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A novel approach is presented to efficiently include transport effects in thin active material coating layers of all-solid-state batteries
using a dimensionally reduced formulation embedded into a three-dimensionally resolved coupled electrochemo-mechanical
continuum model. In the literature, the effect of coating layers is so far captured by additional zero-dimensional resistances to
circumvent the need for an extremely fine mesh resolution. However, a zero-dimensional resistance cannot capture transport
phenomena along the coating layer, which can become significant, as we will show in this work. Thus, we propose a model which
resolves the thin coating layer in a two-dimensional manifold based on model assumptions in the direction of the thickness. This
two-dimensional formulation is monolithically coupled with a three-dimensional model representing the other components of a
battery cell. The approach is validated by showing conservation properties and convergence and by comparing the results with
those computed with a fully resolved model. Results for realistic microstructures of a battery cell, including coating layers as well
as design recommendations for a preferred coating layer, are presented. Based on those results, we show that existing modeling
approaches feature remarkable errors when transport along the coating layer is significant, whereas the novel approach resolves
this.
© 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ad0264]
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All-solid-state batteries (ASSBs) are seen as a promising
technology to overcome the physical limits conventional lithium-
ion batteries face today.1 Some of the expectations are higher power
densities due to the negligible polarization of the solid electrolyte,
higher energy densities by enabling the use of the lithium metal
anode, and higher safety standards due to the non-flammability of
many solid electrolytes compared to conventional lithium-ion
batteries.2–4 However, ASSBs are mostly still only at the lab scale
and require more research effort for their usage in relevant
applications (e.g. Ref. 5).

Internal interfaces between the components of an ASSB cell
contribute to the total cell resistance and, therefore, to the overall cell
performance (see Ref. 6 for an overview on interfaces in ASSBs and the
occurring physical phenomena). The properties of the interface between
the solid electrolyte and the electrode can be tuned to e.g. lower the
difference in electrochemical potential and, thus, to reduce the degrada-
tion there7 by adding a thin coating layer between both domains.8 The
transport properties inside this coating layer can significantly differ from
those in the other domains and feature transport also along the coating
layer. By selecting a material of the coating layer together with the
material of the bulk electrolyte, an optimal hybrid electrolyte can be
designed by making use of the advantageous properties of the two
materials while overcoming their individual drawbacks: for example
benefiting from the good ionic conductivity of thiophosphates, from the
oxidation stability of oxides, and from the mechanical flexibility of
polymers. In the literature, different combinations of active materials,
coatings, and solid electrolytes are reported7,9–11 and tested: coatings that
are argyrodite-based,12 polymer-based,13 LiPON-based,14 or
LiNbO3-based.

15 However, realizing all combinations of the various
materials requires considerable effort. Furthermore, the quantification of
the influence of the coating layer on the cell performance by measure-
ments is complex and requires the combination of various experimental
methods.16 Here, simulation models provide unprecedented insight, can
find optimal combinations of coating and bulk materials, and can
systematically separate the physical phenomena inside coating layers.

All this can even be done before coating materials are synthesized or
established in a production process.

Different well-established simulation approaches for the analysis
of coating layers exist in the literature. A prominent class of
simulation approaches is the computation of coating layers with
models using the density functional theory (DFT). These models are
based on first principles and, thus, enable to determine e.g. the
transport properties of materials. One drawback for real applications
is that they are restricted to small domains (i.e. a couple of atomic
layers as discussed e.g. in Refs. 17, 18). Therefore, physics-based
continuum models are seen as appropriate when investigating the
behavior of an entire battery cell.

Different approaches to incorporate a thin coating layer into a
continuum simulation model are conceivable, e.g. by resolving it
spatially or by representing it by a zero-dimensional resistance.19,20

Both approaches have advantages but also drawbacks: A spatial
resolution requires an extremely fine mesh due to the small thickness
of the coating layer compared to its tangential dimensions and, thus,
a huge computational effort. A zero-dimensional resistance cannot
capture transport along the coating layer which could become
relevant as soon as the conductivity of the coating material reaches
the order of the conductivity of the bulk electrolyte, as we will show
in this work.

Thus, we propose an efficient approach to resolve the thin coating
layer on a two-dimensional manifold embedded into a three-
dimensional geometry of a microstructure of a battery cell. The
evolution of quantities in the thickness direction of the coating layer
is modeled by a priori knowledge and is included by a linear model
and does, therefore, not require to be discretized in space. Thereby,
we overcome the drawbacks of other modeling approaches, as our
model does not require a prohibitive fine discretization of both the
coating layer and the adjacent domains but simultaneously allows for
capturing the potentially relevant transport of charge and mass along
the coating layer. A rough estimate of the computational effort (see
Appendix A) for a geometrically realistic microstructure with the
novel approach and a fully resolved approach reveals a gain of two
orders of magnitude in unknowns and hence, shows the relevance of
avoiding simulations with fully resolved coating layers. Therefore, a
speedup of up to four orders of magnitude is expected depending onzE-mail: stephan.sinzig@tum.de
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the used linear solver. Especially if advanced interface coupling
algorithms for non-matching mesh discretizations, like mortar
methods (see e.g. Ref. 21) are not available, also the domains
attached to the coating layer require a fine discretization and the
reduction of the computational effort becomes even more important.

This work is organized as follows: First, a coupled electrochemo-
mechanical continuum model together with a novel model to capture
transport in the coating layer in ASSBs is introduced. Afterwards, its
numerical treatment is summarized, and numerical examples are
presented.

ASSB Model Including Transport in Thin Coating Layers

The performance of a ASSB cell is strongly influenced by the
interaction between electrochemistry and solid mechanics. Thus, a
simulation model for ASSBs needs to consider this interaction (see
e.g. Ref. 22) in the different components of the battery cell. In this
work, we focus on the transport of mass and charge in coating layers
on active material particles. One geometric characteristic of the
coating layer is that its thickness is significantly smaller than its
tangential dimensions. The evolution of the transported quantity in
the thickness direction is often a priori known or can very well be
approximated. We use this knowledge to derive a computationally
efficient formulation representing transport phenomena inside thin
coating layers. The formulation is embedded into a three-dimen-
sionally resolved coupled electrochemo-mechanical continuum
model for ASSBs to allow for the investigation of the influence of
the coating layer on the entire cell performance. We begin with
summarizing the governing equations for the bulk domain of
ASSBs. Afterwards, a novel approach is introduced to capture
transport effects in coating layers. Finally, interface and boundary
conditions are summarized. The symbols listed in Table V are used.

Geometric definitions.—For the definition of the governing
equations, the microstructure of the battery cell is split into
subdomains (see the schematic in Fig. 1): From left to right, we
define the current collector on the anode side Ωcc,a, the anode Ωa, the
solid electrolyte Ωel, the coating layer Ωcoat, the cathode Ωc, and the
current collector on the cathode side Ωcc,c. For readability, both
current collectors are summarized as Ωcc = Ωcc,c ∪ Ωcc,a and the
electrodes as Ωed = Ωc ∪ Ωa. Wherever two domains Ωi and Ωj

intersect, an interface Γi−j is defined. The outer boundary is split
into physically meaningful boundaries on the current
collectors Γcc−o = Γcc,c−o ∪ Γcc,a−o and boundaries where the geo-
metry is cut to obtain a statistically representative domain Γcut. A
natural coordinate system is introduced in the coating domain with
one coordinate n normal to the interface Γcoat−c and two
coordinates t1,2 tangential to the interface Γcoat−c.

Governing equations for the bulk domain in a continuum
formulation.—The model needs to satisfy the conservation of mass,
charge, and linear momentum inside the battery cell, as discussed in
literature.22 This work only summarizes the corresponding equations
and the coupling constraints between the fields for brevity (see
Appendix B for the derivation). In this work, we model the coating
layer as an ion conductor, such that all equations that are applied to
the solid electrolyte domain Ωel are also applied to the coating
domain Ωcoat. However, the presented approach can also be applied
to different models for the transport of mass and charge in the
coating domain, which would be relevant in e.g. co-conductive
coating layers (see Refs. 23, 24). The governing equations for the
solid mechanics field are

ρ∇ ⋅( ) + = ̈ Ω [ ]FS b u in , 1aX 0 0 0

= [ ]F F F , 1bel growth

= ( ) ∂Ψ
∂

[ ]− −S F F
C

F2 det . 1cgrowth growth
1 el

el
growth

T

The governing equations for the electrochemical field are

σ∇·(− ∇Φ) = Ω ∪ Ω [ ]0 in , 2aed cc

κ∇·(− ∇Φ) = Ω ∪ Ω [ ]0 in , 2bel coat

∂
∂

+ ∇· ̇ − ∇·( ∇ ) = Ω [ ]u
c

t
c D c 0 in , 2c

X
ed

∂
∂

+ ∇· ̇ = Ω ∪ Ω [ ]u
c

t
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X
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The governing equations for the coupling between the solid
mechanics field and the electrochemical field are

= ( ) Ω [ ]F cfn in , 3agrowth ed

= Ω⧹Ω [ ]F 1 in . 3bgrowth ed

A novel model to capture transport in coating layers.—Within
the domain of the coating layer Ωcoat, we formulate assumptions that
we consider as reasonable as they are based on a priori knowledge.
With these assumptions, the governing equations in the coating layer
are adapted.

Figure 1. Schematic sketch of the computational domain. The domain is split into subdomains Ωi. The surfaces Γi−j denote the interfaces between the
domains Ωi and Ωj.
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Assumptions in the coating layer.—We formulate two assump-
tions inside the domain of the coating layer

1. One assumption for the electric field E=−∇Φ inside of the
coating layer is formulated due to the geometric characteristic of
the coating layer of having a small curvature and being thin
compared to the other geometric domains. For an ion-con-
ducting coating material with isotropic conductivity, we state
that the electric field in the normal direction En = E · n is
constant along the normal direction of the coating layer.

2. The other assumption is that the mechanical impact of the
coating layer is neglected, and the coating layer is inseparably
connected to the adjacent bulk domains. This implies that no
strain of the coating layer in the normal direction occurs. Thus,
we consider only strains in the tangential direction caused by the
adjacent bulk domains. However, similar assumptions as for the
electric field could be formulated for the strains and introduced
to the equations of solid mechanics if the investigation focuses
on the mechanical influence of the coating layer, e.g., to analyze
damage of the material of the coating layer.

With both assumptions, the governing equations in the coating layer
for the conservation of mass and charge read

κ η− Δ Φ = + Γ [ ]ρΓ
t r

s
1

on , 4
coat n

,coup coat

∂
∂

+ ∇ · ̇ = Γ [ ]Γ u
c

t
c s on , 5

X
c,coup coat

whereΔΓΦ denotes the Laplace operator, and ∇Γ · the divergence on
a two-dimensional manifold Γcoat (see Appendix C for a derivation).

The term η
t r

1

coat n
originates from the constant of integration as we will

show. The source term =ρ
·

s
j n

t,coup
coup

coat
considers the coupling fluxes

to the adjacent bulk domains. As common for ion conductors, the
current density and the mass flux density in the coating layer are
linked via +t

zF
, such that the source term in the coating layer is

=
·+s

j n
c

t

zF t,coup
coup

coat
. The coupling flux density jcoup is described by a

flux model as introduced later. The difference in potential across the
coating layer is η= Φcoat−el − Φcoat−ed and the resistance in normal
direction is =

κ
r t
n

coat .

Range of validity of the assumption concerning the electric
field.—We quantify the range of validity of the assumption by
evaluating the electric field inside a coating layer of a cylindrical
electrode with a fully resolved model. For this geometric setup, an
analytic solution can be found if the equations are evaluated in
cylindrical coordinates. We begin with analyzing the equation for the
conservation of charge (Eq. 2b) with an isotropic ionic conductivity

θ
ΔΦ = ∂ Φ

∂
+ ∂Φ

∂
+ ∂ Φ

∂
+ ∂ Φ

∂
= [ ]

r r r r z

1 1
0. 6

2

2 2

2

2

2

2

If the first assumption is evaluated in cylindrical coordinates and the
radial coordinate of the cylindrical coordinate system equals the normal

direction of the coating layer, the first assumption reads =∂ Φ
∂

0
r

2

2 .

Integrating this constraint w.r.t. the radial coordinate leads to

θ∂Φ
∂

= ( )
r

c z,1 . Substituting =∂ Φ
∂

0
r

2

2 and θ∂Φ
∂

= ( )
r
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From this, we can conclude that the assumption of the normal
component of the electric field being constant in the normal direction

is valid, if = = =
+

const.
r r r t

1 1 1

in in coat
, with the inner radius of the

coating layer rin and the thickness of the coating layer tcoat. This is
profound, if rin is either large (i.e. small curvatures of the coating
layer) or the thickness of the coating layer tcoat is small. Generalized,
this means that our assumption is profound if the radius of the
coating layer (i.e. the inverse of the curvature) is significantly larger
than the thickness of the coating layer rin ? tcoat. This also holds on
complex geometries if the curvature is locally evaluated. If this
requirement is fulfilled, the conservation of charge is given by the
Poisson equation θΔ Φ = *( )Γ c z,1 . As a consequence of the consti-
tutive law for the current density, it follows that for the normal
component of the current density in the coating layer:

= = = =κ η κ ηE consti

t t t t t rn
1n

coat coat coat coat coat n
. This allows to define

θ*( ) = ηc z,
t r1

1

coat n
, such that the equation for the conservation of

charge in the coating layer is

κ η− Δ Φ = + Γ [ ]ρΓ
t r

s
1

on , 8
coat n

,coup coat

as stated before.

Geometric implication of the assumptions.—By not resolving the
thickness of the coating layer geometrically but reducing it to a two-
dimensional manifold, a small gap (the thickness of the coating layer
is in the range of nm and the radius of active material particles is in
the range of μm) in the three-dimensionally resolved geometry
would occur. This gap can be assigned to the electrode domain (Γcoat
is located at Γel−coat), to the electrolyte domain (Γcoat is located at
Γcoat−c), or left as a geometrical gap. Assigning the gap to the
electrode domain modifies the capacity of the cell. Assigning it to
the electrolyte influences the total resistance of the cell in general
more, as usually, the ionic conductivity of the solid electrolyte is
smaller compared to the electronic conductivity of the electrodes.
Hence, keeping the gap would be the best option from an electro-
chemical perspective but would require specific features in the
underlying code, like defining a consistent surface in the center of
the gap for non-convex and non-steady differentiable surface
curvatures, that are not difficult from a theoretical point of view
but challenging w.r.t. implementations and are often not available.
Later, we will investigate and compare the influence of the assign-
ment to both the electrode and the electrolyte. The novel approach
can be used with all three possibilities, depending on the available
code.

Models for interface phenomena.—We distinguish between two
types of interface models for coupling the different domains of
ASSBs. One model type assumes a continuous flux density between
two domains across the interface based on the difference in a driving
potential. The other model type assumes continuity of a solution
quantity on both sides of the interface.

Models for the coupling flux densities.—Coupling equations of
this type model the kinetics at an interface and relate the electric
current density i and the mass flux density j across the interface with
a difference in potential at both sides of the interface i= fn(η)
and j= fn(η), with the overpotential η= Φed − Φel − Φ0(c),
where Φ0(c) denotes the equilibrium potential as a function of the
concentration, and Φed and Φel the electric potential at electrode and
electrolyte sides of the interface, respectively. These types of
constraints are applied as Robin-type interface conditions.

The conservation of both mass and charge requires the net sum of
the flux densities at an interface between the domains Ωi and Ωj to be
zero, such that ii · ni = i=− ij · nj and ji · ni = j=− jj · nj.

Butler–Volmer interface kinetics The chemical reaction at the
interface between the electrolyte or the coating layer on the one side
of the interface and the anode or the cathode on the other side of the
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interface is modeled by the Butler-Volmer kinetics, which links the
overpotential η to the current density across the interface

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

α η α η= − −( − )

Γ ∪ Γ [ ]− −

i i
F

RT

F

RT
exp exp

1

on , 9

0
a a

coat c a el

with the temperature T, which we consider constant throughout this
work (T= 298 K). As charge inside the solid electrolyte and the
coating layer is carried by ions, we define =iel

Γ ∪ Γ− −
+

j z onF

tel coat c a el. The reaction at the electrode side requires

uncharged species and electrons in a ratio of zF, such that the electric
current density and the mass flux density are
linked ied = zFjed on Γcoat−c ∪ Γa−el.

Ohmic resistance and constant permeability The kinetics at
other interfaces where no chemical charge transfer reactions occur
are modeled by linear laws. At the interface between the current
collectors and the electrodes, an Ohmic law with resistance ri is
given as

= Φ − Φ Γ ∪ Γ [ ]− −i
r

on , 10cc ed

i
cc c cc a

and a mass flux density of j= 0 as the current collectors are
impermeable for lithium (-ions). At the interface between the coating
layer and the bulk electrolyte, a resistance for the flux density of ions
is given as

= Φ − Φ Γ [ ]+
−j

t

zF r
on . 11coat el

i
el coat

Again, the electric current density and the mass flux density are

linked =i jz F

t
.

No interface flux There is no flux of charge i= 0 and mass j= 0
at the interfaces Γcc−el and Γcc−coat as the current collectors are
impermeable for lithium-ions and the solid electrolyte, and the
coating layer is electronically isolating.

Models enforcing continuity.—The continuity of a quantity Ψ
across an interface is enforced by constraints of the form Ψi =Ψj

on Γi−j. In this study, we enforce that all domains cannot separate,
i.e. the displacements on both sides of the interface are equal

= Γ [ ]−u u on . 12i j i j

Enforcing this constraint implies the equilibrium of forces at all
interfaces. For simplicity, we neglect the potential loss of contact
between two domains due to tensile stresses or shear movements but
will consider this in a future publication. We model continuity of the
electric potential and of the concentration, i.e. we do not account for
additional resistances, where two coating domains are intersecting in
geometrically complex microstructures

Φ = Φ Γ ∩ Γ [ ]on , 13i j i jcoat, coat,

= Γ ∩ Γ [ ]c c on , 14i j i jcoat, coat,

with Γcoat,i denoting the coating layer i. To add these types of
constraints to the system of equations, Lagrange multipliers λΨ are
introduced

∫ ∫
∫
λ λ

λ

= [ ( − )] Γ + [ ( − )] ∂Γ

+ [ (Φ − Φ )] ∂Γ [ ]
Γ ∂Γ

∂Γ Φ

u uW c cd d

d . 15

u cconstr
T

m s m s

m s

The indexes “m” and “s” denote the adjacent, coupled geometric
entities with “master” and “slave” as commonly done, and ∂Γ
represents the intersection line of two two-dimensional manifolds.

Boundary and initial conditions.—Proper boundary and initial
conditions are required to obtain a well-posed system of equations.
Both the flux of mass and charge are prevented across the artificial
model boundaries where symmetry is modeled by

· = Γ [ ]j n 0 on , 16cut

· = Γ [ ]i n 0 on . 17cut

Note that the artificial cuts on Γcut only represent symmetry in a
statistical sense, meaning that the single particles are not symme-
trically cut and, therefore, small artifacts are expected in the solution
close to these boundaries. Furthermore, a flux of mass across the
outer boundaries of the current collectors is not possible

· = Γ ∪ Γ [ ]− −j n 0 on . 18cc,a o cc,c o

The mass and charge transfer inside the battery cell is caused by a
fixed value of the electric potential at the anode side current collector

Φ = Γ [ ]−0 on , 19cc,a o

in combination with an electric current density at the cathode side
current collector

− · = ˆ Γ [ ]−i n i on . 20cc,c o

Initially, values for the concentrations in the electrodes and the solid
electrolyte are set to

⎧

⎨
⎪

⎩
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( = ) =

Ω
Ω
Ω
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c

c

c

0

in
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in
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. 21
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0,c c

0,el el
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In this work, we assume a perfectly stiff mechanical housing of the
battery cell, meaning that all displacements normal to outer
boundaries vanish

· = Γ [ ]−u n 0 on . 22cc o

Equivalently, the displacement in the normal direction is set to zero
on the boundaries Γcut. Finally, zero displacements and velocities are
assumed in all domains at the initial state

( = ) = ̇( = ) = Ω [ ]u ut t 00 0 in . 230

Numerical Aspects of the Model

The governing equations are discretized in time, using the one-
step-theta method, and in space, using the finite-element method.
The algebraic, nonlinear system is iteratively solved using the
Newton-Raphson scheme, and the resulting linear system of
equations is solved using tailored iterative linear solvers. We
useΨ as an exemplary variable in the following.

Discretization in time.—The one-step-theta method is used
throughout this work to discretize the equations in time. It is applied
to discretize partial differential equations of first order of the form
∂Ψ
∂

= (Ψ )x
t

tfn , , in time for t ∈ [t0, tend] with the scheme

θ

θ

∂Ψ
∂

≈ Ψ − Ψ
Δ

= (Ψ )

+ ( − ) (Ψ ) [ ]

+
+ + +x

x
t t

t

t

fn , ,

1 fn , , , 24

n n
n n n

n n n

1
1 1 1

with the size of the time stepΔt. Ψn+1 and Ψn denote the discrete
states of Ψ at different time steps tn+1 and tn, respectively.
Equivalently, x is evaluated at tn+1 and tn. In the following, we
omit the superscript n+ 1 for readability.
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Weak formulation of the ASSB model.—As an essential step to
allow for spatial discretization using the finite-element method, the
time discrete equations are reformulated to the weak formulation by
multiplying the balance equations, Neumann boundary conditions,
and Robin interface conditions by an arbitrary test function δgΨ,
integrating over the domains or boundaries, respectively, and
applying Gauss divergence theorem. The contribution of the con-
straints to the weak formulation that enforce continuity is computed
by the variation of Eq. 15

∫
∫
∫

λ λδ δ δ δ

δλ δ δ λ

δλ δ δ λ

= [ ( − ) + ( − ) ] Γ

+ [ ( − ) + ( − ) ] ∂Γ

+ [ (Φ − Φ ) + ( Φ − Φ ) ] ∂Γ [ ]

Γ

∂Γ

∂Γ Φ Φ

u u u uW

c c c c

d

d

d , 25

u u

c c

constr
T

m s m s
T

m s m s

m s m s

with the boundary of a two-dimensional manifold ∂Γ. Finally, all
contributions to the weak formulation (from electrochemistry δWelch,
solid mechanics δWmech, and the constraints δWconstr) are summed up,
as done in our previous work22

δ δ δ δ= + + [ ]W W W W . 26elch mech constr

Equivalent to solving the governing equations is to find the solution
of δW= 0.

Discretization in space.—The finite-element method is used to
discretize the equations of the weak formulation in space. The
domains are split into finite elements, and thus, the integration over
the domain is divided into the sum of all elements and the integration
over these elements. Primary variables, test functions, and the shape
of the elements are approximated by Lagrangian polynomials
multiplied by the nodal valuesΨ= NΨ within the elements.
Throughout this work, linear polynomials are used for the shape
functions N. The resulting expression can be reorganized as
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where Ψ
−R bulk manif denotes the residual of the coupling constraints

between the bulk and the two-dimensional manifolds and *ΨR
denotes the residuals of the different domains with the unknowns
Ψ= {u, λΨ, c, Φ}. The values for the test functions δgΨ are
arbitrary, such that all residuals have to be individually zero

Solution of the nonlinear algebraic system of equations.—The
nonlinear system of equations (Eq. 28) is iteratively solved using the
Newton-Raphson scheme Ψi+1 =Ψi −ΔΨi+1, with
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for the unknownsΨ= {u, λΨ, c, Φ}.

Static condensation of the linearized system of equations.—
Static condensation is used to remove the Lagrange multipliers and
the slave side values from the linearized system of equations
(Eq. 29). This also removes the saddle-point structure of the system
of equations (i.e. zero entries on the main diagonal). We divide the
vectors u, cmanif, and Φmanif into vectors with unknowns on the
interior, master, and slave side. For brevity, we add a tilde to the
indexes in the submatrices of the two-dimensional manifolds *̃ and a
hat to indexes in the bulk *̂ of the condensed system of equations
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Solution of the linearized system of equations.—We decided to
monolithically25 solve the linearized system of equations (Eq. 30)
due to the superior robustness and efficiency of the solution scheme
compared to other strategies like partitioned coupling. As this linear
system is, in general, poorly conditioned due to the different physical
fields, different geometric entities, and additional off-diagonal
contributions, tailored solvers using a combination of Block-
Gauss-Seidel and Algebraic-Multigrid preconditioners26 are used
to make iterative solvers applicable and thus the solution of large
and realistic systems feasible.

Numerical Examples

The presented model and the numerical approach are imple-
mented in the software project BACI.27 In the following, we show
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the conservation of mass for the novel model, verify the assump-
tions, and apply the model to geometrically complex scenarios to
show its capabilities.

Verification of the outlined model.—First, we show the con-
servation of mass of the model for a deforming geometry and
quantify the numerical error in terms of temporal convergence.
Afterwards, the assumptions we made in the coating layer are
justified, and the results computed with the presented approach are
compared to the results computed with a three-dimensionally
resolved coating layer.

Conservation of mass and error convergence.—The model is
tested for the conservation of mass by comparison of the results with
an analytic solution to show the correct implementation of the
model. Therefore, a sphere is located in the center of a deforming
cube (see Fig. 2 and Table I). The surface of the sphere represents
the two-dimensional manifold where the conservation equations for

charge and mass are solved. An initial concentration =c 1surf,0
mol

m3 is

set on the surface without further external fluxes. The electric
potential is fixed to Φ= 0 V in all domains. An isotropic deforma-
tion = ( + )F 1 1 t

100 s
for t= [0 s, 100 s] is applied while rigid body

motions are supressed. For this simple geometry and deformation

state, an analytic expression for the concentration on the surface
depending on the deformation is given using that the total mass
remains constant = ( ) ( ) = =m c t A t t c A t const.ana coat 0 0 coat , with the
current surface area A(t) and the initial surface area A0 = A(t= 0).
The temporal development of the surface area is determined by the

deformation gradient F, ( ) = ( ( ))FA t A det0
2
3 . This leads to an

analytic expression for the concentration

( ) =
( ( ))

[ ]
F

c t
c

det
. 31ana

0
2
3

Now, a temporal convergence study with Δt= [0.1 s, 1 s, 10 s,
100 s] is performed by computing the relative L2-norm of the
deviation of the concentration computed with the novel model from
the analytically computed concentration

∫

∫
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In Fig. 3, the maximal error ϵ ϵ= ( ( ))tmaxmax is shown for different
sizes of the time step. The dashed lines indicate the slope of linear
and quadratic convergence, respectively. It is observable that the
convergence rate of the error of the concentration converges
quadratically w.r.t. the size of the time step, which can be expected
from the one-step-theta method with θ= 0.5.

Justification of the assumptions by analyzing the solution of a
geometrically resolved model.—We want to analyze the solution of a
fully resolved model to justify the assumption we made and to
compare the solution with the solution of the novel model.
Therefore, a simple geometry is chosen that features non-planar
curvatures of the coating layer and still can be three-dimensionally
resolved: a cylindrical electrode is embedded into the solid electro-
lyte, and a thin coating layer is added on the surface of the electrode.
By making use of the symmetry of the geometry, the size of the
computational domain is reduced, i.e. reducing it to a quasi-two-
dimensional geometry and considering only a quarter of the squared

geometry (Fig. 4 and Table II). An electric current density =i 1 A

m2 is

applied to the top and left sides of the electrolyte domain, and a
constant electric potential Φ= 0V is set to the entire domain of the

cylindrical electrode. The initial concentrations are =c 400000,ed
mol

m3

in the electrode and = =c c 12000,el 0,coat
mol

m3 in the solid electrolyte

and the coating layer. The material parameters are summarized in
Table D·I.

Justification of the assumption of a constant electric field in
the normal direction along the normal direction

We made the assumption that the normal component of the
electric field is constant along the normal direction of the coating
layer. For the justification of this assumption, the electric field is
computed for the chosen setup with a geometrically fully resolved

coating layer (κ = · −5 10 4 S

m
) and analyzed at t= 300 s when the

gradient of the concentration in the electrode has reached the steady
state. In Fig. 5a, the normal component of the electric field is plotted
along the normal direction at α= 45° (see Fig. 4) to justify the
assumption that the normal component of the electric field is
constant along the normal direction. In two other setups, the

Figure 2. Geometric representation of a sphere located in the center of a
cube. Conservation of mass is enforced on the surface of the sphere.

Table I. Geometric parameters for testing the conservation of mass.

Quantity Symbol Value

side length of cube a 3 μm
diameter of sphere D 2 μm
thickness of coating tcoat 150 nm

Figure 3. Convergence of the maximal value of L2-norm of the error of the
concentration for different time step sizes (solid blue line). Linear (dashed
yellow line) and quadratic (dashed red line) convergence is indicated for
comparison.
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thickness of the coating layer is enlarged (tcoat= 300 nm, red line in
Fig. 5a) and the radius of the electrode is reduced (r= 2.5 μm,
yellow line in Fig. 5a) to investigate the influence of the curvature
and the thickness of the coating layer on the quality of the
assumption. It can be seen that the assumption of the normal
component of the electric field being constant in the normal direction
is profound, i.e. the lines are in a reasonable approximation constant.
We define a measure to quantify the deviation from the assumption
as the ratio of the difference of the minimal and the maximal value
of the normal component of the electric field at α= 45° and the
maximal value of the normal component of the electric field

ϵ = α α
α

( ( = °)) − ( ( = °))
∣ ( ( = °)) ∣

E E

E

max 45 min 45

max 45
n n

n
. The deviation for the unmodified

setup is ϵ = 0.025unmod , which shows that the change of the normal
component of the electric field in the normal direction is small
compared to its absolute value and thus, our assumption is justified.

Furthermore, we see that reducing the radius of the cylindrical
electrode (i.e. increasing the curvature of the coating layer) leads to
an increased deviation from the assumption of ϵcurv = 0.048, and
increasing the thickness of the coating layer leads to an increased
deviation of ϵthick = 0.055. This means that our assumption is
justified for small thicknesses and small curvatures of the coating
layer, as the outlined example has a comparably thick coating layer
and thus, represents an upper bound. The deviation from the
assumption increases for larger curvatures and larger thicknesses
of the coating layer, as already stated before, but is still sufficiently
small for realistic geometries.

Comparison of the results of the resolved and the presented
model

We compare the results of the presented model with the results of
a model which three-dimensionally resolves the coating layer for the
chosen setup. In one computational setup, the coating layer is
geometrically resolved, and in another setup, the coating layer is
captured with the presented model. Therefore, the thickness of the
coating layer is larger compared to realistic values to still allow for
the spatial discretization with a reasonable aspect ratio of the mesh.
Various simulations are performed to identify differences between
the fully resolved model and the presented model, with the following
parameters being varied:

• Variation of the ionic conductivity of the coating layer:
κ = · −5 101

4 S

m
, κ = · −5 102

3 S

m
, and κ = · −5 103

2 S

m
. Note that

another option would be to vary the ionic conductivity of the
solid electrolyte as the ratio between the ionic conductivities is
the decisive factor for the following study.

• Assignment of the gap due to the geometric reduction of the
coating layer to the electrolyte.

• Assignment of the gap due to the geometric reduction of the
coating layer to the electrode.

We formulate expectations for the concentration distribution on the
surface of the electrode based on the knowledge that the concentra-
tion in the electrode will decrease due to the applied external
discharge current, and the total exchanged charge must be equal for
all simulations:
• Increasing the ionic conductivity of the coating layer leads to a

more homogeneous distribution of the concentration at the
surface of the cathode due to favored conduction paths in the
coating layer compared to conduction paths in the bulk
electrolyte.

• Assigning the additional thickness to the electrolyte increases
the resistance in the conduction paths in the electrolyte due to
changes in the geometry of the electrolyte. The resistance scales
with lv and lc (see Fig. 4) at the vertices and at the center,

Table II. Geometric parameters for comparing the resolved and the
proposed model.

Quantity Symbol Value

side length a 10 μm
radius of electrode r 5 μm
thickness of coating tcoat 150 nm

Figure 5. Justification of the assumption of a
constant normal electric field in the normal
direction in the coating layer. (a) Normal
component of the electric field in the normal
direction computed with a fully resolved model.
The color of the lines indicates the geometric
setup (blue: unmodified geometry [i.e.
r = 5 μm, tcoat = 150 nm], yellow: larger curva-
ture [i.e. r = 2.5 μm, tcoat = 150 nm], red: larger
coating thickness [i.e. r = 5 μm,
tcoat = 300 nm]). (b) Schematic deviation of
the actual conduction path (solid line) in a
coating layer and the attached solid electrolyte
from point A to point B and the conduction path
with the assumption of the normal component of
the electric field being constant in the normal
direction (dotted line) in the coating layer. The
assumption leads to an enlargement of the total
conduction path.

Figure 4. Geometric representation of the geometry including the normal
coordinate n and the tangential coordinate t1 along the coating layer.
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respectively. Adding the thickness tcoat to the electrolyte
changes the ratio of the lengths > >+

+
1l

l

l t

l t
v

c

v coat

c coat
, and thus a

more homogenous resistance and a more homogenized concen-
tration at the surface of the electrode are expected.

• Assigning the additional thickness to the electrode illustrates
the influence of the assumption of the normal component of the
electric field being constant along the normal direction on the
concentration in the electrode. As already shown in Fig. 5a,
the deviation from the assumption of a constant electric field in
the normal direction along the normal direction increases toward
the vertices of the surface of the electrode. This has to be
compensated by enlarged, unfavored conduction paths in the
electrolyte domain (see Fig. 5b), which becomes more promi-
nent toward the vertices. Thus, the flux density reduces there,
and subsequently, the concentration at the vertices remains
higher compared to the resolved model.
Additionally, the interface area increases and, therefore, the
local current density reduces, resulting in a lower effective
resistance there. Again, this leads to a more inhomogeneous
distribution of the concentration as it is the reverted effect of the
phenomena described in the second bullet point (where a higher
effective resistance is present).
In realistic setups, these three effects are always superimposed,

such that a clear distinction is only possible in an academic setup
like this. In Fig. 6, the concentration in the cylindrical electrode
along the tangential coordinate t1 computed with the resolved and
the novel model after a duration of =t 300 smax is compared. Again,
the point in time is chosen such that the gradient in the concentration
has reached a steady state.

The solid lines represent the results from the resolved simulation,
the dashed lines represent the results of the simulation where the
additional thickness is assigned to the electrolyte, the dash-dotted
lines represent the results where the thickness is assigned to the
electrode, and the color codes refer to different ionic conductivities
of the coating layer. To allow for comparison of the different
geometries (i.e. the assignment of the gap to the electrode or the
electrolyte), the arc length is normalized ξ =

( )
t

tmax
1

1
and the averaged

concentration on the surface is subtracted ¯ = −c c cavg.

The expected trends are observed in Fig. 6: An increased ionic
conductivity leads to a more homogeneous concentration (blue→red
→yellow), assigning the gap to the electrode leads to a lower
concentration on the surface of the electrodes in the middle between
both vertices and a higher concentration at the vertices of the surface
of the electrode (dashed lines), and assigning the gap to the
electrolyte leads to a higher concentration on the surface of the
electrodes in the middle between both vertices and a lower
concentration at the vertices of the surface of the electrode (dash-
dotted lines). Furthermore, it can be seen that in typical setups, the
deviation from the resolved model is dominated by the geometric
change (dash-dotted lines), while the influence of the assumption of
the normal component of the electric field being constant in the
normal direction is rather negligible. Therefore, the gap is assigned
to the electrode in the remainder of this work to not modify the cell
capacity.

Quantification of the influence of active material coatings in a
geometrically realistic microstructure.—In this section, we show
the applicability of the outlined approach to realistic microstructures,
highlight the advantages of the outlined approach compared to other
approaches, and gain new insights considering the impact of coating
layers on the cell performance.

Geometry.—A representative geometric domain is required to
gain quantitative insights into the influence of the active material
coating on the cell performance. Therefore, we create the geometric
domain of the composite cathode based on an artificial workflow, as
similarly done in our previous work,22 that satisfies the statistical
properties of the composite electrode, i.e. the volume ratio of active
material and solid electrolyte, the radius distribution of the as
spheres approximated active material particles (e.g. NMC), and the
porosity: Spheres are drawn from a log-normal distribution of the
radius of the particles until the desired volumetric ratio is obtained.
Afterwards, the spheres are spatially arranged using a simulation
employing the discrete-element method until the steady state is
reached. The solid electrolyte fills the voids between the particles in
the composite cathode, i.e. the pores are geometrically not resolved
and are assigned to the solid electrolyte. We are aware that the
porosity can have a significant influence on the overall cell
performance,28 and the obtained geometry represents an ideally
compressed solid electrolyte with an increased effective ionic
conductivity. The remaining components of the battery cell (the
solid electrolyte separator, the metal anode, and the current
collectors) are assumed as cuboid blocks. The obtained geometry
is meshed with tetrahedral elements using Coreform Cubit 2021.3,
resulting in 564,711 nodes. The geometry resulting from this
workflow is shown in Fig. 7, and the geometric parameters are
summarized in Table III.

Materials.—The material parameters are selected to match the
setup in Ref. 20 and and are extended by values for the coating layer.
The cathode active material is a nickel manganese cobalt oxide
(NMC622), the anode material is pure lithium metal, the electrolyte
is a thiophosphate (β-LPS), the anode side current collector is
copper, and the cathode side current collector is aluminum. For the
coating material, lithium niobate (LiNbO3) is chosen, which is a
common coating material for various active materials.7 The material
parameters are summarized in Table D·II.

Boundary and initial conditions.—A discharge scenario from the
fully charged state with a constant external current is simulated.
Therefore, the lower cutoff voltage is defined to
ΔΦ = Φ − Φ =Γ Γ− − 2.8 Vlow cc,c o,low cc,a o,low and the C-rate is set

to ˆ =C 0.5 C, with an initial ramp to prevent oscillations

( ( ) = ˆ ( + ( )) <πC t C t t1 cos for 100 s1

2 100 s
and Ĉ else). Of course,

Figure 6. Comparison of the concentration in the electrode along the
tangential coordinate t1 (see Fig. 4) computed with the resolved model (solid
lines) and with the outlined model (dashed lines: adding the thickness to the
electrode, dash-dotted lines: adding the thickness to electrolyte) for different
values of the ionic conductivity of the coating layer. The tangential
coordinate is normalized ξ =

( )
t

tmax
1

1
to allow for comparison between the

different geometries.
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certain coating materials are used to enlarge the chemical stability
window. However, we keep the voltage window fixed to not mix up
different effects. Initially, the lithium (-ion) concentrations in the
domains are chosen to represent a fully charged state, i.e.

= ·c 7.69 100,a
4 mol

m3 , = ·c 2.1 100,c
4 mol

m3 (from = =χ
χ χ
−

( − )
SOC

c c

c
0,c max 0%

max 100% 0%

100%), and = = ·c c 1.03 100,el 0,coat
4 mol

m3 .

Results of the simulations.—At first, the results computed with
the material parameters as summarized in Table D·II (called “default
parameters”) are analyzed. Afterwards, we vary the most influential
parameters of the coating layer to show the capabilities of the
outlined approach compared to other approaches presented in the
literature. We will restrict the discussion to the results of electro-
chemical quantities to limit the length of this paper. However, the
mechanical state is solved as well.

Default parameters We compare the results computed with the
material parameters as summarized in Table D·II with the results
computed without a coating layer and with the results computed with
an existing approach that incorporates the coating layer by a simple
zero-dimensional resistance. For the thickness of the coating layer,

tcoat = 10 nm is chosen as reported in the literature.7 For the
simulation without a coating layer, the domain Ωcoat is neglected,
and thus, an interface between the cathode and the solid
electrolyte Γc−el occurs where the kinetic laws of the interface
between the cathode and the coating layer Γcoat−c of the simulation
including the coating layer are applied to. In Fig. 8, the cell voltage
computed for these different setups is compared. As expected, the
cell resistance slightly increases in the case of the coating layer due
to the comparably poor conductivity of the coating layer, and thus,
the cell voltage is lower until t≈ 2400 s (the kink in the cell voltage
at t≈ 2400 s in the simulation without a coating layer is caused by
the so-called “sandwich-lithiation” which will be discussed later).
The effect of the coating layer for this setup could, in a first-order
approximation, be captured by a zero-dimensional resistance as the
ionic conductivity of the coating layer is almost two orders of
magnitude smaller compared to the ionic conductivity of the bulk
electrolyte. Consequently, a short conduction path in the coating
layer is favored, which means a negligible contribution to the
conduction in the tangential direction. Therefore, the cell voltage
computed with the model with a zero-dimensional resistance that
cannot capture transport in the tangential direction of the coating
layer almost perfectly matches the cell voltage computed with the
outlined model.

Variation of the most influential coating parameters We
systematically vary the most influential parameters of the coating
layer to create setups where the optimal conduction path has
significant contributions in the tangential direction of the coating
layer to highlight the necessity of spatially resolving the coating
layer compared to zero-dimensional interface models (e.g. in
Ref. 19). The most influential parameters of the coating layer can
be identified without an elaborate sensitivity analysis as the ionic
conductivity of the coating material and the thickness of the coating
layer. These parameters v are systematically varied using a uniform
on a logarithmic scale for both parameters with 5 samples each, i.e.
25 samples to cover all combinations. The bounds of the parameters
are listed in Table IV. The bounds of the conductivity are chosen to
ionically conduct worse than currently available coating materials

(e.g. lithium niobate has an ionic conductivity of κ = · −5 10 4 S

m
, see

Ref. 19, based on Ref. 29) and to ionically conduct better than the
used solid electrolyte. The bounds of the thickness are chosen as the
range reported in Ref. 7. We evaluate how the parameters influence
the transferred charge. In Fig. 9, the development of the cell voltage
over time for the 25 combinations is shown.

There exist parameter combinations that feature a higher cell
voltage at the beginning and a lower cell voltage toward the end of

Table III. Geometric parameters of the realistic microstructure.

Quantity Symbol Value

length of current collectors lcc 10 μm
length of composite cathode lc 85 μm
length of separator lse 20 μm
length of anode la 35 μm
lateral length ll 60 μm
log-normal distribution of
diameter of cathode particles

μ 1.8189

σ 0.4589
volumetric ratio of AM
and SE in composite cathode +

V

V V
AM

AM SE

0.499

mass ratio of AM and
SE in composite cathode

+
m

m m
AM

AM SE
0.727

Figure 8. Comparison of the cell voltage of a battery cell including a coating
layer (“with coating”) and a battery cell without a coating layer (“w/o
coating”). For comparison, the cell voltage computed with a model that
incorporates the coating layer by a zero-dimensional resistance is added (“0D
resistance”).

Figure 7. Realistic microstructure including spherical cathode active mate-
rial particles, a solid electrolyte, a metal anode, and the current collectors.
Due to our proposed approach, the coating layer does not need to be spatially
resolved and thus is not visible at the interface between cathode active
material particles and the solid electrolyte.
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the discharge compared to the cell voltage computed with the default
parameters. This unexpected behavior is further investigated by
plotting the parameters (ionic conductivity and thickness of the
coating layer) together with the transferred charge normalized by the
lateral area ( μ= =A l 3600 ml

2 2) in a three-dimensional parameter
space after reaching a cell voltage of ΔΦ= 3.35 V (see Fig. 10) and
at the end of discharge atΔΦ= 2.8 V (see Fig. 11).

While at the beginning of the discharge (while ΔΦ> 3.35 V), a
larger thickness of the coating layer together with a high ionic
conductivity is advantageous, the opposite holds at the end of charging
(while 2.8 V<ΔΦ< 3.35 V). Both observations can be assigned to
different phenomena that occur concurrently but dominate at different
times during the discharge. We will first discuss the development of the
cell voltage until ΔΦ= 3.35 V is reached and afterwards the develop-
ment of the cell voltage until the end of discharge.

The preferred parameter combination in Fig. 10 can be explained
by improved conduction paths that result from the good conductivity
and the thick coating layer. This improved conduction in the coating
layer (the ionic conductivity in the solid electrolyte

is κ = · −1.2 10SE
2 S

m
) is expressed in terms of the gradient of the

electric potential in the coating layer. In Fig. 12, the electric potential
in the coating layer is compared for the case where the most charge

is transferred until ΔΦ= 3.35 V (κ = 5coat
S

m
, tcoat= 1 μm) is

reached (labeled with “highly conducting parameters”) with the
results from the default set of parameters (labeled with “default
parameters”), i.e. at t= 1060 s for the default parameters and at
t= 1285 s for the highly conducting parameters. Obviously, the
magnitude of the gradient is smaller in the setup with the highly
conducting parameters, and thus, the total resistance of the cell
reduces, and more charge is transferred until ΔΦ= 3.35 V is
reached.

The averaged current in the z-direction in the coating layer

is ¯ =
∫

∫

κ− ∇Φ· Γ

Γ
Γ

Γ
i

e

z

d

d

z
coat

coat

coat

with the unit vector ez in z-direction. It serves

as an indicator of how much charge is transported along the coating
layer. For the default parameters, the current in z-direction

is ¯ = −i 0.515z,def
A

m2 , and for the highly conducting parameters it

is ¯ = −i 21.3z,opt
A

m2 . This shows that more charge is transported along

the coating layer for the setup with the highly conducting parameters
compared to the setup with the default parameters due to the favored
conduction paths in the coating layer.

However, the parameter combinations in Fig. 11 show that a
good conductivity and a large thickness of the coating layer are
disadvantageous if the transferred charge until ΔΦ= 2.8 V is
considered. This can be explained by the so-called “sandwich
lithiation” that is observable for some material combinations.20

Due to the dependence of the electronic conductivity in the cathode
active material on the degree of lithiation, the electronic conductivity
is lowered toward a higher degree of lithiation and, thus, becomes
the limiting factor toward the end of discharge. Increasing the ionic
conductivity of the coating layer stresses this limitation as the ratio
of the ionic conductivity in the coating layer and the electronic
conductivity in the active material increases. By comparing the
three-dimensionally resolved concentrations at the end of discharge
in Fig. 13 for the setup with highly conducting parameters (at
t= 2820 s), and the setup with default parameters (at t= 3150 s), the
different values for the concentration close to the current collector
become visible: the delithiation in the setup with highly conducting
parameters is more inhomogeneous toward the end of discharge.
Due to the smaller electronic conductivity originating from its

Table IV. Range of parameters used for the variation.

Quantity min. value max. value

ionic conductivity of coating · −5 10 5 S

m
5 S

m

thickness of coating 10−3μm 1 μm

Figure 9. Cell voltage over time for the different parameter combinations.
The color bar indicates the exchanged charge normalized by the lateral area
of the battery cell. The black line with crosses represents the cell voltage for
the default parameters.

Figure 10. Dependence of transferred charge normalized by the lateral area
on the ionic conductivity of the coating layer and on the thickness of the
coating layer when the cell voltage has reached ΔΦ = 3.35 V. The dots
denote the model evaluations. The bold dot denotes the setup with the highly
conducting parameter combination. The red line represents the ionic
conductivity of the solid electrolyte.

Figure 11. Dependence of transferred charge normalized by the lateral area
on the ionic conductivity of the coating layer and on the thickness of the
coating layer at the end of discharge. The dots denote the model evaluations.
The red line represents the ionic conductivity of the solid electrolyte.
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lithiation dependence, the lower cutoff voltage is reached earlier, and
thus, less charge is transferred.

Note that the presented results and trends might change if the
contributions to the total impedance of the ASSB (e.g. the ionic
conductivity of the solid electrolyte, the exchange current density of
the charge transfer reaction for different material combinations, or
the electronic conductivity of the electrodes) change, as the outlined
phenomena depend on the ratio of the impedance of the coating layer
to the impedances of the other materials and interfaces. Additionally,
we want to emphasize that coating layers with material parameters
that we labeled as highly conducting are not available in current
materials. However, as stated before, we believe that simulation can
guide future development and, therefore, should also be explorative.

Neglecting conduction along the coating layer Finally, we
compare the results for the setup with the highly conducting parameters

(i.e. κ = 5coat
S

m
, tcoat= 1 μm) with the results of a model where the

coating layer is modeled using a zero-dimensional resistance, i.e. only
the normal flux density in the coating layer is considered while the
tangential contribution is neglected. In that setup, the interface

resistance is set to ¯ = + = · Ω
κ

−r r 5.0002 10 mt
i i

opt

3 2coat . The cell

voltage computed with both models is shown in Fig. 14. It is evident

that the results of both models significantly deviate (12% less charge is
transpordet), as only the outlined approach considers conduction paths
along the coating layer, while the other model only adds a resistance to
the interface. The previously outlined “sandwich lithiation” is less
pronounced with a zero-dimensional interface law. This highlights that
representing the coating layer with a zero-dimensional interface model
is in general not sufficient. We can conclude that conduction along the
coating layer becomes significant if the conductivity of the coating layer
reaches the magnitude of the conductivity of the bulk electrolyte, and
subsequently, an approach that considers this tangential conduction
becomes mandatory.

Summary

We presented a novel modeling approach to incorporate the
transport of mass and charge in the tangential direction of coating
layers in ASSBs embedded into an electrochemo-mechanical model
for three-dimensionally resolved microstructures. By spatially resol-
ving the thin coating layer only in two dimensions of space and
assuming the normal component of the electric field being constant
along the normal direction, an extremely fine resolution of the mesh
can be avoided, which so far was the limiting factor to consider
transport in the tangential direction of coating layers in realistic

Figure 12. Electric potential in the coating layer when ΔΦ = 3.35 V is reached. The current collector is attached at the top.

Figure 13. Concentration in the cathode at the end of discharge. The current collector is attached at the top.
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microstructures of ASSBs. The outlined model is numerically
discretized in space using the finite element method and the resulting
system of algebraic equations is solved in a monolithic fashion
considering both the different physical fields and the different
geometric entities, i.e. surfaces and volumes. We justified the
assumptions we made by analyzing the result of a fully resolved
simulation, validated the implementation by showing the conserva-
tion of mass and quadratic convergence of the error, and discussed
the implications of our assumptions.

This work focuses on the implications of the coating layer on the
conduction paths in a geometrically resolved microstructure of
ASSBs. However, the influence of the coating layer on the
electrochemical stabilization of the interface between the electrode
and the solid electrolyte, as well as the reduction of degradation, is
not part of the model and could be included in future studies.

Finally, numerical examples are presented to show the applic-
ability of the novel modeling approach to realistic microstructures
and to outline that established models which capture the coating
layer by an additional zero-dimensional resistance can lead to
significant errors if the order of the ionic conductivity of the coating
layer reaches the order of the ionic conductivity of the solid
electrolyte or is even larger. This error increases with increasing
thickness of the coating layer. By a systematic variation of the most
influential parameters of a coating layer, a deeper understanding of
the physics inside a coating layer and its influence on the cell
performance was gained. We showed that different coating strategies
are advantageous depending on the operating scenarios (i.e.
the boundary conditions), and incorporating conduction along the
coating layer into simulation models is essential in finding the
optimal parameters of the coating layer.

In future research, the novel model can be applied to geome-
trically similar domains like grain boundaries in the solid electrolyte
where a priori knowledge on the development of quantities along the
thin direction is given or can be derived.
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Appendix A. Rough Estimation of Computational Efficiency

The geometry shown in Fig. 7 consists of 564,711 bulk nodes and
71,785 nodes at the interface between the solid electrolyte and the
cathode where the coating layer is added and an average edge size of

the elements of lnov= 0.4 μm. With the novel approach, the number
of unknowns is nnov= 564, 711 · 5+ 71, 785 · 2= 2, 967, 125 (bulk:
displacements in three directions, concentration, and electric poten-
tial; coating layer: concentration and electric potential as unknowns
per node).

Assuming 3 elements in the direction of the thickness and an
element aspect ratio of the elements of 5, a resolved model would
require a spatial discretization of the coating layer with a desired
edge length in the tangential direction of the elements of

μ= · =l 5 0.0167 mt
res 3

coat , with tcoat= 10 nm. Thus, a refinement

of the nodes at the interface of ( ) · ≈μ
μ

3 18750.4 m

0.0167 m

2
would be

required. This means that nnov = 564, 711 · 5+ 71,
785 · 2 · 1875= 272, 017, 305 unknowns would be necessary to
spatially resolve the coating layer. Thus, the proposed model reduces
the number of unknowns by two orders of magnitude. The reduction
of the computational time is expected to be even larger as many
solvers do not scale linearly with the numbers of unknowns.
Additionally, a fine mesh would also be required in the adjacent
bulk regions if coupling algorithms for non-matching discretizations
are not available. This would probably add at least another order of
magnitude of unknowns to the resolved case.

Figure 14. Comparison of the cell voltage with the proposed model and a
model that only adds an interface resistance for the setup with highly
conducting parameters (i.e. κ = 5coat

S

m
, tcoat = 1 μm).

Table V. List of symbols.

Geometric quantities

li length of domain i
n unit normal vector
tcoat thickness of coating layer
ti, n coordinates inside of coating layer
X material coordinate
x spatial coordinate
Γi−j intersection of domains i and j
Ωi domain i

Constants

F Faraday constant
R universal gas constant

Model parameters

c* concentration with identifier *
D diffusion coefficient
F* deformation gradient with identifier *
i current density of charge
i0 exchange current density
j flux density of mass

Ψ ΨK i
,1 2

derivative of residual of quantity Ψ1

w.r.t. quantity Ψ2 in domain i

ΨR i residual of quantity Ψ in domain i

ri interface resistance
sΨ source term of quantity Ψ
T temperature
t time
t+ transference number
W* energy with identifier *
z charge number
λ* Lagrange multiplier with identifier *
Φ electric potential
Ψ, Ψ exemplary quantity
σ electronic conductivity
ρ mass density
κ ionic conductivity

Numerical parameters

ϵ relative L2-norm of error
Θ parameter of one-step theta method
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Appendix B. Governing Equations for the Bulk Domain in a
Continuum Formulation

The governing equations for the conservation of momentum,
charge, and mass, as well as the coupling constraints between the
fields of solid mechanics and electrochemistry are dervied in the
following (see Ref. 22 for details).

B.1. Solid mechanics.—The equations of solid mechanics are
formulated geometrically nonlinear by introducing a reference
configuration (where quantities are denoted by capital letters) and
a current configuration (where quantities are denoted by small
letters). With X and x being the coordinates in reference and current
configuration, respectively, and by defining ∇X · as the divergence in

the reference configuration, = ∂
∂

F
x
X

as the deformation gradient, S

as the second Piola-Kirchhoff stress tensor, ρ0 as the mass density in
the reference configuration, u= x− X as the displacement, and b0 as
external volumetric loads evaluated in the reference configuration,
the balance of linear momentum is given as

ρ∇ ·( ) + = ̈ Ω [ · ]FS b u in , B 1X 0 0 0

where Ω0 denotes the domain in the reference configuration. The
deformation can be split into different contributions by making use of
the chain rule for the deformation gradient to model a purely elastic
deformationFel and another deformation Fgrowth arising from stress-free
volumetric growth or shrinkage due to (de-)lithiation of the electrodes

= ∂
∂

= ∂
∂

∂
∂

= [ · ]F
x
X

x
X

X
X

F F . B 2
1

1
el growth

The mechanical stresses are induced by the elastic part of the
deformation and follow a hyperelastic material law. The stresses are
transformed to the reference configuration by a pull-back operation

= ( ) ∂Ψ
∂

[ · ]− −S F F
C

F2 det , B 3growth growth
1 el

el
growth

T

where Ψel is any strain energy function of a hyperelastic material law
(the Neo-Hooke material law30 is exemplarily used in this work) and

=C F Fel el
T

el. The conservation of angular momentum is implicitly
fulfilled due to the symmetry of the stress tensor S.

B.2. Electrochemistry.—Both conservation of mass and con-
servation of charge are derived from the general form of conserva-
tion for a volume-specific quantity Ψ= {c, ρ} evaluated in the
current configuration, with the concentration c of the transported
species (lithium in the electrodes and lithium-ions in the electrolyte)
and the charge density ρ (electrons in the electrodes and current
collectors and lithium-ions in the electrolyte), the flux density of the
respective quantity jΨ, and the volumetric source of this quantity sΨ

∂Ψ
∂

+ ∇· = Ω [ · ]Ψ Ψj
t

s in , B 4

where Ω denotes the domain in the current configuration (in contrast
to the reference configuration for the equations of solid mechanics).
An alternative formulation, where the flux of species is formulated in
the reference configuration can be found in Ref. 31. Assuming
electro-neutrality within the entire domain, and subsequently, no

accumulation of free charge (
ρ∂

∂
=

t
0) and no sources of charge

(sρ= 0), the conservation of charge can be expressed as ∇ · i= 0,
with i= jρ the electric current density. Inside the electrodes and the
current collectors, electrons are assumed to be the only mobile
charge carriers, such that the current density follows Ohm’s law
i=− σ∇Φ, with the electronic conductivity σ resulting in the
Laplace equation for the electric potential Φ

σ∇·(− ∇Φ) = Ω ∪ Ω [ · ]0 in . B 5ed cc

The flux density of ions inside the solid electrolyte is described by
the Nernst-Planck equation, i.e. convection, migration, and diffu-
sion. As common for many solid electrolytes, only one species of
ions is modeled as mobile. In combination with the condition of
local electro-neutrality, the only remaining transport effect is
migration resulting in i=− κ∇Φ, with the ionic conductivity κ.
Finally, this leads to the Laplace equation for the electric potential in
the solid electrolyte

κ∇·(− ∇Φ) = Ω [ · ]0 in . B 6el

No sources of mass occur (sc = 0) when considering the conserva-
tion of mass. In the electrodes, only electrons are charge carriers,
such that all species with mass have a charge number of zero, and
thus, the migration term vanishes. This results in the conservation of
mass for the electrodes

∂
∂

+ ∇· ̇ − ∇·( ∇ ) = Ω [ · ]u
c

t
c D c 0 in , B 7

X
ed

where
∂
∂
c

t X
denotes the material time derivative, D the diffusion

coefficient, and u̇ the deformation velocity of the domain. In the
solid electrolyte, diffusion vanishes as no gradients of the concen-
tration arise due to the electro-neutrality condition and a transference
number of one. Additionally, the migration term vanishes, as it
evaluates to zero (see Eq. B·6) leading to

∂
∂

+ ∇· ̇ = Ω [ · ]u
c

t
c 0 in . B 8

X
el

B.3. Coupling between solid mechanics and electrochem-
istry.—We model the coupling between solid mechanics and
electrochemistry in both directions: The displacement and velocity
computed from the equations of solid mechanics define the
deformation of the underlying geometry of the electrochemical
equations. The part of the deformation gradient originating from
growth is modeled by Fgrowth = fn(c) in the electrodes Ωed to
account for the lithiation dependent volume change of the electrodes
(see e.g. Ref. 32 for fn(c) for various electrode materials). In the
other domains (Ω ⧹ Ωed), no lithiation-dependent growth occurs,
such that we model Fgrowth= 1.

Appendix C. Scalar Transport Equations on Curved Surfaces

Transport equations on curved surfaces have already been
discussed and applied to various applications in the literature, e.g.
Ref. 33 for the Laplace equation,34,35 for pure diffusion, or Ref. 36
for diffusion-reaction.

The formulation of transport equations on curved surfaces
requires a modification of the derivative operators, as the direction
of the change of a quantity can only be along the curved surface. The
gradient of a scalar Ψ w.r.t. a curved surface Γ, denoted as ∇Γ, is
given by the classical gradient in the tangent plane direction∇Ψ
corrected by changes in the direction out of the plane which depend
on the local curvature of the surface, i.e.

∇ Ψ = ( − ⊗ )∇Ψ [ · ]Γ n n1 , C 1

with the unit normal vector n of a surface. The general form of the
divergence of a vectorΨ is defined as

∑Ψ∇ · =
( )

∂ ( ) Ψ
∂

[ · ]Γ
g

g

x

1

det

det
, C 2

i

i

i
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with the metric tensor g, which equals the identity matrix in the
Euclidean space with Cartesian coordinates. Now, the transport
equations on curved surfaces can be reformulated as

∂Ψ
∂

+ ∇ · = [ · ]Γ Ψjt
s, C 3

with the flux density jΨ of a scalarΨ.

Appendix D. Material Parameters

The material parameters used for the simulations for the
comparison with a resolved model are summarized in Table D·I.
These parameters are artificially selected to stress differences
between a resolved model and the presented model and to highlight
the influence of the assumptions we made.

The material parameters used for the simulations with the
realistic geometry are summarized in Table D·II. We are aware
that the determination of reasonable material parameters from
experiments or calculations is a non-trivial, complex task (see e.g.
Refs. 37, 38 for challenges in measuring the diffusion coefficient).
However, the focus of this work is on the introduction of a novel
model for coating layers, and the material parameters can easily be
exchanged.

The electronic conductivity

σ ( ) = (− +

− + − ) [ · ]

x x x

x x

100
S

m
exp 202.90 322.38

178.23 50.06 13.47 , D 1

4 3

2

with x= 1− χ and χ χ= ( )Fdetc

c max
max

, and the diffusion coefficient

of NMC622 are a function of the lithiation state20

χ χ

χ χ
χ χ
χ χ
χ χ

( ) = ( · ·

− · · + · ·
− · · + · ·
− · · + · ·
− · · + · ·
− · ) [ · ]

D
1

1000

m

s
exp 9.3764575854 10

5.4262087319 10 1.3688556703 10

1.9734363260 10 1.7897244160 10

1.0576735297 10 4.0688465295 10

9.8167452940 10 1.3468923578 10

8.0270847914 10 . D 2

2
5 9

6 8 7 7

7 6 7 5

7 4 6 3

5 2 5

3

The open circuit potential39 of NMC622 is shown in Fig. D·1.

The growth laws for the electrodes are a function of the
concentration

⎡
⎣⎢

⎤
⎦⎥

= + ( )
( − )

⊗ Ω [ · ]F F g gg
n n

V
1 det in , D 3growth

ed ed
0

a

⎜ ⎟
⎛
⎝

⎞
⎠

χ
χ

= ( ) +
( ) +

Ω [ · ]F
f

f
1

1

1
in , D 4growth

0

1 3

c

with = = ·
ρ

−g 1.2998 10M 5 m

mol

3
,22 ∫=

Ω
n c vded

ed
, g the direction

of growth, and χ α χ( ) = ∑ ==f 0.000444577043098n n
n

0
7

− 1.24116361022373χ+ 9.30461909734883χ2 − 29.4497732519-
95χ3 + 49.1126838772603χ4− 45.1097641074935χ5 + 21.59943-
62668471χ6− 4.21656846170118χ6 22 based on Ref. 32.

For simplicity, we assume the exchange current density as
constant throughout this work.

Table D·I. Material parameters for the comparison with a resolved model.

Domain Quantity Symbol Value

cathode Ωc diffusion coefficient D · −1.83 10 14 m

s

2

growth law Fgrowth 1
open circuit potential Φ0 0 V

coating Ωcoat ionic conductivity κ { }·− − −10 , 10 , 10 54 3 2 S

m

transference number t+ 1

solid electrolyte Ωel ionic conductivity κ · −5 10 4 S

m

transference number t+ 1

interface cathode - coating Γcoat−c exchange current density i0 4.98 A

m2

interface coating - solid electrolyte Γel−coat interface resistance ri 5.0 · 10−3 Ωm2

Figure D·1. Open circuit potential of NMC622 as a function of the lithiation
state based on Ref. 39.
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Table D·II. Material parameters for the simulation with the realistic geometry.

Domain Quantity Symbol Value References

cathode Ωc electronic conductivity σ Eq. D·1 20
diffusion coefficient D Eq. D·2 20
open circuit potential Φ0 Fig. D·1 39
max. concentration cmax ·5.19 104 mol

m3
20

max. lithiation χmax 1 20
lithiation range [χ0%, χ100%] [1, 0.404] defined
Young’s modulus E 1.78 · 1011 Pa 40
Poisson’s ratio ν 0.3 41
mass density ρ ·5.03 103 kg

m3
22

growth law Fgrowth Eq. D·4 Ref. 22, based on Ref. 32

coating Ωcoat ionic conductivity κ · −5 10 4 S

m
Ref. 19, based on Ref. 29

transference number t+ 1 defined, based on Ref. 42
Young’s modulus E 247.6 · 109 Pa 43
Poisson’s ratio ν 0.13 43
ion concentration ccoat,0 ·1.03 104 mol

m3
adapted from Ωel

solid electrolyte Ωel ionic conductivity κ · −1.2 10 2 S

m
44

transference number t+ 1 20
Young’s modulus E 2.89 · 1010 Pa 45
Poisson’s ratio ν 0.27 45
mass density ρ ·1.88 103 kg

m3
46

ion concentration cel,0 ·1.03 104 mol

m3
20

anode Ωa electronic conductivity σ 105 S

m
20

Young’s modulus E 4.9 · 109 Pa Ref. 47 based on Ref. 48
Poisson’s ratio ν 0.42 Ref. 47 based on Ref. 48
growth law Fgrowth Eq. D·3

current collector anode Ωac electronic conductivity σ ·5.81 107 S

m
49

Young’s modulus E 1.30 · 1011 Pa 50
Poisson’s ratio ν 0.34 50

current collector cathode Ωcc electronic conductivity σ ·3.77 107 S

m
49

Young’s modulus E 7 · 1010 Pa 50
Poisson’s ratio ν 0.35 50

interface current collector - electrode Γcs−ed interface resistance ri 2 · 10−3 Ωm2 defined

interface cathode - coating Γcoat−c exchange current density i0 4.98 A

m2
taken for the interface NMC622-β-LPS

from Refs. 22 and 20

interface anode - solid electrolyte Γe−el exchange current density i0 8.87 A

m2
20

interface coating - solid electrolyte Γel−coat interface resistance ri 5.0 · 10−3 Ωm2 range reported in Ref. 19
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