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Abstract

In this thesis, we address the macro-economic problem that aggregated micro
data from the Household Finance and Consumption Survey (HFCS) of the ECB
does not match the macro data from national accounts (NtlA) statistics. Earlier
studies have already identified that extremely wealthy households are generally un-
derrepresented in household surveys. In Chapter 2, we present a method proposed
by Vermeulen ([22]) to overcome this underrepresentation of very rich households.
He suggests to combine the HFCS data with rich lists, enabling an estimation of the
upper part of the wealth distribution via a Pareto distribution. After estimating
this distribution, it is possible to sample further households of the upper part of the
wealth distribution. To justify this method we additionally provide an overview of
some wealth accumulation processes that lead to a Pareto distribution for wealth
in the long term. Though some parts of the discrepancies between HFCS and NtlA
statistics are explained by the missing wealthy, Chakraborty and Waltl ([5]) find
that large parts are still unexplained. Therefore, we provide a solution to close the
persisting gaps via an optimization problem that aims at preserving the level of in-
equality. Finally, we compare the findings with an approach that uses a multivariate
calibration via a small case study covering household wealth of Germany.

Zusammenfassung

In dieser Masterarbeit befassen wir uns mit dem makroökonomischen Problem,
dass aggregierte Mikrodaten aus der Household Finance and Consumption Survey
(HFCS) der EZB nicht mit den Makrodaten aus der Statistik der National Accounts
(NtlA) übereinstimmen. Frühere Untersuchungen haben bereits gezeigt, dass extrem
wohlhabende Haushalte in Haushaltsbefragungen generell unterrepräsentiert sind.
In Kapitel 2 stellen wir eine von Vermeulen ([22]) entwickelte Methode vor, um die-
ser Unterrepräsentation von sehr reichen Haushalten entgegenzuwirken. Er schlägt
vor, die HFCS Daten mit Reichenlisten zu kombinieren, um so den oberen Teil der
Vermögensverteilung durch eine Pareto Verteilung zu schätzen. Nach der Schät-
zung dieser Verteilung ist es möglich, weitere Haushalte für den oberen Teil der
Vermögensverteilung zu erzeugen. Um diese Methode zu rechtfertigen, geben wir
zusätzlich einen Überblick über einige Prozesse der Vermögensakkumulation, die
langfristig zu einer Pareto Verteilung des Vermögens führen. Obwohl ein Teil der
Differenzen zwischen der HFCS und der NtlA Statistik durch die sogenannten „miss-
ing wealthy“ erklärt werden können, stellen Chakraborty und Waltl ([5]) fest, dass
große Teile noch unerklärt sind. Daher schlagen wir vor, die verbleibenden Lücken
durch Lösung eines passenden Optimierungsproblems zu schließen, das insbesondere
darauf abzielt, das Niveau der Ungleichheit zu erhalten. Abschließend vergleichen
wir die Ergebnisse anhand einer kleinen Fallstudie über das Vermögen der priva-
ten Haushalte in Deutschland mit einem Ansatz, der eine multivariate Kalibrierung
verwendet.
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1 Introduction
Macroeconomic data and indicators are frequently used to assess the current state of
economies. However, it is not straightforward to derive accurate conclusions from avail-
able data about income and wealth dynamics, especially in terms of wealth distributions.
Analysing and comparing distributions of wealth is important not only to assess the im-
pact of policies from governments and central banks but also for research purposes and
information for the public.

Our starting point is the Household Finance and Consumption Survey (HFCS) and na-
tional accounts (NtlA) statistics published by the ECB and national central banks.

The HFCS is conducted at the national level and provides household-level data on assets,
liabilities, income and consumption along with related economic and demographic vari-
ables. Therefore, it does not only provide insights into the financial situation of households
but also on their economic behaviour. These aspects can have major implications for the
development of the respective economies. The Deutsche Bundesbank emphasizes1, that
central banks need micro-level information since “aggregate data are deemed insufficient”
and micro-data “opens up the possibility of understanding structural relationships”.
The intended survey frequency is three years and is conducted by the Household Finance
and Consumption Network (HFCN) which consists of “statisticians and economists from
the ECB, the national central banks of the Eurosystem and a number of national statistical
institutes”2. For example, the results of the third wave were published in 2020, with data
of over 91,000 households from 19 EU countries as well as Croatia, Hungary and Poland
being collected from 2016 to 2019. According to the ECB3, “the HFCS questionnaire
consists of two main parts:

1. Questions relating to the household as a whole, including questions on real assets and
their financing, other liabilities and credit constraints, private businesses, financial
assets, intergenerational transfers and gifts, and consumption and saving;

2. Questions relating to individual household members, covering demographics (for
all household members), employment, future pension entitlements and income (for
household members aged 16 and over).”

A comprehensive overview of general aspects of the HFCS and the third wave in detail
is given by ([7]). The data set is often used in research. An application of the first two
waves can be found in ([6]) with a focus on deriving wealth inequality from the data. In
particular, several inequality measures are calculated and Costa and Pérez-Duarte ([6])
are analyzing the evolution and trends of wealth inequality derived from wave 1 and 2.

It turns out that aggregates (financial and non-financial instrument holdings of the house-
hold sector such as deposits and housing wealth) from the HFCS are usually lower than

1https://www.bundesbank.de/en/bundesbank/research/panel-on-household-finances/about-the-
phf/about-the-phf-617320

2https://www.ecb.europa.eu/pub/economic-research/research-networks/html/researcher_hfcn.en.html
3https://www.ecb.europa.eu/stats/ecb_surveys/hfcs/html/index.en.html
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figures from national accounts. Therefore, researchers as well as authorities, including
the ECB, are investigating the reasons causing this macro-micro gap. One reason for the
observed discrepancies in the aggregates is called “the missing wealthy” ([5]): As the par-
ticipation of super-rich households in wealth-related surveys is very unlikely, the HFCS
does not adequately capture the very top of the wealth distribution, and therefore the
wealthiest households are underrepresented.

As stated by Vermeulen ([22]), “[h]ousehold surveys are widely believed to suffer from
various degrees of non-response and differential non-response”. This non-response is par-
ticularly pronounced in very rich cohorts since it is often harder to contact them due
to their lack of time or their reluctance to reveal sensitive information. “But if non-
responding households are having higher wealth in some systematic way”, as emphasised
by Vermeulen ([22]), “wealth estimates will be biased downwards, particularly estimates of
wealth at the top of the distribution”. One way how survey analysts deal with that problem
is oversampling the wealthy and thus the sample weights in the survey can be adjusted
to tackle the problem of non-response. But Vermeulen ([22]) notes, that not all wealth
surveys oversample the rich. Therefore, he proposes a method to overcome the under-
representation of very rich households: The HFCS data is combined with rich lists (e.g.
Forbes World’s billionaires data or country-specific lists like the ranking of Germany’s
wealthiest persons provided by the “Manager Magazine”) enabling an estimation of the
upper part of the wealth distribution via a Pareto distribution. We will have a closer look
at that in Chapter 2. The fact that the upper tail of the wealth distribution is Paretian
was already empirically observed in many papers, e.g. for the Forbes 400 in ([12, 13])
or for the 100 wealthiest Canadians in ([18]). To provide a more economic explanation
of this phenomenon, in Section 2.2, this thesis presents an overview of some theoretical
models that corroborate these empirical findings. Nevertheless, Chakraborty and Waltl
([5]) examined that “the missing wealthy do not explain large parts of the macro-micro
gap for highly comparable instruments (liabilities, bonds, deposits and mutual funds) [...]
still leaving significant parts unexplained”. Therefore, we provide a solution to close the
persisting gaps via reasonable optimization problems.

The remainder of the thesis is structured as follows. Chapter 2 provides some information
on the method that Vermeulen ([22]) proposed to estimate the Pareto distribution. In
addition, a newly developed approach by ECB staff members to sample additional house-
holds from the estimated Pareto distribution is described. To justify this method, Chapter
2 also provides an overview of some wealth accumulation processes that lead to a Pareto
distribution for wealth in the long term. In Chapter 3, we seek to find a sound economic
approach to close the remaining discrepancies between the aggregates of the HFCS data
and the NtlA statistics. In Chapter 4, the findings of Chapter 3 will be compared to the
approach that is currently used (multivariate calibration, see ([19])) and analysed via a
small case study covering household wealth of Germany. Chapter 5 concludes.
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2 Modelling the top of the wealth distribution with
a Pareto distribution

The purpose of this section is twofold. First, we give an overview of how the Pareto
distribution for the top wealth distribution is estimated. Second, we provide reasons for
a natural appearance of a Pareto distribution for wealth accumulation. In particular, this
section presents two of the most intuitive approaches that explain why the upper tail of
the wealth distribution follows a Pareto law.

2.1 Modelling the Pareto distribution and sampling additional
households

We believe in the (common) assumption that household wealthX beyond a certain thresh-
old wmin of a country follows the Pareto distribution F , defined by,

F (x) = P (X ≤ x) =

1−
(
wmin
x

)α
, for x ≥ wmin,

0, for x < wmin.
(1)

The shape parameter α is called the tail index (or Pareto index when dealing with wealth
distribution) and determines the heaviness of the tail. From Equation (1), we can see
that the lower α, the heavier the tail, i.e., the more concentrated wealth is. The second
parameter that determines the Pareto distribution is the scale parameter wmin.

2.1.1 Estimating the Pareto index

There do also exist estimation procedures for wmin, but we are more interested in estimat-
ing the Pareto index α and take wmin as given. For example, Vermeulen ([22]) proposes
wmin = 1 million euros. We want to derive an estimator for α. Assume that there is a fi-
nite number of n households, each of them with wealth at or above wmin. Further, assume
that the sample is ordered by increasing wealth, i.e. x1 ≥ x2 ≥ . . . ≥ xn ≥ wmin, and that
each household is assigned with a rank, i.e., the rank of the household with wealth xi is i.
Since our sample follows a Pareto distribution by assumption, we replace the probability
P (X > x) by the empirical frequency i

n
. Therefore, we get the relationship

i

n
∼=
(
wmin
xi

)α
. (2)

Taking logarithms on both sides of Equation (2), we get

ln
(
i

n

)
∼= α ln

(
wmin
xi

)
, (3)

or equivalently

ln (i) ∼= C − α ln (xi) , (4)
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with C = ln(n) + α ln(wmin). If wmin is known, α can then be estimated with linear re-
gression without the constant term C.

Since the HFCS has a more complex survey design and the households have different
survey weights, Vermeulen ([23]) adopts this method taking into account the weights of
the sample points. Therefore, we consider a sample with different weighted households.
In this case, the total sum of weights equals N . Again, we rank the sample households
according to wealth. For example, the wealthiest household has wealth x1 and a survey
weight of N1, and the second wealthiest household has wealth x2 and survey weight of
N2, and so on. We replace i

n
with N1+N2+...+Ni

N
in (3) to get

ln
(
N1 +N2 + . . .+Ni

N

)
∼= α ln

(
xmin
xi

)
(5)

which equals to

ln
(
i
(N1 +N2 + . . .+Ni)

i

1
N

)
∼= α ln

(
wmin
xi

)
. (6)

We now define N̄ :=
∑n

j=1 Nj

n
as the average weight of a sample point and N̄fi :=

∑i

j=1 Nj

i

as the average weight of the first i sample points. Then we have

ln
(
i
N̄fi

N̄

N̄

N

)
∼= α ln

(
wmin
xi

)
, (7)

leading to the regression

ln
(
i
N̄fi

N̄

)
= C − α ln (xi) , (8)

with C = − ln
(
N̄
N

)
+ α ln (wmin). We note that this regression is almost identical to the

regression for samples with equal survey weights. But in this case, the rank of the sample
observation i is weighted by the ratio of the average weight of the first i observations to
the average weight of all observations.

2.1.2 Estimating the number of additional households4

The main purpose of estimating a Pareto distribution for the top wealth distribution is to
overcome the problem of non-response of wealthy households in the HFCS. Therefore, the
next step is to sample additional households from the interval that is not covered by the
HFCS and neither by a rich list. We assume that the Pareto distribution was estimated
from the HFCS data combined with the relevant rich lists, e.g., the ranking of Germany’s
wealthiest persons provided by “Manager Magazine”. The rich lists are very important
because, without them, we underestimate the heaviness of the tail.

4This subsection is derived from internal R code and notes developed by ECB staff members.
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net wealth
in rich list

I1 I2 I3

Figure 1: Illustration of the split of the support of the Pareto distribution into three
distinct intervals.

First of all, we split the support of the Pareto distribution, i.e. the interval [wmin,∞[, into
three intervals:

I1 :=
[
wmin, w1

]
,

I2 :=
]
w1, w2

[
,

I3 :=
[
w2,∞

[
,

(9)

for some w1, w2 ∈ R with wmin < w1 < w2.
More precisely, regarding our data, we choose

w1 := max
{
household wealth in HFCS

}
w2 := min

{
wealth in rich list

}
.

(10)

In other words,

I1 =
[
all HFCS households with wealth of at least wmin

]
,

I2 =
]
gap between HFCS observations and rich list

[
,

I3 =
[
from the observations of the rich list until infinity

[
.

(11)

An illustration of this split is given in Figure 1.

Furthermore, we will denote the random variables of the number of households in interval
Ii with Mi respectively for i ∈ {1, 2, 3}. The total number of households in all intervals
is denoted by M and given by

M := M1 +M2 +M3. (12)

Note that we actually know values of M1 and M3 by using the data (HFCS and rich
list). The number of households m1 (value of M1) in interval I1 is simply the sum of the
weights of the households in the HFCS with wealth of at least wmin. Likewise, the number
of households m3 (value of M3) in interval I3 is given by the number of households in the
rich list. What is unknown is the number of households M2 in interval I2.

We assume that (Xi) are independent and identically distributed random variables with
distribution function given in (1) and that the random variableM is independent of (Xi).
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We need to estimate the number of households M2 that fall in interval I2. We observe
that M2 in interval I2 can be expressed in terms of (Xi) by

M2 =
M∑
i=1

1{Xi∈I2}. (13)

In the following, we will derive an expression for E [M2] and use this for estimating M2.
Note that the expected number of households in I1 is given by

E [M1] = E
[
M∑
i=1

1{Xi∈I1}

]
. (14)

Using Wald’s lemma yields

E [M1] = E
[
M∑
i=1

1{Xi∈I1}

]
= E [M ]E

[
1{X1∈I1}

]
, by Wald’s lemma, (Xi) i.i.d.

= E [M ]P
(
X1 ∈ [wmin, w1]

)
= E [M ]

[
P (X1 ≤ w1)

]

= E [M ]
[
1−

(
wmin
w1

)α]
= E [M ] w

α
1 − wαmin
wα1

.

(15)

We can now reformulate Equation (15) to

Equation (15) ⇔ E [M ] = E [M1] wα1
wα1 − wαmin

. (16)

Likewise, it is straightforward to calculate the expected number of households in I2,

E [M2] = E
[
M∑
i=1

1{Xi∈I2}

]

= E [M ]P
(
X1 ∈ ]w1, w2[

)
= E [M ]

[(
1−

(
wmin
w2

)α)
−
(

1−
(
wmin
w1

)α)]
= E [M ]

[(
wmin
w1

)α
−
(
wmin
w2

)α]
.

(17)

We insert Equation (16) into Equation (17) and get

E [M2] = E [M ]
[(
wmin
w1

)α
−
(
wmin
w2

)α]
= E [M1] wα1

wα1 − wαmin

[(
wmin
w1

)α
−
(
wmin
w2

)α]

= E [M1] wα1
wα1 − wαmin

[
wαminw

α
2 − wαminwα1
wα1w

α
2

]

= E [M1] w
α
minw

α
2 − wαminwα1

wα1w
α
2 − wαminwα2

.

(18)
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Therefore, we are going to use m̂2 := E [M2] to estimate the unknown number of house-
holds m2. Since we can estimate E [M1] via the observed number of households in I1,
namely m1, we get

m̂2 = m1
wαminw

α
2 − wαminwα1

wα1w
α
2 − wαminwα2

. (19)

2.1.3 Sampling according to a given Pareto distribution5

Once we have estimated the number of unobserved households in interval I2, we can add
this amount of additional households by randomly sampling them according to the given
Pareto distribution via inverse transform sampling. This process is described in the fol-
lowing.

Let U ∼ Unif [F (w1) , F (w2)]. Applying the inverse of the Pareto distribution F−1 (U)
yields random variables following the Pareto distribution conditioned on falling into I2.
More precisely,

[F (w1) , F (w2)] =
[
1−

(
wmin
w1

)α
, 1−

(
wmin
w2

)α]
(20)

and for x ≥ wmin the inverse of the Pareto distribution function is given by

F (x)︸ ︷︷ ︸
=:y

= 1−
(
wmin
x

)α

⇔ x = wmin

(1− y)1/α

⇒ F−1 (y) = wmin

(1− y)1/α .

(21)

2.2 Wealth distribution models
In Section 2.1, we assumed that the household wealth for the top of the wealth distribution
follows a Pareto law. Now, we seek to answer the question of why this assumption is
reasonable. Therefore, we will get to know some theoretical wealth accumulation processes
that have been proposed in the past and explain why the upper tail of wealth distribution
follows a Pareto law.

2.2.1 Wealth accumulation process with homogeneous investment talent

Levy and Levy ([15]) show that general wealth accumulation processes with homogeneous
investment talent lead to a Pareto wealth distribution. The three main assumptions of
the proposed model are:

1. Wealth accumulation follows a stochastic multiplicative process,

2. a lower bound of wealth wmin exists,
5This subsection is derived from internal R code and notes developed by ECB staff members.
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3. a homogeneous talent (of all actors) for wealth accumulation.

Therefore, the reason for inequality is rather chance than some sort of individual in-
vestment ability. By Levy and Levy ([15]), the process of wealth accumulation can be
generally formulated as

Xt+1(i) = λt(i)Xt(i) + St(i)− Ct(i) (22)

where Xt(i) ∈ R≥xmin denotes the amount of wealth of the i-th individual at date t ∈ N,
λt(i) ∈ R is the return on the wealth at date t, and the amount of salary as well as
consumption at time t of the i-th individual is given by St(i) and Ct(i).

For very rich individuals, wealth is mostly driven by return on investments rather than
salary or consumption. Since we are interested in the evolution of wealth for very rich
households, we neglect the income and consumption component and obtain

Xt+1(i) = λt(i)Xt(i). (23)

Due to our assumption of homogeneous investment talent, all individuals draw randomly
from the same distribution, called g(λ), which determines the returns on wealth. Histori-
cal long-term returns on investments (e.g. stock market) suggest that it seems reasonable
to assume a positive drift of λ, i.e. E[λ] > 1.
With the assumptions made above, it is possible to prove the following theorem:

Theorem 1. ([15]) For any nondegenerate initial wealth distribution and nontrivial return
distribution, the wealth accumulation process with positive drift given by Equation (23)
with a lower bound leads to convergence of the normalized wealth distribution to the Pareto
distribution.

Proof. We define the normalized wealth of the i-th individual at time t as xt(i) = Xt(i)∑
j
Xt(j)

,
i.e. the individual’s wealth as a fraction of the total wealth. The normalized wealth
accumulation process is given by

xt+1(i) = Xt+1(i)∑
j Xt+1(j) = Xt(i)∑

j Xt(j)
λt(i)

∑
j Xt(j)∑
j Xt+1(j) =: λ̃t(i)xt(i), (24)

where we define λ̃t(i) := λt(i)
∑

j
Xt(j)∑

j
Xt+1(j) . The cumulative normalized wealth distribution

F (x, t+ 1) at time t+ 1 can be expressed as

F (x, t+ 1) =
∫ ∞

0
F
(
x

λ̃
, t
)
g(λ̃)dλ̃. (25)

The authors note that the distribution F (w, t) undergoes a continuous smoothing process
regardless of the starting point F (x, 0). Due to the assumption of a lower bound on
wealth, they point out that this process is analogous to diffusion towards a barrier and it
can be shown that F (x, t) converges to a stationary distribution, namely F (x). According
to Equation (25), the stationary distribution can be written as

F (x) =
∫ ∞

0
F
(
x

λ̃

)
g(λ̃)dλ̃. (26)
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Differentiating with respect to x gives

f(x) =
∫ ∞

0
f
(
x

λ̃

) 1
λ̃
g(λ̃)dλ̃. (27)

We know that the Pareto density function is given by

f(x) = αwαmin
xα+1 for α > 0 and x ≥ wmin > 0. (28)

Inserting this density into equation (27) yields

αwαmin
xα+1 =

∫ ∞
0

αwαmin
(x/λ̃)α+1

1
λ̃
g(λ̃)dλ̃

= αwαmin
xα+1

∫ ∞
0

λ̃αg(λ̃)dλ̃.
(29)

This means that for α solving
∫∞
0 λ̃αg(λ̃)dλ̃ = 1, the stationary distribution is Paretian.

Note that the actual amount of wealth at any given time is the normalized wealth times
a constant, i.e. X = Cx. A transformation of the probability density function shows

h(X) = f(x) ∂x
∂X

= f
(
X

C

) 1
C

= α(wminC)α
Xα+1 . (30)

We conclude that not only the normalized wealth follows a Pareto distribution, but also
X itself.

The authors also try to answer the question of whether the Pareto wealth distribution still
holds with non-homogeneous investment talent. Indeed, they give numerical evidence that
a certain degree of investment talent differential is possible. Interestingly, in this case,
wealth inequality is not only a result of luck (randomness of the wealth accumulation
process) but also a consequence of different investment skills.

2.2.2 Exponential wealth accumulation with stable population

The second model that we are investigating was proposed by Jones ([9, 10]). A similar,
slightly more complex model has already been introduced by Wold and Whittle ([24]). In
this model ([9, 10]), one assumes that the wealth x of an individual at time t is given by
the following equation

dx(t)
dt = (r − τ − α)x(t), (31)

where r ∈ R is the interest rate, τ ∈ [0, 1] is a tax wealth and α ∈ [0, 1] is assumed to be
the constant consumption rate.
If xt−a(0) denotes the initial wealth of a newborn at time t−a, the wealth of an individual
of age a at time t is given by

xt(a) = xt−a(0)e(r−τ−α)a. (32)
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Furthermore, the model assumes that the concept of a stable population holds. This
concept was first introduced by Alfred J. Lotka ([16]). The two main assumptions are a
constant mortality and age structure. In our case, the population growth is given by

Nt = N0e
n̄t, (33)

where N0 is the initial number of individuals and n̄ denotes the growth rate.
Assuming that death follows a Poisson process with arrival rate d̄, one can show that under
the assumption of a constant age structure, the stationary distribution for an individual’s
age is given by

P (Age > a) = e−(n̄+d̄)a. (34)

Note that the rate n̄+ d̄ can be interpreted as (constant) birth rate b̄.

In addition, the aggregated capital at time t of the population is denoted by Kt. Thus,
the average capital kt is given by kt = Kt

Nt
. Considering that the capital of people dying

at time t is d̄Kt and the number of newborns at time t is (n̄+ d̄)Nt, we can calculate the
average wealth inherited by a newborn as

xt(0) = d̄Kt

(n̄+ d̄)Nt

=: x̄kt, (35)

with x̄ := d̄
n̄+d̄ .

It is also assumed that the economy is in steady-state, i.e., the capital per person is
growing at a constant rate g. Thus, the capital per person can also be expressed as

kt = k0e
gt.

The amount of wealth of a person of age a at time t inherited at their birth can then be
written as

xt−a(0) = x̄kt−a = x̄k0e
g(t−a) = x̄kte

−ga. (36)

We can insert this expression into (32) and obtain the cross-section wealth at time t

xt(a) = x̄kte
(r−g−τ−α)a. (37)

Now, we invert Equation (37) to obtain the age at which a person’s wealth exhibits a
certain threshold x:

a(x) = 1
r − g − τ − α

log
(
x

x̄kt

)
. (38)

By using relation (34), we can derive an expression for the distribution of wealth:

P (Wealth > x) = P (Age > a(x))
= e−(n̄+d̄)a(x)

=
(
x

x̄kt

)− n̄+d̄
r−g−τ−α

.

(39)
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It is important to note that we have not yet established for which cohorts our wealth
accumulation model as described in Equation (31) holds. But as in the first model, this
process is typically only accurate for very wealthy households. The fact that consumption
can be described as a fraction of wealth does not properly apply for average households
that typically make their living by earning a salary rather than collecting interests (or
capital gains). In this case, a lump sum or a fraction of salary that describes the consump-
tion part of the wealth accumulation process would be more appropriate. Furthermore,
the wealth tax τ , if existent, usually applies only for wealth above a high threshold.

Jones ([10]) emphasizes that the main mechanism leading to a Pareto distribution can
be summarized in one sentence: “exponential growth that occurs for an exponentially
distributed amount of time leads to a Pareto distribution”.
He also expounds some interesting implications that can be derived from Equation (39).
First, the main source of wealth inequality is the term r−g, and the higher the difference
between the interest rate r and the exogenous growth rate g, the more wealth inequality
increases. He also notes that a higher wealth tax τ will lower wealth inequality.

2.2.3 Further models

The models above constitute just a small fraction of what has been proposed on that
topic. Further interesting approaches are briefly described in this section.

Generalized Lotka-Volterra model Interestingly, many econophysicists have come
up with theories developed by physicists and adopted them to wealth inequality. A com-
prehensive overview of that research can be found in ([4]). One example is the generalized
Lotka-Volterra model for wealth distribution ([4, 20, 21]): A total number ofN ∈ N agents
redistribute their wealth according to the following multiplicative random process:

xi,t+1 = (1 + ξt)xi,t + a

N

∑
j

xj,t − c
∑
j

xi,txj,t (40)

where xi,t is the wealth of agent i at date t and ξt is chosen randomly from a positive set
which has a variance V. Economically, the first term on the right-hand side introduces
some stochastic return on wealth held by agent i, the second term can be interpreted as
a redistribution (e.g. social welfare) at each time step to ensure that the wealth of all
agents is always positive. The latter part of Equation (40) controls the overall growth of
the system and ensures that both external limiting factors (e.g. finite amount of resources)
and market effects like competition are included. Richmond and Salomon ([20, 21]) have
already performed an analysis of this model in the early 2000s. Inter alia, they have shown
that the stable distribution in generalized Lotka-Volterra models for wealth distribution
follows a Pareto law.

Yard-Sale model The last model we are introducing is the so-called Yard-Sale model
([8]). It was analysed by Boghosian ([1, 2]). The model assumes that wealth distribution is
a result of wealth transfer between economic agents whose transaction size is proportional
to the wealth of the less wealthy agent. We define β as the fraction of the wealth of the

12



less wealthy that is transferred in such a process. Therefore, the wealth that changes
hands in a transaction can be written as

∆ (x, x′, r) = βzmin (x, x′) = βz
(
x1{x′−x≥0} + x′1{x−x′≥0}

)
(41)

where z is a random variable equal to +1 or −1 with equal probability and x, x′ denote
the wealth of the first and second agent, respectively.
After the transaction, the wealth of the agents is

xnew = x+ ∆ (x, x′, r) ,
x′new = x′ −∆ (x, x′, r) .

Boghosian ([1, 2]) gives numerical evidence that the Yard-Sale model results in a distribu-
tion where most of the wealth is possessed by one single agent. But in case of introducing
some sort of wealth redistribution like a wealth tax, i.e., each agent gains

∆r(x) = τ
(
X

N
− x

)
(42)

after redistribution, where τ denotes the tax rate, X the total amount of wealth and N the
number of agents, Boghosian shows by establishing the Fokker-Planck equation of that
model that the steady-state solution of the wealth distribution exhibits an approximate
power law at large x.

All presented models provide a foundation of what has been detected by empirical obser-
vations in research: The wealth distribution of wealthy people follows a Pareto law. Thus,
it is reasonable to estimate the wealth of residents that are not adequately captured by
the HFCS via a Pareto distribution, as we have done in Section 2.1.
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3 Closing the remaining discrepancies with an opti-
mization approach

As mentioned in Chapter 1, Chakraborty and Waltl ([5]) examined that the procedure de-
scribed in Section 2.1 leaves significant parts of the observed wealth gap between national
accounts and HFCS data unexplained. Therefore, the main goal of this chapter is to close
the remaining discrepancies with an optimization approach. In the following, we assume
that the HFCS data has already undergone the procedure proposed in Section 2.1, i.e., the
HFCS data have already been adjusted for the missing wealthy via a Pareto distribution.
Therefore, let d = (d1, . . . , dn) ∈ Rn

>0 denote the weights of the n ∈ N households par-
ticipating in the HFCS (in a given country) after the Pareto fitting including the obser-
vations from the rich list and synthetically sampled households where needed. Moreover,
let x = (x1, . . . , xn) denote the wealth (of all observed households in increasing order
or the holdings in a certain instrument like deposits, bonds, shares, etc.). Furthermore,
we introduce an adjustment coefficient vector a = (a1, . . . , an). First of all, we want to
ensure that the adjusted HFCS aggregates match the NtlA figures (denoted by F ), i.e.,∑n
i=1 diaixi = F should hold. Since we do not have further information that some house-

holds should be more affected of wealth allocation than others, we try to allocate the
additional wealth in a homogeneous way. The most convenient way to do this is introduc-
ing a suitable optimization function. That is, we want to minimize a certain function f
under the constraint that the adjusted instrument holdings match the national accounts
F , i.e.,

min
a∈Rn>0

f(a,d,x)
n∑
i=1

diaixi = F.
(43)

Note that the constraint can also be restricted to a certain instrument like deposits.
Now, the first step is to choose an appropriate function for f . Since we do not have
further information on how to allocate the wealth, the objective function should modify
the extended HFCS data (including the added wealthy household) as little as possible.
In contrast to the Pareto fitting, where one seeks to add wealthy households to the data,
we assume for our optimization that the wealth inequality resulting from the HFCS after
the Pareto fitting is correct. More precisely, we see no additional reasons that would
justify a further modification of wealth inequality. Thus, the objective function will be
related to an inequality measure. Particularly, the difference of the wealth inequality
before and after adjustments with the factors ai should be as low as possible. There
are many possible choices for such an inequality measure, including the Gini coefficient,
the Atkinson index or the Generalised Entropy indices. An overview is given in ([6]).
Here, we use the Gini coefficient for several reasons: First of all, it is the most common
inequality measure. Furthermore, its definition is easy to interpret, and, as we will see
later, the empirical version of the Gini coefficient has some useful mathematical properties
(especially linearity).

14



3.1 Gini coefficient6

To understand the Gini coefficient it is first important to introduce the so-called Lorenz
curve, which is a graphical representation of the distribution of wealth. The Lorenz curve
is a plot of the cumulative distribution of wealth versus the cumulative distribution of the
population. Formally, assume that for 0 ≤ q ≤ 1 the quantile function Q of the wealth
distribution function F is defined as

Q(F, q) := inf{y | F (y) ≥ q} := yq, (44)

and the cumulative wealth function C is defined as

C(F, q) :=
∫ Q(F,q)

−∞
ydF (y). (45)

Then, the Lorenz curve is given by

L(F, q) = C(F, q)
µ(F ) , (46)

where µ(F ) denotes the mean of the distribution F , see also ([6]). It follows from the
definition that the Lorenz curve is equal to the 45-degree line in case of equality, i.e., if
every agent possesses the same wealth.

Figure 2: Lorenz curve for a Pareto distribution. The shaded area is called area of
concentration.

The Gini coefficient as a measure of inequality, named after the Italian statistician and
6The definitions are adopted from ([6]).
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sociologist Corrado Gini, is closely linked to the Lorenz curve. We call the area between
the 45-degree line and the Lorenz curve the area of concentration. The Gini coefficient is
defined as the ratio of the area of concentration to the maximum possible concentration
area, i.e.

G = 0.5−
∫ 1

0 L(F, q)dq
0.5 = 1− 2

∫ 1

0
L(F, q)dq. (47)

Since 0 ≤
∫ 1

0 L(F, q)dq ≤ 0.5, G ∈ [0, 1]. In case of perfect equality, i.e., if the Lorenz
curve is equal to the Line of equality, the Gini coefficient is given by G = 0. In case of
perfect inequality, i.e., if one person possesses all wealth, the Lorenz curve is given by
L(F, q) = 0 for all q ∈ [0, 1) and L(F, q) = 1 for q = 1. In this case, the Gini coefficient
calculates as G = 1.
In order to work with HFCS data, we need a weighted empirical version of the Gini
coefficient. Therefore, recall that d = (d1, . . . , dn) ∈ Rn

>0 denotes the vector of weights
and x = (x1, . . . , xn) denotes the vector of wealth in increasing order of the n households
participating in the HFCS (in a given country) after the Pareto fitting. We define

Wk :=
∑k
`=1 d`∑n
`=1 d`

, W0 = 0 and Xk :=
∑k
`=1 d`x`∑n
`=1 d`x`

, X0 = 0, (48)

as the cumulative share of population and the cumulative share of wealth, respectively.
The Gini coefficient is then defined as

G := 1−
n∑
k=1

(Wk −Wk−1)(Xk +Xk−1). (49)

3.2 Definition of the problem that has to be solved
We have already established the fact that we would like to minimize the difference of
the Gini coefficient before and after matching the HFCS data with the NtlA figures.
Therefore, the objective function f could look like

f(a,d,x) = (G∗ −G(a,d,x))2, (50)
or

f(a,d,x) = |G∗ −G(a,d,x)|, (51)
where G∗ denotes the Gini coefficient after the Pareto fitting and

G(a,d,x) = 1−
n∑
k=1

(Wk −Wk−1)(Xk +Xk−1)

= 1−
[
n∑
k=1

(Wk −Wk−1)2∑k−1
`=1 a`d`x` + akdkxk

F

] (52)

with Wk =
∑k

`=1 d`∑n

`=1 d`
, W0 = 0 and Xk =

∑k

`=1 a`dlx`∑n

`=1 a`d`x`
, X0 = 0. However, we observe that

the Gini coefficient is invariant under multiplication with a constant. Considering our
constraint in (43), it is evident that one solution is given by

a1 = · · · = an = F∑n
i=1 dixi

. (53)
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Consequently, our interest lies in investigating the solution space of the following system
of equations:

G∗ −G(a,d,x) = 0, (54)
n∑
i=1

diaixi = F. (55)

For economic reasons, we want to ensure that the wealth order of the included households
does not change. Therefore, we further introduce additional constraints. The wealth order
is preserved if aixi ≤ ai+1xi+1 holds for all i ∈ {1, . . . , n− 1}. Since the aggregated sums
of the HFCS are usually lower than financial account figures, as stated by Chakraborty
and Waltl ([5]), we have to allocate additional wealth. Hence, we want to ensure that
each household has at least the same amount of wealth after adjustment. Therefore, we
add the constraint ai ≥ 1 for all i ∈ {1, . . . , n}. Nevertheless, this usually leads to an
infinite solution space. To see this, consider the following example:
Assume that n = 4, x = (1, 3, 5, 7), d = (2, 4, 3, 3), W = ( 2

12 ,
6
12 ,

9
12 , 1) and F = 100. We

want to solve the problem

solve G∗ −G(a,d,x) = 0
subject to
− ai ≤ −1 ∀i,
a1 ≤ 3a2 ≤ 5a3 ≤ 7a4,

2a1 + 12a2 + 15a3 + 21a4 = 100.

(56)

A straightforward calculation shows that a3 = 568−38a1−156a2
90 and a4 = 16+13a1+42a2

63 ≥ 1.
To ensure that a3 ≥ 1, the inequality a1 ≤ 478−156a2

38 has to hold. Now, the inequalities
that have been introduced to preserve the wealth order can be rewritten as

5a3 ≤ 7a4 ⇔ a1 ≥
67
8 −

30
8 a2, (57)

3a2 ≤ 5a3 ⇔ a1 ≤
284
19 −

105
19 a2, (58)

a1 ≤ 3a2. (59)

A graphical presentation of the solution space in this example is given by Figure 3. Indeed,
the solution space is infinite.

As a consequence, we now try to confine the solution space but still want to ensure that
the wealth order does not change. We, therefore, replace the constraints aixi ≤ ai+1xi+1
for all i ∈ {1, . . . , n − 1} by the stronger constraints ai ≤ ai+1 for all i ∈ {1, . . . , n − 1}.
Thus, the problem we want to solve equates to

solve G∗ −G(a,d,x) = 0
subject to

− ai ≤ −1 ∀i,
ai − ai+1 ≤ 0 ∀i ∈ {1, . . . , n− 1},
n∑
i=1

diaixi = F.

(60)
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Figure 3: The blue area shows the solution space of Problem (56) for the values a1 and
a2. The adjustment coefficients a3 and a4 can be derived by the upper expressions.

With the constraints in Problem (60), we will show in the following, that the solution
given in Equation (53) is unique.

Theorem 2. Assuming that ∑n
i=1 dixi ≤ F , the unique solution to the optimization

problem defined in Problem (60) is given by

a1 = · · · = an = F∑n
i=1 dixi

. (61)

Proof. The strategy to prove the theorem will be as follows:
First of all, we observe that there are two equation, namely G∗ − G(a,d,x) = 0 and∑n
i=1 diaixi = F , each of them having an n− 1 dimensional solution space (hyperplane).

We will intersect these hyperplanes in order to get expressions for an−1 and an dependent
on a1, . . . , an−2 (Appendix, Lemma 1). By applying the inequality constraints in (60), we
will first show that a1 ≤ F∑n

i=1 dixi
(Appendix, Lemma 2). Then, by induction, we will

conclude that am ≤ F∑n

i=1 dixi
for all m ∈ {1, . . . , n− 2} (Appendix, Lemma 3).

Having proved that am ≤ F∑n

i=1 dixi
holds for all m ∈ {1, . . . , n− 2}, we will show step by

step (starting with m = n − 2) that am ≥ F∑n

i=1 dixi
and conclude that am = F∑n

i=1 dixi
for

all m ∈ {1, . . . , n− 2} (Appendix, Lemma 4). Inserting these values into the expressions
we have established for an−1 and an, we can conclude that the solution a1 = · · · = an =

F∑n

i=1 dixi
is, indeed, unique.
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3.3 Lower and upper bound for the Gini coefficient after adjust-
ment

Besides the solution derived in the previous section, it is also of practical interest to derive
the lower and upper bound of inequality that can be implied via the additional amount of
wealth that needs to be allocated (or subtracted in the case of overcoverage). Our focus
lies on the case of undercoverage, i.e. ∑n

i=1 dixi < F , because it is the common case. In
the case of overcoverage, the results can be derived similarly. We will use the results of
this section when we perform a small case study in Chapter 4. Having a lower and upper
bound is interesting, because it provides a range of inequality and we can not only detect
where the Gini coefficient resulting from the proportional adjustment is located but also
compare it to Gini coefficients obtained by applying other methods as we will see in the
next chapter.

3.3.1 Upper bound

Let us first take a look at the upper bound, in the case of undercoverage, i.e., we want to
maximize the Gini coefficient such that

(i) all households keep at least their current instrument holdings,

(ii) the households’ ranking in terms of their instrument holdings is preserved and

(iii) the NtlA total is matched.

This equates to the following problem:

max
a∈Rn

G(a,d,x)

subject to
− ai ≤ −1 ∀i,
aixi − ai+1xi+1 ≤ 0∀i ∈ {1, . . . , n− 1},
n∑
i=1

diaixi = F.

(62)

Let’s start with a more general optimization problem, where we relax the constraints,
ignoring the constraint of preserving the households’ ranking. We will later see that the
solution to this relaxed problem, which is easier to solve, also constitutes a solution to
the OP of Problem (62). 

max
a∈Rn

G(a,d,x)

subject to
− ai ≤ −1 ∀i,
n∑
i=1

diaixi = F.

(63)

Recall the definition of the Gini coefficient:

G = 1−
n∑
k=1

(Wk −Wk−1)(Xk +Xk−1),
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with

Wk =
∑k
`=1 d`∑n
`=1 d`

,W0 = 0 and Xk =
∑k
`=1 a`d`x`∑n
`=1 a`d`x`

, X0 = 0.

Note that the Gini coefficient can be written as

G(a,d,x) = 1−

 n∑
k=1

(Wk −Wk−1)︸ ︷︷ ︸
∆Wk

2∑k−1
`=1 a`d`x` + akdkxk

F


= 1−

[
n∑
k=1

∆Wk
2∑k−1

`=1 a`d`x` + akdkxk
F

]

= 1− 1
F

n∑
i=1

ai

∆Widixi +
n∑

k=i+1
2∆Wkdixi

 (change the order of summation)

= 1− 1
F

n∑
i=1

aidixi

∆Wi +
n∑

k=i+1
2∆Wk


= 1− 1

F

n∑
i=1

aidixi

∆Wi + 2(Wn︸︷︷︸
=1

−Wi)


= 1− 1

F

n∑
i=1

aidixi (2−Wi −Wi−1) .

(64)

Hence, (63) is equivalent to 

min
a∈Rn

n∑
i=1

aidixi (2−Wi −Wi−1)

subject to
− ai ≤ −1 ∀i,
n∑
i=1

diaixi = F.

(65)

The Lagrange function is given by

L(a, λ, ν) =
n∑
i=1

aidixi (2−Wi −Wi−1) +
n∑
i=1

µi(1− ai) + λ

(
n∑
i=1

aidixi − F
)
.

We are looking for a KKT-Point. Using Lagrange multiplier, we have to solve the following
system of equations:

(i) ∂L(a, λ, ν)
∂ai

= dixi (2−Wi −Wi−1)− µi + λdixi = 0 for all i ∈ {1, . . . , n},

(ii)
n∑
i=1

aidixi − F = 0,

(iii) µi ≥ 0 for all i ∈ {1, . . . , n} (dual feasibility condition),
(iv) µi(1− ai) = 0 for all i ∈ {1, . . . , n} (complementary slackness condition).

(66)
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We differentiate between three different cases:

Case 1: λ = −∆Wn = −(Wn −Wn−1).
Then, by (66)(i), µn = 0. Further, we can solve (66)(i) for µi, i ∈ {1, . . . , n− 1}, and get

µi = dixi (2−Wi −Wi−1) + λdixi

= dixi (2−Wi −Wi−1)− (Wn −Wn−1)dixi
= dixi (Wn +Wn−1 −Wi −Wi−1) > 0.

(67)

So we know that in this case µn = 0 and µi > 0 for all i ∈ {1, . . . , n − 1}. Due to
the complementary slackness condition (66)(iv), ai = 1 for all i ∈ {1, . . . , n − 1}. The
constraint ∑n

i=1 aidixi = F then yields an = F−
∑n−1

i=1 xidi

dnxn
.

In this case, all additional wealth is allocated to the already richest household.

Case 2: λ > −∆Wn.
Then, by (66)(i), µn > 0. Solving (66)(i) for µi, i ∈ {1, . . . , n− 1} yields

µi = dixi (2−Wi −Wi−1) + λdixi

> dixi (Wn +Wn−1 −Wi −Wi−1) > 0.
(68)

So we know that in this case µi > 0 for all i ∈ {1, . . . , n}. Due to the complementary
slackness condition (66)(iv), ai = 1 for all i ∈ {1, . . . , n}. Thus, a1 = · · · = an = 1 which
is not a feasible solution.

Case 3: λ < −∆Wn.
Then, by (66)(i), µn = ∆Wndnxn + λdnxn < 0, which contradicts (66)(iii). Thus, there
exists no KKT-Point in this case.

Therefore, the solution to Problem (63) is given by a =
(

1, . . . , 1, F−
∑n−1

i=1 xidi

dnxn

)T
.

Since we have assumed undercoverage, F−
∑n−1

i=1 xidi

dnxn
> 1. Thus, a =

(
1, . . . , 1, F−

∑n−1
i=1 xidi

dnxn

)T
also fulfills the constraint aixi − ai+1xi+1 ≤ 0 for all i ∈ {1, . . . , n − 1} and we observe
that this is also a feasible point for Problem (62). We conclude that this is, therefore,
a solution to Problem (62). Hence, the upper bound for the Gini coefficient after ad-
justment is the case where we give all additional wealth to the wealthiest household, i.e.

a =
(

1, . . . , 1, F−
∑n−1

i=1 xidi

dnxn

)T
.
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3.3.2 Lower bound

Now we want to establish the lower bound, i.e. we want to solve

min
a∈Rn

G(a,d,x)

subject to
− ai ≤ −1 ∀i,
aixi − ai+1xi+1 ≤ 0∀i ∈ {1, . . . , n− 1},
n∑
i=1

diaixi = F.

(69)

Again, we will first look at the more general problem, ignoring the constraint on house-
holds’ ranking, 

min
a∈Rn

G(a,d,x)

subject to
− ai ≤ 1∀i,
n∑
i=1

diaixi = F.

(70)

Using (64), this is equivalent to

min
a∈Rn
−

n∑
i=1

aidixi (2−Wi −Wi−1)

subject to
− ai ≤ −1∀i,
n∑
i=1

diaixi = F.

(71)

The Lagrange function is given by

L(a, λ, ν) = −
n∑
i=1

aidixi (2−Wi −Wi−1) +
n∑
i=1

µi(1− ai) + λ

(
n∑
i=1

aidixi − F
)
.

We are looking for a KKT-Point. Using Lagrange multiplier, we have to solve the following
system of equations:

(i) ∂L(a, λ, ν)
∂ai

= −dixi (2−Wi −Wi−1)− µi + λdixi = 0 for all i ∈ {1, . . . , n},

(ii)
n∑
i=1

aidixi − F = 0,

(iii) µi ≥ 0 for all i ∈ {1, . . . , n} (dual feasibility condition),
(iv) µi(1− ai) = 0 for all i ∈ {1, . . . , n} (complementary slackness condition).

(72)

We first observe from (72)(i) and (72)(iii) that a solution to (72) only exists if

µi = −dixi (2−Wi −Wi−1) + λdixi ≥ 0 for all i ∈ {1, . . . , n}. (73)
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Thus, we get

λ ≥ 2−Wi −Wi−1 for all i ∈ {1, . . . , n}, (74)

which implies

λ ≥ 2−W1 −W0 = 2−W1. (75)

From (72)(i) and (75), it follows that

µn = −∆Wndnxn + λdnxn ≥ −∆Wndnxn + 2dnxn −W1dnxn > 0. (76)

Due to the complementary slackness condition (72)(iv), we must have an = 1. Similarly,
for i = n− 1, we have

µn−1 = −dn−1xn−1 (2−Wn−1 −Wn−2) + λdn−1xn−1

≥ dn−1xn−1 (Wn−1 +Wn−2 −W1) > 0.
(77)

Again due to the complementary slackness condition, we conclude an−1 = 1. Iteratively,
we get ai = 1 for all i ∈ {2, . . . , n}. In case of i = 1,

µ1 = −d1x1 (2−W1) + λd1x1. (78)

Thus, if λ > 2 − ∆W1, we would have µ1 > 0 and due to the complementary slackness
condition, a1 = 1. But this is only a solution to (70), if ∑n

i=1 dixi = F . We conclude, that
λ = 2−∆W1 must hold and we have ai = 1 for all i ∈ {2, . . . , n}.
But we can only increase a1 until a1x1 = x2 because with a further increase, the order
of the housholds’ instrument holdings and therefore the formula for calculating the Gini
coefficient would change7. Hence, for calculating the lower bound, we repeatedly have
to increase the instrument holdings of the poorest household8 until either the adjusted
instrument holding equals the second poorest household or the full gap F −∑n

i=1 dixi is
allocated.

It is also worth pointing out that the optimization problems (62) and (69) could be solved
with the simplex algorithm using generic solvers in R and matlab. Nonetheless, it is
important and often useful to know these bounds analytically, since HFCS datasets are
often large and thus resulting in long runtimes.

7Remember that the Gini coefficient is defined for a1x2 ≤ a2x2 ≤ . . . ≤ anxn.
8Households with the same amount of instrument holdings are treated as one.
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4 Case study covering household wealth of Germany
In this section, we investigate the data from the third wave covering household wealth in
Germany. The survey was conducted between March 2017 and October 2017 ([7]). We
compare the approach analyzed in Chapter 3, namely the proportional adjustment, with a
second approach. As the Expert Group on Linking macro and micro data for the household
sector (EG-LMM) ([19]) stated, a “standard approach involves the calibration method”.
Therefore, we will use this multivariate calibration approach for comparison to the pro-
portional adjustment method. Before we explain the multivariate calibration approach,
note that the HFCS measures the wealth of households with several instruments. The
assets are comprised of ‘Deposits’, ‘Bonds’, ‘Shares’, ‘Funds’, ‘Voluntary Pension’, ‘Finan-
cial Business Wealth’, ‘Non-Financial Business Wealth’ and ‘Housing Wealth’, whereas
liabilities are divided into ‘Mortgage Liabilities’ and ‘Other Liabilities’. The net wealth
of a household is the difference between assets and liabilities. In Figure 4, we see the
coverage ratio for each instrument, which is defined as the HFCS instrument total di-
vided by the NtlA aggregate. Note that the HFCS data have already been adjusted for
the missing wealthy. We see that in most of the cases there is undercoverage, i.e., the
HFCS aggregate is lower than the corresponding NtlA instrument value. Nevertheless, in
the case of ‘Shares’ and ‘Bonds’ the HFCS and the NtlA total is matched exactly via the
added wealthy households whereas in case of ‘Financial Business Wealth’ we observe an
overcoverage of approximately 4%, i.e. the HFCS aggregate is higher than the NtlA to-
tal. The undercoverage is most pronounced for ‘Deposits’ with a coverage ratio of roughly
55%, moderately pronounced for ‘Funds, ‘Voluntary Pension’ and ‘Other Liabilities’ in the
range of 77% to 82% and less pronounced for ‘Non-Financial Business Wealth’, ‘Housing
Wealth’ and ‘Mortgage Liabilities’ with coverage ratios of roundabout 95%.

Figure 4: Coverage ratios of wealth instruments for German households.
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4.1 Multivariate calibration
Now, we move on to introducing the multivariate calibration method of the EG-LMM.
Calibration is typically used to adjust for unit non-response in a sample survey (cf. ([14])).
The following summary is derived from internal R code and notes developed by ECB staff
members. A similar approach can be found in ([3]).
This method is based on the following optimization problem,

min
a∈Rn

χ2(d,a) = min
a∈Rn

n∑
i=1

(diai − di)2

di
. (79)

The objective function is chosen such that it minimizes the impact of the household spe-
cific correction factors a on the household weights d. This impact is measured by the χ2

distance of the weights before and after adjusting them by a.
According to ([19]), “if the calibration approach is selected, instruments with similar com-
parability should be calibrated together”. Therefore, all instruments are divided into three
disjoint groups, namely financial assets, business wealth assets, and housing wealth: {De-
posits, Bonds, Shares, Funds, Voluntary Pension, Mortgage Liabilities, Other Liabilities},
{Financial Business Wealth, Non-Financial Business Wealth} and {Housing Wealth}.
As constraints, the adjusted HFCS instrument totals have to match the NtlA aggregates,
for each instrument j,9 ∑

i∈Ibottom

diaixij = Fcalib.bot,j, (80)
∑
i∈Itop

diaixij = Fcalib.top,j, (81)

where Ibottom denotes all households belonging to the bottom part of the wealth distri-
bution and Itop all households belonging to the top part of the wealth distribution. This
also means that Ibottom ∩ Itop = ∅ and Ibottom ∪ Itop = {1, . . . , n} hold. To limit the
change on a single household, some lower and upper bounds for all ai are included, for
our example10 these bounds are

0.03 ≤ ai ≤ 100. (82)
Since we have three groups of instruments, we also have three different optimization
problems. The first one matches the financial assets

min
a∈Rn

χ2(d,a) = min
a∈Rn

n∑
i=1

(diai − di)2

di

s.t.∀j ∈ {Deposits, Bonds, Shares, Funds,
Voluntary Pension, Mortgage Liabilities, Other Liabilities},∑

i∈Ibottom

diaixij = Fcalib.bot,j,∑
i∈Itop

diaixij = Fcalib.top,j,

0.03 ≤ ai ≤ 100∀i.

(83)

9The staff members set up two constraints in the R code. They distinguish between the households
from the original data set, Ibottom, and the households obtained from rich lists and sampling, Itop.

10These bounds are the default values in the internal R code provided by staff members of the EG-LMM.
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Likewise, the second optimization problem matches the holdings in business wealth

min
abiz∈Rn

χ2(d,abiz) = min
abiz∈Rn

n∑
i=1

(
dia

biz
i − di

)2

di

s.t.∀j ∈ {Financial Business Wealth, Non-Financial Business Wealth},∑
i∈Ibottom

dia
biz
i xij = Fcalib.bot,j,∑

i∈Itop

dia
biz
i xij = Fcalib.top,j,

0.03 ≤ abiz
i ≤ 100∀i,

(84)

and the third one matches the holdings in housing wealth

min
ah∈Rn

χ2(d,ah) = min
ah∈Rn

n∑
i=1

(
dia

h
i − di

)2

di

s.t.∀j ∈ {Housing Wealth},∑
i∈Ibottom

dia
h
i xij = Fcalib.bot,j,∑

i∈Itop

dia
h
i xij = Fcalib.top,j,

0.03 ≤ ah
i ≤ 100∀i.

(85)

After solving those problems, the adjusted instrument holdings for each household i are
given by

aixij for all j ∈ {Deposits, Bonds, Shares, Funds, Voluntary Pension,
Mortgage Liabilities, Other Liabilities},

abiz
i xij for all j ∈ {Financial Business Wealth, Non-Financial Business Wealth},
ah
i xij for all j ∈ {Housing Wealth}.

(86)

4.2 Data analysis
By applying both the proportional allocation (PA) and the multivariate calibration (MC)
to the adjusted HFCS data set, i.e. after adding the missing wealthy, the impact of both
methods on the final households’ instruments holdings can be analysed and compared.
We start by providing some descriptive statistics, investigating in particular, whether
the MC increases or decreases households’ instrument holdings. While the PA increases
(decrease) all households’ instrument holdings in the case of undercoverage (overcoverage),
the MC can lead to mixed effects. In Chapter 3, where we introduced the PA method,
we wanted to ensure that each household does not have less instrument holdings after the
adjustment in case of undercoverage and does not have higher instrument holdings in case
of overcoverage. For that purpose we added the constraints ai ≥ 1 for all i ∈ {1, . . . , n}
(undercoverage). This makes sense, because in the case of undercoverage (overcoverage)
we have no further information that would justify to decrease (increase) holdings of certain
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lower instr. holdings equal instr. holdings higher instr. holdings
a 12,675,437 (31.41%) 26,642,813 (66.03%) 1,034,157 (2.56%)
abiz 3,492,582 (8.65%) 36,469,765 (90.38%) 390,060 (0.97%)
ah 18,553,099 (45.98%) 1,558,559 (3.86%) 20,240,747 (50.16%)

Table 1: Number of households with ai < 1, ai = 1 and ai > 1 divided into the three
distinct groups.

Multivariate Calibration Proportional Adjustment
Min. 1st Qu. Median Mean 3rd Qu. Max. Coefficient Instrument

1.794 Deposits
1.000 Bonds
1.000 Shares

a 0.030 0.990 1.015 1.102 1.128 16.613 1.232 Funds
1.291 Vol. Pension
1.045 Mort. Liab.
1.212 Other Liab.

abiz 0.211 1.000 1.000 0.995 1.000 2.311 0.956 F-Biz. W.
1.029 NF-Biz. W.

ah 0.519 0.943 1.000 0.966 1.000 19.447 1.042 Hous. W.

Table 2: Summary statistics of the adjustment coefficients received by applying MC and
values of PA coefficients for each instrument (rounded to 3 digits).

households in the respective instrument. Indeed, we have proved in Theorem 2 that for
each instrument j the adjustment coefficient of the PA is given by ai = Fj∑n

i=1 dixij
for all

i ∈ {1, . . . , n}. Therefore, in case of undercoverage, for each household with xij > 0 the
holdings in an instrument j after adjustment increase and only those households with
zero instrument holdings do not receive additional allocations.

When analyzing the adjustment coefficients resulting from the MC method, we immedi-
ately see one weakness: The adjustment coefficients have a higher range and whether or
not there is under- or overcoverage, the MC causes simultaneously an increase, a decrease,
and unchanged holdings for seemingly random groups of households (cf. Table 1). More
precisely and both for the situation of an under- and overcoverage, before running the
MC we cannot predict whether the instrument holdings of a particular household will
be increased, decreased, or left unaffected. Going into detail, several points should be
mentioned. With regards to the values of the adjustment coefficient, we see that on the
one hand, the lower bound of 0.03 which we have introduced is even touched for the opti-
mization problem of financial assets, e.g., let the household’s deposits amount to 100,000
before the MC, then it will be worth 3,000 after the MC. In this case, the household’s
financial assets diminish almost completely. On the other, the highest adjustment coeffi-
cient is almost 20 for housing wealth, meaning that the household’s housing wealth will
increase by a factor of 20, e.g., let the household’s housing wealth amount to 500,000
before the MC, then it will be worth 10,000,000 after the MC (cf. Table 2). Compared to
the coverage ratios in Figure 4, these values appear rather extreme and unjustified.
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Furthermore, we see that median and mean of the adjustment coefficients in the MC
approach are close or equal to 1 (cf. Table 2). This is reasonable in case of business
wealth where coverage ratios are also close to 1, but for example in the case of ’Deposits’,
where the coverage ratio is close to 50%, we would definitely expect higher values. These
findings raise the question whether there are parts of the wealth distribution that have
disproportionally more or less wealth after the adjustment. This aspect is also mentioned
in ([19]): “the gap, when positive, is allocated more than proportionally to rich households.
A negative gap would be allocated more to poor households”. We want to give evidence for
this observation by calculating the share of wealth in each instrument possessed by the
10% richest households (Figure 5) and the poorer half of households (Figure 6).
Indeed, we see that for each instrument, the share of the poorer households reduces
significantly, whereas the share of the richest households increases by a noteworthy margin.
The decrease for the poorest households is especially pronounced in ‘Deposits’ and ‘Other
liabilities’ with a roughly 5% reduction, but in terms of relative decrease, this is also
true for ‘Funds’, ‘Shares’ and ‘Bonds’ where the proportions have almost or more than
halved. For the richest households, the aforementioned increase amounts to circa 10%
for instruments belonging to the group of financial assets (‘Deposits’, ‘Bonds’, ‘Shares’,
‘Funds’, ‘Voluntary Pension’, ‘Mortgage Liabilities’, ‘Other Liabilities’), roughly 7% for
‘Housing Wealth’ and 5% for ‘Non-Financial Business Wealth’. Interestingly, there is also
an increase for ‘Financial Business Wealth’ where we have already seen in Figure 4 that
there is an overcoverage for this instrument. So in fact, these observations strongly suggest
that the MC method treats poorer households less favorably in terms of allocating the
wealth gaps.

Figure 5: Share of instrument holdings possessed by the richest 10% of households before
and after MC. Note that in the case of PA, the shares before and after adjustment do not
change.
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Figure 6: Share of instrument holdings possessed by the poorer half of households before
and after MC. Note that in the case of PA, the shares before and after adjustment do not
change.

This conclusion is also underpinned by the fact that the Gini coefficient for each in-
strument resulting from the MC is always higher than the one obtained from PA (cf.
Figure 7). Obviously, the difference is very low for instruments that have a high coverage
ratio, namely ‘Bonds’, ‘Shares’, ‘Financial Business Wealth’ and ‘Non-Financial Business
Wealth’.
We also calculated the minimal and maximum Gini coefficient for each instrument under
the constraint that we do not want to change the order of wealth and not decreasing (in-
creasing) any households’ holdings in the case of undercoverage (overcoverage), see Figure
7. This was done by implementing the algorithms from Section 3.2 in R. The range is
high for instruments that have a low coverage ratio, especially for ‘Deposits’ and ‘Vol-
untary Pension’. We have already shown the reason for this relation in Section 3.2: The
higher the wealth gap the more can be allocated to the poorer households or to the rich-
est household. This makes the wealth distribution more equal in case of calculating the
minimum or unequal when calculating the maximum. We can also see that the inequality
of wealth is already skewed to the upper part, since the Gini coefficient is always closer to
the maximum. Interestingly, for some instrument, the Gini coefficient after MC is even
higher than the maximum Gini coefficient that preserves the wealth order. This is true for
‘Funds’, ‘Non-Financial Business Wealth’, ‘Housing Wealth’, ‘Mortgage Liabilities’ and
‘Other Liabilities’.
For illustrative purposes, we have also plotted Lorenz curves for several instruments,
namely ‘Deposits’, ‘Housing Wealth’ and ‘Non-Financial Business Wealth’, in Figures 8
to 10. Due to the high concentration of ‘Non-Financial Business Wealth’, Figure 10 only
shows the share of population from 0.9 to 1. The plots clearly indicate that a higher under-
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Figure 7: Gini Coefficients of each instrument resulting from proportional adjustment
(red dot) and multivariate calibration (blue cross). The black lines denote the resulting
range obtained from minimizing and maximizing according to the results in Section 3.2.

coverage implies more widespread Lorenz curves. The shape of the Lorenz curves is also
influenced by the concentration of instrument holdings because wealth is only allocated
to households with non-zero instrument holdings. For example, in the case of ‘Deposits’,
where the undercoverage is high and more than 90% of the households actually possess
‘Deposits’, the Lorenz curve for the minimization method is similar to a straight line and
much closer to the equality line than the other Lorenz curves. Even though the Lorenz
curves for ‘Housing Wealth’ and ‘Non-Financial Business Wealth’ are closer together, we
can observe that also for these instruments the Lorenz curve for the MC method is mostly
below the Lorenz curve corresponding to the PA method. For ‘Housing Wealth’ and ‘Non-
Financial Business Wealth’, this is even true when we compare the Lorenz curve of the
MC approach with the Lorenz curve of the maximization method. This finding and the
fact that the MC causes simultaneously an increase and a decrease of certain households
immediately suggest that the MC method does not obey the assumption of wealth order
perpetuation. Therefore, we would like to analyse to what extent the MC method pre-
serves the rankings. In order to do so, we must introduce some rank correlation measures
such as Kendall’s tau τ , which was first introduced by Maurice G. Kendall in ([11]).
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Figure 8: Lorenz curve for the different methods by the example of ‘Deposits’ (financial
asset).

Figure 9: Lorenz curve for the different methods by the example of ‘Housing Wealth’.
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Figure 10: Lorenz curve for the different methods by the example of ‘Non-Financial
Business Wealth’ (business wealth asset).

Multivariate Calibration
Instrument Kendall’s tau
Other Liabilites 0.9538
Mortgage Liabilites 0.8747
Housing Wealth 0.9923
Non-Financial Business Wealth 0.9927
Financial Business Wealth 0.9955
Voluntary Pension 0.8865
Funds 0.8588
Shares 0.8656
Bonds 0.9325
Deposits 0.9170

Table 3: Kendall’s tau for instrument holdings after applying multivariate calibration
(rounded to 4 digits).
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Definition 1. (cf. ([17], page 158))
Let (x1, y1), (x2, y2), . . . , (xn, yn) denote a set of observations from a vector (X, Y ) of con-
tinuous random variables. A pair of observations (xi, yi) and (xj, yj) with i < j is said
to be concordant if (xi − xj)(yi − yj) > 0, i.e., if (xi, xj) and (yi, yj) have the same sort
order. In any other case, the pair (xi, yi) and (xj, yj) is called discordant. Now, let c
denote the number of concordant pairs and d the number of discordant pairs. Note that
the number of distinct pairs (xi, yi) and (xj, yj) in the sample is given by n(n−1)

2 =
(
n
2

)
.

Then, the empirical version of Kendall’s tau τ is given by

τ = c− d(
n
2

) ∈ [−1, 1]. (87)

We have calculated Kendall’s tau for each instrument after applying the MC in Table 3.
Kendall’s tau is 1 when no change in order takes place, which is true for each instrument
after PA. When applying MC, we see that Kendall’s tau ranges from approximately 0.85
for ‘Funds’ and Shares’ to almost 1 for ‘Housing Wealth’, ‘Financial Business Wealth’ and
‘Non-Financial Business Wealth’. We conclude that Kendall’s tau suggests a rather high
level of wealth order perpetuation. Nevertheless, there are cases where ranks are changed
compared to proportional adjustment where Kendall’s tau is by construction 1.

We also want to have a look at how the rankings change because of MC for a particular
instrument. Therefore, for each group (financial assets, business wealth assets, and hous-
ing wealth), we picked an instrument and performed a scatter plot showing the rank of
each observation on the x-axis and the change in the ranking after applying MC on the
y-axis. As examples, we can see the scatterplots relating to ‘Deposits’, ‘Financial Business
Wealth’ and ‘Housing Wealth’ in Figure 11 to Figure 13 (plots for other instruments are
looking similar). In each of these plots, on the left-hand side, there is a flat line. These
are the observations with zero instrument holdings and where the rank therefore does
not change. The line is very short for instruments like ‘Deposits’ where there are only a
few observations without any holdings but long for instruments like ‘Financial Business
Wealth’ where instrument holdings are very concentrated. On the right-hand side of the
plots, we can also see a rather flat section (approximately observations with a rank above
5000). These are the observations mainly belonging to Itop, i.e., the households obtained
from rich lists and sampling. Thus, this section has almost the same length in all of the
plots. Compared to Figure 11 and Figure 13, we can see some outliers in that part of
the plot in Figure 12: Due to the fact that ‘Financial Business Wealth’ is very concen-
trated, we can find some observations belonging to the original HFCS data set in this
range. In between these plot sections, there are the households belonging to Ibottom. For
these observations, we clearly see changes in the rankings. The rank change for house-
holds obviously coincides with the value of the adjustment coefficient. For some of the
households, the rank difference in the ‘Deposits’ and ‘Housing Wealth’ rankings is more
than 3000. Compared to the absolute number of observation points (circa 6300), this is
a high number meaning that the affected households lose almost all of their instrument
holdings, e.g., a household that has a rank of 4000 suddenly drops to the rank 1000 after
MC. Hence, even though we see that most samples are located within a certain acceptable
range (e.g. −1000 to +1000 in the case of ‘Deposits’), MC produces heavy outliers. One
can doubt if these changes reflect the truth.
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Figure 11: Rank comparison presented by the example of ‘Deposits’ (financial asset).

Figure 12: Rank comparison presented by the example of ‘Financial Business Wealth’
(business wealth asset).
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Figure 13: Rank comparison presented by the example of ‘Housing Wealth’.

Concluding, we see that the MC leads to a more inhomogeneous allocation compared to
the PA. This is a direct consequence of the fact that even in case of undercoverage there
are always households with less wealth after adjustment. This can also be seen after
calculating the Gini coefficient of net wealth. It is 0.7617 after the PA and 0.8006 after
the MC. Furthermore, we have seen that the MC has indeed the tendency to preserve
wealth rankings, but Kendall’s tau is clearly below one. Thus, for each instrument, there
are changes in the wealth order. One major concern using calibration techniques for
this particular problem is that it is typically used in survey sampling to handle unit
nonresponse (cf. ([14])). But as described in Section 4.1, here it is not used to adjust
the weightings of the survey but to change the instrument holdings. Therefore, this
approach is questionable. Due to the fact that we have no further information on how to
allocate the wealth, preserving wealth inequality (measured by the Gini coefficient) and
maintaining the order of instrument holdings seem to be appropriate assumptions that
favor proportional adjustment.
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5 Conclusion
This thesis provides mathematical insights for deriving sound distributional national ac-
counts. Following the work of Vermeulen ([22], [23]), we have shown how to model the
top of the wealth distribution with a Pareto distribution and how to sample additional
households to overcome the underrepresentation of very rich households in the HFCS.
As a theoretical basis, several wealth accumulation processes are presented that give an
explanation of why the upper tail of wealth distribution follows a Pareto law. For exam-
ple, one of those models is a wealth accumulation process with homogeneous investment
talent, the others are an exponential wealth accumulation process with stable population
as well as the generalized Lotka-Volterra model and the so-called Yard-Sale model.

Furthermore, it has been proven that a1 = · · · = an = F∑n

i=1 dixi
is the unique solution to

the optimization problem11

solve G∗ −G(a,d,x) = 0
subject to

− ai ≤ −1∀i,
ai − ai+1 ≤ 0 ∀i ∈ {1, . . . , n− 1},
n∑
i=1

diaixi = F.

This solution comes along with the proportional allocation method where the descrepan-
cies between HFCS micro data and NtlA macro data are eliminated by adjusting household
holdings of a certain instrument with the same adjustment coefficient.
The subsequently derived lower and upper bounds provide a clear picture of the leeway
of the last step matching the micro with the macro data. While a lower range increases
confidence a wide range can raise awareness of possibly wrong instrument allocations.
Additionally, the thesis provides for the first time a comparison of a multivariate cali-
bration approach and the proportional adjustment by the example of German household
data.
Altogether, the analysis and findings support academics and policymakers in deriving
sound distributional national accounts.

Based on the insights of this thesis, similar investigations in household data of other
countries are highly interesting, especially, whether such results would be similar to the
findings of the case study covering household wealth in Germany.
Furthermore, with regards to the lower and upper bounds, a tighter range particularly
for instruments with high under- or overcoverage is desirable. This raises the question
of whether there are any further constraints that make these bounds more realistic. To
answer this question, a more detailed study of the lower part of the wealth distribution
of the HFCS household date could be useful. Chakrabarti et al. ([4], page 12) gathered
wealth and income studies of the past and come to the conclusion that the “lower part of
the distribution follows one of the exponential (Gibbs) or gamma or log-normal (Gibrat)

11Definitions of expressions and variables can be found in Chapter 3.
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distributions”. So it would be interesting to know whether the lower part of the distri-
bution of the HFCS household wealth can be assigned to one of these distributions. If
this is the case, confidence intervals could be helpful to make the lower and upper bound
more realistic.
We see that this thesis provided a lot of insights into developing distributional accounts
but there are still some other aspects to be examined.
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A Appendix
The following Lemmas are used in the proof of Theorem 2. Note that we define ∆Wk = Wk −Wk−1 and H =

∑n
i=1 dixi.

Lemma 1. The solution space of the intersection of the hyperplanes G∗ − G(a, d, x) = 0 and
∑n
i=1 diaixi = F for a1, . . . , an−2 ∈ R is

determined by

an−1 =
∑n
k=1 ∆WkF

(
2
∑k−1
`=1 d`x` + dkxk

)
−H∆WnF −

∑n−2
i=1 ai

(
H(∆Wi −∆Wn)dixi +

∑n
k=i+1 2H∆Wkdixi

)
H(∆Wn−1 + ∆Wn)dn−1xn−1

, (88)

and

an = FH(∆Wn−1 + ∆Wn)− L

Hdnxn (∆Wn−1 + ∆Wn) +
∑n−2
i=1 ai

(
H(∆Wi + ∆Wn−1)dixi +

∑n−2
k=i+1 2H∆Wkdixi

)
Hdnxn (∆Wn−1 + ∆Wn) . (89)

Proof. Note that G(a, d, x) can be written as

G(a, d, x) = 1−
[
n∑
k=1

(Wk −Wk−1)2
∑k−1
`=1 a`d`x` + akdkxk

F

]
, (90)

where we inserted the constraint
∑n
i=1 diaixi = F .

Doing some manipulations yields

G∗ −G(a, d, x) = G∗ − 1 +
[
n∑
k=1

(Wk −Wk−1)2
∑k−1
`=1 a`d`x` + akdkxk

F

]

= −
[
n∑
k=1

∆Wk
2
∑k−1
`=1 d`x` + dkxk∑n

i=1 dixi

]
+
[
n∑
k=1

∆Wk
2
∑k−1
`=1 a`d`x` + akdkxk

F

]

= −
[
n∑
k=1

∆Wk
2
∑k−1
`=1 d`x` + dkxk

H

]
+
[
n∑
k=1

∆Wk
2
∑k−1
`=1 a`d`x` + akdkxk

F

]

= 1
HF

[
−

n∑
k=1

∆WkF

(
2
k−1∑
`=1

d`x` + dkxk

)
+

n∑
k=1

∆WkH

(
2
k−1∑
`=1

a`d`x` + akdkxk

)]

= 1
HF

− n∑
k=1

∆WkF

(
2
k−1∑
`=1

d`x` + dkxk

)
+

n∑
i=1

ai

H∆Widixi +
n∑

k=i+1
2H∆Wkdixi

 .
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Due to linearity, the solution space of G∗ − G(a, d, x) = 0 is a hyperplane. The constraint
∑n
i=1 diaixi = F also yields a hyperplane. We

now want to calculate the n− 2 dimensional solution space of the intersection of these two hyperplanes:

(E1)
n∑
i=1

ai

H∆Widixi +
n∑

k=i+1
2H∆Wkdixi

 =
n∑
k=1

∆WkF

(
2
k−1∑
`=1

d`x` + dkxk

)
,

(E2)
n∑
i=1

diaixi = F.

We calculate (E1’) = (E1)−H∆Wn(E2) and set (E2’) = (E2) to get

(E1’)
n−1∑
i=1

ai

H(∆Wi −∆Wn)dixi +
n∑

k=i+1
2H∆Wkdixi

 =
n∑
k=1

∆WkF

(
2
k−1∑
`=1

d`x` + dkxk

)
−H∆WnF,

(E2’)
n∑
i=1

diaixi = F.

From (E1’) it follows that

an−1 =
∑n
k=1 ∆WkF

(
2
∑k−1
`=1 d`x` + dkxk

)
−H∆WnF −

∑n−2
i=1 ai

(
H(∆Wi −∆Wn)dixi +

∑n
k=i+1 2H∆Wkdixi

)
H(∆Wn−1 −∆Wn)dn−1xn−1 + 2H∆Wndn−1xn−1

=
∑n
k=1 ∆WkF

(
2
∑k−1
`=1 d`x` + dkxk

)
−H∆WnF −

∑n−2
i=1 ai

(
H(∆Wi −∆Wn)dixi +

∑n
k=i+1 2H∆Wkdixi

)
H(∆Wn−1 + ∆Wn)dn−1xn−1

.

(91)

Now we define

L :=
n∑
k=1

∆WkF

(
2
k−1∑
`=1

d`x` + dkxk

)
−H∆WnF = F

 n∑
i=1

∆Widixi +
n∑

k=i+1
2∆Wkdixi

− n∑
i=1

∆Wndixi


= F

 n∑
i=1

(∆Wi −∆Wn)dixi +
n∑

k=i+1
2∆Wkdixi

 = F

n−1∑
i=1

(∆Wi −∆Wn)dixi +
n∑

k=i+1
2∆Wkdixi


= F

n−1∑
i=1

(∆Wi + ∆Wn)dixi +
n−1∑
k=i+1

2∆Wkdixi

 .

(92)
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Inserting the expression we got for an−1 in Equation (91) into (E2’), we get

an = F −
∑n−1
i=1 aidixi

dnxn

= F −
∑n−2
i=1 aidixi

dnxn
−

L−
∑n−2
i=1 ai

(
H(∆Wi −∆Wn)dixi +

∑n
k=i+1 2H∆Wkdixi

)
Hdnxn (∆Wn−1 + ∆Wn)

= FH(∆Wn−1 + ∆Wn)− L

Hdnxn (∆Wn−1 + ∆Wn) +
∑n−2
i=1 ai

(
H(∆Wi −∆Wn)dixi +

∑n
k=i+1 2H∆Wkdixi

)
−
∑n−2
i=1 aidixiH (∆Wn−1 + ∆Wn)

Hdnxn (∆Wn−1 + ∆Wn)

= FH(∆Wn−1 + ∆Wn)− L

Hdnxn (∆Wn−1 + ∆Wn) +
∑n−2
i=1 ai

(
H(∆Wi −∆Wn−1 − 2∆Wn)dixi +

∑n
k=i+1 2H∆Wkdixi

)
Hdnxn (∆Wn−1 + ∆Wn)

= FH(∆Wn−1 + ∆Wn)− L

Hdnxn (∆Wn−1 + ∆Wn) +
∑n−2
i=1 ai

(
H(∆Wi −∆Wn−1 − 2∆Wn)dixi +

∑n−2
k=i+1 2H∆Wkdixi + 2H∆Wn−1dixi + 2H∆Wndixi

)
Hdnxn (∆Wn−1 + ∆Wn)

= FH(∆Wn−1 + ∆Wn)− L

Hdnxn (∆Wn−1 + ∆Wn) +
∑n−2
i=1 ai

(
H(∆Wi + ∆Wn−1)dixi +

∑n−2
k=i+1 2H∆Wkdixi

)
Hdnxn (∆Wn−1 + ∆Wn) .

(93)

Lemma 2. Assume that the constraints of (60) hold. Then, a1 ≤ F
H .

Proof. Due to a1 ≤ an−1, we have

F =
n∑
i=1

aidixi ≥
n∑
i=1

a1dixi = a1H.

Thus, we get

a1 ≤
F

H
. (94)
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Lemma 3. Assume that the constraints of (60) hold. Then, ak ≤ F
H for all k ∈ {1, . . . , n− 2}.

Proof. In the following, we will prove by induction that ak ≤ F
H for all k ∈ {1, . . . , n − 2}. The induction basis a1 ≤ F

H is already given by
Lemma 2.
We assume that a1, . . . am−1 ≤ F

H for fixed m ≤ n− 2. We will now show that am ≤ F
H .

Due to our required constraint, am ≤ an−1, we have by (91),

am ≤
∑n
k=1 ∆WkF

(
2
∑k−1
`=1 d`x` + dkxk

)
−H∆WnF −

∑n−2
i=1 ai

(
H (∆Wi −∆Wn) dixi +

∑n
k=i+1 2H∆Wkdixi

)
H (∆Wn−1 + ∆Wn) dn−1xn−1

≤
L−

∑n−2
i=1 ai

(
H (∆Wi −∆Wn) dixi +

∑n−1
k=i+1 2H∆Wkdixi

)
H (∆Wn−1 + ∆Wn) dn−1xn−1

,

(95)

since H (∆Wi −∆Wn) dixi +
∑n
k=i+1 2H∆Wkdixi ≥ 0 for all i ∈ {1, . . . , n− 2}.

It follows,

am ≤
L−

∑n−2
i=1 ai

(
H(∆Wi −∆Wn)dixi +

∑n
k=i+1 2H∆Wkdixi

)
H(∆Wn−1 + ∆Wn)dn−1xn−1

⇔ am (H(∆Wn−1 + ∆Wn)dn−1xn−1) ≤ L−
n−2∑
i=1

ai

H(∆Wi −∆Wn)dixi +
n∑

k=i+1
2H∆Wkdixi


⇔ am−1

(
H(∆Wm−1 −∆Wn)dm−1xm−1 +

n∑
k=m

2H∆Wkdm−1xm−1

)

≤ L−
n−2∑

i=1,i 6=m−1
ai

H(∆Wi −∆Wn)dixi +
n∑

k=i+1
2H∆Wkdixi

− am (H(∆Wn−1 + ∆Wn)dn−1xn−1)

⇔ am−1 ≤
L−

∑n−2
i=1,i 6=m−1 ai

(
H(∆Wi + ∆Wn)dixi +

∑n−1
k=i+1 2H∆Wkdixi

)
− am (H(∆Wn−1 + ∆Wn)dn−1xn−1)

H(∆Wm−1 + ∆Wn)dm−1xm−1 +
∑n−1
k=m 2H∆Wkdm−1xm−1

.

(96)
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We define M := FH(∆Wn−1 + ∆Wn)− L. One can verify that dnxnL− dn−1xn−1M ≥ 0.
Then, due to an−1 ≤ an and using the expressions (91) and (93)

L−
∑n−2
i=1 ai

(
H(∆Wi + ∆Wn)dixi +

∑n−1
k=i+1 2H∆Wkdixi

)
H(∆Wn−1 + ∆Wn)dn−1xn−1

≤
M +

∑n−2
i=1 ai

(
H(∆Wi + ∆Wn−1)dixi +

∑n−2
k=i+1 2H∆Wkdixi

)
Hdnxn (∆Wn−1 + ∆Wn)

⇔ dnxn

L−
n−2∑
i=1

aidixi

H(∆Wi + ∆Wn) +
n−1∑
k=i+1

2H∆Wk

 ≤ dn−1xn−1

M +
n−2∑
i=1

aidixi

H(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2H∆Wk


⇔ dnxn

L−
n−2∑

i=1,i 6=m−1
aidixi

H(∆Wi + ∆Wn) +
n−1∑
k=i+1

2H∆Wk

− dn−1xn−1

M +
n−2∑

i=1,i 6=m−1
aidixi

H(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2H∆Wk


≤ dn−1xn−1am−1dm−1xm−1

(
H(∆Wm−1 + ∆Wn−1) +

n−2∑
k=m

2H∆Wk

)
+ dnxnam−1dm−1xm−1

(
H(∆Wm−1 + ∆Wn) +

n−1∑
k=m

2H∆Wk

)

⇔
{

dnxnL− dn−1xn−1M −
n−2∑

i=1,i 6=m−1
ai

[
dn−1xn−1dixi

H(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2H∆Wk

+ dnxndixi

H(∆Wi + ∆Wn) +
n−1∑
k=i+1

2H∆Wk

]}
{

dn−1xn−1dm−1xm−1

(
H(∆Wm−1 + ∆Wn−1) +

n−2∑
k=m

2H∆Wk

)
+ dnxndm−1xm−1

(
H(∆Wm−1 + ∆Wn) +

n−1∑
k=m

2H∆Wk

)}−1

≤ am−1.

(97)
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Define D := dn−1xn−1dm−1xm−1
(
H(∆Wm−1 + ∆Wn−1) +

∑n−2
k=m 2H∆Wk

)
+ dnxndm−1xm−1

(
H(∆Wm−1 + ∆Wn) +

∑n−1
k=m 2H∆Wk

)
and

E := H(∆Wm−1 + ∆Wn)dm−1xm−1 +
∑n−1
k=m 2H∆Wkdm−1xm−1.

Combining the upper and lower bound for am−1 (see (96) and (97)), we get

{
dnxnL− dn−1xn−1M −

n−2∑
i=1,i 6=m−1

ai

[
dn−1xn−1dixi

H(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2H∆Wk

+ dnxndixi

H(∆Wi + ∆Wn) +
n−1∑
k=i+1

2H∆Wk

]}
{

dn−1xn−1dm−1xm−1

(
H(∆Wm−1 + ∆Wn−1) +

n−2∑
k=m

2H∆Wk

)
+ dnxndm−1xm−1

(
H(∆Wm−1 + ∆Wn) +

n−1∑
k=m

2H∆Wk

)}−1

≤ am−1

≤
L−

∑n−2
i=1,i 6=m−1 ai

(
H(∆Wi + ∆Wn)dixi +

∑n−1
k=i+1 2H∆Wkdixi

)
− am (H(∆Wn−1 + ∆Wn)dn−1xn−1)

H(∆Wm−1 + ∆Wn)dm−1xm−1 +
∑n−1
k=m 2H∆Wkdm−1xm−1

⇔ E

{
dnxnL− dn−1xn−1M −

n−2∑
i=1,i 6=m−1

ai

[
dn−1xn−1dixi

H(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2H∆Wk

+ dnxndixi

H(∆Wi + ∆Wn) +
n−1∑
k=i+1

2H∆Wk

]}

≤ D

L−
n−2∑

i=1,i 6=m−1
ai

H(∆Wi + ∆Wn)dixi +
n−1∑
k=i+1

2H∆Wkdixi

− am (H(∆Wn−1 + ∆Wn)dn−1xn−1)


⇔ amD

H(∆Wm + ∆Wn)dmxm +
n−1∑

k=m+1
2H∆Wkdmxm

+ amD (H(∆Wn−1 + ∆Wn)dn−1xn−1)

− amE

[
dn−1xn−1dmxm

H(∆Wm + ∆Wn−1) +
n−2∑

k=m+1
2H∆Wk

+ dnxndmxm

H(∆Wm + ∆Wn) +
n−1∑

k=m+1
2H∆Wk

]

≤ DL− E(dnxnL− dn−1xn−1M)−D

 n−2∑
i=1,i 6=m−1,m

ai

H(∆Wi + ∆Wn)dixi +
n−1∑
k=i+1

2H∆Wkdixi


+ E

 n−2∑
i=1,i 6=m−1,m

ai

[
dn−1xn−1dixi

H(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2H∆Wk

+ dnxndixi

H(∆Wi + ∆Wn) +
n−1∑
k=i+1

2H∆Wk

]
(98)
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Continuing with (98), brings us to the following inequality.

am

{
(D − dnxnE)

H(∆Wm + ∆Wn)dmxm +
n−1∑

k=m+1
2H∆Wkdmxm

+ D (H(∆Wn−1 + ∆Wn)dn−1xn−1)

− E

dn−1xn−1

H(∆Wm + ∆Wn−1)dmxm +
n−2∑

k=m+1
2H∆Wkdmxm

}

≤ DL− E(dnxnL− dn−1xn−1M) +
[

n−2∑
i=1,i 6=m−1,m

ai

(
(dnxnE −D)

H(∆Wi + ∆Wn)dixi +
n−1∑
k=i+1

2H∆Wkdixi


+ dn−1xn−1E

H(∆Wi + ∆Wn−1)dixi +
n−2∑
k=i+1

2H∆Wkdixi

)].

(99)

Shortly, we will also have to distinguish between the following two cases:
Case 1: i ≤ m− 2:∆Wi +

n−2∑
k=i+1

2∆Wk

− (∆Wm−1 +
n−2∑
k=m

2∆Wk

)
= ∆Wi +

m−1∑
k=i+1

2∆Wk −∆Wm−1 = ∆Wi +
m−2∑
k=i+1

2∆Wk + ∆Wm−1 ≥ 0. (100)

Case 2: i ≥ m + 1:∆Wi +
n−2∑
k=i+1

2∆Wk

− (∆Wm−1 +
n−2∑
k=m

2∆Wk

)
= ∆Wi −

i∑
k=m

2∆Wk −∆Wm−1 = −∆Wm−1 −
i−1∑
k=m

2∆Wk −∆Wi ≤ 0. (101)
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Let us have a closer look at the last part of (99),

namely
(

(dnxnE −D)
(
H(∆Wi + ∆Wn)dixi +

∑n−1
k=i+1 2H∆Wkdixi

)
+ dn−1xn−1E

(
H(∆Wi + ∆Wn−1)dixi +

∑n−2
k=i+1 2H∆Wkdixi

))
:

dn−1xn−1E

H(∆Wi + ∆Wn−1)dixi +
n−2∑
k=i+1

2H∆Wkdixi

+ (dnxnE −D)

H(∆Wi + ∆Wn)dixi +
n−1∑
k=i+1

2H∆Wkdixi


= dn−1xn−1

(
H(∆Wm−1 + ∆Wn)dm−1xm−1 +

n−1∑
k=m

2H∆Wkdm−1xm−1

)H(∆Wi + ∆Wn−1)dixi +
n−2∑
k=i+1

2H∆Wkdixi


− dn−1xn−1

(
H(∆Wm−1 + ∆Wn−1)dm−1xm−1 +

n−2∑
k=m

2H∆Wkdm−1xm−1

)H(∆Wi + ∆Wn)dixi +
n−1∑
k=i+1

2H∆Wkdixi


= dn−1xn−1H2dm−1xm−1dixi

[(
(∆Wm−1 + ∆Wn) +

n−1∑
k=m

2∆Wk

)(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2∆Wk


−
(

(∆Wm−1 + ∆Wn−1) +
n−2∑
k=m

2∆Wk

)(∆Wi + ∆Wn) +
n−1∑
k=i+1

2∆Wk

]

= dn−1xn−1H2dm−1xm−1dixi

[(
(∆Wm−1 + 2∆Wn−1 + ∆Wn) +

n−2∑
k=m

2∆Wk

)(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2∆Wk


−
(

(∆Wm−1 + ∆Wn−1) +
n−2∑
k=m

2∆Wk

)(∆Wi + 2∆Wn−1 + ∆Wn) +
n−2∑
k=i+1

2∆Wk

]

= dn−1xn−1H2dm−1xm−1dixi

[
(∆Wn−1 + ∆Wn)

(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2∆Wk

− ((∆Wm−1 + ∆Wn−1) +
n−2∑
k=m

2∆Wk

)
(∆Wn−1 + ∆Wn)

]

= dn−1xn−1H2dm−1xm−1dixi (∆Wn−1 + ∆Wn)
[∆Wi +

n−2∑
k=i+1

2∆Wk

− (∆Wm−1 +
n−2∑
k=m

2∆Wk

)]
.

(102)
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Let us come back to inequality (99). We insert (102) and be aware of (100) and (101) to get:

am

{
(D − dnxnE)

H(∆Wm + ∆Wn)dmxm +
n−1∑

k=m+1
2H∆Wkdmxm

+ D (H(∆Wn−1 + ∆Wn)dn−1xn−1)

− E

dn−1xn−1

H(∆Wm + ∆Wn−1)dmxm +
n−2∑

k=m+1
2H∆Wkdmxm

}

≤ DL− E(dnxnL− dn−1xn−1M) +
[

n−2∑
i=1,i 6=m−1,m

ai

(
(dnxnE −D)

H(∆Wi + ∆Wn)dixi +
n−1∑
k=i+1

2H∆Wkdixi

+

dn−1xn−1E

H(∆Wi + ∆Wn−1)dixi +
n−2∑
k=i+1

2H∆Wkdixi

)]

⇔ am

{
D (H(∆Wn−1 + ∆Wn)dn−1xn−1)− dn−1xn−1H2dm−1xm−1dmxm (∆Wn−1 + ∆Wn)

[∆Wm +
n−2∑

k=m+1
2∆Wk

− (∆Wm−1 +
n−2∑
k=m

2∆Wk

)]}

≤ DL− E(dnxnL− dn−1xn−1M) +
{

n−2∑
i=1,i 6=m−1,m

aidn−1xn−1H2dm−1xm−1dixi (∆Wn−1 + ∆Wn)
[∆Wi +

n−2∑
k=i+1

2∆Wk

− (∆Wm−1 +
n−2∑
k=m

2∆Wk

)]}

≤ DL− E(dnxnL− dn−1xn−1M) +
{
m−2∑
i=1

aidn−1xn−1H2dm−1xm−1dixi (∆Wn−1 + ∆Wn)
(

∆Wi +
m−2∑
k=i+1

2∆Wk + ∆Wm−1

)}

+
{

n−2∑
i=m+1

amdn−1xn−1H2dm−1xm−1dixi (∆Wn−1 + ∆Wn)
(
−∆Wm−1 −

i−1∑
k=m

2∆Wk −∆Wi

)}
.

(103)
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By assumption, ai ≤ F/H for all i ≤ m− 1. Thus, inequality (103) leads to

am

{
D (H(∆Wn−1 + ∆Wn)dn−1xn−1) + dn−1xn−1H2dm−1xm−1 (∆Wn−1 + ∆Wn)

{
n−2∑
i=m

dixi

(
∆Wm−1 +

i−1∑
k=m

2∆Wk + ∆Wi

)}}

≤ DL− E(dnxnL− dn−1xn−1M) +
{
m−2∑
i=1

Fdn−1xn−1Hdm−1xm−1dixi (∆Wn−1 + ∆Wn)
(

∆Wi +
m−2∑
k=i+1

2∆Wk + ∆Wm−1

)}
.

(104)

We observe,

DL− E(dnxnL− dn−1xn−1M) = DL− E
(
(dnxn + dn−1xn−1) L− dn−1xn−1FH(∆Wn−1 + ∆Wn)

)
= L

(
D − (dnxn + dn−1xn−1)E

)
+ EFHdn−1xn−1(∆Wn−1 + ∆Wn)

= L

(
dn−1xn−1

(
H(∆Wm−1 + ∆Wn−1)dm−1xm−1 +

n−2∑
k=m

2H∆Wkdm−1xm−1 − E

))
+ dn−1xn−1EFH(∆Wn−1 + ∆Wn)

= L

(
dn−1xn−1 (H(∆Wn−1 −∆Wn)dm−1xm−1 − 2H∆Wn−1dm−1xm−1)

)
+ dn−1xn−1EFH(∆Wn−1 + ∆Wn)

= FHdn−1xn−1(∆Wn−1 + ∆Wn)
(

E − dm−1xm−1
L

F

)
.

(105)
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Inserting (105) into (104) yields

am ≤
DL− E(dnxnL− dn−1xn−1M) +

{∑m−2
i=1 Fdn−1xn−1Hdm−1xm−1dixi (∆Wn−1 + ∆Wn)

(
∆Wi +

∑m−2
k=i+1 2∆Wk + ∆Wm−1

)}

D (H(∆Wn−1 + ∆Wn)dn−1xn−1) + dn−1xn−1H2dm−1xm−1 (∆Wn−1 + ∆Wn)
{∑n−2

i=m dixi
(
∆Wm−1 +

∑i−1
k=m 2∆Wk + ∆Wi

)}

=
FHdn−1xn−1(∆Wn−1 + ∆Wn)

(
E − dm−1xm−1

L
F

)
+
{∑m−2

i=1 Fdn−1xn−1Hdm−1xm−1dixi (∆Wn−1 + ∆Wn)
(

∆Wi +
∑m−2
k=i+1 2∆Wk + ∆Wm−1

)}

D (H(∆Wn−1 + ∆Wn)dn−1xn−1) + dn−1xn−1H2dm−1xm−1 (∆Wn−1 + ∆Wn)
{∑n−2

i=m dixi
(
∆Wm−1 +

∑i−1
k=m 2∆Wk + ∆Wi

)}

=
FHdn−1xn−1(∆Wn−1 + ∆Wn)

[(
E − dm−1xm−1

L
F

)
+
{∑m−2

i=1 dixi

(
∆Wi +

∑m−2
k=i+1 2∆Wk + ∆Wm−1

)}]

(H(∆Wn−1 + ∆Wn)dn−1xn−1)
[
D + Hdm−1xm−1

{∑n−2
i=m dixi

(
∆Wm−1 +

∑i−1
k=m 2∆Wk + ∆Wi

)}]

=
F

[(
E − dm−1xm−1

L
F

)
+
{∑m−2

i=1 dixidm−1xm−1

(
∆Wi +

∑m−2
k=i+1 2∆Wk + ∆Wm−1

)}]
[
D + Hdm−1xm−1

{∑n−2
i=m dixi

(
∆Wm−1 +

∑i−1
k=m 2∆Wk + ∆Wi

)}]

=
F

[∑n
i=1 dixi

(
∆Wm−1 + ∆Wn +

∑n−1
k=m 2∆Wk

)
−
∑n−1
i=1 dixi

(
∆Wi + ∆Wn +

∑n−1
k=i+1 2∆Wk

)
+
{∑m−2

i=1 dixi
(
∆Wi +

∑m−2
k=i+1 2∆Wk + ∆Wm−1

)}]

H

[
dn−1xn−1

(
∆Wm−1 + ∆Wn−1 +

∑n−2
k=m 2H∆Wk

)
+ dnxn

(
∆Wm−1 + ∆Wn +

∑n−1
k=m 2∆Wk

)
+
{∑n−2

i=m dixi
(
∆Wm−1 +

∑i−1
k=m 2∆Wk + ∆Wi

)}] .

(106)
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Continuing with (106),

am ≤
F

[(∑n
i=1 dixi

(
∆Wm−1 + ∆Wn +

∑n−1
k=m 2∆Wk

)
−
∑n−1
i=1 dixi

(
(∆Wi + ∆Wn) +

∑n−1
k=i+1 2∆Wk

))
+
∑m−2
i=1 dixi

(
∆Wi +

∑m−2
k=i+1 2∆Wk + ∆Wm−1

)]
H
[∑n

i=m dixi
(
∆Wm−1 +

∑i−1
k=m 2∆Wk + ∆Wi

)] .

(107)

We will now show that the last quotient equals F
H . Note that the following holds, n∑

i=1
dixi

(
∆Wm−1 + ∆Wn +

n−1∑
k=m

2∆Wk

)
−
n−1∑
i=1

dixi

(∆Wi + ∆Wn) +
n−1∑
k=i+1

2∆Wk

+
{
m−2∑
i=1

dixi

(
∆Wi +

m−2∑
k=i+1

2∆Wk + ∆Wm−1

)}
=
[
dnxn

(
∆Wm−1 + ∆Wn +

n−1∑
k=m

2∆Wk

)
+

n−1∑
i=1

dixi

∆Wm−1 + ∆Wn +
n−1∑
k=m

2∆Wk −∆Wi −∆Wn −
n−1∑
k=i+1

2∆Wk


+
{
m−2∑
i=1

dixi

(
∆Wi +

m−2∑
k=i+1

2∆Wk + ∆Wm−1

)}]

=

dnxn

(
∆Wm−1 + ∆Wn +

n−1∑
k=m

2∆Wk

)
+

n−1∑
i=1

dixi

∆Wm−1 +
n−1∑
k=m

2∆Wk −∆Wi −
n−1∑
k=i+1

2∆Wk

+
{
m−2∑
i=1

dixi

(
∆Wi +

m−2∑
k=i+1

2∆Wk + ∆Wm−1

)}
= dnxn

(
∆Wm−1 + ∆Wn +

n−1∑
k=m

2∆Wk

)
+

m−2∑
i=1

dixi

∆Wm−1 −∆Wi −
m−1∑
k=i+1

2∆Wk

+

+
(
n−1∑
i=m

dixi

(
∆Wm−1 −∆Wi +

i∑
k=m

2∆Wk

))
+
{
m−2∑
i=1

dixi

(
∆Wi +

m−2∑
k=i+1

2∆Wk + ∆Wm−1

)}

=
(

n∑
i=m

dixi

(
∆Wm−1 −∆Wi +

i∑
k=m

2∆Wk

))

=
(

n∑
i=m

dixi

(
∆Wm−1 + ∆Wi +

i−1∑
k=m

2∆Wk

))
.

(108)
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Thus, we have shown that

am ≤
F

H
. (109)

By induction, ak ≤ F
H for all k ∈ {1, . . . , n− 2}.

Lemma 4. Assume that the constraints of (60) hold. Then, ak = F
H for all k ∈ {1, . . . , n− 2}.

Proof. We have already shown in Lemma 3 that ak ≤ F
H for all k ∈ {1, . . . , n− 2}. Now, we show that ak ≥ F/H for all k ∈ {1, . . . , n− 2}.

Due to an−1 ≤ an and using the expressions (91) and (93), we get

L−
∑n−2
i=1 ai

(
H(∆Wi + ∆Wn)dixi +

∑n−1
k=i+1 2H∆Wkdixi

)
H(∆Wn−1 + ∆Wn)dn−1xn−1

≤
M +

∑n−2
i=1 ai

(
H(∆Wi + ∆Wn−1)dixi +

∑n−2
k=i+1 2H∆Wkdixi

)
Hdnxn (∆Wn−1 + ∆Wn)

⇔ dnxnL− dn−1xn−1M ≤ dn−1xn−1

n−2∑
i=1

aidixi

H(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2H∆Wk

+ dnxn

n−2∑
i=1

aidixi

H(∆Wi + ∆Wn) +
n−1∑
k=i+1

2H∆Wk


⇔ dnxnL− dn−1xn−1M ≤ an−2

dn−1xn−1

n−2∑
i=1

dixi

H(∆Wi + ∆Wn−1) +
n−2∑
k=i+1

2H∆Wk

+ dnxn

n−2∑
i=1

dixi

H(∆Wi + ∆Wn) +
n−1∑
k=i+1

2H∆Wk

 .

(110)

50



Observe that,

dnxnL− dn−1xn−1M = L(dnxn + dn−1xn−1)− dn−1xn−1FH(∆Wn−1 + ∆Wn)

= F

(dnxn + dn−1xn−1)
n−1∑
i=1

(∆Wi + ∆Wn)dixi +
n−1∑
k=i+1

2∆Wkdixi

− dn−1xn−1

n∑
i=1

xidi(∆Wn−1 + ∆Wn)


= F

[
dn−1xn−1

dn−1xn−1(∆Wn−1 + ∆Wn) +
n−2∑
i=1

xidi

∆Wi + 2∆Wn−1 + ∆Wn +
n−2∑
k=i+1

2∆Wk


+ dnxn

dn−1xn−1(∆Wn−1 + ∆Wn) +
n−2∑
i=1

xidi

∆Wi + ∆Wn +
n−1∑
k=i+1

2∆Wk


− dn−1xn−1

n∑
i=1

xidi(∆Wn−1 + ∆Wn)
]

= F

[
dn−1xn−1

n−2∑
i=1

xidi

∆Wi + ∆Wn−1 +
n−2∑
k=i+1

2∆Wk

+ dnxn

n−2∑
i=1

xidi

∆Wi + ∆Wn +
n−1∑
k=i+1

2∆Wk

].

(111)

Inserting (111) into (110) yields

an−2 ≥
F

H
.

Together with Lemma 3, it follows that

an−2 = F

H
.

In a smiliar way, one can show that an−k ≥ F
H if an−` = F

H for all 2 ≤ ` ≤ k − 1.
Again, in combination with Lemma 3, this gives ak = F

H for all k ∈ {1, . . . , n− 2}.
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