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Abstract

Multilevel algorithms play an important role in the estimation of rare event probabilities
for computationally expensive systems.
This thesis introduces and investigates a multilevel estimator for cross-entropy based
importance sampling. A hierarchy of approximations of different quality is used to effi-
ciently derive a suitable biasing density for importance sampling. This involves solving
optimization problems with respect to the Kullback-Leibler divergence. Furthermore, it
is shown that a selective refinement strategy can be employed. These modifications lead
to significantly reduced computational cost compared to the single level version.
Numerical experiments in one- and two-dimensional physical space demonstrate the ap-
plicability of the method to small failure probabilities.

Zusammenfassung

Multilevelalgorithmen kommt beim Schätzen von Wahrscheinlichkeiten seltener Ereignisse
eine wichtige Rolle zu, insbesondere bei rechenintensiven Systemen.
In dieser Arbeit wird ein Multilevelschätzer vorgestellt und untersucht, welchem Cross-
Entropy basiertes Importance Sampling zu Grunde liegt. Eine hierarchische Anordnung
von Approximationen verschiedener Ausflösungen wird bei der effizienten Konstruktion
einer problemspezifischen Dichte für Importance Sampling verwendet. Dabei werden Op-
timierungsprobleme bezüglich der Kullback-Leibler Divergenz betrachtet und gelöst. Des
Weiteren stellt sich heraus, dass von einer selektiven Verfeinerungstechnik Gebrauch ge-
macht werden kann. Diese Veränderungen führen zu einem erheblich verringerten Rechen-
aufwand im Vergleich zu der Variante, bei der nur eine einzige Diskretisierung verwendet
wird.
Numerische Experimente im Ein- und Zweidimensionalen demonstrieren, dass die Metho-
de für kleine Fehlerwahrscheinlichkeiten geeignet ist.
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Introduction

Several environmental, engineering and biological systems are based on the — in many
situations certainly not too unfounded — hope or presumption that some event is very
unlikely to happen. Such a, therefore called, rare event is mostly associated with a failure
of the corresponding system.
Mathematical models usually use partial differential equations in combination with suit-
able boundary conditions to describe the underlying physical processes. Additionally to
the well-known formulas of the physical laws also data, for example, a material parameter,
is needed to characterize the particular situation. Mostly this information is affected by
uncertainty due to a lack of accurate measurements or simply not being able to depict
reality exactly. Incorporating this uncertainty of the input data into the partial differen-
tial equation yields a stochastic partial differential equation, whose solution will not be
deterministic.
Generally, in an application-oriented context certain properties of the solution are the
quantities of interest. Mostly they can be expressed as functionals.
In the risk and reliability analysis of such systems rare events and their probabilities,
so called failure probabilities, are of high relevance. A failure occurs if the value of a
particular quantity of interest falls below (or exceeds) a critical threshold.
Consider, for instance, groundwater flow, which can be described by Darcy’s law, in com-
bination with a radioactive waste disposal. Since it is impossible to have a full knowledge
about the structure of the soil, a way out is to model it as a random porous medium. In
this example it is hopefully very unlikely, in case of an unintentional incident, for con-
taminated water to leave some security zone around the repository within short amount
of time.
Typically the procedure to achieve an accurate and reliable value for a rare event prob-
ability consists of three major steps. The first one is concerned with the challenge of
how to quantitively describe the uncertainty in the model. It is followed by the problem
of (numerically) solving the stochastic partial differential equation. The final task is the
evaluation of the functional to obtain the quantity of interest and therefore its failure
probability. Each of these steps can be a challenge in its own right.
In order to include the uncertainty into the model, the coefficients, the right hand side and
the boundary conditions are represented as random fields, which are random variables over
some appropriate probability space with values in some function space. A typical modeling
assumption, known as the finite-dimensional noise assumption, is that the randomness in
the input data can be represented or at least approximated sufficiently well by a finite
number of stochastic degrees of freedom.
For tackling the solving procedure several different approaches have been developed in
recent years. The one, which is taken in this thesis, is sampling based. A finite number
of realizations of the random fields is generated and for each fixed realization the (then
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INTRODUCTION

deterministic) variational form of the partial differential equation is solved using standard
finite element, finite difference or discontinuous Galerkin methods. This approach is
referred to as Monte Carlo method.
From the range of these single realizations statistics of the solution can be obtained, like
mean, variance or some moments. But also more evolved quantities of interest can be
computed after further processing the solution.
Rare events are the type of quantity dealt with in this thesis. Characteristically they
occur with a very small probability, in the range of 10−9 to 10−6. This complicates their
estimation, because in the case of the Monte Carlo method the desire for a precise result
requires an enormous amount of samples in the order of the inverse of the occurrence
probability. For an expensive to evaluate model this quickly becomes unaffordable, both
computationally and in terms of time, although at least for the latter one it is worth
mentioning that sampling based methods in general benefit from parallelization.
Hence, sophisticated remedies to crude Monte Carlo sampling are indispensable [RC04,
RK17].
The high computational effort for a single sample motivates to employ a surrogate, i.e., an
approximative model imitating the behavior of the true model but coming at lower cost.
In [LX10] the widely used generalized polynomial chaos expansion [XK02] serves, after
truncation, as surrogate and is combined with the original model resulting in a hybrid
method. This strategy is enhanced in [LLX11] with the aim of addressing rare events.
Both methods reduce the cost without admitting accuracy loss, but have not been applied
to complex systems and are not suitable for a high stochastic dimension.
Variance reduction techniques, which have been designed particularly for high-dimensional
stochastic sample spaces, include subset simulation [AB01, AW14] and line sampling
[KPS04]. The former one, also known as splitting or importance splitting, introduces
intermediate nested failure regions and expresses the rare event probability as a product
of conditional probabilities corresponding to these nested failure regions. Sampling with
respect to the regions employs Markov chain Monte Carlo [MRRT53]. An advantage of
this strategy is that prior knowledge about the model in not necessary, meaning that it
can be used as a black-box. The desired variance reduction is obtained by conditioning.
A further prominent variance reduction technique is importance sampling [RC04, Owe13,
TK10], where samples are generated from a problem-specific biasing distribution. The
choice of this distribution is significant for the success of the strategy and in general
not evident, especially for high stochastic dimensions [AB03]. Even though the opti-
mal importance distribution, which leads to a zero-variance estimator, is known analyt-
ically, it is not usable as it involves the rare event region. The cross-entropy method
[dBKMR05, KRG13, RK04, HdMR02] provides an effective procedure to obtain an ap-
proximately optimal importance distribution among a prescribed family of distributions.
It is iterative and generates nested failure regions, which approach the final rare event
region. This involves minimization problems subject to this family with respect to the
Kullback-Leibler divergence [Kul59]. Typical choices for such families are Gaussian dis-
tributions or exponential distributions; in [GPS19] the use of Gaussian mixtures is inves-
tigated and furthermore observed that neither is suitable for high-dimensional problems.
[BK08] introduces a new adaptive method, which adopts aspects of the cross-entropy
method but overcomes the likelihood ratio degeneracy issues importance sampling faces
in high dimensions.
However, despite the achieved variance reduction, the computational cost of subset sim-
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ulation and importance sampling utilizing the cross-entropy method is still significantly
large if the model evaluation is costly. To further reduce this cost, improvements of
both methods have been influenced by a multilevel idea introduced for Monte Carlo in
[Hei01, Gil08]. The so-called multilevel Monte Carlo method leverages a hierarchy of
numerical approximations of decreasing accuracy and computational effort in order to
estimate certain statistics of the model [CGST11, Gil15]. The resulting low accuracy
solutions are used as control variates for the solutions with high accuracy. Variance re-
duction is obtained since large parts of the uncertainty can be captured on the cheap
models. This, as a consequence, saves cost as the number of necessary computations on
the most expensive level decreases. The method has been extended in [PWG16] such that
any kind of surrogate can be used. Unfortunately, the application to rare event estimation
is not straightforward and suffers from the non-smoothness of the failure probability func-
tional. Results in quantile estimation [EEHM14] have established a selective refinement
strategy, which takes advantage of the special shape of the failure probability functional.
The idea is that in many cases the information from a low accuracy model already suf-
fices to decide with certainty whether failure occurs or not. This strategy promising less
evaluations of the high accuracy model has been combined with multilevel Monte Carlo
in [EHM16, FHMN16]. The resulting method convinces with asymptotic cost, which is
as high as solving a single high accuracy model. However, it is not capable of addressing
really small failure probabilities.
In contrast, a multilevel version of subset simulation, introduced in [UP15], concerns rare
event probabilities and moreover copes with a high stochastic dimension.
This thesis investigates a novel multilevel approach to importance sampling utilizing the
cross-entropy method, which has been proposed by Peherstorfer, Kramer and Will-
cox in a slightly more general manner in [PKW18]. Instead of deriving the importance
distribution from realizations of the high accuracy model a hierarchy of models of lower
accuracy and cost is exploited to efficiently construct a biasing distribution using a mul-
tilevel version of the cross-entropy method. This effects a significant speed-up without
loosing accuracy. It is furthermore observed that a selective refinement strategy as in
[EHM16] can be employed. Generalizations of the method presented here include the use
of multifidelity hierarchies [PCMW16, PWG18] instead of a multilevel hierarchy.
The outline of this thesis is as follows. In the light of the groundwater flow example
from the beginning Chapter 1 describes the problem of estimating failure probabilities.
Chapter 2 revives crude Monte Carlo sampling, before importance sampling is introduced
and the cross-entropy method described. The multilevel idea and the selective refinement
strategy are subject of Chapter 3. In Chapter 4 the already mentioned multilevel cross-
entropy importance sampling method is presented and investigated. Chapter 5 provides
numerical experiments studying a heat transfer and a groundwater flow problem. The
thesis concludes with a further discussion.
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Chapter 1

Failure Probabilities

This first chapter serves the formal presentation of the problem setup and uses the ground-
water flow example from the introduction for the purpose of illustration.
For the sake of completeness random fields and a representation possibility are introduced.
Lastly the numerical approximation of the model’s solution is discussed briefly.

1.1 Problem Setup

Model. The deterministic model of the physical relevant environment acts as the start-
ing point for the formulation of the stochastic version. Let u denote the solution of

M(u) = 0, (1.1)

whereM covers all the physical properties, which have to be satisfied. This, for example,
can include one or several partial differential equations (PDEs) and appropriate boundary
conditions (BCs). Implicitly equation (1.1) is meant to hold on a certain bounded d-
dimensional physical domain D ⊂ Rd, i.e., more formallyM

(
u(x)

)
= 0 for all x ∈ D.

To include uncertainty in the model, which might stem from a lack of knowledge or also
from intrinsic variety, let

(
Ω,F ,P

)
be an abstract probability space, where Ω denotes the

sample space, F the σ-algebra defined on Ω, rich enough to support all randomness, and
P the probability measure. In order to make the uncertainty more tangible let Θ ⊂ Rk be
a set containing k-dimensional parameters and

(
Θ,B(Θ)

)
the corresponding measurable

space with respect to the Borel σ-algebra B, versatile enough to parametrize all random-
ness via the random variable Z : Ω → Θ. The pushforward measure Z#P is assumed
to be absolutely continuous with respect to the k-dimensional Lebesgue measure λ and
therefore has, according to the Radon-Nikodym theorem, a density p, i.e., d(Z#P) = p dλ.
Consequently, and in contrast to the deterministic case, where the parameters have been
intrinsically related to the modelM, due to their consideration as being uncertain they
have to be explicitly taken into account now.
Thus the model depends on these random parameters, which themselves are sampled from
the space Ω. The stochastic version of the model (1.1) then reads as

M
(
u, Z(ω)

)
= 0. (1.2)

Accordingly, the dependency on ω also transfers to the solution u, yielding

u = u(ω) = u
(
Z(ω)

)
. (1.3)
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CHAPTER 1. FAILURE PROBABILITIES

For a fixed ω ∈ Ω, u(ω) is called a realization of the solution and implicitly stands for
u
(
Z(ω)

)
. Regarding the notation, it depends on the context whether u(ω) or u(z) is

written, denoting a realization of Z by z ∈ Θ. In the sense of Hadamard the problem is
assumed to be, at least P-almost surely, well-posed, meaning that existence and uniqueness
of the solution are presupposed as well as a continuous dependence on the input data.
Considering the example of radioactive water traveling from a damaged repository through
the soil, there are two physical laws, which have to hold; namely for the Darcy velocity u,
describing the volume of the discharge into the vectors direction, the continuity equation

div(u) = g in D

has to be fulfilled for some source term g. Additionally for u and the hydrostatic pressure
p Darcy’s law

a−1u +∇p = 0 in D

has to be valid, where a is the permeability, a local property of the soil, i.e., a = a(x).
In the notation of model (1.1), which also includes the boundary conditions on ∂D, the
solution u would be a vector containing u and p.
Since it is practically impossible to rely on a precise knowledge of this input quantity, the
permeability a is modeled as a lognormal random field, i.e., a = a(x, ω). To make the
random field manageable it is firstly decomposed in a way such that the stochastic and
spatial parts appear separately and is secondly truncated with the aim that there is only
the need to handle finitely many stochastic degrees of freedom. Thereby it gets possible
to understand the stochastic degrees of freedom as the random parameter Z.

Quantity of Interest (QoI). A specific characteristic of a realization of the solution
u considered in the following can be expressed as a continuous but not necessarily linear
functional

X : S → R, (1.4)

where S denotes the space of all possible solutions.
The point evaluationXy(u) = u(y) at some y ∈ D or a boundary integralXΓ(u) =

∫
Γ
u·dS

for some Γ ⊂ ∂D would be simple examples. The subsurface flow problem requests a
more demanding functional involving particle tracking. Starting from the location of the
repository’s leak, call it x0, the value to obtain is the time τ it takes a particle, being
released in x0, to reach the boundary ∂S, assuming that S ⊂ D has been chosen as
the safety zone. Taking the knowledge of the Darcy velocity u for granted, the relation
between the true fluid velocity v and u is given by v = u

ϕ
, where ϕ is the porosity of the

soil. In order to compute τ the streamline x(t) of the particle is necessary, which satisfies
the ordinary differential equation

ẋ(t) = v, x(0) = x0.

Then the functional’s value is

XS(u) = τ with τ = arg min
t∈[0,∞)

{
x(t) ∈ ∂S

}
.

Having included uncertainty into the model also directly affects on the QoI, more precisely,
X(u(Z)) : Ω → R gets a random variable. For convenience but by a slight abuse of
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CHAPTER 1. FAILURE PROBABILITIES

notation X instead of X
(
u(Z)

)
is written from Section 1.3 on, if not explicitly stated

otherwise. The cumulative distribution function (cdf) of X
(
u(Z)

)
is denoted by F , on

which the following regularity assumption is imposed.

Assumption 1.1
The cdf F is Lipschitz continuous with constant Cp < ∞, i.e., for any x, y ∈ R it holds
|F (x)− F (y)| ≤ Cp|x− y|.

Failure Probability. For a certain realization of the input data, determined by a sam-
ple ω ∈ Ω, the modeled system M fails, if the corresponding value of the QoI X falls
below a certain threshold, referred to as ξ. Exceeding some threshold can be treated com-
pletely analogously by negating both QoI and threshold. Since in practice failure happens
rather seldom, the union of all these samples is named rare event Rξ. Its probability with
respect to the measure P is called failure or rare event probability Pξ, in formulas

Pξ = P(Rξ) = P(X ≤ ξ). (1.5)

Defining the failure probability functional formally as

Qξ : S → {0, 1} with u 7→ Qξ(u) = 1{X(u)≤ξ}, (1.6)

the probability in equation (1.5) can be expressed as the expectation value of Qξ

(
u(Z)

)
.

Transferring the previous abbreviation also to Qξ, meaning that later on, again, if not
explicitly mentioned differently, Qξ is written instead of Qξ

(
u(Z)

)
, one obtains that Qξ

becomes a {0, 1}-valued random variable and that the above observation can be written as
Pξ = E

[
Qξ

(
u(Z)

)]
= EQξ, where the last equality just takes advantage of the shorthand

notation.
For the groundwater flow problem short travel times from the leak of the repository to
the boundary of some safety zone are critical, since in these cases the nuclides are still
noxious and there is no possibility to take countermeasures to prevent a disaster. Thus ξ
could be selected in a way to ensure that most radionuclides have decayed or that there
is enough time to inform the population.

Parametrized Functionals. Additionally to the two functionals defined in the previ-
ous paragraphs two further quantities are introduced in the following, strongly aligned to
the preceded ones, but totally deterministic. Therefore they are also referred to as the
parametric versions of the QoI and the failure probability functional, respectively.
The first one parametrizes the composition of the solving procedure with the consecutive
evaluation of the QoI X and thus produces the map

f : Θ→ R with z 7→ f(z) = X
(
u(z)

)
. (1.7)

Analogously it is proceeded with the failure probability functional Qξ resulting in a func-
tion, which returns to each parameter z ∈ Θ whether failure occurs or not. More precisely
the map

Iξ : Θ→ {0, 1} with z 7→ Iξ(z) = 1{f(z)≤ξ} (1.8)

arises.

7



CHAPTER 1. FAILURE PROBABILITIES

Clearly, there is an obvious relation between the parametrized versions and the standard
functionals, namely, exploiting the shorthand notation: X = f ◦ Z and Qξ = Iξ ◦ Z. For
the sake of clarity no abbreviated form is introduced for these quantities.
The last analogy to mention is that the failure probability can be written as

Pξ = E
[
Qξ

(
u(Z)

)]
=

∫
Ω

Qξ

(
u
(
Z(ω)

))
dP(ω) =

∫
Θ

Qξ

(
u(z)

)
d
(
Z#P

)
(z)

=

∫
Θ

Qξ

(
u(z)

)
p(z) dλ(z) =

∫
Θ

(
Qξ ◦ u

)
(z)p(z) dλ(z) =

∫
Θ

Iξ(z)p(z) dλ(z),

(1.9)

where, besides definitions, the first line applies the change-of-measure formula and from
first to second line Z#P� λ is exploited.

Overview. An overview of the connection of all relevant maps defined previously is
given in the following commutative diagram.(

Ω,F ,P
)

S

R {0, 1}

(
Θ,B(Θ)

)

ω 7→u(ω)=u(Z(ω))

ω 7→Z(ω)

u7→X(u)

u7→Qξ(u)

r 7→1{r≤ξ}

z 7→u(z)

z 7→Iξ(z)

z 7→f(z)

1.2 Random Fields

Where PDEs use deterministic functions to describe some data, in the context of stochastic
partial differential equations (SPDEs) it is desirable to consider function-valued random
variables, called random fields, for modeling uncertainty in the coefficients or the solution.
The following definition follows a different perspective using an infinite number of random
variables taking less abstract values. But it can be shown that indeed both definitions
are equivalent.

Definition 1.2 (Random Field)
Let D ⊂ Rd be a set,

(
Ω,F ,P

)
a probability space and

(
E, E

)
a measurable space. An

E-valued random field a is a mapping

a : D × Ω→ E

such that a(x, ·) is F-E-measurable for each x ∈ D.
The function a(·, ω) : D → E for some fixed ω ∈ Ω is called realization of a.

Gaussian random fields are an often used special case of random fields, amongst others,
because their occurrence is natural and most nice properties of normally distributed ran-
dom variables are transferred in some way, e.g., that they are uniquely determined by
a mean and covariance function. Unfortunately they are unsuitable for the purpose of
modeling some real world parameters like permeability, since negative values are attained
with strictly positive probability. As a remedy often log-normal random fields are used.
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In order to sample from a random field a convenient representation is necessary. To
this end the Karhunen-Loève expansion is a helpful tool, providing a Fourier series type
expansion. For a second order random field a one can obtain the form

a(x, ω) = µ(x) +
∑
i∈N

√
νiφi(x)θi(ω),

where µ(x) is the mean function,
(
νi, φi(x)

)
are the eigenpairs of the covariance operator(

Cf
)
(x) =

∫
D

c(x, y)f(y) dλ(y)

with covariance function c and where θi(ω) = 1/
√
νi
〈
a(x, ω)−µ(x), φi(x)

〉
L2(D)

are uncor-
related random variables with mean 0 and variance 1. If a is Gaussian, then θi ∼ N (0, 1).
In numerical praxis the latter series is truncated after finitely many terms. The resulting
finite family of random variables θi can be summarized in a random vector Z, parametriz-
ing the model’s randomness.
For full definitions, derivations, theorems and proofs it is referred to [LPS14, Ch. 7].

1.3 Numerical Discretization of the Model

Besides the already addressed stochastic approximation of the SPDE there is also need
for a spatial discretization. This procedure is considered only in an abstract manner here.
For this purpose ` = 0, . . . , L denotes a hierarchy of levels, where ` = 0 is the coarsest
and ` = L the finest level; the larger the value of `, the better the approximation quality.
Correspondingly the discretized models are labeled with M`, yielding solutions u` and
affecting for the shorthand notation, that the QoI X and the failure probability functional
Qξ both admit a family of functionals

{X`}L`=0 and {Qξ,`}L`=0, (1.10)

respectively. A discretization of the QoI X itself might be included in X` as well.
Analogously also for the parametric version of the QoI f and of the failure probability
functional Iξ families

{f`}L`=0 and {Iξ,`}L`=0 (1.11)

result. Their definition follows the natural way. Lastly also for the rare event Rξ as well as
its probability Pξ discretized versions Rξ,` and Pξ,` arise. On the finest level it is assumed
that Pξ,L approximates Pξ sufficiently well for the particular purpose.
A typical and well-established way to obtain such approximations is the finite element
method, but also different numerical techniques might be necessary or possible.
One regularity assumption on the discretizations presupposed throughout the thesis is an
extension of the already demanded Lipschitz continuity of the cdf F .

Assumption 1.3
Let Fq,` denote the cdf of the random variable f`(Z), where Z ∼ qλ. For all discretized
versions and for any considered distribution of Z, Fq,` is Lipschitz continuous in a uniform
way, i.e., there exists one C <∞ such that for any level ` and any considered distribution
qλ, Fq,` has a Lipschitz constant smaller than C.
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Chapter 2

Standard Monte Carlo and Importance
Sampling

Based on the assumption that one has a black-box solver for the evaluation or at least
approximation of one realization of the failure probability functional Qξ at hand, this
chapter starts with introducing a very simple and natural idea, statistically motivated,
to achieve the value of the failure probability, the so called crude Monte Carlo method
[RC04]. A quick analysis of a measure for the relative error directly exposes the weakness
of this method in the case of rare event estimation and thus justifies the need of elaborated
variance reduction techniques overcoming this problem.
The objective of the remedy presented in the following is to focus on samples with a
high impact on the estimated quantity. That is where importance sampling has its name
from, since such samples are considered more important than others [Owe13, Chapter 9].
By sampling from a suitable biasing density, which prefers relevant samples, the variance
can be reduced. However, finding such a density is a challenging task and crucial for
convergence. An iterative methodology to approximate the in some sense optimal biasing
density among a family of densities is provided by the cross-entropy method [dBKMR05].
In this chapter the estimators are constructed in an abstract sense, meaning that their
spatial discretization is not the main focus.

2.1 Crude Monte Carlo Sampling

Starting from the integral representation

Pξ = EQξ =

∫
Ω

Qξ(ω) dP(ω) (2.1)

an application of a quadrature formula with N randomly distributed points according to
the probability measure P, equally weighted, directly results in the crude Monte Carlo
(MC) estimate, whose estimator version is given below.

Definition 2.1 (Crude Monte Carlo Estimator)
Let {Qi

ξ}Ni=1 be independent and identically distributed (i.i.d.) copies of the random vari-
able Qξ. Then

P̂MC
ξ =

1

N

N∑
i=1

Qi
ξ (2.2)

11



CHAPTER 2. STANDARD MONTE CARLO AND IMPORTANCE SAMPLING

defines the crude (or standard) Monte Carlo estimator for the failure probability Pξ.

If Qξ ∈ L1 the strong law of large numbers guarantees convergence P-a.s. for N → ∞.
Furthermore, as EP̂MC

ξ = Pξ, unbiasedness follows immediately. Of course, this estimator
is not feasible in practice, as the failure probability functional Qξ is not accessible. Re-
placing it by Qξ,` for some level ` provides an unbiased estimator for Pξ,` := EQξ,`, but in
general not for Pξ. This behavior, being incapable of influencing the approximation error
|Pξ,` − Pξ|, as long as the discretization level is fixed, is typical for numerical estimators.
Having assumed, that the latter error decreases as ` increases and that Pξ,L ≈ Pξ satisfac-
torily well, all estimators in this chapter can be thought of being executed on the finest
level L in practice; i.e., in this case the estimator

P̂MC
ξ,L =

1

N

N∑
i=1

Qi
ξ,L (2.3)

for i.i.d. copies {Qi
ξ,L}Ni=1 of Qξ,L approximates Pξ.

A common measure for the relative error of an estimator in the setting of rare events
is the so-called coefficient of variation CV, the fraction between standard deviation and
expectation of the estimator and therefore also known as the relative standard deviation.
The subsequent proposition states the already mentioned weakness in more detail.

Proposition 2.2
To obtain a given precision ε > 0 for the coefficient of variation, i.e., CV

(
P̂MC
ξ

)
< ε, the

number of necessary copies N depends on the inverse of the failure probability Pξ.

Proof. Since P̂MC
ξ is an unbiased estimator for Pξ and Qξ is a Bernoulli random variable,

one can directly calculate, using that the copies are i.i.d.:

CV
(
P̂MC
ξ

)
=

√
Var
(
P̂MC
ξ

)
EP̂MC

ξ

=

√
1
N2

∑N
i=1 Pξ(1− Pξ)
Pξ

=

√
1
N
Pξ(1− Pξ)
Pξ

=
1√
N

√
1− Pξ
Pξ

In order to achieve the given tolerance ε it has to hold N >
1−Pξ
ε2Pξ

= ε−2(P−1
ξ − 1).

To conclude this section and emphasize the previous proposition a simple numerical ex-
ample, adopted from [EHM16], is presented and will also be revisited frequently.
An important note regarding this example series: For illustrative purposes the numerical
calculations and the demonstrating figures are performed for different values of Pξ, namely
10−4 and 10−2, respectively.

Example 2.3 (Tail Estimate of the Normal Distribution – First Part)
The aim of this example is the point evaluation of the cdf of the standard normal dis-
tribution such that this value becomes Pξcalc = 10−4 for the numerical calculation and
Pξplot = 10−2 for the plot. The associated thresholds are approximately ξcalc = −3.719
and ξplot = −2.326 for the two cases. Figure 2.1 depicts the situation; the area of the
failure probability is shaded gray and referred to as failure region, the threshold ξplot is
marked with a green star.
In order to model this particular situation, let X ∼ N (0, 1) be the QoI and define the
discretized versions on level ` as perturbations X` = X + γ4+`(U − 1

2
) for ` ∈ {0, . . . , L}

with L = 3, a refinement parameter γ = 1
2
and U ∼ U(0, 1). Although the calculations

12
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are equally expensive on all levels, the evaluations are considered more expensive the
higher the level. Throughout this chapter just approximations on the finest level L are
considered.

Figure 2.1: Tail estimate of the normal distribution (Example 2.3): Illustration of the
initial situation.

Numerical testing and documentation are done as follows: For the four different sample
sizes N ∈ {101, 102, 103, 104} at first four results of the estimated failure probability are
given, before the CV is evaluated as an error measure. Independently of N the estimation
of the variance in the CV is based on 104 runs of the respective estimator of sample size
N . This evaluation is repeated five times in total, the median is listed and the largest
distance to all other values is given in brackets including its direction. The results are
summarized in Table 2.1 below.

N Run 1 Run 2 Run 3 Run 4 estimated CV
based on 104 runs

101 0 0 0 0 29.9867 (−5.4951)
102 0 0 0 0 9.9025 (−0.4466)
103 0 0 1 · 10−3 0 3.1868 (−0.0493)
104 1 · 10−4 2 · 10−4 0 0 0.9965 (+0.0080)

Table 2.1: Tail estimate of the normal distribution (Example 2.3): Results of the MC
estimation.

These rather bad results are not very surprising. For verification the coefficient of variation
shall be checked theoretically for N = 103:

CV
(
P̂MC
ξ,L

)
=

1√
N

√
1− Pξ
Pξ

=
1√
103

√
1− 10−4

10−4
≈ 3.1621.

A brief résumé of crude Monte Carlo to conclude this section: For small values Pξ and an
expensive to evaluate functional the method gets quickly computationally infeasible.

13
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2.2 Importance Sampling

Rare event estimation is a difficult task for crude Monte Carlo, but importance sampling
(IS) provides a remedy to overcome the difficulties the straightforward MC method faces.
Making use of the splitting

Pξ = P(Rξ) =

∫
Rξ

1 dP +

∫
Rcξ

0 dP (2.4)

the problem gets visible. Outside of Rξ the integrand is zero and thus evidently unin-
teresting. On the other hand, since Rξ has a small volume with respect to the measure
P, it is likely that MC fails having at least one sample inside the much more interesting
region Rξ and thus returns a totally useless result. Intuitively there is a need for getting
most or at least more samples from the relevant set Rξ. Importance sampling does this
by generating samples from a problem specific biasing density, which concentrates on Rξ.
In order to ensure unbiasedness of the resulting estimator the integrand is adjusted to
compensate the sampling from the different distribution.
Of course, this idea can be also transferred to more complicated and more variable inte-
grands, having rather small values on Rc

ξ and significant values on Rξ.

2.2.1 Basic Idea

The parametrized integral representation

Pξ =

∫
Θ

Iξ(z)p(z) dλ(z) =

∫
Ω

Iξ
(
Z(ω)

)
dP(ω) = Ep

[
Iξ(Z)

]
, (2.5)

where Ep emphasizes that the expectation is taken with respect to the nominal density
p, i.e., Z ∼ pλ, is the initial point for the upcoming considerations. This notation carries
over to Var and P.
Now let q be a further probability density on Rk with supp(Iξ · p) ⊂ supp(q); then the
fundamental equality of importance sampling reads

Ep
[
Iξ(Z)

]
=

∫
Θ

Iξ(z)p(z) dλ(z) =

∫
Θ

Iξ(z)
p(z)

q(z)
q(z) dλ(z) = Eq

[
Iξ(Z)

p(Z)

q(Z)

]
, (2.6)

where Eq indicates that the expectation is now taken with respect to the so-called im-
portance density q, i.e., Z ∼ qλ. As one can see, the multiplicative modification of the
integrand in (2.6) with the likelihood ratio p/q counterbalances the sampling of Z from
the biasing density q instead of p. That the expression is well-defined, can be verified by
a short calculation, see, e.g., [Owe13, Chapter 9] and is due to the prerequisites on q.
Approximating the last expression in (2.6) with MC gives the importance sampling esti-
mator, assuming that all evaluations are well-defined.

Definition 2.4 (Importance Sampling Estimator)
Let {Zi}Ni=1 be i.i.d. copies of the random variable Z distributed according to the probability
measure qλ. Then

P̂ IS
ξ =

1

N

N∑
i=1

Iξ(Z
i)
p(Zi)

q(Zi)
(2.7)

14
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defines the importance sampling estimator with respect to the biasing density q for the
failure probability Pξ.

The next proposition establishes the basis for variance reduction.

Proposition 2.5
The importance sampling estimator P̂ IS

ξ has the following properties:

i) It is unbiased for Pξ with variance

Var
[
P̂ IS
ξ

]
=

1

N
Varq

[
Iξ(Z)

p(Z)

q(Z)

]
. (2.8)

ii) If the variance in equation (2.8) is finite, then convergence P-a.s. is guaranteed for
N →∞.

iii) There is a density q∗ minimizing the variance, namely

q∗(z) = Iξ(z)
p(z)

Pξ
. (2.9)

iv) The estimator with importance density q∗ from (2.9) has zero variance.

Proof. The proof can be found in Appendix A.3.

Remark 2.6
The zero variance property of the special estimator addressed in Proposition 2.5 iv) ensures
that sampling Z according to q∗λ would result in an estimator who gives the correct failure
probability with just one single realization.

Now that the optimal importance density is analytically known, it is possible to analyze
its behavior. Clearly, sampling from q∗λ is not possible, since the unknown quantity Pξ is
involved as well as the parametric version of the rare event Rξ, i.e., Z(Rξ), but nonetheless
properties of good and moreover usable importance densities can be derived. So, q should
imitate the peaks of Iξ · p and should be small, where Iξ · p is small.
Choosing good importance densities is a severe task and requires sound guessing, mostly
paired with numerical help and involving more or less consolidated knowledge of the failure
region.
Before the next part provides the tools and intuition for introducing a suitable iterative
numerical algorithm to this end, Example 2.3 is continued.

Example 2.7 (Tail estimate of the normal distribution – Second Part)
It is assumed, that an apt importance density is given, pictured orange in Figure 2.2, which
approximates the optimal density, displayed green, and additionally permits sampling at
low cost.
The numerical tests and the documentation are done in the same way as before and
the results are aggregated in Table 2.2. The importance density is a Gaussian density
with a mean of approximately −3.9578 and a variance of approximately 2.0420 · 10−1,
which has been derived using the upcoming cross-entropy method from Subsection 2.2.3.
More precisely, 103 samples have been used during the algorithm to find an in some sense
optimal biasing density over a family of Gaussian densities with free mean and a variance
bounded from below by 10−1 for the numerical calculation and 5 · 10−2 for the plot.

15



CHAPTER 2. STANDARD MONTE CARLO AND IMPORTANCE SAMPLING

Figure 2.2: Tail estimate of the normal distribution (Example 2.7): Importance sampling
using a Gaussian density with mean −2.6829 and variance 9.3532 · 10−2.

N Run 1 Run 2 Run 3 Run 4 estimated CV
based on 104 runs

101 8.2395 · 10−5 9.8767 · 10−5 1.2820 · 10−4 5.7214 · 10−5 0.3869 (−0.0076)
102 9.8124 · 10−5 8.9840 · 10−5 9.0429 · 10−5 8.7558 · 10−5 0.1219 (+0.0021)

103 1.0610 · 10−4 1.0111 · 10−4 1.0102 · 10−4 9.2658 · 10−5 0.0385 (−0.0005)
104 9.9692 · 10−5 1.0074 · 10−4 9.9548 · 10−5 9.9708 · 10−5 0.0121 (+0.0001)

Table 2.2: Tail estimate of the normal distribution (Example 2.7): Results of the IS
estimation using a Gaussian density with mean −3.9578 and variance 2.0420 · 10−1.

As a first, somehow expectable observation it has to be mentioned that the results are far
better than the respective ones with standard Monte Carlo, but, and this point has to be
emphasized, a suitable importance density has been given. In general this is, of course,
not the case and the construction of such a biasing density is not for free. Secondly, the
decay of the CV within N follows neatly the theoretically expected one of

√
N , which

is typical for Monte Carlo like approaches. The third point, which shall be discussed
now tackles the severe restriction to the variance and explains its necessity as well as
a methodology to weaken it. Therefore the variance of the estimators is analyzed; the
value of the threshold ξ ∈ R plays no role in the following considerations. Using Steiner’s
translation theorem and I2

ξ,L(Z) = Iξ,L(Z) yields

Var
[
P̂ IS
ξ,L

]
=

1

N

(
Eq
[
I2
ξ,L(Z)

p2(Z)

q2(Z)

]
− P 2

ξ,L

)
=

1

N

(
Ep
[
Iξ,L(Z)

p(Z)

q(Z)

]
− P 2

ξ,L

)
.

For the remainder it suffices to consider Ep
[
Iξ,L(Z)p(Z)

q(Z)

]
. A short calculation shows

Ep
[
Iξ,L(Z)

p(Z)

q(Z)

]
=

∫
Θ

Iξ,L(z)
p2(z)

q(z)
dλ(z) =

∫ ξ

−∞

σ√
2π
e−z

2+
(z−µ)2

2σ2 dλ(z),

where in the latter equality the failure domain and the densities are inserted and the
parameters for the importance density are abbreviated by µ and σ2. Lemma A.5 in Ap-
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pendix A.3 shows that this integral and therefore the variance is unbounded for σ < 1/
√

2,
and thus also for the density used above. This indicates that small σ’s have to be handled
very carefully and implausible outcomes could result thereof and require a check, see, e.g.,
[Rob15] for a discussion on estimators with infinite variance.
A remedy motivated from a theoretical point of view, tackling the origin of the unbound-
edness, the light tails of the normal distribution q, is to use a corresponding Student’s
t distribution q̃λ instead, because of its heavier tails. The selection is heuristic; a first
freedom is to choose the Student’s t degree of freedom ν, specifying how close it shall be to
a normal distribution; a second freedom is to decide, whether the variances or covariance
matrices in more dimensions of q and q̃ shall coincide or if the shape parameter or shape
matrix of q̃ shall be the same as the one of q interpreted as Student’s t distribution. It
can indeed be shown (see Lemma A.7 in Appendix A.3), that the resulting variance is
bounded. Similarly as before one analyzes

Ep
[
Iξ,L(Z)

p(Z)

q̃(Z)

]
=

∫
Θ

Iξ,L(z)
p2(z)

q̃(z)
dλ(z) =

∫ ξ

−∞
αe−z

2

(
1 +

(z − µ)2

νδ2

) ν+1
2

dλ(z),

where ν > 1 denotes the Student’s t degree of freedom, µ the mean and δ2 the shape pa-
rameter of the importance density. α is just a prefactor with α =

(
Γ(ν

2
)
√
νδ2
)
/
(
2
√
πΓ(ν+1

2
)
)
.

By dropping the strong restriction on the variance and substituting it by a weakened
one, e.g., a lower bound of only 10−2, this idea is numerically examined. Estimates of
the CV are documented in the usual way in Table 2.3. The experiment is done one time
for the original way using normal sampling and two times for the Student’s t variant
for two different degrees of freedom ν ∈ {13, 3}, using the approach of keeping the shape
parameter. The parameters of the normal distribution (beyond) are −3.8627 for the mean
and 1.1485 · 10−2 for the variance.

N
estimated CV for estimated CV for estimated CV for
normal sampling

based on 104 runs

Student’s t sampling
ν=13, based on 104 runs

Student’s t sampling
ν=3, based on 104 runs

101 1.4355 (+0.6478) 0.2070 (−0.0010) 0.2984 (+0.0044)

102 0.8618 (+0.5329) 0.1002 (+0.0011) 0.0951 (−0.0007)
103 0.6152 (+0.3395) 0.0828 (+0.0006) 0.0302 (+0.0004)

104 0.4309 (+0.2687) 0.0807 (−0.0001) 0.0095 (−0.0001)

Table 2.3: Tail estimate of the normal distribution (Example 2.7): Comparison of coeffi-
cient of variation for normal and Student’s t sampling. The Gaussian (reference) density
has mean −3.8627 and variance 1.1485 · 10−2

Before the results of the Student’s t variant are investigated, the contrast between the last
column of Table 2.2 and the first of Table 2.3 emphasizes the need of the strict variance
restriction when using normal sampling. Taking into account the remaining two columns
shows the improvement of the CV when using the Student’s t variant. The results for
ν = 3 show a correct decay with

√
N , are even a bit better than the ones from the

previous table and seem to be quite stable. The middle column (ν = 13) shows clearly
better results than normal sampling, but rather bad values (except for small N) compared
to the smaller degree of freedom, which corresponds to heavier tails. This is reasonable as
the Student’s t distribution converges to the corresponding normal distribution as ν →∞.
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Once again a brief résumé at the end of this subsection: Importance sampling makes the
estimation of small values Pξ cheaper or for really small values in the first place possible.
But the knowledge of a suitable biasing density is inevitable and its quality is crucial
for the methodology to work. In fact, an inappropriate biasing density can make the
problem even worse. The big challenge consequently is to find an importance density
which is firstly in some sense close to the optimal one and secondly arises from a feasible
numerical algorithm. Both requirements are met by the method, which is presented in
Subsection 2.2.3 later on.

2.2.2 Information Theory

At first it is necessary to make the term of the distance between two probability densities
more precise. Therefore the Kullback-Leibler divergence, also known as relative entropy, is
introduced, a quantity, who has its origin in information theory [Kul59] and is omnipresent
in several interdisciplinary topics like neuroscience, see, e.g., [Pan03], applied statistics,
see, e.g., [AG07], artificial intelligence and machine learning, see, e.g., [Wol18].
Even though it would suffice to accept the upcoming Definition 2.8 of the Kullback-
Leibler divergence for the future purposes and see it, loosely speaking, as some quantity
describing how two measures differ from one another, a few more words shall be spent on
the intuition behind by giving a glimpse into information theory [SW49].
The focus of attention in the field of information theory is the quantification and trans-
mission of information. Therefore it is necessary to clarify the terminology of information
and especially separate it from the resonating notions of meaning and semantics. Ab-
stractly speaking, the information in some message is the freedom to choose the single
characters at will, or in other words, citing Weaver, “this word information [. . .] relates
not so much to what [one does] say, as to what [one] could say” [SW49, p. 8]. To make
this more rigorous, Shannon, the founder of this field, deduced a measure to specify the
information diversity [Sha48]. Tellingly for a message m it is called self-information or
surprisal I(m) and defined by

I(m) = log

(
1

%(m)

)
, (2.10)

where %(m) denotes the probability that m is the message of choice among all imaginable
messages. As the event space M , the set of all possible messages, is typically finite, the
power set can be chosen as σ-algebra and % is a discrete probability measure. That the
formula above is the natural way of quantifying information is outlined in Lemma A.8 in
Appendix A.3. As this is quite formal, the intuitive way to think of I(m) is to see this
quantity as the (minimum) number of characters needed to encode the message, e.g., the
amount of necessary bits, when using log2 in equation (2.10).
Based thereon let M denote the specific discrete random variable from some underlying
probability space with values in M , such that the pushforward measure turns out to have
density %. Then the entropy of the random variable M, a quantity associated with the
uncertainty of its values, is given by

H(M) = E
[
I(M)

]
=
∑
mi∈M

I(mi)%(mi) =
∑
mi∈M

log

(
1

%(mi)

)
%(mi). (2.11)

18



CHAPTER 2. STANDARD MONTE CARLO AND IMPORTANCE SAMPLING

With this construction H(M) can be thought of as the expected (minimum) number of
characters needed to encode the random variable M.
Consider at this stage the example of throwing a dice. It is easy to verify, using, e.g., the
Lagrange function for the corresponding constrained optimization problem, that H(M) is
maximized if % is a uniform distribution. Conversely the entropy can be made arbitrarily
small if one of the six numbers appears with probability tending to 1.
Finally, having quantified information the focus is turned towards the main concern of
messages, namely the transmission and therefore the propagation of information. In the
variety of theory, tackling, e.g., optimal encoding, error-correction, quantum information
and many more, just one thought experiment shall be carried out: In order to send
messages, it is desirable to compress them beforehand. Assume that, if the density % is
available, some message can be compressed in an optimal way such that this coincides
with its information content. As the true % is typically unknown, some other density %̃ is
assumed. This entails information loss. The Kullback-Leibler divergence now measures
the expected number of additionally necessary characters for the compression procedure.
Mathematically this can be formalized by

KL(%‖%̃) = E
[

log

(
%(M)

%̃(M)

)]
=
∑
mi∈M

log

(
%(mi)

%̃(mi)

)
%(mi). (2.12)

This quantity is also known as relative entropy or information gain, where the second
synonym just reverses the perspective from the derivation.
Before the introduced quantities are carried over to their continuous versions, the term
cross entropy (CE) shall be defined as well, in order to convince that the name of the
method presented in the following Subsection 2.2.3 is justified, although the cross entropy
doesn’t appear at first glance. As before two densities are present, namely the underlying
one, %, and the assumed one, %̃. Similarly to the previous constructions the cross entropy
H(M; %, %̃) averages the number of characters necessary to encode M assuming %̃, i.e.,

H(M; %, %̃) =
∑
mi∈M

log

(
1

%̃(mi)

)
%(mi). (2.13)

Intuitively H(M; %, %̃) = H(M) + KL(%‖%̃) has to hold.
Two last comments to conclude this excursion to information theory and to lead over to
the cross-entropy method: Firstly, the last equation showing the connection of the defined
terms, encourages to interpret the Kullback-Leibler divergence as some kind of distance
of probability measures and motivates the properties shown for the continuous version in
Proposition 2.9. Secondly, it gets evident that the problem of optimizing the Kullback-
Leibler divergence for some density %̃ is equivalent to optimizing the cross-entropy for
%̃.
With this knowledge of information theory the introduced concept of the Kullback-Leibler
divergence can be transferred to the setting of continuous random variables and densities.
For convenience the logarithm in the previous definitions is considered to base e from now
on.

Definition 2.8 (Kullback-Leibler Divergence, colloquially also termed Cross Entropy)
Let q and q̃ denote two probability densities on the parameter space Θ and let Z ∼ qλ.
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Then the Kullback-Leibler (KL) divergence is defined as

KL(q‖q̃) = Eq ln
q(Z)

q̃(Z)
=

∫
Θ

q(z) ln
q(z)

q̃(z)
dλ(z) (2.14)

if the induced measure qλ is absolutely continuous with respect to q̃λ and as KL(q‖q̃) =∞
otherwise.

Strictly speaking the KL divergence is not a distance, since it is not symmetric and
does not satisfy the triangle inequality. Although this deficit could be repaired by using
a symmetrized and moreover smoothened version, e.g., the Jensen-Shannon divergence,
given by JS(q‖q̃) = 1

2

(
KL(q‖q) + KL(q̃‖q)

)
with q = 1

2
(q + q̃), it is not worthwhile as the

successive considerations would complicate tremendously. At least two relevant properties
of a metric are met by the KL divergence as the following proposition shows.

Proposition 2.9
The Kullback-Leibler divergence KL(q‖q̃) between two densities q and q̃ is non-negative
and takes the value 0 iff q = q̃ λ-a.e.

Proof. Since − ln is a convex function on (0,∞), by Jensen’s inequality it holds

KL(q‖q̃) = Eq ln
q(Z)

q̃(Z)
= Eq

[
− ln

q̃(Z)

q(Z)

]
≥ − lnEq

q̃(Z)

q(Z)
= − ln

∫
Θ

q̃(z)

q(z)
q(z) dλ(z)

= − ln

∫
Θ

q̃(z) dλ(z) = − ln 1 = 0.

Since equality in Jensen’s inequality holds for a strictly convex function, as − ln is, only if
the inner integrand, here q̃/q, is constant λ-a.e., it follows q̃ = c·q λ-a.e. for a c ∈ R. Since
q and q̃ are both densities it immediately follows c = 1. This completes the proof.

2.2.3 Cross-Entropy Method

In a nutshell, the aim of this method is to find a density, which is close to the optimal
importance density q∗ with respect to the Kullback-Leibler divergence (2.14) and hence
may be an appropriate biasing density for importance sampling.
To avoid working with an unmanageable number of probability densities a family of pdfs
Q is specified and assumed, that each q ∈ Q can be uniquely represented by a finite-
dimensional parameter v, leading to the notation qv. For convenience let p = qu ∈ Q. As
said, the goal is to construct a density qv∗ ∈ Q, referred to as optimal CE density, such
that

qv∗ = arg min
qv∈Q

KL(q∗‖qv). (2.15)

In general, q∗ and qv∗ describe different densities. The minimization (2.15) can be rewritten
in the parameter form

v∗ = arg min
v s.t. qv∈Q

Eq∗ ln
q∗(Z)

qv(Z)
= arg min

v s.t. qv∈Q
Ep
[
q∗(Z)

p(Z)
ln
q∗(Z)

qv(Z)

]
= arg max

v s.t. qv∈Q
Ep
[
q∗(Z)

p(Z)
ln qv(Z)

]
(2.9)
= arg max

v s.t. qv∈Q
Ep
[
Iξ(Z) ln qv(Z)

]
.

(2.16)
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Starting from this continuous version, the straightforward way to estimate v∗ by a Monte
Carlo approach most probably fails due to the rareness of the event Rξ = {f(Z) ≤ ξ}.
Because of this, the cross-entropy Algorithm 1 is iterative and uses repeated importance
sampling with biasing densities qvm constructed along a sequence of nested failure events
Rξm = {f(Z) ≤ ξm}, specified by their intermediate thresholds ξm for m = 1, 2, . . . such
that

∞ > ξ1 > ξ2 > · · · ≥ ξ and therefore Ω ⊃ Rξ1 ⊃ Rξ2 ⊃ · · · ⊃ Rξ.

This idea, admitting a lack of notation when waiving the hat for the estimated density
parameters and the estimated thresholds, is outlined more precisely before the algorithm
is stated: Instead of finding directly a parameter v∗ belonging to the rare event threshold
ξ, the point of view is changed and on the basis of the nominal density p = qu an initial
threshold ξ1 is determined in a way that P(Rξ1) = Pqu(Rξ1) ≈ ρ for a ρ ∈ (0, 1), which is
typically around 10−1. This lifted threshold can be estimated using a fixed number of i.i.d.
copies Zi, i ∈ {1, . . . , NCE}, of Z, distributed according to Z#P = pλ, then calculating
the related performances of the parametrized QoI, i.e., f(Zi) and finding the ρ sample
quantile. Afterwards the parameter v1 of the first biasing density is estimated by solving
the so-called stochastic counterpart of

v1 = arg max
v s.t. qv∈Q

Ep
[
Iξ1(Z) ln qv(Z)

]
, (2.17)

which is no longer affected by the original rareness of Rξ and reuses the already performed
calculations. It is given by

v1 = arg max
v s.t. qv∈Q

1

NCE

NCE∑
i=1

Iξ1(Z
i) ln qv(Z

i). (2.18)

How to practically obtain the estimate v1 is addressed in connection with the general step:
Therefore assume that the intermediate threshold ξm−1 and the previously estimated den-
sity parameter vm−1 are given. Since qvm−1 naturally is a better biasing density than the
preceding ones the consecutive threshold ξm is chosen such that Pqvm−1

(Rξm) ≈ ρ. Simi-
larly to the first step, ξm is estimated by evaluating the performances of the parametrized
QoI f for i.i.d. copies Zi of Z, distributed according to qvm−1λ, and taking the ρ sample
quantile. Then the parameter vm of the m-th density is obtained by solving

vm = arg max
v s.t. qv∈Q

Ep
[
Iξm(Z) ln qv(Z)

]
= arg max

v s.t. qv∈Q
Eqvm−1

[(
Iξm(Z) ln qv(Z)

) p(Z)

qvm−1(Z)

]
,

(2.19)

where the importance sampling idea enters. As before the stochastic counterpart reads

vm = arg max
v s.t. qv∈Q

1

NCE

NCE∑
i=1

(
Iξm(Zi) ln qv(Z

i)
) p(Zi)

qvm−1(Z
i)
. (2.20)

As long as the intermediate thresholds have not reached ξ, the algorithm is continued.
To avoid an endless loop a minimal stepwidth δ is utilized as shown in the pseudocode in
the following.
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Algorithm 1 Cross-Entropy Algorithm
Input: Nominal density parameter u, family of pdfs Q, parametric version of QoI f ,

sample size NCE, threshold ξ, quantile parameter ρ and minimal stepwidth δ.
Output: Parameter v∗ determining optimal CE density qv∗ .
1: Initialize density qv0 with v0 = u, i.e., qv0 = p and set CE step counter to m = 1.
2: while 1
3: Generate i.i.d. realizations {zi}NCE

i=1 of Z distributed according to qvm−1λ.
4: Evaluate the QoIs, i.e., compute {f(zi)}NCE

i=1 .
5: Set the intermediate threshold ξm to the minimum of the ρ-quantile of the previous

results and, if existent, ξm−1 − δ.
6: if ξm > ξ then
7: Solve for vm using {f(zi)}NCE

i=1 and set m = m+ 1.
8: else
9: Set ξm = ξ, solve for vm using {f(zi)}NCE

i=1 and break with v∗ = vm.
10: end if
11: end while

It remains to discuss the estimation of the density parameter vm in line 7 and 9 of the
algorithm, i.e., solving the stochastic counterpart of the optimization problem. Typically
the objective function is differentiable and convex in the parameter v, yielding that vm is
the root of

1

NCE

NCE∑
i=1

(
Iξm(Zi)∇v ln qv(Z

i)
) p(Zi)

qvm−1(Z
i)
. (2.21)

Surprisingly, but very advantageously numerical differentiation in∇v ln qv(z) can be avoided
for a large and relevant class of densities, as it can be carried out analytically there, e.g.,
for the so called natural exponential family [RK04]. The following example provides the
gradient for another class, namely for the family of multivariate normal distributions,
(uniquely) parametrized with their mean vector µ and covariance matrix Σ.

Example 2.10
Let v =

(
µ, Σ

)
. A rather lengthy calculation shows that the derivative is given by

∇v ln qv(z) =
(

Σ−1(z − µ), −1
2

(
Σ−1 − Σ−1(z − µ)(z − µ)TΣ−1

))
.

Having derived the optimal cross-entropy density qv∗ via an application of Algorithm 1,
it can be used as a biasing density in an importance sampling setting. Typically the
theoretical conditions on the importance density, namely that supp(Iξ · p) = supp(q∗) ⊂
supp(qv∗) holds and sampling from qv∗ is possible, are met. This allows to define the
importance sampling estimator, which uses the cross-entropy method to construct the
biasing density. Preferably, but not necessarily, the number of samples N in the estimator
itself is set to the number of samples already used during the derivation of the importance
density, i.e., N = NCE.

Definition 2.11 (Cross-Entropy Importance Sampling Estimator)
Let {Zi}Ni=1 be i.i.d. copies of the random variable Z distributed according to the optimal
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CE density qv∗λ. Then

P̂CEIS
ξ =

1

N

N∑
i=1

Iξ(Z
i)
p(Zi)

qv∗(Z
i)

(2.22)

defines the cross-entropy importance sampling (CEIS) estimator for the failure probability
Pξ.

As already mentioned for the MC estimator, P̂CEIS
ξ is not feasible either, as Iξ is not

available. And completely analogously to before the parametrized failure probability
functional has to be substituted by its discretization Iξ,` on some level ` in order to
achieve a realizable estimator, which is then unbiased for Pξ,` = E

[
Iξ,`(Z)

]
. But unlike

MC or even IS with a prespecified density this adjustment has to be extended to the
deduction of the density as well. Consequently the derived optimal CE density has to be
equipped with a level index, i.e., qv`,∗ .
At the end of this subsection once again Example 2.3 is revived.

Example 2.12 (Tail Estimate of the Normal Distribution – Third Part)
In contrast to Example 2.7 the importance density has to be constructed first by means
of the cross-entropy algorithm, searching for the optimal CE density in a family of normal
densities with free mean and a variance bounded from below by 10−1 for the numerical
calculation and 5 · 10−2 for the plot. These restrictions help to bypass degeneracy issues,
which are discussed a bit more at the end of Chapter 4. The minimal stepwidth δ is chosen
to be 10−2 in both cases and ρ is 0.1 for the calculations and 0.15 for the generation of
the plot. This procedure is illustrated in Figure 2.3. Each intermediate threshold is
marked with an orange star. The final threshold coincides with the green marked ξ.
Additionally the sequence of biasing densities arising during the algorithm is depicted,
where the chronological order is visualized by increasing opacity for an increasing CE step
counter m.

Figure 2.3: Tail estimate of the normal distribution (Example 2.12): Importance sampling
utilizing the CE method to obtain an importance density. The parameters used in the
CE method are ρ = 0.15, δ = 10−2 and NCE = 103. Q is the family of Gaussian densities
with variance larger than 5 · 10−2.
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As usual, Table 2.4 presents the results for NCE = N .

N Run 1 Run 2 Run 3 Run 4 estimated CV
based on 104 runs

101 6.7871 · 10−5 3.5760 · 10−5 1.7094 · 10−4 1.1655 · 10−4 0.6922 (+0.0212)

102 7.1560 · 10−5 1.1273 · 10−4 9.7037 · 10−5 1.1044 · 10−4 0.1478 (+0.0044)

103 1.0322 · 10−4 1.0126 · 10−4 9.4426 · 10−5 1.0458 · 10−4 0.0362 (−0.0005)
104 9.9023 · 10−5 1.0093 · 10−4 9.9554 · 10−5 9.9429 · 10−5 0.0113 (−0.0001)

Table 2.4: Tail estimate of the normal distribution (Example 2.12): Results of the CEIS
estimation. The parameters used in the CE method are ρ = 0.1 and δ = 10−2. Q is the
family of Gaussian densities with variance larger than 10−1.

Apart from slightly worse results for a relatively small number of samples compared to
importance sampling with a predetermined density they are fairly similar to the ones in
Table 2.2. The reason for this is quite evident after having a closer look at the difference
of how the importance densities used for the failure probability estimate in each case are
achieved. First think back to importance sampling with a given importance density. It
has been mentioned there, that in fact the cross-entropy method has already been used
once in order to obtain the specific density. Since this was a one-time calculation with
a fixed number of samples in each step of the cross-entropy algorithm, namely N = 103,
this is clearly different from the setting in this part of the example. Here all intermediate
densities and therefore also the optimal CE density are derived based on the same number
of samples as the final estimate is. The poorer results in Table 2.4 coincide with the cases,
where this number is smaller than in the second part of this example.

In this subsection an iterative methodology has been developed to make importance sam-
pling usable. A suitable importance density can be found among a prespecified parametric
family via an optimization problem, which is analytically solvable in some relevant cases
and is therefore cheap in terms of computational cost.
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Chapter 3

The Multilevel Idea and Selective Re-
finement

Resuming the aim of the preceding section, this chapter follows a different path to gain
variance reduction by exploiting a multilevel idea. Unlike before the spatial discretization
is directly taken into account and becomes the focal point. Instead of estimating the
failure probability functional on the finest level, it is made use of the linearity of the
expectation, making room for writing Qξ,L in terms of the coarse level approximation
Qξ,0 and several correction terms up to the finest level. This technique is known as the
multilevel Monte Carlo method and was introduced in the setting of SPDEs by Giles et
al. in [CGST11].
Due to a lack of regularity in the failure probability functional Qξ the convergence result
doesn’t benefit from the full potential of the method in that case. In order to counter-
balance this Elfverson, Hellmann and Malqvist have developed a method taking
advantage of the failure probability functional’s special shape [EHM16]. Namely, if from
a coarser level approximation of the QoI the fine level value of the failure probability
functional is predictable, computations can be saved. This strategy is called selective
refinement. Combining multilevel Monte Carlo with selective refinement results in an es-
timator with better cost asymptotics, which is, loosely speaking, in the end as expensive
as solving one realization on the finest level.

3.1 Multilevel Monte Carlo

The method’s key idea is to utilize the telescopic sum representation

Pξ,L = EQξ,L = EQξ,0 +
L∑
`=1

E[Qξ,` −Qξ,`−1] =
L∑
`=0

E[Qξ,` −Qξ,`−1] (3.1)

with Qξ,−1 ≡ 0 and estimate each occurring expectation with MC using judiciously chosen
sample sizes N` for the different correction terms Qξ,`−Qξ,`−1. The multilevel Monte Carlo
(MLMC) estimator is then defined as follows.

Definition 3.1 (Multilevel Monte Carlo Estimator)
For any level ` ∈ {0, . . . , L} let

{
Qi
ξ,` −Qi

ξ,`−1

}N`
i=1

be i.i.d. copies of the random variable
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Qξ,` −Qξ,`−1. Then

P̂MLMC
ξ,L =

L∑
`=0

1

N`

N∑̀
i=1

(
Qi
ξ,` −Qi

ξ,`−1

)
(3.2)

defines the multilevel Monte Carlo estimator up to level L for the failure probability Pξ,L.

As long as all Qξ,` are in L1 strong convergence is guaranteed if N` → ∞ for any `.
Unbiasedness with respect to Pξ,L follows from the telescopic sum construction.
Before going deeper into the advantages of the MLMC estimator, a standard absolute error
measure, the root-mean-square error (RMSE) of the estimator P̂MLMC

ξ,L shall be defined as
follows,

RMSE
(
P̂MLMC
ξ,L

)
:=

√
E
[(
P̂MLMC
ξ,L − Pξ

)2
]
. (3.3)

This measure can be put into relation with the coefficient of variation. Therefore let P̂
denote an unbiased estimator of P . Then it holds

RMSE
(
P̂
)

=

√
E
[(
P̂ − P

)2
]

=

√
Var
(
P̂
)

= EP̂ · CV
(
P̂
)

= P · CV
(
P̂
)
, (3.4)

showing that, unbiasedness of the estimator provided, the CV can be interpreted as the
RMSE’s relative version.
In order to understand why MLMC is cheaper than MC the mean-square error (MSE) of
both shall be calculated and compared. Straightforward computations show

MSE
(
P̂MC
ξ,L

)
=

1

N
Var
(
Qξ,L

)
+
(
E[Qξ,L −Qξ]

)2 (3.5)

and

MSE
(
P̂MLMC
ξ,L

)
=

L∑
`=0

1

N`

Var
(
Qξ,` −Qξ,`−1

)
+
(
E[Qξ,L −Qξ]

)2
, (3.6)

where the latter terms, known as the squared expectable approximation error or also
called the squared numerical bias contribution, cannot be improved by the estimator as
long as the maximal level is fixed and besides only appear if Pξ,L 6= Pξ. Focusing on the
remaining stochastic error contribution the following proposition suggests a decreasing
number of necessary samples the finer the level gets, i.e., N` → 0 as ` approaches infinity.

Proposition 3.2
If Qξ,` converges to Qξ in L2, then Var

(
Qξ,` −Qξ,`−1

)
→ 0 as `→∞.

Proof. Using L2 convergence, i.e., E
[
|Qξ,` −Qξ|2

]
→ 0 as `→∞, one obtains

0 ≤ Var
(
Qξ,` −Qξ,`−1

)
= E

[
(Qξ,` −Qξ,`−1)2

]
−
(
E(Qξ,` −Qξ,`−1)

)2 ≤ E
[
|Qξ,` −Qξ,`−1|2

]
≤ 2
(
E
[
|Qξ,` −Qξ|2

]
+ E

[
|Qξ −Qξ,`−1|2

])
→ 0 as `→∞.

Loosely speaking the ability of capturing a large part of the uncertainty on the coarser
grids and consequently saving computations on finer levels has been stated.
A standard way of controlling the error of MLMC is to require that RMSE ≤ ε or
equivalently MSE ≤ ε2. To this end a customary proceeding, see, e.g., [Gil15], is to
determine the finest level L in a way that the numerical bias contribution is bounded
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by ε/
√

2. Then it remains to treat the contribution of the sampling error, where the
subsequent outline follows [EHM16, Appendix A]. In order to obtain the optimal sample
sizes on the different levels, the total cost of the MLMC method is minimized under
the constraint that the variance of the estimator is bounded by ε2/2. This can be done
analytically by treating the numbers of samples as continuous variables, which avoids that
the optimization problem becomes an NP-hard knapsack problem, and yields

N` = 2ε−2

√
Var
(
Qξ,` −Qξ,`−1

)
C
(
Qξ,`

)
+ C
(
Qξ,`−1

) L∑
˜̀=0

√
Var
(
Qξ,˜̀−Qξ,˜̀−1

)(
C(Qξ,˜̀) + C(Qξ,˜̀−1)

)
, (3.7)

where C denotes the nonlinear cost operator. It shall be pointed out that it is sufficient for
C to be some relative quantity. An alternative derivation of the same result can be found
in [Gil15]. In the last part of this section a theorem on convergence and computational
cost of MLMC is given and applied in the failure probability setting.

Theorem 3.3 (Convergence and Computational Cost of MLMC)
Let γ ∈ (0, 1) denote a refinement parameter and furthermore let α, β, q denote the positive
constants, describing the convergence rates and the cost rate, respectively, such that

i)
∣∣E[Qξ,` −Qξ

]∣∣ . γα`, ii) Var
(
Qξ,` −Qξ,`−1

)
. γβ`, iii) C

(
Qξ,`

)
. γ−q`

are fulfilled. Then, if α ≥ 1
2

min(β, q), for any ε < 1/e, there exists a fine level L and a
sequence {N`}L`=0 such that

RMSE
(
P̂MLMC
ξ,L

)
≤ ε (3.8)

and

C
(
P̂MLMC
ξ,L

)
.


ε−2 if q < β

ε−2(log ε)2 if q = β

ε−2− q−β
α if q > β

. (3.9)

Proof. The proof can be found in and slightly adapted from [CGST11, Theorem 1].

Everything stated so far is applicable to any random variable, meaning that Qξ and
{Qξ,`}L`=1 could be replaced by an arbitrary random variable and its discretizations, re-
spectively. Smoothness provided, one typically obtains β ≈ 2α for the convergence rates
in Theorem 3.3.
Unfortunately, in the case of the clearly non-smooth failure probability functional Qξ for
the convergence rates it holds α = β = 1, as the upcoming proposition establishes. To
arrive at this it is necessary to specify the approximation qualities of the discretizations
of the QoI X. A straightforward way, motivated by a priori error bounds from customary
PDE settings, is to require a uniform bound of the error with respect to the realizations.

Assumption 3.4 (Full or Uniform Refinement)
For a refinement parameter γ ∈ (0, 1) accuracy on level ` in the sense of full refinement
is defined by requiring, that

|X −X`| ≤ γ` (3.10)

holds P-a.s. in Ω.

This situation can be illustrated as follows. The gray shaded area in Figure 3.1 highlights
all admissible values for the approximation error.
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|X −X`| ≤ γ`

X`

|X −X`|

X`

|X −X`|

γ`

ξ

Figure 3.1: Illustration of full refinement (Assumption 3.4): The numerical error |X −X`|
is bounded uniformly by γ`.

Proposition 3.5 (Convergence Rates of Qξ,`)
Let the full refinement property (3.10) be fulfilled.

i) Then it holds for the convergence rates i) and ii) in Theorem 3.3 that α = β = 1,
i.e.,

∣∣E[Qξ,` −Qξ

]∣∣ . γ` and Var
(
Qξ,` −Qξ,`−1

)
. γ`.

ii) If the expectation of the error additionally follows
∣∣E[Qξ,` − Qξ

]∣∣ & γ`, then the
convergence rate of the variance in part i) of the proposition cannot be improved.

Proof. Similarly to the proof of Lemmas 3.3–3.5 in [EHM16] for assertion i) at first the set
B = {ω ∈ Ω : |X`(ω)− ξ| ≤ γ`} ⊂ Ω is defined. On B it holds due to the full refinement
property (3.10) and the triangle inequality |X − ξ| ≤ |X −X`|+ |X` − ξ| ≤ 2γ`.
Considering its complement Bc = {ω ∈ Ω : |X`(ω)− ξ| > γ`} the full refinement assump-
tion yields |X −X`| ≤ γ` < |X` − ξ|. As the following lines show, this ensures Qξ,` = Qξ

on Bc, or equivalently X` ≤ ξ ⇔ X ≤ ξ on Bc.
”⇒”: Since |X` − ξ| = ξ −X` ≤ ξ −X + |X −X`| ≤ ξ −X + |X` − ξ| it follows X ≤ ξ.
”⇐” by contradiction: Assuming X ≤ ξ as well as X` > ξ delivers a contradiction in the
inequality chain 0 ≤ |X − ξ| = ξ −X ≤ ξ −X` + |X` −X| < ξ −X` + |X` − ξ| = 0.
Making use of these observations, utilizing that Qξ,`−Qξ only takes values in {0,±1} and
exploiting the Lipschitz continuity of X’s cdf F from Assumption 1.1 one can calculate∣∣E[Qξ,` −Qξ]

∣∣ =
∣∣∣ ∫

B

Qξ,` −Qξ dP
∣∣∣ ≤ ∫

B

1 dP = P(B) ≤ P
(
|X − ξ| ≤ 2γ`

)
= F (ξ + 2γ`)− F (ξ − 2γ`) ≤ 4Cpγ

`.

This proves the first part of the assertion. The second part can be traced back to the
previous by an application of Steiner’s translation theorem and the fact that Q2

ξ,` = Qξ,`.

Var(Qξ,` −Qξ,`−1) = E
[
(Qξ,` −Qξ,`−1)2

]
−
(
E[Qξ,` −Qξ,`−1]

)2 ≤ E
[
(Qξ,` −Qξ,`−1)2

]
= E[Q2

ξ,` − 2Qξ,`Qξ,`−1 +Q2
ξ,`−1]

= E[Qξ,` −Qξ − 2Qξ,`Qξ,`−1 + 2Qξ +Qξ,`−1 −Qξ]

≤
∣∣E[Qξ,` −Qξ]

∣∣+ 2
∣∣E[Qξ,`Qξ,`−1 −Qξ]

∣∣+
∣∣E[Qξ,`−1 −Qξ

∣∣
≤ 5
(∣∣E[Qξ,` −Qξ]

∣∣+
∣∣E[Qξ,`−1 −Qξ]

∣∣)
≤ 20Cp(1 + γ−1)γ`,
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where
∣∣E[Qξ,`Qξ,`−1 − Qξ]

∣∣ ≤ 2
(∣∣E[Qξ,` − Qξ]

∣∣ +
∣∣E[Qξ,`−1 − Qξ]

∣∣) has been used in the
next-to-last inequality, which is shown in Lemma A.9 in Appendix A.3.
For assertion ii) one assumes that there is a better convergence rate, i.e., ∃β > 1 s.t.
V[Qξ,` − Qξ,`−1] ≤ Cγβ`. Since cγ` ≤

∣∣E[Qξ,` − Qξ]
∣∣ ≤ Cγ` holds, one can choose two

levels k, ` with k < ` and cγk < Cγ`. Then∣∣E[Qξ,` −Qξ,k]
∣∣ ≥ ∣∣∣∣∣E[Qξ,k −Qξ]

∣∣− ∣∣E[Qξ,` −Qξ]
∣∣∣∣∣ ≥ c̃γk,

where c̃ depends on the difference `− k and is positive. Furthermore

c̃γk ≤
∣∣E[Qξ,` −Qξ,k]

∣∣ ≤ `−1∑
j=k

∣∣E[Qξ,j+1 −Qξ,j]
∣∣ ≤ `−1∑

j=k

E
[
(Qξ,j+1 −Qξ,j)

2
]

=
`−1∑
j=k

(
V[Qξ,j+1 −Qξ,j] +

(
E[Qξ,j+1 −Qξ,j]

)2
)

.
`−1∑
j=k

(
γβ(j+1) +O(γ2(j+1))

)
. γβ(k+1) . γβk.

Keeping `−k constant and `, k →∞ the latter calculation yields a contradiction if β > 1,
since the rates don’t match.

Remark 3.6
A closer look at the first part of the proof of Proposition 3.5 reveals that the full refinement
property (3.10) can be relaxed without weakening the validity of the statement. Namely,
on the set Bc it suffices to require |X − X`| < |X` − ξ| instead of the uniform bound
|X − X`| ≤ γ`. By definition of Bc the first one is indeed the milder one. As on B the
assumption |X −X`| ≤ γ` is already the weaker one compared to |X −X`| < |X` − ξ|, it
is kept. This encourages the modified refinement assumption, called selective refinement,
which is introduced in the upcoming Section 3.2.

Before that, Theorem 3.3 is applied in the setting of failure probabilities. To this end
it remains to quantify the computational cost for evaluating the functional Qξ,`. This is
done by the following abstract assumption.

Assumption 3.7 (Cost for Qξ,` and X`)
Let q ∈ [0,∞) denote the cost model parameter. The (expected) cost for computing one
realization of Qξ,` or X` is

C[Qξ,`] = C[X`] = γ−q`. (3.11)

For customary numerical methods, like, e.g., finite elements or discontinuous Galerkin
methods, properties of the spatial domain D and the used solver determine, amongst
others, the cost model parameter q.

Corollary 3.8 (Convergence and Computational Cost of MLMC)
Let γ ∈ (0, 1) denote a refinement parameter and assume that Assumption 3.4 and As-
sumption 3.7 hold. Then, for any ε < 1/e, there exists a fine level L and a sequence
{N`}L`=0 such that

RMSE
(
P̂MLMC
ξ,L

)
≤ ε (3.12)
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and

C
(
P̂MLMC
ξ,L

)
.


ε−2 if q < 1

ε−2(log ε)2 if q = 1

ε−1−q if q > 1

. (3.13)

Proof. This follows immediately from Theorem 3.3 and Proposition 3.5.

3.2 Selective Refinement

Arising out of the special structure of the failure probability functional

Qξ = 1{X≤ξ} (3.14)

it is reasonable to expect, that this functional is sensitive to perturbations close to the
critical value ξ, but rather insensitive to perturbations far from ξ. Thus it is enough to
refine uniformly just around ξ, whereas for values with a bigger distance to ξ larger errors
can be accepted. This idea is met by the selective refinement assumption. In order to
distinguish the two strategies, the one proposed in this section is equipped with a prime,
resulting in the notations X ′` and Q′ξ,`, respectively. Q′ξ,` arises from X ′` in the natural
way.

Assumption 3.9 (Selective Refinement)
For a refinement parameter γ ∈ (0, 1) accuracy on level ` in the sense of selective refine-
ment is defined by requiring, that

|X −X ′`| ≤ γ` or |X −X ′`| < |X ′` − ξ| (3.15)

holds P-a.s. in Ω.

As before an illustration of this strategy is given in Figure 3.2, which can be also found
in [EHM16, p. 315].

|X −X ′`| ≤ γ`

|X −X ′`| < |X ′` − ξ|

X ′`

|X −X ′`|

X ′`

|X −X ′`|

γ`

ξ

Figure 3.2: Illustration of selective refinement (Assumption 3.9): Far away from the
threshold ξ the numerical error |X −X ′`| may be larger than γ`.

A natural consistency assumption, which relates selective and full refinement, is to use
the same numerical procedure for X` and X ′`, respectively. This is made more rigorous
by the implication in the subsequent assumption.
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Assumption 3.10 (Coinciding Computational Procedure for Evaluating X` and X ′`)
If (additionally to |X −X`| ≤ γ`) also |X −X ′`| ≤ γ` holds, then X ′` = X`.

Having defined selective refinement its behavior can be analyzed.

3.2.1 Properties

The crucial observation working in the background of selective refinement is phrased in
Proposition 3.11 below. It states that if X ′` is further away from the threshold ξ than
from the exact QoI X, i.e., lies in the gray shaded area and beneath the dashed line
in Figure 3.2, this already ensures exactness for the approximated failure probability
functional Q′ξ,`.

Proposition 3.11 (Foundation of Selective Refinement)
If |X − X ′`| < |X ′` − ξ| holds, where X ′` fulfills the selective refinement property (3.15),
then it follows Q′ξ,` = Qξ, or equivalently X ′` ≤ ξ ⇔ X ≤ ξ.

Proof. Analogously to the part of the proof of Proposition 3.5, where the set Bc has been
considered, one can show this statement by replacing X` with X ′` and Qξ,` with Q′ξ,`,
respectively.

Remark 3.12
The same reasoning will be reused later on in the thesis, namely in the proof of Proposi-
tion 4.5, in order to verify the parametrized version of the slightly modified statement

|X` −X`−1| < |X`−1 − ξ`| ⇒ Qξ`,`−1 = Qξ`,`. (3.16)

A surprising consequence of Proposition 3.11 is that the probability for Q′ξ,` to be exact
is at least as high as for Qξ,` to be exact, meaning that Q′ξ,` is not less accurate than Qξ,`.
This is clarified in the following proposition.

Proposition 3.13 (Accuracy of Q′ξ,`)
If X` and X ′` are obtained by full and selective refinement, respectively, then it holds

P(Q′ξ,` = Qξ) ≥ P(Qξ,` = Qξ). (3.17)

Proof. Analogously to the proof of Lemma 3.3 in [EHM16] the set A = {ω ∈ Ω : |X(ω)−
X ′`(ω)| ≤ γ`} ⊂ Ω is defined. On A Assumption 3.10 of a coinciding computational
procedure gives Q′ξ,` = Qξ,`, delivering, that the equality Q′ξ,` = Qξ is here as probable as
Qξ,` = Qξ, i.e., formally P(Q′ξ,` = Qξ|A) = P(Qξ,` = Qξ|A).
Taking the complement Ac into account, the definition directly states |X −X ′`| > γ` and
hence |X − X ′`| < |X ′` − ξ| due to the selective refinement property (3.15). This entails
Q′ξ,` = Qξ by Proposition 3.11. Thus P(Q′ξ,` = Qξ|Ac) = 1. Since P is a probability
measure P(Qξ,` = Qξ|Ac) ≤ 1 holds true. This completes the proof.

At the end of this subsection and for the sake of completeness the discussion in Remark 3.6
shall be made more precise within the next proposition.

Proposition 3.14 (Convergence Rates of Q′ξ,`)
Let the selective refinement property (3.15) be fulfilled.

i) Then it hold
∣∣E[Q′ξ,` −Qξ

]∣∣ . γ` and Var
(
Q′ξ,` −Q′ξ,`−1

)
. γ`.
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ii) If the expectation of the error additionally follows
∣∣E[Q′ξ,` − Qξ

]∣∣ & γ`, then the
convergence rate of the variance in part i) cannot be improved.

Proof. As already discussed in Remark 3.6 one can redo the proof of Proposition 3.5 in a
straightforward manner.

3.2.2 Implementation

A suitable procedure to obtain an approximation X ′` fulfilling the selective refinement
property is built on Proposition 3.11, i.e., if |X −X ′`| < |X ′` − ξ| can be achieved before
the highest possible accuracy is reached, there is no need for further computations, since
Q′ξ,` is already exact and finer approximations will not improve the accuracy. In [EHM16]
a way of formalizing this has been proposed, which is made more precise in Algorithm 2.
The proposition directly afterwards ensures that the labeling in line 5 is legitimate.

Algorithm 2 Selective Refinement Algorithm
Input: Level `, realization ωi`, threshold ξ and refinement parameter γ.
Output: X ′`(ω

i
`)

1: Let j = 0 and compute X0(ωi`), such that |X(ωi`)−X0(ωi`)| ≤ 1 holds.
2: while j < ` and γj ≥ |Xj(ω

i
`)− ξ|

3: Let j = j + 1 and compute Xj(ω
i
`), such that |X(ωi`)−Xj(ω

i
`)| ≤ γj holds.

4: end while
5: Set X ′`(ωi`) = Xj(ω

i
`).

Proposition 3.15
The approximations X ′` calculated by Algorithm 2 satisfy the selective refinement prop-
erty (3.15)

Proof. As there are two possible reasons for leaving the while loop, namely j = ` and
γj < |Xj(ω

i
`)− ξ|, two cases have to be considered.

The last computation in the first case is X`(ω
i
`), such that |X(ωi`) −X`(ω

i
`)| ≤ γ` holds,

which corresponds, adapting notation (line 5), to the first inequality in Assumption 3.9.
In the second case Xj(ω

i
`) is calculated lastly, satisfying both γj < |Xj(ω

i
`) − ξ| and

|X(ωi`)−Xj(ω
i
`)| ≤ γj. Adjusting the notation once more this yields |X(ωi`)−X ′`(ωi`)| <

|X ′`(ωi`)− ξ|, matching the second inequality in Assumption 3.9.

3.2.3 Cost Reduction

The natural question arising is how selective refinement and especially Algorithm 2 affect
the cost of computing the failure probability functional Q′ξ,`. It is reasonable to assume
that, in expectation, it is cheaper to compute Q′ξ,` than Qξ,`, since many realizations can
be solved with lower accuracy. This is corroborated by the next proposition.

Proposition 3.16 (Cost for Q′` and X ′`)
Let Assumption 3.7 on the cost of full refinement hold. Then the expected cost for com-
puting the failure probability functional with Algorithm 2 is bounded by

C[Q′ξ,`] = C[X ′`] .
∑̀
j=0

γ−(q−1)j . γ−(q−1)`, (3.18)

32



CHAPTER 3. THE MULTILEVEL IDEA AND SELECTIVE REFINEMENT

where the second inequality holds for q ∈ [1,∞).

Proof. Consider the iteration, where Xj will be calculated with tolerance γj, and denote
the event that a realization enters this iteration by Ej. For 0 < j < ` one has, using
Assumption 1.1,

P(Ej) = P(γj−1 ≥ |Xj−1 − ξ|) = P(ξ − γj−1 ≤ Xj−1 ≤ ξ + γj−1)

≤ P(ξ − 2γj−1 ≤ X ≤ ξ + 2γj−1) = F (ξ + 2γj−1)− F (ξ − 2γj−1) ≤ 4Cpγ
j−1.

The total expected cost adds up to C[Q′ξ,`] = C[X ′`] =
∑`

j=0 P(Ej)γ
−qj .

∑`
j=1 γ

(1−q)j,
having used that P(E0) = 1.

This tells that selective refinement typically achieves a cost gain of one order of magnitude
compared to full refinement, which turns out to hold as well if selective refinement is
combined with MLMC. This is outlined in the next subsection.

3.2.4 Multilevel Monte Carlo using Selective Refinement

In order to incorporate the selective refinement idea into a customary MLMC algorithm
as, e.g., presented in [CGST11], besides the obvious change to use Q′ξ,` instead of Qξ,`,
it is also necessary to apply technical modifications in the estimation of the expectation
and variance of the corrector terms. More details can be found in [EHM16]. This new
method is called Multilevel Monte Carlo using Selective Refinement (MLMCSR).
Using the result of Subsection 3.2.3, the computational gain can be quantified.

Theorem 3.17 (Convergence and Computational Cost of MLMCSR)
Let γ ∈ (0, 1) denote a refinement parameter and assume that Assumption 3.9 and As-
sumption 3.7 hold. Then, for any ε < 1/e, there exists a fine level L and a sequence
{N`}L`=0 such that

RMSE
(
P̂MLMCSR
ξ,L

)
≤ ε (3.19)

and

C
(
P̂MLMCSR
ξ,L

)
.


ε−2 if q < 2

ε−2(log ε)2 if q = 2

ε−q if q > 2

. (3.20)

Proof. For q > 1 Corollary 3.8 applies with q− 1 instead of q due to Proposition 3.14 and
Proposition 3.16. Otherwise, for q ≤ 1, the total cost cannot be larger if a single sample
is cheaper. Thus ε−2 is certainly an upper bound.

The selective refinement idea presented in this chapter cleverly takes advantage of the
failure probability functional’s shape and offers a relatively weak but sufficient condition
under which the QoI guarantees optimal precision and beyond that reduced cost compared
to full refinement.
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Chapter 4

Multilevel Preconditioning of the Cross
Entropy Estimator

In this chapter the two main ideas for variance reduction from the previous chapters are
brought together with the aim of obtaining an efficient estimator for failure probabilities.
The foundation of this approach is importance sampling utilizing the cross-entropy method
to derive the relevant biasing density. Broadly speaking, this ensures that rare events with
probabilities as low as 10−9 can be addressed. Since the computations in the cross-entropy
algorithm usually are expensive, this is the point where the multilevel idea is exploited
in order to reduce the cost. This methodology has been proposed in a similar manner as
presented here by Peherstorfer, Kramer and Willcox in [PKW18] and is called
multifidelity preconditioned cross-entropy method. In the following it will be mainly
limited to the familiar multilevel setting and therefore also referred to as multilevel cross-
entropy importance sampling. The multifidelity approach is outlined in the outlook.
A comparison of standard importance sampling using the cross-entropy method and the
previously mentioned multilevel variant confirms, that the expected cost savings indeed
occur. Furthermore a parallel to multilevel Monte Carlo becomes evident, namely that
again due to the failure probability functional’s special shape the uniform refinement can
be replaced by a weaker selective refinement assumption.
Practical considerations addressing a failure probability-like numerical example, degener-
acy issues and inhomogeneous discretizations are covered at the end of this chapter.

4.1 Multilevel Cross-Entropy Importance Sampling

Before the multilevel idea is combined with the standard cross-entropy method from
Subsection 2.2.3, its basics shall be repeated quickly.
Since the optimal (zero-variance) importance density q∗ is not accessible for importance
sampling in practice, the Kullback-Leibler divergence helps to assess whether a different
density is at least close. The standard cross-entropy method constructs such a biasing
density qv∗ among a prescribed parametrizable family Q of appropriate densities. This
is done iteratively by approaching the rare event threshold ξ step-by-step with a strictly
decreasing sequence {ξm}mLm=1. Intermediate biasing densities {qvm}

mL
m=1 are designed by

means of the corresponding thresholds. In each iteration of the algorithm at first the new
ξm is determined such that the respective rare event has a larger probability with respect
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to the probability measure induced by the previous density qvm−1 . Based upon this the
next iterate of the biasing density qvm is obtained by solving an optimization problem.
This process is initialized with the nominal density p and typically carried out on the
finest level L to keep the discretization error as small as possible.
It would have been more favorable, if the previous procedure could have already been
initialized with a density, which is closer to q∗. This would have reduced the computation
time and saved expensive evaluations of the QoI fL on the finest level L by decreasing the
necessary number of iterations in the CE algorithm. However, it is not straightforward to
construct such a density. This is the point, where the multilevel idea comes into play and
takes effect, consolidating the plan to obtain a density for the fine level initialization from
a coarser level. As the quantities appearing in the algorithm arise from approximations
of different quality, it is necessary to equip them, additionally to the CE step counter,
with a free index for the particular discretization level `, which is chosen to be the first
subscript per convention. To avoid confusion the multilevel quantities are endowed with
a superscript ML.
This approach is explained in more detail in the following: Rather than initiating the
cross-entropy method directly on the final level ` = L, the complete single level method
is firstly carried out on the coarsest level ` = 0. This means that, based on the nominal
density p, the first initial threshold ξML

0,1 is determined such that P(RξML
0,1

) ≈ ρ, again for
a ρ ∈ (0, 1) in the order of 10−1. This is done by taking the ρ sample quantile of the
QoI’s evaluations on level ` = 0, i.e.,

{
f0(z1), . . . , f0(zNMLCE)

}
, where the realizations

{z1, . . . , zNMLCE} of Z are distributed independently according to pλ. In the next step the
parameter vML

0,1 of the first biasing density on the coarsest level is estimated by solving the
stochastic counterpart of

vML
0,1 = arg max

v s.t. qv∈Q
Ep
[
IξML

0,1 ,0
(Z) ln qv(Z)

]
. (4.1)

On this basis ξML
0,m and vML

0,m are estimated for m = 2, 3, . . . in an alternating manner,
reutilizing the familiar importance sampling idea. This means, ξML

0,m is selected such that

Pq
vML
0,m−1

(RξML
0,m

) ≈ ρ, (4.2)

where the performances of the coarsely discretized QoI
{
f0(z1), . . . , f0(zNMLCE)

}
enter.

{z1, . . . , zNMLCE} are newly drawn independent realizations of the random variable Z,
distributed according to qvML

0,m−1
λ. Subsequent to this vML

0,m is obtained via the stochastic
counterpart of

vML
0,m = arg max

v s.t. qv∈Q
Eq

vML
0,m−1

[(
IξML

0,m,0
(Z) ln qv(Z)

) p(Z)

qvML
0,m−1

(Z)

]
. (4.3)

This proceeds until the threshold sequence falls below ξ. Then the coarse level calculations
are performed one last time with threshold ξ yielding a final level-0-density qvML

0,∗
.

The successive procedure can be condensed by describing one single step on level ` in CE
step m. There are two possible scenarios:

i) The computations on level ` − 1 have been completed most recently and the last
optimization problem has resulted in a density parameter vML

`−1,∗, or

ii) the computations carried out lastly have already been executed on level ` in the
local cross-entropy step m− 1 having delivered a parameter vML

`,m−1.
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Case i) corresponds tom = 1 setting vML
`,0 = vML

`−1,∗. In either case the density corresponding
to the parameter vML

`,m−1 is now used to steer the generation of independent realizations
{z1, . . . , zNMLCE} of Z distributed accordingly. They in turn are used to evaluate the
QoI on the current level `, meaning that the performances

{
f`(z

1), . . . , f`(z
NMLCE)

}
are

calculated, from which the respective intermediate threshold ξML
`,m is obtained such that

Pq
vML
`,m−1

(RξML
`,m

) ≈ ρ. (4.4)

Afterwards the accompanying biasing density on level ` in the CE step m results as usual
from

vML
`,m = arg max

v s.t. qv∈Q
Eq

vML
`,m−1

[(
IξML
`,m,`

(Z) ln qv(Z)
) p(Z)

qvML
`,m−1

(Z)

]
. (4.5)

As previosly, this alternating and (withm) advancing estimation of intermediate threshold
and density is kept on going until ξ is reached and a final level-`-density qvML

`,∗
is obtained,

which then serves as starting point for biasing on level `+ 1.
The iterative procedure is carried forward until also on the finest available and practicable
level in the hierarchical discretization order, ` = L, the true failure probability threshold
ξ is reached. As final result the optimal multilevel cross-entropy (MLCE) density qvML

L,∗
is

obtained.
The preceding steps are summarized in the following pseudocode.

Algorithm 3 Multilevel Cross-Entropy Algorithm
Input: Nominal density parameter u, family of pdfs Q, finest level L, parametric versions

of discretized QoIs
{
f`
}L
`=0

, sample size NMLCE, threshold ξ, quantile parameter ρ and
minimal stepwidth δ.

Output: Parameter vML
L,∗ determining optimal MLCE density qvML

L,∗

1: for ` = 0, . . . , L
2: Initialize density qvML

`,0
with vML

0,0 = u for ` = 0 and with vML
`,0 = vML

`−1,∗ for ` > 0.
Then (re)set CE step counter to m = 1.

3: while 1
4: Generate i.i.d. realizations {zi}NMLCE

i=1 of Z distributed according to qvML
`,m−1

λ.
5: Evaluate the QoIs on level `, i.e., compute {f`(zi)}NMLCE

i=1 .
6: Set the intermediate threshold ξML

`,m to the minimum of the ρ-quantile of the
previous results and, if existent, ξML

`,m−1 − δ.
7: if ξML

`,m > ξ then
8: Solve for vML

`,m using {f`(zi)}NMLCE
i=1 and set m = m+ 1.

9: else
10: Set ξML

`,m = ξ, solve for vML
`,m using {f`(zi)}NMLCE

i=1 and break while loop with
vML
`,∗ = vML

`,m.
11: end if
12: end while
13: end for

As the derivation of the biasing density is just a means to an end for the actual challenge
of estimating the failure probability, the respective estimator making use of the optimal
MLCE density for biasing is given in the subsequent definition.
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Definition 4.1 (Multilevel Cross-Entropy Importance Sampling Estimator)
Let {Zi}Ni=1 be i.i.d. copies of the random variable Z distributed according to the optimal
MLCE density qvML

L,∗
λ. Then

P̂MLCEIS
ξ,L =

1

N

N∑
i=1

Iξ,L(Zi)
p(Zi)

qvML
L,∗

(Zi)
(4.6)

defines the multilevel cross-entropy importance sampling (MLCEIS) estimator for the fail-
ure probability Pξ,L.

Since P̂MLCEIS
ξ,L is just an importance sampling estimator with a sampling density derived

in a designated and moreover doable way, it is unbiased for Pξ,L, provided that vML
L,∗ leads

to a feasible density. Beyond that it approximates the exact failure probability Pξ.
In the following, Example 2.3 is addressed with multilevel cross-entropy importance sam-
pling.

Example 4.2 (Tail Estimate of the Normal Distribution – Fourth Part)
Similarly to Example 2.12 the importance density is constructed over the course of the
procedure utilizing the introduced multilevel cross-entropy method, whose level structure
is as described in Example 2.3. Apart from that the same setting as for the single level
version is used. Figure 4.1 illustrates the method using additionally to the different
opacities, indicating the progress of the CE step counter, a separate color for each level.
Note that each density entails an intermediate threshold, from which the last one on every
level coincides with the green marked ξ.

Figure 4.1: Tail estimate of the normal distribution (Example 4.2): Importance sampling
utilizing the MLCE method to obtain an importance density. The parameters used in
the MLCE method are L = 3, ρ = 0.15, δ = 10−2 and NMLCE = 103. Q is the family of
Gaussian densities with variance larger than 5 · 10−2.

The figure tells that an extensive part of the approaching procedure towards the threshold
can be carried out on the coarsest level ` = 0. In the present example the levels in-between
do not have much effect, but this could change in general, if the discretizations are less
homogeneous. One further observes that the MLCE method as well as the single level
CE method arrive at similar densities, compare, e.g., Figure 2.3.
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Table 4.1 presents the results in the usual way, taking NMLCE = N .

N Run 1 Run 2 Run 3 Run 4 estimated CV
based on 104 runs

101 1.1197 · 10−4 3.1821 · 10−5 8.7080 · 10−5 1.3028 · 10−4 0.6650 (−0.0114)
102 1.0870 · 10−4 8.2439 · 10−5 9.1418 · 10−5 9.2844 · 10−5 0.1492 (−0.0022)
103 1.0083 · 10−4 1.0387 · 10−4 9.5043 · 10−5 1.0837 · 10−4 0.0362 (−0.0006)
104 1.0005 · 10−4 1.0122 · 10−4 9.9863 · 10−5 1.0035 · 10−4 0.0113 (+0.0001)

Table 4.1: Tail estimate of the normal distribution (Example 4.2): Results of the MLCEIS
estimation. The parameters used in the MLCE method are L = 3, ρ = 0.1 and δ = 10−2.
Q is the family of Gaussian densities with variance larger than 10−1.

For the comparison of the numerical results to the single level version only one aspect shall
be illuminated at this point. Namely, one notices that the estimated CVs are very similar
for both methods. This encourages that MLCEIS does not entail accuracy loss compared
to CEIS. A further comment on the cost is postponed to the discussion in Example 4.6.

4.2 Theoretical Analysis

The multilevel framework comes with extra effort. This includes a more comprehensive
data structure, the need of approximations of different quality and foremost a theoretically
expected and numerically observed higher absolute number of total iterations. However,
it can be offset in many cases by the cost savings induced by the multilevel structure. In
order to formalize this the following analysis considers worst case bounds on the number
of iterations on the different levels and therefore also on the cost of the method. To do
so the worst case number of CE steps on level ` is defined by

M` = 1 +

(
ξML
`,1 − ξ
δ

)+

. (4.7)

That this is well-defined, is evident. Clearly it holds m` ≤M`, where m` labels the actual
number of CE steps on level `. Typically the upper bound is firstly very generous, but
secondly up to a factor a good measure for m`. The resulting bound of the total cost of
MLCEIS can be directly deduced:

C
[
P̂MLCEIS
ξ,L

]
≤

L∑
`=0

((
M`NMLCE + δ`LN

)
C[Iξ,`(Z)] +M`C[density optimization on level `]

)
The following theorem, similar to the respective one in [PKW18, Proposition 1], formalizes
the motivation of the multilevel version of the cross-entropy method addressed already
briefly at the beginning of the previous section.

Theorem 4.3 (Multilevel Preconditioning of the Cross-Entropy Method)
For ` ∈ {1, . . . , L} let vML

`−1,∗ denote the estimated intermediate CE density parameter on
level ` − 1. Furthermore, let ξML

`,1 denote the ρ-quantile of f`(Z) for Z ∼ qvML
`−1,∗

λ and let
Z̃ ∼ pλ. If

Pq
vML
`−1,∗

(
f`(Z) ≤ ξML

`,1

)
≥ Pp

(
f`(Z̃) ≤ ξML

`,1

)
, (4.8)
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then it holds that the worst case number of CE steps M` is at least as small if the CE
method is initialized with qvML

`−1,∗
as if it would have been initialized with p.

Proof. It suffices to show ξML
`,1 ≤ ξp, where ξp denotes the ρ-quantile of f`(Z̃), i.e., one has

Pp
(
f`(Z̃) ≤ ξp

)
= ρ. By definiton it also holds Pq

vML
`−1,∗

(
f`(Z) ≤ ξML

`,1

)
= ρ.

Exploiting the assumption yields Pp
(
f`(Z̃) ≤ ξML

`,1

)
≤ Pp

(
f`(Z̃) ≤ ξp

)
, delivering the

claim, as the map ξ̃ 7→ Pp
(
f`(Z̃) ≤ ξ̃

)
is the cdf of f`(Z̃) and thus non-decreasing.

The additional condition (4.8) in Theorem 4.3 expresses that the density qvML
`−1,∗

constructed
by Algorithm 3 is better suited for importance sampling with respect to the rare event
RξML

`,1
than the nominal density p.

It remains to find a plausible assumption on the discretizations of the QoI in order to
meet condition (4.8). One can show that

|f`(z)− f`−1(z)| ≤ γ` for all z ∈ Θ (4.9)

is sufficient. However, similarly to the situation in the previous chapter it turns out that
this is unnecessarily restrictive. To this end a selective refinement assumption for the
present setting exploiting the special structure of the parametrized failure probability
functional is proposed. Note that the following assumption is slightly modified compared
to Assumption 3.9.

Assumption 4.4 (Selective Refinement for MLCEIS)
For a refinement parameter γ ∈ (0, 1) accuracy on level ` ∈ {1, . . . , L} for the parametrized
QoI in the sense of selective refinement is defined by requiring, that

|f` − f`−1| ≤ γ` or |f` − f`−1| < |f`−1 − ξML
`,1 | (4.10)

holds pointwise on Θ, where ξML
`,1 denotes the ρ-quantile of f`(Z) for Z ∼ qvML

`−1,∗
λ.

Proposition 4.5
Let vML

`−1,∗, ξML
`,1 , Z and Z̃ be as in Theorem 4.3, let f` fulfill Assumption 4.4 and let the

consistency condition

Pq
vML
`−1,∗

(
f`−1(Z) ≤ ξML

`,1

)
≥ Pp

(
f`−1(Z̃) ≤ ξML

`,1

)
(4.11)

be satisfied. Then it holds

Pq
vML
`−1,∗

(
f`(Z) ≤ ξML

`,1

)
≥ Pp

(
f`(Z̃) ≤ ξML

`,1

)
− 8Cγ`. (4.12)

Proof. As in the proof of Proposition 2 in [PKW18] and in analogy to the one of Propo-
sition 3.5 the set B = {z ∈ Θ : |f`−1(z) − ξML

`,1 | ≤ γ`} is defined, on whose complement
by the selective refinement property (4.10) for MLCEIS and by definition of the set B,
|f`(z) − f`−1(z)| < |f`−1(z) − ξML

`,1 | is certainly correct. According to Remark 3.12, this
immediately implies IξML

`,1 ,`
= IξML

`,1 ,`−1 on Bc, as the setting is completely analogous.
Thus one arrives at

Pp
(
f`(Z̃) ≤ ξML

`,1

)
=

∫
B

IξML
`,1 ,`

(z)p(z) dλ(z) +

∫
Bc
IξML
`,1 ,`−1(z)p(z) dλ(z)
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≤
∫
B

IξML
`,1 ,`

(z)p(z) dλ(z) + Pp
(
f`−1(Z̃) ≤ ξML

`,1

)
≤
∫
B

IξML
`,1 ,`

(z)p(z) dλ(z) + Pq
vML
`−1,∗

(
f`−1(Z) ≤ ξML

`,1

)
, (4.13)

having exploited the non-negativity of IξML
`,1 ,`−1 in the first inequality and the consistency

condition in the second.
In order to get closer to the final form of the statement, the information content of the
second summand in (4.13) shall be transferred to the finer level `. This is possible by
admitting an error of the order O(γ`), which is content of the proof’s last part. In the
first place the calculations are continued as follows.

Pp
(
f`(Z̃) ≤ ξML

`,1

) (4.13)
≤
∫
B

IξML
`,1 ,`

(z)p(z) dλ(z) +

∫
B

IξML
`,1 ,`−1(z)qvML

`−1,∗
(z) dλ(z)

+

∫
Bc
IξML
`,1 ,`

(z)qvML
`−1,∗

(z) dλ(z)

(4.12)

≤
∫
B

IξML
`,1 ,`

(z)p(z) dλ(z) +

∫
B

IξML
`,1 ,`−1(z)qvML

`−1,∗
(z) dλ(z)

+ Pq
vML
`−1,∗

(
f`(Z) ≤ ξML

`,1

)
,

(4.14)

where for verification of the next-to-last inequality the same reasoning as in the beginning,
namely that IξML

`,1 ,`
(z) = IξML

`,1 ,`−1(z) for z ∈ Bc has been utilized. The last step has just
exploited IξML

`,1 ,`
≥ 0.

The remainder, controlling the first two terms in (4.14), follows two similar calculations
utilizing model regularity in form of Assumption 1.3 and the selective refinement prop-
erty (4.10). Firstly,∫

B

IξML
`,1 ,`

(z)p(z) dλ(z) ≤ Pp
(
Z̃−1(B)

)
= Pp

(
|f`−1(Z̃)− ξML

`,1 | ≤ γ`
)

≤ Pp
(
|f`(Z̃)− ξML

`,1 | ≤ 2γ`
)

= Fp,`(ξ
ML
`,1 + 2γ`)− Fp,`(ξML

`,1 − 2γ`) ≤ 4Cγ`.

The inequality in the second line is based on the triangle inequality, the selective refine-
ment property (4.10) and the definition of the set B. In detail it holds

|f`(Z̃)− ξML
`,1 | ≤ |f`(Z̃)− f`−1(Z̃)|+ |f`−1(Z̃)− ξML

`,1 |

≤

{
γ` + |f`−1(Z̃)− ξML

`,1 | ≤ 2γ` if |f` − f`−1| ≤ γ`.

2|f`−1(Z̃)− ξML
`,1 | ≤ 2γ` if |f` − f`−1| < |f`−1 − ξML

`,1 |.
(4.15)

Secondly it can be shown in an analogous way∫
B

IξML
`,1 ,`−1(z)qvML

`−1,∗
(z) dλ(z) ≤ Pq

vML
`−1,∗

(
Z−1(B)

)
= Pq

vML
`−1,∗

(
|f`−1(Z)− ξML

`,1 | ≤ γ`
)

≤ Pq
vML
`−1,∗

(
|f`(Z)− ξML

`,1 | ≤ 2γ`
)

= Fq
vML
`−1,∗

,`(ξ
ML
`,1 + 2γ`)− Fq

vML
`−1,∗

,`(ξ
ML
`,1 − 2γ`) ≤ 4Cγ`,

having replaced Z̃ by Z in the previous considerations (4.15) to reason the inequality in
the second line. This completes the proof.
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Although Proposition 4.5 just guarantees that the prerequisite (4.8) of Theorem 4.3 is
fulfilled up to an additive factor in γ` and additionally demands the consistency condi-
tion (4.11), the combination of both statements encourages that MLCEIS is able to reduce
the number of necessary iterations in the CE algorithm on the finest (and therefore most
expensive) level. The hope and the typical case is that the cost coming up for obtaining
the biasing density qvML

L−1,∗
is by far small enough to preserve the computational gain.

Up to now, this chapter has provided a method fusing two concepts to realize one common
aim, the estimation of very small probabilities. Loosely speaking, importance sampling
has been the central pillar ensuring being capable of reaching such small events. This
endeavor has been supported by the cross-entropy algorithm offering a feasible way in
order to be able to carry out importance sampling. The other pillar, the multilevel
concept in combination with the selective refinement idea, has been integrated with the
objective of reducing the cost of the method without a loss in precision.

4.3 Practical Considerations

4.3.1 A Realistic Failure Probability Example

To round off this accompanying toy example series on the tail estimate of the normal
distribution and to demonstrate MLCEIS for a realistic failure probability, Example 2.3
is taken up once more in a slightly modified setting.
Note that in the remainder of this thesis the numerical calculations and figures are pre-
formed for the same failure probability.

Example 4.6 (Tail Estimate of the Normal Distribution – Fifth Part)
Compared to Example 4.2 besides the central change of the failure probability to 10−8

just the restriction to the variance is adjusted to 5 · 10−2 for the calculations and 10−2 for
the plot. Figure 4.2 depicts the illustration of one single run.

Figure 4.2: Tail estimate of the normal distribution (Example 4.6): Importance sampling
utilizing the MLCE method to obtain an importance density in the realistic failure prob-
ability case. The parameters used in the MLCE method are L = 3, ρ = 0.15, δ = 10−2

and NMLCE = 103. Q is the family of Gaussian densities with variance larger than 10−2.
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As already addressed in Example 4.2, one observes that the majority of all iterations takes
place on the coarsest level ` = 0. Of course, this does not already imply, that also most
work is spent on this level, since computations on the finest level are assumed to be way
more expensive. However, compared to CEIS this means a significant speedup. A second
and subsidiary behavior attracting attention is the change in the biasing densities between
the seventh and fourteenth CE step on level ` = 0. In contrast to the steps before the
variance does not change any more, which is a result of the variance restriction to avoid
degeneracy and a theoretical stagnation of the procedure.
As usual, Table 4.2 presents the numerical results.

N Run 1 Run 2 Run 3 Run 4 estimated CV
based on 104 runs

101 1.0396 · 10−8 1.7366 · 10−8 2.2769 · 10−8 7.1416 · 10−9 0.8241 (−0.0165)
102 8.5852 · 10−9 1.0283 · 10−8 9.6539 · 10−9 8.7426 · 10−9 0.1264 (−0.0022)
103 1.0344 · 10−8 9.7438 · 10−9 1.0262 · 10−8 1.0073 · 10−8 0.0377 (+0.0020)

104 1.0075 · 10−8 9.8564 · 10−9 1.0001 · 10−8 9.9390 · 10−9 0.0114 (+0.0004)

Table 4.2: Tail estimate of the normal distribution (Example 4.6): Results of the MLCEIS
estimation in the realistic failure probability case. The parameters used in the MLCE
method are L = 3, ρ = 0.1 and δ = 10−2. Q is the family of Gaussian densities with
variance larger than 5 · 10−2.

The results are quite convincing and look surprisingly very similar to the ones for the 4
orders higher failure probability. This convinces that the MLCEIS method is capable of
addressing really small failure probabilities.
It remains to investigate whether this is also computationally manageable. To this end
Table 4.3 compares the cost of the single level CEIS method and its multilevel variant.
The table below has been created as follows: For the familiar four different sample sizes
N used throughout the algorithm during the construction of the biasing densities and for
the final failure probability estimate, the average m`, based on 104 runs of the estimator,
has been determined for each level ` ∈ {0, . . . , L} with L = 3.

N Method
Density Construction Final Estimation

` = 0 ` = 1 ` = 2 ` = 3 ` = 3

101 CEIS − − − 4.5572 1

MLCEIS 4.7634 1.0005 1.0003 1.0003 1

102 CEIS − − − 8.0167 1

MLCEIS 8.0684 1 1 1 1

103 CEIS − − − 7.9886 1

MLCEIS 8.0051 1 1 1 1

104 CEIS − − − 8.2275 1

MLCEIS 8.2352 1 1 1 1

Table 4.3: Tail estimate of the normal distribution (Example 4.6): Cost comparison of
CEIS and MLCEIS in the realistic failure probability case. The parameters used in the
CE method are ρ = 0.1 and δ = 10−2. Additionally, for the MLCE method L = 3. Q is
the family of Gaussian densities with variance larger than 5 · 10−2.
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As expected, MLCEIS dramatically reduces the number of iterations on the finest level
` = L = 3 to the absolute minimum of one CE step in almost all cases by outsourcing the
bulk of the threshold approaching procedure to the coarsest level ` = 0. Although m0 for
MLCEIS is on average already slightly higher than the CE step counter for CEIS, yielding
that the total number of iterations is considerably higher, namely by slightly more than
L, the multilevel method pays off as soon as the computational cost on the finest level is
high enough.

4.3.2 Degeneracy Issues

The example series on the tail estimate of the normal distribution was accompanied
throughout the thesis by mentioning that the variance is restricted in a way that it does not
become to small. Formally this has been reasoned by showing that the resulting estimators
have infinite variance, see Example 2.7. Ignoring this fact and running MLCEIS without
any restriction to counterbalance such issues typically results in a figure as pictured below.
The failure probability is still 10−8 and with the exception of the skipped restriction to
the variance the setting is the same as in Example 4.6.

Figure 4.3: Tail estimate of the normal distribution: Degeneracy. An application of the
MLCE (or CE) method without any restriction to the variance can deliver a density
sequence converging to a Dirac measure, which is unfeasible for further use.

After a few CE steps on the coarsest level the biasing densities become more and more
narrow until they degenerate and, depending on the implementation, the algorithm either
breaks or just starts assigning NaN to all quantities. The reason for this is as follows:
Before such an infeasible biasing density is delivered, the current biasing density is so
narrow, that the threshold sequence proceeds by the minimal stepwidth δ only and, more
importantly, none of the realizations of the QoI is smaller than this new threshold. This
entails that during the density optimization procedure a 0/0 situation occurs.
Skipping the minimal stepwidth limitation is not an option, as δ is typically already so
small, that proceeding with these steps is computationally unaffordable.
The more preferable option is to revise and adjust the chosen family Q, which can be done
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by restricting, e.g., the variance or by trying something like the in Example 2.7 presented
Student’s t variant.

4.3.3 Skewness and Inhomogeneous Discretizations

Until now it has seemed, that most of the relevant computations have taken place either on
the coarsest level, where the major part of the approximation of the optimal importance
density takes place, or on the finest level, where the final density is calculated and the
importance sampling is performed. However, this might not be the case in general.
By considering coarse level approximations, which promote failure, one can construct an
example, as this entails that the intermediate thresholds on the coarser levels reach ξ too
fast. Consequently, finer discretizations have to redo some of this approaching procedure.
A possible modification of the standard Example 2.3 is given by the discretizations

X̃` = X + γ`+4 ·
(
U − 1

2

)
− 2

L−1∑
j=0

γjδ`,j.

Figure 4.4 provides an illustration. A very close look reveals the position of the intermedi-
ate thresholds and convinces that the nestedness of the intermediate rare events remains
just level-wise.

Figure 4.4: Tail estimate of the normal distribution: Skewness of the Discretizations.
Different discretizations of the QoI cause different behavior of the MLCE method.

A short résumé to conclude this chapter. The cross-entropy importance sampling method
from Subsection 2.2.3 has been taken to multiple levels or phrased more accurately, the
search of the biasing density has been executed within a multilevel setting. This promises
significant computational savings in several applications.
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Chapter 5

Numerical Experiments

This final chapter presents two more evolved numerical settings to demonstrate the
MLCEIS method. The first experiment is performed on a one-dimensional heat trans-
fer problem and considers different parameter combinations within the MLCEIS method.
The second experiment investigates a more expensive two-dimensional groundwater flow
problem to verify the applicability of the method to realistic problems.

5.1 A Heat Transfer Problem

In this first experiment, modifying the one from [PKW18], the stationary heat equation in
the domain D = (0, 1) with uncertain heat conductivity a is considered. On the western
boundary Γw a fixed temperature is imposed by a homogeneous Dirichlet BC, whereas
zero heat flux, i.e., a homogeneous Neumann BC is imposed on the eastern boundary Γe.
For any sample ω ∈ Ω this is modeled by

−
(
a(x, ω) u′(x, ω)

)′
= 1 for x ∈ D

u(x, ω)1Γw(x) + u′(x, ω)1Γe(x) = 0 for x ∈ Γ = ∂D.

The heat conductivity, described by a random field with stochastic dimension k, is, for a
fixed vector v ∈ Rk, given by

a(x, ω) =
k∑
i=1

exp
(
Zi(ω)− (25 + k)|x− vi|

)
with a normally distributed random vector Z = (Z1, . . . , Zk)

T ∼ N (µ,Σ) with mean
µ = (1, . . . , 1)T ∈ Rk and covariance matrix Σ = 0.1 · Idk ∈ Rk×k.
For the numerical spatial discretization linear finite elements are used on a uniform mesh
with width h` = 2−4−` for the level sequence ` ∈ {0, . . . , L}, where the finest level is set
to L = 4.
The value of the temperature u : D×Ω→ R on the eastern boundary Γe = {1} serves as
QoI, i.e.,

f
(
Z(ω)

)
= u(1, ω).

In a first setting the stochastic dimension is set to k = 2, v is chosen to be (0.3, 0.8)T and
the system is said to fail if the QoI falls below ξ = 62. This entails a failure probability
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Pξ,L of approximately 9.7 · 10−9, which has been estimated with importance sampling
exploiting prior knowledge about the failure region and a rather high sample size of 106.
The used importance density has had a mean of (2.8, 1.2)T and the same covariance matrix
as the nominal density.
Multilevel cross-entropy importance sampling is tested within this setting for a few differ-
ent parameter combinations and the results are summarized in Table 5.1 below. For each
parameter tuple, specified in the first four columns, at first the estimated probabilities of
two runs are listed before the average in terms of the arithmetic mean of 20 single runs
is given as well. At the end the CV is estimated. Q is the family of Gaussian pdfs with
free mean and a variance bounded from below by restr .

N ρ δ restr Run 1 Run 2 mean
of 20 runs

estimated CV
based on 20 runs

103 0.1 1 5 · 10−2 1.0397 · 10−8 9.5509 · 10−9 9.7365 · 10−9 0.0739

103 0.25 1 5 · 10−2 9.2970 · 10−9 9.6881 · 10−9 9.6354 · 10−9 0.0642

104 0.1 1 5 · 10−2 9.6820 · 10−9 9.9989 · 10−9 9.7468 · 10−9 0.0329

104 0.2 1 5 · 10−2 9.7707 · 10−9 9.5764 · 10−9 9.6409 · 10−9 0.0228

103 0.1 1 10−2 8.7981 · 10−9 9.3743 · 10−9 9.6942 · 10−9 0.0386

103 0.25 1 10−2 9.6634 · 10−9 9.1748 · 10−9 9.7450 · 10−9 0.0360

104 0.1 1 10−2 9.6940 · 10−9 9.7830 · 10−9 9.7152 · 10−9 0.0180

104 0.2 1 10−2 9.6514 · 10−9 9.8496 · 10−9 9.6988 · 10−9 0.0168

Table 5.1: Heat transfer problem: Results of the MLCEIS estimation for the stochastic
dimension k = 2.

Instead of trying to interpret too much into the results in Table 5.1 in dependence on
the chosen parameters three things shall be mentioned. Firstly one observes that the
arithmetic mean of a few runs offers a relatively stable and precise estimate as some
special effects resulting from intrinsic randomness taking effect on the procedure of the
algorithm are smoothened out very certainly. Secondly, despite not to deniable influence
from the chosen parameters the effect in the result seems to be manageably small, as long
as severe degeneracy issues are avoided. Lastly, for this rather small stochastic dimension
the CV is in the order of the one from the toy example, already for a moderate number of
samples N . However, the higher k gets, the more necessary larger sample sizes ensuring
the reachability of any direction become as measures tend to be more different in higher
dimensions [APSAS17]. This is known as the curse of dimensionality.
To improve the imagination of the heat transfer problem and the MLCEIS method working
on this problem Figure 5.1 displays on the left-hand side the failure region and shadows the
progression of it during the MLCEIS method by shadowing the intermediate nested failure
regions arising within the algorithm. The right-hand side (with data from a run to the
parameter tuple (N = 103, ρ = 0.1, δ = 1, restr = 10−2)) plots the appearing intermediate
thresholds, marked with a different color for each level ` ∈ {0, . . . , 4}. Moreover the
progression of the computation time is displayed for whole MLCEIS, i.e., the final estimate
is included. The runtime measurement was performed on an Intel Core i7-2860QM and
16GB RAM on a single core using a Matlab implementation.
Figure 5.1 furthermore confirms that MLCEIS spends most iterations on the coarse levels
and therefore takes advantage of the relatively cheap model evaluations compared to the
ones on the finest level.
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Figure 5.1: Heat transfer problem: Progression of failure region (left): The safe region is
colored white, the intermediate failure regions arising in the MLCE method correspond to
the different light gray shaded areas enlarging the failure region to threshold ξ, which itself
is colored gray. Progression of threshold and computation time (right): The intermediate
thresholds determined by Algorithm 3 are plotted with different colors corresponding
to the different discretization levels. Additionally the graph of the computation time is
depicted in blue.

For a second setting the stochastic dimension is raised to k = 5. This involves a modifi-
cation of v, which is chosen such that the failure probability to the same ξ is roughly as
before. v = (0.28, 0.37, 0.78, 0.84, 0.98)T is a good choice and delivers a Pξ,L of approxi-
mately 1.0 · 10−8. Table 5.2 presents some numerical results in the previous manner.

N ρ δ restr Run 1 Run 2 mean
of 20 runs

estimated CV
based on 20 runs

103 0.1 1 5 · 10−2 9.9123 · 10−9 9.6518 · 10−9 9.9296 · 10−9 0.6792

104 0.1 1 5 · 10−2 1.0153 · 10−8 1.0015 · 10−8 1.0107 · 10−8 0.0200

103 0.1 1 10−2 1.0599 · 10−8 9.5639 · 10−9 1.0231 · 10−8 0.6747

104 0.1 1 10−2 1.0257 · 10−8 9.9389 · 10−9 1.0130 · 10−8 0.0156

Table 5.2: Heat transfer problem: Results of the MLCEIS estimation for the stochastic
dimension k = 5.

As before, the single runs as well as the arithmetic mean provide good approximations of
the failure probability with respect to stability and quality. One furthermore observes that
a number of N = 103 samples is too small to deliver a CV comparable to the respective
one for a smaller stochastic dimension. But a sample size of 104 suffices and ensures that
each stochastic dimension can be reached.

5.2 A Groundwater Flow Problem

The second experiment, aligned to [UP15], investigates a steady-state flow problem in a
porous medium in the domain D = (0, 1) × (0, 1) with uncertain permeability a. Addi-
tionally to the system of PDEs, described already in Chapter 1, it is necessary to specify
BCs. Whereas p ≡ 1 is imposed on the western boundary Γw, a homogeneous Dirichlet
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condition for p is imposed on the eastern side Γe. The remaining horizontal parts Γh are
equipped with no-flow conditions. The system then reads in its mixed formulation as

a−1u +∇p = 0 in D

div(u) = g in D

p1Γw + p1Γe − (n · u)1Γh = 1Γw on Γ = ∂D,

where n denotes the outer normal of D and the random coefficient a is modeled as a
log-normal random field, such that ln(a) is a mean-zero Gaussian random field with the
exponential covariance function ρexp(x1, x2) = exp(−λ−1‖x1 − x2‖1). The Karhunen-
Loève expansion of a can be obtained analytically (see, e.g., [GS91, p. 29–32]), has the
form and properties outlined in Section 1.2 and has to be truncated, say after k terms,
in order to permit sampling. This entails a finite dimensional random variable Z ∼
N
(
(0, . . . , 0)T , Idk

)
.

The spatial PDE discretization utilizes mixed RT0 − P0 finite elements on a simplicial
mesh with h` = 2−1−` for the level sequence ` ∈ {0, . . . , L} with L = 2. More precisely,
H(div;D) conforming, lowest order Raviart-Thomas finite elements are used for the Darcy
velocity u, while the pressure p is discretized with piecewise constants.
The QoI is the time it takes a particle, released in x0 = (0, 0.5)T , to reach ∂D, i.e., D is
chosen as safety zone. For simplicity the porosity of the soil is chosen to be ϕ ≡ 1. The
theoretical setting is as outlined in Section 1.1.
Numerically this particle tracking is realized by computing the path along the finite ele-
ment mesh and summing up the times needed for the relevant separate line segments.
The numerical tests, summarized in Table 5.3, are performed for the correlation length
λ = 0.64 and a stochastic dimension of k = 10, which captures 81% of the variability of
ln(a). The threshold ξ is set to 0.016, entailing a failure probability Pξ,L of approximately
6.7 · 10−9. MLCEIS is tested in the same manner as in the previous section, just the
arithmetic mean and the estimated CV are based on only 10 runs.

N ρ δ restr Run 1 Run 2 mean
of 10 runs

estimated CV
based on 10 runs

2 · 103 0.2 10−4 10−1 9.3302 · 10−9 6.8238 · 10−9 6.6404 · 10−9 0.9854

4 · 103 0.2 10−4 10−1 6.4959 · 10−9 7.5676 · 10−9 6.7262 · 10−9 0.2804

Table 5.3: Groundwater flow problem: Results of the MLCEIS estimation.

Good approximations of the failure probability are especially obtained by the arithmetic
mean of a few runs. The single runs, however, show deviations of up to two times the
failure probability for N = 2 · 103 and of up to one half times the failure probability for
N = 4 · 103. This also reflects in the estimated CV.
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Conclusions and Outlook

This thesis has been concerned with the estimation of rare event probabilities. To reduce
the computational cost, a multilevel approach to cross-entropy based importance sampling
has been presented and investigated, both theoretically and numerically. The method has
been shown to be suitable for failure probabilities as low as 10−9 in a one-dimensional
heat transfer and a two-dimensional groundwater flow setting. The numerical tests have
focussed on small and moderate stochastic dimensions.
Furthermore, a novel heuristic methodology to avoid degeneracy issues in the cross-entropy
method has been introduced. The so-called Student’s t variant provides the opportunity
to reduce necessary prior knowledge when choosing the distribution family Q in the cross-
entropy method and makes the method more accessible to higher stochastic degrees of
freedom.
Moreover, it has been observed that an implementation of selective refinement for the
particular application is possible and can bring additional savings in computation time,
especially for expensive high accuracy models.
The possibilities for further research, improvements and generalizations are vast. A first
idea is to study and test modifications of the cross-entropy algorithm [dBKMR05, Chap-
ter 4] and their applicability to the multilevel setting. To give an example, the fully
automated cross-entropy (FACE) algorithm updates the sample size in each CE step,
which allows to avoid subtle situations, identify them and optimize the cost. A second
suggestion is to analyze the effect of the selected distribution family and further develop
the introduced Student’s t variant and, moreover, provide an analytical analysis.
A generalization, which has already taken place, is the integration of a larger variety of
approximation techniques. Instead of the spatially orientated characterization of approx-
imation quality, also other concepts can be used in order to obtain economical surrogates
of the final and in general most expensive model [PKW18]. Arranging them hierarchi-
cally, usually according to their approximation quality and computational effort, deliv-
ers a structure similar to the familiar multilevel setting. In this so-called multifidelity
framework, to give a few examples, simplified models, reduced basis methods, projection
methods as well as machine learning techniques like neural networks or support vector
machines can be found.
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Appendix

This additional part provides a collection of further material referred to in the thesis but
skipped there for reasons of clarity and brevity.

A.1 Conventions

Indexing. To keep the notation concise, but as lucidly as possible, the following con-
vention w.r.t. indices is used throughout the thesis: As the multilevel version of the
cross-entropy method demands two indices, one for the level ` and one for the CE step
counter m the respective quantities are equipped with a double index, e.g. v`,m denotes
the estimated density on level ` in CE step m, where ` reaches from 0 to L and m from
1 to the level dependent m`.

Notation. Sometimes when it is clear from the context the hat indicating estimators
or estimated quantities is skipped. This affects for example ξ`,m and v`,m.

Parametrizing Random Variable Z. P induces the distribution pλ for Z, see Sec-
tion 1.1. If Z is assumed to have a different distribution with density q, because Z is,
e.g., sampled from such a distribution, it is always stated explicitly via Z ∼ qλ.

A.2 Multivariate Normal and Student’s t Distribution

Definition A.1 (Multivariate Normal Distribution)
A k-dimensional random variable Z follows a non-degenerate multivariate normal distri-
bution with mean µ ∈ Rk and a symmetric positive definite covariance matrix Σ ∈ Rk×k,
if Z has a pdf p with

p(z) =
1√

det(2πΣ)
exp

(
− 1

2
(z − µ)TΣ−1(z − µ)

)
.

Definition A.2 (Multivariate Student’s t Distribution)
A k-dimensional random variable Z follows a non-degenerate multivariate Student’s t
distribution with degree of freedom (dof) ν > 1, mean µ ∈ Rk and a symmetric positive
definite shape matrix ∆ ∈ Rk×k, if Z has a pdf p with

p(z) =
Γ(ν+k

2
)

Γ(ν
2
)
√

det(νπ∆)

(
1 +

1

ν
(z − µ)T∆−1(z − µ)

)− ν+k
2

.
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Remark A.3
The covariance matrix Σ of a multivariate Student’s t distribution is ν

ν−2
∆ for ν > 2 and

else undefined. As ν goes to ∞, the multivariate normal distribution is recovered.

A.3 Proofs, Lemmas and Remarks

Proof of Proposition 2.5 The first part of assertion i) results from the linearity of
the expectation, the fact that the copies Zi are i.i.d. according to qλ, the properties of
the importance density q and the equality E

[
Iξ(Z)

]
= Pξ. More precisely, it holds

E
[
P̂ IS
ξ

]
= Eq

[
1

N

N∑
i=1

Iξ(Z
i)
p(Zi)

q(Zi)

]
=

1

N

N∑
i=1

Eq
[
Iξ(Z

i)
p(Zi)

q(Zi)

]
= Pξ.

The calculation of the variance is even more direct and just uses the calculation rules for
the variance and that the copies Zi are i.i.d. according to qλ, i.e.

Var
[
P̂ IS
ξ

]
=

1

N2

N∑
i=1

Varq

[
Iξ(Z

i)
p(Zi)

q(Zi)

]
=

1

N
Varq

[
Iξ(Z)

p(Z)

q(Z)

]
,

for some Z ∼ qλ.
Convergence P-a.s. in ii) is under the given assumptions a direct result of the L1-version
of the strong law of large numbers, after an application of the Steiner translation theorem
and the fact that L2(Ω,F ,P) ⊂ L1(Ω,F ,P).
In order to show the minimization property in iii), consider an arbitrary, but feasible,
density q. It suffices to show that q∗ minimizes Varq

[
Iξ(Z)p(Z)

q(Z)

]
. Therefore

Varq∗

[
Iξ(Z)p(Z)

q∗(Z)

]
+

(
Eq∗
[
Iξ(Z)p(Z)

q∗(Z)

])2

= Eq∗

[(
Iξ(Z)p(Z)

q∗(Z)

)2
]

= Eq∗

[(
Iξ(Z)p(Z)

Iξ(Z)p(Z)
Pξ

)2
]

= P 2
ξ =

(
Ep
[
Iξ(Z)

])2

=

(
Eq
[
Iξ(Z)p(Z)

q(Z)

])2

CSI

≤ Eq

[(
Iξ(Z)p(Z)

q(Z)

)2
]

= Varq

[
Iξ(Z)p(Z)

q(Z)

]
+

(
Eq
[
Iξ(Z)p(Z)

q(Z)

])2

= Varq

[
Iξ(Z)p(Z)

q(Z)

]
+

(
Eq∗
[
Iξ(Z)p(Z)

q∗(Z)

])2

,

where the first and the next-to-last step are an application of Steiners translation theorem.
The last equality follows directly by writing out the notation of Eq and Eq∗ . The claim
follows by subtracting

(
Eq∗
[ Iξ(Z)p(Z)

q∗(Z)

])2 from both sides.

In order to show Varq∗
[
P̂ IS
ξ

]
= 0 and therefore iv) it again suffices to show

Varq∗

[
Iξ(Z)

p(Z)

q∗(Z)

]
= 0.
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Using again the notation Q = supp(q∗) the calculation follows

Varq∗

[
Iξ(Z)

p(Z)

q∗(Z)

]
= Eq∗

[(
Iξ(Z)

p(Z)

q∗(Z)

)2
]
−

(
Eq∗
[
Iξ(Z)

p(Z)

q∗(Z)

])2

=

∫
Q

I2
ξ (z)

p2(z)

q∗2(z)
q∗(z) dλ(z)−

(∫
Q

Iξ(z)
p(z)

q∗(z)
q∗(z) dλ(z)

)2

=

∫
Q

I2
ξ (z)

p(z)

q∗(z)
p(z) dλ(z)−

(∫
Q

Iξ(z)p(z) dλ(z)

)2

=

∫
Q

I2
ξ (z)

p(z)

Iξ(z)p(z)
Pξ

p(z) dλ(z)−
(∫

Q

Iξ(z)p(z) dλ(z)

)2

= Pξ

∫
Q

Iξ(z)p(z) dλ(z)−
(∫

Q

Iξ(z)p(z) dλ(z)

)2

= Pξ · Pξ − P 2
ξ = 0,

where the first equality is the definition of the variance, the second arises by exploiting
the expectation and the fact that the region supp(q∗)

c does not contribute to the result.
Since it is operated on supp(q∗) the third equality is clear and the fourth is just plugging
in the definition of q∗. The fifth is well-defined due to supp(Iξ · p) ⊂ supp(q∗).

Remark A.4
Clearly, the zero variance property implies the variance minimization. But both proofs are
worth to be mentioned, since in a more general context, where some integral

∫
Θ
φ(z)p(z) dλ(z)

shall be evaluated using importance sampling, a variance-minimizing density q∗ can be
found as well, namely

q∗(z) =
|φ(z)|p(z)∫

Θ
|φ(z)|p(z) dλ(z)

.

A quick verification shows, that the proof of the minimization property holds as well.
The zero variance property proof gets stuck, as soon as φ takes negative values, since
then φ2(z)/|φ(z)| = φ(z) is no longer valid.

Lemma A.5
The integral

I =

∫ ξ

−∞

σ√
2π

exp

(
− z2 +

(z − µ)2

2σ2

)
dλ(z)

is finite iff one of the two cases

i) σ > 1/
√

2, or

ii) σ = 1/
√

2 and µ < 0

holds.

Proof. For convenience, the notation l .= r is introduced, meaning that the left-hand side
l is bounded iff the right-hand side r is.
For σ = 1/

√
2 one obtains

I
.
=

∫ ξ

−∞
exp(−2zµ+ µ2) dλ(z)

.
=

∫ ξ

−∞
exp(−2zµ) dλ(z) =

{
exp(−2ξµ)
−2µ

if µ < 0

∞ if µ ≥ 0
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Elsewise for σ 6= 1/
√

2:

I
.
=

∫ ξ

−∞
exp

(
1− 2σ2

2σ2
z2 − zµ

σ2
+

µ2

2σ2

)
dλ(z)

.
=

∫ ξ

−∞
exp

(
1− 2σ2

2σ2
z2 − zµ

σ2
+

µ2

2σ2(1− 2σ2)

)
dλ(z)

=

∫ ξ

−∞
exp

(
1− 2σ2

2σ2

(
z2 − 2zµ

1− 2σ2
+

µ2

(1− 2σ2)2

))
dλ(z)

=

∫ ξ

−∞
exp

(
1− 2σ2

2σ2

(
z − µ

1− 2σ2

)2)
dλ(z)

=

∫ ξ− µ

1−2σ2

−∞
exp

(
1− 2σ2

2σ2
z2

)
dλ(z)

.
=

∫ 0

−∞
exp

(
1− 2σ2

2σ2
z2

)
dλ(z)

.
=

∫ ∞
−∞

exp

(
1− 2σ2

2σ2
z2

)
dλ(z),

where the non-trivial steps are reasoned as follows: Constant factors were exchanged from
the first to second line in order to complete the squares, before the fifth line performs a
change of variables. Directly afterwards the extreme value theorem is used on the compact
set
[
ξ− µ

1−2σ2 , 0
]
or
[
0, ξ− µ

1−2σ2

]
, depending on the sign of the integration limit. Finally

symmetry of the integrand enters.
The remaining integral is typically computed using a trick going back to Poisson, consist-
ing of squaring the integral and applying a polar coordinate transformation. This results
for 1−2σ2

2σ2 < 0 in ∫ ∞
−∞

exp

(
1− 2σ2

2σ2
z2

)
dλ(z) =

√
2πσ2

2σ2 − 1
.

For 1−2σ2

2σ2 > 0 the integral is obviously unbounded and the case 1−2σ2

2σ2 = 0 was discussed
above.
Thus it can be concluded: The integral I is finite iff

σ >
1√
2

or σ =
1√
2

and µ < 0.

Remark A.6
The second case ii) in Lemma A.5 is, from a numerical point of view, rather uninteresting,
since σ = 1/

√
2 is computationally not realizable.

Lemma A.7
The integral

I =

∫ ξ

−∞

(
Γ(ν

2
)
√
νδ2
)(

2
√
πΓ(ν+1

2
)
)e−z2(1 +

(z − µ)2

νδ2

) ν+1
2

dλ(z)

is bounded for any combination of µ, δ2 > 0 and ν > 1.

Proof. For convenience, the notation l .= r is introduced, meaning that the left-hand side
l is bounded iff the right-hand side r is.
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It holds

I
.
=

∫ ξ

−∞
e−z

2

(
1 +

(z − µ)2

νδ2

) ν+1
2

dλ(z)

≤
∫ ξ

−∞
e−z

2

(
1 +

(z − µ)2

νδ2

)⌈ ν+1
2

⌉
dλ(z)

=

∫ ξ

−∞
e−z

2

⌈
ν+1
2

⌉∑
j=0

(⌈
ν+1

2

⌉
j

)
(z − µ)2j

νjδ2j
dλ(z)

=

∫ ξ

−∞
e−z

2

⌈
ν+1
2

⌉∑
j=0

(⌈
ν+1

2

⌉
j

)
1

νjδ2j

2j∑
i=0

(
2j

i

)
z2j−i(−µ)i dλ(z)

.
=

⌈
ν+1
2

⌉∑
j=0

2j∑
i=0

∫ ξ

−∞
e−z

2

z2j−i dλ(z)

.
=

⌈
ν+1
2

⌉∑
j=0

2j∑
i=0

∫ ξ

−∞
e−z

2

z2j−i dλ(z)

≤

⌈
ν+1
2

⌉∑
j=0

2j∑
i=0

∫ ∞
−∞

e−z
2|z|2j−i dλ(z) <∞,

having used, that the prefactor is constant for fixed ν and δ2 in the first line and the
fact that

∫∞
−∞e

−z2|z|ι dλ(z) <∞ for any ι ∈ N, what can be checked by repeated partial
integration. Consequently, in any case, the integral is bounded.

Lemma A.8
A natural way to quantify the self-information of a message m that occurs with probability
%(m) is described by

I(m) = log

(
1

%(m)

)
.

Proof. Consider at first one very special case, namely that the content of a message is
totally known before, i.e. there is no uncertainty at all. Actually, then the message does
not transport any kind of information. Otherwise, if there is uncertainty and the message
is not known priorly, the message carries information. It is natural to expect a large
amount of self-information if the uncertainty is large and vice versa.
This reasons the approach I(m) = f

(
%(m)

)
for some message m and a to be determined

function f . Besides the already addressed properties %(m) = 1 ⇒ I(m) = 0 and %(m) <
1 ⇒ I(m) > 0, there is one further fundamental requirement. Note therefore, that
messages are in this context events. Let m be a message, which can be decomposed in
a way that m = m1 ∩ m2, where m1 and m2 are independent from one another. As m
conveys the information of both messages m1 and m2 it is very reasonable to presuppose

I(m) = I(m1) + I(m2).
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Furthermore, by independence of the two messages it follows %(m) = %(m1)%(m2) and
consequently

I(m) = f
(
%(m)

)
= f

(
%(m1)%(m2)

)
.

Combining the two previous statements one arrives at

f
(
%(m1)

)
+ f
(
%(m2)

)
= I(m) = f

(
%(m1)%(m2)

)
.

This functional equation is solved (non-trivially) by the family of logarithmic functions to
arbitrary bases. The selection of the base is problem-dependent and typically 2 if related
to bits or e in the case of nats. A further freedom is to choose between log and − log. As
%(m) ≤ 1 and I(m) ≥ 0 the minus sign has to be selected.
Consequently

I(m) = − log
(
%(m)

)
= log

(
1

%(m)

)
for some base.

Lemma A.9 (Completion of the proof of Proposition 3.5)
Let R(Qξ) ⊂ {0, 1} and analogously for Qξ,`−1. Then∣∣E[Qξ,`Qξ,`−1 −Qξ]

∣∣ ≤ 2
(∣∣E[Qξ,` −Qξ]

∣∣+
∣∣E[Qξ,`−1 −Qξ]

∣∣).
Proof. Starting directly with the integral representation of the left-hand side, one obtains∣∣∣∣ ∫

Ω

Qξ,`Qξ,`−1 −Qξ dP
∣∣∣∣ ≤ ∣∣∣∣ ∫

Ω

Qξ,`−1(Qξ,` −Qξ) dP
∣∣∣∣+

∣∣∣∣ ∫
Ω

Qξ(Qξ,`−1 −Qξ) dP
∣∣∣∣

≤
∣∣∣∣ ∫
{Qξ,`−Qξ≥0}

Qξ,`−1(Qξ,` −Qξ) dP
∣∣∣∣+

∣∣∣∣ ∫
{Qξ,`−Qξ<0}

Qξ,`−1(Qξ,` −Qξ) dP
∣∣∣∣

+

∣∣∣∣ ∫
{Qξ,`−1−Qξ≥0}

Qξ(Qξ,`−1 −Qξ) dP
∣∣∣∣+

∣∣∣∣ ∫
{Qξ,`−1−Qξ<0}

Qξ(Qξ,`−1 −Qξ) dP
∣∣∣∣

≤
∣∣∣∣ ∫
{Qξ,`−Qξ≥0}

Qξ,`−1(Qξ,` −Qξ) dP
∣∣∣∣+

∣∣∣∣ ∫
{Qξ−Qξ,`>0}

Qξ,`−1(Qξ −Qξ,`) dP
∣∣∣∣

+

∣∣∣∣ ∫
{Qξ,`−1−Qξ≥0}

Qξ(Qξ,`−1 −Qξ) dP
∣∣∣∣+

∣∣∣∣ ∫
{Qξ−Qξ,`−1>0}

Qξ(Qξ −Qξ,`−1) dP
∣∣∣∣

≤
∣∣E[Qξ,` −Qξ]

∣∣+
∣∣E[Qξ −Qξ,`]

∣∣+
∣∣E[Qξ,`−1 −Qξ]

∣∣+
∣∣E[Qξ −Qξ,`−1]

∣∣,
having used the properties of the absolute value and the fact that the range of Qξ (and
Qξ,`−1) is contained in {0, 1}.
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