
H2 suboptimal leader-follower consensus
control of multi-agent systems ⋆

Yuan Gao ∗ Junjie Jiao ∗ Sandra Hirche ∗

∗ Chair of Information-oriented Control, TUM School of Computation,
Information and Technology, Technical University of Munich, 80333
Munich, Germany (e-mail:{ge54sem, junjie.jiao, hirche}@tum.de)

Abstract: In this paper, we investigate the distributedH2 suboptimal leader-follower consensus
control problem for linear multi-agent systems using dynamic output feedback. By considering
an autonomous leader, a number of followers, and an associated H2 cost functional, we aim to
design a distributed protocol to ensure that the leader-follower consensus is achieved while the
associated H2 cost is smaller than an a priori given upper bound. To this end, we first show that
the H2 suboptimal leader-follower consensus control problem can be equivalently derived as the
H2 suboptimal control problem of a set of independent systems. Based on this, we then present
a design method for computing a distributed protocol. The computation of the feedback gains
involves two Riccati inequalities whose dimension matches the state dimension of the agents. A
simulation example is provided to demonstrate the performance of the proposed protocol.
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1. INTRODUCTION

The recent two decades have seen a significant increase in
interest in distributed control for multi-agent networks due
to their broad range of potential applications. A variety
of distributed control scenarios have been investigated,
including consensus (Olfati-Saber and Murray (2004)),
containment control (Li et al. (2013)), and formation con-
trol (Oh et al. (2015)). As one of the fundamental research
problems of multi-agent systems, consensus control can be
classified into leaderless consensus (Li et al. (2009)) and
leader-follower consensus (Ni and Cheng (2010)) according
to whether a leader exists or not.

In this paper, we study leader-follower consensus control,
which means that the states of followers should follow
the leader’s state. Leader-follower consensus control has
been studied in the literature for single integrator agent
systems with undirected graphs (Jadbabaie et al. (2003))
and directed graphs (Ren and Beard (2005)), for second-
order follower-agent systems with a switching topology
(Hong et al. (2008)), for general linear systems under
switching interaction topologies (Ni and Cheng (2010))
and directed fixed topologies (Li and Duan (2017)).

In practice, agent dynamics are subjected to external
disturbances, potentially leading to a deterioration of the
performance of the multi-agent system. In the literature,
many efforts have been devoted to addressing H∞ perfor-
mance guarantees in the leader-follower consensus prob-
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lem. For linear multi-agent systems, the leader-follower
consensus control using static state feedback has been
studied in Liu et al. (2015) by considering the H∞ per-
formance region. Instead of considering the performance
region, the case of prescribedH∞ disturbances attenuation
level was considered in Zhang et al. (2017) using a static
state protocol to achieve leader-follower consensus of linear
discrete-time multi-agent systems with the switching con-
nected topologies. In contrast to only considering system-
theoretic notions, a graph-theoretic approach using static
state protocol to the H∞ performance of leader following
consensus dynamics was proposed in Pirani et al. (2019).
However, the works discussed above focus on the H∞
performance index, which measures the robustness of sys-
tems to external disturbances in the worst-case scenario.
Furthermore, the works above consider static state feed-
back cases, while in practice only output measurements of
agents are available.

Meanwhile, there are several efforts dealing with the H2

performance of leaderless multi-agent systems, where the
H2 performance index indicates the error energy of the
system subjected to external disturbance. The leaderless
consensus problem using static state protocols has been
studied with undirected graphs (Li et al. (2011)) by con-
sidering H2 performance regions and with directed com-
munication graphs (Wang et al. (2014)) by guaranteeing
H2 performance index. Unlike considering performance re-
gions for the robustness of systems, suboptimal distributed
protocols based on static state (Jiao et al. (2018)) and
on dynamic output feedback (Jiao et al. (2020)) were
established to minimize a given H2 cost criterion while
achieving consensus of multi-agent systems. However, in
the context of distributed H2 control, little attention was
paid to the leader-follower consensus with a leader.



Motivated by the above, in this paper we study the dis-
tributed H2 control problem of leader-follower multi-agent
systems using dynamic output feedback. More concretely,
this paper extends the results from Jiao et al. (2020) for
leaderless systems to the leader-follower case. To this end,
for a given leader-follower system, we first introduce a
suitable performance output and, subsequently, an associ-
ated H2 cost functional. The goal is to design distributed
protocols by dynamic output feedback such that the multi-
agent system achieves leader-follower consensus while min-
imizing the associated H2 cost functional. Due to the com-
munication constraints among the agents, this problem is
non-convex, and up to now, a closed-form solution has
not been given in the literature. Therefore, we seek an
alternative involving only suboptimality.

The outline of this paper is as follows. Section 2 provides
some notations and graph theory. In Section 3, we formu-
late the H2 suboptimal leader-follower consensus problem.
We then design distributed H2 suboptimal protocols in
Section 4. A simulation example is presented in Section 5,
followed by the conclusion in Section 6.

2. PRELIMINARIES

2.1 Notation

The field of real numbers is denoted by R, the space of n
dimensional real vectors is denoted by Rn, and the space
of m × n real matrices is denoted by Rm×n. For vectors
and matrices, the superscript ⊤ means transposition. In
represents the identity matrix of dimension n × n. The
trace of a square matrix A is denoted by tr(A). It is said
that a matrix is Hurwitz (or stable) if all its eigenvalues
have negative real parts. In the case of a symmetric matrix
P , we denoted P > 0 if P is positive definite and P < 0
if P is negative definite. The n × n diagonal matrix with
d1, . . . , dn on the diagonal is denoted by diag(d1, . . . , dn).
For matrices M1, . . . ,Mm, let blockdiag(M1, . . . ,Mm) be
the block diagonal matrix with diagonal blocks Mi. A⊗B
denotes the Kronecker product of matrix A and B.

2.2 Graph theory

A directed graph is denoted by G = (V, E) with node set
V = {1, . . . , N} and edge set E = {e1, . . . , eM} satisfying
E ⊂ V ×V. The edge from node i to node j is represented
by the pair (i, j) ∈ E . We say a graph is undirected if
(i, j) ∈ E implies (j, i) ∈ E , and a graph is simple if
(i, i) /∈ E which means no self-loops. The adjacency matrix
A = [aij ] ∈ RN×N of the graph G is defined as aii = 0,
aij = 1 if (j, i) ∈ E , and aij = 0 otherwise. Subsequently,
the Laplacian matrix L = [Lij ] ∈ RN×N of graph G is

defined as Lii =
∑N

j=1 aij and Lij = −aij . It can also
be written into a compact form as L = D − A, where
D = diag(d1, . . . , dN ) is the degree matrix of graph G
with di =

∑N
j=1 aij . Furthermore, the Laplacian matrix

L of an undirected graph is symmetric and only has real
nonnegative eigenvalues.

3. PROBLEM FORMULATION

We consider a leader-follower multi-agent system that
consists of N − 1 agents indexed by 1, ..., N − 1, called the

followers, and one agent indexed by N called the leader.
The dynamic of the leader is represented by

ẋN (t) = AxN (t) , yN (t) = C1xN (t) , zN (t) = C2xN (t) .
(1)

The dynamics of followers are identical and denoted by

ẋi (t) = Axi (t) +Bui (t) + Edi (t) ,

yi (t) = C1xi (t) +D1di (t) , (2)

zi (t) = C2xi (t) +D2ui (t) , i = 1, . . . , N − 1,

where xi ∈ Rn, yi ∈ Rr, zi ∈ Rp, ui ∈ Rm and di ∈ Rq are,
respectively, the state, the measured output, the output
to be controlled, the coupling input and the unknown
external disturbance of ith follower. The matrices A, B,
C1, C2, D1, D2 and E are of compatible dimensions. In
this paper, we assume that the pair (A,B) is stabilizable
and the pair (C1, A) is detectable.

Throughout this paper, we assume that each follower
has access to relative output measurements concerning
its neighbors and consider output feedback protocols. In
particular, following Trentelman et al. (2013), we propose
the observer-based distributed dynamic protocol

ẇi = (A−GC1)wi +

N∑
j=1

aij [BF (wi − wj) +G(yi − yj)] ,

ui = Fwi, i = 1, . . . , N − 1, (3)

where G ∈ Rn×r and F ∈ Rm×n are local feedback gain
matrices to be designed and the state wi takes the role of

estimate the relative state
∑N

j=1 aij(xi−xj) and note that
wN = 0, where aij is the ijth entry of the adjacency matrix
A associated with graph G, which satisfies the following
standard assumption.

Assumption 1. The leader receives no information from
any follower. The leader’s state is available to at least one
follower, and the communication graph between the N −1
followers is connected, simple, and undirected.

Since the leader has no neighbors, the Laplacian matrix
associated with graph G can be partitioned as

L =

[
L1 L2

01×(N−1) 0

]
, (4)

where L1 ∈ R(N−1)×(N−1), L2 ∈ R(N−1)×1.

Lemma 2. (Meng et al. (2010)). Under Assumption 1, L1

is positive definite, and subsequently, all the eigenvalues
of L1 have positive real parts.

Foremost, we want the protocol (3) to solve the leader-
follower consensus control problem for agents (1) and (2).
In the context of leader-follower consensus control, it is
desired that the states of followers follow the leader’s state,
so we are interested in the differences between the states
of leader and followers. Therefore, we introduce the new
error state variable for each follower as ei = xi−xN , where
the leader-follower consensus is achieved if ei = 0, i.e.,
xi → xN as t → ∞ for all i = 1, . . . , N − 1.

Meanwhile, in the context of distributed H2 optimal con-
trol for multi-agent systems, we are interested in the
differences in the leader’s and followers’ output values.
Therefore, the performance output variable is defined as
ϵi = zi − zN , i = 1, . . . , N − 1, which reflects the output
disagreement between leader and followers.



Denote e =
[
e⊤1 , . . . , e

⊤
N−1

]⊤
, ϵ =

[
ϵ⊤1 , . . . , ϵ

⊤
N−1

]⊤
, ξ =[

y⊤1 − y⊤N , . . . , y⊤N−1 − y⊤N
]⊤

, u =
[
u⊤
1 , . . . , u

⊤
N−1

]⊤
, d =[

d⊤1 , . . . , d
⊤
N−1

]⊤
, and w =

[
w⊤

1 , . . . , w
⊤
N−1

]⊤
. Then, the

dynamics of the error system can be written as

ė = (IN−1 ⊗A)e+ (IN−1 ⊗B)u+ (IN−1 ⊗ E)d,

ξ = (IN−1 ⊗ C1)e+ (IN−1 ⊗D1)d,

ϵ = (IN−1 ⊗ C2)e+ (IN−1 ⊗D2)u.

(5)

Correspondingly, the protocol (3) can be written as

ẇ = (IN−1 ⊗ (A−GC1))w + (L1 ⊗BF )w + (L1 ⊗G)ξ,

u = (IN−1 ⊗ F )w. (6)

By interconnecting the error system (5) with the dynamic
protocol (6), we obtain the controlled error system[

ė
ẇ

]
=

[
IN−1 ⊗A IN−1 ⊗BF
L1 ⊗GC1 IN−1 ⊗ (A−GC1) + L1 ⊗BF

] [
e
w

]
+

[
IN−1 ⊗ E
L1 ⊗GD1

]
d,

ϵ = [IN−1 ⊗ C2 IN−1 ⊗D2F ]

[
e
w

]
. (7)

DenoteAo =

[
IN−1 ⊗A IN−1 ⊗BF
L1 ⊗GC1 IN−1 ⊗ (A−GC1) + L1 ⊗BF

]
,

Co = [IN−1 ⊗ C2IN−1 ⊗D2F ] , Eo =

[
IN−1 ⊗ E
L1 ⊗GD1

]
. The

impulse response matrix for the controlled error system
(7) from the external disturbance d to the performance
output ϵ is then equal to

TF,G(t) = Coe
AotEo. (8)

Thus, the associated cost functional H2 is given by

J(F,G) :=

∫ ∞

0

tr
[
T⊤
F,G(t)TF,G(t)

]
dt. (9)

which measures the performance of the system (7) as the
square of the L2- norm of its impulse response. The H2

optimal leader-follower consensus control problem is a non-
convex optimization problem due to the communication
constraints among the agents, and it is not yet known
whether a closed-form solution exists in the literature.
Alternatively, we solve a version of the problem that
requires only suboptimality.

Definition 3. The protocol (3) is said to solve the dis-
tributed H2 suboptimal leader-follower consensus problem
for the multi-agent system (1) and (2) if,

• whenever the external disturbances of all followers are
equal to zero, i.e., d = 0, we have xi → xN and
wi → 0 for all i = 1, . . . , N − 1.

• J(F,G) < γ, where γ is a given upper bound.

The problem that we want to address is the following:

Problem 1. Let γ > 0. Design local feedback gain matrices
G ∈ Rn×r and F ∈ Rm×n such that the dynamic protocol
(3) achieves leader-follower consensus and J(F,G) < γ.

4. PROTOCOL DESIGN

In this section, we deal with Problem 1 and establish a
design method for obtaining gain matrices F and G.

According to Assumption 1 and Lemma 2, L1 is pos-
itive definite, which implies that L1 is diagonalizable.

Consider U ∈ RN−1×N−1 as an orthogonal matrix
which diagonalizes the matrix L1, i.e., U⊤L1U = Λ =
diag(λ1, . . . , λN−1), where λi > 0, i = 1, . . . , N − 1 are the
eigenvalues of L1. By using the state transformation:[

ê
ŵ

]
=

[
U⊤ ⊗ In 0

0 U⊤ ⊗ In

] [
e
w

]
, (10)

the controlled error system (7) becomes[
˙̂e
˙̂w

]
=

[
IN−1 ⊗A IN−1 ⊗BF
Λ⊗GC1 IN−1 ⊗ (A−GC1) +Λ⊗BF

] [
ê
ŵ

]
+

[
U⊤ ⊗ E

U⊤L1 ⊗GD1

]
d,

ϵ = [U ⊗ C2 U ⊗D2F ]

[
ê
ŵ

]
. (11)

Note that after the transformation (10), the impulse re-
sponse matrix from the disturbance input d to the output
ϵ still equals the impulse response matrix (8). To proceed,
the following N−1 auxiliary linear systems are introduced:

˙̃ei (t) = Aẽi (t) +Bũi (t) + Ed̃i (t) ,

ξ̃i (t) = C1ẽi (t) +D1d̃i (t) ,

ϵ̃i (t) = C2ẽi (t) +D2ũi (t) ,

i = 1, . . . , N − 1,

where ẽi ∈ Rn, ũi ∈ Rm, d̃i ∈ Rq, ξ̃i ∈ Rr and
ϵ̃i ∈ Rp are, respectively, the state, the coupling input, the
external disturbance, the measured output and the output
to be controlled of the ith auxiliary system. By using the
associated dynamic feedback controllers

˙̃wi = Aw̃i +Bũi +G(ξ̃i − C1w̃i),

ũi = λiFw̃i, i = 1, . . . , N − 1.
(12)

where λi > 0, i = 1, . . . , N − 1 are the eigenvalues of L1,
the closed-loop systems can be written as[

˙̃ei
˙̃wi

]
=

[
A λiBF

GC1 A−GC1 + λiBF

] [
ẽi
w̃i

]
+

[
E

GD1

]
d̃i,

ϵ̃i = [C2 λiD2F ]

[
ẽi
w̃i

]
, i = 1, . . . , N − 1. (13)

Denote Ãi =

[
A λiBF

GC1 A−GC1 + λiBF

]
, C̃i = [C2 λiD2F ],

Ẽi =

[
E

GD1

]
. The impulse response matrix for each system

(13) from the disturbance d̃i to the output ϵ̃i is T̃i,F,G(t) =

C̃ie
ÃitẼi. The associated H2 cost functional is given by

Ji(F,G) :=
∫∞
0

tr
[
T̃⊤
i,F,G(t)T̃i,F,G(t)

]
dt, i = 1, . . . , N − 1.

Consequently, the following theorem holds.

Theorem 4. Let G ∈ Rn×r and F ∈ Rm×n. Assume that
D1E

⊤ = 0, D⊤
2 C2 = 0, D1D

⊤
1 = Ir and D⊤

2 D2 = Im.
The dynamic protocol (3) with gain matrices F,G achieves
leader-follower consensus for the agents (1) and (2) if and
only if the controllers (12) with the same F,G internally
stabilize all N − 1 systems in (13). Moreover, we have

J(F,G) :=
∑N−1

i=1 Ji(F,G).

Proof. It can be derived from (10) that ê = 0 and ŵ = 0
if and only if ei = 0, wi = 0, i.e., xi → xN and wi → 0 for
all i = 1, . . . , N − 1. Hence, the leader-follower consensus
problem is solved if and only if limt→∞ ê(t) = 0 and
limt→∞ ŵ(t) = 0. Recall that U⊤L1U = Λ and by using
two transformations



d̂ = (U⊤ ⊗ In)d, ϵ̂ = (U⊤ ⊗ In)ϵ, (14)

the controlled error system (11) can be transferred into as[
˙̂e
˙̂w

]
=

[
IN−1 ⊗A IN−1 ⊗BF
Λ⊗GC1 IN−1 ⊗ (A−GC1) + Λ⊗BF

] [
ê
ŵ

]
+

[
IN−1 ⊗ E
Λ⊗GD1

]
d̂,

ϵ̂ = [IN−1 ⊗ C2 IN−1 ⊗D2F ]

[
ê
ŵ

]
. (15)

Denote Âo =

[
IN−1 ⊗A IN−1 ⊗BF
Λ⊗GC1 IN−1 ⊗ (A−GC1) + Λ⊗BF

]
,

Ĉo = [IN−1 ⊗ C2 IN−1 ⊗D2F ], Êo =

[
IN−1 ⊗ E
Λ⊗GD1

]
. It is

easily seen that for i = 1, . . . , N − 1 the decomposed
subsystems (Âoi, Êoi, Ĉoi) in (15) and auxiliary systems

(Ãi, Ẽi, C̃i) in (13) are isomorphic. So limt→∞ ê(t) = 0
and limt→∞ ŵ(t) = 0 if and only if ẽ1 = · · · = ẽN−1 = 0,
w̃1 = · · · = w̃N−1 = 0.

Let ρi = ẽi − w̃i and by using the transformation

[
w̃i

ρ̃i

]
=[

0 In
In −In

] [
ẽi
w̃i

]
, then Ãi =

[
A λiBF

GC1 A−GC1 + λiBF

]
in

(13) will be transformed into Ãρi =

[
A+ λiBF −GC1

0 A−GC1

]
.

In this regard, it is obvious that the state of ẽi and w̃i, for
i = 1, . . . , N−1 converge asymptotically to zero if and only
if the matrices A+λiBK and A−GC1 of the N−1 systems
are stable. Subsequently, the leader-follower consensus is
achieved.

Next, we prove J(F,G) :=
∑N−1

i=1 Ji(F,G). Let F ,G be
such that matrices A+λiBF , matrix A−GC1 are Hurwitz.
Note that U⊤CoU = Ĉo, U

⊤EoU = Êo, U
⊤AoU = Âo,

where U⊤ =

[
U⊤ ⊗ In 0

0 U⊤ ⊗ In

]
. Then, by substituting

(8) in (9), we have

J(F,G) :=

∫ ∞

0

tr
[
T⊤
F,G(t)TF,G(t)

]
dt

=

∫ ∞

0

tr
[
(Coe

AotEo)
⊤(Coe

AotEo)
]
dt

=

∫ ∞

0

tr
[
U(Ĉoe

ÂotÊo)
⊤(Ĉoe

ÂotÊo)U
⊤
]
dt.

Recall that U⊤L1U = Λ = diag(λ1, . . . , λN−1), D1E
⊤ =

0, D⊤
2 C2 = 0, D1D

⊤
1 = Ir, D⊤

2 D2 = Im, the decom-

posed subsystems (Âoi, Êoi, Ĉoi) in (15) and auxiliary

systems (Ãi, Ẽi, C̃i) in (13) are isomorphic. Consequently,

tr(Êo
⊤
i e

Âo
⊤
i tĈo

⊤
i Ĉoie

ÂoitÊoi) = tr(Ẽ⊤
i eÃ

⊤
i tC̃⊤

i C̃ie
ÃitẼi),

for i = 1, . . . , N − 1. Therefore,

J(F,G) :=

∫ ∞

0

N−1∑
i=1

tr(UẼ⊤
i eÃ

⊤
i tC̃⊤

i C̃ie
ÃitẼiU

⊤)dt

=

∫ ∞

0

N−1∑
i=1

tr(T̃i,F,G(t)
⊤T̃i,F,G(t))dt =

N−1∑
i=1

Ji(F,G).

The proof is now complete. □

Note that, in Theorem 4, the assumptions D1D
⊤
1 = Ir

and D⊤
2 D2 = Im are made to simplify notation and can

be easily relaxed to the regularity condition D1D
⊤
1 > 0

and D⊤
2 D2 > 0. By applying Theorem 4, the distributed

H2 suboptimal leader-follower consensus problem for the
multi-agent system (1) and (2) can be recast into H2

suboptimal control problems of N−1 independent systems
(13) by using dynamic output feedback controllers (12).

Next, we show that, for given gain matrices G ∈ Rn×r

and F ∈ Rm×n, the following lemma is presented to solve
the problem of H2 suboptimal control for N − 1 systems
(13), i.e., all N − 1 systems are internally stable, while∑N−1

i=1 Ji(F,G) < γ.

Lemma 5. The dynamic controllers (12) internally stabi-

lize all N − 1 systems (13) and
∑N−1

i=1 Ji(F,G) < γ if and
only if there exist Pi > 0, i = 1, . . . , N − 1 and Q > 0
satisfying

(A+ λiBF )⊤Pi + Pi(A+ λiBF )

+ (C2 + λiD2F )⊤(C2 + λiD2F ) < 0, (16)

AQ+QA⊤ −QC⊤
1 C1Q+ EE⊤ < 0, (17)

N−1∑
i=1

[
tr
(
C1QPiQC⊤

1

)
+ tr

(
C2QC⊤

2

)]
< γ. (18)

Proof. The proof follows from the proof of (Jiao et al.,
2020, Lemma 2) by taking Ā = A, B̄ = λiB, C̄1 = C1,
D̄1 = D1, C̄2 = C2, D̄2 = λiD2, and Ē = E and thus it is
omitted here. □

Note that, however, Lemma 5 does not yet provide a
method for computing matrices F,G. The following the-
orem then provides a design method for finding suitable
matrices F,G.

Theorem 6. Assume thatD1E
⊤ = 0,D⊤

2 C2 = 0,D1D
⊤
1 =

Ir and D⊤
2 D2 = Im. Let γ > 0. Consider the controlled

error system (7) with associated H2 cost functional (9).
Let Q > 0 satisfies

AQ+QA⊤ −QC⊤
1 C1Q+ EE⊤ < 0. (19)

Furthermore, consider the following two cases:

(i) if 0 < c < 2
λ1+λN−1

, where λ1 is the smallest

eigenvalue and λN−1 is the largest eigenvalue of L1.
Then there exists P > 0 satisfying

A⊤P + PA+ (c2λ2
1 − 2cλ1)PBB⊤P + C2

⊤C2 < 0.
(20)

(ii) if 2
λ1+λN−1

≤ c < 2
λN−1

, then there exists P > 0

satisfying

A⊤P+PA+(c2λ2
N−1−2cλN−1)PBB⊤P+C2

⊤C2 < 0.
(21)

In both cases, if P and Q also satisfy

tr
(
C1QPQC⊤

1

)
+ tr

(
C2QC⊤

2

)
<

γ

N − 1
, (22)

then the protocol (3) with F := −cB⊤P and G :=

QC1
⊤achieves leader-follower consensus for the agents (1)

and (2) and the protocol is suboptimal, i.e., J(F,G) < γ.

Proof. First, note that (19) is exactly (17). For case (ii)
above, using the upper and lower bound on c, c2λ2

N−1 −
2cλN−1 < 0 can be verified. Since the Riccati inequality
(21) has a positive definite solution P . For i = 1, . . . , N−1,
taking Pi = P and F = −cB⊤P in (16) immediately yields
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(A− cλiBB⊤P )⊤P + P (A− cλiBB⊤P )

+ (C2 − λiD2B
⊤P )⊤(C2 − λiD2B

⊤P ) < 0.

Recall the conditions D2
⊤C2 = 0 and D2

⊤D2 = Im
this yields (A − cλiBB⊤P )⊤P + P (A − cλiBB⊤P ) +

c2λ2
iPBB⊤P + C2

⊤C2 < 0.

Since c2λ2
1 − 2cλ1 ≤ c2λ2

i − 2cλi ≤ c2λ2
N−1 − 2cλN−1 <

0 and λi ≤ λN−1 for i = 1, . . . , N − 1, the positive
definite solution P of (21) also satisfies the N − 1 Riccati
inequalities

A⊤P + PA+ (c2λ2
i − 2cλi)PBB⊤P + C2

⊤C2 < 0.

Next, it follows from (22) that also (18) holds. By Lemma
5 then, all N − 1 systems (13) are internally stabilized

and
∑N−1

i=1 Ji(F,G) < γ. Subsequently, it follows from
Theorem 4 that the protocol (3) achieves leader-follower
consensus for the agents (1) and (2) while J(F,G) < γ.
For case (i) above, the proof is similar and is omitted. □

Remark 7. Theorem 6 states that by choosing suitable c,
P and Q, the distributed dynamic output protocol with
gain matrices F = −cB⊤P and G = QC1

⊤ is suboptimal.
Thus, for this suboptimal problem the question arises: how
to select the upper bound γ as small as possible such that
tr
(
C1QPQC⊤

1

)
+ tr

(
C2QC⊤

2

)
< γ

N−1? The point can be
easily made that, in general, smaller P and Q lead to
smaller tr

(
C1QPQC⊤

1

)
+ tr

(
C2QC⊤

2

)
, and consequently,

the smaller feasible given γ. To find a small feasible γ, we
could try to find P and Q as small as possible. With η > 0,
we can establish a equality from (19) as

AQ+QA⊤ −QC⊤
1 C1Q+ EE⊤ + ηIN = 0.

By using the standard argument, it can be shown that Q
decreases as η decreases. Consequently, if we chose η > 0
very close to 0, we can find a small solution for Q(η) > 0.
Similarly, a small solution P (c, δ) > 0 with δ > 0 for the
two cases (20) and (21) can be founded by establishing two
equalities as follows

A⊤P + PA− r1PBB⊤P + C2
⊤C2 + δIn = 0,

A⊤P + PA− r2PBB⊤P + C2
⊤C2 + δIn = 0,

where r1 = (−c2λ2
1+2cλ1) and r2 = (−c2λ2

N−1+2cλN−1).
Obviously, the larger r1(or r2) and the smaller δ, the
smaller P is. It can be computed that the maximum of
r1 is obtained when c∗ = 1

λN−1
and the maximum of r2 is

obtained when c∗ = 1
λ1
. Therefore, for both two cases, if

we choose δ > 0 very close to 0 and c = 2
λ1+λN−1

, we find

the ‘best’ solution to the Riccati inequalities (20) and (21)
as explained above.

5. SIMULATION EXAMPLE

This section provides a simulation example to validate the
performance of our proposed protocol by dynamic output
feedback. Consider a leader-follower multi-agent system
consisting of one leader with the form (1) and six followers

with the form (2), where A =

[
−2 2
−1 1

]
, B =

[
0
1

]
, E =[

0.6 0
1 0

]
, C2 =

[
1 1.2
0 0

]
, D2 =

[
0
1

]
, C1 = [1 0] , D1 = [0 1].

The pair (A,B) is stabilizable and the pair (C1, A) is
detectable. We also have D1E

⊤ = [0 0], D⊤
2 C2 = [0 0]

and D1D
⊤
1 = 1, D⊤

2 D2 = 1.

For illustration, let the communication graph G be given
by Figure 1, where node 7 is the leader and the others are
followers. Correspondingly, due to the specific partition
form of the Laplacian matrix L (4) associated with graph
G, the smallest and largest eigenvalue of the matrix L1 are
λ1 = 0.1088 and λ6 = 4.2784. Now we use the method
proposed in Theorem 6 to compute the gain matrices F,G
of the dynamic output feedback protocol (3) to solve the
H2 suboptimal leader-follower consensus control problem.
Let the desired upper bound for the H2 cost (9) be γ = 92.
Following Theorem 6, we first compute a solution P > 0
in case (ii) by solving

A⊤P+PA+(c2λ2
6−2cλ6)PBB⊤P+C2

⊤C2+δI2 = 0 (23)

with δ = 0.001. In addition, we choose c = 2
λ1+λ6

= 0.4559,
which is the ’best’ choice to find a small upper bound γ in
the sense as explained in Remark 7. Then, by solving (23)
in Matlab with the command icare, we compute the gain
matrix F = (1.3414,−4.5669).

Next, we compute a solution Q > 0 in (19) by solving

AQ+QA⊤ −QC⊤
1 C1Q+ EE⊤ + ηI2 = 0

with η = 0.001 in Matlab using command icare,the
gain matrix G = (1.0407, 1.2213)⊤. Moreover, we compute

6(tr(C1QPQC1
⊤) + tr(C2QC2

⊤)) = 91.0974, which is
indeed smaller than the upper bound γ = 92. Then by
using the command norm(sys,2) in Matlab, the actual
H2 norm of the controlled error system (7) is computed
to be ||TF,G||H2

= 8.7388, which is indeed smaller than√
γ =

√
92 = 9.5917.

In the following, we compare the performance of our
protocol with that of the proposed protocol in Li and
Duan (2017). The corresponding feedback gains of the
protocol in Li and Duan (2017)) are computed as K̄ =
(0.8250,−4.2000) and F̄ = (−29.2078,−16.8628)⊤. The
associated actual H2 norm of the controlled system (7) is
computed to be ||TK̄,F̄ ||H2

= 23.4079. Since ||TK̄,F̄ ||H2
=

23.4079 > ||TF,G||H2
= 8.7388, it is shown that our

protocol outperforms the protocol in Li and Duan (2017).

As an illustrative example, we take the initial states

of the agents to be x10 = [−13 10]
⊤
, x20 = [5 12]

⊤
,

x30 = [−9 −15]
⊤
, x40 = [18 11]

⊤
, x50 = [−2 −4]

⊤
,

x60 = [12 12]
⊤

and x70 = [2.5 7.5]
⊤
. To further compare

the performance of our proposed protocol with that in
Li and Duan (2017), the same white noise d with an
amplitude ranging between -4 and 4 is applied. In Figure
2, the trajectories of the performance output ϵ using our



Fig. 2. Trajectories of the performance outputs ϵi1, ϵi2 for i = 1, . . . , 6 using our proposed protocol (plot on the left)
and those of using the protocol in Li and Duan (2017) (plot on the right)

designed protocol and the protocol in Li and Duan (2017)
are plotted. It is shown that our protocol has a better
performance than that of the protocol proposed in Li and
Duan (2017), in the sense that our protocol has a better
tolerance for external disturbances.

6. CONCLUSIONS

In this paper, we have investigated the distributed H2 sub-
optimal leader-follower consensus control problem using
dynamic output feedback. Consider a multi-agent system
with N agents consisting of an autonomous leader and
N − 1 followers, and an associated H2 cost functional
with a desired upper bound, we have developed a design
method for computing a distributed protocol that achieves
H2 suboptimal leader-follower consensus, i.e., the states of
the followers converge to the state of the leader and the
associated H2 cost is smaller than this given upper bound.
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