
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Transpose-Free Contraction of Complex
Tensors

Matthias Reumann

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Transpose-Free Contraction of Complex
Tensors

Transpositionsfreie Kontraktion komplexer
Tensoren

Author: Matthias Reumann
Supervisor: Prof. Dr. Christian Mendl
Advisor: Manuel Geiger, M.Sc
Submission Date: 16.8.2023

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 16.8.2023 Matthias Reumann

Acknowledgments

First and foremost, I’d like to thank my advisor Manuel for the invaluable feedback
he provided and the advice he offered me for my future career.

Moreover, I’m eternally grateful for my friends and family, particularly Fabian,
Patrick, and Sebastian, without whose support I would not have survived the past few
years.

Abstract

Tensor Contraction (TC) is the operation that connects tensors in a Tensor Network (TN).
Many scientific applications rely on efficient algorithms for the contraction of large
tensors. In this thesis, we aim to develop a transposition-free TC algorithm for complex
tensors. Our algorithm fuses high-performance General Matrix-Matrix Multiplication
(GEMM), the 1M method for achieving complex with real-valued GEMM, and the
Block-Scatter layout for tensors. Consequently, we give an elaborate overview of each.
A benchmark for a series of contractions shows that our implementation can compete
with the performance of state-of-the-art TC libraries.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Background 2
2.1. Mathematical Foundation . 2

2.1.1. General Matrix-Matrix Multiplication (GEMM) 2
2.1.2. Tensor Contraction . 3

2.2. High-performance Matrix-Matrix-Multiplication 4
2.2.1. BLIS Framework . 4
2.2.2. 1M Method . 7

2.3. High-performance Tensor Contraction . 8
2.3.1. Tensor Contraction as Matrix-Matrix Multiplication 9
2.3.2. TTGT . 9
2.3.3. BSMTC . 10

3. Related Work 13

4. Implementation 14
4.1. Interface . 14
4.2. Preparation . 14
4.3. Loops around Micro-kernel . 16
4.4. Packing . 17
4.5. BLIS Micro-kernels . 18
4.6. Multithreading . 19

5. Evaluation 20
5.1. Limitations . 20
5.2. Results . 21

5.2.1. Experimental Setup . 21
5.2.2. Explicit Tensor Contractions . 21

v

Contents

5.2.3. Scaling Contraction Size . 24

6. Conclusion 26

A. Appendix A 27

Abbreviations 29

List of Figures 30

List of Tables 31

Bibliography 32

vi

1. Introduction

Due to the Curse of dimensionality, the simulation of quantum many-body systems
scales exponentially in memory [8]. For example, systems as small as 50 qubits already
require 250 complex numbers, bringing current supercomputers to their limits. Hence,
the necessity for alternative approaches. Tensor Networks (TN) pose an efficient and
viable solution to this problem. A TN is a graph approximating a wavefunction, i.e.,
a n-qubit quantum system. In this graph, vertices depict tensors, and edges connect
these tensors. The operation that connects tensors is called Contraction [2].

Besides the simulation of quantum systems, the technique also finds applications
in quantum chemistry [18], string theory [20], and supervised machine learning [24].
Consequently, to fulfill the demands of those research areas, scalable and efficient
algorithms are necessary, including algorithms for complex-valued TCs.

Aim. This thesis describes the implementation of a CPU-only transposition-free TC
algorithm for complex tensors. The algorithm is based on an array of recent devel-
opments: The first is the GotoBLAS algorithm for GEMM [15] and its augmentation
by the BLAS-like Library Instantiation Software (BLIS) framework [28]. The benefits
of the latter include more opportunities for multithreading and better maintainability.
A second is a novel approach to tensor contractions avoiding explicit transposition
proposed by Matthews [19]. The third and last is Van Zee’s 1M method for performing
complex by real-valued matrix-matrix multiplication [27]. This modification improves
the portability of the BLIS framework to other CPU architectures. In this work, we seek
to fuse these approaches to achieve their combined benefits. The code of the algorithm
is published on GitHub as the open-source C++ library t1m.1

Structure. The work is structured as follows: In Chapter 2 we convey the required
mathematical background. Based on this foundation we introduce the BLIS framework
for dense linear algebra, the 1M method, and the Block-Scatter layout for tensors.
Chapter 3 relates our work to others as well as discusses and compares alternative
approaches. Chapter 4 outlines our implementation of tensor contraction for complex
numbers. We report our findings in Chapter 5, as well as present our results for
different tensor contraction problems. Lastly, we conclude in Chapter 6, provide an
outlook and hint at future work.

1https://github.com/MatthiasReumann/t1m

1

https://github.com/MatthiasReumann/t1m

2. Background

In this chapter, we provide basic theoretical knowledge to acquaint the reader with
the necessary material and dive into the details of most state-of-the-art matrix-matrix
multiplication implementations. Furthermore, we show how using these one can obtain
two different TC algorithms.

2.1. Mathematical Foundation

This section establishes step-by-step the requisite theory and notation.

2.1.1. General Matrix-Matrix Multiplication (GEMM)

Most modern Basic Linear Algebra Subprograms (BLAS) interfaces adapt the matrix-
matrix multiplication as expressed by Dongarra, Du Croz, Hammarling, and Duff [14].
Hence, we do the same. For examples see Goto and R. A. V. D. Geijn [15] and Van Zee
and Van De Geijn [28].

Let A ∈ Cm×k, B ∈ Ck×n, and C ∈ Cm×n. Then, the operation is defined as

C = α(A · B) + βC (2.1)

where α ∈ C and β ∈ C are scalars. As in [19], we assume α = 1 and β = 0 for brevity
henceforward. Written element-wise, the equation looks like follows

Cij =
k−1

∑
p=0

Aip · Bpj. (2.2)

The subscript specifies the row and column index, respectively. For example, C42

accesses the element in the fourth row and second column. The implicit summation
over the same labeled indices yields the elegant Einstein notation:

Cij = Aip · Bpj (2.3)

.

2

2. Background

2.1.2. Tensor Contraction

To generalize matrices to higher dimensions we introduce tensors. A Tensor T is a
d-dimensional array, i.e. a 2-dimensional tensor is a matrix. We assign a pair (l, NT

l) to
each of the 0, . . . , d − 1 dimensions, where l is an alphabetic index and Nl ∈ N specifies
the length of the dimension. We assume the index l to be alphabetic for convenience,
however, other index types are also valid. For example, Aabc ∈ C3×4×2 is a tensor
described by (a, 3), (b, 4), and (c, 2). Figure 2.1 depicts two tensors graphically. We
denote the dimensionality of a tensor T as dT .

a

b

c

y

x

Figure 2.1.: Schematic view of the tensors Aabc ∈ C3×4×2 and Byx ∈ C3×3.

Following the line of thought that tensors generalize matrices, we define TC analogously
to matrix-matrix multiplication. However, this time we sum over a bundle of indices P
instead of a single index p as in Equation 2.2.

CπC (I,J) = ∑
P
AπA(I,P) · BπB(P,J) (2.4)

where πT is a bijective map {0, . . . , dT − 1} → {0, . . . , dT − 1} for each of the tensors
due to the arbitrary ordering of tensor indices. I is the bundle of indices of A except
those present in P and likewise for J and B. Usually one refers to P as bound or
contracted indices and I as well as J as free or uncontracted indices. The contraction size
is defined as ∏p∈P Np.

Moreover, for |P| = (dA + dB − dC)/2 the following conditions must hold.

1. |I| = dA − |P|

2. |J| = dB − |P|

3. ∀p ∈ P.NA
p = NB

p

As with matrix-matrix multiplication, we can further simplify Equation 2.4 by using
the Einstein notation.

CπC (I,J) = AπA(I,P) · BπB(P,J) (2.5)

3

2. Background

2.2. High-performance Matrix-Matrix-Multiplication

In theory, one could simply implement Equation 2.3 using three nested loops and yield
correct results. However, this naive approach likely leads to sub-optimal performances
due to poor cache utilization and redundant memory operations. Fortunately, this
problem can be circumvented. Efficient matrix-matrix multiplication algorithms, such as
in the GotoBLAS library and consequently in BLIS, implement an alternative approach
and solve the just mentioned problems [15].

In the following sections, we outline the design of efficient matrix-matrix multiplica-
tion implementations and demonstrate how complex matrix-matrix multiplication can
be achieved with real-valued algorithms.

2.2.1. BLIS Framework

The key insight of Goto et al. was to pack the matrices A and B into smaller blocks
Ã ∈ CmC×kC , and B̃ ∈ CkC×nC such that B̃ resides in L3 and Ã in L2 cache for spatial
locality. The cache-blocking parameters mC, kC, and nC are chosen for specific CPU
architectures to fulfill this requirement. A highly-optimized macro kernel performs the
matrix-matrix multiplication Ãip · B̃pj and outputs the resulting mC × nC submatrix at
the correct location for the C matrix [15].

However, the GotoBLAS approach comes with some shortcomings. One is that Goto-
BLAS necessarily requires column-major ordering. A complete list of the deficiencies
described in detail can be found in Van Zee and Van De Geijn [28].

Row- and column-major ordering are techniques for storing elements of a many-
dimensional array in linear contiguous memory. Column-major addresses elements
in increasing co-lexicographic order, while row-major specifies them lexicographically.
A combination of both is called general-stride ordering. For column-major ordering,
the memory offset of a d-dimensional N0 × N1 · · · × Nd array, indexed by a tuple
I = (i0, i1, . . . , id) is given by Equation 2.6. Figure 2.2 illustrates the column-major
ordering for a three-dimensional array.

d

∑
k=0

(
k−1

∏
l=0

Nl

)
· ik = i0 + N0 · (i1 + N1 · (i2 + N2 · (. . . + Nd−1id))) (2.6)

The BLIS framework extends the linear algebra operations such that row- and column-
major, as well as general stride ordering can be used. Furthermore, not only can
the ordering be different from one operation to the next, but also for a single one.
For example, in the matrix-matrix multiplication C = A · B, C can be row-stored, A
column-stored, and B with general stride ordering [28].

4

2. Background

0,0,0

1,0,0

0,1,0

1,1,0

0,0,0

1,0,0

0,1,0

1,1,0

0,0,1

1,0,1

0,1,1

1,1,1

0,0,0 1,0,0 0,1,0 1,1,0 0,0,1 1,0,1 0,1,1 1,1,1

m m + 1 m + 7

Figure 2.2.: Column-Major ordering for a three-dimensional array in linear memory.

Another key difference between GotoBLAS and BLIS is that the latter further partitions
Ã and B̃ into slivers of size mR × kC, and kC × nR respectively. The register-blocking
size nR is chosen such that a sliver fits into the L1 cache.

Moreover, BLIS replaces the macro kernel with two loops in a high-level programming
language and a small but highly-optimized microkernel written in Assembly. The
reason behind this design decision is to move secondary functionality such as edge
case handling outside the macro kernel. As a result, the remaining microkernel is
easier to maintain and port to different architectures. Nonetheless, since the release of
the framework, some edge case handling was again moved inside the microkernel [5].
The authors show that the performance of BLIS is comparable with the open-source
libraries OpenBLAS (the successor of the GotoBLAS library), the ATLAS library as well
as Intel’s MKL library [28]. Performance graphs for a multitude of CPU architectures
can be found on their GitHub Repository [7].

Opportunities for multithreading are explored in Smith, R. V. D. Geijn, Smelyanskiy,
et al. [21]. At the time of writing, BLIS supports OpenMP and the POSIX thread
library [6]. Furthermore, the exposure of its microkernels via a well-documented
API promotes code reuse and accelerates the development of high-performance linear
algebra software [5]. Optimized microkernel implementations exist for AMD, Intel, and
IBM, as well as various ARM architectures [4].

A schematic overview of the approach can be found in Figure 2.3. The illustration
intuitively portrays the loops around the microkernel as well as the packing of blocks and
slivers. In succeeding sections and chapters, we sometimes also refer to it as the 5-Loop
Approach. Algorithm 1 alternatively depicts the approach in pseudocode.

5

2. Background

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel

Figure 2.3.: Schematic of BLIS’ 5-Loop Approach to Matrix-Matrix Multiplication. Taken
from [6] and used with permission by the authors.

6

2. Background

Algorithm 1 5-Loop Approach for GEMM

1: for jc := 0, jc < N, jc += NC do
2: for pc := 0, pc < K, pc += KC do
3: B̃ = pack_B(B, pc, jc)
4: for ic := 0, ic < M, ic += MC do
5: Ã = pack_A(A, ic, pc)
6: for jr := 0, jr < NC, jr += NR do
7: J = jc + jr
8: for ir := 0, ir < MC, ir += MR do
9: I = ic + ir

10: C[I:I+MR, J:J+NR] = microkernel(Ã, B̃, I, J)

2.2.2. 1M Method

The 1M Method by Van Zee is a technique to achieve complex matrix-matrix mul-
tiplication by a real-value one [27]. The method has been integrated into BLIS and
further strengthens the portability of the framework. This claim can easily be justified
by stating that developers must only implement real-value (i.e. float and double)
microkernels by using the 1M Method, therefore, effectively halving the necessary
effort. Moreover, any improvement in the performance of real-domain microkernels
would immediately lead to benefits in the complex domain.

The multiplication of two complex numbers a and b is generally defined as in
Equation 2.7. In the following, superscripts r and i denote the real and imaginary parts
of a complex number.

cr = arbr − aibi

ci = arbi + aibr (2.7)

The 1M method is based on the observation that complex multiplication can be ex-
pressed as real-valued matrix-vector multiplication (Equation 2.8).(

cr

ci

)
=

(
ar −ai

ai ar

)(
br

bi

)
(2.8)

Suppose A ∈ Cm×k, B ∈ Ck×n, C ∈ Cm×n, with m = 3, k = 2, and n = 2. Further-
more, we wish to compute C = A × B. One can easily conclude by inspection that
Equation 2.10 equals Equation 2.9 if the output C is stored column-major.

7

2. Background

C00 C01

C10 C11

C20 C21

 =

A00 A01

A10 A11

A20 A21

(B00 B01

B10 B11

)
(2.9)

Cr
00 Cr

01
Ci

00 Ci
01

Cr
10 Cr

11
Ci

10 Ci
11

Cr
20 Cr

21
Ci

20 Ci
21

=

Ar
00 −Ai

00 Ar
01 −Ai

01
Ai

00 Ar
00 Ai

01 Ar
01

Ar
10 −Ai

10 Ar
11 −Ai

11
Ai

10 Ar
10 Ai

11 Ar
11

Ar
20 −Ai

20 Ar
21 −Ai

21
Ai

20 Ar
20 Ai

21 Ar
21

Br
00 Br

01
Bi

00 Bi
01

Br
10 Br

11
Bi

10 Bi
11

 (2.10)

Note that when we refer to the 1M Format we explicitly refer to the 1M_C format,
i.e. the output matrix is stored by columns. An alternative definition of the 1M format
using row-major ordering can be found in the original paper [27].

Consequently, we observe that the real-value matrix-matrix multiplication in Equa-
tion 2.10 doubles the dimension lengths m and k and thus Â ∈ R2m×2k, B̂ ∈ R2k×n,
Ĉ ∈ R2m×n. Moreover, we remark that the authors claim that the 1M method exhibits
numerical properties similar to the conventional assembly implementation. However,
no formal analysis of the numerical stability of the algorithm has been provided [27].

In Equation 2.1 we include the factors α and β for the definition of matrix-matrix
multiplication. Since the 1M Method uses real microkernels and these scalars are
generally complex, we can not directly use them as arguments for the microkernel. The
authors propose the following solution to the problem [27]. If the imaginary part of
either one or both factors is zero pass the real part as argument to the microkernel.
However, if βi ̸= 0 scale each element of the resulting matrix C, albeit considerable
overhead. When αi ̸= 0 scale elements while packing sub matrices of A or B.

We conclude that if complex elements are packed into memory accordingly, complex
matrix-matrix multiplication can be achieved with real-valued algorithms.

2.3. High-performance Tensor Contraction

Extending the argument for GEMM algorithms, implementing TC using |P| nested
loops is likely inefficient. Hence, alternative approaches are necessary. In this section,
we describe two such alternatives, namely Transpose-Transpose-GEMM-Transpose
(TTGT) and Block-Scatter-Matrix Tensor Contraction (BSMTC). Both use that under
certain conditions tensors are equivalent to matrices in memory.

8

2. Background

2.3.1. Tensor Contraction as Matrix-Matrix Multiplication

Equation 2.3 and 2.5 hint at the similarities between matrix-matrix multiplication and
TC. In fact, under certain conditions, tensors are structurally equivalent to matrices in
memory [19]. If elements of a tensor TπT (QR) are stored by columns and πT is the
identity map, the index sets Q and R both collapse into a range of single continuous
indices Q̄ and R̄.

Let Aabc ∈ C4×4×3. Suppose I = (a, b), P = (c), and πA maps each index to itself.
Hence, AπA(IP) = AIP. Since we assume that A is stored column-major, the location of
individual elements given by Equation 2.6 is

loc(Aabc) = a + b · Na + c · NaNb (2.11)

Notice that for I the range of values of (a, b) is 0 ≤ Ī < NaNb = 16 and 0 ≤ P̄ < Nc =

3 for P. Consequently, the tensor AIP becomes the structural equivalent matrix Ã Ī P̄.
Then, if these conditions hold for the tensors C, A, and B, TC is functionally equivalent
to matrix-matrix multiplication for the sequentially continuous indices Ī, J̄, and P̄ [19].

C̃ Ī J̄ = Ã Ī P̄ · B̃P̄ J̄ (2.12)

2.3.2. TTGT

Unfortunately, often tensors are not stored in memory as described in the previous
section. A possible solution to this problem is to transpose each of the tensors A and B
such that each is structurally equivalent to a matrix. Then, perform a matrix-matrix
multiplication and transpose the resulting matrix C into its tensor layout C. Algorithm 2
describes the TTGT procedure concisely.

Algorithm 2 TTGT Approach

1: function TTGT(A, B, C, permA, permB, permC)
2: A = permute(A, permA)
3: B = permute(B, permB)
4: C = gemm(A, B)
5: C = permute(C, permC)

However, the transposition of each tensor comes with a cost in memory. Since full
temporary copies of A,B, C are needed, memory workspace increases by a factor
of two for the TTGT approach. Furthermore, the percentage of total time spent on
transpositions can be as high as 50% [19].

9

2. Background

2.3.3. BSMTC

An alternative approach was proposed by Matthews [19]. The key principle: Utilize the
BLIS framework to pack small submatrices of structurally equivalent tensors directly
without transposition.

To map a tensor A to its structurally equivalent matrix Ã Î P̂ Matthews introduces
scatter vectors. Given the index bundles I and P and let P be the logical x axis. Then,
specify the row and column scatter vectors rscat Ī(A) and cscatP̄(A) as follows

rscat Ī(A) = i0 · si0(A) + i1 · si1(A) + · · ·+ i|I|−1 · si|I|−1
(A),

cscatP̄(A) = p0 · sp0(A) + p1 · sp1(A) + · · ·+ p|P|−1 · sp|P|−1(T).
(2.13)

where si(A) is the stride of the index i for tensor A. The location of elements of a
tensor as if it were a matrix is then given by

loc(Ã Ī P̄) = rscat Ī(A) + cscatP̄(A). (2.14)

Figure 2.4 illustrates the scatter vectors for a tensor Abacd with index bundles I = (b, a)
and P = (c, d). The numbers in the grid cells depict the location of elements for the
structural equivalent matrix Ã in contiguous memory. For example, the offset 35 in the
bottom right corner is given by loc(Ã5,5) = rscat5(T) + cscat5(T) = 5 + 30. Moreover,
one can notice by inspection that the difference in the values for both scatter vectors is
constant. In our example, this holds for all the values of both vectors. However, since
it’s unlikely that this is true for bigger tensors, we partition each scatter vector of length
l into blocks of length b and calculate the difference in these blocks. Therefore giving
rise to the Block-Scatter vectors rbs and cbs for rscat and cscat, respectively. The i-th
entry denotes either a constant stride for a block of length b or 0 otherwise.

bsi(T) ={
scatj(T)− scatj−1(T) = s If s is const for all i · b < j < min(l, (i + 1) · b)
0 Otherwise

(2.15)

Note that the length of the bs vector is ⌈ l
b⌉. Furthermore, we call the parameter b

a blocking parameter. Now, if for a given index i both rbsi(T) > 0 and cbsi(T) > 0,
the elements in this block can be accessed more efficiently with constant row and
column strides. In Figure 2.4 the highlighted 3× 3 square is an example of an efficiently
accessible block. In this block, each element can be accessed in code by A[r*1 + c*6],
where 1 is the row and 6 is the column stride. Consequently, this allows vectorization
on modern CPUs.

10

2. Background

0

1

2

3

4

5

0 6 12 18 24 30

ba

cd
1

6

1

6

5 11 17 23 29 35

4 10 16 22 28 34

3 9 15 21 27 33

2 8 14 20 26 32

1 7 13 19 25 31

0 6 12 18 24 30

rscat
rbs

cscat
cbs

Figure 2.4.: Schematic representation of the scatter and block-scatter layout for the
Tensor Abacd ∈ C3×2×2×3 stored by columns. I = (b, a), P = (c, d). The
blocking size is 3 for each axis.

Finally, we present the transposition-free tensor contraction algorithm BSMTC as imple-
mented by the TBLIS library [19]. As eluded to at the beginning of this section, TBLIS
bases its implementation on BLIS’s 5-Loop Approach for GEMM. The transformation
of the GEMM algorithm into a TC requires numerous changes.

First, rewrite the packing functions pack_A and pack_B of Algorithm 1 such that
the Block-Scatter Layout is used. Thus, calculate the scatter vectors rscat Ī , cscatP̄ for
A, rscatP̄, cscat J̄ for B, and rscat Ī , cscat J̄ for C. Due to the integration into the BLIS
framework, the blocking parameters can be derived from BLIS smallest partition unit:
the sliver. For the C tensor we simply use mR and nR as blocking parameters for the
row and column Block-Scatter vectors. For the A tensor it is theoretically possible to
use mR and kC as blocking parameters. However, since kC is usually large (256 for
Intel’s Haswell architecture for double precision) Matthews proposes to further divide
kC into kP ≈ mR chunks [19]. Therefore, effectively making mR and kP the blocking
parameters for A. Likewise, we define the blocking parameters for B as kP and nR.

Once both A and B are packed into Ã and B̃ in their respective BLIS format, invoke
the microkernel. BLIS’ microkernels assume a constant stride for the output submatrix
C̃. Given the strides rs = rbs(C) and cs = cbs(C), differentiate between two cases. If
rs > 0 and cs > 0 use these strides and a correctly offset pointer to C as arguments for

11

2. Background

the microkernel. If not, write the result of the microkernel invocation to a temporary
buffer first and then unpack it using the Scatter-Layout.

Concluding, the combination of the Block-Scatter Layout and BLIS’ 5-Loop Approach
yields a transposition-free TC algorithm.

12

3. Related Work

Recent work circumvents the problem of memory expensive transpositions. Most
notably, TBLIS from which this thesis draws heavy inspiration [19]. Unfortunately, at
the time of writing, TBLIS does not include BLIS’s optimized microkernel for complex
numbers. Instead, matrix-matrix multiplication is implemented by three nested loops in
C++. Compared to the performance for real-valued contractions, the library suffers from
this insufficiency for complex numbers. For this thesis, we adapt the TBLIS approach
and apply it to complex tensor contractions.

Furthermore, Huang et al. extend TBLIS by using Strassen’s matrix multiplication
and show promising results [17]. For the sake of comparison to the original TBLIS, we
do not implement Strassen’s algorithm.

In [22], Springer et al. presents another novel transposition-free approach, namely
GEMM-like Tensor-Tensor multiplication (GETT). GETT and TBLIS share the same core
principle: Utilize efficient matrix-matrix multiplication kernels to perform tensor
contraction by reformalizing sub-matrix-packing.

On the downside, GETT is not a standalone library but part of the Tensor Contraction
Code Generator (TCCG). TCCG combines multiple methods of tensor contraction and
chooses one of those based on heuristics and previous contractions at compile time.
This design decision makes it cumbersome to apply the approach in practice. Firstly,
one needs to specify the contraction in text form with an additional constraint that
the free indices of each input tensor need to be a multiple of 24 [16]. Secondly, two
compilation steps are necessary since the code needs to be generated and compiled.
Moreover, the TCCG is written in Python 2, an unsupported version of Python since
2020 [25].

More traditionally, the MATLAB Tensor Toolbox by Bader et al. and similarly the
Tensor Contraction Library (TCL) by Springer et al. implement the TTGT method [1].
TCL, which is also part of the TCCG, uses the High-Performance Tensor Transpose
(HPTT) library for transpositions [23]. Nonetheless, due to the inherent nature of TTGT,
both the Tensor Toolbox and TCL require double the amount of temporary memory.
Here we use these libraries as reference implementations.

Lastly, we hint at the current development of GPU tensor libraries such as cuTEN-
SOR [10]. Since our implementation is purely CPU-based, we do not investigate this
avenue any further.

13

4. Implementation

The purpose of this chapter is to outline the implementational details of our complex
tensor contraction algorithm using real-valued matrix-matrix multiplication. We pro-
vide the reader with a top-down description of our approach, stepping down one
abstraction at a time, i.e. from the interface to the core of our algorithm.

4.1. Interface

Listing 4.1 presents the C++ interface for our tensor contraction library. Besides the ones
listed, overloaded functions for real-valued contraction also exist.

1 void contract(Tensor<std::complex<float>> A, std::string labelsA,
2 Tensor<std::complex<float>> B, std::string labelsB,
3 Tensor<std::complex<float>> C, std::string labelsC);
4
5 void contract(Tensor<std::complex<double>> A, std::string labelsA,
6 Tensor<std::complex<double>> B, std::string labelsB,
7 Tensor<std::complex<double>> C, std::string labelsC);

Listing 4.1: Outgoing C++ interface for complex tensor contractions
as part of our t1m library.

The Tensor class conveniently wraps marray, a flexible multidimensional array li-
brary [12]. Marray provides many useful utilities such as stride calculation for ease
of development. The interested reader is referred to the documentation [11]. For
example, the Tensor A ∈ C3×4×5 is initialized with Tensor<std::complex<float>>({3,
4, 5}, ptrA), where ptrA is a std::complex<float>> pointer to a complex array of
size 3 · 4 · 5.

4.2. Preparation

Before we execute the loops described in Chapter 2, a handful of preliminary steps are
necessary. In particular, we wrap the provided Tensor objects into BlockScatterMatrix
objects which calculate Scatter and Block-Scatter vectors according to Equations 2.13

14

4. Implementation

Lengths Strides

a · b

a + b

cscat

0

1

2

12

0

12

24

0

1
6

0

6

0 12 24

0 6 0 6 0 6

0 6 12 18 24 30

Figure 4.1.: Graphical representation of our algorithm for the calculation of the cscat
vector for Abacd ∈ C3×2×2×3 and the index bundle P = (c, d).

and 2.15. Algorithmically, the Scatter vectors can be calculated by traversing a tree-like
structure and collecting the results in the end. Figure 4.1 depicts our algorithm for
the calculation of Scatter vectors. Given the Scatter, we simply calculate associated
Block-Scatter vectors with nested loops in C++ code.

The TBLIS library delays the transition to the Block-Scatter layout until all input and
output tensors have been partitioned into fixed-sized blocks [19]. The rationale behind
this decision includes the provision of precomputed scatter vectors and unwanted
malloc calls. Even though worthwhile considerations, since we neither allow the first
nor found significant evidence for the second argument, we went for the simple route
of allocating the Scatter and Block-Scatter vectors at the start of the tensor contraction.

Then, we initialize a gemm_context object which holds all relevant data for the GEMM-
like TC such as the BlockScatterMatrix objects for A, B, and C, cache and register
blocking parameters, as well as a function pointer to the respective BLIS microkernel.
BLIS’s bli_cntx_get_l3_sup_blksz_def_dt function provides the blocking sizes MC,
KC etc. for the underlying hardware, given a constant such as BLIS_DOUBLE. For a full
list of parameter types see [3].

Listing 4.2 shows the gemm_context structure in C++ code. The template type U
specifies the floating point type of the complex type of T. For example, if T equals
std::complex<double>, U would be double. This separation is necessary for the usage
of real microkernels for the 1M Method. The combination of C++ variadic templates
and a context object allows us to overload the function executing the five loops around

15

4. Implementation

the microkernel, therefore improving code reuse and readability.
Lastly, we allocate Ã ∈ Θ(mC × kC), B̃ ∈ Θ(kC × nC), and C̃ ∈ Θ(mR × nR) additional

real-valued workspace for the packing operations described in Section 4.4.

1 template<typename T, typename U>
2 struct gemm_context
3 {
4 /* BLIS-specific context object */
5 const cntx_t *cntx;
6 /* Cache and register blocking sizes */
7 const dim_t NC; const dim_t KC; const dim_t MC;
8 const dim_t NR; const dim_t MR; const dim_t KP;
9 /* Tensors */

10 BlockScatterMatrix<T> *A;
11 BlockScatterMatrix<T> *B;
12 BlockScatterMatrix<T> *C;
13 /* Scalars */
14 U *alpha; U *beta;
15 /* Function pointer to BLIS microkernel */
16 void (*kernel);
17 };

Listing 4.2: Context object for the GEMM-like TC of complex numbers.

4.3. Loops around Micro-kernel

After all the preparations have been made, we apply the 5-loop approach as described
in Section 2.2.1. However, the combination of BLIS, the Block-Scatter layout, and the
1M method require the following adjustments.

1. Halve the step sizes KC and MC such that after packing, B̃ has size KC · NC and Ã
has size MC · KC.

2. Pack blocks of the tensors B and A in their respective 1M format using the
Block-Scatter Layout (See Section 4.4).

3. Invoke a real microkernel and unpack the result from C̃ to the actual location in
memory using the Block-Scatter Layout.

A comparison between Algorithm 1 and Algorithm 3 illustrates the changes succinctly.
Note that Algorithm 3 depicts a simplified version, i.e., a version without edge case
handling, for educational purposes. Moreover, the rmicrokernel function call refers to
the kernels described in Section 4.5.

16

4. Implementation

Algorithm 3 1M GEMM for TC

1: for jc := 0, jc < N, jc += NC do
2: for pc := 0, pc < K, pc += KC/2 do
3: B̃ = pack_B(B, pc, jc)
4: for ic := 0, ic < M, ic += MC/2 do
5: Ã = pack_A(A, ic, pc)
6: for jr := 0, jr < NC, jr += NR do
7: J = jc + jr
8: for ir := 0, ir < MC, ir += MR do
9: I = ic + (ir/2) ▷ /2 due to 1M Format

10: C̃[I:I+MR, J:J+NR] = rmicrokernel(Ã, B̃, I, J)
11: unpack(C̃[I:I+MR, J:J+NR], C, I, J)

4.4. Packing

We use the Block-Scatter layout of a tensor to address individual complex elements
as if the tensor was a matrix. If possible, access elements continuously with constant
row and column strides provided by the Block-Scatter vectors. We hint the compiler
to vectorize these operations by #pragma omp simd directives. Otherwise, use the less
efficient Scatter layout.

Even though we access complex elements, we pack them as real-valued. Figures 4.2
and 4.3 depict how we store individual complex numbers as real numbers for the 1M
method. Note that one complex takes 4 real-valued numbers for the tensor A, and 2
for the tensor B. Adjustment 1 in Section 4.3 stems from these facts.
Then, pack a mC × kC submatrix of mC

2 · kC
2 complex numbers for A and a kC × nR

submatrix of nR · kC
2 complex numbers for B. Divide these blocks into even smaller

mR × kC and kC × nR slivers, respectively. Notice that we store slivers for A column-
major and slivers for B row-major. We additionally iterate the length kC in kP chunks,
as described in Section 2.3.3, to utilize block-scattering for the K dimension. Figure 4.4
illustrates this mechanism schematically.

x 9y

y x

mR

x y

mR

9y x

Figure 4.2.: Packing of a single complex number x + yi for the tensor A in the 1M
format.

17

4. Implementation

x

y

nR

x

nR

y

Figure 4.3.: Packing of a single complex number x + yi for the tensor B in the 1M
format.

Ã:

M

K

mC

kC

mR

kP

B̃:

K

N

nC

kC kP

nR

Figure 4.4.: Schematic representation of packing the tensor A and B as their structural
equivalent matrices Ã and B̃ in the BLIS format. The red and green zigzags
denote how elements of a sliver are stored in memory.

4.5. BLIS Micro-kernels

Finally, once the workspaces Ã and B̃ are packed, we invoke BLIS’ micro-kernels
for each sliver [5]. More precisely, the functions bli_sgemm_ukernel for single, and
bli_dgemm_ukernel for double precision matrix-matrix multiplication. An example
function call can be found in Listing 4.3.

1 bli_dgemm_ukernel(MR, NR, KC,
2 ALPHA, tildeA, tildeB, BETA, tildeC,
3 1, MR, NULL, CNTX);

Listing 4.3: BLIS Microkernel invocation for mR × kC and kC × nR slivers
tildeA and tildeB, respectively. ALPHA and BETA are constant
double pointers. The 1, MR arguments specify the output row
and column stride. CNTX is a BLIS-specific context object.

18

4. Implementation

These kernels perform small matrix-matrix multiplications of the provided mR × kC
and kC × nR slivers. Figure 4.5 illustrates the procedure graphically. Note the column-
major ordering of tildeA and row-major ordering of tildeB as described in Section 4.4.
We do not depict the ordering of the output tildeC since it depends on the row and
column stride parameters. For the example in Listing 4.3, the arguments 1 for the row
and MR for the column stride result in column-major ordering.

tildeC

+=MR

NR

tildeA

KC

·
A
B
C
D

E
F
G
H

I
J
...

tildeB

KC

NR

0 1 2 3
4 5 6 7
8 9 ...

Figure 4.5.: Graphic representation of BLIS’s microkernel operation. Inspired by the
diagram provided in [5].

Stored in C̃ after the invocation, we unpack the mR × nR result into the output tensor
C with two nested loops by using the Block-Scatter layout.

4.6. Multithreading

Inherited by the BLIS approach are the five parallelizable loops seen in Algorithm 3.
Recent work showed that the parallelization of all loops, even though valid, might yield
sub-optimal performance [21]. The authors further argue against the parallelization
of the pc loop due to the additional synchronization requirements and the possible
reduction of partial results. Additionally, they state that the number of iterations is a
useful heuristic for the choice of which loop to parallelize.

Using this assessment, the TBLIS library parallelizes all but the pc loop [19]. Since
both our work and TBLIS are based on the BSMTC approach, the parallelization of
the same loops is a viable option. However, with a mC of 72 and a mR of 6 for double
precision (See Chapter 5), the ir loop has only 72

6 = 12 iterations. Thus, in alignment
with the argument given in [21], we do not parallelize this loop. Furthermore, by
testing different configurations we found that the additional parallelization of the ir

loop yielded slightly worse results.
As a result, we decide to parallelize the jc, ic, and jr loop with #pragma omp parallel

for directives.

19

5. Evaluation

In this chapter, we describe the limitations of our approach and present various
performance measurements for an array of tensor contractions. Particularly, we evaluate
our work using the tensor contraction benchmark [22]. We further show how our
implementation’s runtime scales with contraction size.

5.1. Limitations

Directly inherited by the 1M Method for matrix-matrix multiplication, it is not possible
to scale tensors by complex factors directly. The proposed solutions for matrix-matrix
multiplication described in Chapter 2 could also work for TC but have not been
implemented at the time of writing. Consequently, we set α = 1 and β = 0 for each
contraction.

Di Napoli et al. show that specific types of tensor contractions can not be mapped
to GEMM interfaces [13]. For example, a requirement is that tensors need to be
at least two-dimensional, i.e. matrices. Thus, matrix-vector multiplication can not
be performed as GEMM-like TC. Nevertheless, one can handle these edge cases by
applying alternative approaches. Since we investigate the application of the 1M Method
for TCs, we purposefully neglect these exceptions.

Lastly, since we utilize real microkernels for complex matrix-matrix multiplication, it is
not possible to use the Block-Scatter layout for the output tensor C. Suppose x + yi is a
complex number in a block with constant row and column stride, i.e. rs > 0, cs > 0 for
the output tensor C. Separate vector-vector multiplications yield the values of x and y
due to the 1M method. Furthermore, by column-major ordering, both real values need
to be 1-row-stride apart in memory. However, the BLIS interface takes only one row
and column stride parameter. That is, we can either provide arguments to fulfill the
1-row-stride requirement or the strides rs and cs. Hence, using rs and cs as arguments
is not feasible. As a consequence, we always unpack the results from an additional
workspace to the actual location in memory. Nonetheless, it is still possible to unpack
more efficiently using constant strides for vectorization.

20

5. Evaluation

5.2. Results

This section describes our experimental setup and depicts the results for a plethora of
contractions.

5.2.1. Experimental Setup

All experiments run on a single Intel Xeon E52697 v3 @ 2.6 GHz processor using 14
physical cores and 2 hardware threads per core on the CoolMUC-2 HPC cluster at the
Leibniz-Rechenzentrum (LRZ) [9]. Cache sizes are 32KB for L1, 256KB for L2, and
19790KB for L3. We compile with Intel’s C++ compiler icpc (Version 2021.4.0). BLIS is
set up for the Haswell configuration and utilizes AVX2 and FM3 extensions. Blocking
parameters as described in Section 2.2.1 are: mC = 72, nC = 4080, kC = 72, nR = 8,
and mR = 6 which the BLIS Framework provides via the BLIS_DOUBLE constant. We set
kP = 4 as in Matthews [19].

We compare our work to the TBLIS library which also implements the BSMTC ap-
proach and two different implementations of TTGT. The first uses the ttt algorithm
of the Tensor Toolbox (v3.5) in MATLAB R2022b [1, 26]. An additional invocation
of the permute function is necessary to transpose the output tensor C appropriately.
The second is the TCL library. Both BSMTC implementations utilize BLIS’s micro-
kernels, whereby TCL uses BLIS as the underlying BLAS interface for matrix-matrix
multiplication.

Moreover, we execute each contraction 10 times and report the minimum in µs
(10−9s). For measurements in C++ we sandwich the evaluated function between two
std::chrono::high_resolution_clock::now() calls and calculate the distance with
the overloaded minus-operator. In MATLAB we use the integrated tic toc stopwatch
timer.

We calculate the relative speedup factor by

per f{TCL,TTB,TBLIS}
per ft1m

. (5.1)

5.2.2. Explicit Tensor Contractions

Figure 5.1 and Figure 5.2 depict the single and multi-core performance of various tensor
contractions. We adopt the contractions and tensor sizes from the tensor contraction
benchmark [22]. The benchmark ensures that the total memory consumption exceeds
200MiB for each contraction. This is significantly larger than the last level cache (L3)
of our system. One alteration necessary is that we halve each dimension length due
to the evaluation for complex instead of real numbers. Exact sizes and performance

21

5. Evaluation

measurements can be found in Appendix A. Furthermore, we format each contraction
as labels(C)-labels(A)-labels(B). For example, abcde-efbad-cf denotes the contraction
Cabcde = Ae f bad · Bc f .

ab
cd

e-
ef

ba
d-

cf

ab
cd

e-
ef

ca
d-

bf

ab
cd

-d
be

a-
ec

ab
cd

e-
ec

bf
a-

fd

ab
cd

-d
ec

a-
be

ab
c-

bd
a-

dc

ab
cd

-e
ba

d-
ce

ab
cd

ef
-d

eg
a-

gf
bc

ab
cd

ef
-d

fg
b-

ge
ac

ab
cd

ef
-d

eg
b-

gf
ac

ab
cd

ef
-d

eg
c-

gf
ab

ab
c-

dc
a-

bd

ab
cd

-e
a-

eb
cd

ab
cd

-e
b-

ae
cd

ab
cd

-e
c-

ab
ed

ab
c-

ad
ec

-e
bd

ab
-c

ad
-d

cb

ab
-a

cd
-d

bc

ab
c-

ac
d-

db

ab
c-

ad
c-

bd

ab
-a

c-
cb

ab
cd

-a
eb

f-
fd

ec

ab
cd

-e
af

d-
fb

ec

ab
cd

-a
eb

f-
df

ce

104

105

106

107

µs
(l

og
)

Tensor Toolbox TCL
TBLIS t1m

Figure 5.1.: Single-core performance of an array of different double precision complex
tensor contractions on an Intel Xeon E52697 processor.

ab
cd

e-
ef

ba
d-

cf

ab
cd

e-
ef

ca
d-

bf

ab
cd

-d
be

a-
ec

ab
cd

e-
ec

bf
a-

fd

ab
cd

-d
ec

a-
be

ab
c-

bd
a-

dc

ab
cd

-e
ba

d-
ce

ab
cd

ef
-d

eg
a-

gf
bc

ab
cd

ef
-d

fg
b-

ge
ac

ab
cd

ef
-d

eg
b-

gf
ac

ab
cd

ef
-d

eg
c-

gf
ab

ab
c-

dc
a-

bd

ab
cd

-e
a-

eb
cd

ab
cd

-e
b-

ae
cd

ab
cd

-e
c-

ab
ed

ab
c-

ad
ec

-e
bd

ab
-c

ad
-d

cb

ab
-a

cd
-d

bc

ab
c-

ac
d-

db

ab
c-

ad
c-

bd

ab
-a

c-
cb

ab
cd

-a
eb

f-
fd

ec

ab
cd

-e
af

d-
fb

ec

ab
cd

-a
eb

f-
df

ce

103

104

105

106

µs
(l

og
)

Tensor Toolbox TCL
TBLIS t1m

Figure 5.2.: Multi-core performance (14 Cores) of an array of different double precision
complex tensor contractions on an Intel Xeon E52697 processor.

22

5. Evaluation

As expected, we report an overall improvement compared to TBLIS due to the incorpora-
tion of BLIS microkernels and the 1M method. On average, TBLIS takes 2.19 (minimum
1.28, maximum 2.83) times longer on a single core and 1.74 (minimum 0.6, maximum
3.18) longer on multiple cores to compute the same contraction. Exceptions, such as
abcdef-dega-gfbc are likely due to contraction over small dimension lengths. For the
example given, a single label g with dimension length 12 is contracted. In such cases,
the overhead of 1M-packing to utilize BLIS microkernels yields poor performances
compared to regular packing and TBLIS’ triple loop in C++.

Furthermore, with only a median speedup factor of 1.02 (minimum 0.78, maximum
3.08), we observe similar performances of our work and TCL for the single-core
benchmark. This factor increases to 2.27 (minimum 0.72, maximum 3.93) for the multi-
core benchmark. Where our multithreaded implementation is on average 2.6 times
faster than the single-thread one, TCL improves only by a factor of 1.36. Hence, the
significant difference in multi-core performance.

We notice the biggest difference in single-core performance for the ab-ac-cb contrac-
tion. Note that in this case the labels of the tensors A and B as well as the resulting C
are already in a matrix-form. Therefore it is transposition-free and TGTT reduces to a
matrix-matrix multiplication.

On the contrary, for many-transposition contractions such as abc-bda-dc, the per-
formance of our approach exceeds both TTGT implementations. The abc-bda-dc
contraction is additional evidence of the superiority of the Block-Scatter approach for
many-transposition contractions. For this benchmark, TBLIS yields similar results, even
at bigger contraction sizes (See Section 5.2.3), even though “trivially” implemented.

A full comparison of speedup factors of our implementation and those benchmarked
against can be found in Figure 5.3.

Tensor Toolbox TCL TBLIS

1

1.5

2

2.5

1.14

1.02

2.19

1.22

2.27

1.74

Fa
ct

or

Single-Core
Multi-Core

Figure 5.3.: Median speedup factors of our work for single and multi-core benchmarks.

23

5. Evaluation

5.2.3. Scaling Contraction Size

Figure 5.4 and Figure 5.5 depict the single and multi-core performance of salient
contractions taken from section 5.2.2 with contraction sizes ranging from 5 to 1000. We
choose these particular contractions for the following reasons:

• abc-bda-dc: Many-transpositions contraction

• abcdef-dega-gfbc: Worst average performance in Section 5.2.2

• abcd-ea-ebcd: Few-transpositions contraction

• ab-ac-cb: GEMM-like contraction, i.e. no transpositions

0 200 400 600 800 1,000

104

105

µs
(l

og
)

Tensor Toolbox TCL
TBLIS t1m

(a) abc-bda-dc

0 200 400 600 800 1,000

104

105

Tensor Toolbox TCL
TBLIS t1m

(b) abcdef-dega-gfbc

0 200 400 600 800 1,000

106

107

µs
(l

og
)

Tensor Toolbox TCL
TBLIS t1m

(c) abcd-ea-ebcd

0 200 400 600 800 1,000

105

106

Tensor Toolbox TCL
TBLIS t1m

(d) ab-ac-cb

Figure 5.4.: Single-core performance for double precision complex tensor contractions
with varying contraction size on an Intel Xeon E52697 processor.

24

5. Evaluation

0 200 400 600 800 1,000
103

104

105

µs
(l

og
)

Tensor Toolbox TCL
TBLIS t1m

(a) abc-bda-dc

0 200 400 600 800 1,000

104

105

µs
(l

og
)

Tensor Toolbox TCL
TBLIS t1m

(b) abcdef-dega-gfbc

0 200 400 600 800 1,000

106

107

µs
(l

og
)

Tensor Toolbox TCL
TBLIS t1m

(c) abcd-ea-ebcd

0 200 400 600 800 1,000

105

106

Tensor Toolbox TCL
TBLIS t1m

(d) ab-ac-cb

Figure 5.5.: Mutli-core (14 Cores) performance for double precision complex tensor con-
tractions with varying contraction size on an Intel Xeon E52697 processor.

First, we observe that the single-core results for increasing contraction sizes follow the
trends described in Section 5.2.2. That is, the TTGT approach excels at few-transposition
as well as no-transposition contractions but underperforms for the many-transposition
contraction abc-bda-dc.

For the multi-core benchmarks, both implementations based on the BSMTC and there-
fore on the BLIS approach outperform both TTGT libraries, even for the GEMM-like
contraction ab-ac-cb. A similar result has been reported in Matthews [19]. Moreover,
for the many-transposition contraction abc-bda-dc we measure an average speedup of
1.5 (minimum: 1.03, maximum: 1.71) for our multithreaded implementation, whereas
the runtime of the Tensor Toolbox scales on average by a factor of 2.95 (minimum: 1.06,
maximum: 3.71).

25

6. Conclusion

In this thesis, we introduced the theoretical foundation for matrix-matrix multiplication
and its generalization to higher dimensions, namely Tensor Contraction.

We then outlined the design of state-of-the-art high-performance GEMM algorithms,
notably, the BLIS approach. Furthermore, we presented the 1M Method for achieving
GEMM for complex numbers with real-valued implementations, albeit with minimal
overhead.

These algorithms set the stage for two different approaches to TC. Both use the fact
that under certain conditions tensor contraction is functionally equivalent to matrix-
matrix multiplication. The first, TTGT, transposes tensors such that these conditions
hold and invokes a GEMM routine. However, this simple approach increases the
memory requirement by a factor of two. To resolve this issue, we illustrated the
scatter and block-scatter layouts. Using these techniques, one can directly access tensor
elements in memory as if it were a matrix. We show that the combination of these
layouts and the BLIS framework yields a high-performance tensor contraction algorithm
without memory-intensive transpositions.

We proceeded by pointing out that no efficient transposition-free implementation
for complex numbers exists. Therefore, we coalesced the BLIS framework, the 1M
Method, and the Block-Scatter layout into one combined algorithm to achieve complex
transposition-free tensor contraction.

In the evaluation, we demonstrated that the single- and multi-core performance of
our implementation competes with various tensor contraction libraries. Moreover, we
highlighted the practical limitations of our approach.

Future research could investigate the utilization of the block-scatter layout for com-
plex tensor contraction on GPUs. Many GPU instruction sets provide interfaces for
complex arithmetic, therefore eliminating the overhead of the 1M Method. Furthermore,
the optimization of the cache and register blocking sizes potentially lead to greater
performance increases.

26

A. Appendix A

C-A-B Sizes t1m TBLIS Tensor Toolbox TCL
abcde-efbad-cf a:24,b:16,c:12,d:16,e:24,f:16 38799 62500 62774 38928
abcde-efcad-bf a:24,b:12,c:16,d:16,e:24,f:16 37028 55423 64031 33932
abcd-dbea-ec a:36,b:36,c:12,d:36,e:36 12022 34050 25096 24017

abcde-ecbfa-fd a:24,b:16,c:16,d:12,e:24,f:24 48580 80921 49540 48284
abcd-deca-be a:36,b:12,c:36,d:36,e:36 11931 30643 23090 20558
abc-bda-dc a:156,b:156,c:12,d:156 17763 50067 44811 54759

abcd-ebad-ce a:36,b:36,c:12,d:36,e:36 11258 29202 21078 14129
abcdef-dega-gfbc a:12,b:8,c:8,d:12,e:8,f:8,g:12 7719 9882 8453 6014
abcdef-dfgb-geac a:12,b:8,c:8,d:12,e:8,f:8,g:12 6874 11126 5864 7886
abcdef-degb-gfac a:12,b:8,c:8,d:12,e:8,f:8,g:12 6761 11200 6749 8163
abcdef-degc-gfab a:12,b:8,c:8,d:12,e:8,f:8,g:12 6780 10056 7132 13317

abc-dca-bd a:156,b:12,c:148,d:156 17026 39816 55022 16466
abcd-ea-ebcd a:36,b:36,c:36,d:36,e:36 23220 57381 17510 19316
abcd-eb-aecd a:36,b:36,c:36,d:36,e:36 26004 54937 29795 34213
abcd-ec-abed a:36,b:36,c:36,d:36,e:36 28408 61588 35819 29368
abc-adec-ebd a:36,b:36,c:36,d:36,e:36 16977 41270 25130 25790
ab-cad-dcb a:156,b:148,c:156,d:156 145797 331212 189778 166700
ab-acd-dbc a:156,b:148,c:148,d:156 136050 301866 152860 161781
abc-acd-db a:156,b:156,c:148,d:148 150274 318934 157733 132360
abc-adc-bd a:156,b:156,c:148,d:148 150138 318787 180325 140730

ab-ac-cb a:2568,b:2560,c:2568 4.19 · 106 9.18 · 106 3440621 3.7 · 106

abcd-aebf-fdec a:36,b:36,c:36,d:36,e:36,f:36 547265 1.19 · 106 465560 517955
abcd-eafd-fbec a:36,b:36,c:36,d:36,e:36,f:36 550024 1.20 · 106 470656 512435
abcd-aebf-dfce a:36,b:36,c:36,d:36,e:36,f:36 548595 1.19 · 106 463423 514995

Table A.1.: Single-core performance in µs of an array of different double precision
complex tensor contractions on an Intel Xeon E52697 processor.

27

A. Appendix A

C-A-B Sizes t1m TBLIS Tensor Toolbox TCL
abcde-efbad-cf a:24,b:16,c:12,d:16,e:24,f:16 33174 22471 32837 25431
abcde-efcad-bf a:24,b:12,c:16,d:16,e:24,f:16 33559 19977 18717 23995
abcd-dbea-ec a:36,b:36,c:12,d:36,e:36 8246 11501 8636 15273

abcde-ecbfa-fd a:24,b:16,c:16,d:12,e:24,f:24 41621 37405 20501 32638
abcd-deca-be a:36,b:12,c:36,d:36,e:36 8471 10279 9249 13834
abc-bda-dc a:156,b:156,c:12,d:156 9258 20777 18331 30314

abcd-ebad-ce a:36,b:36,c:12,d:36,e:36 8310 10174 9521 11195
abcdef-dega-gfbc a:12,b:8,c:8,d:12,e:8,f:8,g:12 1931 3313 3465 3591
abcdef-dfgb-geac a:12,b:8,c:8,d:12,e:8,f:8,g:12 1922 3726 3182 4500
abcdef-degb-gfac a:12,b:8,c:8,d:12,e:8,f:8,g:12 1924 3623 3359 4661
abcdef-degc-gfab a:12,b:8,c:8,d:12,e:8,f:8,g:12 1915 3376 3570 5343

abc-dca-bd a:156,b:12,c:148,d:156 8535 13557 23108 14298
abcd-ea-ebcd a:36,b:36,c:36,d:36,e:36 11481 19709 6946 19580
abcd-eb-aecd a:36,b:36,c:36,d:36,e:36 16091 18610 13475 27349
abcd-ec-abed a:36,b:36,c:36,d:36,e:36 17564 20908 13937 26691
abc-adec-ebd a:36,b:36,c:36,d:36,e:36 9958 14053 10630 21772
ab-cad-dcb a:156,b:148,c:156,d:156 53202 126095 65531 144561
ab-acd-dbc a:156,b:148,c:148,d:156 50111 109238 52361 139168
abc-acd-db a:156,b:156,c:148,d:148 39318 109108 56835 127316
abc-adc-bd a:156,b:156,c:148,d:148 39217 107042 66159 134234

ab-ac-cb a:2568,b:2560,c:2568 963384 2.98 · 106 1.16 · 106 3.6 · 106

abcd-aebf-fdec a:36,b:36,c:36,d:36,e:36,f:36 124141 388406 162570 484179
abcd-eafd-fbec a:36,b:36,c:36,d:36,e:36,f:36 122608 390259 162512 482403
abcd-aebf-dfce a:36,b:36,c:36,d:36,e:36,f:36 124157 388052 162373 482605

Table A.2.: Multi-core performance (14 Cores) in µs of an array of different double
precision complex tensor contractions on an Intel Xeon E52697 processor.

28

Abbreviations

TN Tensor Network

TC Tensor Contraction

BLIS BLAS-like Library Instantiation Software

BLAS Basic Linear Algebra Subprograms

GETT GEMM-like Tensor-Tensor multiplication

TCCG Tensor Contraction Code Generator

HPTT High-Performance Tensor Transpose

GEMM General Matrix-Matrix Multiplication

BSMTC Block-Scatter-Matrix Tensor Contraction

TTGT Transpose-Transpose-GEMM-Transpose

TCL Tensor Contraction Library

LRZ Leibniz-Rechenzentrum

29

List of Figures

2.1. Schematic view of the tensors Aabc ∈ C3×4×2 and Byx ∈ C3×3. 3
2.2. Column-Major ordering for a three-dimensional array in linear memory. 5
2.3. Schematic of BLIS’ 5-Loop Approach to Matrix-Matrix Multiplication.

Taken from [6] and used with permission by the authors. 6
2.4. Schematic representation of the scatter and block-scatter layout for the

Tensor Abacd ∈ C3×2×2×3 stored by columns. 11

4.1. Graphical representation of our algorithm for the calculation of the cscat
vector for Abacd ∈ C3×2×2×3 and the index bundle P = (c, d). 15

4.2. Packing of a single complex number x + yi for the tensor A in the 1M
format. 17

4.3. Packing of a single complex number x + yi for the tensor B in the 1M
format. 18

4.4. Schematic representation of packing the tensor A and B as their struc-
tural equivalent matrices Ã and B̃ in the BLIS format. 18

4.5. Graphic representation of BLIS’s microkernel operation. 19

5.1. Single-core performance of an array of different double precision complex
tensor contractions on an Intel Xeon E52697 processor. 22

5.2. Multi-core performance (14 Cores) of an array of different double preci-
sion complex tensor contractions on an Intel Xeon E52697 processor. . . 22

5.3. Median speedup factors of our work for single and multi-core benchmarks. 23
5.4. Single-core performance for double precision complex tensor contractions

with varying contraction size on an Intel Xeon E52697 processor. 24
5.5. Mutli-core (14 Cores) performance for double precision complex tensor

contractions with varying contraction size on an Intel Xeon E52697
processor. 25

30

List of Tables

A.1. Single-core performance in µs of an array of different double precision
complex tensor contractions on an Intel Xeon E52697 processor. 27

A.2. Multi-core performance (14 Cores) in µs of an array of different double
precision complex tensor contractions on an Intel Xeon E52697 processor. 28

31

Bibliography

[1] B. W. Bader and T. G. Kolda. “Algorithm 862: MATLAB tensor classes for fast
algorithm prototyping.” en. In: ACM Transactions on Mathematical Software 32.4
(Dec. 2006), pp. 635–653. issn: 0098-3500, 1557-7295. doi: 10.1145/1186785.
1186794. url: https://dl.acm.org/doi/10.1145/1186785.1186794 (visited on
07/05/2023).

[2] J. Biamonte and V. Bergholm. Tensor Networks in a Nutshell. en. arXiv:1708.00006
[cond-mat, physics:gr-qc, physics:hep-th, physics:math-ph, physics:quant-ph].
July 2017. url: http://arxiv.org/abs/1708.00006 (visited on 03/27/2023).

[3] blis/docs/BLISObjectAPI.md at master · flame/blis. en. url: https://github.com/
flame/blis/blob/master/docs/BLISObjectAPI.md (visited on 08/05/2023).

[4] blis/docs/HardwareSupport.md at master · flame/blis. en. url: https://github.com/
flame/blis/blob/master/docs/HardwareSupport.md (visited on 08/05/2023).

[5] blis/docs/KernelsHowTo.md at master · flame/blis. en. url: https://github.com/
flame/blis/blob/master/docs/KernelsHowTo.md (visited on 07/26/2023).

[6] blis/docs/Multithreading.md at master · flame/blis. en. url: https://github.com/
flame/blis/blob/master/docs/Multithreading.md (visited on 07/30/2023).

[7] blis/docs/Performance.md at master · flame/blis. en. url: https://github.com/flame/
blis/blob/master/docs/Performance.md (visited on 08/04/2023).

[8] J. C. Bridgeman and C. T. Chubb. “Hand-waving and interpretive dance: an
introductory course on tensor networks.” en. In: Journal of Physics A: Mathematical
and Theoretical 50.22 (June 2017), p. 223001. issn: 1751-8113, 1751-8121. doi: 10.
1088/1751- 8121/aa6dc3. url: https://iopscience.iop.org/article/10.
1088/1751-8121/aa6dc3 (visited on 03/27/2023).

[9] CoolMUC-2. Section: Dokumentation. url: https://doku.lrz.de/coolmuc-2-
11484376.html (visited on 07/05/2023).

[10] cuTENSOR. en-US. Nov. 2019. url: https://developer.nvidia.com/cutensor
(visited on 08/02/2023).

[11] CXX Interface · devinamatthews/tblis Wiki. en. url: https://github.com/devinamatthews/
tblis/wiki/CXX-Interface (visited on 07/26/2023).

32

https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1145/1186785.1186794
https://dl.acm.org/doi/10.1145/1186785.1186794
http://arxiv.org/abs/1708.00006
https://github.com/flame/blis/blob/master/docs/BLISObjectAPI.md
https://github.com/flame/blis/blob/master/docs/BLISObjectAPI.md
https://github.com/flame/blis/blob/master/docs/HardwareSupport.md
https://github.com/flame/blis/blob/master/docs/HardwareSupport.md
https://github.com/flame/blis/blob/master/docs/KernelsHowTo.md
https://github.com/flame/blis/blob/master/docs/KernelsHowTo.md
https://github.com/flame/blis/blob/master/docs/Multithreading.md
https://github.com/flame/blis/blob/master/docs/Multithreading.md
https://github.com/flame/blis/blob/master/docs/Performance.md
https://github.com/flame/blis/blob/master/docs/Performance.md
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1088/1751-8121/aa6dc3
https://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3
https://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3
https://doku.lrz.de/coolmuc-2-11484376.html
https://doku.lrz.de/coolmuc-2-11484376.html
https://developer.nvidia.com/cutensor
https://github.com/devinamatthews/tblis/wiki/CXX-Interface
https://github.com/devinamatthews/tblis/wiki/CXX-Interface

Bibliography

[12] devinamatthews/marray. en. url: https://github.com/devinamatthews/marray
(visited on 07/26/2023).

[13] E. Di Napoli, D. Fabregat-Traver, G. Quintana-Ortí, and P. Bientinesi. “Towards
an efficient use of the BLAS library for multilinear tensor contractions.” en. In:
Applied Mathematics and Computation 235 (May 2014), pp. 454–468. issn: 00963003.
doi: 10.1016/j.amc.2014.02.051. url: https://linkinghub.elsevier.com/
retrieve/pii/S0096300314002902 (visited on 07/26/2023).

[14] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. “A set of level 3 basic
linear algebra subprograms.” en. In: ACM Transactions on Mathematical Software
16.1 (Mar. 1990), pp. 1–17. issn: 0098-3500, 1557-7295. doi: 10.1145/77626.79170.
url: https://dl.acm.org/doi/10.1145/77626.79170 (visited on 07/10/2023).

[15] K. Goto and R. A. V. D. Geijn. “Anatomy of high-performance matrix multi-
plication.” en. In: ACM Transactions on Mathematical Software 34.3 (May 2008),
pp. 1–25. issn: 0098-3500, 1557-7295. doi: 10.1145/1356052.1356053. url: https:
//dl.acm.org/doi/10.1145/1356052.1356053 (visited on 05/18/2023).

[16] HPAC/tccg: Tensor Contraction Code Generator. url: https://github.com/HPAC/
tccg/tree/master (visited on 07/05/2023).

[17] J. Huang, D. A. Matthews, and R. A. van de Geijn. Strassen’s Algorithm for Tensor
Contraction. en. arXiv:1704.03092 [cs]. Apr. 2017. url: http://arxiv.org/abs/
1704.03092 (visited on 05/07/2023).

[18] Ö. Legeza, R. Noack, J. Sólyom, and L. Tincani. “Applications of Quantum
Information in the Density-Matrix Renormalization Group.” en. In: Computational
Many-Particle Physics. Ed. by H. Fehske, R. Schneider, and A. Weiße. Lecture Notes
in Physics. Berlin, Heidelberg: Springer, 2008, pp. 653–664. isbn: 978-3-540-74686-
7. doi: 10.1007/978-3-540-74686-7_24. url: https://doi.org/10.1007/978-
3-540-74686-7_24 (visited on 08/07/2023).

[19] D. A. Matthews. High-Performance Tensor Contraction without Transposition. en.
arXiv:1607.00291 [cs]. July 2017. url: http://arxiv.org/abs/1607.00291
(visited on 03/27/2023).

[20] R. Orus. “A Practical Introduction to Tensor Networks: Matrix Product States
and Projected Entangled Pair States.” en. In: Annals of Physics 349 (Oct. 2014).
arXiv:1306.2164 [cond-mat, physics:hep-lat, physics:hep-th, physics:quant-ph],
pp. 117–158. issn: 00034916. doi: 10.1016/j.aop.2014.06.013. url: http:
//arxiv.org/abs/1306.2164 (visited on 07/31/2023).

33

https://github.com/devinamatthews/marray
https://doi.org/10.1016/j.amc.2014.02.051
https://linkinghub.elsevier.com/retrieve/pii/S0096300314002902
https://linkinghub.elsevier.com/retrieve/pii/S0096300314002902
https://doi.org/10.1145/77626.79170
https://dl.acm.org/doi/10.1145/77626.79170
https://doi.org/10.1145/1356052.1356053
https://dl.acm.org/doi/10.1145/1356052.1356053
https://dl.acm.org/doi/10.1145/1356052.1356053
https://github.com/HPAC/tccg/tree/master
https://github.com/HPAC/tccg/tree/master
http://arxiv.org/abs/1704.03092
http://arxiv.org/abs/1704.03092
https://doi.org/10.1007/978-3-540-74686-7_24
https://doi.org/10.1007/978-3-540-74686-7_24
https://doi.org/10.1007/978-3-540-74686-7_24
http://arxiv.org/abs/1607.00291
https://doi.org/10.1016/j.aop.2014.06.013
http://arxiv.org/abs/1306.2164
http://arxiv.org/abs/1306.2164

Bibliography

[21] T. M. Smith, R. V. D. Geijn, M. Smelyanskiy, J. R. Hammond, and F. G. V. Zee.
“Anatomy of High-Performance Many-Threaded Matrix Multiplication.” en. In:
2014 IEEE 28th International Parallel and Distributed Processing Symposium. Phoenix,
AZ, USA: IEEE, May 2014, pp. 1049–1059. isbn: 978-1-4799-3800-1 978-1-4799-
3799-8. doi: 10.1109/IPDPS.2014.110. url: https://ieeexplore.ieee.org/
document/6877334 (visited on 05/21/2023).

[22] P. Springer and P. Bientinesi. Design of a high-performance GEMM-like Tensor-Tensor
Multiplication. en. arXiv:1607.00145 [cs]. Nov. 2017. url: http://arxiv.org/abs/
1607.00145 (visited on 05/11/2023).

[23] P. Springer, T. Su, and P. Bientinesi. HPTT: A High-Performance Tensor Transposition
C++ Library. en. arXiv:1704.04374 [cs]. May 2017. url: http://arxiv.org/abs/
1704.04374 (visited on 05/20/2023).

[24] E. M. Stoudenmire and D. J. Schwab. Supervised Learning with Quantum-Inspired
Tensor Networks. en. arXiv:1605.05775 [cond-mat, stat]. May 2017. url: http:
//arxiv.org/abs/1605.05775 (visited on 07/31/2023).

[25] Sunsetting Python 2 | Python.org. url: https://www.python.org/doc/sunset-
python-2/ (visited on 07/05/2023).

[26] Tensor Toolbox for MATLAB. url: http://www.tensortoolbox.org/ (visited on
07/17/2023).

[27] F. G. Van Zee. “Implementing High-Performance Complex Matrix Multiplication
via the 1M Method.” en. In: SIAM Journal on Scientific Computing 42.5 (Jan. 2020),
pp. C221–C244. issn: 1064-8275, 1095-7197. doi: 10.1137/19M1282040. url: https:
//epubs.siam.org/doi/10.1137/19M1282040 (visited on 05/07/2023).

[28] F. G. Van Zee and R. A. Van De Geijn. “BLIS: A Framework for Rapidly Instan-
tiating BLAS Functionality.” en. In: ACM Transactions on Mathematical Software
41.3 (June 2015), pp. 1–33. issn: 0098-3500, 1557-7295. doi: 10.1145/2764454. url:
https://dl.acm.org/doi/10.1145/2764454 (visited on 05/19/2023).

34

https://doi.org/10.1109/IPDPS.2014.110
https://ieeexplore.ieee.org/document/6877334
https://ieeexplore.ieee.org/document/6877334
http://arxiv.org/abs/1607.00145
http://arxiv.org/abs/1607.00145
http://arxiv.org/abs/1704.04374
http://arxiv.org/abs/1704.04374
http://arxiv.org/abs/1605.05775
http://arxiv.org/abs/1605.05775
https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
http://www.tensortoolbox.org/
https://doi.org/10.1137/19M1282040
https://epubs.siam.org/doi/10.1137/19M1282040
https://epubs.siam.org/doi/10.1137/19M1282040
https://doi.org/10.1145/2764454
https://dl.acm.org/doi/10.1145/2764454

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Mathematical Foundation
	General Matrix-Matrix Multiplication (GEMM)
	Tensor Contraction

	High-performance Matrix-Matrix-Multiplication
	BLIS Framework
	1M Method

	High-performance Tensor Contraction
	Tensor Contraction as Matrix-Matrix Multiplication
	TTGT
	BSMTC

	Related Work
	Implementation
	Interface
	Preparation
	Loops around Micro-kernel
	Packing
	BLIS Micro-kernels
	Multithreading

	Evaluation
	Limitations
	Results
	Experimental Setup
	Explicit Tensor Contractions
	Scaling Contraction Size

	Conclusion
	Appendix A
	Abbreviations
	List of Figures
	List of Tables
	Bibliography

