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to my beloved friend Kamil Karaçuha for everything. He was with me at every step of this

period, always made me feel his support, and showed how a distance-independent friend-

ship is possible. I had the opportunity to meet many bright people in Munich and would

like to thank them for all the good memories. I am especially grateful to my MSCE col-
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Abstract

The compound LDGM/LDPC codes are shown to attain the information-theoretic limits

of the Gelfand-Pinsker and Wyner-Ziv problems when optimal encoding and decoding

are employed. The sparse and graphical structure of this code motivates it to be im-

plemented with message passing algorithms. In this thesis, an encoding and decoding

message passing algorithm is proposed for the compound code by inspiring the belief

propagation and truthiness propagation algorithms. Initial simulations show that the en-

coding algorithm can correctly encode half of the frames, and the decoding algorithm can

successfully decode the correctly encoded frames. The drawbacks of the encoding algo-

rithm are compensated by concatenating an outer code. With the coding scheme provided

in the literature for the compound code, it is shown that a uniformly distributed message

input is shaped into a non-uniformly distributed channel input, which motivates prob-

abilistic shaping applications. Although it is widely claimed in the literature that this

scheme should deliver a good performance, the scheme is not competitive compared to

other schemes, e.g., to polar codes.
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1 Introduction

Claude Shannon’s [Sha48] seminal work on information theory laid the foundation for

modern communications systems. Information theory provides us with a profound un-

derstanding of how information is encoded, transmitted, and decoded. It enables to

design efficient and reliable communications systems. With the contributions of Shannon

and subsequent researchers, information theory continues to inspire innovations and drive

advancements in the field of communications, making it an indispensable discipline in our

increasingly interconnected world.

Shannon’s channel capacity refers to the maximum achievable data rate over a commu-

nication channel while maintaining reliable transmission in the presence of noise and

interference. This capacity can be achieved through the utilization of certain codes such

as low-density parity-check (LDPC) codes [Gal62] and polar codes [Ari09]. For uniformly

distributed message bits, these codes usually generate codewords that are also uniformly

distributed. However, Shannon’s findings revealed that the optimal input distribution

for achieving the maximum information rate for an asymmetric channel is typically non-

uniform. Therefore, it is of interest to shape the probability distributions of the channel

inputs to increase spectral efficiency while making use of these kinds of codes. The con-

cept is generally referred to as probabilistic shaping and is the main motivation of this

thesis.

On the other hand, multi-user information theory investigates the fundamental limits and

efficient strategies when multiple users concurrently access and share information over

a common communication channel. Two well-known problems in this domain are the

Gelfand-Pinsker [GP80] and Wyner-Ziv [WZ76] problems. The Gelfand-Pinsker problem

considers a scenario where the encoder has channel side information while the decoder

has not, and its special case enables probabilistic shaping. The Gelfand-Pinsker problem

for additive white Gaussian noise (AWGN) channels is also known as dirty paper coding

(DPC) [Cos83] and finds wide interest in the literature [EtB05]. The Wyner-Ziv problem

is dual to the Gelfand-Pinsker problem and pertains to the challenge of compressing data

while the decoder has a side information that is correlated with the source.
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1 Introduction

Wainwright and Martinian [WM09] proposed a code structure by combining low-density

generator matrix (LDGM) and LDPC codes. They showed that such a code can attain

the information-theoretic limits of the Gelfand-Pinsker and Wyner-Ziv problems under

optimal encoding and decoding. Since implementing the optimal encoding and decoding

methods is impractical, finding a practical way is of interest for this structure. The sparse

and graphical structure of this code holds the potential to implement message passing

algorithms (MPAs) and presents an open research question. There are very few studies

that attempt to address this issue. [WMM10] proposes the belief propagation guided

decimation (BPGD) while [KVNP14] combines the BPGD with spatial coupling (SC).

[KT08, WH09] approach the problem in a way that adapts the DPC concepts.

In this thesis, we propose two MPAs to the LDGM/LDPC compound code for both

encoding and decoding. We discuss the performance of our MPAs and come up with

solutions to their drawbacks. Thanks to the coding scheme provided with the compound

code [WM09], we show how the channel input distribution is non-uniformly shaped for

a uniformly distributed message input, and the average symbol energy is decreased for

on-off keying (OOK) modulated symbols. The rest of the thesis is organized as follows.

• Chapter 2 provides the preliminaries, including source and channel coding, low-

density codes, MPAs, and probabilistic shaping. It also presents the main notation

used throughout the thesis.

• Chapter 3 explains channel coding with side information (CCSI) (Gelfand-Pinsker

problem), lossy source coding with side information (SCSI) (Wyner-Ziv problem),

and relates to probabilistic shaping.

• Chapter 4 introduces the LDGM/LDPC compound code, discusses the belief propa-

gation (BP) and truthiness propagation (TP) algorithms, and presents our proposed

algorithms.

• Chapter 5 provides the simulation results of our algorithms and discusses the solu-

tions to their observed shortcomings.

• Chapter 6 concludes the thesis and points to open questions for future work.
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2 Preliminaries

This chapter discusses preliminaries for the thesis and defines the notation. First, we

will examine the basics of source and channel coding from a theoretical perspective and

define the concepts that will be encountered throughout the thesis. Then, we will discuss

low-density codes and introduce Tanner graphs which will be used in the main sections.

Next, we will explain message passing algorithms which are commonly performed on those

graphs. Finally, we will discuss probabilistic shaping as a motivating application of this

thesis.

2.1 Source Coding

Source coding tries to represent information with as few bits as possible. For this, Shan-

non defined the entropy of an information source [Sha48].

Definition 2.1.1 (Entropy). Let X be a discrete random variable with alphabet X . The

entropy in bits of X is defined by

H(X) = −
∑
x∈X

PX(x) log2 PX(x), (2.1)

where PX(x) refers to the probability mass function of the distribution of X.

The entropy of an information source gives an idea about the uncertainty that the random

variable has. A simple example can be given to make it more understandable.

Example 2.1.1 (Coin Toss). Consider a fair coin toss experiment. This experiment has

only two possible outcomes: heads and tails. The sample space for this can be represented

as Ω = {H,T}. Let X be a discrete random variable that maps from Ω into the alphabet

X = {0, 1} with X(H) = 0 and X(T ) = 1. Then, PX(0) = PX(1) = 1/2 as we have a

fair coin toss. From (2.1), the entropy for a fair coin toss experiment is H(X) = 1 bit.

By generalizing Example 2.1.1, we define the binary entropy function.

3



2 Preliminaries

Definition 2.1.2 (Binary Entropy Function). Let X be a Bernoulli distributed random

variable with parameter p, i.e., X ∼ Bern(p), PX(0) = 1− p, and PX(1) = p. The binary

entropy function H2(p) is defined as

H2(p) = H(X) = −p log2 p− (1− p) log2(1− p). (2.2)

The binary entropy function is shown in Figure 2.1. Note that the entropy is maximal

when p = 0.5. In other words, this is the case when the uncertainty is highest, just like

the fair coin toss experiment in Example 2.1.1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

H
2
(p
)

Figure 2.1: The binary entropy function.

Definition 2.1.3 (Conditional Entropy [CT06]). Let X and Y be two discrete random

variables with alphabet X and Y, respectively. The conditional entropy of Y given X is

defined by

H(Y |X) =
∑
x∈X

PX(x)H(Y |X = x)

= −
∑
x∈X

PX(x)
∑
y∈Y

PY |X(y|x) log2 PY |X(y|x)

= −
∑
x∈X

∑
y∈Y

PXY (x, y) log2 PY |X(y|x), (2.3)

where PY |X(·) and PXY (·) denote the conditional and joint probabilities, respectively.
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2.1 Source Coding

Definition 2.1.4 (Mutual Information [CT06]). Let X and Y be two discrete random

variables with alphabet X and Y, respectively. The mutual information between X and Y

is defined by

I(X;Y ) =
∑
x∈X

∑
y∈Y

PXY (x, y) log2
PXY (x, y)

PX(x)PY (y)
. (2.4)

It can also be shown that I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). We can now

relate the entropy to source coding.

Lossless Source Coding

Lossless source coding, also known as entropy coding, aims to reduce the redundancy in

representing data without any loss of information. This technique plays a crucial role in

various applications such as data compression and efficient storage and transmission of

digital information.

Shannon’s theorem provides a mathematical foundation for lossless source coding [Sha48].

It states that for any discrete memoryless source with a finite alphabet of symbols and a

known probability distribution, one can construct a code that can represent the source’s

output with an average codeword length arbitrarily close to the source’s entropy. The

entropy of a source quantifies the average amount of information contained in each symbol

and serves as an upper bound on the average codeword length required to represent the

source optimally. The theorem establishes a theoretical limit for lossless source coding,

known as the entropy bound, which states that no code can achieve an average codeword

length lower than the entropy of the source. In other words, it is impossible to compress

a source beyond its inherent information content.

Several practical lossless source coding techniques have been developed based on Shan-

non’s theorem. One prominent example is the Huffman coding algorithm, which con-

structs variable-length prefix codes by assigning shorter codewords to more frequently

occurring symbols and longer codewords to less frequent symbols [Huf52]. Huffman cod-

ing is widely used in various applications, including image, audio, and video compression,

as well as in file compression formats such as ZIP.

Lossy Source Coding

For this work, lossy source coding is more relevant. It is an approach that aims to com-

press data while allowing the loss of some information, thus achieving higher compression
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2 Preliminaries

ratios than lossless compression. Shannon’s rate-distortion theorem provides a theoret-

ical foundation for lossy source coding by establishing a trade-off between the rate of

compression and the distortion introduced in the reconstructed data [Sha59].

The block diagram of the rate-distortion problem is depicted in Figure 2.2. A discrete

memoryless source PX(·) produces a sequence Xn observed by an encoder, where Xn =

(X1, X2, . . . , Xn). There, Xn is quantized to a sequence represented by an index W .

Then, the decoder reconstructs the sequence X̂n based on the received index W . The

average distortion is required to be at mostD, i.e., E[dn(Xn, X̂n)] ≤ D, where E[·] denotes
the expectation operator, dn(Xn, X̂n) = 1

n

∑n
i=1 d(Xi, X̂i) for some distortion function

d(X, X̂), and D is some specified value [Sha59].

Source Encoder Decoder Sink
Xn W X̂n

Figure 2.2: Block diagram of the rate-distortion problem.

Definition 2.1.5 (Hamming Distortion). The Hamming distortion is given by

d(x, x̂) =

{
0 if x = x̂

1 if x ̸= x̂
. (2.5)

The Hamming distortion is the distortion used hereinafter unless stated otherwise.

Definition 2.1.6 (Rate-Distortion Function). The rate-distortion function of an inde-

pendent and identically distributed (i.i.d.) source X is given by

R(D) = min
PX̂|X(x̂|x):E[d(X,X̂)]≤D

I(X; X̂). (2.6)

The rate-distortion function is equal to the minimum rate required to achieve a distortion

level D or lower.

Example 2.1.2 (Rate-Distortion Function of a Bernoulli Source). The rate-distortion

function of a Bernoulli source X ∼ Bern(p) can be expressed as

R(D) = H2(p)−H2(D). (2.7)

The proof of (2.7) can be found in [CT06, Chapter 10]. If we consider a uniformly

distributed source, i.e., X ∼ Bern(0.5), the resulting rate-distortion function will be

R(D) = 1 − H2(D) and it is plotted in Figure 2.3. The curve in the figure will be of

6



2.2 Channel Coding

interest for later evaluations of coding schemes. Unfortunately, the bound is not perfectly

achievable in practice due to factors such as finite blocklengths, computational complexity

in implementation, and other constraints imposed by the scenario. They lead to devia-

tions from the bound and require additional considerations and trade-offs. Therefore, we

will aim to get as close to the bound as possible while considering the other aspects of our

problems in the following chapters.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

D

R
(D

)

Figure 2.3: The rate-distortion function for a source X ∼ Bern(0.5).

2.2 Channel Coding

Channel coding is a vital aspect of communication systems. There, the objective is to

transmit data reliably over noisy channels. When data is transmitted, it is susceptible

to various sources of interference and noise that can corrupt the signal. Channel coding

introduces redundancy, enabling the receiver to detect and correct errors. In this respect,

it can be thought of as a dual to source coding.

Figure 2.4 depicts the block diagram of the channel coding problem. A source message

W is mapped to a channel input Xn by an encoder. A discrete memoryless channel is

represented as the conditional probability distribution PY |X(·), and Y n is the channel

output. For the decoder output Ŵ , the objective is to find the maximum rate, which is

called the capacity, such that the probability of W ̸= Ŵ is arbitrarily close to zero.
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2 Preliminaries

Source Encoder PY |X(·) Decoder Sink
W Xn Y n Ŵ

Figure 2.4: Block diagram of the channel coding problem.

Shannon’s channel capacity sets the foundation for understanding the importance of

channel coding and quantifies the maximum achievable data transmission rate over a noisy

communication channel [Sha48]. It is determined by the mutual information between the

transmitted and received signals, representing the amount of information that can be

reliably transmitted through the channel.

Definition 2.2.1 (Channel Capacity [CT06]). The channel capacity is defined as

C = max
PX(x)

I(X;Y ), (2.8)

where X and Y represent the transmitted and received signals, respectively.

As an example, the AWGN channel is shown in Figure 2.5. There, N ∼ N (0, σ2) repre-

sents the channel noise and N (0, σ2) denotes the Gaussian distribution with mean 0 and

variance σ2.

X Y

N

Figure 2.5: AWGN channel.

Definition 2.2.2 (Signal-to-Noise Ratio). The signal-to-noise ratio (SNR) represents

the ratio of the signal power to the noise power and is given by

SNR =
Psignal

Pnoise
(2.9)

=
E[|X|2]
E[|N |2]

, (2.10)

where (2.10) is relevant when the signal and noise are shown by the random variables X

and N , respectively.

The SNR influences the channel capacity and characterizes the quality of the communi-

cation channel, with higher SNR values indicating a better signal quality relative to the

noise. As the SNR increases, the channel capacity also increases, allowing for higher data

8



2.2 Channel Coding

rates. This relationship can be captured by Shannon’s capacity formula for the AWGN

[Sha48] and shown by C = 1
2 log2(1+SNR) in bits per channel use (bpcu), see Figure 2.6,

where dB stands for decibel and SNRdB = 10 log10(SNR). Intuitively, when the SNR

is low, the channel capacity decreases, and the data rate must be kept low to maintain

reliable communication. As the SNR improves, the capacity increases, allowing for higher

data rates without compromising the error performance.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0
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Figure 2.6: Shannon’s channel capacity for AWGN with Gaussian inputs.

The channel capacity serves as a benchmark for evaluating the performance of various

coding schemes, allowing for the optimization of communication systems in practical

scenarios. While it provides an essential measure of the maximum data rate, ensuring

reliable transmission requires additional techniques such as error correction coding. By

adding redundancy to the original message, error correction codes provide a means to

detect and potentially recover from errors at the receiver. Linear codes are a commonly

used class of error correction codes.

Definition 2.2.3 (Linear Code). A linear code C is defined as a k-dimensional subspace

of Fn
q , where Fn

q is a finite field with n elements of alphabet size q.

In this work, we will be working with the binary numbers, i.e., F = F2.

Linear codes have two essential characterizations: the generator and parity-check matri-

ces.

9



2 Preliminaries

Definition 2.2.4 (Generator Matrix). The generator matrix G of a linear code C is a

k × n matrix over F whose row space generates the codewords of C, i.e., G ∈ Fk×n and

cn ∈ C ⇔ ∃uk ∈ Fk : cn = uk ·G. If G has the form (Ik | A), where Ik is the k × k
identity matrix, it is called a systematic generator matrix.

Definition 2.2.5 (Parity-Check Matrix). The parity-check matrix H of a linear code C
is an (n− k)× n matrix over F and the product of any codeword of C and the transpose

of H yields the zero vector, i.e., H ∈ F(n−k)×n and cn ∈ C ⇔ cn ·HT = 0n−k.

It can also be shown that G ·HT = 0. If the product of the received codeword and the

parity-check matrix is nonzero, it indicates the presence of errors. This is called syndrome

and provides information to correct the errors during decoding.

Definition 2.2.6 (Syndrome). Let H be a parity-check matrix for the code C and rn ∈ Fn.

The syndrome of rn is defined as sn−k = rn ·HT . Note that sn−k = 0n−k ⇔ rn ∈ C.

Example 2.2.1 (Repetition Code). Let C be the linear code corresponding to the gener-

ator matrix

GRP =
(
1 1 1 1 1

)
. (2.11)

It means repeating an information vector of length k = 1 to form a codeword of length

n = 5. Then the corresponding parity-check matrix H ∈ F4×5 can be shown as

HRP =


1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

 . (2.12)

The rate of this code is given by R = k/n = 1/5. Note again that any received vector

other than r5 = (0, 0, . . . , 0) and r5 = (1, 1, . . . , 1) gives s4 ̸= 04, which indicates an error.

Remark. It can be easily seen in Example 2.2.1 how simple error correction can be made.

If dn(cn, rn) < 1/2, the majority bit will give the information even if erroneous bits occur.

A comprehensive study of various error control coding techniques, including syndrome

decoding, can be found in [LC01].

2.3 Low-Density Codes and Tanner Graphs

LDPC codes are a class of error correcting codes that have attracted significant attention

in the field of communication systems. They were first introduced by Gallager [Gal62]

10



2.3 Low-Density Codes and Tanner Graphs

in the 1960s and have emerged as a powerful tool for achieving reliable communication

over noisy channels. Gallager’s seminal work laid the foundation for LDPC codes and

their subsequent advancements. Inspired by his ideas, researchers such as MacKay and

Neal made significant contributions to the theory and practical aspects of LDPC codes

[MN97].

Construction of LDPC codes involves designing a parity-check matrix. There are sev-

eral methods for constructing LDPC codes, including random constructions [Gal62] and

protograph-based constructions [Tho03]. Protograph-based constructions provide a sys-

tematic approach to constructing LDPC codes. A protograph is a small, regular graph

that represents the structure of the LDPC code. By repeating and connecting pro-

tographs, larger LDPC codes are formed. For in-depth discussions on protograph-based

constructions, we refer to [Tho03]. The choice of LDPC code construction method de-

pends on various factors such as error correction performance and complexity constraints.

Each construction technique has its advantages and trade-offs. Further details on the code

construction are beyond the scope of this thesis.

The sparsity property plays a crucial role in LDPC codes, particularly in the context

of decoding algorithms. LDPC codes are designed with a sparse parity-check matrix,

where only a small fraction of the elements are nonzero. This sparsity is vital because

LDPC codes are typically decoded using BP algorithms, see Section 2.4, rather than the

computationally expensive maximum likelihood decoding. In dense matrices with a high

density of nonzero elements, the cycles are encountered, and BP becomes computationally

infeasible due to the extensive message passing required. Therefore, the sparsity property

of LDPC codes is essential for enabling the practical use of BP decoding, providing an

efficient and feasible approach for error correction. An amazing animation of how LDPC

codes work can be watched in [Art18].

Tanner Graphs

Tanner graphs [Tan81], named after Stephen Tanner, are graphical representations that

provide valuable insights about LDPC codes. They allow for an understanding of the

code structure, decoding algorithms, and performance limits.

Example 2.3.1 (Tanner Graph of a Parity-Check Matrix). Let C be the linear code

11



2 Preliminaries

corresponding to the systematic parity-check matrix

H =

1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

 . (2.13)

From Definition 2.2.5, n − k = 3 and n = 7. Thus, the Tanner graph of the parity-

check matrix H will have n − k = 3 check nodes and n = 7 variable nodes. Each row

of H represents a check node, while each column of H represents a variable node. For

every nonzero entry in H, an edge is created between the corresponding check and variable

nodes, see Figure 2.7. Note that all check nodes sum to zero if and only if z7 ∈ C, e.g.,
the node f1 “checks” if z1 ⊕ z5 ⊕ z6 ⊕ z7 = 0, where ⊕ denotes the modulo 2 addition.

f1

0

f2

0

f3

0

z1 z2 z3 z4 z5 z6 z7

Figure 2.7: The Tanner graph of the parity-check matrix given by (2.13).

2.4 Message Passing Algorithms

MPAs play a crucial role in decoding LDPC codes. They leverage the graphical repre-

sentation of LDPC codes to iteratively exchange messages between variable nodes and

check nodes. In this section, we discuss them verbally. In the following chapters, we will

delve into the specific examples of MPAs and examine them algorithmically.

The BP algorithm, also known as sum-product algorithm [KFL01], is a fundamental

MPA used for the decoding of LDPC codes. It operates on the Tanner graph. There,

each variable node sends a message to its connected check nodes. This message represents

the belief or probability distribution of the variable’s value based on the received channel

information. The check nodes then process the received messages and compute their own

messages, representing the satisfaction of the associated parity-checks. These check node

messages are then sent back to the variable nodes, see Figure 2.8. Upon receiving check

12



2.5 Probabilistic Shaping

node messages, variable nodes update their beliefs by combining the information from the

received messages. This iterative process continues until a certain convergence criterion is

met or a maximum number of iterations is reached. The BP algorithm in LDPC decoding

is based on the assumption that the code is constructed to have a low-density structure,

meaning that only a small number of variables participate in each parity-check equation,

see Section 2.3.

f1

z1 z2 z3

m z1
→f1

m
z 2
→

f 1

m
f
1→

z
3

(a) From the check node to variable node
step, e.g., the check node f1 receives the
messages from the variable nodes z1 and
z2, then generates the message mf1→z3

to be sent to the variable node z3.

z1

f1 f2 f3

m
f
1→

z
1

m
f
2 →

z
1

m
z 1
→
f 3

(b) From the variable node to check node
step, e.g., the variable node z1 receives
the messages from the check nodes f1
and f2, then generates the message
mz1→f3 to be sent to the check node f3.

Figure 2.8: Message passing steps in BP algorithm.

Generalizing from BP, there are many variants of MPAs that follow a similar framework.

These algorithms include min-sum algorithm [ZZB05], generalized BP [YFW+03], and

TP [Reg09], among others. They differ in the way messages are computed and updated,

but they share the underlying idea of exchanging information between variable nodes

and check nodes iteratively. MPAs have been widely adopted in various applications

such as wireless communications and storage systems, due to their effectiveness and low

complexity compared to alternative decoding methods.

2.5 Probabilistic Shaping

Probabilistic shaping is a technique that aims to improve the performance and efficiency

of data transmission in communications systems. It involves designing the probability

distribution of the transmitted symbols to maximize the achievable information rate

and minimize the error probability. In traditional modulation schemes with uniform

signaling, all symbols are transmitted with equal probability. However, the performance

of the system can be significantly improved by assigning higher probabilities to certain

symbols.

Definition 2.5.1 (On-Off Keying Modulation). OOK is a digital modulation scheme

13
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where the information is encoded by using two levels of amplitude. Let m(t) be the binary

message signal. The OOK modulated signal is given by

s(t) =

{
0 if m(t) = 0

A if m(t) = 1
, (2.14)

where A is the amplitude of the carrier signal.

We will assume that the amplitude of the carrier signal A = 1 hereinafter unless stated

otherwise.

Example 2.5.1 (Probabilistic Shaping with OOK Modulation). Let X ∼ Bern(0.5)

represent the symbols in an OOK scheme. Then the average symbol energy spent for the

transmission can be found by

Es = E[|X|2] = 1

2
·
(
02 + 12

)
=

1

2
. (2.15)

If we can allocate a higher probability to the zero symbol for the same message input, e.g.,

PX(0) = 3/4, the average symbol energy spent for the transmission will decrease to

Es = E[|X|2] = 3

4
· 02 + 1

4
· 12 = 1

4
. (2.16)

Probabilistic shaping finds applications in various communications systems. In fiber-

optic communication, probabilistic shaping has been shown to increase the achievable

data rates over long-haul optical links [BSS17]. In satellite communications, it enables

higher throughput and improved spectral efficiency, which is crucial for delivering high-

bandwidth services to remote areas [EA20]. One area of interest is the investigation of

different shaping techniques and their performance characteristics. Researchers are ex-

ploring various shaping distributions and optimization algorithms to find the best prob-

abilistic shaping schemes for different channel conditions [RFY+17]. Ongoing research

aims to explore different shaping techniques, integrate shaping with advanced modulation

schemes, and develop low-complexity algorithms for practical implementations.
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3 Coding with Side Information

In this chapter, we introduce two information theory concepts that are of interest to us

for this thesis and relate to probabilistic shaping. We will start with discussing channel

coding with side information, which explores strategies to enhance communication over

noisy channels by exploiting side information available to the encoder. Then, we introduce

source coding with side information, which investigates efficient compression techniques

when additional information is available to the decoder.

3.1 Channel Coding with Side Information

Channel coding with side information (CCSI), also known as the Gelfand-Pinsker prob-

lem, was initially introduced by Israel Gelfand and Mark Pinsker [GP80] in 1980. In their

seminal work, they addressed the scenario where the transmitter has the side informa-

tion with the message to be sent, while the receiver lacks access to this side information

during decoding. They investigated the fundamental limits and optimal coding strategies

for reliable communication under these circumstances. CCSI over AWGN with Gaussian

interference is known as dirty paper coding (DPC), and it enables efficient transmis-

sion over channels corrupted by interference or noise by leveraging knowledge about the

interference at the transmitter.

The binary CCSI problem plays a major role for us since we will be dealing with this

problem in the following chapters. By quantizing the side information with the encoder

and transmitting the quantization error with OOK modulated symbols, the channel input

distribution can be shaped, and the average symbol energy is decreased, which motivates

probabilistic shaping discussed in Section 2.5.

In the Gelfand-Pinsker problem, the side information is available only at the encoder. This

poses a challenge as the receiver must decode the message solely based on the received

signal without any direct knowledge of the side information. Figure 3.1 depicts the block

diagram of the binary Gelfand-Pinsker problem discussed in this section [WM09]. Let

C ⊂ Fn be a linear code of rate R = k/n. We encode a message Mk ∈ Fk into a codeword

15



3 Coding with Side Information

Xn ∈ C. There is side information Zn ∈ Fn only available to the encoder but not the

decoder. The channel noise is shown by Wn ∈ Fn with each Wi ∼ Bern(δ). Then the

output at the decoder will be Y n = Xn ⊕ Zn ⊕Wn. We also have a constraint on the

average weight of the codeword such that 1
n

∑n
i=1Xi ≤ p and δ < p ≤ 1/2.

Source Encoder Decoder Sink

Wn

Zn

Mk Xn Y n M̂k

Figure 3.1: Block diagram of the binary CCSI (Gelfand-Pinsker) problem.

Definition 3.1.1 (Capacity of the Gelfand-Pinsker Problem [GP80]). The capacity of

the binary Gelfand-Pinsker problem is expressed by

RGP (p, δ) = H2(p)−H2(δ). (3.1)

3.2 Source Coding with Side Information

Lossy source coding with side information (SCSI), also known as the Wyner-Ziv problem,

addresses the problem of compressing data when the decoder has access to side informa-

tion that is correlated with the source. In classical source coding, the encoder has full

knowledge of the source data and aims to minimize the number of bits required to rep-

resent it accurately at the decoder. However, there may be scenarios where the decoder

has some additional information about the source. Then it is possible to exploit this side

information to achieve better compression performance.

The SCSI problem was formulated by Aaron Wyner and Jacob Ziv [WZ76] in the 1970s.

The encoder’s objective is to generate a compressed representation of the source that,

together with the side information available at the decoder, enables the reconstruction of

the source with limited distortion.

Figure 3.2 depicts a block diagram of the binary Wyner-Ziv problem discussed in this

section [WM09]. Xn ∈ Fn is a binary i.i.d. source sequence with each Xi ∼ Bern(0.5).

We also have additional information Zn ∈ Fn only available to the decoder but not the

encoder. It is given by Zn = Xn ⊕ Wn, where Wn ∈ Fn with each Wi ∼ Bern(δ).
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3.2 Source Coding with Side Information

The decoder reconstructs the sequence X̂n based on the received index U and the side

information Zn.

Source

Wn

Encoder Decoder Sink
Xn U

Zn

X̂n

Figure 3.2: Block diagram of the binary SCSI (Wyner-Ziv) problem.

Definition 3.2.1 (Rate-Distortion Function of the Wyner-Ziv Problem [WZ76]). The

rate-distortion function of the Wyner-Ziv problem for binary symmetric source with binary

symmetric channel side information is the lower convex envelope of the function shown

by

gWZ
δ (D) =

{
H2(D ∗ δ)−H2(D) if 0 ≤ D < δ

0 if D = δ
, (3.2)

where D ∗ δ = D(1− δ) + δ(1−D).

As discussed in Example 2.1.2, when performing lossy compression of a source X ∼
Bern(0.5), the minimum rate required to attain a distortion D or lower is given by

R(D) = 1−H2(D). Note that when δ = 1/2, the side information becomes meaningless

and we will have l.c.e{gWZ
1/2 (D)} = R(D) = 1 − H2(D), where l.c.e denotes the lower

convex envelope.

SCSI framework provides an approach that can capture complex dependencies and cor-

relations between the source data and side information. This enables the development

of coding schemes that achieve efficient compression while accommodating real-world

constraints and requirements. From this perspective, SCSI finds applications in diverse

fields such as multimedia communication, image and video coding, sensor networks, and

beyond.
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4 LDGM/LDPC Compound Code and

Message Passing Algorithms

In this chapter, we discuss a code construction to the CCSI problem and our contributions

to that. First, we will introduce the construction by Wainwright and Martinian [WM09],

which combines an LDGM code and an LDPC code as a solution to the Gelfand-Pinsker

and Wyner-Ziv problems. Then, we will examine two MPAs, the belief propagation (BP)

and truthiness propagation (TP) [Reg09] algorithms, as good candidates for the LDPC

and LDGM codes, respectively. Finally, we will propose an MPA for the LDGM/LDPC

compound codes with binary CCSI, inspired by the BP and TP algorithms.

4.1 Wainwright and Martinian’s Construction

Martin Wainwright and Emin Martinian provided a code construction [WM09] for binning

and coding with side information. They showed that their code achieves the theoretical

rate regions of the Gelfand-Pinsker and Wyner-Ziv problems when optimal encoding and

decoding are employed. The construction involves combining a low-density generator

matrix (LDGM) code and a low-density parity-check (LDPC) code, thus providing a

sparse and graphical structure. As discussed in Sections 2.3 and 2.4, this structure holds

a potential for utilizing the MPAs since the optimal encoding and decoding are infeasible

to implement in practice.

LDGM codes are linear codes with a sparse generator matrix. The dual of an LDGM

code is an LDPC code.

Definition 4.1.1 (Dual Code). Let G ∈ Fk×n be a generator matrix for the code C. The

dual code C⊥is defined by cn ∈ C⊥ ⇔ cn ·GT = 0k.

Remark. It is important to state here that the LDGM and LDPC codes that we use to

build the compound code in this section will not necessarily be the duals of each other.

LDGM codes are shown to achieve the rate-distortion bound for lossy source coding
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4 LDGM/LDPC Compound Code and Message Passing Algorithms

problems when the optimal encoding is performed [WMM10]. Examples 4.1.1 and 4.1.2

highlight the details on the Tanner graphs of an LDGM code and an LDPC code, respec-

tively, for the following discussions.

Example 4.1.1 (Tanner Graph of an LDGM Code [WM09]). Let G ∈ Fn×m be the

generator matrix of an LDGM code. The Tanner graph of such a code is depicted in

Figure 4.1. There, xn ∈ Fn and zm ∈ Fm represent the codeword and information

sequence, respectively. We also have xn = zm ·GT . For a lossy source coding problem,

the encoder will be given a sequence xn and will be looking for a codeword x̂n, i.e., ∃zm ∈
Fm : x̂n = zm ·GT , with E[dn(Xn, X̂n)] ≤ D. Note that for the example, n = 12, m = 9,

and we have an LDGM code of rate R = m/n = 3/4.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

n

Gn×m

z1 z2 z3 z4 z5 z6 z7 z8 z9

m

Figure 4.1: The Tanner graph of an LDGM code.

Example 4.1.2 (Tanner Graph of an LDPC Code [WM09]). Let H ∈ Fm×n be the

parity-check matrix of an LDPC code C. The Tanner graph of such a code is depicted in

Figure 4.2. There, yn ∈ Fn represents the received sequence in a channel coding scenario.

Any syndrome yn ·HT ̸= 0m will indicate an error and yn ·HT = 0m if and only if yn ∈ C.
Note that for the example, n = 12, m = n − k = 6, and we have an LDPC code of rate

R = k/n = 1/2.

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12
n

Hm×n

0 0 0 0 0 0

m

Figure 4.2: The Tanner graph of an LDPC code.
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4.1 Wainwright and Martinian’s Construction

LDGM/LDPC Compound Code

Wainwright and Martinian’s LDGM/LDPC compound code [WM09] is illustrated in Fig-

ure 4.3. The upper part of the Tanner graph represents the LDGM code, while the lower

part represents the LDPC code. The compound code is a good source code and good

channel code at the same time, thanks to the LDGM and LDPC parts, respectively.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

n

Gn×m

m

s1 s2 s3 0 0 0

H(k+k′)×m

k k′

Figure 4.3: The Tanner graph of the LDGM/LDPC compound code.

The rate region of the Wyner-Ziv problem can be achieved when optimal processing is

performed with the compound code [WM09]. We will not go into further detail about

this and focus on the Gelfand-Pinsker problem, which is more relevant to this thesis.

Unlike what we have introduced so far, the LDPC part of the compound code has k

check nodes which are not necessarily even checks, i.e., the check nodes now “check” if

the variable nodes are summed not just to zero, but also one, see Figure 4.3.

Let C be the linear code for the compound structure when k = 0, i.e., k check nodes and

the connected edges are removed from the graph. Then C has rate R = RLDGM×RLDPC =
m
n ×

m−k′

m = m−k′

n . With k > 0, i.e., new check nodes and the connected edges are added

back to the graph, we increase the number of parity-checks. Only a subset C(sk) ⊂ C
satisfies the new checks. This C(sk) is a coset of C, where all checks sk ∈ Fk are satisfied

in addition to k′ checks from C. It can be shown that the code C is the composition of

these cosets, i.e., C =
⋃

sk∈Fk C(sk). Note that C(sk) is a code of rate R = m−(k+k′)
n and

a linear code if and only if sk = 0k.

We now explain how the compound code can be used to attain the rate region of the
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4 LDGM/LDPC Compound Code and Message Passing Algorithms

Gelfand-Pinsker problem. Design C to be a good channel code of rate R = m−k′

n such

that C(sk) are good source codes of rate R = m−(k+k′)
n . If we consider the binary CCSI

problem from Section 3.1, for a given message sk ∈ Fk, the side information zn ∈ Fn will

be compressed to ẑn ∈ C(sk). The encoder will transmit the quantization error, which

is the codeword of this scheme, xn = zn ⊕ ẑn. Then the output at the decoder will be

yn = xn ⊕ zn ⊕ wn = ẑn ⊕ wn. Since C(sk) is a good source code, the constraint on the

average weight of the codeword 1
n

∑n
i=1 xi =

1
n

∑n
i=1 zi ⊕ ẑi = dn(zn, ẑn) ≤ p is satisfied.

Since C is a good channel code, ẑn can be obtained successfully from the received yn.

As ẑn is a member of a particular coset C(sk), it is possible to decode the message sk,

meaning that R < H2(p)−H2(δ) can be attained [KVNP14].

4.2 Belief Propagation for LDPC Codes over Binary-Input

Channels

The standard BP algorithms can be used for LDPC codes, as we discussed in Section 2.4.

In this section, we present the BP algorithm for LDPC codes over binary-input channels

and will be utilizing it as a part of the MPA proposed for the LDGM/LDPC compound

code in Section 4.4.

Algorithm 1 describes the BP algorithm in the context of channel coding. For the parity-

check matrix H ∈ Fm×n and the received codeword yn ∈ Fn, it decodes to ĉn ∈ Fn.

There, F (i) represents the set containing the indices j of check nodes fj to which the

variable node zi is connected. V (j) is the set containing the indices i of variable nodes

zi to which the check node fj is connected. Lzi→fj shows the message sent from the

variable node zi to the check node fj . We denote the sent messages by L since we are

switching to the log-likelihood ratio (LLR) domain with line 1 instead of the probability

domain. LLR is a measure of the reliability associated with the received information

about a particular bit. It represents the logarithm of the ratio between the likelihood of

the received bit being a zero and the likelihood of it being a one. X in line 1 corresponds

to the transmitted code bit. We output the final LLRs Λn for future use.

4.3 Truthiness Propagation for LDGM Codes with Binary

Sources

The sparse and graphical structure motivates LDGM codes as good candidates for en-

coding with MPAs, see Sections 2.3 and 2.4. Unfortunately, the standard BP algorithms
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Algorithm 1: Belief propagation algorithm.

Data: Received sequence yn ∈ Fn, parity-check matrix H ∈ Fm×n, number of
iterations W

Result: Decoded codeword ĉn ∈ Fn, final LLRs Λn

1 for i← 1 to n do Li ← ln
PY |X(yi|0)
PY |X(yi|1) ;

2 for j ← 1 to m do
3 foreach i ∈ V (j) do Lfj→zi ← 0;

4 end
5 for w ← 1 to W do
6 for i← 1 to n do
7 foreach j ∈ F (i) do Lzi→fj ← Li +

∑
k∈F (i)
k ̸=j

Lfk→zi ;

8 end
9 for j ← 1 to m do

10 foreach i ∈ V (j) do Lfj→zi ← 2 tanh−1

 ∏
k∈V (j)
k ̸=i

tanh
(
Lzk→fj

2

);

11 end

12 end
13 for i← 1 to n do
14 Λi ← Li +

∑
k∈F (i)

Lfk→zi ;

15 if Λi < 0 then ĉi ← 1 else ĉi ← 0;

16 end
17 return ĉn,Λn;

are not suited to run over the LDGM code graphs as the iterations do not converge to

something meaningful [Reg09]. Therefore, more advanced MPAs have to be developed.

There are several MPAs provided such as TP [Reg09], survey propagation [TMZ06] and

BPGD [WMM10]. In this work, we focus on Regalia’s TP algorithm for two main rea-

sons. First, it is much easier compared to the others, meaning that it provides a lower

computational complexity. Second, it gives more flexibility in terms of composability for

the MPA we will propose for the LDGM/LDPC compound code in Section 4.4.

In addition to the standard BP algorithm, Regalia [Reg09] proposed to add another node

to the Tanner graph to create a new message update step. A representative part of the

new Tanner graph is depicted in Figure 4.4. There, qj is the new node, and mzi→fj

shows the message sent from the node zi to the node fj . We extend this notation to

distinguish bits, e.g., mzi→fj (1) is the probability that the message sent from the node

zi to the node fj is one. It is always satisfied that mzi→fj (0) +mzi→fj (1) = 1. We have
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4 LDGM/LDPC Compound Code and Message Passing Algorithms

mfj→xj
= mxj→qj and mxj→fj = mqj→xj = αxj +(1−α)mxj→qj , where α = 1− 2D with

distortion D. Note that nothing has changed in the LDGM code itself, and the rest of

the Tanner graph is as in Figure 4.1.

xj qjfj

z1

z2

..
.

zk

m
z1→fj

mz2→fj

mzk→
fj

mfj→xj

mxj→fj

mxj→qj

mqj→xj

Figure 4.4: The new update node added for the TP algorithm.

Algorithm 2: Truthiness propagation algorithm. Adapted from [Reg09].

Data: Source sequence xn ∈ Fn, generator matrix G ∈ Fn×m, algorithm constant α,
dither amplitude d, number of iterations W

Result: Reconstructed source sequence x̂n ∈ Fn, beliefs one bm(1), beliefs zero bm(0)
1 for i← 1 to m do
2 foreach j ∈ F (i) do Nij ← sample from N (0, 1), mzi→fj (1)← 0.5 + dNij ;

3 end
4 for w ← 1 to W do
5 for j ← 1 to n do
6 mfj→xj

(1)← 1
2

{
1−

∏
k∈V (j)

(
1− 2mzk→fj (1)

) }
;

7 mxj→fj (1)← αxj + (1− α)mfj→xj
(1);

8 foreach i ∈ V (j) do
mfj→zi(zi)← 1

2

{
1 + (−1)zi

(
1− 2mxj→fj (1)

)
×

∏
k∈V (j)
k ̸=i

(
1− 2mzk→fj (1)

) }
;

9 end
10 for i← 1 to m do
11 foreach j ∈ F (i) do mzi→fj (zi)← ζij

∏
k∈F (i)
k ̸=j

mfk→zi(zi) ;

12 end

13 end
14 for i← 1 to m do
15 bi(zi)← ζi

∏
k∈F (i)

mfk→zi(zi);

16 if bi(1) > bi(0) then zi ← 1 else zi ← 0;

17 end
18 return x̂n ← zm ·GT , bm(1), bm(0);

Algorithm 2 presents the TP algorithm for a lossy source coding problem. It quantizes a
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4.3 Truthiness Propagation for LDGM Codes with Binary Sources

source sequence xn ∈ Fn to the reconstructed sequence x̂n ∈ Fn for a given LDGM code

with the generator matrix G ∈ Fn×m. There, we use fn, zm, F (·), and V (·) in the same

sense as in Algorithm 1. The factor ζ ensures that the sum of m(·)(1) and m(·)(0) is one

at each step, e.g., mzi→fj (0)+mzi→fj (1) = 1. We output the beliefs bm(·) for future use.

Figure 4.5 shows the rate-distortion performance of Algorithm 2 as the empirical average

of 4,000 runs, with 200 different frames for each 20 different generator matrices. The pa-

rameters are n = 300, m = {60, 100, 120, 150, 200}, each xj ∼ Bern(0.5), α = 1−2D with

R(D) = 1 −H2(D) = RLDGM = m/n, d = 0.001, and W = 50. The average distortion

is dn(xn, x̂n) = 1
n

∑n
j=1 d(xj , x̂j). The generator matrices are randomly generated with 2

ones in each row and 2n/m ones in each column, as in [Reg09].

0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8
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R
at
e

Rate-distortion bound
Algorithm 2

Figure 4.5: The rate-distortion performance of Algorithm 2 with n = 300.

Despite the gap to the rate-distortion bound in Figure 4.5, Algorithm 2 offers reasonable

performance given the low implementation complexity. It has been shown that the gap

to the bound can be reduced by generating irregular generator matrices [Reg09], which

we will not discuss in this work.
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4.4 Proposed Algorithm for LDGM/LDPC Compound

Codes with Binary CCSI

It is of interest to develop appropriate MPAs for the LDGM/LDPC compound code.

The challenge of this structure is to find an MPA that satisfies both LDGM and LDPC

codes’ check nodes. There are very few studies addressing this issue. [WH09, KT08]

approach the problem from a DPC perspective. [WH09] focuses on optimizing the degree

distributions of the codes. Although [KT08] does not directly use the LDGM/LDPC

compound code, they make use of an LDPC code for quantization purposes. The BPGD

algorithm [WMM10] was shown to be very successful in LDGM codes, thus making it

a potential candidate for the compound structure. However, [KVNP14] showed that it

was always incapable of satisfying the check nodes. [KVNP14] suggested to use SC as

the only solution that makes the BPGD algorithm work. But SC greatly increases the

computational complexity. In this work, we focus on schemes without SC and propose

new MPAs for both the encoding and decoding, inspired by the BP and TP algorithms.

The basis of our choice and proposal is the composability of these two algorithms and

their relatively lower complexity.

Encoding Algorithm

Algorithm 3 summarizes the encoding algorithm. The input notation is as in Figure 4.3.

Two functions are defined by calling Algorithms 1 and 2. The parity-check matrix H

and the BP algorithm have been extended, see lines 1 and 22-23, respectively. Note that

unlike the all-even check nodes assumption in Algorithm 1, now the odd check nodes are

also possible. Ik is the k × k identity matrix and 0 is an all-zero matrix. Λm+k[1 : m]

denotes the the first m elements of Λm+k and Inf means the infinity.

Decoding Algorithm

In the context of classical channel coding, a received sequence yn is decoded to the

codeword x̂n by running MPAs such as Algorithm 1, e.g., if a systematic generator matrix

is used, the message sk can be easily decoded such that ŝk = x̂n[1 : k]. But for the

compound code, the message sk should be recovered from the decoded codeword x̂n,

meaning that it would not be sufficient to just have some x̂n by running a classical MPA.

Therefore, a decoding algorithm concerning the compound structure also needs to be

developed.

Figure 4.6 depicts the Tanner graph of the proposed decoding structure. The graph
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Algorithm 3: Proposed encoding algorithm for the compound code.

Data: Message sk ∈ Fk, side information zn ∈ Fn, generator matrix G ∈ Fn×m,
parity-check matrix H ∈ F(k+k′)×m, algorithm constant α, dither amplitude
d, number of iterations W , number of TP iterations WTP, number of BP
iterations WBP

Result: Codeword xn ∈ Fn

1 H′ ←
(
H

Ik
0

)
;

2 βm(1)← 0m;
3 for i← 1 to W do
4 bm(1), bm(0)← EncoderTruthinessPropagation(zn,G, α, d,WTP, i, β

m(1));

5 υm+k, Λm+k ← EncoderBeliefPropagation(H′,WBP, b
m(1), bm(0), sk);

6 ξm ← Λm+k[1 : m], βm(1)← 1/(1 + eξ
m
);

7 end

8 um ← υm+k[1 : m], ẑn ← um ·GT ;
9 return xn ← zn ⊕ ẑn;

10 Function EncoderTruthinessPropagation(xn,G, α, d,W,ψ, βm(1)):
// Replace lines 1-3 in Algorithm 2 with the following lines 11-17

11 for i← 1 to m do
12 if ψ = 1 then
13 foreach j ∈ F (i) do Nij ← sample from N (0, 1), mzi→fj (1)← 0.5+ dNij ;

14 else
15 foreach j ∈ F (i) do mzi→fj (1)← βi(1);

16 end

17 end
18 Call Algorithm 2 with the given input parameters;
19 return bm(1), bm(0);

20 end
21 Function EncoderBeliefPropagation(H,W, bµ(1), bµ(0), sκ):

// Replace line 1 in Algorithm 1 with the following lines 22-23

22 for i← 1 to µ do Li ← ln bi(0)
bi(1)

;

23 for i← 1 to κ do Lµ+i ← (1− 2si)× Inf;
24 Call new Algorithm 1 with the given input parameters;
25 return ĉn,Λn;

26 end

contains the same nodes as the graph in Figure 4.3. In order to make the proposed

algorithm more understandable, the variable nodes are grouped in a row, and the check

nodes are grouped in a row. yn and ûm represent the received and intermediate node

sequences, respectively. Note that ŝk shows the nodes corresponding to the message.

Therefore, these check nodes cannot be used for decoding at the beginning.
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y1 y2 y3 y4 y5 y6 y7 û1 û2 û3 û4 û5

0 0 0 0 0 0 0 ŝ1 ŝ2 0 0

n k k′

n m

Figure 4.6: The Tanner graph of proposed decoding structure.

The proposed decoding approach is summarized by Algorithm 4. It is a modified version

of Algorithm 1. Since there is no initial information for the intermediate nodes ûm, a

small dither noise is applied to those nodes inspired by the TP algorithm. H1 is excluded

from the graph as ŝk is unknown at first. Note again that the parity-check matrix H

and the BP algorithm have been extended, see lines 2 and 8-9, respectively. After W

iterations, a resulting sequence ûm is obtained. Finally, the decoded message ŝk is found

by using H1. In the notation, H[k + 1 : end, :] means the sub-matrix from matrix H

starting from the row with index k + 1 to the last row, including all columns.
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4.4 Proposed Algorithm for LDGM/LDPC Compound Codes with Binary CCSI

Algorithm 4: Proposed decoding algorithm for the compound code.

Data: Received sequence yn ∈ Fn, generator matrix G ∈ Fn×m, parity-check matrix
H ∈ F(k+k′)×m, dither amplitude d, number of iterations W

Result: Decoded message ŝk ∈ Fk

1 H1 ← H[1 : k, :],H2 ← H[k + 1 : end, :];

2 H′ ←
(
G In
H2 0

)
;

3 for i← 1 to m do Ni ← sample from N (0, 1), bûi
← 0.5 + dNi;

4 υm+n ← DecoderBeliefPropagation(yn,H′,W, bmû );
5 ûm ← υm+n[1 : m];

6 return ŝk ← ûm ·H1
T ;

7 Function DecoderBeliefPropagation(yν ,H,W, bµû):
// Replace line 1 in Algorithm 1 with the following lines 8-9

8 for i← 1 to µ do Li ← ln
1−bûi
bûi

;

9 for i← 1 to ν do Lµ+i ← ln
PY |X(yi|0)
PY |X(yi|1) ;

10 Call new Algorithm 1 with the given input parameters;
11 return ĉ;

12 end
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5 Results and Discussion

In this chapter, we present and discuss the performance of the proposed encoding and

decoding MPAs for the LDGM/LDPC compound code in the previous chapter. First, we

will describe the channel model. Then, we will show the performance of Algorithm 3 at

the transmitter and Algorithm 4 at the receiver after the AWGN channel. Next, based

on the shortcomings of the initial results, we will propose a solution by concatenating an

outer code with the compound code. Finally, we will present the performance of the final

schemes with our comments.

5.1 Channel Model

We present the channel model we will consider in the following sections. Figure 5.1

depicts the end-to-end block diagram of the binary CCSI over AWGN channel. There,

each Θi ∼ N (0, σ2) and the other notation is the same as in the previous chapter. For

the rest of the thesis, we always use OOK as the modulation type of the transmission,

i.e., we send unit energy for each Xi = 1 and zero energy for each Xi = 0. Therefore,

Xn and modulated symbols are equal to each other, and we do not use separate letter

for the modulated symbols. It should be noted here that the average codeword weight
1
n

∑n
i=1Xi is equal to the average symbol energy Es in the case of OOK. This relates to our

motivation with probabilistic shaping. Section 2.5 can be referred to for the discussion.

We have Y n = Xn ⊕ Zn +Θn = Ẑn +Θn, meaning that Y n /∈ Fn anymore.

Source Encoder Decoder Sink

Θn

Zn

Sk Xn Y n Ŝk

Figure 5.1: Block diagram of the binary CCSI over AWGN channel.
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5 Results and Discussion

5.2 Performance of Encoding

As highlighted in Section 4.4, the challenge with the MPAs for the compound code is

finding an encoding algorithm that satisfies all check nodes of the code. Therefore, we

start by examining whether our encoding algorithm can produce a valid codeword, i.e.,

if um · H1
T = sk and um · H2

T = 0k
′
are satisfied. um represents the intermediate

variable nodes at the transmitter side. Here, we use H1 and H2 in the same sense as in

Algorithm 4, such that H1 = H[1 : k, :] and H2 = H[k + 1 : end, :].

Let A and B be two discrete random variables that show the number of unsatisfied

check nodes of H1 and H2, respectively, after Algorithm 3 is performed for the following

parameters. The empirical probability mass functions PA(a) and PB(b) were obtained as

in Figure 5.2 after 4,000 runs, with 200 different frames for each 20 different generator

and parity-check matrices. The parameters are n = 300, m = 200, k = k′ = 50. In

the rest of the thesis, we will use that each {si, zi} ∼ Bern(0.5), α = 1 − 2D with

m/n = 1 −H2(D), d = 0.001, W = 1, and WTP = WBP = 50. Here, W was chosen as

such because the performance starts to deteriorate when W > 1. The generator matrices

are randomly generated with 2 ones in each row and 2n/m ones in each column [Reg09].

We randomly generated the parity-check matrices such that H = (Ik+k′ | P), where P

has 2
(m−(k+k′))/m − 1 ones in each row and 2 ones in each column. Figure 5.3 depicts an

example from the sparsity pattern of the generated matrices G and H, where each dot

in the plot represents the nonzero elements in the matrix.
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)

(a) The distribution of unsatisfied check
nodes number of H1 with k = 50.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

b

P
B
(b
)

(b) The distribution of unsatisfied check
nodes number of H2 with k′ = 50.

Figure 5.2: The performance of the encoding algorithm to generate valid codewords for
n = 300, m = 200, and k + k′ = 100.

As can be seen in Figure 5.2, the distributions of A and B are almost the same. Therefore,

we can conclude that Algorithm 3 performs equally for all check nodes of the LDPC
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5.2 Performance of Encoding

code. Since we will aim to decode the message sk by using H1 at the receiver, we

continue with commenting on Figure 5.2a. PA(0) = 0.489 shows that our encoding

algorithm can correctly encode almost half of the frames. On the other hand, we have

PA(a > 0) = 0.511, so at least 1 of 50 check nodes is not satisfied for the other half of

the frames. We also find E[A] =
∑

a PA(a) · a = 0.809, and it will help us in interpreting

the results that follow.

0 50 100 150 200

0

100

200

300

(a) An example of the generator matrix G
with 600 nonzero elements.
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20

40
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80

100

(b) An example of the parity-check matrix
H with 300 nonzero elements.

Figure 5.3: The sparsity pattern of the generated matrices with n = 300, m = 200, and
k + k′ = 100.

While discussing the encoding performance for the LDPC part, of course, the performance

of the LDGM part is also important since the quantization task is another part of the

Gelfand-Pinsker problem. As discussed in the previous chapters, we can comment on the

quantization performance by considering the gap to the rate-distortion bound. Figure 5.4

illustrates the rate-distortion performance of Algorithm 3 compared to the theoretical

bound and Algorithm 2. It is the empirical average of 4,000 different runs with n = 300,

m = 200, and k = k′ = {50, 60, 70}. Note that the average distortion dn(zn, ẑn) is

also the average weight of the codeword such that 1
n

∑n
i=1 zi ⊕ ẑi =

1
n

∑n
i=1 xi and the

average symbol energy in the case of OOK, e.g., Es ≈ 0.34 for the compound code of

rate R = 1/3 with our encoding algorithm. The rate is R = RLDGM×RLDPC = m−(k+k′)
n

for Algorithm 3, while R = RLDGM = m={60,100,120}
n for Algorithm 2. Since it is not easy

to randomly generate the matrices G and H that satisfy the aforementioned conditions,

we had to limit the number of different rates to three samples in the simulation. It can

be seen in the figure that our encoding algorithm yields an average distortion that is

approximately 0.09 more than only the TP algorithm introduces. We can interpret this

as the cost of the BP iterations trying to generate valid codewords for the LDPC code.
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0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

Average Distortion

R
at
e

Rate-distortion bound
Algorithm 2
Algorithm 3

Figure 5.4: The rate-distortion performance of Algorithm 3 with n = 300, m = 200, and
k = k′ = {50, 60, 70}.

5.3 Performance of Decoding

We have presented the initial results of the encoding algorithm at the transmitter side.

We now investigate how our decoding algorithm behaves at the receiver side, given the

performance of the encoder and the AWGN channel.

We need to find the LLRs for the OOK modulated symbols to be able to run the decoding

algorithm given by Algorithm 4, see line 9. For the AWGN channel, we find

Li = ln
PY |X(yi|0)
PY |X(yi|1)

= ln
PY |X(yi|xi = 0)PX(0)

PY |X(yi|xi = 1)PX(1)
(5.1)

= ln
e−y2i /2σ

2
PX(0)

e−(yi−1)2/2σ2PX(1)
(5.2)

=
1− 2yi
2σ2

+ ln
PX(0)

PX(1)
, (5.3)

where we are calculating the conditional probabilities for all xi by (5.1). Also note that

the average symbol energy Es = E[|X|2] = PX(0) · 02 + PX(1) · 12 = PX(1). Finally, we

distinguish the rate of compound code and overall rate by R = m−(k+k′)
n and R′ = k/n,

respectively. We have provided all the explanations needed to present the performance

of Algorithm 4.
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5.3 Performance of Decoding

Figure 5.5 demonstrates the bit error rate (BER) and frame error rate (FER) performance

of our initial algorithms for the compound code of rate R = 1/3 and R′ = 1/6 with

n = 300, m = 200, and k = k′ = 50. We have Es ≈ 0.34 from Figure 5.4 and define

SNR = 0.34/σ2. BER is the empirical mean of the average message distortion after

running φ frames, i.e., 1
φ

∑φ
i=1 d

k(sk, ŝk). We count a frame error if dk(sk, ŝk) > 0.

The simulation was run until at least 50 frame errors were obtained for each SNR and

providing φ ≥ 1, 000.
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Figure 5.5: The error rate performance of the compound code with n = 300, m = 200,
k = k′ = 50, R = 1/3, and R′ = 1/6.

Based on the results in Figure 5.5, two observations are in order. First, there is an

unexpected jump between 9 dB and 14 dB. This is caused by the formal LLR expression

given by (5.3). The dither noise we use in our encoding and decoding algorithms and

the effects that may arise from the compound code itself make (5.3) inefficient for that

SNR region. This problem can be avoided by informing the receiver in advance and

modifying the (5.3) for the problematic SNR region to provide a better result. We ignore

this problem for now, but we will tackle it in the sections that follow. Second, we have

two BER and FER floors from 15 dB. This is expected and consistent with what we have

discussed with Figure 5.2a. There, A was the random variable that shows the number

of unsatisfied check nodes of H1 when k = 50, i.e., the number of wrongly encoded bits.

We have found E[A] = 0.809, meaning that every 0.809 bits of a message frame of length

50 will be encoded erroneously. It can be seen that the BER floor is at E[A]/50 ≈ 0.016.
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5 Results and Discussion

With the same sense, the FER floor is at PA(a > 0) ≈ 0.5. In the next section, we come

up with a solution to these shortcomings.

5.4 Proposed Algorithm with Concatenated Outer Code

We make use of code concatenation as the solution to the erroneously encoded frames

discussed in the previous section. Concatenated codes are constructed by combining

multiple layers of error correction codes, each layer providing unique error correction

capabilities. Among the various options available for constructing concatenated codes,

the Bose-Chaudhuri-Hocquenghem (BCH) codes [BRC60, Hoc59] stand out as a widely

adopted choice.

BCH codes are a class of cyclic error correction codes. How the BCH codes are generated

is beyond the scope of this work, but [CJC13] can be referred to for the definitions. In

the concatenated code configuration, BCH codes are utilized as the outer code, which

serves as the first layer of error correction. Thus, we can preserve the original message

from the errors caused by our encoding algorithm. On the other hand, note that each

concatenated code will reduce the overall rate R′. Therefore, trying to keep the rate R′ as

high as possible while keeping the error correction capability of the BCH code reasonably

high is the main trade-off of this approach and will be discussed in this section.

Figure 5.6 depicts the new blocks for the encoder and decoder with the concatenated

outer BCH code. The rest of the diagram is as in Figure 5.1. This structure has an

overall rate of R′ = τ/n.

BCH
Encoder

LDGM/LDPC
Encoder

Outer Encoder

Inner Encoder

Encoder

Sτ

Xn

Qk

(a) The new encoder encodes the source
message Sτ to the codeword Xn.

LDGM/LDPC
Decoder

BCH
Decoder

Inner Decoder

Outer Decoder

Decoder

Y n

Ŝτ

Q̂k

(b) The new decoder decodes the received
sequence Y n to the message Ŝτ .

Figure 5.6: The encoder and decoder blocks with the concatenated outer BCH code.

By their definitions, BCH codes cannot be utilized for information sequences or codewords
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5.4 Proposed Algorithm with Concatenated Outer Code

Table 5.1: The available lengths for BCH codes and error correction capabilities.

k . . . 15 15 31 31 31 31 31 63 63 63 63 63 63

τ . . . 7 5 26 21 16 11 6 57 51 45 39 36 30

ϱ . . . 2 3 1 2 3 5 7 1 2 3 4 5 6

k 63 63 63 63 63 127 127 127 127 127 127 127 127 . . .

τ 24 18 16 10 7 120 113 106 99 92 85 78 71 . . .

ϱ 7 10 11 13 15 1 2 3 4 5 6 7 9 . . .

of any length, see [CJC13, Chapter 2]. We also use narrow-sense BCH codes as they

provide efficient decoding algorithms. Thus, we restrict ourselves to choosing τ and k

from a finite set. Table 5.1 provides a part of that set. There, ϱ denotes the error

correction capability of the corresponding code. We denote a BCH code with BCH(k, τ),

e.g., BCH(63, 24) encodes a message of length 24 to the codeword of length 63 and it

ensures that errors up to 7 of 63 codeword bits can be corrected by the decoder.

We now discuss which BCH code to choose to concatenate with our encoder. Figure 5.7

is the same as Figure 5.2a and plotted again for the discussion. We consider the following

criteria.

• The error correction capability of the code should be as high as possible, e.g., if all

encoding errors in Figure 5.7 are to be corrected, the BCH code should have an

error correction capability rate such that ϱ/k ≥ 8/50. This would result in the set

of appropriate codes being {BCH(15, 5),BCH(31, 11),BCH(31, 6), . . .}.

• For a fixed n, the overall rate R′ = τ/n should be as high as possible since we want

to send as many bits as possible at once. BCH codes with a larger τ are therefore

preferred.

• We must take into account the constraints of the compound code, e.g., k is also a

parameter for the parity-check matrix H, and a parity-check matrix that satisfies

the aforementioned conditions may not be easily generated. Another example, for

a fixed m, choosing a k ≥ m would not make sense.

Based on the trade-off considerations above, we propose to concatenate one BCH encoder

with multiple LDGM/LDPC encoders. Figure 5.8 demonstrates the resulting block for

the encoder. There, the message Sτ is encoded to Qκ by the BCH encoder and the BCH

codeword is partitioned to the subframes such that

Qκ =
(
(1)Qκ/λ (2)Qκ/λ . . . (λ)Qκ/λ

)
,
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Figure 5.7: The distribution of encoding bit errors for frame length 50.

where λ is the number of subframes. Note that we denote the BCH codeword length by

κ instead of k to distinguish them for this case. If λ = 1, we do not make use of the

multiple encoders, so κ = k. Finally, the LDGM/LDPC encoders generate the codewords

Xn as usual. We can use the same approach at the decoder, i.e., every λ frames will be

decoded to
(·)
Q̂κ/λ and Ŝτ , respectively. This scheme has an overall rate of R′ = τ/λn.

(1)Qκ/λ

(2)Qκ/λ

(λ)Qκ/λ

BCH
Encoder

LDGM/LDPC
Encoder

..
.

LDGM/LDPC
Encoder

LDGM/LDPC
Encoder

Encoder

Sτ

(1)Xn

(2)Xn

(λ)Xn

Figure 5.8: The encoder block for the concatenation with multiple encoders.

In order to determine which error correction capability to choose for the BCH encoder,

we should first find the probability distribution of encoding bit errors for multiple en-

coders. We know from the probability theory that the sum of two or more independent

random variables follows a probability distribution that can be obtained by convolving

their respective individual distributions. Let Γ be the random variable that shows the

number of encoding bit errors for the multiple encoder frames of length 50 each. Then we

have Γ ∼
∑λ

i=1A, where A is the random variable for one frame as in Figure 5.7. Two

distributions of Γ for λ = {3, 8} are shown in Figure 5.9. There, we set a limit for the
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5.4 Proposed Algorithm with Concatenated Outer Code

error correction capability rate of the BCH code, as specifying a ϱ/κ that will correct all

errors will greatly reduce the overall rate R′. It does not already make sense to consider

all probabilities, e.g. we have only PΓ(18) = 1.39 × 10−7 for λ = 3. We cover at least

99% of the error probabilities by setting a Ξ, where
∑Ξ

γ=0 PΓ(γ) ≥ 0.99 >
∑Ξ−1

γ=0 PΓ(γ).
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(a) λ = 3. We find Ξ = 8, i.e., the desired BCH code should correct at least 8 of 150 errors. Based
on the proposed approach, we decide on BCH(255, 147).
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(b) λ = 8. We find Ξ = 14, i.e., the desired BCH code should correct at least 14 of 400 errors.
Based on the proposed approach, we decide on BCH(511, 358).

Figure 5.9: The distribution of encoding bit errors for multiple encoders with frame length
50 each.

Based on the found Ξ, we refer to Table 5.1 and get a finite subset that provides ϱ/k ≥
Ξ/λ50. Note that this k will be κ of the BCH encoder. We also want to keep the rate

R′ = τ/λn as high as possible, thus prioritizing the appropriate BCH codes with a larger

τ . Finally, for the fixed n = 300, m = 200, and k+ k′ = 100, we decide on the first BCH

code which has κ/λ < k + k′ = 100, see Figures 5.9a and 5.9b for the examples.

We have discussed which BCH code to choose for which λ. But we also need to bring

an approach for how to set λ. Since our ultimate goal is to maximize R′ = τ/λn, we

examine the rates that this approach provides for each λ and the corresponding BCH

code. Figure 5.10 demonstrates an overview of this relation. It can be seen that, for

example, setting λ = 11 makes much more sense than setting λ = 20 since it provides

more rate. This is the result of choosing the parameters of the BCH code from a finite
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set, as we discussed above. The orange bars in the figure indicate that the decided BCH

code provides a κ which can be divided by λ without a remainder. Note that otherwise,

we would have to decimate the remaining bits. Therefore, orange λ’s with the highest

rates are preferred.
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0.2

λ

R
′

Figure 5.10: The resulting rates for set λ’s. The orange bars indicate κ ≡ 0 (mod λ).

5.5 Final Results

In this section, we present the results of what we have discussed so far in this chapter and

compare them with each other. As a solution to the error floors encountered in the initial

results, we made use of code concatenation in the previous section. Figure 5.11 reveals

how the code concatenation can decrease the error floors. There, we have considered two

different codes. The first one is the BCH(63,30) concatenated code with λ = 1 and the

rate R′
1 = 0.1. The second one is the compound code with the rate R′

2 = 0.21. For a

fair comparison, both have k = 63 and k′ = 37. For the concatenated code, note that

BER is the empirical mean of the average message distortion after running φ frames, i.e.,
1
φ

∑φ
i=1 d

τ (sτ , ŝτ ). We count a frame error if dτ (sτ , ŝτ ) > 0. Including the rest of the

thesis, n = 300, m = 200, and k + k′ = 100.

Based on Figure 5.11, two observations are in order. First, we can significantly improve

the error performance by making use of code concatenation. With the discussed approach

in Section 5.4, we decided on Ξ = 4, i.e., the BCH code corrects at least 4 of 50 errors,

which results in BCH(63,30) code. Here, the trade-off between the rate R′ and the error

correction capability appears. Depending on the desired performance, Ξ can be kept high

by sacrificing from R′, or vice versa. Second, the previously encountered jump between

9 dB and 14 dB in Figure 5.5 remains. We will now take a closer look at this problem.
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Figure 5.11: The error rate performances of the compound code with and without code
concatenation. For both, n = 300, m = 200, k = 63, and k′ = 37. The
BCH(63,30) concatenated code with λ = 1 has a rate R′

1 = 0.1. The com-
pound code has a rate R′

2 = 0.21.

As discussed in Section 5.3, the jump between 9 dB and 14 dB is caused by the LLR

expression

Li = ln
PY |X(yi|0)
PY |X(yi|1)

=
1− 2yi
2σ2

+ ln
PX(0)

PX(1)
. (5.4)

The inefficiency of (5.4) in the specified SNR range comes from the utilization of dither

noise in our encoding and decoding algorithms, as well as the potential consequences

arising from the compound code. To overcome this issue, one can inform the receiver in

advance and make necessary modifications to (5.4) specifically for the problematic SNR

range. Thereby, a more favorable performance can be achieved. We now replace the LLR

expression with

L′
i =

1− 2yi
2σ

+ ln
PX(0)

PX(1)
, (5.5)

where we simply multiply the first term of Li by σ. Figure 5.12 shows the comparison of

these two LLR definitions in terms of BER performance. Figure 5.12a is the compound

code with k = 50 while Figure 5.12b is the BCH(63,30) concatenated code with λ = 1.

The results clearly show that the unexpected jump is due to SNR mismatch, and better

results can be obtained by modifying the LLR expression appropriately, e.g., for each

SNR in the figures, the LLR definition which gives the minimum error can be selected.
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5 Results and Discussion

We have presented only one approach here and showed that this problem can be solved.

Further optimization is out of the scope of this thesis, and we will not consider this

problem in the remaining results.

6 8 10 12 14 16
10−2

10−1

SNR [dB]

B
E
R

Li L′
i

(a) The compound code with k = 50 and
R′ = 0.17.
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(b) The BCH(63,30) concatenated code
with λ = 1 and R′ = 0.1.

Figure 5.12: BER performances of the LLR definitions Li and L′
i, which are given by

(5.4) and (5.5), respectively, with n = 300, m = 200, and k + k′ = 100.

Based on the trade-off considerations we discussed in Section 5.4, we proposed to con-

catenate one BCH encoder with multiple LDGM/LDPC encoders. Figure 5.13 compares

the performances of the concatenated codes BCH(63,30) with λ = 1 and BCH(511,349)

with λ = 7. BCH(63,30) provides the rate R′
1 = 0.1 while BCH(511,349) has the rate

R′
2 ≈ 0.17. For this example, our proposal with multiple encoders allows us the following.

When k+k′ is fixed, which we always assume that it is 100, the maximum k we can choose

for the BCH encoder with λ = 1 is 63, see Table 5.1. Ideally, we prefer to choose k as

high as possible to increase the rate. Note that BCH(511,349) gives k = κ/λ = 73. For

similar error correction capabilities, we got larger τ and increased R′ = τ/λn. However,

as we expected, the frame errors increased at low SNRs as the frame size increased.

Figure 5.14 shows the performances of the concatenated codes BCH(1023,708) with λ =

11 and BCH(2047,1453) with λ = 23. BCH(1023,708) and BCH(2047,1453) almost give

similar rates, which are R′
1 ≈ R′

2 ≈ 0.21, respectively. Here, we wanted to see the

performance of different λ’s which provide similar rates, and it can be seen that setting

a larger λ worsened the error performance for the same R′.
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5.5 Final Results
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Figure 5.13: The error rate performances of the concatenated codes BCH(63,30) with
λ = 1 and the rate R′

1 = 0.1, and BCH(511,349) with λ = 7 and the rate
R′

2 ≈ 0.17. For both, n = 300, m = 200, and k + k′ = 100.
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Figure 5.14: The error rate performances of the concatenated codes BCH(1023,708) with
λ = 11 and the rate R′

1 ≈ 0.21, and BCH(2047,1453) with λ = 23 and the
rate R′

2 ≈ 0.21. For both, n = 300, m = 200, and k + k′ = 100.
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5 Results and Discussion

Finally, Figure 5.15 compares the BCH concatenated codes with shaped polar codes (see,

e.g., [WSSY19]) as a benchmark. There, the polar codes are with lengths 512 and 256,

and with the same rates R′
1 = R′

2 ≈ 0.21, respectively. The concatenated codes are

BCH(1023,708) with λ = 11 and BCH(2047,1453) with λ = 23, and again with the

similar rates R′
3 ≈ R′

4 ≈ 0.21. Looking at the figure, we can conclude that although we

have put a lot of effort and improved the performance of the LDGM/LDPC compound

codes significantly, there is still much to be developed when compared to the performance

of polar codes.
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Figure 5.15: The FER performances comparison of the BCH concatenated codes with
shaped polar codes. The polar codes are with length 512 and the rate
R′

1 ≈ 0.21, and with length 256 and the rate R′
2 ≈ 0.21. The concate-

nated codes are BCH(1023,708) with λ = 11 and the rate R′
3 ≈ 0.21, and

BCH(2047,1453) with λ = 23 and the rate R′
4 ≈ 0.21 . For both concate-

nated codes, n = 300, m = 200, and k + k′ = 100.
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6 Conclusion

We have presented two MPAs for the LDGM/LDPC compound code, including both

encoding and decoding. We showed that half of the frames can be correctly encoded, and

the correctly encoded frames can be successfully decoded. To overcome the erroneously

encoded frames, we made use of code concatenation and discussed the trade-off between

the rate and error correction capability. With the simulation results performed for the

binary CCSI over AWGN channel, we can arrive at the following conclusions.

A non-uniformly distributed channel input is obtained for the uniformly distributed mes-

sage input, e.g., PX(1) ≈ 0.34 for the compound code of rate R = 1/3, which is also

equal to the average symbol energy Es for OOK modulated symbols. The error floors

caused by the encoder can be decreased with the concatenation of the outer BCH code.

The unexpected jump that has appeared in the specific SNR range can be avoided by

carefully designing the LLR expressions. By concatenating one BCH encoder with mul-

tiple LDGM/LDPC encoders, the overall rate R′ can be increased. However, a higher

number of subframes λ does not necessarily mean a higher rate and better error perfor-

mance, or vice versa. The trade-off between the rate and the error correction capability

can be determined by setting Ξ. Although it is claimed in the literature that the coding

scheme with the compound code is expected to perform well, it falls short in comparison

to alternative schemes like polar codes.

Further research may address the shortcomings discussed so far, including the following.

Of course, the proposed encoding algorithm can be improved in terms of both quantization

and valid codewords producing performance, i.e., if um ·H1
T = sk and um ·H2

T = 0k
′
.

The decoder algorithm can be improved to avoid the dither noise used for the intermediate

variable nodes, and a more systematic solution to the SNR mismatch issue can be brought.

The relationship between the coding algorithm and the outer code can be examined by

testing different codes other than narrow-sense BCH codes. The code construction, i.e.,

the generation of the parity-check and generator matrices, is a research topic itself and

should be investigated better for our cases.
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