed a field dependent transformation. This interaction is however meaningless because
Q is static below vΦ. Moreover, we note that the only interaction of the KSVZ axion to SM
particles is via the operator φTrGG̃, which is in some sense a model independent contribution
for QCD axions.

2.3.2 DSFZ axion

The DSFZ axion [35,36] is a simple extension of the PQWW axion by a complex SM scalar scalar
field Φ that allows to decouple the PQ breaking scale from the EW scale. As the PQWW it
includes two Higgs doublets Hu ∼ (1, 2,−1

2) and Hd ∼ (1, 2,+1
2) and we can write the potential

as

VDSFZ(Hu, Hd,Φ) ⊃ c1|Hu|2|Hd|2 + (c2|Hu|2 + c3|Hd|2)|Φ|2 + c4

[
HuHdΦ

†2 + h.c.
]

+ c5|HuHd|2 + c6|HuH̃d|2
(2.42)

The above potential contains all terms allowed by gauge symmetry and a non-hermitian operator
which explicitly breaks the re-shuffling symmetry of the three scalar fields into two independent
U(1)’s, to be identified with hypercharge and the PQ symmetry

U(1)Hu × U(1)Hd × U(1)Φ → U(1)Y × U(1)PQ. (2.43)

The interactions to the SM fermions (we couple equally to all three generations of SM fermions)
divides the DSFZ model into type-I and type-II with the difference that either we couple Hd or
H̃u = iσ2H

ast
u to SM leptons while the quark couplings are identical

DSFZ-I: LY = −yU Q̄LuRHu − yDQ̄LdRHd − yE ¯̀
LeRHd + h.c. (2.44a)

DSFZ-II: LY = −yU Q̄LuRHu − yDQ̄LdRHd − yE ¯̀
LeRH̃u + h.c. (2.44b)

We chose our potential Eq. (2.42) such that all scalars pick up a VEV

Hu ⊃
vu
2
eiφd/vu

(
1
0

)
, Hd ⊃

vd
2
eiφd/vd

(
0
1

)
, Φ ⊃ vΦ√

2
eiφΦ/vΦ , (2.45)

where we neglected EM charged angles and radial modes. The physical axion is the linear
combination that appears in front of the PQ current, which, neglecting fermion interactions,
one can write as

JPQ
µ ⊃−XΦΦ†i

↔
∂ µΦ−XHuH

†
ui
↔
∂ µHu −XHdH

†
di
↔
∂ µHd

=
∑

i=Φ,u,d

Xivi∂µφi,
(2.46)

where XHu,d = Xu,d for convenience. Therefore, the axion field is defined as

φ =
1

vφ

∑
i

Xiviφi, v2
φ =

∑
i

X2
i v

2
i , (2.47)

such that under a PQ transformation φi → φi + αXivi the axion transforms as φ → φ + αvφ.
PQ charges Xi are now determined by requiring that HuHdΦ

†2 stays invariant which gives
Xu +Xd− 2XΦ = 0 and the orthogonality between JPQ

µ with the corresponding contribution to
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the hypercharge current JYµ =
∑

i Yivuφi, which prevents axion mixing into Z-bosons and give
Xd/Xu = v2

u/v
2
d. Now we can fix the PQ charges to

XΦ = 1, Xu = 2 cos2 β, Xu = 2 sin2 β, (2.48)

where tanβ = vu/vd or sinβ = vu/vEW. Therefore,

v2
φ = v2

Φ + v2
EW sin2 (2β) ' v2

Φ, (2.49)

where we used that vΦ � v2
EW. In terms of the axion field the Yukawa sector for type-I DSFZ

models Eq. (2.44a) becomes

LDSFZ ⊃ −muūLuRe
iXuφ/vφ −mdd̄LdRe

iXdφ/vφ −mΨΨ̄LΨRe
iXdφ/vφ + h.c. (2.50)

from which we can remove the axion by appropriate field redefinitions. Unlike the KSVZ axion,
we now generate both a GG̃ and a FF̃ term because of the QCD and EM anomalies with
coefficients N and E respectively and one obtains

N =
∑
i=u,d

Ni = Ng

(
1

2
Xu +

1

2
Xd

)
= 3,

E =
∑
i=u,d

Ni = Ng

(
3

(
2

3

)2

Xu + 3

(
−1

3

)2

Xd + (−1)2)Xd

)
= 8,

(2.51)

with Ng = 3 the number of SM fermion generations. Therefore, upon defining fφ = vφ/2N we
find the topological part of the DSFZ-I Lagrangian to be

δLDSFZ =
g2

16π2

φ

fφ
TrGG̃+

e2

16π2

E

N

φ

fφ
TrFF̃ . (2.52)

As we have already seen for the KSVZ axion, the field dependent PQ transformation does not
leave invariant the fermion kinetic term such that we generate the following derivative couplings
in this case to SM fermions that cannot be neglected

δL∂Ψ =
1

3

∂µφ

2fφ

[
cos2 β ūγµγ5u+ sin2 β d̄γµγ5d+ sin2 β ēγµγ5e

]
. (2.53)

The analysis is straight forward for DSFZ-II models and simply involves the change Xd → −Xu

and yields E = 2. Lastly, for DSFZ models it is important to determine the allowed range of
tanβ = vu/vd which is limited among other things by loss of perturbativity in top and bottom
quark Yukawas and one finds [29] tanβ ∈ [0.25, 170].

2.4 QCD axion couplings

2.4.1 From the UV. . .

Now that we have seen explicit realizations of the QCD axion in the UV we can write down
without loss of generality an effective model-dependent axion Lagrangian valid at energies below
the PQ breaking scale vφ and the electroweak scale vEW at leading order in 1/fφ [32]

L = LQCD,0 − (q̄LMqqR + h.c.)

+
1

2
(∂µφ)2 +

g2

16π2

φ

fφ
TrGG̃+

1

4
φg0

φγγTrFF̃ +
∂µφ

2fφ
JµPQ,0,

(2.54)
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with

LQCD,0 =− 1

4
TrGµνGµν + iq̄ /Dq, , (2.55a)

JµPQ,0 =
∑
q

c0
q q̄γ

µγ5q, , (2.55b)

g0
φγγ =

e2

4π2fφ

E

N
, (2.55c)

where c0
q are model dependent constants (for KSVZ type models c0

q = 0, while e.g. for DSFZ-I

c0
u = 1

3 cos2 β) and E/N is the ratio of the EM and the color anomaly (for KSVZ type models
E/N = 0, while e.g. for DSFZ-I E/N = 8/3). We have here used the shift-symmetry to remove
the QCD θ̄ angle.

In the limit of vanishing quark masses, the Lagrangian in Eq. (2.54) is invariant under global
chiral transformations of

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A (2.56)

modulo the fact that U(1)A is explicitly broken at the quantum level by the QCD anomaly. It
is convenient to change basis by the axial quark field redefinition

q → e
iγ5

φ
2fφ

Qφ
q, (2.57)

where Qφ is an arbitrary flavor matrix modulo the constraint that TrQφ = 1, such that Eq. (2.54)
now reads

L = LQCD,0 − (q̄LMφqR + h.c.) +
1

2
(∂µφ)2 +

1

4
φgφγγTrFF̃ +

∂µφ

2fφ
JµPQ, (2.58)

with taking Nf = 2

JµPQ =JµPQ,0 − q̄γµγ5Qφq, (2.59a)

gφγγ =
e2

4π2fφ

[
E

N
− 6Tr

(
QφQ

2
)]
, (2.59b)

Mφ =e
i φ
2fφMqe

i φ
2fφ , Mq = diag (mu,md) , Q = diag (2/3,−1/3) . (2.59c)

In the following we will focus on couplings of the QCD axion to quarks, and in the IR to
nucleons and pions and we neglect the photon coupling. At lower energies around the QCD
scale, a quark condensate develops and QCD becomes strongly coupled. The effective theory
below the QCD scale is described by chiral perturbation theory ChPT which will be the topic
of the next subsection. Since ChPT is the effective theory of pions it is useful to find a basis
in which the axion does not mix with the neutral pion (at tree level), which (in hindsight) is
ensured by a particular choice of [32]

Qφ =
M−1
q

TrM−1
q

=
diag[1, z]

1 + z
, z ≡ mu

md
' 0.48. (2.60)

Using the Fierz identity (σa)ij(σ
a)kl = 2δilδkj − δijδkl the PQ current separates into a isoscalar

and isovector piece
JµPQ = q̄γµγ5 (cu+d1 + cu−dτ3) q, (2.61)
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with

cu−d =
1

2

(
c0
u − c0

d −
1− z
1 + z

)
, (2.62a)

cu+d =
1

2

(
c0
u + c0

d − 1
)
. (2.62b)

This is handy for the construction of the effective theory, which we show in detail in App. A. In
regard to the construction it is furthermore useful to map the axion Lagrangian Eq. (2.58) with
PQ current Eq. (2.61) to a general QCD Lagrangian with external local sources. In general the
QCD Lagrangian containing external fields takes the form [39,40]

Lext = q̄Lγ
µ
(
`µ + `sµ

)
qL + q̄Rγ

µ
(
rµ + rsµ

)
qR − q̄L (s− ip) qR − q̄R (s+ ip) qL, (2.63)

where s and p are scalar and pseudo-scalar sources while `
(s)
µ and r

(s)
µ are left- and right-

handed isovector (isoscalar) vector parity eigenstates respectively. They are related to isovector
(isoscalar) vector and axial-vector sources by

v(s)
µ =

1

2

(
r(s)
µ + `(s)µ

)
,

a(s)
µ =

1

2

(
r(s)
µ − `(s)µ

)
.

(2.64)

This permits the mapping

vµ = vsµ = 0,

aµ = cu−d
∂µφ

2fφ
τ3,

asµ = cu+d
∂µφ

2fφ
1,

s = ReMφ = Mq cos

(
φ

fφ
Qφ

)
,

p = − ImMφ = −Mq sin

(
φ

fφ
Qφ

)
.

(2.65)

Therefore, adding the axion to QCD can be thought of as adding the four external fields{
s, p, aµ, a

s
µ

}
to the QCD Lagrangian. It is at this point that we can fully appreciate the

change of basis performed in Eq. (2.57) which effectively allowed us to write all derivative cou-
plings as external sources while the only shift-symmetry breaking couplings are captured in the
axion-dressed quark masses Mφ. Next we discuss the effective theory of the axion with IR QCD
degrees of freedom.

2.4.2 . . . to the IR. . .

Around the QCD scale, ΛQCD ' 0.1 GeV, a quark condensate develops 〈q̄RqL + h.c.〉 6= 0 in
consequence of QCD becoming strongly coupled. This spontaneously breaks down the global
symmetry of Eq. (2.56) to its diagonal subgroub

SU(2)L × SU(2)R × U(1)V → SU(2)L+R × U(1)V , (2.66)

which again for Nf = 2 gives rise to (not counting the anomalous U(1)A) three pNGB’s called
pions, whose effective theory can be described by chiral perturbation theory ChPT, i.e. a sys-
tematic expansion in pion momenta over a cut-off scale p/Λχ, compatible with the underlying
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symmetries. The cut-off scale of ChPT is roughly given by the next higher resonance in the
theory i.e. for Nf = 2 it would correspond to the kaon mass Λχ = mK ' 495 MeV or for
Nf = 3 the ρ meson Λχ = mρ ' 775 MeV [41]. There exists a general framework to construct
the full theory below a symmetry breaking scale, developed by Callan-Coleman-Wess-Zumino
(CCWZ) [42, 43], which can be used to describe the effective dynamics of fluctuations around
the chiral condensate. We do not review the subject of CCWZ construction in generality here
but refer the reader to the recent review Ref. [44]. Pions are captured in the unitary 2×2 flavor
matrix

U = e
i Π
fπ , Π = πaτa =

(
π0

√
2π+

√
2π− −π0

)
, (2.67)

with the pion decay constant fπ ' 93 MeV and τa the Pauli matrices. We find the covariant
derivative for the pion field to be

∇µU = ∂µU − i {aµ, U} − 2iasµU, (2.68)

which is one of the fundamental building blocks of the effective axion-pion theory. Another
spurion in the pion sector can be defined as

χ = 2BM †φ = 2B(s+ ip), (2.69)

where B is a constant related to the chiral condensate. Out of these, the only non-trivial,
hermitian, C and P invariant scalars under Lorentz are collected in the Lagrangian

Lππ = L(2)
ππ + . . . , (2.70a)

L(2)
ππ =

f2
π

4
Tr
[
∇µU(∇µU)† +

(
χU † + χ†U

) ]
. (2.70b)

Higher order pion terms are not needed for our analysis, however, writing down the Lagrangian
including the axion is straightforward.

Note that another choice for the arbitrary flavor matrix Qφ ∼ 1, does not remove the tree
level mixing with the neutral pion, but instead allows to calculate the axion potential from the
Lagrangian Eq. (2.70b) once pions are integrated out [32]. With some algebra one finds

V (φ, π0) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
φ

2fφ

)
cos

(
π0

fπ
− ϕ

)
, (2.71)

with

tanϕ =
mu −md

mu +md
tan

(
φ

2fφ

)
, (2.72)

which is minimum for 〈π0〉 = fπϕ, such that one exactly recovers the potential for the axion we
have already seen in Eq. (2.34).

Next up we want to include baryons to our theory. While the inclusion of baryons in the
effective relativistic theory spoils the systematic expansion in loop momenta due to the intro-
duction of a heavy mass scale, it has been pursuit since the late 1960’s by [40,42,43,45–47] and
others. For recent reviews we refer to Refs. [41, 48, 49]. This problem can however be circum-
vented by going to the ultra non-relativistic limit in which the heavy nucleon can effectively
be integrated out up small residual momenta. This limit is known has the heavy baryon limit
of chiral perturbation theory (HBChPT). We combine the proton (p) and neutron (n) in the
isospin doublet

Ψ =

(
p
n

)
, (2.73)
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which transforms non-linearly under chiral transformations. Note that the isospin doublet Ψ
transforms as a pure vector quantity, for details see App. A. Since Ψ is a singlet under ax-
ial transformations, the presence of an external axial source, as it is the case for the axion
(see Eq. (2.65)), does not change its transformation behaviour. Especially, while the covariant
derivative of the pion fields got modified, the covariant derivative for the nucleon field is a pure
vector quantity and we find

DµΨ = (∂µ + Γµ) Ψ,

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − i`µ)u†

]
,

(2.74)

where Γµ is the chiral connection and we defined

u =
√
U. (2.75)

One can construct a corresponding hermitian isovector axial vector object containing one deriva-
tive, called the vielbein

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − i`µ)u†

]
= iu† (∂µU − irµU + iU`µ)u†. (2.76)

Furthermore we need a non-linearly transforming analog to the field χ, which is constructed
from the hermitian and anti-hermitian combinations

χ± = u†χu† ± uχ†u. (2.77)

At first chiral order O(p) we find the relativistic pion nucleon Lagrangian invariant under chiral
symmetries C and P, including the axion to be

L(1)
πN = Ψ̄

(
i /D −mN +

gA
2
/uγ5 +

g0

2
/̂uγ5

)
Ψ. (2.78)

At the next higher chiral order O(p2) we find the most general Lagrangian to be

L(2)
πN = Ψ̄

[
c1 〈χ+〉 −

(
c2

8m2
N

〈uµuν〉Dµν + h.c.

)
+
c3

2
u · u+ c4

i

4
[uµ, uν ]σµν

+c5χ̃+ −
(

c8

8m2
N

〈ûµuν〉Dµν + h.c.

)
+
c9

2
û · u

]
Ψ,

(2.79)

where 〈X〉 denotes the flavor trace and X̃ = X−〈X〉 /2 singles out the isovector piece. Note that
we dropped all 1/f2

φ terms, and used ∝ [ûµ, uν ] ∼ ∂µφ∂νπa [1, τa] = 0, as well as ∝ [û, û] = 0 to
eliminate terms. Note that c6,7 are terms proportional to the EM field strength tensor, which
we do not include here.

The relativistic treatment of nucleons in the effective theory is not really sensible since the
underlying momentum expansion breaks down and is dealt with in HBChPT, which is the topic
of the next subsection.

2.4.3 . . . to HBChPT

The introduction of baryons is not as straight forward since their mass lies at the cut-off of
the effective theory. To circumvent this problem, we perform a double expansion in residual
nucleon momenta k/mN and k/Λχ, defined in Eq. (2.80). The resulting effective theory is called
HBChPT (see e.g. [41,48,49] for reviews). Power counting in HBChPT, developed in [50–53], is
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complicated by the fact that both i∂tΨ ∼ mNΨ are quantities of O(1), i.e. mN ∼ Λχ. We split
the nucleon momentum into a piece proportional to its mass and the small residual momentum
kµ, which was first done in the context of heavy quark effective field theory [54] but can be
written in the same way for nucleons as [55,56]

pµ = mNv
µ + kµ, (2.80)

where we choose vµ = (1,0)T such that v · k � mN . We split Ψ into velocity dependent
heavy and light components and integrate out the heavy component (see again Refs. [48,49] for
pedagogical reviews). The light component can then be organised in terms of the small quantity
(i∂t −mN )Ψ, which is of order O(k). The chiral order ν of the expansion, defined as (k/Λχ)ν ,
for each Feynman diagram with two external nucleons is given by

ν = 2L+
∑

Vi∆i, ∆i = di +
1

2
ni − 2, (2.81)

where L is the number of loops and ∆i is the order of each vertex, appearing Vi times in the
diagram. Here ni denotes the number of nucleon lines attached to each vertex with index i,
di the number of derivatives or mπ insertions in the ith vertex. The detailed derivation of this
result can also be found in App. A.6.

At leading order in the chiral and non-relativistic expansion, the pion nucleon Lagrangian
Eq. (2.78) including the axion becomes

L̂(1)
πN = N̄ (iv ·D + gAS · u+ g0S · û)N, (2.82)

where Sµ = i
2γ5σ

µνvν denotes the nucleon spin operator.
The second order Lagrangian consists of a piece from Eq. (2.79) and relativistic 1/mN

corrections from Eq. (2.82). We find the chiral and non-relativistic expansion the pion nucleon
Lagrangian invariant under C and P including the axion to be

L̂(2)
πN =N̄

[
− 1

2mN

(
D2 − (v ·D)2 + igA {S ·D, v · u}+ ig0 {S ·D, v · û}

)
+ ĉ1 〈χ+〉+

ĉ2

2
(v · u)2 + ĉ3 (u · u) +

ĉ4

2
iεµνρσ [uµ, uν ] vρSσ

+ ĉ5χ̃+ +
ĉ8

4
(v · u) (v · û) + ĉ9 (u · û)

]
N,

(2.83)

where some of the constants ĉi include relativistic 1/mN corrections,

ĉ1 = c1, ĉ2 = c2 −
g2
A

4mN
, ĉ3 = c3, ĉ4 = c4 +

1

4mN
,

ĉ5 = c5, ĉ8 = c8 −
gAg0

mN
, ĉ9 = c9.

(2.84)

It is straight forward but increasingly more tedious to include higher order corrections. All
relevant couplings can now be calculated by expanding the fundamental building blocks,

u = 1 + i
πaτa

2fπ
− πaπbτaτ b

8f2
π

+ . . . , (2.85)

and keeping relevant terms we find

ûµ = cu+d

(
∂µφ

fφ

)
1 + . . . , (2.86a)
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uµ =−
(
∂µπ

a

fπ

)
τa + cu−d

(
∂µφ

fφ

)
τ3 + cu−d

(
πaπb∂µφ

2fφf2
π

)(
τ bδ3a − τ3δab

)
+ . . . , (2.86b)

Dµ = ∂µ + icu−d

(
πa∂µφ

2fπfφ

)
εab3τ b + . . . , (2.86c)

χ̃+ = m2
π

(
4mumd

(mu +md)
2

)(
πaφ

fπfφ

)
τa + . . . . (2.86d)

Note that we are neglecting the contribution Dµ ∝ πaπb, since it is kinematically suppressed for
the processes we will consider in later chapters.

For later calculations of the density corrections to the axion nucleon coupling Lagrangians
including more than two nucleons are also relevant. One finds these nucleon contact interactions
at LO and NLO to be

L̂(1)
NN =− 1

2
CS(N̄N)(N̄N) + 2CT (N̄SN) · (N̄SN), (2.87a)

L̂(2)
πNN =

cD
2f2
πΛχ

(N̄N)
(
N̄ S · uN

)
+

c̃D
2f2
πΛχ

(N̄N)
(
N̄ S · û N

)
. (2.87b)

They are explicitly constructed in App. A.5

Axion nucleon couplings to leading order

The leading order axion-nucleon coupling, according to Eq. (2.82), reads

L̂(1)
πN ⊃

(
∂µφ

fφ

)
N̄
(
gAcu−dτ

3 + g0cu+d1
)
SµN, (2.88)

which leads to the Feynman rule of the tree level (∆i = 0, see Eq. (2.81)) axion-nucleon vertex
within the HBChPT approximation,

p+pa p
paa

N N

= − 1

fφ

(
gAcu−dτ

3 + g0cu+d1
)
S · pφ. (2.89)

We define
Diag(cp, cq)0 ≡ gAcu−dτ3 + g0cu+d1, (2.90)

and with c0
u−d = (c0

u− c0
d)/2 and c0

u+d = (c0
u + c0

d)/2 and the constants in Table 2.1 this leads to

(cp)0 =− 0.437(37) + 0.847(50)c0
u − 0.407(34)c0

d,

(cn)0 =− 0.002(30)− 0.407(34)c0
u + 0.847(50)c0

d,
(2.91)

which for KSVZ axion models (c0
q = 0) yields

(cp)
KSVZ
0 = −0.437(37), (cn)KSVZ

0 = −0.002(30), (2.92)

while for the DFSZ axion (c0
u = sin2 β/3, c0

d = 1− c0
u) we find

(cp)
DFSZ
0 =− 0.573(35) + 0.418(20) sin2 β,

(cn)DFSZ
0 = + 0.280(25)− 0.418(20) sin2 β.

(2.93)

Note, that for the QCD axion the value of cn is smaller than expected due to an accidental
cancellation and even compatible with zero. This makes it difficult to constrain KSVZ axion
couplings to neutrons from supernovae, see e.g. [57], and significantly weakens the bound from
neutron star cooling (see e.g. [58, 59] or the discussion in [60]).
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constant value(uncertainty)

∆u 0.847(50)
∆d −0.407(34)
mu 2.27(9) MeV
md 4.67(9) MeV
mπ 136.10(1.82) MeV
z 0.485(19)
m̊N 872.6(3.1) MeV
d̄16 0.4(1.3) GeV−2

d18 −0.44(24) GeV−2

ĉ1 0.89(6) GeV−1

ĉ3 −5.54(6) GeV−1

ĉ4 4.17(4) GeV−1

ĉ5 −0.09(1) GeV−1

cD −0.85(2.15) GeV−1

Table 2.1: Numerical values chosen for the constants. The constants d̄16 and d18 are taken from
Ref. [61]. The constants ĉ1, ĉ3, ĉ4 are taken from [62], where for ĉ4 we included an additional
term Λχ/4m̊N (see App. A.3), ĉ5 is taken from [63], while the central value of cD is taken
from [64].

Axion nucleon couplings at higher orders

Higher order corrections start with a single tree level ν = 1 diagram, containing only contribu-
tions from relativistic corrections to the leading order Lagrangian, resulting in

p+pa p
paa

N N

(e2)

= − 1

2fφmN

(
gAcu−dτ

3 + g0cu+d1
)

× (ωφ − ωp) (S · pφ + 2S · p) ,

(2.94)

where we defined ωp ≡ −v · p and ωφ ≡ −v · (p+ pφ).

At chiral order ν = 2, one loop corrections start contributing and are renormalized by

corresponding tree level terms from L̂(3)
πN . Omitting axion loops, all relevant, i.e. non-zero ν = 2

diagrams have been calculated in [61] and are shown in Fig. 2.1.

The result can be written as

p+pa p

pa

N N

a

ν=2 = − 1

fφ
A(ν=2)S · pφ −

1

fφ
B(ν=2)S · p, (2.95)
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p+pa p

pa

N N

a

ν=2 =
p+pa

p
pa

πN N

a

(a1)

+
p+pa

pa

p

πN N

a

(a2)

p+pa p
pa

N N

a

π

(b)

+

p+pa

pa

p

πN N

a

(c)

+
p+pa p

paa

N N

(d)

Figure 2.1: Non-zero corrections to the axion nucleon vertex at chiral order ν = 2. Filled dots
(a), . . . , (c) denote ∆i = 0 vertices according to Eq. (2.81). The empty circle (d) denotes tree

level contributions from L̂(3)
πN needed to renormalize the previous diagrams, see [61].

with

A(ν=2) = − 1

4m2
N

(
gAcu−dτ

3 + g0cu+d1
) (
ω2
p − ω2

φ + ωpωφ − p2
)

−1

6
(−gAcu−dτ3 + 3g0cu+d1)

(
gA

4πfπ

)2 [
m2
π +

1

ωφ − ωp

×
(
ω3
p − ω3

φ + 2

[(
m2
π − ω2

φ

) 3
2 arccos

ωφ
mπ
−
(
m2
π − ω2

p

) 3
2 arccos

ωp
mπ

])]
+ 4m2

π

[(
d̄16τ3 + d17

mu −md

mu +md

)
cu−d + d̄u+d

16 cu+d − (d18 + 2d19)
mumd

(mu +md)
2

]
,

(2.96)

and

B(ν=2) =
1

4m2
N

(
gAcu−dτ

3 + g0cu+d1
) [

2
(
ω2
φ − ω2

p

)
+
(
(p+ pφ)2 − p2

) ]
. (2.97)

We are now in the position to go one order higher. While the next order is of course
naively suppressed, it is well known that the low energy constants ĉ3/4 are larger than the naive
power counting expectation. The coupling constants ĉ3/4 are enhanced by resonances, mostly
due to the low-lying ∆(1232) resonance, which lies about ∼ 300 MeV above the nucleon mass
(see e.g. [41, 48, 49]). Therefore, including the diagrams with enhanced couplings captures the
dominant effects of the next order without calculating all diagrams at ν = 3. The relevant
diagrams and corresponding tree-level diagrams that are necessary for their renormalization are
shown in Fig. 2.2. Note that the analogous isoscalar diagrams, which are generated by ĉ9, are
not enhanced by the ∆ resonance and thus dropped. The result can again be written in terms
of a form factor

p+pa p

pa

N N

a

ν=3 = − 1

fφ
A(ν=3)S · pφ, (2.98)
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+
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+
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Figure 2.2: Non-zero corrections to the axion nucleon vertex at chiral order ν = 3. Filled
squares (e) denote ∆i = 1, filled circles denote ∆i = 0 vertices according to Eq. (2.81). The

empty square (f) denotes tree level contributions from L̂(4)
πN needed to renormalize the previous

diagrams.

where

A(ν=3) =− 2gA

3 (4πfπ)2 (ĉ3 − 2ĉ4) cu−dτ
3

[
m2
π (ωφ + ωp)−

(
ω3
φ + ω3

p

)
−4
(
m2
π − ω2

φ

)3/2
cos−1

(−ωφ
mπ

)
− 4

(
m2
π − ω2

p

)3/2
cos−1

(−ωp
mπ

)]
.

(2.99)

In order to arrive at this result, we properly subtracted the divergent piece

2gA
3f2
π

(ĉ3 − 2ĉ4) cu−dτ
3Λ(λ)

(
6m2

π (ωφ + ωp)− 4
(
ω3
φ + ω3

p

))
, (2.100)

where Λ(λ) collects the scale dependent and divergent pieces in dimensional regularization. The
isovector divergent parts are renormalized by the appropriate ∆i = 4 operators found in [65].
Note that divergent isoscalar parts are renormalized analogously by introducing corresponding
operators and couplings. To be precise, in the same notation, they are given by

e117(λ)N̄ (〈χ+〉S · u iv ·D + h.c.)N, (2.101a)

e193(λ)N̄
(
S · u i(v ·D)3 + h.c.

)
N, (2.101b)

which give rise to the following tree level contributions

4e117

fφ
cu−dτ

3m2
π (ωφ + ωp)S · pφ, (2.102a)

−e193

fφ
cu−dτ

3
(
ω3
φ + ω3

p

)
S · pφ. (2.102b)

As one can easily check this renormalizes the loop contribution if the beta functions

ei(λ) = ēi +
βi
f2
π

Λ(λ), (2.103)

have the following property

β117 ⊃ gA (ĉ3 − 2ĉ4) , (2.104a)
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β193 ⊃
8gA
3

(ĉ3 − 2ĉ4) , (2.104b)

which exactly agrees with [65]. A priori there are finite pieces which however are zero for
operators that can be eliminated by an appropriate field redefinition (proportional to v ·D) as
established in [66]. Therefore, no finite pieces are generated.

Let us now evaluate the axion coupling to protons and neutrons at N3LO in the limit of
small nucleon momenta, p → 0. We take the relevant constants from [11, 61, 67], which are
summarized in Table 2.1 in App. A. In analogy to [61], we assume that the undetermined low-
energy constants d̄u+d

16 , d17, and d19 are natural to consist of a superposition of two normal
distributions of di = ±0.5(5) GeV−2. The model dependent result is

(cp)0 =− 0.390(54) + 0.725(73)c0
u − 0.280(65)c0

d,

(cn)0 =− 0.041(50)− 0.280(65)c0
u + 0.725(73)c0

d,
(2.105)

which for the KSVZ axion therefore gives

(cp)
KSVZ
0 = −0.390(54), (cn)KSVZ

0 = −0.041(50). (2.106)

Note that while the coupling of the KSVZ axion to nucleons is still compatible with zero its
central value shifted by one order of magnitude. For the DFSZ axion we find

(cp)
DFSZ
0 =− 0.482(55) + 0.355(37) sin2 β,

(cn)DFSZ
0 = + 0.201(51)− 0.335(37) sin2 β.

(2.107)

Finally we would like to note that the inclusion of the strange quark mass, which is not consistent
if one calculates with Nf = 2 does not change the central value by much in the above calculation.

2.5 Lighter QCD Axions

The QCD axion is extremely predictive as it generically couples to SM particles (minimally to
quarks) with couplings and mass both set by the axion decay constant. As a solution to the
strong CP problem it is extremely sensitive to other sources of U(1)PQ breaking since this would
show up in the nEDM measurement, a circumstance known as the axion quality problem, see
e.g. [68–71]. Therefore, in order to relax the relation between the axion mass mφ and its decay
constant fφ, see Eq. (2.35), one has to be careful not to introduce sources of U(1)PQ breaking
which would re-introduce the strong CP problem.

While there is a plentitude of models that enhance the axion mass, see Sec. 6.7 in Ref. [29]
and references therein, it is rather hard to find natural models that modify the mφ− fφ relation
in the opposite direction, i.e. that give rise to lighter than expected QCD axions. Indeed, up
to now there exist very few natural models with lighter than expected QCD axion mass, in fact
there seem to be only two.

In Ref. [72] the QCD axion is placed in the bulk of some large extra dimension, whose com-
pactification scale sets the QCD axion mass thereby decoupling the mφ− fφ relation. However,
there are strong bounds on the compactification radius such that the mechanism is only viable
for axion decay constants fφ . 3 · 109 GeV.

Another symmetry based mechanism was proposed in Ref. [73] (see also Ref. [74] for details
on O(1) numbers and Ref. [75] for phenomenological implications). The mechanism relies on
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Chapter 2. The QCD Axion and ALPs

a ZN symmetry that links N exact copies of the SM via the non-linear transformation on the
axion field

ZN : SMk −→ SMk+1(modN)

φ −→ φ+
2πk

N
fφ,

(2.108)

with k = 0, . . . , N − 1. One of the N mirror copies describes our SM while the remaining ones
are identical copies except that the θ angle is shifted by 2π/N w.r.t. the previous copy. Each
copy contributes to the QCD axion potential and one finds that the summed up potential has
the exact same shape as the standard QCD axion Eq. (2.34) but with decreased amplitude,
which can be parameterized by a small quantity ε, such that the axion potential can be written
as

V (φ) = −εm2
πf

2
π

(√
1− 4mumd

(mu +md)2
sin2

(
φ

2fφ

)
− 1

)
, (2.109)

The parameter ε is related to the number of SM copies, we refer for a detailed discussion to
Ref. [74] and content our selfs here with stating the reduced QCD axion mass in the large N
limit

m2
φ '

m2
πf

2
π

f2
φ

√
1− z
1 + z

N3/2zN , (2.110)

where z is again the ratio of the up- and down quark, see Eq. (2.60), and the simple observation
that ε is related to N up to O(1) numbers (in the large N limit)

ε ' N3/2zN . (2.111)

We would like to stress that while in these model the QCD axion mass is effectively lighter
depending on the number of copies, all couplings to SM particles are identical to benchmark
QCD axion models. These models can give rise to spectacular phenomenological signatures as
we will show in later chapters.

2.6 Astrophysical limits on the QCD axion

While there exist many ways to search for the QCD axion and variations thereof with terrestrial
experiments, see e.g. Ref. [29] and Ref. [76] for up-to-date bounds, some of the strongest bounds
come from astrophysical systems. In particular, the bound from the Supernova 1987A (SN
1987A) and bounds from NS cooling are among the most restrictive limits on the axion decay
constant and especially its coupling to protons and neutrons. In this section, we review the
current status of these bounds. For bounds from other astrophysical systems, such as the Sun,
WD and Red Giant (RG) cooling, we refer to [77–80] and Refs. [29, 81] for reviews.

The SN 1987A is the only SN that was ever observed with modern instruments. Several
observatories detected a neutrino burst with ∼ O(10) neutrinos during a time of ∼ O(10)
seconds [82–84]. The duration of the SN process depends on the cooling mechanism which agrees
to very good approximation with the observed neutrinos. In particular, there exist self-consistent
three-dimensional Core Collapse Supernova (CCSN) which agree to good approximation with the
observed signal [85]. Therefore, any additional source of energy depletion, such as light particles
like the QCD axion would modify the neutrino burst duration. A bound can be extracted by
requiring that the new light particle should have a cooling rate that lies below the neutrino
cooling rate which is roughly 2 × 1052 erg s−1, with a typical SN temperature T ∼ 30 MeV and
baryon energy density ε ∼ 1014 g cm−3 [78]. The axion is emitted during the SN dominantly via
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2.6. Astrophysical limits on the QCD axion

axion-nucleon bremsstrahlung, first calculated in Ref. [86] at tree-level for the one pion exchange.
Assuming that the pion is massless (and other simplifacations), this yields a bound for a KSVZ-
type QCD axion of mφ . 16meV or fφ & 4×108 GeV [87] due to the unobservation of neutrinos
from SN 1987A. The bound has a lower limit since KSVZ-type axions with fφ . 2 × 106 GeV
would have a mean free path that lies within the dynamical SN radius, i.e. such axions would
effectively be trapped within the remnant.

More recently, these bounds have been reexamined including corrections beyond the one
pion exchange in Ref. [57]. Specifically, the authors include a non-zero pion mass, two pion
exchanges by means of the inclusion of a rho meson, an effective (density dependent) nucleon
mass, and nucleon multiple scatterings have been considered. The authors find O(1) deviations
in the bound, in particular

g2
φn + 0.61g2

φp + 0.53gφngφp . 8.26× 10−19, (2.112)

where

gφi = (ci)0
mN

fφ
(2.113)

and (ci)0 with i = p, n are here taken to be the leading order axion-nucleon couplings, see
Eq. (2.91). This corresponds to

mφ . 5.67 meV
[
(cn)2

0 + 0.61(cp)
2
0 + 0.53(cn)0(cp)0

]−1/2
. (2.114)

These bounds are, however, subject to large uncertainties since we have only observed one single
SN, and our present understanding of nuclear matter at large densities as well as the underlying
non-perturbative dynamics of the SN is very poor. Therefore, these bounds can only be trusted
up to O(1)−O(10) factors. Nevertheless, we will present in Chap. 4 a revisited analysis including
improved axion nucleon couplings due to vacuum loop corrections as well as finite density effects
in a systematic fashion.

We would like to note that the above bound on the QCD axion from SNe is model dependent.
It relies on UV couplings from the axial U(1)A PQ current, see Eq. (2.61). In particular, so-
called astrophobic axions [88] can easily avoid these types of bounds. However, as long as one is
interested in solving the strong CP problem, there is a model independent bound arising from
the coupling of the axion to the neutron electric dipole moment [89], which in this scenario only
arises from the topological coupling to gluons, see Eq. (2.33). Of course, if one is not interested
in solving the strong CP problem there can be other contributions to the nEDM such that also
this coupling is model dependent. For now we focus on the scenario where we want to solve
the strong CP problem. Following the same reasoning as in the previous section but with the
coupling to the nEDM, see Eq. (2.28),

Lφ,nEDM = − i
2

CaNγ
mNfφ

φN̄γ5σµνNF
µν (2.115)

where CaNγ = 0.0033(15) is taken from Ref. [90], the authors of Ref. [89] find the weaker bound

fφ > 5.56× 105 GeV or mφ < 10.5 eV, (2.116)

compared to the model dependent coupling to the nucleon spin.

The observation of NS cooling can provide similar bounds on the QCD axion and ALPs and
provide information on the axion-nucleon couplings, see e.g. [91–95] and [96]. There are roughly
two interesting astrophysical systems that provide bounds on the axion-nucleon coupling. The
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first is the SN remnant Cassiopeia A (Cas A), where an anomalously fast cooling rate has been
detected. This rapid cooling rate could be explained within the SM [97–99], however, Ref. [93]
analyzed the cooling in the presence of the axion and obtained the bound

g2
φp + 1.6g2

φn < 1× 10−18, (2.117)

while Refs. [92, 95] put the more conservative bound

g2
φp < (1− 6)× 10−17, or fφ > (5− 7)× 107 GeV. (2.118)

Yet another, more involved process where axions arise during the breaking and re-formation of
neutron triplet Cooper pairs requires a coupling (or mass) [99]

g2
φn < (1.4± 0.5)10−19, or (cn)0mφ = (2.3± 0.4)meV. (2.119)

Alternatively, another young neutron star within the supernova remnant HESS J1731-347 was
examined in Ref. [94], which lead to a limitation of

g2
φn < 7.7× 10−20. (2.120)

Note that the bounds from NS cooling depend sensitively on the axion-neutron coupling which
at leading order (and also at higher orders) is compatible with zero within the uncertainty, which
makes it difficult to place robust bounds.

We would like to conclude this section with the comment that astrophysical systems and
phenomena such as SN and NSs provide excellent laboratories to test physics beyond the Stan-
dard Model (SM). In the following chapters, we will study the implications of light new physics
in the context of these systems in more detail.
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Chapter 3

White Dwarfs and Neutron Stars

Astrophysical environments offer great laboratories to test physics beyond the SM. As discussed
in Sec. 2.6, SNe and NS cooling provide some of the strongest bounds on the QCD axion and
ALPs, but also WDs, RGs and Sun-like stars provide excellent probes of new physics. While the
physics of WDs, RGs and Sun-like stars is mostly understood, which implies that robust bounds
on new physics models can be placed, SNe and NSs are much less understood. In particular, the
explosion mechanism of SNe has only recently been simulated self-consistently and with three
space dimensions [100], while the EOS of NSs is still poorly understood. This is due to large
uncertainties on the experimental side as well as the difficulties that arise when calculating the
EOS of nuclear matter at supra-nuclear densities, see e.g. Ref. [101,102].

In this chapter we briefly review the underlying physics of NSs and WDs without the inclusion
of new physics, whose exciting effects on such systems will be explored later on.

All stars need some source of pressure to prevent gravity from collapsing it to a black hole.
For stars like our Sun, i.e. main sequence stars, this source of pressure comes from the energy
release in nuclear fusion and is therefore thermal. For degenerate stars, such as WDs and NSs,
the source of pressure is instead Fermi degeneracy pressure. The equations that describe the
equilibrium between gravitational and matter pressure were derived by Tolman-Oppenheimer-
Volkoff (TOV), see e.g. Refs. [103–105] for pedagogical introductions,

p′ = −GMε

r2

[
1 +

p

ε

] [
1− 2GM

r

]−1 [
1 +

4πr3p

M

]
,

M ′ = 4πr2ε,

(3.1)

where G = 1/M2
P is Newtons constant, M(r) the enclosed mass and all derivatives are taken with

respect to the radial coordinate. This system of coupled differential equations can be integrated
provided an EOS in some form, e.g. p = p(ε), and the boundary conditions p(0) = p0, p

′(r) =
0,M(0) = 0 until the radius that defines the edge of the object defined by p(R) = 0 is reached.
The enclosed gravitational mass is then given by M(R). Varying the initial pressure p0, or
energy density ε0, we find a family of solutions that can be displayed as a curve in the M − R
diagram of the star, see e.g. Fig. 3.1 for the M − R curve of WDs for different compositions.
Each point on the M − R curve corresponds to an equilibrium configuration and increasing
the central energy density ε0 moves points towards smaller and more massive configurations
until a maximum is reached. The maximum can be explained by noticing that an equilibrium
configuration does not imply stability. In fact it can be shown that the criterium of stability
implies ∂M(ε0)/∂ε0 > 0, where we assumed microscopic stabilty i.e. a positive squared sound
speed c2

s = ∂p/∂ε > 0.
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Chapter 3. White Dwarfs and Neutron Stars

3.1 White Dwarfs

Main sequence stars use the thermal energy released in nuclear fusion processes, starting with
hydrogen, to counterbalance gravitational collapse. Once most of the burning element is de-
pleted, the star collapses and heats up until the next stable fusion process stops further collapse.
For progenitor stars with masses of ∼ 8M� and below, this process will stop at relatively light
nuclei. In this scenario, the stellar remnant is called a white dwarf (WD) [104, 105]. Its mass
comes mostly from positively charged nuclei while the pressure to balance gravitational collapse
comes to good approximation from a degenerate gas of electrons.

Before discussing the EOS, numeric solutions from the TOV equations and compatibility
with data, see Fig. 3.1, we would like to show a very simple naive dimensional analysis (NDA)
estimate to get a feeling about the parametric scaling of WD masses and radii. For this purpose
we compare the energy of a degenerate free Fermi gas of electrons EFermi ∼ Nme, where N is the
electron number within the WD, i.e. ρe = N/R3

WD, to the gravitational energy in collapsing nuclei
Egrav ∼ M2

WD/(M
2
PRWD). Neglecting signs as well as O(1) numbers and using MWD ∼ NmN ,

where we implied charge neutrality, and ρe ∼ m3
e, we find

MWD ∼
M3

P

m2
N

∼ O(1)M�, RWD ∼
MP

memN
∼ O(1) 104 km. (3.2)

The estimation for the mass corresponds to the Chandrasekhar limit which is an estimate for
the maximal mass a WD can support. To be precise one finds MCh ' 1.4M� [106]. We will now
confirm these rough estimates with the numerical solutions to the free Fermi gas EOS.

We denote the non-relativistic nuclei by ψ, with energy density εψ = YemNρψ, where Ye =
A/Z is the ratio of the mass number over the atomic number, ρψ is the number density of
nuclei and mN the nucleon mass. The pressure is dominated by the electron contribution,
p = pe + pψ ' pe, while the nuclei constitute most of the energy density, ε = εe + εψ ' εψ.
Imposing charge neutrality, ρψ = ρe ≡ ρ, we can relate the electron Fermi momentum to the
energy density as kF = (3π2εψ/YemN )1/3, and find the EOS to be

p(ε) =
2

3

∫ kF (ε)

0

d3k

(2π)3

k2√
k2 +m2

e

. (3.3)

We work in the limit T → 0, which is justified since T/µe � 1 for typical WDs, where
µe is the electron chemical potential. Temperature shifts the M − R relation up to higher
masses [112, 114–116], an effect most relevant for the largest and most dilute WDs. This can
be understood as an additional thermal pressure source, effectively stiffening the EOS. Due
to the high electron degeneracy and the small luminosity given by WDs relatively small radii
the interior is is thermally highly conductive which allows to approximate the temperature as
constant in the bulk of the star. In the dilute outer layers where electrons become less degenerate,
conductivity is lost and temperature transport equations have to be solved [117]. This is left as a
future exercise. The ratio Ye = A/Z is set by the composition of the star, which for light nuclei,
ranging from helium 4He to magnesium 24Mg, is well-approximated by Ye ' 2. Note however
that a∼ 10% change in the ratio (Ye ' 2.15 for 56Fe) changes the maximal mass appreciably since
it softens the EOS, see Fig. 3.1. With the EOS at hand we can solve the set of equations that
describes the balance between the electron degeneracy pressure and gravity, the TOV equations,
see Eq. (3.1). In Fig. 3.1 we show the M − R curve, i.e. the enclosed gravitational mass of the
star as function of its radius R. The upper black line corresponds to a composition of Ye = 2,
which is realized for 4He, while the lower line corresponds to Ye = 2.15, which would roughly
correspond to a 56Fe dominated composition. Each point on the black lines and within the gray
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Figure 3.1: Stellar equilibrium configurations for the T → 0 WD EOS, see Eq. (3.3). Top
black line corresponds to the composition Ye = 2 common for light elements such as 4He, while
the bottom line corresponds to Ye = 2.15 which would correspond to 56Fe. Configurations
with intermediate Ye are shaded in gray. Data points are taken from [107] (turquoise), [108]
(blue), [109] (pink), [110,111] (red), [112] (green) and [113] (gray).

shaded region corresponds to an equilibrium solution to the TOV equations in the T → 0 limit.
Configurations that lie on a branch with ∂M/∂R > 0 are instable, see Refs. [103–105]. There
are large data sets available containing masses and radii of WDs (see e.g. [107–113, 118–124]).
However, not all of these data-sets can be used to probe the M -R relation. In some catalogs,
(see [118–122]), the M -R relation is used as an input to significantly reduce observational error.
On the other hand, there are sets (e.g. [107–113, 123, 124]) that systematically test the M -R
relation using observational data. While in [112] the determination of the mass and radius is
completely independent of WD models, most other works depend on an atmospheric model to
determine the radius. Nevertheless we show them in Fig. 3.1.

The data of measured WD masses and radii is scattered broadly between radii of (5000 −
40000 km), which matches reasonably well with the free Fermi gas description. The notable
deviation in mass found at large radii in Fig. 3.1 is due to finite temperature effects; µe (elec-
tron chemical potential) in these dilute stars is typically smaller, increasing the relevance of
T/µe corrections. Finite temperature effects lead to modifications of the EOS and to a slight
modification of masses and radii, but importantly they predict a continuous M -R curve.

Finally we would like to mention that the EOS of WDs can be furhter enhanced by taking
into account crystallization, pyconuclear reactions and other nuclear reactions [104, 105, 117].
They are however subdominant compared to the simple electron degeneracy picture and can
safely be neglected.

3.2 Neutron Stars

We have seen that an instability occurs for the smallest and heaviest WDs. However, there exists
a stable branch of even smaller objects with roughly the same mass, so-called neutron stars
(NSs). NSs are the densest astrophysical objects that are not yet black holes, (see e.g. [101,102]
for recent reviews). While WDs consist of nuclei, the densities in NSs are so large that nuclei
effectively dissolve into nucleons, i.e. neutrons and protons. The precise constitution of NSs is
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still subject to active research since theoretical predictions for the EOS of NSs are hampered by
the fact that QCD becomes strongly coupled at typical NS densities, roughly ρ ∼ 0.16 fm−3, and
numerical modelling on the lattice is not possible due to the infamous fermion sign problem [125].
This implies that O(1) uncertainties are unavoidable when dealing with systems at these large
densities.

The name neutron star historically came about because it was believed that the system
minimizes its energy by the inverse β-decay, p + e− → n + νe, with the neutrinos escaping the
object such that energy density and pressure is given by neutrons. Indeed, we can perform a
similar NDA estimate as for WDs, but with EFermi ' NmN and ρ ' m3

N , to find

MNS ∼
M3

P

m2
N

∼ O(1)M�, RNS ∼
me

mN
RWD ∼

MP

m2
N

∼ O(1) 10 km, (3.4)

which indeed gives the right idea: NSs are solar mass objects with a radii of about R ∼ 10 km.
We can easily calculate the Schwarzschild radius for such an object 2GM ∼ 3 km, which shows
that these objects are extremely compact.

Therefore, a rough approximation for the EOS of a neutron star is to consider a free Fermi
gas of degenerate neutrons. The derivation of the EOS is even simpler as in the case for WDs
since there is only one neutral constituents and it does not have an analog for the varying nuclear
composition Ye. The energy density and pressure are given by

ε(ρ) = 2

∫ kF (ρ) d3k

(2π)3

√
k2 +m2

N , (3.5a)

p(ρ) =
2

3

∫ kF (ρ) d3k

(2π)3

k2√
k2 +m2

N

, (3.5b)

with the one-to-one relation between Fermi momentum and number density kF = (3π2ρ)1/3.
The EOS p(ε) can now numerically be found for all densities. Before discussing the solutions
to the TOV equations there are two limits in which the EOS takes a simple analytical form,
namely the non-relativistic (NR) kF � mN and the ultra-relativistic (UR) limit kF � mN with
EOSs respectively

pNR(ε) ' (3π2)2/3

5

ε5/3

m
8/3
N

[
1 +O

(
ε2/3

m
8/3
N

)]
, kF =

(
3π2ε/mN

)1/3
(3.6a)

pUR(ε) ' 1

3
ε

[
1 +O

(
m2
N√
ε

)]
, kF =

(
4π2ε

)1/4
. (3.6b)

As for WDs, we find the M−R curve of equilibrium configurations by solving the TOV equations
Eq. (3.1) with the full free Fermi EOS Eq. (3.5) for different central energy densities ε(r = 0)
or equivalently pressures p(r = 0). The result is also shown as the left branch in Fig. 3.2.

We want to stress that the free Fermi gas EOS is a very simplistic model for a neutron
star and cannot explain most of its observed properties. Maybe most prominantly, it cannot
account for measured maximal masses of NSs i.e. the maximal mass of the free Fermi gas EOS is
Mmax ∼ 0.7M�, clearly in contradiction with observations of neutrons stars with masses above
2M� [126]. The free Fermi gas EOS should therefore be seen as a substantial simplification
which however captures the main properties up to O(1) factors. However, similar arguments
can also be brought up for more sophisticated EOSs. In particular, other baryonic components
other than neutrons may be present within NSs such as pions, kaons, meson condensates [127]
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Figure 3.2: Equilibrium configurations of stellar remnants: the stellar landscape. Right branch:
Same as Fig. 3.1. Left branch: Free Fermi gas of neutrons in the T → 0 limit.

(also see [128] for a recent review) and hyperons [129] which would not be surprising as they are
the right degrees of freedom to describe nuclear physics at the relevant energies [104]. However,
the inclusion of these degrees of freedom within the SM usually leads to softer EOSs supporting
less massive objects and therefore seems to be ruled out, a question referred to as the hyperon
puzzle, see e.g. Ref. [130]. Furthermore, NSs are believed to exhibit phases of superfluidity [131],
crystalline structures [132], strong first order phase transitions to deconfined phases of quark
gluon matter within the star [133, 134]. It is important to note that all the effects mentioned
above tend to soften the EOS, leading to less massive objects which seems to be disfavoured by
data.

Indeed, existing catalogs feature many measured NS masses from binary pulsar systems,
using data obtained from X-ray emissions on their surfaces, i.e. Shapiro delay [135]. The key
finding is that neutron stars can have masses of at least two solar masses and excitingly even
higher than that. The most prominent instance of this fact is the binary NS merger GW170817
detected in GWs by LIGO and Virgo [136] along with an electromagnetic counterpart (GRB
170817A) detected by Fermi gamma-ray telescope [137] which, among many other physics results,
led to constraints on NS radii, maximal mass, and EOS, see e.g. [138–141]. This is promising in
light of the many more NS-NS as well as NS-BH (black hole) mergers that the current network of
GW detectors is expected to detect [142]. The current stellar remnant catalog [143–145] will also
be significantly expanded by third-generation GW observatories [146, 147]. Another interesting
result is the merger event GW190814 [148], which measured one of the progenitors to be a stellar
remnant with a mass of approximately 2.6M�. This could be the heaviest NS or the lightest BH
discovered to date. While a distinction between NSs and BHs from GW data alone is non-trivial,
see e.g. [149,150], this event poses a challenge to the expected lower mass gap between NSs and
BHs [151–158]. Furthermore, pulsars like PSR J0348+0432 have a mass of (2.01±0.04)M� [159],
while PSR J1614-2230 has a mass of (1.97± 0.04)M� [160]. Excitingly, there are hints of even
more massive neutron stars, as seen in PSR J2215+5135 with a mass of (2.27 + 0.17− 0.15)M�
[161] and MSP J0740+6620 with a mass of (2.17+0.10−0.09)M� [126]. These recent discoveries
push the boundaries of our understanding of NS EOSs and are particularly hard to explain with
SM physics alone.

Determining the radii of neutron stars through observations has proven to be a challenging
task due to various factors, such as uncertainties in crust modelling [162], interstellar medium
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absorption, and stellar distance [163]. To address this, new generations of X-ray missions, in
particular NICER [164], are focused on measuring neutron star radii, leading to constraints in
the range of approximately R ≈ (9.9− 11.3) km for more than a dozen neutron stars.

Simultaneously measuring both the mass and radius of the same neutron star is difficult,
yet it can be important for constraining the EOS and gravity theories [165–167]. However,
alternative observational approaches can also provide valuable insights such as neutron star
moment of inertia measurements [168] and the analysis of gravitational wave and gamma-ray
burst data from binary neutron star mergers e.g. LIGO [138] (see also [169,170]) offer possibilities
to infer constrains on tidal deformability and eventually the EOS [171,172].

As should be clear from the above discussion, the precise composition of NSs is still an open
question. However, the simple EOS obtained by a free Fermi gas of degenerate neutrons captures
main features of NSs while it is safe to say that it is not describing the entire story. Nevertheless
we will use this simple EOS to study effects of beyond the Standard Model (BSM) physics on
the stellar structure of WDs and NSs in following chapters.

Lastly, we would like to comment on other approaches for more realistic NS EOSs that are
slightly more involved and allow to capture effects of interactions in the dense nuclear medium.
We know that at sufficiently low energies or equivalently densities ChPT is perturbative. It is
indeed possible to derive the properties of nuclear matter, i.e. symmetric nuclear matter, mixed
matter as well as pure neutron matter, which even reproduces non-trivial results such as the
correct binding energy of symmetric nuclear matter and compressibility [173, 174]. In addition
to the non-interacting pressure and energy density, interacting contributions can be calculated
systematically by summing over Hartree and Fock diagrams ordered in powers of kF /mπ, making
use of QFT at finite chemical potential and temperature in the real-time formalism [175]. In
the chiral limit, saturation simply arises due to two-pion exchange with the interplay of an
attractive k3

F -term and a repulsive k4
F -term. Another, more empirical approach is relativistic

mean field (RMF) theory, see [105] for a pedagogical introduction. Relativistic nucleon fields
interact via exchange of scalar, pseudo-scalar and vector mesons, which are set to their mean
values determined by minimizing the energy of the system. Couplings and masses of the meson
fields are then fitted to reproduce measured properties of bulk nuclear matter. There are many
more empirical approaches to NS EOSs such as many body approaches or skyrme models, which
will not be covered in this thesis. For recent review about these topics see e.g. Ref. [154].
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Chapter 4

Couplings of the QCD Axion to
Nucleons at Finite Density

As discussed in Sec. 2.6, astrophysical environments provide great testbeds for new physics,
especially in the context of the QCD axion and ALPs. In particular some of the most stringent
bounds come from core-collapse supernovae [57,87, 89] and neutron star cooling [91–94]. While
the derived bounds make use of the vacuum couplings of the QCD axion to nuclear matter at
all densities, it is well known that couplings generally become density dependent within the
medium. For example, it has been shown that the axial pion nucleon coupling gA is quenched
as a function of the baryon density in Gamov-Teller transitions [176]. The density dependence
of the axion coupling to nucleon spin has been estimated for the first time in [11], where an
order O(10) modification of the axion neutron coupling has been found at around saturation
density due to an accidental cancellation of this coupling in vacuum. The coupling to the proton
changes by O(1) at saturation density. In this Chapter, we systematically calculate the axion
coupling at finite baryon density in HBChPT and use the obtained density dependent couplings
in the calculation of the emitted energy during supernovae leading to a weaker bound.

We start this Chapter by extending the discussion on HBChPT from Sec. 2.4.3 to finite
density. In particular, we review the basics of real-time thermal field theory in Sec. 4.1.1 and
derive the nucleon propagator at finite density. Using the power counting scheme mentioned
in Sec. 2.4.3 and reviewed in detail in App. A.6, we systematically calculate finite density
corrections to the axion-nucleon vertex up to N2LO and even include contributions that are
enhanced due to the low-lying ∆-resonance from N3LO in Sec. 4.2. An explicit construction
of the N2LO Lagrangian including the axion can be found in App. A. Eventually, we discuss
the effect of moderate temperatures, relevant in supernovae. In Sec. 4.3 we comment on the
relevance of the deformations of the couplings on astrophysical bounds on the QCD axion.

The content of this chapter is based on work in progress [16].

4.1 Heavy Baryon Chiral Perturbation Theory at Finite Density

We have introduced HBChPT in vacuum already in Sec. 2.4.3. We review some basics about
field theory at finite temperature and chemical potential in the real time formalism closely
following Ref. [175, 177] in order to derive the nucleon propagator at finite temperature and
chemical potential. In the limit of zero temperature the propagator takes a particularly simple
form. These techniques have also been applied within ChPT, e.g. in the context of the nucleon
potential [178] or as already mentioned in the context of the EOS of nuclear matter [173, 174].
For a general introduction to finite temperature quantum field theory we refer to e.g. [179].
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4.1.1 Propagators in Real-Time Thermal Field Theory

We summarize the derivation of propagators in thermal field theory for bosons and fermions in
real-time thermal field theory following closely [175,177]. The grand canonical potential density
is related to the pressure density and partition function as

Ω = −P = − 1

βV
lnZ[0], (4.1)

where Z[0] = exp(−βV Ω), β = T−1. At finite temperature and/or chemical potential the
partition function can be constructed as a path integral by extending the time integration to the
imaginary plane from [t0, t0 − iβ] with t0 ∈ R. This can easily be understood as one is generally
interested in calculating expectation values of the form

Tr

[
e−β(Ĥ−µN̂)T exp

(
i

∫ t0

−t0
dt

∫
d3x j(x)φ(x)

)]
, (4.2)

where T is the ordinary time ordering operator. Note that even though for a real scalar there
is a conserved charge in the non-relativistic limit or in the free case, in the following we take
µ = 0 for simplicity. Importantly, the contour in the complex plane that reaches from t0 to
t0 − iβ is to some extent arbitrary, which, depending on the chosen contour, allows to calculate
real-time Green’s functions or time independent quantities. Let us for simplicity consider the
path integral representation of the partition function of a scalar field φ depending on the contour
C,

Z[j] = N
∫
Dφ exp

(
i

∫
C
d4x (L0 + LI + φj)

)
= Z0 exp

{
i

∫
C
d4xLI

(
δ

iδj(x)

)}
exp

{
− i

2

∫
C
d4y

∫
C
d4z j(y)∆

(c)
0 (y − z)j(z)

}
,

(4.3)

where L0 and LI are the free Lagrangian and some self-interaction Lagrangian and j a source
current. We imposed the periodic boundary conditions φ(t0) = φ(t0 − iβ) and the contour
independent normalization

Z0 = N
∫
Dφ exp

(
i

∫
C
d4xL0

)
, (4.4)

is subject to the same boundary conditions. This so far resembles the usual vacuum QFT
expression, except for the free contour dependent propagator

i∆
(c)
0 (x− x′) =

∫
d4k

(2π)4
e−ik·(x−x

′)ρ0(k)
[
θc(t− t′) + nB(k0)

]
, (4.5)

where θc imposes contour ordering, the Bose-Einstein distribution

nB(β, ω) =
1

eβω − 1
(4.6)

and the spectral density is

ρ0(k) = 2π [θ(k0)− θ(−k0)] δ(k2 −m2) = i [θ(k0)− θ(−k0)]
[
∆0F (k)−∆0F (k)†

]
, (4.7)

with

∆0F (k) =
1

k2 −m2 + iε
. (4.8)
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We now consider a contour C = C1 ∩ C2 ∩ C3, where C1 lies on the real axis from t0 to tf , then
C3 going from tf to tf − iβ and then C2 from tf − iβ to t0 − iβ, with t0 < tf ∈ R and in the
limit t0 → −∞ and tf → +∞. In this case the generating functional it can be shown that the
generating functional factorizes into two pieces, the contour C1 ∩ C2, i.e. the union of the two
horizontal lines, and the vertical Matsubara contour 1

lim
t0→−∞

lim
tf→∞

Z[ j ] = Z12[ j ]ZM [ j ]. (4.9)

Note that in the j → 0 limit ZM has to contain the normalization factor Z0 in order to reproduce
the usual partition function and therefore Z12[ 0 ] = 1.

Now we can focus on Z12 and derive explicitly the free propagator. We start by writing

exp

{
i

∫
C1C2

d4x LI
(

δ

iδj(x)

)}
= exp

{
i

∫ ∞
−∞

dt

∫
d3x

[
LI
(

δ

iδj1(x)

)
− LI

(
δ

iδj2(x)

)]}
,

(4.10)

where the minus in the second term comes from the time flowing in the opposite direction and
where

j1(t,x) = j(t,x), j2(t,x) = j(t− iβ,x). (4.11)

We can then write the real-time propagator as

i∆
(rs)
0 (x− x′) =

∫
d4k

(2π)4
e−ik·(x−x

′)i∆
(rs)
0 (k), (4.12)

which we can write in matrix form as

∆0(k) ≡∆0F (k) + ∆0T (k)

=

(
∆0F (k)

−∆†0F (k)

)
− 2πiδ(k2 −m2) sinh Θ(k)

(
sinh Θ(k) cosh Θ(k)
cosh Θ(k) sinh Θ(k)

)
,

(4.13)

where sinh Θ(k) =
√
nB(k0) = (exp(βk0)− 1)−1/2. Importantly, in the limit β →∞, we find

∆0(k) = ∆0F (k), (4.14)

which implies that we recover the usual vacuum propagator on the real time axis C1 which
corresponds to the 11-component of ∆0(k). Additionally, we note that type-1 and type-2 fields
decouple.

We can formally solve the generating functional and find

Z [j] = exp

{
i

∫ ∞
−∞

dt

∫
d3x

[
LI
(

δ

iδj1(x)

)
− LI

(
δ

iδj2(x)

)]}
× exp

{
− i

2

∫
d4y

∫
d4z jr(y)∆

(rs)
0 (y − z)js(z)

}
=

∫
Dφ1Dφ2 exp

{
i

∫
d4x

[
φr(∆

(rs)
0 )−1φs + LI(φ1)− LI(φ2) + jrφr

]}
,

(4.15)

where the second line is the path integral interpretation of the generating functional and r, s =
1, 2 is summed over. With that, we can calculate real-time Green’s functions using the usual

1It can be shown that the imaginary time formalism is independent on the origin from the contour.

41



Chapter 4. Couplings of the QCD Axion to Nucleons at Finite Density

Feynman rules with slight modifications. Vertices have the same rules as in vacuum on C1 and
a relative minus on C2. Propagators are either purely on C1,2, i.e. the diagonal components of
Eq. (4.13) while the off-diagonal elements mix the two.

For fermions the picture is analogous and can be generalized to include a finite chemical
potential µ (see also Sec. 5.1) such that the thermal propagator is [175,177]

G0(k) ≡ G0F (k) +G0T (k)

=

(
G0F (k)

−G†0F (k)

)
+ 2πi (/k +M) δ(k2 −M2) sin Θ(k)

(
sin Θ(k) cos Θ(k)
cos Θ(k) sin Θ(k)

)
,

(4.16)
where

G0F (k) =
(/k +M)

k2 −M2 + iε
, (4.17)

and sin Θ(k) =
√
nF (β, k0) = (exp(β(k0 − µ)) + 1)−1/2. As for the bosonic case, in the β →∞

and µ→ 0 the propagator becomes

G0(k) = G0F , (4.18)

while in the β →∞ but µ 6= 0 we find the propagator

G0(k) =

(
G0F (k)

−G†0F (k)

)
+ 2πi (/k +M) δ(k2−M2)

(
Θ(kF − |k|)

Θ(kF − |k|)

)
, (4.19)

with the Fermi momentum k2
F = M2 − µ2. Importantly, type-1 and type-2 fields are again

completely decoupled.

Therefore, considering the 11-component only (G11
0 ≡ G0) and taking heavy baryon limit

at leading order we find the non-relativistic nucleon propagator for symmetric nuclear matter
(µp = µn = µ) at finite temperature to be2

iG0(k, β) =
i

k0 + iε
− 2π

[
δ(k0 − k2

2M
)θ(ω)nF (β, ω) + δ(ω +M)θ(−ω)nF (−β, ω)

]
, (4.20)

where ω 'M + k0. Note that it is straight forward to extend this result to asymmetric nuclear
matter, as is needed in order to describe neutron star matter. Also note that the momentum
kµ is the residual momentum defined in Eq. (2.80). The first term in equation (4.20) is the free
vacuum propagator, while the second term accounts for the filled Fermi sea of nucleons and is
sometimes called medium insertion. In the zero temperature limit, this simplifies to

iG(p) =
i

k0 + iε
− 2πδ(k0)θ(p0)θ(kF − |k|). (4.21)

It is the medium insertion of this propagator that gives rise to a systematic expansion in kF /Λχ ∼
ρ1/3/Λχ which allows to calculate the effective density dependence of axion couplings. Using
the power counting scheme derived in App. A.6, we proceed with the calculation of density
corrections to the axion-nucleon vertex.

2Note that at finite temperature there could in principle be a contribution due to thermal ghosts, i.e. loop
contributions involving type-2 fields. However for all calculations done in this work they do not play a role.
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4.2. The Axion-Nucleon Vertex at Finite Density

4.2 The Axion-Nucleon Vertex at Finite Density

With the nucleon propagator at finite density at hand (Eq. (4.21)) we are in the position to
construct the density corrections to the axion-nucleon vertex. For each usual vacuum loop
diagram we investigated in Sec. 2.4.3 there is a corresponding diagram with a density insertion
for the nucleon in the loop [178]. This implies that density corrections start contributing at
chiral order ν = 2, according to Eq. (2.81).

As in Sec. 2.4 we omit axion loops as they are suppressed by at least 1/fφ and only show
diagrams that are non-zero. In Fig. 4.1 we show the non-trivial leading order (ν = 2) corrections
to the nucleon axion vertex with a density insertion respectively. The density insertion is marked
by the double-dashed nucleon line. The vertices at this order come from the LO Lagrangian
Eq. (2.82) while the loop with including one density insertion raises the chiral order of the
diagram to ν = 2. Note that one can draw diagrams involving contact interactions from the LO
Lagrangian Eq. (2.87a) which however evaluate to zero, as shown in App. A.8.2. The result can

p+pa p

pa

N N

a

ν=2 =
p+pa

p
pa

= = =

πN N

a

(g1)

+

p+pa

pa

p= = =

πN N

a

(g2)

+

p+pa

pa

p= = =
πN N

a

(h1)

+

p+pa
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p= = =

πN N

a

(h2)

Figure 4.1: (a = φ) Non-zero corrections to the axion nucleon vertex at finite density at chiral
order ν = 2. Filled dotes denote ∆ = 0 vertices according to Eq. (2.81). The nucleon propagator
marked by the double dash implies a density insertion, i.e. second term in Eq. (4.21).

be written though of as form factors in analogy to the vacuum results

p+pa p

pa

N N

a

ν=2 = − 1

fφ
A(ν=2)
n S · pφ −

1

fφ
B(ν=2)
n S · p, (4.22)

where the form factors are given by

A(ν=2)
n = F1(p, k

p/n
F , pφ)τ3 + F2(p, k

p/n
F , pφ)1, (4.23)

and
B(ν=2)
n = F3(p, k

p/n
F , pφ)τ3 + F4(p, k

p/n
F , pφ)1, (4.24)

where the functions Fi(p, k
p/n
F , pφ) are given in App. A.9.

At next to leading order the relevant diagrams are shown in Fig. 4.2. We find all diagrams
at this order by keeping one loop and switching one vertex to a ∆ = 1 vertex from the NLO
Lagrangian Eq. (2.82). Here it is important to note that only the constants ĉ3/4 are dom-

43



Chapter 4. Couplings of the QCD Axion to Nucleons at Finite Density
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+

p+pa

pa
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Figure 4.2: (a = φ) Non-zero corrections to the axion nucleon vertex at finite density at chiral
order ν = 3. Filled squares denote ∆ = 1, filled circles denote ∆ = 0 vertices according to
Eq. (2.81). The nucleon propagator marked by the double dash implies a density insertion, i.e.
the second term in Eq. (4.21).

inant compared to the remaining LECs since they are effectively enhanced by the low-lying
∆-resonance. While the constants ĉ1/5/9 are order one (but not enhanced) the LECs ĉ2/8 are
even kinematically suppressed since they scale as v · k ∼ k2/mN , see App. A.6. Here we neglect
all LECs that are not enhanced. The explicit calculation of the relevant diagrams at ν = 3 is
shown in App. A.8.2. Again written as form factors they evaluate to

p+pa p

pa

N N

a

ν=3 = − 1

fφ
A(ν=3)
n S · pφ −

1

fφ
B(ν=3)
n S · p, (4.25)

with

A(ν=3)
n = gAcu−d

[(
ĉ3F5(p, k

p/n
F , pφ) + ĉ4F6(p, k

p/n
F , pφ)

)
τ3

+

(
ĉ3F7(p, k

p/n
F , pφ) + ĉ4F8(p, k

p/n
F , pφ)

)
1

]
,

(4.26)

and

B(ν=3)
n = gAcu−d

[(
ĉ3F9(p, k

p/n
F , pφ) + ĉ4F10(p, k

p/n
F , pφ)

)
τ3

+

(
ĉ3F11(p, k

p/n
F , pφ) + ĉ4F12(p, k

p/n
F , pφ)

)
1

]
,

(4.27)

where again the functions Fi(p, k
p/n
F , pφ) can be found in App. A.9.

We perform the calculation for the vertices (h1) and (h2) in isospin symmetric matter ex-
plicitly here to give some intuition and refer to App. A.8.2 for the details of the remaining
calculations. Upon defining

cN = Diag (cp, cn) = gAcu−dτ
3 + g0cu+d1, (4.28a)

ĉN = −gAcu−dτ3 + 3g0cu+d1, (4.28b)

the ansatz for the loop integral for (h1) and (h2) reads∫
d4k

(2π)4

[
− gA

2fπ
σ · (k − p)τa

] [
i

k0
− 2πδ(k0)θ(kF − |k|)

] [
cN
2fφ

σ · pφ
]
×

×
[

i

k0 + p0
φ

− 2πδ(k0 + p0
φ)θ(kF − |k + pφ|)

] [
gA
2fπ

σ · (k − p)τ b
] [ −iδab

m2
π − (k − p)2

]
.

(4.29)
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Taking care of the spin as well as the isospin structures and only keeping the density depen-
dent part (we already calculated the vacuum loop in Sec. 2.4.3) leaves us after simplifying and
evaluating the k0 integrals with

(h1) + (h2) =

(
g2
AĉN

8f2
πfφ

)
1

p0
φ

∫ kF

0

d3k

(2π)3

{[
2σ · (k − p)pφ · (k − p)− σ · pφ(k − p)2

m̃2
π + (k − p)

]
−
[

2σ · (k − p− pφ)pφ · (k − p− pφ)− σ · pφ(k − p− pφ)2

m̃2
π + (k − p− pφ)2

]}
, (4.30)

where we used that m2
π − (k − pφ)2 = m2

π − (k2
0 + 2k0p

0
φ + p2

φ0) + (k − pφ)2 = m̃2
π + (k − pφ)2,

since k0 ∼ k2/2mN � |k| and defined m̃2
π = m2

π−(p0
φ)2. With the help of the standard integrals

defined in App. A.9 we can write the result as

(h1) + (h2) = −
(
g2
AĉN

8f2
πfφ

)
1

|pφ|

[
2 (I1(m̃π, p+ pφ, pφ)− I1(mπ, p, pφ))

− σ · pφ (I2(m̃π, p+ pφ)− I2(mπ, p))

]
.

(4.31)

In the same manner we can calculate all density loops of the diagrams shown in Figs. 4.1 and 4.2
for arbitrary matter configurations. We do so in appendix A.8.2, where we calculate the relevant
quantities to evaluate the density corrections in arbitrary mixed matter. We calculate the loops
using the propagator Eq. (4.21) as well as with the replacement of the density insertion

− 2πδ (k0) θ (kF − |k|)→ −2πδ (k0) θ (kF − |k|) τ3, (4.32)

since arbitrarily mixed matter is suitably described by the propagator

iG(p) =
i

k0 + iε
− 2πδ(k0)θ(p0)

[
1 + τ3

2
θ
(
kpF − |k|

)
+

1− τ3

2
θ (knF − |k|)

]
. (4.33)

With that we conclude the section of the density corrections to the axion-nucleon vertex and
continue discussing the reuslts for the effective couplings.

4.2.1 Density Dependence

We can summarize the results from the previous sections in the following equation

p+pa p

pa

N N

a

ν≤3 = − 1

fφ
A(ν≤3)(p, k

p/n
F , pφ)S ·pφ−

1

fφ
B(ν≤3)(p, k

p/n
F , pφ)S ·p, (4.34)

where the effective axion nucleon vertex is written in terms of form factors A and B which consist
of isovector and isoscalar contributions and include renormalized vacuum loops and contributions
due to loops with density insertions up to ν = 3.

At this point, we would like to note that the above result obviously is model dependent since
it explicitly depends on the PQ charges in the UV. Furthermore, for the benchmark QCD axion
models considered in this thesis, namely KSVZ and DSFZ we found at leading order in Sec. 2.4.3
that A(ν=0) = cN and B(ν=0) = 0. Similarly, for the full result, we find that the contribution
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Chapter 4. Couplings of the QCD Axion to Nucleons at Finite Density

due to B(ν≤3) is basically negligible compared to A(ν≤3) for all models under consideration. For
bulk nuclear matter the magnitude of nucleon momenta are expected to be close to the Fermi
momentum |p| ∼ kF . To good approximation, the momentum of the axion is small compared to
the momenta of the nucleons i.e. |pφ| � kF ∼ p. Neglecting the contribution due to B(ν≤3) we
can write the density dependent axion-nucleon coupling as a matrix in isospin space in analogy
to the LO tree level coupling (see Eq. (2.90))

Diag
(
cp, cn

)
ρn,ρp

' A(ρn, ρp), (4.35)

where ρN =
(
kNF
)3
/3π2 with N = n, p is the number density of proton and neutron respectively

such that the total baryon density is ρ = ρn + ρp.
Before discussing the density dependence as well as the higher order vacuum loop contribu-

tions of the axion-nucleon coupling for the benchmark QCD axion models namely the KSVZ
and the DFSZ axion, we would like to mention that we treat all unknown LECs, mostly isoscalar
couplings, as in Sec. 2.4.3 as the superposition of two normal distributions. In addition, we take
into account the error due to the uncertainty of the ChPT expansion. We explicitly checked
that the difference between the density corrections at ν = 2 and the next higher order is given

by the constant ± c× k3
F

(4πfπ)2Λχ
with c ∼ 5, neglecting its kF dependence. We then extrapolate

this difference to higher orders such that the ChPT uncertainty is roughly given by

± c
∑
i

ki+3
F

(4πfπ)2Λi+1
χ

. (4.36)

KSVZ axion

For the KSVZ axion the UV couplings to the PQ current are set to zero, c0
u−d = c0

u+d = 0.
We show the axion-proton and axion-neutron coupling in for isospin symmetric nuclear matter
(ρn = ρp = ρ/2) in Fig. 4.3 and Fig. 4.4 respectively. The left panel in both Figures shows the full
contribution, dominated by the form factor A(ν≤3) while the right panel shows the contribution
due to (B(ν≤3) |p|)/(|pφ|) which in both cases is at least one order of magnitude suppressed.
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Figure 4.3: Density dependence of the KSVZ axion-proton couplings in isospin symmetric
nuclear matter as a function of density in units of nuclear saturation density ρ0 (ρ = n in the
plot). (Left panel) Full contribution. (Right panel) Contribution due to the subleading form
factor B(ν≤3). The shaded region represents the error bars resulting from the uncertainties of
the constants given in Table 2.1 as well as the error emerging from higher order terms in the
chiral expansion.
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Figure 4.4: Density dependence of the KSVZ axion-neutron couplings in isospin symmetric
nuclear matter as a function of density in units of nuclear saturation density ρ0 (ρ = n in the
plot). (Left panel) Full contribution. (Right panel) Contribution due to the subleading form
factor B(ν≤3). The shaded region represents the error bars resulting from the uncertainties of
the constants given in Table 2.1 as well as the error emerging from higher order terms in the
chiral expansion.

For densities around nuclear saturation density ρ0 ' 0.16 fm−3, we find

(cp)
KSVZ
ρ0

= −0.283(64), (cn)KSVZ
ρ0

= −0.141(63). (4.37)

Let us compare this result to the LO tree level coupling we found previously (see Eq. (2.92)).
While for the proton there is an order one difference in the mean-value, the coupling of the
neutron changes by two orders of magnitude at nuclear saturation density. This is one of the
main results of this part of the thesis and confirms the first estimate of [11] who found that
neutron-axion coupling is suppressed by an accidental cancellation between z = mu/md ≈ 1/2
and the ratio of matrix elements in vacuum ∆u/∆d = (gud0 + gA)/(gud0 − gA) ≈ −2,(

cn
cp

)KSVZ

0

∝ 1 + z(∆u/∆d)0

(∆u/∆d)0 + z
≈ 7.6× 10−2 , (4.38)

neglecting RGE and other subleading effects such as mu,d/ms corrections. We would like to
stress here however that the value of cn at LO tree-level depends sensitively on the constants
chosen which is why the effect found here is even more severe i.e. a change by two orders of
magnitude.

For pure neutron matter (ρn = ρ) we show the density dependence of the axion-proton
and axion-neutron coupling in Fig. 4.5 and Fig. 4.6 up ρ0 because Fermi momenta of pure
neutron matter at these densities correspond to Fermi momenta of symmetric matter at ρ = 2ρ0.
Similarly as to symmetric nuclear matter the contribution from B(ν≤3) is negligible as can be
seen in the left panels of Fig. 4.5 and Fig. 4.6. At nuclear saturation density we find the
axion-nucleon couplings to be

(cp)
KSVZ
ρ0

= −0.258(66), (cn)KSVZ
ρ0

= −0.143(73), (4.39)

where a similar trend for axion-proton and axion-neutron coupling is found. This just shows that
our result does not depend much on isospin asymmetry which would be important for e.g. NS
cooling.
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Figure 4.5: Density dependence of the KSVZ axion-proton couplings in pure neutron matter
as a function of density in units of nuclear saturation density ρ0 (ρ = n in the plot). (Left panel)
Full contribution. (Right panel) Contribution due to the subleading form factor B(ν≤3). The
shaded region represents the error bars resulting from the uncertainties of the constants given
in Table 2.1 as well as the error emerging from higher order terms in the chiral expansion.
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Figure 4.6: Density dependence of the KSVZ axion-proton couplings in isospin symmetric
nuclear matter as a function of density in units of nuclear saturation density ρ0 (ρ = n in the
plot). (Left panel) Full contribution. (Right panel) Contribution due to the subleading form
factor B(ν≤3). The shaded region represents the error bars resulting from the uncertainties of
the constants given in Table 2.1 as well as the error emerging from higher order terms in the
chiral expansion.

DFSZ axion

Next we consider the DFSZ axion model with c0
u = sin2 β/3, c0

d = 1 − c0
u, where β is related

to the vevs of the Higgs fields in the UV theory. We consider the case of symmetric nuclear
matter for three benchmark points sin2 β = {0, 1/2, 1} and show the density dependence of the
axion-proton (left panel) and axion-neutron (right panel) couplings in Fig. 4.7, Fig. 4.8 and
Fig. 4.9. Evaluating the couplings for each of them at nuclear saturation density we find

sin2 β = 0 : (cp)
DFSZ
ρ0

= −0.279(68), (cn)DFSZ
ρ0

= 0.001(66),

sin2 β = 1/2 : (cp)
DFSZ
ρ0

= −0.210(51), (cn)DFSZ
ρ0

= −0.068(50),

sin2 β = 1 : (cp)
DFSZ
ρ0

= −0.142(43), (cn)DFSZ
ρ0

= −0.136(43).

(4.40)

We want to note that we again find a strong dependence on the axion-neutron coupling for
DSFZ-type models, except for the case in which sin2 β = 1.
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Figure 4.7: Density dependence of the DFSZ axion-nucleon couplings with sin2 β = 0 in
symmetric nuclear matter as a function of density in units of nuclear saturation density ρ0. The
shaded region represents the error bars resulting from the uncertainties of the constants given
in as well as the error emerging from higher order terms in the chiral expansion.
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Figure 4.8: Density dependence of the DFSZ axion-nucleon couplings with sin2 β = 1/2 in
symmetric nuclear matter as a function of density in units of nuclear saturation density ρ0. The
shaded region represents the error bars resulting from the uncertainties of the constants given
in as well as the error emerging from higher order terms in the chiral expansion.
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Figure 4.9: Density dependence of the DFSZ axion-nucleon couplings with sin2 β = 1 in
symmetric nuclear matter as a function of density in units of nuclear saturation density ρ0. The
shaded region represents the error bars resulting from the uncertainties of the constants given
in as well as the error emerging from higher order terms in the chiral expansion.
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4.3 Implications on Stellar Bounds on Axions

As we have seen, finite density effects significantly affect the QCD axion-nucleon coupling in
typical conditions of supernovae and neutron stars. With these at hand, we re-evaluate the
bounds on a KSVZ-type QCD axion and an astrophobic QCD axion from supernova and neutron
star cooling. While we find an order one change in the total emitted energy due to axions during
the SN for KSVZ-type QCD axion, we find for astrophobic axions that the model-independent
couplings originating from the topological term, see Eq. (2.54), allows to probe unexplored axion
parameter space.

N1 N3

N2 N4

π

a

1

Figure 4.10: (a = φ) The one-pion-exchange diagram with an external axion at leading order.

The dominant process for axion production in these environments is the nucleon Bremsstrahlung
process [57, 86, 87], but also see [180–182] for the alternative process p π− → nφ that since re-
cently is believed to play a significant role [183]. At leading order, the Bremsstrahlung process
is given by the one-pion exchange, shown in Fig. 4.10. The total process includes eight diagrams
which are generated by attaching the axion to different legs and by considering t- and u-channels.
A systematic calculation of the nucleon Bremsstrahlung should go beyond the naive one-pion
exchange since at the relevant densities within SNe and NSs higher order terms, i.e. two-pion
exchange contributions, nucleon re-scatterings and other nuclear physics effects become impor-
tant [57]. In the literature, one can find many empirical approaches to this problem, but what is,
however, lacking so far is a systematic calculation of relevant nuclear physics effects. While such
a systematic calculation at finite density keeping all errors under control is a long-term goal, we
want to systematically calculate the emissivity from the one-pion-exchange diagram with the
density dependent vertex, as shown in Fig. 4.11, which takes the first step towards such a sys-
tematic analysis. The axion emissivity ε̇φ is the amount of energy emitted by axions per volume

N1 N3

N2 N4

π

a

1

Figure 4.11: (a = φ) The one-pion-exchange diagram with an external axion.

of a stellar object (in our case, the SN) and time. It is given in units of Energy/(Volume×Time)
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4.3. Implications on Stellar Bounds on Axions

and is defined as [86]

ε̇φ =

∫
dΠ1dΠ2dΠ3dΠ4dΠφ(2π)4S|M |2δ(4)

(∑
i

pi

)
Eφf1f2 (1− f3) (1− f4) , (4.41)

with dΠi = d3pi/(2π)32Ei and fi = nF (β,Ei). Ei =
√
m2
N + p2

i is the energy of the particle,

which we can take in the non-relativistic limit to be

E−1
i = (m2

N + p2
i )
− 1

2 ' 1

mN

(
1− p2

i

2mN

)
=

1

mN
+O

(
p2
i

m3
N

)
, (4.42)

to rewrite dΠi ' d3pi/((2π)32mN ) for the nucleons. |M |2 is the amplitude of the Bremsstrahlungs
process under consideration, which at LO is straightforward to evaluate [86].

We show the axion-nucleon Bremsstrahlung process with the density dependent vertex from
the previous section in Fig. 4.11. The evaluation of the amplitude squared is done in analogy
to the LO result, see Ref. [86]. For a systematic expansion of the emissivity, we expand |M |2 to
O(k3

F ). With the density dependence of the axion-nucleon coupling at hand, we can see that the
finite density contribution lifts the cancellation of the axion-neutron coupling in vacuum. As
discussed previously, the change in the axion-proton coupling is not as dramatic but still O(1).
We have no reason to believe that including higher order terms will re-introduce this accidental
cancellation which would correspond to a huge amount of tuning. Therefore, to get an idea of
the typical size we expect at finite density, we also keep the terms that are formally higher order.

Making use of the core-collapse SN profiles assuming an 18.6M� progenitor mass from [184],
also used in [185], we perform the integration of the emissivity Eq. (4.41) over the density-
dependent amplitude squared for a KSVZ axion as well as for astrophysics axions.

KSVZ Axion

For the emissivity, we include the statistics due to the uncertainty of the LECs. Drawing the
values from the superposition of two normal distributions with mean value ±0.5GeV−1 and
standard deviation 0.5GeV−1, as explained Sec. 2.4.3, we integrated the emissivity 103 times
which led to sufficient convergence. It is ongoing work to include the uncertainties due to the
expansion in ChPT. Naively, due to the large densities found during the SN, this should be
the main source of uncertainty. The result, with the axion decay constant, factored out and
evaluated at different time steps can be seen in Fig. 4.12. The shaded bands come from the 1σ
uncertainties due to the LECs. We would like to note that for the tree-level vacuum couplings,
we recover a similar result as [57], at t = 1 s and r = 1 km we find

ε̇φ ' 3× 1033 erg s−1 cm−3

(
109 GeV

fφ

)2

. (4.43)

We observe that while there is half an order of magnitude difference at early times, this difference
decreases with later times.

Integrating over the volume gives the luminosity

Lφ = 4π

∫
dr r2 ε̇φ(r, t). (4.44)

The result for a KSVZ axion with tree-level coupling (black) and loop- plus density-corrected
coupling (red) is shown in Fig. 4.13 together with the error bars originating from the uncertainties
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Figure 4.12: Emissivity due to the QCD axion for tree-level vacuum vertex (black) and density-
dependent vertex including vacuum loops up to N3LO. We take into account the uncertainties
due to low-energy constants. The solid line corresponds to the mean value, while dotted lines
and shaded areas correspond to 1σ uncertainties. The left panel is evaluated for t = 0.1 s while
the right panel shows the emissivities at t = 1 s.
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Figure 4.13: Luminosity for the KSVZ axion for tree-level vacuum vertex (black) and density-
dependent vertex including dominant (i.e. resonance enhanced) vacuum loops up to N3LO. We
take into account the uncertainties due to low-energy constants. The solid line corresponds to
the mean value, while dotted lines and shaded areas correspond to 1σ uncertainties.

in the LECs. As can be seen, the difference is not dramatic. While the luminosity, evaluated
with the tree-level vacuum couplings, dominates at early times (t < 3.3 s), the luminosity with
the full density- and loop-corrected vertex dominates at later times. This seems to be due to an
interplay of the opposite behavior of proton and neutron couplings with density. Eventually, we
are interested in the total energy released in axions during the SN, which is given by integrating
the luminosity over time. We find a ∼ 10% reduction in the total energy when integrating the
luminosity over t = 6 s

Ecorrected ' 0.9Etree (4.45)

While this is certainly not a dramatic effect, it changes the axion SN bound by an order one
factor and should be included in state-of-the-art calculations. Furthermore it is important to
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4.3. Implications on Stellar Bounds on Axions

quantify the uncertainty in the luminosity since this directly translates to the uncertainty in
the axion SN bound. It is ongoing work to calculate the luminosity for later times, including
the error due to ChPT uncertainty and different SN EOSs, and re-do the entire analysis for
DSFZ-type QCD axions.

Astrophobic Axions

As discussed in Sec. 2.6, astrophobic axions [88] avoid bounds as the one due to the model-
dependent coupling to spin by tuning the relevant coupling. Therefore, in order to probe these
models, one has to rely on model-independent couplings in the sense that they arise from the
topological term in the UV alone, see Eq. (2.54). This line of reasoning has been pursued in
light of the effect of the model-independent nEDM portal on SN [89], as discussed in Sec. 2.6.

In this subsection, we are going to show that a stronger bound can be obtained by consider-
ing higher-order couplings in the chiral expansion. As expected and explicitly seen in Eq. (2.65),
the model dependence of the PQ current is inherited by all shift-symmetric couplings i.e. pro-
portional to the axion gradient, while shift-symmetry breaking couplings are completely generic
and come from φGG̃ alone. In terms of IR constants, at ν = 3 these are ĉ1 and ĉ5. The larger
ĉ1 gives rise to the isospin symmetric part of the nucleon sigma term and is proportional to the
external scalar source s ∼ cosφ, see Eq. (2.65). This implies that ĉ1 always comes with a 1/f2

φ

suppression and can therefore be safely neglected. However, the smaller ĉ5, which gives rise to
the isospin-breaking coupling, is proportional to the pseudo-scalar source p ∼ sinφ.

We repeat the same SN integration as for the KSVZ-type axion but now set all couplings
to zero except the model-independent ĉ5 coupling. The luminosity for this scenario (red curve)
compared to the tree-level result for a KSVZ axion from before (black) is shown in Fig. 4.14.
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Figure 4.14: Luminosity for the KSVZ axion for tree-level vacuum vertex (black) and density-
dependent vertex for astrophobic axions including only the coupling ĉ5. We take into account
the uncertainties due to low-energy constants. The solid line corresponds to the mean value,
while dotted lines and shaded areas correspond to 1σ uncertainties.

While the shape changes only slightly, a decrease in the overall luminosity by three orders
of magnitude is clearly visible. Following the rationale of [57], that is, to evaluate the the
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Chapter 4. Couplings of the QCD Axion to Nucleons at Finite Density

luminosity at t = 1 s, which has to be smaller than Lφ(t = 1 s) < Lν ' 2× 1052 erg s−1 we find

fφ > (8.5 − 5.7)× 107 GeV, (4.46)

which is about two orders of magnitude stronger than the bound found by [89], see also
Eq. (2.116). It is work in progress to include the errors due to ChPT uncertainty and check
whether axion-nucleon spin couplings due to higher numbers of flavors for astrophobic ax-
ions strengthen this bound. As explained previously though, this is the conservative model-
independent contribution that automatically arises for a QCD axion and cannot be tuned away
without re-introducing the strong CP problem.
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Chapter 5

The QCD Axion at Finite Density

In this chapter we show how the properties of the QCD axion change in systems at finite baryonic
density, such as neutron stars and supernovae. At densities moderately higher than nuclear
saturation density, if realized, meson (kaon) condensation can lead to axion condensation. We
also study the axion potential at asymptotically large densities, where we find that the color-
superconducting phase of QCD can lead to axion condensation and that the mass of the axion is
generically several orders of magnitude smaller than in vacuum due to the suppressed instantons.
QCD Axion condensation could therefore occur within the densest objects in our universe i.e.
neutron stars. If the star is large enough, formation of an axion condensate can be thought
of as an axion bubble that stays confined to or within the star depending on the scalar mass.
Equivalently, the star can be thought of as sourcing the QCD axion. Several phenomenological
consequences of the axion being sourced by neutron stars are discussed, such as its contribution
to their total mass or axion-photon conversion in the magnetosphere. We would like to highlight
that such a possibility was first considered in [186] for a exceptionally light QCD axion whose
mass is below the expected value of ∼ Λ2

QCD/fφ (cf. Sec. 2.5).

The chapter is organized as follows. We start by review the effects of chemical potentials in
quantum field theory in Sec. 5.1, where we discuss a toy model of meson condensation as well
as a the implications of meson condensation on the QCD axion potential for Nf = 2 flavors. In
Sec. 5.2 we show how general properties of the QCD axion potential change at finite baryonic
densities with the focus of densities around saturation and extend the discussion of Sec. 5.1 to
Nf = 3. In Sec. 5.3 we discuss QCD at asymptotic densities in the color-flavor-locked phase
and its implications on the QCD axion potential and end the chapter with a discussion on the
phenomenology of an axion condensate in the context of NSs in Sec. 5.4.

All figures and large parts of the text of this chapter are taken from [11].

5.1 Chemical potential in quantum field theory

Introducing a chemical potential in quantum field theory is a generalization of the procedure in
statistical mechanics. One defines a new operator corresponding to the thermodynamic Landau
free energy, the grand thermodynamic potential density, as we have seen in Sec. 4.1.1

Ω = H− µij0
i , (5.1)

with H the Hamiltonian density, j0
i the conserved charge density associated with a given global

symmetry of the system (i.e. the temporal component of the conserved current), and µi the
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corresponding chemical potential. 1 From the path integral representation of the partition
function (see Eq. (4.3) for a real scalar field or Ref. [187] for a pedagogical introduction), one
arrives at the following prescription: the temporal derivative of each field transforming under
the global symmetry in question is shifted by

∂0 → ∂0 + iµiT
R
i , (5.2)

with TRi the generator of the global symmetry in the appropriate representation R. Chemical
potential therefore acts as a source for the temporal component of the corresponding conserved
current, much like a background gauge field potential. Since it singles out the time direction, the
chemical potential breaks the Lorentz symmetry down to its SO(3) subgroup of spatial rotations.
Charge conjugation symmetry (C), under which j0

i → −j0
i , is also broken, while parity (P) and

time-reserval (T) are preserved – CP and CPT are thus broken. If part of a non-abelian group,
a chemical potential also breaks the global symmetry by singling out a specific direction in
generator space, namely µiTi, which defines an unbroken U(1) subgroup.

5.1.1 U(1) toy model

A simple toy model that illustrates the main effect of the chemical potential is a complex scalar
theory with a global U(1) symmetry [188, 189]. After using the prescription of Eq. (5.2), one
finds the following Lagrangian

L(µ) = ∂µφ
∗∂µφ+ iµ(φ∂0φ

∗ − φ∗∂0φ)− (m2 − µ2)|φ|2 − λ|φ|4 . (5.3)

For m2 > µ2, the field expectation value is trivial, 〈φ〉 = 0, and respects the global U(1)
symmetry. The two propagating degrees of freedom have different dispersion relations

ωφ(k) =
√
k2 +m2 − µ , ωφ∗(k) =

√
k2 +m2 + µ . (5.4)

The appearance of the chemical potential breaks C symmetry, which appears as a φ ↔ φ∗

exchange symmetry in the µ = 0 theory – therefore µ can be treated as a spurion transforming
as µ→ −µ.

Above the threshold |µ| > m, the global U(1) is spontaneously broken by the expectation
value and the theory describes a Bose-Einstein condensate (BEC) phase. In contrast to the ideal
(λ = 0) ultra-relativisitic Bose gas [188], in the interacting theory (with λ > 0) the chemical
potential can be larger than m [189], without leading to any inconsistencies. Note, that our
fundamental potential being the Landau free energy Ω, the fixed thermodynamical parameter
is µ, which sets the effective energies of the particles in the system due to a coupling to the
“particle bath”. This allows the flow of particles in and out of the system, implying that the
charge density, ρφ − ρφ∗ , is a derived quantity set by µ.2 As we show below, for |µ| > m, the
T = 0 system contains non vanishing charge density in the form of the BEC. One can interpret

1We recall that the grand-canonical density matrix is given by ρ̂ = exp [−β(H − µiQi)], with β = 1/T (T is
the temperature), H the Hamiltonian, and Qi the conserved charge. The partition function is then Z(V, T, µi) =
Trρ̂, where V is the volume, eventually taken to infinity. The thermodynamic potential density is Ω(T, µ) =
−(T/V ) lnZ = ε− µiρi = −p, with ε the energy density, ρi the number density, and p the pressure. The grand-
canonical average of an operator O is then 〈O〉T,µi = Tr[Oρ̂]/Z (with a slight abuse of notation, when clear we
will denote ensemble averages simply by 〈O〉). Then ρi = 〈j0

i 〉 = −(∂Ω/∂µ)T , while the entropy density is given
by s = −(∂Ω/∂T )µ.

2This is in complete analogy to temperature T , with sets the effective energy of particles in the system due to
a coupling to a “heat bath”. This allows the flow of heat in and out of the system, implying that the entropy of
the system is a derived quantity set by T .
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this appearance of charge as particles from the “particle bath” being inserted in the ground
state of the system.

In the BEC phase, the following parameterization is useful

φ(x) =
1√
2
eiχ(x)/v(v + σ(x)) . (5.5)

The classical potential is minimized for v2 = µ2−m2

λ , and we find the following Lagrangian

L(µ) =
1

2

[
(∂µχ)2

(
1 +

σ

v

)2
+ (∂µσ)2

]
+ µv

(
1 +

σ

v

)2
∂0χ− V (µ) , (5.6a)

V (µ) =
1

2
m2
σσ

2 + λvσ3 +
1

4
λσ4 − 1

4
λv4 , (5.6b)

with m2
σ = 2λv2 = 2(µ2 −m2). The charge density in the condensed phase is non-vanishing in

the limit of zero temperature β ≡ 1/T →∞ and infinite volume V →∞,

(ρφ − ρφ∗)|T=0 = lim
β,V→∞

1

βV

(
∂ lnZ

∂µ

)
β

= −
(
∂V

∂µ

)∣∣∣∣
〈σ〉=0

=
µ3

λ

(
1− m2

µ2

)
, (5.7)

where we used the classical (~ → 0) result for the generating functional lnZ = −βV V (µ) for
a homogeneous classical configuration 〈σ〉. By diagonalizing the quadratic field operators in
momentum space one finds the dispersion relations for the two propagating degrees of freedom

ω2
±(k) = (3µ2 −m2)

1 +
k2

3µ2 −m2
±
√

1 +

(
2µk

3µ2 −m2

)2
 , (5.8)

which at zero momentum are

ω−(0) = 0 , ω+(0) =
√

6µ2 − 2m2 . (5.9)

As expected, there is one massless excitation, corresponding to the NGB of the spontaneously
broken U(1), and one massive excitation, the radial (or Higgs) mode.

5.1.2 Meson condensation

We review now the importance of a chemical potential in the context of meson condensation in
QCD, in particular for the case of two flavors [128, 190–192], and discuss for the first time its
effects on the axion potential. This is a simplified version of the more complicated, but plausibly
more realistic, scenario of kaon condensation (Nf = 3), to be discussed in Sec. 5.2.2.

For Nf = 2, the chiral condensate breaking SU(2)L×SU(2)R×U(1)B×U(1)A spontaneously
to SU(2)× U(1)B can be parameterized, in full generality, as

〈q̄RqL〉 ≡ 〈q̄RqL〉0 eiα U0 ,

U0 = cos θ 12 + i sin θ n̂ ·U , n̂ = (sinψ cosχ, sinψ sinχ, cosψ) , (5.10)

where −π/2 ≤ θ < π/2,3 and with the U field transforming as (see also Eq. (A.4))

U0 → VRU0V
†
L . (5.11)

3The shift θ → θ + π can be compensated by shifting α→ α+ π.
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In Eq. (5.10), we used the fact that a field transforming as a bi-fundamental under SU(2)L ×
SU(2)R can be written as a radial mode, here frozen to some constant value 〈q̄RqL〉0, times a
2-by-2 unitary matrix U0, which parameterizes the orientation of the ensemble average in the
presence of finite µ, which we call the orientation of the expectation value here. 4

The phase factor eiα is identified with the direction in field space associated with the anoma-
lous axial U(1). A potential for α is generated by non-perturbative effects, whose minimum is
at α = 0, which we take from this point on. The angles defined in Eq. (5.10) can be related to
expectation values of the usual pion fields (at vanishing chemical potential)

θ ≡ 〈Π〉
fπ

,
1√
2

sinψe∓iχ =
〈π±〉
〈Π〉 , cosψ =

〈π3〉
〈Π〉 , (5.12)

where we defined
√
〈πiπi〉 ≡ 〈Π〉. In Dirac notation

〈q̄q〉 =
1

2
〈q̄q〉0(U0 + U †0) , 〈q̄iγ5q〉 =

1

2i
〈q̄q〉0(U0 − U †0) , (5.13)

where we denoted 〈q̄RqL〉0 = 〈q̄LqR〉0 ≡ 〈q̄q〉0/2. Therefore CP is broken in the ground state if

U0 6= U †0 , that is if θ 6= 0.
We wish to study this system at a non-vanishing chemical potential for isospin

µ̂ = µ(T 3
L + T 3

R) , (5.14)

and we shall neglect for the remainder of this section isospin breaking due to the quark masses
and electromagnetic interactions, making the choice in Eq. (5.14) completely generic. Such a
chemical potential is associated with the U3 rotation of the vector SU(2)L+R subgroup. There-
fore, according to Eqs. (5.2), (5.11), we promote the temporal derivative of U0 to

∂0U0 → ∂0U0 + iµT 3
LU0 − iµU0T

3
R =

i

2
µ[U3, U0] . (5.15)

Note that changing µ̂→ µ̂+ 1
612 in Eq. (5.14) has no effect on Eq. (5.15) and on the following

derivation, therefore in this context the isospin chemical potential can be equivalently associated
with the chemical potential for electric charge.5 The resulting potential for the pions and the
axion, the latter entering via the quark mass matrix, Mq = m12 (mu = md ≡ m), as in
Eq. (2.59c) (with Qφ = 12/2), is given by

V =
f2
πµ

2

16
Tr[[U3, U0][U3, U

†
0 ]] +

〈q̄q〉0
2

Tr[U0Mqe
− iφ

2fφ + U †0Mqe
iφ

2fφ ] , (5.16)

at leading order in m/Λχ and µ/Λχ, Λχ being the cutoff of the chiral Lagrangian, see the
discussion in Sec. 2.4.2. Here we have used that the QCD axion potential in vacuum depends
on the quark condensate since we can write using Eq. (2.70b)

V0 =
f2
π

2
(Tr[U †BMφ] + h.c.) , (5.17)

and realizing that

B =
m2
π

2(mu +md)
= −〈q̄q〉0

2f2
π

, (5.18)

4SU(2)L and SU(2)R are generated by T aL = 1
2
Ua and T aR = 1

2
Ua, respectively, where as usual it should be

understood that the L and R operators act on different indices and therefore commute.
5One can then think of µ as a non-vanishing averaged value for the zero component of the photon field µ = 〈A0〉,

which can be intuitively understood as a classical background electric charge density.
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where we used the GOR relation (see Eq. (5.20)) in the last step. We note that the first

term arises from the usual kinetic term, 1
4f

2
πTr[∂µU0∂

µU †0 ], after the replacement (5.15). Using
Eq. (5.10) we find

V = −1

2
µ2f2

π sin2 θ sin2 ψ −m2
πf

2
π cos θ cos

(
φ

2fφ

)
, (5.19)

where mπ here is the neutral pion mass in vacuum, which is related to the condensate b; the
Gell-Mann-Oakes-Renner (GOR) relation

m2
πf

2
π = −2m〈q̄q〉0. (5.20)

We see that the isospin chemical potential introduces an additional source of explicit symmetry
breaking while leaving unbroken the U(1)L+R symmetry defined by the generator in Eq. (5.14).
µ̂ explicitly breaks the shift symmetries associated with the would-be NGBs charged under
U(1)L+R, i.e. the charged pions. Indeed, as discussed above, U(1)L+R is equivalent to the electric
charge. Consequently, the first term in Eq. (5.19) is proportional to the expectation value of
the charged pions, sin2 θ sin2 ψ ∝ 〈π+π−〉. Since µ̂ commutes with the U(1)L−R associated with
the neutral pion, the neutral NGBs are unaffected by the chemical potential and the potential
Eq. (5.19) is minimized at 〈π3〉 = 0 (ψ = π/2) and 〈φ〉 = 0 as in the µ = 0 vacuum.

The minimum of the potential for any value of µ is then found at

cos θ = Min

[
1,
m2
π

µ2

]
. (5.21)

For |µ| < mπ, the ground state is the trivial one, U0 = 1, thus its orientation is the same as
for µ = 0. For |µ| > mπ, pion condensation takes place and the orientation of the expectation
value is no longer trivial. We note that in this case χ constitutes a flat direction which, as we
confirm later, corresponds to a NGB from the spontaneous breaking of electric charge, U(1)L+R.
Setting, without loss of generality, χ = 0, we can write the QCD orientation for |µ| > mπ as

U0 =

(
cos θ i sin θ
i sin θ cos θ

)
. (5.22)

At this point we recall that since θ 6= 0, CP is broken by the expectation value, a result of a
sufficiently large explicit breaking of CP by the chemical potential in the charged pion sector.
Instead, CP-invariance in the neutral sector is preserved by the charge chemical potential, which
leaves the expectation values in that sector untouched. We see now that only if 〈π3〉 6= 0
(ψ 6= π/2) could the axion condense, which requires additionally explicit breaking of isospin, i.e.
mu 6= md.

Having established the Goldstone boson expectation values at finite-density, let us turn our
attention to their fluctuations. Since these are associated with the SU(2)L×SU(2)R generators
broken by U0, we define the following rotated generators

(T aL)θ = u0(T aL)u†0 , (T aR)θ = u†0(T aR)u0 , (5.23)

where again u0 =
√
U0, cf. Eq. (2.75). The broken and unbroken generators are then given by

Xa = (T aL)θ − (T aR)θ , T a = (T aL)θ + (T aR)θ , (5.24)

respectively. The fluctuations around the U0 ground state can be parameterized as

U = uLU0u
†
R = exp

[
iπa(T aL)θ

fπ

]
U0 exp

[
iπa(T aR)θ

fπ

]
= u0 exp

[
iπaUa

fπ

]
u0 , (5.25)
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where, abusing notation, we have written the (pseudo-)NGBs as πa, like the standard θ = 0
pions. 6

The dispersion relations for the neutral degrees of freedom, π0 and the axion, are the same
as for vanishing chemical potential. Their masses can be obtained from Eq. (5.16) (with the
substitution of U0 by U),

(m2
π0

)θ = m2
π/ cos θ , (m2

φ)θ = (m2
φ)0 cos θ , (5.26)

with (m2
φ)0 the mass of the axion in vacuum, Eq. (2.35), and where we note that for |µ| > mπ,

(m2
π0

)θ = µ2. The change of the axion mass for θ 6= 0 follows from the fact that, once the mixing

with π3 is eliminated, it has to be proportional to the CP-even combination Tr[U0 +U †0 ] ∝ cos θ.
The increase in the neutral pion mass can be understood as a result of its repulsive interaction
with the charged pions. The dispersion relation for the charged pions is very similar to the U(1)
toy model of Sec. 5.1.1. In the uncondensed phase |µ| < mπ, their dispersion relations are

ωπ±(k) =
√
m2
π + k2 ∓ µ . (5.27)

Indeed, for the charged states π± ≡ 1√
2
(π1 ∓ iπ2) we recognize the same mass splitting we

found in Eq. (5.4). In the condensed phase |µ| > mπ, the remaining U(1)L+R symmetry is
spontaneously broken. The effective masses of the charged pions are

ωπ+(0) = 0 , ωπ−(0) = µ

√
1 +

3m4
π

µ4
. (5.28)

As in the U(1) toy model, the condensed phase contains one massless Goldstone mode and one
massive radial mode. In this phase, the system has a non-vanishing charge density

ρπ+ − ρπ− = −
(
∂V

∂µ

)∣∣∣∣
πi=a=0

= f2
πµ

(
1− m4

π

µ4

)
. (5.29)

The effective masses of the pions and the axion are plotted in Fig. 5.1.

5.2 Nuclear phase

In this section we study how the properties of the axion, mainly its potential and coupling
to nucleons, change in systems at finite baryon density, ρ. In particular, our focus here is on
densities around nuclear saturation, ρ ∼ ρ0, where a description of QCD in terms of hadrons is
still meaningful.

For the axion potential, we identify two main effects: 1) the change in the size and, to
some degree, flavor orientation of the quark condensates, as measured by the mass of the pions
(Sec. 5.2.1), and 2) kaon condensation (Sec. 5.2.2), similar to meson condensation, introduced
in Sec. 5.1.2. Both of these effects can be taken into account by a generalization of the axion
potential in vacuum.

We therefore generalize the axion potential in vacuum to the density dependent expression

V (ρ) =
1

2
Tr[〈q̄q〉ρM̂φ + h.c.] , M̂φ = u†0u

†
LMφuRu

†
0 (5.30)

6We note that, given Eq. (5.23) and T aL = 1
2
Ua, T aR = 1

2
Ua, it follows that uL = u0 exp

[
iπaUa

2fπ

]
u†0 and

uR = u†0 exp
[
− iπ

aUa

2fπ

]
u0.
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Figure 5.1: Mass spectrum of the vacuum excitations as a function of µ/mπ. The masses are
normalized to their respective µ = 0 value. The charged π+ and π− modes (orange and blue
curves respectively) evolve similarly as the complex φ and φ∗ modes in the U(1) toy model:
a linear split in masses in the uncondensed phase, continuously transitioning to a massless
Goldstone mode and a massive radial mode in the condensed phase. The masses of the neutral
modes, the neutral pion π0 and the axion a = φ (green and red curve respectively) are unaffected
by the chemical potential in the uncondensed phase. In the condensed phase, mπ0 increase
linearly with µ, while the axion becomes lighter as µ increases.

with Mφ encoding the dependence on the axion as in Eq. (2.59c). U0 = u2
0 parametrizes the

orientation of the QCD ground state that spontaneously breaks SU(3)L×SU(3)R to SU(3) and
therefore includes effects of kaon condensation. In vacuum, we have u0 = 13 and the unbroken
subgroup is the usual SU(3)L+R, while in the kaon-condensed phase, we have u0 = u0(θ), with
θ controlling the size of the kaon condensate which, as explained below, ultimately depends on
the baryon density. uL,R are the Goldstone matrices, given by

uL = e
i π

a

2fπ
(TaL)θ = u0 exp

[
iπaλa

2fπ

]
u†0 , uR = e

−i π
a

2fπ
(TaR)θ = u†0 exp

[
− iπ

aλa

2fπ

]
u0 , (5.31)

a generalization to SU(3)L×SU(3)R of those in Eq. (5.25). Finally, the quark condensate 〈q̄q〉ρ
at finite density becomes a matrix in flavor space,

〈q̄q〉ρ = Diag[〈ūu〉ρ, 〈d̄d〉ρ, 〈s̄s〉ρ] , (5.32)

The detailed derivation of Eq. (5.30) is given in App. B.2. The result can also be understood in
terms of symmetries: M̂φ is a spurion that has been dressed by the Goldstones and projected into

the SU(3)L+R subgroup. Therefore, it transforms as M̂φ → V M̂φV
†, where V is an SU(3)L+R

transformation. 〈q̄q〉ρ transforms in the same way, since it is the result of a non-vanishing
expectation value of the temporal component of the baryonic current, ρ = 〈j0

B〉. 7

Before going into the details, several general comments about our treatment of the nuclear
medium are in order. To describe the state of the system, we will work directly in terms of
baryon densities, ρp and ρn considering only protons and neutrons, respectively. In practice, our
independent parameters are the total baryonic density, ρ = ρp + ρn, and the proton fraction,

7When the quark condensate is trivial, 〈q̄q〉ρ ∝ 13, we recover V (ρ) ∝ Tr[U†Mφ + h.c.]. Instead, when the
ground state is trivial, U0 = 13, the change in condensates effectively amounts to mq → mq〈q̄q〉ρ/〈q̄q〉0.
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Chapter 5. The QCD Axion at Finite Density

ρp/ρ. This will be more convenient than introducing the corresponding chemical potentials,
because our analysis is limited to linear order in ρ, i.e. we work in the mean-field or Hartree
approximation, where e.g. ρp ≈ 〈p̄γ0p〉T,µi (and in fact ρp ≈ 〈p̄p〉T,µi in the non-relativistic limit)
– higher-order corrections generically being beyond perturbative control when relevant. Besides,
the relative fraction of protons and neutrons is, as shown below, relevant only in our discussion
of kaon condensation. There, the chemical potential for electric charge, µ, will also be required
to properly describe the system, along with the condition of charge neutrality.

5.2.1 Quark condensates

We first discuss how the quark condensate changes at finite baryonic density, since this is the
most robust effect from the point of view of perturbative control. We derive the implications
for the axion mass, which were first noted in [186]. The change with density of the quark
condensates can be calculated utilizing the Hellmann-Feynman theorem [193]

ζq̄q(ρ) ≡ 〈q̄q〉ρ〈q̄q〉0
= 1 +

1

〈q̄q〉0
∂∆E(ρ)

∂mq
, q = u, d, s . (5.33)

∆E(ρ) is the energy shift of the QCD ground state due to the finite density background, such
that ∆E(0) = 0. It can be decomposed as

∆E = Efree + Eint. , (5.34)

where the first term represents the energy shift due to the presence of a non-interacting Fermi
gas, while the second term encodes the energy shift due to nuclear interactions. Neglecting these
interactions as well as relativistic corrections, we have ∆E =

∑
x=n,p,...mxρx, and we arrive at

the so-called linear approximation for the in-medium condensate

ζq̄q(ρ) = 1 +
1

〈q̄q〉0
∑
x

ρx
∂mx

∂mq
, q = u, d, s . (5.35)

The derivatives ∂mx/∂mq describe the shift in the nucleon mass due to the non-vanishing quark
masses. For two nucleons {n, p} and three quarks {u, d, s}, one naively counts six independent
shifts. However, due to the {p, u} ↔ {n, d} exchange symmetry, only three shifts are indepen-
dent. Working in the isospin basis for the quark masses, m̄ ≡ 1

2(mu+md) and ∆m ≡ 1
2(mu−md),

the following sigma terms are identified and defined

σπN ≡ m̄
(
∂mp

∂m̄

)
= m̄

(
∂mn

∂m̄

)
, (5.36)

σ̃πN ≡ ∆m

(
∂mn

∂∆m

)
= −∆m

(
∂mp

∂∆m

)
, (5.37)

σs ≡ ms

(
∂mp

∂ms

)
= ms

(
∂mn

∂ms

)
, (5.38)

such that

mn = m̊N + σπN + σ̃πN + σs , (5.39)

mp = m̊N + σπN − σ̃πN + σs . (5.40)

with m̊N the baryon mass in the chiral limit given in Table 2.1, mq → 0. We note that the
sigma terms can be expressed in terms of the parameters of the Nf = 3 chiral Lagrangian
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for baryons, see Eq. (B.50) in App. B.2. The σπN and σs terms have been extracted from
pion-nucleon and kaon-nucleon scattering experiments, as well as from lattice simulations by
calculating the mass shifts of the nucleons. There are ongoing efforts aimed at the determination
of the precise values of these sigma terms. A summary of latest results [194] shows that their
current values are scattered over a fairly wide range, with some tension between experimental
and lattice results. In this work we use the conservative estimates σπN = 45 ± 15 MeV and
σs = 30 MeV . The other sigma term is extracted from the p − n non-electromagnetic mass
splitting 2σ̃πN = (mn −mp)

non-EM = 2 ± 0.3 MeV [39]. Using the GOR relation in Eq. (5.20),
we rewrite the ratios 〈q̄q〉ρ/〈q̄q〉0 as

ζūu(ρ) = 1− b1
ρ

ρ0
+ b2

[
2
ρp
n
− 1
] ρ
ρ0
, (5.41a)

ζd̄d(ρ) = 1− b1
ρ

ρ0
− b2

[
2
ρp
n
− 1
] ρ
ρ0
, (5.41b)

ζs̄s(ρ) = 1− b3
ρ

ρ0
, (5.41c)

with

b1 ≡
σπNρ0

m2
πf

2
π

= 3.5× 10−1
( σπN

45 MeV

)
, (5.42a)

b2 ≡
σ̃πNρ0

m2
πf

2
π

m̄

∆m
= −2.2× 10−2

(
σ̃πN

1 MeV

)
, (5.42b)

b3 ≡
σsρ0

m2
πf

2
π

2m̄

ms
= 1.7× 10−2

( σs
30 MeV

)
. (5.42c)

Clearly the 〈s̄s〉ρ condensate is only weakly affected by the nucleonic background. Therefore, as
in vacuum, its contribution to the axion mass will be subleading, being suppressed by mu,d/ms.
Additionally, 〈ūu〉ρ ≈ 〈d̄d〉ρ up to the small isospin breaking correction [195], which we neglect.
From Eq. (5.30) with u0 = 13 and after taking care of axion-pion mixing we reproduce the axion
mass at finite density found in [186]

(mφ)2
ρ = (mφ)2

0〈ūu〉ρ ≈ (mφ)2
0

(
1− b1

ρ

ρ0

)
, (5.43)

where mπ here is the neutral pion mass in vacuum, Eq. (5.20). In this regard, we note that
at the linear order in density the same correction as the axion enters the neutral pion mass in
medium, i.e. (mπ)2

ρ = m2
π〈ūu〉ρ. This is why for the remainder of this section, we shall only

consider ρ < ρc ≡ ρ0/b1 ≈ 2.8 ρ0 (45 MeV/σπN ), with ρc being the critical density at which one
naively expects chiral symmetry restoration in the linear approximation.

At this point, let us turn our attention to the corrections to the linear, non-relativistic
approximation we have considered. This will allow us to estimate the densities up to which our
leading result is under perturbative control and can therefore be trusted. First, the energy of
a degenerate (zero temperature) ideal Fermi gas receives relativistic corrections. In the fully
relativistic limit, the free part of the energy for a fermion x is given by

Efree
x = 2

∫ kxF d3k

(2π)3

√
k2 +m2

x = mxρxF (kxF /mx) , (5.44)

F (q) =
3q
√
q2 + 1

(
2q2 + 1

)
− 3 sinh−1(q)

8q3
= 1 +

3q2

10
+O(q4) , (5.45)
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where kxF is the Fermi momentum, kxF =
√
m2
x − µ2

x, which determines the number density,

ρx = 2

∫ |k|≤kxF d3k

(2π)3
=

(kxF )3

3π2
. (5.46)

Therefore, relativistic corrections, of O((kxF /mx)2), become important at large densities. When
this happens, corrections to the QCD ground state energy Eq. (5.34) from nucleon interactions
become important as well. These are predominantly due to pion exchange, but also from four-
baryon contact interactions. It is clear that the latter become important when ρx/Λχf

2
π becomes

order one. Given Eq. (5.46), this is also the place where ChPT is beyond control, kxF ∼ Λχ,
e.g. the pion-exchange contribution to the energy is not predictable. In addition, since the
cutoff of ChPT Λχ is numerically close to mp ≈ mn, relativistic corrections are approximately
controlled by the same expansion parameter,

k2
F

Λ2
χ

≈ (3π2ρ/2)2/3

Λχ
≈ (15 %)

(
ρ

ρ0

)2/3 (700 MeV

Λχ

)2

, (5.47)

where we took kF = kpF ∼ knF . Ultimately the best way to asses the validity of our linear
approximation is to explicitly compute the relevant NLO corrections. The interaction energy
Eint. has been calculated by summing the so-called Hugenholtz diagrams, which are connected
bubble diagrams describing ground-state to ground-state transitions [173]. The resulting higher-
order finite density effects on the quark condensates have been obtained in ChPT for symmetric
nuclear matter [196, 197] and pure neutron matter [198, 199]. These authors have indeed found
O(1) deviations from the linear approximation for densities somewhat above nuclear saturation.
Specifically, nucleon interactions seem to ameliorate the linear decrease of 〈ūu〉ρ ≈ 〈d̄d〉ρ in
Eq. (5.41), such that already at ρ ≈ 2ρ0, the condensates are only at approximately 60 % of
their vacuum value, as opposed to the 15 % predicted by the linear approximation, and in fact
start increasing with density [196]. This then implies that a more realistic prediction of the
axion mass in dense symmetric nuclear matter is

(mφ)2
n.2ρ0

& 0.6 (mφ)2
0 . (5.48)

while for larger densities ρ & 20 ∼ ρc it becomes difficult to trust the results of ChPT.
Therefore, the determination of the quark condensates and the axion mass at densities signifi-

cantly beyond nuclear saturation remains an open and difficult theoretical problem. Importantly,
realistic lattice simulations at finite density are currently not feasible due to so-called sign prob-
lem. In addition, at such high densities other issues arise (ultimately related to the problem of
perturbativity), such as the “hyperon puzzle”, which concerns the appearance, or absence, of
hyperons, see e.g. [200] and references therein. In the next section we will focus our attention
instead on another effect of strangeness, potentially much more relevant for the fate of the axion
at finite density.

5.2.2 Kaon condensation

In the previous section we assumed that the vacuum of QCD is trivially oriented and CP-
preserving, or equivalently that none of the mesons acquire a non-trivial expectation value.
This might, however, not be the case in dense matter. It has been hypothesized [201] that above
certain baryonic densities it becomes energetically possible for the strangeness changing process
of a neutron splitting into a proton and a scalar K− meson, and vice versa, to take place

n↔ p+ +K− , (5.49)
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The reason being the low in-medium kaon mass, which eventually leads to the formation of a
K− condensate. This process takes place along with, and even becomes favored over, the usual
neutron β-decay, n → p+ + e− + ν̄e, and inverse β-decay, p+ + e− → n + νe, because of the
high price of occupying the increasingly energetic Fermi surface of the electrons. Because of
this fact, also the processes e− ↔ K− + νe and e− ↔ µ− + ν̄µ + νe, µ

− ↔ e− + νµ + ν̄e reach
β-equilibrium [202]. On the other hand, the formation of a pion (π−) condensate (n↔ p+ +π−)
seems to be disfavored, as we shall discuss below.

Motivated by these arguments, we shall now entertain the possibility of kaon condensation
and derive its effects on the axion potential. Several important comments and some caveats
are however in order. We consider this scenario because of the thrilling possibility of leading
to axion condensation, even though it takes place – if it takes place at all – at densities where
a perturbative expansion is questionable, ρ & 2ρ0. Because of the inherent uncertainties at
such densities, our conclusions will be qualitative rather than quantitive. Indeed, similar to our
discussion at the end of the previous section on the quark condensates and their finite density
corrections beyond the linear approximation, kaon condensation cannot be simply described by
the leading order terms in ChPT. In particular, nucleon self-interactions and interactions with
pions need to be considered in order to capture the full complexity of this strongly interacting
system [203] – for instance, the latter are the reason behind the fact that K− condensation
is more likely than π− condensation. Our working assumption is that all the processes above
(neglecting the pions) are in equilibrium, which implies a set of equations relating the chemical
potentials of the particle species involved,

µµ = µe = µK− = µ , µp − µn = µ , (5.50)

where µ is the chemical potential associated with (positive) electric charge. For convenience,
we work directly with muon and electron densities, ρµ and ρe respectively, both of which are
determined by µ as they follow from an ideal Fermi gas. The size of the kaon condensate, θ, is
determined, as in the simple example of meson condensation discussed in Sec. 5.1.2, by the min-
imization of the scalar potential, which of course also determines if the axion condenses or not.
Finally, due to the importance of nuclear interactions, the densities of protons and neutrons, or
equivalently the total baryon density ρ and the proton fraction ρp/ρ, are not determined by µ.
Instead, we enforce the condition of (electric) charge neutrality ρEM = 0, and present our results
in terms of ρ and ρp/ρ.

An additional important final comment regards the implications of kaon condensation on
the NS equation of state (EOS), see also the discussion in Sec. 3.2. It has been argued that
the inclusion of kaon condensation generically leads to a softer EOS [202, 204], which usually
cannot sustain a large NS mass. This is in conflict with the most massive NSs observed, with
masses around 2M� [159, 205]. This is the main reason why kaon condensation is currently
considered an “exotic” possibility. However, axion effects can in fact harden the EOS [15] and
reopen this window. Also, kaon condensation is in fact related to another issue, namely the
hyperon puzzle [206]. The appearance of hyperons also tends to soften the EOS, resulting in a
similar apparent conflict with the observation of massive NSs. Therefore, although the appear-
ance of strangeness seems to be in tension with observations, we think it would be premature to
definitively exclude the possibility of kaon condensation at this point, especially in the presence
of new physics.

Let us consider then the possibility that kaon condensation occurs in nuclear matter and
qualitatively examine its effects on the axion potential. Once the chemical potential for electric

65



Chapter 5. The QCD Axion at Finite Density

charge µ is introduced, the dispersion relations for the K± modes are given by

ωK±(k) =
√(

m2
K±

)
ρ

+ k2 ± µ , (5.51)

with the kaon effective in-medium mass(
m2
K±
)
ρ

=
1

f2
π

(
−〈ūu+ s̄s〉ρ

2
ms −

1

2
(ρ+ ρp)µ

)
. (5.52)

The first term in Eq. (5.52) is the usual kaon mass to leading order in ms, with the inclusion of
the finite density corrections to the relevant quark condensate, which in the linear approximation
are given by

−〈ūu+ s̄s〉ρ
2f2
π

ms = m2
K

(
1− 1

2

[
b1 − b2

(
2 ρp
ρ
− 1

)
+ b3

]
ρ

ρ0

)
, (5.53)

where m2
K = −ms〈q̄q〉0/f2

π , the neutral kaon mass in vacuum, neglecting O(mu,d/ms) terms.
The second term in Eq. (5.52) is a mass correction induced by the baryonic background, due
to the model-independent s-wave interactions of the baryons with the mesons, arising from the
baryon kinetic term,

(LB)ρ = iTr[B̄γµDµB]⊃−µTr[B̄γ0[Q̂e, B]] , Q̂e = 1
2

(
u†0u

†
LQeuLu0 + u0u

†
RQeuRu

†
0

)
(5.54)

as it follows from the covariant derivative of ChPT, DµB = ∂µB + [eµ, B] with the chiral

connection eµ = 1
2(u†0u

†
L∂µuLu0 + u0u

†
R∂µuRu

†
0) (see App. A.3 for the Nf = 2 case), upon

introducing the charge chemical potential, ∂0 → ∂0 + iµQe with Qe = Diag[2/3,−1/3,−1.3],
see App. B.2 for the details. Note that since b2 � b1, the effective kaon mass decreases with
density, and condensation is expected to occur when 8

ωK−(0) = (mK±)ρ − µ = 0 (5.56)

Kaon condensation is introduced by allowing the kaon field to take a non-trivial average value,
〈
√

2K±/fπ〉, or equivalently, in our notation, reorienting the QCD ground state in medium [202],

U0 =

 cos θ 0 i sin θ
0 1 0

i sin θ 0 cos θ

 . (5.57)

The ground state orientation is determined by the static Lagrangian after setting all the fluctu-
ations to zero. Neglecting for the time being the axion, we find a similar potential to Eq. (5.19)

V (θ) = −1

2
µ2f2

π sin2 θ − f2
π(m2

K±)ρ cos θ . (5.58)

8It is illustrative to also consider the pion effective in-medium mass,(
m2
π±
)
ρ

=
1

f2
π

(
−〈ūu+ d̄d〉ρm̄+

1

2
(ρ− 2ρp)µ

)
, (5.55)

since it shows that, due to the second term and contrary to the kaon, the charge pion becomes heavier with
increasing density, at least for a neutron rich background ρp/ρ < 1/2 [207]. The argument against pion conden-
sation becomes even stronger when considering higher order terms in ChPT [195], as we discussed at the end
of Sec. 5.2.1 – these additional corrections even make the pion mass increase with density for ρ ≈ 2ρ0, even in
symmetric nuclear matter, ρp/ρ = 1/2.
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Figure 5.2: The ground state orientation angle θ (left panel) and the chemical potential µ in
units of pion mass (right panel) as function of baryon density ρ (n = ρ in the plot) for fixed values
of proton fraction ρp/ρ. The blue, orange and green curves correspond to ρp/ρ = 0.1, 0.3 and
0.5, respectively. The solid curves correspond to the numerical solution using the central value
of σπN = 45 ± 15 MeV, while the bands are obtained by the corresponding 1σ variation. The
gray slashed region corresponds to ρ > ρc ≈ 2.8 ρ0 where the quark condensate 〈ūu〉ρ changes
sign (for the central value of σπN ).

Minimizing V (θ) leads to the condition

cos θ = Min

[
1,

(m2
K±)ρ

µ2

]
, (5.59)

which can be used to determined θ = θ(µ, ρ, ρp/ρ). The requirement of electrical neutrality,
ρEM = −〈∂L/∂µ〉 = 0, leads to

−f2
πµ sin2 θ + cos θ ρp − sin2 (θ/2) ρn − ρe(µ)− ρµ(µ) = 0 , (5.60)

where we included the lepton charge densities, given by

ρl(µ) = Θ(|µ| −ml) Sign(µ)
(µ2 −m2

l )
3/2

3π2
, l = e, µ . (5.61)

Solving (numerically) the coupled Eqs. (5.59), (5.60), one can determine the values of {θ, µ} as
a function of {ρ, ρp/ρ}. In Fig. 5.2 we show the results for θ and µ as a function of baryon
density for different values of the proton fraction, while in Fig. 5.4 we plot the region (blue) in
the {ρ, ρp/ρ} plane where θ 6= 0, namely where the system is in the kaon-condensed phase. The
evolution for given {ρ, ρp/ρ} can be understood as follows: for a fixed proton fraction ρp/ρ, as ρ
increases the amount of positive charge due to the protons increases as well, and more leptons
are required to satisfy the neutrality condition, leading to an increase in µ. This increase in
µ drives the effective mass of the kaon, Eq. (5.52), further down (on top of the decrease in
〈ūu〉 at finite density), until eventually the threshold condition for kaon condensation is met,
µ = (mK±)ρ, and a further increase in the proton density can be compensated by inserting K−

particles in the ground state.
Even though we keep them undetermined, let us briefly comment at this point on how the

proton fraction could be determined in terms of the total density. Since the interaction energy of
nuclear matter also depends on the proton fraction, Eint. = ρEint.(ρ, ρp), one could enforce that
the total energy density is minimal with respect to ρp/ρ, which would lead to the constraint [202],

c4 sin2 (θ/2) + µ cos2 (θ/2) +
∂Eint.(ρ, ρp)

∂(ρp/ρ)
= 0 , (5.62)
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where c4 ≡ (2b2f
2
πm

2
K)/ρ0 ∼ 49 MeV.

After determining the ground state orientation, let us examine the consequences on the
axion potential. The pseudo-NGB potential, after reintroducing the fluctuations we are mainly
interested in, namely the neutral mesons π0, η and the axion, is given by

V (π0, η, φ) =
f2
πµ

2

4
Tr[[Qe, U ][Qe, U

†]] +
1

2
Tr[〈q̄q〉ρM̂φ + h.c.] (5.63)

with M̂φ given in Eq. (5.30) and

U = uLU0u
†
R = u0 exp

[
iπaλa

fπ

]
u0 . (5.64)

Note this potential is similar to that discussed in Sec. 5.1.2 in the context of meson condensation,
with the additional relevant feature of the density dependent quark condensates, in particular
their decrease with density, ζūu ≈ ζd̄d ≈ 1−b1(ρ/ρ0). The three mass eigenstates, corresponding
to mixtures of π3, η and a, have the following masses in the isospin symmetric limit ∆m = 0
and at leading order in θ and m̄/ms,

9

(m2
π0

)ρ,θ ≈ m2
π ζūu

[
1 +

1

8

(
2µ2

m2
πζūu

− ms

m̄

)
θ2

]
, (5.65)

(m2
η)ρ,θ ≈ m2

η

[
1− 1

4

(
1 +

ζūu
4

)
θ2

]
, (5.66)

(m2
φ)ρ,θ ≈ (m2

a)0 ζūu

[
1− 1

8

(
1 +

1

ζūu

)
θ2

]
. (5.67)

with mπ and mη the masses in vacuum, respectively Eq. (5.20) and m2
η = −4ms〈q̄q〉0/3f2

π

neglecting O(mu,d/ms) terms. Note that only the neutral pion mass depends on the charge
chemical potential, and that such dependence enters along with kaon condensation. The effect
of a non-vanishing θ on (m2

π0
)ρ,θ therefore depends on the relative size of ms/m̄ ≈ 27 and

2µ2/(m2
πζūu), which enter with opposite signs. Note in this regard that while we use the leading

order result for the quark condensate ratio ζūu, we did not perform an expansion in density. This
is because, as we advanced at the beginning of this section and as explicitly shown in Fig. 5.2,
when kaon condensation sets in we have ρ/ρ0 > 1. Then, when ms/m̄ > 2µ2/m2

πζūu, the
coefficient of θ is negative and π0 becomes lighter as kaon condensation sets in. Such a decrease
could potentially lead to an instability and CP violation in the neutral sector. However, in
the opposite case, when ms/m̄ < 2µ2/(m2

πζūu), which occurs at larger densities where ζūu is
small and µ/mπ large (see Fig. 5.2), the coefficient of θ is positive and π0 becomes heavier in
the kaon-condensed phase. As opposed to the π0, the η mass depends only weakly on θ. In
Fig. 5.3 we plot the numerical result for (m2

π0
)ρ,θ as a function of density for fixed values of

proton fraction, using the numerical results for θ(ρ) and µ(ρ) displayed in Fig. 5.2. We find that
the µ2 contribution leads to an increase in the mass of the neutral pion, similar to the effect
of pion condensation in the simplified case discussed in Sec. 5.1.2. Finally, the axion mass is
independent of µ and decreases with the size of the kaon condensate. Interestingly, the negative
coefficient of θ2 is enhanced as density increases, since then ζūu becomes smaller. As shown in
Fig. 5.4, this behavior eventually results in axion condensation at large densities, yet before the
quark condensate vanishes. In this phase CP is thus spontaneously broken in the neutral sector.

9The calculation of the axion mass is simplified by choosing a particular θ-dependent Qφ matrix which removes
the tree-level mixing between the axion and π0 and η, see App. B.3 for more details.
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Figure 5.3: Numerical result for the neutral pion (dashed line) and axion (solid line) masses
normalized to their ρ = θ = 0 values as a function of density ρ/ρ0 (n = ρ and a = φ in the plot)
for σπN = 30 MeV (left panel) and σπN = 45 MeV (right panel). The blue, orange and green
curves correspond to fixed values of the proton fraction ρp/ρ = 0.1, 0.3 and 0.5, respectively.
We consider densities in the region ρ < ρc ≡ ρ0/b1 ≈ 2.8ρ0 (45 MeV/σπN ) for the corresponding
values of σπN . The effect of kaon condensation is to eventually increase the neutral pion mass,
while the axion becomes lighter and even massless at some density below ρc. Above this density
the axion field is therefore unstable around 〈φ〉 = 0 and axion condensation is expected to occur.
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Figure 5.4: Phase diagram in the plane of baryon density ρ/ρ0 (n = ρ and a = φ in the plot)
and proton fraction ρp/ρ based on the numerical solution of Eqs. (5.59), (5.60) for σπN = 30 MeV
(left panel) and σπN = 45 MeV (right panel). The blue region marks the kaon-condensed phase,
while the green region marks the axion-condensed phase. We consider densities in the region
ρ < ρc for the corresponding values of σπN .

Lastly, we note that one should be wary of the fact that for the quark condensates we included
only density corrections at linear order and disregarded higher order corrections. As discussed
at the end of the previous section, for densities ρ ∼ ρc, these corrections are in fact important.
In this regard, we would like to stress the fact that while our results might not be trustable
at the quantitative level, this does not necessarily make an axion-condensed phase less likely.
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Chapter 5. The QCD Axion at Finite Density

First, let us note that qualitatively we expect (m2
φ)ρ,θ to decrease with ρ even when considering

higher-order corrections to ζūu(ρ). Second, to further support our claim, let us consider the
limit of maximal kaon condensation, i.e. θ → π/2, where

(m2
φ)ρ,π/2 ≈ (m2

φ)0(ζūu − ζs̄s) ≈ −(m2
φ)0 b1

ρ

ρ0
. (5.68)

If one ignores the density dependence of the condensates by taking b1 = 0, this result is consistent
with the naive expectation of a vanishing axion mass for cos θ → 0, since (m2

φ)θ ∝ Tr[U0 +U †0 ] ∝
cos θ, as we showed in Sec. 5.1.2. However, as discussed in Sec. 5.2.1, a background of protons
and neutrons makes ζūu < ζs̄s ≈ 1, in other words b1 > 0, this implies a negative axion mass for
large kaon condensates, where it becomes energetically favorable for the axion field to develop
a non-vanishing expectation value.

5.3 CFL phase

In this section we make a jump to asymptotically large baryon densities, or equivalently large
quark chemical potentials, µq � Λχ (µq ≡ µu = µd = µs). At such high densities, two quark
around the highly energetic Fermi surface interact weakly via tree-level gluon exchange, interac-
tions which can be effectively parametrized below the Fermi momentum by 4-Fermi operators.
Such operators, when in the attractive color 3̄ channel, become relevant for back-to-back scatter-
ing as one approaches the Fermi surface (see e.g. [208,209]), leading to the formation of diquark
pairs and ultimately to color superconductivity [210–213], see also [214] for a comprehensive
review. Such a diquark pairing manifests itself in the form of a diquark condensate 〈qLCqL〉,
which leads to the color-flavor-locked symmetry breaking pattern

SU(3)c × SU(Nf )L × SU(Nf )R × U(1)B × U(1)A → SU(Nf )L+R+c . (5.69)

The condensates are given by [214]

〈qiaL CqjbL 〉 =
(
εabcεijk〈∆3̄

L〉kc + 〈∆6
L〉ij,ab

) 3
√

2π

gs

µ2
q

2π
, (5.70)

〈qīaRCqj̄bR 〉 =
(
εabcεīj̄k̄〈∆3̄

R〉k̄c + 〈∆6
R〉īj̄,ab

) 3
√

2π

gs

µ2
q

2π
, (5.71)

where i, j, k are SU(3)L indices, ī, j̄, k̄ are SU(3)R indices, and a, b, c are SU(3)c indices, upper
(lower) if in the (anti-)fundamental. The representations under the unbroken symmetries in
(5.69) of the scalar field matrices above are

∆3̄
L : (3̄, 3̄,1)+2,+2 , ∆6

L : (6,6,1)+2,+2 , (5.72)

∆3̄
R : (3̄,1, 3̄)+2,−2 , ∆6

R : (6,1,6)+2,−2 , (5.73)

while their expectation values, proportional to the gap parameters ∆3 and ∆6, are

〈∆3̄
L〉kc = δkc∆3 , 〈∆6

L〉ij,ab = (δiaδjb + δjaδib)∆6 , (5.74)

〈∆3̄
R〉k̄c = −δk̄c∆3 , 〈∆6

R〉īj̄,ab = −(δīaδj̄b + δj̄aδīb)∆6 . (5.75)

We parametrize the low-energy fluctuations of the ground state, i.e. the NGBs associated with
the symmetry breaking pattern (5.69) as

∆3̄
L = u†L〈∆3̄

L〉 exp

[
2i

(
η′

fη′
+
H

fH

)]
, (5.76)
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∆3̄
R = u†R〈∆3̄

R〉 exp

[
2i

(
− η′

fη′
+
H

fH

)]
, (5.77)

∆6
L = uTL〈∆6

L〉uL exp

[
2i

(
η′

fη′
+
H

fH

)]
, (5.78)

∆6
R = uTR〈∆6

R〉uR exp

[
2i

(
− η′

fη′
+
H

fH

)]
, (5.79)

where

uL = u†R = exp

[
iπaλa

2fπ

]
. (5.80)

The η′ and H are the NGBs associated with the spontaneous breaking of U(1)A and U(1)B,
respectively. The NGBs associated with the breaking of color have been removed, since they
are “eaten” by the gluons (unitary gauge). The rest of the NGBs, formally equivalent to those
of the standard QCD chiral Lagrangian, are contained in the uL,R matrices, which are used to
construct the following linearly-transforming color-neutral Goldstone matrix

U ≡ uLu†R : (1,3, 3̄)0,0 . (5.81)

5.3.1 Kinetic terms

The kinetic terms in the CFL phase are given by

LCFL
kin. =

f2
π

4
ηµνU Tr[DµUDνU

†] +
1

2
ηµνη′ ∂µη

′∂νη
′ +

1

2
ηµνH ∂µH∂νH , (5.82)

with

ηµνϕ = Diag[1,−v2
ϕ,−v2

ϕ,−v2
ϕ] , ϕ = U, η′, H . (5.83)

We recall that the introduction of chemical potential breaks Lorentz symmetry down to spatial
rotations, and the low-energy excitations, even if massless, propagate sub-luminally. These
velocities, as well as the decay constants, can be calculated by matching the UV microscopic
theory [215] to the effective low-energy theory [216,217], 10

f2
π =

21− 8 ln 2

18

µ2
q

2π2
, f2

η′,H = 18
µ2
q

2π2
, v2

U,η′,H = 1/3 . (5.84)

The U field gets a dynamically induced chemical potential due to the non-vanishing quark
masses [219]

D0U = ∂0U + iµeff
L U − iUµeff

R , (5.85)

with

µeff
L = (µeff

R )† =
MqM

†
q

2µq
. (5.86)

Note that even if we choose a basis in which the axion enters the CFL effective Lagrangian
via an axion-dependent quark mass matrix Mφ, as in Eq. (2.59c), it will not appear in such an
effective chemical potential, since we can restrict ourselves to diagonal Qφ matrices. In any case,
for the analysis of the axion potential in the CFL phase, it will be more convenient to work in
a basis where the axion is coupled to gluons, since a perturbative instanton expansion exists,
being the gluons heavy and weakly coupled.

10As mentioned above, the gluons, with electric and magnetic masses m2
D = g2

sf
2
π and m2

M = v2
ϕm

2
D respectively,

are heavy and integrated out [218].
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5.3.2 Mass Terms

Given the spurionic transformation properties of the quark mass Mq see Eq. (A.8) in App. A.2,
the leading order terms preserving the global symmetries in (5.69) are

V CFL
Mq

= A1ε
ijk ε̄ij̄k̄

(
[∆3̄†

L ∆3̄
R] īi M

j̄
j M

k̄
k + h.c.

)
− A2

2

(
[∆6†

L ∆6
R]ij

īj̄
M ī
i M

j̄
j + h.c.

)
. (5.87)

Note that this potential respects U(1)A and it is generated perturbatively. Contrary to QCD in
vacuum, the axial symmetry thus dictates that the leading order terms in the scalar potential
are O(M2

q ). Using Eqs. (5.74) - (5.79) one finds [216] 11

V CFL
Mq

=−A1∆2
3

[
e−4iη′/fη′

(
Tr[U †Mq]Tr[U †Mq]− Tr[U †MqU

†Mq]
)

+ h.c.
]

+A2∆2
6

[
e−4iη′/fη′

(
Tr[U †Mq]Tr[U †Mq] + Tr[U †MqU

†Mq]
)

+ h.c.
]
. (5.88)

The coefficients can be computed by appropriately matching to the UV theory [216,217,220],

A1 = 2A2 =
3

4π2
. (5.89)

Importantly, these two coefficients enter with opposite signs in Eq. (5.87). This is due to the
fact that while the color 3̄ channel is attractive and lowers the total energy of the system, the
color 6 channel is repulsive and increases it. As a result, one finds that ∆6 = 0 at the classical
level. However, since 〈∆6

L,R〉 does not break any additional symmetries compared to 〈∆3̄
L,R〉,

there is nothing preventing it from being generated at the quantum level in the presence of a
non-vanishing ∆3. Indeed, a perturbative calculation yields [221]

∆2
6 = αs

ln2 2

162π
∆2

3 , (5.90)

where αs = g2
s/4π. ∆3 itself can be calculated using the so-called gap equation, in particular in

the CFL phase with Nf = 3 [214]

∆3 = 512π4(2/3)5/2e−
π2+4

8 2−1/3 µq
g5
s

exp

(
− 3π2

√
2gs

)
. (5.91)

The reason for considering the contribution of the condensate ∆6 to the potential, even though
it is suppressed with respect to ∆3, comes from the hierarchy in the quark masses. Indeed, one
finds e.g. contributions from both condensates to the masses of the mesons, of order [222],

∆3m
2
u,d ∼ ∆6m

2
s . (5.92)

The similarity of these two contributions, along with the fact that the coefficients of the re-
spective operators (in Eq. (5.89)) come with opposite signs, can lead to non-trivial vacuum
structures, as we review below.

Finally, we note that although at O(MqM
†
q ) there exist other operators which could be

considered along with those in Eq. (5.87), Tr[MqU
†M †qU ] and Tr[MqU

†]Tr[M †qU ], these are not
generated at the order we are interested in [216].

11The first term in Eq. (5.87) can also be written as −2A1∆2
3(e4iη′/fη′Tr[M̃qU ] + h.c.), where M̃q =

det[Mq]M
−1
q = (m̄ms, m̄ms, m̄

2).
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5.3.3 Non-perturbative Terms

Instantons explicitly break the U(1) axial symmetry of QCD, also in the CFL phase [223]. At
leading order in the gap parameters, one finds the following term generated via a single t’-Hooft
vertex

V CFL
1-inst. = A3

(
[∆3̄†

L ∆3̄
R] īi [M †q ]i ī + h.c.

)
= −A3∆2

3 Tr[e−4iη′/fη′UM †q + h.c.] . (5.93)

The coefficient A3 can be calculated reliably at large chemical potentials due to the screening
of gluons for instantons of size ρ & 1/µq � 1/ΛQCD, where ΛQCD ≈ 250 MeV is the QCD scale
parameter,

A3 = c (6π)3 Λ9
QCD

3α7
sµ

8
q

, (5.94)

with c = 0.155 [214, 223]. Given that the operator in Eq. (5.93) matches the leading term in
the meson potential of the chiral Lagrangian at zero density, Eq. (5.17), its coefficient can be
mapped to the value of the standard quark condensate in the CFL phase

〈q̄q〉CFL
ρ

〈q̄q〉0
=
A3∆2

3

〈q̄q〉0
∼ 1× 10−5

(
∆3

50 MeV

)2( π

αs

)7(500 MeV

µq

)8( ΛQCD

250 MeV

)9

, (5.95)

where we set the chemical potential to a value expected to be realized in the core of a NS,
noting that αs is to be evaluated at the scale µq and that ∆3 depends on both αs and µq.
Due to the limited reliability of the perturbative result at such chemical potentials (see the
discussion below), as well as to the strong dependence on ΛQCD, it is clear that one cannot
make a robust prediction regarding the value of the quark condensate at realistic densities, yet
a strong suppression of 〈q̄q〉 remains the most plausible outcome.

A higher-order operator that contributes to the mass of the η′ in the chiral limit appears at
the two-instanton level,

V CFL
2-inst. =

1

Λ2

(
det[∆3̄†

L ∆3̄
R] + h.c.

)
= −2∆6

3

Λ2
cos

(
12η′

fη′

)
. (5.96)

Note this term matches the would-be leading potential for the standard η′ in vacuum.

Before moving to the discussion of the axion potential in the CFL phase, let us note that
the matching procedure by which the coefficients of the effective CFL Lagrangian are extracted
from the microscopic theory relies on perturbative calculations that have been found to be
under control for gs . 0.8 [224]. Such a small coupling corresponds to very high quark chemical
potentials, µq & 108 MeV, five orders of magnitude higher than those expected at the cores
of dense NSs, where µq ∼ 500 MeV. Still, a quantitative but more importantly a qualitative
understanding of the CFL phase and of the corresponding axion potential provides a solid ground
from which to extrapolate to lower chemical potentials and thus to realistic densities. In fact,
the qualitative features and basic symmetry structure of the CFL phase should hold down to
µ ∼ m2

s/∆3 ≈ 180 MeV (50 MeV/∆3) [214].

5.3.4 Axion potential

In view of the previous discussion, in the following we examine the different axion potentials
that arise by considering different hierarchies between the coefficients of the CFL operators.

73



Chapter 5. The QCD Axion at Finite Density

Non-perturbative dominance

In this case we assume that the non-perturbative contributions to the potential dominate over
the mass terms, that is V CFL

1-inst., V
CFL

2-inst. � V CFL
M . Nevertheless, we still consider there exists a

weak-coupling expansion, in the sense that the one-instanton contribution dominates over the
two-instanton one, that is

e−SI � e−2SI ∼ e−SII , (5.97)

with SI , SII the action of the one- and two-instanton solutions, respectively. Given that the
CFL operators in Eq. (5.87) are of order V CFL

M ∼ m̄ms∆
2
3, where here and in the following we

neglect ∆m = 1
2(mu −md), our hierarchy of potentials implies m̄A3 � ∆4

3/Λ
2 � m̄ms. In this

case the potential, including the axion, reads

V CFL
1+2-inst. = −A3∆2

3 Tr[ei(φ/fφ+4η′/fη′ )U †Mq + h.c.] +
∆6

3

Λ2
(ei(2φ/fφ+12η′/fη′ ) + h.c.) . (5.98)

After a field redefinition η′ → η′ − (fη′/4fφ)φ, this is found to be the same as in the vacuum
chiral Lagrangian with a light η′, which is minimized at the trivial vacuum, 〈η′〉 = 〈φ〉 = 0 in
particular. The axion mass can be calculated by integrating out the mesons as we did in zero
density. The details of this derivation can be found in App. B.1. We find that the axion mass
is suppressed with respect to its vacuum value by

(m2
φ)NP

CFL

(m2
φ)0

=
8∆6

3

(m2
πf

2
π)0Λ2

∼ 3× 10−3

(
∆3

50 MeV

)6(500 MeV

Λ

)2

. (5.99)

Perturbative dominance

Let us now consider the hierarchy V CFL
M � V CFL

1-inst. � V CFL
2-inst.. One should first note that if the

instanton terms are set to zero, the axion is massless, as can be immediately seen by using
the basis defined by Qφ = 0 in Eq. (2.57); we use such a basis in the following. We write the
potential in terms of the variables

〈4η′/fη′〉 ≡ α , 〈φ/fφ〉 ≡ β , (5.100)

and use the ansatz [222]

〈U〉 = Diag[e−iϕ, e−iϕ, e2iϕ]

1 0 0
0 cos θ i sin θ
0 i sin θ cos θ

 , (5.101)

where the angles ϕ and θ correspond to the expectation values 〈η/
√

3fπ〉 and 〈K0/fπ〉, respec-
tively. In this basis the meson potential is given by

V CFL
pert.,LO = −f

2
πm

4
s

8µ2
q

sin2 θ − 4A1∆2
3m̄ms(cos θ + 1) cos(α− ϕ) , (5.102a)

V CFL
pert.,NLO = −4A1∆2

3m̄
2 cos θ cos(α+ 2ϕ) + 4A2∆2

6m
2
s cos2 θ cos(α− 4ϕ) , (5.102b)

V CFL
1-inst. = −2A3∆2

3ms cos θ cos(α+ β + 2ϕ) . (5.102c)
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where we separated LO terms of O(m̄ms∆
2
3), from NLO terms of O(m̄2∆2

3 ∼ m2
s∆

2
6), and

instanton-generated terms. 12 Minizing the LO potential V CFL
pert.,LO with respect to ϕ and θ yields

ϕ = α (5.103)

cos θ = Min

[
1,

16A1∆2
3m̄

m3
s

(
µq
fπ

)2
]

(5.104)

The solution ϕ = α implies that the minimization of the NLO potential V CFL
pert.,NLO with respect

to α is found at

cos 3α = Sign[A1∆2
3m̄

2 −A2∆2
6m

2
s cos θ] . (5.105)

Eqs. (5.104), (5.105) match the the results of [222]. Lastly, the instanton potential is minimized
with respect to β at

cosβ = Sign [cos(3α)] . (5.106)

Therefore, one finds that the the axion is aligned with the η′, such that

〈φ/fφ〉 =

{
0 , A1∆2

3m̄
2 > A2∆2

6m
2
s cos θ

π , A1∆2
3m̄

2 < A2∆2
6m

2
s cos θ

, (5.107)

while the axion mass, neglecting mixing with η′ and normalized to its vacuum value, is given by

(m2
φ)CFL

(m2
φ)0

=
8A3∆2

3ms cos θ

(m2
πf

2
π)0

∼ 7× 10−4

(
∆3

50 MeV

)2( A3

4× 10−4 MeV

)(
cos θ

1

)
. (5.108)

where we evaluated A3 in Eq. (5.94) at µq = 1GeV, ΛQCD = 250 MeV and αs = π. We therefore
find that the axion can develop a non-vanishing expectation value in the CFL phase also, when
the kaon condensate is large. Up to uncertainties associated with the value of A3, the axion is
significantly lighter than in vacuum.

5.4 Axion sourcing observables

We briefly discuss in this section the potentially observable consequences of a non-vanishing
axion condensate in NSs, where the largest baryonic densities among the stars are found. We
defer to future work a more in-depth analysis of the corresponding phenomenology [15], as well
as the study of the implications of the change in the axion-nucleon couplings with density, the
latter particularly relevant for supernovae and NS cooling.

For simplicity, let us consider the following toy model, namely a stepwise radius-dependent
axion potential

V (φ, r) =

{
f2
φ(m2

φ)in [cos(φ/fφ)− 1] r < rc

−f2
φ(m2

φ)out [cos(φ/fφ)− 1] r > rc
, f2

φ(m2
φ)out ∼ m2

πf
2
π , (5.109)

where mπ and fπ are the vacuum values and we have fixed the constants such that in the
decoupling limit fφ → ∞, the potential vanishes. The potential grossly captures the effect of

12We should note at this point that we did not include the neutral pion π0 in our analysis because the corre-
sponding first term in Eq. (5.102a), which destabilizes the potential at the origin of field space for K0, vanishes
for π0.
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Chapter 5. The QCD Axion at Finite Density

matter on the axion potential, i.e. at a critical radius rc, which is of the order of the NS radius
R, the axion field gets destabilized and the minimum of the potential is located at 〈φ/fφ〉 = π.
The field equation can be solved numerically and one finds the intuitive result based on energy
conservation, i.e. for the axion to get sourced the gain in potential energy needs to be enough to
compensate for the gradient energy that comes with the change in field value, ∆V ∼ (∆a/R)2,
which occurs when the object is large enough compared to the de Broglie wavelength of the field
inside the object [186], namely

(mφ)−1
in . rc ∼ R . (5.110)

Let us assume this is the case for the rest of the discussion, keeping in mind that the axion mass
decreases with baryon density and that in vacuum (mφ)−1

out ∼ 16 km (fφ/1018GeV). The typical
field configuration of the sourced axion is roughly

φ(r)

πfφ
=

{
1 , r < rc
rc
r e
−(mφ)out(r−rc) , r > rc

. (5.111)

In Fig. 5.5 we depict the typical field configurations of the axion sourcing, highlighting in grey
the possible observable implication, to be discussed in turn below.
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Figure 5.5: (a = φ) Sketch of the typical field configurations of a sourced axion field, see the
discussion in the main text.

5.4.1 Free (vacuum) energy

The first potentially observable implication is associated with the shift in potential energy density
inside the NS,

∆V ∼ −2f2
φ(m2

φ)in, (5.112)

as a result of the axion sourcing. This effect is independent of the field configuration outside

the core of the NS, namely it is independent of
(
m2
φ

)
out

. Such an energy density shift can be

of considerable size compared to the energy density inside a NS, ρ0 ≈ mnρ0 ≈ (190 MeV)4.
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5.4. Axion sourcing observables

Indeed, if the axion is sourced at relatively low baryon densities, as in the kaon condensed phase
(Sec. 5.2.2), one expects ∆V ∼ m2

πf
2
π , which is indeed not significantly below ρ0 or the energy

change due to kaon condensation, of O(m2
Kf

2
π). Instead, if axion sourcing happens in the CFL

phase (Sec. 5.3), this effect is expected to be suppressed by a few orders of magnitude, see
Eq. (5.108), and therefore likely negligible.

A NS with a core of “vacuum energy” was considered as a generic scenario in [225, 226], in
the context of exotic QCD phases. It was found that the energy shift inside the NS leads to a
significant change in the mass-radius relation of NSs, as well as to changes of the so-called chirp
mass, one of main the gravitational wave observables of compact binary mergers. Such a shift
has been discussed in Ref. [15].

5.4.2 Axion-EM conversion

Next we consider the interplay between the EM fields of rotating NSs (i.e. pulsars), which are
the strongest found in the Universe, and the axion, in particular when

(mφ)−1
out & R , (5.113)

such that the sourced axion field is still non-negligible in the close surroundings of the NS.
The axion and the classical EM fields form a coupled system, as seen from the generalized

form of the Maxwell equations

∇ ·E = gφγγ B · (∇φ) , (5.114a)

∇×B =
∂E

∂t
+ gφγγ

[
E×∇φ−Bφ̇

]
, (5.114b)

�φ = gφγγ(E ·B)− ∂V

∂φ
= gφγγ(E ·B)− (m2

φ)outφ+O(φ2) , (5.114c)

where the last line is the axion equation of motion. The interplay between the axion and the
EM field of pulsars has been actively investigated before, see e.g. [227–230] for recent works
on the subject, although the effects we consider here, associated with a large classical axion
field configuration also sourced by the NS, are novel. Assuming the conventional rotating dipole
model, one finds that at the surface of the NS

Bdipole(R) ∼ B∗ ∼ 1014 G ∼ MeV2 , (5.115)

Edipole(R) ∼ RΩB∗ ∼ 10−3

(
R

10 km

)(
Ω

100 Hz

)
B∗ , (5.116)

with Ω the angular velocity of the NS. Even with such large EM fields, we may still neglect the
effects of the axion-photon coupling on the axion dynamics, since

gφγγ(E ·B)

(m2
φ)out〈φ(r)〉 ∼

αEMRΩB2
∗

m2
πf

2
π

∼ 10−13

(
R

10 km

)(
Ω

100 Hz

)(
B∗

1014 G

)2

, (5.117)

where we used (m2
φ)out ∼ m2

π(fπ/fφ)2, 〈φ(r)〉 ∼ fφ and gφγγ ∼ αEM/fφ. While we can safely
assume that the back-reaction of the EM fields on the axion is negligible, it is also important to
note that the value of 〈φ(r)〉 decreases exponentially outside the NS, see Eq. (5.111), such that
one could well imagine a situation where the effect of the gφγγ(E ·B) term is in fact comparable
to the axion mass term. In this case the back-reaction of the EM fields would have to be taken
into account, which is an interesting effect to study in the future.
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Chapter 5. The QCD Axion at Finite Density

We thus treat the axion field as a rigid source of additional EM fields, which can be simply
estimated as

∆E ∼ gφγγB∗〈φ(r)〉 ∼ αEMB∗ , (5.118)

∆B ∼ gφγγRΩB∗〈φ(r)〉 ∼ αEMRΩB∗ . (5.119)

While the magnetic field receives a small correction ∆B/B ∼ αEMRΩ� 1, for the electric field

∆E

E
∼ αEM

RΩ
∼ 2

(
10 km

R

)(
100 Hz

Ω

)
, (5.120)

thus leading to an O(1) enhancement around the surface of the NS. We note that since this cor-
rection is large, one could be concerned about whether the system can be treated perturbatively.
This is in fact the case, since the higher order terms scale like

E ∼ RΩB∗(1 + α2
EM + . . . ) + αEMB∗(1 + α2

EM + . . . ) . (5.121)

This means that, apart from the leading O(αEMB∗) correction, further contributions are sub-
leading.

An additional sensitive observable is the dipole radiation output P that is responsible for
the spin-down of rotating NSs. In this case we find that ∆P/P ∼ α2

EM � 1, namely there is no
appreciable addition to the radiated energy due to the axion field.

5.4.3 Long-range force

Lastly, we can consider the case

(mφ)−1
out � R , (5.122)

even though we note that from our previous analysis of the QCD axion at finite density, we
expect this regime not to be realized since (mφ)−1

out . (mφ)−1
in . R, where the last condition

follows from the requirement of the axion being actually sourced, Eq. (5.110). Therefore we
expect the hierarchy (mφ)−1

in . R� (mφ)−1
out to arise only in non-standard scenarios, such as the

one considered in [186]. If that is indeed the case, the long tails of the axion field configuration
lead to a long range force between the NSs, generated by the Yukawa-like potential

V ∼ Qeff

r
e−(mφ)outr , (5.123)

where Qeff = 4πfφR plays the role of the effective charge. This could lead to a deformation of
the merger wave-form predicted by general relativity in case of NS with opposite-sign charges.
A more dramatic effect would be found in the case of a repulsive force from same-sign charges,
since in this case at some critical distance the axion force would dominate gravity, which could
lead to halt in the merger process [186]. The presence of the axion field can also lead to an
additional mechanism of energy loss in NS mergers, in the form of the scalar equivalent of
Larmor radiation [231].
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Chapter 6

How Light Scalars change the Stellar
Landscape

In this Chapter we study how light scalars with a non-dertivative (and hence shift symmetry
breaking) coupling to matter change the stellar landscape by triggering a new phase of matter.
Such a phase arises due to a sourcing of the scalar triggered by the matter background, similar
to the case of the QCD axion [11] as we have discussed in Chap. 5. Here we will study the
striking and possible observable effects of such a phase on stellar remnants, namely white dwarf
stars and neutron stars. The shift symmetry breaking coupling leads to a reduced mass of the
matter field once the light scalar is sourced and provides additional energy density (and resulting
gravitational pressure), as mentioned in Sec. 5.4. Under generic conditions, a new ground state
of matter emerges, with striking implications for the configuration of stellar remnants. We also
find hybrid stellar compositions and stable self-bound objects with sizes as small as the Compton
wavelength of the scalar.

Exceptionally light QCD axions naturally come with a non-derivative coupling to nucleons
and hence get sourced within white dwarfs. We find that once the axion is sourced the white
dwarf’s stellar structure is dramatically altered, as we discuss in Sec. 6.1. In particular, the
comparison of the resulting mass-radius relationship with data of equation of state independent
mass radius measurements allows us to probe large chunks of unexplored axion parameter space.
Notably this does not depend on the axion constituting a significant fraction of the dark matter.

In Sec. 6.2 we discuss several realizations of light scalar fields with non-derivative couplings
to nucleons: the QCD axion, lighter generalizations thereof and linearly or quadratically coupled
scalar fields which we show to be effectively equivalent to a class of scalar-tensor modification
of gravity. We find that neutron stars generically can either be in the new ground state phase
or a coexistence phase leading to a hybrid star configuration. Notably, neutron stars in the new
ground state can be significantly heavier than QCD equations of state currently predict. In the
limit where gravity is negligible, we also find stable self-bound objects with sizes as small as the
Compton wavelength of the scalar.

All figures and large parts of the text of this chapter are taken from [14] an [15].

6.1 White Dwarfs as a Probe of Light QCD Axions

As we have seen in Chap. 3 the EOS of WD is well understood within the SM which turns WDs
into an excellent probe of BSM physics. In this section we exploit this fact in order to study the
validity of lighter than expected QCD axion models, see Sec. 2.5. The existence of such a light
QCD axion would imply a dramatically different EOS for WD, no longer compatible with data
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Chapter 6. How Light Scalars change the Stellar Landscape

from mass and radius measurements of WDs. This allows us to probe large parts of unexplored
parameter space.

6.1.1 The axion WD system: a new ground state

In the presence of the axion, the full system is described by a free Fermi gas of electrons, an
ideal gas of nuclei with a φ-dependent mass 1, m∗ψ(φ) = 2m∗N (φ), the gravitational field gµν , and
the axion φ. The gravitational field is sourced by an energy-momentum tensor

Tµν = Tψφµν + T grad
µν . (6.1)

The first term takes the form of an ideal fluid, Tψφµν = Diag (ε,−p,−p,−p) , with

p(φ, ρ) =
2

3

∫ kF (ρ)

0

d3k

(2π)3

k2√
k2 +m2

e

− V (φ), (6.2)

ε(φ, ρ) = m∗ψ(φ)ρ+ εe(ρ) + V (φ), (6.3)

where we neglected the sub-leading contributions to the pressure pψ(φ, ρ)� pe(ρ). The second
term in Eq. (6.1) contains the contribution of the axion gradient

(T grad)µν =
(φ′)2

2

[
1− 2GM

r

]
(δµν − 2δµr δ

r
ν) . (6.4)

Using Einstein’s equations and the scalar equations of motion, we find the following set of
coupled differential equations (see App. C.1 for an explicit derivation)

φ′′
[
1− 2GM

r

]
+

2

r
φ′
[
1− GM

r
− 2πGr2 (ε− p)

]
=
∂V

∂φ
+ ρ

∂m∗ψ(φ)

∂φ
≡ U(φ, ρ), (6.5a)

p′ = −GMε

r2

[
1 +

p

ε

] [
1− 2GM

r

]−1 [
1 +

4πr3

M

(
p+

(φ′)2

2

{
1− 2GM

r

})]
− φ′U(φ, ρ), (6.5b)

M ′ = 4πr2

[
ε+

1

2

(
1− 2GM

r

)(
φ′
)2]

. (6.5c)

Eq. (6.5a) is the static axion equation of motion coupled to gravity, while Eqs. (6.5b) and (6.5c)
are the TOV equations in the presence of an axion. Note that, we recover the ordinary TOV
equations, Eq. (3.1), in the limit φ = 0. While it is possible to numerically solve Eq. (6.5) using
the shooting method, there exists a limit in which these equations simplify dramatically.

The displacement of the axion at sufficiently high densities costs gradient energy and there-
fore it only occurs if balanced by the gain in potential energy. This leads to the typical scale on
which the axion is displaced

λφ(ρ) ' πfφ√
2(δmNρ− εm2

πf
2
π)
, (6.6)

to be evaluated at typical WD densities.
For RWD � λφ, the field essentially tracks the minimum of the effective in-density potential

on stellar scales and is given by the solution to

U(φ, ρ) = 0. (6.7)

1The interesting case of a scalar coupled non-derivatively to electrons inducing a φ dependent mass m∗e(φ) is
left for a separate publication [17]
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6.1. White Dwarfs as a Probe of Light QCD Axions

At the same time, the gradient terms in Eqs. (6.5b) and (6.5c) are confined to a small transition
shell, where the field does not follow its minimum. However, this localized contribution is

negligible as long as
λφ
RWD

δmN
mN
� 1, which is trivially fulfilled in this case.

Therefore, for large systems we can neglect the axion gradient φ′ ' 0. As a result, Eq. (6.5)
decouples to give the regular TOV equations, Eq. (3.1), in addition to Eq. (6.7). Note that
the latter is the same condition as the minimization of the energy density ε(φ, ρ) with respect
to φ. Solutions φ(ρ) describe a thermodynamically stable EOS used to solve the regular TOV
equations.

Interestingly, if the axion is destabilized in a WD, the energy per particle of the light nuclei
ε(ρ)/ρ is not minimized when the nuclei are infinitely separated (ρ → 0), but rather at some
finite density ρ∗, which can be found numerically. This implies the existence of an energetically
favored state of matter at ρ∗, where the axion is at 〈φ〉 = ±πfφ. This new ground state is in
fact reminiscent to strange quark matter [232]. Note that the density of the new ground state
is slightly larger than the density at which the destabilization occurs, ρ∗ > ρc ≡ εm2

πf
2
π/2σN .

For low densities ρ < ρc, matter is in a meta-stable state where the classical sourcing of the
axion is not preferable. Once 〈φ〉 = ±πfφ, there is a range ρc < ρ < ρ∗, where the energy per
particle decreases ∂ρ(ε(ρ)/ρ) < 0, implying a negative pressure. At densities slightly above ρc,
the total pressure turns negative due to the onset of the the axion potential p = pe − V < 0.
As ρ increases, V stays constant while pe increases, until finally the system stabilizes at p =
pe(ρ

∗) − V = 0, see Fig. 6.1. In this unstable phase the system contracts until it stabilizes in
the new ground state.

Figure 6.1: The energy per particle ε/ρ as a function of number density (left) and the EOS
(right). At low densities ρ < ρc, the system is in its meta-stable φ = 0 phase (dark blue). For
ρc < ρ < ρ∗, the system is unstable i.e. p < 0 (dashed line in left panel). At larger densities
ρ∗ < ρ, the system is in its φ = ±πfφ phase (light blue), with a new ground state at ε∗ where
p = 0.

This instability leads to a gap in the predicted M -R relationship as seen in Fig. 6.2. The
position of this gap is ε dependent; the smaller ε is, the more the gap is shifted towards small
masses and large radii. We use the position of this gap to probe the existence of light QCD
axions.
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Chapter 6. How Light Scalars change the Stellar Landscape

Figure 6.2: White dwarf M -R relation with light QCD axions. Free Fermi gas of nuclei and
electrons without an axion (black). The upper and lower bands correspond to the constitutions
of light and more heavy nuclei, i.e. 4He which corresponds to Ye = 2 and 56Fe corresponding
to Ye = 2.15 respectively, while the gray shaded area corresponds to intermediate values. In
orange we show the two branches with an axion for ε = 10−11 in the limit RWD � λφ for
Ye = 2. The meta-stable branch follows the free Fermi gas line at large radii, while the new
ground state phase has much smaller radii. Data points are taken from [107] (turquoise), [108]
(blue), [109] (pink), [110,111] (red), [112] (green) and [113] (gray). One can clearly see the gap
in the predicted M -R relation that is incompatible with data.

Note that the simplified discussion above is only valid for RWD � λφ. For RWD ∼ λφ we
numerically solve the full coupled system in Eq. (6.5) and find that for large values of the axion
decay constant, fφ, and small ε, the position of the gap is ε independent. This is understood
as follows: on the stable branch, the gradient pressure, which is controlled by fφ, is relevant. If
gravity is subdominant, this pressure fixes the central density of the star, ρ(r = 0) > ρ∗. The
maximal radius is then achieved when the gravitational pressure equals the gradient pressure.
For the meta-stable branch, the minimum radius is set by R ∼ limε→0 λφ.

Finally, in the limit RWD � λφ, the gradient energy is so large that the field cannot move
away from its in-vacuum minimum and therefore has no influence on the structure of WDs.

6.1.2 Confrontation with Observational Data

There are large data sets available containing masses and radii of WDs (see e.g. [107–113, 118–
124]). However, not all of these data-sets can be used to probe the M -R relation. In some
catalogs, (see [118–122]), the M -R relation is used as an input to significantly reduce observa-
tional error. On the other hand, there are sets (e.g. [107–113,123,124]) that systematically test
the M -R relation using observational data. While in [112] the determination of the mass and
radius is completely independent of WD models, most other works depend on an atmospheric
model to determine the radius. Nevertheless, we combine the data sets [107–113] and show them
in Fig. 6.2.
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The data of measured WD masses and radii is scattered broadly between radii of (5000 −
40000 km), which matches reasonably well with the free Fermi gas description. The notable
deviation in mass found at large radii in Fig. 6.2 is due to finite temperature effects; µe in these
dilute stars is typically smaller, increasing the relevance of T/µe corrections. Finite temperature
effects lead to modifications of the EOS and to a slight modification of masses and radii, but still
predict a continuous M -R curve. The same holds for other well-known corrections to the EOS,
such as different compositions, electrostatic corrections, or nuclear reactions, see e.g. Refs. [104,
233]. While nuclear reactions change in the sourced phase e.g. due to a different mass of the
pions, this has negligible effect on the static structure of white dwarfs [234] 2.

We perform a simplified statistical analysis to determine the compatibility of the observed
WD radii with a gapped radius distribution hypothesis (marginalizing over mass and neglecting
small theory systematics). We summarize here its main results, with the full details given in
Sec. 6.1.3 and Sec. 6.1.4. For the purpose of the analysis, we calculate the position of the radius
gap as a function of ε and fφ, relying both on numerical results, as well as on numerically-
verified analytical estimates. In the region fφ � 109 GeV, finite gradient effects are negligible
w.r.t the position of the gap, making it fφ-independent. We are able to exclude at the 2σ level
the following interval in ε,

2× 10−20 . ε . 2× 10−7 (95% C.L) , (6.8)

see Fig. (6.3).

The upper limit is set by the smallest, most massive WDs and our analysis effectively ex-
cludes all points in the axion parameter space that cannot predict a WD with a radius smaller
than around ∼ 4000 km on the meta-stable branch. The lower limit is sensitive to the largest,
extremely low-mass WDs [113]. For even lower values of ε, the stable branch covers most of the
range of observed radii. In this case, although all the observed WDs are sourcing the scalar field,
the gap in radius is relegated to extremely large (and potentially unpopulated) WD radii. Note
however that this region in parameter space is already ruled out by requiring that no sourcing
occurs in our sun [186]. Conversely, in the region ε� 10−20, finite gradient effects are dominant
w.r.t the position of the gap, making it ε-independent. Using solutions of the coupled system,
Eq. 6.5, we are able to exclude at the 2σ level the following interval in fφ,

5.5× 109 < f/GeV < 1.1× 1016 (95% C.L) , (6.9)

see Fig. (6.3). The upper value represents the limit in which WDs are not large enough to
source the scalar field, i.e. λφ & RWD. In the region fφε

−1/3 ∼MP, in which both gradient and
finite ε effects are important, we verify numerically that the sourcing stops at lower values of fφ.
Similarly to the lower bound on ε, the lower bound on fφ is sensitive to the largest, extremely
low-mass WDs. We stress again that we do not expect our results to strongly depend on finite
temperature effects.

6.1.3 Analytic Estimates for Radius Gap

We define p0 as the inward pointing pressure at the core of a white dwarf (WD) as a sum of a
gravitational and a gradient contributions

p0 ' ∆pgrav + ∆pgrad , (6.10)

2In this work we take a conservative approach and stay agnostic of the process of formation of the new ground
state phase, where the change of nuclear reactions could play a role.
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Figure 6.3: Constraints and future projections on the axion parameter space. Exclusions
from modifications of the white dwarf M -R relation are shown in red. Note that the WD
bound overlaps with bounds from the Sun in large parts of the region (slightly darker red). The
observation of WDs close to the Chandrasekhar limit can further probe the parameter space
until the orange dashed line. The solid black line shows the QCD axion with mφfφ = mπfπ. For
reference, we plot fφ = MP in gray. Further bounds originate from the sourcing in the Sun [186]
(blue) and the gravitational wave signal of the NS binary GW170817 [235] (violet), which we both
adapted at large fφ according to numerically inspired O(1) factors, the supernova 1987A [89]
(green), and black hole superradiance [236] (yellow). We would furthermore like to note that the
pulsar bound of [186] goes away once all finite gradient effects are properly taken into account
(besides lying within a region that is strongly dependent on the neutron star EOS) [15]. Finally,
we show which parameters lead to a new ground state accessible in neutron stars (dot-dashed
purple); for more details see [15].

with the gravitational pressure is given by

∆pgrav =
R2m2

Nρ
2
0

M2
P

, (6.11)

where ρ0 is the number density at the core (r = 0). The gradient pressure in the sourced phase
(i.e. stars on the stable branch) is given by

∆pgrad =


f2
φ

Rλφ
=

fφ
√
δmNρR
R λφ � R

f2
φ

R2 λφ ∼ R
, (6.12)

where ρR is the number density at the edge (r = R − λφ ≈ R) of the WD. The first line in
Eq. (6.12) represents the thin wall limit λφ � R, in which the gradient pressure is exerted at
a small transition region at the edge of the star. In the last step we use the definition of the
in-medium wavelength of Eq. (6.6) assuming a negligible contribution from the scalar potential
and neglecting O(1) factors. The second line in Eq. (6.12) is the opposite regime λφ ∼ R, where
the gradient pressure is delocalized and is spread throughout the star. This is the typical edge
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case configuration in which the star is barely large enough to source the axion. In the unsourced
phase, i.e. stars on the meta-stable branch, ∆pgrad = 0. See Ref. [15] for more details on the
derivation of Eqs. (6.11) and (6.12).

On the other hand, we define the outwards pressure at the core balancing p0, see Eq. 6.10, as
the contribution of the electron gas and the scalar potential, which can be written analytically
in the non-relativistic (NR) and ultra-relativistic (UR) limits as

p0 ' −V (φ) + pe(ρ0) , pe(ρ0) '
{
ρ

5/3
0 /me (NR ρ0 � m3

e)

ρ
4/3
0 (UR ρ0 � m3

e)
, (6.13)

where in the sourced phase we have by definition V (φ) = pe(ρNGS), while in the unsourced phase
the scalar potential vanishes V (φ) = 0. Note that in Eqs. (6.11), (6.12) and (6.13), we work at
leading order in δmN/mN � 1 and neglect O(1) numerical prefactors.

Negligible gradient regime

Let us start by estimating the minimal radius on the meta-stable branch, which we denote
by Rmeta

min , and the maximal radius on the stable branch, which we denote by Rstable
max , in the

negligible gradient regime, where ∆pgrav � ∆pgrad. In this limit, Rstable
max is the radius of the

largest approximately constant energy density configurations. Therefore, we estimate it by
setting ρ0 ≈ c ρNGS ≈ c ε3/5(mem

2
πf

2
π)3/5, where c ∼ O(1), and solving for R. The contribution

to the pressure from V (φ) = pe(ρNGS) is neglected since it is at most of the same order as pe(ρ0),
and would therefore have at most an O(1) effect on the final result. We find

Rstable
max (ε) =

MP

mNΛQCD

{
(ΛQCD/me)

3/5ε−1/10 (NR)

ε−1/4 (UR)
, (6.14)

where for brevity we denoted m2
πf

2
π ≡ Λ4

QCD. We omit the weak dependence on c, which amounts
to an O(1) pre-factor. In the left panel of Fig. (6.4) we compare the analytic estimates to the
numeric results. We find that the NR estimation is in excellent agreement with the numerical
results for ε . 10−13 (red curve). For larger values of ε, the smaller minimal radii on the stable
branch correspond to denser configurations, where relativistic corrections become important.
Thus, for ε & 10−11 the UR estimation agrees with the numerical results (red dashed curve).

The edge of the meta-stable branch Rmeta
min is found by taking ρ0 ≈ ρc ≈ εΛ4

QCD/(2σN ) and
solving for R in the NR approximation, resulting in

Rmeta
min (ε) =

MP

mNΛQCD

(
σNΛ2

QCD

m3
e

)1/6

ε−1/6 (NR) . (6.15)

A similar UR approximation is straightforward to derive. However, it is only valid for R �
MP/(mNme) ∼ 5000 km, which is outside our range of interest. In the left panel of Fig. (6.4),
we compare the analytic numerical results of Rmeta

min (ε) to the analytic estimate. We find good
agreement in most of the calculated region, namely for ε . 10−9. For larger values, relativistic
corrections start becoming important and the UR approximation begins to degrade.

The radius gap in negligible gradient regime is plotted in the right panel of Fig. (6.4) as a
function of ε. For the purpose of the analysis of Sec. (6.1.4), solid curves indicate the regions
where we use our numerical results, while dashed lines indicates regions where extrapolation,
based on the verified numerical estimate, is used. The gray region corresponds to the observed
radii range of WDs.
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Figure 6.4: Left panel: the ratio between the numerical results and the analytical estimates
for the radii which correspond to the edges of the radius gap, as a function of ε. In (dashed) red
we plot the ratio for Rstable

max divided by the NR (UR) estimate given in Eq. (6.14). In green we
plot the ratio for Rmeta

min , divided by the NR estimate give in Eq. (6.15). In all cases we match the
O(1) prefactors to the numerical results. Right panel: the radius gap defined by Rstable

max (red) and
Rmeta

min (green) as a function of ε. Solid curves indicate region where numerical results are used
while the dashed curve indicates where extrapolation (using the verified analytic estimates) is
used. The gray region corresponds to the observed radii range of WDs.

Negligible ε regime

In region of parameter space where ε is negligibly small (to be determined below), the position of
the radius gap is determined by finite gradient effects. On one side, the edge of the meta-stable
branch indicates when a region of size λφ with above-critical density is formed, which leads to
an instability. On the other side, the largest configurations on the stable branch are those in
which the gravitational pressure begins to dominate over the gradient pressure exerted at the
edge of the star [15].

First we find Rstable
max for lower values of fφ where the thin-wall approximation holds. by taking

ρ0 = ρR ≡ ρeq > ρNGS, where ρeq is found by solving ∆pgrav(ρeq) = ∆pgrav(ρeq) for ρeq. We then
plug ρeq into Eq. (6.10), and using the NR approximation of Eq. (6.13) solve for R and find

Rstable
max (fφ) =

(
MP

mN

)7/6
 1

δm
1/12
N f

1/6
φ m

3/4
e

 (λφ � R) , (6.16)

where we again neglect the contribution from V (φ) as an O(1) correction at most. We compare
this estimate with the numerical results in Fig. (6.5) (red curve). We find is is consistent with
the numerical results in the region fφ � 1015 GeV. Above these values of fφ, the thin-wall
approximation breaks down and Rstable

max (fφ) can be estimated using the λφ ∼ R expression for
∆pgrad and the UR expression for the electron pressure, which gives us

Rstable
max (fφ) =

M2
P

m2
Nfφ

(λφ . R) . (6.17)

We find this estimate consistent with the numerical results in the region fφ � 1015 GeV, see
dashed curve in Fig. (6.5). The edge of the meta-stable branch Rmeta

min is found by first finding the
critical density for which the while size of the star is of the order of the scalar in-medium wave-
length, namely by solving λφ(ρ) = fφ/

√
ρδmN = R for ρ and plugging the result in Eq. (6.10)
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Figure 6.5: Left panel: the ratio between the numerical results and the analytical estimates
for the radii which correspond to the edges of the radius gap, as a function of fφ. In red and
dashed-red we plot the ratio for Rstable

max divided by the NR and UR estimates given in Eq. (6.16)
and Eq. (6.17), respectively. In green we plot the ratio for Rmeta

min , divided by the NR estimate give
in Eq. (6.18). In all cases we match the O(1) prefactors to the numerical results. Right panel:
the radius gap defined by Rstable

max (red) and Rmeta
min (green) as a function of fφ. Solid curves indicate

region where numerical results are used while the dashed curve indicates where extrapolations
(using the verified analytic estimates) are used. The gray region corresponds to the observed
radii range of WDs.

using the NR approximation for the electron gas. We find

Rmeta
min (f) =

(
δm

1/2
N M3

P

fφm
3/2
e m3

N

)1/2

. (6.18)

We find this estimate consistent with the numerical results, see green curve in Fig. (6.5). The
deviations from the analytical estimate at large value of fφ is expected, since for smaller and
denser stars relativistic corrections to the EOS become increasingly larger.

To conclude we note that for the whole {ε, fφ} plane, we define the maximal radius of the
gap as

Rmeta
min (ε, fφ) = Min [Rmeta

min (ε), Rmeta
min (fφ)] , (6.19)

where the two radii coincide Rmeta
min (ε) ∼ Rmeta

min (fφ) around the curve defined by

fε−1/3 ≈
√
δmN√
memN

(
Λ4

QCD

σN

)1/3

MP ∼MP , (6.20)

using the NR estimations for both expressions. This defines (a posteriori) the ranges of validity
for the negligible gradient and negligible ε approximations for the determination of Rmeta

min , e.g. the
negligible gradient is a valid approximation in the region of parameter space where fε−1/3 �MP.
Around fφε

−1/3 ∼ MP, we computed a numerical solution using the appropriate {ε, fφ} values
in order to obtain Rmeta

min (ε, fφ). In a similar fashion, we define for the whole {ε, fφ} plane the
minimal radius of the gap as

Rstable
max (ε, fφ) = Max [Rstable

max (ε), Rstable
max (fφ)] , (6.21)
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Figure 6.6: Left panel: χ(ε), as defined Eq. (6.23) in the negligible gradient limit, normalized
to the effective number of degrees of freedom N − 1 = 294, as a function of ε. Right panel: The
p-value as a function of ε. For reference, we plot the 2σ threshold, equivalent to p = 0.05, as a
gray dashed line.

where the two radii coincide Rstable
max (ε) ∼ Rstable

max (fφ) around the curve defined by

fφε
−3/5 ≈ Λ

12/5
QCDMP√

δmNm
9/10
e mN

∼ 20MP , (6.22)

using the NR estimations for both expressions. This defines (a posteriori) the ranges of validity
for the negligible gradient and negligible ε approximations for the determination of Rstable

max .

6.1.4 Statistical analysis and bounds

The goal is to quantitatively determine how compatible are the observed WD radii with a gapped
distribution. Our working assumption is that the variance in the observed mass can be explained
by varying other important properties of WDs, such as temperature and composition, which for
simplicity we kept fixed. Therefore our focus is strictly on the radius distribution, and in order
to determine the bounds on ε and fφ, we perform a 1D goodness-of-fit test on the radius axis.
Given the central values from a combined dataset of N = 295 observed WD radii {ri} and thier
corresponding uncertainties {σi} [107–113], we calculate the sum of squares, which we denote
by χ, for each point in the {ε, fφ} plane

χ(ε, fφ) =
N∑
i=1

D2[(ri), R
stable
max (ε, fφ), Rmeta

min (ε, fφ)]

σ2
i

, (6.23)

with the distance function

D[(ri),R
stable
max (ε, fφ), Rmeta

min (ε, fφ)] ={
min [ri −Rstable

max (ε, fφ), Rmeta
min (ε, fφ)− ri] ri ∈ [Rstable

max (ε, fφ), Rmeta
min (ε, fφ)]

0 otherwise
.

(6.24)
We use the numerically-calculated values for {Rstable

max (ε, fφ), Rmeta
min (ε, fφ)} where available, and

otherwise use the verified analytical estimates as extrapolation, see right panel of Fig. (6.4)
and Fig. (6.5). In Fig. (6.6) and Fig. (6.7) we plot the results of our statistical analysis in the
negligible gradient and negligible ε limits, respectively. In the left panels we plot χ normalized
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Figure 6.7: Left panel: χ(f), as defined Eq. (6.23) in the negligible ε limit, normalized to the
effective number of degrees of freedom N − 1 = 294, as a function of fφ. Right panel: The
p-value as a function of fφ. For reference, we plot the 2σ threshold, equivalent to p = 0.05, as a
gray dashed line.

to the effective number of degrees of freedom N − 1. As a rough estimate, the range in which
χ > 1 is considered incompatible with the gapped radii distribution hypothesis. A more refined
statement can be made by calculating the corresponding p-values for each value of ε of fφ, shown
in the right panel of Fig. (6.6) and Fig. (6.7), respectively. We are able to exclude at the 2σ
level the following interval in ε

2× 10−20 < ε < 2× 10−7 (95% C.L) . (6.25)

We are able to exclude at the 2σ level the following interval in fφ,

5.5× 109 < fφ/GeV < 1.1× 1016 (95% C.L) . (6.26)

6.1.5 Conclusions

The mass-radius relationship of white dwarfs is well-understood and has been observationally
tested with increasing accuracy in recent years. We showed how light QCD axions change the
structure of WDs, thus predicting the presence of a gap. We used existing data to place novel
bounds on their parameter space. We stress that the bounds arising from the existence of a new
ground state accessible in white dwarfs, and the corresponding gap in radii, are qualitatively very
different than the strategy proposed in Ref. [186], which relies on the change of the properties of
nuclei, and the corresponding change in X-ray emission, when a (lighter) QCD axion is displaced
to θ = π [234].

The QCD axion generically predicts a non-derivative coupling to nucleons. At finite baryon
density this coupling can destabilize the axion from its in-vacuum minimum. If sourced, the non-
zero axion expectation value reduces the mass of nucleons. For a large region of the parameter
space, this leads to a new ground state of matter, which has less energy per particle than
infinitely separated nucleons. If accessible in WDs, this drastically changes their M -R relation.
Since the axion is sourced by the WD, this does not rely on the axion contributing to the dark
matter relic abundance.

More precise tests of the WD M -R curve using the recent Gaia DR3 are expected in the
near future and will further probe the parameter space of light QCD axions.
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As a consequence of the new ground state of matter, we predict new small self-bound objects
held together by the gradient pressure of the axion. These objects could give rise to novel
signatures of exceptionally light QCD axions down to the QCD axion line.

6.2 Heavy Neutron Stars from Light Scalars

As we have discussed in Sec. 3.2, the observation of NSs with masses beyond 2M�, with
GW190814 [148] even hinting at NSs with masses of 2.6M�, really pushes SM EOSs to their
limit. Furthermore, the trend for more complex EOSs within the SM tends towards softer EOS,
which makes it even harder to explain such observations.

Interestingly, we find that once light scalar fields get sourced within neutron stars a new
ground state of nuclear matter is unlocked which can significantly stiffen the EOS of NSs.
Such a scalarization takes place for dense and large enough objects. This translates into an
upper bound on the scale Mφ which, in analogy to MP, controls the strength of the scalar
interaction with matter, along with an upper bound on its mass mφ. These conditions in turn
imply that the scalar is not significantly sourced, or not sourced at all, by dilute and small
systems, nor arbitrarily long-ranged, such that conventional constraints from fifth-force searches
and e.g. pulsar timing measurements can be bypassed, even for Mφ � MP. Particularly in
the context of modified theories of gravity, it has been recognized that scalarized NSs exhibit
macroscopic properties, like mass, radius, moment of inertia, etc., different from those predicted
in GR with a given equation of state (EOS), see e.g. [237] for a review. However, it has not been
fully appreciated until now that, under generic conditions, large deviations in the configuration
of compact stars are due to the appearance of a new ground state (NGS) of nuclear matter.

To make the physics as transparent as possible, we carry out our analysis in terms of the
EOS of a free Fermi gas of nucleons. The existence of a scalar coupled (non-derivatively) to
nucleons, which can be encoded as a scalar-dependent nucleon mass, m∗(φ)ψ̄ψ, brings up two
competing effects when the conditions for scalarization are met. On the one hand, the effective
mass of the nucleon inside the scalar bubble gets reduced [238], while on the other, the scalar
potential V (φ) acts as additional vacuum energy contributing to the total energy density and
pressure, see e.g. [225, 226]. The parameter space is then generically split into two parts: if the
potential dominates, a phase transition occurs at some finite density, softening the EOS. Stable
configurations are in the form of hybrid stars, with smaller maximal masses compared to the
phase where the scalar field is not sourced. In the rest of the parameter space, the reduction of
the nucleon mass dominates and a new ground state of matter, with energy per particle smaller
than for well-separated neutrons, is found, as we have seen in the context of WDs in Sec. 6.1.
Stable configurations are in the form of homogeneously scalarized stars, which can have much
larger masses. NSs in this case can be heavier than the maximal mass predicted by standard
causal bounds [101, 239–241], which assume a certain low-density behavior consistent with the
properties of dilute matter, an invalid assumption when the NGS is present. Small or dilute
systems like nuclei or regular stars are in this case meta-stable and long-lived. Other distinctive
features of NSs in the NGS are their compactness, which can be larger than in typical NSs yet
below that required for a photon sphere, and their minimal rotation period. In addition, since
the NGS leads to a branch of NSs disconnected from the standard one predicted in GR, we
find instability gaps in radii and self-bound objects as small as the Compton wavelength of the
scalar, changing the landscape of stellar remnants.

The Chapter is organized as follows. In Sec. 6.2.1 we start by giving an overview of the
different types of models under consideration, explaining the relevant scales and the connection
to models of scalarization. In Sec. 6.2.2, we present our simple free Fermi gas description and
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the equations governing the full coupled system of gravity plus the scalar. All of our results
are described in this section in a model-independent fashion. In Sec. 6.2.2, we discuss the limit
where the scalar field gradient can be neglected, in which case it is sensible to define an EOS.
After presenting the two qualitatively different types of EOS, we discuss the effects of a finite
gradient energy in Sec. 6.2.2. A more quantitative case study in presented in Sec. 6.2.3 for three
types of scalar-matter couplings, namely axion-like (Sec. 6.2.3), linear (Sec. 6.2.3), and quadratic
(Sec. 6.2.3), while in Sec. 6.2.4 we explicitly work out the equivalence with scalar-tensor theories
of gravity. Our conclusions are presented in Sec. 6.2.5. A detailed discussion regarding the
limit of negligible gradient energy, which is used extensively throughout this work, is presented
in App. C.2. Some useful analytical approximations for constant density objects are given in
App. C.3. Finally, in App. C.4 we present the details on a simple scalar model that realizes a
large in-density reduction of the nucleon mass via a coupling to gluons.

6.2.1 Decoding scalarization

Before moving on to the bulk of our work, let us briefly discuss the main features of the different
classes of scenarios in which a scalarized ground state of matter can be reached. Beyond the
scale Mφ that sets the strength of the leading coupling to matter and the mass mφ, the scalar
theories under consideration can be characterized in general by two other scales, Fφ and fφ,
which control, respectively, the higher-order interactions of the scalar with matter and its self-
interactions,

m∗(φ)/m = 1−
(
φ

Mφ

)n [
1 +O

(
φ

Fφ

)]
, V (φ) =

1

2
m2
φφ

2

[
1 +O

(
φ

fφ

)]
. (6.27)

where m∗(φ)ψ̄ψ is the scalar-dependent matter mass. We focus only on linearly (n = 1) or
quadratically (n = 2) coupled scalars, as these two are the most generic cases without or with
a parity symmetry φ → −φ in the interaction with matter, respectively. The simplest scenario
is when higher-order terms in φ can be neglected, namely when Fφ, fφ � Mφ. In that case
scalarization takes place with φ ∼ Mφ and m∗(Mφ)/m � 1 is approached within the star, a
limit in which the scalar field effectively reaches a constant in-medium value. This case, which
we denote as unbounded m∗, is typical of scalar-tensor theories of the Damour-Esposito-Farèse
type [242], where the scalar couples to the trace of the energy-momentum tensor, equal to mψ̄ψ
in the free Fermi gas limit. Factoring in higher φ terms, even when fφ < Mφ, one can still find
unbounded m∗ systems where φ ∼Mφ in medium, specially at high-enough densities where the
scalar dynamics is mainly controlled by m∗(φ) (with Fφ � Mφ). In this class of scenarios, the
main effect of a finite fφ is to set the value of the scalar potential V (Mφ). Finally, there exists a
bounded m∗ class of theories, in which non-linearities are such that φ ∼ Fφ or φ ∼ fφ inside the
star. The typical example is chameleon screening [243] (see also [244]), where non-linear terms
in the potential prevent the scalar from reaching in-medium values much beyond φ ∼ fφ �Mφ.
In this paper, we pay more attention to scenarios where non-linearities in the scalar-matter
interactions force φ ∼ Fφ � Mφ inside NSs. This is the case (for n = 2) of the QCD axion, if
sourced by dense matter [11], and by its generalizations where the axion coupling to gluons is
decorrelated from its mass [73,74,186]. We will not discuss (n = 1) scalar-tensor theories of the
Damour-Polyakov type [245] since in that case m∗(Fφ) = m.

Finally, let us note that we are leaving aside theories in which scalarization takes place not
because of the interactions with matter but due to the coupling of the scalar to the curvature
(i.e. to R2

µνρσ at leading order in a derivative expansion) [246–248]. See however [249, 250] for
recent theoretical constraints on this type of scenarios.
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6.2.2 Scalarized free Fermi gas

Neutron stars are well-described at leading order by a degenerate free Fermi gas coupled to
gravity. To study the effects of a scalar field coupled to nucleons, we consider the following
Lagrangian, containing a single massive fermion ψ and a single real scalar φ, coupled to the
gravitational field gµν ,

Lψφ =
√−g

[
ψ̄ (ieµaγ

aDµ −m∗(φ))ψ +
1

2
gµν(∂µφ)(∂νφ)− V (φ)

]
, (6.28)

where Dµ = ∂µ − iωµ is the covariant derivative of a fermion field in curved space. ψ and φ
are coupled via the term m∗(φ)ψ̄ψ, while the self-interactions of φ are encoded in the function
V (φ), see Eq. (6.27). Such a coupling to nucleons naturally arises in models where the scalar
field couples in the UV to the (light) quarks, or to the gluon field strength, or simply to the
trace of the energy-momentum tensor (see Sec. 6.2.4). For convenience, we shall henceforth
work with the dimensionless field θ ≡ φ/f , where we introduce the scale f as the typical scale
of the scalar field. This can be conveniently identified with either Mφ, Fφ, or fφ introduced in
Eq. (6.27), depending on the particular realization. We further assume that at zero density (i.e.
in the absence of the Fermi gas), the potential V (θ) is minimized at θ0 such that

∂V

∂θ

∣∣∣∣
θ=θ0

= 0 , V (θ0) = 0 , and m(θ0) ≡ m (at zero density) . (6.29)

Let us derive the static coupled equations of motion (EOMs) for the fermion, scalar and gravi-
tational fields. Assuming radial symmetry, we use the Schwarzschild metric parametrization,

g00 = e2ν(r) , grr = −
[
1− 2M(r)

M2
Pr

]−1

gΘΘ = −r2 , gϕϕ = −r2 sin2 Θ , (6.30)

where MP = G−1/2 and we choose the metric convention ηµν = Diag[1,−1,−r2,−r2 sin2 Θ]. The
gravitational field is sourced by an energy-momentum tensor that is the sum of two terms,

Tµν = (Tideal)
µ
ν + (Tgrad)µ ν . (6.31)

Tideal contains the contributions of the Fermi gas and the scalar potential V (θ), and has the form
of an ideal fluid, i.e. (Tideal)

µ
ν = Diag[ε,−p,−p,−p] with

ε = εψ(m∗(θ), ρ) + V (θ) and p = pψ(m∗(θ), ρ)− V (θ) . (6.32)

The total pressure of the system p as defined above can become negative in regions where the
contribution from the potential V (θ) dominates over the strictly positive pressure of the Fermi
gas. Note also that εψ, pψ and ε, p separately satisfy the thermodynamic relation d(ε/ρ) =
−pd(1/ρ) in the constant θ limit. (Tgrad)µ ν is proportional to f2,

(Tgrad)µ ν = f2(∂rθ)
2

[
1

2
δµν − δµr δrν

](
1− 2M

rM2
P

)
. (6.33)

The term in the square brackets describes the gradient energy of the field and has the form of a
perfect fluid. The second term deviates from the perfect fluid behavior in the form of additional
(anisotropic) pressure. Both terms are proportional to f2, therefore we expect them to become
negligible when f is much smaller than other scales appearing in the EOM, see App. C.2 for a
detailed discussion. We have already encountered the three independent EOMs defined by the
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Lagrangian L = (M2
P/16π)

√−gR + Lψφ in Eq. (6.5), where we introduced the fermion scalar
density ρs(m∗(θ), ρ) ≡ 〈ψ̄ψ〉. Eq. (6.5a) is the generalized form of the scalar EOM. It contains
the coupling to gravity, which deforms the derivatives on the LHS. The scalar self-interactions
are encoded in the first term in parenthesis on the RHS. The scalar interaction with the nucleons
is given by the second term in parenthesis on the RHS. The last two equations are the general-
ized Tolman-Oppenheimer-Volkoff (TOV) equations [251,252]. Eq. (6.5b) dictates how the total
pressure is balanced by the gravitational force and an additional new scalar force. Eq. (6.5c) is
associated with the enclosed mass M(r), found by integrating over the energy density associated
with the Fermi gas, the scalar potential, as well as a contribution from the scalar gradient. There
are in principle two additional EOMs which we do not present. The EOM for the fermion field
is implicitly used in the expression for the energy and pressure of the Fermi gas.3 The equation
of motion for the temporal component of the metric ν(r) can be solved separately since ν(r)
and its derivatives do not appear in any of the other equations. The combination of all EOMs
imply by construction energy-momentum conservation, i.e. ∂;µT

µν = 0, which is equivalent to
the so-called hydrostatic equilibrium condition [103].

The derivation so far has been independent of the properties of the Fermi gas. For concreteness,
from this point on we consider the simple case of a free Fermi gas (see e.g. [105])

εψ(m∗(θ), ρ) = 2

∫ kF (ρ) d3k

(2π)3

√
k2 +m2

∗(θ) , (6.34a)

pψ(m∗(θ), ρ) =
2

3

∫ kF (ρ) d3k

(2π)3

k2√
k2 +m2

∗(θ)
, (6.34b)

ρs(m∗(θ), ρ) = (εψ − 3pψ)/m∗(θ) . (6.34c)

The Fermi momentum kF and the number density ρ are related as usual by kF (ρ) = (3π2ρ)1/3.
The scalar interactions are implied by the θ-dependent fermion mass. The θ field itself would
eventually be an r-dependent background field, reminiscent of a mean-field approximation. 4

In later stages, changing variables to the chemical potential µ would prove helpful since it must
be a continuous parameter in any static solution where chemical equilibrium is assumed. This
change of variables is done by identifying the Fermi energy with the chemical potential, namely
kF (µ) =

√
µ2 −m2

∗(θ)Θ(µ −m∗(θ)). From this definition it should be understood that, for a
given θ, for values of µ below the mass threshold m∗(θ) the total energy and pressure of the
system are µ-independent and originate only from the scalar field, i.e. ε→ V (θ) and p→ −V (θ).

The fermion field ψ describes nuclear matter in its simplest form: pure non-interacting neu-
trons, believed to be the main component in NSs and provide the dominant source of energy
density in the non-relativistic limit. Such a description leaves out important ingredients such
as additional particles (protons, electrons, muons) and interactions, namely the electroweak
and nuclear forces. The latter plays a critical role, as nuclear interactions become increasingly

3Note that one should solve the fermion EOM in flat space, such that the microscopic properties of the
fermion gas are independent of the gravitational field; one can always choose a reference frame which is flat at
the characteristic scales of the Fermi gas.

4By using the mean-field approach we are treating the scalar very much like the gravitational field. In particular,
we neglect interactions associated with e.g. single scalar exchanges, even if these are possible for background
values of θ for which ∂m∗(θ)/∂θ 6= 0. However, we expect this force (which may be effectively long range for
light scalar masses) to be suppressed by the small effective coupling ∼ m/Mφ � 1 and therefore irrelevant for
the thermodynamic properties of the system of fermions. It is also implicitly understood that the scalar is light
enough to coherently couple to the Fermi gas, i.e. mφ . ρ1/3.
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important at high densities. All of these generate O(1) corrections to the main predictions
(e.g. maximal mass of the bound object), which rely on the balance of all relevant forces. Never-
theless, the pure neutron gas model is useful when extracting order-of-magnitude effects due to
physics beyond the SM, and thanks to its simplicity it allows a clear identification of the phys-
ical processes behind those effects. In addition, the formalism outlined above can be extended
to different models of interacting and non-interacting Fermi gases, or adapted to the phase of
matter in white dwarfs [14].5

The coupled system Eq. (3.1) can in principle be numerically solved by specifying the initial
conditions p(0) and θ(0), with the remaining initial conditions θ′(0) = M ′(0) = 0 dictated by
radial symmetry. In practice, however, finding valid static solutions for Eq. (6.5a) is challenging.
This can be understood by the classic intuition provided by Coleman [253]. Static solutions of
the scalar EOM are analogous to classical one-dimensional trajectories in an inverted potential,
where the radial direction plays the role of time. In this picture, a valid static solution is one
which connects one maximum of the potential to another, with the tail of the scalar profile
staying exponentially close to θ0 for arbitrarily large values of r. These type of trajectories are
inherently chaotic, given that small variations to the initial condition would cause either an
over- or an under-shoot.6 Thus, viable static solutions of Eq. (6.5a) typically require to tune
the initial condition θ(0). This issue can be avoided in case Eq. (6.5a) is solved in isolation by
adding a fictitious friction term [186]. However, this requires neglecting the back-reaction of
the scalar field on the density profile, which is precisely the effect we are after. Therefore, our
numerical solutions of Eq. (3.1) are based on an automatized shooting method, which tunes the
value θ(0) for a fixed p(0) until a viable static solution is found.

Equation of state: the negligible gradient limit Finding a solution to the coupled system
Eq. (3.1) is significantly simpler if there is a separation between the typical length scale of the
scalar field λφ and the NS radius R,

λφ ≡ f/Λ2
eff � R . (6.35)

We refer to this particularly simple limit as the negligible gradient limit, in which all θ′(r)
and θ′′(r) terms in Eq. (3.1) can be neglected. The detailed derivation of this limit from a
dimensional analysis of Eq. (6.5a) is presented in App. C.2. Λ2

eff is a scale typically associated
with either the potential term

√
∂V (θ)/∂θ or the Fermi gas term

√
ρs|∂m∗(θ)/∂θ|. For a NS

this limit roughly translates into f/MP � Λ2
eff/m

2.
In this limit, solutions to the system can be found in terms of standard thermodynamic

quantities. The value of the scalar field at a given number density ρ or chemical potential µ is
then determined either by minimizing the total energy ε(θ, ρ) or the grand canonical potential
Ω(θ, µ) ≡ ε− µρ = −p(θ, µ) w.r.t. θ

∂ε(θ, ρ)

∂θ

∣∣∣∣
ρ

=
∂Ω(θ, µ)

∂θ

∣∣∣∣
µ

=
∂V

∂θ
+ ρs

∂m∗(θ)

∂θ
= 0 . (6.36)

5In this regard, we note that the nuclear force, mediated at leading order by pion exchange, could change in a
scalarized system, via a θ-dependent pion mass and interactions. We leave the detailed discussion of the impact
of a sourced scalar on nuclear physics for a future publication, see for instance [234].

6One important difference w.r.t. [253] is that in our scenario the explicit radial dependence of the effective
scalar potential, through the pressure dependence of ρs(θ(r), p(r)), translates into a time-dependent potential
in the classical trajectory analogy. This leads to a violation of energy conservation that could complicate the
over-/under-shooting argument. However, since pressure is always continuous, this dependence can be neglected
in small regions where p can be treated as constant.
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Here ρs = ∂εψ/∂m∗|ρ = −∂pψ/∂m∗|µ depends on the chosen free variable, namely either ρ or µ.
Eq. (6.36) defines the microscopic EOS, along with ∂ε/∂ρ|θ = µ and ∂Ω/∂µ|θ = ρ. Unsurpris-
ingly, Eq. (6.36) is the scalar EOM in the limit where the scalar derivatives are negligible, i.e.
Eq. (6.5a) with its LHS set to zero. For Eq. (6.36) to have non-trivial solutions, i.e. for scalariza-
tion to take place, there must be a region where the two terms appearing in it are comparable.
The condition ρs∂m∗/∂θ ∼ ∂V /∂θ implies that the compact object must be dense enough for
non-trivial solutions to exist. This condition, along with the largeness condition of Eq. (6.35),
are essentially the same conditions discussed in the context of scalar sourcing at finite density
in Refs. [13, 254].

Solutions of Eq. (6.36) are of the form θ(µ) (or θ(ρ)). This allows us to express the total
energy density and pressure of the system in terms of a single independent variable, e.g. the
chemical potential, such that ε(µ) = ε(θ(µ), µ) and p(µ) = p(θ(µ), µ). By constructing the EOS
using µ as the free parameter, the preferred phase (with maximal pressure) is always selected
and the procedure outlined above produces the thermodynamically stable EOS. This ensures
the continuity of µ and p across a phase transition boundary, which is required for chemical and
mechanical stability.7 At this point one can readily construct the effective EOS, i.e. ε(p), and
numerically solve the usual TOV equations, see Eq. (3.1), given the initial condition M(0) = 0
and some internal pressure p(0).

Let us get a qualitative understanding on how the effective mass of the fermion m∗(θ) would
change at increased densities in light of Eq. (6.36). As we infinitesimally increase ρs (i.e. increas-
ing ρ ' ρs in the non-relativistic limit), Eq. (6.36) can only be satisfied if ∂m∗/∂θ < 0, namely
if the mass of the fermion decreases. In other words, the increase in V (θ) due to the deviation
from θ0 would be compensated by the decrease in the energy of the Fermi gas.8 Indeed, for a
fixed number density ρ, a Fermi gas has less energy when the mass of the fermion is decreased.
Thus, we find that solutions of Eq. (6.36) always satisfy the upper bound m∗(θ) ≤ m∗(θ0) ≡ m
at all densities. It is also useful to consider the opposite regime of very high densities, where we
identify two types of solutions for Eq. (6.36). The first type is relevant if there exists a θ∞ for
which m∗(θ∞) = 0. Then, Eq. (6.36) is solved at arbitrary high densities along a curve in the
{θ, ρ} plane defined by

ρs(θ, ρ) =

∣∣∣∣ ∂V /∂θ

∂m∗(θ)/∂θ

∣∣∣∣
θ=θ∞

≡ ρs,∞ = const. (6.37)

In the ultra-relativistic approximation ρs(θ, ρ) ∼ ρ2/3m∗(θ), therefore the condition above is
satisfied by m∗(θ) ∼ ρs,∞/ρ2/3, which is achieved by taking θ close enough to θ∞ for ρ� ρs,∞.
Therefore, in this type of unbounded solution, m∗(θ) remains positive and approaches 0 from
above as the density is increased. This implies that the effective mass of the fermion can be
much smaller than its zero density value m at high enough densities.

If m∗(θ) is bounded from below and does not cross 0, we find the second type of solution: the
asymptotic value of θ at high densities would then be θ∞ for which the first derivative vanishes,
namely (∂m∗(θ)/∂θ)|θ=θ∞ = 0. This can be easily understood as the solution of Eq. (6.36)
in the limit where the contribution from ∂V (θ)/∂θ is negligible and ρs 6= 0. In this type of
solution, m∗(θ) remains positive and approaches m∗(θ∞) from above as the density is increased.
Depending on the function m∗(θ), both m∗(θ∞) . m and m∗(θ∞)� m are possible. The scalar

7As we discuss extensively below, there can exist a meta-stable, potentially long-lived, branch of the EOS. In
this case, it is necessary to use ρ as the free parameter.

8For concreteness, we use ε(θ, ρ) as the relevant quantity for this particular discussion, but similar arguments
can be made using Ω(θ, µ).
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density ρs increases as ρ increases while the mass is fixed, which implies that θ(ρ)→ θ∞ at high
densities, making this solution self-consistent. In both cases discussed above, we find that any
solution of Eq. (6.36) satisfies also the lower bound m∗(θ) > 0 at all densities.

What kind of EOS can we expect? To answer this question, let us first discuss the qualita-
tive effects of the scalar field. The first effect we can consider is the reduction of the mass
of ψ. This has the generic effect of stiffening the EOS, which can be seen easily e.g. in the
non-relativistic approximation (neglecting V (θ), p ' pψ),

pNR
ψ ∝ εNR

ψ

(
εNR
ψ

m4
∗(θ)

)2/3

→
∂pNR

ψ

∂m∗(θ)
< 0 . (6.38)

A reduction of the mass, therefore, leads to a larger pressure for a fixed energy density, i.e. to
a stiffer EOS that can support a larger total mass for a given radius. On the other hand, the
additional contribution of V (θ) would generically lead to a softening of the EOS state. Again
e.g. in the non-relativistic approximation,

pNR ' cm−8/3
∗

(
εNR − V (θ)

)5/3 − V (θ) → ∂pNR

∂V (θ)
< 0 , (6.39)

where c is a numerical constant. An increase in V (θ) leads to smaller pressure for a fixed energy
density, therefore to a softer EOS.

These two competing effects split the parameter space of any model into two qualitatively
different regions. First, a coexistence (CE) region, in which a phase of matter, with θ = θCE 6= θ0,
is accessible above a certain critical pressure. In this case, for internal pressures above the critical
pressure, the bound object can be described as a hybrid star, with a core in one phase (θ ' θCE)
and a crust in another (θ ' θ0). Below that critical pressure, only the low-density phase is
present. Such phase transitions typically soften the EOS, and the resulting hybrid stars are less
massive in comparison to stars made of matter in their low-density phase.

We dub the rest of the parameter space the new ground state (NGS) region. As the name
suggests, at high enough densities matter can transition to a new, stable ground state with
θ = θNGS. Stars could be totally stable only in this new phase, while dilute stars (with θ ' θ0)
can be long-lived until a fluctuation causes them to transition to the stable phase. Importantly,
the EOS for the new ground state could be stiffer in comparison to the low-density (meta-stable)
phase and therefore may support bound objects with larger masses. The NGS region shares some
similarities with strange stars [232,255,256].

To better define the CE and NGS regions, let us denote our parameter space as α = {αi},
namely the space of parameters (couplings and scales) that fix the m∗(θ) and V (θ) functions,
see Eq. (6.27). The two regions can be easily identified in terms of preferred phases. In this
case, it is useful to pick µ as the independent variable, where the preferred phase is the one with
maximal pressure.

Coexistence region This region in parameter space is defined by p(θ, µ;α) < 0 for all
values of θ 6= θ0 and for 0 < µ < m. This means that the θ0 phase is preferred around the µ & m
threshold (since by definition p(θ0, µ) = 0 in the region 0 < µ < m). A phase transition may
then occur at some critical µCE

c (α) > m, see the blue curve in Fig. 6.8. Although this transition
is always continuous in (p, µ), it could either be smooth or first-order in (ε, ρ). In the latter case,
there is a discontinuity (i.e. “jump”), like the one shown in Fig. 6.9. Phase transitions typically
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Figure 6.8: Pressure as a function of chemical potential. The thick, green curve describes a
free Fermi gas. The blue curve describes a first-order phase transition from θ0 to some θCE,
typical in the CE region of parameter space. The phase transition occurs at a critical chemical
potential µCE

c where the pressure of both phases are equal, denoted here by pCE
c . The red curve

describes the NGS, with θ = θNGS starting at the p = 0 point at non-zero µNGS < m. This plot
demonstrates how the intersection point between the θ 6= θ0 curves and the θ = θ0 thick green
curve, which is controlled by the properties of m∗(θ) and V (θ), determine whether a certain
parameter point belongs to the CE or the NGS region.
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Figure 6.9: The binding energy ε/ρ as a function of number density ρ. The thick, green curve
describes a free Fermi gas. The blue curve describes a first-order phase transition typical in the
CE region of parameter space. The transition is accompanied by a discontinuity in ε and ρ, in
the region plotted here as the dashed blue line. The phases at the edges of the dashed blue line
have the same pressure. Both the thick green and the blue curves share the same ground state
at ρ → 0, where the binding energy is simply the rest mass m. The red curve describes the
binding energy of the NGS. An absolutely stable branch is defined for ρ ≥ ρNGS, with the NGS
at ρNGS. A meta-stable branch equivalent to a free Fermi gas in found at ρ < ρc. The region
ρc < ρ < ρNGS is completely unstable.
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Figure 6.10: Pressure as a function of energy density for the various regions discussed in the
text. The thick, green curve describes a free Fermi gas. The blue curve describes a first-order
phase transition, typical in the CE region of parameter space. While the pressure is continuous
across the phase transition, which takes place at pCE

c , the energy density is discontinuous, shown
as the dashed blue line. Such a jump leads to a softer EOS, at least in some finite region. The
red curve describes the NGS, characterized by vanishing pressure at some finite energy density
εNGS. This EOS can be stiffer than the θ0 phase at high densities. There is typically also a
meta-stable branch at low energy densities, equivalent to the free Fermi gas, shown here as the
dashed red curve.
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lead to a softening of the equation of state, see Fig. 6.10. We also note that one can classify
three types of possible phase transitions, depending on whether the low- and high-density phases
are non-relativistic (NR) or ultra-relativistic (UR). A noticeable effect arises only when at least
one of the phases is NR, such that the nucleon mass plays a role, therefore only in NR → NR
and NR → UR transitions. The third possible transition, UR → UR, occurs when the mass is
irrelevant, and therefore changing its value does not affect the EOS. Note that the UR → NR
transition is not possible; as argued above, the mass of the fermion in the high-density phase is
never larger.

New ground state region The NGS region of parameter space is defined by demanding
that there exists a solution of p(θNGS, µ;α) = 0 at a chemical potential µNGS(α) satisfying
m∗(θ

NGS) < µNGS < m, with θNGS(µ,α) the solution of Eq. (6.36). This is shown by the red
curve in Fig. 6.8. In order to see that there is indeed a new ground state of the system, it is
useful to switch and use the number density ρ as a free parameter. The condition above implies,
according to the first law of thermodynamics,

p(µNGS) = (ρNGS)2∂(ε/ρ)

∂ρ

∣∣∣∣
ρ=ρNGS

= µNGSρNGS − εNGS = 0 , (6.40)

where εNGS = ε(θNGS, ρNGS) and ρNGS = k3
F (µNGS)/3π2, with k2

F (µNGS) = (µNGS)2−m2
∗(θ

NGS) and
θNGS(α) evaluated at µNGS. From this condition we learn two things,

1. There is a minimum of the function ε/ρ at ρ = ρNGS.

2. The value of the function at that minimum is εNGS

ρNGS = µNGS < m.

This new and deeper minimum is shown in Fig. 6.9. We find that the function describing the
energy per particle, namely ε/ρ, has a global minimum at ρNGS, which is lower than the mini-
mum at ρ = 0, since limρ→0 ε(θ0, ρ)/ρ = m. This implies the existence of a new ground state
for matter with θNGS = θ(ρNGS). This is analogous to the effect of the nuclear force in nuclear
matter. The short-distance repulsion and long-distance attraction are balanced at nuclear satu-
ration density ρ0 ≈ 0.15 fm−3, i.e. the density of nuclei, which are the ground states of nuclear
matter. In the presence of the NGS, the EOS has a stable branch that reaches p = 0 at some
non-vanishing number density ρNGS or energy density εNGS, see Fig. 6.10. Importantly for our
discussion, the EOS of this new phase could be stiffer than the θ0 phase, and therefore can
potentially support bound objects of larger mass. Since the NGS is not continuously connected
to the θ0 phase, matter below some critical density ρ < ρc is meta-stable, see Fig. 6.9. Given
a system at sub-critical density, any density fluctuation large enough to overcome the potential
barrier can cause a phase transition, as long as its spatial extent is large compared to λφ, even
if small compared to the size of the system (due to the negligible gradient limit formulated, see
Eq. (6.35)). The region ρc < ρ < ρNGS corresponds to negative total pressure and is therefore
completely unstable.9

Let us now focus on the NGS, and take the contribution coming from V (θ) to be negligible.
Furthermore, let us assume that the effective fermion mass remains approximately constant in
the NGS; this would be the case in models where m∗(θ) is positive and bounded from below at
some θ = θ∞ (see discussion below Eq. (6.37)). Thus, if the total effect of the scalar interactions

9We should note that for m∗(θ) linear in θ (n = 1 in Eq. (6.27)) there exists another (hydrodynamical)
instability due to an imaginary speed of sound c2s = ∂p/∂ε < 0 [257]. This is absent for m∗(θ) quadratic in θ
(n = 2 in Eq. (6.27)) since θ0 is not continuously connected to θCE (nor to θNGS) as one varies ρ.
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can be described as simply reducing the mass of the fermion to some density-independent value
m∗(θ∞) < m, the maximal mass and corresponding radius of a star composed of matter in this
new phase can be easily calculated using the standard TOV equations, to find

Mmax ≈ (0.7 M�)

(
mN

m∗(θ∞)

)2

, R(Mmax) ≈ (9.3 km)

(
mN

m∗(θ∞)

)2

, (6.41)

where we have set m = mN , with mN ≈ 939 MeV the neutron mass. Clearly, a reduced fermion
mass has a strong effect on the NS maximal mass, as well as on the corresponding radius. This
effect is potentially much larger than the usual O(1) effect one gets by using different EOSs,
which model dense matter using different approaches (see e.g. [101,152]).

On the other hand, the inclusion of the scalar self-interactions encoded in V (θ) would generi-
cally have the opposite effect and drive the maximal mass to lower values compared to the simple
case above. Indeed, in the regime where the reduction in the fermion mass is so large that the
Fermi gas becomes ultra-relativistic, m∗(θ∞) ceases to play a relevant role in the EOS in com-
parison with (a fixed) V (θ∞). The EOS then takes a particularly simple form ε ' 3p+ 4V (θ∞),
and we find

Mmax ≈ (1.1M�)

(
(0.2 GeV)4

V (θ∞)

)1/2

, R(Mmax) ≈ (5.8 km)

(
(0.2 GeV)4

V (θ∞)

)1/2

. (6.42)

While the maximal mass is of particular interest given its constraining power from single NS
observations, other macroscopic parameters such as compactness, C ≡ GM/R, are of special
relevance for what regards the sensitivity of GW observatories such as LIGO, see e.g. [?]. When
the main effect of the scalar field is just the reduction of the neutron mass, the compactness is
approximately the same as for the free Fermi gas, i.e. C ' 0.11, see Eq. (6.41). The compactness
is larger if the scalar potential also plays a role, and it is maximal in the ultra-relativistic limit,
where it takes the value C ' 0.27, see Eq. (6.42). We have explicitly checked that these two
values delimit, to good approximation, the range of compactness of the heaviest NSs in the NGS,
i.e.

0.11 . C . 0.27 , (6.43)

and that such a range is fully covered independently of the NS maximum mass, see Fig. 6.11.
Therefore, while the maximal compactness is below that required for the existence of a photon
sphere, C < 1/3, it is larger than that of standard NSs with realistic EOSs, whose compactness
does not typically exceed C . 0.23, see e.g. [101,154].

An important consequence of the above discussion regards the causal bounds on the maximal
NS mass and compactness. Bounds on the maximal mass of NSs, independent of their radius,
were originally derived by Nauenberg and Chapline [239] as well as by Rhoades and Ruffini
[240], based on the causality requirement that the speed of sound be smaller than the speed of
light, cs < 1. These bounds can be understood taking the maximally-compact EOS, namely
p = ε− εc for ε > εc, and p = 0 otherwise, from which one finds the bound M . 4.1M�

√
ε0/εc

with ε0 = mNρ0 ≈ 150 MeV fm−3 the nuclear saturation energy density [101, 258]. Given our
understanding of matter around nuclear density ρ0, for εc ' 2ε0 this approximately reproduces
the original bounds on the maximal NS mass, Mmax ' 3M�. This seems to be in contradiction,
for example, with our simple estimate in Eq. (6.41). However, this causal bound is clearly based
on our assumed understanding of matter at ρ . ρ0. In the presence of light scalars coupled to
nucleons, nuclear matter as we know it in nuclei may be only metastable (see Sec. 6.2.2), and
the NGS energy density may in fact be lower than ε0, allowing for a larger maximal NS mass.

101



Chapter 6. How Light Scalars change the Stellar Landscape

Bounds on the maximal compactness of NSs are instead not violated by stars in the NGS.
These include the εc-independent causal upper bound from the maximally-compact EOS just
discussed, C . 0.35 [101, 259, 260], as well as Buchdahl’s limit C 6 4/9, which ensures the
finiteness of the pressure inside the NS [103,261].

Another observable to consider in the context of NSs in the NGS is the rotation frequency
of pulsars, which is very slowly varying in time and precisely measured, see e.g. [262]. Due to
their resemblance at the macroscopic level, it is worth commenting on the rotation periods of
strange stars. In Ref. [263] it was shown that the maximal rotation frequency of strange stars
can be mildly larger than standard NSs for the same masses and radii, by a factor . 10%. The
fact that strange stars have the potential to rotate faster also impacts the causal bounds on the
rotation periods, which are typically slightly weaker compared to standard NSs [105,258,260].

Besides rotation periods, it would be interesting to further explore other related observables
such as the moment of inertia and the spin-induced quadrupole moment [264, 265], see also
e.g. [105]. These observables have been studied mostly in the context of scalar-tensor modifica-
tions of gravity [266–269]. Their importance goes beyond the characterization of the macroscopic
properties of NSs in that the moment of inertia and quadrupole in GR are found to be related
in a way that weakly depends on the EOS [270, 271]. These universal relations, also known as
I-Love-Q relations, also involve tidal Love numbers such as the tidal deformability [272], which
parametrizes the quadrupole response of a star to the gravitational field of a companion ob-
ject. Strange stars have been found to exhibit much larger tidal deformabilities than normal
NSs [273], yet the universal relations have been shown to hold regardless, see e.g. [274]. Per-
haps the stronger indication that this set of observables is likely different for NSs in the NGS
than for standard NSs is that departures from the I-Love-Q relations are typically significant in
scalar-tensor theories, as reviewed in [237].

Finite gradient effects

Meta-stability The negligible gradient limit (f/MP � Λ2
eff/m

2) is useful and applicable
when considering bound objects that are much larger than the effective wavelength of the scalar
field, see Eq. (6.35). For objects whose size R satisfies the opposite condition

R� λφ , (6.44)

the cost in gradient energy outweighs the in-medium gain in potential energy, such that the
energetically favorable configuration remains θ = θ0. This limit has an important implication:
the new stable phase of matter is not accessible in small systems, even if these are dense enough.
For instance, considering a low value of the scalar decay constant, e.g. f = 103 GeV, and taking
a conservative estimate Λ2

eff ∼ (1 GeV)2 (which is relevant for nuclei and NSs), we find that
the effective wavelength is λφ ∼ 200 fm, two orders of magnitude larger than nuclear radii
∼ 1 fm×A1/3, with mass number A. Since most nuclei with A ∼ O(200) are already short-lived,
it is extremely unlikely that a nucleus with A ∼ 106 is spontaneously formed in small systems.
In practice, experimental tests typically bound f to be much higher than considered above,
making λφ much larger and the new phase even less accessible in small systems (the discussion
on these model-dependent experimental tests is postponed to Sec. 6.2.3). Therefore, the stability
of standard nuclei in light of the absolutely stable scalarized ground state is ensured due to the
gradient energy required to displace the scalar field, and it is consistent with the fact that some
nuclei are very long-lived, and in fact stable on cosmological scales.

In addition, note that only matter fluctuations whose spatial extent is of the order of λφ can
lead to a transition from the meta-stable phase to the NGS phase. This type of large and dense
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regions are expected to appear first in violent events such as stellar collapse (e.g. supernova) and
stellar collisions (e.g. binary mergers), which therefore should be the main production mecha-
nisms of matter in its true ground state, see also e.g. the discussion in [237]. Depending on the
critical density, the existence of a NGS can affect the formation of main sequence stars as well
as stellar remnants such as white dwarfs and NSs. We leave the study of these effects for future
investigation and limit ourselves here to the study of time-independent systems.

Finally, we note that in our simple working assumption of a free Fermi gas (of neutrons),
every time a clump or nugget of matter in the NGS comes into contact with matter in the meta-
stable low-density phase, it would convert it to the NGS. In the case of strange quark matter [232,
255,256], this is avoided by adding electrons according to charge neutrality. These form a cloud
of size (αme)

−1 around the strange nugget, which itself has a crust of order Λ−1
QCD (which is also

the smallest nugget size). The Coulomb barrier then prevents these objects from converting
other nuclei to strange matter. In our case, such a separation of scales is not necessarily present
(since λφ � Λ−1

QCD) and therefore this argument is not applicable. Nevertheless, we expect the
abundance of NGS nuggets to be significantly smaller than their strange counterparts due to a
suppressed production rate in extreme astrophysical environments by ∼ (ΛQCDλφ)−2. Still, we
believe a more careful examination of this question is warranted.

Self-bound and constant density objects For all configurations on the stable branch,
the total core pressure balances two inward pressure contributions, the gravitational pressure
and the pressure from the change in mass due to the scalar field, which we refer to as the
gradient pressure. We define self-bound objects (SBOs) as those for which the gravitational
contribution is subdominant. They are composed of matter in the NGS, held together by the
gradient pressure of the scalar field at the boundary (or crust) of the object, which is typically
of size λφ and where the scalar transitions from θ∞ → θ0. The opposite limit represents the
conventional gravitationally-bound objects, also known as stars. As discussed below, in the
NGS branch, both types of objects can have approximately constant energy density profiles. In
App. C.3 we provide a detailed analytic treatment of these objects.

SBOs are typically not compact, GM/R � 1, consistent with the fact that they are well-
described by the MP →∞ limit of the coupled TOV equations,

p′ = −θ′
(
∂V

∂θ
+ ρs

∂m∗
∂θ

)
, (6.45a)

θ′′ +
2

r
θ′ =

1

f2

(
∂V

∂θ
+ ρs

∂m∗(θ)

∂θ

)
. (6.45b)

Note that the pressure profile is non-trivial only in regions where θ′ 6= 0 and the condition in
Eq. (6.36), which defined our microscopic EOS, is not satisfied. The smallest possible SBOs,
also known as nuggets, are of size

Rmin
SBO ∼ λφ . (6.46)

These are the densest of all the SBOs, since for higher densities Eq. (6.45) no longer admits
stable solutions. In the R� λφ limit, the interior of SBOs is well-described by constant internal
pressure and energy density, as well as a constant scalar field value. They are held together by
the gradient pressure exerted in a small region of size λφ � R, at the edge of the object. For
even lower densities, the SBOs become large, reaching the point where gravity can no longer
be neglected. Depending on the region of parameter space, SBOs can range many order of
magnitude in size Rmax

SBO � Rmin
SBO. In particular, they can be as large as NSs and with similar
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masses. On the other hand, for large values of f , SBOs may not be viable configurations at
all. Indeed, the existence of SBOs requires that Rmax

SBO > Rmin
SBO ∼ λφ, which reduces to an upper

bound on f

f .
δm∗

1− δm∗
MP , (6.47)

where δm∗ = 1 − m∗(θ∞)/m. For objects of size R & RSBO
max , the gradient pressure and the

gravitational pressure are equally important and the full coupled set of equations of Eq. (3.1)
must be solved, as discussed just above Sec. 6.2.2.

As the objects in the NGS become more compact (larger and more massive, since ε is approx-
imately constant) gravity can no longer be neglected and eventually dominates. We identify
then two distinct limits, depending on the model parameters α, here encoded in δm∗ and m∗
(evaluated at θ∞), f , and εNGS(α). In the limit δm

1/2
∗ (m4

∗/ε
NGS)(f/MP) � 1, in which SBOs

have energy densities close to that of the ground state, εNGS (where the EOS is p ' 0), the
smallest gravitationally-bound objects can still be approximated as constant energy density sys-
tems. However, their pressure drops away from the core (as opposed to the constant pressure
SBOs), at sufficiently low pressures the EOS is probed only in regions where ε ' εNGS ' const.
At large enough core pressures, the approximation of constant energy density breaks down, and
any further increase in core pressure leads to a decrease in radius, which is the typical behavior
of stars described by a Fermi gas.

On the other hand, for δm
1/2
∗ (m4

∗/ε
NGS)(f/MP) � 1, the most massive and largest SBOs

have ε � εNGS and already probe, by definition, the part of the EOS in which any further
increase in pressure leads to stars that are no longer constant density objects. Therefore, when
the gravitational pressure becomes relevant, these objects have both decreasing pressure and
energy density away from their core.

Following App. C.3, we find that the maximal radius for constant energy density objects in
the δm∗ � 1 limit is approximately given by

Rmax
const ∼


MP

m
8/6
∗ (εNGS)1/6

δm
1/2
∗

(
m4
∗

εNGS

)(
f
MP

)
� 1

M
7/6
P

δm
1/12
∗ m2

∗f
1/6

δm
1/2
∗

(
m4
∗

εNGS

)(
f
MP

)
� 1

. (6.48)

To conclude, let us note that a simple prediction regarding the mass-radius relation can be
given for objects in the NGS with densities of order ρNGS; this is the region in the EOS where
the energy density becomes almost constant as p→ 0, approaching the critical value ε→ εNGS.
The mass of these constant-density objects is then given simply by the product of the energy
density times the volume

M/R3 ' 4π

3
εNGS . (6.49)

Their compactness, scaling as C ∝ R2, is much smaller than for stars in the NGS, since their
radius is much smaller. As we have explained above, as the radius grows the gravitational
pressure becomes important and the energy density acquires a non-trivial profile, and one returns
to the predictions given in Eq. (6.43).
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6.2. Heavy Neutron Stars from Light Scalars

6.2.3 Case studies

Bounded m∗(θ) solutions

We begin the analysis with models in which m∗(θ) is bounded from below and does not cross zero,
such that the high-density value of the scalar is θ∞ defined by (∂m∗/∂θ)|θ=θ∞ = 0. We analyze
these models in the negligible gradient limit, with the additional assumption that θ jumps from
the trivial phase θ = θ0 to the θ = θ∞ phase. This is a good approximation if (∂m∗/∂θ)|θ=θ0 ,
as well as (∂V/∂θ)|θ=θ∞ , are sufficiently small. The first of these conditions has to be fulfilled if
the model is not to be excluded by fifth force experiments, and effectively corresponds to taking
n = 2 in Eq. (6.27). The second condition is only necessary for our model-independent treatment
and can easily be violated in explicit models. Then, under these assumptions, the parameter
space is reduced to simply {m∗(θ∞), V (θ∞)}. As described in Sec. 6.2.2, the two phases could
either coexist, leading to hybrid star configurations or describe a meta-stable phase and a new
absolutely stable phase of matter. The boundary line between the CE region and the NGS
region in the {m∗(θ∞), V (θ∞)} plane is given by

p(θ∞, µ = m) = p(θ0, µ = m) = 0 . (6.50)

In the CE region, the two phases meet at some critical chemical potential µCE
c at equal pressures.

In contrast, in the NGS region, it is more convenient to find the meta-stable and stable branches
using ρ as a free parameter. The critical number density ρc, which determines the edge of the
homogeneous (meta-stable) branch in the CE (NGS) region,10 is defined by the scalar density
in which the second derivative of the effective scalar potential flips sign,

ρs(θ0, ρc) = −
(
∂2V/∂θ2

∂2m∗/∂θ2

)∣∣∣∣
θ=θ0

, (6.51)

where we have expressed the scalar density in terms of the number density.
The total mass M and radius R of the stars are found by solving Eq. (3.1) numerically and

scanning over the parameter space. In Fig. 6.11, we show the contours of constant mass and
radius for the most massive stars in the NGS region. For small values of V (θ∞), the constant
M and R contours are approximately V (θ∞)-independent. The increase in mass and radius of
the NGS stars are solely due to a decreased fermion mass. We recover the same scaling as in
Eq. (6.41). On the other hand, near the gray region in (the upper-left part of) Fig. 6.11, the
NGS becomes ultra-relativistic, thus the EOS is nearly m∗(θ∞)-independent, and we recover
the scaling of Eq. (6.42). As expected, larger values of V (θ∞) make the EOS softer, resulting in
lighter stars.

Let us comment on the gray region in Fig. 6.11. It indicates where we expect the θ = θ∞
approximation to break down. This happens when the scalar density in the θ = θ∞ phase,
ρs(θ∞, µ), drops below a value given by

ρ∞s = −
(
∂V/∂θ

∂m∗/∂θ

)∣∣∣∣
θ=θ∞

. (6.52)

The exact position of the boundary of the gray region is in general, model-dependent. That
plotted in Fig. 6.11 corresponds to models with m−m∗(θ) ∝ V (θ) (e.g. the QCD axion and its
lighter variations, see Secs. 2.3 and 6.2.3), in which ρ∞s = V (θ∞)/(m−m∗(θ∞)). In general, this

10In general, the homogeneous branch in the CE region also includes a meta-stable part which probes the
θ = θ0 EOS above the critical pressure determined by the Maxwell construction, pCE

c , but below the critical
number density.
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Figure 6.11: The {m∗(θ∞), V (θ∞)} parameter space. The black line is the CE-NGS boundary,
Eq. (6.50). Curves of constant stellar mass and radius for the most massive configuration allowed
by the EOS are shown in dashed and solid gray, respectively. In the gray region, the θ = θ∞
approximation breaks down. In the brown region, neutron stars are not dense enough to source
the scalar. We also show where different models that conform to our simplified treatment lie in
this plane: the QCD axion (red dot), see Sec. 2.3; light QCD axions (purple line), Sec. 6.2.3;
and two generic axion benchmark points (blue dots), Sec. 6.2.3, with m∗(θ∞) = mN/2 and
V (θ∞) = 2× (0.075 GeV)4 (BM1) and m∗(θ∞) = mN/3 and V (θ∞) = 2× (0.075 GeV)4 (BM2).
The thick-blue line describes a UV completion from a f(φ)GG interaction that allows for large
nucleon couplings. As indicated by the arrows, this model can populate most of the parameter
space although with decreasing calculability towards small m∗(θ∞), which we indicate with a
decreasing opacity. See App. C.4 for more details. Below the green contours, finite gradient
effects become important for the corresponding value of f shown.
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Figure 6.12: Top panel: Energy density (left) and pressure (right) profiles of solutions to
the TOV equations. In red a configuration in the BM2 axion model with R = 17 km and
M = 1.6M�, and in black the free Fermi gas solution of equal radius and M = 0.4M�. Bottom
panel: Profiles for stars of equal mass, M = 0.25M�, and R = 9.8 km and R = 23 km for the
BM2 benchmark and the free Fermi gas, respectively.

region in which θ does not jump all the way to the point where ∂m∗/∂θ = 0 depends strongly
on the shape of V (θ) and m∗(θ) and it has to be determined numerically.

Let us also discuss the validity of the negligible gradient limit, which we have assumed to
hold in the discussion above. Finite gradient effects become important as soon as λφ ∼ R,
where recall λφ ≡ f/Λ2

eff, see Eq. (6.35). At high densities, we have Λ4
eff = −ρs(∂m∗/∂θ) (see

Eq. (C.31) and the associated discussion), which we can approximate as ρNGS[m−m∗(θ∞)]. As
a result, most of the parameter space in Fig. 6.11 is valid for f � (1017− 1018) GeV, except for
the lower-right corner, as indicated by the green lines. As we show below, finite gradient effects
typically suppress the deviations from the ideal Fermi gas, thus the results of Fig. 6.11 represent
the maximal effect one can expect from a sourced scalar.

Before moving to the discussion of specifics models with bounded m∗(θ), it is worth illus-
trating already here the effects of a sourced scalar field on the configuration of stars in the NGS.
In Fig. 6.12 we show in red the energy density and pressure profiles of a representative point in
the BM2 axion benchmark (see Fig. 6.11), and compare it with the free Fermi gas solution, in
black, of either similar radius (top panel) or similar mass (bottom panel). The emergence of the
NGS can be deduced from the behavior of the energy density at the edge of the star, where it
does not vanish even though the pressure does. We do not show the scalar profile since for this
benchmark λφ � R and therefore, the transition from θ∞ to θ0 is very narrowly localized at the
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Chapter 6. How Light Scalars change the Stellar Landscape

edge of the star.

The QCD axion

The QCD axion is an elegant solution to the strong CP problem as we have seen in Sec. 2.3
where the QCD θ̄-angle is promoted to a dynamical field. Here we introduce again the relevant
properties of the QCD-axion. The Lagrangian at energies above the QCD scale is

Lφ ⊃
1

2
(∂φ)2 +

g2
s

32π2

φ

f
GµνG̃

µν . (6.53)

Here gs is the strong coupling constant and Gµν is the gluon field strength. At energies below
the QCD confinement scale, a potential for the QCD axion is generated by non-perturbative
effects,

V (φ) = −m2
πf

2
π

(√
1− zud sin2

(
φ

2f

)
− 1

)
, (6.54)

where zud = 4mumd/(mu +md)
2. In vacuum, this potential is minimized at 〈φ〉 = 0, such that

CP is conserved, thus solving the strong CP problem.
A non-derivative coupling of the QCD axion to nucleons (neutrons and protons) is also

generated at low energies, giving rise to a scalar-dependent fermion mass, see e.g. [11, 234]

m∗(φ) = mN + σπN

(√
1− zud sin2

(
φ

2f

)
− 1

)
, (6.55)

where σπN ≈ 50 MeV is the so-called nucleon sigma term, and we neglected isospin-violating
contributions.

Following our definitions in Eq. (6.27), the QCD axion belongs to the case with n = 2, i.e.
a quadratically coupled scalar, and we can identify

M2
φ =

2mN

zudσπN
f2 , m2

φ =
zud
4

m2
πf

2
π

f2
, Fφ = fφ = f . (6.56)

Given that Mφ � Fφ, fφ, higher-order terms in φ are generically relevant. In addition, it
is natural to identify the characteristic scale of the scalar with the axion decay constant f ,
therefore f ≡ f and θ ≡ φ/f . The in-vacuum value of the scalar is then θ0 = 0.

At finite baryon density, one can identify an effective in-medium QCD axion potential, which
at leading order in chiral perturbation theory reads [11,186]

Veff(φ, ρs) = V (φ) + ρs [m∗(φ)−mN ] =

(
1− σπNρs

m2
πf

2
π

)
V (φ) . (6.57)

This potential is only valid at low densities, below around nuclear saturation, ρs ' ρ . ρ0, while
the exact form of the potential at high densities is unknown. This means that, for the QCD
axion, keeping only the low-density potential is not realistic. Indeed, the critical density for
scalarization Eq. (6.51), where θ = θ0 becomes unstable, would be given by

ρs(0, ρc) =
m2
πf

2
π

σπN
, (6.58)

which implies ρc � ρ0 and therefore beyond perturbative control. In addition, at leading chiral
order, the pions become massless at such densities, clearly invalidating our treatment of the ax-
ion. Nevertheless, it has been discussed in Chap. 5 (see Ref. [11]) that the sourcing of the QCD
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axion could be triggered by Kaon condensation. The latter is a possibility widely considered in
the literature, particularly concerning the so-called hyperon puzzle, see e.g. [153]. For the rest
of this section, we assume that our simple treatment based on an axion-dependent nucleon mass
given by Eq. (6.55), and the corresponding effective potential in Eq. (6.57), hold at all relevant
densities, keeping in mind that the high-density dynamics of QCD has a critical impact on the
possibility that the axion actually leads to scalarized NSs. What we learn is still useful since
for a lighter version of the QCD axion, discussed in Sec. 6.2.3, the relevant densities are much
lower and, therefore, under perturbative control.

In the negligible gradient limit, the system is minimized at θ∞ = π for densities ρ > ρc, which
implies

m∗(θ∞) = mN − σπN
(
1−
√

1− zud
)
, V (θ∞) = m2

πf
2
π

(
1−
√

1− zud
)
. (6.59)

Recall that in this case, the high-density value of the scalar corresponds to ∂m∗/∂θ = 0, which
sets 〈φ〉 = πf � Mφ. This constitutes, therefore, an example of screened scalarization, where
the screening is due to higher-order terms in the interaction of the scalar with matter. NSs with
a sourced QCD axion belong to the CE region only, see Fig. 6.11. This is because the chemical
potential corresponding to the critical density is much larger than mN ; see the discussion in
Sec. 6.2.2. Since the QCD axion with λφ � R is compatible with all the assumptions discussed at
the beginning of Sec. 6.2.3, itsM -R curve can be calculated given the values of {m∗(θ∞), V (θ∞)},
see the left panel of Fig. 6.13 (red curve).

Moving beyond the negligible gradient limit, we show the resulting M -R curves, found by
solving the full coupled system of Eq. (3.1), in the right panel of Fig. 6.13, for different values of
f . As expected, the phase transition from θ0 = 0 to θ∞ = π leads to a softening of the EOS and
therefore to less massive stars. The larger stars follow the free Fermi gas line, as their densities
are sub-critical, i.e. ρ(r = 0) < ρc. Smaller and denser configurations are hybrid stars, composed
of a core in the θ∞ phase and an exterior region in the θ0 phase. Two particular features can
recognize the effect of the gradient. First, the inner core of the homogeneous stars (on the right
branch) can have a region that is above the critical density, as long as this region is smaller than
the effective in-medium wavelength of the scalar field λφ ∝ f . Higher values of f trace the Fermi
gas line (solid black) until smaller radii and larger masses, at which point a large enough central
region is created and it is energetically favorable for the high-density phase to form. Second, for
high values of f the start of the hybrid branch consists of configurations where the axion is not
fully sourced, i.e. the value of the field does not reach θ∞ at the core, thus forming a thick-wall
bubble. In such configurations, the transition region of the scalar inside the hybrid star occupies
a significant fraction of the whole object, which modifies its equilibrium configuration. This
explains the visible deviations of the finite f hybrid branches (solid colored lines) compared to
the negligible gradient limit (dashed line). However, at higher internal pressures, once the QCD
axion is fully sourced, indicating a thin-wall bubble, all the curves in the M -R plane converge,
particularly to a similar maximal mass configuration. This is not a surprise, since the existence
of a thin wall is tantamount to a negligible gradient, λφ � R.

Lighter QCD axions

In this subsection we review the relevant properties of lighter than expected QCD axions as
discussed in Sec. 2.5.

The QCD axion solution to the strong CP problem has been recently extended by relaxing
the relation between the potential of the axion and its coupling to the SM [73, 74, 186]. These
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Figure 6.13: Left panel: M -R curves in the negligible gradient limit for several benchmark
cases as indicated in the legend, with ε = 10−4 for the light QCD axion. Also shown two
representative constraints at the 68% confidence level on NS masses and radii, obtained from
low-mass X-ray binaries during quiescence (NGC 6304) and thermonuclear bursts (KS 1731-
260), taken from [135]. In orange we plot the mass measurement of the millisecond pulsar
J0740+6620, taken from [126]. The gray regions are the theoretically excluded regions with
C = GM/R 6 1/2 (Black hole), Buchdahl’s limit C 6 4/9 (p < ∞), and C . 0.35 (Causality;
see the discussion below Eq. (6.43)). Right panel: M -R curves for the QCD axion. The free
Fermi gas without the axion (solid black), the negligible gradient limit (dashed black), and
including finite gradient effects for f = {5×1016, 1016, 1015}GeV in (solid) red, purple, and blue
respectively. The light-colored curves are unstable configurations.

110



6.2. Heavy Neutron Stars from Light Scalars

QCD axions are lighter than usual, a fact that gives rise to novel astrophysical signatures [14,
75,186,235].

For our purposes, the only yet key difference w.r.t. the standard QCD axion is a suppressed
(in-vacuum) axion potential, which can be parametrized as

V (φ) = −εm2
πf

2
π

(√
1− zud sin2

(
φ

2f

)
− 1

)
, (6.60)

with ε < 1. Conversely, the axion-dependent nucleon mass remains the same, see Eq. (6.55).
Therefore, this model can be characterized by the same scales as the QCD axion, Eq. (6.56),
except for the scalar mass, which now reads

m2
φ = ε

zud
4

m2
πf

2
π

f2
. (6.61)

As a consequence, the effective potential at finite density is given by

Veff(φ, ρs) =

(
1− σπNρs

εm2
πf

2
π

)
V (φ) . (6.62)

Due to the relative enhancement of the finite density corrections, the critical density where θ0

is no longer a minimum is ε-suppressed compared to that of the QCD axion,

ρs(0, ρc) = ε
m2
πf

2
π

σπN
. (6.63)

This is crucial since, as opposed to the QCD axion, for small enough ε the transition to the θ∞
phase may occur at such low densities that chiral perturbation theory is valid and the pions
are heavy (ρc < ρ0), making our treatment in terms of a scalar-dependent nucleon mass and
Eq. (6.62) a viable approximation. In that case, we can reliably infer that in the “high-density”
regime, ρ > ρc, ∂m∗/∂θ = 0 sets θ∞ = π in the negligible gradient limit. While this leads to
the same m∗(θ∞) as for the QCD axion, V (θ∞) is ε-suppressed,

m∗(θ∞) = mN − σπN
(
1−
√

1− zud
)
, V (θ∞) = εm2

πf
2
π

(
1−
√

1− zud
)
. (6.64)

Because of the smaller potential in the scalarized phase, the NGS is now accessible if ε is small
enough. Since all the parameters in Eq. (6.64) except for ε are fixed experimentally (zud ≈ 0.88,
mπ ≈ 135 MeV, fπ ≈ 92 MeV), one can phrase the condition for the existence of a NGS, see
Eq. (6.50), as the following upper bound

ε .
4
√

2

15π2

m4
N

m2
πf

2
π

(
σπN
mN

)5/2 (
1−
√

1− zud
)3/2 ≈ 0.07 . (6.65)

at leading order in σπN/mN (in the non-relativistic limit). The number density of the axionic
(absolutely stable) ground state is given, under the same approximations, by

ρNGS ∼ [m∗(θ∞)V (θ∞)]3/5 ∼
(
εmNm

2
πf

2
π

)3/5
. (6.66)

Since the light QCD axion with λφ � R is compatible with all the assumptions discussed at the
beginning of Sec. 6.2.3, its M -R curve can be calculated given the values of {m∗(θ∞), V (θ∞)},
see the left panel of Fig. 6.13 (purple curve). As expected, since the EOS of the NGS is slightly
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stiffer, it leads to slightly more massive stars than the free Fermi gas, enhancing the maximal
mass of NSs by (mN/m∗(θ∞))2 − 1 ≈ 10%.

Moving beyond the negligible gradient limit, we show the resulting M -R curves, found by
solving the full coupled system of Eq. (3.1), in the left panel of Fig. 6.14, for different values of f .
Let us note that comparing the analytic estimate in C.31 with the end of the meta-stable branch,
one finds O(1) deviations from finite gradient effects. While expected, this has implications for
the robustness of bounds on lighter QCD axions derived from GW observations from the NS
merger GW170817 [235]; indeed, assuming similar deviations away from the λφ � R limit for
the NSs in the binary, we find a weakening of the bound at large f , precisely where they are
relevant, by a factor of a few. Interestingly, we find that the axion halo responsible for the
long-range force, which extends much further than the radius of the star (defined by pψ(R) = 0)
contributes negligibly to the mass of the system.

While lighter QCD axions lead to a moderate enhancement of the maximal NS mass, they
also lead to other striking signatures. The instability of the EOS at intermediate densities,
namely between the critical density and NGS density, leads to a gap in the M -R curve between
the meta-stable branch and the stable branch, clearly visible in Fig. 6.14. As explained in
Ref. [14], the gap moves to smaller radii for higher values of f . Ideally, once the M -R plane is
sufficiently populated with accurately measured masses and radii of NSs, the observation of such
a gap would be a smoking-gun signal for this type of BSM physics, since standard QCD EOSs
do not predict such gaps. On the other hand, the non-observation of a gap would lead to tight
constraints on the parameter space of such models. This rationale has been recently followed
in Ref. [14], where the M -R distribution of white dwarfs was used, leading to the experimental
bound ε . 10−8, stronger than the bounds from the Earth and the Sun [186]. We stress that the
bounds arising from the existence of a NGS accessible in white dwarfs, and the corresponding
gap in radii, are qualitatively very different than the strategy proposed in Ref. [186], which
relies on the change of the properties of nuclei, and the corresponding change in X-ray emission,
when a (lighter) QCD axion is displaced to θ = π [234]. Let us also recall that there are other
(weaker) astrophysical and cosmological bounds on f , see [87] as well as [89,275], which rely on
the derivative couplings of axions to the nucleon axial current and the nucleon EDM, which also
arise at low energies from Eq. (6.53).

Another interesting prediction associated with lighter QCD axions is the existence of SBOs
(see Sec. 6.2.2), with a range of radii that can potentially span many orders of magnitude, from
microscopic to a few km, depending on the value of f . At zero temperature, these objects are
absolutely stable and cannot decay. We leave the study of the phenomenology of these objects
for future work.

Axion-like particles

Motivated by the interesting phenomenological signatures associated with the existence of a
new ground state of matter in lighter versions of the QCD axion, in this section, we wish to
explore the possibility that a light scalar has a larger (non-derivative) coupling to nucleons while
keeping its potential tunable. A possible UV completion of such a scenario, based on a f(φ)GG
interaction above the QCD scale, is presented in App. C.4.

For concreteness, we choose the bounded function f(φ) = (1 − cos(φ/f))/2, such that the
scalar-dependent nucleon mass and the scalar potential are

m∗(θ) = mN

[
1 +

g

2
(cos θ − 1)

]
, V (θ) = −Λ4(cos θ − 1) , (6.67)

where θ ≡ φ/f , the dimensionless factor g parametrizes the reduction of the fermion mass when
θ 6= θ0 = 0, and the scale Λ sets the overall scale of the potential.
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Figure 6.14: Left panel: M -R curves for a light QCD axions with ε = 6×10−9. The free fermi
gas without axion (solid black), the negligible gradient limit (dashed black), and including finite
gradient effects for f = {5 × 1016, 1016, 1015}GeV in (solid) red, purple, and blue respectively.
The light-colored curves are unstable configurations. Note that the metastable branch for the
lowest f is not within the range of the plot. Right panel: M -R curves for the ALP benchmark
BM1. The free Fermi gas without axion (solid black), the negligible gradient limit (dashed
black), and including finite gradient effects for f = {5 × 1016, 1016}GeV in (solid) red and
purple, respectively.

Following Eq. (6.27), we further identify n = 2 and

M2
φ =

4f2

g
, m2

φ =
Λ4

f2
, Fφ = fφ = f , (6.68)

with Mφ � Fφ, fφ when g � 1.
As in the previous sections, it is illuminating to first consider the negligible gradient limit.

At densities above the critical density, implicitly given by

ρs(0, ρc) =
2Λ4

gmN
, (6.69)

the system is minimized at θ∞ = π for 0 < g < 1. The (unbounded) case g ≥ 1 will be discussed
in Sec. 6.2.3. For negative g, the scalar field will always stay at θ0 = 0 since any deviation from
the in-vacuum value would result in an increase of the nucleon mass. As for the (light) QCD
axion, scalarization is screened if g � 1 due to higher-order scalar terms in m∗.

We use Eq. (6.67) as a simple parametrization of any bounded-m∗ model that can be mapped
to any point in Fig. 6.11 according to

m∗(θ∞) = mN (1− g) , V (θ∞) = 2Λ4 . (6.70)

For the sake of exposition, let us derive the condition for the existence of the NGS in two different
simple limits. For a non-relativistic Fermi gas, the NGS arises when

Λ4 .
2
√

2

15π2
m4
Ng

5/2 +O(g7/2) , (NR) (6.71)
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where we expanded in g � 1. The corresponding ground state number density is given by

ρNGS ∼
(
mNΛ4

)3/5
+O(g) . (NR) (6.72)

Instead, in the ultra-relativistic limit and expanding around g = 1, there exists a NGS for

Λ4 .
m4
N

24π2
+O((1− g)2) , (UR) (6.73)

with the ground state starting at a density

ρNGS ∼ 2Λ3 , (UR) (6.74)

with no (1− g) corrections at leading UR order. Note that although we have chosen g � 1 for
a NR system and 1− g � 1 for an UR one, there certainly exist UR configurations with g ' 0
and NR ones with g ' 1.

While the simple ALP model defined by Eq. (6.67), in the negligible gradient limit, is a proxy
for any model that populates the parameter space {m∗(θ∞), V (θ∞)}, with the resulting maxi-
mal mass and corresponding radii shown in Fig. 6.11, finite gradient effects, on the other hand,
are model-dependent; they are sensitive to the particular shape of the scalar potential and the
scalar-dependent fermion mass.

To illustrate these finite gradient effects, we consider a benchmark point marked in Fig. 6.11
as BM1. This benchmark is defined by

BM1: g = 0.5 , Λ = 0.075GeV , (6.75)

where we expect to find meta-stable configurations with densities that are at most of the order
of the critical density, in this case

ρc ≈ 0.017 fm−3 ≈ 0.1ρ0 . (6.76)

The absolutely stable configurations are composed purely of the NGS phase, characterized by
number and energy densities similar to those of nuclei

ρNGS ≈ 0.17 fm−3 ≈ ρ0 , εNGS ' mNρ
NGS ≈ ε0 = 2.5× 1014 g/cm3. (6.77)

Taking gradient effects into account, we find SBOs with their (numerically computed) minimal
and maximal radii given by

RSBO
min ' (25 m)

(
f

1015GeV

)
, RSBO

max ' (2.3 km)

(
f

1015GeV

)1/3

. (6.78)

These values are consistent with the analytical estimates given in App. C.3. For objects with
radii larger than RSBO

max , gravity becomes relevant and eventually dominant over the scalar force.
However, as long as the energy density of the object is approximately constant, the mass and
radius are related by Eq. (6.49), in this case

M ' (5× 10−4M�)

(
R

1 km

)3

, (6.79)

which is independent of f .
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In the right panel of Fig. 6.14 we show the M -R curves, found by solving the full coupled
system of Eq. (3.1), for f = {5 × 1016, 1016}GeV and in the negligible gradient approximation
(f/MP → 0). At large radii, we find the low-density meta-stable branch corresponding to the
free Fermi gas with no scalarization, while at small radii we find the absolutely stable branch,
with a large gap (compared to the typical radius) between them. Note as well that the maximal
NS mass with a sourced ALP is much larger than without scalarization. As shown in the left
panel of Fig. 6.13, for values of f such that scalar gradients are negligible, the enhancement
of the maximal mass is even more pronounced for the benchmark denoted by BM2 (dark blue
curve), defined by a larger g = 2/3 compared to BM1, with the same Λ. Indeed, in the case of
large g, i.e. small m∗(θ∞), this ALP model leads to a large enhancement of the maximal mass
of NSs, following Eq. (6.41). This is in contrast to the expected reduction in mass due to the
softening of the EOS as a result of additional SM degrees of freedom, e.g. hyperons or more exotic
possibilities such as meson condensation and first-order phase transitions, see e.g. [101,127,152].

Unbounded m∗(θ) solutions

We now turn to the analysis of models in which m∗(θ) is unbounded and vanishes asymptotically,
i.e. m∗(θ = θ∞) = 0, which defines the high-density value of the scalar θ∞. As discussed in
Sec. 6.2.2, θ approaches θ∞ at asymptotically large densities, following the curve in Eq. (6.37).
At such high densities and whenever scalar gradients can be neglected, the maximal mass and
corresponding radius only depend on V (θ∞) and are given by Eq. (6.42), which recall follows from
the ultra-relativistic limit of the EOS. In the following, we consider two concrete realizations of
such a scenario: linearly- and quadratically-coupled scalar fields, n = 1 and 2 in our classification
of Sec. 6.2.1.

Linear coupling to matter Let us consider a scalar that couples linearly to nucleons and
has a simple quartic potential,

m∗(φ) = mN

(
1− φ

Mφ

)
, V (φ) =

1

2
m2
φφ

2 +
λ

4
φ4. (6.80)

Following Eq. (6.27), we can easily identify the scales that characterize this model, besides its
mass mφ and interaction strength with matter 1/Mφ,

Fφ →∞ , fφ =

√
2m2

φ

λ
. (6.81)

In addition, since the high-density limiting value of the scalar field corresponds to a vanishing
m∗, it is natural to identify the typical scale of the field as f ≡Mφ, thus θ ≡ φ/Mφ.

Let us start by considering the limit fφ � Mφ, in which we can neglect the quartic term in
the potential for all field excursions, i.e. higher-order terms in φ are irrelevant. The stellar
structure of this model was recently investigated in Ref. [257]. In the following, we re-derive
some of the results and pay special attention to the impact of fifth-force bounds.

A linearly-coupled scalar is always sourced at finite density, leading to a fifth force even
between dilute and small objects. Despite this fact, as discussed in Sec. 6.2.2 for the unbounded-
m∗ case, only when densities are of order ρs,∞ in Eq. (6.37) we can expect appreciable effects
due to the scalar field being significantly displaced from its in-vacuum value, i.e. θ ∼ θ∞ = 1.
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This corresponds to number densities (implicitly) given by

ρs(θ ∼ θ∞, ρ) ∼ ρs,∞ =
m2
φM

2
φ

mN
, (6.82)

and assumes finite gradient effects are negligible, i.e.

R� λφ ∼
Mφ√

ρs,∞|∂m∗(θ)/∂θ|
= m−1

φ , (6.83)

following Eq. (C.31) (taking ρ̄s ∼ ρs,∞ and ∆θ ∼ 1). The parameter space of this model is
effectively one-dimensional, since

m∗ ∼ mN , V ∼ m2
φM

2
φ , (6.84)

where recall m∗(θ∞) = 0, and therefore the dimensionless ratio

c ≡ 1

2

m2
φM

2
φ

m4
N

. (6.85)

suffices to describe the phase of the system. As expected, only for small values of the scalar
potential, i.e. of c, there is a NGS (see the discussion around Eq. (6.40)),

c . 0.015 ≡ cNGS . (6.86)

This transition value between the existence of NGS and the CE region has been found numeri-
cally, using the solution of the scalar EOM in the negligible gradient limit, Eq. (6.36). We find
agreement with the results of Ref. [257].

In Fig. 6.15, we show where the transition between the NGS and the CE region lies in
the {mφ,Mφ} plane, and compare it with current fifth-force bounds [276], which exclude the
blue-shaded region. We have dashed the CE-NGS boundary line where gradient effects become
relevant, and we have cut it off altogether at the edge of the gray-shaded region, where gradient
effects are so strong that the field can no longer be significantly sourced. In this region, the
scalar has therefore little to no effect on the configuration of NSs.

In this regard, it is important to take into consideration the size of the scalarized NSs in this
scenario. Close to the CE-NGS boundary, we find as expected no strong deviations from the
standard radii of NSs. In contrast, deep inside the NGS (c� cNGS), we find

Mmax ∼ (0.7M�)

√
cNGS

c
, R(Mmax) ∼ (9.3 km)

√
cNGS

c
, (6.87)

in agreement with Eq. (6.42). Given that λφ ∼ 1/mφ, see Eq. (6.83), and the parametric
estimate for the free Fermi gas radius R ∼ MP/m

2
N , this implies that the negligible gradient

approximation is valid as long as Mφ �
√
cNGSMP ≈MP/10.

As can be seen in Fig. 6.15, the parameter space compatible with fifth-force bounds, which
extend to mφ ∼ µm−1 for Mφ ∼ MP, is far from the NGS line. Assuming that these bounds
can be circumvented, the details of the EOS and stellar structure in this model can be found in
Ref. [257]. However, we expect that a situation where any screening takes place on Earth, such
that fifth-force bounds are evaded, yet it does not take place on NSs, is far from generic at the
very least.
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Figure 6.15: Parameter space of the linearly-coupled scalar model. The black line delimits
the transition between the NGS (above) and the CE region (below). The arrow indicates that
this transition happens at smaller values of Mφ for non-negligible λ. These lines become dashed
when neglecting gradient effects in NSs ceases to be a good approximation and ends at the
gray-shaded region, which indicates a strong gradient where the scalar field has no effect. In
light-blue shaded, we plot fifth-force bounds taken from [276], leading to the conclusion that all
the interesting parameter space is excluded.
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We conclude this section by considering the effect of the quartic term in the scalar poten-
tial. As indicated by the black arrow in Fig. 6.15, a non-negligible λ, i.e. fφ .Mφ, would cause
the NGS-CE boundary line to shift up. Due to the larger contribution to the energy density
and pressure from the potential,

V (θ∞) =
1

2
m2
φM

2
φ

(
1 +

M2
φ

f2
φ

)
, (6.88)

a smaller value of Mφ is needed to reduce the fermion mass and reach the NGS. Such a conclusion
is valid only as long as (scalar) densities are above the new density

ρ(λ)
s,∞ = ρs,∞

M2
φ

f2
φ

, (6.89)

where we have taken fφ � Mφ and ρs,∞ is given in Eq. (6.82). For intermediate densities

ρs,∞ < ρ < ρ
(λ)
s,∞, we effectively have a screened system in which 〈φ〉 ∼ fφ �Mφ.

Quadratic coupling to matter Let us consider next a scalar field that couples quadratically
to nucleons,

m∗(φ) = mN

(
1− φ2

M2
φ

)
, V (φ) =

1

2
m2
φφ

2 +
λ

4
φ4 . (6.90)

Besides the mass mφ and the interaction strength with matter set by 1/Mφ, we identify the
scales associated with higher-order φ terms as in the linear model, see Eq. (6.81). Likewise, the
characteristic scale of the field can be conveniently chosen to be f ≡ Mφ, therefore we define

θ ≡ φ/Mφ.11

As in the linear model, we can differentiate between two opposing limits, the mass-dominated
regime in which higher-order terms in the scalar potential are irrelevant, f2

φ � M2
φ, and the

quartic-dominated regime where instead these control the dynamics, f2
φ � M2

φ. In each of
these regions, the parameter space that determines the phase of the system is effectively one-
dimensional,

c ≡ 1

2

m2
φM

2
φ

m4
N

, or cλ ≡ c
M2
φ

f2
φ

=
λM4

φ

4m4
N

, (6.91)

for the mass- or quartic-dominated regimes, respectively. They have a clear physical interpre-
tation as the contributions to the scalar potential in the high-density limit, V (θ∞), in units of
m4
N (recall m∗(θ∞) = 0),

V (θ∞) =
1

2
m2
φM

2
φ

(
1 +

M2
φ

f2
φ

)
= m4

N (c+ cλ) . (6.92)

As in the linear case, the transition values that separate the CE and NGS regions are found
numerically (neglecting gradients). The NGS exists if the dimensionless coefficients satisfy the
upper bounds

c . 0.0093 ≡ cNGS , and cλ . 0.015 ≡ cNGS
λ , (6.93)

11Note that in the g � 1 limit of the ALP model of Sec. 6.2.3, fields excursion are small (θ � 1), thus the ALP
model can be mapped to this quadratic model with m2

φ = Λ4/f2, λ = −(Λ/f)4/6 and M2
φ = 4f2/g.
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Figure 6.16: Left panel: Parameter space of the quadratic model, with CE above and the
NGS below the solid thick line. The dashed line denotes the same NGS-CE boundary but in the
(Mφ/fφ)2 � 1 or (Mφ/fφ)2 � 1 limit. Thin-black: contours of maximal mass, for clarity only
up to 10M�. Right panel: Maximal mass (solid) and corresponding radius (dashed) of NSs as
a function of V (θ∞).

for f2
φ �M2

φ and f2
φ �M2

φ, respectively. This is shown as the dashed line in Fig. 6.16.

If both contributions to the potential are of similar size, i.e. f2
φ ∼ M2

φ, the parameter space
is two-dimensional. The boundary between the CE and NGS region is again found numerically
and shown as the solid thick line in Fig. 6.16.

The typical densities associated with the NGS can be estimated according to Eq. (6.37). For
the mass- or quartic-dominated regions these are given, respectively, by

ρs,∞ =
m2
φM

2
φ

2mN
= m3

Nc , or ρ(λ)
s,∞ = 2ρs,∞

M2
φ

f2
φ

= 2m3
Ncλ . (6.94)

The scalar field approaches θ → θ∞ asymptotically for densities ρ � ρs,∞ or ρ � ρ
(λ)
s,∞, under

the assumption that the field gradient is negligible, i.e. R � λφ with λφ ∼ 1/mφ or λφ ∼
fφ/(mφMφ)� 1/mφ for a negligible or dominant quartic term, respectively.

Let us also note that in this model, as in the bounded models discussed in Sec. 6.2.3 where
the scalars also couple quadratically to matter at leading order in φ, one can identify a critical
density where the in-vacuum value of the scalar, θ0 = 0, becomes unstable, see Eq. (6.51). We
find, as expected, that this is given by ρs(0, ρc) = ρs,∞. In addition, in the quartic-dominated

regime, i.e. f2
φ � M2

φ, we have ρs,∞ � ρ
(λ)
s,∞. At intermediate densities, ρs,∞ < ρ < ρ

(λ)
s,∞, the

field is destabilized at the origin, ρ > ρc, thus triggering scalarization, yet θ ∼ θ∞ is never
reached. In such a case, the scalar is screened, and we effectively have 〈φ〉 ∼ fφ as a limiting
value.

Deep inside the NGS region, θ ' θ∞, m∗ � mN , and the maximal star mass and correspond-
ing radius are well approximated by Eq. (6.42), with the only relevant dimensionful parameter
given by V (θ∞) in Eq. (6.92). There are O(1) deviations from these approximations near the
NGS-CE boundary, while the deviations are reduced away from the boundary. Numerically,
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we find e.g. that θNGS is ∼ 10% away from θ∞ for c ' 10cNGS, while it is only ∼ 1% away for
c ' 100cNGS, where cNGS are given in Eq. (6.93) for the mass- and quartic-dominated regimes.
The numerically obtained Mmax and R(Mmax) are shown in the right panel of Fig. 6.16.

As opposed to the linearly-coupled scalar, this model leads to large NSs masses (and radii),
SBOs, and a gap in the M -R curve, without being in tension with current fifth-force bounds (see
e.g. [277] for a recent analysis on the experimental tests of the forces mediated by quadratically-
coupled scalars). It is worth pointing out that these conclusions rely on the validity of our
effective description, Eq. (6.90), at large field excursions, such that higher-order φ terms in
m∗(φ) do not play any role. This is a non-trivial requirement on the underlying dynamics,
especially since we assume our model to be valid towards small nucleon masses.

Finally, we discuss other potentially relevant bounds on this type of scalars bilinearly coupled
to nucleons. First, the astrophysical and cosmological bounds that apply to (light) QCD axions
(see end of Sec. 6.2.3), which exhibit as well as quadratic couplings to nuclei, do not generically
apply here; these bounds are associated with IR couplings different than those from m∗(φ)ψ̄ψ,
which are predicted from our knowledge of the UV interactions of the scalar above the QCD
scale, Eq. (6.53). Therefore, without specifying the interactions of the scalar above ΛQCD, such
type of bounds do not generically apply. An example of a possible UV completion, based on a
coupling to the gluon field strength, is provided in App. C.4. Still, robust, general bounds can
potentially be derived given only Eq. (6.90). For instance, as show in Ref. [14], a reduction of
the nucleon mass has a strong impact on the configuration of white dwarfs, whenever these are
large and dense enough to trigger scalarization. It would be interesting to recast such an analysis
to constrain the parameter space of the quadratic model. For other interesting directions, see
e.g. [278], where a bound due to excessive energy loss in supernovae from pair emission of scalars
via NN → NNφφ was estimated to be Mφ & 15 TeV. Let us note however that if the scalar is
sourced during the supernova, a linear coupling for the φ excitation is present and suppressed
by ∼ 1/Mφ. Accordingly, we estimate the bound from single emission to be Mφ & 107 TeV.

6.2.4 Scalar-tensor theories

Scalar-tensor theories of the type first proposed by Damour and Esposito-Farèse [242] can be
equivalently described, as we have done in this paper, via scalar-dependent masses for the (non-
interacting) matter fields. In this section, we re-derive this well-known fact in the context of a
free Fermi gas. For a recent discussion, see [279].

The action for a conformally coupled scalar field, in the Einstein frame, is given by

S =

∫
d4x
√−g

[
M2

P

16π2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm[Ψ, g̃µν ] , (6.95)

with the matter action

Sm =

∫
d4x
√
−g̃
[
Ψ̄iẽµaγ

aD̃µΨ−mΨ̄Ψ
]
, g̃µν = A2(φ)gµν , (6.96)

where D̃µ = ∂µ − iω̃µ is the covariant derivative of a fermion field Ψ in the scalar-dependent
metric g̃µν . The vielbein and spin connection associated with the matter metric g̃µν (a.k.a.
Jordan frame) are related to those of the metric gµν (Einstein frame) as

ẽµa = Aeµa , ω̃µ = ωµ +
1

4
σab(e

νbeaµ − eνaebµ)∂ν logA . (6.97)

Noticing in addition that
√−g̃ = A4√−g, one can perform a scalar-dependent field redefinition

of the fermion, ψ ≡ A3/2Ψ (known as conformal dressing), such that any dependence of the
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matter action on A is eliminated except in the mass term, leading to Eq. (6.28) with

m∗(φ) = A(φ)m. (6.98)

This shows the equivalence of the two pictures when matter is composed of a free massive field.
An equivalent derivation holds if there are more than one species.

At the level of the EOMs and the matter EOS, this equivalence can be seen by noting that
the matter source term in the scalar EOM Eq. (6.5a) is just (working with φ = fθ)

ρs
∂m∗(φ)

∂φ
= Tψ

∂ logA(φ)

∂φ
, (6.99)

since Tψ = gµν(Tψ)µν = εψ − 3pψ = m∗ρs, which matches the source term of a conformally
coupled scalar from Eq. (6.96). Furthermore, let us point out the fact that untilded (Ein-
stein frame) quantities being functions of m∗ and µ, e.g. pψ = pψ(m∗(φ), µ), is consistent
with the fact that the energy-momentum tensors in the Einstein and Jordan frames are re-
lated by (Tψ)µν = A2(T̃Ψ)µν , thus pψ = A4p̃Ψ with p̃Ψ = p̃Ψ(m, µ̃) and µ̃ = µ/A (likewise

k̃F =
√
µ̃2 −m2 = kF /A).

When the matter fields are not free, i.e. departing from the free Fermi gas limit, encoding all the
interactions of a conformally coupled scalar as φ-dependent masses is certainly not enough. For
instance, returning to the case of interest in which the fermion ψ is a nucleon, the introduction of
pion-nucleon interactions in the presence of a conformally coupled scalar would require not only
scalar-dependent pion masses, m2

π∗(φ) = A2(φ)m2
π, but a scalar-dependent pion decay constant

as well, fπ∗(φ) = A(φ)fπ.
This can also be understood by considering the interactions of a conformally coupled scalar

above the QCD scale. While classically (neglecting quark masses for simplicity), the QCD action
with conformally-dressed fields is a priori independent of φ, the trace anomaly gives rise to the
interaction

LGφ = − logA(φ)
β(gs)

2gs
G2
µν , (6.100)

where Gµν is the gluon field strength, gs the QCD coupling constant and β its beta function,
β(gs) = ∂gs/∂ logµ. It is this interaction that leads to the φ-dependence of the low-energy
parameters after QCD confinement, see e.g. [280–282].

This brings us to our final comment, which concerns the radiative stability of a light con-
formally coupled scalar. The trace anomaly is a manifestation of the fact that scale invariance
is not a robust symmetry at the quantum level, with a non-vanishing beta function understood
as an explicit breaking of the dilation symmetry. Such a symmetry would naturally ensure a
hierarchically small mass for the scalar, if this were identified with a bona-fide dilaton, fixing
A(φ) = eφ/Mφ , see e.g. [283] for a neat discussion. However, since the symmetry is explicitly
broken, one should expect a contribution to the dilaton potential

∆V (φ) ∼ M4
UV

16π2

β

gs

φ

Mφ

e4φ/Mφ , (6.101)

on top of the quartic potential allowed by scale invariance, V ∼ M2
UVM

2
φe

4φ/Mφ , with MUV the
cutoff of the scalar effective field theory. If instead the function A(φ) corresponds to a generic
conformally coupled scalar, one would expect ∆V ∼ (M2

UV/4π)2(β/gs) logA(φ). In any case, the
lightness of the scalar, required to yield appreciable effects in stars, is endangered by quantum
effects, unless the cutoff is very low or tuning is invoked, see also App. C.4.
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We finish this section with a brief comment on the previous literature. To our knowledge,
most works on the configuration of NSs in scalar-tensor theories Eq. (6.95) have focussed in a
regime where Mφ ∼MP, see e.g. [268, 284–287] and [237] for a review. As we have discussed in
Secs. 6.2.3 and 6.2.3, in this regime the effects of the scalar gradient cannot be neglected. In
addition, for the functions A(φ) and V (φ) chosen in these works, the NGS of matter is either
absent or it has not been identified. While it would be interesting to reasses these models in light
of our new (microscopic) perspective on the scalarized matter EOS, we recall that the NGS is
generically present in the so-called strongly scalarized scenario where Mφ �MP, see Figs. 6.15
and 6.16.

6.2.5 Conclusions

In this work, we have presented a comprehensive and detailed study of the impact of scalarization
on the configuration of NSs. This is a non-trivial back-reaction effect: a dense and large star
can source the scalar field, which in turn alters the structure of the star. We have shown that
at leading order the relevant (non-derivative) couplings of the scalar to matter can be encoded
as a scalar-dependent nucleon mass. This allowed us to study in a straightforward way how the
EOS of matter, modeled as a free Fermi gas, is affected by scalarization. In the infinite volume
limit, we have shown that the total energy density and pressure of the system receives, beyond
the Fermi gas contribution, a contribution from the scalar potential. It is the interplay between
the change in the matter EOS due to a reduction of the nucleon mass and the scalar potential
that determines the energetically preferred state of the system.

Our analysis has uncovered what can be considered one of the most salient effects of scalar-
ization: the emergence of a new ground state of (nuclear) matter at some finite number density
and zero pressure. The NGS emerges if the change in nucleon mass dominates over the scalar
potential, leading to a larger binding energy per nucleon compared to well-separated nucleons.
We have found that the NGS is quite generic and allowed by current constraints by exploring
several scenarios beyond the SM with a light scalar: the QCD axion and lighter generalization
thereof, generic pseudo-Nambu-Goldstone bosons (which we termed ALPs), and a simple scalar
quadratically coupled to nucleons and with a quartic potential.

The phenomenological implications of scalarization, and in particular of the emergence of
the NGS, are striking. Because a reduction of the nucleon mass leads to a stiffer EOS, NS
masses far beyond the maximal mass predicted by the standard causal bounds can be reached.
These stars are also much larger, such that their compactness is approximately the same as that
of a free Fermi gas. On the other hand, the contribution of the scalar potential to the energy
and pressure softens the EOS. When this effect dominates, we have found stars in a hybrid
configuration, where a scalarized core coexists with the rest of the star in the standard phase.
NSs with a phase transition within them are lighter yet unusually compact. In addition, because
the standard phase of matter is in fact meta-stable yet (very) long-lived when the scalarized NGS
exists, we have found that the M -R relation exhibits an instability gap in radii, in which no
stars should be found. In connection to this fact, we have discovered that the new, absolutely
stable branch extends down to small self-bound objects in the NGS, held together by the scalar
force instead of by gravity. These SBOs have properties, such as mass and compactness, which
greatly differ from those of standard stellar remnants.

We have provided analytic, semi-model-independent estimates of key quantities such as crit-
ical densities for scalarization, maximal mass of NSs and corresponding radius, as well as min-
imal and maximal sizes of SBOs. Whenever possible, we have also analytically determined the
boundary of the parameter space where the NGS exists, as well as the new ground-state number
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density of matter, for the different scalar scenarios under consideration. These estimates make
the physics transparent, and we have checked all of them against numerical simulations. In this
regard, we paid special attention to finite gradient effects, associated with the non-trivial profile
of the scalar in finite volume systems, i.e. stars in our case. These contributions to the energy
density and (anisotropic) pressure are important when the in-medium characteristic wavelength
of the scalar field is of the order of the size of the object, and they lead to important departures,
especially when the typical scale of the scalar f is close to MP.

We have also made explicit the connection between our analysis and the popular scalar-
tensor theories, in the hope that our fresh perspective will contribute to elucidating their full
dynamics and whole range of phenomenological implications.

Our results shed new light on the already clear importance of future electromagnetic and grav-
itational wave observations of compact stellar objects in general and NSs in particular. Indeed,
observatories such as NICER and LIGO have the potential to discover signs, like very heavy NSs
and gaps in radii, that could ideally be considered as smoking-gun signals of the scalarized NGS
of matter. Certainly, many degeneracies are at play here, such as astrophysical uncertainties
in the expected NS-BH mass gap along with the experimental difficulties in discerning between
these two types of compact objects, large experimental errors in the determination of NS radii,
or theoretical uncertainties in the EOS of NS matter. However, many of these constitute in
principle a reducible background that could be greatly reduced thanks to the vigorous current
and future experimental program in astrophysics. Besides, while a leap in our theoretical un-
derstanding of dense matter is not in foresight, for many of the scalar scenarios we considered,
the relevant densities fall within perturbative control. Indeed, bounds on lighter QCD axions
have already been derived from the effects of the NGS on the configuration of the much more
dilute white dwarfs [14]. The uncertainty in the EOS is, unfortunately, most pronounced for the
case of the QCD axion, where the possibility of scalarization itself is speculative. Furthermore,
let us note that, with the exception of the linearly-coupled scalar, for all the other models we
considered there is wide parameter space open to further experimental exploration. This in turn
means these models can be tested with other, complementary probes: pulsar timing, stellar
energy loss, long-range forces in binary mergers, or superradiance (see e.g. [76] for an overview
of the status of (light) QCD axions).

We conclude with a summary of the directions that we believe deserve further investigation.
An important question that we did not explore concerns the formation of stellar objects in
the NGS, for which there are many non-trivial aspects to consider. Importantly, its answer
is of no consequence to our findings, which concern the long-time, non-dynamical structure of
stellar remnants. A related question concerns the cosmological evolution and phenomenological
implications of the SBOs, which can be as small as the Compton wavelength of the scalar.

It would be interesting to extend our analysis to more realistic EOSs. We have found, using
a free Fermi gas description, that pure neutron matter can be effectively self-bound at high
densities due to the scalar dynamics. We expect that, by considering a more realistic EOS,
this picture does not qualitatively change and asymmetric nuclear matter is self-bound as well.
From our ongoing work we already have indications that this is the case when including nuclear
interactions mediated by pion exchange, even incorporating the effects that scalarization has on
the interactions themselves (e.g. a change in the mass of the pions); we have explicitly checked
this for lighter QCD axions. Therefore, the emergence of a scalarized ground state of matter
seems to be robust in the regime where we retain perturbative control.
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Chapter 7

Phase Transitions from Stars

In this chapter, we study the potential detection of a transition between distinct vacua, specifi-
cally those initiated by dense compact objects such as stars.

To facilitate a lucid discussion of the underlying physics, we commence the first section of this
chapter by considering a straightforward potential, following Coleman’s framework (reference
[288]). This potential involves a quartic of a single scalar field denoted as φ, incorporating a Z2

symmetry, φ→ −φ, which is explicitly broken by a linear term. The potential of the scalar field
is such that in vacuum it sits in the metastable minimum.

The existence of a barrier separating the two minima is argued to diminish with increasing
density, motivated by known examples such as QCD. Consequently, for sufficiently high densities,
the metastable minimum vanishes, resulting in the development of a non-trivial scalar profile
within the dense system similar to as we have seen in Chap. 5 and Chap. 6. While in our
previous models the scalar was in the true ground state of the theory in vacuum, in the scenario
where it sits in a meta-stable minimum in vaccum, an instability can occur that can lead to the
permeation of a bubble throughout the entire system. This is of course dependent on the density
profile and evolution of the star under consideration. If triggered, these bubbles can escape and
propagate indefinitely, driven by the scalar residing in the absolute minimum within the bubble
which now extends far beyond the star. One can think of the star as a sort of catalyst for the
scalar phase transition. These seeded phase transitions hold potential catastrophic implications
for our universe.

Given our primary focus on classically allowed transitions to the true vacuum, they manifest
as soon as sufficiently dense and large stars are formed. These late-phase transitions, occurring
at redshifts approximately z ∼ 20, give rise to a change in the vacuum energy relative to
the value from measurements of the Cosmic Microwave Background (CMB). This enables us
to constrain the parameters of the scalar potential, subject to the type of star that triggers
the phase transition. However, if the energy difference between the two minima is sufficiently
minute, these phase transitions might prove non-lethal and potentially observable through future
cosmological and astrophysical observations.

In the second part of this chapter we introduce the Higgs hierarchy problem, which motivates
models of dynamical relaxation such as the relaxion (see Ref. [10]), characterized by a scalar
potential in the form of a tilted cosine. We discuss relaxion models in the third part of the
chapter and apply our findings of part one to relaxion models. The magnitude of the relaxion
potential is determined by the QCD quark condensate or the Higgs vacuum expectation value
(VEV), both sensitive to baryonic densities found in stars. Consequently, the formation and
subsequent escape of such bubbles yield stringent new constraints on the parameter space of
these models.
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All figures and substantial portions of the text presented in this chapter originate from
references [12] and [13].

7.1 Density induced Vacuum Instabilities

This section is organized as follows. We present the simple scalar potential with two minima
separated by a density dependent barrier in Sec. 7.3.1 and study its properties. The next section,
Sec. 7.1.2, is devoted to the properties of compact objects relevant for classical bubble formation.
This will be the topic of Sec. 7.1.3, where we continue with the determination of conditions that
lead to the bubble escaping the star and have a look at the formation of bubble via quantum
tunneling in the presence of a density background. After this we are left with the exploration
of phenomenological consequences of star triggered late-time phase transitions in Sec. 7.1.8,
in particular the constraints on the parameters of the model, that arise due to the change in
vacuum energy. In App. D we show some simplifying approximations, the effect of ultra-high
densities as well as the impact of gravitational forces on the bubble dynamics.

7.1.1 General Scalar Potential

The potential we consider is just the familiar quartic potential with a linear tilt,

V (φ) = − 1
3
√

3
Λ4

R

φ

f
+ 1

8 Λ4
B

(
φ2

f2
− 1

)2

. (7.1)

ΛR and ΛB are the scales that control the size of what we denote as linear “rolling” and quartic
“barrier” terms respectively (numerical factors are introduced for notational convenience), while
f parametrizes the field distance between the two minima. The potential has two minima as
long as

δ2 ≡ 1− Λ4
R

Λ4
B

> 0 . (7.2)

For 1− δ2 � 1 the minima are located at φ± ' ±f , and in particular the metastable minimum
φ− is a deep minimum. Instead, for δ2 � 1 the minima are at φ− ' −f/

√
3 and φ+ ' 2f/

√
3,

and φ− is shallow. The difference between these two types of metastable minima is evident from
the mass of the scalar

m2
φ '


√

2
3

Λ4
B
f2 δ , (shallow)

Λ4
B
f2 . (deep)

(7.3)

For a shallow minimum (δ2 � 1) the mass is parametrically suppressed with respect to the usual
expectation, which is instead reproduced in the case of a deep minimum (1− δ2 � 1). Another
quantity of phenomenological interest, which is very different between shallow and deep minima,
is the height of the potential barrier,

∆Vtop '
{

4
27

√
2
3 Λ4

B δ
3 , (shallow)

1
8 Λ4

B . (deep)
(7.4)

The suppression of the barrier in the case of minima with δ2 � 1 implies that even a small
perturbation of the potential can easily destabilize the scalar field.

Let us note that while shallow metastable minima might naively be deemed as tuned, they
naturally appear in relaxion models [10], where the barrier term is a periodic function of the
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7.1. Density induced Vacuum Instabilities

Figure 7.1: Potentials with shallow (left) and deep (right) minima in vacuum (solid) and in
medium for a density ρ slightly larger than critical (dashed).

scalar field, e.g. cos(φ/f), whose amplitude increases very slowly with each φ oscillation. There,
the first minima of the potential are found when the barriers get just large enough, i.e. Λ4

B ≈ Λ4
R,

or in our notation δ2 � 1. The quartic potential we have taken as a case study in Eq. (7.56) is
a simplified version of the relaxion case.

Finite density

Finite density can impact a scalar potential in several ways, depending on how the scalar couples
to the matter fields that constitute the dense system. In general, density corrections can be
encoded as an additional term in the potential that explicitly depends on (number) density, ρ,
and vanishes in vacuum, i.e. ρ = 0. For the sake of concreteness, in this section we focus on the
scenario where these corrections can be entirely encoded as a non-trivial density dependence of
the parameters of the potential Eq. (7.56). In particular, we consider the situation where the
barrier ΛB depends on density, and define the dimensionless quantity

Λ4
B(ρ)

Λ4
B

≡ 1− ζ(ρ) , (7.5)

with ζ(ρ) > 0 and ζ(0) = 0. We want to stress that we have seen this exact behavior when
discussing properties of the quark condensate at finite densities in Sec. 5.2.1. Note that the
definitions of the above quantity differ slightly in the two sections, i.e. ζq̄q 6= ζ from Eq. (5.41).

This scenario is naturally realized when ΛB itself is determined by the vacuum expectation
value of an operator that is sensitive to finite density corrections. Perhaps the simplest example
in the SM is provided by the QCD quark condensate, that is Λ4

B ∝ 〈q̄q〉 ∼ Λ3
QCD, which is

well-known to linearly decrease with (small) baryon number density ρN = 〈N †N〉 with ρ the
baryon field [193]. In the notation of Eq. (7.5), this would imply, at leading order in density,
that ζ(ρN ) ∝ ρN/Λ

4
QCD in systems with a non-zero nucleon density, such as stars. The case of

a ΛB proportional to any other QCD condensate that is non-zero in vacuum and changes with
baryon density, such as a gluon condensate, belongs to the same class. Within the realm of SM
operators, the only other qualitatively different case is given by a barrier set by the Higgs VEV,
that is Λ4

B ∝ 〈h2〉 = v2. There, the coupling of the Higgs field to fermions, yψhψ̄ψ, displaces its
expectation value when in a (non-relativistic) ψ background, 〈ψ̄ψ〉 ' 〈ψ†ψ〉 6= 0. Considering
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once again a system with a non-vanishing baryon density, the small displacement in the Higgs
would lead, at leading order, to ζ(ρN ) ∝ ρN/m2

hv
2. Let us note that Λ4

B ∝ 〈q̄q〉 is realized by the
QCD-axion [11,186], as well as by those models of relaxation of the electroweak scale where the
relaxion is identified with the QCD-axion [10]. The case where the leading finite density effects
are due to a shift of the Higgs field, Λ4

B ∝ 〈h〉2, is found in non-QCD relaxion models [10], and
it could arise as well in more general Higgs-portal models, e.g. [289]. A detailed discussion of
finite density effects in these versions of the relaxion is found below. Going beyond the SM, we
could, for instance, entertain the possibility that ΛB originates from the confinement of a new
QCD-like dynamics decoupled from the SM. Motivated by this case, we should further consider
the existence of dark compact objects, a.k.a. dark stars [290–298], whose non-zero density can
lead to a change of the scalar potential as in Eq. (7.5).

Because of the smaller barriers at finite density, the metastable minimum in vacuum is no
longer a minimum in a dense system as soon as the condition Eq. (7.2), with Λ4

B → Λ4
B(1− ζ),

is not satisfied. The critical value of ζ above which this destabilization occurs is

ζc = 1− Λ4
R

Λ4
B

= δ2 . (7.6)

It is evident from this expression that a shallow local minimum is more easily destabilized than
a deep one, since ζc � 1 for a shallow minimum while ζc ≈ 1 for a deep one. This is explicitly
shown in Fig. 7.8.

We limit our discussion to ζ(ρ) 6 1, since otherwise the barrier term changes sign and the
scalar potential is no longer bounded from below. This makes the analysis sensitive to higher-
order terms in φ, which we have implicitly neglected; in other words, the scalar dynamics becomes
UV sensitive and therefore no longer predictive. In addition, note that for what concerns the
destabilization of the false vacuum, the relevant quantity is the ratio between the rolling and
barrier scales. Therefore, we could just as well have considered a density dependent rolling term,
Λ4

R(ρ), as the source of the instability. However, as we show in Sec. 7.1.3, the formation of a
scalar bubble inside a dense system of finite size, as well as its evolution, strongly depends on the
magnitude of the rolling term. For this reason, in this Chapter we keep ΛR density independent.
Let us also point out that density is treated here a background field that eventually depends
on space and time, see Sec. 7.1.2. Although we are phrasing our discussion of the fate of
the metastable minimum in terms of a matter density, a priori other space-time dependent
background fields could lead to similar effects on the scalar potential. An example where the
role of density is played by a background electro-magnetic field will be presented for a relaxion
model in Section 7.3.

As discussed above, for densities above the critical one, the scalar potential has a single
minimum. We denote this minimum as (φ+)ρ, such that it is clear that it is continuously
connected, as the density is taken to zero, to the stable minimum in vacuum, φ+. Let us note
that close to criticality, i.e. for ζ(ρ) ' ζc, the in-density potential has the same form as a
potential in vacuum with δ2 � 1, thus φ+ ρ' ρc ' 2f/

√
3. For the same reason, just before the

critical density is reached, the in-medium metastable minimum is shallow and found at −f/
√

3,
regardless of its value in vacuum φ−. In contrast, far beyond the critical density, the single
minimum of the potential is found at

φ+ ρ� ρc ∼
(

1− ζc
1− ζ(ρ)

)1/3

f , (7.7)

which can be much larger than f if ζ → 1. Whenever the scalar potential has two minima,
shallow or deep, at zero or non-zero density, the difference in the ground state energy between
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them is given by

∆Λ ∼ −Λ4
R , (7.8)

up to an irrelevant O(1) factor.

We would like to emphasize that while in this Section we focus on a simple potential of
the form Eq. (7.56), the analysis presented here is then applied in Sec. 7.3 to other types of
potentials containing local minima separated by a density-dependent barrier. Furthermore, even
though we pay particular attention to the fact that at finite density the scalar field can classically
move to the true minimum of the potential, this is not the only case of interest; such a change
of minimum could be classically forbidden at finite density as well, yet take place anyway due
to a much shorter quantum-mechanical lifetime than in vacuum (see Sec. 7.1.7).

Let us comment here on the UV sensitivity of the scalar potential Eq. (7.56) and our assump-
tions on how it changes at finite density. Indeed, let us consider the case that Λ4

B = α〈h〉2, where
α is just a proportionality factor. By closing the Higgs loop and cutting it off at a scale Λh, we
obtain a contribution to the barrier term ∆Λ4

B ∼ α(Λh/4π)2. We should then demand that this
extra contribution does not erase the instability of the local minimum at finite density, which
means ∆Λ4

B � Λ4
B(ρc) ' Λ4

R. This conditions translates into an upper bound on the cutoff of the
scalar theory, Λh � 4π〈h〉

√
1− δ2. Note this is larger for potentials with a shallow metastable

minimum than for those with a deep minimum. Such a low cutoff does not endanger our analysis
of the scalar field dynamics at finite density as long as Λh � ES, where ES is the typical energy
scale of the dense system. Similar conclusions apply to the other possible cases concerning the
density dependence of ΛB, see the discussion below Eq. (7.5).1 Besides, already from the quartic
scalar interaction in Eq. (7.56), naturalness arguments indicate that new physics should appear
at a scale Λφ ∼ 4πf or below. Once again, we should demand that Λφ is significantly above ES.

7.1.2 Spherically Symmetric Dense Systems

In this section we study the properties of dense systems of finite size, in particular stars, relevant
for the analysis in this section. We model the star as a spherically symmetric (non-rotating)
object with a density profile that in general depends on radius and time, i.e. ρ(r, t). The profile
satisfies (ρ′ = dρ/dr),

ρ′(0, t) = 0 , ρ(RS(t), t) = 0 , (7.9)

such that the density profile is differentiable at the origin, r = 0, and that the star ends at a
finite radius, r = RS, respectively. In addition, we define a transition radius, r = RT, where the
critical density is reached,

ρ(RT(t), t) = ρc . (7.10)

We recall that at densities above critical, the local minimum of the potential is lost.

Since the scalar potential at finite density is minimized at a different value than in vacuum,
minimization of the action forces the field to acquire a (spherically symmetric) non-trivial profile
within and around the star, φ(r, t). This is determined by the classical EOM (φ̇ = dφ/dt,
φ′ = dφ/dr and V,φ = dV/dφ)

φ̈− φ′′ − 2

r
φ′ = −V,φ , (7.11)

1ΛB is insensitive to the UV if e.g. the barrier term arises from the coupling of the scalar to the QCD topological
charge, i.e. 1

f
φGG̃, which gives rise to a potential sensitive to ΛQCD only. For instance, this is the case of the

QCD-relaxion, where we recall that the corresponding scalar potential is of the form cos(φ/f) instead of the
simple quartic function we are considering.
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where V = V (φ, ρ(r, t)), with the boundary conditions

φ′(0, t) = 0 , lim
r→∞

φ = φ− . (7.12)

In order to solve Eq. (7.11) one needs to know the density profile of the star, which generically
depends on non-trivial and in some cases not well-understood dynamics (e.g. the inner regions
of NSs). If there is a large separation of scales in the problem, we can, as a first approximation,
be agnostic of the details of the density profile, as we explain in the following. The characteristic
scale controlling the classical evolution of the scalar profile, either in time or space, is determined
by its potential. For the representative case that we are considering, Eq. (7.56), the EOM for
the dimensionless field φ̂ ≡ φ/f can be written as

∂2φ̂

∂t̂2
− ∂2φ̂

∂r̂2
− 2

r̂

∂φ̂

∂r̂
= 1− 3

√
3

2

1− ζ
1− ζc

(φ̂2 − 1)φ̂ , (7.13)

where r̂ = µr, t̂ = µt, and

µ2 = 1
3
√

3

Λ4
R

f2
∼ Λ4

R

f2
. (7.14)

For densities sufficiently above the critical one, such that 1 − ζ � 1 − ζc, µ−1 sets the typical
time and distance required for the scalar to move by ∆φ̂ = O(1). This is to be compared with
the characteristic scales of the dense system.

Let us first discuss time evolution, i.e. the formation of the star. The dimensionless quantity
µTS, where TS is the characteristic time scale of the dense system, gives us a rough idea whether
we can treat the evolution of the scalar field as effectively taking place in a nearly static, fixed
system, or whether the time dependence of the scalar profile is comparable to (or much slower
than) the typical time scale of the star. Indeed, for µTS � 1 the field reacts fast to changes in
the background density profile, therefore we can describe the scalar dynamics as a quasi-static
(or adiabatic) process, in which φ̇ and additional time derivatives can be neglected. On the other
hand, for µTS � 1 the field reacts slow compared to the evolution of the star, in which case the
evolution of the scalar profile can be described in a sudden (or non-adiabatic) approximation,
where the formation of the star can be treated as an instantaneous change from vacuum to
ρ(r) 6= 0 and φ starts “rolling” down the in-medium potential.

In the adiabatic limit, µTS � 1, the scalar profile can be found at any given time t = t̄ during
the formation of the star by solving its time-independent EOM, within a fixed background density
ρ(r) = ρ(r, t̄).2 We shall consider simple density profiles that can be parametrized as

ρ(r) = ρo(t̄) g(r/RS(t̄)) , (7.15)

where the function g(x) fully encodes the radial dependence, with g(0) = 1 such that the density
at the center is set by ρo, g(RT/RS) = ρc/ρo, and g(1) = 0. While obtaining the specific form of
ρ(r) at a given t̄ is generically a complicated problem, the only quantities of qualitative relevance
for our analysis are RT, the radius below which the critical density is surpassed, that is where
the in-vacuo potential barrier disappears and the scalar can potentially be displaced by O(f),
and ∆RT = RS − RT, the size of the transition region towards the end of the star, where the
potential barrier reappears. We find that non-trivial dynamics take place when µRT ∼ 1, and
additionally when µ∆RT ∼ 1, see Sec. 7.3.2. The value of RT depends on the value of the

2In practice, numerically calculating these static bounce-like solutions is challenging since it requires a finely-
tuned boundary condition at the origin. More details on our numerical calculations can be found at the end of
this section.

130



7.1. Density induced Vacuum Instabilities

critical density, which in turn depends on how the scalar potential changes with density. For
typical density profiles in which the central density is significantly larger than the critical one,
one generically finds RT ∼ RS [104,105]. This then implies that ∆RT ∼ RS as well. In addition,
since in practice each class of stars, e.g. NSs, WD stars, or main-sequence stars like the Sun,
covers a range of radii, we also expect to find a range of values for RT/RS and ∆RT/RS, where
generically both ratios are O(1).

In this paper we concentrate on the adiabatic limit just described. Since a non-trivial scalar
profile develops when µRS ∼ 1, we focus on stellar processes where the relevant time scale is
TS � RS. The general properties of NSs has been extensively discussed in Sec. 3.2, however,
not the dynamics. The birth of a NS follows from the gravitational collapse of the core of a
massive star, which leads to a supernova (SN) explosion, see e.g. [299, 300]. While the details
of this process are not completely understood, it has been reliably inferred that densities reach
and surpass nuclear saturation in a time TS = TNS ∼ 1 s. Within this time, the size of the core
of the star in which densities have exceeded ρ0 is an O(1) fraction of the total size of the final
NS, i.e. RT ∼ RS = RNS. Since the typical radius of a NS is RNS ∼ 10 km, see Sec. 3.2, we find
RNS � TS, justifying the quasi-static approximation. Similar conclusions can be reached for
other types of stars, for instance WD stars, discussed in Sec. 3.1, or the Sun (R� ≈ 7× 105 km,
ρ� ≈ 7 × 10−9 MeV3). Note that the above-mentioned densities set the typical scales in the
potential at which our mechanism is relevant. In any case, for completeness we briefly discuss
the regime µTS � 1 in App. D.5.

For the reader’s reference, the scale µ−1 is of order of the typical size of a NS for e.g. the
potential parameters

µRS ∼ 5

(
RS

10 km

)(
ΛR

10 eV

)2(1 TeV

f

)
. (7.16)

Several additional comments are in order. First, in the special case that the (central) density
happens to be very close to ρc, one naturally expects RT � RS, making the analysis more
sensitive to the specifics of the density profile. Second, since the reaction time of the scalar gets
suppressed by ζ − ζc, the adiabatic approximation naively fails at some arbitrarily small time
interval around the time in which ζ → ζc.

3 Lastly, our study neglects the effects of temperature
altogether. This is a good approximation in most situations, yet for e.g. the Sun as well as in
SN explosions, temperature could be as important as density, i.e. T 3 ∼ ρ. Nevertheless, we note
that for the motivated cases in which Λ4

B ∼ Λ3
QCD or Λ4

B ∼ v2, the effect of a finite temperature
would generically go in the same destabilizing direction as density, i.e. decreasing the size of the
potential barriers, reinforcing our conclusions regarding the formation and escape of a scalar
bubble.

Let us conclude this section by briefly discussing our numerical analysis. In order to verify the
theoretical results we present in Sec. 7.3.2, we have solved the time-dependent EOM presented
in Eq. (7.13) numerically, assuming simple dependencies, e.g. ζ ∝ ρ(r, t). The initial conditions
for the scalar field are homogenous, i.e. φ(r, 0) = φ− and φ̇(r, 0) = 0. We implement a slow
evolution of the density profile from ρ(r, 0) = 0 to some final configuration Eq. (7.15) at t̄ = TS,

3In a spatially homogeneous situation, the local condition that determines if the scalar is able to follow the
minimum of the potential can be expressed as φ̇ & (dφmin/dρ) ρ̇, where φmin ' φ− as long the metastable minimum
exists, and (φ+)ρ otherwise. However, if the system exhibits a non-trivial spatial dependence, that this condition is
satisfied does not imply that the scalar actually follows the minimum; it becomes crucial to consider the gradient
energy of the field, which impedes large field displacements. Besides, we note that right at the critical point,
ρ = ρc, there is a discontinuous jump in φmin (from φ− to (φ+)ρ) and therefore dφmin/dρ → ∞; equivalently, at
the critical density µ→ 0, since ζ = ζc, thus µTS → 0. Time dependence can then become important, yet only if
the system is large enough to render the gradient energy negligible compared to kinetic energy the field acquires
rolling down the potential.
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with g(x) = 1−x2. Importantly, we fix µTS � 1, in agreement with the adiabatic limit. We verify
that the quasi-static solutions we find have negligible amounts of kinetic energy compared to their
gradient and potential energies. This quasi-static picture is maintained up until an instability
takes place, i.e. until our numerical simulations display an expanding bubble that escapes from
the star. Importantly, under our assumptions, the exact details of the star formation do not
affect the quantitative scaling we present in the next section for the formation and escape of
scalar bubbles.

7.1.3 Bubble Formation and Evolution

The formation of a non-trivial scalar profile induced by a star is effectively described, as justified
in Sec. 7.1.2, by the quasi-static spherically-symmetric EOM for the scalar field, with a slowly-
varying background density profile. The bubble-like solution φ(r) can be found numerically
given a specific form for the density profile ρ(r). The simple analytic results presented in this
section have been explicitly verified by our numerical simulations.

A few simplifications allow us to analytically understand the dynamics of scalar bubbles at
finite density. The field profile minimizes the total energy,

E(R) ' 4π

∫ R

0
dr r2

[
1

2
φ′ 2 + ∆V (φ, ρ)

]
, ∆V (φ, ρ) = V (φ, ρ)− V (φ−, ρ) , (7.17)

where we have cut the integral at a radius R as an approximation to the full infinite space,
since the scalar field rapidly converges to its vacuum value φ− for r & R. Indeed, for radii
larger than the transition radius, i.e. r > RT, densities are below critical and the potential is
minimized at approximately the same metastable minimum as outside of the star. In the initial
stages of the formation of the dense system, we expect the creation of a scalar proto-bubble with
R ' RT, where the scalar field at its center, φ(0), has not yet reached φ+, the value associated
with the stable minimum of the in-vacuum potential, see Sec. 7.1.4. In other words, the field
displacement, ∆φ(0) ≡ φ(0)− φ−, satisfies ∆φ(0) . φ+ − φ− ≈ 2f . This is because the star is
too small, in particular the (mean) energy density in the field gradient that would correspond
to a field displacement ∆φ(0) ∼ 2f , which is 1

2〈φ′ 2〉 ∼ (2f/RT)2, is too large compared to the
(mean) potential energy difference within the proto-bubble, ε = |〈∆V 〉|. Only when the star, by
which we mean RT, grows large enough, it becomes energetically favorable to reach φ(0) ∼ φ+.
Therefore, only when (

2f

RT

)2

. ε (7.18)

can a scalar bubble fully form. Interestingly, once the condition Eq. (7.18) is satisfied, the
equilibrium position R ' RT can be lost, meaning the bubble can be pushed towards the outer
region of the star, see Sec. 7.1.5. If such an instability takes place, the evolution of the bubble
is no longer quasi-static, but rather the minimization of the energy of the system becomes
a time-dependent problem that can be simply described by a time-dependent bubble radius,
R → R(t), which quickly approaches relativistic speeds. Depending on how fast the potential
barrier reappears with radius, the instability cannot be stopped and the bubble expands beyond
the star. Specifically, we find that the bubble escapes if

∆σ

∆RT

. ε , (7.19)

where ∆σ is the difference between the tension of bubble wall at R ' RT and R & RS. The fact
that the wall tension changes as it propagates through the star is one of the unique aspects of

132



7.1. Density induced Vacuum Instabilities

the bubble dynamics at finite density. In particular, it gives rise to an extra force that prevents
the bubble from escaping the star unless ε is large enough. While for a bubble connecting to a
shallow metastable minimum the condition Eq. (7.19) is readily satisfied (given Eq. (7.18) is), it
is harder in the case of a deep minimum, because of the significant increase of the wall tension,
being eventually dominated by the large barriers of the potential in vacuum. The discussion
above is visualized in Fig. 7.2.

7.1.4 Formation: linear potential approximation

Let us start by considering the classical formation of a bubble in a star where the critical
density is reached. In order not to unnecessarily complicate the discussion, let us assume that
the in-density potential can be well approximated by the rolling term only, i.e. that due to the
suppression of Λ4

B(ρ) = Λ4
B(1− ζ(ρ)) we can neglect the barrier term,

V (φ, ρ > ρc) ' −µ2fφ , (7.20)

where recall that in Eq. (7.14) we have identified µ2 ∼ Λ4
R/f

2 as the scale that characterizes the
scalar profile. An exact solution to the scalar EOM with a linear potential is

φ(r) =
µ2f

6
(R2

T − r2) + φ− , r 6 RT , (proto-bubble) (7.21)

with boundary conditions φ′(0) = 0 and φ(RT) = φ−. We then simply take φ(r > RT) = φ−.
We find that the proto-bubble is of size R = RT and the field displacement at its center,
∆φ(0) ≡ φ(0)− φ−, is given by

∆φ(0)

f
=

(µRT)2

6
. (7.22)

This situation is explicitly depicted in the second panel of Fig. 7.2. Eq. (7.21) constitutes a good
a priori description of the scalar profile as long as the system is small enough that the in-density
minimum, (φ+)ρ, is not reached, i.e.

∆φ(0)

(φ+)ρ − φ−
. 1 . (7.23)

We recall that in general (φ+)ρ > φ+, see the discussion around Eq. (7.7).
It is important to point out here that the quasi-static description of the proto-bubble can

break down as soon as φ(0) ∼ φ+, as we discuss in Sec. 7.1.5. In this regard, Eq. (7.22) implies
that any system, independently of its density profile or maximum density at its core, must have
a minimum size in order for φ(0) & φ+, given by

RT & µ
−1 , (7.24)

where we have neglected O(1) factors.
The solution Eq. (7.21) can be extended to the situation in which the in-density minimum

is reached somewhere inside the star, at r = Ri < RT. In that region the potential exhibits a
minimum, and consequently the scalar field remains pinned at (φ+)ρ. This is depicted in the
third panel of Fig. 7.2, where we have chosen a core density such that (φ+)ρ is only slightly
larger than φ+. The scalar profile is well approximated by

φ(r) =


(φ+)ρ r < Ri

−µ2f
6 (r −Ri)2 + (φ+)ρ Ri < r < RT

φ− r > RT

, (bubble) (7.25)
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Bubble escape

Figure 7.2: Quasi-static evolution of the in-density potential and scalar field profile, from no
star to, as the star grows, the formation of the proto-bubble, complete formation of the bubble,
and eventual bubble escape.
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Figure 7.3: Scalar profile for µRT & 1 on top of contours of the scalar potential.

where in the intermediate region, r ∈ [Ri, RT], we have used the solution of the EOM with the
linear potential Eq. (7.20), shifted it by r → r − Ri, and required φ′(Ri) = 0, φ(Ri) = (φ+)ρ;
further matching to φ(RT) = φ− fixes the value of Ri, or equivalently the width of the bubble
wall

x ≡ RT −Ri
RT

'
√

6

µRT

√
(φ+)ρ − φ−

f
. (7.26)

Of course, in order for Ri > 0, RT needs to be large enough as to allow the field to reach the
minimum at finite density. In other words, the requirement that x < 1 implies

RT &

√
6

µ

√
(φ+)ρ − φ−

f
. (7.27)

A scalar field profile for which this condition is satisfied is shown in Fig. 7.3, for a choice of
central density not much larger than the critical density.

For an increasingly larger system, yet with with a core density fixed such that (φ+)ρ remains
constant, the bubble wall becomes thinner, i.e. x � 1 when µRT � 1. In this thin-wall limit,
the energy of the bubble, Eq. (7.17), can be approximated by a volume and a surface term [288],

E(R) ' −4π

3
R3 ε+ 4πR2 σ , (7.28)

where ε is the (potential) energy difference between the in-density and in-vacuo field values,
while σ is the bubble-wall tension. For our simple scalar profile these read

ε = µ2f((φ+)ρ − φ−) & Λ4
R , (7.29)

σ = 4
3

√
2
3((φ+)ρ − φ−)

√
ε & Λ2

Rf . (7.30)
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In Eq. (7.28) we have traded RT with R, since we are assuming that during the formation of
the bubble its wall sits at R ' RT; in Sec. 7.1.5 we discuss under which circumstances such
an equilibrium is lost, i.e. R > RT. Also, we have implicitly assumed that (φ+)ρ is constant
below Ri, i.e. that the density does not significantly change for r < Ri. Both the inequalities in
Eqs. (7.29), (7.30) follow from (φ+)ρ > φ+, after neglecting O(1) factors. These correspond to
the minimum values of the potential energy and tension of a fully formed bubble. As expected,
we find ε & |∆V (φ+, ρ)| = −∆Λ, where recall that ∆Λ is the energy difference between the false
and true ground states, Eq. (7.72). In addition, let us point out that the condition Eq. (7.27)
can be understood from energy considerations, as the requirement that the (mean) field gradient
is small enough, 1

2〈φ′2〉 ∼ ((φ+)ρ − φ−)2/R2
T . ε. In this regard, note also that the tension is

dominated by the field displacement, σ ∼ ((φ+)ρ − φ−)2/(xRT) [301].

In App. D.1 we reproduce the above scalings with a simpler linear profile approximation,
where we do not need to assume that the potential is well described by a linear slope only.
In particular, we can keep the subdominant barrier term and we find that, while leaving ε
unchanged, it gives a corrections to the tension of the bubble wall that scales as

∆σ

σ
∼ Λ4

B(ρ)

Λ4
R

' 1− ζ(ρ)

1− ζc
. (7.31)

This becomes negligible when ζ → 1, that is also when (φ+)ρ � φ+, see Eq. (7.7). On the
other hand, when the density is not much above critical, the correction is parametrically O(1).
Nevertheless, the most important effect of the potential barriers arises when we consider a bubble
whose wall is beyond the transition radius, i.e. R > RT, as we discuss in the following.

7.1.5 Dynamics: escape vs equilibrium

In the previous discussion we worked under the assumption of a nearly-static bubble, which
slowly grows with time only due to the increase in size of the star (or more accurately, due to
the increase in size of the transition radius RT where the critical density is reached). Here we
show that in fact this adiabatic description can break down as soon as the star is dense and
large enough that the field displacement inside it reaches the position of the true minimum in
vacuum.

There are several ways to understand the origin of this instability. Qualitatively, for the
potentials we are considering, finite density effects allow for the local minimum in vacuum to
be continuously (i.e. classically) connected to the true minimum. This is because the in-vacuo
potential barrier between them disappears in some region of the star (r < RT), see the right
panel of Fig. 7.4. Once this region is large enough such that ∆φ(0) & φ+ − φ− ≈ 2f , it may
become energetically favourable for the tail of the field profile, which extends outside the star,
to be pushed over the potential barrier. This effectively leads to a first-order phase transition
in the form of a bubble escaping the star. This is in contrast with other types of potentials
with metastable minima, such as that shown in the left panel of Fig. 7.4, where even at finite
density there is always a potential barrier between the two minima. This class of potentials does
not allow for a classical path connecting them, and therefore leads to a smooth cross-over to a
different in-density minimum.4

Let us note that the discussion is focussed on field displacements that are at least of the
order of the field separation between the local and true minimum in vacuum. This is because, at

4Even with non-vanishing barriers, finite density effects could lead to a significant increase in the tunneling
probability to the true minimum, thus seeding a quantum first-order phase transition. We discuss this possibility in
Sec. 7.1.7 since it is of relevance as well for our potential whenever densities remain below critical, i.e. ρ(r) < ρc ∀r.
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Figure 7.4: Crossover (left) versus first order phase transition (right) induced by a dense
system (spherically symmetric and of finite size). For both cases the potential is shown as a
function of radius, with r/RS = 0 the center of the star. The black solid lines illustrate the
scalar profile starting from a given in-vacuo (r/RS > 1) minimum and following it inside the
star. For a first-order phase transition, the black line stops where this minimum ceases to exist.
The dashed line then illustrates the field profile that connects to the minimum within the star.
The profile unavoidably passes through regions where dV/dφ 6= 0, implying there are effective
forces acting on the field. These forces give rise to the possibility that the initial scalar profile
(black) classically changes to a new minimum in vacuum (blue).

least qualitatively, a bubble with (φ+)ρ ∼ φ+ captures all the non-trivial dynamics of the phase
transition. In the following we focus on such a case, which corresponds to maximal densities
of the order of the critical density. A discussion of the bubble dynamics for (φ+)ρ � φ+, is
deferred to App. D.4.

In order to quantitatively understand the dynamics of induced first-order phase transitions,
we resort to the description of the scalar bubble wall as a particle in d = 1 + 1 dimensions.
While this is a standard treatment when studying the dynamics of bubbles in vacuum or at
finite temperature (see e.g. [302]), here we adapt it to the finite density environment, crucially
including a position-dependent tension, σ(R). The Lagrangian for the time-dependent bubble-
wall position R(t) is given by

L = −M(R)/γ − V(R) , (7.32)

where γ = 1/
√

1− Ṙ2. In the thin-wall approximation, x � 1, where the particle description
best applies, we have

M(R) = 4π

∫ R

R(1−x)
dr r2

[
1

2
φ′ 2 + ∆V (φ, ρ(r))

]
≡ 4πR2σ(R) , (7.33)

V(R) = −4π

3
R3∆Λ ≡ −4π

3
R3ε . (7.34)

Several comments are in order regarding the bubble mass and potential at finite density. First,
the bubble’s energy given in Eq. (7.28) is precisely the Hamiltonian associated with Eq. (7.32)
in the static limit Ṙ = 0. Second, from the integral expression of M(R), it is clear that in the
thin-wall limit the bubble wall is only sensitive to the density at r = R. Therefore, as the bubble
moves through the star, its tension changes due to the changing density.5 Since the bubble is

5We are implicitly assuming that the width of the wall is the smallest scale in the system. If this were not
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Figure 7.5: Sketch of the relevant regions of the star for what concerns the bubble-wall tension.
Dashed and dotted lines do not necessarily represent the functional form of σ(R). In the green
region, the tension is dominated by the field displacement, while in the red region, the barriers
come to dominate. Note that for ζc = δ2 � 1 (i.e. shallow minimum), there is, in fact, no red
region.

born with R ' RT, from Eq. (7.30) with (φ+)ρ ∼ φ+ we have

σ(R ' RT) ∼ Λ2
Rf . (7.35)

Recall that for the bubble to have been fully formed, RT needs to satisfy Eq. (7.27), which for
(φ+)ρ ∼ φ+ reads RT & µ−1. Finally, V(R) is controlled by the potential energy difference
between the two sides of the bubble wall, which from Eq. (7.29) with (φ+)ρ ∼ φ+ is given by

ε ∼ Λ4
R . (7.36)

The equation motion of the bubble wall reads

σR̈γ3 = ε− γ
(

2σ

R
+ σ′

)
, σ′ =

dσ

dR
. (7.37)

Since we are mainly interested in the dynamics of the bubble right after its formation, we
concentrate on the non-relativistic limit, i.e. we set γ = 1. The right-hand side of Eq. (7.37) is
the sum of forces (pressures) acting on the bubble wall. The potential energy difference between
the two sides of the wall pushes it outwards. The second and third terms are associated with the
tension of the wall, both pushing it inwards. In particular, the change in tension σ′ is positive,
since densities decrease with R and in turn, the potential barriers, controlled by Λ4

B(ρ), reappear
and increase towards its vacuum value outside the star.

In order to understand the behavior of σ(R), let us first recall that when the bubble is just
formed, the tension is dominated by the field displacement, see Eq. (7.30). This implies that
only the contribution to the tension from the barrier, estimated in Eq. (7.31), leads to increasing
tension with R. For bubbles connecting shallow minima, δ2 � 1, this increase is small between
RT and RS,

σ(RS)− σ(RT) ∼ fΛ2
Rδ

2 . (shallow) (7.38)

the case, we would expect finite-size effects in the form of e.g. deformations of the bubble. However, these would
lead to at most O(1) corrections to our already approximate analytical results, leaving our qualitative conclusions
unchanged.
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7.1. Density induced Vacuum Instabilities

In contrast, for deep minima, δ2 ≈ 1, the tension goes from being displacement-dominated at
R ' RT, to barrier-dominated towards the end as well as outside of the star R ' RS. There we
can use the standard thin-wall approximation to compute the tension [288],

σ(r ' RS) '
∫ f

−f
dφ
√

2V (φ) ' 2

3
Λ2

Bf , (deep) (7.39)

and σ(RS) − σ(RT) ' σ(RS). In addition, let us note that the bubble gets thinner when the
barrier term dominates the tension. The bubble wall tension, as a function of its location, is
schematically summarized in Fig. 7.5 for both the shallow and deep minimum cases.

Before moving to the detailed discussion of how the changing tension affects the dynamics
of the bubble wall, let us note that in Eq. (7.37) we have ignored the effect of the gravitational
force of the star on the bubble wall. In App. D.2 we discuss such a force, showing that while NSs
it could be quantitatively relevant at some stage during the expansion, it does not qualitatively
change the picture presented here.

Having established the behavior of the tension from RT to RS, let us understand the dynamics
of the bubble wall. Right after the formation of a thin-wall bubble at R ' RT & µ−1, the particle
description Eq. (7.37) applies. One then automatically finds R̈ > 0 right before the transition
region, since we can assume that σ′ vanishes for R < RT, that is σ′(R−T ) = 0. The acceleration
would remain positive in the limit that the force due to the change in tension vanished for any
R, σ′ → 0; in this limit, the bubble would expand indefinitely, particularly beyond the star.
In the opposite limit, in which σ′ is very large just past the edge of the transition region, that
is σ′(R+

T ) → ∞, the wall could not expand and therefore it would remain at an equilibrium
radius R = Req = RT (and the bubble would only grows if RT kept increasing). Clearly,
a realistic situation lies in between these two limits, and it depends on how fast the density
profile and thus the tension changes from RT to the end of the star. This discussion gives us
a qualitative understanding of why the bubble might generically be found in an equilibrium
position at RS > R > RT. In a similar fashion, we can understand under which conditions the
bubble escapes from the star. In the limit that the star has grown so large that the transition
region starts at a radius much larger than the one needed to form the bubble, i.e. RT � µ−1,
we have ε � 2σ(RT)/RT. Then, it follows from the equation of motion that the bubble wall
would continue to accelerate for R > RT as long as ε > σ′. In the opposite limit, in which
RT ' µ−1, we have ε → 2σ(RT)/RT and the additional force due to σ′ would be enough to
forbid its expansion. These different limits lead us to the conclusion that for a sufficiently large
star, satisfying RT & σ(RT)/[ε− σ′(RT)], the system is unstable and the bubble escapes if

ε & κσ′max , (7.40)

where σ′max is the maximum value of σ′ and κ = O(1). This condition is explicitly verified by
our numerical simulations as well as in App. D.3, where we investigate Eq. (7.37) in the simplest
case of a constant σ′, finding κ = 3. Once again, (a version of) this condition can be expected
to hold in general, on the basis that the standard force due to the surface tension becomes
irrelevant at large R, leaving the variation of the tension as the only relevant force to determine
if the bubble does or does not escape from the star.

7.1.6 Summary: formation and escape conditions

Given that the change in the wall tension is very different for a bubble connecting shallow or
deep minima in vacuum, let us explicitly summarize for each case the conditions under which
the bubble forms and escapes from the star.
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For a shallow bubble, δ2 � 1, we find as formation and escape conditions, respectively

RT &
f

Λ2
R

and ∆RT &
f

Λ2
R

δ2 , (shallow) (7.41)

up to irrelevant O(1) factors. Note that since σ′ is suppressed by δ2, as shown in Eq. (7.38), the
escape condition is easier to satisfy than the condition for formation. This is unless, contrary to
the expectation from generic density profiles, ∆RT is anomalously small. In terms of the mass of
the scalar in vacuum, Eq. (7.3), these two conditions read as mφRT &

√
δ and mφ∆RT & δ5/2.

For a bubble connecting deep minima, δ2 ≈ 1, the rate of change of the tension is determined
by the tension in vacuum, σ′ ∼ σ(RS)/∆RT, as shown in Eq. (7.39). Therefore, we find the
following conditions for the formation and escape of a deep bubble, respectively

RT &
f

Λ2
R

and ∆RT &
f

Λ2
R

1√
1− δ2

, (deep) (7.42)

up to O(1) factors. As expected, it is generically much more difficult for a bubble connecting
deep minima to transverse the transition region and expand beyond the star. Besides, while the
condition for formation is formally the same as for shallow minima, let us recall that ζc = δ2 ≈ 1
generically implies that much larger densities are needed in this case. In terms of the mass of
the scalar in vacuum, Eq. (7.3), the two conditions in Eq. (7.74) read as mφRT & 1/

√
1− δ2

and mφ∆RT & 1/(1− δ2).

7.1.7 Classical vs quantum

To conclude this section, we wish to investigate the possibility that, even when the system is
not dense enough as to allow for a classical transition between the local and true minimum,
finite density could still lead to a much shorter quantum-mechanical lifetime of the metastable
minimum compared to the one in vacuum. This is reminiscent of the idea that black holes or
compact objects can act as seeds for false vacuum decay, due to their strong gravitational fields,
see e.g. [303–309].

Indeed, up until this point we did not care about the lifetime of the false vacuum, implic-
itly assuming that it was sufficiently large. The decay rate per unit volume is determined by
the bounce action, Γ/V = Ae−SB [288, 310]. By definition, in the case where the metastable
minimum is deep, the thin-wall approximation holds. The action is well approximated by
SB ' (27/2)π2σ4/ε3, which given the in-vacuo tension Eq. (7.39) and ε = −∆Λ ' 2

3
√

3
Λ4

R,

results in

SB ' 27
√

3π2

(
f

ΛB

)4 1

(1− δ2)3
. (deep) (7.43)

Since δ2 ≈ 1 for a deep minimum, the bounce action is generically large and the decay rate
extremely suppressed. For a shallow minimum, we can estimate the action by considering
σ ∼ ∆φ2/∆R with ∆R ∼ ∆φ/

√
ε, which leads to SB ∼ π2∆φ4/ε. We therefore find,6

SB ∼ 24π2

(
f

ΛB

)4

. (shallow) (7.44)

While for the same value of the ratio f/ΛB the bounce action is smaller in the shallow than
in the deep case, this is not the comparison we really care about. Instead, let us assume that

6More refined estimates can be easily derived for potentials where the barrier is negligible, see e.g. [311].
Nevertheless, our conclusions will not depend on such a refinement.
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7.1. Density induced Vacuum Instabilities

the local minimum is, for all practical purposes, stable in vacuum. This fact can dramatically
change in a dense system only in the case of a deep minimum (even before a classical transition
is allowed). This is clear since for a shallow minimum SB(n < ρc) ' SB(0), while for a deep one

SB(n < ρc)

SB(0)
' [1− ζ(ρ)]2 , (deep) (7.45)

which is much smaller than one if ζ ≈ 1 (yet ζ < ζc = δ2). Generically, the decay rate can only
be sufficiently fast compared to the lifetime of star if the bounce action is not very large, which
drives us towards the non-perturbative regime for the scalar quartic coupling λ ≡ (ΛB/f)4.7

Nevertheless, this conclusion could well be specific to the type of false vacua we are taking
as case study, thus one could imagine other scalar potentials where, being sensitive to finite
density (either of SM degrees of freedom or beyond, e.g. dark matter), their local minima have
much smaller lifetimes in a dense system. Additionally, let us note that the corresponding
seeded nucleation of bubbles of the true ground state would generically not take place during
the formation of the star. On the contrary, one would expect 1/Γ� TS, while still being shorter
than the the typical lifetime of the star, 1/Γ� T , such that the decay probability T Γ = O(1),
see footnote 7.1.7. This raises the possibility of a latent phase transition that could take place
at any time.

Finally, let us point out that in the computation of the bounce action at finite density, we
have assumed the system is large and homogeneous enough as for the effects of a non-trivial
density profile or a spatial boundary to be negligible. We can phrase this as the requirement
that R0 � RS, where R0 = 3σ/ε is the radius of the nucleated bubble. For a deep minimum,
this translates into mφRS � 1/(1 − δ2), which coincides with the condition for the escape of
a deep, classically formed, bubble, see Eq. (7.74). It would be interesting to further study,
beyond these simple approximations, the process of quantum bubble nucleation in finite-size
dense systems [312,313].

7.1.8 Phenomenological implications

In this section we discuss the phenomenological consequences of the expansion, beyond the dense
object, of a bubble of the true vacuum. The main model-independent signature of such a seeded
phase transition is a change of the vacuum energy of the universe, Λ, or equivalently a change
of the cosmological dark energy density, εΛ (with equation of state parameter ω = −1).8

A particularly interesting trademark of these phase transitions is that they take place rel-
atively late in the history of the universe. As explained in the previous section, the bubble

7Focussing on NSs as nucleation seeds, we can roughly estimate the requirement for an O(1) tunnelling prob-
ability by taking into account the volume of all NSs in the observable universe since the time of star formation
until today (since such stars are stable in isolation). The volume of all NSs in the observable universe is roughly
VNS ∼ R3

NSNNS/GNG ∼ 1032 m3, where RNS ∼ 10 km is the typical radius of a neutron star, NNS/G ∼ 109 the
number of NSs per galaxy (like ours) and NG = 1011 the number of galaxies. Since star formation happened
relatively early, the relevant time scale is T ∼ 1/H0 ∼ 1017 s. Requiring that T Γ ∼ O(1) and using Eq. (7.43),
we find

λ(1− δ2)3

(1− ζ)2
∼ 27

√
3π2

log(f4T VNS)
& 1 , (7.46)

where the last inequality arises from assuming f < MP. Note that we also used the NDA estimation for the
exponent coefficient A ∼ f4. In the best case scenario the metastable minimum is not very deep, e.g. δ ≈ 0.8.
Demanding a mild reduction of the potential barrier in density, ζ ≈ 0.5 < δ2, in order to catalyse the decay we
need

√
λ & 2.3, which is certainly not a weak coupling.

8In the following we exclude the possibility of an adjustment mechanism for the cosmological constant. Such
a mechanism could interfere with the formation or escape of the bubble.
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forms, expands and eventually escapes along with the formation of the star. Therefore, if a
phase transition of this sort can happen, it took place at the onset of star formation. The first
stars were born around the epoch of galaxy formation, thus at redshifts z = zS ∼ 10 [314]. This
then implies that the universe underwent a change of εΛ between recombination, z ∼ 103, and
the late universe, z . 1. Note that we are assuming that at redshifts z ∼ 1 (associated with
late-time cosmological measurements) the universe already transitioned successfully to the true
ground state. The change in the dark energy content of the universe can thus best be probed by
comparing CMB measurements versus local measurements (SNe, baryon acoustic oscillations or
large-scale structure) of the expansion rate of the universe. Such a comparison depends on the
fate of the bubbles, for instance if the phase transition proceeds via a single bubble or instead
many bubbles are formed all over the universe (from as many stars) that subsequently collide
and transfer at least an O(1) fraction of the kinetic energy of their walls into radiation. Provid-
ing a precise answer to this question is beyond the scope of this work. Instead, below we work
out simple cosmological constraints on how much the energy budget of the universe can vary
due to a late (z ∼ 10) phase transition, to confirm our intuition that a change in the vacuum
energy much larger than the current one is experimentally ruled out.

A too large change in vacuum energy leads to constraints on the parameters of the scalar
potential. To make this point clear, let us note that the change in vacuum energy is given by
∆Λ = −ε ∼ −Λ4

R, and the rolling scale enters both the conditions for formation and escape
of a bubble of the true vacuum, see Eqs. (7.73), (7.74). Then, assuming the existence of stars
with densities above critical, n > ρc, the condition for formation of a bubble with RT ∼ RS, as
expected for most stellar profiles, implies

−∆Λ &

(
f

RS

)2

≈ Λ0 × 1015

(
f

10 TeV

)2(10 km

RS

)2

, (7.47)

where Λ0 ≈ (2.3 meV)4 is the value of the vacuum energy inferred from ΛCDM, and we have
fixed RS to the typical radius of a neutron star as an example. If such type of bubbles could
have escaped from NSs, the corresponding change in the vacuum energy would be in gross
contradiction with experimental data. Note that a similar region of parameter space is realized
in e.g. relaxion models [10].

However, for much smaller values of f , or if we were to consider much larger astrophysical
bodies (the largest stars known have RS ∼ 103R�), astronomical structures, or even dense
objects beyond the SM (such as dark stars), the change in the dark energy density could be
much smaller. In particular, the very first stars to form (z ∼ 20−30), the so-called Pop. III stars,
are believed to have been supermassive M & 100M� and as large as R ∼ 103R�, and therefore
could be interesting candidates [315]. Likewise, the largest stars observed are red giants with
radii up to R ∼ 103R� and masses M ∼ 10M�. The corresponding nucleation of bubbles of the
true vacuum and subsequent phase transition could then be an experimentally viable and very
interesting phenomenon, which could be detected in the near future given the expected increase
in precision of many current and planned cosmological observatories. Whether or not this type of
phase transition could lead to interesting gravitational wave signatures is an interesting question,
which we leave for future investigation along with the study of the corresponding cosmological
dynamics.

Amusingly, if the phase transition proceeds via quantum tunneling, as we have argued in
Sec. 7.1.7, a recent creation of a true vacuum bubble could lead to other, more direct, ex-
perimental signatures: since the bubble interacts with SM matter, gravitationally at the very
least, the effects of a (non-percolated) bubble wall passing through Earth could potentially be
detected [316,317].
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Let us finally point out that seeded phase transitions with ∆Λ . Λ0 could impact our under-
standing of the landscape solution to the cosmological constant problem. Originally connected
with the requirement for galaxies and stars to form [318], the cosmological constant was predicted
to lie within a range a couple of orders of magnitude larger than the value actually observed as
dark energy. In light of our late-time phase transitions, taking place precisely because structures
form, this discrepancy could well be an accident associated with the sensitivity to finite density
effects of a scalar potential with metastable minima (potentially many of them as in [9]).

Cosmological constraints

While it is beyond the scope of this work to examine in detail the cosmological and astrophysical
constraints arising from a phase transition at the dawn of galaxy/star formation, let us briefly
comment on simple arguments why a large change in the energy content of the universe is not
experimentally viable.

From local measurements of the (accelerated) expansion of the universe, we know it is dark
energy dominated, and in particular εr � εΛ at z . 1, where ρr is the energy density in radiation.
If we assume that, at redshifts zS ∼ 10, an O(1) fraction of the kinetic energy of the bubbles goes
into radiation after they collide and percolate, then we find ε = ∆εr(zS)� (1+zS)4εΛ0 ≈ 104εΛ0 ,
which is inconsistent with e.g. Eq. (7.47).

Still, it would be preferable to proceed with minimal assumptions regarding the fate of the
bubble. One relatively robust assumption is that today our Hubble patch is in the true vacuum,
while it was not prior to star formation, that is εΛ(z > zS) 6= εΛ0 . In this case, the most
reliable test is to contrast late versus early universe measurements, something that has been
actively pursued in recent years in light of the Hubble tension, the disparity between CMB and
local determinations of the Hubble constant (see [319,320] for recent discussions). Of particular
relevance is the study in [321], where constraints on the size of an early dark energy content of
the universe at the time of recombination are derived. The bounds are given as a function of
the critical redshift zc where the dark energy starts to decay quickly, as 1/a6 (thus faster than
radiation). Such a behaviour decreases the impact of this non-standard energy component at
later times z < zc, which we take as a good approximation towards independence from the fate
of the bubble(s). Identifying zc = zS, the bound εΛ(z > zS) & 102εΛ0 is derived, two order of
magnitude stronger than the crude bound we derived before. Although we expect that a proper
analysis of the fate of the bubbles and its impact on cosmological observables would yield even
stronger bounds, in this work we will take

−∆Λ . 102 × Λ0 (7.48)

to set constraints on the parameters of the scalar potential Eq. (7.56).

For the bound Eq. (7.48) to apply, the conditions for a bubble of the true ground state to
form and escape from the dense system must be satisfied. Let us recall that the first of these
conditions is that densities need to be above the critical density, i.e. n > ρc, or more specifically

ζ(ρ) > 1− Λ4
R

Λ4
B

, (7.49)

see Eqs. (7.2), (7.6). Since in this work we do not focus on any specific scenario for the function
ζ(ρ),9 we simply assume that stars exist with n > ρc, and note that denser stars are typically
smaller. The other conditions concern the formation and escape of the bubble, which are different

9Constraints on relaxion models, where ζ(ρ) can be explicitly computed, are presented in [12].
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Figure 7.6: Region excluded by a density induced vacuum instability (shaded red) in the plane
(f/RS

√
1− δ2, Λ4

R/Λ0), where RS is the typical radius of the (type of) star triggering the phase
transition, i.e. where densities above critical are realized, n > ρc. The dashed line corresponds
to the bound Eq. (7.48).

for a shallow metastable minimum than for a deep one, see Eq. (7.73) and Eq. (7.74), respectively.
These depend on either RT or ∆RT = RS − RT, which in turn depend on the density profile
of the star. We will take RT ∼ ∆RT ∼ RS as a generic expectation for stars where the core
density is not very close to the critical one, as discussed in Sec. 7.1.2. Under this assumption,
the strongest of the formation and escape conditions, for both shallow and deep minima, can be
written as

Λ4
R &

f2

R2
S

1

1− δ2
. (7.50)

We show the region of parameter space where this condition is satisfied in Fig. 7.6. Since a
phase transition seeded by stars takes place in this region, the bound Eq. (7.48) applies, ruling
out the corresponding part of it. Note that for a bubble connecting deep minima, Eq. (7.50)
can be rewritten as Λ4

R & Λ2
Bf/RS.

7.1.9 Conclusions

Could a phase transition have taken place in the universe due to the formation of stars? In this
section, we explored this question by studying how false vacua change at finite density. Similar
to the interactions with a thermal bath, the coupling of a scalar field to background matter
can give rise to significant deformations of the scalar potential, to the point that a metastable
minimum present in vacuum disappears at finite density. This leads to the formation of a non-
trivial scalar profile, a.k.a. a scalar bubble, where the maximum field displacement within is
controlled by the size of the dense system relative to the characteristic scale of the in-density
potential; if the star gets large enough, a classical path to a deeper minimum of the potential
becomes accessible. Interestingly, we found that when this occurs, the bubble, initially confined
within the star, can become unstable and expand beyond the star and extend to infinity! By
means of simple analytic arguments, we have shown that the bubble cannot be contained within
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7.1. Density induced Vacuum Instabilities

the star if the energy difference between the minima is large compared to how fast the potential
barrier between them reappears towards the surface of the star. In other words, we have shown
that if certain conditions regarding the properties of the metastable minimum and of the density
profile are satisfied, stars can indeed act as seeds for a phase transition in the universe.

Our analysis of the fate of a false vacuum at finite density has been based on a tilted quartic
potential, as in the classic work by Coleman [288]. This potential is characterized by the energy
difference between the local and true minimum, the height of the potential barrier between
them, and their separation in field space. Such a simple potential encodes the main features
of local minima present in many scenarios beyond the SM. Specifically, the analysis performed
in this section can be extended to the relaxion, a mechanism to explain the smallness of the
electroweak scale that relies on a closely-packed landscape of local minima, with barriers between
that depend on the value of Higgs field thus sensitive to SM matter densities [10]. This is the
subject of Sec. 7.3. Other scenarios connected to the electroweak hierarchy problem or simply
relying on the Higgs-portal, e.g. [289, 322–328], should be investigated as well in light of our
findings. In this regard, while we have focussed on scenarios where density affects the size of
the potential barrier between minima, the analysis where other scales are density-dependent is
an interesting case to consider. We will see an example in Sec. 7.3, where instead of a decrease
in the barrier, the increase of the tilt is the dominant effect leading to such phase transitions.
Additionally, while we focused for concreteness on matter density, one should also consider other
non-trivial backgrounds, such as an electromagnetic field, as sources for the instability of the
false vacuum which we will also see in Sec. 7.3.

Phase transitions triggered by dense systems such as stars must confront the experimental
constraints that arise from the change in the energy of the vacuum at late cosmological times,
z ∼ 10, when star formation begins. Indeed, on the one hand, the change in the ground state
energy between the local and true vacuum is the key parameter that determines if a scalar
bubble formed in a dense and large enough star is able to escape and propagate to infinity. On
the other hand, early versus late cosmological measurements of the dark content of the universe
constrain such a change. Nevertheless, we have shown that if the field distance between the
minima is small enough or if the stars that can trigger the phase transition are very large, the
phase transition could have taken place consistent with current cosmological data. Detailed
cosmological and astrophysical constraints on these types of transitions, beyond the simple
and likely too conservative bounds we have derived, deserves further investigation, in particular
because of the relevance of scalar potentials with (many) false vacua for the electroweak hierarchy
or the cosmological constant problems.

Finally, even though we focussed on classical transitions between minima, we have also
shown how stars could act as a catalyzer where the tunneling probability of a false vacuum
can be greatly enhanced. Although of a different, quantum-mechanical origin, once formed the
dynamics of the corresponding scalar bubble would be described along similar lines as those
presented here. The possibility of a seeded vacuum decay leaves us with another question: is it
likely that a phase transition in the universe due to the formation of stars is soon to take place?

We continue this chapter with the formulation of the Higgs Hierarchy problem in Sec. 7.2 in
order to motivate the relaxion model which we will investigate in Sec. 7.3 in light of our findings
from from this section.
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7.2 The Higgs Hierarchy Problem

In this section we introduce the Hierarchy problem in order to motivate the relaxion solution,
which we discuss in Sec. 7.3 in light of our findings from Sec. 7.1.

In the context of the Hierarchy Problem, we draw inspiration from the discussion presented
in [44], and for a broader perspective, we refer readers to recent articles on the topic [329,330],
as well as the original works [331–333].

At present, the SM stands as an effective field theory that remarkably describes nature within
the scales we can experimentally probe, up to several TeV. However, as we approach the Planck
scale, E ∼ 4πMp, gravity emerges as a strongly-coupled force, necessitating an extension of the
SM at or before this energy regime. This does not rule out the possibility of earlier layers of
UV completion, such as those accommodating neutrino masses, flavor, or electroweak symmetry
breaking (EWSB).

Seen as an effective theory, aside from the gauge group SU(3)×SU(2)×U(1), the SM reveals
little. It presents itself as a series of local, gauge-invariant operators characterized by energy
dimension d, with coefficients that, by dimensional analysis, scale as ∝ Λ4−d

SM .

Let us begin with marginal operators of dimension d = 4 which are not sensitive to the
cut-off scale ΛSM. They encompass almost all observable phenomena in nature, including the
EW interactions, QCD, and quark and lepton masses. Together with the d = 2 and d = 0
operators, which we discuss later, these operators form the SM as a renormalizable theory. The
considerable success of the SM arises from the accidental symmetries. These symmetries emerge
without any underlying symmetry principle, only persisting at a given order because no operator
breaking them at that order can coexist with the gauge symmetries. In particular, baryon and
lepton family numbers stand as exact accidental symmetries within the SM.

Moving on to irrelevant operators i.e. d > 4. By NDA their contributions to low-energy
observables are suppressed by Ed−4/Λ4−d

SM . Lepton number gets violated at d = 5 through the
Weinberg operator [334],

1

ΛSM

(
L̄LH

c
)

(LcLH
c) , (7.51)

where LL denotes the lepton doublet, H the Higgs doublet, and the superscript c stands for
charge conjugation. Within one order of magnitude, this operator yields neutrino masses of
approximately the right magnitude for ΛSM ∼ 1014GeV, i.e. mν ∼ 0.1 eV and it stands as the
unique dimension-five operator one can add to the SM.

Proceeding to the next higher dimension, d = 6, one finds that baryon number is violated.
For coefficients of order one, the absence of proton decay implies ΛSM & 1016GeV.

From these considerations, it is entirely plausible that the SM remains valid up to very high
scales, with ΛSM ∼ 1015GeV. Although the SM has certain other limitations, such as the non-
generic flavor structure or the need to incorporate dark matter, none of these challenges are
sufficiently strong to question the idea of heavy new physics. The only limitation capable of
doing so is the Hierarchy Problem, which we will now explore.

Up to this point, we have not addressed the relevant operators of d < 4. There exist two
such operators in the SM that need to be considered. These are at d = 2 the Higgs mass term
∼ Λ2

SMH
†H and at d = 0 the cosmological constant term ∼ Λ4

SM. Unlike irrelevant operators
which are suppressed by ΛSM, relevant operators are enhanced by it. For now, let us focus on
the Higgs mass term. We know that the Higgs mass is measured to be mH = 125GeV, implying
that the mass parameter µ2 = m2

H/2 = (89GeV)2 � Λ2
SM. Hence, the key question is, why

does such an enormous hierarchy exist between the expected and measured parameter? The
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fundamental aspect of the Hierarchy Problem lies in the significant disparity of these scales.

Let us have another look at the Higgs mass, assuming knowledge of the UV completion, we
can express it as

m2
H =

∫ ∞
0

dE
dm2

H

dE
(E; p), (7.52)

where p represents the input parameters of the full theory. This integral sums up contributions
to the Higgs mass from all energy scales. We can split the contributions into those where the
SM remains a valid theory E ≤ ΛSM and BSM contributions from above that energy threshold
E ≥ ΛSM,

m2
H =

∫ ΛSM

0
dE

dm2
H

dE
(E; p) +

∫ ∞
ΛSM

dE
dm2

H

dE
(E; p) = δSMm

2
H + δBSMm

2
H (7.53)

The SM contribution m2
HδSM can be computed, while the BSM contribution remains completely

unknown. The low-energy contribution can be approximated by calculating one-loop contribu-
tions from the top quark, electroweak gauge bosons, and Higgs boson loops, as depicted in Fig.
7.7, resulting in

m2
HδSM =

Λ2
SM

(4π)2

[
6y2
t −

3g2
W

2

(
1 +

1

2 cos2(θW )

)
− 6λ2

]
, (7.54)

where yt is the top quark Yukawa coupling, gW is the electroweak gauge coupling, and λ

Figure 7.7: One loop contributions to the Higs mass from the top quark, electroweak gauge
bosons and the Higgs self-coupling.

represents the Higgs self-coupling. These one-loop diagrams display quadratic sensitivity to the
cutoff of the theory.

It becomes clear again that the Hierarchy Problem lies in the immense difference between
the measured value of the Higgs mass and the expected order of magnitude from the IR contri-
butions to it. The measured value necessitates that the completely unrelated BSM contributions
δBSMm

2
H need to cancel the SM EFT contribution δSMm

2
H to extreme precision. This cancel-

lation is captured by the tuning factor

∆H =

(
ΛSM

mH

)2

'
(

ΛSM

500 GeV

)2

. (7.55)

Requiring tuning of order one ∆H ∼ O(1) needs new physics at the TeV scale while new
physics at higher scales implies larger amount of tuning. This implies that even if we know the
fundamental theory measurements with the precision equal to the amount of tuning is necessary
to obtain a prediction for the Higgs mass.

Therefore, the severity of the Hierarchy Problem depends on the value of ∆H , making the
Higgs mass easier or harder to predict in the full theory. Only the experimental high-energy
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frontier can shed light on the expected value of ∆H , either by pushing ΛSM to ever-higher scales
or by revealing new physics that addresses the Hierarchy Problem.

In principle, the fundamental theory of nature could well be heavily tuned and that the
solution to the hierarchy problem is something like anthropics. This is however counter-intuitive
since physics seems to be natural more often than not and that the apparent tuning of parameters
revealed some deeper reason, such as dynamic selection or symmetries. We therefore believe that
it is worth while to study models in which the smallness of the EW scale comes about natural
such as in models of dynamical relaxation, the topic of the next section.

7.3 Runaway Relaxion from Finite Density

This section is devoted to relaxion models, see Ref. [10]. We start in Sec. 7.3.1 with an intro-
duction to the relaxion mechanism and general properties of the relaxion potential. We find
that the relaxion potential naturally satisfies generic conditions needed to trigger the type of
phase transitions we explored in Sec. 7.1. The relaxion in the late universe sits in a meta-stable
minimum in vacuum and even more convenient all benchmark realizations of relaxion models
are subject to density-dependent barriers. We explore the relaxion potential at finite densities
in Sec. 7.3.2 and briefly review the conditions that lead to the formation and escape of relaxion
bubbles, generally discussed and conveniently summarized previously in Sec. 7.1.6. In analogy
to Sec. 7.1.8 we discuss the phenomenological implication of relaxion bubbles escaping from
stars into our universe at late times in Sec. 7.3.3. We find that this puts novel constraints on
benchmark relaxion models, which are briefly introduced and discussed. Finally we conclude
and discuss our findings in Sec. 7.3.4.

7.3.1 The relaxion potential

The relaxion potential [10] is characterized by a washboard-like shape where the amplitude of
the wiggles depends on the relaxion field φ itself,

V (φ) = −Λ4
R

φ

f
− Λ̃4

B F (φ) cos
φ

f
. (7.56)

ΛR and Λ̃B are the scales that control the size of the linear rolling and periodic back-reaction
terms respectively, while 2πf parametrizes the field distance between adjacent minima. The
monotonically increasing function F (φ) is of the form

F (φ) =

(
φ

φc
− 1

)k/2
Θ(φ− φc) , (7.57)

with k = 1, 2 and where φc is the field value where the periodic barriers turn on. This is taken
such that the change in the size of the wiggles after a 2πf period is small, i.e. φc � f , and
therefore the landscape is densely populated over field ranges of order φc. The case k = 0
corresponds to Abbott’s potential [9], where the size of the potential barriers is constant. The
non-trivial behavior for k = 1, 2 arises from the dependence of the periodic term on the Higgs
VEV, h, which in turn is determined by the scalar field φ.

Indeed, the Higgs potential, in particular the mass term, depends on the value of the relaxion,

V (h) = 1
2(M2 − gφM)h2 + 1

4λh
4 , (7.58)
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where M is the cutoff and g is a small coupling that breaks the shift-symmetry associated with
φ. Note that the periodic term in the relaxion potential, while breaking the continuous shift-
symmetry, is still invariant under the discrete shift φ→ φ+ 2πfn, n ∈ Z. The coupling to the
Higgs, as well as the linear term in the potential, break it completely, thus we expect

Λ4
R

f
= c gM3 , (7.59)

where c is a parameter with the dimensions of an inverse coupling squared, therefore c ∼ 1/(4π)2

in a strongly coupled UV completion; in this work we take c = 1. Likewise, naive dimensional
analysis yields M ∼ 4πf ; here we keep M and f independent and require that f > M/4π
(f � M would correspond to a weakly coupled UV completion). As soon as the Higgs mass
parameter turns negative, h acquires a VEV, given by

h2 =
M2

λ

(
φ

φc
− 1

)
, φc ≡M/g , (7.60)

where we have identified φc as given in Eq. (7.57).
One must now specify how the amplitude of the relaxion periodic term depends on the Higgs

VEV. In Sec. 7.3.3 we discuss specific realizations of the relaxion, where such a dependence is
either linear (QCD-relaxion), Λ̃4

BF (φ) ≡ Λ4
QCDh/v with v ≈ 246GeV and ΛQCD the QCD quark

condensate, or quadratic (non-QCD-relaxion), Λ̃4
BF (φ) ≡ ΛC(h/v)2, where ΛC is the analogous of

ΛQCD for a new QCD-like confining dynamics. These two cases therefore correspond to k = 1, 2
in Eq. (7.57), respectively. More complicated functions, beyond Eq. (7.57), arise in the presence
of extra light scanning scalars [335]. In any case, the change in the Higgs field between adjacent
minima is

∆h2 =
2π

λ

Λ4
R

M2
. (7.61)

The requirement that φc � f , which is correlated with the fact that the rolling term is hierar-
chically smaller than the cutoff of the theory, ΛR � M , see Eq. (7.59), ensures that the Higgs
VEV varies slowly with every period of the potential.

Recall that in the relaxion mechanism, φ goes through a period of dynamical evolution, orig-
inally assumed to happen during a phase of cosmological inflation [10], where it rolls towards the
minima of the landscape, generically stopping at one of the first (see below for a characterization
of the minima). The parameters of the potential are adjusted, in a technically natural fashion,
such that the Higgs VEV is of the right size at the minimum where the relaxion stops its evolu-
tion, that is h = v. Other proposals regarding the aforementioned time evolution of the relaxion
have been put forward in e.g. [336–338] and [339]. In addition, already in [10] and subsequently
in e.g. [335, 340], the potential itself was made to evolve during inflation, eventually leading to
the relaxion resting in a minimum many periods beyond the first. In this section, we will not be
concerned with the early cosmological dynamics of the relaxion. Instead, our analysis generally
applies to whichever minimum the relaxion eventually stopped at, i.e. to the minimum where
the relaxion is found when structures in the universe, particularly stars, start to form.

To ease the analysis of the landscape of relaxion minima, it is useful to redefine the scalar
field as

φ ≡ φ`(θ) = (2π`+ θ) f with ` ∈ N , θ ∈ [0, 2π) , (7.62)

where ` labels the period of the field. The local (metastable) minima of the potential are then
denoted by φ`∗(θ∗), where the precise value of θ∗ depends on the period `∗. Minima are found
as soon as the (`∗-dependent) effective back-reaction grows large enough,

Λ4
B ≡ Λ̃4

BF (φ`∗(π/2)) > Λ4
R . (7.63)
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In addition, we can conveniently choose to shift the origin of field space such that the minima
start with `∗ = 1, φ` → φ` + 2πf(¯̀− 1) with ¯̀= (φc/2πf)

[
(Λ4

R/Λ̃
4
B)2/k + 1

]
+ ξ, where ξ ∈ [0, 1)

such that ¯̀∈ N.

The relaxion landscape in Eq. (7.56) has two qualitatively different types of minima, de-
pending on the relative size of the rolling and back-reaction terms, see Fig. 7.8. These can be
parametrized by the variable δ

fV ′(φ`∗(π/2)) ' −Λ4
R + Λ4

B ≡ δ2
`∗Λ

4
B , (7.64)

where V ′ is the derivative of the potential, here evaluated at the period `∗. We note that δ`∗
depends on the period, although to ease the notation we shall henceforth omit the subscript
whenever unnecessary. For the first periods of the potential in which a minimum is present, the
parameter δ is small. This implies that these minima are shallow [341]. Indeed, for δ2 � 1 the
minimization condition 0 = fV ′(φ`∗(θ∗)) ' −Λ4

R + Λ4
B sin(θ∗) is satisfied at θ∗ ' π/2 −

√
2δ,

which is very close to the local maximum (found at θ ' π/2 +
√

2δ), see the lower-left panel of
Fig. 7.8. The mass of the relaxion in these minima is given by

m2
φ '

Λ4
B

f2

√
2δ , (shallow) (7.65)

parametrically suppressed with respect to the usual expectation m2
φ ' Λ4

B/f
2. In subsequent

minima one finds m2
φ`∗

=
√
`∗m

2
φ1

, where the value of δ2 corresponding to `∗ = 1 is

δ2
`∗=1 '

kπf

φc

(
Λ̃4

B

Λ4
R

)2/k (
1
4 + ξ

)
. (7.66)

The other type of minima we are interested in corresponds to δ2 ≈ 1. These are deep minima,
since ΛB � ΛR, see the lower-right panel of Fig. 7.8. The minimization condition yields θ∗ '
1− δ2 � 1, and the relaxion mass is simply

m2
φ '

Λ4
B

f2
. (deep) (7.67)

Another quantity of phenomenological interest, which is markedly different between shallow and
deep minima, is the height of the potential barrier,

∆Vtop '
{

4
√

2Λ4
Bδ

3 , (shallow)

2Λ4
B . (deep)

(7.68)

The suppression of the barrier in the case of minima with δ2 � 1 implies that even a small
perturbation of the potential can easily destabilize the relaxion, displacing it towards lower
energy minima.

This recovers the exact scaling as seen for the potential a la Coleman investigated in Eq. (7.3)
and Eq. (7.4) and proves the point that relaxion models naturally give rise to the potentials
studied in Sec. 7.1.

7.3.2 The relaxion at finite density

As we have seen in Sec. 7.3.1 when discussing the density dependence of the Coleman-like
potential, depending on the parameters of the potential, the barrier separating the two minima
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0 0

Figure 7.8: Global view of the relaxion potential (upper panel) and zoomed in regions with
shallow (lower left) and deep (lower right) minima. Also plotted in the lower panels the in-
density potential for ρ (n = ρ in the plot) slightly larger than critical (dashed). The upper
sub-panels show the derivative of the potential, both for n = 0 and n & ρc. The first minima at
finite density are always shallow.

can disappear in sufficiently dense systemt. In this section we analyse this behavior for the the
relaxion potential Eq. (7.56).

As in Sec. 7.3.1 we mainly focus on a decrease of the back-reaction term, since for the
relaxion this constitutes the leading deformation in most circumstances.10 Indeed, in QCD-
relaxion models, the size of the potential barriers is controlled by ΛQCD, which is known to
linearly decreases with (small) baryon density [193, 210], a fact that has already been shown
to affect the QCD axion [11, 186]. Alternatively, for non-QCD-relaxion models, we show in
Sec. 7.3.3 that it is the change of the Higgs VEV with density that leads to a reduction of the
potential barriers. In addition, in Sec. 7.3.3 we speculate about the possibility of dense systems
made of the dark baryons, where the back-reaction term would decrease in a similar fashion as
in QCD.

The scenario where the size of the potential barriers depends on density, ρ, has been recently

10In Sec. 7.3.3 we discuss a relaxion model in which the rolling term changes due to an electromagnetic back-
ground, as well as the modifications that this possibility introduces w.r.t. what we present in this section.
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investigated in detail in [13]. Most of the discussion here parallels the one presented there.
We summarize the main results and adapt the notation when necessary to match the relaxion
potential.

In this section the dimensionless quantity ζ is redefined in complete analogy from Eq. (7.5)
in Sec. 7.1 to parameterize the relative change in the back-reaction term at finite density

ζ(ρ) ≡ 1− Λ̃4
B(ρ)

Λ̃4
B

, (7.69)

with again ζ(ρ) > 0 and ζ(0) = 0. Let us now consider that in vacuum the relaxion sits at
the minimum corresponding to some fixed period `∗. One can then define a critical density, ρc,
above which the effective back-reaction ΛB at this minimum is no longer larger than the rolling
term. This is implicitly given by

ζc ≡ ζ(ρc) = δ2
`∗ , (7.70)

where we recall that δ2
`∗

= 1− Λ4
R/Λ

4
B. When the critical density is reached, the local minimum

associated with ΛB ceases to exist. In other words, the relaxion minimum corresponding to the
period `∗ (and obviously all the previous minima) is destabilized when ζ(ρ) > δ2

`∗
. Shallow

minima, where δ2 � 1, are easily destabilized by density corrections, since ζc � 1, while deep
minima require ζc ≈ 1 in order to disappear, see Fig. 7.8. In the following, we restrict our
discussion to ζ(ρ) ≤ 1, leaving the discussion of the case where the barriers change sign to
App. D.7.

Hence at densities ρ > ρc the minimum in which the relaxion resides in vacuum disappears.
The number of periods between such a minimum and the first minimum of the in-medium
potential is given by

N ≡ `∗ ρ − `∗ =
φc

2πf

[(
1− ζc
1− ζ

)2/k

− 1

](
Λ4

R/Λ̃
4
B

1− ζc

)2/k

+ ξ , (7.71)

where ξ ∈ [0, 1) such that N ∈ N. Independently of k (k 6= 0), ρ scales with the difference
ζ − ζc. In addition, ρ scales with φc/f � 1, thus as soon as ζ is above the critical value, the
first in-density minimum is generically many periods beyond the one in vacuum. Additionally,
the first minimum at finite density is always shallow: it lies at θ∗n ' π/2, and the mass of the
scalar as well as the potential barrier are suppressed beyond the naive expectations, much like
for the shallow minima in vacuum.

The change in the ground state energy between consecutive minima, be these shallow or
deep, at zero or non-zero density, is always

∆Λ ' −2πΛ4
R . (7.72)

Formation and escape of a bubble

The disappearance of the in-vacuo minimum at supercritical densities leads to a non-trivial scalar
profile, φ(r), developing within finite-size systems such as stars as we have seen in Sec. 7.1. The
exact conditions for the formation and escape of such a bubble is summarized in Sec. 7.1.6 and
can be readily applied to the relaxion potential Eq. (7.56).

For a shallow relaxion minimum (δ2 � 1), the change in the wall’s tension is negligible,
since already in vacuum the potential barrier separating the two adjacent minima is very small,
Eq. (7.68). Therefore, when a shallow relaxion bubble forms, it generically escapes from the star
as well. The condition for this to happen is

RT &
f

Λ2
R

. (shallow) (7.73)
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Instead, for a deep relaxion minimum (δ2 ≈ 1), the change in the wall’s tension is significant,
going from being dominated by the gradient energy at the core, to being dominated by the
large potential barrier in vacuum. This implies that the escape condition is stronger than the
condition for formation. The former reads

∆RT &
f

Λ2
R

1√
1− δ2

=
fΛ2

B

Λ4
R

. (deep) (7.74)

As seen in Sec. 7.1, also for the relaxion potential it is generically much more difficult for a
bubble connecting deep minima to escape from the star than for a shallow bubble. Furthermore,
recall that in order to destabilize a deep minimum much larger densities are needed than in the
shallow case. As also justified in Sec. 7.1, we take both the size of the core RT, and the size of
the transition region from the core to the end of the star ∆RT, to be of the same order as the
whole size of the star, RS ∼ RT ∼ ∆RT.

Note that we take into account WDs and NSs (see Chap. 3) and the Sun with typical density
ρ� ≈ 1.5 g/cm3 × 1/mp ≈ 7× 10−9 MeV3 and radius R� ≈ 7× 105 km.

Before moving to the phenomenological consequences of escaping bubbles for specific relaxion
models, some additional comments are in order:

If the star grows very large compared to µ−1, very large field displacements (w.r.t. where the
relaxion resides in vacuum) are energetically allowed inside the bubble. Indeed, at a fixed core
density such that ζ is not accidentally close to criticality, a very large core RT ∼

√
Nµ−1 � µ−1

allows for the relaxion to move by many periods N � 1, see Eq. (7.71). As explained in
App. D.6, such a large relaxion bubble has the effect of helping the standard bubble connecting
two adjacent minima (i.e. for which ∆φ(0) ∼ 2πf) to escape from the star. In fact, such a bubble
escapes independently of the density profile, regardless of how fast density decreases towards
the outer edge of the star. In this case the conditions Eqs. (7.73), (7.74) read the same, only
with RS instead of RT and ∆RT; they simply encode the requirement for a standard relaxion
bubble to expand once it is outside of the star, see Eqs. (D.24), (D.25). If one bubble is able to
escape, the new relaxion minimum in vacuum becomes the one associated with the next period,
i.e. `∗ + 1. Interestingly, since N = `∗n − `∗ � 1, such a new minimum is also unstable inside
the dense system. This then implies that another bubble, within which this time the relaxion
sits at the minimum `∗+ 2, will generically be able to escape as well, and so on until the escape
condition is no longer satisfied.

Finally, let us note that our whole discussion relies on the assumption that the density profile
is treated as a background field that does not receive a large back-reaction from the formation
and expansion of a relaxion bubble. In App. D.8 we discuss the interactions of the relaxion
(non-trivial configurations) with the density profile, thereby justifying this treatment.

7.3.3 Bounds on relaxions

The relaxion bubbles are no different from our generic scalar bubbles in Sec. 7.1 and thus are
born along with the stars that seed them. Therefore, if the conditions for the bubble to expand
beyond the dense system are met, a phase transition in the universe to a new relaxion vacuum
can occur whenever the right type of stars are formed.

As discussed in Sec. 7.1.8 such bubbles are forbidden if the change in the CC that comes
along with them is too large, see Eq. (7.48).

Still, it is interesting to note that if we were to consider bubbles nucleated by the largest
stars observed so far, with radii RS ∼ 103R�, or by large non-standard astrophysical objects,
associated for instance with some beyond the SM relic species, e.g. dark matter (see Sec. 7.3.3),
then a phenomenologically viable late-time phase transition could have taken place. In this
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regard, it would be interesting to perform a detailed assessment of the associated cosmological
and astrophysical signatures.

Besides, in relaxion models, the change of minimum also implies a change in the Higgs VEV,
for which there exist cosmological (and astrophysical) constraints as well. However, let us note
right away that the relative change of the electroweak scale between minima is much smaller
than the change in the vacuum energy: (∆h2/v2)/(|∆Λ|/Λ0) = Λ0/λcv

2M2 � 1, where we have
used Eq. (7.61). Nevertheless, since this is one of the trademarks of relaxion models compared to
other landscapes, let us briefly review the bounds. There are significant constraints on a different
value of the Higgs VEV during BBN, |∆h/v| . 10−2 where ∆h = h − v [342]. In addition, it
has been recently argued that SN explosions can only happen if h is below a factor of a few
away from v [343]. While these constraints (the one from BBN in particular) could be violated
if the universe underwent a change of relaxion minimum at star formation, as shown above, the
associated change in vacuum energy always yields a more or equally stringent constraint.

In the remainder of this section, we work out the specifics of how a non-vanishing SM matter
density (or an electromagnetic background) affects the potential of some benchmark relaxion
models, and re-express the conditions for the formation and escape of bubbles in terms of their
parameters.

QCD relaxion

The most economic origin of the relaxion periodic term is low-energy QCD dynamics, in which
case we identify the relaxion with the QCD axion. The dependence on the Higgs VEV arises
from the well-known dependence of the axion potential on the quark masses. This leads us to
identify Λ̃B in Eq. (7.56) as well as ΛB, the effective size of the periodic term at the minimum
where the relaxion sits in vacuum, as

Λ̃4
B = Λ4

QCD

M

v
√
λ
, Λ4

B = Λ4
QCD

h

v
. (7.75)

Note that if a seeded phase transition took place, the relaxion would not sit at the same minimum
today as right before star formation. Nevertheless, in the following we conservatively fix h =
v ≈ 246GeV, since any minimum before star formation with a smaller h would necessarily be
shallower than the present one, making it easier for the transition to occur. The exponent of
the function F (φ) in Eq. (7.57) is determined as well, k = 1, since the dependence of the back-
reaction term on the Higgs VEV is linear. Note that the QCD(-axion) scale is Λ4

QCD ' m2
πf

2
π/4.

Finally, the value of δ, which determines if the relaxion minimum is shallow or deep, depends
on the relative size of the rolling term, Λ4

R = gM3f , according to Eq. (7.64),

δ2 = 1− gM
3f

Λ4
QCD

. (7.76)

In this regard, let us note that, as advanced, for the first minima of the potential δ is always
a small parameter as long as the scanning of the Higgs VEV is sufficiently precise. At the first
minimum,

δ2
`∗=1 '

πΛ4
QCD

λv2M2

(
1
4 + ξ

)
� 1 , ξ ∈ [0, 1) , (7.77)

while for all the subsequent minima δ2
`∗

= `∗δ
2
1 . Since it has no actual significance, from now on

we set ξ = 0.
Once all the relevant parameters of our potential have been identified, let us consider the fate

of the relaxion bubbles, starting with shallow minima, δ2 � 1. This case should be primarily
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7.3. Runaway Relaxion from Finite Density

considered as illustrative, since the value of the relaxion at the minimum is displaced from a
multiple of 2πf by approximately π/2, thus the strong CP angle is also θQCD ' π/2, which
is experimentally ruled out. Keeping this in mind, we can compute the dependence of the
back-reaction term, or equivalently ζ in Eq. (7.69), on the baryon density ρN by means of the
Hellmann-Feynman theorem, as explained in e.g. [11],

ζ(ρN ) ' σπNρN
m2
πf

2
π

. (7.78)

This holds for densities below a few times nuclear saturation, and where σπN ≈ 45 MeV is known
as the pion-nucleon sigma term. In turn, since the critical value of ζ for which the relaxion can
classically move is given by ζc = δ2, we find that a proto-bubble can start forming if

ρN >
`∗
M2

πΛ8
QCD

σπNλv2
≈ 1× 10−8 MeV3

(
1 TeV

M/
√
`∗

)2

, (7.79)

that is if densities are larger than 3 g/cm3× 1/mp. This is a very low critical density, found not
only in NSs and WDs, but in the Sun as well. The densities reached in these systems then set
the minimum value of M/

√
`∗ that is excluded if the bubble eventually fully forms and escapes

the star. The corresponding condition is given in Eq. (7.73), which for the QCD-relaxion reads

RS &
f

Λ2
QCD

, (7.80)

where we have taken RT ∼ RS as argued in Sec. 7.3.2, and traded ΛR with ΛQCD given that
δ2 � 1. Using typical radii and densities for the type of star under consideration, we arrive at
the following excluded values for the relaxion decay constant and cutoff

NS : f . 3× 10−2MP , M/
√
`∗ & 1× 10−4GeV ,

WD : f . 63MP , M/
√
`∗ & 0.3GeV , (QCD; shallow) (7.81)

� : f . 9× 103MP , M/
√
`∗ & 1.4 TeV .

Therefore, while recalling that the shallow QCD relaxion is already ruled out by a too large θQCD,
we find that classical rolling and escape would happen for nearly all values of f and M/

√
`∗.

Note in fact that for both WDs and main-sequence stars the upper bounds on f are above MP,
and that for NSs and WDs the lower bound on M is not larger than the electroweak scale.

The situation is markedly different for deep minima, particularly since we must require
θQCD . 10−10, which then fixes 1− δ2 to be as small at the minimum in question. Since ζc = δ2,
this implies that the QCD barriers at finite density, Λ4

QCD(1 − ζ(ρ)), would need to nearly
disappear for the relaxion to be able to classical move to the following minimum. Such large
densities, if attainable at all inside NSs, are certainly beyond perturbative control, and thus the
linear approximation used to derive Eq. (7.78) is not applicable. However, since in the cores of
NSs densities could be higher than ten times nuclear saturation density [299], it has long been
hypothesized that new phases of QCD, such as kaon condensation or color-superconductivity,
could take place there, see Sec. 5 and [11] as well as references therein. As shown in that
work, this raises the possibility that, while remaining finite, the periodic potential flips sign. As
explained in App. D.7 (see also [254]), this would lead to relaxion condensation with ∆φ(0) = π,
assuming a small rolling region. Such a type of bubble would remain confined inside the dense
system.

Still, an exciting option remains that such a change of phase of strongly interacting matter,
being controlled by QCD dynamics, happens very fast compared to the reaction time of the
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relaxion. In the case of a deep minimum, this reaction time is prolonged compared to a shallow

one, µ−1 = f/Λ2
R = θ

−1/2
QCD f/Λ

2
QCD. Then, as discussed in Sec. 7.1, the kinetic energy that the

field acquires after the sudden change of its potential could be enough to overcome the (flipped)
barriers and to create a relaxion bubble with ∆φ(0) � 2πf . This facilitates the escape of a
standard 2πf bubble, as discussed above (see also App. D.6). With our current knowledge of
QCD at such extreme densities we cannot assert whether this is the right picture. Nevertheless,
if it were, a phase transition would take place if the condition Eq. (D.25) is satisfied

f <
√
θQCDΛ2

QCDRNS ≈ 8× 1011GeV

(
θQCD

10−10

)1/2

. (QCD; deep) (7.82)

Non-QCD relaxion

The correlation between the relaxion selection of the electroweak scale and of θQCD, i.e. between
the electroweak hierarchy and the strong CP-problem, can be broken by positing that dynamics
other than QCD is responsible for the generation of the periodic back-reaction term [10]. Such
a non-QCD strong sector must still couple to the relaxion in such a way as for the amplitude
of the barriers to depend on the Higgs VEV. Experimental constraints on new electroweak-
charged degrees of freedom that get mass from electroweak symmetry breaking motivate that
such a dependence is quadratic, instead of the linear dependence of the QCD scale (see however
Sec. 7.3.3). Therefore, we identify our potential parameters in Eq. (7.56) as

Λ̃4
B = Λ4

C

M2

λv2
, Λ4

B = Λ4
C

h2

v2
, k = 2 , (7.83)

where ΛC is the new confinement scale, analogous to ΛQCD in Eq. (7.75). In order for the size
of the barriers to be naturally dominated by the Higgs VEV squared, the condition Λ2

C . 4πv2

must be required [10, 335, 339, 344]. In parallel with the QCD-relaxion, the value of δ at a
given minimum is determined by the relative size of the rolling term and Λ4

C, i.e. Eq. (7.76) with
ΛQCD → ΛC. The first minima of the landscape are always shallow, since δ2

1 ' πΛ4
C/2λv

2M2 � 1
for Λ2

C . 4πv2 and M � 4πv.

The dependence of the back-reaction term on the (SM) matter density in this case is indirect,
stemming from a change in the Higgs VEV. This is due to the coupling of the Higgs field to
fermions, L ⊃ − 1√

2
yψhψ̄ψ, which in a (non-relativistic) ψ background, 〈ψ̄ψ〉 ' 〈ψ̄γ0ψ〉 = ρψ,

displaces its VEV from its value in vacuum. The small relative displacement with respect to
Eq. (7.60) is given, at leading order in ρψ, by

δh2(ρψ) =
yψ√

2

ρψ
λv3

, (7.84)

where we have evaluated h = v. The change h2 → h2(1 + δh2) is then responsible for the
density dependence of the relaxion potential. In this regard, note that both the rolling and
back-reaction terms are affected, since both of them are in fact quadratic in the Higgs, see
Eq. (7.58) and Eq. (7.83) respectively. Nevertheless, it is easy to see that the leading effect is
associated with the latter since, while the Higgs contribution to the barriers is the leading piece,
it is a subleading one for the linear slope as long as v2/M2 � 1.

The most relevant densities to consider, as in the case of the QCD-relaxion, are baryonic,
since these are usually the largest (in particular in the cores of NSs) and the coupling of nucleons
to the Higgs is significant yN = σπN/v, where N = n, p. In NSs, besides neutrons and protons,
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Figure 7.9: (M/
√
`∗,ΛC)-regions excluded by the formation and escape of a non-QCD relaxion

bubble induced by NSs (red), WDs (blue), and the Sun (green), in the case of shallow minima,
δ2 � 1 or equivalently ΛR ' ΛC, and for f = 109, 1014, 1019GeV (left, middle, right panel,
respectively). The grey, shaded region is excluded by the requirements Λ2

C . 4πv2 (orange
line) and ∆h2 < v2 (magenta line), while the region of parameter space preferred by relaxation
during inflation lies above the diagonal black line. Note that the latter line depends on a model-
dependent period of dynamical evolution, which our constraints are independent of. The three
lines are drawn taking `∗ = 1.

leptons are present as well. Charge neutrality implies ρp + ρe + ρµ = 0, where note that due to
the highly energetic Fermi surface of the electron, β-equilibrium not only implies µn = µp + µe
but µe = µµ as well, implying a non-vanishing muon density (for µµ > mµ). This is interesting
since the coupling of muons to the Higgs, yµ = mµ/v, is twice as large as to nucleons. In the
outer layers of NSs, in WDs and main-sequence stars, baryon densities become once again the
most important, given the small coupling of electrons to the Higgs. We therefore focus on the
effects of a non-vanishing ρN . Still working in the linear approximation, the decrease of the
non-QCD barriers is encoded as

ζ(ρN ) '
√

2
σπNρN
m2
hv

2
, (7.85)

where we have written it in terms of the physical Higgs mass, m2
h = 2λv2, to make apparent the

similarity with Eq. (7.78). A relaxion bubble can then classically form if densities satisfy the
following condition

ρN >
`∗Λ

4
C

M2

πv2

√
2σπN

≈ 3× 10−3 MeV3

(
1 TeV

M/
√
`∗

)2(ΛC ' ΛR

1 MeV

)4

. (7.86)

Even though finite density effects are relatively suppressed in the case of the non-QCD relaxion,
the required critical densities are sufficiently small, for large cutoffs or small back-reactions,
that they can be found from NSs to the Sun. Furthermore, relaxion bubbles will only form
for shallow minima, ζc = δ2 � 1, since values of ζ(ρN ) close to unity, which are required to
destabilize deep minima, can never be achieved (this would require exorbitant densities, of order
m2
hv

2/σπN ∼ 1019 MeV3).
The condition for a shallow bubble to fully form and escape the star simply reads

RS &
f

Λ2
C

, (non-QCD; shallow) (7.87)
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where recall that for δ2 � 1 we have ΛR ' ΛC. The conditions in Eqs. (7.86), (7.87), which
if satisfied imply a late-time phase transition at odds with experiment, give rise to non-trivial
constraints on the parameter space of the non-QCD relaxion. These are qualitatively different
and generically stronger than those dependent on the period of dynamical evolution; namely
Λ4

R > M6f/
√

12πM3
P for relaxation during inflation, associated with the requirement of classical

evolution of the field along with the energy density associated with the relaxion being a subdomi-
nant component [10,335,339,344]. A related but different discussion of chameleon effects relevant
for dark matter direct detection experiments have been recently presented in [345]. We show our
constraints in Figs. 7.9 and 7.10, in the planes (M/

√
`∗,ΛC), and (M, g) for `∗ = 1, respectively.

These are for three different values of the relaxion decay constant, f = 109, 1014, 1019GeV. In
both planes, it is evident that the lower boundary of the excluded (shaded) regions extends to
smaller values of either ΛC ' ΛR or g as f is taken smaller, since it is easier for the relaxion
bubble to fit inside a given type of star, Eq. (7.87). In turn, as f is taken larger, either ΛC

or g must be larger for the bubble to be able to form, which then requires higher densities,
Eq. (7.86); this is why the constrains from less dense stars become comparatively weaker. Note
that although the plots are cut at M = 109GeV, the constraints actually extend up to M . 4πf
in each case. Let us also point out that if the theoretical expectation that f < MP is accepted,
the constraints for f = 1019GeV ≈MP can be considered as absolute, meaning the correspond-
ing parameter space is excluded for any (possible) value of the axion decay constant. Finally,
considering larger stars with enough density would enlarge the excluded regions. In the case of
the (green) region associated with main-sequence stars, once the inequality Eq. (7.48) is satu-
rated, more refined experimental constraints on changes in the energy budget of the universe
or from other observables, would be needed. For instance, the densities achieved in the largest
stars (ρN ∼ 7 × 10−17 MeV3, R ∼ 103R�) are sufficiently high to destabilize the first minima

of the non-QCD relaxion with ΛTC ∼ ΛB ∼ Λ
1/4
0 , i.e. for which the change in the cosmological

constant is currently experimentally allowed. This is, according to Eq. (7.86), true even for the
smallest cutoff M ∼ 1 TeV. The investigation of the phenomenology of such phase transitions
is beyond the scope of this work.

Technicolored relaxion

For the QCD and non-QCD relaxion models, the most essential density deformation of their
respective landscapes is in the form of a smaller back-reaction term. Now we point out that
in general, this is not the only possibility. In this section, we present a scenario in which the
leading effect is due to a change in the rolling term. Furthermore, this change is induced not by
background matter but by the electromagnetic fields surrounding a spinning neutron star.

Another variant of the relaxion model involves a technicolor-like sector which provides an
additional source of electroweak symmetry breaking on top of the elementary Higgs. While
this sector, irrespective of the relaxion, is severely constrained experimentally (by electroweak
precision data, Higgs coupling measurements, and resonance searches at the LHC), it is not
yet ruled out [346, 347]. Exactly like for the QCD axion, the coupling of the relaxion to the
topological charge of this new confining sector gives rise to the periodic potential term [344],
with the analog of ΛQCD given by

Λ4
TC ' 4πv′3mU , (7.88)

where v′ is the electroweak-breaking order parameter of the technicolor (TC) sector. The elec-
troweak scale is given by v2 = v′2 + h2 and mU = yUh/

√
2 is the lightest techniquark mass,

linearly proportional to the elementary Higgs VEV. The parameters of the relaxion potential
are then identified as Λ4

R = gM3f (like in all the previous models), while Λ̃B and ΛB are similar
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Figure 7.10: (M, g)-regions excluded by the formation and escape of a non-QCD relaxion
bubble induced by NSs (red), WDs (blue), and the Sun (green), in the case of shallow minima,
δ2 � 1 or equivalently ΛR ' ΛC, and for f = 109, 1014, 1019GeV (left, middle, right pannel).
The grey, shaded region is excluded by the requirements Λ2

C . 4πv2 (orange line) and ∆h2 < v2

(magenta line), while the region of parameter space preferred by relaxation during inflation lies
above the diagonal black line. Note that the latter line depends on a model-dependent period
of dynamical evolution, which our constraints are independent of. Recall that g = Λ4

R/M
3f and

we have taken `∗ = 1 in Eq. (7.86).

to the QCD relaxion, Eq. (7.75), with the following replacements

ΛQCD → ΛTC , v →
√
v2 − v′2 . (7.89)

Due to the aforementioned experimental constraints, v′ cannot be large, v′ . 70GeV, nor very
small either, since the masses of the TC resonances are expected below 4πv′ [346].

It is crucial for our analysis that the relaxion in this model has a large coupling to photons.
Just like for the QCD axion, this coupling is a consequence of the (model-independent) coupling
to the technigluons as well as the (model-dependent) electromagnetic anomaly,

gφγγ
4

φ

f
FµνF̃

µν , gφγγ = c
( α

2π

)
, (7.90)

where c is a model-dependent constant. Such an interaction, which is not suppressed by the small
shift-symmetry breaking parameter g, has significant implications for the fate of this relaxion
model, in particular, because of the existence of strong electromagnetic fields surrounding rapidly
rotating NSs (magnetars/pulsars).11 Indeed, in such an environment the linear term in the
relaxion potential receives an additional contribution, Λ4

R → Λ4
R(1 + η), where

η =
gφγγE ·B

Λ4
R

. (7.91)

The critical value of η at which the minimum in vacuum ceases to be a minimum in the elec-
tromagnetic background is given by ηc = δ2/(1 − δ2). This statement can be translated to a

11By considering a rotating star we are departing from our main assumptions concerning the characteristics of
the system, as described in Sec. 7.1, in particular spherical symmetry and (near) time-independence. However,
we expect such departures to neither have a large impact on our qualitative description nor to change the order
of magnitude results we derive.
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transition radius, REM
T , which is the maximal radius for which classical rolling is allowed (equiv-

alent to the radius of the dense star core RT, see Sec. 7.1.3), and given by the solutions of
η(REM

T ) = ηc. It is also the position of the bubble wall at formation. The value of δ2 at the
`∗-th shallow minimum is given, as in the QCD relaxion, by δ2

`∗
= `∗δ

2
1 , where δ2

`∗=1 is as in
Eq. (7.77) with ΛQCD → ΛTC. The electric and magnetic fields depend on the intrinsic properties
of the star as well as on space-time, in a similar fashion as the (baryonic) density profiles that
were considered in our previous examples. However, in contrast to the case of a dense system of
finite size, here the electromagnetic background extends to infinity (i.e. much beyond the surface
of the star). This implies, for instance, that the radius at which classical rolling is allowed is
potentially much larger than RS. As explained in Sec. 7.1.3 it is the size of this region compared
to µ−1, the typical length scale of the relaxion, that determines whether a bubble is formed or
not. For a technicolored relaxion µ−1 is r-dependent,

µ−1(r) =
f

Λ2
R

1√
1 + η(r)

. (7.92)

Let us then consider a simple model of the magnetosphere, in particular a rotating dipole in
vacuum (see e.g. [227]),

E ·B =
R6

SB
2
SΩS

4r5
sinα

(
cos θ sinα+ sin θ cosα [rΩS cos (λ+ rΩS)− sin (λ+ rΩS)]

)
, (7.93)

with BS the magnetic field at the stellar surface, ΩS the rotation frequency of the star, α the
inclination angle of the dipole w.r.t. the rotation axis, and λ = φ−ΩSt the co-rotating azimuthal
angle. From here on we take α = π/4 for simplicity. In addition, we average the dipole over
one quadrant, that is θ ∈ [0, π/2] and φ ∈ [0, π], as well as over the relaxion time scale µ−1.
We identify two distinct limits, the first where the field reacts fast compared to the rotation
frequency, µ� ΩS, and the second where it reacts slowly, µ� ΩS. Since the bubble dynamics,
in particular if the bubble escapes or stays confined to the star, is a local statement governed
by the position of the bubble wall at its formation, we take µ−1(REM

T ) as the relevant time scale
in both limits. Within the fast limit, in order to analytically determine REM

T we perform an
expansion both in ΩS/µ� 1 and ΩSr � 1. For critical bubbles connecting shallow minima, the
validity of the second approximation follows from the first along with Eq. (7.96). For critical
bubbles connecting deep minima such an approximation is not valid in general, yet we verified
a posteriori that it holds in the region of interest, i.e. where the bounds lie, see Fig. 7.11. In the
limit where the field reacts slowly, we just perform an expansion in µ/ΩS � 1. After the dust
settles, we end up with

〈
E ·B

〉
' B2

SR
6
SΩS

4π2r5

{
(π − 2) , µ� ΩS ,

π , µ� ΩS ,
(7.94)

where we only kept the leading order terms. Note that the difference between the fast and slow
limits is due to the time-dependent piece of the dipole, which is relevant only in the first case.
For such a leading order averaged dipole, the transition radius is given by

REM
T =

(
α

8π3

B2
SR

6
SΩS

Λ4
TCδ

2

)1/5
{

(π − 2)1/5 , µ� ΩS ,

π1/5 , µ� ΩS ,
(7.95)

where we chose c = 1. Clearly, REM
T is much larger for shallow minima (δ2 � 1) than for deep

ones (δ2 ≈ 1), since the size of the critical electromagnetic field is much smaller for the former
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than for the latter. The condition that REM
T > RS, which is equivalent to the statement that

the critical value of η is reached somewhere before the surface of the star, is certainly necessary
for a bubble to form (equivalent to the condition ζ(ρN ) > ζc in the relaxion models previously
discussed). However, since E ·B = 0 for r < RS , the conditions for the formation and expansion
to infinity of the bubble sets a lower bound on the size of the region REM

T −RS which is always
more stringent than just η(RS) > ηc. For shallow minima, the condition for the formation of a
2πf bubble is roughly given by

REM
T −RS &

f

Λ2
R

' f

Λ2
TC

. (technicolor; shallow) (7.96)

This is the same condition leading to the escape of a bubble to infinity, since when δ2 � 1 the
change in the potential from the inside to the outside of the transition region r ∼ REM

T is barely
appreciable. We can explicitly verify that this is the case by considering the equation of motion
of the bubble wall within the background electromagnetic field,

σR̈ = ε− 2σ

R
− σ′ , ε(R) = 2πΛ4

R

[
1 +

δ2

1− δ2

(
REM

T

R

)5
]
, (7.97)

where ε is the energy density inside the bubble. Its R-dependence is due to the R-dependence of
η. It is then clear that for a shallow minimum, where δ2 � 1 and therefore σ′ = dσ/dR ' 0, the
condition for the bubble to escape is, to good approximation, given by Eq. (7.96). Note that we
have neglected O(1) factors as we did in Eqs. (7.73), (7.74), yet we expect them to be different
here due to the non-spherical morphology of the system.

When the condition in Eq. (7.96) is satisfied, the phase transition implies a change in vacuum
energy that is experimentally too large for 2πΛ4

R & 102Λ0, see Eq. (7.48). This allows us to
exclude large regions of parameter space of the technicolored relaxion, as shown in the left panel
of Fig. 7.11. To evaluate such a condition, we have taken as rotating neutron star properties,
RS = RNS, and typical values for the surface angular velocity and magnetic fields of NSs,

ΩNS ≈ 10 Hz , BNS ≈ 1010 T , (7.98)

see e.g. [348]. The relaxion coupling to photons is given in Eq. (7.90), where we set c = 1 (and
α ≈ 1/137); note that only if c > 0 the rolling term is larger than in vacuum (c < 0 would instead
make the minimum deeper in the electromagnetic background). In Fig. 7.11 (left panel), the
region to the right of a given labelled line is excluded, where each line corresponds to a different
value of the relaxion decay constant (from f = 1013 to 1019GeV). Therefore, for a given f ,
large values of M/

√
`∗ are excluded depending on ΛR ' ΛTC. As ΛTC increases, a certain critical

value is reached where the size of the critical region quickly decreases and becomes smaller than
RNS. The condition REM

T & RNS is independent of f , which is why all the excluded regions share
the same upper boundary. The red band marks the region where the field neither reacts fast
nor slowly compared to the rotation frequency, i.e. µ(REM

T ) ∼ ΩS. Given that REM
T in Eq. (7.95)

does not depend explicitly on f , the red band does not either. Within the band we expect O(1)
deviations from the naive interpolation, shown as dashed lines in Fig. 7.11.

Interestingly, the presence of large electromagnetic fields around NSs would also lead to non-
trivial constraints in the case of a bubble which connects deep minima. If the condition η > ηc
is satisfied, the condition for formation of a deep bubble is easily satisfied. This is because since
ηc � 1, the slope of the potential is much larger in the region r . REM

T than in vacuum. The
relevant condition that leads to a phase transition is then the one concerning the escape of the
bubble. We derive such a condition under the conservative simplification that past the transition
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Figure 7.11: Regions excluded (inside labelled lines for several values of f [GeV]) by the
formation and escape of a TC relaxion bubble induced by the electromagnetic fields generated
by rotating NSs. Left panel: for a bubble connecting shallow minima, δ2 � 1 or equivalently
ΛR ' ΛTC. The red band shows µ ∼ ΩS for a critical bubble. Right panel: for a bubble
connecting deep minima, the depth parametrized by gM3f/Λ4

TC = 1 − δ2. Dot-dashed lines
show µ ∼ ΩS for the corresponding decay constant. Note the different range for ΛTC (recall for
shallow minima ΛTC ' ΛR) between the two plots.

radius the relaxion potential approximately returns to its in-vacuo form, i.e. η(r > REM
T ) = 0.

This is justified by the rapid decrease of E ·B, and therefore of η, with R, see Eq. (7.94). Then,
our escape condition follows from requiring that R̈ > 0 in Eq. (7.97), taking the minimal value
of ε, that is 2πΛ4

R, and the value of the tension force at the transition radius, that is 2σ/REM
T ,

where note that due to our simplification we have σ′(r > REM
T ) = 0. Then, a deep bubble escapes

to infinity if

REM
T −RS &

f

Λ2
R

1√
1− δ2

' Λ2
TC

gM3
, (technicolor; deep) (7.99)

where we recall that 1− δ2 = Λ4
R/Λ

4
TC � 1 and Λ4

R = gM3f . As in the case of relaxion bubbles
seeded by baryon density, this condition implies that it is more difficult for a deep bubble to
escape than a shallow one. The underlying reason is the same as well, in vacuum the bubble-wall
tension is dominated by large potential barriers. Nevertheless, as shown in the right panel of
Fig. 7.11, for not too small values of Λ4

R/Λ
4
TC, a phase transition could still be induced between

deep minima of the technicolored relaxion. As expected, the excluded regions, to the right of
a given line, correspond to small values of the relaxion decay constant (up to f ∼ 106GeV)
and of the technicolor confinement scale. Dot-dashed lines show µ ∼ ΩS for a given f , and
as can be seen the fast approximation holds where in the region of parameter space where the
bounds lie. We checked explicitly that the expansion ΩSr � 1 yields the correct results since
ΩSR

EM
T � 1 for the region of interest. We note that in this case of deep minima, the region we

have excluded due to a phase transition with a too large change of the vacuum energy, is also
ruled out from both CAST [349] and laboratory experiments, e.g. [350]. Still, for the allowed
values f & 1.7×107GeV and c = 1, there would still be a non-trivial axion configuration around
the neutron star, similar to [227].
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Finally, we note that the lower bounds we derived on ΛTC can be rephrased, given the collider
constraints on v′, as a lower bound on mU in Eq. (7.88).

Dark compact objects

In this section we entertain the possibility that there are dark compact objects [290–298] in the
universe. These dark stars, similar to standard stars, can induce the instability of a metastable
vacuum. This would be particularly relevant when the periodic term in the landscape potential
Eq. (7.56) arises from dark dynamics, as in the case of the non-QCD relaxion (especially if the
scalar is sitting in a deep minimum, as in e.g. [335]) or in models where the barriers are Higgs
independent [337, 338]. In addition, we show that this possibility opens the door to late-time
phase transitions for which the associated change in vacuum energy is a priori experimentally
allowed. As shown in Eq. (7.47), in the case of standard stars this can only happen for quite
low values of f and if the bubbles are seeded solely by the largest stars known to date, with
RS ∼ 103R�.

Let us assume then a new species of fermion, which we refer to as dark baryon, whose relic
abundance is non-negligible and which constitutes the main component of the dark stars (yet
not necessarily making up all of the dark matter). Let us note right away that the existence of
these stars requires non-trivial dynamics by which the dark fermion can dissipate their kinetic
energy, accumulate and eventually form a compact object. If this is the case, the smaller dark
stars will only be sustained by the Fermi degeneracy pressure associated with the dark baryon,
thus, employing Eq. (3.4), with typical radii and densities

RS̃ ∼
√

8π
MP

m2
b̃

, nb̃ ∼ m3
b̃
, (7.100)

where mb̃ is the mass of the dark baryon.

Before moving on, we note that such a dark baryon is in fact motivated by the non-QCD
relaxion, whose simplest UV realization crucially involves Nf̃ flavours of SM-neutral fermions,
ρ, charged under a new confining SU(NC̃) gauge group. The associated IR scale, which controls
the size of the relaxion barriers, is given by Λ4

C ' 4πf3
π̃mN where mN = mN (h2) � 4πfπ̃ is

the mass of the dark quarks (taken degenerate for simplicity), whose dominant contribution
is proportional to the square of the Higgs VEV, Eq. (7.60). The mass of the dark baryons,
analogous to the QCD baryons, receives two contributions,

mb̃ = m̃0 + σ̃(mN ) , (7.101)

where m̃0 is purely due to the dark strong dynamics while σ̃ is the analogue of the pion-
nucleon sigma term of QCD. Likewise, at finite dark density, the barriers decrease according to
Λ4

C → Λ4
C(1− ζ), where in the linear approximation,

ζ(nb̃) '
σ̃nb̃
Λ4

C

∼
m3
b̃

4πf3
π̃

. (7.102)

where in the last equality we have used Eq. (7.100) and the fact that σ̃ ' amN if mN � fπ̃,
where a = O(1) (yet note that in QCD the analogous coefficient is rather ≈ 10). Therefore, for
a sufficiently large dark baryon mass, yet small enough to retain perturbative control, densities
can be enough to seed the formation of a bubble. Finally, the condition that the system is large
enough for the bubble to escape, assuming for simplicity that δ ∼ 1, and given that the size of
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the dark neutron star is controlled by mb̃, yields the condition

mb̃ . ΛC

√
MP

f
. (7.103)

Interestingly, the change in vacuum energy Eq. (7.72) associated with such a relaxion bubble is
controlled by mb̃ as well. Considering again for simplicity the case ΛR ∼ ΛC,

−∆Λ & m4
b̃

(
f

MP

)2

≈ 6× 10−3 Λ0

( mb̃

10 keV

)4
(

f

10 TeV

)2

, (7.104)

where the values of the dark mass and decay constant have been taken to illustrate that the
change can be small enough as to avoid any trivial experimental inconsistency between the early
and late universe. This gives rise to the exciting possibility that the change in the relaxion
minimum could be detected with future cosmological measurements. In addition, if mb̃ or f
are small enough and the dark stars are dense and large enough to destabilize many relaxion
minima (i.e. N � 1, see Eq. (7.71) and App. D.6), the effects of the continued phase transitions
originating from the ongoing creation of relaxion bubbles interpolating between lower and lower
pairs of consecutive minima could resemble the time evolution of a quintessence field as dark
energy [316]. The dynamics of such a continued phase transition have been studied in [351].

Finally, we note that the in-vacuo relaxion mass, for the range of relaxion parameters where
the change in vacuum energy is smaller than its current value, is

mφ .
1

f

√
Λ0

2π
≈ 2× 10−16 meV

(
10 TeV

f

)
, (7.105)

which is, as expected, extremely small. Accordingly, the size of the dark compact object,
RS̃ ∼ 1/mφ, is very large

RS̃ & f

√
2π

Λ0
≈ 1× 109 km

(
f

10 TeV

)
, (7.106)

which for this value of f is roughly the size of the solar system.

7.3.4 Conclusions

The relaxion mechanism provides a solution to the electroweak hierarchy problem by postulating
a landscape of vacua where the potential barriers between minima depend on the Higgs VEV,
enabling vacuum selection with a small electroweak scale via a period of dynamical evolution.
An immediate concern in postulating a multi-vacuum potential is whether the selected vacuum
is stable on cosmological scales. While one usually considers vacuum transitions of quantum or
finite temperature origin, in this section, we focused on the certainly less studied case of phase
transition seeded by finite density objects such as stars. Using the results from Sec. 7.1, we
were able to place new bounds on various relaxion models, ruling out regions of parameter space
where such forbidden phase transitions would take place once stars are formed.

We showed that the connection of the relaxion with the Higgs is precisely what is behind
the sensitivity of the relaxion vacua to finite density effects. In particular, in realizations where
QCD dynamics generate the potential barriers, baryonic densities decrease the chiral symmetry
breaking scale, leading to the possibility of QCD-relaxion bubbles. In realizations where instead
new confining dynamics are responsible for the barriers, the change in the Higgs VEV due to the
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background nucleons and muons, although small, is sufficient in some regions of parameter space
to induce the formation of bubbles. Generically, we found that these bubbles easily escape from
the stars where they are formed: NSs, WDs, or main-sequence stars, depending on how small
the overall scale of the non-QCD relaxion potential is. We would also like to point out that our
bounds have been recently investigated in light of stochastic relaxion models [352], which can
open up large portions of previously believed unavailable relaxion parameter space given large
enough inflation scales.

Notably, we discovered that not only matter density but an electromagnetic background can
destabilize a metastable vacuum. This possibility is motivated by some constrained yet still
viable realizations of the relaxion, in which the scalar field has large couplings to photons. We
found that the large electric and magnetic fields of magnetars/pulsars destabilize the metastable
minimum and lead to a phase transition that cannot be confined. Moreover, in this scenario, the
transition can occur not only for shallow minima but also for metastable vacua in which there
is a hierarchical separation between the energy difference and the potential barrier between the
minima.

In general, relaxion phase transitions leading to a very small change in vacuum energy
compared to its measured value could, in fact, have been induced by the formation of large
dense objects in the universe. This is the case for very low relaxion decay constants and for
the largest stars in the universe acting as seeds. We also considered the possibility that these
naively harmless phase transitions may result from the formation of very large dark stars. Such
stars would be sustained by the Fermi degeneracy pressure associated with the light stable dark
baryons motivated by the non-QCD relaxion.

Finally, the new type of bound derived in this section for the relaxion landscape, namely
vacuum instability induced by dense objects, could be relevant for other landscapes if subject
to finite density deformations. These deformations are generically expected if the vacua are tied
to the electroweak scale.
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Chapter 8

Conclusions

Despite the solid and compelling theoretical and experimental indications that the Standard
Model is incomplete, we have yet to detect new physics beyond its boundaries. The absence of
any signals of BSM physics at the LHC has forced some extensions of the SM, such as composite
Higgs and supersymmetry, into a fine-tuned region of the parameter space. While so far no
detection has been observed, on the frontier of weakly coupled light scalar physics, there has
been a notable increase in the innovation and construction of experiments aimed at detecting
the QCD axion and ALPs. This thesis explored the extensive phenomenology of these weakly
interacting light scalars, investigating their interactions with the Standard Model density.

In Chap. 2 we introduced the Strong CP Problem, i.e. the question of why the strong interac-
tions preseve CP and the QCD axion solution as well as an ALP with lighter than expected mass.
In particular, in Sec. 2.1, we reviewed the vacuum structure of Yang-Mills theories, where we saw
that non-perturbative topological terms play an important role. In Sec. 2.2, we reviewed how
these non-topological terms gave rise to experimentally measurable quantities in the presence of
fermions. To understand this, we reviewed the axial anomaly in QCD, which naturally brought
us to the formulation of the Strong CP Problem. Sec. 2.3 was concerned with the QCD axion
solution to the Strong CP Problem, which employs the simple idea of promoting the θ̄-angle of
QCD to a dynamical field. We discussed the UV dynamics of both the original Peccei-Quinn-
Weinberg-Wilczek axion as well as two benchmark invisible axion models, the KSVZ and DSFZ
axion. In Sec. 2.4, we derived the general model-dependent effective theory of the QCD axion in
the IR, with the use of ChPT and precisely determined its couplings to SM matter. We focused
on the couplings to nucleons. In order for the effective theory for nucleons to be valid, they had
to be non-relativistic, which led us to introduce heavy baryon chiral perturbation theory with
the QCD axion. In Sec. 2.5, we reviewed an ALP that behaved similarly to the QCD axion,
except that its mass could be orders of magnitudes below the vanilla prediction. We concluded
the chapter with a discussion on bounds on axions from astrophysical environments such as
stellar remnants and supernovae in Sec. 2.6.

In Chap. 3, we reviewed the landscape of stellar remnants. In Sec. 3.1, we reviewed the
physics of white dwarf stars and discussed various refinements of its equation of state, while
Sec. 3.2 was devoted to neutron star physics. We saw that, while the equation of state of white
dwarfs is quite well understood, the picture is very different for neutron stars. Since QCD
becomes strongly coupled at the densities found in neutron stars perturbativity is lost. Further-
more, numerical advances are hampered by the fact that QCD at finite chemical potential suffers
from an infamous fermion sign problem. In addition to that, we discussed that extrapolations
of Standard Model equation of states including more degrees of freedom, such as mesons and
hyperons generically soften the equation of state, which is clearly disfavored by the observation
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of neutron stars with masses well above two solar masses.

In Chap. 4, we explored the effects of finite baryonic density on the QCD axion-nucleon
coupling and found that they significantly change bounds on the QCD axion from supernovae
and neutron star cooling. We started in Sec. 4.1 to review heavy baryon chiral perturbation
theory at finite density by deriving the nucleon propagator in a finite density background using
real-time thermal field theory. In Sec. 4.2, we calculated the density contributions to the QCD
axion-nucleon vertex up to next-to-next-to-leading using the proper power counting scheme of
chiral perturbation theory in this limit, discussed in App. A.6. With the density modified axion-
nucleon vertex, we integrated the supernova luminosity for KSVZ and DSFZ models including
systematic error bars for the first time. We discussed the implications on the bound derived
from supernova 1987A.

In Chap. 5, we studied the possibility that the QCD axion developed a condensate at baryonic
densities, such as found within neutron stars. We reviewed the basics of quantum field theories
including a chemical potential, and the basics of meson condensation, and studied the QCD
axion potential with Nf = 2 light flavors in the presence of a pion condensate in Sec. 5.1. We
found that pion condensation for Nf = 2 light flavors can drive down the axion mass while at
the same time increasing the neutral pion mass once in the proper mass eigenbasis, driven by
the density dependent value of the pion condensate. In Sec. 5.2, we extended the study of the
QCD axion potential at finite baryonic densities to Nf = 3 light flavors and studied the effects
of kaon condensation on the QCD axion potential. Extrapolating to densities of around 3ρ0, we
found that axion condensation can be triggered. In Sec. 5.3, we looked to asymptotic densities
where QCD is in a color-flavor-locked phase and explored the potential of QCD axion in this
phase. We found that even though instantons are generally suppressed in this phase, implying
a smaller magnitude for the axion mass, axion condensation can be possible also in this regime.

In Chap. 6, we studied the effects of light scalars with non-derivative coupling to nucleons,
generically present for e.g. the QCD axion, on the structure of stellar remnants. Such a coupling
can in the most economic realizations be thought of as a scalar field-dependent nucleon, or more
generally fermion, mass. We found that such light scalars can dramatically alter the stellar
landscape. In Sec. 6.1, we saw how light QCD axions change the stellar composition of white
dwarf stars. White dwarfs are very well understood since the relevant physics is mostly captured
by the degeneracy pressure of electrons. Temperature, nuclear physics, and crystallization only
play subdominant roles. Furthermore, there exist catalogs of a plentitude of observed properties
of mass and radii as well as other properties, such as absorption lines, making them ideal
laboratories to test the viability of new physics. We found that the axion led to a new ground
state of nuclear matter within white dwarfs that implies the existence of a radius gap in their
mass-radius curve. We performed numerically verified analytical estimates of the radius gap and
found that confronting the modified mass-radius relation with observational data is incompatible
with large parts of unexplored axion parameter space, allowing us to set stringent constraints.
In Sec. 6.2, we showed how light scalar fields changed the stellar composition of neutron stars.
Depending on the scalar self-interaction scale and the coupling to matter we found that either
a new ground state or a coexistence region within the neutron star is accessible. While the new
ground state led to dramatically stiffer equations of state, supporting more massive neutron
stars, the coexistence region led to much softer hybrid star configurations with a first-order-
phase-transition-like behavior. While we found that for the vanilla QCD axion hybrid star
configurations are in principle possible, modulo the uncertainty of QCD at these densities, light
QCD axions as well as linearly and quadratically coupled scalar fields can lead to new ground
state phases. Therefore, we showed that BSM physics, if a new ground state is realized, can
stiffen the equation of state of neutron stars, which is generally difficult within the Standard
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Model. We also want to point out that a new ground state of nuclear matter implies the
existence of absolutely stable self-bound objects, similar to strange quark matter. It was also
shown that the theories under consideration are equivalent to certain theories of modified gravity,
in particular theories of scalarization. While these theories are able to lead to heavier neutron
stars, the existence of a new ground state of nuclear matter implying the existence of self-bound
objects was so far overlooked in the literature. A future direction, which is currently work in
progress, is to study the effect of light scalars coupled to electrons, muons, and other Standard
Model matter fields.

In Chap. 7, we studied how stars can trigger phase transitions in the late universe if a light
scalar field sits in a meta-stable minimum in vacuum. In Sec. 7.1, we considered a simple two-
minimum potential with a Z2 symmetry φ→ −φ that is explicitly broken by a linear term and
derived the condition for bubble formation and escape. We found that if the energy difference
between the true and the false vacuum is large compared to the increase of the barrier with
decreasing density (we explicitly looked at the scenario where barriers decrease with increasing
density), bubbles become unstable and are no longer confined to the star such that they per-
meate throughout the entire universe. We studied the phenomenology of such late-time phase
transitions, namely at redshifts of star formation around z ∼ 10. Since they come with a change
of the Cosmological Constant at these times, we used early- vs late-time measurements of the
Cosmological Constant to constrain these types of models. After formulating the Higgs Hier-
archy problem in Sec. 7.2, we continued in Sec. 7.3 to apply our findings to relaxion models.
Since relaxion models generally feature meta-stable minima in vacuum, they constituted the
perfect conditions to apply our findings from Sec. 7.1. We determined the general conditions for
a relaxion bubble to be released from a star and looked at typical benchmark relaxion models.
For the QCD relaxion, which was previously ruled out from the prediction of an order-one QCD
θ̄ angle, we found that our bubbles alone could have done the same job. For the non-QCD
relaxion, we found that, depending on how far down the potential the relaxion relaxion stops,
we can set stringent new constraints in previously unexplored parameter space. Interestingly,
for technicolored relaxions with a coupling to photons, we found that the enhancement of the
linear tilt in the potential triggered by photon background in neutron star magnetospheres leads
to similar bounds. Lastly, we studied the scenario that dark compact objects trigger non-lethal
phase transitions and their possible detection today.

The interplay of light scalar fields with Standard Model matter led to a rich phenomenology
studied in this thesis. This is, however, not the end of the story since it also opens up many
future directions. We are currently finalizing the implications of the density dependence of
QCD axion-nucleon coupling, where we recently found that a model-independent bound can be
set exceeding the current best model-independent bound by up to three orders of magnitude.
Furthermore, we find that with our density-dependent coupling, a bound on the axion neutron
coupling from neutron star cooling can be set for the first time.

Furthermore, we are actively investigating the implications of light scalar fields coupled to
different matter fields such as electrons and muons, which by the compatibility with the observed
stellar structure of white dwarfs and neutron stars, can lead to the most competitive bounds for
these types of models.

Lastly, it is still ongoing work to find a mechanism that allows self-bound objects of axion-
sourced nuclear matter, most likely in some dark sector, to constitute the dark matter. This
would imply spectacular signatures since the QCD θ̄-angle would be changed once such a dark
nugget overlaps with our Earth or in other Standard Model matter environments.
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Appendix A

Couplings of the QCD Axion to
Nucleons at Finite Density

In this appendix we briefly summarize the standard construction of the effective axion chiral
Lagrangian in HBChPT, invariant under charge conjugation (C) and parity (P) up to N2LO
and some selected pieces N3LO, necessary for renormalization. We start by writing down the
relativistic pion axion nucleon Lagrangians and projecting to HBChPT. Relativistic corrections
are also included. For reviews on the subject without the axion, see Refs. [41, 48, 49], as well
as Ref. [353] for the HBChPT projection and Ref. [61] which considers the LO axion HBChPT
Lagrangian and some selected terms at N2LO.

A.1 Chiral QCD Lagrangian

We analyse the transformation properties of external sources performing a spurion analysis.
Starting point is the QCD Lagrangian with external isovector axial vector (aµ), isoscalar axial
vector (asµ), scalar (s) and pseudo-scalar (p) sources. In absence of isovector and isoscalar vector

sources (v
(s)
µ = 0), which is the case for axion ChPT, we can write parity eigenstates in terms of

left- and right handed fields, i.e. r
(s)
µ = a

(s)
µ and `

(s)
µ = −a(s)

µ . The QCD Lagrangian containing
external sources then reads

Lext = q̄Lγ
µ
(
`µ + `sµ

)
qL + q̄Rγ

µ
(
rµ + rsµ

)
qR − q̄L (s− ip) qR − q̄R (s+ ip) qL, (A.1)

where qL/R are left- and right-handed quark fields. Isovector and isoscalar parts are associated
with the SU(2) and U(1) parts of U(2) respectively. The Lagrangian LQCD = LQCD,0 + Lext,
with LQCD,0 given by Eq. (2.55a), is invariant under local U(2)L × U(2)R transformations

qL/R → exp

(
−i
θL/R(x)

3

)
VL/R(x)qL/R, θL/R ∈ U(1)L/R, VL/R ∈ SU(2)L/R, (A.2)
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as long as the external fields satisfy

rµ → VRrµV
†
R + iVR∂µV

†
R,

`µ → VL`µV
†
L + iVL∂µV

†
L ,

`sµ → `sµ −
1

3
∂µθL,

rsµ → rsµ −
1

3
∂µθR,

(s− ip) → e−
i
3

(θL−θR)VL (s− ip)V †R,
(s+ ip) → e−

i
3

(θR−θL)VR (s+ ip)V †L .

(A.3)

The derivative terms cancel analogous terms originating from the kinetic terms in the Lagrangian
and are later used to construct covariant derivatives.

A.2 Effective Pion Lagrangian

In the broken phase, pions are described by the unitary flavor matrix U , see Eq. (2.67). It
transforms linearly under chiral and axial U(1)A transformations

U → e−
i
3

(θR−θL)VRUV
†
L . (A.4)

Since it collects the NGBs, associated with the broken generators of chiral symmetry breaking,
it is charged under axial transformations only. Furthermore, under C and P transformations the
NGBs and U transform as

π(x)
C−→ πT (x), π (x)

P−→ −π (Px)

U(x)
C−→ UT (x), U(x)

P−→ U † (Px) .
(A.5)

Hence, we find that the covariant derivative is given by the linear representation

∇µU = ∂µU − i
(
rµ + rsµ

)
U + iU

(
`µ + `sµ

)
, (A.6)

resulting in Eq. (2.68). Another spurion in the pion sector can be defined as

χ = 2Bm†φ = 2B(s+ ip), (A.7)

see below Eq. (2.70b), which transforms as

χ→ VRχV
†
L . (A.8)

In the meson sector, the list of fundamental building blocks that we are interested in i.e. up to
O(p2) is

U,∇µU,∇µ∇νU, χ. (A.9)

Out of these, the only non-trivial, hermitian, C and P invariant scalars under Lorentz are
collected in the Lagrangian Eq. (2.70b). Higher order pion terms are not needed for our analysis,
however, writing down the Lagrangian including the axion is straightforward.
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A.3 Effective Baryon Lagrangian

The baryon field transforms non-linearly under chiral transformations

Ψ′ = e−iθV (x)K(VL(x), VR(x), U(x))Ψ, (A.10)

where K(VL, VR, U) is the so-called compensator field and defines a non-linear SU(Nf ) valued
function of U and VL, VR, defined by

U(x) = u2(x), u(x)→ u′(x) =

√
VRUV

†
L ≡ VRuK−1(VL, VR, U), (A.11)

such that the explicit form of K is easily evaluated to

K(VL, VR, U) = (u′)−1VRu =

(√
VRUV

†
L

)−1

VR
√
U. (A.12)

Since Ψ is a singlet under the axial U(1)A, the presence of an external axial source does not
change its transformation behaviour,

DµΨ = (∂µ + Γµ) Ψ,

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − i`µ)u†

]
,

(A.13)

where Γµ is the chiral connection. Since Ψ is a singlet under U(1)A, there is no term proportional
to the axial isovector current in the covariant derivative, i.e. it is a pure vector quantity. Under
parity and charge conjugation it transforms as

Dµ
P−→ +PµνDν , Dµ

C−→ −DT
µ . (A.14)

One can furthermore construct an hermitian, isovector, axial vector object containing one deriva-
tive, called the vielbein

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − i`µ)u†

]
= iu† (∂µU − irµU + iU`µ)u†. (A.15)

The transformation behavior under SU(2)L×SU(2)R, parity (P) and charge conjugation (C) is

uµ
SU(2)L×SU(2)R−→ KuµK

†, uµ
P−→ −Pµνuν , uµ

C−→ uTµ . (A.16)

uµ sandwiched between a baryon bilinear stays invariant under local chiral gauge transforma-
tions. There exist two identities for the covariant derivative,

[Dµ, Dν ] =
1

4
uµuν , (A.17a)

[Dµ, uν ] = [Dν , uµ] . (A.17b)

The first is known as curvature relation and shows that only completely symmetrized products
of Dµ with itself as well as products of Dµ with uµ have to be considered. The second relation
shows in a similar way that covariant derivatives on the vielbein have to be taken into account
in a completely symmetrized combination only. We can construct an analogous quantity to the
vielbein from the isoscalar part of the linearly realized covariant derivative

ûµ = iu†
(
−irsµU + iU`sµ

)
u† = iu†(−2iasµU)u† = 2asµ, (A.18)
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which under parity and charge conjugation has exactly the same transformation properties as
uµ but only transforms under U(1)A

1

ûµ
U(1)A−→ ûµ − ∂µαA, ûµ

P−→ −Pµν ûν , ûµ
C−→ ûTµ . (A.19)

Furthermore we need a non-linearly transforming analog to the field χ, which we construct as
hermitian and anti-hermitian combinations

χ± = u†χu† ± uχ†u, (A.20)

with transformation properties

χ±
SU(2)L×SU(2)R−→ Kχ±K

†, χ±
P−→ ±χ±, χ±

C−→ χT±. (A.21)

For the construction of the chiral Lagrangian it will be useful to separate every field into isovector
and isoscalar components. Therefore we define

X̃ = X − 1

2
〈X〉 , (A.22)

where 〈·〉 denotes the flavor trace such that X̃ projects out the isovector part of X. The basic
building blocks in this form are therefore uµ, ûµ, χ̃±, 〈χ±〉. Note that, in the special case of
SU(2) one can show that

〈XY 〉 = {X,Y } . (A.23)

We are now in the position to construct the chiral nucleon Lagrangian containing the axion. In
the following we, write down the minimal set of operators for which we closely follow Ref. [353].
Invariant monomials take the generic form

Ψ̄Aµν...Θµν...Ψ + h.c. . (A.24)

The operator Aµν... is a product of pion and/or external fields and their covariant derivatives,
all of course in the non-linear representation. Θµν... is a product of Clifford algebra elements
Γµν... and the symmetrized product of n covariant derivatives Dn

αβ... = {Dα, {Dβ, {. . . , Dω}}}
acting on the nucleon field.

Γµν... contains Clifford algebra elements which are understood to be expanded in the basis
(1, γ5, γµ, γ5γµ, σµν) and the metric ηµν as well as Levi-Civita symbols εµναβ . Eq. (A.24) is not
the most general form. The fact that Θµν... contains only the totally symmetrized product of
covariant derivatives acting on Ψ is due to the curvature relation, see Eq. (A.17a). Another
property, namely that no two indices of Θµν... are contracted (except for Levi-Civita symbols)
is due the fact that at a given chiral order /DΨ can always be replaced by −imNΨ. This
explains why a couple of Clifford algebra structures do not need to be considered, e.g. the
LHS of Ψ̄Aαβ...γλDn

λαβ...Ψ + h.c. = −imN Ψ̄Aαβ...Dn−1
αβ...Ψ is replaced by the RHS. More such

1Note, that if we were to construct only one such axial vector type object associated with the full U(2)L×U(2)R
we would effectively end up with the same structure. However, this would collect both isovector and isoscalar
components in a single building block to which one would naively associate only one constant in the effective
Lagrangian. This would not be the most general approach because the isovector and isoscalar symmetries are
completely independent from each other, e.g. one can only do a, say, U(1)A transformation while leaving the
isovector part completely untouched. So if one started with only one building block one would have to break it
up again into isovector and isoscalar parts to describe this scenario.
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eliminations due to the use of the EOM can me made and the minimal set is shown, ordered by
ascending chiral power, given in Ref. [353] to be

1,

γ5γµ, Dµ,

ηµν , σµν , γ5γµDν , Dµν ,

(A.25)

where Dµν = {Dµ, Dν}.
For the operator Aµν... one writes down combinations of fields in every ordering. The number

of Lorentz indices gives the chiral power. Furthermore, it is instructive to write them in terms of
isovector and isoscalar parts. For SU(2) this is equivalent to write every product as commutator,
or as an anticommutator, respectively. This has the advantage to obtain simple transformation
properties for charge conjugation and parity. The transformation behaviour of the Clifford
algebra elements under parity-, charge- and hermitian conjugation in the form

Γpµν... = (±1)PµαPνβ . . .Γαβ... , Γcµν... = (±1)Γµν...,

Γ†µν... = (±1)γ†γ0Γµν...
(A.26)

and the chiral order (including the metric and the Levi-Civita) are shown in Table A.1. Note
that the full transformation behavior of Ψ̄Θµν...αβ...Ψ = Ψ̄Γµν...D

n
αβ...Ψ may include an additional

sign due to integration by parts, but is included in Table A.1. All relevant operators from the
minimal list of Θµν... are shown, see Eq. (A.25). The transformation behaviour of the fields

Θµν... 1 γ5 γµ γ5γµ σµν ηµν εµνλρ Dµ γ5γµDν Dµν

O(pn) O(1) O(p) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
P + − + − + + − + − +
C + + − + − + + − − +
† + − + + + + + − − +

Table A.1: Transformation properties of Θµν....

Aµν... under parity, charge and hermitian conjugation in the form

Apµν... = (±1)apPµαPνβ . . . Aαβ... Acµν... = (±1)acATµν... A†µν... = (±1)a†Aµν... (A.27)

as well as the chiral order (including the metric and Levi-Civita) and the combinations of
covariant derivatives acting on nucleons are shown in Table A.2. With the transformation
properties at hand we can write down all operators invariant under parity, charge conjugation and
hermitian conjugation at a given chiral order. At first chiral order O(p) we find the relativistic
pion nucleon Lagrangian, including the axion

L(1)
πN = Ψ̄

(
i /D −mN +

gA
2
/uγ5 +

g0

2
/̂uγ5

)
Ψ, (A.28)

given in Eq. (2.78). At the next higher chiral order O(p2) we find the most general Lagrangian
to be

L(2)
πN = Ψ̄

[
c1 〈χ+〉 −

(
c2

8m2
N

〈uµuν〉Dµν + h.c.

)
+
c3

2
u · u+ c4

i

4
[uµ, uν ]σµν

+c5χ̃+ −
(

c8

8m2
N

〈ûµuν〉Dµν + h.c.

)
+
c9

2
û · u

]
Ψ.

(A.29)
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Aµν... P C †
O(p)

uµ − + +
ûµ − + +

O(p2)

χ̃+ + + +
〈χ+〉 + + +
χ̃− − + −
〈χ−〉 − + −

[uµ, uν ] + − −
〈uµuν〉 + + +
〈ûµuν〉 + + +
〈ûµûν〉 + + +
[Dµ, uν ] − + +
[Dµ, ûν ] − + +

Table A.2: Transformation properties of Aµν....

Note that we dropped all 1/f2
φ terms, all terms ∝ [ûµ, uν ] ∼ ∂µa∂νπa [1, τa] = 0, as well as terms

∝ [û, û] = 0. Note that c6,7 are terms proportional to the field strength tensor, which we do not
include here.

Next we treat the nucleons in the HBChPT limit, as described in Sec. 2.4.3. We define
projection operators according

Pv± =
1± /v

2
, (A.30)

and introduce velocity dependent fields, i.e. velocity eigenstates, Nv and Hv

Nv ≡ eimNv·xPv+Ψ, Hv ≡ eimNv·xPv−Ψ, (A.31)

satisfying

/vNv = +Nv, /vHv = −Hv. (A.32)

Note that we drop the subscript in the main text however it should also there be understood as
velocity dependent. Therefore the nucleon field is decomposed as

Ψ(x) = e−imNv·x [Nv(x) +Hv(x)] . (A.33)

Let us consider a positive plane wave solution to the free Dirac equation with momentum p

ψ
(+)(α)
p (x, t) = u(α)(p)e−ip·x, (A.34)

u(α)(p) =
√
E(p) +mN

(
χ(α)

σ·p
E(p)+mN

χ(α)

)
(A.35)

where E(p) = p0 =
√
p2 +m2

N and with our choice of vµ, they are given by

Pv+ =

(
12×2 02×2

02×2 02×2

)
, Pv− =

(
02×2 02×2

02×2 12×2

)
. (A.36)

Therefore, the velocity eigenstates take the form

N (α)
v (x) =

√
E(p) +mN

(
χ(α)

02×1

)
e−i[E(p)−mN ]t+ip·x, (A.37)
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H(α)
v (x) =

√
E(p) +mN

(
02×1
σ·p

E(p)+mN
χ(α)

)
e−i[E(p)−mN ]t+ip·x. (A.38)

Next, we integrate out the heavy component. We plug the decomposed nucleon field, Eq. (A.33)
into the leading order EOM from Eq. (2.78) and get rid of the phase. Then we project out Pv+

and Pv− components, solve one formally for Hv using the definitions

Aµ⊥ = Aµ − v ·Avµ, v ·A⊥ = 0, /A⊥ = Aµ⊥γµ. (A.39)

and plug it into the remaining equation, which leads to the following Lagrangian

L̂ = N̄v

(
iv ·D +

gA
2
/u⊥γ5 +

g0

2
/̂u⊥γ5

)
Nv + N̄v

(
i /D⊥ +

gA
2
v · uγ5 +

g0

2
v · ûγ5

)
×
(

2mN + iv ·D − gA
2
/u⊥γ5 −

g0

2
/̂u⊥γ5

)−1 (
i /D⊥ −

gA
2
v · uγ5 −

g0

2
v · ûγ5

)
Nv.

(A.40)

Now we define the velocity dependent spin operator

Sµv ≡
i

2
γ5σ

µνvν = −1

2
(γµ/v − vµ) , (Sµv )† = γ0S

µ
v γ0, (A.41)

where again we drop the v sub- or superscript in the main text and which in 4-dim has the
properties

v · Sv = 0, {Sµv , Sνv } =
1

2
(vµvν − ηµν) , [Sµv , S

ν
v ] = iεµνρσvρS

v
σ. (A.42)

This definition is very useful since we can trade the 6 different Dirac structures that appear in
Eq. (A.40) with two 4× 4 matrices, 14×4 and Sv. To that end we use the relations

N̄v14×4Nv = N̄v14×4Nv, (A.43a)

N̄vγ5Nv = 0, (A.43b)

N̄vγ
µNv = vµN̄vNv, (A.43c)

N̄vγ
µγ5Nv = 2N̄vS

µ
vNv, (A.43d)

N̄vσ
µνNv = 2εµνσρvρN̄vS

v
σNv, (A.43e)

N̄vσ
µνγ5Nv = 2i

(
vµN̄vS

ν
vNv − vνN̄vS

µ
vNv

)
. (A.43f)

We expand the second bracket in the last term of Eq. (A.40) in orders of 1/mn
N and write

L̂ = L̂(1)
πN +

∞∑
n=1

1

(2mN )n
L̂(n), (A.44)

where the first term is exactly given by

L̂(1)
πN = N̄v (iv ·D + gASv · u+ g0S · û)Nv, (A.45)

which we recognize as the leading pion nucleon HBChPT Lagrangian including the axion, see
Eq. (2.82). The first term in the sum leads to relativistic corrections at chiral order O(p2).

Despite relativistic corrections contributing at chiral order O(p2) to L̂(2)
πN from integrating out

the heavy component at leading chiral order, the obvious contribution comes from integrating
out the heavy component from the relativistic Lagrangian at O(p2), Eq. (A.29) and we write

L̂(2)
πN = L̂(2)

πN,ci
+ L̂(2)

πN,1/mN
. (A.46)
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Note that relativistic corrections from integrating out Hv from the EOM of L(2)
πN will enter at

O(p3), which we do not need for our analysis in full generality. Therefore, it is sufficient to
consider the Pv+ projection of the O(p2) EOM and only keep the term proportional to the light
component Nv, since the term ∝ Hv will only generate relativistic 1/m2

N corrections of chiral
order O(p3). Then, using the relations Eq. (A.43), one finds

L̂(2)
πN,ci

=N̄v

(
c1 〈χ+〉+

c2

2
(v · u)2 + c3 (u · u) + c4 [Sµ, Sν ]uµuν + c5χ̃+ +

+
c8

4
(v · u)(v · û) + c9 (u · û)

)
Nv.

(A.47)

The relativistic corrections come from the first term in the sum of Eq. (A.44), namely

L̂(2)
πN,1/mN

=
1

2mN
L̂(1)

' 1

2mN
N̄v

(
i /D⊥ +

gA
2
v · uγ5 +

g0

2
v · ûγ5

)(
i /D⊥ −

gA
2
v · uγ5 −

g0

2
v · ûγ5

)
Nv

=
1

2mN
N̄v

[
−D2 + (v ·D)2 − igA {D · Sv, v · u} − ig0 {D · Sv, v · û}

− g2
A

4
(v · u)2 − g2

0

4
(v · û)2 − gAg0

2
(v · u) (v · û) +

i

4
εµνρσ [uµ, uν ] vρS

v
σ

]
Nv,

(A.48)
where we used

/D⊥ /D⊥ = D2 − (v ·D)2 − i

4
εµνρσ [uµ, uν ] vρS

v
σ, (A.49a)

/D⊥γ5 = 2D · Sv. (A.49b)

The result is therefore

L̂(2)
πN =L̂(2)

πN,ci
+ L̂(2)

πN,1/mN
=

=N̄v

[
− 1

2mN

(
D2 − (v ·D)2 + igA {Sv ·D, v · u}+ ig0 {Sv ·D, v · û}

)
+ ĉ1 〈χ+〉+

ĉ2

2
(v · u)2 + ĉ3 (u · u) +

ĉ4

2
iεµνρσ [uµ, uν ] vρS

v
σ

+ ĉ5χ̃+ +
ĉ8

4
(v · u) (v · û) + ĉ9 (u · û)

]
Nv,

(A.50)

where ĉi include relativistic 1/mN corrections,

ĉ1 = c1, ĉ2 = c2 −
g2
A

4mN
, ĉ3 = c3, ĉ4 = c4 +

1

4mN
,

ĉ5 = c5, ĉ8 = c8 −
gAg0

mN
, ĉ9 = c9.

(A.51)

Now there are still terms in L̂(2)
πN,1/mN

that can be eliminated by appropriate field re-definitions.

One can for instance eliminate terms ∝ (v ·D)2. However, since this term does not contribute
to our process in practice we do without a field redefinition. For completeness, we define

Nv →
[
1 +

iv ·D
4mN

− gASv · u
4mN

− g0Sv · û
4mN

]
Nv, (A.52)
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and insert it into Eq. (2.82) gives, up to total derivatives,

L̂(1)
πN → L̂

(1)
πN + ∆L̂(2)

πN

= L̂(1)
πN +

1

2mN
N̄v

[
−(v ·D)2 − g2

A

4
iεµνρσ [uµ, uν ] vρS

v
σ −

g2
A

2
(v · u)2

+
g2
A

4
(u · u)− gAg0

4
{v · u, v · û}+ gAg0 (u · û)

]
Nv,

(A.53)

and we neglected terms O(1/m2
N , 1/f

2
φ). The first term cancels the EOM term in Eq. (A.48),

while the remaining terms shift the constants in Eq. (A.47). In total, we find the HBChPT

Lagrangian at chiral order O(p2) as the sum L̂(2)
πN,ci

+ L̂(2)
πN,1/mN

+ ∆L̂(2)
πN to be

L̂(2)
πN,ci

+ L̂(2)
πN,1/mN

+ ∆L̂(2)
πN

= N̄v

[
− 1

2mN

(
D2 + igA {Sv ·D, v · u}+ ig0 {Sv ·D, v · û}

)
+

a1

mN
〈χ+〉+

a2

2mN
(v · u)2 +

a3

mN
(u · u) +

a4

2mN
iεµνρσ [uµ, uν ] vρS

v
σ

+
a5

mN
χ̃+ +

a8

8mN
{v · u, v · û}+

a9

mN
(u · û)

]
Nv

(A.54)

where

a1

mN
= c1,

a2

mN
= c2 −

g2
A

8mN
,

a3

mN
= c3 +

g2
A

8mN
,

a4

mN
= c4 +

1− g2
A

4mN
,

a5

mN
= c5,

a8

mN
= c8 −

gAg0

2mN
,

a9

mN
= c9 +

gAg0

2mN
.

(A.55)

A.4 Discrete Symmetries

Let us start with parity transformations. First we recall that under a Lorentz transformation
Λ, implemented by the unitary operator U(Λ), a Dirac field transforms as

U(Λ)−1Ψ(x)U(Λ) = D(Λ)Ψ(Λ−1x). (A.56)

A parity transformation is defined as

Pµν = (P−1)µν = Diag(+1,−1,−1,−1), P ≡ U(P), PµνPµν = 1, (A.57)

such that we find

Ψ(x)
P→ P−1Ψ(x)P = iγ0Ψ(Px),

Ψ̄(x)
P→ P−1Ψ̄(x)P = −iΨ̄(Px)γ0

(A.58)

For Weyl fields, comprising a Dirac field, parity therefore exchanges left- and right-handed fields

P−1ΨL/R(x)P = iΨR/L(Px). (A.59)

For fermion bilinears Ψ̄AΨ, where A is some combination of gamma matrices satisfying Ā = A,
Ā = γ0A

†γ0, such that Ψ̄AΨ is hermitian, we let the spinors transform under parity,(
P−1Ψ̄P

)
A
(
P−1ΨP

)
= Ψ̄γ0Aγ0Ψ, (A.60)
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which gives the transformation behaviour of A by identifying Ap ≡ P−1AP = γ0Aγ0 under
parity

P−1AP = γ0Aγ0. (A.61)

Therefore, if we let both, the spinors and A, transform under parity, the result will be invariant.
For basis elements of the Clifford algebra sandwiched between two spinors we therefore find

P−11P = +1,

P−1γ5P = −γ5,

P−1γµP = +Pµνγν ,
P−1γµγ5P = −Pµνγνγ5,

P−1σµνP = +PµαPνβσαβ,

(A.62)

which we now use to determine transformation properties of the external fields and the derivative,
which couples to γµ, under parity

P−1sP = +s,

P−1pP = −p,
P−1

{
vµ, v

(s)
µ

}
P = +Pµν

{
vν , v

(s)
ν

}
,

P−1
{
aµ, a

(s)
µ

}
P = −Pµν

{
aν , a

(s)
ν

}
.

(A.63)

We are also interested in the transformation behaviour of the four derivative under parity.
Similarly to γµ, we want the spatial components to transform with a minus, while the zero
component should be invariant. We do not want a global minus since it couples to γµ and
require the product to be invariant. This is simply achieved by

P−1∂µP = +Pµν∂ν . (A.64)

Next we similarly consider charge conjugation. Dirac fields transform as

C−1Ψ(x)C = CΨ̄T ,

C−1Ψ̄(x)C = ΨTC, with C = iγ2γ0.
(A.65)

Dirac bilinears Ψ̄AΨ transform under charge conjugation as

C−1
(
Ψ̄AΨ

)
C = (C−1Ψ̄C)(C−1AC)(C−1ΨC) = ΨTCAcCΨ̄T = −Ψ̄CT (Ac)TCTΨ = Ψ̄

(
C−1(Ac)TC

)
Ψ,

(A.66)
where we made use of CT = C−1 = −C and defined Ac = C−1AC. Requiring invariance of the
full expression we find the transformation property of A under charge conjugation

A = C−1(Ac)TC ⇒ Ac = C−1ATC (A.67)

Going through the list of Clifford algebra elements we find

C−11C = +1,

C−1γ5C = +γ5,

C−1γµC = −γµ,
C−1γµγ5C = +γµγ5,

C−1σµνC = −σµν .

(A.68)
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Therefore, external fields transform under charge conjugation as

C−1sC = +sT ,

C−1pC = +pT ,

C−1
{
vµ, v

(s)
µ

}
C = −

{
vTµ , (v

(s)
µ )T

}
,

C−1
{
aµ, a

(s)
µ

}
C =

{
aTµ , (a

(s)
µ )T

}
.

C−1∂µC = −∂Tµ

(A.69)

Note that the transpose for the four derivative is the transpose of a unit matrix in flavor space.
With this knowledge we can continue to the construction of the effective Lagrangian.

In this appendix we show explicitly how certain quantities transform under parity and charge
conjugation

Four derivative

The transformation behaviour of the four derivative under charge conjugation is shown explicitly.
We let the spinors transform as usual

(C−1Ψ̄C)∂µ(C−1ΨC) = ΨTC∂µCΨ̄T

= −Ψ̄CT
←
∂ µCTΨ

= Ψ̄C−1
←
∂ µCΨ

= Ψ̄
←
∂ µΨ

i.b.p
= −Ψ̄∂µΨ,

(A.70)

where we neglected the transpose, the minus in the second line is from the exchange of two
fermions, and used in the last step that C commutes with ∂µ. Therefore, the four derivative
transforms under charge conjugation as

C−1∂µC = −∂µ, (A.71)

and is understood to act on the operator on its right. It is however instructive to keep the
transpose in the end such that we define

∂cµ = −∂Tµ . (A.72)

Covariant derivatives

The covariant derivative in the non-linear representation acting on nucleon field transforms
under charge conjugation as

Dc
µ = ∂cµ +

1

2

[
u∗
(
∂cµ + i`Tµ

)
uT + uT

(
∂cµ + irTµ

)
u∗
]

+ 2i(asµ)T

=
[
−∂µ − Γµ + 2i(asµ)

]T
= −DT

µ

(A.73)

and under parity it is trivial to show that Dp
µ = PµνDν . Furthermore, with the above, we find

that the anti-commutator of two covariant derivatives Dµν = {Dµ, Dν} transforms as

Dc
µν =

{
−DT

µ ,−DT
ν

}
=
{
Dν , D

T
µ

}T
= +DT

µν

Dp
µν = +PµαPµβDαβ.

(A.74)
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For the covariant derivative in the linear representation acting on the meson field we find
under charge conjugation

[∇µU ]c = 2uT∂cµu
T + i`TµU

T − iUT rTµ − 2i(asµ)TUT

=

[
−2u

←
∂µu− irµU + iU`µ − 2iasµU

]T
i.b.p
=
[
2u∂µu− irµU + iU`µ − 2iasµU

]T
=
[
∂µU − irµU + iU`µ − 2iasµU

]T
= + [∇µU ]T ,

(A.75)

while under parity we find

[∇µU ]p = Pµν
(
∂νU

† − i`νU † + iU †rν + 2iasνU
†
)

= +
[
Pµν∇νU

]†
.

(A.76)

Note that rµ, `µ, a
s
µ are hermitian.

Isoscalar and isovector vielbein

The transformation behaviour under charge conjugation is

ucµ = i
[
u∗(−∂Tµ + i`Tµ )uT − uT (−∂Tµ + irTµ )u∗

]
= uTµ , (A.77)

ûcµ = (2asµ)c = ûTµ . (A.78)

while under parity

upµ = −Pµνuν , (A.79)

ûcµ = −Pµν ûν . (A.80)

It is also straight forward to show that uµ is hermitian

u†µ = −i
[
u†
(
←
∂ µ + irµ

)
u− u

(
←
∂ µ + i`µ

)
u†
]

= −i
[
u† (−∂µ + irµ)u− u (−∂µ + i`µ)u†

]
= uµ.

(A.81)

Since asµ is hermitian so is ûµ.

Commutators of vielbeins

First, note that two commutators are zero as can be easily seen from [uµ, ûν ] = [ûµ, uν ] ∝
[τa, 1] = 0 and [ûµ, ûν ] ∝ [1,1] = 0. The transformation behaviour under charge conjugation is

[uµ, uν ]c =
[
uTµ , u

T
ν

]
= [uν , uµ]T = − [uµ, uν ]T , (A.82)

{uµ, uν}c =
{
uTµ , u

T
ν

}
= {uν , uµ}T = + {uµ, uν}T , (A.83)

{ûµ, ûν}c =
{
ûTµ , û

T
ν

}
= {ûν , ûµ}T = + {ûµ, ûν}T , (A.84)
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{ûµ, uν}c =
{
ûTµ , u

T
ν

}
= {uν , ûµ}T = + {ûµ, uν}T , (A.85)

{uµ, ûν}c =
{
uTµ , û

T
ν

}
= {ûν , uµ}T = + {uµ, ûν}T . (A.86)

(A.87)

Under parity

[uµ, uν ]p =
[
−Pµαuα,−Pνβuβ

]
= +PµαPµβ [uα, uβ] , (A.88)

{uµ, uν}p = +PµαPµβ {uα, uβ} , (A.89)

{ûµ, ûν}p = +PµαPµβ {ûα, ûβ} , (A.90)

{ûµ, uν}p = +PµαPµβ {ûα, uβ} , (A.91)

{uµ, ûν}p = +PµαPµβ {uα, ûβ} . (A.92)

(A.93)

Under hermitian conjugation we get

[uµ, uν ]† =
[
u†ν , u

†
µ

]
= − [uµ, uν ] , (A.94)

{uµ, uν}† =
{
u†ν , u

†
µ

}
= + {uµ, uν} , (A.95)

{ûµ, ûν}† =
{
û†ν , û

†
µ

}
= + {ûµ, ûν} , (A.96)

{ûµ, uν}† =
{
u†ν , û

†
µ

}
= + {ûµ, uν} , (A.97)

{uµ, ûν}† =
{
û†ν , u

†
µ

}
= + {uµ, ûν} . (A.98)

Covariant derivative of vielbeins

Under charge conjugation we find

[Dµ, uν ]c =
[
−DT

µ , u
T
ν

]
= − [uν , Dν ]T = + [Dµ, uν ]T .

[Dµ, ûν ]c =
[
−DT

µ , û
T
ν

]
= − [ûν , Dν ]T = + [Dµ, ûν ]T ,

(A.99)

while under parity we find
[Dµ, uν ]p = −PµαPµβ [Dα, uβ] ,

[Dµ, ûν ]p = −PµαPµβ [Dα, ûβ] .
(A.100)

Under hermitian conjugation we find

[Dµ, uν ]† =

(
Dµuν − uν

←
Dµ

)†
= u†ν

←
D
†
µ −D†µu†ν = Dµuν − uν

←
Dν = + [Dµ, uν ] ,

[Dµ, ûν ]† = + [Dµ, ûν ] .

(A.101)

Scalar and pseudo scalar fields

χ = 2B(s− ip) transforms under charge conjugation and parity as

χc = 2B(sT − ipT ) = χT ,

χp = 2B(s+ ip) = χ†.
(A.102)
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For the non-linear version of the above, χ± = u†χu† ± uχ†u, we find under charge and parity

χc± = u∗χTu∗ ± uTχ∗uT = χT±

χp± = uχ†u± u†χu† = ±χ±.
(A.103)

Therefore also the isovector and isoscalar components transform as

〈χ±〉c = + 〈χ±〉 ,
〈χ±〉p = ±〈χ±〉 ,
χ̃c± = +χ̃T±,

χ̃p± = ±χ̃±.

(A.104)

A.5 Construction of the nucleon contact interactions

While the pure nucleon contact terms are well known, we now aim to construct all possible
two-nucleon contact terms which include either the field uµ or ûµ. Those are the only fields with
chiral dimension one from table A.2. We start with the ones including uµ. The only terms one
can construct to fulfil the right transformation properties are

N̄SµNN̄uµN, N̄NN̄SµuµN, εabcεµνρσvσN̄Sντ
bNN̄Sρτ

cNuaµ. (A.105)

It can easily be shown that taking the non-relativistic limit and applying Fierz and other
basic identities these are in fact not independent of each other. The explicit relations are
N̄SµNN̄uµN = −N̄NN̄SµuµN and 8N̄SµNN̄uµN = εabcεµνρσvσN̄Sντ

bNN̄Sρτ
cNuaµ. There-

fore we only need one of them in the Lagrangian which following the literature (e.g. [354]) we
write as

LπNN ⊃
cD

2f2
πΛχ

(N̄N)
(
N̄SµuµN

)
. (A.106)

For the terms involving ûµ things are even simpler because ûµ is proportional to the identity
matrix in isospin space. There are only two possible combinations satisfying the transformation
properties given by

N̄NN̄SµûµN, N̄τaNN̄Sµûµτ
aN. (A.107)

Again, it can easily be seen that N̄τaNN̄Sµûµτ
aN = −3N̄NN̄SµûµN and so we find for the

Lagrangian

LπNN ⊃
c̃D

2f2
πΛχ

(N̄N)
(
N̄SµûµN

)
. (A.108)

This concludes the construction of all terms of the Lagrangian necessary to calculate the cor-
rections to the axion-nucleon coupling.

A.6 Power Counting in Heavy Baryon Chiral Perturbation The-
ory

We already saw the result of the power counting in Eq. (2.81) which is relevant since we want to
systematically calculate diagrams to a given process up to some fixed chiral oder and therefore
need to organize them by relevance which is called power counting. Here we derive explicitly
this result. Power counting in ChPT but also effective theories in general, was first established
by Weinberg see [50–53], for a more recent discussion see als Refs. [49, 355, 356]. We expand
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the theory in powers of momentum over mass scale, in this case in powers of (k/Λχ)ν , where
Λχ ' 770 MeV is the the mass of the ρ meson and k the momentum involved in the process. A
generic Feynman diagram can always be mapped to the general expression

δ(4)(k)C
∫ (

d4q
)L 1

(q2)Ip
1

qIn0

∏
i

(
qdi
)Vi

, (A.109)

where L is the number of loops, In (Ip) is the number of internal nucleon (pion) lines, di is
the number of derivatives or pion mass insertions on the i-th vertex, appearing Vi times in the
diagram under consideration. C counts the number of disconnected subdiagrams. Therefore a
generic diagram is of chiral order ν given by

ν = 4− 4C + 4L− 2Ip − In +
∑
i

Vidi (A.110)

We can use now the identities ∑
i

Vini = 2In + En,∑
i

Vipi = 2Ip + Ep,
(A.111)

as well as the topological identity

L− C = Ip + In −
∑
i

Vi, (A.112)

to simplify this expression. Here En (Ep) is the number of external nucleon (pion) lines in the
diagram, ni (pi) is the number of nucleon (pion) lines attached to each vertex with index i. We
can use Eq. (A.111) to write equation Eq. (A.112) as

2(L− C) = −En − Ep +
∑
i

Vi(ni + pi − 2). (A.113)

Using this as well as In =
∑

i Vi
ni
2 − En

2 we find

ν = 4 + 2(L− C)− En
2

+
∑
i

Vi(di +
ni
2
− 2). (A.114)

As discussed in e.g. Ref. [356], due to the different normalization of the multi-particle states, the
addition of spectator nucleons changes the power counting. This annoyance can be prevented
by adapting the counting and we thus redefine ν → ν+ 3

2En−4 and fix the number of connected
diagrams C = 1 to find

ν = En + 2(L− C) +
∑
i

Vi∆i, ∆i = di +
1

2
ni − 2. (A.115)

Since we are eventually only interested in calculating vertex corrections to the axion-nucleon
Bremsstrahlungs process involving one connected diagram (C = 1) and two external nucleons
(En = 2) the relevant power counting scheme becomes

ν = 2L+
∑
i

Vi∆i, ∆i = di +
1

2
ni − 2, (A.116)
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exactly recovering Eq. (2.81) Note that in HBChPT we effectively perform a double expansion
in powers of k/mN and k/Λχ. In the following we will treat them on the same footing i.e.
k/mN ∼ k/Λχ even though mN > Λχ, which implies that corrections ∼ 1/Λχ slightly dominate.

To include the axion in the power counting we first notice that the axion decay constant fφ
is much larger than any other scale in the problem. Eventually we will be interested in processes
with one external axion which implies that the amplitude will at least be suppressed by ∼ (1/fφ).
All amplitudes including additional internal axion are further suppressed and hence completely
negligible.

Let us compare the axion momenta to pion and residual nucleon momenta. Because of the
splitting of the nucleon momenta in Eq. (2.80) the residual momentum of the pion and the
nucleon enjoy the relation

v · k ∼ k2

2mN
, (A.117)

which implies that for pions or nucleons any vertex leading to the scaling v ·k will be suppressed.
However, for the axion this is not the case. Since its mass is negligible m2

φ ' 0, it follows that

(p0
φ)2 = (pφ)2. (A.118)

Therefore we find that for the power counting it does not matter if the axion couples as v · pφ
or like S · pφ as can be seen from

v · pφ ∼ p0
φ ∼

p2
φ

2mN
∼ k

mN
k,

S · pφ ∼ σ · pφ ∼ |pφ| ∼ p0
φ ∼

k

mN
k,

(A.119)

where k is a typical momentum involved.
With the proper power counting at hand we can go ahead and systematically calculate

A.7 Sample Calculation of V1

In this part of the Appendix, we want to show an explicit finite density loop calculation. We
focus on the vertex correction V1. The two different contributions are

V1 =

∫
d4k

(2π)4
(−1)

[
− gA

2fπ
σ · (k − p)τa

] [
i

k0
− 2πδ(k0)θ(kF − |k|)

] [
ci

2fφ
σ · pφ

]
×

×
[

i

k0 + p0
φ

− 2πδ(k0 + p0
φ)θ(kF − |k + pφ|)

] [
gA
2fπ

σ · (k − p)τ b
] [ −iδab

m2
π − (k − p)2

]
.

(A.120)

Note that for any diagram, we need to take care of the spin and isospin structure separately.
Only then we can evaluate the full integration. We only consider the density dependent part.
Due to the δ functions, the dk0 are trivial and we get after cancelling some minus signs

V1 =

∫
d3k

(2π)3

{[
gA
2fπ

σ · (k − p)τa
] [

ci
2fφ

σ · pφ
] [

gA
2fπ

σ · (k − p)τa
]
×

× 1

p0
φ

θ(kF − |k + pφ|)
[

1

m2
π − (k − p)2

]
−
[
gA
2fπ

σ · (k − p)τa
] [

ci
2fφ

σ · pφ
]
×

× 1

p0
φ

θ(kF − |k|)
[
gA
2fπ

σ · (k − p)τa
] [

1

m2
π − (k − p)2

]}
.

(A.121)
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We now simple properties of the pauli matrices to find

[σ · (k − p)] [σ · pφ] [σ · (k − p)] =
1

2
(σiσjσk + σkσjσi) (k − p)i(pφ)j(k − p)k =

= 2 [pφ · (k − p)] [σ · (k − p)]− [σ · pφ] (k − p)2
(A.122)

Now plugging this back in, we find

V1 =

(
gA
2fπ

)2 1

p0
φ

τa
ci

2fφ
τa×∫

d3k

(2π)3

{
θ(kF − |k + pφ|)

2 [pφ · (k − p)] [σ · (k − p)]− [σ · pφ] (k − p)2

m̃2
π + (k − p)2

+

− θ(kF − |k|)
2 [pφ · (k − p)] [σ · (k − p)]− [σ · pφ] (k − p)2

m2
π + (k − p)2

}
,

(A.123)

where we used m2
π − (k − pφ)2 = m2

π − (k2
0 + 2k0p

0
φ + p2

a0) + (k − pφ)2 = m̃2
π + (k − pφ)2 with

k0 ∼ Q2

2m � Q negligible and we called m̃2
π = m2

π−p2
φ. Now we shift one of the integrals by −pφ,

such that we find

V1 =

(
gA
2fπ

)2 1

p0
φ

τa
ci

2fφ
τa×∫

|k|<kF

d3k

(2π)3

{
2 [pφ · (k − p− pφ)] [σ · (k − p− pφ)]− [σ · pφ] (k − p− pφ)2

m̃2
π + (k − p− pφ)2

+

− 2 [pφ · (k − p)] [σ · (k − p)]− [σ · pφ] (k − p)2

m2
π + (k − p)2

}
.

(A.124)
We can now write this in term of integrals defined below as

V1 =

(
gA
2fπ

)2 1

p0
φ

τa
ci

2fφ
τa [2 (I1(m̃π,p,pφ)− I1(mπ,p+ pφ,pφ)) +

− σ · pφ (I2(m̃π,p+ pφ)− I2(mπ,p))] .

(A.125)

A.8 Explicit loop calculations

A.8.1 1-loop corrections

Following the nomenclature of Fig. 2.2 we calculate the two non-vanishing one loop diagrams,
(e1) and (e2), and give the results in terms of the standard integrals defined in App. A.9 and as
in the main text we define

ωp ≡ −v · p, ωa ≡ −v · (p+ pφ). (A.126)

We split the calculation up in parts since for the same vertex multiple LECs contribute. For the
diagram with the c3 vertex we find

(e1)1 =

(
2gAc3cu−d
f2
πfφΛ

)
τ3pµφS

ν

(
1

i

)∫
d4k

(2π)4

kµkν
(k2 −m2

π)(ωa − v · k)

= −
(
gAc3cu−d
f2
πfφΛ

)
τ3σ · pφJ2(ωa), (A.127a)
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as well as

(e2)1 = −
(
gAc3cu−d
f2
πfφΛ

)
τ3σ · pφJ2(ωp). (A.128)

For the c9 vertex we find

(e1)2 =

(
3gAc9cu+d

f2
πfφΛ

)
Sµpνφ

(
1

i

)∫
d4k

(2π)4

kµkν
(k2 −m2

π)(ωa − v · k)

= −
(

3gAc9cu+d

2f2
πfφΛ

)
σ · pφJ2(ωa),

and

(e2)2 = −
(

3gAc9cu+d

2f2
πfφΛ

)
σ · pφJ2(ωp). (A.129)

For the last diagram with the c4 vertex we find

(e1)3 =

(
−2gAc4cu−d

f2
πfφΛ

)
τ3

(
1

i

)∫
d4k

(2π)4

(S · k)(pφ · k)− (S · pφ)k2

(k2 −m2
π)(ωa − v · k)

= 2τ3

(
gAc4cu−d
f2
πfφΛ

)
σ · pφJ2(ωa),

as well as

(e2)3 = 2τ3

(
gAc4cu−d
f2
πfφΛ

)
σ · pφJ2(ωp). (A.130)

Summing up all the contributions leads to

(e1) + (e2) = (e1)1 + (e1)2 + (e1)3 + (e2)1 + (e2)2 + (e2)3

=
gA
fφf2

π

[
(2ĉ3 − 4ĉ4) cu−dτ

3 + 3ĉ9cu+d

]
[J2 (ωa) + J2 (ωp)]S · pa

=
gA

3fφf2
π

[
(2ĉ3 − 4ĉ4) cu−dτ

3 + 3ĉ9cu+d

]{ 1

16π2

[
m2
π (ωa + ωp)−

(
ω3
a + ω3

p

)
−4
(
m2
π − ω2

a

)3/2
cos−1

(−ωa
mπ

)
− 4

(
m2
π − ω2

p

)3/2
cos−1

(−ωp
mπ

)]
− Λ(λ)

(
6m2

π (ωa + ωp)− 4
(
ω3
a + ω3

p

))}
S · pa.

(A.131)

Here Λ(λ) is a function collecting the scale dependent and divergent pieces in dimensional
regularization given by

Λ(λ) = L(λ) +
1

16π2
log

mπ

λ
. (A.132)

A.8.2 Density insertions

The relevant vertex diagrams at 1-loop finite density are given in figure Figs. A.1 and A.2. We
calculate them explicitly in the following and give the results in terms of the standard integrals
defined in A.9.

The diagrams contributing at order ν = 0 evaluate to

(1a) = −i
(
gAcu−dp

0
φ

4f2
πfφ

)
ε3abτ

aτ b
∫ kF

0

d3k

(2π)3

[
σ · (k − p− pφ)

m̃2
π + (k − p− pφ)2

]
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=

a

p

p+ pa

pa

π

(1a)

=

a

p

p+ pa

pa
π

(1b)

=

a

p

p+ pa

pa

π

(2a)

=

a

p

p+ pa

pa

π

(2b)

=

a

p

p+ pa
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(Aa)

=

a

p

p+ pa

pa
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=

a

p

p+ pa

π
pa

(Ba)

=

a

p

p+ pa

π
pa

(Bb)

=

a

p

p+ pa

π
pa

(C)

Figure A.1: 1-loop finite density diagrams contributing at chiral order ν = 0
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=

a
p

p+ pa

pa

π
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=
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p

p+ pa

pa
π

(4b)

=

a

p

p+ pa
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(5)

=

a

p

p+ pa
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Figure A.2: 1-loop finite density diagrams contributing at chiral order ν = 1

= −
cu−dgAp

0
φ

2f2
πfφ

τ3I3(m̃π, p+ pφ), (A.133a)

(1b) = −
cu−dgAp

0
φ

2f2
πfφ

τ3I3(mπ, p), (A.133b)

as well as

(2a) = −
(
g2
AĉN

8f2
πfφ

)
1

p0
φ

∫ kF

0

d3k

(2π)3

[
2σ · (k − p− pφ)pφ · (k − p− pφ)− σ · pφ(k − p− pφ)2

m̃2
π + (k − p− pφ)2

]
= −

(
g2
AĉN

8f2
πfφ

)
1

|pφ|
[2I1(m̃π, p+ pφ, pφ)− σ · pφI2(m̃π, p+ pφ)] , (A.134a)

(2b) =

(
g2
AĉN

8f2
πfφ

)
1

|pφ|
[2I1(mπ, p, pφ)− σ · pφI2(mπ, p)] . (A.134b)

For the diagrams at ν = 1 we have different vertices contributing to the same diagram. Therefore
we split up the calculation for the diagram into parts. For diagram (4) we find

(4a)1 =

(
gAcu−dc3

f2
πfφΛχ

)
τ3

∫ kF

0

d3k

(2π)3

[
σ · (k − p− pφ)(pφ · (k − p− pφ) + p2

φ)

m̃2
π + (k − p− pφ)2

]

=

(
gAcu−dc3

f2
πfφΛχ

)
τ3
[
I1(m̃π, p+ pφ, pφ)− |pφ|2I3(m̃π, p+ pφ)

]
,

(A.135a)

(4a)2 =
3

2

(
gAc9cu+d

f2
πfφΛχ

)∫ kF

0

d3k

(2π)3

[
σ · (k − p− pφ)(pφ · (k − p− pφ) + p2

φ)

m̃2
π + (k − p− pφ)2

]

=

(
3gAc9cu+d

2f2
πfφΛχ

)[
I1(m̃π, p+ pφ, pφ)− |pφ|2I3(m̃π, p+ pφ)

]
,

(A.135b)

(4a)3 = −
(
gAcu−dc4

f2
πfφΛχ

)
τ3

∫ kF

0

d3k

(2π)3

[
σ · pφ(k − p− pφ)2 − σ · (k − p− pφ)pφ · (k − p− pφ)

m̃2
π + (k − p− pφ)2

]
=

(
gAcu−dc4

f2
πfφΛχ

)
τ3 [I1(m̃π, p+ pφ, pφ)− (σ · pφ)I2(m̃π, p+ pφ)] ,

(A.135c)
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(4a)4 =

(
6gAc5m

2
φfφ

f4
πΛχ

)∫ kF

0

d3k

(2π)3

[
σ · (k − p− pφ)

m̃2
π + (k − p− pφ)2

]

= −
(

6gAc5m
2
φfφ

f4
πΛχ

)
I3(m̃π, p+ pφ),

(A.135d)

and

(4b)1 =

(
gAcu−dc3

f2
πfφΛχ

)
τ3I1 (mπ, p, pφ) , (A.136a)

(4b)2 =

(
3gAc9cu+d

2f2
πfφΛχ

)
I1 (mπ, p, pφ) , (A.136b)

(4b)3 =

(
gAcu−dc4

f2
πfφΛχ

)
τ3 [I1(mπ, p, pφ)− (σ · pφ)I2(mπ, p)] , (A.136c)

(4b)4 =

(
6gAc5m

2
φfφ

f4
πΛχ

)
I3(mπ, p). (A.136d)

The calculation of diagram (5) is straight forward and we find

(5) =
1

2f2
πfφΛχ

(
cDcu−dτ

3 + c̃Dcu+d

)
(σ · pφ)

∫ kF

0

d3k

(2π)3

=
k3
F

12π2f2
πfφΛχ

(
cDcu−dτ

3 + c̃Dcu+d

)
(σ · pφ).

(A.137)

Moving on to diagram (D) we find that the only non vanishing part comes from the vertex
with the coupling c3 and evaluates to

(D) = 4τ3

(
gAcu−dc3

f2
πfφΛχ

)
(σ · pφ)

p2
φ

m2
π − p2

φ

∫ kF

0

d3k

(2π)3

= τ3

(
2k3

F gAcu−dc3

3π2f2
πfφΛχ

)
(σ · pφ)

p2
φ

m2
π − p2

φ

∼ 0,

(A.138)

goes to zero for mφ → 0.

As discussed in Sec. 4.2, for an arbitrary matter configuration, one needs to repeat the
calculation with the modified propagator Eq. (4.33). For the above diagrams, one finds

(1)→
(
cu−dgA
2f2
πfφ

)
|pφ| [I3(mπ, p) + I3(m̃π, p+ pφ)] . (A.139)

(2)→ −
(
g2
Ag̃a

8f2
πfφ

)
1

p0
φ

[2 (I1(m̃π, p+ pφ, pφ)− I1(mπ, p, pφ))− (σ · pφ) (I2(m̃π, p+ pφ)− I2(mπ, p))] .

(A.140)

(4a)1 →
(
gAcu−dc3

f2
πfφΛχ

)[
I1 (m̃π, p+ pφ, pφ)− |pφ|2I3(m̃π, p+ pφ)

]
(A.141a)

(4a)2 → −
(
gAc9cu+d

2f2
πfφΛχ

)
τ3
[
I1 (m̃π, p+ pφ, pφ)− |pφ|2I3(m̃π, p+ pφ)

]
(A.141b)
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(4a)3 → −
(
gAcu−dc4

f2
πfφΛχ

)
[I1(m̃π, p+ pφ, pφ)− (σ · pφ)I2(m̃π, p+ pφ)] (A.141c)

(4a)4 → +

(
6gAc5m

2
φfφ

f4
πΛχ

)
τ3I3(m̃π, p+ pφ) (A.141d)

(4b)1 →
(
gAcu−dc3

f2
πfφΛχ

)
I1 (mπ, p, pφ) (A.142a)

(4b)2 → −
(
gAc9cu+d

2f2
πfφΛχ

)
τ3I1 (mπ, p, pφ) (A.142b)

(4b)3 → −
(
gAcu−dc4

f2
πfφΛχ

)
[I1(mπ, p, pφ)− σ · pφI2(mπ, p)] (A.142c)

(4b)4 → −
(

6gAc5m
2
φfφ

f4
πΛχ

)
τ3I3(mπ, p) (A.142d)

(5)→ k3
F

12π2f2
πfφΛχ

(
cDcu−d + c̃Dcu+dτ

3
)

(σ · pφ) (A.143)

For diagram (D), the non-vanishing vertices change: c5 and c9 both contribute. We find

(D)→


c5 :

(
4k3
F gAc5fφm

2
φ

3π2m2
πf

4
πΛχ

)
τ3(σ · pφ),

c9 :
(
k3
F gAcu+dc9

3π2f2
πfφΛχ

)
τ3(σ · pφ)

p2
φ

m2
π−p2

φ
∼ 0.

(A.144)

We find that both contributions go to zero in the limit mφ → 0.

A.9 Useful Integrals

For the vacuum loops, the following standard integrals also defined in [49] are useful

∆π = −1

i

∫
ddk

(2π)d
1

k2 −m2
π + iη

= 2m2
π

(
L(λ) +

1

(4π)2
ln
mπ

λ

)
+O(d− 4), (A.145)

1

i

∫
ddk

(2π)d
{1, kµ, kµkν}

(k2 −m2
π + iη) (ω − v · k + iη)

= {J0(ω), vµJ1(ω), gµνJ2(ω) + vµvνJ3(ω)} , (A.146)

L(λ) =
λd−4

(4π)2

(
1

d− 4
− 1

2

[
ln(4π) + Γ′(1) + 1

])
, (A.147)

where

J0(ω) = −4ωL+
2ω

(4π)2

(
1− 2 ln

mπ

λ

)
− 1

4π2

√
m2
π − ω2 arccos

−ω
mπ

+O(d− 4),

J1(ω) = wJ0(ω) + ∆π,

J2(ω) =
1

d− 1

[(
m2
π − ω2

)
J0(ω)− ω∆π

]
,

J3(ω) = wJ1(ω)− J2(ω).

(A.148)

At finite density, the relevant standard integrals, also given in [357,358], read

Γ0(mπ, p) =

∫ kF

0
dk

∫ 1

−1
dx

k2

m2
π + p2 + k2 + 2pkx

, (A.149a)

194



A.9. Useful Integrals

Γ1(mπ, p) =

∫ kF

0
dk

∫ 1

−1
dx

k3x/p

m2
π + p2 + k2 + 2pkx

, (A.149b)

Γ2(mπ, p) =

∫ kF

0
dk

∫ 1

−1
dx

k4
(
1− x2

)
/2

m2
π + p2 + k2 + 2pkx

, (A.149c)

Γ3(mπ, p) =

∫ kF

0
dk

∫ 1

−1
dx

k4
(
3x2 − 1

)
/
(
2p2
)

m2
π + p2 + k2 + 2pkx

. (A.149d)

For the calculation provided in section 4.2 it additionally turns out to be useful to define

I1 (mπ, p, q) =

∫ kF

0

d3k

(2π)3

σ · (k + p)q · (k + p)

m2
π + (k + p)2

=
1

4π2
[(σ · q) Γ2(mπ, p) + (σ · p) (q · p) (Γ0(mπ, p) + 2Γ1(mπ, p) + Γ3(mπ, p))] ,

(A.150a)

I2 (mπ, p) =

∫ kF

0

d3k

(2π)3

(k + p) · (k + p)

m2
π + (k + p)2

=
1

4π2

(
2k3

F

3
−m2

πΓ0(mπ, p)

)
, (A.150b)

I3 (mπ, p) =

∫ kF

0

d3k

(2π)3

σ · (k + p)

m2
π + (k + p)2

= (σ · p)
1

4π2
(Γ1(mπ, p) + Γ0(mπ, p)) . (A.150c)

The functions Fi(p, k
p/n
F , pφ) used in the main text are as cumbersome as uninsightful to write

down and will explicitly be given in a supplementary mathematica file in [16].
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Appendix B

The QCD Axion at Finite Density

B.1 Axion mass calculation with instantons

We calculate the axion mass by integrating out the neutral pions {π0, η, η
′} in the Nf = 3 chiral

Lagrangian, from the potential

V0 = b(Tr[U †Mφ] + h.c.)− c(e−i(φ/fφ+η′/fη′ ) + h.c.) , (B.1)

where in vacuum, b is

b =
m2
πf

2
π

2(mu +md)
, (B.2)

and effectively c → ∞, while b = −A3∆2
3 and c = ∆6

3/Λ
2 in the CFL phase when instantons

dominate. Note that the η′ is normalized differently in the CFL phase. This procedure pro-
duces the correct leading order result for the axion mass but neglects (some of) the subleading
corrections. In the generic basis of Eq. (2.54), the potential then reads

V =2bmu cos

(
Quφ

fφ
−

η√
3

+ π0

fπ
− η′

3fη′

)
+ 2bmd cos

(
Qdφ

fφ
+
π0 − η√

3

fπ
− η′

3fη′

)

+ 2bms cos

(
Qsφ

fφ
+

2η√
3fπ
− η′

3fη′

)
− 2c cos

(
η′

fη′
− (Tr[Qφ]− 1)φ

fφ

)
, (B.3)

with Qφ = Diag[Qu, Qd, Qs]. We integrate π0 out by using its equation of motion at linear order
in the fields

π0 =
(muQu −mdQd)

(md +mu)

(
fπ
fφ
φ

)
+

(md −mu)

3 (md +mu)

(√
3η +

fπ
fη′

η′
)
. (B.4)

Next, we similarly integrate η out

η =

√
3 (−mdmsQs +mdmu (Qd +Qu)−msmuQs)

2 (mdms +mumd +msmu)

(
fπ
fφ
φ

)
+

(md (ms − 2mu) +msmu)

2
√

3 (mdms +mumd +msmu)

(
fπ
fη′

η′
)
. (B.5)

Finally, we integrate out η′

η′ =
−bmdmsmuTr[Qφ] + c (mdms +mumd +msmu) (Tr[Qφ]− 1)

−bmdmsmu + c (mdms +mumd +msmu)

(
fη′

fφ
φ

)
. (B.6)
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The potential is minimized around 〈φ〉 = 〈π0〉 = 〈η〉 = 〈η′〉 = 0 and we find the following axion
mass

m2
φ =

−2bcmumd

f2
φ(mu +md)

(
c
[
1 + mumd

ms(mu+md)

]
− b

[
mdmu
mu+md

]) . (B.7)

Once we have diagonalized the mass matrix, one could be concerned with the effect of the
O(fπ/fφ) kinetic mixing, which is generically induced by the derivative couplings of the axion.
Let us explicitly show that this does not affect the leading order results for the axion mass. Our
starting point, without loss of generality, is the following Lagrangian

L =
1

2
m2
π

(
π φ

)(b 0
0 cξ2

)(
π
φ

)
+

1

2

(
∂µπ ∂µφ

)( 1 ξd
ξdT 1

)(
∂µπ
∂µφ

)
, (B.8)

where b = Diag[b1, .., bn] is an n × n diagonal matrix of O(1) numbers, d is a vector of n O(1)
numbers, c is an O(1) number, and ξ ≡ fπ/fφ is our expansion parameter. Let’s start by
performing the orthogonal rotation R1 in the meson subspace, such that

R1d = (0, . . . , |d|). (B.9)

We rewrite the Lagrangian in this basis

L =
1

2
m2
π

(
π φ

)(R1bR
T
1 0

0 cξ2

)(
π
φ

)
+

1

2

(
∂µπ1 ... ∂µπn ∂µφ

)


1
. . .

1 |d|ξ
|d|ξ 1



∂µπ1

...
∂µπn
∂µφ

 .

(B.10)

We diagonalize and canonically normalize the lower 2× 2 block in the second term by rotating
and rescaling the fields(

πn
φ

)
=

1√
2

(
1 1
−1 1

)
︸ ︷︷ ︸

≡R2

 1√
1−|d|ξ

0

0 1√
1+|d|ξ


︸ ︷︷ ︸

≡T

(
π̄n
φ̄

)
. (B.11)

Our mass matrix in the new basis now reads

m2
πTR

T
2

([
R1bR

T
1

]
nn

0

0 cξ2

)
R2T . (B.12)

T can be expanded T = 1 + 1
2 |d|ξσ3 + O(ξ2). At leading order T = 1 and the mass matrix

can be re-diagonalized by performing the inverse orthogonal rotation R−1
2 , bringing it back to

the diagonal form of Eq. (B.8). One concludes that the axion mass receives no leading order
correction due to the kinetic mixing.

B.2 Baryon-ChPT with non-trivial vacuum alignment

We generalize the Nf = 3 chiral Lagrangian with baryons for a non-trivial ground state orien-

tation, U0 6= 1 with U †0U0 = 13, e.g. in the kaon-condensed phase

U0(θ) =

 cos θ 0 i sin θ
0 1 0

i sin θ 0 cos θ

 . (B.13)
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We denote U0(θ/2) ≡ ξ0(θ) (such that ξ2
0 = U0) and drop for brevity the explicit θ-dependence.

The standard SU(3)L × SU(3)R generators are given by the Gell-Mann matrices

T aL = λa , T aR = λa . (B.14)

It should be understood that the L and R operators act on different indices and therefore
commute. We define the following rotated generators

(T aL)θ = ξ0(T aL)ξ†0 , (T aR)θ = ξ†0(T aR)ξ0 , (B.15)

The broken and unbroken generators are given by

Xa = (T aL)θ − (T aR)θ , T a = (T aL)θ + (T aR)θ , (B.16)

respectively. The fluctuation around the vacuum are parametrized by the Goldstone matrices

ξL = e
i π

a

2fπ
(TaL)θ = ξ0 exp

[
iπaλa

2fπ

]
ξ†0 , ξR = e

−i π
a

2fπ
(TaR)θ = ξ†0 exp

[
− iπ

aλa

2fπ

]
ξ0 , (B.17)

with transformation properties

ξL → LξLV
†
θ , ξR = RξRV

†
θ , (B.18)

with Vθ a NGB-dependent transformation under the unbroken SU(3) subgroup of SU(3)L ×
SU(3)R, the transformations under the latter denoted by L and R respectively. As usual, it is
convenient to construct

Σ = ξLU0ξ
†
R = ξ0 exp

[
iπaλa

fπ

]
ξ0 , (B.19)

which transforms as Σ→ LΣR†. Following standard notation,

πaλa =
√

2


π0√

2
+ η√

6
π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 −
√

2
3η

 . (B.20)

We introduce the (θ-rotated) baryon octet as linearly-transforming fields, B̂θ
L,R,

B̂θ
L → LB̂θ

LL
† , B̂θ

R = RB̂θ
RR
† , (B.21)

where we use the θ-superscript because the finite-density backgrounds we consider consist of a
non-vanishing ensemble of the standard (non-rotated) baryons, given by

B̂L = ξ†0B̂
θ
Lξ0 , B̂R = ξ0B̂

θ
Rξ
†
0 , (B.22)

with the usual parameterization

BL,R =


Σ0√

2
+ Λ√

6
Σ+ p

Σ− − U0√
2

+ Λ√
6

n

Ξ− Ξ0 −
√

2
3Λ


L,R

. (B.23)
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The Lagrangian in this basis is given by

L = L0
U + L0

B + LM + L0
` , (B.24)

L0
U =

f2
π

4
Tr[∂µU

†∂µU ] , (B.25)

L0
B = iTr[

¯̂
Bθ
Lγ

µ∂µB̂
θ
L] + iTr[

¯̂
Bθ
Rγ

µ∂µB̂
θ
R]−MBTr[

¯̂
Bθ
LUB̂

θ
RU
† + h.c.] , (B.26)

LM =− 〈q̄q〉0
2

Tr[U †M ]

+ a1Tr[
¯̂
Bθ
LMB̂θ

RU
†] + ā1Tr[

¯̂
Bθ
RU
†MU †B̂θ

LU ]

+ a2Tr[
¯̂
Bθ
RU
†B̂θ

LM ] + ā2Tr[
¯̂
Bθ
LUB̂

θ
RU
†MU †]

+ a3Tr[
¯̂
Bθ
LUB̂

θ
RΣ† +

¯̂
Bθ
RU
†B̂θ

LU ]Tr[U †M ] + h.c. , (B.27)

L0
` =

∑
`=e,µ

¯̀(iγµ∂µ −m`)` . (B.28)

where we recall the quark mass matrix spurion transforms as M → LMR†, we dropped some
terms at the same order in derivatives (acting on the U matrices) that are irrelevant for our
discussion, and we included leptons.

B.2.1 Adding chemical potential

We add chemical potentials for the three mutually commuting abelian symmetries associated
with neutron and proton numbers and electric charge (from here on, we neglect the other
baryons). Under U(1)n,p, ψ → eiαψ for ψ = n, p respectively, while under U(1)EM electro-
magnetism,

B̂L,R → eiαQeB̂L,Re
−iαQe , U → eiαQeUe−iαQe , `→ e−iα` , (B.29)

with

Qe =
1

3

2
−1

−1

 . (B.30)

Chemical potentials are introduced following the prescription in Eq. (5.2), i.e. by, modifying
temporal derivatives as

∂0U → ∂0U + i[µ̂, U ] , (B.31)

∂0B̂L,R → ∂0B̂L,R + i[µ̂, B̂L,R] + iµ̂n,pB̂L,R , (B.32)

∂0`→ ∂0`− iµ` , (B.33)

where we denoted

µ̂ = µQe , µ̂n,p = Diag[µp − µ, µn, 0] . (B.34)

We then get the following additional terms to the Lagrangian (B.24)

LµU = L0
U +

f2
π

4

(
Tr[2i∂0U [µ̂, U †]]− Tr[[µ̂, U ][µ̂, U †]]

)
, (B.35)

LµB = L0
B −

(
Tr[

¯̂
Bθ
Lγ

0[µ̂, B̂θ
L]] + Tr[

¯̂
Bθ
Rγ

0[µ̂, B̂θ
R]]
)
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−
(

Tr[
¯̂
Bθ
Lγ

0µ̂n,pB̂
θ
L] + Tr[

¯̂
Bθ
Rγ

0µ̂n,pB̂
θ
R]
)
, (B.36)

Lµ` = L0
` + µ

∑
`=e,µ

¯̀γ0` . (B.37)

B.2.2 Non-linear field basis

It is usually most convenient to work in a field basis for the baryons in which these only transform
under the non-linearly realized unbroken SU(3) subgroup of SU(3)L × SU(3)R,

Bθ
L → VθB

θ
LV
†
θ , Bθ

R = VθB
θ
RV
†
θ , (B.38)

with the dressed fields

Bθ
R = ξ†RB̂

θ
RξR , Bθ

L = ξ†LB̂
θ
LξL . (B.39)

In this basis there are no non-derivative interactions of the mesons with the baryons from the
mass terms in Eq. (B.27). Besides, in complete analogy to Eq. (B.22), the standard (non-rotated)
baryons are given by

BL = ξ†0B
θ
Lξ0 , BR = ξ0B

θ
Rξ
†
0 . (B.40)

In terms of such fields, which we recall make up the finite-density background, the baryon
Lagrangian is given by

LµB = iTr[B̄γµDµB]−MBTr[B̄B]− µTr[B̄γ0[Q̂e, B]]− Tr[B̄γ0µ̂u,dB] , (B.41)

where the baryon covariant derivative is given by DµB = ∂µB + [eµ, B], with

eµ ≡
1

2

(
ξ†0(eL)µξ0 + ξ0(eR)µξ

†
0

)
, (eL)µ ≡ iξ†L∂µξL , (eR)µ ≡ iξ†R∂µξR , (B.42)

and

Q̂e ≡
1

2

(
ξ†0ξ
†
LQeξLξ0 + ξ0ξ

†
RQeξRξ

†
0

)
, (B.43)

reproducing Eq. (5.54). The part of the Lagragian proportional to the quark mass matrix reads

LM = −〈q̄q〉0
2

Tr[M̂ ] + a1Tr[B̄LM̂BR] + ā1Tr[B̄RM̂BL]

+ a2Tr[B̄RBLM̂ ] + ā2Tr[B̄LBRM̂ ] + a3Tr[B̄LBR + B̄RBL]Tr[M̂ ] + h.c. .

where we defined the dressed mass matrix

M̂ ≡ ξ†0ξ†LMξRξ
†
0 , (B.44)

as in Eq. (5.30). From LM in this form it becomes apparent that the L↔ R exchange symmetry
of QCD implies a1,2 = ā1,2, which allows us to write

LM = −1

2
Tr[〈q̄q〉n(M̂ + M̂ †)] , (B.45)

〈q̄q〉n ≡ 〈q̄q〉013 − 2a1BB̄ − 2a2B̄B − 2a3Tr[B̄B]13 . (B.46)
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From this expression one can derive the density-dependent quark condensate of Eq. (5.41), since
in the non-relativistic limit B̄B = B̄γ0B and in the mean-field approximation we can treat the
baryons as fixed classical background fields, thus

p̄p = p̄γ0p→ 〈p̄γ0p〉 = np (B.47)

and likewise for the neutron. Besides, note that the baryon masses mn and mp are given in
terms of {σπN , σ̃πN , σs} in Eqs. (5.39), (5.40) respectively. One can then relate the coefficients
{a1, a2, a3} of the baryon chiral Lagrangian to the sigma terms

σπN = −2m̄(a1 + 2a3) , (B.48)

σ̃πN = 2∆ma1 , (B.49)

σs = −2ms(a2 + a3) . (B.50)

Finally, we recall that at zero temperature all the states with E(p) =
√
p2 +m2

ψ < µψ are

occupied, such that

nψ = 〈ψ̄(x)γ0ψ(x)〉 = gψ

∫ E(p)<µψ

0

d3p

(2π)3
=

gψ
6π2

(µ2
ψ −m2

ψ)3/2 , (B.51)

with gψ counting the internal degrees of freedom, e.g. gψ = 2 for a fermion. In Sec. 5.2.1 we
fixed the values of {n, np} by implicitly fixing the values of {µp, µn}

µp =
√

(3π2np)2/3 +m2
p , (B.52)

µn =
√

(3π2nn)2/3 +m2
n . (B.53)

Note that one can fix {n, np} while still keeping the charge chemical potential µ free by choosing
the appropriate value of µp, namely if µ→ µ+ δµ, then µp → µp − δµ.

B.3 Axion mass in Kaon-condensed phase

Tree-level mixing with the mesons in the kaon-condensed phase are removed when the matrix
Qφ satisfies the following condition

{〈q̄q〉n, ξ0MQφξ0 + ξ†0MQφξ
†
0} ∝ 13 . (B.54)

If Re(U0) is a diagonal matrix, such that [Re(U0), 〈q̄q〉n] = 0, the Qφ matrix given by

(Qφ)θn =
Xθ
n

TrXθ
n

, Xθ
n = M−1

(
ξ0
〈q̄q〉−1

n

Re(U0)
ξ†0 + ξ†0

〈q̄q〉−1
n

Re(U0)
ξ0

)
, (B.55)

satisfies B.54. Plugging Eq. (B.55) in Eq. (5.30), we find the axion mass

(m2
φ)θ,n = − 1

2f2
φ

Tr
[
〈q̄q〉n

(
ξ0M(Qθa)

2ξ0 + ξ†0M(Qθa)
2ξ†0

)]
. (B.56)
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Appendix C

Heavy Neutron Stars from Light
Scalars

C.1 Derivation of the TOV equations coupled to a scalar field

The Lagrangian under consideration, including gravity is, see Eq. (6.28)

Lψφ =
√−g

[
ψ̄ (ieµaγ

aDµ −m∗(φ))ψ +
1

2
gµν(∂µφ)(∂νφ)− U(φ)

]
, (C.1)

where the metric gµν is

ds2 = eν(r)dt2 − eσ(r)dr2 − r2dθ2 − r2 sin2 θdφ2. (C.2)

We assume that the energy momentum tensor is the one of a perfect fluid with ε(µ, φ) =
εm(µ,m∗(φ)) + U(φ) and p(µ, φ) = pm(µ,m∗(φ)) − U(φ) given by Eq. (6.34). In addition we
get a contribution from the scalar gradient

T φµν = ∂µφ∂νφ−
1

2
gµνgαβ∂

αφ∂βφ. (C.3)

The full energy momentum tensor is

Tµν = (ε+ p)uµuν − gµνp+ ∂µφ∂νφ−
1

2
gµνgαβ∂

αφ∂βφ

= (εm + pm)uµuν − gµνpm + ∂µφ∂νφ−
1

2
gµν

(
gαβ∂

αφ∂βφ− 2U(φ)
) (C.4)

where uµ = (1/
√
g00, 0, 0, 0) is the 4-velocity of the fluid, satisfying gµνu

µuν = +1. The trace is

T = ε− 3p− gµν∂µφ∂νφ
= εm − 3pm − gµν∂µφ∂νφ+ 4U(φ)

(C.5)

The scalar field equation of motion is obtained by varying the action w.r.t φ

δS = 0 = −intd4x
√−g

[
−gµν∂ν (δφ) ∂µφ+

dV

dφ
δφ

]
= −intd4x

√−g
[
gµν∂

ν∂µφ+
1√−g∂

µ
(√−ggµν) ∂νφ+

dV

dφ

]
δφ,

(C.6)
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with

∇µ∇µφ ≡
1√−g∂µ

(√−ggµν∂νφ) (C.7)

and
V (φ) = U(φ)− ψ̄ψ [F (φ)− F (φ0)] (C.8)

we get

∇2φ = −e−σ
[
φ′′ +

(
2

r
+
ν ′ − σ′

2

)
φ′
]

= −dV
dφ

. (C.9)

Varying the action w.r.t the metric gives the Einstein equations

Rµν = κ

(
Tµν −

1

2
gµνT

)
, (C.10)

with κ = 8πG. The non-trivial Christoffel symbols are

Γrrr =
σ′

2
, Γrθθ = −re−σ,

Γrφφ = −e−σr sin2 θ, Γrtt =
ν ′

2
eν−σ,

Γθrθ =
1

r
, Γθφφ = − sin θ cos θ,

Γφrφ =
1

r
, Γφθφ = cot θ,

Γrrt =
ν ′

2
.

(C.11)

These lead to non-trivial components of the Ricci tensor

Rtt =
eν−σ

4r

[
ν ′
(
4− rσ′

)
+ rν ′2 + 2rν ′′

]
,

Rrr =
1

4

(
ν ′σ′ − ν ′2 − 2ν ′′

)
+
σ′

r
,

Rθθ = Rφφ sin−2 θ =
1

2
e−σ

(
−rν ′ + rσ′ + 2eσ − 2

)
.

(C.12)

We can write component wise

tt :
eν−σ

4r

[
ν ′
(
4− rσ′

)
+ rν ′2 + 2rν ′′

]
= κ

eν

2
[ε+ 3p] ,

rr :
1

4

[
ν ′σ′ − ν ′2 − 2ν ′′

]
+
σ′

r
= κ

eσ

2

[
ε− p+ 2e−σ(φ′)2

]
,

θθ :
1

2
e−σ

[
−rν ′ + rσ′ + 2eσ − 2

]
= κ

r2

2
[ε− p] ,

(C.13)

which gives

tt : − σ′ν ′ + (ν ′)2 + 2ν ′′ +
4ν ′

r
= 2κeσ [ε+ 3p] ,

rr : − σ′ν ′ + (ν ′)2 + 2ν ′′ − 4σ′

r
= −2κeσ

[
ε− p+ 2e−σ(φ′)2

]
,

θθ : 2 + rν ′ − rσ′ = 2eσ
[
−κr

2

2
(ε− p) + 1

]
,

(C.14)
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C.1. Derivation of the TOV equations coupled to a scalar field

which gives

tt : − σ′ν ′ + (ν ′)2 + 2ν ′′ +
4ν ′

r
= 2κeσ [ε+ 3p] ,

rr : ν ′ + σ′ = κreσ
[
ε+ p+ e−σ(φ′)2

]
,

θθ : ν ′ − σ′ = 2eσ

r

[
−κr

2

2
(ε− p) + 1− e−σ

]
,

(C.15)

which gives

tt : − σ′ν ′ + (ν ′)2 + 2ν ′′ +
4ν ′

r
= 2κeσ [ε+ 3p] ,

rr : ν ′ = κreσ
[
p+

e−σ

2

(
φ′
)2]

+
eσ − 1

r
,

θθ : σ′ = κreσ
[
ε+

e−σ

2

(
φ′
)2]− eσ − 1

r
.

(C.16)

In the limit φ = 0 for all r one can integrate the θθ component and obtain the usual result

e−σ
(
rσ′ − 1

)
= ∂r

(
re−σ

)
= 1− κr2ε → e−σ(r) = 1− 2GM(r)

r
, (C.17)

with M(r) = 4π
∫ r

0 dxx
2 ε(x) the enclosed mass. We take the derivative of the rr component

and, using the equation for σ′, obtain

ν ′′ = κeσ
[(

1 + rσ′
)
p+ rp′ +

e−σ

2

((
φ′
)2

+ 2rφ′φ′′
)]

+
eσ

r

[
σ′ − 1

r
+
e−σ

r

]
= κeσ

[{
2− eσ + κr2eσ

(
ε+

e−σ

2
(φ′)2

)}
p+ rp′ +

e−σ

2
φ′
(
φ′ + 2rφ′′

)
+ eσ

(
ε+

e−σ

2
(φ′)2

)]
− e2σ − 1

r2
.

(C.18)
Using the expression for ν ′ and ν ′′ in the tt component and solving for p′, we end up with

p′ = −(ε+ p) eσ

2r

[
1− e−σ + κr2p

]
− (φ′)2

r

[
1 + e−σ − κr2

4
(ε− 3p)

]
− e−σφ′φ′′,

ν ′ = κreσ
[
p+

e−σ

2

(
φ′
)2]

+
eσ − 1

r
,

σ′ = κreσ
[
ε+

e−σ

2

(
φ′
)2]− eσ − 1

r
.

(C.19)

At this point we notice that we have a set of three coupled differential equations which can be
integrated numerically, by assigning an equation of state ε = ε(p(r), φ(r)) namely

p′ = −(ε+ p) eσ

2r

[
1− e−σ + κr2p

]
− (φ′)2

r

[
1 + e−σ − κr2

4
(ε− 3p)

]
− e−σφ′φ′′,

σ′ = κreσ
[
ε+

e−σ

2

(
φ′
)2]− eσ − 1

r
,

φ′′ +
2

r

[
1 + eσ

2
+
κr2eσ

4
(p− ε)

]
φ′ = eσ

dV

dφ
.

(C.20)
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Using the expression for φ′′ in the first equation we finally end up with

p′ + φ′
(
dV

dφ

)
= −(ε+ p) eσ

2r

[
1− e−σ + κr2

(
p+

e−σ

2
(φ′)2

)]
,

σ′ = κreσ
[
ε+

e−σ

2

(
φ′
)2]− eσ − 1

r
,

φ′′ +
2

r

[
1 + eσ

2
+
κr2eσ

4
(p− ε)

]
φ′ = eσ

dV

dφ
.

(C.21)

As a sanity check we take the limit φ = φ′ = φ′′ = 0 and obtain

p′ = −ε+ p

2r

[
1− e−σ + κr2p

]
eσ,

σ′ =
1

r

[
1− eσ

(
1− κr2ε

)]
,

(C.22)

which we recognize as the regular TOV equations (simply eσ = (1− 2GM/r)−1). Taking instead
κ→ 0 (with eσ → 1 as κ→ 0) we end up with

p′ = −φ′
(

2

r
φ′ + φ′′

)
= −φ′dV

dφ
, (C.23)

or in terms of pm, together with the equation of motion

p′m = −φ′
(
dV

dφ
− ∂U

∂φ

)
= −〈ψ̄ψ〉

(
∂F (φ)

∂φ

)
φ′,

φ′′ +
2

r
φ′ =

∂V

∂φ
= −∂U(φ)

∂φ
+ 〈ψ̄ψ〉

(
∂F (φ)

∂φ

)
,

(C.24)

gives the equations we know from finite flat space.

C.2 Dimensional analysis and negligible gradient limit

It is useful to rewrite the EOMs Eq. (3.1) in terms of dimensionless quantities, which we define
as

p̂ ≡ p/m4 , ε̂ ≡ ε/m4 , r̂ = r/α , M̂ = M/(α3m4) , (C.25)

V̂ ≡ V/Λ4 , m̂∗(θ) ≡ m∗(θ)/m , ρ̂s ≡ (mρs)/Λ
4 ,

where Λ4 ∼ m2
φf

2 is the typical scale associated with the scalar potential. The EOMs are then
given by

θ′′
(

1− 2c1M̂

r̂

)
+

2

r̂
θ′

(
1− c1M̂

r̂
− 2πc1r̂

2 (ε̂− p̂)
)

= c3

(
∂V̂

∂θ
+ ρ̂s

∂m̂∗(θ)

∂θ

)
, (C.26a)

p̂′ =− c1M̂ ε̂

r̂2

[
1 +

p̂

ε̂

] [
1− 2c1M̂

r̂

]−1 [
1 +

4πr̂3

M̂

(
p̂+

1

2
c2θ
′2
{

1− 2c1M̂

r̂

})]

− c2c3θ
′

(
∂V̂

∂θ
+ ρ̂s

∂m̂∗
∂θ

)
,

(C.26b)
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C.2. Dimensional analysis and negligible gradient limit

M̂ ′ = 4πr̂2

(
ε̂+

1

2
c2θ
′2
[

1− 2c1M̂

r̂

])
, (C.26c)

where we identify three relevant dimensionless coefficients

c1 ≡
α2m4

M2
P

, c2 ≡
f2

α2m4
, c3 ≡

α2Λ4

f2
. (C.27)

α is an arbitrary length scale, to be chosen at convenience. For instance, the typical size of
a gravitationally-bound star is determined by the condition c1(α = R) = 1, which implies
R = MP/m

2. On the other hand, the typical scale associated with the scalar field is given by
the condition c3Max{1, ρ̂s}(α = λφ) ∼ 1, which strictly speaking is a locally defined property
since ρ̂s depends on r̂. This typical scale of the scalar field, which changes with density, is what
we refer to as the wavelength of the field.

The negligible gradient approximation and in-medium wavelength

To understand the negligible gradient approximation, let us focus on Eq. (C.26a),

θ′′ +
2

r̂
θ′ = c3

(
∂V̂

∂θ
+ ρ̂s

∂m̂∗
∂θ

)
, (C.28)

where we neglected the O(1) deformation of the scalar derivatives due to gravity, as they do not
play a significant role in the following discussion. Over a region of size r̂2 − r̂1 ≡ ∆r̂, around
the mean position 1

2(r̂2 + r̂1) ≡ r̂c where θ changes by ∆θ, the LHS scales as ∼ ∆θ
(∆r̂)2 . This is

true both in the case where the transition occurs when r̂c � ∆r̂, in which case the θ′ term is
O(∆r̂/r̂c) suppressed w.r.t to the θ′′ term, or when the transition happens for r̂c ∼ ∆r̂, in which
case the θ′ and θ′′ term scale the same.

Consider then the scalar profile θ(r) derived from the EOS Eq. (6.36), where ρs = ρs(r) as
follows from the solution of Eq. (3.1). By construction this ensures that the RHS of Eq. (C.28)
vanishes. This is a good approximation to the full coupled system of EOMs if the corrections
due to the scalar field derivatives θ′(r) and θ′′(r) in Eq. (C.26) can be considered small, in
which case the EOMs reduce indeed to Eq. (6.36) and Eq. (3.1). Let us assess the validity of
this approximation by separating the discussion into two qualitatively different cases depending
on the behavior of θ(r), (1) θ varies continuously in a finite region and (2) θ is discontinuous,
i.e. jumps from one value to another, forming a so-called bubble wall. In both of these regions,
we argue that while θ′ and θ′′ do not vanish, θ(r) can nonetheless be considered a good approx-
imate solution overall under certain conditions. We shall derive an upper bound on f which
ensures these conditions are satisfied, with the strongest bound coming from the condition for
the formation of the bubble wall.

We start with the case where θ(r) is continuous. This is typical in linearly coupled models
(n = 1 in Eq. (6.27), see Sec. 6.2.3), at least at small enough densities. While it is easier to
characterize the gradient corrections in this region, as we show below it typically provides a
weaker bound on f when both (1) and (2) behaviors of θ can happen within the same scalar
theory. Consider a region where θ(r) undergoes an O(1) change in its value from θ0 to θ∞
such that θ̄ ≡ (θ∞ + θ0)/2 ∼ ∆θ ≡ θ∞ − θ0 = O(1), within a region of size ∆r̂. The LHS
of Eq. (C.28) scales like ∆θ/∆r̂2, as previously explained. Since the RHS vanishes at leading
order by construction, it is sensible to Taylor expand it and evaluate it at θ̄. By demanding that
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the change in θ takes place within the confines of a star, i.e. ∆r̂ . 1 in units α = R, and that
deviations from the assumed profile are at most of order ∆θ, we arrive at the condition

R2 � 1

m2
φ(θ̄)

where m2
φ(θ̄)f2 ≡ ∂

∂θ

(
∂V (θ)

∂θ
+ ρs

∂m∗
∂θ

)∣∣∣∣
θ=θ̄

. (C.29)

This condition can also be interpreted as an energy requirement, identifying f2/R2 as the gra-
dient energy density associated with the smooth change of the scalar field, and m2

φ(θ̄)f2 at the
gain in effective potential energy. Note that these types of continuous transitions also occur
in models where the θ∞ phase is ultra-relativistic, which is the common case in the models in
Sec. 6.2.3, as well as in part of the parameter space of the models in Sec. 6.2.3.

A different condition associated with the negligible gradient approximation, typically leading
to a stronger upper bound on f , corresponds to the case in which θ(r) exhibits a discontinuity.
This happens for instance in quadratically coupled models (n = 2 in Eq. (6.27)) just above the
critical density for scalarization. The gradient energy density associated with such a jump in θ
is naively infinite, since θ′ and θ′′ are singular. Clearly, this is not a sensible result, and indeed
the bubble wall is not infinitely thin but it has a finite size, determined by the in-medium wave-
length of the scalar field, λφ. Since in the transition region (i.e. inside the wall), θ(r) solving
Eq. (6.36) is not a good approximation, we return to Eq. (C.28) and set the units to α = λφ.
We then find that at low densities, the wavelength can be estimated as

λlow
φ ≡

√
∆θf√

(∂V/∂θ)|θ=θ̄
, (C.30)

where ∆θ ≡ θ∞− θ0 is the jump in θ and θ̄ ≡ (θ∞+ θ0)/2, and as before we generically consider
∆θ ∼ θ̄ = O(1). By using this definition, as opposed to the vacuum Compton wavelength
defined as m−1

φ ≡ f/
√

(∂2V/∂θ2)|θ=θ0 , we avoid potentially misidentifying the relevant scaling
of the RHS of Eq. (C.28), which can be dominated by higher order terms in the potential once θ
is sufficiently far away from θ0. This can occur for scalar potentials that feature more than one
scale, like in the quadratic coupling model discussed in Sec. 6.2.3, where the potential can be
dominated by the quartic term. This effect, which admittedly requires some fine-tuning in the
potential, is nonetheless captured by the definition in Eq. (C.30). In natural potentials defined
by a single scale, i.e. fφ ∼ f , λlow

φ reduces to m−1
φ as expected, like in the models discussed in

Sec. 6.2.3.
We emphasize however that λlow

φ does not actually play an important role in determining the
upper bound on f from the requirement of negligible gradient energy, but rather the in-medium
or high-density effective wavelength, identified as

λφ ≡
√

∆θf√
ρ̄s|∂m∗/∂θ||θ=θ̄

, (C.31)

where ρ̄s is the typical scalar density at the internal edge of the transition region, i.e. roughly the
scalar density at the lowest pressure of the internal phase. The fact that λφ, rather than λlow

φ , is
what determines the relevant size of the scalar bubble stems from the requirement that, for the
scalar field to be significantly sourced, a sufficiently large scalar density is needed, in particular
mρs & m2

φf
2(Mφ/f)n, following the discussion after Eq. (6.36) and using Eq. (6.27). Still, λlow

φ

is interesting in cases where λlow
φ & R (while λφ < λlow

φ ). In this case, the scalar profile extends
to the region outside the star, resulting in a scalar halo and potentially interesting effects like
long-range forces between stars [186].
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C.3. Analytic discussion of constant density objects

Having determined λφ, note that the gradient energy density associated with a bubble wall
is typically larger than that of a continuous scalar profile discussed above, given that the former
scales as f2/λ2

φ, thus enhanced w.r.t. the latter by (R/λφ)2. Nevertheless, the condition

λφ � R , (C.32)

is the correct one to ensure first that the scalar can be sourced when θ(r) solving Eq. (6.36) is dis-
continuous, and second that its contribution to the TOV equations Eq. (C.26b) and Eq. (C.26c)
is subleading. For λφ � R, the formation of the bubble is not energetically favorable, leading
to the trivial θ = θ0 solution. This regime can be understood as a decoupling limit f/MP � 1,
given the scaling with f of Eq. (C.31) and that R ∼ MP/m

2. For λφ ∼ R, the effects of the
gradient energy are no longer negligible and the full coupled system of Eq. (C.26) must be solved
(also when 1/mφ(θ̄) ∼ R in Eq. (C.29)). Therefore, only when Eq. (C.32) holds the bubble can
be formed, and its contribution to the total energy (mass) of the star be safely neglected, given
that it is localized to a thin region much smaller than the total size of the star.

C.3 Analytic discussion of constant density objects

In this appendix, we derive the main results presented in Sec. 6.2.2. In models that allow a
NGS, the total core pressure for all configurations on the stable branch balances two distinct
contributions,

p(0) ≡ p0 = ∆pgrav. + ∆pgrad. . (C.33)

with

∆pgrad. = −
∫ R

0
dr θ′

(
∂V

∂θ
+ ρs

∂m∗
∂θ

)
, (C.34)

∆pgrav. ' −
∫ R

0
dr

M(r)ε(r)

M2
Pr

2
, (C.35)

where we took for simplicity the Newtonian limit of the TOV equations, which, as discussed
below, suffices for the estimations in this section.

Self-bound objects (SBOs) are such that ∆pgrav. � ∆pgrad., they are composed of matter in
the NGS and are held together by the gradient pressure of the scalar field. The opposite limit,
∆pgrav. � ∆pgrad., corresponds to stars. The smallest possible configurations on the stable branch
are of size R ∼ λφ, and both gravitational and gradient pressures are spread across the object,
thus ∆pgrav. and ∆pgrad. must be calculated by summing up the contributions from r = R until
the core. For a given f , these smallest configurations can either be self- or gravitationally-bound.

In order to analytically characterize, up to O(1) factors, these objects in different regimes,
we make the following simplifying assumptions. First, we consider large systems, R � λφ, in
which p′grad. is localized at the boundary of the object where the transition occurs. Second, we
assume a simple linear energy density profile from the core ε(0) ≡ x0εNGS to the edge of the
object ε(R) ≡ xRεNGS,

ε(r)/εNGS = (x0 − xR)(1− r/R) + xR . (C.36)

Next, we calculate the gravitational pressure using the Newtonian limit of the TOV equations,
neglectingO(1) general relativistic corrections as well as the contribution of the localized gradient
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energy to the energy density. Lastly, for simplicity, we assume the NGS phase is non-relativistic.
This approximation is typically applicable when m∗(θ) is bounded, in which case the NGS can
be anything between non- and ultra-relativistic. For an ultra-relativistic NGS phase, a similar
derivation is straightforward. When m∗(θ) is unbounded, the NGS is typically ultra-relativistic
and has a fixed ρs. Also in this case, a similar derivation is straightforward.

Under these assumptions, we can approximate the internal pressure as

p0 '
R2ε2

NGSx
2
0

M2
P︸ ︷︷ ︸

∆pgrav.

+
f
√
εNGSxR
R

√
δm∗

1− δm∗︸ ︷︷ ︸
∆pgrad.

' ε
5/3
NGS(x

5/3
0 − 1)

m
8/3
∗

, (C.37)

where ∆pgrad. is calculated over a small transition region from R to R + λφ, approximating the
scalar profile as a linear transition, i.e. θ′ ∼ 1/λφ = const., and taking the leading order term in
the λφ/R� 1 expansion. We also approximated ∂m∗

∂θ ∼ mδm∗. For simplicity, we assume in the
following that δm∗ � 1. This assumption can be relaxed by rescaling δm∗ → δm∗/(1− δm∗) in
all the expressions below. Finally, the last equality in Eq. (C.37) is a self-consistency condition
due to the assumed non-relativistic EOS at the core, i.e. p0 = p(ε(0)).

Self-bound objects: ∆pgrav. � ∆pgrad.

An interesting prediction for finite f is the existence of SBOs, for which gravity does not a play
role, and therefore their pressure, energy density, and scalar field profiles can be computed by
solving the MP →∞ limit of the coupled TOV equations, Eq. (6.45). In the R� λφ limit, they
are well-described by constant profiles. They are held together by the gradient pressure exerted
at the edge of the object, where the transition occurs in the form of a scalar bubble wall of size
λφ that “traps” the matter inside and prevents it from expanding.

We apply the simple model of Eq. (C.37) by taking x0 = xR ≡ xSBO & 1, which describes a
constant energy density system. This allows us to write the SBO radius as a function of its core
energy density (or equivalently, in this approximation, its core number density)

RSBO(xSBO) ' m
8/3
∗ δm

1/2
∗ f

ε
7/6
NGS

x
1/2
SBO

x
5/3
SBO − 1

, (C.38)

where ∆pgrav. was neglected. From Eq. (C.38), it is clear that SBOs become smaller (larger) as
the central density, i.e. xSBO, increases (decreases). Their total mass is given by

MSBO(xSBO) =
4π

3
xSBOεNGSR

3
SBO(xSBO) ' 4π

3

f3δm
3/2
∗ m8

∗

ε
5/2
NGS

x
5/2
SBO

(x
5/3
SBO − 1)3

. (C.39)

For finite f , SBOs are bounded in size both from above and from below. The smallest object
possible would have Rmin

SBO ∼ λφ, for which the approximation R � λφ breaks down. This also
implicitly defines the maximal possible density of the self-bound object. For very low densities
the object becomes large, reaching the point where ∆pgrav. can no longer be neglected. We then
define the maximal SBO radius at the equilibrium point ∆pgrav. ' ∆pgrad.. Using Eq. (C.37), we
can analytically estimate it in two limiting cases

Rmax
SBO ∼


(
fM2

Pδm
1/2
∗

ε
3/2
NGS

)1/3

δm
1/2
∗

(
m4
∗

εNGS

)(
f
MP

)
� 1(

M7
P

δm
1/2
∗ m12

∗ f

)1/6

δm
1/2
∗

(
m4
∗

εNGS

)(
f
MP

)
� 1

. (C.40)

210



C.3. Analytic discussion of constant density objects

The first case corresponds to xSBO ' 1, in which the equilibrium happens when the SBO is close
to its ground state density. The second case corresponds to xSBO � 1, in which the equilibrium
happens when the SBO is much denser than its ground state density, and thus the maximal
radius is independent of the NGS properties.

Constant energy density gravitationally-bound objects: ∆pgrav. � ∆pgrad.

As the core pressure increases, gravity pressure becomes the dominant component. We return
to our simple model of Eq. (C.37), and note that, in the absence of a sizeable gradient pressure,
vanishing Fermi pressure at r = R requires us to set xR ' 1, while we have x0 & 1, finding

R(x0) ∼
(
M2

P(x
5/3
0 − 1)

m
8/3
∗ ε

1/3
NGSx

2
0

)1/2

. (C.41)

Around x0 ' 1, the radius increases with increasing core energy density, in contrast to the

SBOs which exhibited the opposite behavior. Still, in the limit, δm
1/2
∗ (m4

∗/εNGS)(f/MP) � 1,
these smallest gravitationally-bound systems can also be approximated as of constant energy
density since although their pressure drops away from the core, it is sufficiently low that the
EOS is always close to ε ' εNGS. At large enough core pressures, the constant energy density
approximation breaks down, and any further increase in core pressure leads to a decrease in
radius, which is the typical behavior for gravitationally-bound objects described by a Fermi gas;
indeed, the radius Eq. (C.41) decreases with increasing core energy density for x0 � 1.

Finally, recall that for δm
1/2
∗ (m4

∗/εNGS)(f/MP) � 1, the most massive and largest SBOs
have ε � εNGS (i.e. xSBO � 1). Therefore, any increase in pressure would lead to a swift
breakdown of the constant energy approximation as follows from the EOS, and a return to the
typical radius decrease with increasing core pressure. As a result, the maximal mass of the
gravitationally-bound stars in the NGB coincides with that of the SBOs in this limit.

To conclude, we can approximate the maximal star radius, up to O(1) factors, as

Rmax ∼


(

M2
P

m
8/3
∗ ε

1/3
NGS

)1/2

=

(
δm

1/2
∗ m4

∗f
εNGSMP
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∗
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= Rmax
SBO δm
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∗
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∗

εNGS

)(
f
MP

)
� 1

, (C.42)

which are the analytic estimates used in the main text in Eq. (6.48).

Comparison with numerical results of BM1 ALP model

Let us check our analytical estimates with the numerical results we presented for the BM1
benchmark in Sec. 6.2.3. For this purpose, it is useful to zoom in on the right panel of Fig. 6.14
at low masses and small radii, see Fig. C.1. Our numerical results agree with our estimates for
RSBO

min given in Eq. (6.78) and are indeed well-described at low pressures by the curve defined
by Eq. (6.79) independently of f . The visible deviations from the line at low radii is a finite
gradient effect explained by our modeling of the SBOs described in this appendix. The smallest
SBOs can have a central number and energy densities which can be a few times larger than
ρNGS and εNGS, respectively. Therefore, the energy density can be larger than εNGS, leading to
configurations that lie above the curve defined by Eq. (6.79). For the smallest objects, with
R ' RSBO

min , the size of the transition region becomes comparable to the size of the object, and
the assumptions of constant pressure and number density, on which our description depends on,

211
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Figure C.1: The low-mass and small-radius region of the M -R curves of the benchmark BM1 in
the ALP model of Sec. 6.2.3. The free Fermi gas without axion (solid black), the negligible gra-
dient limit (dashed black), and including finite gradient effects for f = {5×1016, 1016, 1015}GeV
in red, purple, and blue respectively.

are no longer valid. Note that the dashed line describing the M -R curve in the negligible gra-
dient limit (f/MP → 0) describes gravitationally-bound constant-density objects since gravity
is the only force in this limit. However, as long as the object is dilute enough, i.e. ρ ' ρNGS,
it has constant energy density εNGS and Eq. (6.79) is valid, regardless of whether it is a self-
or gravitationally-bound object. Note also that for the most massive NGS stars, the effects of
the gradient pressure at the edge of the star is increasingly negligible, making the properties
of the gravitationally-bound stars essentially f -independent, clearly visible in the right panel of
Fig. 6.14.

As shown in Fig. C.2, the numerical solutions agree with our simple modelling of the SBOs
given above. The smallest SBOs are the densest and exhibit the highest internal pressure.
These properties are in fact f -independent, e.g. the maximal pressure is given in this case by

pSBO
max ' gmNρNGS ≈ ε0/2 . (C.43)

for the BM1 benchmark. The maximal density can be found by solving ∆pgrad. = pSBO
max numer-

ically, which results in ρmax ≈ 10ρNGS. These results match, up to O(1) factors, the numerical
results shown in Fig. C.2, confirming the f -independent behavior of the smallest SBOs in num-
ber density (left panel) and pressure (right panel). Note that the smallest SBOs are the least
compatible with the underlying assumptions of our modeling of SBOs, namely constant density
and small transition region. Fig. C.2 also confirms our f -dependent predictions, i.e. the minimal
and maximal size of the SBOs. The qualitative behavior of the curves follows the description
given above; the smallest SBOs with R ' RSBO

min are the densest and have the highest pressures.
As the number density decreases and ρ approaches ρNGS, the object becomes larger, more dilute
and the internal pressure decreases. This continues until R ' RSBO

max , where gravity becomes
important and matter must be added inside in order to counter the increasing gravitational
pressure. From this point on, the mass and radius increase as the central number density and
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C.3. Analytic discussion of constant density objects

Figure C.2: Left panel: The NGS configurations in the {ρ(0), R} plane, where ρ(0) is the
central number density. ρ(0) is shown in units of the (f -independent) NGS number density
given in Eq. (6.77), while the radius is given in units of the (f -dependent) minimal radius
expected for the SBOs, given in Eq. (6.78) . The numerical results agree with the analytical
estimates of the maximal density and minimal size up to O(1) factors. Right panel: The NGS
configurations in the {p(0), R} plane, where p(0) is the central pressure. p(0) is plotted in units
of the (f -independent) maximal pressure given in Eq. (C.43), while the radius is given in units
of the (f -dependent) maximal radius expected for the SBOs, given in Eq. (6.78). The numerical
results agree with the analytical estimates of the maximal pressure and size up to O(1) factors.
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pressure increase. For both f = 5× 1016GeV and f = 1016GeV, we find that the maximal size
of the gravitationally-bound stars coincides with RSBO

max , consistent with the analytic estimates in
Eq. (C.42).

C.4 Large nucleon mass reduction in f(φ)G2
µν models

Prompted by Eq. (6.100), we present here a simple model that can lead to a large reduction of
the nucleon mass, thus populating most of the parameter space of Fig. 6.11, albeit at the cost
of some tuning. Above the QCD scale, we consider the following Lagrangian

Lφ =
1

2
(∂µφ)2 − gf(φ)

β(gs)

2gs
GµνGµν − ε

β(gs)

gs

M4
UV

32π2
gf(φ) , (C.44)

where f(φ) is a dimensionless function of the scalar field φ such that f(0) = 0, and g is a
dimensionless coefficient (introduced in analogy to the ALP g factor in Eq. (6.67)). The last
term in Eq. (C.44) is the UV contribution to the potential, naturally expected from closing
a gluon loop at leading order in gf(φ), where MUV is the cutoff of the scalar theory and we
allowed for tuning in the UV by introducing the parameter ε < 1. Note that Eq. (C.44) could
be generalized by adding interaction terms with the light quarks

∑
q=u,d,s fq(φ)mq q̄q. As seen

for the QCD axion in Sec. 2.3, these interactions lead to a comparatively smaller coupling to
nucleons, and we disregard them, along with quark masses, in the following.

Below the QCD scale, we use the well-known fact that the divergence of the dilatation current
can be used to obtain the matrix element [280–282]

〈N |β(gs)

2gs
GµνGµν |N〉 = m0 , (C.45)

where m0 ≈ 869.5 MeV [359] is the nucleon mass in the chiral limit. This allows to match the
theory in Eq. (C.44) to

LIR
φ ⊃ −mN N̄N

[
1− g

g∗
f(φ)

]
−
(
ε
β

gs

M4
UV

32π2
+ cΛ4

QCD

)
gf(φ) , (C.46)

at leading order in gf(φ) and neglecting the difference in β/gs between the scale at which
Eq. (C.44) is defined and the QCD scale, ΛQCD. Note that g∗ = mN/m0 ≈ 1.08, yet since we
are neglecting quark masses we will consistently take g∗ = 1. We also added an IR contribution
to the scalar potential in Eq. (C.46), generated by the interaction of φ with the gluons and
proportional to QCD contribution to the cosmological constant, which we have estimated as

〈0|β(gs)

2gs
GµνGµν |0〉 = cΛ4

QCD , (C.47)

with c = O(1).

At this point, we can map the function f(φ) to either the ALP model of Sec. 6.2.3, with
f(φ) = (1 − cosφ/f)/2, or to the linearly and quadratically coupled models of Secs. 6.2.3 and
6.2.3, with gf(φ) = φ/Mφ and gf(φ) = (φ/Mφ)2, respectively. Let us note that in deriving
Eq. (C.46) we kept only the leading order term in gf(φ), while a large (in-medium) reduction
of the nucleon mass requires gf(φ) ∼ 1. As a result, for small values of m∗(θ∞) (recall θ∞ is
the high-density limiting value of φ/f), control over such non-linear terms is required.
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Finally, evaluating the scalar potential in Eq. (C.46) at θ∞, we find

V (θ∞) =

(
ε
β

gs

M4
UV

32π2
+ cΛ4

QCD

)(
1− m∗(θ∞)

mN

)
≡ V0(θ∞)

(
1− m∗(θ∞)

mN

)
. (C.48)

By canceling the UV and QCD contributions to the potential, a significant fraction of the
parameter space of Fig. 6.11 is populated. In particular, note that the larger the degree of
tuning, the smaller V (θ∞) can be, which is the regime where larger departures (e.g. in the mass
and radius of NSs) are found w.r.t. the standard GR prediction. In Fig. 6.11, the blue curve
correspond to Eq. (C.48) with V0(θ∞) ∼ (0.17GeV)4.
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Appendix D

Density Induced Instabilities

In this appendix we give some additional analytic estimates that back up some of the approxi-
mations used in Sec. 7.

D.1 Linear Profile Approximation

The parametric dependence of the results in Sec. 7.1.4 can be reproduced by considering a
simpler, linear approximation for the scalar profile (recall ∆φ(0) ≡ φ(0)− φ−)

φ(r) =


φ(0) r < Ri

φ(0)− ∆φ(0)
RT−Ri (r −Ri) Ri < r < RT

φ− r > RT

, (bubble; linear) (D.1)

and treating both φ(0) and Ri as variational parameters determined by the minimization of the
energy of the bubble E(φ(0), Ri), i.e. Eq. (7.17) with R = RT. Expressing it in terms of ∆φ(0)
and the width x = 1−Ri/RT, the energy is given by

E(∆φ(0), x) = −E0
∆φ(0)

f

[
1− 3

2x+ x2 − 1
4x

3 − 3
8

α∆φ(0)

fx

(
1− x+ 1

3x
2
)]

, (D.2)

where E0 = 4π
3 µ

2f2R3
T and we have defined

α ≡ 4

(µRT)2
. (D.3)

During the formation of the system, RT is small and therefore α � 1. Minimization of the
energy with respect to both ∆φ(0) and x yields x = 1 and

∆φ(0)

f
=

1

α
. (D.4)

Therefore, we find a proto-bubble (Ri = 0) in which the field displacement at the origin is
∆φ(0)/f ∼ (µRT)2, which is the result of an optimal balance between the gradient and potential
energies. Parametrically, this matches the result in Eq. (7.22), albeit with a different numerical
coefficient. As soon as the slowly-growing star is large enough that the in-density minimum
(φ+)ρ can be reached, which happens when α 6 f/((φ+)ρ − φ−), it should be energetically
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favorable for the profile to develop a core where the scalar value is fixed to φ(0) = (φ+)ρ. Then,
minimization of the energy with respect to x leads to

x =
1

2

√
α((φ+)ρ − φ−)

f
+O(α) , (D.5)

This matches the result in Eq. (7.26), except for a numerical factor. Likewise, the energy of the
bubble in the thin-wall limit α� f/((φ+)ρ − φ−) is given by Eq. (7.28) where ε and σ scale as
in Eqs. (7.29), (7.30) respectively, ε = µ2f((φ+)ρ − φ−) and σ = ((φ+)ρ − φ−)

√
ε.

The linear profile Eq. (D.1) has the advantage that it is simple to estimate the importance
of departures from the approximation of a linear potential, Eq. (7.56), we have worked under
in the main text. In particular, we can compute the effects of including the barrier term in
Eq. (7.56) at finite density, i.e. with ΛB → ΛB(n). While ε remains unchanged in the thin-wall
limit, the tension receives a correction

∆σ

σ
=

√
3

10

Λ4
B(n)

Λ4
R

, (D.6)

where we have assumed that the bubble is thin enough as to probe a fixed density.

D.2 Gravitational Force

In the equation of motion of the bubble, Eq. (7.37), we have neglected the gravitational force
that the star exerts on the wall. While this does not change the conclusions we derived in the
main text, it can lead to O(1) numerical changes of the bubble’s escape condition, at least for
the densest stars, i.e. neutron stars.

In the non-relativistic and weak-field limits, the gravitational force of the star on the bubble
wall per unit area (i.e. the pressure), is given by

FG(R) = − 1

8πM2
P

m(R)σ

R2
, (D.7)

where m(R) is the enclosed mass of the star and σ the wall tension. Using a simple estimate for
the neutron star number density n ∼ m3

n and radius RNS ∼
√

8πMP/m
2
n, obtained by equating

(Fermi-degeneracy) kinetic and gravitational energy densities and where mn is the neutron mass,
we find m(R) ∼ 8πM2

PR
3/R2

NS. Therefore, for a neutron star

NS : FG(R) ∼ σR

R2
NS

, (D.8)

while for less dense stars the gravitational force is much smaller, i.e. for white dwarfs it is
suppressed by me/mp. This additional force leads to a modification of the bubble wall equation
of motion, in the non-relativistic limit (weak-field) and for R 6 RNS

σR̈ ' ε− 2σ

R

(
1 +

R2

2R2
NS

)
− σ′ , (D.9)

which is subleading to the tension force except for R ∼ RNS. Likewise, once if the bubble leaves
the star, the enclosed mass is the total mass of star and therefore for R > RNS

σR̈ ' ε− 2σ

R

(
1 +

RNS

2R

)
, (D.10)

which once again introduces an O(1) change only when R ∼ RNS.
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D.3 Linear Tension Approximation

The simplest modelling of σ(R), that is a constant σ′, allows us to analytically derive the
condition Eq. (7.40). Let us then consider a linear increase of the tension with R, starting at RT

and ending at RS = RT + ∆RT, thus with σ′ = [σ(RS)−σ(RT)]/∆RT constant. The equilibrium
position of the bubble wall is determined by R̈(R = Req) = 0, and reads

Req =
2[σ′RT − σ(RT)]

3σ′ − ε , RT > σ(RT)/σ′ and 3σ′ > ε , (D.11)

where the inequalities ensure that this is indeed an equilibrium position, i.e. with E′′(Req) > 0,
where E(R) is the energy of the bubble (note that R̈ ∝ −E′). For consistency, we should also
require Req > RT, since that means that the bubble can in fact enter the transition region,
where σ′ 6= 0. This happens only if the star has grown large enough

RT >
2σ(RT)

ε− σ′ . (entry transition region) (D.12)

This condition is equivalent to the requirement R̈(RT) ≮ 0,1 and it only makes sense for ε > σ′.
If the condition Eq. (D.12) is not satisfied, it just means that Req = RT and the bubble is trapped
inside the star. In addition, note that whenever the bubble is able to enter the transition region
but the conditions in Eq. (D.11) are not satisfied, then the bubble automatically escapes the
star, since there is no stable radius R > RT for which R̈ = 0 and E′′ > 0. If instead the
conditions in Eqs. (D.11), (D.12) are satisfied, then there is indeed an equilibrium position at
Req > RT, which increases as the star gets larger. This last fact generically leads to a smaller
force from the term 2σ/R in Eq. (7.37). Eventually, the equilibrium condition is lost when the
position of the wall reaches the outer edge of the star, i.e. Req > RS. This takes place when

RT >
3σ(RS)− σ(RT)− ε∆RT

ε− σ′ . (exit transition region) (D.13)

With the linear approximation for σ(R) we then conclude that, as long as the volume energy of
the bubble is larger than the rate of change of the tension, there is a minimum transition radius
such that the bubble can permeate through the transition region, Eq. (D.12), and another for
which the bubble can reach the surface of the star, Eq. (D.13). From that point outwards the
bubble expands throughout the whole universe, since R̈(R > RS) > 0. Moreover, we also learn
that if ε > 3σ′, the only equilibrium position is Req = RT, and this is lost as soon as the star is
large enough as to satisfy Eq. (D.12). Importantly, let us note that when ε > 3σ′, Eq. (D.12)
is in fact approximately the same as the condition for the formation of the bubble, Eq. (D.4),
thus in this case the formation and escape of the bubble take place simultaneously.

D.4 Ultra-high Densities

In Sec. 7.1.5 we centered our discussion of the bubble dynamics on the case where densities in
the core of the star, while above critical, are not much larger than nc. This is because a fully
formed bubble for which the field at its center is (φ+)ρ ∼ φ+ already allows for the possibility
of a classical phase transition to the true vacuum.

1This requirement does not depend on σ′ being constant, and the condition on RT in Eq. (D.12) holds in
general with σ′ → σ′(RT), under our approximation that σ′ turns on at RT.
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In this appendix we extend our analysis to the case of ultra-high densities, by which we mean
ζ → 1. In this situation, the only minimum of the in-medium potential is found at (φ+)ρ � φ+,
see Eq. (7.7). As we explain in the following, we find that the escape of a bubble of the true
vacuum can take place regardless of the scalar inside the star reaching the in-density minimum
of the potential, i.e. φ(0) < (φ+)ρ, but it is enough that the field displacement is at least
∆φ(0) & φ+ − φ−. As a matter of fact, if the star is large enough as to allow φ(0) � φ+, the
correspondingly large field displacement inside the (proto)-bubble makes it easier for a bubble
to escape from the star.

The key point is that, for what concerns the possibility of a bubble of the true vacuum
escaping from the star, one only needs to focus on a “sub-bubble” with a field displacement
∆φsub = φ+ − φ− ≈ 2f . The energy density of such a sub-bubble is simply εsub ∼ Λ4

R, while its
tension scales as

σsub(RT) ∼
√

∆φ(0)fΛ2
R . (D.14)

The latter is enhanced by a factor (∆φ(0)/∆φsub)1/2 with respect to the naive expectation, due to
the higher potential energy difference of the large (proto-)bubble that contains the sub-bubble,
|〈∆V 〉| ∼ ∆φ(0)Λ4

R/f . This simple estimate holds as well if we assume that the in-density
minimum is reached, i.e. φ(0) = (φ+)ρ.

Such an enhancement of the tension facilitates the escape of the sub-bubble, since it decreases
the contracting force associated with σ′ in Eq. (7.37). In particular, we now have σ′sub ∼
[σ(RS)− σsub(RT)]/∆RT, which is smaller than when φ(0) ∼ φ+, see Eqs. (7.38), (7.39); in fact
it could even be negative. Notice that instead the force associated with the surface tension of
the wall at the transition radius, 2σsub(RT)/RT, remains constant, since RT ∼

√
∆φ(0)/fµ−1.

Therefore, the net result is that it is much easier for the escape condition Eq. (7.40) to be
satisfied. The larger (proto-)bubble supporting the sub-bubble helps the latter permeate through
the entire star. The proper condition that determines if the sub-bubble of true vacuum expands
throughout the whole universe is then

RS &
2σ(RS)

ε
. (D.15)

We have explicitly verified this result via our numerical simulations. For a bubble connecting
shallow minima, δ2 � 1, this condition translates into

RS &
f

Λ2
R

, (sub-bubble; shallow) (D.16)

a requirement that is automatically satisfied given that RS > RT. For a bubble connecting deep
minima, δ2 ≈ 1, we find instead

RS &
f

Λ2
R

1√
1− δ2

. (sub-bubble; deep) (D.17)

This is similar to the escape condition for a deep bubble, Eq. (7.74), yet on RS instead of ∆RT.

D.5 Sudden Approximation

We have been assuming that the bubble, during either its formation or expansion through the
star, is always found in a nearly-static (Ṙ = 0) equilibrium position, with its radius evolving
slowly only because RT = RT(t̄) does, as the star is being formed. Only at the point where
equilibrium is lost, R̈ > 0 and the bubble is free to gain kinetic energy. This was justified in
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Sec. 7.1.2 on the basis that the characteristic reaction time of the scalar field, µ−1, is much
shorter than the evolution time of the star TS. In this section we wish to comment on the
opposite situation, where µTS � 1.

In this limit, the star is formed instantaneously, with a large region r < RT where the in-
density potential allows for the scalar field to start classically rolling. If such a region was of
infinite extent, i.e. if the system was spatially homogeneous, the field would roll, accelerate,
and finally oscillate around the true minimum. However, in a finite-size system, one needs to
crucially take into account the contribution of the spatial gradient to the energy of the field
configuration. Indeed, φ moves in an effective potential V (φ) + 1

2φ
′2 that becomes large towards

the transition region, where the field must return to its vacuum value φ−. Therefore, the sudden
formation of the star and the corresponding gain of kinetic energy 1

2 φ̇
2 does not automatically

imply that a first order phase transition will proceed via the escape of a scalar bubble from the
dense system. As a matter of in fact, the situation is not much different that in the quasi-static
case, as we now explain.

Concerning the formation of the bubble, the main difference with respect to our discussion
in Sec. 7.1.4 can be phrased in terms of the maximal value that ∆φ(0) = φ(0) − φ−, the field
displacement at the center of the star, can take. Indeed, because of the kinetic energy the field
acquires by rolling down the in-medium potential, ∆φ(0) will generically be larger than what
found in Eq. (7.22) for the same RT, yet oscillating in time. Accordingly, the whole scalar profile
will necessarily oscillate in time as well. Then, if the size of star, specifically RT, is still not large
enough for φ(0) to reach φ+, the field value corresponding to the true minimum of the scalar
potential in vacuum, then such an oscillating scalar profile remains trapped within the star, in a
sort of oscillon that, even after eventually losing its kinetic energy,2 remains as a confined static
bubble (see e.g. [360] for a recent discussion of such type of field configurations in vacuum).

Otherwise, if ∆φ(0) & 2f , then whether the scalar bubble remains confined to the dense
region or escapes to infinity follows from the same analysis as in Sec. 7.1.5, yet with the properties
of the bubble, i.e. the potential energy difference between the two sides of the bubble wall and
the tension, now oscillating in time.

We stress again that the main difference between the quasi-static and sudden scenarios
concerns the value of RT for which a given field displacement is attained. Another way to
interpret this fact is to compare, for the same value of RT, the dynamics of the bubble wall
between the two scenarios. Because of the larger field displacement in the sudden case, the
maximum values of ε(t) and σ(R, t) will both be larger, while σ′(R, t) will be smaller, than
in the quasi-static case. This situation resembles the quasi-static evolution of a bubble in the
limit that n � nc, discussed in App. D.4. Therefore, we could similarly conclude that in the
sudden approximation and for RT � µ−1, the condition that determines if the bubble expands
indefinitely is

RS &
2σ(RS)

ε
. (D.18)

D.6 Formation and Escape of N � 1 Bubbles

In the main text we have concentrated on bubbles interpolating between two consecutive relaxion
minima, located at the period `∗ outside the bubble and at `∗+1 inside it. However, the relaxion
displacement at the core of the star could be much larger than 2πf , in particular ∆φ(0) ∼ 2πfN
with N � 1 is expected to naturally occur for relaxion bubbles at densities significantly above
the critical one, see Eq. (7.71). In this appendix we provide a discussion of the fate of the

2This could proceed via radiation of φ quanta, or because of the interactions of φ with the environment.
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Figure D.1: N � 1 bubble in equilibrium at R ∼ RT (solid) and sub-bubble that has already
escaped from the star (dashed).

relaxion bubbles in such a situation, following closely [13] while avoiding the detailed derivation
presented there.

For the first in-density minimum to be reached, the energy in the in the field’s gradient,
∼ (2πfN/RT)2, needs to be compensated by the gain in potential energy inside the bubble,
∼ 2πΛ4

RN . This can only happen if the core of the star is large enough

RT &

√
N

µ
, (D.19)

where we recall that µ = Λ2
R/f . If this is the case, a large bubble with a field displacement

of ∆φ(0) ∼ 2πfN is fully formed. The properties of such a bubble, that is its volume energy
density and tension can be simply estimated as,

ε ∼ µ2f∆φ(0) ∼ 2πΛ4
RN , (D.20)

σ ∼ ∆φ(0)
√
ε ∼ Λ2

Rf(2πN)3/2 . (D.21)

This large relaxion bubble can be thought as made of a series of N sub-bubbles, each corre-
sponding to a field displacement w.r.t. to the next of 2πf , see Fig. D.1. This is motivated by the
fact that in vacuum each relaxion minimum is separated by a potential barrier, so the escape of
relaxion bubbles from the star takes place in discrete steps, starting with the outermost bubble,
within which the relaxion sits just one period away, i.e. at `∗ + 1, from its in-vacuo value. This
sub-bubble has then a volume energy density and tension

εsub ∼ 2πΛ4
R , (D.22)

σsub(RT) ∼ Λ2
Rf(2πN)1/2 . (D.23)

Note in particular that the wall tension is enhanced by a factor
√
N w.r.t. the one of a standard

relaxion bubble. It is this enhancement that facilitates the sub-bubble escape from the star.
Indeed, the characteristic contracting force of bubbles propagating through a star, σ′ ∼ ∆σ/∆RT

associated with a radius-dependent tension, is mitigated because ∆σ ∼ σsub(RS) − σsub(RT)
decreases (or could even become negative) at large N . We have explicitly verified this effect via
numerical simulations of the sub-bubble’s dynamics.

The condition for the expansion, beyond the confines of the star and towards infinity, of
this 2πf bubble then coincides with the condition that the bubble does not contract in vacuum,
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εsub & 2σsub(RS)/RS, where σsub(RS) is the tension of the wall in vacuum. For shallow minima,
since the potential barrier Eq. (7.68) is very small, this tension is simply σsub(RS) ∼ 2πf

√
εsub.

Therefore, the condition reads

RS &
f

Λ2
R

, (sub-bubble; shallow) (D.24)

which is automatically satisfied given that RS > RT and Eq. (D.19). Instead, for deep minima
we can use the thin-wall approximation to compute the wall’s tension σsub(RS) ' 8fΛ2

B, and the
correct condition is then

RS &
f

Λ2
R

1√
1− δ2

. (sub-bubble; deep) (D.25)

Finally, let us note that if the conditions for a sub-bubble to escape are satisfied, this will
also be the case for subsequent sub-bubbles (with N → N−1), up until N becomes so small that
the enhancement in the sub-bubble tension σsub is not enough to guarantee that ε & σ′, that is
that the outwards pressure due to the gain in ground state energy is not enough to overcome
the tension’s gradient.

D.7 Opposite-sign Back-reaction

The discussion in the main text has been restricted to densities that, while allowing for the field
to classically move inside the star, i.e. ζ(n) > ζc = δ2, are still such that the back-reaction term
in the potential is non-vanishing, even if negligibly small. In this section we want to consider
instead the possibility that ζ(n) > 1, such that the wiggles not only vanish but change sign in
some region inside the star.

In this situation, we can identify another inner core radius R′T, such that for r < R′T,
minima of the in-density potential reappear due to opposite-sign barriers. This is fixed by
ζ(R′T) = 2−δ2, where δ is defined, as in vacuum, as the difference between the size of the rolling
and back-reaction terms at the minimum of interest, see Eq. (7.64). Because of the different
sign of the back-reaction term, the minima are now shifted by π with respect to those for ζ < 1,
i.e. they are located at (2π`∗n + θ∗n + π)f . The field displacement, or equivalently the value of
`∗n where the relaxion sits for r < R′T, is determined by the size of the region between the two
core radii, ∆R′T ≡ RT − R′T. This difference sets, in the same fashion as Eq. (D.19), the field
displacement from the in-vacuo value, ∆φ(R′T)/f ∼ (µ∆R′T)2. From this point on, the fate of
the bubble (or sub-bubble) is not much different than what already discussed in Sec. 7.3.2 and
App. D.6. In particular, if ∆R′T � µ−1, the relevant dynamics is that of a 2πf sub-bubble, for
which the condition Eq. (D.24) determines if it escapes the star and expands to infinity. The
only subtlety arises for ∆φ(R′T) = πf . In this case the potential energy density of the bubble
receives a contribution from the back-reaction term in addition to the rolling term. We find
ε ' πΛ4

R + 2(ζ−1)Λ4
B, where we recall that we are dealing with densities such that ζ > 1. While

for sufficiently large ζ this extra contribution naively helps the bubble expand, as soon as the
bubble wall goes through the outer transition region of the star, r > RT, ε decreases because the
relaxion value inside the bubble, (2π`∗+π)f , is not a minimum of the potential in vacuum. This
eventually prevents the bubble from escaping. This type of confined bubble (yet with ΛR = 0)
has been found to be a plausible consequence of the QCD axion [11], or special deformations
thereof [186], in neutron stars.
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D.8 Bubble Interactions with the Environment

In the main text we have treated the density profile as a non-dynamical classical background
field, upon which a non-trivial scalar field develops. In this appendix we study in some more
detail the interactions of the scalar bubble with the dense environment.

Let us discuss first the force exerted by individual nucleons, N , on the bubble wall. We focus
on the case of the QCD relaxion, since the interactions of non-QCD relaxions with protons and
neutrons are much weaker, being mediated by Higgs exchange. The interaction with nucleons is
of the form ∼ σπN N̄N cos(φ/f). This constitutes a contribution to their mass that depends on
the relaxion field, and therefore on space-time, mπN (r) ∼ σπN cos(φ(r)/f). Recall that most of
the mass of a nucleon comes from a term independent of the quark masses and thus independent
of φ, mN = MB + mπN with MB � mπN . It is precisely this interaction of the relaxion with
nucleons that gives rise to the leading linear correction to the back-reaction term in the limit of
small baryonic densities, after substituting N̄N → nb, as given in Eq. (7.78). Note however that
for this treatment to hold, one is implicitly assuming that the scalar field interacts classically
with the density profile, or in other words that single nucleons are able to penetrate the bubble
wall with negligible quantum-mechanical reflection.

Let us have a look then at the one-dimensional quantum mechanics of a nucleon in the
potential associated with its space-time dependent mass, mπN (r). This follows the discussion
in [254], with some important modifications. Before proceeding, let us note there are two
qualitatively different types of potentials depending on the relaxion profile. For bubbles in
which the scalar field displacement is ∆φ(0) = 2πf (our focus in the main text) the overall
change of the nucleon mass between inside and outside the bubble vanishes, while at the center
of the bubble wall, where ∆φ = π/2, mπN ∼ −σπN ; the potential thus resembles a well. If
instead the field displacement is ∆φ(0) = πf (briefly discussed in App. D.7), we have that the
change from outside to inside the bubble ∆mN ∼ −2σπN , and the potential is a downwards
step. In any of these cases, in order to properly compute the force that the nucleons exert
on the bubble wall, it is important to realize that the relevant scales of the problem are the
thickness of the wall, of order µ−1 ∼ f/Λ2

R, and the nucleon wavelength, given by λN ∼ 1/mNv,
where v is the relative velocity of the nucleons with respect to the wall, which we expect to be
non-negligible (either because of their Fermi momentum, temperature, or the initial yet small
velocity that the bubble acquires when it forms). We therefore expect λNµ� 1, which already
indicates that the nucleons interact with the potential classically. Focussing for concreteness on
the step-like potential, we can go further and split it in J small patches, each of them of size λN ,
where quantum mechanical effects become important. In each step the nucleon mass decreases
by an amount δmN = |∆mN |/J ∼ 2σπN/J . Therefore, for each step the quantum-mechanical
reflection coefficient is given by

R1 =
(k − k′)2

(k + k′)2
' δm2

N

4m2
Nv

4
, (D.26)

where k is the momentum of the nucleon before traversing the wall, and k′ its momentum once
inside the bubble. In the second equality we have taken the non-relativistic limit, k ' mv and
k′ '

√
k2 + 2mNδmN , and expanded in δmN . Taking into account all the J barriers, the total

reflection coefficient is bounded by

R . JR1 '
∆m2

N

4m2
Nv

4J
, (D.27)

which vanishes in the limit J � 1. This agrees then with the naive expectation that for λNµ� 1
the system behaves classically, without reflection. In fact, one can also compute the total force
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on the bubble wall associated with the gain in momentum of the nucleons as they pass through it.
For a single nucleon, after going down all the J steps, the force is fN = J(k′ − k)T ' |∆mN |/v.
Therefore, for an ensemble of nucleons with density nb, the total force reads

FN = nbvfN ∼ 2σπNnb . (D.28)

This precisely matches the piece of the volume force associated with the change of the potential
barriers derived in App. D.7 (opposite-sign back-reaction), ∼ 2ζΛ4

B ∼ 2σπNnb. For the potential-
well case (i.e. for 2πf bubbles), with this quantum-mechanical treatment we find, as expected,
FN = 0. However, given that the wall appears to the individual nucleons as a classical potential
well, these tend to accumulate at the wall, i.e. the density (as well as temperature) increases at
the wall; this in turn means that the wall gets thicker. Therefore, it appears that as the bubble
expands through the star, it carries with it a local (of size µ−1) increase in density. However,
for most of the star the density profile remains unaltered.
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[135] F. Özel and P. Freire, Masses, Radii, and the Equation of State of Neutron Stars, Ann.
Rev. Astron. Astrophys. 54 (2016) 401 [arXiv:1603.02698].

[136] LIGO Scientific, Virgo collaboration, GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101
[arXiv:1710.05832].

[137] LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL collaboration, Gravitational
Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB
170817A, Astrophys. J. Lett. 848 (2017) L13 [arXiv:1710.05834].

[138] LIGO Scientific, Virgo collaboration, GW170817: Measurements of neutron star
radii and equation of state, Phys. Rev. Lett. 121 (2018) 161101 [arXiv:1805.11581].

234

https://doi.org/10.1093/mnras/sty2120
https://arxiv.org/abs/1807.02559
https://doi.org/10.3847/1538-4357/ab153a
https://doi.org/10.3847/1538-4357/ab153a
https://doi.org/10.3847/1538-4357/aafac6
https://doi.org/10.3847/1538-4357/aafac6
https://doi.org/10.22323/1.091.0010
https://arxiv.org/abs/1005.0539
https://doi.org/10.1038/s41550-019-0880-2
https://arxiv.org/abs/1904.06759
https://doi.org/10.1103/RevModPhys.50.107
https://doi.org/10.3390/particles2030025
https://arxiv.org/abs/1908.02042
https://doi.org/10.1016/0370-2693(82)90078-8
https://doi.org/10.1016/0370-2693(82)90078-8
https://doi.org/10.1140/epja/i2016-16029-x
https://doi.org/10.1140/epja/i2016-16029-x
https://arxiv.org/abs/1510.06306
https://arxiv.org/abs/astro-ph/0012209
https://doi.org/10.1016/S0370-1573(00)00080-6
https://doi.org/10.1103/PhysRevD.101.044019
https://arxiv.org/abs/1911.07091
https://doi.org/10.1103/PhysRevLett.122.061102
https://arxiv.org/abs/1809.01116
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://arxiv.org/abs/1603.02698
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://doi.org/10.3847/2041-8213/aa920c
https://arxiv.org/abs/1710.05834
https://doi.org/10.1103/PhysRevLett.121.161101
https://arxiv.org/abs/1805.11581


Bibliography

[139] B. Margalit and B.D. Metzger, Constraining the Maximum Mass of Neutron Stars From
Multi-Messenger Observations of GW170817, Astrophys. J. Lett. 850 (2017) L19
[arXiv:1710.05938].

[140] E. Annala, T. Gorda, A. Kurkela and A. Vuorinen, Gravitational-wave constraints on the
neutron-star-matter Equation of State, Phys. Rev. Lett. 120 (2018) 172703
[arXiv:1711.02644].

[141] M. Shibata, E. Zhou, K. Kiuchi and S. Fujibayashi, Constraint on the maximum mass of
neutron stars using GW170817 event, Phys. Rev. D 100 (2019) 023015
[arXiv:1905.03656].

[142] KAGRA, LIGO Scientific, Virgo, VIRGO collaboration, Prospects for observing
and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and
KAGRA, Living Rev. Rel. 21 (2018) 3 [arXiv:1304.0670].

[143] LIGO Scientific, Virgo collaboration, GWTC-1: A Gravitational-Wave Transient
Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and
Second Observing Runs, Phys. Rev. X 9 (2019) 031040 [arXiv:1811.12907].

[144] LIGO Scientific, Virgo collaboration, GWTC-2: Compact Binary Coalescences
Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys.
Rev. X 11 (2021) 021053 [arXiv:2010.14527].

[145] LIGO Scientific, VIRGO, KAGRA collaboration, GWTC-3: Compact Binary
Coalescences Observed by LIGO and Virgo During the Second Part of the Third
Observing Run, arXiv:2111.03606.

[146] M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave
observatory, Class. Quant. Grav. 27 (2010) 194002.

[147] D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave
Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [arXiv:1907.04833].

[148] LIGO Scientific, Virgo collaboration, GW190814: Gravitational Waves from the
Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object,
Astrophys. J. Lett. 896 (2020) L44 [arXiv:2006.12611].

[149] S.M. Brown, C.D. Capano and B. Krishnan, Using Gravitational Waves to Distinguish
between Neutron Stars and Black Holes in Compact Binary Mergers, Astrophys. J. 941
(2022) 98 [arXiv:2105.03485].

[150] J.F. Coupechoux, A. Arbey, R. Chierici, H. Hansen, J. Margueron and V. Sordini,
Discriminating same-mass neutron stars and black holes gravitational waveforms, Phys.
Rev. D 105 (2022) 064063 [arXiv:2106.05805].

[151] I. Bednarek, P. Haensel, J.L. Zdunik, M. Bejger and R. Manka, Hyperons in neutron-star
cores and two-solar-mass pulsar, Astron. Astrophys. 543 (2012) A157
[arXiv:1111.6942].
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