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Abstract
We study the simple random walk on trees and give estimates on the mixing and
relaxation times.Relyingon a seminal result byBasu,HermonandPeres characterizing
cutoff on trees, we give geometric criteria that are easy to verify and allow to determine
whether the cutoff phenomenon occurs. We provide a general characterization of
families of trees with cutoff, and show how our criteria can be used to prove the
absence of cutoff for several classes of trees, including spherically symmetric trees,
Galton–Watson trees of a fixed height, and sequences of random trees converging to
the Brownian continuum random tree.
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1 Introduction andMain Results

In recent breakthroughs, random walks on various families of random graphs were
shown to exhibit the cutoff phenomenon, which is a sharp transition in the convergence
to equilibrium [8, 9, 24]. Motivated by these results, we address the question, ‘For
which families of (random) trees does the simple random walk have/exhibit cutoff?’
First natural candidates to study are the simple random walk on Galton–Watson trees,
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when the offspring distribution μ has mean m ≥ 1 and finite variance σ 2 ∈ (0,∞),
and the simple random walk on spherically symmetric trees. Our results on cutoff for
these families of trees are summarized as follows.

Theorem 1.1 The simple random walk does (almost surely) not exhibit cutoff if the
underlying trees (Gn)n≥1 come from one of the following three constructions:

• A supercritical Galton–Watson tree (m > 1) conditioned on survival and truncated
at generation n.

• A family of Galton–Watson trees conditioned on having n sites.
• A spherically symmetric tree of bounded degree truncated at generation n.

We refer to Sect. 5 for precise formal definitions and statements. Intuitively, Theo-
rem 1.1 is due to the fact that Galton–Watson trees are typically short and fat, as shown
by Addario–Berry [1], while spherically symmetric trees are balanced in the number
of sites by construction. Our main contribution is to show that trees are typically long,
thin and imbalanced when the simple random walk exhibits cutoff; see Theorems
1.3–1.6. Our arguments rely on a characterization of the cutoff phenomenon on trees
that was recently proven by Basu, Hermon and Peres [7]. With their characterization
at hand, we provide simple geometric criteria for the occurrence of cutoff, which are
easy to verify for specific examples of trees. The criteria in Theorems 1.3 and 1.4
are sharp in the sense that we can either exclude the occurrence of cutoff or slightly
modify the trees via a retraction such that the simple random walk exhibits cutoff.
This allows us to construct a very simple example for a family of trees on which the
simple random walk has cutoff; see Corollary 1.5. Previously, a first example of trees
with cutoff was obtained in [31].

We now give a brief introduction to the theory of mixing times and refer to Levin
et al. [22] for a more comprehensive treatment. Let G = (V , E, o) be a finite, rooted
graph. Let (ηt )t≥0 denote the (continuous-time) simple random walk on G in the
variable speed model, i.e., the walker moves along every edge of the tree at rate 1. For
two probability measures μ, ν on V , let their total-variation distance be

‖μ − ν‖TV := max
A⊆V

|μ(A) − ν(A)| . (1)

The ε-mixing time of (ηt )t≥0 is now given, for ε ∈ (0, 1), by

tmix(ε) := inf

{
t ≥ 0 : max

x∈V
‖P(ηt ∈ ·|η0 = x) − π‖TV ≤ ε

}
(2)

where π is the uniform distribution on V . For a sequence of graphs (Gn)n≥1, let
(tn
mix(ε))n≥1 denote the collection of mixing times of the random walks on (Gn). We

say that the family of random walks on (Gn) exhibits cutoff if for any ε ∈ (0, 1)

lim
n→∞

tn
mix(1 − ε)

tn
mix(ε)

= 1. (3)

The cutoff phenomenon was first verified in [15], and obtained its name in the seminal
paper of Aldous and Diaconis [6]. Ever since there has been a lot of activity toward
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showing that specific examples of Markov chains exhibit cutoff; see, for example, [8,
9, 24]. The ultimate goal is to produce a necessary and sufficient condition for cutoff.
In turns out that cutoff has deep connections to the spectral properties of the underlying
random walk; see the results [17, 23, 27, 28] of Miclo and others for a discussion of
the spectrum of random walks on trees, and the work of Jonasson [20] for a collection
of results on the spectrum of random walks on random graphs.

It was conjectured by Peres that a necessary and sufficient condition for cutoff is
that for some ε ∈ (0, 1) (or, equivalently, for all ε ∈ (0, 1))

lim
n→∞ tn

mix(ε)λn = ∞ (4)

where λn denotes the spectral gap of the random walk on Gn ; see also Sect. 2 for a
formal definition. However, while this product criterion is indeed necessary, Aldous
showed that it is not sufficient; see Chapter 18 of Levin et al. [22]. In a recent break-
through, Salez provides a sufficient entropy criterion for cutoff which is for example
satisfied by nonnegatively curved Markov chains [32]. Nevertheless, it is believed
that the product criterion in (4) is sufficient for cutoff for a wide range of families of
Markov chains.

For birth-and-death chains, Ding et al. showed that the product criterion is sharp
[16]. Moreover, Chen and Saloff-Coste provided simple conditions such that (4) holds
[12, 13]. Using their results, wewill be able to exclude cutoff on spherically symmetric
trees in Sect. 5.1, following a projection argument due to Nestoridi and Nguyen for
d–regular trees [29]. It was verified for the simple random walk on trees by Basu et
al. [7] that the product criterion is sufficient to see cutoff; see also Theorem 3.3 for a
formal statement of their result. A first example of a family of trees with cutoff was
found by Peres and Sousi [31]. Note that although their results are stated for a discrete-
time model of the simple random walk, they can be converted to the continuous-time
setup using Chen and Saloff-Coste [11].Wewill re-obtain the result of Peres and Sousi
using Theorem 1.6; see Corollaries 4.5 and 1.5 for a simplified example of a family
of trees with cutoff.

In the following, we will focus on random walks on finite trees and assume that the
underlying graphs will always be a sequence of rooted trees. Before we come to the
main theorems, we introduce some notations.We let �(v) denote the set of edges in the
shortest path of a vertex v ∈ V from the root o and write |v| := |�(v)|. For every edge
e ∈ E , we let e−, e+ ∈ V with |e−| < |e+| denote the endpoints of the edge and set
|e| := |e+|. Further, let Tv be the largest subtree of G rooted at v which consists only
of sites with distance at least |v| from o, and we use the conventions that Te := Te+
and |Te| := |V (Te+)| for all e ∈ E . We say that a vertex x is a δ-center of mass if there
are two trees T and T̃ of G with V (T ) ∩ V (T̃ ) = {x} and V (T ) ∪ V (T̃ ) = V (G)

such that

|V (T )| ≥ δ|V (G)|, |V (T̃ )| ≥ δ|V (G)|. (5)

The existence of a δ-center of mass is guaranteed for all δ ∈ [0, 1
3 ] by the following

result. For its proof, we refer to the appendix.
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v0 = o v1 v2 v3 = v

T̄0
T̄1 T̄2

T̄3

õ v

Fig. 1 Example of a tree G on the left-hand side and its corresponding v-retraction G̃ on the right-hand
side. The edges in the segment �(v) connecting the root and the site v are depicted in dashed blue

Proposition 1.2 For all trees G, there must be at least one vertex which is a 1
3 -center

of mass.

From now on, for a given family of trees (Gn), we fix some ε > 0 and assume
without loss of generality that the root on is chosen to be a δ-center of mass for some
δ > 0 which does not depend on n. For a pair of real-valued, nonnegative sequences
( f (n))n≥0 and (g(n))n≥0,wewrite f � g if f and g have the sameorder ofmagnitude,
and we write f � g if f (n)/g(n) converges to 0 for n going to infinity. We start with
a criterion on trees which allows us to determine when cutoff does not occur for the
simple random walk.

Theorem 1.3 For a sequence of trees (Gn) suppose that

max
e∈E(Gn)

|e||Te| � max
v∈V (Gn)

∑
e∈�(v)

|Te|. (6)

Then, the simple random walk on (Gn) does not exhibit cutoff.

Using Theorem 1.3, one can directly check that, for example, the simple random
walk on the segment of size n or on the regular tree truncated at level n does not
exhibit cutoff. In order to state a converse theorem, which guarantees the existence
of cutoff, we require the following definition. Fix a tree G and a vertex v = o. Let
v0 = o, v1, . . . , vk = v denote the sites in �(v) for k = |v|. For each vi , let T̄i be
the largest subtree which is attached to vi and does not intersect with �(v) in any site
other than vi . A v-retraction of G is a tree G̃ rooted at some site õ, which consists of
a segment of size |�(v)| with õ at one of its endpoints. In addition, we let a binary tree
of size |T̄i | emerge from each site in the segment at distance i from the root õ (if |T̄i |
is not a power of two, consider the binary tree with leaves missing at the last level).
Intuitively, the v-retraction replaces ‘long and thin’ subtrees by ‘short and fat’ binary
trees (Fig. 1).

Theorem 1.4 For every Gn in (Gn)n≥1, suppose that we find some v∗
n ∈ V (Gn) with

∑
e∈�(v∗

n )

|Te| � max
v∈V (Gn)

∑
e∈�(v)

|Te| � |V (Gn)|. (7)
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If we have that

max
e∈�(v∗

n )
|e||Te| � max

v∈V (Gn)

∑
e∈�(v)

|Te| (8)

then for any sequence (G̃n) of v∗
n-retractions of (Gn), we have that the simple random

walk on (G̃n) exhibits cutoff.

Note that taking retractions is necessary for cutoff in Theorem 1.4 as we will
see in Sect. 5.1 where we study random walks on spherically symmetric trees; see
Remark 5.3. Further, note that instead of attaching binary trees, we may allow also
for attaching other classes of graphs with sufficiently fast growth; see Remark 4.3 for
precise conditions on the attached trees. We give now a simple example of a family of
trees on which the simple random walk exhibits cutoff. This follows as a consequence
of Theorem 1.4.

Corollary 1.5 Consider the family of trees (Gn)n≥1, where Gn consists of a segment
of size �√n�, rooted at one of its endpoints, and binary trees of size �n/(i + 1)2�
attached at distance i from the root for all i ∈ {0, 1, . . . , �√n�}. Then, the root is a
δ-center of mass for δ = 1

6 and the simple random walk on (Gn) exhibits cutoff.

Our last main result is a criterion which is particularly suited to verify cutoff for thin
and long trees; see also the trees constructed in [31]. For all k ≥ 0, we set

Vk = Vk(G) :=
⋃

v : |v|=k

V (Tv) =
⋃

v : |v|≥k

{v}. (9)

Theorem 1.6 Recall (9), i.e., the set of all vertices at distance at least k from the root.
Suppose that a family of trees (Gn) with maximum degrees (
n) satisfies

max
k≥1

k|Vk(Gn)| � 1


n
max

v∈V (Gn)

∑
e∈�(v)

|Te|. (10)

Then, the simple random walk on (Gn) exhibits cutoff.

This paper will be organized as follows. In Sect. 2, we discuss preliminary esti-
mates on the spectral gap of the simple random walk on trees. We present two bounds
on the spectral gap, a first bound using a characterization of the spectral gap via a
discrete Hardy inequality, and a second bound using weighted paths which follows
directly from the first characterization. In Sect. 3, we present preliminary facts on
upper and lower bounds on the mixing time using a representation as hitting times
of large sets. Building on these results, we prove our main criteria for the occurrence
of cutoff in Sect. 4. Section5 is dedicated to applying these criteria to the families
of trees in Theorem 1.1, and showing that the simple random walk does not exhibit
cutoff. In particular, we verify the absence of cutoff for the simple random walk on
spherically symmetric trees, supercritical Galton–Watson trees conditioned on sur-
vival, and families of trees which converge to the Brownian continuum random tree.
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The latter includes Galton–Watson trees conditioned to contain a certain number of
sites. We conclude with an outlook on open problems.

2 Some Facts About the Spectral Gap on Trees

In order to study cutoff for the simple random walk on trees, our key tool will be
to give bounds on the spectral gap of the random walk (ηt )t≥0. Let L denote the
generator of the random walk on a tree G = (V , E). We study pairs of eigenvalues
and eigenfunctions for the random walk, i.e., we want to find (κ, f ) for κ ∈ C and
f : V → C such that

(L f )(x) =
∑

y : {x,y}∈E

( f (y) − f (x)) = κ f (x) (11)

holds for all x ∈ V . Note that since (ηt )t≥0 is reversible, all eigenvalues of L are real-
valued and non-positive. Moreover, the function f ≡ 1 is always an eigenfunction
with respect to the eigenvalue λ = 0. Our goal is to investigate the spectral gap λ of
the process, i.e., the absolute value of the second largest eigenvalue of L, respectively,
the relaxation time

trel := 1

λ
. (12)

Recall the following variational characterization of λ; see Definition 2.1.3 in [33].

Lemma 2.1 Let λ be the spectral gap of simple random walk (ηt )t≥0 on the tree G.
Then, we have that

λ = min
f : V →R,Var( f ) =0

E( f )

Var( f )
(13)

where we set

E( f ) := 1

|V |
∑
e∈E

( f (e+) − f (e−))2 , Var ( f ) := 1

|V |
∑
v∈V

f (v)2 − 1

|V |2
(∑

v∈V

f (v)

)2

.

The quantities E( f ) and Var ( f ) are the Dirichlet form and the variance of the
function f ; see Chapter 13 of Levin et al. [22] for a more general introduction.

2.1 A Discrete Hardy Inequality on Trees

Using Lemma 2.1, we obtain the following characterization of the spectral gap in
terms of a (discrete) Hardy inequality on trees; see also [17].
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Lemma 2.2 Recall that o is a δ-center of mass for some δ > 0, and let T and T̃ be
two trees which satisfy (5). Let A be the smallest constant such that we have

∑
v∈V (T )

( ∑
e∈�(v)

g(e)

)2

≤ A
∑

e∈E(T )

g(e)2 (14)

for all functions g : E(T ) → R with g ≡ 0 as well as

∑
v∈V (T̃ )

( ∑
e∈�(v)

g̃(e)

)2

≤ A
∑

e∈E(T̃ )

g̃(e)2 (15)

for all functions g̃ : E(T̃ ) → R with g̃ ≡ 0. Then, we have that the spectral gap λ of
the simple random walk on G satisfies

λ ∈
[
1

A
,
1

δA

]
. (16)

Proof For any function f : V (G) → R, we set

fT (v) := ( f (v) − f (o))1v∈V (T ), fT̃ (v) := ( f (v) − f (o))1
v∈V (T̃ )

(17)

for all v ∈ V (G). Using the definition of Var( f ) and that for positive a, b, c, d

a + b

c + d
≥ min

{
a

c
,

b

d

}
(18)

holds, we see that

E( f )

Var( f )
≥ E( fT ) + E( fT̃ )

f̄T + f̄ T̃

≥ min

{
E( fT )

f̄T
,
E( fT̃ )

f̄ T̃

}
(19)

where we set

f̄T := 1

|V (G)|
∑

v∈V (T )

( fT (v))2, f̄ T̃ := 1

|V (G)|
∑

v∈V (T̃ )

( fT̃ (v))2. (20)

We set gT (e) := fT (e+) − fT (e−) for e ∈ E(T ) and gT̃ (e) := fT̃ (e+) − fT̃ (e−) for
e ∈ E(T̃ ). The inequalities (14) and (15) applied to gT and gT̃ yield E( fT ) ≥ 1

A f̄T

and E( fT̃ ) ≥ 1
A f̄T̃ . Now, we use Lemma 2.1 and (19) to conclude the lower bound on

λ claimed in (16).
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For the corresponding upper bound on λ, we note that the minimizer g∗ for A is
given by (14) with equality and satisfies g∗(e) ≥ 0 for all e ∈ E(T ) (consider |g∗|
otherwise to see that this has to be the case). Define a function h : V (G) → R by

h(v) := 1v∈V (T )

∑
e∈�(v)

g∗(e). (21)

Recall that π is the uniform measure on V (G) and use the Paley–Zygmund inequality
to see that

Var(h) ≥ (1 − π(h > 0))
1

|V (G)|
∑

v∈V (G)

h(v)2

and hence, we must have

Var(h) ≥ π(h = 0)E(h)A ≥ δAE(h).

Using the characterization of λ in Lemma 2.1, this concludes the proof. ��
We will use Lemma 2.2 in Sects. 4.1 and 4.3 in order to obtain upper and lower

bounds on the spectral gap, respectively.

2.2 A Bound on the Relaxation Time byWeighted Paths

Next, we give an estimate which allows us to achieve upper bounds on the relaxation
time for the simple random walk on trees. Note that this bound was obtained already
in [23] in a more general setup, including a corresponding lower bound of the same
form within a factor of 2. For the convenience of the reader, we provide a short proof
for our special case of the simple random walk. Recall (12).

Proposition 2.3 Let (ae)e∈E(G) be any family of positive edge weights for the tree G.
For any choice of the (ae)’s, we have that

trel ≤ max
e∈E(G)

a−1
e

∑
v∈Te

∑
ẽ∈�(v)

aẽ. (22)

Proof Recall the trees T , T̃ for G from (5). By Lemmas 2.1 and 2.2, if we have for
some constant C that

∑
v∈V (T )

( ∑
e∈�(v)

g(e)

)2

≤ C
∑

e∈E(T )

g(e)2 (23)

for all functions g : E(T ) → R, and a similar statement with respect to T̃ , we conclude
trel ≤ C . In the following, we only show (23) with respect to the tree T . Fix positive
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edge weights ae and note that by the Cauchy-Schwarz inequality,

∑
v∈V (T )

( ∑
e∈�(v)

g(e)

)2

≤
∑

v∈V (T )

( ∑
ẽ∈�(v)

aẽ

) ∑
e∈�(v)

a−1
e g(e)2.

Rearranging the sum according to the edges and assuming without loss of generality
that g is nonnegative, we get

∑
v∈V (T )

( ∑
e∈�(v)

g(e)

)2

≤
∑

e∈E(T )

( ∑
v∈Te

∑
ẽ∈�(v)

aẽ

)
a−1

e g(e)2.

Hence, for any choice of (ae), we can take the right-hand side of (22) as C
in (23). ��
Note that we can choose positive weights (ae) in any particular way to obtain an upper
bound. In the following, we present three special cases of (ae)’s and the respective
bounds on the relaxation time. We start with the case where we set ae = 1

|e| in
Proposition 2.3 to obtain the following bound.

Corollary 2.4 We have that

trel ≤ (log(diam(G)) + 1)max
e∈E

|e||Te| (24)

where diam(G) denotes the diameter of the tree G.

In Proposition 4.1, we give a corresponding lower bound on the relaxation time, but
without the additional factor of log(diam(G)). Next, consider ae = 1

f (|e|) for some
function f : N → R, whose reciprocals are summable.We obtain the following bound
as a consequence of Proposition 2.3.

Corollary 2.5 Suppose that we have some function f on the integers with

∑
n∈N

f (n)−1 = C < ∞

Then we have that

trel ≤ C max
e∈E

f (|e|)|Te|. (25)

Next, we have the following bound by choosing the weights ae = |Te| for all e ∈ E(T )

proportional to size of the tree Te attached tree to e.

Corollary 2.6 It holds that

trel ≤ max
v∈V

∑
e∈�(v)

|Te|. (26)
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This follows directly from Proposition 2.3 noting that

trel ≤ max
e∈E

1

|Te|
∑
v∈Te

∑
ẽ∈�(v)

|Tẽ| ≤ max
e∈E

1

|Te|
∑
v∈Te

max
ṽ∈V

∑
ẽ∈�(ṽ)

|Tẽ| = max
v∈V

∑
e∈�(v)

|Te|.

Wewill see in the upcoming section that the right-hand side in (26) gives also an upper
bound on the mixing time for the simple random walk.

3 Some Facts About theMixing Time on Trees

In this section, we discuss mixing time estimates for the simple random walk (ηt )t≥0
on a tree G = (V , E, o). The main result presented in this section is that the ε-mixing
time can be bounded in terms of the hitting time of the root o. For sites x, y ∈ V , let

τhit(x) := inf {t ≥ 0 : ηt = x} (27)

be the hitting time of x and let Ey[τhit(x)] denote the expected hitting time of x when
starting the random walk from y. The following proposition gives an upper bound on
the ε-mixing time.

Proposition 3.1 Let tmix(ε) be the ε-mixing time of (ηt )t≥0. There is a universal con-
stant C > 0 such that we have for all ε ∈ (0, 1

2 )

tmix(ε) ≤ C log(ε−1)

(
1 + max

v∈V
Ev[τhit(o)]

)
≤ 2C log(ε−1)max

v∈V

∑
e∈�(v)

|Te|. (28)

In particular,

tmix(ε) ≤ 2C log(ε−1)|V |diam(G). (29)

Proof Note that the first inequality in (28) is immediate fromTheorem 5 in [2] together
with Theorem 20.3 in Levin et al. [22] and Lemma 5.2 of Peres and Sousi [30]. To see
that the second inequality holds, we claim that for two adjacent sites v,w ∈ V with
|v| < |w|, we have

Ew[τhit(v)] ≤
∑
x∈Tw

deg(x) − 1. (30)

To see this, consider the embedded discrete-time simple randomwalk, where wemove
in each time step to a neighbor chosen uniformly at random. The claim follows from
the well-known fact—see equation (4) in [10]—that this discrete-time simple random
walk satisfies

Ew[τhit(v)] =
∑
x∈Tw

deg(x) − 1, (31)
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and we can conclude with a time-change argument. Since for any tree G̃, we have

∑
x∈V (G̃)

deg(x) = 2|V (G̃)| − 2 (32)

this yields

Ev[τhit(o)] ≤ 2
∑

e∈�(v)

|Te|,

and the second inequality in (28) follows. ��
Note that the bound in Proposition 3.1 does not use the assumption that the root is a
δ-center of mass. In fact, we see that (28) holds for an arbitrarily chosen root. Next,
we state a lower bound on the mixing time, following the ideas of Lemma 5.4 in [7],
which does indeed require that the root is a δ-center of mass.

Proposition 3.2 Assume that the root o is a δ-center of mass for some δ > 0. Let 


be the maximum degree in G. Then for all ε ≤ δ,

tmix

(ε

2

)
≥ ε

2
max
v∈V

Ev [τhit(o)] ≥ ε

2

max
v∈V

∑
e∈�(v)

|Te|. (33)

Proof Let v ∈ V with v = o be fixed and recall that π denotes the uniform distribution
on V (G). Moreover, recall the trees T and T̃ in (5) from the definition of the δ-center
of mass and assume that v ∈ V (T ). We now claim that

Pv (τo ≤ tmix (ε/2)) ≥ Pv

(
ηtmix(ε/2) ∈ V (T̃ )

)
≥ π(V (T̃ )) − ε

2
≥ ε

2
. (34)

The first inequality in (34) follows since ηtmix(ε/2) ∈ V (T̃ ) implies that the root was
visited before tmix (ε/2), the second inequality uses the definition of the mixing time
and the third inequality follows since π(V (T̃ )) ≥ δ ≥ ε. In words, (34) says that with
probability at least ε/2, the random walk hits the root by time tmix(ε/2). Using the
Markov property of (ηt )t≥0, since (34) holds for any v ∈ V (T ), we can iterate (34) to
get that the probability of hitting the root for the first time by time k · tmix(ε/2) is at
least the probability that a Geometric-(ε/2)-random variable takes a value ≤ k. This
yields

Ev [τhit(o)] ≤ 2

ε
tmix

(ε

2

)
.

Since v ∈ T was arbitrary, we obtain the first inequality in (33). For the second
inequality, recall (31) and (32), and use a comparison with a discrete-time simple
random walk, where we choose in each step one neighbor uniformly at random, and
speed the walk up by a factor of 
. ��
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So far,wegathered techniques in order to give upper and lower bounds on themixing
and relaxation time. The next seminal result by Basu et al. gives a characterization of
cutoff for the simple random walks on trees; see [7].

Theorem 3.3 (c.f. Theorem 1 in [7]) Fix ε ∈ (0, 1). Let (Gn)n≥1 be a family of trees
with ε-mixing times (tn

mix) and relaxation times (tn
rel) for the simple random walk on

(Gn), respectively. The simple random walk on (Gn) exhibits cutoff if and only if

tn
rel � tn

mix. (35)

In other words, we see cutoff whenever then product criterion (4) holds.

Remark 3.4 In view of Corollary 2.6, Proposition 3.2 and Theorem 3.3, we aim at
verifying cutoff by giving weights (ae) in Proposition 2.3, which lead to a strictly
improved bound over the weights ae = |Te|.

4 Proof of theMain Criteria for Cutoff

Wenowuse the preliminary bounds from the previous two sections in order to establish
ourmain criteria on cutoff for the simple randomwalk on trees, i.e., we proveTheorems
1.3, 1.4 and 1.6.

4.1 A General Lower Bound on the Relaxation Time

We start with a lower bound on the relaxation time. Recall that for a family of graphs
(Gn), the root is chosen to be a δ-center of mass for some fixed δ > 0.

Proposition 4.1 The constant A from Lemma 2.2 satisfies

A ≥ max
e∈E(G)

|e||Te|. (36)

In particular, Lemma 2.2 implies that

trel ≥ δ max
e∈E(G)

|e||Te|. (37)

Proof We show the lower bound on A by considering an explicit function ge∗ in the
definition of A in (14) and (15). Fix some e∗ ∈ E(G)which maximizes the right-hand
side of (36). Recall that e∗−, e∗+ ∈ V with |e∗−| < |e∗+| denote the endpoints of the edge
e∗. We define ge∗ : E(G) → R to be

ge∗(e) :=
{

1
|e∗+| if e ∈ �(e∗+)

0 if e /∈ �(e∗+)
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and note that ge∗ satisfies

∑
v∈V (G)

( ∑
e∈�(v)

ge∗(e)

)2

≥
∑

v∈Te∗

( ∑
e∈�(v)

ge∗(e)

)2

= |Te∗ |

as well as

∑
e∈E(T )

ge∗(e)2 = 1

|e∗+| = 1

|e∗| .

Using the definition of A in Lemma 2.2, we see that (36) holds. ��
Proof of Theorem 1.3 Recall that by Theorem 3.3, there is no cutoff when the mixing
time and the relaxation time are of the same order. Note that Proposition 3.1 yields an
upper bound on the mixing time, while Proposition 4.1 establishes a lower bound on
the relaxation time. Both bounds are of the same order, due to assumption (6), which
finishes the proof.

4.2 Cutoff for v-Retractions of Trees

In this section, we prove Theorem 1.4. We use Proposition 2.3 with a specific choice
of edge weights (ae) improving the choice of weights leading to Corollary 2.6.

Lemma 4.2 Suppose that assumptions (7) and (8) of Theorem 1.4 hold and recall that
(G̃n)n≥1 denotes the sequence of v∗

n-retractions of (Gn)n≥1. Then, we have

t̃n
rel � max

v∈V (G̃n)

∑
e∈�(v)

|Te| (38)

where t̃n
rel is the relaxation time corresponding to G̃n.

Proof Let k := |v∗
n | and let (T̄i )i∈{0,...,k} denote the trees in G̃n attached along the

segment �(v∗
n), ordered according to their distances from the root, which are used in

the construction of the v∗
n -retraction. We consider the following choice of the weights

(ae)e∈E(Gn). For e ∈ �(v∗
n), we let ae := |e|−1/2. For e ∈ E(T̄i ), we set

ae := 1√
max{i, 1}(|e| − i)2

. (39)

In order to apply Proposition 2.3, we will now give an upper bound for

Ae := a−1
e

∑
v∈Te

∑
ẽ∈�(v)

aẽ (40)

for any possible choice of the edge e ∈ E(G̃n).We claim thatwithout loss of generality,
it suffices to consider e ∈ �(v∗

n). To see this, consider e ∈ T̄i for i ≥ 1 and let ei be
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the corresponding edge in �(v∗
n) with |ei | = i . For every v ∈ T̄i , we have

∑
ẽ∈�(v)

aẽ =
i∑

j=1

j−
1
2 + i−

1
2

|e|∑
l=i+1

1

(l − i)2
∈ [√i, 4

√
i]. (41)

Together with the fact that T̄i has a binary structure, we get that

Ae ≤ 4i(|e| − i)2|Te| ≤ 4i(|e| − i)22−(|e|−i)|Tei | ≤ 5i |Tei | ≤ 5Aei

holds. Similarly, for e ∈ T̄0, we see that Ae ≤ 5|T̄0| ≤ 5|V (Gn)|, which is of smaller
order than the right-hand side in (38) by assumption (7). Hence, it suffices to bound
Ae for all edges e within �(v∗

n) to conclude.
From (41), we see that the right-hand side of (40) is bounded from above by

Ae = √|e|
k∑

i=|e|

∑
v∈T̄i

∑
ẽ∈�(v)

aẽ ≤ 4
√|e|

k∑
i=|e|

√
i |T̄i |.

It remains to show that

√|e|
k∑

i=|e|

√
i |T̄i | �

∑
e∈�(v∗

n )

|T̄e|. (42)

We see that for all e ∈ �(v∗
n),

(√|e|
k∑

i=|e|

√
i |T̄i |

)2

≤
(

|e|
k∑

i=|e|
|T̄i |

)( k∑
i=|e|

i |T̄i |
)

�
( k∑

i=1

i |T̄i |
)2

(43)

using the Cauchy–Schwarz inequality for the first step, as well as the fact that by
assumptions (8) and (7)

|e|
k∑

i=|e|
|T̄i | ≤ max

e′∈�(v∗
n )

|e′||Te′ | � max
v∈V (Gn)

∑
e′∈�(v)

|Te′ | �
k∑

i=1

i |T̄i |

for the second step. Taking square roots of both sides of (43) finishes the proof.

Proof of Theorem 1.4 For the lower bound on the mixing time from Proposition 3.2,
note that the leading order does not decrease when we replace (Gn) by (G̃n) for v∗

n
from (7), and that the root is still a δ̃-center of mass for some δ̃ > 0. Theorem 1.4
follows together with the product criterion from Theorem 3.3, and Lemma 4.2.
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Remark 4.3 Note that instead of binary trees, we may consider other trees T̄i rooted
at vi and attached to the segment at distance i from õ for which

max
v∈V (Te)

∑
ē∈�(v)

|Tē| ≤ α|Te| (44)

holds for some constant α. The above choice of binary trees satisfies (44) with α = 2.
Depending on (8), we may also allow α to go to infinity with n sufficiently slow.

4.3 A Sufficient Condition for Cutoff on Trees

In this section, we give an upper bound on the relaxation time, which will allow us to
give a sufficient condition for cutoff on trees. For a finite rooted tree G = (V , E, o),
we let S := {B ⊆ V : B = ∅, o /∈ B}, and define for all B ∈ S

νB := inf

{ ∑
e∈E

f (e)2 :
∑

e∈�(v)

f (e) ≥ 1 for all v ∈ B

}
> 0, (45)

where the infimum is taken over functions f : E → R. For the following bound on
the relaxation time, we use the ideas of Evans et al. for proving a Hardy inequality
on continuous weighted trees [17]. A corresponding Hardy inequality for discrete
weighted trees was obtained byMiclo; see Proposition 16 in [27].Wewill now provide
a similar result on the relaxation time of the simple random walk.

Proposition 4.4 Recall (9). For any finite tree G, we have that

trel ≤ 32max
B∈S

|B|
νB

≤ 32max
k∈N k|Vk |. (46)

Proof Recall the trees T , T̃ for G from (5). For the first inequality in (46), it suffices
by Lemma 2.2 to show that for every function g : E(T ) → R with g ≡ 0, we have

∑
v∈V (T )

( ∑
e∈�(v)

g(e)

)2

≤ 32

(
max
B∈S

|B|
νB

) ∑
e∈E(T )

g(e)2, (47)

and a similar statement with respect to T̃ . We will now show (47) only for T . Fix a
nonnegative function g (otherwise consider |g|), and define for all i ∈ Z the set

Bi :=
{
v ∈ V (T ) : 2i ≤

∑
e∈�(v)

g(e) < 2i+1
}
.

We let I := {i ∈ Z : Bi = ∅} and note that Bi ∈ S when i ∈ I. Observe that

∑
v∈V (T )

( ∑
e∈�(v)

g(e)

)2

≤
∑
i∈I

22i+2|Bi | ≤
(
max
B∈S

|B|
νB

) ∑
i∈I

22i+2νBi
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holds. Hence, it suffices now to prove that for all i ∈ I

νBi ≤ 2−2i+2
∑

e∈E(T ) : e+∈Bi−1∪Bi

g(e)2 (48)

is satisfied in order to conclude (47). To see that (48) indeed holds, consider

gi (e) := 2−i+1g(e)1{e+∈Bi−1∪Bi }

for all e ∈ E(T ). Using the definition of the sets (Bi )i∈Z and the fact that g is
nonnegative, we have for all v ∈ Bi

∑
e∈�(v)

gi (e) = 2−i+1
( ∑

e∈�(v)

g(e) −
∑

ẽ∈�(v) : ẽ+ /∈Bi−1∪Bi

g(ẽ)

)
≥ 2−i+1(2i − 2i−1) = 1.

Plugging gi into the definition (45) of νBi yields (48), and hence the first inequality in
(46). For the second inequality in (46), observe that for all B ∈ S

νB

|B| ≥ 1

|B| max
v∈B

inf

{ ∑
e∈E(G)

f (e)2 :
∑

e∈�(v)

f (e) = 1
}

= 1

|B| max
v∈B

1

|v| (49)

holds, where the infimum is attained when f (e) = |v|−11{e∈�(v)}. We then optimize
in (49) over the choice of B ∈ S to conclude.

Proof of Theorem 1.6 Similar to the proof of Theorem 1.3, recall that by Theorem 3.3,
we have cutoff if and only if the relaxation time is of strictly smaller order than the
mixing time. Note that by Proposition 3.2 we obtain a lower bound on the mixing time,
while Proposition 4.4 gives us an upper bound on the relaxation time. We conclude
taking into account assumption (10).

As a direct consequence of Theorem 1.6, we see that the simple random walk on the
following family of trees constructed by Peres and Sousi [31] exhibits cutoff: Fix k
and consider the tree G N for N = N (k) which is constructed as follows: Set ni = 22

i

and start with a segment of length nk , rooted at one of the endpoints. At the root, we
attach a binary tree of size N := n3

k . Then at distance ni from the root, attach a binary
tree of size N/ni for all i ∈ {k/2, . . . , k}. We reindex the sequence of trees (G N ) to
obtain a family of trees (Gn)n≥1 for all n ≥ 1. A visualization of these trees can be
found in [31]. Note that in this construction, the root is always a δ-center of mass for
some δ > 0 which does not depend on n.

Corollary 4.5 The family of trees described by Peres and Sousi has a mixing time of
order Nk and a relaxation time of order N, and hence exhibits cutoff provided that
k → ∞ with N → ∞.
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Proof We first consider the ε-mixing time for some ε > 0. In Proposition 3.2, we
choose v to be a leaf in the tree attached at distance nk from the root and get

tmix(ε) ≥ c
k−1∑

i=k/2

(ni+1 − ni )

k−1∑
j=i

N

n j
≥ c

4
k N

for some constant c = c(ε) > 0, when summing only over the sites in the attached
binary trees for (33). Since N/ni � ni for all i ≤ k, a corresponding upper bound
follows from Proposition 3.1. While a lower bound on trel of order N is immediate
from Proposition 4.1, we obtain a corresponding upper bound of the same order by
Proposition 4.4, by a straight-forward count of the sites of distance at least m from the
root. We conclude that cutoff occurs by Theorem 3.3. ��

5 Cutoff for SRW on Trees is Atypical

We now use the previous estimates and ask about cutoff for the simple randomwalk on
the following three families of trees from Theorem 1.1: infinite spherically symmetric
trees truncated at level n, supercritical Galton–Watson trees conditioned on survival
and truncated at height n, and families of combinatorial trees converging to the Brow-
nian continuum random tree (CRT). The latter includes critical Galton–Watson trees
conditioned to have exactly n sites. In all three cases, we will in the following verify
that cutoff does not occur.

5.1 Spherically Symmetric Trees

LetG = (V , E, o) be a rooted tree.We say thatG is spherically symmetric if deg(v) =
deg(v′) holds for all v, v′ ∈ V with |v| = |v′|. Examples for such trees are regular
trees.We write degk for the degree of the vertices at generation k provided that Vk = ∅
holds (recall (9)).

Proposition 5.1 Consider an infinite spherically symmetric tree G of maximum degree

. For every n ∈ N, let Gn the tree induced by G by restricted to the sites V \ Vn.
Then, the simple random walk on (Gn)n≥1 does not exhibit cutoff.

When G = N the claim is well known; see [22]. Otherwise, for all n ∈ N large
enough, we choose the root of Gn to be the first branching point in G, i.e., the vertex
closest to the root with degree at least 3. In particular, note that the root of Gn will be
a 1

4 -center of mass for all n sufficiently large. By Propositions 3.1 and 3.2, we see that
the 1

8 -mixing time of Gn satisfies

tn
mix

(
1

8

)
�

n−1∑
i=1

n−1∑
j=i+1

j−1∏
k=i

(degk −1). (50)
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We will now show a lower bound on the relaxation time of the same order by using
a comparison to birth-and-death chains. Our strategy will be similar to Evita and
Oanh [29], where Nestoridi and Nguyen study eigenvalues and eigenfunctions for the
d–regular tree. More precisely, we will exploit that certain eigenfunctions of birth-
and-death chains can be converted to eigenfunctions of the simple random walk on
spherically symmetric trees. Without loss of generality, we will assume that deg(o) >

1 holds since removing the sites before the first branching point in G changes the
relaxation time by at most a constant factor. This can be seen using the characterization
of the spectral gap in Lemma 2.1. Let (Xt )t≥0 be the continuous-time birth-and-death
chain on the segment {1, . . . , 2n − 1} with nearest neighbor transition rates (r(x, y))

given by

r(x, y) =

⎧⎪⎨
⎪⎩
degx−n −1 if y = x + 1 > n + 1

degn−x −1 if y = x − 1 < n − 1

1 otherwise

(51)

for all {x, y} ∈ E(Gn). We make the following observation on the spectral gap of
(Xt )t≥0.

Lemma 5.2 Let λ̃ be the spectral gap of (Xt )t≥0. There exists a corresponding eigen-
function f̃ : {1, . . . , 2n − 1} → R which satisfies

f̃ (x) = − f̃ (2n − x) (52)

for all x ∈ {1, . . . , 2n − 1}.
Proof Note that there exists an eigenfunction g corresponding to the spectral gap of
an irreducible birth-and-death chain which is monotone and non-constant; see Lemma
22.17 in [22]. By the symmetry of the transition rates, we see that the function h given
by h(x) = g(2n − x) for all x ∈ {1, . . . , 2n − 1} is also an eigenfunction for (Xt )t≥0
with respect to λ̃. Since g(1) = g(2n − 1), we see that the function f̃ := g − h is an
eigenfunction corresponding to λ̃ which has the desired properties. ��
With these observations, we have all tools to give the proof of Proposition 5.1.

Proof of Proposition 5.1 Note that we can extend the eigenfunction f̃ of (Xt )t≥0 from
Lemma 5.2 belonging to the spectral gap to an eigenfunction F with eigenvalue λ̃ of
the random walk on Gn . To see this, let x1, x2 be two sites adjacent to o, and consider
the function F : V → R given by

F(v) =

⎧⎪⎨
⎪⎩

f (n − |v|) if v ∈ Tx1

f (n + |v|) if v ∈ Tx2

0 otherwise.

(53)

The fact that F is an eigenfunction of the simple random walk on Gn follows by a
direct verification using the generator. Hence, in order to give a lower bound on the
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relaxation time of the same order as in (50), it suffices to bound the spectral gap λ̃ of
(Xt )t≥0. Note that the stationary distribution π̃ of (Xt )t≥0 satisfies

π̃(x) = 1

Z

n−2∑
k=min{x,2n−x}

(degn−k−1 −1) (54)

for all x ∈ {1, . . . , 2n − 1}, where Z is a normalization constant. Recalling that G has
maximum degree 
 and using Theorem 4.2 in [12], we see that

1

λ̃
≥ 1

16


n∑
i=1

1

π̃(i)
�

n∑
i=1

( n∑
j=1

n−2∏
k= j

(degn−k−1 −1)

) n−2∏
k=i

(degn−k−1 −1)−1.

This gives the desired lower bound on the relaxation time of the tree Gn which is of
the same order as the upper bound on the mixing time in (50). Hence, using Theorem
3.3, we see that no cutoff occurs.

Remark 5.3 Using Proposition 5.1, we can see that taking v∗
n -retractions in Theorem

1.4 is necessary for cutoff. More precisely, consider the spherically symmetric tree G
with

degi =
{
3 if i = 2 j − 1 for some j ∈ {0, 1, . . . }
2 else

(55)

for all i ∈ N. The corresponding trees (Gn)n≥0 truncated at level n satisfy (8), but due
to Proposition 5.1, the simple random walk on (Gn) does not exhibit cutoff.

5.2 Galton–Watson Trees Conditioned on Survival

In this section, we consider a family of random trees (Gn)n≥1 which we obtain by
truncating a supercritical Galton–Watson tree conditioned on survival. More precisely,
let μ be an offspring distribution and assume that

m :=
∞∑
j=1

jμ( j) > 1 σ 2 :=
∞∑
j=1

j2μ( j) ∈ (0,∞), (56)

, i.e., we have a supercritical Galton–Watson process whose offspring distribution has
finite variance. In the following, we take the genealogical tree G of a realization of
the Galton–Watson process conditioned on survival. We then obtain the trees (Gn)n≥1
by restricting G onto the sites V \ Vn (recalling (9)). We keep the sequence of trees
fixed and perform simple random walks on (Gn)n≥1. We denote the law of G by P
(P depends on μ, but we will not write it). We now have the following result on cutoff
for the simple random walk on (Gn)n≥1.
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Proposition 5.4 For P-almost all trees G, the family of simple random walks on
(Gn)n≥1 does not exhibit cutoff.

Proof From the proof of Theorem 1.4(b) in [20], we know that the relaxation time
is P-almost surely of order mn for all n sufficiently large. Hence, by Theorem 3.3,
it suffices to give an upper bound on the mixing time of order mn for the random
walk on Gn in order to exclude cutoff. Providing an upper bound on the mixing time
of order mn answers a question of Jonasson [20]. Recall that for any supercritical
Galton–Watson tree G = (V , E) with offspring distribution μ satisfying (56),

( |{v ∈ V (G) : |v| = n}|
mn

)
n≥1

(57)

is a martingale which converges P-almost surely and in L2, due to the Kesten–Stigum
theorem. For all v ∈ V and N ≥ 0 let k(v, N ) be the number of sites in the tree Tv

with distance at most |v| + N from the root. From (57), we see that for all v ∈ V

sup
N∈N

k(v, N )

m N
= Yv (58)

P-almost surely for some random variable Yv . It is easy to show, applying Doob’s
inequality to the martingale in (57), that Yv has a finite second moment.

Recall that Proposition 3.1 does not require the root to be a δ-center of mass, and
hence

P

(
tn
mix

(
1

4

)
≤ T

)
≤ P

(
C

n−1∑
s=0

mn−s max|v|=s
Yv ≤ T

)
(59)

holds P-almost surely for all T > 0 and some constant C > 0. It remains to give a
bound on the random variables Yv . Note that the random variables Yv do not depend
on the number of sites in the generation |v| in the Galton–Watson tree. Hence, writing
E for the expectation corresponding to P , we see that

P

(
max|v|=s

Yv >
ms

2s2

)
≤ P

(
|{v : |v| = s}| > s2ms

)
+ s2mn P

(
Yv >

ms

s2

)

≤ E [|{v : |v| = s}|]
s2ms

+ s2ms E
[
Y 2

o

]
s−4m2s

≤ cs−2

is satisfied for all s ∈ N and some constant c > 0. Together with (59) and the first
Borel–Cantelli lemma, we see that P-almost surely

tn
mix

(
1

4

)
≤ c̃mn

123



Journal of Theoretical Probability

holds for some c̃ > 0 depending on G and all n sufficiently large. Note that a bound
of the same form follows when conditioning the underlying Galton–Watson tree on
survival, using its representation as a multi-type Galton–Watson process with one
child in every generation having a size-biased offspring distribution; see Chapter 12
of Lyons and Peres [25]. Together with the corresponding bound on the relaxation
time for the randomwalk on (Gn) of order mn from Johan [20], this finishes the proof.

��

Remark 5.5 For critical or subcritical Galton–Watson trees, i.e., when m ≤ 1 holds
in (56), one can consider the family of random walks on (Gn) which we obtain from
the associated Kesten tree truncated at generation n; see [21] for a formal definition
of the tree and [19] for a more comprehensive discussion. Note that the resulting tree
consists of a segment of size n with finite trees attached. Using Theorem 1.3, one can
show that there is P-almost surely no cutoff.

5.3 Combinatorial Trees Converging to the CRT

In the previous two examples, we considered an infinite tree, which we truncated at
generation n in order to obtain the family of trees (Gn)n≥1. We now take a different
perspective and study the simple random walk on a sequence of random trees, where
we assume that Gn has exactly n sites.

For each tree (Gn), we assign a labeling to the n sites chosen uniformly at random,
and declare the vertex with label 1 to be the root of (Gn). Let s : {1, . . . , 2n−1} → Vn

be the contour function of Gn , which is given as the walk on Vn when performing
depth-first search on Gn , giving priority to sites with a smaller label; see also Sect. 2.6
in [5]. Intuitively, we obtain s by embedding Gn into the plane such that the shortest
path distance is preserved and sites with a common ancestor are ordered increasingly
according to their labels; see Fig. 2. We will write |s(·)| for the distance of s(·) to the
root, and call |s| : {1, . . . , 2n −1} → N again the contour function, with a slight abuse
of notation. For c > 0, consider the normalized contour function s̃ : [0, 1] → R given
by

s̃n

(
i

2n

)
:= cn− 1

2 |s(i)| (60)

for all i ∈ {1, . . . , 2n − 1}, s̃n(0) = s̃n(1) = 0 and linear interpolation between these
values. We define that a family of random trees (Gn)n≥1 converges to the CRT for c
if (s̃n)n≥1 converges in distribution (in the space C([0, 1])) to the Brownian excursion
(e(t))t∈[0,1]. Note that the terminology CRT refers to the Brownian continuum random
tree, which can be seen as the limit object of (Gn)n≥1; see [3–5] for an introduction
and equivalent definitions, and [18, 26] for examples of trees converging to the CRT.

Arguably themost prominent example of such a sequence of trees are independently
chosen critical Galton–Watson trees (Gn)n≥1 conditioned on having exactly n sites,
where we assume that
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Fig. 2 Visualization of the linear interpolation of the contour function |s| : {1, . . . , 27} → N for the graph
G given on the left-hand side with n = 14 sites

∞∑
j=1

jμ( j) = 1
∞∑
j=1

j2μ( j) =: σ 2 ∈ (0,∞) gcd( j > 0 : μ( j) > 0) = 1

(61)

holds, i.e., the number of offspring has mean 1, finite variance and is not supported
on a sublattice of the integers. Note that the assumption of having m = 1 is not a
restriction as we can transform any given offspring distribution with positive mean
into a critical offspring distribution without changing the law of the resulting graphs
when conditioning on a given number of sites; see Sect. 2.1 in [4]. The following
lemma is a classical result due to Aldous.

Lemma 5.6 (c.f. Theorem 23 in [5]) Under the assumptions in (61), we have that
(Gn)n≥1 converges to the CRT for c = σ/2.

Note that for critical Galton–Watson trees, mixing and relaxation times were studied
by Jonasson in [20], relying on estimates of the effective resistance between the root
and the leaves. We now present an alternative proof of his results, which extends to
more general families of combinatorial trees. In the following, we first choose the
trees (Gn)n≥1, keep them fixed and then perform simple random walks on (Gn)n≥1.
We denote the law of (Gn)n≥1 by P .

Proposition 5.7 Let (Gn)n≥1 be a family of random trees converging to the Brownian
CRT for some c. Then, we have that P-almost surely, the family of simple random
walks on (Gn)n≥1 does not exhibit cutoff.

Intuitively, the absence of cutoff is explained by the fact that the law of the random
walk on (Gn)n≥1 converges to the law of a Brownian motion on the CRT, indicating
a smooth decay of the total-variation distance for the random walk at a time of order
N 3/2. In order to prove Proposition 5.7, we will show that P-almost surely, (35) is
not satisfied. First, we will prove that the mixing time and the relaxation time are, for
all n sufficiently large, with positive probability both of order n3/2. We start with the
following upper bound on the mixing time.

123



Journal of Theoretical Probability

Lemma 5.8 Let (Gn) be as in Proposition 5.7. Then, for all ε > 0, there exists a
constant Cε such that for n sufficiently large,

P

(
tn
mix

(
1

4

)
≤ Cεn

3
2

)
≥ 1 − ε. (62)

Proof Note that the tree Gn satisfies diam(Gn) ≤ 2maxi∈{1,...,2n−1} |s(i)|. From
Lemma 5.6, we see that for all ε > 0, there is c1 = c1(ε) > 0 such that for n
large enough,

P

(
diam(Gn) ≥ c1n

1
2

)
< ε. (63)

Now we use (29) from Proposition 3.1 to conclude. ��
It remains to show a corresponding lower bound of order n3/2 for the relaxation time
of the simple random walk on Gn , which requires a bit of setup. We start by giving
some statements for the Brownian excursion. We then carry over these observations to
trees using Lemma 5.6. More precisely, we first choose a new root o∗, which will be a
δ-center of mass. We then show that there exists a site v at distance of order

√
n from

the new root with order n many sites in the tree Tv . Note that a Brownian excursion
(e(t))t∈[0,1] attains almost surely its extrema in every compact subset of [0, 1]. We let
tmin and tmax be such that

e(tmin) = min
t∈

[
1
4 , 34

] e(t), e(tmax) = max
t∈

[
1
4 , 34

] e(t). (64)

Consider, for θ > 0 and δ > 0, the events

B1 := {e(tmin) > θ} ∩
{
max

t∈[0,δ] e(t) ≤ θ

2

}
(65)

and

B2 := {e(t) ≥ 2θ for all t ∈ [tmax − θ, tmax + θ ]} , (66)

see Fig. 3 for a visualization.

Lemma 5.9 For every ε > 0, there exists some θ > 0 and some δ > 0 such that
P(B1 ∩ B2) ≥ 1 − ε/2.

Proof Note that e(tmax) > e(tmin) > 0 holds almost surely by the construction of
the Brownian excursion. Since (e(t))t∈[0,1] is continuous, and e( 14 ) and e( 34 ) have
densities with respect to the Lebesgue measure on [0,∞), the probability of the event

{e(tmin) > θ} ∩ {e(t) ≥ 2θ for all t ∈ [tmax − θ, tmax + θ ]}
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Fig. 3 Visualization of the events B1 and B2 for the Brownian excursion

goes to 1 for θ → 0. Hence, choose θ such that this probability is at least 1 − ε/4.
Moreover, since e(0) = 0 almost surely and (e(t))t∈[0,1] has continuous paths, we
have that for every ε, θ > 0, there exists some δ > 0 such that the event

{
max

t∈[0,δ] e(t) ≤ θ

2

}

has probability at least 1− ε/4. This implies that the event B1 ∩ B2 has probability at
least 1 − ε/2. ��

We now use Lemma 5.9 to show the following bound on the relaxation time.

Lemma 5.10 For all ε > 0, there exists some constant cε > 0 such that for n suffi-
ciently large,

P
(

tn
rel ≥ cεn

3
2

)
≥ 1 − ε. (67)

Proof Recall the contour function s and |s|. Fix some ε > 0 and let θ, δ > 0 be the
constants from Lemma 5.9. We start the proof by first choosing a new root o∗ of Gn

as follows: Recall the constant c > 0 from the convergence of (Gn) to the CRT. We
set

o∗ := s(i∗) with i∗ = max

{
i ≤ 1

2
n : |s(i)| ≤ c−1θ

√
n

}
.

We claim that whenever the event Bn
1 given by

Bn
1 :=

{
|s(i)| > c−1θ

√
n for all i ∈

[
1

2
n,

3

2
n

]}
∩

{
max
j≤2δn

|s( j)| < c−1 θ

2

√
n

}

occurs then o∗ is a δ-center of mass. To see this, observe that the subtree T = To∗ , i.e.,
the largest subtree containing the new root o∗ and only sites of distance at least |o∗|
from the old root o, must have at least n/2 sites. This is due to the fact that the contour
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traverses, between times n/2 and 3n/2, only edges which belong to T and each edge
is visited at most twice. To conclude that o∗ must be a δ-center of mass, note that the
tree T̃ , induced by the vertices V \ V (T ) ∪ {o∗}, contains at least δn many sites. This
follows from the observation that all edges traversed by the contour until time 2δn
belong to T̃ provided that Bn

1 occurs. Thus, T and T̃ satisfy (5) and this proves the
claim.

Moreover, suppose that in addition the event Bn
2 given by

Bn
2 :=

{
∃i ∈

[(
1

2
+ 2θ

)
n,

(
3

2
− 2θ

)
n

]
: min

j∈[i−2θn,i+2θn] |s( j)| ≥ 2c−1θ
√

n

}

occurs. We claim that in this case for i from the event Bn
2 , the vertex v given by

v := s( j∗) with j∗ = max
{

j < i − 2θn : |s( j)| < 2c−1θ
√

n
}

has at least distance c−1θ
√

n from o∗ and it holds that |Tv| ≥ 2θn. Again, this claim
follows from the definition of the contour s and the events Bn

1 and Bn
2 since all edges

visited by the contour during [i − 2θn, i + 2θn] must belong to Tv .
Hence, whenever the events Bn

1 and Bn
2 both occur, Proposition 4.1 gives a lower

bound of 2δc−1θ2n3/2 for the relaxation time. Notice that the events B1 and B2 for
the Brownian excursion correspond to the events Bn

1 and Bn
2 . More precisely, we have

that

P

(
|s(i)| > c−1θ

√
n for all i ∈

[
1

2
n,

3

2
n

])
= P

(
s̃n(y) > θ for all y ∈

[
1

4
,
3

4

])

converges to P (e(tmin) ≥ θ) by Lemma 5.6. A similar statement applies for all other
events in the definitions of Bn

1 and Bn
2 . Thus, for all ε > 0, Lemma 5.6 yields that

there exists an N = N (ε) such that for all n ≥ N ,

P(Bn
1 ∩ Bn

2 ) ≥ P(B1 ∩ B2) − ε

2
.

We conclude with Lemma 5.9. ��
Proof of Proposition 5.7 Recall from Theorem 3.3 that a necessary assumption for the
simple random walk to satisfy cutoff is that the product criterion (4) holds. In other
words, it is enough to show that

Zn := tn
mix

( 1
4

)
tn
rel

satisfies P
(
lim inf
n→∞ Zn < ∞

)
= 1. (68)

Note that Lemmas 5.8 and 5.10 imply (by choosing Kε = Cε

cε
) that

∀ε > 0, ∃Kε < ∞ such that P (Zn ≤ Kε) ≥ 1 − 2ε. (69)
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The following general argument shows that (69) implies (68). Let C̃ > 0 and c̃ ∈
(0, C̃). Then for every n ∈ N, we have that

P

(
lim inf
k→∞ Zk ≥ C̃

)
≤ P

(
∃N0 = N0(ω) < ∞: Zm ≥ C̃ − c̃ for all m ≥ N0

)

≤ P (N0 ≥ n) + P
(

Zn ≥ C̃ − c̃
)

. (70)

By choosing n and C̃ large enough, due to (69), both terms on the right-hand side of
(70) are ≤ 2ε. Since ε was arbitrary, we conclude that (68) holds.

6 Open Questions

In order to exclude cutoff for the simple random walk on spherically symmetric trees,
we assumed that the maximum degree is bounded.

Question 6.1 Can the assumption in Proposition 5.1 on having a bounded maximum
degree be relaxed?

Very recently, this question was answered positively by Chiclana and Peres [14].
In Sect, 5, we showed that we do not see cutoff for Galton–Watson trees, which are
typically short and fat; see also [1].

Question 6.2 Does a family of trees exist which is short and fat in the sense of [1] for
which the simple random walk exhibits cutoff?

Throughout this article, we used at several points the result of Basu, Hermon and
Peres that cutoff occurs for the simple random walk on a family of trees if and only if
(4) is satisfied.

Question 6.3 For which families of graphs is the product criterion in (4) a necessary
and sufficient condition such that the simple random walk exhibits cutoff?
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A Proof of the Existence of a Center of Mass

Proof of Proposition 1.2 Note that each tree must have a vertex separator x ∈ V (G),
that means that when x is removed from the tree, all of the remaining connected
components contain at most |V (G)|/2 many sites. This is a well-known fact from
graph theory. We will now show that each vertex separator of a tree must also be a
1
3 -center of mass in the above sense.

For a given vertex separator x , let S1, S2, . . . , Sd for some d ≥ 2 denote the
connected components of the tree when removing x . Note that when d = 2, we take
S1 ∪ {x} and S2 ∪ {x} as vertex sets for the trees T and T̃ . When d = 3, associate
T with the largest component Si , which must contain at least (|V (G)| − 1)/3, but at
most |V (G)|/2 many sites. Combine the remaining two components for T̃ .

For d ≥ 4, we describe now a procedure to reduce the problem of finding the trees
T and T̃ for a vertex separator x with d components (Si ), to a problem of finding the
trees T and T̃ for d −1 components (S̃i )which have all size at most |V (G)|/2. Hence,
solving the problem of finding the trees T and T̃ for x recursively will allow us to
conclude the proof. Let S′ and S′′ be the smallest and second smallest component in
(Si ), respectively. By the pigeonhole principle, we have that

|S′| + |S′′| ≤
(
1

4
+ 1

3

)
(|V (G)| − 1). (71)

We distinguish two cases. If the left-hand side in (71) is at least (|V (G)| − 1)/3, then
we associate T with S′ ∪ S′′ and T̃ with its complement, and we are done. If the
left-hand side in (71) is at most (|V (G)| − 1)/3, then remove S′ and S′′ from (Si ) and
replace it by S′ ∪ S′′ to obtain (S̃i ).
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