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Abstract

Wind and fluids, in a broader context, are a significant validation aspect in urban

planning, civil engineering and architecture. Wind can have a wide range of varying

effects on the local environment. Introducing obstructions to existing wind paths and

weather patterns may have serious ramifications on the urban landscape - from re-

duced air quality or pedestrian wind comfort, to the creation of urban heat islands or

even cause structural damage. The introduction of tools capable of providing decision

support with regard to wind simulations in the early stages of urban planning can pro-

vide crucial information to the planner. State-of-the-art solutions currently utilized for

wind simulations are predominantly integrated as validation steps in the later stages

of design. This is due to the complex nature of simulating and modelling wind and

fluids.

Through the advancement of Artificial Intelligence (AI) breakthroughs in the approx-

imation of such simulations has been achieved on a theoretical basis. The goal of this

dissertation is to explore the applicability of such solutions on a larger urban scale,

that have complex environments and then expand upon them.

A significant challenge that is addressed within this dissertation is the difficulty with

which data is created and prepared for use in training AI. Due to the wide range of sce-

narios and environments that exist for wind simulations in urban planning, there does

not exist a singular solution in representing and modelling them. A flexible pipeline is

proposed and prototypically implemented. This allows for the creation of data sets,

tailored to the specific requirements of the planner. These conditions and simulation

parameters are abstracted to a simplified set, extracted through a detailed literature

overview and analysis of current state-of-the-art user studies conducted in the field of

Computational Wind Engineering (CWE).

Analyzing the current advancements in the field of AI and specifically Deep Learn-

ing (DL), a solution, based on Diffusion Models, is proposed. Expanding upon the

existing solutions, a novel approach that integrates the geometry and temporal as-

pect of wind simulations is presented. The concept is prototypically implemented and

validated. Based upon the results of this analysis further steps for the improvement

of the concept and prototype are outlined.
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Zusammenfassung

Wind und Fluide in einem allgemeineren Aspekt sind ein wichtiger Validierungsaspekt

in der Stadtplanung, im Bauwesen und in der Architektur. Wind kann eine breite Reihe

von unterschiedlichen Auswirkungen auf die lokale Umgebung haben. Die Beein-

trächtigung bestehender Windwege und Wetterverhältnisse kann schwerwiegende

Auswirkungen auf das Stadtbild haben - von einer verminderten Luftqualität oder

einem geringeren Windkomfort für Fußgänger bis hin zur Entstehung städtischer

Wärmeinseln oder sogar zu Bauschäden. Die Einführung von Werkzeugen, die in

der Lage sind, in den frühen Phasen der Stadtplanung Entscheidungsunterstützung

in Bezug auf Windsimulationen zu gewährleisten, kann dem Planer grundlegende In-

formationen liefern. Moderne Lösungen, die derzeit für Windsimulationen eingesetzt

werden, werden überwiegend als Validierungsschritte in späteren Phasen der Pla-

nung integriert. Grund dafür ist die komplexe Natur der Simulation und Modellierung

von Wind und Fluiden.

Durch die Weiterentwicklung von KI wurden auf theoretischer Basis Durchbrüche

bei der Annäherung an solche Simulationen erzielt. Ziel dieser Dissertation ist es, die

Anwendbarkeit solcher Lösungen in größeren Stadtgebieten mit komplexen Umge-

bungen zu erforschen und sie anschließend zu verfeinern.

Eine große Herausforderung, die im Rahmen dieser Dissertation behandelt wird, ist

die Schwierigkeit, Daten für das Training einer KI zu erstellen und aufzubereiten. Auf-

grund des breiten Spektrums an Szenarien und Umgebungen, die für Windsimulatio-

nen in der Stadtplanung existieren, gibt es keine einheitliche Lösung für deren Darstel-

lung und Modellierung. Eine flexible Pipeline wird entworfen und prototypisch umge-

setzt. Damit können Datensätze erstellt werden, die auf die spezifischen Anforderun-

gen des Planers ausgerichtet sind. Diese Bedingungen und Simulationsparameter

werden zu einem abstrahierten Satz zusammengefasst, der durch einen detaillierten

Literaturüberblick und eine Analyse aktueller, dem "State of the Art" entsprechender

Nutzerstudien auf dem Gebiet der CWE ermittelt wurde.

Durch die Analyse der aktuellen Fortschritte im Bereich der KI und insbesondere

der DL wird eine auf Diffusionsmodellen basierende Lösung entworfen. In Erweiterung

der bestehenden Lösungen wird ein innovativer Konzept vorgestellt, das die geometri-
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schen und zeitlichen Aspekte von Windsimulationen integriert. Das Konzept wird

prototypisch implementiert und validiert. Auf der Grundlage der Ergebnisse dieser

Analyse werden weitere Schritte zur Verbesserung des Konzepts und des Prototyps

vorgestellt.
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1 Introduction

This dissertation focuses on the exploration and application of AI methods to improve

upon the existing limitations of urban scale simulations, such as long computation

times, focus on singular models/designs and the inability to handle imprecise or vague

data. This will provide additional decision support for the planners and architects in

the early stages of design. Numerical simulations used in urban planning are compu-

tationally intense, with vast arrays of parameters that direct a multitude of components

within the simulation. The long, typically, non-interactive simulation times, the large

requirements on information and complex configurations negatively disrupt the typi-

cal design process in these early stages of urban planning (Østergård et al., 2016).

AI methods excel in inferring hidden dependencies between various parameters of

the data from which they learn. This coupled with their lower memory overhead and

faster evaluation times make AI an ideal area for the exploration of potential new im-

provements to existing simulation methods and algorithms, that are currently used in

urban planning. Due to the vast amount of varied numerical simulation types and the

different models they utilize, this dissertation will focus on the application of Computa-

tional Fluid Dynamics (CFD) on an urban planning scale, focusing specifically on wind

simulations in the context of urban planning in the early design stages.

This Architectural Informatics dissertation explores topics in the fields of Architec-

ture and Urban Planning, Civil Engineering, CWE, and Computer Sciences and Nu-

merical Simulations. To better the understanding of the underlying problems within

these fields and their relationship to one another, a brief overview of the current es-

tablished principals will be presented. A critical observation of the issues preventing

the integration of wind simulations in early design stages of urban planning will be

made. On this basis the relevant research gab, goals of the dissertation and the

accompanying research questions will be defined.

1.1 Current Situation / State of the Art

The early stages of urban planning and design are complex and dynamic. Within

them designs and concepts are changed rapidly and iteratively. The major design
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decisions, that are made within these stages, have wide-reaching effects on the final

outcome (Steinmann, 2004). Although there are established simulation tools capable

of evaluating proposed designs, they are most often used in the later stages in order

to validate a final design. This is due to the high, non-interactive computational times

of such simulation tools. Furthermore, they require a vast array of concrete details

about the design that are not readily available in the beginning. If an issue with the

final design is detected the cost to address it is significantly higher than had it been

addressed earlier (Macleamy, 2004). The advantages of ad-hoc results for the early

stages of design have been explored and analyzed over the past years and high-

light the necessity for Design Decision Support (DDS) within the early stages (Förster

et al., 2021; Bratoev et al., 2018, 2017; Gabriel et al., 2021).

Due to the vast complexity of urban models and the complex relation between the

different components of these models, the main focus of research and development

has been in the creation of more detailed simulation models, capable of integrating

multiple data models in one simulation (Sola et al., 2020; Widl et al., 2018). Some

fields of simulation such as CWE, that relay heavily on research in the field of CFD,

have proposed various simulation models that incorporate different complex models

(Toparlar et al., 2017a). The field has become a central research point for urban

simulations due to the important role they play in pedestrian comfort (Blocken et al.,

2012), urban heat islands predictions and modelling (Aghamolaei et al., 2021), pol-

lutant dispersal scenarios (Tominaga and Stathopoulos, 2013), and many more (KC

et al., 2019; Ishugah et al., 2014). The focus of the research has also started incorpo-

rating performance, exploring potential alternative methods (Schubiger et al., 2020),

different hardware architecture and uses (Obrecht et al., 2014). The results offer sig-

nificant runtime improvements already, but still require hours of computational time.

As can be seen from the work done in this field, CFD and CWE play crucial roles in

urban planning validation scenarios, so much so that there have been country wide

validation scenarios and guidelines for their use (Tominaga et al., 2008; Franke et al.,

2007; NEN, 2006). The improvement of their performance, precision and ease of use

and their wide applicability in validation scenarios make them ideal test candidates for

the goals of this dissertation.

1.2 Critical Observation

As can be seen from the state-of-the-art overview, wind simulations play a crucial

role in a wide range of simulation and validation scenarios utilized in urban planning.

Such tools can then clearly be employed in the early design stages, where they can
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greatly assist the planners by providing crucial insights into their designs. In spite of

the achieved advances in the field of CFD and CWE (with regard to both simulation

models, performance and flexibility) there are no optimal approaches in integrating

them into the early design stages of urban planning. Drawing upon criteria outlined

in Schubert (2021) for the successful implementation of tools in these stages sev-

eral requirements can be defined: precision and reliability, flexibility and adaptability,

user-friendliness, interoperability, and responsiveness. In the following section these

requirements will be clearly defined. Furthermore, the capability of current CFD solu-

tions to fulfill these requirements will be briefly discussed.

Reliability of a simulation tool is connected to its capability of providing accurate

enough results in comparison to established validation scenarios. The reliability of

wind simulations on urban scales have been a large focus of research, with various

guidelines and user studies focusing on exact domain modelling criteria for such prob-

lems. Due to the high complexity of such tools, tailoring all the requirements towards

specific scenarios and urban layouts requires a deep understanding of the underlying

numerical models governing the simulations. In spite of such guidelines, it is still con-

sidered that scaled physical models of the environment, integrated into wind tunnels,

provide more reliable results (Li et al., 2018).

Flexibility and Adaptability are crucial requirements for the integration of any tool

into the early design stages. These requirements describe the capability for the tool

to solve a wide range of scenarios, while also being able to handle different levels

of data precision. Wind simulation tools need to provide a way for the planner to

easily modify either the domain conditions, the layout and geometry of the urban area

or other factors, such as wind speed and direction. Although current state-of-the-

art solutions can solve a wide range of scenarios, they focus on singular simulation

executions. The singular nature of such simulations is due to the high computational

times and large memory requirements associated with such models (Morozova et al.,

2020; Jóczik et al., 2022; Houzeaux et al., 2022). Changes to such simulations, such

as geometry changes, or boundary conditions, e.g, wind direction, or wind speed,

require significant effort, due to the complexity of the underlying numerical solutions.

User-friendliness provides a level of abstraction between the underling numeri-

cal tool and the planner, through the use of Graphical User Interface (GUI), or other

input options (Schubert, 2021). Wind simulations are based on complex mathemati-

cal, physics-based models and are implemented through numerical techniques, mak-

ing them challenging to be represented through user-friendly interfaces. Wind sim-

ulations, being an extension of CFD, focus on solving the highly non-linear Navier-

Stokes equations. These equations have various numerical techniques that they
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can be solved with, each consisting of a vast array of variables and equations that

greatly influence the result. Furthermore, such simulations require precise modelling

of boundary conditions, to represent the topography and weather patterns associated

with the domain. All this leads to the necessity of tailored software solutions and a

deep understanding for the field of CFD, thus making it difficult to communicate the

potential implications of changes made to the models by the user.

Interoperability describes the capability of software tools to be easily integrated

into other tools. A crucial part of the early design stages is the use of a wide spec-

trum of digital and analog tools within the planning process. With advancements such

as the Collaborative Design Platform (CDP) (Schubert, 2021), it has become easier to

blend both sides into a unified approach. This has led to the necessity that DDS (such

as simulations) have the capability to be integrated into other processes. This require-

ment is in stark contrast to established software solutions for wind simulations, that

have rigid predefined input and output structures, interfaces, and execution scenarios.

Responsive tools provide the user with results directly, regardless of the complexity

of the task. Furthermore, the early design stages of urban planning are characterized

by an iterative dynamic design process. For a tool to be successfully integrated into

these stages, it must not only provide results directly, but it must also not interrupt the

design process itself. (Bratoev et al., 2018, 2017; Förster et al., 2021) have shown,

that the results of such complex tools integrated into the early design stages do not

have to deliver the final results directly, but that intermediate results can also be uti-

lized to inform the planner sufficiently. As discussed in the flexibility and adaptability

requirements, wind simulations have long computational times, where the extraction

of intermediate results is also not always possible ad-hoc.

From this overview it is clear, that CFD simulations, and more specifically urban

scale wind simulations, are not well suited for the successful integration into early de-

sign stages processes. The introduction of alternative ways of providing the planner

with such simulation results is required. AI has shown to have the capability to bridge

some of these issues. Such methods offer a significant improvement in performance

and resource requirements (Xie et al., 2018; Zhong et al., 2022), enabling for ad-hoc

results. Although such approaches have been shown to not possess as high of a

precision and reliability as established approaches, their accuracy has been estab-

lished as sufficient for early stage planning, where the vagueness of models would

impact the precision of traditional approaches (Calzolari and Liu, 2021). In spite of

the large amount of data required to train AI methods, the resulting models can be

easily reused in further applications (Mohan and M.V.S.S, 2022). AI methods infer re-

lations and dependencies between the various parameters in the data they are trained
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on. This allows for the simplification of parameters that a user has to control, allowing

for more user-friendly interactions with the simulation tool. The challenge remains to

have a flexible enough input and output structure of such models, that it allows for a

wider range of flexibility for its integration.

As can be seen from this brief overview into the current state-of-the-art solutions

in the area of CFD and CWE, there are certain discrepancies between the require-

ments necessary for their integration in the early stages of urban design. On the other

hand, AI methods offer ways to circumvent some of these challenges. Existing solu-

tions applying such approaches in combination with CFD solutions have shown on a

smaller scale, that such concepts are feasible (Raissi et al., 2019; Kim et al., 2019;

Obiols-Sales et al., 2020). Thus, an approach that expands upon existing solutions, in

scale, complexity, and technology holds the potential to enable the integration of wind

simulations into the early design stages of planning while fulfilling all the requirements

of such tools.

1.3 Goal of the Dissertation

As briefly discussed in previous sections the goal of this dissertation is to integrate

CFD simulations in the early stages of design by overcoming the aforementioned

limitations with the use of AI. This dissertation will focus on the hypothesis that:

Artificial Intelligence methods and algorithms in conjunction with urban scale

physics based numerical wind simulations are capable of outputting more

reliable than established simulation tools in the context of urban planning,

while also maintaining a high level of precision.

This dissertation will focus not only on exploring the applicability of AI for urban scale

physics based CFD simulations but will also research and propose an approach for

the full integration of such modified simulations into the early design stages. With

these goals in mind the dissertation will attempt to provide answers and insight to the

following research questions:

• What kind of AI methods and algorithms are best suited for learning and predict-

ing CFD simulation results on an urban scale?

• What are the minimal requirements for a successful integration of such an ap-

proach?

• How would an integration pipeline look like?
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These further research questions will server as cornerstones for the following re-

search, concept development, prototypical implementation and validation.

1.4 Approach

The integration of wind simulations through the utilization of AI in the early design

stages of urban planning can significantly improve the urban environment by provid-

ing crucial design relevant information to the planner. This dissertation proposes the

exploration of this potential by conceptualizing and developing a framework capable

of seamlessly integrating CWE simulations into the early design stages of urban plan-

ning. The use of AI aims to not explicitly substitute the existing approaches in these

fields, but rather provide a complementary method, focused on providing accurate

predictions of the effects of the design in a way, better suited for the early stages of

urban design.

With data-driven approaches, such as AI, a large emphasis is placed on the quality

and diversity of the data that is trained. This can limit the applicability scope of the

trained models greatly, or optimize them for specific scenarios (Sambasivan et al.,

2021). As part of this dissertation an approach for the automatic generation of data

will be conceptualized, prototypically implemented and validated. Through theoretical

overview of the governing CFD equations and the established state-of-the-art ap-

proaches, extracted from the literature review, a data generation pipeline is proposed.

Building upon the existing advancements in the field of AI and CFD, an overview of

existing solutions is presented and summarized. The advantages and disadvantages

of the most promising approaches are outlined and based on the requirements for

urban scale CFD simulations, a novel approach integrating various aspects of a CWE

simulation is proposed and prototypically implemented. Finally, an analysis of the

approach, based on the outlined requirements defined above, is performed.

1.5 Chapter Overview

As mentioned above systematic research and analysis in the core subjects of CFD

and AI is required. Following this analysis and research, the current state of these

two fields will be presented, and relevant adjacent fields will also be briefly discussed.

Based on this information a deficit analysis is conducted. This analysis will provide an

overview into how current solutions in the field of CFD and CWE are suited for the in-

tegration in early design stages. This chapter provides an overview of the suitability of

existing AI solutions to bridge the requirements gap outlined in Section 1.2. Building
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upon these the following chapters will present the concept, prototypical implementa-

tion and its validation. This is visually represented in Figure 1.1.

Chapter 2 Computational Fluid Dynamics: The main focus of this chapter is to

establish the core definitions and mathematical and numerical principals in the field

of CFD. Expanding upon these base components, the relevance of the field for urban

scale wind simulations and CWE is introduced. Building upon this the requirements

and guidelines for numerical simulations on an urban scale will be presented.

Chapter 3 Artificial Intelligence: The chapter will establish a clear definition be-

tween various subfields in the area of Artificial Intelligence. It covers the theoretical

basis of the state-of-the-art approaches from the subfield of DL, specifically Artificial

Neural Networks. Expanding upon the base knowledge, current relevant Neural Net-

work architectures are presented.

Chapter 4 Related Works: Utilizing the definition and knowledge obtained from

Chapter 2 and Chapter 3 we will present current state-of-the-art solutions utilizing

either CFD algorithms, AI methods in conjunction with simulations, both on an urban

scale. The chapter will also cover relevant and important advancements in relevant

adjacent fields such as CWE and Numerical Simulations.

Chapter 5 Deficit Analysis: Based on the requirements and limitations of CFD

and CWE algorithms and AI methods, presented in Chapter 2 and Chapter 3 and the

current state-of-the-art solutions in these and adjacent fields(discussed in Chapter 4)

a deficit analysis is performed. This analysis will highlight the discrepancies and is-

sues in current approaches utilizing CFD in urban context, AI methods in urban scale

simulations and existing AI integration in CFD. Based on this a set of criteria will be

defined, that will serve as guidelines for a proposed concept and solution that will

attempt to bridge the gap o‘f such deficiencies.

Chapter 6 Concept: Based on the deficiencies and requirements defined in Chap-

ter 5 a concept for the integration of an AI method with urban scale CFD simulations is

presented. This concept will consist of separate autonomous parts, that will contribute

to the final result.

Chapter 7 Validation of Prototype: Following the evaluation criteria defined in

Chapter 5 the prototypical implementation of the concept presented in Chapter 6 is

evaluated and analyzed further.

Chapter 8 Discussion and Future Work: In this chapter the results of the dis-

sertation will be summarized. A discussion about the concept and its prototypical

implementation is presented and potential future applications and improvements are

discussed.
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Appendix Prototype: The prototype, based on the concept in Chapter 6, is pre-

sented in detail.

Figure 1.1 Chapter layout based on relevant topic areas
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2 Computational Fluid Dynamics for

Urban Wind Simulations

This chapter highlights the advantages and disadvantages of the various numerical

solvers in the field of CFD. It provides an overview of the main governing physical

equations and highlights current numerical approximations to the physical models.

The chapter also highlights the specific construction and requirements needed to ob-

tain accurate results for numerical wind simulations on an urban scale. This chapter

will result in an overview of the established best practices for using CFD solvers for

urban scale wind simulations and their requirements is the result of this chapter.

2.1 Overview of the Application of Computational

Fluid Dynamics

The field of CFD covers the physical modelling and numerical simulation of all fluids.

This covers a vast area of practical applications - from meteorological models and

simulations, through the design of aerodynamic vehicles, to pedestrian comfort stud-

ies. Originally such problems were solved through the use of physical experimental

studies - in the case of aerodynamic tests or urban scale pedestrian comfort using

wind-tunnels (Cermak, 2003). Although this technique is still used to obtain realistic

and precise information, it is a very time and resource consuming approach. These

limitations and the rise of computing power have encouraged the adoption of numer-

ical solvers that perform similar experiments with much lower costs (Blocken et al.,

2016).

In order to describe and understand all the general scenarios and fields of applica-

tion it is necessary to cover the different types of fluids, defined through their physical

properties. A fluid is a substance that has a non-solid physical state, which allows for

the volume to deform or react to external forces that are applied to it. The fluid has

several properties which influence how the governing physical equations are defined.

Viscosity and Shear stress: Viscosity describes a fluids’ resistance to deforma-

tion. It describes the internal friction of the fluid. A fluid that has zero viscosity is
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known as an inviscid fluid. The general friction of the fluid, either with the domain

walls, obstacles in the flow, or within itself, is defined as the shear stress (Nakayama

et al., 2018).

Newtonian and Non-Newtonian Fluids: This property is based on Newton’s law

of viscosity. The law states that shear stress is directly proportional to the velocity

gradient. Meaning, that a Newtonian fluid, one that fulfills the law, has a viscosity that

does not change with the rate of flow. Non-Newtonian fluids conversely are fluids, that

do not follow this law (Nakayama et al., 2018).

Multiphase Flow: A multiphase flow describes the simultaneous flow of multiple

materials with different thermodynamic phases. This type of flow observes the inter-

action, or lack there of, between the different types of flow that intermix in the ob-

served domain. A flow, that consists of only one type of fluid, is called a singlephase

flow (Nakayama et al., 2018).

Reynolds Number: The Reynolds Number is a dimensionless value, that repre-

sents the ratio between internal and viscous forces in a fluid. It is widely used to

predict the flow patterns and the transition between them (Nakayama et al., 2018). It

is given as:

Re = ρuL

µ
(2.1)

where ρ is the density of the fluid, u the flow speed, L the characteristic length of the

observed flow domain and µ the viscosity of the fluid. The concept was developed

by Stokes (2009), later popularized through Reynolds (1883) and officially coined by

Sommerfeld (1908).

Building upon these fundamental concepts of how a fluid can be described, the

chapter expands upon them with the physical foundations describing how a fluid and

the changes it can undergo are defined.

2.2 Theoretical Foundation

In the center of this field is a set partial differential equations known as the Navier-

Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes. They

describe the flow of incompressible fluids and represent a generalization of the Euler

Equations for incompressible steady flows (Euler, 1757).
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2.2.1 Conservation of Mass

The first equation fulfills the conservation of mass requirement and states that the

sum between the outlet and inlet of any system is zero. It is give by the following

equation:
Dρ

Dt
+ ∇ · (ρu) = 0 (2.2)

where ρ is the density, u the velocity vector, ∇ is the gradient operator and Dρ
Dt

- the

material derivative, given as Dy
Dt

= ∂y
∂t

+ (u) · ∇y. Assuming that the fluid remains

incompressible, as is the case with urban scale wind systems, the equation can be

simplified to

∇ · u = 0 (2.3)

2.2.2 Conservation of Momentum

The second equation governs the Conservation of Momentum. This keeps the mo-

mentum in the domain constant and is based on Newton’s Second Law of Motion. In

the context of fluid dynamics the equation can be represented simply as:

ρ
Du

Dt
= fexternal + fpressure + fviscous (2.4)

where ρDu
Dt

represents the total body force acting on the fluid and fexternal represents

the force applied upon the whole domain through external forces and is given through

fexternal = ρg (2.5)

where g is the gravitational force. The external forces applied to the fluid domain,

represented through fpressure and fviscous - the external pressure and viscous force

applied, can be represented through the stress tensor (Cauchy, 1827). In the case of

fluid dynamics this tensor is split into two terms - the volumetric stress tensor, which

represents change to the volume of the body, and the stress deviator tensor, which

represents the deformation to the body. Using the definition of the stress tensor for a

Newtonian fluid (Stokes, 2009) we obtain the equation for external forces as:

fpressure + fviscous = −∇p + ∇ · T (2.6)

where T is the stress deviator tensor. Substituting eq. (2.6) and eq. (2.5) in eq. (2.4)

we obtain:

ρ
Du

Dt
= ρg − ∇p + ∇ · T (2.7)
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One further assumption can be made, namely, that most Newtonian fluids can be seen

as incompressible. Although it is not generally true, as for instance, wind is considered

incompressible only up to a certain speed, this greatly simplifies the original stress

tensor representation. This assumption further simplifies the equation obtained in

eq. (2.7), giving us:

ρ
Du

Dt
= ρg − ∇p + µ∇2u (2.8)

It is important to point out, that although the further sections of this chapter will focus

on different ways to solve these equations, they cover only incompressible Newtonian

fluids.

2.2.3 Turbulence

Fluid flows can be further classified into three groups - laminar (Figure 2.1a), turbulent

(Figure 2.1b) and a transitional group that transform the flow from one of the previous

groups into the other. This classification is based not on properties inherent to the

fluid type itself, but rather on forces acting in the flow. The flow type can be accurately

categorized based on the Reynolds’ number of the observed flow - low Re numbers

for laminar flow and very high Re numbers for turbulent ones.

In a laminar flow the fluid moves in layers parallel to the flow direction. They do not

mix or intersect. This type of flow is typically very easy to simulate precisely in ei-

ther numerical simulations or through analytical solutions using only the conservation

equations in Section 2.2.1 and Section 2.2.2.

A turbulent flow on the other hand is characterized by its chaotic and erratic flow.

Such kind of flow arises, when a velocity difference occurs. Simple examples for a

source of such a difference would be a wall or any other solid obstacle. The solid

causes a friction resistance between it and the flow, which in turn slows down the

fluid and in turn creates the velocity difference (Figure 2.1). The fluid mixes with itself,

and it is difficult to predict changes in pressure and velocity. Solving the conservation

equations for this type of flow is prohibitive and requires an approximation to achieve

this. This type of numerical modelling is often referred to as turbulence modeling.

This type of flow has 4 major characteristics, which make it difficult to model: irregu-

larity, diffusivity, rotation and dissipation. The irregularity of the flow makes modelling

it prohibitive or even impossible. This leads to modelling the turbulent flows statis-

tically. The energy responsible for the turbulent flow leads to a rapid mixing of the

fluid and increases the rates of momentum, and transfer of heat and mass within the

fluid. Furthermore, they have a non-zero vorticity, which is the representation of ro-

tational change of the fluid (Nakayama et al., 2018), which in turn causes vortices.
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(a) Laminar Flow (b) Turbulent Flow

Figure 2.1 Comparison between flow types

These vortices are then further subject to stretching, due to the conservation of angu-

lar momentum. The kinetic energy of the turbulent flow converts quickly into internal

energy due to the viscous shear stress and thus requires a persistent source of en-

ergy to sustain it. This energy usually transfers from larger vortices to smaller ones

until the vortices are small enough that molecular diffusion dissipates the energy and

no further vortices are generated.

As can be seen from the physical model representing not only the base equations

for laminar flow, but also the complexity that turbulence introduces into such models,

requires a complex approach in order to even approximate it using digital tools. In the

following section the basic numerical approaches for solving both the Navier-Stokes

Equations are presented. Expanding upon these approaches, different approaches

to modeling turbulence are also introduced.

2.3 Numerical Solution

To solve the conservation equations, even without the presence of turbulence requires

the application of discretization - the representation of continuous problems through a

finite scheme, which involves the domain, variables and governing equations. There

is a vast array of different numerical methods that solve these equations in different

ways: the finite volume, finite element, finite differences, Lattice Boltzmann, and many

more. Due to the widespread use of the finite volume method in commercial solvers

and in research, this dissertation will only delve deeper into this methodology.

2.3.1 Discretization Scheme

As previously explained, the discretization of the Navier-Stokes equations will require

several finite representations of continuous components - namely the domain, equa-
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tions and variables associated with them. This section will present the underlying

approaches for discretizing the domain, the interpolation schemes required for the

computation of the variables in the Navier-Stokes Equations, how the equations are

solved and what the most established algorithm is for solving them utilizing the finite

volume method approach.

Domain Discretization - Finite Volume Method

The first documented use of this approach was by Evans et al. (1957) named as

Particle-in-Cell Method. The methodology has seen a widespread adoption because

of its efficient implementation with regard to memory use and speed of computation.

The approach also guarantees that momentum and energy are conserved. The core

of this method is to divide the observed fluid domain into cells that are arranged into

a grid.

Each cell implements the conservation equations given in Section 2.2.1,and Sec-

tion 2.2.2 and the divergence theorem (de Lagrange, 1773) is applied. To compute

the derivative terms in the differential equations, values at the edges (faces) of each

cell are needed. This transforms the equations into linear algebraic equations. Each

cell can serve as either a boundary cell (at the boundary of the observed volume), a

computational node (if fluid can pass through it), or as an obstacle/solid (if the fluid

cannot pass through it, and it is not part of the domain boundary).

Each cell consists of edges through which the flux for each parameter changes.

These edges do not overlap with each-other and are directly connected to neighboring

cells. Generally for each variable ω in the Navier-Stokes equation it is discretized and

integrated into each cell C to be solved separately as follows:

aCωC =
∑

n

anωn + b (2.9)

where a and b are coefficients unique to each cell and n refers to the cells that are

directly connected to the current cell C (neighbors). The values for the neighboring

cells refer to the change to each variable in the current cell coming from that neighbor.

These values are obtained from the edge that the current cell shares with them.

Variable Discretization - Interpolation Schemes

To obtain these neighboring values interpolation needs to be applied. There are

countless schemes that can be used and in this dissertation we will cover only the

core ones, an overview of which can be seen in Figure 2.2. The first and most sim-

ple one is the first-order upwind scheme. It assumes that the value at the boundary
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between the current cell C and each neighboring cell is equal to the value at the

respective centers of each neighbor. Building upon this approach is the central differ-

encing scheme. Similar to the first-order upwind scheme it uses only the current cell

and its direct neighbors to compute the boundary values between them. To compute

the boundary values it uses a linear interpolation between the values at the center of

the current cell C and each neighbor. The Power Law Scheme substitutes the linear

interpolation of the previous scheme with a power law equation given as:

ωboundary = ωC − (1 − 0.1Pe)5

Pe
(ωN − ωC) (2.10)

where Pe is the Péclet Number. Expanding upon these schemes is the second-order

upwind scheme. In this scheme instead of using only the direct neighbor with which

the cell shares the boundary one further cell is taken into consideration (Figure 2.2).

Finally, the Quadratic Upwind Interpolation for Convective Kinetics (QUICK) Scheme

uses two points upstream and one downstream of the current cell and fits a quadratic

curve through them.

Figure 2.2 Interpolation Schemes
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Equilibrium

The goal of these discretized equations is to reach a point where the flow is in equilib-

rium. To assist in reaching this goal, an additional relaxation factor may be used that

can speed up the convergence at the cost of stability of the solution, or it can slow it

down, but allow for more stable calculations. The relaxation factor is simply applied

as:

ωnew = ωold + α(ωpredicted − ωold) (2.11)

where α is the relaxation factor, ωold the value in the previous step, and ωpredicted is

the value obtained from eq. (2.9). Instability in the algorithm comes from oscillations

in the computations, caused by numerical errors and imprecision. Such errors often

occur with higher Reynolds numbers, where the flow is faster and turbulence can be

observed.

To reach equilibrium or convergence the linear equations are solved iterative until

the changes of each value, computed this way, are small enough. It is a difficult task

to determine when the solution has actually converged, and traditionally it is recom-

mended to observe the residual values for the solution. Residual values measure the

error in the solutions of the conservation equations. There are three main residual

values that can be followed, an absolute residual in a specific cell, a relative residual

in a specific cell, and an overall residual, that measures the error in the whole domain.

SIMPLE Algorithm

Every variable in the conservation equations has an equation that can be solved.

Exception to this rule is the pressure. As we can see from Equation (2.7) the gradient

of the pressure is used in the momentum equation and this leads to the requirement

that the pressure is recomputed every step. For compressible fluids this can be easily

achieved, since the pressure is linked to the density of the fluid. This complicates

the matter for fluids that are considered incompressible. Although there is no explicit

equation for pressure, the Navier-Stokes equations for incompressible fluids consist

of four equations with four unknowns - the velocity in each direction and the pressure.

Linking the pressure to velocity is possible and the most commonly used algorithm for

this is the Semi-Implicit Method for Pressure Linked Equations (SIMPLE)(Patankar

and Spalding, 1972). True to its name the algorithm follows a straight forward scheme

in correcting the pressure field in each iteration step. It evaluates the pressure at each

cell. If the continuity is not fulfilled, due to more or less mass entering it, in comparison

to neighboring cells, the pressure is corrected with the application of a correction

term, obtained from a pressure correction equation. Based on this algorithm further
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improved versions have been developed - SIMPLE Revised (SIMPLER) (Patankar,

2018), SIMPLE Consistent (SIMPLEC) (Doormaal and Raithby, 1984), the Pressure-

Implicit with Splitting of Operators Algorithm (PISO) (Issa, 1986) and many more.

Even with an algorithm capable of numerically solving the Navier-Stokes equations,

initial values for each cell are needed and appropriate special handling of non-fluid

cells - boundaries, inlets, outlets and obstacles - is still needed.

2.3.2 Boundary Conditions

Controlling the values in each cell that is not fluid is called boundary conditions. These

conditions dictate how the flow will work and are usually handled at either the start

or the end of each iteration step. For each variable that the main numerical algorithm

is solving in each cell, a different boundary condition can be set. Based on which

component of each value we want to prescribe to these cells - the value itself or its

derivative - we have three categories.

The first one is the Dirichlet Boundary Condition, named after Peter Gustav Lejeune

Dirichlet. It defines the solution of a differential equation as a known value. For an

ordinary differential equation, this is done by assigning a given number to the function

evaluation for its interval values. For a partial differential equation the function is

substituted for a defined and known function that has the boundary of the original one

as a domain.

The second type is the Neumann Boundary Condition. It specifies the solution to

the derivative of the differential equation. It operates in the same way as the Dirichlet

Boundary Condition for both ordinary and partial differential equations, but instead

of assigning known values and functions to the main function, it assigns them to its

derivative.

Finally, there are also mixed boundary conditions that combine both the Neumann

and Dirichlet Boundary Conditions.

Inlet and Outlet

The inlet and outlet cells are the main source of change inside the fluid domain. There

is a vast range of different boundary conditions that can be assigned to these cells,

but for the purposes of this dissertation, only a relevant handful will be examined.
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The first type of boundary conditions are the pressure inlet and outlet. They are of-

ten utilized when the velocity and flow rate of the domain are unknown. For a pressure

inlet boundary for an incompressible fluid this is given as:

p = pstatic + 1
2ρ|v|2 (2.12)

where pstatic is a predefined value given at the start of the simulation. If the observed

fluid also has a heat transfer, the inlet temperature is set to a constant at the start. For

the pressure outlet boundary condition, a static value is defined and is considered the

pressure of the environment into which the outlet connects.

The second type of boundary condition is the velocity inlet. As the name suggest it

defines the velocity vectors at each cell, that is assigned as an inlet. Different types of

profiles can be defined for the inlet velocity field - typically a uniform profile, but it may

also depend on the geometry of the inlet or have a function to compute each cell’s

velocity value.

Outflow boundary conditions can be used to set up the outlets of the observed fluid,

when exact details about the flow velocity and pressure are not explicitly known. The

outflow boundary condition assumes a zero normal gradient for every variable, except

pressure.

Walls and Obstacles

These types of conditions are used to describe obstacles within the flow (e.g. build-

ings in an urban context) and/or to describe the boundary regions of the simulation

domain, where no inlet or outlet conditions need to be specified (e.g. the ground

boundary in an urban context).

A typical boundary condition for solid objects is the no-slip boundary condition. This

condition sets the velocity component that is normal to the cell to 0 and the tangential

component to the velocity at the wall. If the wall or obstacle has small details, that are

prohibitive to model, a further wall roughness value can be assigned, that describes

the smoothness of each cell that is assigned as a wall or no-slip boundary. Such

roughness wall functions are usually connected with the turbulence model used in the

numerical solver and are usually represented as functions over the surface domain.

If the fluid domain is large, but with no obstructions in the flow, a symmetric bound-

ary condition may be applied. Such condition state, that the fluid in the domain and

the fluid on the other side of the domain have the same values. It can be viewed as a

mirroring boundary/plane that allow us to reduce computation by artificially shrinking

the domain.
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Similar to the symmetric boundary condition the periodic boundary condition aims

to reduce computation time by limiting the observed domain as well. It is used when

there is a repeating pattern in the fluid domain (such as a tube with a fan at one side).

The domain can be reduced by focusing on only one instance of the pattern and

enforcing through the periodic boundary conditions on each side, where the pattern

would repeat, that the values are correct.

Porous Medium

Some obstacles and walls have small pores in them, through which fluid can pass,

e.g. vegetation. Modelling such geometry and refining the grid domain to such details

would increase the computational overhead to prohibitive levels. Instead, the cells of

such obstacles are labeled as porous medium and the flow through them is defined

by Darcy’s Law (Whitaker, 1986):

flowRate = −kApdrop

µL
(2.13)

where k is the permeability of the medium, A the cross-section area of the medium,

pdrop the pressure drop through it and L the length of the medium.

2.3.3 Meshing

One key factor that controls how well and how fast a solution would converge is the

choice of the type of cells used and their arrangement in grids. The process of fit-

ting the cells and the grid in the simulation domain, with the goal of maximizing the

accuracy of the numerical simulation, is called meshing.

Based on the dimensions of the observed fluid domain, either 2D or 3D, the cells

can have different basic geometrical shapes. In 2D they are triangles and quadrilat-

erals and in 3D we have various types of prisms, tetrahedrons and pyramids. Ad-

ditionally, in both scenarios it is possible to use an arbitrary shape to describe each

cell.

Each cell represents a domain of the fluid observed by a node, traditionally a point

on the grid, attached to each cell. Each boundary of a cell is called a face and in the

case of 3D, each boundary of each face has edges (those are the same in the case of

2D). This can be more easily visualized in Figure 2.3. Groups of cells that have similar

functionality are often grouped into zones - such as boundary zones, fluid zones, and

inlet and outlet zones.



20

Figure 2.3 Grid Structure and Nomenclature

Structured Grids

Structured Grids are the most straightforward way of grouping and organizing cells

in the fluid domain. Its lines go through the whole domain which requires that each

cell is of the same type - a quadrilateral in 2D or a hexahedron in 3D. On one hand,

this can lead to regions in the domain, where nothing needs to happen (e.g. in a pipe

system). On the other hand this has the advantage of providing a very easy way to

access neighboring cells through an easy indexing system.

This type of grid leads to the problem, that if a region has small details that need to

be captured by the grid, then the size of each cell will be significantly smaller. This in

turn leads to higher computation times due to the increase of cells. A way to alleviate

some of these issues is to use a multi-block approach. In this way the domain is

split into subdomains, each with its own grid size and refinement level. This adds a

requirement of handling the edge between differently sized subdomains.

Unstructured Grids

On the opposite side of this spectrum of grids is the unstructured grid. Cells can be

arranged freely and the cells themselves do not need to have the same size, although

they do need to be of the same type, e.g. triangles in 2D or tetrahedrons in 3D.

This gives a greater flexibility when discretizing the fluid domain without the need

of multi-block structures as was the case with structured grids. This approach has

the downside of requiring a more complex system of indexing neighboring cells, e.g.

linked lists.
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Hybrid Grids

Finally, it is possible to apply a hybrid approach in the generation of grids. The use of

structured grids can be used in the parts of the domain, where there is little happening

(no obstructions or turbulence), while for the more critical locations of the simulation,

an unstructured grid is applied. Both components can then be connected through a

grid line, that does not need to match the block boundaries. This type of modelling

offers the optimal compromise between the precision and speed of the result, but

requires the largest amount of effort to model correctly.

2.3.4 Turbulence Solver

Due to the characteristics of turbulence, detailed in Section 2.2.3, it is impractical to

attempt to solve the equations analytically for the whole domain. Instead, different

models have been developed to simplify the equations in different ways.

Reynolds-Averaged Navier-Stokes

An approach in modeling turbulence is to predict the time averaged velocity, pressure

and temperature fields and any other field that will contain fluctuating values. The

additional equations stemming from this method are called the Reynolds-Averaged

Navier-Stokes (RANS) equations. To model each varying value they need to be de-

composed into an equilibrium and a fluctuating component as follows:

x(t) = X + x′(t) (2.14)

where X = 1
△t

∫△t
0 x(t) dt represents the equilibrium component and x′(t) the fluctuat-

ing part. The time averaged value of each such component, given as x(t) is reduced

only to the equilibrium value of the component since the fluctuating component will

average out to 0 for a large enough time frame by definition.

Using this definition of a fluctuating value we can represent the velocity as u(t) =
U + u′(t) and the pressure as p(t) = P + p′(t). With this decomposition approach,

known also as the Reynolds Decomposition, the continuity equations can be modified.

For Equation (2.3) we obtain:

∇ · U = 0 (2.15)
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Expanding the material derivative for Equation (2.8) and substituting each turbulent

value for its decomposed variant, the equation yields for each direction as follows:

∂ρUu

∂t
+∇·(ρUuU) = −∂P

∂x
+µ∇2Uu +

[
−∂(ρτxx)

∂x
− ∂(ρτxy)

∂y
− ∂(ρτxz)

∂z

]
+ρg (2.16)

∂ρUv

∂t
+∇·(ρUvU) = −∂P

∂y
+µ∇2Uv +

[
−∂(ρτyx)

∂x
− ∂(ρτyy)

∂y
− ∂(ρτyz)

∂z

]
+ρg (2.17)

∂ρUw

∂t
+∇·(ρUwU) = −∂P

∂z
+µ∇2Uw +

[
−∂(ρτzx)

∂x
− ∂(ρτzy)

∂y
−

∂(ρτzz)

∂z

]
+ρg (2.18)

where the τ values are part of the Reynolds stress tensor. Finding accurate ways

in predicting or computing this stress tensor has lead to the development of multiple

solvers. This dissertation will cover briefly some of the more widely used solutions.

The main approach to these models is to compute the turbulent viscosity. This un-

derlying theory was experimentally observed by Boussinesq (Boussinesq, 1903) and

stated that the Reynolds stresses can be linked to the mean rate of deformation as

follows:

τij = µt

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
(2.19)

where µt represents the turbulent viscosity.

k − ϵ Models focus on the turbulent kinematic energy k and its dissipation rate ϵ. If

both values are available, then the turbulent viscosity can be obtained from

µt = k2

ϵ
(2.20)

Following the time averaging approach in Equation (2.14) we can represent the kinetic

energy as a sum of an equilibrium and fluctuating component as k(t) = K + k. The

equation for both values are given as:

∂(ρK)
∂t

+∇·(ρKU) = ∇·(−PU +2µUEij −ρUu′
iu

′
j)−2µEijEij −(−ρu′

iu
′
jEij) (2.21)

∂(ρk)
∂t

+∇·(ρkU) = ∇·(−p′u′ +2µu′e′
ij −ρ

1
2u′

iu
′
iu

′
j)−2µe′

ije
′
ij +(−ρu′

iu
′
jEij) (2.22)

Where Eij is the mean rate of deformation tensor and e′
ij its fluctuating component.

These equations contain further unknowns which make it hard to model. Further-

more, the analytical equation for the dissipation rate ϵ consists of several unknown

terms of higher order. A more simplified version proposed by Launder and Spalding
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(1974) minimizes these problems and presents two equations for the kinetic energy

and dissipation rate that can be solved:

∂(ρk)
∂t

+ ∇ · (ρkU) = ∇ · ( µt

σk

∇k) + 2µtEijEij − ρϵ (2.23)

∂(ρϵ)
∂t

+ ∇ · (ρϵU) = ∇ ·
[

µt

σϵ∇ϵ

]
+ C1ϵ

ϵ

k
2µtEijEij − C2ϵρ

ϵ2

k
(2.24)

where σk and σϵ are the Prandtl numbers for respectively k and ϵ and connect the re-

spective diffusivity of them to the turbulent viscosity. C1ϵ and C2ϵ are model constants

and can be freely set. From these two new simplified equations the Equation (2.20)

can be solved as:

µt = Cµ
k2

ϵ
(2.25)

where Cµ is again a constant. There are several further RANS models that build upon

original k − ϵ model. A brief overview of a few of the most established version and

their advantages is presented.

Renormalization Group Method (RNG) k − ϵ equations builds upon the original

k − ϵ method by introducing additional terms in the ϵ Equation (2.24) and takes into

consideration swirls (Yakhot et al., 1992). In this way it achieves higher accuracy

when computing wall heat, mass transfer, high streamline curvature and strain rate.

Its modified k and ϵ equations are given as follows:

ρUi
∂k

∂xi

= µtS
2 + ∂

∂xi

(
αkµ

∂k

∂xi

)
− ρϵ (2.26)

ρUi
∂ϵ

∂xi

= C1ϵ

(
ϵ

k

)
µtS

2 + ∂

∂xi

(
αϵµ

∂ϵ

∂xi

)
− C2ϵρ

(
ϵ2

k

)
− R (2.27)

where the αk, αe, C1ϵ, C2ϵ are values derived through the use of RNG theory, R is a

term representing the mean strain and turbulence and S =
√

2SijSij, Sij = 1
2

(
∂Uj

∂xi
+ ∂Ui

∂xj

)

Realizable k − ϵ model utilizes the same equations for k as the standard k − ϵ

model, but improves on the equation for ϵ and also changing Cµ in Equation (2.25)

from a constant to a variable dependent on the velocity field, k and ϵ. The advantages

of these changes can be observed in higher accuracy of prediction for flows focusing

on planar and round jets, rotation, recirculation and strong streamline curvature. The

new equation for ϵ is given as:

ρ
Dϵ

Dt
= ∂

∂xj

[(
µ + µt

σϵ

)
∂ϵ

∂xj

]
+ ρC1Sϵ − ρC2

ϵ2

k +
√

vϵ
+ C1ϵ

ϵ

k
C3ϵGb (2.28)
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where C1, C2, C1ϵ, C3ϵ are constants and Gb represents the generation of kinetic en-

ergy due to buoyancy.

Large Eddy Simulation

An alternative approach to creating a turbulence model was originally proposed by

Smagorinsky (1963) and then later refined by Deardorff (1970), called Large Eddy

Simulation (LES). Instead of observing turbulence as random and chaotic occurrence,

that has to be solved through statistical averaging, it focuses on solving the turbulence

equations for the largest eddies in the simulated domain and filtering out the smaller

scale ones. This omits the effect of the smaller eddies completely from the numerical

simulation and has to be introduced through various Sub-Grid-Scale (SGS) models.

A filtering function in the scope of LES can be applied to the spatial or temporal

component of a value, or both. For a given value field X(x, t) it is defined as follows:

X(x, t) =
∫ ∞

−∞

∫ ∞

−∞
X(α, β)G△(x − α, t − β)dβdα (2.29)

where G△ is a filter convolution kernel. This filtering function eliminates the scales

that are smaller than △ which are then resolved through the SGS model. Typical

filters for G are the Gaussian filter, box filter or top-hat filter. Given this, every variable

can be split into a filtered and sub-grid component as follows: X = X + X ′. Applying

this decomposition for the velocity and pressure variables and substituting them in

the incompressible Navier-Stokes equations (Equation (2.8) and Equation (2.3)) we

obtain:
∂u

∂t
+ u · ∇u = −1

ρ
∇p + µ∇2u − ∇ · τ (2.30)

∇ · u = 0 (2.31)

where τij is the SGS stress tensor defines as:

τij = uiuj − uiuj (2.32)

The spatial resolution of the grid needs to be on the order of △ so that the LES

Equations can be solved numerically. The challenge of these equations is that τij is

open since it contains terms that are obtained through the filtered velocity variable u.

To approximate and close this equation an eddy-viscosity model for the SGS stress

tensor is defined as follows:

τ ev
ij = −2µsgsSij (2.33)
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where µsgs is the kinematic eddy viscosity and Sij is the filtered rate of strain tensor.

The most widely used model for the µsgs is the Smagorinsky model (Smagorinsky,

1963):

µsmag = (cs△)2|S| (2.34)

where cs is the Smagorinsky coefficient, △ the characteristic scale and |S| is an es-

timation of velocity differences over length-scale. Building upon this model is the

Dynamic SGS (DSGS) model (Germano et al., 1991) that transforms cs from a con-

stant value for the whole field to a variable that has to be computed locally every time

step. There are further models that solve the SGS eddy viscosity in various different

approaches, but are not relevant for the purpose of this dissertation and will not be

covered further.

Direct Numerical Simulation

The most precise information can be obtained by solving the Navier-Stokes equations

directly without introducing any turbulence models, but instead solving the equations

directly. This approach is often called Direct Numerical Simulation (DNS). This re-

quires that the complete range of spatial and temporal scales of the turbulence must

be resolved in the computational mesh (Orszag, 1970).

The mesh for the domain must satisfy the requirement n ∗ △n > L, where n is

the number of points along a direction with △n distance between them and L is the

integral scale. Which in turn leads to the fact that the step between each point △n

cannot be greater than the smallest dissipative scale of the turbulence model (the

Kolmogorov scale η). This in turn leads to the stipulation that for the three-dimensional

DNS; a number of mesh points greater than Re9/4 are required, where Re = u′L
µ

is

the turbulent Reynolds number, u′ the Root Mean Square (RMS) of the velocity and µ

is the kinematic viscosity.

A further limitation of this approach is the integration of the simulation in time, as

it is done by an explicit method as well. This requires that the timestep to be small

enough that the fluid particle does not move the full length of △n. This makes the

number of time-integration steps proportional to L
Cη

, where C is the Courant number.

Based on the scale of the time steps and the number of points required for a de-

tailed enough mesh, the number of floating-point operations required grows directly

in proportion with Re3. This leads to the conclusion that even scenarios with low

Reynolds numbers require a prohibitively large amount of memory storage and even

more computational time.



26

2.4 Urban Wind Simulations

Originally the field of CFD was based on the failed experiments and simulations of

Lewis Fry Richardson, which he used for the prediction of weather patterns (Richard-

son, 2007). Since then the field has expanded to cover smaller scales all the way

to cardiovascular systems. In this sense there are three defined simulation domain

scales that can be observed - macroscale, mesoscale and microscale (Blocken, 2014).

Based on the size of the simulated domain certain phenomena can be more accu-

rately captured - for instance urban heat island can be observed in a simulation do-

main on the scale of roughly 10 kilometer and cyclones and global weather patterns

at a much larger scale - at almost 10 000 kilometers. The importance of such simu-

lations in the urban planning are clear - through the improvement of natural passive

ventilation, cities can alleviate issues associated with climate change, such as heat

islands, but also improve the energy efficiency of cities and help them towards their

goal of being climate positive Liu et al. (2022).

There are various areas in which CFD simulations can be applied, and every area

has its own drastically different set up, boundary conditions and specific geometry

nuisances that need to be taken into consideration. In this section a more detailed

overview of the unique boundary conditions, geometry detailing and dimensions of

urban scale wind simulations will be presented. It is important to point out, that there

have been several best practices and guidelines for the set-up of urban scale wind

simulations over the past 50 years with two being most prominent - the COST Guide-

lines (Franke et al., 2007) and the AIJ Guidelines (Tominaga et al., 2008). The COST

Guidelines have a robust and detailed overview about the setup of the simulation do-

main but focus primarily on RANS approaches, although they also cover LES. The

AIJ Guidelines build upon the COST Guidelines and expand upon them by introduc-

ing validation cases for simulation models that use wind tunnel experiment data for

comparison. The three main areas that these guidelines focus on are: the dimension

of the domains and explored scenario, the meshing and the importance of geometry

in the domain, and the boundary conditions. A more detailed overview of the require-

ments set out for these areas is presented in the following sections.

2.4.1 Dimensions of the Problem

The most established application of CFD simulations in an urban context happen on

the microscale of Figure 2.4. Experiments and validation research usually select a

small domain varying from a few hundred meters in each direction to a few kilometers
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(Wang et al., 2018; Reda et al., 2017b; Hang et al., 2009; Weerasuriya et al., 2018;

Liu et al., 2017; Ramponi et al., 2015).

Figure 2.4 Domain scale

According to both Franke et al. (2007) and Tominaga et al. (2008) the selected sim-

ulation domain needs to be extended in all cardinal directions and the top boundary

needs to be expanded as well. This is a crucial modification that allow for several

phenomena associated with wind simulations to be taken into consideration:

• The additional domain space between the inlet, outlet and other sides of the

simulation and the actual region allows for the wind to be fully formed and for

the turbulence in the wake of the buildings to be fully develop

• Additional roughness parameters added to the ground boundary of the domain

allows for an approximation of potential small scale geometry that would be re-

alistically between the inlet and the objects
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• The additional space between the objects and the top boundary of the simula-

tion domain allows for more accurate forming of wind patterns throughout the

simulation domain

Through various and multiple experiments it has been shown that the minimal require-

ments for these additional parts of the domain can be obtained using rules based on

the geometry in the domain (Franke et al., 2007). Assuming that the tallest building

in the simulation domain has a height of Hmax the minimal values for the additional

domain space can be seen in Table 2.1.

Boundary Side Additional Space

Top 5Hmax

Lateral 5Hmax

Flow Direction In front 5Hmax

Flow Direction Behind 15Hmax

Table 2.1 Minimal additional domain space based on Hmax

It is also important to note that Franke et al. (2007) recommend that the blockage

ratio remains below 3%. This ratio is defined as the projected area of the objects

in flow direction to the cross-sectional area of the surrounding domain. This leads

to very large simulation domains which is one of the primary reasons for the longer

computational times needed.

The observed simulation domain is traditionally selected as a rectangle or circle

area, that is then expanded to a larger rectangle that encompasses the requirements

in Table 2.1.

2.4.2 Geometry

Another critical part of a precise urban scale wind simulation is the detail and refine-

ment of the geometry involved. There are 3 main components that factor into the

simulation: buildings - defined as solid objects; vegetation - traditionally observed as

a porous medium; moving objects - such as vehicles and pedestrians can still have

an adverse effect in the lower urban layers.

Buildings

Buildings in the context of urban planning have a large range of refinement levels,

known as Level of Detail (LoD) (Abualdenien and Borrmann, 2022). In the early
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stages of urban planning it is typical, that the buildings are represented through sim-

ple volumes such as cuboids. It is only through the later steps of planning that the

model gets refined.

Since buildings are modeled as obstacles, a higher level of detail to the model

would allow for more precise simulation results. Depending on the simulation sce-

nario, whether it be pedestrian comfort or general exploration of larger weather pat-

terns in an area, the refinement of the model may play a crucial role.

Due to the large simulation domain and potential amount of geometry in it, most

simulation setups represent buildings through a 2D contour, that is extruded to the

average height of the building. The complexity of the contour is dependent on the

goal of the study - simple shapes such as squares and rectangles are often used for

the exploration of optimal city design or are used as validation models, to verify that

a CFD simulation is set up correctly. Complex contours are used most often in all

other cases - to study wind patterns or to analyze pedestrian comfort. Generally roof

detailing is omitted and can be seen only in studies that explore the feasibility of wind

energy farming in urban context (KC et al., 2019). Finally, facades are usually not

modeled directly, since such small details will require a higher order of grid refinement

around buildings. In order to approximate the details of a facade - balconies, windows

and decoration - a wall roughness factor is usually used (Franke et al., 2007).

Vegetation

Vegetation can play a big role in the thermal comfort and wind conditions in urban

areas. Due to their structure it is impractical to model each element as a complex

mesh. They have to be represented through a model that integrates into the existing

environment. A typical approach would be to specific additional terms that are added

onto the selected equations for momentum, turbulent kinetic energy and turbulence

dissipation rate for the cells that would contain vegetation. Similarly, an additional term

to control the heat transfer can be added. Due to the diverse nature of vegetation and

its integration into the urban environment there are multiple ways of representing the

geometry as simplified shapes that implement various versions of a porous medium

(Gromke et al., 2015; Qin et al., 2019; Santiago et al., 2019; Mughal et al., 2021;

Sonnenwald et al., 2016).

Moving Objects

Moving objects in the environment can be observed on the ground level in the first

few meters above the ground level. These elements can have a drastic effect on
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pedestrian wind and heat comfort (Mochida and Lun, 2008). Usually such elements

are omitted from the models. To achieve an approximation of how such moving objects

could affect the simulation a high roughness factor for the ground boundary can be

applied in areas where high traffic can be observed.

2.4.3 Boundary Conditions

A crucial element for obtaining accurate results is defining the boundary conditions of

the simulation domain and assigning appropriate ways to handle non-fluid cells in the

domain.

Domain Boundaries

The inflow and outflow boundary conditions are usually positioned on opposing sides

of the domain and are responsible for the generation of change within the domain. The

selection of appropriate models for inflow conditions largely depends on the scenario

and the underlying turbulence model used (RANS, LES, etc.). The outflow conditions

are usually modeled in such a way that depends on the inflow model itself. Inflow

boundary conditions are set for the sides (or parts of each side) from which the wind

direction should come. This means that for the sides that do not have an inflow or

outflow boundary conditions custom boundary conditions need to be set that approx-

imate an open domain.

Franke et al. (2007) and Tominaga et al. (2008) suggest utilizing a logarithmic pro-

file for the inflow that matches the terrain via a roughness length z0. For the simulation

of existing urban areas it is suggested to use local weather local stations or use phys-

ical wind tunnel simulations. For the various models of RANS the velocity profile and

turbulence values are required. Utilizing the assumption that the inflow layer is in

equilibrium until reaching the simulation domain, the values can be obtained. To cre-

ate such inflow profiles it is often suggested to first perform a simulation in the same

domain, but without any obstacles in the environment in order to validate that the

prescribed profile remains constant.

For LES and other similar turbulence models time dependent inflow conditions are

required. A widespread approach is the creation of artificial stochastic data utilizing

statistical description of the turbulence. (Kempf et al., 2005; Kondo et al., 1997)

For outflow boundary conditions, where the majority of the flow would leave the

domain, conditions must be applied in such a way that the flow leaving through this

boundary corresponds to a fully developed flow. Typical conditions for RANS models

is to either prescribe a constant pressure boundary condition or set the derivatives
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of all variables in the outflow domain to 0. For LES a convective outflow condition is

most often used. (Ferziger et al., 2002; Driller and Kaltenbach, 1999)

In order to approximate an encapsulating environment outside the simulation do-

main symmetrical boundary conditions are applied to the lateral sides of the domain,

that do not have inflow or outflow boundary conditions set.

Obstacles

Defining proper boundary conditions for obstacles are crucial for the proper creation of

vortices and capturing the intricate phenomena of turbulence. The direct approach re-

quires solving the turbulence models very close to the wall. In this scenario a damping

component is added to the turbulence equations in order to increase the importance

of the molecular viscosity. Various implementations are available based on the ex-

act model utilized (Chien, 1982; Hassid and Poreh, 1978; Wilcox and Rubesin, 1980;

Hoffman, 1975; Launder and Sharma, 1974). Such methods resolve the velocity close

to the wall and require a finer meshing next to the obstacles in order to capture the

large fluctuations in the velocity components that may occur. This in turn increases

the computational costs for urban wind simulations greatly.

This has led to the development and refinement of so-called wall functions, that

avoid the necessity of finer grids near walls. Such functions are empirically derived

and are used as a transitional layer between the obstacle and the fully developed tur-

bulence flow. These functions are based on the assumption that velocity close to the

wall is the same for all types of turbulent flow. This assumption was first observed by

Von Kármán (1931) and is known as the Law of the Wall. It simply states the velocity

of the turbulent flow is proportional logarithmic distance to the specified obstacle and

can be expressed as:

u+ = lny+

k
+ C+ (2.35)

where u+ is the velocity parallel to the wall, k the Von Kármán constant, C+ a con-

stant and y+ is the distance to the wall. Blocken et al. (2007) later compared various

interpretations of this type of wall function in commercial software solutions with the

additional terms for taking into consideration the roughness of the wall.

Similarly, for LES problems wall functions can be applied (Mason and Callen, 1986),

or alternatively the distributed roughness approach (Nakayama et al., 2005) can be

used.
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Atmospheric Boundary Layer

The top boundary of the simulation domain is crucial in the development of the tur-

bulent wind flow before reaching the actual observed domain. Due to minimal space

requirements needed in the simulation domain (see Table 2.1) the simulation domain

encompasses the lower regions of the atmosphere - the Atmospheric Boundary Layer

(ABL). Richards and Hoxey (1993) proposed and experimentally validated that for a

k−ϵ RANS model the ABL can be represented through a constant shear stress that is

similar to the inflow profile of the domain. Later Hargreaves and Wright (2007) demon-

strated and validated the assumptions made by Richards and Hoxey (1993) and that

the boundary conditions for the top of the domain need to be specified separately from

the inflow parts of the domain. Alternatively Blocken et al. (2007) proposed assigning

the inflow values at the top of the inflow side to the entire top boundary domain.

2.5 Conclusion

This chapter highlighted the governing equations for incompressible laminar Newto-

nian fluids, to which air and wind count to, and provided a brief explanation of the

complexity behind turbulence modeling. Furthermore, the chapter provided a brief

overview of the established modern day approach of solving the Navier-Stoke Equa-

tions in a numerical environment and presented some core approaches in turbulence

modeling - Reynolds-Averaged Navier-Stokes and Large Eddy Simulations. Finally,

the chapter outlined the minimal requirements for the set-up of an accurate urban

scale wind simulation - from expanding the simulation domain in all directions, to in-

troducing roughness values for solid boundaries in the domain, such as the ground

and building walls.

From this chapter it is clear that there are no clear ways to model fluid simulations

in a numerical environment, with different approaches to turbulence being developed

for specific scenarios. The requirement of urban scale simulations, to expand the sim-

ulation domain beyond the selected area, to accommodate for the correct simulation

of wind patterns, further compounds the issues discussed in Chapter 1 - making such

simulations even larger and more costly to perform. Due to challenges introduced

in modeling turbulence, this dissertation will focus primarily on novel approaches to

resolve the issues of interoperability, user-friendliness, adaptability, and flexibility.
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3 Artificial Intelligence

The modern day origin of AI can be traced to the 1950s with the creation of Turing’s

Test (Turing, 1950), the use of the Ferranti Mark 1 to develop the first machine that

can play games (Schaeffer, 2013) and the creation of the Logic Theorist that was

capable of proving mathematical theorems (Newell and Simon, 1956). The actual

term Artificial Intelligence (AI) was first coined by John McCarthy at the Dartmouth

Summer Research Project on Artificial Intelligence in 1956. The field has had a very

turbulent history only achieving a more established use in the last few decades with

the increase in performance of modern day machines and the focus on specific prob-

lems, rather than more general concepts. AI attained relevance and importance in

the commercial sectors largely due to its capability to process vasts amount of data in

only a fraction of the time needed by traditional approaches.

3.1 Definition and Overview

In modern day literature the terms AI, Machine Learning (ML) and DL have been

used interchangeably, often times describing vastly different approaches, methods or

algorithms. In order to achieve a higher consistency within this dissertation a clear dis-

tinction and the purpose of each these three definitions will be shortly outlined. These

definitions’ server predominantly to classify algorithms based on their complexity, a

further refinement, classifying the methods based on what tasks they solve, how they

process the data and what the desired outcome of the method is introduced, is also

presented.

3.1.1 Classification based on complexity

Artificial Intelligence serves as an encompassing super set of various categories of

algorithms, approaches and methods that solve specific or broad tasks by following

a rule-based structure of extracting relations and knowledge through observation and

data. Over the years various definitions of what AI have emerged. Russell (2010)

provide an overview of the four main definitions of AI that place emphasis on one
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of four types of intelligence. They can broadly be summarized as thinking humanly,

acting humanly, thinking rationally and acting rationally. The thinking definitions focus

on the thought process and the reasoning behind decisions, while the acting focuses

on the behavior. The human and rational parts of the definitions focus on the expected

results compared to either the human performance or an ideal performance. Many

definitions and focus areas have been developed over the years and subsequently

discarded or have lost traction. The modern day AI methods focus predominantly on

the "intelligent" or "rational" agent, which focuses on the fourth definition of AI - acting

rationally.

Machine Learning is a subset of algorithms, methods and approaches inside the

field of AI. ML builds models based on information in order to predict outcomes or

make informed decisions without the need for user control. It is capable of finding

patterns within the provided information and extrapolate patterns which it uses to

adapt to new input and react rationally (Russell, 2010). Examples for such algorithms

can be Linear Regression, Decision Trees, Support Vector Machines (SVM), Random

Forests and many more.

Deep Learning is a subset of ML that applies the same core principals as its super-

set. It expands upon the agents used in ML by introducing a more complex structure

in its learning process thus uncovering further hidden relations between various com-

ponents of the information that it is learning from (Russell, 2010). Its modern day

application and research is primarily focused on multi-layer Artificial Neural Network

(ANN).

3.1.2 Classification based on task

As can be seen from the definitions of AI, ML and DL it makes little sense to subdivide

the methods, algorithms and techniques based on these sets. A more apt way of

describing and categorizing them is through the way they process the information.

There are three main ways an agent can learn from data, based on not only the input

data, but also the outcome.

Supervised Learning has as a main goal to create a mapping between a set of

input and output parameters, the supervision in such methods is represented through

the known or expected outcome of the input, thus limiting the agents scope in ex-

tracting information from the data. Formalized mathematically the agents try to find a

function f for a set of pairs (x, y), where x represents the input information and y the

output information so that f(x) = y.

Unsupervised Learning methods are only provided with the input information.

Agents then attempt to either learn new representations of the provided input or to



35

generate a model, that allows for the creation of new inputs. Such agents learn a

model P (x, z), where x is a vector of inputs and z are unobserved, unknown vari-

ables that can be used to represent the data in some way. The goal of the learning is

to find an appropriate representation for z.

Reinforcement Learning is similar to unsupervised learning in that the agents are

provided only with a set of input information and actions that it can take. Based on the

actions it takes, and what the outcome is based on the information it is provided with,

it receives a score. Their goal is to maximize this result.

Due to the vast and heterogeneous nature of AI agents, the dissertation will primar-

ily focus on the application of the forefront of research in the field. The current state-

of-the-art algorithms and methods come from the fields of ML and DL (Moshayedi

et al., 2022; Jiang et al., 2022). The most relevant concepts from both fields will be

briefly explained.

3.2 Machine Learning Models

In the core of most modern day ML methods are fundamental concepts and ap-

proaches often utilized in computational statistics, mathematical optimization and data

mining. In this section a brief overview of some of these concepts that more complex

algorithms build upon is provided.

3.2.1 Regression Analysis

Regression analysis consists of several statistical processes used to mathematically

represent the dependency between variables and represents a form of supervised

learning. These processes are a representation of very simple supervised learning,

since the obtained estimation is based on two sets of variables - the dependent vari-

able, or also referred to as outcome, and the independent variable (feature).

The most commonly used process is linear regression. In this approach a set of

scalar outcomes are matched to a set of one or more features. If xi is the vector of

features representing yi, the scalar outcome, then the general representation of this

approach is given as:

ŷi = x⊺
i w (3.1)

where ŷi is the predicted value and w represents coefficients, often also called weights.

The vector of features in this equation consists of an additional constant parameter

and is given as (x) = (1, x0, x1..., xn)⊺. This is necessary for the vector representa-
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tion since there is a coefficient w0 that introduces some disturbance, or noise, to the

model.

3.2.2 Clustering and Classification

Clustering is a form of unsupervised learning in which the model attempts to find

patterns and groupings of observed data x, that has no assigned outcomes y. The

challenge of clustering comes from the broad way of defining similarities between

data points - it can be the distance between data points, the density of a specific area

of the domain, repeating intervals or distribution functions. Due to the lack of prior

knowledge about the observed data (missing outcomes y) the process of clustering

is iterative. Multiple varied clustering algorithms can be used, and their parameters

modified until the desired observation is reached.

Classification on the other hand has not only a set of observed data x, but also a

set of outcomes y, most commonly referred to as classes or labels in literature. This

is similar to regression approaches, but while such methods can predict a continuous

outcome, classification approaches have only a discrete set of outcomes. Such prob-

lems are done with approaches such as logistic regression. Using logistic regression

as an appropriate fit for the weights w to the equation are found:

p(x) = 1
1 + e−xw

(3.2)

With the output of a fitted logistic equation, the output would give a form of soft classi-

fication between the discreet classes, representing the log-odds of a specific input to

belong to an output class.

3.2.3 Gradient Descent

Gradient Descent is a first-order iterative optimization algorithm. It is used to find the

local minimum of a function. The function itself needs to fulfill two major requirements:

it has to be convex and differentiable. The property of being convex follows a similar

logic to the geometrical concept of convex objects, i.e. any segment between two

points on the graph of the function is above the graph itself. A differentiable function

is one that has a derivative for each point in the function’s domain, examples for

functions that do not fulfill such a requirement are: f(x) = 1
x
, f(x) = |x|, etc.
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The gradient is the representation of the slope of the function, for a function with a

single variable this is the first derivative, for a function with multiple variables this is

the vector of derivatives, one for each variable in the function:

∇f(x) =


∂f(x)
∂x1
...

∂f(x)
∂xn

 (3.3)

The algorithm itself follows a straight forward approach. It first selects a starting point,

by selecting values for each variable of the function. Then it evaluates the gradient of

it using Equation (3.3). It then scales the gradient value by a predefined variable and

subtracts it from the position:

xn+1 = xn − η∇f(xn) (3.4)

where xn and xn+1 are the current point in the algorithm and the next one respectively

and η is the scaling factor, referred to as a "learning rate". The algorithm terminates

either when the maximum number of steps has been reached, or the scaled gradient

value is less than a predefined tolerance value.

These core ML approaches provide an overview how algorithms can extract infor-

mation and find hidden relations in the data they are trained. In the following section,

the DL application of ANN will showcase how it reuses these fundamental algorithms

and expands upon them by introducing additional complexity.

3.3 Neural Network Structure

In the core of the current state-of-the-art in DL is the ANN. These networks use exist-

ing ML concepts such as classification and regression and expand upon them through

the introduction of more complex, and thus "deep", computational paths. Expanding

upon this "deeper" computation is the fact that the input variables are no longer ob-

served on their own - they are observed jointly and thus influence the output in a com-

bined way (Russell, 2010). This expands the capabilities of existing models, which

up to this point could only represent simple functions and boundaries of the observed

domain.

One of the first avenues that were explored at the start of the field of AI was the

mimicking of the human brain. Specifically it focused on the concepts of intercon-

nected neurons (McCulloch and Pitts, 1943) - this created the basis for the first ANN.

Although the neurons, or more precisely nodes, of such networks were modelled
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originally to work similarly to how actual neurons were perceived then, the field of

computational neuroscience has created far more complex systems to represent the

brain. Nevertheless, this original structure has proven successful even to this day. Al-

though current state-of-the-art research in DL has many variations of an ANN, some

core principals and building blocks are consistent throughout - Neurons/Nodes, Lay-

ers, and Learning. In the following sections a brief overview of these concepts is

presented.

Figure 3.1 Example Node Connectivity. Some weight values left out for clarity.

3.3.1 Nodes

In the core of the modern ANN is the node, often also referred to in literature as a

neuron, circuit or perceptrons. Each node can be connected to one or more other

nodes and along this connection the values from one node is propagated to further

ones. Each connection is further assigned a unique weight which describes the impor-

tance of the connectivity between them (Figure 3.1). The goal of each node is then

to evaluate its inputs based on their associated weights and propagate the further.

This evaluation is performed through the application of predefined function, called an
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"activation function". A simple mathematical representation of the concept is given as

follows:

aj = g(
n∑

i=0
wijai) (3.5)

where aj is the output for node j and ai for node i, g() is the activation function, and

wij is the weight for the connection between i and j. A few well established activation

functions are:

• the Sigmoid (Figure 3.2a) function, given as:

σ(x) = 1/(1 + e−x)

• the Tanh (Figure 3.2b) function, a scaled and shifted sigmoid function, given as:

tanh(x) = e2x−1
e2x+1z

• the Rectified Linear Unit (ReLU) (Figure 3.2c) given as:

ReLU(x) = max(0, x)

• the Leaky Rectified Linear Unit (LeakyReLU) (Figure 3.2d) given as:

LeakyReLU(x, a) =

a ∗ x, if x < 0

x, otherwise

• the Softplus (Figure 3.2e) function, a smoother version of the ReLU, given as:

softplus(x) = log(1 + ex)

• the Gaussian Error Linear Unit (GELU) (Figure 3.2f) given as an approximation:

GELU(x) ≈ 0.5x(1 + tanh([
√

(2/π)(x + 0.044715x3)]))

3.3.2 Layers

Assigning the activation function and all connections of each node in large ANNs is a

cost inefficient task. An approach to better organize and manage them is to arrange

them into layers (Figure 3.3). The advantage of organizing nodes into layers is, that

it enables for parameter sharing - all neurons can automatically have their activation

functions, connections to other neurons and further parameters set directly through

the layer. Furthermore, they allow for easy modularity - allowing for ease of design

of such networks. Finally, this approach to abstract nodes into layers allows for a

better representation of the information the network learns. Through this hierarchical
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(a) Sigmoid (b) Tanh (c) ReLU

(d) LeakyReLU (e) Softplus (f) GELU

Figure 3.2 Example of Activation Functions

structure, features and patterns that are learned at each layer and can present how

the network is processing the information learned. The layers are typically split into

three different categories - input, hidden, and output layers. The input layer processes

the original data and provides it to the further hidden layers of the network. Hidden

layers are the layers between the input and output layer are called "hidden", because

the user does not have direct control over how or what they learn from the data and

each other. They transform the original data, provided by the input layer, into different

representations on which the output layer can base its final prediction. The amount

of hidden layers varies between ANN models and is dependent on the data and task

that it solves.

Due to the layer structure and how nodes are connected all weights can be gener-

ally represented in a matrix structure, often denoted as W , where W i represents the

weights in layer i. If the weight functions per layer are represented similarly as gi(x)
for layer i, then a basic ANN n can be mathematically represented as:

nW (x) = gn(W ngn−1(W n−1 · · · (W 1x))) (3.6)

3.3.3 Learning

Once the nodes and layers of a ANN are set up, and their weights are initialized,

either with random values or with a predefined set, the network is ready to be trained
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Figure 3.3 Example Layer ordering. Some weight values left out for clarity.

and to learn. The goal of training a ANN is to compute the most ideal weights for

the network, so that the differences between the results it outputs, and the ground

truth remain minimal. This process happens by providing a data set of X(x, y), which

consists of a pair of values with x consisting of input vectors and y their evaluation.

The ANN takes each input vector in x and produces an evaluation ŷ (e.g. regression)

or a probability function p(x)(e.g. classification) that determines what is the likelihood

for the prediction to be of a specific output class. A correction, generated based on

the differences between the ground truth and the predicted result, is produced. This

correction is then in turn used to update the weights of the ANN. This process is

repeated a multitude of times until a desired amount of iterations is reached, or the

network has achieved a certain termination criteria.

Using a predefined error function the difference between the estimated value, pro-

duced by the ANN ŷ or p(x), and the actual result y of the network can be evaluated.

There are a few established loss functions that are well suited to different types of

ANNs, e.g. regressions or classifications. The most common are:

• Mean Squared Error (MSE): E(y, ŷ) = 1
N

∑N
i=0(yi − ŷi)2

• Mean Squared Logarithmic Error (MSLE) : E(y, ŷ) = 1
N

∑N
i=0(log(yi + 1) −

log(ŷi + 1))2



42

• Mean Absolute Error (MAE): E(y, ŷ) = 1
N

∑N
i=0 |yi − ŷi|

• Categorical Cross-Entropy: E(y, p(x)) = ∑C
i=0 yilog(p(x))

where N is the total number of evaluated results and C is the number of classes to

which the input vectors x can be classified to.

The utilization of error functions to evaluate the predictions of ANNs, an appropriate

approach to update the weights of the network is presented in the gradient decent

approach. This approach, as discussed in Section 3.2.3, is designed to find the local

minimum of a given function, i.e. reduce the value of the error function. Similar to

how gradient decent can be used in supervised learning, it can be applied to ANNs

to update the weights. For the weights for connections leading to the output layer, the

gradient descent approach can be applied directly. For all other layers, the chain rule

has to be applied to allow for the use of the gradient descent. The chain rule is given

as : ∂g(f(x))
∂x

= g′(f(x))∂f(x)
∂x

.

The procedure of updating the weights of ANNs through this approach is referred

to as backpropagation. It is important to note, that the application of the gradient

descent in the case of ANNs also utilizes various improved implementations, building

on the concept of the simple relaxation term. A few of the readily available solutions

will be briefly outlined and presented.

One of the first proposed improvements is the Adaptive Gradient (Duchi et al.,

2011), named AdaGrad by the authors. It consists of learning rates based on each

dimension of the input data and as the name suggest they are adaptable. Simply put,

the AdaGrad reduces the importance of learning rates based on how often they are

used - the more often they are used, the smaller the learning rate is. The learning

rate η for every dimension θi at step t is given as:

θt+1,i = θt,i − η√
Gt,ii + ϵ

· gradt,i (3.7)

where Gt is a diagonal matrix, where each element on the diagonal is the sum of the

square of the gradients for that dimension θi up to step t, ϵ is a smoothing term, to

avoid division by zero and gradt,i is the gradient for dimension θi at step t.

Building upon this approach AdaDelta (Zeiler, 2012), also has a learning rate per

dimension. But instead of accumulating and adapting the learning rate based on all

past updates, like the AdaGrad does, it restricts this to a fixed size based of the last

w steps. An improvement to just storing the past w squared gradients, it is proposed
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for the sum of gradients to use a decaying average of all past squared gradients. For

step t this is given as:

E[grad2]t = ρE[grad2]t−1 + (1 − ρ)grad2
t (3.8)

where ρ is the decaying factor. This decaying average is then used to substitute the

matrix Gt in eq. (3.7), and thus obtain the final version of AdaDelta as:

θt+1,i = θt,i − η√
E[grad2]t + ϵ

· gradt,i (3.9)

Finally the Adaptive Moment Estimation (Kingma and Ba, 2015),or Adam for short,

furthers the concept of AdaDelta. The algorithm uses a momentum equation to further

optimize the convergence of the gradient descent. The algorithm thus stores two

values - the decaying averages of the past gradients and the past squared gradients.

These equations can be written as follows:

mt = β1 · · · mt−1 + (1 − β1) · gradt

vt = β2 · vt−1 + (1 − β2) · grad2
t

(3.10)

where β1 and β2 are the decay factors. The authors note that there is an initialization

bias inherited to these parameters, but propose a bias-correction equation for both

as:
m̂t = mt

1 − βt
1

v̂t = vt

1 − βt
2

(3.11)

Using the bias-correction terms to substitute the matrix Gt and the gradt,i in eq. (3.7)

the final version of Adam can be obtained as:

θt+1,i = θt,i − η√
v̂t + ϵ

· m̂t (3.12)

3.3.4 Information Propagation

Based on the direction of connectivity between layers there are two main types of

ANNs - the feedforward ANN and the recurrent ANN. For the focus of this dissertation

feedforward ANNs are of importance, but both types will be briefly explained and their

difference highlighted.

Feedforward ANNs stem from the original single layer perceptron network (McCul-

loch and Pitts, 1943). In such networks the connections are only in one direction,

moving information from the input layer, through the hidden layers and finally to the
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output layer. They do not form any cycles or loops inside them. Most modern day

approaches apply a feedforward structure as we will see in further chapters.

The Recurrent Neural Network (RNN) concept builds upon the feedforward ANNs

in order to be capable of processing input of variable length and were meant to also

handle temporal sequences of information. To achieve this goal recurrent ANNs allow

for cycles within the network. These cycles usually have a form of temporal delay,

that allows for neurons to take as additional input values that they have computed in

previous steps. This means that the network has a memory, or an internal state.

3.4 State of the Art Artificial Neural Network

Structures

Due to the booming popularity of AI, specifically Deep Learning and the straightfor-

ward nature of ANNs, it would be impractical to cover all possible state of the art ANN

base structures in this dissertation. That is why a handful of cornerstone structures,

with high relevance for this work, are selected and presented. Their unique features

and the advantages they bring will be briefly presented and discussed.

3.4.1 Multi-layer Perceptron Neural Networks

The Multi-layer Perceptron (MLP) ANN, often referred to in literature as a feedforward

ANN or dense ANN, is the fundamental type of ANN. This type of ANN consists of only

densely connected layers. Each neuron from one layer is connected to all neurons

from the previous layer as well as to all neurons from the next layer. This structure

enables the discovery of global patterns within the provided data. A disadvantage of

such an approach is, that for each atomic part of the data, that is provided for training,

i.e. for each color channel of a pixel in an image, a separate node in the input layer is

required. This leads to prohibitively high amount of neurons per layer, if the data has

a high amount of dimensions.

3.4.2 Convolutional Neural Networks

The advent of Convolutional Neural Network (CNN) arose from the challenges of using

MLP on images. The dense connectivity of such networks would require the user to

provide with a vast number of training images and would require an impractically high

computational time and resource to train the network. To solve this issue the CNN
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does away with the dense connectivity. Instead, each neuron receives input from only

a small set of adjacent data points.

This limitation to the connectivity of the network provides 2 major benefits. On one

hand it reduces the amount of connections, and thus weights in the model. Sec-

ondly such connectivity means, that only other data points that are adjacent to each

other, have influence on the learning process. This approach has proven vastly more

efficient with tasks such as image recognition.

Furthermore, such ANNs enforce local spatial invariance, i.e. there are small fea-

tures that can be recognized throughout the data. To achieve this, each hidden layer

enforces, that the weights connecting to a node in it are the same as each other.

This transforms the nodes into feature detectors, capable of detecting the same fea-

ture throughout the whole data. This further reduces the number of weights in the

network.

This creates a pattern of weights, that can be replicated across multiple local re-

gions and is called a kernel. The application of this kernel to the data is called con-

volution. For a given data object x and kernel k we can represent the convolution

as:

z = x ∗ k (3.13)

where the ∗ is the convolution operator. Simply put the operation uses the dot product

between the kernel and a subsection of x focused around a specific data point with

the size equal to the kernel size. The kernel is traditionally not applied on every data

point in the data, but can utilize an offset, called a stride. This in turn reduces the

output of each convolution layer by a factor of 1∏n

i=1 si
, where si represents the stride

in dimension i.

It is possible to add a padding to the data with the size of the kernel in each dimen-

sion in order to avoid the shrinking original dimensions of the data. Furthermore, if

there are d kernels applied per layer, i.e. detect several features per layer in the data,

then the output of the layer is expanded with a further dimension of size d, where each

entry in it represents one feature map detected by a specific kernel.

3.4.3 Autoencoder Neural Networks

Autoencoder (AE) ANNs build upon the concept of CNN - using two concepts from

image processing, downsampling and upsampling. An AE network consists of two

CNN components, one for each process - an encoder and decoder respectively. In

the encoder component one or more convolutional layers are used to process the

data and extract features. This is then followed by the reduction of the size of the
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original dimensions of the data. This is often done by so-called pooling layers - utility

layers that, similar to the convolutional layer, apply a predefined, fixed kernel to the

data. The process is then applied several times to the data. Shrinking the original

dimensions of the data allows for higher amount of features d to be extracted per

level. The output of the final level of the encoder CNN is often called in literature the

latent (feature) space, i.e. the higher resolution data is downsampled, or encoded,

into a more compact representation.

The decoder CNN is the inverse of the encoder network. Convolutional layers are

again used to transform the latent space, followed by upsampling the data. After each

upsampling, the latent feature space d is reduced in size.

3.4.4 U Shaped Neural Networks

U Shaped Neural Networks (U-Net), were first developed for biomedical image seg-

mentation purposes (Ronneberger et al., 2015). It expands upon the AE by enforcing

on one hand the amount of encoder and decoder components to be equal, and on

the other introduces a direct connection between each level of the autoencoder. This

direct connection is often referred to in literature as a "skip connection". There are

two main advantages of using such skip connections. This introduces more connec-

tions between different hidden layers, reducing the issue of the "vanishing gradient"

problem (Basodi et al., 2020). A further advantage is that the direct connection be-

tween encoder and decoder allows for the introduction of higher resolution data in the

decoder.

3.4.5 Transformer Neural Networks

Transformer ANNs take a different approach in processing information. Originally

used for Natural Language Processing (NLP) tasks (Vaswani et al., 2017), they have

since been in used in various other tasks, e.g. image classification, segmentation and

regression tasks. Transformers introduced a novel approach in modelling the relation

between various parts of a sequence of information - the self-attention mechanism.

This mechanism allows modeling global learn the importance between each part of

the data, and not just locally, as CNN models do.

Each piece of the data is transformed into three tokens, traditionally called query,

key and value. Each query token is the representation of each piece of data, the key

token is used to map the relevance between the query token of each other piece of

data and itself, and the value token is the representation of the piece of that data

from the perspective of the rest of the data sequence. The self-attention mechanism
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calculates the attention weights for each piece of data based on its relation to the rest

of the sequence, computed through use of the query, key and value tokens. The self-

attention layer produces a context specific representation for each part of the data.

Through the use of this self-attention mechanic several advantages can be obtained

in comparison to the current models. Due to the structure of self-attention layers,

Transformers are capable of capturing long-term dependencies, i.e. it does not focus

only on adjacent dependencies, allowing to uncover more complex features in the

data. Unlike RNN, which are also capable of capturing such dependencies, the lack

of a recursion, allows for them to be more optimally implemented on modern parallel

solutions. Transformers also do not modify the dimensionality of the data, in the same

way AE networks would, allowing for greater scalability.

3.4.6 Bayesian Neural Networks

Bayesian Neural Network (BNN) build upon traditional ANNs by introducing Bayesian

inference. While traditional networks try to find the optimal values for its model, i.e.

for the weights, the Bayesian ANN attempts to find the distribution and probability of

each weight in the model.

Once a model is trained in traditional ANNs, using it on a new piece of data would

always produce the same result. When using a BNN, each weight is sampled for

their posterior distribution every time, thus the result would vary every time. This

provides the advantage to easily observe how certain the network is in its results -

small variance meaning higher confidence, while larger variance indicates uncertainty.

This redefinition of the weights requires an extended approach in handling how

the network is trained as well. Stochastic models are used in place for the loss and

inference is applied in the training process. Instead of learning and optimizing sin-

gle parameters, a BNN attempts to obtain the conditional distribution of the weights,

given as p(w|D), where D represents the tuple of training data (x, y). This posterior

distribution, or posterior for short, can be obtained using the Bayes’ theorem:

p(w|D) = p(D|w)p(w)∫
w p(D|w′)p(w′)dw′ (3.14)

For this to be achievable, the prior p(w), which represents the original distribution

of the weights and their likelihood p(D|w) are needed. The challenge in computing

directly the Equation (3.14) is the presence of the integral over all possible w. This re-

quires an approximation of it, which is possible in shallow networks, where the amount

of w is small enough. For deeper ANNs there are two main set of approaches that

can tackle this issue: sampling based methods, such as the Markov Chain Monte
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Carlo method, and variational inference methods. While the sampling based methods

are more easy to implement, there are inherit challenges with the sampling of large

spaces, such as with deep ANNs.

Utilizing a posterior distribution over the weights, instead of single estimates, allows

the expression of predictions from such networks to be represented as probabilistic

predictions:

p(ŷ|D) =
∫

w
p(ŷ|w)p(w|D)dw (3.15)

The integral in Equation (3.15) will be approximated as well using one of the afore-

mentioned techniques, due to the impractically large space that it integrates over.

Similar to normal ANNs, BNN utilize gradients to optimize their parameters, but rather

use the typical gradient descent a stochastic gradient ascent approach is utilized to

optimize variational inference function, the Evidence Lower Bound (ELBO) function.

3.4.7 Generative Adversarial Networks

The original concept of a Generative Adversarial Network (GAN) was proposed by

Goodfellow et al. (2014) and consists of two competing ANNs in a zero-sum game.

Originally these networks were developed as an unsupervised approach for gener-

ating realistic imagery. The goal of one of the networks, the generator/generative

network is to produce samples from the distribution P (x) by learning a mapping be-

tween z and x. The second network, the discriminator network, attempts to ascertain

if the input x that it receives is from the original training set or if it was produced from

the generator network. The goal of such networks is then to reach a state, where the

generator network can mimic the training data x exactly, and thus also be capable of

producing new realistic samples, while in the discriminator network has a probability

of assigning it to the right class of 50%.

3.4.8 Diffusion Networks

Diffusion models were first introduced by Sohl-Dickstein et al. (2015). They proposed

a form of generative ANN, based on the concept of non-equilibrium thermodynamics.

The unique property of such models is, that they introduce a Markov chain model for

iteratively introducing noise into the data. The process consists of two key phases

- the forward diffusion process and the reverse diffusion process. The forward pro-

cess introduces in each step additional noise to the data. The original model (Sohl-

Dickstein et al., 2015) utilized Gaussian noise to introduce iteratively additional noise

into the data. The reverse diffusion process is what the network itself learns. The
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objective of the network is to learn how to remove the introduced noise iteratively as

well. This means that the network learns how much diffusion happens per singular

iteration step and how to inverse that step. Such models have shown improved results

in comparison to established GAN solutions (Song and Ermon, 2019; Ho et al., 2020)

3.5 Conclusion

This chapter established the core distinction between the three main, often conflicting

terms of AI, ML, DL. The focus of the dissertations with regard to AI is then placed on

state-of-the-art DL approaches. The chapter introduces the core concepts of the two

main tasks such approaches can solve - regression and classification predictions and

establishes a consistent nomenclature for the further chapters with regard to ANNs. A

brief overview of the core structure of ANNs is presented and the concept of learning

in that regard are explained. Finally, fundamental state-of-the-art concepts, with rel-

evance to the further parts of this dissertation, are presented - such as CNNs,GANs

and BNNs.

As can be seen from the chapter, there are no clear optimal solutions with regard

to the use of AI. Various implementations of ANN provide a wide range of different

advantages, making many such solutions potentially ideal for the goals outlined in

Chapter 1, e.g. AE Networks, U-Net, BNN, GAN, Transformers, and Diffusion Models.

It is necessary for a detailed literature review of the state-of-the-art implementations

of such networks with regard to numerical simulations. The following chapter provides

an overview of such solutions, while also highlighting the advances in the field of CFD

and CWE.
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4 Related Works

Chapter 2 and Chapter 3 presented the theoretical basis of computational fluid dy-

namics, the base guidelines for application in urban environments and the core con-

cepts of modern deep learning approaches. Based on these pillars the following chap-

ter explores historical and modern applications of these fields. Due to the limitations

of how deep learning methods learn from information, a crucial point in the research

is the modern day research performed in the area of CWE - the application area for

CFD simulations in the Architecture, Engineering and Construction (AEC) field.

Due to the emerging nature of DL, the dissertation will focus not only on specific

studies that connect the fields of CFD and CWE with it, but also on a broader range of

related research. Through the flexibility in application of DL methods and approaches,

as will be demonstrated through the literature review, a large set of them can easily

be translated or re-purposed for the goal of predicting wind simulation results. The

areas that will be broadly covered in this sense are the application of DL in AEC, CFD

and Computational Physics.

4.1 Computational Wind Engineering

The field of CWE has grown steadily over the last decades. It encompasses not only

the application of CFD in engineering scenarios, but also the digital modeling and the

application of wind-tunnels as a source of evaluation and support. The origins of the

field can be traced to the original attempts at creating numerical models for weather

prediction (Smagorinsky, 1953, 1958; Charney et al., 1950). From there on the field

expanded to smaller and smaller scales, observing and modelling scenarios with ob-

stacles such as buildings and complex terrain (Hirt and Cook, 1972). During the

same time frame the results of numerical simulations were compared and validated

against ABL wind tunnels for the first time (Derickson and Meroney, 1977), creating a

long-standing practice of utilizing wind tunnel models as the baseline of evaluation for

newly proposed numerical turbulence models. The field further expanded, focusing on

more complex microscale simulations, as well as on the measurement and prediction

of 3D pressure and velocity fields around bluff bodies (Baskaran and Stathopoulos,
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1989; Paterson and Apelt, 1990). Many challenges, the basis of which were outlined

in Chapter 2, were observed for the first time, such as high Re numbers, complexity

of modeling turbulence and boundary conditions(Murakami, 1998).

With the increase of computational power, enabling the creation of more complex

turbulence models and allowing for higher grid density, the focus has now shifted to

the study of various turbulence models, their application based on various conditions

and the development of more refined and precise approaches.

This increase, coupled with new software solutions has led to easier to set up CFD

simulations. This allows for application to use more complex turbulence solvers, such

as implementations of LES, making them more prevalent in research. Reda et al.

(2017a) provides a comparative study between an OpenFOAM (OpenFOAM Founda-

tion, 2022) LES solver and scaled physical model used in a wind tunnel. The authors

highlight the strong overall agreement between the two approaches, and argue that

the discrepancies between them is due to the necessity of much larger Re numbers

in the scaled physical model.

Further more complex boundary conditions that match the respective turbulence

models are also required. Weerasuriya et al. (2018) proposes an inflow model that is

derived from the RANS k − ϵ turbulence model. They validate their proposal utilizing

OpenFOAM, ANSYS Fluent (Ansys, 2022) and a wind tunnel. Both numerical soft-

ware solutions were incapable of accurately predicting the mean wind speed in the

downstream far-field low wind speed zone, but were inconclusive as to why this dis-

crepancy exists. Nevertheless, The OpenFOAM solutions was capable of predicting

the same flow fields as the wind tunnel experiment in all other zones, outperforming

the ANSYS Fluent software.

A core focus for the CWE field is the simulation of wind comfort for pedestrians.

This is done by focusing on the lower parts of the simulation domain, usually up to

10 meters above the ground level, by providing a higher density of cells. Blocken

et al. (2016) provides an in-depth analysis and comparison between RANS and LES

models, and the various approaches to performing measurements in wind-tunnels. In

their overview they provide sufficient proof that wind-tunnel simulations are capable

enough of predicting the measurements obtained in the real environment, establishing

them as a baseline of comparison for the RANS and LES methods. An alternative

to RANS models, Unstable RANS (URANS), also provide potentially better results,

but the necessity for higher spatial resolutions makes it almost as expensive as LES

models, and thus it is rarely used in case studies. The authors argue that although

the faster and more inexpensive versions of wind tunnel measurement techniques and
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RANS models have a lower accuracy than other methods, they can still be utilized in

pedestrian level wind simulations, and thus are justified to be utilized in research.

Although the RANS k − ϵ model suffers from such drawbacks, Mochida and Lun

(2008) highlights the challenges of applying LES Models in practice. They provide a

brief overview of advancements made to this model. Such changes alleviate some of

the original issues of the turbulence model, but introduce new challenges and issues

that require correction. The authors provide an overview of geometry modeling prin-

ciples for pedestrian wind comfort simulations for various turbulence models. Their

work highlights the necessity of modeling small scale geometries, such as trees and

signs, or moving objects, such as cars and pedestrians.

Although small scale geometries are crucial for capturing the turbulence details for

pedestrian wind comfort analysis, there is a necessity to reduce geometrical com-

plexity in buildings, where a large amount of small details leads to prohibitively large

computational domains. The case study of Liu et al. (2017) selected a dense urban

area for a case study, focusing on the importance of details in buildings. Utilizing a

RANS RNG k − ϵ model for their turbulence solver, they performed a parameter opti-

mization study with regard to grid density and wall roughness factor, which is used as

a replacement to facade and ground detailing of small geometry. They validated each

combination of simulation parameters against real world measurement data. Their

study highlighted, that past a certain amount of cell density, the precision does not

increase significantly, but that the wall roughness factor plays a crucial role in the

accurate representation of the data.

Due to the wide range of use case scenarios for such simulations it is necessary

to have an established collection of benchmark scenarios and simulations, with which

newly proposed approaches can be compared against. The Architectural Institute of

Japan (AIJ) has developed a set of case studies, consisting of single buildings or large

city configurations. These cases were simulated in wind tunnels and are meant to

serve as benchmarks and comparison tool for numerical simulations (Tominaga et al.,

2008). Li et al. (2018) uses them as a base to compare various industry established

simulation tools (Autodesk CFD, OpenFOAM, UrbaWind (Fahssis et al., 2010)), with

a variety of RANS models and mesh density. The study focuses on the dense urban

scenario with one high-rise in the middle. They define points of interest to monitor

around the high-rise, based on the wind direction, and where the expected turbulence

effect would form. The study concluded, that although OpenFOAM allowed for finer

control of the simulation environment, that neither combination of turbulence solver

nor mesh density for any of the three solvers was able to sufficiently reproduce the

results of the AIJ case study in all wind directions.
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The density of meshes and the complexity of geometry are not sufficient parameters

for optimization in order to obtain higher precision results. As presented in Chapter 2

the RANS solvers have many constants and parameters, that although having default

recommendations, benefit from calibration to the task at hand. Shirzadi et al. (2018)

performs a series of wind tunnel validation studies on idealized city layouts. Using

these as the base, the k − ϵ and SST RANS turbulence models were used inside the

ANSYS CFX commercial software. Utilizing a linear sensitivity analysis for different

closure coefficients, optimal values for the different scenarios were obtained. The

case study showed, that with an increase of urban density, the precision of both RANS

models significantly decreased. For higher density, the closure coefficient calibration

provided drastic improvement on the results, but for highly packed urban areas even

further calibrations are recommended by the authors.

Although the parameter optimization of such models is crucial for achieving better

results, more complex approaches are required, e.g. leveraging the advantages of

multiple solvers. An alternative approach to utilizing only one turbulence solver was

explored in the case study of Millar et al. (2020). A RANS-LES hybrid solver is uti-

lized to attempt and maximize the advantages of both solvers. They apply the RANS

solver only in the proximity of building facades, which according to their computations

amounted for roughly 1% of the simulation domain. Nevertheless, the decrease in

cells in comparison to a full LES simulation with wall-resolved model was significant.

The use case further refined the cell resolution in the most important regions for the

studies - there they were small enough to be able to resolve around 80% of the turbu-

lence. Their results showcased a higher agreement between wind tunnel and real life

measurements and the simulation results, although there were some discrepancies

in the complex scenarios.

This mixing of numerical solvers has shown that higher order of accuracy can be

achieved. Utilizing two different types of solvers - one for fluid simulations and one

to capture the specific issue observed, e.g. particle tracking or aerodynamic models,

has been developed in the fields of pollutant dispersal analysis and urban wind turbine

planning. Bahlali et al. (2018) utilizes a Lagrangian atmospheric dispersion model in

conjunction with a traditional RANS k − ϵ solver. First the CFD solver computes the

mean fields of the values of interest (velocity, pressure, temperature, turbulence), and

then in a second phase utilizes the chosen dispersion model to predict the spread

of pollutants. Their initial validations have shown more accurate results than when

utilizing traditional approaches. Balduzzi et al. (2018) similarly utilizes a second type

of simplified solver when dealing with the simulation of wind turbines in urban envi-

ronments. Utilizing a simplified model for wind turbines, based on the Blade Element
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Momentum (BEM) theory, a hybrid RANS-BEM solver is constructed. The model uti-

lized in the study expands upon the existing BEM by introducing additional source

terms to account for the turbulent kinetic energy and eddy dissipation. The domain is

subdivided into two major regions - the BEM region, around the wind turbine, where

the BEM equations are solved, and the RANS region for the rest of the simulation do-

main. And although the standard k − ϵ RANS turbulence model is utilized, the study

proves, that this hybrid approach achieved a much higher accuracy than just utilizing

a normal CFD simulation.

As can be seen from this overview of advancements in the field of CFD and specifi-

cally CWE, there is still much to be desired of the already complex simulation domains

and turbulence models. For this purpose a large amount of research has been done

with regard to simulations on large scales in the urban environment focusing directly

on CFD/CWE simulations or various representations there of. With the introduction

of more complex approaches in solving these issues, such as with multimodel simu-

lations, a natural expansion of this research can be seen in the field of ML and DL.

In the following sections, an overview of the various applications of DL and ML tech-

niques in the field of AEC will be presented - highlighting their flexibility, efficiency, and

reusability.

4.2 Deep Learning in AEC

Various applications of DL and ML methods and approaches in the field of AEC will

be presented. A broader overview of such solutions is explored to showcase a more

comprehensive overview of current state-of-the-art solutions. Furthermore, such a

wide overview assists in the identification of cross-disciplinary insights, methods, or

techniques that are beneficial for the dissertation. This allows for the identification of

shared challenges and limitations, that are faced in the application of DL/ML in the

field of AEC - such as handling large scale simulations, or the availability and creation

of training data.

Air pollution and pollutant dispersal are critical topics in the field of CWE. Such

simulations take into account only very roughly the terrain and the actual sources of

pollution, such as cars. In Adams and Kanaroglou (2016) a simple ANN model is

proposed, that attempts to extrapolate information from a few points in the urban en-

vironment a heat map of the air pollution for the whole city. The advantage of the

approach is, that each point is populated with greater amount of complex measure-

ments, such as road information, land use and congestion. The different variables

were scaled with an additional weight to represent their importance in advance. The
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results highlighted the potential in mapping out future information for existing spots

and performs better than established models for unobserved areas as well.

A similar approach to providing a complete overview of the Physiologically Equiv-

alent Temperature (PET) in the city of Stuttgart was done (Ketterer and Matzarakis,

2016), comparing two numerical approaches - a Step-Wise Multiple Linear Regres-

sion (SMLR) and a small MLP. The data used for these predictions combines a mix-

ture of measured and real data - temperature from a specific day, topology of the city,

land cover, and synthetic data - sky view factor and meso- and microscale wind sim-

ulations. The study found that the neural network approach was able to capture and

represent correlations between parameters better than the SMLR approach, but both

approaches were in good agreement with the measured data. The authors conclude

that although the approaches provided good results, the complexity in modeling such

a phenomenon would require further parameters, but in its current state serves as a

guideline for urban planners.

Expanding upon the complexity in modeling large scale phenomenon, the introduc-

tion of a temporally dependent data, through the use of RNN, has been attempted

for various urban tasks. It has been successfully utilized in predicting water levels for

urban flooding (Chang et al., 2014), forecasting the traffic load in urban environments

(Xiangxue et al., 2019) or even predicting the changes in urban areas through the use

of remote sensing data (Khusni et al., 2020).

A challenge faced with the utilization of early design stages data in analysis and

simulation tools is that it is vague and uncertain. Such models need to still be validated

through high precision simulations. To offer the planners, designers and engineers a

way to receive estimations about their concepts, surrogate models are often utilized.

Such models attempt to represent the complex simulations through statistical models,

with correlating input and output parameters. Due to the high complexity of such

models, traditional statistical approaches struggled with providing sufficient details.

With the rise of DL these concepts have been revisited. Vazquez-Canteli et al. (2019)

proposes a set of simple MLPs for the prediction of thermal losses and solar gains

of an urban area for the purposes of energy simulations. The combined accuracy of

the two networks reached approximately 85%, but managed to deliver the results in

seconds, which equates to a speed-up by a factor of roughly 2500 times.

Although DL methods allow for the creation of surrogate models for various sim-

ulation tasks (Chen et al., 2021; Tarabishy et al., 2020; Tripathy and Bilionis, 2018)

such models are often imprecise and carry with them a level of imprecision and un-

certainty. Westermann and Evins (2021) attempts to address this issue utilizing BNNs

and stochastic variational Gaussian process models to produce surrogate models of
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the energy performance of a building. A threshold for the certainty of the probabilistic

surrogate model is used to filter out precise, but uncertain models, and use these

surrogate models in actual simulations to produce high accuracy results. The hybrid

approach of using BNNs to produce accurate and confident surrogate models, that

are later used as the base for high precision simulations, provide agreeable results.

A further challenge with the utilization of surrogate models is the parameterization

of the model. Depending on the stage of development and the LoD required, such

models can significantly increase in input dimensionality. Singaravel et al. (2018) pro-

poses subdividing the domain into different component types and having a dedicated

smaller MLP for each of them. This approach is called Component-Based Machine

Learning (CBML). This approach allows for easier creation of datasets, since for each

component a separate process needs to be utilized. Furthermore, this also allows for

the reuse of the different components in later stages. The study achieved reasonable

accuracy compared to traditional Building Performance Simulations, but was capable

of providing feedback at a fraction of the time, roughly by a factor of 1300.

This approach, in dividing the computational and DL model complexity, is further

adopted by Yousif and Bolojan (2021). They focus on applying a GAN to predict the

daylight simulation of a room, allowing for the reuse in larger scale scenarios, such

as for buildings or even urban environments. The study uses the pix2pix GAN (Isola

et al., 2017), that was originally designed for art style transfer tasks. The study pro-

duces a data-set of singular rooms, represented through a segmented image. Various

objects, such as doors and windows, and their parametric information are represented

through various colors. While the rooms equivalent annual daylight simulation results,

obtained through the use of established simulation tools, is used as the expected

outcome of the network. The accuracy of the trained GAN reached a range of 84%

to 96% for the different annual daylight simulation metrics, when compared to the

established tools.

The pix2pix GAN has also been applied to larger scales, namely urban simulations

of pedestrian wind comfort (Mokhtar et al., 2021). The study focuses on introducing

further information into the input of the network, such as topography, vegetation and

height. The study also expands upon the approach by introducing a representation

of the confidence of the result of the neural network, similar to BNNs, by using a

sampling method that utilizes a dropout approach. Although providing acceptable

results, around 80% accuracy, the study observed some larger discrepancies in more

complex geometrical scenarios.

Through the overview of applications of DL in the AEC field, it can be clearly seen,

that it is still in its infancy and there is a vast potential for improving. Even with the
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simplistic DL methods, or the adapted more complex approaches, the results are

already achieving some of their goals, i.e. vastly faster computational times without

large inaccuracies. As can be seen from the state-of-the-art approaches, the strategy

of scaling solutions to larger issues has provided acceptable results. Furthermore,

the flexibility of DL method has allowed for the reuse of models for various different

tasks. Due to these observations the following section, focuses on DL applications

and methods in the theoretical applications with emphasis on models optimized for

the underlying simulations.

4.3 Deep Learning in Computational Physics and CFD

As shown in Chapter 3, ANNs represent complex non-linear interpolation schemes

and are not constrained by linearization. This makes them ideal candidates for solv-

ing complex Partial Differential Equations (PDE). In Raissi et al. (2019) explore the

concept of differentiating the neural networks based on their input and model param-

eters. They coin this type of neural networks as Physics-Informed Neural Networks

(PINN). The authors propose the use of cost and activation functions that are uniquely

tailored to the problem. The authors distinguish between two main approaches - data

driven solutions or discoveries of PDEs. The study successfully validates their as-

sumption in the case of continuous and discreet time models for both approaches,

using the Schrödinger Equation (Schrödinger, 1926), the Allen-Chan Equation (Allen

and Cahn, 1972), the Navier-Stokes Equations and the Korteweg-de Vries Equations

(Korteweg and De Vries, 1895) as examples. Although the results of the experiments

show great promises, and they utilize only very shallow MLPs, the authors concede

that such solutions are not meant to substitute existing numerical approaches, but

rather complement them, as that there are many open-ended questions that still need

to be addressed.

Although the proposed concept is promising, the technical solution provided by the

authors is ill-suited for adaptation and expansion. Building upon the concepts of this

study Haghighat and Juanes (2021) proposes a programming library, that builds upon

the TensorFlow/Keras (Abadi et al., 2015) library and provides its users with a high

level Application Programming Interface (API) for creating complex PINNs with greater

ease. The authors demonstrate the proposed solutions capabilities by recreating the

solution of Raissi et al. (2019) and achieving comparable results.

Utilizing technical solutions similar to Haghighat and Juanes (2021), Luo et al.

(2020) focuses on using PINNs to more precisely estimate the parameters of the

RANS k − ϵ model. The study does not focus on solving the Navier-Stokes equations
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or the RANS equations themselves, but rather optimize the constant parameters in

the equation to achieve better results. The authors propose a cost function, derived

from the equations for k and ϵ respectively. The study focuses on the channel flow

with a lower curved wall scenario with two different Re values, for which there are

DNS data sets available and are considered as the ground truth. Although the study

is successful in reducing the error rate between the PINN calibrated RANS to the DNS

solution in comparison to the normal RANS simulation, the difference remains rela-

tively high. The authors argue that due to the simplifications that RANS models make

and in order to achieve higher fidelity more accurate models, such as LES, should be

utilized.

Expanding upon more complex CFD examples, Laubscher (2021) focuses on in-

troducing further aspects into the simulation such as temperature and species for the

purpose of a simple dry air humidification. The study compares differently constructed

PINNs - between a singular PINN structure and a multi PINN structure, in which the

energy and species have a separate PINN from the fluid variables and the output of

all 3 are used in the final predictions and error estimation. As a baseline for the study

an equivalent simulation is constructed in OpenFOAM. Both proposed PINNs achieve

agreeable results with the ground truth. Using the best performing multi PINN ap-

proach, the authors also demonstrated how they can be utilized in surrogate models

by expanding input parameters.

Although the use of correctly modeled PINN provide very high accuracy in compar-

ison to their numerical counterparts, such networks are tailored to a specific problem

and boundary conditions and are not well suited for reuse in similar scenarios. A

more robust approach, with regard to the re-usability, is proposed in Kim et al. (2019).

The authors parameterize the input conditions for a set of fluid simulation scenar-

ios in order to reconstruct the full vector fields using a decoder CNN. The authors

argue that for precise reconstruction of fluid fields, an accurate loss function is re-

quired and propose a modified L1-Norm utilizing the curl term (Clerk-Maxwell, 1869)

for incompressible flows, while dropping it for compressible ones. The architecture of

the decoder CNN allows for high precision reconstructions of the learned scenarios,

but for a fraction of the time (up to a factor of 700) and are more memory efficient

than their numerical counterparts (up to a factor of 1300). The authors also propose

a second smaller encoder neural network to handle the compression of increasing

parameterization of problems, such as moving inlet sources.

A similar concept was developed by Ribeiro et al. (2020), in which the authors focus

on utilizing different set of traditional AE to solve 2D steady laminar flows, by producing

accurate pressure and velocity fields. Such flows have an equilibrium state, that is
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dependent on the boundary conditions of the simulation domain and the geometry in

it. This allows them to parameterize the input of simulation domain similarly as in Kim

et al. (2019). Instead of defying crucial points such as inflow positions and velocity

the inputs of the CNN is a combination of a vector field of the domain, where each

value is computed based on the Signed Distance Function (SDF) from it to a specific

surface in the domain, and a second vector field that represents the segmentation of

the domain into regions such as inlet, outlet, walls, fluid and obstacles. The authors

apply 4 specific types of AE:

• A baseline one

• A U-Net

• A baseline version, but with three separate decoder parts

• A U-Net, but with three separate decoder parts

The authors argue that the advantage of an AE with three separate decoder heads

for each of the output components, allows for separate error functions to evaluate the

results, in their test cases the L2-norm was used for the velocity and the L1 was used

for the pressure. The authors achieved relatively high precision compared with the

ground truth predictions of the simulation, but with significant increase in speed.

To tackle the issue of having diverging results between the numerical simulation,

used as ground truth, and the predictions of a DL method, Obiols-Sales et al. (2020)

proposes incorporating neural networks in the simulation process directly. The pro-

posed neural network architecture is a simple AE structure, but rather than receiving

a parameterization of the domain as in Ribeiro et al. (2020), the input for the CNN

consists of 4 2D Cartesian grids - one for the mean velocity components in each di-

rection, one for the mean kinematic relative pressure and one for the eddy viscosity.

In order to inform the network of the geometry and boundary conditions, the study

first allows the numerical solver, in the experiment OpenFOAM, to resolve the first

K steps of the simulation until the residual error reduces between steps to a certain

level. After this the last output of this warm up step is used as input to the CNN in

order to predict the converged solution of the simulation, and in order to ensure that

the solution is correctly converged, a final set of M iteration steps are performed until

the conservation laws are satisfied. The authors report a speed-up by a factor of up

to 7.4 for their test cases and an error rate, based on relative mean error, of 0%.

The approach in Obiols-Sales et al. (2020) is akin to more typical surrogate models

discussed in this chapter. An inverse approach, inspired from recent advancements

in the field of computer graphics with upsampling of imagery (Dong et al., 2016), is
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explored in Bai et al. (2021). The goal of the research is to train a neural network

capable of correctly upsampling coarser turbulence based CFD simulations. The au-

thors base and expand upon their original concept - that turbulence observed only on

small patches of the whole domain are simple enough for a neural network to learn ef-

ficiently. They utilize and improved version of their previous work, a dictionary-based

CNN, that learns to reconstruct high precision details of turbulent flow in the whole do-

main through observation of coarse details in specific patches of the domain. Simply

put the approach up-scales the coarse domain with a trilinear interpolation, but with

low frequency, and uses the dictionary elements of the CNN as high frequency resid-

uals to augment the result. The results are compared predominantly visually, where

they achieve a high overlap with established baselines and also achieve a significant

increase in speed-up to a factor of 7. The authors also highlight the capabilities of the

approach to successfully upscale coarse simulations on domains and scenarios, that

were not part of the training dataset.

With a similar task Xie et al. (2018) proposes a different approach in reconstruct-

ing high precision CFD simulations from coarser domains. The authors utilize a GAN

structure in order to correctly reconstruct the spatial and temporal aspects of the do-

main. The study uses randomized 2D smoke simulations and the input of the gen-

erator is a 2D image map of the down-sampled domain with 4 channels - pressure,

velocity and vorticity. The GAN utilizes two separate discriminators - one for the spa-

cial aspects of the generated up-sampled results, and one for the temporal aspects.

The authors showcase, similar to Bai et al. (2021) that the network can successfully vi-

sually reproduce the higher precision CFD simulation from down-sampled examples,

capturing the spatial and temporal details.

One important aspect that has been briefly touched upon in Xie et al. (2018) and

Bai et al. (2021) is the temporal aspect of CFD simulations. Simple examples such as

the Kármán Vortex Street (Von Kármán, 2004) show that not all flows are convergent,

and thus for a DL method to be capable of predicting their outcomes a temporal as-

pect needs to be introduced. Hasegawa et al. (2020) proposes a two-step approach

in predicting the future time-step results of a CFD simulation. The concept consists

of two neural networks working intermixed to achieve the ability to predict the future

steps of the simulation - a typical AE and a Long Short-Term Memory (LSTM) network.

The simulation scenario used in this study is the 2D flow in a channel around a bluff

body, producing the aforementioned Kármán Vortex Street effect. The autoencoder is

trained on DNS of the scenario and the LSTM is trained on the latent space output of

the encoder in the CNN, once it has been trained. The LSTM is then capable of pre-

dicting the future latent space of the simulation domain, which is in turn reconstructed
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from the already trained decoder component of the CNN. The authors show that the

results achieve a high agreement with the DNS results used as a baseline, and argue

that this methodology can be expanded for other scenarios.

4.4 Conclusion

As can be seen from the literature review into current state-of-the-art applications of

CWE, surrogate models in AEC and DL approaches in the field of Computational

Physics and CFD, there are many varied approaches in tackling a multitude of is-

sues inherent to the complexity of fluid flow. Nevertheless, this chapter provides an

overview of solution that are capable of addressing them.

It is clear from this overview, that there is no singular optimal approach for perform-

ing urban scale wind simulations. The complex geometrical scenarios and layouts,

the focus of the simulation (heat islands, pedestrian wind comfort, pollutant dispersal,

etc.) contribute to this issue further. Studies agree upon the fact, that even simpler

turbulence models, such as RANS k − ϵ are sufficient estimates.

Furthermore, this overview also showcases, that there is no exact way to model an

ANN to predict the outcome of a simulation. Key aspects for achieving better results

can be obtained from this overview. It is of crucial importance that the geometry and

the boundary conditions of the problem are modelled correctly. Furthermore, utilizing

auxiliary information, e.g. in the case of CFD not only velocity, but also pressure,

vorticity, turbulence model parameters, provide a vast improvement to the results of

the ANN.

Based on these observations, the following chapter provides criteria and more de-

tailed analysis on the requirements for the use of a DL method in the context of urban

scale wind simulation. An overview of current solutions with regard to these points will

be also discussed and analyzed.
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5 Deficit Analysis

Chapter 1 outlined the requirements for the integration of simulation and analysis

tools as DDS in the early design stages of urban planning. Chapter 4 presented the

current state-of-the-art solutions in CFD/CWE and advancements made in DL with

regard to the creation of more efficient surrogate models of urban scale simulations

and accurate and reliable prediction of results. Integrating the knowledge presented

in Chapters 2 and 3 and building upon the works presented in Chapter 4, the eval-

uation criteria (defined in Section 1.2) are utilized to analyze existing tools for urban

wind simulations. Building upon the deficits observed from this analysis, concrete ad-

ditional requirements are defined. They will be used to evaluate existing DL solutions

for CFD simulations. The analysis of these solutions provides the necessary outlines

for the concept definition in Chapter 6.

5.1 CWE Solution Analysis

Due to the wide range of solutions to solving the Navier-Stokes Equations for steady-

state incompressible turbulent flow a plethora of numerical solvers and implemen-

tations exist. In this section the core criteria for evaluation of such solutions for the

purpose of DDS are restated and brought into the specific context of urban scale wind

simulations. With these concrete requirements, established simulation solutions are

analyzed and evaluated. The underling issues with such solvers are highlighted.

5.1.1 Criteria

Drawing upon the criteria defined in Section 1.2 the requirements for such tools can

be grouped into the following parameters:

• Reliability and Precision - Section 4.1 showcased that there are no numerical

solutions that can consistently and reliably provide exact solutions. For a soft-

ware solution to be considered reliable and precise it must provide results of es-

tablished validation cases, such as those of (Tominaga et al., 2008; Franke et al.,

2007; The Langley Research Center Turbulence Modeling Resource, 2022).
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• Flexibility and Adaptability - Building upon the need for a numerical solution

to provide reliable and precise results is the ability to more easily modify the

domain parameters or the boundary conditions of the simulation in comparison

to wind tunnel experiments or real-life measurements. Furthermore, such soft-

ware solutions must have the capability of being interrupted, i.e. they must allow

for the user to change dynamically during the simulation process the aforemen-

tioned parameters.

• User-Friendliness - As discussed in Chapter 2 the theoretical base for correctly

understanding and configuring the boundary and initial conditions of a CFD sim-

ulations are complex. This is further compounded by the wide rage of use case

scenarios in which such simulations can be applied in an urban context, as pre-

sented in Section 4.1. Correct turbulence models need to be selected (Li et al.,

2018), their constant parameters optimally selected for the scenario, simulation

mesh density needs to be defined as well (Luo et al., 2020) as all boundary

conditions (Weerasuriya et al., 2018) and special patches, such as vegetation

(Lin et al., 2008), need to be correctly modelled. Such expertise in CWE cannot

be expected or mandated from urban planners and architects. Thus ease of

use measures the knowledge required for the user to use the tool and set up all

boundary and initial conditions.

• Interoperability - The complex nature of CFD simulation necessitates that such

software solutions traditionally come as independent software solutions. Their

ability to be integrated into existing urban planning tools as DDS systems is

crucial.

• Responsiveness - The simulation tools need to be capable of reacting to the

users input in an ad-hoc way. This means they need to be capable of providing

results, even if they are intermediate. As has been shown in (Bratoev et al.,

2018; Förster et al., 2021) complex numerical simulations, capable of providing

such information, and not just the final results are greatly beneficial for the early

stages of urban planning.

The refined criteria from Section 1.2 are the basis on which the software solutions are

evaluated and analyzed for their discrepancies.
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5.1.2 Analysis

Table 5.1 provides an overview of the most established software solutions available

for urban planning. In this section a more detailed analysis of each one of them will

be provided. The grading scale is between "very well" (++) to "impractical"(--).

OpenFOAM

There are two official distributions of the OpenFOAM (OpenFOAM Foundation, 2022)

- one is from the ESI Group and one is the OpenFOAM Foundation. Both versions

of the software are based on the same open-source distribution but have differing

release cycles and numbering conventions for their versions, thus they differ at most in

some of the more advance features. As can be seen from Section 4.1 a large majority

of user studies utilize a version of OpenFOAM. The setup for a simulation consists

of the creation of several folders that hold various settings for said simulation. This

setup requires solid knowledge in the field of CWE, since everything from the meshing

and definition of the domain, through the setup of all initial and boundary conditions,

to the selection of appropriate solvers for pressure, velocity, and turbulence need to

be defined by the user. A strong advantage of this separated approach is that it

allows smaller components to be easily changed (such as geometry) without having

to redefine the major components such as solvers and boundary conditions. The

speed at which results are outputted is heavily dependent on the amount of cells

in the domain and the hardware limitations of the system. Due to its robust nature

and steady development over the past decade, the software has been extensively

validated. The software allows for intermediate results to be stored at the end of each

time step they are needed at, but are nevertheless constrained by the computational

time of the solver itself. Due to its established accuracy and robust setup schemes,

a vast majority of further software solutions have been developed. They provide the

user with simplified interfaces or predefined scenarios (Kastner and Dogan, 2021;

FSD blueCAPE Lda, 2022).

Ansys Fluent

Ansys Fluent (Ansys, 2022) is a commercial CFD solver, developed and distributed

by Ansys. It offers an all-in-one package for performing large scale CFD simulations.

The software solution provides the user with a detailed UI for the set-up of any type

of laminar or turbulent simulation. The vast majority of parameters have predefined

default values, but tailoring the simulation domain to the exact scenario requires solid

knowledge in the field of CWE, similar to OpenFOAM. The speed of computation
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is also heavily dependent on the simulation domain and the hardware limitations of

the system. Unlike the OpenFOAM solution, it provides the option to utilize not only

Central Processing Units (CPU) but also Graphical Processing Units (GPU), which

provides significant increase in computational speed. It does not however, provide

any intermediate results to the user. Due to the way Fluent is set up, a new simulation

needs to be defined from the grounds up. Though the user can export major com-

ponent setups, such as solvers and inlet/outlet profiles, to templates for reuse. The

software has been successfully validated against established use cases.

DesignBuilder

Similar to Ansys Fluent, DesignBuilder (DesignBuilder Software Limited, 2022) of-

fers the user an all-in-one package for performing various numerical simulations and

analysis for buildings. It has a dedicated focus geared towards engineers, architects,

and planners. The simulations covered by the tool include energy analysis of build-

ings, daylight, design of Heating, Ventilation and Air Conditioning (HVAC) systems

and CFD. The tool offers very detailed control over the simulation initial and boundary

conditions, suggesting also useful default values. The software package also offers a

plug-in for Revit, an established tool for designing buildings, allowing the user to uti-

lize the full potential of the tool in a familiar environment. The tool has a predominant

focus for single building scenarios (interior and exterior), and thus does not offer a full

range of validations for more generalized cases.

Online Tools

While OpenFOAM and Ansys Fluent offer desktop solutions that could be utilized at

any point by the user, a greater portion of CFD and CWE software solutions offer

their services through online tools. In this way the software can outsource the heavy

computations to external servers, with hardware capable of performing full simula-

tions minutes. Examples for such established tools are SimScale (SimScale GmbH,

2022), IES (McLean, 2022) and UrbaWind (Fahssis et al., 2010). While SimScale and

UrbaWind offer simplified interfaces to the user with which they can set up their whole

simulations, IES offers consultation services with experts in the respective fields. Al-

though such tools greatly simplify the use of complex CWE and CFD simulations, they

are difficult to integrate into the early stages design process. Each of the aforemen-

tioned software solutions offer a large array of industry established validation scenar-

ios.
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5.1.3 Findings

As can be seen from the analysis of existing CFD/CWE software solutions, there

are no currently existing implementations that fulfill all the criteria required for their

integration as a DDS in early stages of design. The main issue that such products

face is the need to balance between opposing requirements - a responsive and user-

friendly design, and a greater flexibility in the set-up of the simulation. Although online

solutions such as SimScale and UrbaWind utilize the advantages that come with such

approaches, i.e. faster computation times, the lack of APIs for their integration in

existing workflows introduces a negative disruption to the design process, typical for

the early stages of urban planning. Based on this analysis clear goals for the DL

solutions will be defined in the following section.

5.2 DL Solution Analysis

The prerequisites for the usability of DL solutions build upon the CFD requirements.

Since the goal of the DL methods is to bridge the gap between the limitations that

state-of-the-art solutions in CWE/CFD possess, the core criteria, from Section 1.2

can be limited to responsiveness, reliability and precision, adaptability and flexibility.

Due to the nature of modern DL solutions, i.e. the trained models can be reused with

ease (Hugging Face, 2023; Foundation, 2023), the criteria for interoperability is not

taken into consideration. Based on this the criteria for user-friendliness is also not

taken into consideration, due to the fact that such solutions do not provide GUIs and

have a standard API approach.

5.2.1 Criteria

Due to the goal of the DL model to alleviate the challenges that are faced by CWE/CFD

solutions, the criteria require a separate context specific definition, different from the

one outlined in Section 5.1.1:

• Responsiveness - As was seen from Section 5.1.2 the responsiveness issue is

rooted in the high computational times. To evaluate the responsiveness of a DL

method the potential speed-up, in comparison to the established approach will

be taken into consideration (Xie et al., 2018; Bai et al., 2021; Obiols-Sales et al.,

2020).

• Precision - The CWE software solutions have a large set of validation schemes,

that ensure the implemented numerical solvers are sufficiently precise and ac-
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curate. Due to the nature of DL methods (i.e. learning from the provided data)

precision is measured by the deviation between the predicted outcome and the

ground truth.

• Reliability - Not all CFD simulations reach an equilibrium state. It is crucial for

the reliability of DL methods to be capable of predicting not just the final state of

the simulation but also how the simulation develops over time.

• Adaptability and Flexibility - DL methods are constrained by their training data.

It defines what the input requirements and what the expected outcome is. As

Sections 4.2 and 4.3 showed, there is a vast way of representing CFD simu-

lations. This would greatly affect the flexibility of such solutions. Methods with

more constrained data requirements are better fine-tuned to a specific scenario,

but can be integrated in fewer scenarios. The adaptability and flexibility of DL

methods is then evaluated based on the requirements they enforce on the data.

These refined criteria, based on the ones defined in Section 1.2 are the base on which

the state-of-the-art CFD-DL solutions analyzed.

5.2.2 Analysis

Table 5.2 provides an overview of the evaluation of current state-of-the-art approaches

in DL that have successfully been utilized in the prediction of CFD simulations, regard-

less of the problem domain. The table represents responsiveness through a speed-

up factor and the precision through the minimum error rate between prediction and

ground truth.

DeepFluid

Utilizing a parametrical model of CFD simulations, Kim et al. (2019) explore the feasi-

bility of decoder CNN in outputting predictions of the vector fields of observed domains

for a specific time step, based on only a handful of domain specific parameters (such

as inlet position and size, and time step). The authors propose a loss function tailored

to the specific scenarios, for which the CNN is being trained. Although the study is ca-

pable of parameterizing more complex simulation scenarios, such as with moving inlet

sources, using an encoder to reduce the ground truth results into latent space vec-

tors, there are challenges for its scalability. Obstacles in the simulation domain need

to be parameterized as well, making it impossible to apply the network on unobserved

constellations of geometry. Nevertheless, the network shows promising results with a

significant speed-up effect and a high accuracy.
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U-Net

The Neural Network structure, proposed by Thuerey et al. (2020), explored the ap-

plication of a simple U-Net structure in the prediction of the equilibrium state of flow

around an airfoil. The network is trained on input-output data pairs consisting of the

fluid mask of the domain, where solids and fluid are, and freestream values for the

domain for the input and the equilibrium values for pressure and velocity as output.

The network uses an unmodified L1 norm for the training process and achieves highly

accurate predictions. Due to the structure of the data, the network is not capable of

providing temporal information about the flow, but nevertheless achieves a relatively

high accuracy and a large speed-up factor.

DeepCFD

Building further on the concept of a U-Nets capability of predicting laminar flow,

Ribeiro et al. (2020), expands the concept of the decoder further. The authors pro-

pose that a dedicated decoder for each vector field value can provide a higher accu-

racy than one unified decoder. The ability to assign different error functions, in this

case MSE for velocity and MAE for pressure, provides the network with more precise

correction in the learning process. The study uses 4 networks to compare their ap-

proach, with a basic AE as a baseline, and the results obtained with the U-Net with

three decoders, named DeepCFD by the authors, achieves a higher accuracy com-

pared to the ground truth. In terms of speed-up, the authors note that if the network

is used on a GPU the resulting speed-up is significant. Through the introduction of

more varied scenarios the authors argue, that a more generalized and scalable solu-

tion is possible, nevertheless the study focuses on steady laminar flow and the output

of DeepCFD is only the equilibrium state of the simulation domain.

CFDNet

Further expanding upon the application of the concept of U-Nets, Obiols-Sales et al.

(2020) uses it as a surrogate model to improve the computation speed of the simula-

tion. The authors substitute the main bulk of the numerical computation of the CFD

simulation with results of the U-Net. They utilize a finite number of steps to initialize

the simulation domain, in this way removing the domain knowledge from the network,

and applying additional simulation steps to smooth out the results of the network. In

this way the authors achieve results that are indistinguishable from the ground-truth,

while still achieving a speed-up in comparison to a direct numerical simulation. Al-

though the network does not receive any direct information about the domain, the
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boundary, and initial conditions, using the initial simulation results of the CFD solver,

allow for potential scalability of the problem.

PINN

Building on the original concept of PINNs, Laubscher and Rousseau (2021) focuses

on the applicability of such networks for the prediction of 2D convective flow. The

authors propose error functions for the momentum and energy residual, the boundary

conditions, and the initial conditions. The authors achieve very precise results, noting

that deeper versions of their proposed network architecture achieves significantly bet-

ter results. As was pointed out in Section 4.3, and as it is also acknowledged by the

authors, the PINN is tailored to specific problems, and thus cannot be extrapolated to

unobserved problems.

tempoGAN

As discussed in Section 4.3, the proposed multi-discriminator based GAN, tempoGAN

(Xie et al., 2018), upscales lower resolution turbulent simulations, without losing a

large amount of detail. The approach evaluated the results only visually, and thus it is

difficult to assess the numerical accuracy of the approach, but due to the 2 discrimi-

nators - one for spatial and one for temporal discrimination, the approach is capable

of outputting multiple steps of a simulation. tempoGAN is trained on vector fields

with the use of physics aware error functions, and is thus well suited for its reuse in

unobserved scenarios, as long as the constraints of the training data are observed.

Pix2pix

Utilizing a more generalized GAN, Mokhtar et al. (2021) focuses on the applicability

of neural networks in the prediction of pedestrian comfort in regard to wind speed.

Although the authors achieve a significant speed-up in comparison to established

approaches, the accuracy is drastically reduced. The results are nevertheless still

useful, due to the fact that the absolute deviation from the ground truth is still low

enough, and can provide the users with sufficient information in their design process.

AE-LSTM

Building upon the concept of AE and LSTM, Hasegawa et al. (2020) proposes a two

tier neural network, that combines the capabilities of an AE to extract latent space

feature vectors from a flow field in the encoder. The decoder then transforms the
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latent space into the original flow field. This is combined with the ability of LSTM to

learn temporal relations between the latent space of data points. Although the authors

focus on only one scenario - flow in a channel around a bluff body, the network is

capable of correctly predicting the flow around different geometries, that were not

learned explicitly by the network.

5.2.3 Findings

The overview in Table 5.2 and the performed analysis highlights that there are only a

few DL solutions that are capable of bridging the issues, that CFD solvers are facing.

From this overview it is clear that DL solutions, that provide the highest precision

are the ones utilizing an error function tailored to the simulation itself, i.e. physics

informed. Similarly, the reliability of such solutions is not dependent on the DL model

itself, but rather on how the data is structured as well as the training process. The

importance of how the data is structured is also visible in the adaptability of such

solutions - models that incorporate the domain, boundary conditions and geometries

are capable of correctly predicting outcomes on unobserved scenarios.

5.3 Conclusion

As can be seen from the analysis of CFD Simulation tools (Section 5.1) the biggest

trade off is between the speed of results and the ability to integrate the tool in other

environments. As explained in Chapter 2 the biggest reason for the high computa-

tion times are, because urban wind simulations have larger than normal domains and

require a high amount of cells in order to capture the amount of details required for

sufficient analysis. The challenge of integrating such tools is compounded by the

fact, that based on the scenario being simulated, pedestrian wind comfort, heat island

analysis, structural integrity, etc. and the complexity of the geometry there is a vast

amount of simulation parameters that need to be defined, from boundary and initial

conditions, to meshing of the domain and defining turbulence models and solvers.

And while there have been strides to bridge the gap of usability (SimScale GmbH,

2022; McLean, 2022; Fahssis et al., 2010) or their integration into existing established

planning and engineering tools (Kastner and Dogan, 2021; DesignBuilder Software

Limited, 2022) there is no solution currently available that can address all the afore-

mentioned issues.

Section 5.2 showed that DL methods offer a way to simplify this issue. Such meth-

ods can be trained for specific scenarios, or be trained on more broad cases. The cur-
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rent research has been predominantly focused on the feasibility of such approaches

in predicting accurate results, in comparison to their ground truth counterparts. Such

studies have shown a high level of accuracy and a significant speed-up in compar-

ison with established tools. Nevertheless, it must be highlighted that such research

has been done on simpler use cases, such as 2D flows around bluff objects, where

steady laminar flow was predominantly observed. Such scenarios do not include the

complexity added by turbulence, and while there is research present in this field as

well (Bai et al., 2021; Xie et al., 2018; Mokhtar et al., 2021), the scope of such exper-

iments is still relatively small and the results are inconclusive.

With the analysis of present CFD tools and advances in the field of DL, a clear

research focus, not yet sufficiently explored in current literature is highlighted. The

application of physics-informed DL methods to predict large scale CFD simulations in

order to obtain highly accurate results, in comparison to established tools, while being

capable of providing them reliably.
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6 Concept

The analysis of Chapter 5 showed that there is no current approach to integrate

CFD simulations in the early stages of design that fulfills all the requirements defined

in Chapter 1 - reliability, flexibility and adaptability, user-friendliness, interoperability

and responsiveness. The evaluation of DL-CFD methods highlighted that the current

state-of-the-art solutions, although focused on smaller scales and simpler use cases,

have the potential of bridging the underlying challenges for the integration of CFD

simulations as DDS in the early stages of design. This Chapter outlines a proposed

solution for the creation of a surrogate model on the basis of a novel DL approach,

based on recent advancements in the field. This dissertation proposes the utilization

of a Diffusion ANN - DiffusioFlow - to address the outstanding challenges that have

been observed through the analysis in Section 5.2. This approach will take into con-

sideration not only the requirements outlined in Chapter 5, but will also address the

challenges of creating a working DL surrogate model for simulations from the very

beginning.

6.1 Concept Outline

The concept outlines the basis of a digital pipeline, with which a user is capable of

defining all the parameters for producing a trained neural network model, capable of

predicting simulation results in unobserved use cases of the same type. As discussed

in Chapter 5, such a pipeline needs to fulfill the requirement of ’User-Friendliness’ and

thus a level of abstraction of more complex concepts needs to be made. The pipeline

needs to cover not only the process of selecting and training an appropriate ANN

architecture, with all accompanying parameters, but also offer a way to generate the

necessary training data with regard to the exact type of use case the user needs. The

concept can thus be separated into three main components:

• The Domain of the use case

• The Scenario for the Domain

• The ANN itself
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The proposed pipeline, the interaction between separate components and the ex-

pected output from each of them can be seen in Figure 6.1.

Figure 6.1 Overview of proposed pipeline

6.1.1 Domain

The definition of domain in the scope of this concept stands for not only the physical

space that will be used by a simulation, and later server as the base upon which an

ANN will perform its predictions. But it also encompasses the level of refinement of the

core geometry and the use of any optional further components (see Section 2.4.2).

As has been already shown, CFD simulations can vary greatly in scope (Figure 2.4).

This issue is further compounded by the simulation requirements set out in guide-

lines (Franke et al., 2007; Tominaga et al., 2008), in which it is stated, that for a fully

formed flow to be observed, the given domain needs to be expanded further by spe-

cific minimum amount in each direction, based on the maximum height of buildings in

the domain. The requirements must be automatically taken into consideration by the
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pipeline, and the user needs to only specify a handful of simplified constraints with

which the pipeline can derive the boundaries of the domain.

Furthermore, the aforementioned complexities of different geometries in the domain

need to be addressed by the pipeline. The options for LoD and additional geometries,

such as terrain and green spaces and vegetation, needs to be not only presented

in an understandable fashion, but they need to be also internally constrained by the

scope of domain itself - small details on facades or singularly modeled trees are not

feasible to model in a simulation domain that is several square kilometers large. The

pipeline needs to be capable of deriving such restrictions based on the domain size

automatically.

6.1.2 Scenario

The Scenario defines how the domain is utilized - the different use case scenarios for

CWE analysis may impose further restrictions on the simulation parameters, solvers

used or the grid refinement.

Based on the selected type of Scenario, the pipeline must be able to introduce mod-

ifications to the results of the Domain. The Scenario can introduce more refinement

requirements in areas of potential interest, e.g. for denser grids on the lower levels

of the domain for pedestrian wind simulations. The areas of interest are further ex-

tracted from the Scenario - cross-sections for wind load on high rise buildings or 2D

horizontal planes for comfort and wind tunnel analysis. These relevant subspaces are

the base on which the ANN is further trained upon. These areas need to be automat-

ically defined based on the underlying Scenario and Domain restrictions. Based only

on a handful of parameters, all other requirements are extracted.

Furthermore, based on the Scenario, appropriate accurate turbulence solver needs

to be selected. As can be seen from the literature review in Chapter 4 and the

overview, done in Toparlar et al. (2017b), there are no clear-cut choices for turbulence

solvers that perform consistently better than others - this needs to be addressed by

the pipeline, by having an appropriate match for the different solvers to specific sce-

narios, and domains.

As has been discussed in Liu et al. (2017) grid density plays a pivotal role in the

accuracy of the simulation results. An approach that finds an optimal balance of grid

density, based on the scenario and domain size will be necessary.
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6.1.3 DiffusioFlow

Due to the still rapidly developing field of Deep Learning CFD solutions, there is no

clear optimal model to solve all the defined requirements in Chapter 5. From the

definition of these requirements, the approach of using a Diffusion based ANN is

appropriate. Such models are inspired by the thermodynamic process of diffusion and

have a direct timestep integration. Originally used for the generative task of producing

imagery from noise samples, such ANNs can be adjusted to predict the flow of a

CFD simulation. Furthermore, the Diffusion ANN needs to not only be aware of the

temporal aspect of a fluid simulation, but also about the geometry within the domain.

6.2 Pipeline Requirements

For the actual implementation of a prototypical pipeline, based on the outlined con-

cept, concrete system requirements must be extracted for it. The presented pipeline

can be divided into two major components, crucial for its performance - the data

generation process and the ANN itself. Only through the correct fulfillment of the

requirements, outlined in the following section, is it possible for the pipeline to be

implemented.

Data Generation

The Data Generation components encapsulate the whole process of producing train-

ing data for the ANN component and consists of the following major requirements.

• Filtering of locations based on simulation requirements

• Automatic reconstruction of 3D geometry

• Automatic set-up of simulation parameters and environment

ANN - DiffusioFlow

The ANN component consists not only of the training of the network, but also involves

the use of the final trained model and the processing of the output from the simulation.

• Execution and preprocessing of simulation data

• Adapting depth and complexity based on the Domain / Scenario

• Sufficient speed-up
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The following sections will describe in detail how such requirements can be imple-

mented in practice. The related prototypes have been developed through either stu-

dent projects or research work. Due to the prototypical nature of the solution, a focus

on a singular type of simulation scenario is made - specifically the pedestrian wind

comfort analysis.

6.3 Data Generation

In order for the dissertation to explore the validity of the proposed ANN, a correspond-

ing data generation process that can produce a consistent stream of information that

can be utilized in the training process is required. A limitation of existing ANNs ob-

served in Chapter 4 is that the simulation relevant data must be in a structured N

dimensional layout, with a predefined data scheme, e.g. imagery with the same res-

olution and channels. This means that the Data Generation component needs to ex-

tract from the user requirements for the simulation appropriate consistent dimension

sizes. Furthermore, the tool should not require from the user extensive knowledge

in the simulation field domain, but rather extract the various Scenario and Domain

parameters from context. The Data Generation component consists of two subcom-

ponents, which are executed one after another - first the Domain Generator extracts

the boundary conditions for the simulation and the geometry, while the Scenario Gen-

erator sets up the simulation parameters, executes the simulation and prepares the

data for use by the ANN.

6.3.1 Domain Generator

The Domain Generator is a GUI based application that provides the user with a wide

set of simplified options with which to generate a large amount of Domain Solutions,

that share the same boundary conditions. Figure 6.2 provides an overview of the

prototypical implementation.

In this application the user can select their data source of choice, e.g. CityGML

(Kolbe, 2009) or OpenStreetMap (OpenStreetMap contributors, 2022). The options

provided to the user are further split into two sections - one focused on the geome-

try and one on the boundary conditions of the simulation domain. Based on these

required parameters, an additional set of inferred parameters are extracted on their

basis. The GUI provides a large overview of areas matching the defined parameters

is shown to the user as well. Once the user has defined their requirements through

the given parameters they can execute the extraction of random areas that match their
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criteria. The output of the application consists of two separate entities per area - the

geometry, stored as a geometry file and an options file, containing simulation relevant

parameters.

Figure 6.2 Domain Generator GUI Overview

Required Parameters

The required parameters, are the options provided to the user through the GUI. They

can be roughly divided into two major categories - geometry and boundary conditions.

The geometry parameters focus on the scale of the domain, such as building height,

geographical region, and size of the observed domain. These parameters control the

basic aspects of the Geometry and allow for a geometry that fits into the consistent

static boundaries of the domain.

Due to the open-source nature of the data sources and the potential for vague or

incomplete data to be present, a small set of default values for parameters, crucial to

the simulation, are provided to the user. For the prototypical implementation of the

solution, this is only the default building height (in meters). A further parameter, inde-

pendent of the simulation scenario, is the maximum building height (in meters). This

is a required parameter, since guidelines such as Franke et al. (2007) recommend

that the simulation domain is expanded by an additional factor, based on the tallest

building in the domain. A further scenario independent variable required for the user

is the area of the simulation domain (in square kilometers). It can be either provided

through the GUI option or through interactions with the map overlay. For the current
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prototypical implementation, the aspect ratio of the area is locked as a 1:1 proportion.

Due to the potentially large difference in building geometries, an option limiting the

search window, based on geographical location is introduced.

Additional required parameters are related to simulation specific information. Such

parameters involve the scenario itself, e.g. pollutant dispersal, heat island, pedestrian

wind comfort, level of roughness, auxiliary geometry, e.g. green spaces, and small

structures.

The definition of scenario is presented through a select menu. These options are

based on current established validation scenarios in urban planning. In addition to the

geographical location a level of roughness is presented to the user with a predefined

value, for each available location. This value represents the extent to which smaller

details in facades and ground terrain are represented. Higher numbers represent

more prominent elements, which have a more notable effect on the flow, and lower

numbers representing smaller features. It is an abstract value, presented to the user

as a percentage value. Finally, a list of auxiliary geometries are given as an option

to introduce additional complexity and detail to the simulation. Small structures and

roof shapes introduce additional geometrical complexity to the domain, while green

spaces require additional handling in the Scenario Generator.

Inferred Parameters

The inferred parameters are underlying parameters, that directly influence how the

Scenario Generator creates and executes the simulations. These parameters build

upon the required parameters directly, or have clear goals to optimize, and thus the

user does not need to directly modify them. Additional decision based parameters are

also included into this section.

Parameters that build upon the required parameters are options that are abstracted

and embedded into the options file directly. Such parameter consists of the type of

turbulence solver required, the domain boundaries, and the area of the simulation,

that will be extracted for the training of the ANN. The turbulence solvers, as shown

in Chapters 2 and 4 have various degrees of advantages in different simulation sce-

narios. Additionally, the extracted area depends on the simulation scenario, e.g. a

pedestrian wind comfort analysis will create a horizontal slice in the lower levels of the

built environment, while pollutant dispersal will measure the wind speed on a higher

level. The domain boundaries are built upon the maximum building height. Following

the guidelines of Franke et al. (2007); Tominaga et al. (2008) the simulation domain

needs to be expanded by a scaled factor, based on the maximum height of a building.
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Two crucial factors, that require optimization are the total cell count and the verti-

cal cell count. Although the Scenario Generator performs additional optimizations

to these values, an underlying value is necessary. As was shown in Section 4.1

the increase of both these values provides a steady increase in the precision of the

simulation. The application first maximizes the total cell count based on the hardware

capabilities of the device. Then based on this value the vertical cell count is optimized.

Since cellstotal = verticalcells ∗ xcells ∗ zcells, where xcells and zcells represent the cell

count in the two horizontal directions, an increase in the vertical cell count leads to

a decrease in cell density in the other directions. For the prototypical implementation

this value is selected as verticalcells = max{16, 0.000016 ∗ cellstotal}. In this way an

implicit priority is placed on the horizontal density, while retaining a detailed enough

vertical axis.

Finally, due to the limitations as to how complex a query for a given area can be

made, some additional filtering must be made during the search for appropriate areas

to extract. Two further decision based parameters are introduced - blockage ratio and

full area. The blockage ratio, as defined in Chapter 2, is defined to be at most 3%. The

blockage ratio is dependent on the direction of the flow with relation to the geometry in

the domain. Due to the fact that the Scenario Generator utilizes several directions for

the wind, for each area, the blockage ratio is not directly computable. The prototypical

application thus expands the domain boundaries by an additional factor to ensure that

this value remains sufficiently low. Although the areas, presented to the user, fulfill the

area requirement, it is possible, that several geometrical objects are not completely

within the area. A tolerance value is introduced, that allows for such area to still be

exported. The geometries that have parts outside the area are measured and if they

are above the defined threshold, the area is discarded.

6.3.2 Scenario Generator

The Scenario Generator has as a main goal to process the information that the Do-

main Generator provides, create the appropriate set up for the simulation, execute

it, and process the results. The simulation tool utilized in the prototype is OpenFOAM

(OpenFOAM Foundation, 2022), due to its extensive knowledge base, support for a

wide variety of solvers and easy exchangeability of the various components. More

details about this prototype can be seen in Appendix A.3. The Scenario Generator

processes the output of the Domain Generator, creating the necessary OpenFOAM

data structures. Once all the relevant simulation structures are created, the simula-

tions are executed. Scenario specific outputs are then generated. The core focus
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areas of the Scenario Generator can be divided into simulation specific tasks and

auxiliary tasks.

To introduce reliable and realistic simulations, the application utilizes an external

solution to provide several location accurate wind direction and speeds for each area.

In order for wind directions to be represented correctly, an approach similar to those

used in wind tunnel simulations is utilized. Rather than defining separate parts of the

boundary domain for each wind direction simulation, the geometrical model itself is

rotated. This allows for only one side of the domain to be consistently defined as the

inflow, the opposite side as the outflow. This leads to the requirement, that for all wind

directions a separate grid needs to be generated.

Simulation Tasks

The simulation tasks focus on the generation of the simulation specific files and struc-

tures associated with the OpenFOAM environment. Some of these tasks are im-

porting the already defined simulation parameters from the options file generated

through the Domain Generator. Such a parameter is the turbulence solver, which

is directly dependent on the scenario parameter. The Navier-Stoke Equations are

solved through the SIMPLE algorithm in all scenarios. The boundary domain is re-

constructed through several Domain Generator parameters - the full area and the

domain boundaries. The combination of these parameters allows for the definition of

the full domain. Finally, the level of roughness option is imported. This value is directly

integrated into the wall functions for the geometry and the ground terrain.

Auxiliary Tasks

The auxiliary task focus on three main objectives - the set-up of the output, the defi-

nition of the variations of wind directions for each simulation, and the optimization of

the simulation for the hardware environment. The output sampling is defined based

on the provided scenario and the computed boundary domain from the simulation

tasks. The OpenFOAM solution provides various types of geometry to perform uni-

form sampling - points, lines, planes, volumes. Based on the defined scenario a

specific geometry is selected. This geometry is fitted then to the whole boundary do-

main, e.g. a plane through the hole simulation domain at 10 meter elevation above

the ground for pedestrian wind comfort analysis. The output sampling of OpenFOAM

requires further processing to be correctly transformed into the respective flow fields

required by the ANN. An external API is utilized in combination with the geographical

location to extract accurate wind patterns for the given geometry. Furthermore, the
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cell density is computed based on the total cell count and the vertical cell count. The

application of a further meshing algorithm, through OpenFOAM, is utilized as well, to

optimize the cell distribution within the simulation domain, i.e. higher density around

geometries and lower density in free flow areas.

6.4 DiffusioFlow

Due to the generally young field of DL there is no definitive model, solution or ap-

proach that can perform the goals outlined in this dissertation. For this purpose a

focus on a novel model and the underlying hyperparameter optimization of it is nec-

essary (Yeh et al., 2021; Brodzicki et al., 2021). A further important component, that

greatly influences the results of the network is how they learn from the training data.

As shown with PINNs, error functions that are tailored to the data more closely, pro-

vide higher accuracy. The goal of the ANN, DiffusioFlow, is to accurately predict the

next time step of a flow simulation. The full architecture of the model can be seen in

Figure 6.3.

6.4.1 Data

A crucial factor in the construction of DiffusioFlow is the definition of the most rele-

vant parameters required in the prediction of a fluid flow. Based on the state-of-the-

art approaches, presented in Chapter 4, several core values are defined - velocity,

pressure, geometry, and time (Figure 6.4). The expected input data of DiffusioFlow

consists of 3 main components - the timestep, the geometry height map and the flow

relevant fields for the given timestep. The timestep is represented as an integer value.

The maximum value depends on the longest simulation utilized in training. This input

is transformed using an embedding to match the resolution of the height map and

the flow relevant fields. The height map for the geometry and the flow relevant fields

are both represented through separate 2D Cartesian grids. For simulations, that have

reached equilibrium before the defined maximal timestep, the final state of the simula-

tion is extended for the missing time steps. This way DiffusioFlow has the capability

of learning the concept of equilibrium states as well, while also providing the struc-

tured data approach required by the ANN. The height map, similar to the timestep,

goes through a separate embedding. This embedded version is utilized in every

component of the ANN. The flow relevant fields are represented through the veloc-

ity, where dependent on the simulation scenario, involves all 3 velocity components or

just a combination of them. Included in the flow relevant values is the pressure value
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(a) U-Net Component (b) Encoder/Decoder Block

(c) Residual Block (d) Bottleneck

Figure 6.3 DiffusioFlow Architecture

as well. The flow fields and height map are also normalized to a value range between

[−1, 1]. The output of the DL model is the predicted velocity fields, same as the input

fields, but for one timestep further into the simulation.

6.4.2 Architecture

The backbone of DiffusioFlow is a U-Net Architecture. This form of ANN has con-

sistently showcased to provide the most reliable results when compared to other

approaches. The network consists of several Encoder/Decoder blocks that have a

similar structure. As defined in Section 3.4.4 the amount of Encoders is equal to

the Decoder count. Each Encoder/Decoder block (Figure 6.3b) is constructed in the

same fashion. The block receives the embedded timestep and height map, and the

flow fields, which have been processed through the previous encoder, decoder or
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(a) Velocity in X (b) Velocity in Y (c) Velocity in Z (d) Pressure

(e) Height Map

Figure 6.4 Visual representation of the training data. Time input not included.

bottleneck component. The three inputs are passed through a Residual Block (Fig-

ure 6.3c)(He et al., 2016). The Residual Blocks, consist of four separate components:

• Time: A MLP layer that is utilized to learn from the embedded times

• Geometry : A Convolutional layer, with kernel size of 3, that processes the em-

bedded height map

• Flow Embedding: A Convolutional layer, with kernel size of 1, that processes the

flow fields and serves as an embedding for the Flow

• Flow : A set of Convolutional layers, with kernel size of 3, each followed by a

Group Normalization Layers (Wu and He, 2018) is applied on top of the Flow

Embedding

Finally, a concatenation between the final output of the Flow component with the Flow

Embedding is performed. This introduces a skip connection, similar to the original

Residual Block introduced in He et al. (2016).

The Residual Block is followed with an optional Attention Layer. This Attention

Layer is only introduced in the Encoder/Decoder blocks, where the resolution of the
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original data is low enough. This allows for better global coherence. Finally, a simple

Convolutional Layer with kernel size of 3 is used to process the information. For the

Encoder Blocks this layer is utilizing a stride of 2, thus learning how to efficiently down

sample the image as well. For the Decoder Blocks the final Convolutional Layer is

preceded with an Upsampling layer that increases the resolution of the latent space.

As with traditional Encoder Blocks the depth of the feature space is increased, while

the original resolution of the data are decreased. The Decoder performs the inverse

task - reduces the latent space depth but increases the resolution of the data.

The amount of Encoder/Decoder pairs, referred to as the depth of the network,

is dependent on the size of the input data and the scenario. The size of the flow

field and height map define a minimum amount of such pairs. This aims to provide

the network with a deep, low-resolution set of latent space data, while also insuring

that the aforementioned Attention Layers are also utilized. Further Encoder/Decoder

blocks is then dependent on the scenario that is being simulated.

At the lowest level of the ANN a Bottleneck component (Figure 6.3d) is introduced.

This block consists of several Residual Blocks, followed by Attention Layers. This

allows for further efficient processing of the data at a lower resolution, with higher

dimensionality of the latent space.

After the final Decoder block a Group Normalization Layer is applied to its output.

A final Convolutional Layer, with a kernel size of 3, processes the normalized result

and outputs a 2D dataset with the same number of channels as the input flow fields.

A tanh activation function is utilized to map the output of this Convolutional Layer to

the value range of [−1, 1].

6.4.3 Learning

There are two main components that highlight the novel approach in predicting CWE

simulations with the use of ANN - the sampling process utilized for the diffusion aspect

of the network and the error function used to train the model.

The sampling process in traditional Diffusion ANN is represented through a form of

noise sampling that can be utilized iteratively. This allows for the network to iteratively

learn how to remove small amounts of noise from the original input. In DiffusioFlow

this process is greatly altered. The training data is grouped per simulation as a sin-

gular instance of data with an inverted order, i.e. the final simulation step is the first

step. This means that the representation of change between each reverse time step

in a singular simulation, is the equivalent of the forward diffusion process in traditional

Diffusion ANNs. This enables the network to learn the reverse diffusion process, i.e.
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how exactly the flow fields change in normal forward time step. An example of the

forward and reverse diffusion processes are presented in Figure 6.5.

Figure 6.5 Forward and Reverse Diffusion Processes Example. The Forward process starts
at the final timestep t and ends at timestep 0.

The importance of error functions cannot be sufficiently emphasized. They serve

as the main driving force behind how an ANN learns, and thus it is crucial to find an

appropriate function to fit the problem. As was shown in Section 5.2 there is no clear-

cut choice of a loss function. The error functions can be further separated into two

specific groups - the informed and uninformed error functions. Informed Error func-

tions are structured around specific properties of the data itself, while uninformed er-

ror functions apply established approaches in evaluating differences between generic

data. It has been shown through the state-of-the-art review (Chapter 4) and the in

depth analysis of DL solutions (Section 5.2) that informed error functions ANN mod-

els achieve higher precision. Informed error functions are traditionally based on either

existing uninformed error functions, such as the modified L1 Norm in Ribeiro et al.

(2020); Mokhtar et al. (2021) or modified version of the L2 Norm in Xie et al. (2018).

Some more complex approaches such as with PINNs, utilize the derivatives and other

properties of the results of a network to compute several modified uniformed error

functions, such as residual loss and boundary loss, and use their combined loss in

the training of the Network (Laubscher and Rousseau, 2021; Laubscher, 2021). For

the prototypical implementation the loss function for the AE in Hasegawa et al. (2020),

which is a combination of the MSE and the gradient difference loss (Ehlert et al., 2019)

is utilized. It is given as:

L = 1
Nx

1
Ny

1
Nϕ

Nx∑
i=1

Ny∑
j=1

Nϕ∑
k=1

(|(g(i, j, k) − g(i − 1, j, k)) − (p(i, j, k) − p(i − 1, j, k))|

+|(g(i, j, k) − g(i, j − 1, k)) − (p(i, j, k) − p(i, j − 1, k))|)

where q() is the value for a given parameter k of the flow field for position i, j from the

ground truth, and p() is the value output from the ANN.
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6.4.4 Hyperparameters

In addition to the definition of the Architecture and Error Functions of DiffusioFlow

additional general hyperparameter optimization is also required. Due to the refined

nature of available technical solutions for ANN several parameters are listed:

• Epochs - Epochs define how many times the ANN is trained on the whole data

set, larger values provide better training results, but often lead to overfitting. This

causes the Network to be capable of reproducing the training data perfectly, but

be unsuited for unobserved values.

• Depth - The depth of the DiffusioFlow represents the amount of Encoder /

Decoder blocks the U-Net has. Higher amount can obtain more abstract low

resolution latent space, but is associated with longer training times.

• Width - Similar to depth, the width controls the complexity of each Encoder /

Decoder block. This includes the amount of Residual Blocks and the utilization

of Attention as well.
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7 Validation

Through the presented concept in Chapter 6, a prototypical implementation of the core

components has been completed - the Domain Generator, the Scenario Generator,

and DiffusioFlow. The prototypes are tested in the order presented in Figure 6.1. A

singular scenario, the pedestrian wind comfort, is used for the analysis and validation

of each prototypical component. Each prototype is evaluated and analyzed based on

the following separate criteria:

• The Domain Generator is evaluated on the success rate of finding appropriate

geometry through the various data sources utilized. The performance of the

export process is evaluated and the dependencies for the performance of the

export are analyzed.

• The Scenario Generator is evaluated based on how well the abstraction of

complex parameters has been achieved. The generalization of such parameters

can lead to disruptions and unsuccessful execution of the CFD simulation. The

success rate of the Scenario Generator is measured based the execution of

each simulation, and the cause of the disruption. To successfully compare the

ANN with established approaches the performance of the Scenario Generator

is analyzed and underlying correlations between the geometry and simulation

parameters is performed.

• The ANN DiffusioFlow aims to improve on the existing approaches based on

the reliability, precision and responsiveness criteria, outline in Chapter 1. The

prototypical implementation is evaluated based on the achieved speed-up in

comparison to established method, utilized in the Scenario Generator as well

as the accuracy and precision of these results.

This chapter defines the outlines for the validation and analysis process in detail.

Furthermore, a detail analysis and validation of all 3 prototypical components is per-

formed and presented.
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7.1 Set-up

The creation of the evaluation process requires a consistent testing environment and

clear validation and analysis targets. A focus testing on all three core applications,

the Domain Generator, the Scenario Generator, and DiffusioFlow is done on the

same machine, to insure consistent and comparable results. The applications were

tested on an Ubuntu 22.04.2 LTS System, with an Intel Xeon E5-2687W CPU, 32 GB

of Random Access Memory (RAM), and an NVIDIA GeForce GTX 780 GPU. For each

evaluation, a separate scenario is constructed, tailored to the concrete case.

7.2 Domain Generator Evaluation

Due to the prototypical implementation of the solution, only a single scenario is made

available for the validation - pedestrian wind comfort analysis. The validation and

analysis of this component is focused on the following criterion: the time required to

export a predefined amount of areas, based on a fix set of criteria. This criterion

takes into consideration how long each singular area requires for the processing and

exporting of the area. Furthermore, it evaluates how many areas are discarded during

the process, due to the full area implicit parameter defined in Section 6.3.1. For the

purpose of this evaluation, the values for the Domain Generator explicit parameter

are defined in Table 7.1.

Parameter Name Value

Default Building Height 22m
Maximum Building Height 35m
Area 0.5km2

Geographical Location Germany
Scenario Pedestrian Wind Comfort
Export Target 50
Data Source OpenStreetMap

Table 7.1 Domain Generator Explicit Parameters

Figure 7.1 outlines the total amount of areas that were evaluated for the export

process. Due to the implicit parameters, such as blockage ratio and full area, that

filter areas based on the geometry, there are unsuited areas. As can be seen from

Figure 7.1, the additional expansion of the domain boundaries to accommodate for

a lower blockage ratio and full area has lead to a high success rate in the exporting

process.
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Figure 7.1 Domain Generation Success Rate

Figure 7.2a evaluates the export time of each successful area in relation the amount

of separate geometries represented in the data source. Due to the open-source na-

ture of the data source, the representation of various urban elements, such as build-

ings and green spaces, is inconsistent. This leads to the wide variation in export

times - larger amount of smaller entities requires additional processing time, while ar-

eas with large singular objects are processed quicker. The varied amount of separate

entities per successful are export can be viewed in Figure 7.2b.

(a) Export Time per Area (b) Separate Building Entities per Area

Figure 7.2 Exported Area Overview

7.3 Scenario Generator Evaluation

The Scenario Generator builds upon the results of the Domain Generator. Due

to the time-consuming process of performing CFD simulations, a small subset of the

areas, extracted with the Domain Generator are used in the evaluation - 14 areas

with 4 separate wind directions, for a total of 56 simulations. This validation is focused

on two major components - the required time per simulation, to be fully executed,

and the successful automation and abstraction of the CFD simulation parameters.
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The time consists of two core components - the creation of an efficient grid for the

simulation and the execution of the simulation itself. The success of the automation

and abstraction is measured through the amount of simulation, that were successfully

executed. Due to the singular available scenario in the Domain Generator and the

underlying hardware solution, an overview of the concrete choice for the parameters

outlined in Section 6.3.2 are presented in Table 7.2. Additionally, each simulation

was executed with a parallelization using a multi-CPU approach, greatly increasing

the computational speed. Each simulation is executed until it reaches an equilibrium

state (Section 2.3.1) or reaches a defined amount of time steps.

Parameter Name Value

Turbulence Solver RANS k − ϵ
Boundary Domain 1.35km2

Output Sampling Horizontal Domain Plane at 10m
Cell Density 1.5 Million Cells
Maximum Time Steps 2000
Exported Time Steps 200

Table 7.2 Domain Generator Explicit Parameters

The main evaluation criteria of the Scenario Generator is the success with which

the complex CFD modelling task has been abstracted. Figure 7.3 showcases the

average success rate of such simulation. The analysis distinguishes between the rea-

son for an unsuccessful simulation - simulation issue, that arose during the simulation,

or a meshing issue, that arose during the creation of the grid for the simulation. As

can be seen from Figure 7.3 only a third of simulations were executed successfully.

The main source of these unsuccessful simulation were caused by issues, that arose

during the execution of the simulation itself. Through an analysis of the auxiliary in-

formation from such simulations, an underlying cause can be established. The core

reason is numerical instability with the utilization of the pressure solver. The exact is-

sue to correct such issue requires further analysis, but two major sources of instability

are:

1. the parallelization of the simulation - communication between the various pro-

cesses introduces additional numerical impression

2. poor refinement of the grid - if grid cells have poor alignment or complex shapes

are not handled by the meshing process correctly, numerical impressions can

occur.

The process for refinement of the grid did not have sufficient hardware resources to

be executed which resulted in the 15 meshing errors. This led to an abrupt termination
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of the process, resulting in a domain that has no geometry. This leads to a simulation

of an empty domain, making the results unsuited for the ANN.

Figure 7.3 Simulation Success Rate

The evaluation of the required time per simulation is divided into 2 major compo-

nents - the creation of the grid and the simulation itself. An overview of each separate

area and their successful meshing and simulation components are presented in Fig-

ures 7.4a and 7.5a. As can be seen from the overview, the direction of the wind has

a noticeable effect on the runtime. This is due to the way different wind directions

are implemented, as outlined in Section 6.3.2. The grid generation consists of two

parts, first a base Cartesian grid, aligned to the domain directions, is created. Based

on this grid, a secondary algorithm refines each cell, introducing various levels of re-

finement around obstacles. It is thus clear that, if the repositioning of the geometry

positions them to be at an acute angle against the domain directions, a more complex

refinement is necessary.

The total meshing and simulation times, shown in Figure 7.4a and Figure 7.5a,

highlight a further underlying dependency for the runtime of the CFD simulation - the

complexity of the geometry in the domain. Figures 7.4b and 7.5b highlight that a more

crucial factor, that influences the runtime of both meshing and simulation time, is the

amount of separate elements present in the domain. As can be seen from these

results, there is a stronger correlation between the meshing and simulation process

and the complexity of the environment.

7.4 DiffusioFlow Evaluation

The evaluation of the ANN DiffusioFlow is done utilizing the data provided through

the successful simulations of the Scenario Generator. Due to the vast amount of

parameters available for the optimization of the precision of the ANN, a predefined

combination is selected, based on the literature review of the state-of-the-art solutions
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(a) Meshing Time for all Areas and Directions (b) Meshing Time and Geometry Count

Figure 7.4 Meshing Time Overview

(a) Simulation Time for all Areas and Directions (b) Simulation Time and Geometry Count

Figure 7.5 Simulation Time Overview

from Chapter 4. An overview of the specific parameters are available in Table 7.3. As

outlined in Chapter 6 the error function is defined as a combination of the gradient

difference loss and the MSE. To evaluate the predictions of the ANN, the MSE metric

is utilized.

Parameter Name Value

Flow Field Values Ux, Uy, Uz, p
Flow Field and Height Map Resolution 512 by 512
U-Net Depth 4
Features per level [32, 64, 128, 256]
Residual Blocks per level 2
Attention Layer per level [0, 0, 0, 1]
Batch Size 2
Epochs 1000

Table 7.3 DiffusioFlow Parameters

The implemented prototype of the DiffusioFlow is evaluated based on three core

criteria - the overall success of the training process on the data, the responsiveness,

and the reliability and precision, with regard to the simulation results obtained from

Scenario Generator. Due to the low amount of training data available, an additional
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augmentation to the data is introduced, during the Diffusion Sampling Process. This

allows for the increase of data by several factors, allowing for a more robust training.

Figure 7.6 highlights, that the chosen approach and provided data, allow for the

ANN to reach a high level of accuracy with regard to the training and validation data.

The observed peaks for the MSE metric point to the issue, that for given time steps the

ANN did not achieve sufficient accuracy. The results of the validation can be further

improved, with the introduction of a larger dataset and a higher amount of training

Epochs. To accurately measure if the trained version of DiffusioFlow can improve

upon the responsiveness of CFD simulations, while also maintaining a sufficiently

high precision and reliability a comparison between the two approaches is performed.

(a) Training progress (b) Validation progress

Figure 7.6 Training and Validation of DiffusioFlow

Figure 7.8 presents a comparison between the performance of the OpenFOAM

solution, utilized in the Scenario Generator, and the predicted equivalent results of

DiffusioFlow. For the OpenFOAM solution the total computational time, including

meshing and simulation time, are considered. For the ANN the performance is mea-

sured based on the time it requires to predict the full set of time steps for each simu-

lation. The generation of the first time step based on the geometry is taken into this

value. Figure 7.8a shows that the increase in responsiveness, through the achieved

speed-up, is sufficiently high - a factor of up to 70. A key insight obtained from this

result is that although the OpenFOAM simulations have vastly differing times, depen-

dent on the geometry in the environment, the results of DiffusioFlow are consistent.

This allows for an exponential speed-up, dependent on the complexity of the domain.

To measure the precision and reliability of the predicted results the MSE Metric is

used to compare them with the results obtained through OpenFOAM. Each flow field

component is compared - the velocity in all 3 directions and the pressure. As can be

seen from Figure 7.8b the difference between both approaches is within a sufficient
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(a) Ground Truth for p (b) Prediction for p (c) Difference for p

(d) Ground Truth for Ux (e) Prediction for Ux (f) Difference for Ux

(g) Ground Truth for Uy (h) Prediction for Uy (i) Difference for Uy

(j) Ground Truth for Uz (k) Prediction for Uz (l) Difference for Uz

Figure 7.7 Visual Comparison between DiffusioFlow and OpenFOAM for Case 13 and Wind
Direction 120

range. Additionally, Figure 7.7 highlights the areas in which DiffusioFlow achieved

the lowest accuracy in comparison to OpenFOAM. As can be seen from this, although

the total difference is around 10% per simulation step (see Figure 7.8b), the approach

did not capture the motion of fluid accurately. This issues can be resolved with a

higher amount of training data or a smaller fluid time step.
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(a) Responsiveness comparison (b) Reliability and Precision comparison

Figure 7.8 Performance Comparison between DiffusioFlow and OpenFOAM. Labels repre-
sent Simulation Area and Wind Direction

7.5 Conclusion

This chapter provides an overview of how well each of the prototypical implementa-

tions of the core concepts proposed in Chapter 6 performed. Due to the different goals

that each prototype attempts to fulfill a different set of evaluation criteria for each was

developed.

The Domain Generator has achieved a satisfactory performance, capable of ex-

tracting simulation areas with consistent performance that is dependent only on the

complexity of the area. Nevertheless, the prototype requires further improvement -

a more expanded set of different CWE scenario need to be integrated, and better

handling of the geometry in areas that exceed the maximum area limit is required.

The success of the Scenario Generator needs to be further expanded upon. Nev-

ertheless, key insights into the issues were obtained, highlighting a concrete area of

improvement - the creation of a robust and precise simulation grid. On one hand,

an improved meshing approach would reduce numerical instabilities in regions of do-

mains that have complex geometries. On the other hand, a more memory-efficient

grid creation will allow for its successful execution on a wider range of hardware set-

ups.

Finally, DiffusioFlow showcased that the proposed hypothesis in Chapter 1 is

achievable. The substantial increase in responsiveness, in comparison to the Open-

FOAM solution, provides the possibility for better integration of CFD simulations into

the early stages of design. Nevertheless, the precision and reliability of the proposed

approach required further improvement. Due to the small data size, the ANN was not

successful in capturing the correct fluid motion. The Diffusion DL methods are devel-

oped to iteratively modify the provided data by a small step. Based on this, a longer



100

training phase is required, and a potentially smaller time step of the fluid needs to be

utilized in order to achieve more reliable and precise predictions.
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8 Summary and Outlook

The integration of CFD / CWE simulation tools in the early stages of design is crucial

for the planning process. Such solutions provide the user with objective feedback on a

wide range of potential issues - from pedestrian wind comfort and pollutant dispersal,

to heat island analysis and structural integrity of buildings. Utilizing such tools out of

the box cause a negative disruption to the established design processes, characterize

by its creative and iterative nature. This is caused by the simulation tools need for

more detailed information about the design, often not available in the early stages.

Furthermore, such methods often require expert knowledge to utilize correctly. The

long computational times, associated with the complex and detailed simulation tools

bring a further challenge for their integration into the early stages of design. Such tools

have been shown to provide the planner with reliable and precise information, thus

need for new approaches for their integration in the early design stages is necessary.

This dissertation presents the novel concept of utilizing state-of-the-art DL models

in conjunction with reliable and precise CWE wind simulations for their integration as

DDS tools in the early stages of design. Through the provided analysis clear require-

ments towards this hybrid approach have been defined. Furthermore, this dissertation

takes into consideration the complete process of creating DL models suited for this

task. Based on these observations, three core conceptual components were defined:

• Domain Generator: Abstracts the complex task of defining a CWE simulation

for a specific task

• Scenario Generator: Utilizing the input from the Domain Generator, both the

scenario relevant parameters and the boundary conditions, creates the corre-

sponding simulation and all fine-tuned parameters

• DiffusioFlow: Based on the preprocessed output of the Scenario Generator

the Diffusion ANN is trained, and the trained model is stored

The utilization of these components allows for the fulfillment of the requirements to-

wards simulation and analysis tools for the successful integration as DDS solutions

into the early stages of design. The greatly improved responsiveness and user-

friendliness achieved through the use of a DL model allows for the seamless use
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of CWE simulations in the early design stages. This proposed solution thus provides

the following clear advantages:

• The early stages of design can be performed with better support, through the

integration of a wide range of simulations as DDS tools, thus providing objective

evaluations on the design without disruption.

• The flexible construction of the prototype pipeline allows for the user-friendly

adaptation and creation of trained models for a wide range of various scenarios

• The utilization of state-of-the-art DL solutions enables the pipeline results, the

trained DiffusioFlow model, to be easily and seamlessly embedded into existing

design tools.

The concept and dissertation hypothesis were proven through the implementation of

the crucial pipeline components. These subsystems represent prototypical solutions

and thus require further refinement and analysis.

• Although it is possible to define the boundary conditions through the Domain

Generator through user-friendly parameters, it utilized parameters for only one

singular scenario. Due to the lack of CWE guidelines that focus on the optimiza-

tion of such simulations for specific scenarios, further research and refinement

is required.

• The Scenario Generator successfully creates the required simulation parame-

ters and obtains the relevant data necessary for DiffusioFlow. The data utilized

in the training and prediction is currently represented through planar (2D) vec-

tor fields of minimal information - velocity, pressure and geometry height. The

simulation performed is always 3D, thus the third axis of the simulation is omit-

ted from the data. The integration of this additional information would greatly

improve accuracy of the simulation.

• Furthermore, the low success rate during the execution of the generated sim-

ulations from Scenario Generator requires further improvements. This can be

achieved through the introduction of better refinement schemes for the grid of the

simulations, which could improve upon the meshing and simulation errors that

have occurred. A further improvement can be also achieved in the simplification

of the geometry in the scene. Currently, separate buildings are represented as

separate geometries. Allowing for geometries, that share components, such as

walls, to be merged, thus simplifying the meshing process.
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• DiffusioFlow successfully provides the user with reliable results. The overall

precision of the ANN, represented through the differences between the ground

truth and the prediction, although sufficiently low requires further improvement.

The ANN did not capture accurately the fluid dynamic. The underlying reason

for that requires further research. Due to the still rapidly evolving nature of the

field of DL a thorough analysis and comparison against other existing solutions

is required. Further, model optimization, through hyperparameter optimization,

can also be beneficial for the precision of the ANN.

• Based on the current approach in modeling and developing DL models, such

solutions provide only approximations to the ground truth. The integration of

such solutions into design tools, needs to be performed in such a way, as to

inform the user of the possibility, that the result may not be sufficiently precise.

Although this dissertation has introduced a concept, as well as a prototypical solution,

further challenges, questions and potential focus areas have arisen. These topics

were not directly addressed in this work. The following concepts for the improvement

of this dissertation as well as possible approaches are presented:

• The urban environment has been reduced to only geometrical representations,

without the consideration of semantic data, and with a low LoD. Such concepts

have been traditionally omitted in urban scale wind studies, due to the costly

nature of integrating more complex details into the simulation. If DL models offer

a way to bridge the gap between such simulations and their seamless integration

into the early stages of design, then a further focus on the importance of such

parameters could bring CWE and their respective DL counterparts closer to on-

site measurements.

• The embedding of a simple height map into the ANN, to represent the building

geometry, provided a further improvement upon the results of the model. Fur-

ther research can be conducted as to what further information can provide the

network with useful insights into CWE simulations.

• Although DL models can provide with reliable and sufficiently precise result it is

difficult to measure the uncertainty of a model once it is trained. If such tools are

utilized in the early stages of design, where the underlying information is vague

itself, an appropriate way of communicating the confidence of the results, and

potential discrepancies to the ground truth, is required.

In summary, this dissertation has shown, that through the utilization of DL methods,

such as the proposed novel DiffusioFlow, it is possible to achieve significantly more
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reliable results in CWE simulations in comparison to established approaches. The ap-

proach requires further improvements to the achieved precision of the predictions, as

is shown in Chapter 7. Nevertheless, such surrogate models, allow for the integration

of objective analysis and simulation tools as DDS tools in the early stages of design.
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A Prototypes

Within the scope of this dissertation, the concept is subdivided into the core concepts.

These components have been implemented across various interdisciplinary projects,

lectures and stand-alone research. A large part of the prototypes have been imple-

mented under the Simulated Engineering in New Planning with Artificial Intelligence

(SENPAI) project. It serves as the connector between the various components, pro-

viding them with specific context and tailoring them to the goals of this dissertation.

These solutions focused on the core aspects needed for bridging the gap of require-

ments between CWE simulations and their integration as DDS tools in the early stages

of design. To facilitate such an integration with the use of DL the prototypes cover also

the crucial areas with regard to the generation of reliable and well-structured data for

the training of the DL models.

On the basis of these core aspects the main priority of the prototypes is the creation

of a DL model, capable of predicting CWE simulations reliably. A secondary focus is

placed on the creation of reliable, consistent and varied data for the DL model. Finally,

an adaptable approach for tailoring the simulation parameters based on the geometry

and specific simulation scenario is also prototypically implemented.
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A.1 SENPAI // DiffusioFlow

Development: Stand-alone Research

Current State: Complete

Programming Language: Python

Additional Software Libraries: Tensorflow, Numpy

The main concept, DiffusioFlow, is implemented as a stand-alone project and uti-

lizes all further prototypes. Implemented with TensorFlow, and utilizing NumPy for

processing and loading the data, the DL model provides the user with several op-

tions for the fine-tuned generation. The full architecture of the model can be seen in

Figure 6.3.

The expected input data of DiffusioFlow consists of 3 main components - the

timestep, the height map and the flow relevant fields for the given timestep. The

timestep is represented as an integer value. The maximum value depends on the

longest simulation utilized in training. This input is transformed using an embedding

to match the resolution of the height map and the flow relevant fields. The height map

for the geometry and the flow relevant fields are both represented through separate

2D Cartesian grids. For simulations, that have reached equilibrium before the defined

maximal timestep, the equilibrium state is extended for the missing time steps. This

way DiffusioFlow has the capability of learning the concept of equilibrium states as

well. The height map, similar to the timestep, goes through a separate embedding

that is utilized in every component of the ANN. The flow relevant fields are repre-

sented through the velocity, where dependent on the simulation scenario, involves all

velocity components in 3D or just a combination of them. Included in the flow relevant

values is the pressure value as well. The output of the DL model is the predicted

velocity fields with the same structure and dimensions, but for one timestep later.
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A.2 SENPAI // OSM Crawler

Figure A.1 SENPAI // OSM Crawler Software Architecture

Development: Stand-alone Research & IDPs

Students: Yunus Can Cakir (Cakir, 2022) & Jonas Herget

(Herget, 2023) & Kadir Tandogan Tilki (Tilki,

2022)

Supervision: Ivan Bratoev, M.Sc.; Dr.-Ing. Gerhard

Schubert; Prof. Dr.-Ing. Frank Petzold

Current State: Complete

Programming Language: C++

Additional Software Libraries: Qt

The prototype focuses on executing the requirements set out for the Domain Gen-

erator. It is a GUI based application that utilizes the Qt Library for visualization. This

library offers native support for the integration of OpenStreetMap, allowing for easier

visualization of the selected areas. The two major components of this prototype are:

• Implicit Parameter Extraction: based on the Explicit Parameters, controlled

through the GUI, the complex implicit parameters are inferred.

• Geometry Extraction: Focuses on extracting the simplified geometrical repre-

sentation of all areas. The filtering of areas, based on their full area and blockage

ratio is performed here as well.

The extracted geometry with a combination of specific implicit and explicit param-

eters are stored as two separate files. The geometry of all elements in the domain
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are stored as a Wavefront OBJ File, while the parameters are stored in a structured

JSON File.
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A.3 SENPAI // OpenFOAM Simulator

Figure A.2 SENPAI // OpenFOAM Simulator Software Architecture

Development: Stand-alone Research & IDPs

Students: Ivan Brkan (Brkan, 2022) & Jonas Herget (Herget,

2023)

Supervision: Ivan Bratoev, M.Sc.; Prof. Dr.-Ing. Frank Petzold

Current State: Complete

Programming Language: Java

The prototype serves as the base for the implementation of the Scenario Gener-

ator. The prototype is implemented in Java, thus allowing for it to be executed on

a wide range of hardware solutions. It is a Command-line Interface (CLI) solution.

The OBJ File and JSON File of Appendix A.2 are required for the execution of the

prototype. The prototype focuses on the following aspects:

• Realistic Wind: Based on the geographical location accurate weather data is

extracted using the OpenWeather API. The last several days are aggregated,

and the predominant directions are selected for the simulation.

• Simulation Parameters: Based on the stored parameters of the Geometry

Generator the simulation specific parameters, such as turbulence solver are

processed.
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• Auxiliary Parameters: The definition of the simulation domain, as well as the

orientation of the geometry and the type of information to be extracted is per-

formed on both the realistic wind directions and the parameters defined in Ge-

ometry Generator.

The prototype can process a larger set of extracted areas and provides as output

the correct layout for the OpenFOAM simulations. As discussed in Section 5.1 the

OpenFOAM solution requires a predefined file and folder data structure for it to exe-

cute a simulation correctly. The prototype thus creates this structure and allows for its

direct use.
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A.4 SENPAI // Node Orientated Neural Network

Environment

Figure A.3 SENPAI // N.O.N.N.E. GUI

Development: Stand-alone Research & IDPs

Students: Fabian Danisch & Eric Esch (Danisch and Esch,

2022)

Supervision: Ivan Bratoev, M.Sc.; Alejandro Rueda, M.Sc.; Prof.

Dr.-Ing. Frank Petzold

Current State: Complete

Programming Language: Python

Additional Libraries: TensorFlow, Numpy, Qt

As part of the dissertation research, a focus was placed on the simplification in

modelling of ANN. Such an approach would allow for a quicker iterative process while

developing DL solutions for various problems. This prototype aims to introduce the

concept of Visual Programming to the development of ANN. It is written in python,
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to allow an easier integration with the various established libraries for DL. It has the

following core components:

• Node Representation: Various Layers, typical for ANN are represented through

simple GUI Elements such as Nodes. The left side of each Node represents the

input, while the right side the output. The communication between Nodes is

done through the Edges that connect the various input and outputs.

• Dataset Loading: A prototypical implementation for the handling of dataset is

utilized to load images for various classification and segmentation tasks. The

GUI offers a wide range of additional options, that facilitate data augmentation,

and training and validation splits.

• Code Generation: Once the user has created the ANN they require the proto-

type allows for the export of the network as python code. This allows then for a

direct execution of the concept.

An additional concept that have been considered during the implementation of the

prototype include the visualization of the network in an abstract form, allowing for a

more understandable overview. Furthermore, the possibility for training and utilizing

ANN within the Visual Programming Environment was also considered. The prototype

allows for the storing and loading of modelled ANN solutions as well.
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B Glossary

B.1 Acronyms

ABL Atmospheric Boundary Layer. 32, 51

AE Autoencoder. 45–47, 49, 59–61, 70, 72, 88

AEC Architecture, Engineering and Construction. 51, 55, 57, 62

AI Artificial Intelligence. v, 1, 4–7, 33–35, 37, 44, 49

AIJ Architectural Institute of Japan. 53

ANN Artificial Neural Network. 34, 37–49, 55, 58, 62, 75–79, 81, 83–85, 87–89, 91,

95–97, 99, 101, 103, 106, 111, 112

API Application Programming Interface. 58, 68, 83

BEM Blade Element Momentum. 54, 55

BNN Bayesian Neural Network. 47–49, 56, 57

CBML Component-Based Machine Learning. 57

CDP Collaborative Design Platform. 4

CFD Computational Fluid Dynamics. 1–7, 9, 26, 29, 49, 51, 52, 54, 55, 59, 61–66,

68–70, 72–76, 78, 91, 93–95, 97, 99, 101

CLI Command-line Interface. 109

CNN Convolutional Neural Network. 44–46, 49, 59–62, 69

CPU Central Processing Units. 66, 92, 94

CWE Computational Wind Engineering. v, vii, 1–3, 5–7, 49, 51, 52, 55, 62, 63, 65,

66, 68, 77, 87, 99, 101–105



114

DDS Design Decision Support. 2, 4, 63, 64, 68, 75, 101, 102, 104, 105

DL Deep Learning. v, vii, 7, 33–35, 37, 38, 49, 51, 55–58, 60–63, 68, 69, 73–75, 84,

85, 88, 99, 101–103, 105, 106, 111, 112

DNS Direct Numerical Simulation. 25, 59, 61

DSGS Dynamic SGS. 25

ELBO Evidence Lower Bound. 48

GAN Generative Adversarial Network. 48, 49, 57, 61, 72

GELU Gaussian Error Linear Unit. 39

GPU Graphical Processing Units. 66, 70, 92

GUI Graphical User Interface. 3, 68, 79, 80, 107, 111, 112, 117

HVAC Heating, Ventilation and Air Conditioning. 66

LeakyReLU Leaky Rectified Linear Unit. 39

LES Large Eddy Simulation. 24, 26, 30, 31, 52–54, 59

LoD Level of Detail. 28, 57, 77, 103

LSTM Long Short-Term Memory. 61, 72, 73

MAE Mean Absolute Error. 42, 70

ML Machine Learning. 33–35, 37, 49, 55

MLP Multi-layer Perceptron. 44, 56–58, 86

MSE Mean Squared Error. 41, 70, 88, 96, 97

MSLE Mean Squared Logarithmic Error. 41

NLP Natural Language Processing. 46

PDE Partial Differential Equations. 58

PET Physiologically Equivalent Temperature. 56

PINN Physics-Informed Neural Networks. 58, 59, 72, 84, 88
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PISO Pressure-Implicit with Splitting of Operators Algorithm. 17

RAM Random Access Memory. 92

RANS Reynolds-Averaged Navier-Stokes. 21, 23, 26, 30, 32, 52–55, 58, 59, 62, 94

ReLU Rectified Linear Unit. 39

RMS Root Mean Square. 25

RNN Recurrent Neural Network. 44, 47, 56

SDF Signed Distance Function. 60

SENPAI Simulated Engineering in New Planning with Artificial Intelligence. 105, 107,

109, 111, 117

SGS Sub-Grid-Scale. 24, 25

SIMPLE Semi-Implicit Method for Pressure Linked Equations. 16, 83

SIMPLEC SIMPLE Consistent. 17

SIMPLER SIMPLE Revised. 17

SMLR Step-Wise Multiple Linear Regression. 56

SVM Support Vector Machines. 34

U-Net U Shaped Neural Networks. 46, 49, 60, 70, 85, 89, 96

URANS Unstable RANS. 52
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