
Technische Universität München
TUM School of Computation, Information and Technology

Optimization under uncertainty and the
multilevel Monte Carlo method

Friedrich M. Menhorn
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Abstract

Optimization plays a key role in scientific and engineering fields where the objective is
to find optimal designs and solutions. To enhance realism, it is necessary to consider
uncertainty in the optimization problem. As a result, the optimization formulation
must be extended to encompass statistics of the quantity of interest. Ultimately, the
goal is to identify a solution that is robust and reliable, taking into account probabilistic
constraints. This is where Optimization under Uncertainty (OUU) comes into play.

However, OUU is computationally very challenging. Stochastic parameters and cal-
culating statistics significantly increase computational demands. Instead of solving a
deterministic problem only once, we must solve it multiple times to compute them. This
is aggravated in OUU, where we must solve statistics at each optimization step.

In general, an OUU workflow involves two primary components: an inner-loop sam-
pling strategy to compute statistics, and an outer-loop optimization strategy to identify
the optimal design based on the merit function derived from those statistics. For both
components, this thesis presents major improvements to handle the increased computa-
tional demands.

For the inner-loop component, the multilevel Monte Carlo (MLMC) method is able
to alleviate the cost of the uncertainty analysis considerably by distributing resources
among multiple models with varying accuracy and cost. While previous approaches
focused on the expected value, we devise novel MLMC estimators for the variance,
standard deviation, and a linear combination of expected value and standard deviation.
Developing these estimators is crucial, since these statistics are frequently utilized in
OUU workflows and can increase the computational performance by order of magnitudes.

For the outer-loop component, we propose the derivative-free optimization method
SNOWPAC. SNOWPAC employs a trust-region approach using fully-linear surrogates
combined with Gaussian Process surrogates. Compared to many other derivative-free ap-
proaches, SNOWPAC is able to handle stochastic constraints. Furthermore, we present
extensions of the method using approximate Gaussian Processes to alleviate the compu-
tational cost of the surrogate, adaptive kernel selection to improve performance of the
surrogate and an extension of the method for mixed-integer optimization problems.

We couple the new MLMC approach with the new optimization method SNOWPAC
in the software toolkit Dakota to address complex black-box problems in OUU. We
verify the performance of our proposed method using various benchmarks, including
an illustrative one-dimensional problem, the two-dimensional Rosenbrock function, and
a benchmark test suite based on the CUTEst benchmark set. Finally, we utilize our
novel approach to optimize a wind power plant, where our objective is to determine the
optimal yaw alignment of the turbines to maximize power production.
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Zusammenfassung

Die Optimierung spielt eine Schlüsselrolle in wissenschaftlichen und technischen Berei-
chen, in denen es darum geht, optimale Lösungen zu finden. Um die Realität besser
abzubilden zu können, ist es notwendig, Unsicherheiten im Optimierungsproblem zu
berücksichtigen. Daher muss die Optimierungsformulierung erweitert werden, um auch
Statistiken der interessierenden Größe einzubeziehen. Letztlich geht es darum, eine ro-
buste und zuverlässige Lösung zu finden, die probabilistische Beschränkungen berücksich-
tigt. Hier kommt die Optimierung unter Unsicherheit (OUU) ins Spiel.

Allerdings ist die OUU rechnerisch sehr anspruchsvoll. Stochastische Parameter und
die Berechnung von Statistiken erhöhen die Rechenanforderungen erheblich. Ein deter-
ministisches Problem muss nun vielfach gelöst werden, um diese Statistiken zu berechnen.
Dies wird bei OUU noch weiter verschärft, wo in jedem Optimierungsschritt Statistiken
berechnet werden müssen.

Im Allgemeinen umfasst ein OUU-Arbeitsablauf zwei Hauptkomponenten: eine Strate-
gie für die innere Schleife zur Berechnung von Statistiken, und eine Optimierungsstrate-
gie für die äußere Schleife, zur Ermittlung des optimalen Designs auf der Grundlage
der aus diesen Statistiken abgeleiteten Zielfunktion. Für beide Komponenten werden
in dieser Arbeit wesentliche Verbesserungen vorgestellt, um die erhöhten Rechenan-
forderungen zu bewältigen.

Für die Inner-Loop-Komponente kann die multilevel Monte-Carlo-Methode (MLMC)
die Kosten der Unsicherheitsanalyse erheblich verringern, indem sie die Ressourcen auf
mehrere Modelle mit unterschiedlicher Genauigkeit und Kosten verteilt. Während sich
frühere Ansätze auf den Erwartungswert konzentrierten, entwickeln wir neue MLMC-
Schätzer für die Varianz, die Standardabweichung, sowie eine lineare Kombination aus
Erwartungswert und Standardabweichung. Die Entwicklung solcher Schätzer ist von
entscheidender Bedeutung, da diese Statistiken häufig in OUU-Arbeitsabläufen verwen-
det werden und die Rechenleistung um mehrere Größenordnungen steigern können.

Für die Komponente der äußeren Schleife präsentieren wir die ableitungsfreie Opti-
mierungsmethode SNOWPAC. SNOWPAC verwendet einen Trust-Region-Ansatz, der
vollständig lineare Surrogate mit Gauß-Prozess-Surrogaten kombiniert. SNOWPAC
ist in der Lage stochastische Nebenbedingungen zu behandeln, im Vergleich zu vie-
len anderen ableitungsfreien Methoden. Darüber hinaus stellen wir Erweiterungen der
Methode vor, die approximative Gauß’sche Prozesse verwenden, um die Rechenkosten
des Surrogats zu verringern, eine adaptive Kernelauswahl, um die Leistung des Surro-
gats zu verbessern, und eine Erweiterung der Methode für gemischt-ganzzahlige Opti-
mierungsprobleme.

Wir koppeln den neuen MLMC-Ansatz mit der neuen Optimierungsmethode SNOW-
PAC im Software-Toolkit Dakota, um komplexe Black-Box-Probleme in OUU zu lösen.
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Zusammenfassung

Wir verifizieren die Leistungsfähigkeit der von uns vorgeschlagenen Methode anhand ver-
schiedener Benchmarks, darunter ein illustratives eindimensionales Problem, die zweidi-
mensionale Rosenbrock-Funktion und eine Benchmark-Testsuite, die auf dem CUTEst-
Benchmark-Set basiert. Schließlich verwenden wir unseren Ansatz zur Optimierung einer
Windkraftanlage, wobei unser Ziel darin besteht, die optimale Ausrichtung der Turbinen
zu bestimmen, um die Stromproduktion zu maximieren.
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As far as the laws of mathematics refer to reality,
they are not certain; and as far as they are certain,
they do not refer to reality.

—Albert Einstein [109]

Part I

Introduction





1 Uncertainty quantification pipelines

Numerical modeling captures the laws of physics through models of the real world.
Numerical simulations simulate such models on a computer with the intention to be able
to comprehend and predict phenomena of the real world. The underlying motivation
behind is manifold: one is certainly to reduce monetary costs: we could crash a car
against a wall in real life or simulate it many times over on a machine. Another is
being able to predict reality: through weather and climate simulations, we are able to
forecast whether there will be sunshine in the north east of Munich tomorrow at 3 pm,
or if we need to bring an umbrella. One further motivation is to get insight: numerical
simulation allows us to simulate processes that are otherwise not yet realizable or feasible.
We cannot travel into a black hole or into the sun to analyse events happening inside.
Via simulation, we get an understanding of the very small, such as the quantum world;
or the very large, such as plasma fusion processes in stars. What is more, we get this
insight without burning down the full facility (and the land surrounding it).

The main ingredients of a modeling and simulation pipeline, visualized in Fig. 1.1, are
threefold: in the center we have the model of reality. It could be an ordinary differential
equation (ODE), such as a population model to help us predict the population of two
species in a predator-prey model. It could be derived from partial differential equation
(PDE) that models a natural phenomenon such as the Navier-Stokes equations for the
simulation of fluids. Also, other models such as fuzzy logic or a consortium of different
models that are linked together—typical for climate models—can be put here. On the
left, we have the input parameters, e.g. the starting population for evolution models,
the inflow velocity or pressure for the Navier-Stokes equations or measurements from
sensors all over the world for climate simulations. As output of the model, we get our
quantity of interest (QoI), depicted on the right. This could either be a single number
such as the power production of a wind turbine in the field, or a collection of numbers
such as the temperature distribution all over Germany.

Model
(ODE, PDE, Fuzzy, ...)

Deterministic
input

parameters

Quantity of
Interest

Figure 1.1: Deterministic simulation pipeline.

Until now, we only considered deterministic scenarios. While such models and their
simulation can be very accurate, they still simplify reality. To improve the realism
of our simulations further, we include uncertainty: we view uncertainty as additional
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1 Uncertainty quantification pipelines

information—paradoxically to be fair—that we can use to gain more insight. Already
knowing that a parameter is not necessarily deterministic, but can vary in a certain
range, allows us to better predict its behavior. When we know that our model introduces
numerical errors or uses approximations of reality, we can use that knowledge to increase
(or at least estimate) the confidence in our prediction. Nowadays, we also have access
to immense amounts of data we can use to improve our simulations. Measuring not only
data but also assessing the error of the corresponding sensor helps us in finding more
realistic solutions.

In the field of uncertainty quantification (UQ), we treat and incorporate these uncer-
tainties to help us model reality; a reality which is stochastic by nature. We consider
forward uncertainty propagation (or forward UQ) in this thesis. Forward uncertainty
propagation propagates, as the name suggests, the uncertainty of input parameters for-
ward through a model, and estimates QoIs which are now, as a result, of stochastic
nature. We have outlined the pipeline for forward UQ in Fig. 1.2.

Model
(ODE, PDE, Fuzzy, ...)

In
pu

t p
ar

am
et

er
s

Stochastic

Deterministic

Quantity of
Interest

Statistics of Interest

Figure 1.2: Forward uncertainty quantification pipeline.

We now not only consider deterministic but also stochastic parameters as input. While
the deterministic parameters are fixed, the uncertain inputs are generally modelled as
random variables whose probability distribution typically stems from experiments, ex-
pert opinion or a combination thereof. Both the deterministic as well as the stochastic
parameters are propagated through the model. As a result, instead of deterministic val-
ues, we receive a set of QoI from which we deduce statistics of interest (SoI). Common
statistics are the expected value (or mean) or the variance.

Computationally, we should be able to sample the stochastic parameter space to get
samples (or realizations). Each of the samples, together with the deterministic variables,
is put through the model, resulting in a set of QoI for given deterministic parameters.
Finally, from this set, we can compute the SoI. Since we have to evaluate the model
now multiple times for the set of stochastic realizations to compute the statistics, the
solution naturally grows in computational complexity and expense. Hence, we have to
find strategies to lower the computational burden while still realizing high accuracy.
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2 Model hierarchies

A way to lower computational cost is employing a model hierarchy. Standard simulation
practice involves a single model, which solves the input-to-output relation in simulation
pipelines such as Fig. 1.1 or Fig. 1.2. This could be a high-fidelity model, meaning a
complex and high-dimensional model that has very high accuracy accompanied by high
computational cost; or, if the cost of developing and utilizing such models is prohibitively
high, it could be a low-fidelity model. A low-fidelity model is less accurate due to, e.g.,
dimensionality reduction, linearization, use of simpler physics models, coarser domains,
or partially converged results. In these cases, we often speak of reduced or surrogate
models. These are models, which approximate the high-fidelity model, but trade-off
accuracy for smaller computational cost.

However, we often have multiple models available that model the same (or at least
similar) physical phenomenon. All models add different information and, in the best
case, we can combine them to enrich our simulation. We can order such sets of models
in a model hierarchy: at the lower end of the hierarchy, we have models that are com-
putationally cheap but inaccurate. Climbing up the hierarchy, the models get more and
more accurate at the price of increased computational cost. We differentiate between
two main model hierarchies: fidelities and levels.

We speak of different fidelities if models describe the same problem but use different
approaches or modeling choices at various levels of accuracy and computational cost. A
common example is computational fluid dynamics, where incompressible Navier-Stokes
represent a lower fidelity, while computational cost and accuracy grow with fidelities such
as Reynolds-Averaged Navier-Stokes, Large Eddy Simulation or Direct Navier-Stokes.
When developing methods for such problems, we speak of multi-fidelity methods.

Multi-fidelity

Model M

Model 1

Model 2

Multilevel

Level L

Level 1

Level 2

Multi-fidelity-
Multilevel

Model M
Level LM

Level 1
Level 2

Model 2
Level L2

Level 1
Level 2

Model 1
Level L1

Level 1
Level 2

Figure 2.1: Outline of multi-fidelity (left), multilevel (center) and multi-fidelity-multilevel hi-
erarchies (right).
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2 Model hierarchies

A level hierarchy is typically obtained by varying parameters characterizing the high-
fidelity model such as the computational mesh width or the variances of its input param-
eters. Repeating the example for Navier-Stokes, we could utilize incompressible Navier-
Stokes equations across different spatial grid discretizations. A coarser grid incurs lower
computational cost but at the same time offers lower accuracy, whereas a finer grid,
although computationally more expensive, yields more precise results. We call methods
of this type multilevel methods. Both approaches can also be mixed, by designing a
multilevel hierarchy for each fidelity, resulting in multi-fidelity-multilevel methods. We
outline the different hierarchies in Fig. 2.1.

While a multi-fidelity or multilevel hierarchy can result in large computational bene-
fits (or highly improved accuracy), it also comes with multiple challenges. The question
of how to pick and order the hierarchy is often complex. This requires a significant un-
derstanding of the problem at hand and the relationship between various aspects of the
model. It can be challenging to determine the appropriate balance between accuracy and
computational cost for each level of the model hierarchy. Additionally, a cost reduction
is not guaranteed by default. The cost of creating and maintaining the low-fidelity mod-
els, transferring information between models, and checking for errors may outweigh the
potential savings. Finally, when working with existing, or legacy, computational code,
it can be challenging to implement multilevel and multi-fidelity methods without signif-
icant code modifications or redesign. This can lead to increased development time and
potential errors. Nevertheless, the significant benefits of properly designed hierarchies
outweigh these challenges.
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3 Outer-loop formulations in uncertainty
quantification

Until now, we have only been looking at an input-output relationship in the UQ pipeline,
where we know the input, propagate it through a model (or model hierarchy) and are
interested in the output. However, it might also be the case that we know output and
model, but not the stochastic input, or we know input and output but are interested in
the model. In these cases, we iteratively try to adapt our input data or model to the
given output. Such problems are called an outer-loop formulation. We still have the
inner pipeline, but now we have an outer loop which updates are based on an error or
loss.

An example of an outer-loop formulation are inverse problems, where in contrast to
forward UQ, we have data of a QoI and need an estimate of the input parameters.
If this estimate is of stochastic nature, i.e. we try to estimate a distribution of the
stochastic input parameters based on data, we call this Bayesian inference or backward
inference. We illustrate the loop in Fig. 3.1. The data allows us to compute an error
with respect to our prediction to update the input. The estimate of the input is then
iteratively updated. In this work, we focus on forward propagation of uncertainty and
only mention this branch as an extension and for completeness.

Quantity of Interest

Model
(ODE, PDE, Fuzzy, ...)

In
pu

t p
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er
s

Stochastic
(estimated)

Deterministic

Prediction Data

Error/Loss

Statistics of Interest

Update

Figure 3.1: Bayesian inference loop.

Another very important area in simulation and modeling, which has seen exponentially
increased interest over the last decade and another example of outer-loop formulation,
is machine learning. We visualize the loop in Fig. 3.2. Here, we are not necessarily
interested in output statistics as in forward propagation. We moreover already know
the input parameters in contrast to inverse problems. Instead, we want to find the opti-
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3 Outer-loop formulations in uncertainty quantification

mal model, where we have input and output data available1. In this case, the model is
iteratively updated based on the data. Note that this data is also usually stochastic in
nature, e.g., due to measurement errors in the sensors or different measurement condi-
tions. After training the model using the data, we are able to use it for predictions for
new inputs. Neural networks and Gaussian Processes are popular methods in this field.
We are going to discuss both topics in this work.

Quantity of Interest

Model
(Machine Learning, AI)

In
pu

t d
at

a

Prediction (Stochastic)
Data

Error/Loss

Update

Figure 3.2: Machine learning loop for supervised learning.

1This considers supervised learning only for simplification.

8



4 Optimization under uncertainty

We have looked at outer-loop formulations where we are interested in the stochastic
input parameters in Bayesian inference, or the model in machine learning. However,
we can also ask the following question: What is the optimal choice of deterministic
inputs to yield the best value for a chosen output statistic, given the inherent stochastic
parameters?

This leads us to an optimization problem: in optimization, we are interested in finding
the optimal design to minimize (or maximize) a given objective, possibly under specific
constraints. Assuming a realistic and complex model, this optimization process proceeds
iteratively, updating the current best design and objective until convergence. In the
deterministic setting, which we visualize in Fig. 4.1, this involves repeatedly computing
the inner simulation pipeline from Fig. 1.1. However: what if our forward model involves
uncertain parameters to improve the realism of our simulations further?

Deterministic Optimization
Objective and Constraints

U
pd

at
e

Optimal Design
and Objective

Model
(ODE, PDE, Fuzzy, ...)

Quantity of
Interest

Deterministic
design

Figure 4.1: Deterministic optimization loop.

Revisiting the Navier-Stokes example, we may want to find the optimal design of the
airfoil of the new Boeing 777X in the wind channel under these uncertain conditions.
Or, as we will discuss in this work, we aim to determine the best yaw angle setting for a
group of wind turbines deployed off the coast of Norway in order to maximize the average
power production of that wind power plant. In this case, we talk about optimization
under uncertainty (OUU) where we try to find an optimal solution with respect to those
uncertainties. We can try to, e.g., maximize the average outcome or try to limit the
variation of the QoI.

We still have the forward uncertainty propagation as the inner part, but now have an
outer optimization loop on the deterministic input, which—given the current best value
of the objective under some constraints—picks the next iteration of a deterministic design
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4 Optimization under uncertainty

based on some optimization rule under stochastic conditions. We visualize the pipeline
in Fig. 4.2.
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Figure 4.2: Optimization under uncertainty loop.

The outer-loop optimization adds another dimension to the computational cost: the
cost stemming from the deterministic case are already multiplied by the number of
stochastic samples needed for forward UQ. This is now further aggravated by the op-
timization loop, which iteratively calls upon the inner loop until an optimal solution
is found. While this can significantly increase computational cost, it simultaneously
provides multiple angles and opportunities where cost optimization is possible.

In total, we thus have three layers where we can improve computational performance:
on the top layer is the optimization algorithm where we can work on fast convergence to
require the least amount of optimization steps possible. For the forward UQ problem,
on the mid layer, we can fall back to efficient methods in that field, such as multilevel
methods, to speed up computations of statistics. Finally, on the innermost layer—the
model itself—we can improve performance of the algorithms, e.g., the involved linear
algebra or the integration in time in the solution of PDEs. Hence, as we will see in
this thesis, a lot of different research fields can contribute to different layers to tackle
challenging problems in OUU.
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5 Preview

In this thesis, we concentrate on the two outer layers of OUU to optimize its performance
and present three contributions:

Our first major contribution focuses on the mid layer. We provide new multilevel
estimators for higher-order moments, namely the variance, standard deviation, and a
linear combination of mean and standard deviation. These estimators prove vital in
the multilevel setting, especially when the OUU formulation involves the said statistics.
The developments around these estimators are presented in Part III, accompanied by a
benchmark example. With these new estimators, we can lower the computational cost
of the second layer, also specifically for their application in OUU.

Our second contribution improves the outer layer by introducing a novel stochastic
optimization algorithm, named SNOWPAC, intended for OUU. Employing a derivative-
free approach, this algorithm leverages trust regions and treats the model as a black
box. Part IV presents SNOWPAC, along with key enhancements and improvements
made to the algorithm over recent years. SNOWPAC provides an efficient stochastic
optimizer that converges quickly despite the underlying uncertainty and thus reduces
the computational cost of the outermost layer.

Finally, in the third contribution, we bring all contributions together in a practical
context, as we tackle OUU problems in Part V, implemeting the full pipieline of Fig. 4.2.
We regard a one-dimensional benchmark scenario and the constrained Rosenbrock func-
tion. For both benchmarks, we design a new multilevel hierarchy where we can compare
our contribution against a reference solution. To conclude, we regard a realistic wake-
steering optimization problem for wind power plants: we design a multilevel case with
three levels and aim to find the optimal selection of yaw angles for all involved turbines
under stochastic conditions, demonstrating the practical application and utility of our
work.

However, before we dive into our contributions, we begin with the background of this
work in Part II: We detail the basis of forward UQ in general and sampling in particular
in Chap. 6. This chapter also includes a specific focus on the Monte Carlo method.
Next, we discuss Gaussian Process surrogates in Chap. 7, an essential component in our
work, especially for Part IV. Afterwards, we talk about derivative-free optimization in
Chap. 8 and derivative-free optimization under uncertainty specifically in Chap. 9. Both
include a targeted focus on trust-region methods. We present the software framework
Dakota in Chap. 10 before we end the background part with a gap analysis in Chap. 11.
All background chapter include a thorough review of literature in the field.
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We demand rigidly defined areas of doubt and uncer-
tainty!

—Douglas Adams [5]

Part II

Theoretical background





6 Uncertainty propagation and sampling
methods

In the first part of the theoretical background, we cover the forward UQ pipeline in-
troduced in Chap. 1, which represents the second layer in an outer-loop formulation in
OUU. Methods in forward UQ lie at the base of our work to efficiently propagate uncer-
tainty through a model and compute SoI. We first discuss the UQ setting in Section 6.1
followed by a review of methods in forward UQ in Section 6.2. In Section 6.3, we focus
on Monte Carlo sampling and finalize this chapter by introducing multilevel Monte Carlo
in Section 6.4, which is a main component of our first contribution in Part III.

6.1 Random variables, quantities and statistics of interest

We begin by formalizing the notation and problem that we want to solve: We denote
ddet ∈ N as the dimension of our deterministic space, while dsto ∈ N represents the
stochastic dimensionality. We introduce θ : Ω → Rdsto as a multivariate real-valued
random variable, which is defined in the complete probability space (Ω,F , P ). The
variable Ω is a non-empty set representing the sample space; F ⊂ 2Ω is a σ-algebra of
events; the probability measure, P : F → [0, 1], is a non-negative measure and assigns
each event in the event space a probability between 0 and 1. We further use the simplified
notation θ := θ(ω) or θi := θ(ωi) for each component, {ωi}dstoi=1 .

Moreover, θ is assumed to be a continuous random variable which is characterized by
a probability density function p : Ω → [0, 1]dsto(or pi : Ωi → [0, 1] for each component).
Finally, we assume that all {θi}dstoi=1 are L2 random variables, i.e. they have a finite
expectation <∞,

E[θi] =

∫
Ωi

θipi(θi)dθi (6.1)

and finite variance <∞
V[θi] = E[θ2

i ]− E[θi]
2. (6.2)

We specify the numerical model that represent the complex real-world phenomena as
Q : Rddet × Rdsto → R. Here, x := [x1, x2, ..., xddet ]

T ∈ Rddet and θ := [θ1, θ2, ..., θdsto ]T ∈
Rdsto denote the vector notations of both the deterministic and the stochastic input
vectors. We generally employ a bold notation for vector variables throughout this work.

The model Q is a mapping from a ddet-dimensional deterministic input, x, and dsto-
dimensional stochastic input, θ, to a scalar value1— our quantity of interest (QoI). Note

1Note that we could also map to a real vector as output, but we simplify notation without loss of
generality to a one-dimensional output.
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6 Uncertainty propagation and sampling methods

that we make a simplification here, denoting the model directly as mapping from the
input to the QoI (instead of using a second mapping from model output to QoI). We
also point out that Q is already a high-fidelity, discretized, numerical solution and we
neglect the discretization error throughout this work. When possible, we also simplify
notation using Q := Q(x,θ) for brevity, referring to Q as our QoI directly.

In the end, we are interested in statistics of interest (SoI) of our QoI. We specifically
look at two statistics:

� expected value:

E[Q(x,θ)] :=

∫
Ω
Q(x,θ)p(θ)dθ, (6.3)

� variance:

V[Q(x,θ)] :=

∫
Ω

(Q(x,θ)−E[Q(x,θ)])2p(θ)dθ = E[Q(x,θ)2]−E[Q(x,θ)]2, (6.4)

and one derived statistic:

� standard deviation:
σ[Q(x,θ)] :=

√
V[Q(x,θ)]. (6.5)

Apart from these three main SoI, we also define the i-th central moment statistic,
which we need occasionally throughout this work, as

µi[Q(x,θ)] :=

∫
Ω

(Q(x,θ)− E[Q(x,θ)])ip(θ)dθ for i > 1. (6.6)

Note that this means that µ2[Q(x,θ)] = V[Q(x,θ)]. We define µ1[Q(x,θ)] := E[Q(x,θ)]
as an exception.

Computing statistics such as the mean, variance or standard deviation requires evalu-
ating multivariate integrals, in our case of dimension dsto. The challenge here is that the
integrand, which depends on the underlying numerical model, is very rarely available
in closed form. These potentially high-dimensional integrals must be evaluated numer-
ically as a consequence. This, in turn, requires discrete realizations of θ. We denote
these discrete realizations as samples, θi = θ(ωi), from a specific event ωi, which in turn
result in a sample of our QoI Q(i) := Q(x,θi) after solving the forward model. Those
samples can be a result of (pseudo-)random numbers, but can also be deterministically
chosen, as a result from, e.g., collocation or quadrature points to solve the integral.
Due to the discrete nature, the quadrature is only an approximation of the integral
solution. Hence, we use µ̂i ≈ µi, i ≥ 1 as our symbol for the approximation of the
SoI. We call µ̂i estimator of the statistic µi, and mention again specifically the estima-
tors for mean µ̂1[Q(x,θ)] ≈ E[Q(x,θ)], variance µ̂2[Q(x,θ)] ≈ V[Q(x,θ)] and standard
deviation σ̂[Q(x,θ)] ≈ σ[Q(x,θ)].

It is important to note that an estimator of a statistic is itself a random variable.
Given a statistic X and a generic estimator X̂, we define two important properties of
estimators that we use throughout this work:
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6.1 Random variables, quantities and statistics of interest

The first property is the bias of an estimator

BIAS(X̂) = E[X̂]−X. (6.7)

We call an estimator unbiased, if BIAS(X̂) = 0, i.e. E[X̂] = X. If an estimator is biased,
we denote this explicitly as subscript X̂biased.

The second property is the root mean squared error (RMSE ), which holds information
about the approximation quality of the estimator:

RMSE(X̂) =

√
E[(X̂ −X)2]. (6.8)

We can rewrite the RMSE in a different form. This is a well-known result, but due to
its importance in this work we state in form of the following lemma:

Lemma 1. Given a statistic X and an estimator X̂ such that X̂ ≈ X, the RMSE is
given as

RMSE(X̂) =

√
BIAS(X̂)2 + V[X̂]. (6.9)

Proof.

RMSE(X̂) =

√
E[(X̂ −X)2]

=

√
E[X̂2 − 2X̂X +X2]

=

√
E[X̂2]− 2E[X̂X] + E[X2]

=

√
E[X̂2]− 2E[X̂]X +X2

=

√
E[X̂2]− 2E[X̂]X + (E[X̂]− BIAS(X̂))2

=

√
E[X̂2]− 2E[X̂]X + E[X̂]2 − 2E[X̂]BIAS(X̂) + BIAS(X̂)2

=

√
E[X̂2]− 2E[X̂]X + E[X̂]2 − 2E[X̂](E[X̂]−X) + BIAS(X̂)2

=

√
E[X̂2]− 2E[X̂]X + E[X̂]2 − 2E[X̂]E[X̂] + 2E[X̂]X + BIAS(X̂)2

=

√
E[X̂2]− E[X̂]2 + BIAS(X̂)2

=

√
V[X̂] + BIAS(X̂)2

(6.10)

Based on this property, a main focus (and challenge) of this thesis lies in finding
unbiased estimators. Given the unbiased estimators, we can compute the RMSE using
the variance, i.e. RMSE(X̂) = V[X̂] and ignore the bias term.

In the following section, we summarize some of the existing, prominent methods for
forward UQ. Afterwards, we focus on Monte Carlo sampling, which is of interest for the
remainder of this thesis.
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6 Uncertainty propagation and sampling methods

6.2 Stochastic collocation and the Galerkin method

In general, we distinguish between three classes of methods for forward uncertainty
propagation [116]—(intrusive) white-box, (non-intrusive) grey-box and (non-intrusive)
black-box methods. The naming scheme is referencing access to the underlying model
and the difference between the three classes is already hinted at in their name. Let us
elaborate this difference further.

In intrusive methods, we need access to the underlying problem and be able to modify
it. Practically speaking, this means we have to modify the implementation by directly
changing and adapting the simulation code to our approach. An example, we will discuss
here is the stochastic Galerkin method [135].

For non-intrusive methods, we do not need access to the implementation. However,
we require knowledge about the underlying model, which we intent to exploit, e.g.,
the structure or properties of the PDEs, and adapt the method to the given problem.
Reduced order methods are an example for problems in this field [65].

Lastly, for black-box methods, we just need to be able to evaluate the model in form
of an input-to-output relationship. We do not require access to the equations and, in
this work, also assume that we lack access to gradient information. In this context, we
discuss for example stochastic collocation methods [330].

All approaches come, of course, with advantages and disadvantages. On the one
hand, being able to modify the code in intrusive methods gives us the ability to create
a highly specific and optimized solution for the problem, which usually results in high
accuracy or computational efficiency. This, however, comes with the additional burden
of modifying a potentially highly-complex software up to the point where this might be
infeasible. Black-box methods, on the other hand, offer a simple solution to connect any
application to our UQ method of choice, which makes implementation (usually) quite
straight-forward. As a downside, the accuracy might be lower and computational cost
are higher compared to the intrusive approach. Grey-box methods offer a compromise
between the two extremes.

Intrusive approaches were made popular in the book by Ghanem and Spanos [135],
which presented the stochastic Galerkin method. In this approach, the forward solution
is projected onto a lower dimensional space. We pick the one-dimensional case for a
simplified presentation.

A random variable Q(x, θ) can be expressed as an infinite sum

Q(x, θ) =
∞∑
i=0

q̂i(x)φi(θ). (6.11)

Here, {φi}∞i=0 are orthonormal basis functions with respect to their corresponding proba-
bility density function p(θ), i.e., < φi(θ), φj(θ) >=

∫
φi(θ)φj(θ)p(θ)dθ = δi,j . Eq. (6.11)

is called spectral projection or polynomial chaos expansion (PCE) and {q̂i(x)}∞i=0 are the
PCE coefficients.

This expansion is approximated by using only N instead of an infinite number of
coefficients and plug the PCE into the model equations that we want to solve. By using
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6.2 Stochastic collocation and the Galerkin method

a spectral projection and the orthogonality of the system, we get a system of equations
for N unknown coefficients {q̂i(x)}N−1

i=0 that we need to solve. This requires, that we
need to modify the simulation code accordingly. Given the coefficients, we can then solve
for the statistics that we are interested in, e.g., the expected value or the variance:

E[Q(x, θ)] ≈ q̂0(x)
N−1∑
i=1

(6.12) V[Q(x, θ)] ≈
N−1∑
i=1

q̂2
i (x) (6.13)

In 1938, Wiener stated that random variables can be represented by orthonormal
basis functions in his work on homogenous chaos [320]. This was proven by Cameron
and Martin in [58], who show optimal convergence of the Hermite orthonormal basis
in terms of Gaussian random variables. The authors Xiu and Karniadakis generalized
the work in [331], where they presented a scheme to generate optimal orthonormal basis
functions and the PCE from the Askey scheme. Ways to improve the computational
performance of the resulting matrices have been investigated in [114].

This scheme was further generalized to arbitrary orthogonal polynomial basis (see,
e.g. [328]). Introductions to the method are also given by Smith [290] and Sullivan [301].
Multiple different applications were explored since then, e.g., to stochastic diffustion [332],
random ODEs [24] or elliptic PDEs [26, 219], the Boltzmann [163] and Navier-Stokes
equations [294].

Another advantage of the stochastic Galerkin method is its close relation to the finite
element method, where a lot of theory and analysis could readily be applied, e.g. analytic
convergence results, see [37, 108, 332]. In the area of intrusive approaches, also other
methods are investigated. More recently than stochastic Galerkin, and in the same
spirit of projection methods, reduced basis approaches were explored in [65, 66], with
applications in, e.g., elliptic PDEs [312] or optimal control [60].

As stated, black-box and grey-box approaches are non-intrusive and consider the un-
derlying model (or simulation code) as (mostly) unknown. For both, the computation
of statistics happens outside of the simulation code, as we have visualized in Fig. 1.2,
and no modifications are required. We differentiate mainly between two classes of non-
intrusive approaches—deterministic and sampling-based. This distinction concerns the
choice of samples. In deterministic approaches, the choice of samples is predefined, e.g.,
by the underlying choice of interpolation or quadrature rule to solve the integral for the
statistics. In sampling approaches, the choice of samples is (pseudo-)random and based
on a (pseudo-)random number generator.

Possibly the most popular method in the area of deterministic non-intrusive methods
is the pseudo-spectral approach [329], also based on spectral projection. Compared to
stochastic Galerkin, we do not inject the pseudo-spectral projection in the model but
project directly on the QoI to solve for the coefficients {q̂i(x)}∞i=0. As a result, we can
compute the coefficients as

q̂i(x) =

∫
Ω
Q(x, θ)φi(θ)p(θ)dθ. (6.14)
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6 Uncertainty propagation and sampling methods

This requires the approximation of an integral numerically using quadrature. The
quadrature nodes and weights are chosen with respect to the distribution p(θ) such that

q̂i(x) ≈
N−1∑
j=0

Q(x, θj)φi(θj)wj , (6.15)

where {θj}N−1
i=0 and {wj}N−1

i=0 are the quadrature nodes and weights, respectively.

With interpolation, we can also solve the integration problem using a cheaper sur-
rogate. This approaches is called stochastic collocation [27, 330]. Here, we build an
interpolation surrogate Q̃ ≈ Q of the model, where Q̃(x, θi) = Q(x, θi) at interpolation
points {θj}N−1

i=0 , which we can then evaluate and integrate at much lower computational
cost. A common choice for the interpolation rule are, e.g. Lagrange polynomials.

The disadvantage of all the above approaches is their deterministic quadrature or
interpolation rule where the samples stem typically from full-tensor grids. As a conse-
quence, the number of quadrature or interpolation nodes grow exponentially with the
number of dimensions. This is called the curse of dimensionality and results in high
computational cost for large numbers of dimensions. Remedies exist to slow down the
growth with the number of dimensions, e.g. sparse grids [56], as first presented in [242]
with adaptive extensions in, e.g. [213, 214]. Nevertheless, with increasing dimensions,
the curse of dimensionality is inevitable for these methods.

A cure for the curse of dimensionality are sampling methods whose number of samples
do not depend on the dimension. In the next section, we present Monte Carlo sampling,
the classic method in the field.

6.3 Monte Carlo sampling

Monte Carlo (MC) sampling [57, 226] is by far the most popular sampling algorithm for
solving problems in forward UQ. Using a (pseudo-)random number generator to generate
samples, we can approximate the expected value (or mean) of a QoI as

µ̂1[Q(x,θ)] :=
1

N

N∑
i=1

Q(x,θi) =
1

N

N∑
i=1

Q(i). (6.16)

We assume that the samples {θi}Ni=1 are independent and identically distributed.

We state and proof two well-known properties of this estimator in Eq. (6.16) in form of
lemmas due to their importance in this work. We repeat: we assume that Q(x,θ) itself
is unbiased, meaning the high-fidelity solution is accurate enough for its discretization
bias to be negligible.

The first property is with regards to the bias of the estimator.

Lemma 2. The estimator µ̂1[Q(x,θ)], as defined in Eq .(6.16), is an unbiased estimator
for E[Q(x,θ)]:

E[µ̂1[Q(x,θ)]] = E[Q(x,θ)]. (6.17)
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6.3 Monte Carlo sampling

Proof.

E[µ̂1[Q(x,θ)]] = E[
1

N

N∑
i=1

Q(i)] =
1

N

N∑
i=1

E[Q(i)] =
1

N

N∑
i=1

E[Q] = E[Q]. (6.18)

The second property relates to the RMSE of the estimator. As we stated in Eq. (6.9),
we know that for unbiased estimators, the RMSE corresponds to the variance of the
estimator. In that spirit, we can compute the RMSE of Eq. 6.16.

Lemma 3. The RMSE of the estimator µ̂1[Q(x,θ)] is given as

RMSE[µ̂1[Q(x,θ)]] =

√
V [Q]

N
. (6.19)

Proof.

RMSE[µ̂1[Q(x,θ)]] =
√

V[µ̂1[Q(x,θ)]] =

√√√√V[
1

N

N∑
i=1

Q(i)] =

√
V [Q]

N
. (6.20)

This property of the RMSE for MC sampling shows both its advantage as well as dis-
advantage: as an advantage, the number of sampling points N do not directly depend on
the dimension of the problem, dsto. This is in stark contrast to the previously discussed
deterministic non-intrusive methods that have to fight the curse of dimensionality where
the growth of sampling points is often in O(Ndsto) (or O(N log(N)dsto−1 for sparse grid
techniques). Additionally, the MC method is highly parallelizable, known as being em-
barrassingly parallel. The N evaluations of {Q(i)}Ni=1 are all independent from each other
and can, in principle, be processed in parallel. Therefore, in principle, this method has
a perfect strong scaling, depending on the available computational resources. However,
the RMSE of the estimator decays slowly, proportionally to N−1/2. Hence, to decrease
the error of our estimator, the sample size has to be increased drastically. This slow
convergence is still a main disadvantage of MC methods.

One direction of research to counteract the slow convergence are quasi-Monte Carlo
(QMC) methods [57, 99]. Here, the main idea is not to use (pseudo-)random numbers
to generate the random samples but instead to use a deterministic sequence instead.
This sequence is picked in a way that it is space filling, meaning the distribution of the
sample points in the space should be as uniform as possible. Using this approach, we

can reach a convergence rate of O( log(N)dsto

N ). However, we again introduce a dependence
on the dimension. Also, the performance of QMC heavily depends on properties of Q,
e.g. its smoothness, which makes it often impracticable. The dependence on dsto and its
reduced simplicity and applicability reduce the charm of the method. New developments
again introduce randomness in the squence construction (see [246] for an overview) but
assumptions on the smoothness of the integrand still apply.
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6 Uncertainty propagation and sampling methods

The other direction to improve MC is to use variance reduction methods [184]. Popular
methods in this field are importance sampling, which has its main application in rare-
event simulation [45] and stratified sampling, where the samples are picked according to
space-filling properties [287], similar to QMC. However, both methods again suffer from
their specificity to certain applications areas in UQ.

In the next section, we look at multilevel MC, an extension of standard MC sampling,
if a discretization hierarchy is available. It has shown a wide range of applications and
is one of the most popular techniques for sampling methods. It is also the main method
in this work.

6.4 Multilevel methods

Multilevel MC (MLMC) was first introduced by [155] and reestablished by [136, 137] as
an estimator for the expected value. This method needs to have access to a hierarchy of
models that describe the same problem at different levels of accuracy and computational
cost as a prerequiste. In multilevel methods, this is commonly realized by using different
discretization levels of the model. Given such hierarchy, the idea is to combine the levels
in an optimal way, employing sampling on multiple approximations or levels for a QoI
to estimate the SoI introduced in Section 6.3. In the end, the goal is to only use a small
amount of resources on the finest and most costly discretization while most evaluations
are spent on lower levels. In the following, we introduce the approach for the mean
estimator as described in [136, 155] following the notation we presented in our work
in [223] and [224].

The methods assumes to have such a hierarchy of levels{Q`}L`=1 available with asso-
ciated, ordered computational cost C1 < C2 < · · · < CL for a single evaluation. Here,
we extend notation from the previous section to Q` := Q`(x,θ`), where ` = 1 denotes
the coarsest and ` = L presents the finest (or high-fidelity) resolution. A realization

(or sample) is then written as Q
(i)
` := Q`

(
x,θ

(i)
`

)
, where N` samples are used for level

`, as follows:

[
Q

(1)
` , . . . , Q

(N`)
`

]
:=

[
Q`(x,θ

(1)
` ), . . . , Q`(x,θ

(N`)
` )

]
. Samples for Q` are

obtained on different levels ` = 1, ..., L, and, in particular, each multilevel estimator at
level ` will include evaluations on two consecutive levels ` and `− 1.

The MLMC estimator for the mean of a QoI Q := QL is expressed by expanding the
expected value over levels, as

E [QL] ≈ µ̂1,ML[QL] :=
L∑
`=1

µ̂1,` =
L∑
`=1

µ̂1[Q` −Q`−1]

=
L∑
`=1

1

N`

N∑̀
i=1

(
Q

(i)
` −Q

(i)
`−1

)
, Q

(i)
0 := 0,

(6.21)

On the one hand, the samples θ
(i)
` between different levels ` of the sum are independent,

hence there is no inter-level dependence for µ̂1,`. On the other hand, using the same
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6.4 Multilevel methods

samples θ
(i)
` to compute the difference of terms in µ̂1[Q`−Q`−1], introduces a correlation

between the two quantities Q
(i)
` := Q`[x,θ

(i)
` ] and Q

(i)
`−1 := Q`−1[x,θ

(i)
` ], resulting in

an intra-level dependence. When we consider single-level estimators in the multilevel
case, such as µ̂1,`, this inter-level independence and intra-level dependence is implicitly
assumed for the rest of this work.

Let us look at properties of the MLMC estimator for the mean, where we start with
its bias:

Lemma 4. The MLMC estimator for the mean, as given in Eq. (6.21), is an unbiased
estimator,

E[µ1,ML[QL]] = E [QL] . (6.22)

Proof.

E[µ1,ML[QL]] =
L∑
`=1

1

N`

N∑̀
i=1

E
[
Q

(i)
` −Q

(i)
`−1

]

=

L∑
`=1

1

N`

N∑̀
i=1

(µ1,` − µ1,`−1) =

L∑
`=1

(µ1,` − µ1,`−1)

= µ1,L = E [QL] .

(6.23)

Next, we regard the RMSE. Due to the estimator in Eq. (6.21) being unbiased, its
RMSE is a result of the estimator variance as we established in Lemma 1:

Lemma 5. The RMSE of the MLMC estimator for the mean, as given in Eq. (6.21), is

RMSE[µ̂1,ML] =
√

V[µ̂1,ML] =

√√√√ L∑
`=1

1

N`
V[Q` −Q`−1]. (6.24)

Proof.

V[µ̂1,ML] =
L∑
`=1

V
[
µ̂1,` − µ̂1,`−1

]
=

L∑
`=1

V[
1

N`

N∑̀
i=1

(Q
(i)
` −Q

(i)
`−1)]

=
L∑
`=1

1

N2
`

N∑̀
i=1

V
[
Q

(i)
` −Q

(i)
`−1

]
=

L∑
`=1

1

N`
V[Q` −Q`−1].

(6.25)

To achieve the desired accuracy, the computational load can be redistributed toward
the coarser level, Here, we assume that the variance over a sequence of levels decreases,
such that V[Q`−Q`−1]→ 0 with `→ L. In words: the variance of the difference between
levels decreases for finer levels. To accomplish this redistribution, we also need to define
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6 Uncertainty propagation and sampling methods

an associated computational cost for each level, such that a single Q` evaluation has a
computational cost of C`, and C1 < C2 < · · · < CL. This computational cost can, e.g.,
be related to the number of degrees of freedom or the computational runtime.

However, how to pick the number of samples N = [N0, ..., N`, ..., NL] optimally for
each level `? The goal is to find an estimator with the smallest computational cost with
a target estimator accuracy. The corresponding optimization problem can be written as

∗
NE = arg min

NE
CE
T

s.t. V[µ̂1,ML] = ε2E,
(6.26)

for a given target accuracy ε2E where CE
T :=

∑L
`=1C`N

E
` describes the total computational

cost. We call this problem a resource allocation problem targeting the mean. When a
distinction is required, we denote the target statistic either as superscript in the resource

allocation, here
∗
NE, or as subscript in the variance target, here ε2E. Doing so, we can

differentiate between resource allocations optimized for specific statistics.
The MLMC estimator for the mean represents a special case in which the closed-form

for its variance allows for a closed-form solution for the optimal sample distribution
∗
NE.

The resource allocation problem from Eq. (6.26) can be solved analytically as established
in [136, 155].

Lemma 6. The optimal resource allocation as solution of Eq. (6.26) for the MLMC
estimator for the mean as presented in Eq. (6.21) is given as

∗
NE
` =

λ
√

V[Q` −Q`−1]

C`

 , (6.27)

where

λ = ε−2
E

L∑
`=1

√
V[Q` −Q`−1]C` (6.28)

is the Lagrangian multiplier.

Proof. See A.1 for the proof.

Remark 1. We can also switch the optimization statement for the resource allo-
cation. Instead of minimizing the cost for a target estimator variance, we can also
reduce the estimator variance targeting a certain cost. This is useful if we do not
have an estimate of the target accuracy available. Then, the resource allocation
problem reads:

min
NE

V[µ̂1,ML],

s.t.

L∑
`=1

C`N
E
` = CT .

(6.29)
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where the method of Lagrange multipliers is given as

λ = CT

L∑
`=1

√
V[Q` −Q`−1]C`, (6.30)

and finally the optimal resource allocation for each level is computed as

∗
NE
` =

 1

λ

√
V[Q` −Q`−1]

C`

 . (6.31)

MLMC has arguably become the most popular sampling method in UQ over the last
decade. Multiple extensions to the method have been proposed since its ressurection
in [136]. Especially when applying forward UQ methods for computational expensive
simulations, the method can offer large computational savings (with the caveat that a
hierachy has to be available).

We see first applications to elliptic PDEs in the work of [31] and [72]. In [73] and [96],
the authors present extensions to continuous levels, i.e., if arbitrary or adaptive dis-
cretizations are possible. The MLMC method has seen many fields of application such
as the computation of failure probabilities in [111], in the context of Bayesian optimiza-
tion [140] or Bayesian inference [117]. Other advances and developments are presented
in [169].

In our contribution, we look at MLMC estimators for higher-order moments. First
developments in this area were done by Bierig et al. [40] who investigated unbiased
estimators for the variance. In [189], Krumscheid et al. developed higher-order estima-
tors using h-statistics and an approximation of the resource allocation problem, while
in [188], they presented estimators for general functions. In the work by Ganesh et
al. [127] and Ayoul-Guilmard et al. [25], the respective authors looked at MLMC estima-
tors for robustness measures and the conditional-value-at-risk, specifically. We present
our new contributions in this field, namely new and unbiased estimators for variance,
the standard deviation and the linear combination of mean and standard deviation in
Part III.

For completeness, but without going into mathematical details, we also mention multi-
index and multi-fidelity methods, which can be seen as generalizations of the multilevel
idea. Multi-index methods describe the idea of combining levels of discretizations in
different dimensions [151]. For PDEs, we can, e.g., have discretizations in both space
and time, and the question arises how to combine these discretizations optimally. Ex-
tensions of this work, look then in how to adaptively find the different levels [168]. Also
adaptive sparse grids methods can be interpreted as a variant of an adaptive multiin-
dex method [118]. In multi-fidelity methods, we combine different models to not only
leverage different accuracy, but also different modelling choices with respect to the un-
derlying physics. Approaches on how to create, select and arrange the model are given
by the authors in [119, 142, 251]. We find applications of the approach in forward
UQ [236, 241], OUU [240], variance reduction methods like importance sampling [250]
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6 Uncertainty propagation and sampling methods

but also in machine learning [161, 233] and Bayesian inference [143]. A comprehensive
overview over multi-fidelity methods is given by Peherstorfer et al. [252] and recently
by Fernández-Godino [121]. Finally, combinations of the multilevel and multi-fidelity
method exist [110, 133], where we use multilevel estimators on the level hierarchy for
each model, but also use a multi-fidelity method for a hierarchy of models. Just by the
amount of articles in recent years, we can see that this is a field of high interest and
many developments at the moment.
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7 Gaussian processes

We introduce the background of Gaussian processes (GPs) here since they serve as a main
component of SNOWPAC, the stochastic optimization method that we will introduce in
Part IV and our second major contribution of this thesis. In the following, we will only
give an overview of its properties, since a great introduction and detailed presentation is
given in [269]. We will start off by introducing their background theory in the upcoming
Section 7.1. Next, we introduce GP regression in Section 7.2, properties and examples of
kernel functions in Section 7.3 and how to optimize hyperparameters in Section 7.4. We
summarize results on GP posterior consistency, i.e. how the GP approximation improves
with a growing amount of data in Section 7.5 and summarize this chapter in Section 7.6.

7.1 The statistical model and its notation

GPs have been experiencing a rise in popularity in the last decade in the machine learning
community. As a powerful tool for flexible function approximation, they are used to solve
supervised learning problems in regression and classification. However, GPs are not only
a powerful tool in machine learning, but can also serve as general surrogate models to
approximate arbitrary functions.

Generally, a GP is a statistical model that characterizes a distribution over functions
within a continuous domain. Within this continuous space, each data point is repre-
sented as a normally distributed random variable defined by a mean and variance. As a
result, any finite set of these random variables follows a multivariate normal distribution.
The distribution of a GP represents the joint Gaussian distribution of all these random
variables (which are infinitely many) and is determined by a covariance function (and
its mean, which is commonly assumed to be zero). GPs can be regarded as a specific
instance of general random fields (in space) or stochastic processes (in time), as they are
confined to Gaussian distributions.

We introduce the notation for the mean m and covariance Cov as the defining prop-
erties of the GP:

m(x) = E[f(x)]

Cov[f(x), f(x′)] = E[(f(x)−m(x))(f(x′)−m(x′))],
(7.1)

where x ∈ X ⊂ Rddet .
A covariance function describes the relationship between two random variables. In

our context, the covariance of f is defined by the function k as follows:

Cov[f(x), f(x′)] = k(x,x′). (7.2)
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7 Gaussian processes

The function k : Rddet × Rddet → R is called a kernel. The choice of kernel depends on
the specific characteristics of f .

The covariance function (or kernel) enables us to define a distribution over functions
and generate sample functions from it. If the random function f follows a GP distribu-
tion, we write

f(x) ∼ GP(m(x), k(x,x′)). (7.3)

For a GP with a specified kernel, we provide a practical guide on computing these sample
functions in App. B.2.

Before we introduce GP regression next, we introduce the kernel matrix K(A,B) ∈
RN×M , where A ∈ RN×ddet and B ∈ RM×ddet . This matrix is obtained by evaluating the
kernel function k(ai,bj) on the datasets A and B, with row vectors ai = [a0, ..., addet ]

T =
(A)i: for i = [1, ..., N ] and bj = [b0, ..., bddet ]

T = (B)j: for j = [1, ...,M ]. We will also use
the shorthand notation K(A,B) = KAB to refer to this kernel matrix. Furthermore,
we adopt the abbreviated notation for function evaluations on a matrix. For instance,
f(A) = y indicates that evaluating the function f on each row vector ai of A yields
the corresponding output yi, where i ranges from 1 to N . The resulting vector is then
denoted as y = [y0, ..., yN ]T ∈ RN .

7.2 Gaussian process regression

Given a training set comprising N training points stored row-wise in matrix notation,
{xi}Ni=1 = X ∈ RN×ddet , with corresponding training labels [y0, ..., yN ]T = y ∈ RN ,
regression aims to find a function f : Rddet → R such that f(X) ≈ y. This is in
contrast to interpolation which looks for a function exactly matching the training data,
f(X) = y. We do not want a strict equality as in interpolation, since we additionally
assume that the function values y are subject to noise. This is modelled by a linear,
Gaussian distributed error term εGP ∼ N (0, σ2

nI) such that y = f(X) + εGP where
σn ∈ RN is a hyperparameter.

Hence, the task is to find the best function f . One approach to address this task is
to restrict the pool of candidate functions. On one extreme end, there is classic linear
regression, which limits the possible functions to be linear. However, this approach is
rather restrictive, lacking the freedom to explore other potential fits and potentially hin-
ders discovering the best solution. The other extreme end involves testing all possible
functions and selecting the best fit based on the training data. However, due to the infi-
nite function space, this approach will be computationally expensive or even infeasible.

To tackle the challenge, GPs offer an appealing solution: they represent a distribution
over functions, where the only constraints arise from the kernel function and its hyper-
parameters. By leveraging GPs, we can explore a wide range of functions. This allows
for more flexibility in finding the best fit compared to linear regression, without reaching
the extreme computational cost of testing all possible functions.

To narrow down the pool of candidate functions, we utilize the training points as
constraints. The goal is to find the best function f : RN → R to compute function
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7.2 Gaussian process regression

values f∗ for a set of test (or regression) points X∗ conditioned on the noisy training
points (X,y).

Now, to find the best function f conditioned on the noise training points (X,y), this
leads us to the following model (refer to [47, 269] for more details):

We know that the function f we search is conditioned on the data points. This results
in the prior distribution:

p(f |X) = N (f |0,KXX), (7.4)

where N denotes the Gaussian distribution with zero mean and covariance KXX. With-
out loss of generality, we assume a zero mean for the prior.

We introduce noisy evaluations as y by adding the hyperparameter σ2
n in the variance:

p(y|f) = N (y|f , σ2
nI). (7.5)

Note, that we assume independent noise, which results in the off-diagonal entries to be
zero.

Following the rules in App. B.3, we can compute the likelihood

p(y|X) =

∫
p(y|f ,X)p(f |X)df = N (y|0,KXX + σ2

nI). (7.6)

We assume noisy observations (X,y) as training data for the regression, but in the
end are interested in a prediction f∗ for an unseen point x∗. Hence, we introduce the
joint distribution between the noisy training evaluations and non-noisy test points:[

y
f∗

]
∼ N (y, f∗|0,

[
KXX + σ2

nI kXx∗

kx∗X kx∗x∗

]
). (7.7)

Following Eq. (B.17) and the rules of conditional Gaussian distributions in App. B.4
we condition the joint distribution to contain only those functions which agree with the
observed data pairs (X,y). We present the posterior which gives us a prediction for f∗

given a new data point x∗:

f∗|x∗,X,y ∼ N (f |kx∗X[KXX + σ2
nI]−1y,

kx∗x∗ − kx∗X[KXX + σ2
nI]−1kXx∗).

(7.8)

This results in a closed form posterior where we use the mean value as the estimator
for a new data point x∗:

f∗ = G[x∗|y,X] := kx∗X[KXX + σ2
nI]−1y. (7.9)

Additionally, the posterior offers an estimate about the uncertainty of its prediction
through its variance:

σ2
f∗ = V[x∗|X] := kx∗x∗ − kx∗X[KXX + σ2

nI]−1kXx∗ . (7.10)

Here, we introduce the notation for the GP mean estimator and variance estimator, G
and V respectively.
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Example 1 (GP prior and GP posterior with and without noise). In Fig. 7.1, we show
a comparison between drawing functions from a prior GP (left) and the corresponding
posterior conditioned on given data points. On the one hand, if we do not apply noise
the posterior functions interpolate the training points (center). On the other hand, if
we assume noisy evaluations, they do not exactly match the training data (though they
will converge to them with more training data) (right). We also observe how the mean
GP estimator changes when being trained on the (noisy) data, (not) matching the data
points. Additionally, we see a difference in the standard deviation estimator of the GP,
with a standard deviation of 0 for the interpolated training data.
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(a) Prior.
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(b) Posterior.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

(c) With noise.

Figure 7.1: Five random Gaussian functions drawn from GP prior with squared exponential
kernel (left). Six Gaussian functions sampled from posterior fitted on five training
points (center). Six Gaussian functions sampled from posterior fitted on five noisy
training points (right). We also plot the GP mean estimator, G, in black dashed

and two times the standard deviation, V 1
2 , as yellow band.

7.3 Kernel functions: definition, properties and examples

The choice of kernel function is fundamental in GP regression, since it builds the base
of the function space that we want to represent. Kernel functions were initially intro-
duced in [8] for potential function methods in pattern recognition. Subsequently, their
popularity was revived in machine learning for optimal margin classifiers by [53]. Kernel
functions capture our assumptions about the target function we aim to learn and the
set of functions we consider. This is akin to classic regression, where we restrict the
possible functions to linear or quadratic forms, for example. However, kernel functions
can be much more powerful since we only describe the relation between pairs of data
points of the function and do not restrict the function itself. In that sense, they provide
information about the similarity between pairs of data points (x,x′).

In the context of supervised learning, this notion is intuitive since similar points should
exhibit high correlation and be close to each other. Conversely, widely separated points
should have minimal or no influence on each other. Consequently, training points that
are in close proximity to a given test input provide the most information for estimation.
However, not all functions can serve as kernel functions. In the following discussion, we
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7.3 Kernel functions: definition, properties and examples

present a few properties and examples of kernel functions, with a more comprehensive
exploration available in [47, 159, 269].

As stated before, a kernel represents the relation of two data points x ∈ X and x′ ∈ X
from a data set X ⊂ Rddet . Its formulation is given as

k(x,x′) = φ(x)Tφ(x′). (7.11)

Here, φ(x) describes a nonlinear feature space mapping. Interpreting Eq (7.11), the
scalar product of function mappings φ applied on x and x′ can be replaced by a kernel
k applied on both vectors. This is called the kernel trick or kernel substitution [47].

We summarize a few more properties about kernels: If a kernel is invariant to trans-
lations in the input space, meaning it only depends on the difference (x − x′), it is
referred to as stationary. A kernel is considered symmetric if it satisfies the prop-
erty k(x,x′) = k(x′,x). Additionally, if the kernel is solely a function of the distance

r = |x− x′| =
√

(x1 − x′1) + (x2 − x′2) + ...+ (xddet − x′ddet), it is termed isotropic. Ker-

nels of this type are also known as radial basis functions (RBF) or RBF kernels. A
kernel is considered positive semidefinite if∫

k(x,x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0, (7.12)

for all f ∈ L2(X , µ). A kernel can be defined by its pairs of eigenvalues {λi}∞i=1 and
eigenfunctions {φi}∞i=1 through Mercer’s theorem [185]:

k(x,x′) =
∞∑
i=1

λiφi(x)φ∗i (x
′). (7.13)

We call a kernel (non-)degenerate depending on it (not) containing eigenvalues equal to
zero.

The matrix K is commonly referred to as the Gram matrix in literature [47, 269]. It
is constructed from a given set of input points {xi}Ni=1, where the entries are defined
as Kij = k(xi,xj). If the kernel is positive semidefinite, the resulting kernel matrix is,
thus, also positive semidefinite, i.e. the inequality vTKv ≥ 0 holds for all v ∈ RN . It
is important to note that the terms Gram matrix, kernel matrix, and covariance matrix
are used interchangeably in this context. A more comprehensive discussion on the topic
of properties of kernel and the kernel matrix can be found in references such as [47, 269].

The most prominent kernel used throughout literature is called squared exponential
kernel, given by:

k(x,x′) = σ2
f · exp

(
−1

2
(x− x′)TΛ−1

l (x− x′)

)
. (7.14)

Here, σ2
f ∈ R+ and l = diag(Λl) with l = [l1, ..., lddet ]

T ∈ Rddet+ are called hyperpa-
rameters. Below, we present a selection of other kernels commonly found in the litera-
ture [47, 159, 269]. The table displays these kernels, their corresponding mathematical
expressions and hyperparameters

31



7 Gaussian processes

Name Expression Hyperparameters

Constant σ2
0 σ0

Linear
∑D

d=1 σ
2
dxdx

′
d σd

Polynomial (x · x′ + σ2
0)p σ0

Squared exponential exp
(
− r2

2l2

)
l

Exponential exp
(
− r
l

)
l

γ-exponential exp
(
−( rl )

γ
)

l, γ

Rational quadratic (1 + r2

2αl2
)−α α, l

Neural network sin−1( 2x̃TΣx̃′√
(1+2x̃TΣx̃)(1+2x̃TΣx̃′)

) Σ

Wiener min(x,x′)
Brownian Bridge min(x,x′ − xx′)

Matérn 1
2ν−1Γ(ν)

(
√

2ν
l r)νKν(

√
2ν
l r) ν, l

Ornstein-Uhlenbeck exp
(−r
l

)
, D=1 l

Table 7.1: Examples of GP kernels, their names, expressions and hyperparameters.

7.4 Gaussian process hyperparameters

When discussing hyperparameters in the context of GP regression, we are referring to the
parameters within the kernel function and the noise estimate in our linear noise model.
For instance, in the case of the squared exponential kernel:

k(x,x′) = σ2
f · exp

(
−1

2
(x− x′)TΛ−1

l (x− x′)

)
, (7.15)

we have the variance parameter σ2
f ∈ R+ and the diagonal length-scale matrix Λl ∈

Rddet×ddet+ , which contains the length-scale vector l = [l1, ..., lddet ]
T along its diagonal.

Thus, the complete hyperparameter space for the GP can be summarized as:

ψ = [σ2
f , l1, ..., lddet ] ∈ R(ddet+1)

+ . (7.16)

In some cases, authors also treat the noise estimate σ2
n ∈ RN+ from the linear noise model

y = f(x) + εGP, εGP ∼ N (0, σ2
n) as a hyperparameter [269, 293, 314]. We exclude this

parameter in the hyperparameter optimization process, since, in our specific case, the
MC estimate in SNOWPAC already provides a noise estimate for each training point.
This will be explained in detail in Part IV. We give two examples on the effect of the
length scale and the noise hyperparameters on the GP estimator next.

Example 2 (GP hyperparameters: length scale and noise). We present a comparison
demonstrating the impact of the hyperparameters, namely the length scale l and σ2

f , on the
GP approximation for a one-dimensional regression problem in Fig. 7.2 and Fig. 7.3.
For both figures, the training data consists of noisy samples of the test function sinx

x ,
indicated by red points, which are uniformly sampled in the interval [−10, 10]. The test

32



7.4 Gaussian process hyperparameters

point range is [−15, 15]. The exact function f is represented by the blue dashed line. The
GP mean value evaluated on the test set is depicted by the black line. Additionally, the
shaded yellow region represents the 95% confidence interval for the standard deviation.

In Fig. 7.2, we compare different length scales, l ∈ {0.3, 1.0, 5.0}. The results reveal a
smoothing effect as the length scale increases. While the case of l = 0.3 attempts to fit
closely to all the training points, for l = 5.0 we see a much smoother function but less
fit to individual points.

Gaussian Process l=0.3

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

1.5

f exact
training data (70)
gp mean
gp 2std

Gaussian Process l=1

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

1.5

f exact
training data (70)
gp mean
gp 2std

Gaussian Process l=5

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

1.5

f exact
training data (70)
gp mean
gp 2std

Figure 7.2: We compare the GP approximation using three different length scales l ∈
{0.3, 1.0, 5.0} for the squared exponential kernel from left to right.

In Fig. 7.3, we illustrate the influence of σ2
f on the width of the prior variance. We

compare three different values for σ2
f ∈ {0.1, 1, 5}. Smaller values of σ2

f introduce ad-
ditional smoothing effects to the estimate, while a larger value allows larger variations.
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Figure 7.3: We compare the GP approximation using three different values for σ2
f ∈ {0.1, 1, 5}

for the squared exponential kernel from left to right.

The last question of this section is: How do we pick the optimal set of hyperpa-
rameters? While other approaches, such as cross validation [28, 218] and approaches for
sparse data [216], exist, the most common approach is to minimize the negative marginal
log-likelihood as given in (7.6). Here, we optimize for ψ = [σn, l] as our vector of design
parameters. We can write the marginal likelihood in its Gaussian form as

p(y|X) = N (y|0,KXX + σ2
nI)

=
1√

2π ddetN |KXX + σ2
nI|
· exp

(
−1

2
yT (KXX + σ2

nI)−1y

)
. (7.17)
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The logarithm is applied to simplify the formulation, removing the exponential:

log p(y|X) = log 1− log

√
2π
ddet

N
|KXX + σ2

nI| −
1

2
yT (KXX + σn

2I)−1y

= −1

2
log 2π

ddet

N
− 1

2
log |KXX + σ2

nI| −
1

2
yT (KXX + σ2

nI)−1y.

(7.18)

Finally, since we are only interested in the maximal value, we can ignore constant
terms in the optimization process and end up with the following optimization problem:

min
ψ
− log p(y|X) =

1

2
log |KXX + σ2

nI|+
1

2
yT (KXX + σ2

nI)−1y. (7.19)

Here, |A| denotes the determinant of matrix A.

7.5 Posterior consistency of Gaussian processes

Posterior consistency is a property of a sequence of probability distributions derived from
a sequence of increasing datasets. More formally, if we say that a statistical procedure
is posterior consistent, we mean that as the sample size tends to infinity, the posterior
distribution of the parameters concentrates more and more around the true value of the
parameter.

For GPs, the concept of posterior consistency becomes important when we want to
make inferences about our data. If a GP is posterior consistent, then as we gather more
and more data, the posterior distribution of our predictions will converge to the true
underlying function that we are trying to estimate. Posterior consistency for GPs is
tied to assumptions about the kernel function used, the noise in the data, and the true
underlying function that generated the data. If these assumptions are satisfied, then a
GP model can be shown to be posterior consistent.

Work in [280, 299, 319] present results on GP posterior consistency. However, these
results assume deterministic data, i.e. σ2

n = 0, where they apply analysis from radial
basis functions. More recent work by Lederer et al. [198] presents probabilistic uniform
error bounds. We cite here Theorem 3.3 from their work and adapt it to our notation
where necessary:

Consider a zero mean GP defined through the continuous covariance kernel k(·, ·) with
Lipschitz constant Lk on the set ∈ X ⊂ Rddet. Furthermore, consider an infinite data
steam of observations (xi, y) of an unknown function f : X → R with Lipschitz constant
Lf and maximum absolute value f̄ ∈ R+ on X, where unknown function f is a sample
from a GP GP(0, k(x,x′)) and observations y = f(x) + ε are perturbed by zero mean

i.i.d. Gaussian noise ε with variance σ2
n. Let G and V

1
2 denote the mean and standard

deviation of the GP conditioned on the first N observations. If there exists a ε > 0 such

that the standard deviation satisfies V
1
2 ∈ O

(
log(N)−

1
2
−ε
)

, ∀ x ∈ X, then it holds for

every δ ∈ (0, 1) that

P

(
sup
x∗∈X

||G[x∗|y,X]− f(x∗)|| ∈ O(log(N)−ε)

)
≥ 1− δ. (7.20)
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7.5 Posterior consistency of Gaussian processes

For more details that go beyond what is relevant here, we refer to their paper, where
the authors, e.g., discuss how to estimate the Lipschitz constants Lk and Lf or how
to find the constant f̄ . The assumptions are not very restrictive, with a continuous
kernel and a bounded function f . For us, importantly, this theorem shows that the
probabilistic error of the GP mean estimator converges with an increasing number of
observations N in the limit depending on the noise ε. We give an intuition about this
property numerically in the following small example.

Figure 7.4: We compare the GP convergence by calculating the GP approximation error with
respect to the function value at x = 1 for an increasing number of training samples.
The error is averaged over 100 runs. We juxtapose different kernels given in the
title and different noise levels, σn ∈ {1, 0.1, 0.01, 0.001}, in each figure.

Example 3 (GP posterior consistency example). We plot the numerical convergence
of the GP for the test function f(x) = sinx

x in Fig. 7.4. We evaluate f(x) for x = 1
for an increasing size of training data, N ∈ {10, 100, 1000, 10000}. The training data
is picked randomly and uniformly around x = 1. For each training size, we evaluate
the approximation error ||G[x∗|y,X]− f(x∗)|| and repeat this process 100 times, plotting
the average approximation error. We compare different kernels, presented in Table 7.1,
where the respective kernel is given in the title of the figures. For each kernel, we regard
four different noises ε ∼ N (0, σ2

n) on the data for σn ∈ {1, 0.1, 0.01, 0.001}. For each
kernel and each training size, we optimize for the hyperparameters l and σ2

f , minimizing
the negative marginal log-likelihood.

We observe a decrease in the approximation error in almost all cases. On the one
hand, we notice, that convergence improves for smaller noises. On the other hand,
the convergence rate seems to decrease for larger noise values, especially for the case
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7 Gaussian processes

σn = 1. Thus, a small noise value seems vital for the convergence of the GP, confirming
the results from Thm. 7.20.

Another interesting quantity to look at for convergence is the variance estimator of
the GP, V

1
2 (x) (see Eq. (7.10)). This estimator can be interpreted as the confidence of

the GP as an estimator given the data. This estimator is independent of the function
values, only depending on the data locations. Hence, we expect it to decrease it with
an increasing amount of training samples. We numerically test this in the following
example, where we look at the same setting as in Example 3, only changing the quantity
of interest to V

1
2 (x).

Example 4 (GP variance convergence example). We regard at the GP standard de-

viation V
1
2 (x) for x = 1 for the same function f(x) = sinx

x . We plot the GP es-
timate in Fig. 7.5. We evaluate again for an increasing size of training data, N ∈
{10, 100, 1000, 10000} picked randomly and uniformly around x = 1 and repeat this pro-
cess 100 times. We compare the same kernels and noise levels, and optimize for the
hyperparameters l and σ2

f , minimizing the negative marginal loglikelihood.

For all cases, we observe (almost) linear convergence in the GP standard deviation
estimate for increasing number of training samples. This seems independent of the noise
level with some outliers for σn = 1. Note again, that this result is independent of the
function f . Thus, the GP gets more confident in its estimation for larger N .

Figure 7.5: We compare the GP standard deviation estimate, V 1
2 (x), for an increasing number

of training samples. The error is averaged over 100 runs. We juxtapose different
kernels given in the title and different noise levels, σn ∈ {1, 0.1, 0.01, 0.001}, in each
figure.
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7.6 Preview of Gaussian processes in our work

Summarizing these results, we observe that the GP mean and standard deviation
estimator improve with an increasing amount of training data. We showed both theo-
retical and numerical results here. This property will be important when we talk about
GP surrogates in Part IV, where we employ the method in our optimization method
SNOWPAC.

7.6 Preview of Gaussian processes in our work

GPs are crucial to this work. They are a main component in SNOWPAC, which we will
present in Part IV, where they serve as a surrogate to mediate the effect of noisy evalu-
ations. The main function of GP surrogates in SNOWPAC is presented in Section 14.3.
Here, the posterior consistency of the GP is an important property. Furthermore, the
choice of kernel constrains the functions the GP can represent. In additional extensions to
the method, we will also look into adaptive kernel choices in SNOWPAC in Section 17.1.
Given that the posterior evaluation of the GP involves an inversion of the kernel matrix,
which can become computationally expensive, we will present approximate GP methods
as an extension in SNOWPAC in Section 17.2.
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8 Derivative-free deterministic optimization

The next two topics of this background part concern optimization. In this chapter, we
talk about the deterministic case before we extend to OUU in the following chapter. We
will start off with an in-depth review of developments in the field given the importance
of the topic for our thesis in Section 8.1. We will present the basics of derivative-
free optimization and different approaches to solve such problems in Section 8.2. We
will close this chapter in Section 8.3, where we present the deterministic derivative-free
optimization method NOWPAC, which our contribution extends on.

8.1 A brief review of optimization

The website by Mitri Kitti [183] provides a comprehensive overview of breakthroughs in
the field of optimization spanning over the past 2300 years, revealing that optimization
problems have been explored since ancient times.

One of the earliest optimization problems documented in print is found in Euclid’s
renowned work, Elements [245]. Euclid formulated the problem of determining the max-
imum area of a parallelogram, given a triangle, such that one of the parallelogram’s
edges is parallel to an edge of the triangle. Euclid also introduced other optimization
problems, including the search for the minimum distance between a point and a line, as
well as the demonstration that a rectangle with maximum area is a square [303]. Zen-
odorus, another Greek mathematician, studied Dido’s problem, which involved finding
the object with the largest area bounded by a given perimeter [167].

In terms of significant advancements in the field, there is a noticeable gap in the sub-
sequent centuries until the 17th and 18th centuries, when new works emerged. Johannes
Kepler, for example, investigated the possibility of packing more balls per unit volume
than the conventional packing method [95]. This problem arose when Sir Walter Raleigh
sought advice on the most efficient way to stack cannonballs on his ship. Although the
initial answer may appear straightforward1, it was not until Carl Friedrich Gauss that
significant progress was made towards proving the optimal solution [130]. In fact, the
final proof was only published in this century by Thomas C. Hales [152].

Other renowned scientists, who delved into optimization include Galileo Galilei, who
studied the shape of a hanging chain [149], Isaac Newton, who investigated bodies of
minimal resistance [288], Joseph-Louis Lagrange, who examined minimal surfaces [100],
and Adrien-Marie Legendre, who presented the least-squares method [225].

1Make layers in which each cannonball touches six others, and stack these layers such that the cannonball
in one fits into the holes between those below.
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8 Derivative-free deterministic optimization

Optimization appears in virtually every field and application. Its applications span
finance [85], economics [88], biology and medicine [153], engineering [249], and even
sports [283].

8.2 Deterministic derivative-free optimization

Let us first define the general deterministic optimization problem to set the stage:

min f(x)

s.t. ci(x) ≤ 0, i = 1, ..., r.
(8.1)

We denote x ∈ Rddet as the design parameters, f(x) : Rddet → R as the scalar-valued
objective function and {ci(x) : Rddet → R}ri=1 as the set of constraint functions. We
define the feasible domain as X := {x ∈ Rddet : c(x) ≤ 0}. Note that we define
Eq. (8.1) as a minimization problem though it can be easily changed to a maximization
problem, since min f(x) = −max f(x).

Extensive literature exists on various optimization approaches depending on the char-
acteristics of the objective and constraints functions. Examples include linear optimiza-
tion [92, 93], convex optimization [55], and nonlinear optimization [36]. In our approach,
we do not impose specific restrictions on the problem and consider it to be nonlinear.

Handling constraints is a critical aspect of nonlinear optimization problems, and nu-
merous approaches have been explored in literature. One approach involves replacing the
objective function with a merit function that penalizes constraint violations [36, 55, 78].
To ensure the effectiveness of these methods, appropriate penalization parameters need
to be carefully selected. Alternatively, a filter technique proposed by [122] and [123]
allows for iterative optimization steps to be accepted, if they satisfy either the objective
function or the constraints. However, there are other methods that do not rely on filter
techniques or penalty approaches as, e.g. presented in [145]. When function evaluations
are computationally expensive, reduced-order models can be employed to reduce com-
putational effort, as discussed in [6]. Despite their differences, most of these methods
still rely on derivative information regarding the objective function and constraints.

A category of optimization solvers that can handle Eq. (8.1) without relying on gra-
dient information are referred to as derivative-free methods [81, 192]. These solvers
become necessary when there either is no knowledge of the analytical objective function
or it is not available in closed form. Therefore, derivative-free methods have a broader
applicability but also present their own set of challenges. The most prominent (and ob-
vious) challenge is the absence of gradient access, which requires finding an alternative
approach to determine the optimal direction.

We will now summarize two popular classes of methods to solve derivative-free op-
timization problems [81]: direct-search methods and line-search methods. Afterwards,
we will talk in more extend about trust-region methods for derivative-free optimization,
which we employ in our optimization method SNOWPAC.
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8.2 Deterministic derivative-free optimization

Direct-search methods

Direct-search (or pattern-search) methods use evaluations of the objective function at
a finite number of points in each iteration to decide which action to take solely based
on those function values [202, 203, 261]. The first work on this method is attributed to
Fermi and Metropolis [120] back in 1952, with a recent review given in [13].

There is no explicit derivative approximation or model building involved in contrast
to what we see in the other classes of methods. They usually consist of a search step and
a poll step. The search step is optional and evaluates the objective function at a finite
number of points (usually arranged in a mesh or pattern, but it can also follow some
heuristic). If the search step does not find an improved iterate, i.e. f(xk+1) ≥ f(xk),
the poll step is performed: it consists of a local search around the current iterate,
exploring a set of points defined by a step size parameter and a positive basis. The step
size parameter is adapted based on the success of the poll step. The simplest example
for a positive basis is the coordinate-search method [172], which samples possible new
iterations using the unit vectors, where all entries of the vector are zero apart from
the i-th direction. The point, which improves the objective the most, becomes the new
iterate.

Due to their simplicity, direct-search methods offer great analytical properties [306]
and are often provably globally convergent [16]. The special class of mesh adaptive direct
search (MADS) methods were shown to achieve global convergence also in the case of
a nonsmooth objective [17]. A popular method in this field is NOMAD (Nonlinear
optimization with the MADS algorith) [194], which is still being developed [21] and has
in the meantime been extended to constrained cases [19, 75]. MADS methods have also
been applied to mixed variable optimization [2] and multi-objective optimization [22].
Their main advantages are their simplicity and traceability, but also their potential for
computational optimization, e.g., evaluating the poll or search step in parallel.

Another very popular algorithm is the Nelder-Mead algorithm [237]. Instead of a grid
based approach, Nelder-Mead-type algorithms use a simplex based on ddet +1 vertices to
search the area. The simplex is then transformed—reflected, expanded or contracted—
based on the success of the search. It can also be shown to be globally convergent [307]
and is very popular still to date, despite being first introduced in the sixties due to its
simplicity.

Line-search methods

In line-search methods, we use approximate gradient information [81, 139]. Given a
sample set of ddet + 1 points, we can compute the derivative using linear interpolation
(assuming that the points are distributed well). If we have (ddet + 1)(ddet + 2)/2 − 1
points available, we can even approximate second order information by computing the
Hessian. Given the gradient direction, methods in this class perform a line-search to
find the next best point along that direction. This class of methods is also shown to
be globally convergent [52]. To give a few examples of developments in the field: the
authors [212, 148] present connections with direct-search methods; we see modifications
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8 Derivative-free deterministic optimization

of the basic algorithm to parallel computations [128] as well as a quite recent extensions
to multi-fidelity methods [253].

Trust-region methods

A widely used category of methods in derivative-free optimization is known as trust-
region methods, which developments were presented in a variety of reviews over the
years [78, 81, 176, 192, 231, 334]. In trust-region methods, a surrogate model is con-
structed in the vicinity of the current iterate, satisfying specific properties. The region of
vicinity is called the trust-region and is usually a ddet-dimensional sphere (or sometimes
a box [239]). This surrogate model is then used to approximate derivative information.
The next iterate is found by solving a (simpler) optimization problem on the subproblem
defined by the surrogate in the trust-region where said derivative information is avail-
able. The iterate is then accepted based on the acceptance ratio, which is a criteria of
quality of the surrogate. Closeness to a first order local optimum is based on a criticality
measure, which shows convergence of the solver.

Formally, let x0 denote the initial iterate, followed by a series of intermediate steps
xk, k ∈ N0. Given an objective function f and constraints ci, i = 1, ..., r, we construct
surrogates mf

xk and mci
xk

in the neighborhood of the current iterate xk. This neigh-
borhood called trust-region is defined as B(xk, ρk) := x ∈ RD : ‖x− xk‖ ≤ ρk, where
ρk ∈ R+ represents the adaptive trust-region radius for each iteration k ∈ N0.

The surrogate itself is based on quadratic models, which makes it particularly mathe-
matically attractive due to its curvature information. Two typically required properties
of the surrogate are that it is twice continuous differentiable and fully linear, which is
defined as (see [81]):

|f(x + s)−mf
x(x + s)| ≤ κfρ2

|ci(x + s)−mci
x (x + s)| ≤ κcρ2

‖5f(x + s)−5mf
x(x + s)‖ ≤ κdfρ

‖5ci(x + s)−5mci
x (x + s)‖ ≤ κdcρ

(8.2)

.
Another important aspect regarding the quality of the surrogate is how well-poised its

surrogate points are. In other words, the quality of the surrogate model in the trust-
region is determined by the position of the underlying points. For example, if a model
mf

xk tries to extrapolate a function value f at points far away from its interpolation
points, the model value may differ greatly from the value of f . Λ-poisedness is a con-
cept to measure how well a set of points is dispersed through a region of interest, and
ultimately how well a model will estimate the function in that region.

Remark 2. Λ-poisedness: The most commonly utilized measure for assessing the
spatial distribution of points within a specific region of interest is based on Lagrange
polynomials. Let X = {x1, ...,xp} represent a set of p points. A set of Lagrange
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8.2 Deterministic derivative-free optimization

polynomials forms a basis that satisfies the following conditions:

lj(xi) =

{
1 if i = j,

0 if i 6= j.
(8.3)

A set of points X is considered Λ-poised on a set B if X is linearly independent,
and the Lagrange polynomials l1, ..., lp associated with X satisfy the inequality [82]:

Λ ≥ max
1≤i≤p

max
x∈B
|li(x)|. (8.4)

with Λmin := max1≤i≤p maxx∈B |li(x)|. It is important to note that this definition
is independent of the function being modeled, and the points X are not necessarily
required to be elements of the set B. Additionally, if a model is poised on a set B, it
is also poised on any subset of B. Our main interest lies in determining the smallest
possible value of Λ that satisfies Eq. (8.4).

We can then construct a quadratic surrogate as

mb
k(xk + s) = mb

k(xk) + gks +
1

2
sTHks + qk (8.5)

for a general function b ∈ {f, c1, ..., cr}, with the interpolation condition mb
i(xi) =

b(xi), i = 0, ..., k. We denote gk ∈ Rddet and Hk ∈ Rddet×ddet as the gradient vector
and the symmetric Hessian matrix, respectively, and qk ∈ R as a constant term. The
vector s ∈ Rddet is the step size restricted by the trust-region ||sk||2 ≤ ρk, where || · ||2 is
the Euclidean norm. We need (ddet+1)(ddet+2)/2 points to fully define the model. If the
model is underdefined, we can use minimum Frobenius norm surrogates to minimize the
approximation error based on the Frobenius norm of the Hessian Hk [258]. Here, we find
the Hessian by requiring again the interpolation condition, mb

i(xi) = b(xi), i = 0, ..., k,
and optimize for the surrogate that minimizes ||Hk −Hk−1||2F . This approach requires
at least (ddet + 1) points, to start with a linear polynomial.

From the surrogate, we can then derive the gradients, since

∇mb
k(xk + s) = gk + Hks,

∇2mb
k(xk + s) = Hk,

(8.6)

and optimize for the next iterate using a subproblem optimizer of our choice.

Since the surrogate is simple and well-understood with clear analytic properties, trust-
region methods offer great analytic properties as well, e.g. with respect to provability
of convergence [76, 79, 80]. Polynomial response surfaces [80, 256, 257, 258] and radial
basis functions [322] are common examples for typically employed surrogate models. For
a more detailed discussion of surrogate model selection, we point to [81].

Compared to line-search methods, trust-region methods do not search at first for a
direction and a step length but rather restrict the search space. The idea of minimiz-
ing a quadratic interpolation within some region of validity goes back to the authors
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of [326, 327]. With respect to important developments in this field, the authors of [257]
introduced a method using quadratic surrogates in an unconstrained scenario and later-
on introduced least-Frobenius norm to adaptively update the surrogate [258]. In [61],
the authors investigated the effect of inexact gradient values, which is of relevance when
dealing with noisy function evaluations. The authors of [173] looked at quadratic mod-
els for noisy function evaluations. Random trust-region approaches, investigated in [67]
and [191], build on the idea the condition of using fully linear model as surrogates need
to hold only with some probability, as was shown in [30] with extension in [147]. Also,
radial basis functions were investigated as alternative surrogate models in [321, 322] with
an extension to constrained problems in [272].

Otherwise, regarding trust-region methods for constrained problem, the literature is
not as rich. Apart from the method NOWPAC [23], which we will discuss next, the
authors of [259] present a fast method for linear constraints, whereas the authors in [74]
defer the handling of constraints to the subproblem optimizer inside the trust region.
In [14], Audet et al. present a trust-region algorithm using a progressive barrier, which
is an approach to push the infeasible solution (progressively) toward the feasible domain.

8.3 Review of the trust-region framework NOWPAC

In the previous section, we discussed various derivative-free algorithms, with a particular
emphasis on trust-region methods. Now, we will provide a brief overview of NOWPAC
(Nonlinear Optimization With Path-Augmented Constraints), which is deterministic
derivative-free optimization method, presented by Augustin and Marzouk [23]. NOW-
PAC utilizes a trust-region approach. It employs black-box evaluations to construct
fully-linear surrogate models of the objective function.

NOWPAC offers three contributions to the field of deterministic derivative-free opti-
mization using trust regions:

1. It employs an inner boundary path to ensure feasibility by convexifing the con-
straint locally.

2. The algorithm is provably convergent to a first-order critical point.

3. NOWPAC provides an error indicator to detect corrupted evaluations, e.g. due to
noise.

The algorithm starts at an initial feasible solution from x0 ∈ X, where the feasible
domain is given by X =

{
x ∈ Rddet : ci(x) ≤ 0 for i = 1, ..., r,

}
with an initial trust-

region size ρ0. Next, it builds the initial surrogates mb
0 by evaluating ddet points around

x0. Here, it uses the unit vectors as stencil in each dimension for initial points xi =
x0 + 0.5ρ0ei for i = 1, ..., ddet.

At optimization iteration k ∈ N+, NOWPAC computes the criticality measure as a
first step:

αk(ρk) :=
1

ρk

∣∣∣∣∣∣ min
xk+d∈Xk
‖d‖≤ρk

〈
gfk ,d

〉∣∣∣∣∣∣ . (8.7)
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8.3 Review of the trust-region framework NOWPAC

It is used to assess closeness of the trial step to a first-order optimal point—a critical
point. Here, gfk = ∇mf

k is the gradient of the surrogate model of the objective function
f as given in Eq. 8.6. If the criticality measure is lower than some preset tolerance,
NOWPAC could stop, saying that it has reached an optimum; however, the algorithm
assumes that the surrogate does not have the best predictive capabilities. Instead of
stopping, it reduces the trust region and updates the surrogates. The algorithm is
therefore stopped, if the trust-region radius falls below some specified tolerance.

If this tolerance has not been reached yet, an intermediate step sk to the next best
optimum is computed by solving the trust-region subproblem

sk := arg minm
f

k(x + sk)

s.t. x ∈ Xk, ‖sk‖ ≤ ρk
(8.8)

with the approximated feasible domain

Xk :=
{
x ∈ Rn : mci

k (x) + hk(sk) ≤ 0 for i = 1, ..., r,
}
. (8.9)

The additive offset hk to the constraints is called the inner boundary path, a convex
offset-function to the constraints ensuring convergence of NOWPAC. It can be inter-
preted as a penalty or barrier function to push the design away from the constraint.

From the step, NOWPAC computes the trial point x̃k+1 = xk+sk. As a first criteria, it
only accepts this trial step if it is feasible with respect to the exact constraints {ci}ri=1,
i.e. if {ci ≤ 0}ri=1. Otherwise, the trust-region radius is reduced and, after having

ensured fully linearity of the models mf
k and {mci

k }
r
i=1, the algorithm starts from the

beginning and a new trial step sk is computed.

If the point is feasible, the acceptance ratio is computed as

rk =
f(xk)− f(x̃k+1)

mf
k(xk)−mf

k(x̃k+1)
, (8.10)

to assess acceptance of the trial point and to update of the trust region

This ratio reflects the truth versus the prediction of the surrogate. Hence, it is a
measure for the quality of our surrogate. Based on the result, for some tolerance η1,
NOWPAC accepts or rejects the point

xk+1 =

{
x̃k+1 if rk ≥ η1

xk if rk < η1

. (8.11)

In the final step of the iteration, it adapts the trust-region accordingly

ρk+1 =


ρk if rk ≥ 2

γincρk if rk ≥ η2 (and) rk < 2

ρk if η1 ≤ rk < η2,

γdecρk if rk < η1.

(8.12)
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8 Derivative-free deterministic optimization

Note that when NOWPAC accepts the suggested next iterate x̃k+1, it either keeps
the trust-region radius or increases it, while it decreases the radius if it rejects the
suggested iterate. This represents a balance between exploration and exploitation. If
NOWPAC accepts a point, it can explore further to find a better minimum and trusts
its surrogate. If it rejects the point, it has to exploit the current region and has to
improve the surrogate by decreasing its volume. We summarize the simplified algorithm
for NOWPAC in Algorithm 1 [23].

Algorithm 1 Simplified NOWPAC

1: Construct the initial fully linear models mf
0(x0 + s), {mci

0 (x0 + s)}ri=1, k = 0
2: while ρk >= ρmin do
3: Compute criticality measure αk(ρk) via (8.7)
4: // STEP 0: Criticality step
5: while αk(ρk) is too small do

6: Decrease ρk = ωρk and update mf
k and {mci

k }
r
i=1

7: end while
8: // STEP 1: Step calculation
9: Compute a trial step sk via (8.9)

10: // STEP 2: Check feasibility of trial point
11: if ∃ci(xk)(xk + sk) > 0 for i = 1, ..., r then

12: Set ρk = γρk and update mf
k and {mci

k }
r
i=1

13: Go to STEP 0

14: end if
15: // STEP 3: Acceptance of trial point and update trust-region
16: Compute rk via (8.10)
17: if rk ≥ η0 then
18: Set xk+1 = xk + sk
19: Include xk+1 into the node set and update the models to m

f

k+1 and {mci
k+1}

r
i=1

20: else
21: Set xk+1 = xk, m

f
k+1 = mf

k and {mci
k+1 = mci

k }
r
i=1

22: end if
23: Update ρk+1 via (8.12)

24: Update mf
k+1 and {mci

k+1}
r
i=1

25: k = k+1
26: end while

By presenting the background about derivative-free optimization and the trust-region
method NOWPAC, we lay the groundwork of this thesis for optimization. A major ques-
tion of our second contribution, SNOWPAC, is how to extend NOWPAC for stochastic
parameters and thus developing a derivative-free optimization method for OUU. Next,
we formulate the foundations of OUU in the next chapter and subsequently present our
contribution of SNOWPAC in Part IV.

46



9 Optimization under uncertainty

OUU can be viewed as a generalization from deterministic optimization, where we add
random variables to our optimization problem. Due to the introduced randomness,
these problems are also referred to as stochastic optimization. Since we are looking for a
robust solution with respect to these uncertainties, another common denotation is robust
optimization.

In the field of OUU, randomness is introduced into the previously deterministic prob-
lem from Eq 8.1. The resulting OUU problem can be written as

minRf (x,θ),

s.t. Rci(x,θ) ≤ 0, i = 1, ..., r.
(9.1)

Here, Rf and {Rci}ri=1 are measures of robustness or risk. Apart from the deterministic
design variable x, we re-introduce the random variable θ, as presented in Chap. 6. The
challenge is now to compute the measures, which are usually some form of statistics
such as the expected value. In the next Section 9.1, we are going to discuss common
measures. We will conclude this chapter with a review of work in the field in Section 9.2.
This chapter is extending our work in [221].

9.1 Problem formulations for optimization under uncertainty

In the subsequent discussions, we will delve into commonly used measures of robustness
and risk and their corresponding sampling estimators. This is a crucial aspect of OUU, as
these measures provide a quantitative assessment of the risk associated with a particular
decision or design. We refer to [275, 302] for a detailed discussion about risk assessment
strategies.

We introduce a collection of measures Rf and {Rci}ri=1 to model robustness and risk
for the OUU problem of Eq. (9.1). To simplify the notation, we refer to the objective
function f and the constraints {ci}ri=1 as black box b and the corresponding measures
will be denoted by Rb. We further assume that b is square integrable with respect to
θ, i.e. its variance is finite, and its cumulative distribution function is continuous and
invertible at every fixed design point x ∈ Rddet . In other words, we assume to be able to
sample θ.

The classical first example for a robustness measure is the expected value

Rb0(x) := E [b(x;θ)] =

∫
Ω

b(x;θ)p(θ)dθ. (9.2)
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9 Optimization under uncertainty

While it may be debated whether the expected value accurately reflects robustness con-
cerning variations in θ (given that it does not provide insight into the spread of b around
Rb0(x)), it remains a widely utilized measure for handling uncertainty in optimization

problems. For instance, the expected objective value, Rf0 , yields an average-optimized
design, while {Rci0 }ri=1 indicates expected feasibility.

To capture the statistical distribution of b around Rb0 for various values of θ—thereby
providing a justification for the term ’robustness measure’—we introduce a standard
deviation term:

Rb1(x) := V
1
2 [b(x;θ)] =

√
E [b(x;θ)2]−Rb0(x)2 = σ [b(x;θ)] . (9.3)

An important measure is the linear combination of Rb0 and Rb1, which we denote as
scalarization:

Rb2(x) := γq1Rb0(x) + (1− γ)q2Rb1(x), (9.4)

which offers a natural decision-making interpretation. The measure Rb2(x) balances the
dual objectives of expected outcome minimization and reduction of the range of potential
outcomes. By minimizing the standard deviation term Rb1, we enhance our confidence
in the optimal value being aptly represented by Rb0. The trade-off between these two
potentially conflicting goals is mediated by the weight factor γ ∈ [0, 1], reflecting the
user’s preference. The constants q1 and q2 are necessary to achieve a proper scale balance
between Rb0 and Rb1.

A standard practice is to employ measures known as probabilistic constraints—or
chance constraints—as defined in [263]. Here, a probability level β ∈; ]0, 1[ is determined,
up to which the optimal design should remain feasible. The measure that corresponds
to this is given as:

Rb,β3 (x) := E [1(b(x,θ) > 0)]− (1− β), (9.5)

where 1 is the indicator function

1(x) =

{
1 if x is True,

0 if x is False.
(9.6)

These probabilistic constraints are used in economic modeling, for instance, ensuring that
the construction cost of a power plant do not exceed a certain budget with a probability
of β. In physics, an application would be adjusting the gas mixture in a combustion
chamber to avoid flame extinction with a (high) probability of β. Penalties related to
costs or risks from violating these constraints can be included in the objective function.
We refer to the work by Li et al. [205, 206, 207] for an efficient method to approximate

Rb,β3 .
Assuming the existence of an invertible cumulative distribution function, Fµ, proba-

bilistic constraints can be articulated in terms of quantile functions:

Rb,β4 (x) := min {α ∈ R : E[b(x,θ) ≤ α] ≥ β} . (9.7)

Although the two formulations Rb,β3 and Rb,β4 yield the same set of feasible points,

{x ∈ Rddet : Rc,β3 (x) ≤ 0} = {x ∈ Rddet : Rc,β4 (x) ≤ 0}, we demonstrate in App. D.1
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9.1 Problem formulations for optimization under uncertainty

that Rb,β4 often presents more favourable smoothness properties than Rb,β3 , making it a
more suitable model for probabilistic constraints in our optimization process. For b = f ,
the robustness measure Rf,β4 is also known as Value at Risk (VaR), a widely adopted
non-coherent risk measure in finance applications. Also, note that if the underlying
distribution is (assumed to be) normal, Rb2(x) is often used in practice as a chance
constraint, where γc1 = 1 and (1− γ)c2 describes the confidence interval.

The Conditional Value at Risk (CVaR), as detailed in Acerbi [3] and Rockafeller [275],

is a coherent extension of Rb,β4 (x). This measure is characterized as the conditional
expectation of b exceeding the VaR:

CVaRβ(x) :=
1

1− β

∫
b(x,θ)≥Rb,β4 (x)

b(x,θ)p(θ)dθ. (9.8)

Taking cue from Alexander et al. [9] and Rockafeller et al. [275], we define the last
robustness measure of this work as

Rb,β5 (x, τ) := τ +
1

1− β
E [max{b(x,θ)− τ, 0}] . (9.9)

This definition allows us to minimize the CVaR without the need to first compute Rb,β4 ,
as the minimization of Rb5 over the extended feasible domain X × R yields

min
x∈X

CVaRβ(x) = min
(x,τ)∈X×R

Rb5(x, τ). (9.10)

To be thorough in this work, we note another measure traditionally closely associated
with robust optimization: the worst case formulation given as maxθ{b(x,θ)}. This
measure, however, can often pose computational challenges. We basically search a rare
event, where its analytical computation is only computationally feasible in particular
situations with simpler, non-black-box functions. Importantly, it does not necessitate
an understanding of the probability distribution of θ, a condition we assume to be true
in this work, since we are just looking for the maximum value. As such, we will not
discuss worst-case scenario approaches further in this context.

We give an example for the different measures Rb,β3 , Rb,β4 and Rb,β5 next. This helps in
giving an intuition of the optimization formulations in the stochastic setting. Afterwards,
we move on to a literature review about work in the field of OUU.

Example 5 (Illustration for measures). We plot examples of Rb,β0 , Rb,β1 , Rb,β3 , Rb,β4 and

Rb,β5 for β = 0.95 for a one-dimensional Gaussian distribution b(·, θ) ∼ N (−1, 1) in

Fig. 9.1. We point out the quantities such as α in Rb,β4 or CVaR in Rb,β5 in the figures.

We also stress again the similarity of Rb,β3 and Rb,β4 . While in Rb,β3 (left), we compare
the two areas under the curve (red and blue), we optimize for α such that the red area

equals β for Rb,β4 (center). Hence, we see a match of the blue vertical line in the left plot
with the red vertical line in the central plot. Finally, the CVaR in the right plot denotes
the expected value of the red area under the curve, i.e. of all values that are larger than
the VaR.
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Figure 9.1: Examples of Rb,β0 , Rb,β1 (both top left), Rb,β3 (top right), Rb,β4 (bottem left) and

Rb,β5 (bottom right) for β = 0.95 for a one-dimensional Gaussian distribution θ ∼
N (−1, 1).

9.2 A brief review of existing work in stochastic optimization

In the this section, we provide a brief historical context and survey of the various op-
timization techniques employed to solve Eq. (9.1). We also refer to a recent review ar-
ticle [192]—already cited in the context of deterministic optimization methods—which
offers an extensive overview of stochastic derivative-free optimization methods and our
own review in [221].

One optimization approach is the Sample Average Approximation (SAA) [180]. This
method employs a predetermined set of samples, {θi}Ni=1, to approximate the robustness
measures as RN ≈ R. Throughout the optimization process, this sample set remains
consistent to minimize the sample approximated objective function Rf . This method-
ology results in approximate solutions of Eq. (9.1), dependent on the specific sample
choice. To mitigate the approximation error associated with this method, multiple opti-
mization runs are usually averaged, or the sample size is increased. Refer to [7, 277, 285]
for more detail. An error analysis of SAA for constrained optimization problems is
available in [32]. The advantage of SAA is its ability to eliminate the noise induced
by varying sample approximations between optimization steps, allowing deterministic
black-box optimization methods to solve the optimization problem.

Other strategies involve generating new samples from the uncertain parameter θ each
time the robustness measures are evaluated. Owing to the re-sampling process, eval-
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9.2 A brief review of existing work in stochastic optimization

uations of the approximate robustness measures RN (x) exhibit ’sampling noise’. As a
result, solving Eq. (9.1) necessitates the use of stochastic optimization methods. If the
noise is minimal, as might be the case with a sufficiently large sample size N , pattern-
search methods, as we have already presented in Section 8.2, can be applied to solve the
optimization problem. These methods are less susceptible to noise in the evaluations of
the robust objective and constraints because they avoid gradient approximations. Since
the pioneering works of Hooke and Jeeves [160], and Nelder and Mead [237, 297], there
has been considerable research on expanding and refining effective direct-search opti-
mization techniques [15, 18, 17, 98, 210, 211, 261, 262], which we have discussed in the
previous chapter. More recent extensions are also available, specifically for stochastic
problems for the unconstrained [20] and constrained case [104], where using a progressive
barrier allows to stay feasible.

Optimization based on surrogate models [23, 52, 77, 175, 217, 270, 271, 278] is another
class of methods employed to solve Eq. (9.1). These methods can prove convergence,
given that the gradient approximations are sufficiently accurate; see [61, 67, 68, 154,
191]. Here, ’sufficiently accurate’ implies that the gradient approximation needs to
improve in accuracy as it nears an optimal solution. This concept is included in the
derivative-free stochastic optimization procedures STRONG [64] and ASTRO-DF [286].
These procedures diminish the noise in black-box evaluations by taking averages over an
increasing number of samples as they approach an optimal design.

So far, we have discussed optimization methods that necessitate a reduction in the
magnitude of noise in the measure approximations. We now shift our focus to methods
that do not require this. In 1951, the field was revolutionized when Robbins and Mon-
roe [274] introduced the Stochastic Approximation (SA) method. Since then, SA has
been adapted to a range of gradient approximation techniques, such as those proposed
by Kiefer and Wolfowitz (KWSA) [179], and Spall [295, 296, 315] in the form of Simul-
taneous Perturbation Stochastic Approximation (SPSA). For an in-depth introduction
and theoretical analysis of SA methods, we refer to [38, 177, 190]. It is worth noting
that all SA methods involve the careful selection of several technical parameters, such
as step and stencil sizes. Despite the extensive literature and theoretical results avail-
able, this selection process remains a daunting task in the application of SA approaches.
While both optimal and heuristic choices exist [296], they are highly problem-dependent
and have a significant impact on the performance and efficiency of SA methods. With
the rapid growth of machine learning as the primary application field, variations of
the stochastic approximation method continue to evolve, particularly in the realm of
stochastic gradient descent. We refer to [54] for a recent review of these developments.

Bayesian Global Optimization (BGO) [228, 229] is yet another approach that can be
employed to solve the problem in Eq. (9.1). In BGO, a GP is utilized to approximate the
objective function. Using the GP surrogate and its Gaussian properties, metrics like the
expected improvement or knowledge gradients are defined, which are used to globally
find the next best optimization step. This method has been extensively discussed in
studies like [124, 170]. Handling nonlinear constraints within BGO has only recently
begun to draw attention in literature [146]. One specific method, known as constrained
Bayesian Optimization (cBO), utilizes expected constrained improvement optimization,
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9 Optimization under uncertainty

as illustrated in [129]. For further developments in this field, we refer to more recent
studies such as [113] and [200].

Looking at the literature, we see that there is increased interest in the field of OUU
in recent years with new advances both in optimization as well as in UQ. Our second
contribution of this thesis, the derivative-free optimization method SNOWPAC builds
on literature presented here. It uses a trust-region approach and sampling estimators to
estimate the measures from Section 9.1. It also employs GPs but uses them as second
surrogates to reduce noise instead of a direct surrogate for the objective, differently
to BGO. We will present our own derivative-free optimization method SNOWPAC in
Part IV.
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10 Dakota

Dakota (Design Analysis Kit for Optimization and Terascale Applications) [4, 91] is
a powerful, flexible, open-source software toolkit that provides a cohesive interface for
describing and solving optimization and UQ problems. The toolkit is developed at
Sandia National Laboratories and is primarily used for parameter optimization, UQ,
parameter estimation, sensitivity analysis, and design of experiments, amongst other
related tasks. It supports a range of optimization algorithms, including derivative-based
methods, derivative-free methods, and global optimization methods.

Dakota’s functionality is broadly split into three parts: an interface that connects
Dakota to the user’s application code, a range of algorithms for optimization and UQ,
and an input/output system for handling communication between these components.
This flexible design allows Dakota to be easily integrated with various existing codes
and software systems, making it a popular choice for researchers and scientists.

In these regards, Dakota not only offers its own methods, but also functions as the
driver and coupler between methods and applications. In UQ, Dakota, e.g., takes care
of sampling random variables or integrating statistics while communicating the input to
the application and routing the results back to the method. In optimization, Dakota
propagates the current design to the solver for evaluation and manages the result and
the optimization process.

The software is also designed to be highly scalable. Dakota provides robust support
for parallel computing, making it a suitable tool for handling large-scale, computation-
ally demanding applications. It is commonly used across a variety of fields, including
engineering, scientific research, and operations research. Written in C++, Dakota is
open source under GNU LGPL, finds utility in a wide range of fields including defense
programs for the US Department of Energy and US Department of Defense [134], climate
modeling [125], nuclear power [316, 335], renewable energy [162, 265], and many others.

Dakota interacts with the user via an input file which steers the program. Using
the parameter environment, the user can denote where the results should be written.
The field method describes the method that is used and also includes all its settings.
The model points to the different parameters describing it. In variables, the user sets
all the variables required. Here, e.g., specific variables for the application or uncertain
variables for the method can be defined. The field interface denotes the link to the
application and offers options for parallelization. Finally, in the option responses, the
user can denote the number of response functions and if gradients are computed.

Example 6 (Dakota input file). We give an example of an input file for MC sam-
pling on the one-dimensional diffusion equation in Listing 10.1. The example uses 1000
MC samples, with a fixed seed and has seven uniform random variables in [−1, 1]. It
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10 Dakota

furthermore defines two problem specific integer variables for the number of grid coor-
dinates and Fourier modes of the transient diffusion equation. The samples are picked
randomly, whereas deterministic sampling methods (such as QMC) are also available.
The transient diffusion equation is directly implemented in Dakota but also linking to
external applications is possible. We can further specify if gradients or Hessians should
be computed.

1 environment ,
2 t a b u l a r d a t a
3
4 method ,
5 sampl ing
6 samp l e t ype random
7 samples = 1000
8
9 model ,

10 i d mode l = ’HF’
11 v a r i a b l e s p o i n t e r = ’HF VARS’
12 s imu l a t i on
13
14 v a r i a b l e s ,
15 i d v a r i a b l e s = ’HF VARS’
16 un i f o rm uncer ta in = 7
17 l ower bounds = 7*−1.
18 upper bounds = 7* 1 .
19 d i s c r e t e s t a t e s e t
20 i n t e g e r = 2
21 num se t va l u e s = 1 1
22 s e t v a l u e s = 200 # number o f s p a t i a l coords
23 21 # number o f Four ier s o l u t i o n modes
24 i n i t i a l s t a t e = 200 21
25 d e s c r i p t o r s ’N x ’ ’N mod ’
26
27 i n t e r f a c e ,
28 d i r e c t
29 a n a l y s i s d r i v e r = ’ t r a n s i e n t d i f f u s i o n 1 d ’
30
31 responses ,
32 r e s p on s e f u n c t i o n s = 1
33 no g r a d i e n t s
34 no he s s i an s

Listing 10.1: Example Dakota input file for MC simulation for one-dimensional diffusion equa-
tion.

Dakota is the main software framework, where our contributions are implemented
in or linked by. Our first contribution of this work on MLMC estimators for higher-
order moments, presented in Part III, is implemented directly in Dakota. Our second
contribution, the derivative-free stochastic optimization method SNOWPAC, presented
in Part IV, can be employed as an external solver. The coupling of both contributions,
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which we present in Part V, is then orchestrated by Dakota. It offers offers a flexible and
adjustable framework, integrating all our parts and linking it to the black-box problem
that we want to solve.
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11 Gap analysis

The motivation for this work originates from the need to optimize challenging black-box
OUU problems computationally efficiently (and accurately). This not only requires a
performant optimization method, but also capable sampling estimators for the involved
statistics. In both areas, OUU and sampling, we perceived a gap in literature for our
requirements, which we are going to analyze more detail in this chapter.

MLMC methods were introduced for estimating the expected value. Moreover, most
extensions developed for the approach focus on the mean. In our field of application of
OUU, we, however, are interested in higher order moments like the variance or measures
like the standard deviation or scalarization. MLMC estimators for these measures are
not available in literature.

Thus, we identified this first gap to be able to efficiently apply MLMC methods in
OUU. While first developments in this area were done by Bierig et al. [40], their work
focused on unbiased estimators for the variance only. The work by Krumscheid et
al. [188, 189] also regarded general higher order central moments. Ganesh et al. [127] and
Ayoul-Guilmard et al. [25], were the first to look at measures and the CVaR specifically.
However, to the best of our knowledge, we are the first to look at the standard deviation
and scalarization. This requires not only the derivation of the estimators themselves but
also their estimator variances. We present the estimators and the corresponding optimal
resource allocation problem as our first major contribution in Part III.

In reviewing the body of existing optimization methods, we have identified another
significant gap: a lack of methods that effectively combine stochastic optimization prob-
lems under nonlinear constraints with derivative-free approaches. These three compo-
nents represent critical aspects of many practical optimization scenarios, especially in
OUU for computational challenging black-box problems. Most existing methodologies
tend to focus on one or two aspects out of the three, but not on all three at the same
time. In black-box OUU problems, we, on the one hand, cannot expect to have access
to gradients, but, on the other hand, can expect stochastic conditions while the problem
also often comes with challenging constraints. The limited attention being paid to the
intersection of these properties has left a noticeable void in the collection of optimization
methods.

In the Venn diagram in Figure 11.1, we present literature that employs the different
components or combinations thereof. Here, we only show an extract of literature in the
different fields. However, our contribution, marked in bold and published in [221], is
one of only two publications for the center intersection of all three components. As far
as we are aware, the only other work has been published by Dzahini et al. [104], which
employs a direct-search method with a progressive barrier approach.
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11 Gap analysis

Bringing all three components together greatly generalizes the applicability of a method
to a variety of problems. We do not require different methods if gradients are not avail-
able, if the optimization problem is constrained, or if the problem is deterministic. This
is what we require for black-box OUU problems. In Part IV, we address this gap by
presenting SNOWPAC, a method that is equipped to handle stochastic optimization
problems under nonlinear constraints using a derivative-free method.

Derivative-free Stochastic

Constrained

[124, 257, 260] [54, 186, 274]

[36, 55, 204]

[20, 67]
[191, 296]

[19, 23]
[113, 272] [50, 132]

[104][221]

Figure 11.1: Venn diagram about the different classes of optimization methods showing litera-
ture in the fields.

Finally, by combining both contributions together in a software framework, we are able
to fill the gap of being able to tackle computationally challenging black-box problems in
OUU. To our knowledge, we are the first to look at problems of this kind, optimizing
black-box OUU problems with a multilevel derivative-free approach. We present this
contribution in Part V.
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It’s the questions we can’t answer that teach us the
most. They teach us how to think. If you give a man
an answer, all he gains is a little fact. But give him
a question and he’ll look for his own answers.

—Patrick Rothfuss [276]

Part III

Multilevel Monte Carlo for
higher-order moments





12 Multilevel estimators for higher-order
moments

In Sections 6.3 and 6.4, we discussed single level MC estimator and the MLMC method
for the mean. We presented the resource allocation problem in Eq. (6.26), where we

optimize for the optimal sample allocation,
∗
NE, targeting a certain variance of the

multilevel estimator V[µ̂1,ML] = ε2E. We can generalize this problem for higher-order
statistics as

∗
NX = arg min

NX
CX
T ,

s.t. V
[
X̂ML

]
= ε2X,

(12.1)

where X̂ML ≈ X is the corresponding multilevel estimator for the SoI X, e.g. X̂ML = µ̂1,ML

for X = E and CX
T :=

∑L
`=1C`N

X
` is the total computational cost of the estimator.

In the upcoming chapter, we are going to introduce our first major contribution of this
thesis, namely higher-order estimators for MLMC and their optimal resource allocation.
We focus on new formulations for variance, standard deviation and a linear combination
of mean and standard deviation. These are all commonly used statistics in OUU, as we
have presented in Chap. 9. The main task will be to find a formulation for the variance
of the multilevel estimators such that we can solve Eq. (12.1).

Our first minor contributions concerns an unbiased single level estimators for the
fourth moment and for the RMSE of the variance in Section 12.1, which we will need.
We then move to the main contribution, the new MLMC estimators in Sections 12.2-12.4,
which is based on work in [223] and [224]. We will continue comparing the new estimators
to other work in the field in Section 12.5. Afterwards, we will present numerical results
in Chap. 13.

12.1 Higher-order MC estimators

Besides the expected value, MC sampling can also be used as unbiased estimator for the
variance, i.e. the second centered moment, as

µ̂2 =
1

N − 1

N∑
i=1

(Q(i) − µ̂1)2. (12.2)

It is a well-known result that this estimator, thanks to the use of the Bessel correction,
is also unbiased.
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12 Multilevel estimators for higher-order moments

Lemma 7. The variance estimator µ̂2 is unbiased, i.e.

E[µ̂2] = µ2 = V[Q] (12.3)

Since the result is well-known and the proof is technical, it can be found in App. C.1.
Thus, we again can compute its RMSE from its variance, which has a closed-form

expression given in [230]:

V[µ̂2] =
1

N
(µ4 −

N − 3

N − 1
µ2

2). (12.4)

However, the variance depends on both the exact statistics of the squared second and
fourth central moments of the QoI, µ2

2 and µ4, respectively. Estimators for both statistics
are by default biased.

We derive an unbiased estimator for Eq. (12.4) when we use unbiased estimators for
µ2 and µ4 in the following Lemma. This result is also given in [189], though derived by
using h-statistics.

Lemma 8. Let µ̂2 and µ̂4 be unbiased estimators for the second and fourth central
moment. The unbiased estimator of the variance of the second central moment is then
given as

V[µ̂2] ≈ µ̂2[µ̂2] =
(N − 1)

N2 − 2N + 3

(
µ̂4 −

N − 3

N − 1
µ̂2

2

)
. (12.5)

See C.2 for the proof.
Indeed, in Eq. (12.4), we can estimate the variance V[µ̂2] by relying on sample estima-

tors for both the second µ2 and fourth µ4 central moments. Since an unbiased estimator
for the variance is already available (see Eq. (12.2)), we only need to obtain an unbiased
estimator µ̂4 for the fourth central moment µ4. Obtaining this unbiased estimator, from
its biased counterpart, is discussed in the following lemma.

Lemma 9. Let µ̂4,biased = 1
N

∑N
i=1(Q(i) − µ̂1)4 be a biased estimator for the fourth

central moment and let µ̂2 be an unbiased estimator for the second central moment as
given in (12.2). Then, an unbiased estimator for the fourth central moment is given as

µ̂4 =
1

(N2 − 3N + 3)− (6N−9)(N2−N)
N(N2−2N+3)

(
N3

N − 1
µ̂4,biased −

(6N − 9)(N2 −N)

N2 − 2N + 3
µ̂2

2

)
.

(12.6)

See C.3 for the proof.
Finally, the last single fidelity estimator we need to discuss is the standard deviation,

which can be approximated directly from the variance estimator as

σ̂biased =
√
µ̂2. (12.7)

This latter case introduces a number of challenges. First, an unbiased version of
the estimator cannot be easily derived (even if we rely on the unbiased variance from
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12.2 Multilevel sample allocation for the variance estimator

Eq. (12.2)), mainly due to the square root operator. Second, and as a consequence, the
variance of this estimator cannot be obtained in closed-form either. To overcome this
difficulty and get an expression to use for resource allocation purposes, we can rely on
the Delta method [209]. It employs a Taylor series expansion to find the approximate
probability distribution for a function of an asymptotically normal distributed estima-
tor, which, in our case, will be the square root function and the variance estimator
respectively:

Lemma 10. Let us assume that µ̂2 is asymptotically normal distributed and that mean
and variance exist. The variance of σ̂biased can be approximated by using the Delta
method [209] as

V[σ̂biased] ≈ 1

4µ̂2
V[µ̂2]. (12.8)

See C.4 for the proof.

We again point out that this estimator for the variance, µ̂2, does not necessarily follow
a normal distribution, resulting in an approximation.

12.2 Multilevel sample allocation for the variance estimator

In general, for our OUU problems we are not only interested in the expected value but
also in higher-order moments, as explained in Section 9.1. The standard deviation plays
an important role specifically in the field of OUU, e.g., in the measures Rb1 and Rb2
as mentioned in Chap. 9. As noted, when optimizing over the standard deviation, we
decrease the variation in our optimal design.

To find a MLMC estimator for the standard deviation, we have a look at the variance
first. This is our first contribution in finding the optimal resource allocation for higher-
order moments. Here, we build on the MLMC estimator for the mean, as outlined in
Section 6.4.

Let us start by defining the MLMC estimator for the variance as follows:

V[QL] ≈ µ̂2,ML[QL] :=
L∑
`=1

µ̂2[Q`]− µ̂2[Q`−1]

=

L∑
`=1

(µ̂2,` − µ̂2,`−1)

=
L∑
`=1

1

N` − 1

( N∑̀
i=1

(Q
(i)
` − µ̂1,`)

2 − (Q
(i)
`−1 − µ̂1,`−1)2

)
.

(12.9)

Similarly to the mean, we use a telescopic sum over levels to introduce the level differences
and substitute the single-level sampling estimator for each term. The estimator µ̂2,ML is
unbiased, since we use unbiased estimators for the variance on every level.
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12 Multilevel estimators for higher-order moments

To find the optimal resource alloction
∗
NV, we have to solve the following resource

allocation problem:
∗
NV = arg min

NV
CV
T ,

s.t. V[µ̂2,ML] = ε2V,
(12.10)

with CV
T :=

∑L
`=1C`N

V
` . Note the small but significant difference to the resource allo-

cation problem for the mean in Eq. (6.26): instead of using the variance of the mean
estimator in the constraint, we now constrain on the variance of the variance estimator
for a target accuracy ε2V. Hence, we target the variance instead of the mean.

For the solution of Eq. (12.10), we need the variance of the MLMC variance estimator
µ̂2,ML:

V[µ̂2,ML] = V

[
L∑
`=1

(µ̂2,` − µ̂2,`−1)

]
=

L∑
`=1

V [µ̂2,` − µ̂2,`−1]

=
L∑
`=1

V[µ̂2,`] + V[µ̂2,`−1]− 2Cov[µ̂2,`, µ̂2,`−1].

(12.11)

As for the mean, this equation depends on the assumption of inter-level independence
and intra-level dependence of samples. If clear from context, we use the notation
µ̂2,`−1 = µ̂2,`−1 [Q`−1[x,θ`]], wherein the QoI is evaluated on level ` − 1, using iden-
tical samples θ` from level `. Thus, while having independence over levels, we have
a dependence between terms on the same level. The ensuing covariance term repre-
sents this dependence as well, utilizing the same compact notation: Cov[µ̂2,`, µ̂2,`−1] =
Cov [µ̂2,` [Q`[x,θ`]] , µ̂2,`−1 [Q`−1[x,θ`]]].

In Section 6.3, we have examined the estimation of single-fidelity variance expressions
for the terms V[µ̂2,`] and V[µ̂2,`−1]. We refer to Eq. (12.4) and its unbiased estimator in
Eq. (12.5). However, in Eq. (12.11), an extra term, Cov[µ̂2,`, µ̂2,`−1], requires evaluation.
We will provide the expression for this term in the succeeding lemma.

Lemma 11. Let µ̂2,` and µ̂2,`−1 be unbiased single level estimators for the respective
level ` and `− 1 as described in Eq. (12.2). Then, the covariance term in Eq. (12.11) is
given as

Cov[µ̂2,`, µ̂2,`−1] =
1

N`
E[µ̂2,`µ̂2,`−1]

+
1

N`(N` − 1)

(
E[Q`Q`−1]2 − 2E[Q`Q`−1]E[Q`]E[Q`−1] + (E[Q`]E[Q`−1])2

) (12.12)

where

E[µ̂2,`µ̂2,`−1] = E[Q`
2Q`−1

2]− E[Q`
2]E[Q`−1

2]

− 2E[Q`−1]E[Q`
2Q`−1] + 2E[Q`−1]2E[Q`

2]

− 2E[Q`]E[Q`Q`−1
2] + 2E[Q`]

2E[Q`−1
2]

+ 4E[Q`]E[Q`−1]E[Q`Q`−1]− 4E[Q`]
2E[Q`−1]2.

(12.13)
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12.2 Multilevel sample allocation for the variance estimator

See C.5 for the proof.
It is important to point out that the product of expected values can yield biased esti-

mators, even when each expected value is independently approximated by unbiased esti-
mators. This is specifically the case for the expectations in Eq. (12.12) and Eq. (12.13).
Consequently, we proceed to formulate unbiased estimators for the double, triple, and
quadruple products of expected values in the following lemmas:

Lemma 12. Let (µ̂1,`µ̂1,`−1)biased = 1
N`

∑N`
i=1Q

(i)
`

1
N`

∑N`
i=1Q

(i)
`−1 be a biased estimator for

the product of expected value estimators. Then, an unbiased estimator is given as

µ̂1,`µ̂1,`−1 =
N`

N` − 1
(µ̂1,`µ̂1,`−1)biased −

1

N` − 1
µ̂1,`[Q`Q`−1] (12.14)

See C.6 for the proof.

Lemma 13. Let (µ̂1,`1 µ̂1,`2 µ̂1,`3)biased = 1
N`

∑N`
i=1Q

(i)
`1

1
N`

∑N`
i=1Q

(i)
`2

1
N`

∑N`
i=1Q

(i)
`3

be a bi-
ased estimator for the triple products of expected value estimators. Additionally, assume
an unbiased product of mean estimators based on Eq. (12.14). Then, an unbiased esti-
mator is given as

µ̂1,`1 µ̂1,`2 µ̂1,`3 =
N2
`

(N` − 1)(N` − 2)
(µ̂1,`1 µ̂1,`2 µ̂1,`3)biased

− 1

N` − 2

(
µ̂1,`[Q`1Q`2 ]µ̂1,`[Q`3 ] + µ̂1,`[Q`1Q`3 ]µ̂1,`[Q`2 ]

+ µ̂1,`[Q`2Q`3 ]µ̂1,`[Q`1 ]

)
− 1

(N` − 1)(N` − 2)
µ̂1,`[Q`1Q`2Q`3 ]

(12.15)

See C.7 for the proof.

Lemma 14. Let (µ̂2
1,`µ̂

2
1,`−1)biased = 1

N`

∑N`
i=1Q`1

1
N`

∑N`
i=1Q`1

1
N`

∑N`
i=1Q

(i)
`−1

1
N`

∑N`
i=1Q

(i)
`−1

be a biased estimator. Additionally, assume an unbiased estimator for double and triple
product of mean estimators is given based on Eq. (12.14) and Eq. (12.15), respectively.
Then, an unbiased estimator for µ̂2

1,`µ̂
2
1,`−1 is given as

µ̂2
1,`µ̂

2
1,`−1 =

N3
`

(N` − 1)(N` − 2)(N` − 3)
(µ̂2

1,`µ̂
2
1,`−1)biased

− 1

N` − 3

(
µ̂1,`[Q`

2]µ̂1,`[Q`−1]2 + 4µ̂1,`[Q`Q`−1]µ̂1,`[Q`]µ̂1,`[Q`−1]

+ µ̂1,`[Q`]
2µ̂1,`[Q`−1

2]

)
− 1

(N` − 2)(N` − 3)

(
µ̂1,`[Q`

2]µ̂1,`[Q`−1
2] + 2µ̂1,`[Q`Q`−1]2

+ 2µ̂1,`[Q`
2Q`−1]µ̂1,`[Q`−1] + 2µ̂1,`[Q`]µ̂1,`[Q`Q`−1

2]

)
− 1

(N` − 1)(N` − 2)(N` − 3)
µ̂1,`[Q`

2Q`−1
2].

(12.16)
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12 Multilevel estimators for higher-order moments

See C.8 for the proof.
Having derived these unbiased estimators for the double, triple, and quadruple product

of expected values, we are now moving forward to compute an unbiased estimator for
the covariance. This is achieved by leveraging the property of linearity of the expected
value.

Lemma 15. Let µ̂2,` and µ̂2,`−1 be unbiased single level estimators for the respective
level ` and ` − 1 as described in (12.2). Additionally, let µ̂1 be unbiased estimators
for the respective expected value as described in (6.16). An unbiased estimator for the
covariance term in Lemma 11 is given as

Ĉov[µ̂2,`, µ̂2,`−1] ≈ 1

N`
µ̂1[µ̂2,`µ̂2,`−1]

+
1

N`(N` − 1)

(
µ̂1,`[Q`Q`−1]− 2µ̂1,`[Q`Q`−1]µ̂1,`µ̂1,`−1 − (µ̂1,`µ̂1,`−1)2

)
(12.17)

where

µ̂1[µ̂2,`µ̂2,`−1] = µ̂1,`

[
Q`

2Q`−1
2
]
− 2µ̂1,`

[
Q`

2Q`−1

]
µ̂1,` [Q`−1]

+ 2µ̂1,` [Q`−1]2 µ̂1,`

[
Q`

2
]
− 2µ̂1,` [Q`] µ̂1,`

[
Q`Q`−1

2
]

+ 4µ̂1,` [Q`−1] µ̂1,` [Q`] µ̂1,` [Q`Q`−1] + 2µ̂1,` [Q`]
2 µ̂1,`

[
Q`−1

2
]

− 4µ̂1,` [Q`]
2 µ̂1,` [Q`−1]2 − µ̂1,`

[
Q`

2
]
µ̂1,`

[
Q`−1

2
]
.

(12.18)

See C.9 for the proof.
By integrating all the components of the covariance approximation from Eq. (12.17)

with the unbiased variance estimator from Eq.(12.5), we finally arrive at an unbiased
estimator for Eq. (12.11).

Lemma 16. The estimator

µ̂2[µ̂2,ML] =
L∑
`=1

µ̂2[µ̂2,`] + µ̂2[µ̂2,`−1]− 2Ĉov[µ̂2,`, µ̂2,`−1] (12.19)

is an unbiased estimator for

V[µ̂2,ML] =
L∑
`=1

V[µ̂2,`] + V[µ̂2,`−1]− 2Cov[µ̂2,`, µ̂2,`−1]. (12.20)

See C.10 for the proof.
Having derived an unbiased estimator for the variance of the MLMC variance estima-

tor, we can solve the resource allocation problem from Eq. (12.10). We find the optimal

resource allocation
∗
NV given a certain accuracy ε2V for our MLMC variance estimator.

Eq. (12.10) does not offer an analytic solution. This is due to higher-order terms of
NV
` showing up in the estimator, which make solving the resource allocation problem

non-trivial. Approaches for an analytic approximation, which we will discuss in Sec-
tion 12.5, exist; nevertheless, we can also resort to numerical optimization to find the
optimal sample allocation. Here, we use the exact formulation of the estimators and
their gradients, solving the equality-constrained problem of Eq. (12.10) numerically.
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12.3 Multilevel sample allocation for the standard deviation estimator

12.3 Multilevel sample allocation for the standard deviation
estimator

Next, we move to presenting a MLMC estimator for the standard deviation. We use it to
compute the measures Rb1 and Rb2 as mentioned in Chap. 9. Capitalizing on the previous
findings and the relation between the standard deviation and variance, we employ the
subsequent MLMC estimator

σ̂ML,biased :=
√
µ̂2,ML. (12.21)

As we point out in the subscript, this estimator is biased.

Again, we adapt the resource allocation accordingly, where we now require the variance
of the standard deviation estimator

∗
Nσ = arg min

Nσ
CσT ,

s.t. V[σ̂ML,biased] = ε2σ,
(12.22)

minimizing the total cost CσT :=
∑L

`=1C`N
σ
` . We call this resource allocation problem

targeting the standard deviation.

Despite the quick derivation for the multilevel estimator of the standard deviation,
the derivation of its variance is complex, mainly due to the involved square root. To
approximate its variance, we once again resort to the Delta method. This method,
assuming a normal distribution for the underlying estimator, facilitates the following
expression:

V[σ̂ML,biased] ≈ 1

4µ̂ML
2

V[µ̂2,ML], (12.23)

This approach is akin to what we have discussed in Section 6.3 concerning its single-
fidelity expression. Likewise, in this case, solving the resource allocation problem, as
presented in Eq. (12.22), demands applying numerical optimization, since an analytic
solution cannot be found.

12.4 Multilevel sample allocation for the scalarization estimator

Frequently, especially in the context of reliability optimization problems, both mean
and standard deviation of the objective function are required. We have presented this
measure as Rb2 in Section 9.1. It could be formulated as a multi-objective optimization
problem, which leads to a Pareto front of the design. Another approach is to use a linear
combination of mean and standard deviation. We denote this combination of statistics
as scalarization:

S[b(x,θ] = E[b(x,θ)] + ασ[b(x,θ)], (12.24)

where the weight α is introduced to control the variability of the solution.
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12 Multilevel estimators for higher-order moments

In this context, formulating the MLMC estimator is straightforward, as it merely
requires the summation of the estimators for the mean and standard deviation, as defined
in the prior sections:

ζ̂ML,biased = µ̂1,ML + ασ̂ML,biased. (12.25)

The resource allocation—along with the yet-to-be-defined variance of the estimator—
remains consistent with the previous scenarios, and we express it as:

∗
NS = arg min

NS
CS
T ,

s.t. V
[
ζ̂ML,biased

]
= ε2S.

(12.26)

where we now target the scalarization, minimizing the total cost CS
T :=

∑L
`=1C`N

S
` . As

before, we only adapt the variance term, V
[
ζ̂ML,biased

]
, in the constraint and its target,

ε2S, of Eq. (12.26) for the new scalarization term.
A major challenge is to obtain a traceable expression for the estimator variance. We

expand it to

V
[
ζ̂ML,biased

]
= V [µ̂1,ML] + α2V [σ̂ML,biased] + 2αCov [µ̂1,ML, σ̂ML,biased] , (12.27)

where we now have a correlation between estimators µ̂1,ML and σ̂ML,biased, which results
in the covariance term between estimators, Cov [µ̂1,ML, σ̂ML,biased].

For V [µ̂1,ML] and V [σ̂ML,biased], we employ the previous results from Eq. (6.24) and
from Eq. (12.23), respectively. The covariance term,

Cov [µ̂1,ML, σ̂ML,biased] =
L∑
`=1

Cov [µ̂1,` − µ̂1,`−1, σ̂`,biased − σ̂biased,`−1] , (12.28)

however, requires additional derivations and approximations.
We can present the terms level-by-level as

Cov [µ̂1,` − µ̂1,`−1, σ̂`,biased − σ̂biased,`−1] =

Cov [µ̂1,`, σ̂`,biased] + Cov [µ̂1,`−1, σ̂biased,`−1]

− Cov [µ̂1,`, σ̂biased,`−1]− Cov [µ̂1,`−1, σ̂`,biased] .

(12.29)

This term is challenging to assess because of the square root in the standard deviation
estimator. We propose three distinctive approximations for this term, where each has
its own challenges and benefits:

� An upper bound based on correlation, named covariance Pearson upper bound.

� An approximation based on the correlation between mean and variance, named
covariance approximation with Correlation Lift.

� An approximation based on bootstrapping, named covariance approximation with
the Bootstrap method.

We will employ the terms, marked here in italic, as a convenient shorthand for these
different approximation strategies in the forthcoming results section. First, however, we
will derive the different estimators for Eq. (12.28) or Eq. (12.29).
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12.4 Multilevel sample allocation for the scalarization estimator

12.4.1 Covariance Pearson upper bound

A straightforward approach to approximate the expression from Eq. (12.28) is to leverage
its relation with the Pearson correlation coefficient and to employ its upper bound. The
Pearson correlation coefficient is defined in the multilevel setting as

ρ[µ̂1,ML, σ̂ML,biased] =
Cov [µ̂1,ML, σ̂ML,biased]√
V[µ̂1,ML]V[σ̂ML,biased]

, (12.30)

where we know that the coefficient is bounded by −1 ≤ ρ[µ̂1,ML, σ̂ML,biased] ≤ 1 (see [317]).
The lower and upper bound on ρ[µ̂1,ML, σ̂ML,biased] can be utilized to establish an upper

bound for (12.27) as

V
[
ζ̂ML,biased

]
≤ V [µ̂1,ML] + α2V [σ̂ML,biased] + 2|α|

√
V[µ̂1,ML]V[σ̂ML,biased]. (12.31)

This has the advantage of a straightforward derivation and implementation with low
additional computational cost. However, applying the Pearson correlation yields a con-
siderably conservative estimate since we assume ρ[µ̂1,ML, σ̂ML,biased] = 1, disregarding the
fact that the covariance term can even be negative. Hence, we will consider two other,
more sophisticated, approaches.

12.4.2 Covariance approximation with Bootstrap

For the second method, rather than providing an upper bound, we utilize bootstrapping
to directly approximate the covariance instead of an upper bound. The concept of
bootstrapping can be summarized as follows: the approach repeatedly draws samples
with replacement from the existing dataset to compute the estimators in a replicable
manner. This enables calculating estimates for various quantities such as the standard
error or bias of an estimator. In our specific case, we employ bootstrapping to estimate
the covariance between the terms in Eq. (12.28), as demonstrated in literature, see [106,
107].

Using the set of samples for each level ` = 1, ..., L, we perform bootstrapping by

drawing S new bootstrapped sets {Q(i)
s }N`i=1 with replacement from {Q(i)}N`i=1, where s =

1, ..., S. We can compute S estimators for the Bootstrap mean µ̂
(s)
1,` = 1

N`

∑N`
i=1Q

(i)
s

and the Bootstrap standard deviation σ̂
(s)
`,biased =

√
1

N`−1

∑N`
i=1(Q(i)s − µ̂(s)

1,`)
2 from these

bootstrapped sets. Finally, we estimate the covariance as follows:

Cov[µ̂1,`, σ̂`,biased] ≈

1

S − 1

S∑
s=1

(
µ̂

(s)
1,` −

1

s

S∑
i=1

µ̂
(s)
1,`

)(
σ̂

(s)
`,biased −

1

S

S∑
i=1

σ̂
(s)
`,biased

)
.

(12.32)

On the one hand, the Bootstrap approximation is more demanding in the implemen-
tation compared to the Pearson correlation bound of Section 12.4.1. On the other hand,
however, it offers the advantage of an approximation instead of an upper bound, which
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12 Multilevel estimators for higher-order moments

results in a better estimate for the covariance if the two estimators are not highly cor-
related. A disadvantage of the Bootstrap approach is the additional computational cost
from resampling and estimating the Bootstrap statistics. We stress here, though, that
resampling does not require a re-evaluation of the black box, Q, but a computation of
the estimators in Eq. (12.32) with already evaluated samples. Thus, these cost can be
neglected if the evaluation of the model itself is the main bottleneck and computationally
very expensive.

12.4.3 Covariance approximation with Correlation Lift

Finally, as third approach, we demonstrate another approximation for the covariance
term. This is based on a relationship formulated for the covariance of the mean and
variance estimator, as referenced in [101, 248]:

Lemma 17. The covariance of the unbiased sample estimators for the mean µ̂1,` =
1
N`

∑N`
i=1Q

(i)
` and variance µ̂2,` = 1

N`−1

∑N`
i=1(Q

(i)
` − µ̂1,`)

2 is given as

Cov[µ̂1,`, µ̂2,`] =
µ3,`

N`
. (12.33)

where µ3,` = E[(Q` − µ1,`)
3] is the third central moment.

See C.11 for the proof.
In Eq. (12.29), it is evident that there are covariance terms involving estimators at dif-

ferent levels. Specifically, we encounter the terms Cov[µ̂1,`, µ̂2,`−1] and Cov[µ̂1,`−1, µ̂2,`],
which do not adhere to the previous result from Lemma 17. We proceed to establish
analogous relationships for these terms, where the distinction lies in a one-level difference
between the estimators, while retaining a dependence on the samples.

Lemma 18. The covariance of the unbiased sample estimators for the mean µ̂1,` =
1
N`

∑N`
i=1Q

(i)
` and variance µ̂2,`−1 = 1

N`−1

∑N`
i=1(Q

(i)
`−1 − µ̂1,`−1)2 is given as

Cov[µ̂1,`, µ̂2,`−1] =
1

N`

[
E[Q`(Q`−1)2]− E[Q`]E[(Q`−1)2]

− 2E[Q`−1]E[Q`Q`−1] + 2E[Q`]E[Q`−1]2
]
.

(12.34)

See C.12 for the proof.

Lemma 19. The covariance of the unbiased sample estimators for mean µ̂1,`−1 =
1
N`

∑N`
i=1Q

(i)
`−1 and variance µ̂2,` = 1

N`−1

∑N`
i=1(Q

(i)
` − µ̂1,`)

2 is given as

Cov[µ̂1,`−1, µ̂2,`] =
1

N`

[
E[Q`−1(Q`)

2]− E[Q`−1]E[(Q`)
2]

− 2E[Q`]E[Q`−1Q`] + 2E[Q`−1]E[Q`]
2

]
.

(12.35)
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The proof is the same as for Lemma 12.34 by interchanging ` and `− 1.
Lastly, in order to estimate the covariance term, we assume that the Pearson correla-

tion coefficient between µ̂1 and µ̂2 exhibits similar behavior as the Pearson correlation
coefficient between µ̂1 and σ̂biased. Based on this assumption, we can employ the follow-
ing relationship:

ρ[µ̂1,`i , σ̂`j ,biased] ≈ ρ[µ̂1,`i , µ̂2,`j ]

⇔
Cov

[
µ̂1,`i , σ̂`j ,biased

]√
V[µ̂1,`i ]V[σ̂`j ,biased]

≈
Cov

[
µ̂1,`i , µ̂2,`j

]√
V[µ̂1,`i ]V[µ̂2,`j ]

⇔ Cov
[
µ̂1,`i , σ̂`j ,biased

]
≈ Cov

[
µ̂1,`i , µ̂2,`j

]√ V[µ̂2,`j ]

V[σ̂`j ,biased]
,

(12.36)

where (`i − `j) ∈ {−1, 0, 1}. As a result, we obtain an estimator for the different
covariance terms in Eq. (12.29).

The Correlation Lift also offers an approximation, which shares the same advantages as
the Bootstrap approximation compared to the Pearson upper bound. While implement-
ing all the derived quantities is more demanding than bootstrapping, the computational
cost of evaluating the quantities are much lower. Thus, for fast computational models,
this approximation has advantages compared to Bootstrap.

Example 7 (Comparison of covariance approximations). We regard a two-level example
where we compare the different covariance terms from Eq. (12.29) in Figure 12.1. The
histogram shown in the four figures are plotted from repeatedly evaluating the different
quantities. The reference solution in red is computed by repeatedly computing the covari-
ance terms 2000 times from 1000 estimators for µ̂1,1, µ̂1,2, σ̂1,biased and σ̂2,biased each.
Each of these estimator is computed with 100 samples. We compare against the Pearson
upper bound as presented in Section 12.4.1 in orange, the Bootstrap approximation from
Section 12.4.2, where we use B = 1000 bootstrap samples in green and the Correlation
Lift approach from Section 12.4.3 in blue.

We observe that the Pearson upper bound is indeed an upper bound and quite conser-
vative, assigning a large value to the covariance terms. We see a good but not perfect
match for the Bootstrap approach, where we also have to consider the computational cost
of repeatedly computing the 1000 Bootstrap samples. Finally, we see a good match in the
Correlation Lift, at least in the mean value of the histogram, while we see a larger vari-
ance compared to the reference solution. While the differences to the reference solution
might seem quite large, especially for the Pearson upper bound, we point out that all the
terms are combined with additions and subtractions. Hence, also numerical cancellations
of very small and similar values have to be considered here.

This final example closes the section on the new estimators for the variance, standard
deviation and scalarization. We present the importance of the chosen approximation
for the covariance term of Eq. (12.27) in the results. The performance of the method
relies heavily on this choice and we will compare all three different approximations in
the results section. Next, we present how we can compute the resource allocation for
these new estimators and talk about algorithmic details afterwards.
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12 Multilevel estimators for higher-order moments

Figure 12.1: Comparison of the different covariance approximations for the four terms for a
two level example in Eq. (12.29) to a numerically computed reference solution.

12.5 Analytic approximation

Although we can analytically solve the resource allocation problem for the mean estima-
tor provided in Equation (6.26) using the approach described in Section 6.4, closed-form
solutions are not available for the higher-order terms discussed in this work. Therefore,
we resort to numerical optimization to obtain approximate solutions for the optimization
problem. In addition, we incorporate an approach introduced in [189], where Krumscheid
et al. propose an analytical approximation for the resource allocation problem involving
higher-order central moments.

In their work, the authors make the key assumption that the variance of any higher-
order sampling estimators, denoted as V[µ̂i] with i ≥ 2, decreases at a rate of O( 1

N )
with the number of samples denoted as N . Building upon this assumption, the authors
introduce the variance estimator V[µ̂i] = V[µ̂i]

N , where the higher-order terms of N are
now incorporated into V[µ̂i], while the explicit dependence on N remains in the term 1

N .

Consequently, V[µ̂i] exhibits the same structure as V[µ̂1] = V[Q]
N .

The authors extend this approach to the multilevel case: in a general setting for a
multilevel central-moment estimator of higher order, µ̂i,ML, i ≥ 2, its variance can be
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12.6 Algorithmic details

written as

V[µ̂i,ML] =
L∑
`=1

V[µ̂i,`]

N`
, i ≥ 2, (12.37)

where the authors introduce the short-hand notation V[µ̂i,`] = V[µ̂i,`]N`. We observe
that we indeed see the same form as in the case for the mean, with a variance term
divided by the number of samples.

Since we see the same structure, we apply the same approach as [136] to solve the
problem analytically and find the Lagrange constant as

λ = ε−2
X

L∑
`=1

√
V[µ̂i,`]C`, (12.38)

for different εX,X ∈ {E,V, σ,S}. Finally, we can derive the resource allocation as

NE
` =

λ
√
V[µ̂i,`]

C`

 . (12.39)

While the authors of [189] focus on higher-order central moments, we extend the afore-
mentioned idea to approximate the variance of the standard deviation σ̂ML,biased and the

scalarization ζ̂ML,biased. Whereas their work uses on h-statistics to derive general expres-
sions for the variance of higher-order central moments, our contribution lies in direct
formulations for the variances of the standard deviation and scalarization. Moreover, we
utilize this approach in conjunction with numerical optimization for resource allocation
computation. This approach allows us to solve the problem analytically by disregarding
higher-order terms of N`, while the numerical optimization tackles the problem numer-
ically, considering those terms. Hence, there is a trade-off between the approximation
of the resource allocation and the approximation due to the numerical optimization.
Both approaches also use, of course, only estimators instead of exact values for all the
statistics involved.

This approach also offers flexibility from an algorithmic perspective. We have the
option to directly employ the analytic approximation or use it as an initial guess for the
numerical optimization. We compare and contrast these two approaches and different
algorithmic choices in the result chapter of this part.

12.6 Algorithmic details

When computing the resource allocation problem, e.g., for the standard deviation in
Eq. (12.22) or the scalarization in Eq. (12.26), we need to know all quantities required
in the computations. Naturally, we do not know them in advance or can compute them
with a high number of samples (which could be used to solve the problem itself). Hence,
we resort to solving the resource allocation problem iteratively. We present the algorithm
in the following:
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12 Multilevel estimators for higher-order moments

The algorithm starts with a set of pilot samples, {NX,(0)}L`=1, which we evaluate to
compute the required estimators for the SoI X ∈ {E,V, σ,S}. Using these estimators,
we solve the resource allocation problem, Eq. (12.1), targeting X and compute a first
estimate for the number of samples required on each level. We evaluate this suggested
set of samples, update our estimators and again solve the resource allocation problem.
We iteratively proceed until either the suggested resource allocation is smaller than the
number of samples already evaluated, i.e. the increment is negative (or zero); or, we
stop, when we reach a maximum number of iterations. We are going to compare the
choice of iterations in the result section.

Additionally, for the higher order moments, we use an underrelaxation, since we have
observed overshooting in the resource allocation for small numbers of pilot samples.
Underrelaxation means that we only increase the current resource allocation by a factor
ξ ∈ (0, 1] of the suggested resource allocation. In the current implementation, ξ is
linearly increasing with the number of iterations in the algorithm to account for better
estimation when the number of pilot samples rises. After five iterations, we set ξ = 1.

Finally, in Section 12.5, we have noted that we can use the analytic approximation
or the numerical optimization approach to solve the resource allocation problem for
higher-order statistics. In the implementation, we have the option to use the analytic
approximation only. Alternatively, we combine the two approaches, by using the ana-
lytic approximation as an initial guess for the numerical optimization to improve the
performance of the optimizer. The numerical optimizer also switches to a logarithmic
scaling if a solution cannot be found in a first iteration. We summarize the algorithm in
Alg. 2.

Algorithm 2 Resource allocation algorithm targeting statistic X.

1: Input: X ∈ {E,V, σ,S}, ε2X, NX,(0) = [N
X,(0)
1 , ..., N

X,(0)
L ], Imax, j = 0

2: 4NX,(0) = NX,(0)

3: while j < Imax or
∑L

`=14N
X,(j)
` > 0 do

4: Sample and evaluate black box {Q(i)
` , Q

(i)
`−1}

4NX,(j)
`

i=1 for ` = 1, ..., L

5: Estimate necessary statistics and compute V[X̂ML]
6: Solve Eq. (12.1) for NX,(j+1) with ε2X using analytic approximation
7: if Use numerical optimization then
8: Solve Eq. (12.1) for NX,(j+1) with ε2X using numerical optimization
9: end if

10: Compute underrelaxation factor: ξ = (X == E)?ξ = 1 : ξ = min
(
j+1

5 , 1
)

11: Compute sample difference: 4NX,(j+1) = ξ(NX,(j+1) −NX,(j))
12: Update iteration: j = j + 1
13: end while
14: Compute final statistics with resource allocation

∗
NX = NX,(j)

We integrated the new MLMC algorithms and estimators we have developed in this
work directly into Dakota. The presented methods can be set in the input file as method:

74



12.6 Algorithmic details

multilevel sampling. With the setting pilot samples, we set the initial samples

for each level, NX,(0) = [N
X,(0)
1 , ..., N

X,(0)
L ], and max iterations sets the maximum it-

erations Imax. Using convergence tolerance, we specify the target accuracy of our
estimator ε2X, whereas with convergence tolerance type, we specify if we want to tar-
get this convergence tolerance absolute or in a relative sense. Relative means, that
we want to reduce ε2X relative to the initial evaluation using the pilot samples. With
convergence tolerance target, we can choose if we want to reduce cost targeting cer-
tain variance constraint as in Eq. 6.26, but we can also reduce the variance targeting a
certain cost constraint as mentioned in Rem. 1. We pick the resource allocation target
using allocation target, where we can choose mean, variance, standard deviation

and scalarization. We activate the numerical optimization combined with the ana-
lytic approximation by setting the option optimization. The setting qoi aggregation

decides how the resource allocation for different functions is combined, where either the
max value or a average over each level is taken. The cost of the different levels are set
in solution level control, which is a model option.

Example 8 (Dakota input file for four-level case). The Dakota input file is given in
Lst. 12.1. We estimate the scalarization statistic, X = S, in the resource allocation,
where we target a variance of ε2S = 1.6175e − 05 solving the optimizaton problem of
Eq. 12.26. This examples uses 10 iterations and NS,(0) = [10000, 1000, 100, 50] pilot
samples for the lowest to the highest level. We use numerical optimization combined
with the analytic approximation as initial guess. The cost for each level are given as
{Ci = 10−4+i}4i=1 from coarse to fine.

48 method ,
49 id method = ’UQ’
50 mode l po inter = ’HIERARCH’
51 m u l t i l e v e l s a m p l i n g
52 p i l o t s a m p l e s = 10000 1000 100 50
53 sample type random
54 f inal moments standard
55 max i t e r a t i on s = 10
56 conve rg enc e to l e r anc e 1 .6175 e−05
57 c o n v e r g e n c e t o l e r a n c e t y p e abso lu t e
58 v a r i a n c e c o n s t r a i n t
59 a l l o c a t i o n t a r g e t s c a l a r i z a t i o n
60 opt imiza t i on
61 q o i a g g r e g a t i o n max

70 model ,
71 id model = ’MLModel ’
72 v a r i a b l e s p o i n t e r = ’UQ V’
73 i n t e r f a c e p o i n t e r = ’UQ I ’
74 r e s p o n s e s p o i n t e r = ’UQ R’
75 s imu la t i on
76 s o l u t i o n l e v e l c o n t r o l = ’ Af ’
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12 Multilevel estimators for higher-order moments

77 s o l u t i o n l e v e l c o s t = 0 .01 1 .0 0 .1 0 .001

Listing 12.1: Extract of Dakota input file for MLMC sampling simulation for four-level case.

For the numerical optimization of the resource allocation, Dakota uses the optimiza-
tion library OPT++ [227] by default. It is a nonlinear optimization package developed in
C++, which provides a nonlinear interior-point methods for the optimization. Alterna-
tively, Dakota offers linking to NPSOL [138] if a licence of the optimization library is
available. NPSOL uses a sequential quadratic programming method for solving the opti-
mization problem. NPSOL showed slightly improved performance in our tests compared
to OPT++, mainly in a lower number of optimization iterations and, thus, faster conver-
gence. We also provide gradients for the optimization of all resource allocation problems
developed in this work. In the next example, we illustrate the objective function and
constraint of a resource allocation problem for the variance of a two-level case.

Example 9 (Resource allocation problem for two-level case). For illustration pur-
poses, we plot the objective function plus equality constraint of the resource allocation
problem for a two-level problem in Figs. 12.2 and 12.3. We target the variance of
Eq. (12.10) in this example. We present the surface and contour plot. We compare
OPT++ and NPSOL, given in the title. Red circles show the optimization path. Red
crosses show initial design, red diamonds show final design. The initial point is set

as [N
V,(0)
1 , N

V,(0)
2 ] = [5, 5] to start in a region of high gradients. The number in title

corresponds to a specific random seed. The equality constrained for ε2V is visualized in
magenta.

We see that both approaches find an optimum on the equality constraint. NPSOL
shows better performance, needing less optimization steps. Furthermore, we observe that
the optimum lies in a region of low gradients, which motivates the switch to a logarithmic
scaling of the objective function. We show more illustrations for different random seeds
in App. C.13.

Figure 12.2: Surface and contour plot of the resource allocation objective function and variance
constraint for OPTPP.
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12.6 Algorithmic details

Figure 12.3: Surface and contour plot of the resource allocation objective function and variance
constraint for NPSOL.

This closes the section on algorithmic details for the newly developed multilevel estima-
tors in this work. The iterative resource allocation, the underrelaxation for higher-order
moments and the choice of numerical optimizer all play a role in the performance of
the method. These choices were motivated by benchmark results. We will present these
benchmark results, verifying and validating the different estimators next.
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13 Numerical results for a one-dimensional
benchmark

In this chapter, we are going to evaluate the performance of the new MLMC estimators
in the context of optimal resource allocation for different statistics. We will consider a
one-dimensional problem, referred to as ”Problem 18”, which is discussed in detail in
Section 13.1. We will extend the existing literature test cases to stochastic problems and
incorporate multiple levels/approximations to define the MLMC estimators.

Using this example, we will assess the effectiveness of our MLMC estimators in evalu-
ating various statistics, which corresponds to a forward UQ analysis with a fixed design.
We will focus solely on the sampling aspect without including the outer loop of the OUU
workflow. Moreover, we will numerically test how well the new estimators match their
specific targets ε2X, where X ∈ {E,V, σ,S}. These targets will be computed from a MC
solution with a predetermined computational cost as reference solution. This allows us
to compare how well the newly developed MLMC statistics match their respective MC
references.

Furthermore, we will compare the performance of our newly contributed MLMC es-
timators targeting different statistics to the standard MLMC estimator targeting the
mean, each with its own sample allocation. Despite using different targets for the re-
source allocation, we aim to approximate a particular SoI. This comparison is essential
to demonstrate that if we fix the MC cost and determine the corresponding precision
for different targets (e.g., mean or standard deviation), the same MLMC sample profile
that ensures the required accuracy in one statistic (e.g. mean) may not achieve the
same precision in another statistic (e.g. standard deviation). This illustrates the need
to match the target statistics of the MLMC estimator in the allocation process to the
SoI in order to obtain the best allocation and desired accuracy.

Moreover, we will compare algorithmic choices in our analysis: first, we will compare
the numerical optimization of the resource allocation problem to the approach adapted
from [189], which was presented in Section 12.5. Second, we will compare the use of
iterations, as described in Section 12.6. Third, we will highlight the impact of the
covariance term approximation, discussed in Sections 12.4.1-12.4.3, on the efficiency of
MLMC in the scalarization case. Throughout the results, we are going to demonstrate
the improvements that MLMC can provide compared to its MC counterpart.

13.1 Problem 18 definition

For our test case, we choose to adapt problem 18 from the website in [131], which provides
a collection of benchmark problems for optimization. In this scenario, we consider the
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13 Numerical results for a one-dimensional benchmark

one-dimensional deterministic function fdet : R→ R:

fdet(x) =

{
(x− 2)2 if x ≤ 3,

2 ln(x− 2) + 1 if x > 3.
(13.1)

Instead of optimization, we re-use this example for sampling first.
To introduce stochasticity into the problem, we incorporate a random variable θ ∼
U(−0.5, 0.5) and vary the correlation parameters to generate four distinct levels of f for
the multilevel case. Consequently, we obtain the following four levels:

f4(x, θ) = fdet(x) + θ3,

f3(x, θ) = fdet(x) + 1.1θ3,

f2(x, θ) = fdet(x) +

(
1

60
x+ 1.2

)
θ3,

f1(x, θ) = fdet(x) +
3

2
θ3.

(13.2)

Here, we designate f4 as the finest resolution, while {fi}3i=1 represents coarser levels
with a computational cost hierarchy of C1 < C2 < C3 < C4. We maintain a cost
ratio of Ci

Ci−1
= 10, with C4 = 1. Since the stochastic term has an additive nature, we

can easily compute reference solutions. For instance, we have E[f4(x, θ)] = fdet(x) and

V[f4(x, θ)] = V[θ3] = 0.56

7 .

13.2 Experimental setting

We use the following problem setting to evaluate the performance of our contribution.
First, we focus on the sampling problem of estimating different measures for the objective
function f4 at a specific location x. Second, we compare the performance of the standard
single-level MC estimator with the new MLMC estimators presented in the previous
sections. Third, we evaluate the quality of estimation for the mean (µ̂1,ML), variance

(µ̂2,ML), standard deviation (σ̂ML,biased), and the scalarization term (ζ̂ML,biased = µ̂1,ML +
3σ̂ML,biased). Finally, we compare various algorithmic choices.

We assess the following algorithmic choices, where the notation for the legends in the
upcoming figures is given in parentheses:

� The impact of iteratively computing the resource allocation for all estimators in a
single iteration (1 iter) or 20 iterations (20 iter), as described in Section 12.6.

� The comparison between using numerical optimization (Opt) and the analytic
approximation (AA) extended from [189] and presented in Section 12.5 to compute
the resource allocation for the newly developed estimators.

� The comparison of the covariance approximation as described in Sections 12.4.1
(Pearson), 12.4.3 (CorrLift), and 12.4.2 (Bootstrap) for the scalarization term
ζ̂ML,biased.
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13.3 Results

Without loss of generality, we fix the location x = 1 and repeatedly compute the
estimators 1000 times with a random seed and, each time, compute the respective re-
source allocation. From those samples of estimators, we plot histograms to show their
distribution; additionally, we compute the mean and variance of the distributions. We
compare the different MLMC approaches on different targets among each other and also
to a single level MC.

By fixing ε2X,X ∈ {E,V, σ,S}, to be equal to the respective variance of the MC refer-
ence solution (based on 1000 samples), we expect the MLMC estimators to match the
performance of the single level MC at a reduced cost, since both target the same vari-
ance. This reference variance for 1000 samples is computed analytically for this test case,
e.g. for the mean: ε2E = V[f4(x,ξ)]

1000 = 0.56

7000 ≈ 2.2321e-6, or numerically for higher-order
statistics such as the scalarization.

The results are computed using Dakota, using the coupling as described in Section 12.6.
The different problem definitions are defined in Dakota input files. We give an example
of the input file for Dakota for the scalarization case in the appendix in Lst C.1.

13.3 Results

We will discuss the results for the different estimators that we developed in this work
next. We will start with the mean, as proof of concept and to gain familiarity with
the results. Afterwards, we will present results for the variance, standard deviation and
scalarization.

For all results, we will present histogram plots to see a qualitative match in estimators
and tables to show the quantitative error in approximation. For all of the following
histograms, we compare the MC reference solution in red, with the respective MLMC
estimator denoted in the legend. The estimated SoI is given in the figure title whereas
the targeted resource allocation of the MLMC estimator is given in its legend entry. The
algorithmic choices of a single iteration (1 iter) or 20 iterations (20 iter) and numerical
optimization (Opt) or the analytic approximation (AA) are also given in the legend using
the abbreviations in parentheses. The computational cost are computed relative to the
MC reference solution, which has a cost of 1000 samples on `4 with C4 = 1. The total
cost for the MLMC estimators are computed as CX

T =
∑L

`=1

∗
NX
` C`,X ∈ {E,V, σ,S}.

13.3.1 Mean

In the first case, we estimate the expectation, µ̂1. We use ε2E ≈ 2.2321e-6 as the target
variance V[µ̂1,ML] to compute the resource allocation. The resulting histogram, obtained
from 1000 independently computed estimators, is presented in Fig. 13.1 on the left.

The distributions, depicted in red (reference MC solution) and blue (MLMC estimator)
as described in [136], exhibit a clear match. We also explore the impact of the number of
iterations on the estimation quality. By performing 20 iterations (20 iter) to determine
the resource allocation, we observe a closer match with the reference solution compared
to a single iteration (1 iter) of the algorithm. This improvement arises from the reduced
variance in the estimator statistic introduced by the decreased dependence on the pilot
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Figure 13.1: Mean. Left: Histogram over 1000 samples of µ̂1,ML for x = 1 using the different
estimators described in Eq. (6.26) in blue compared to a reference MC estimator
in red. The resource allocation problem is solved analytically. Right: Respective
cost for the different estimators.

sampling compared to the single-iteration case. In the iterated approach, more samples
are added iteratively, refining the statistics until convergence.

Furthermore, analyzing the computational cost on the right of Fig. 13.1, we see that
the MLMC approach yields a significant reduction in cost compared to the single-level
MC solution. When comparing the number of iterations, we also observe a narrower peak
in the cost distribution for 20 iterations. This indicates a more robust computational
cost when using the iterative approach as compared to a single iteration.

Table 13.1 compares the expectations and variances computed from the estimator his-
tograms. We also know the exact target values for both the expectation of our estimators
and their variances. When we quantitatively evaluate the performance, it is evident that
the MLMC Mean (20 iter) provides the best approximation of the expected value, while
also achieving a variance of the estimator that is closest to the target.

Method Mean Exact Variance Exact

MC 0.99999516
1.0

2.1271e-6
2.2321e-6MLMC Mean (1 iter) 0.99996403 2.5850e-6

MLMC Mean (20 iter) 0.99999945 2.1821e-6

Table 13.1: Expectations and variances from the histograms of the different approaches in
Fig. 13.1. The column labeled Exact shows the target value for expectation and
variance.

13.3.2 Variance

In the second case, we focus on estimating the variance µ̂2, where we compute the
resource allocation using ε2V ≈ 1.3823e-8 as the target for its variance V[µ̂2,ML]. This
target is analytically computed for a MC reference solution using 1000 samples. We
compare the result not only to a MC reference solution but also to an MLMC estimator
targeting the mean. In this case, similar to the previous case, the MLMC estimator
targeting the mean uses ε2E ≈ 2.2321e-6 as the target for its variance V[µ̂1,ML] as defined

82



13.3 Results

in its resource allocation problem from Eq. (6.26). We first compare the performance
to the standard MC estimator and to the MLMC mean estimator before contrasting
different algorithmic choices for the MLMC variance estimator.

The resulting histogram, obtained from 1000 independently computed estimators, is
shown in Fig. 13.2. Here, we only compare it to the MLMC mean estimator on the left.
This is the first case where we observe the importance of allocating resources based on
the SoI. While seeing a good match between MLMC estimator targeting the variance
with the MC reference, we notice that the MLMC estimator targeting the mean is under-
resolving the estimator, resulting in a much wider and shallower peak. This wider peak
indicates that the resource allocation is underestimated. Consequently, the standard
MLMC approach has a significantly lower computational cost (note the logarithmic
scale on the x-axis). This clearly demonstrates the advantage of synchronizing the
allocation target with the SoI. Allocating resources based solely on the mean cannot be
expected to yield accurate MLMC estimators for other statistics. Furthermore, reducing
computational cost compared to MC does not necessarily indicate that an estimator is
advantageous.
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Figure 13.2: Variance. Left: Histogram over 1000 samples of µ̂2,ML for x = 1 comparing the
new estimator described in Eq. (12.10) (orange, dashed dot) compared to a refer-
ence MC estimator (red, solid) and using the standard MLMC estimator targeting
the mean (blue, dotted). Right: Respective cost for the different estimators.

Regarding the algorithmic implementations for the variance, we compare using the
analytic approximation (AA), as described in Section 12.5, to using a combination of
the analytic approximation with numerical optimization (Opt) in Fig. 13.3. Furthermore,
for both options, we can use either a single iteration (1 iter) or 20 iterations (20 iter).
Firstly, we observe the advantage of the iterative approach in reducing the variance in
the cost distribution of the estimator in the plot on the right. Secondly, using numerical
optimization in addition to the analytic approximation provides a slight improvement in
the approximation quality for the estimator targeting ε2V, visible in the left plot.

This is also evident in the quantitative results presented in Table 13.2. Our MLMC
estimator for the variance demonstrates a closer match to the exact solution, both in
terms of its expectation and the variance of the estimator itself. When comparing the
different approaches, we observe that MLMC Variance AA (1 iter) appears to perform
best. However, we must also consider the computational cost. It is worth noting the high
variance in the cost associated with this approach, which sometimes exceeds the cost of
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Figure 13.3: Variance. Left: Histogram over 1000 samples of µ̂2,ML for x = 1 comparing differ-
ent algorithmic choices for computing the new estimators described in Eq. (12.10)
in orange compared to a reference MC estimator in red. Right: Respective cost
for the different estimators.

the standard MC method. Consequently, we continue to prefer the iterative approaches
for their improved robustness in terms of computational cost.

Method Mean Exact Variance Exact

MC 2.2311e-3

2.2321e-3

1.3112e-8

1.3823e-8

MLMC Mean (20 iter) 2.3093e-3 7.6308e-8
MLMC Variance AA (1 iter) 2.2656e-3 1.5904e-8
MLMC Variance AA (20 iter) 2.2660e-3 2.0144e-8
MLMC Variance Opt (1 iter) 2.2799e-3 2.8185e-8
MLMC Variance Opt (20 iter) 2.2680e-3 1.8959e-8

Table 13.2: Expectations and variances from the histograms of the different approaches in
Fig. 13.2 and Fig 13.3. The column labeled Exact shows the target value for
expectation and variance.

13.3.3 Standard deviation

While estimators for the variance have previously been presented in the work by [189]
(using h-statistics), we now shift our focus to the standard deviation σ̂biased in this third
case. We utilize ε2σ ≈ 1.5493e-6 as the target for the variance V[σ̂ML,biased] to compute
the resource allocation. Since there is no exact analytical solution available (without
resorting to approximations like the Delta method), we numerically compute this target
by repeatedly estimating the standard deviation for 1000 samples and computing its
variance over 1000000 repetitions. Similarly, when targeting the mean, we use ε2E ≈
2.2321e-6, as mentioned in the results for the expected value. In this case, we adapt
the analytic approximation introduced by [189] to these new estimators, as described in
Section 12.5.

The resulting histograms, obtained from 1000 independently computed estimators, are
depicted in Fig. 13.4 and Fig. 13.5 on the left. Akin to the variance case, we observe in
Fig. 13.4 that the MLMC estimator targeting the mean is not well-suited for estimating
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13.3 Results

the standard deviation. On the other hand, the MLMC estimator computed using
Equation (12.22) demonstrates a good match with the single-level MC estimator.

0.040 0.042 0.044 0.046 0.048 0.050 0.052 0.054 0.056
ML(x)

0

50

100

150

200

250

300

De
ns

ity

Problem 18 sampling at x=1 using different targets:  ML(x)
MC
MLMC Sigma Opt 20 iter
MLMC Mean 20 iter

0 200 400 600 800 1000
Cost

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

De
ns

ity

Total Cost CT using different targets
MLMC Sigma Opt 20 iter
MLMC Mean 20 iter
MC

Figure 13.4: Standard deviation. Left: Histogram over 1000 samples of σ̂ML,biased for x = 1
comparing the new estimator described in Eq. (12.22) (cyan, dashed dot) com-
pared to a reference MC estimator (red, solid) and using the standard MLMC
estimator targeting the mean (blue, dotted). Right: Respective cost for the dif-
ferent estimators.

In Fig. 13.5, we highlight the advantages of using an iterative approach combined with
numerical optimization, particularly in terms of computational cost. When employing
only a single iteration, the computational cost exhibits high variability and can even
exceed the cost of MC. Conversely, the iterative approach results in a smaller variance
in the cost. We also note that adapting the analytic approximation, as described in
Section 12.5, combined with iterations yields satisfactory results in this case.
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Figure 13.5: Standard deviation: Left: Histogram over 1000 samples of σ̂ML,biased for x = 1
comparing different algorithmic choices for computing the new estimators de-
scribed in Eq. (12.22) in cyan compared to a reference MC estimator in red.
Right: Respective cost for the different estimators.

The results shown above are further supported by the quantitative analysis of the his-
togram expectations and variances (which approximate the variance of the estimator)
presented in Table 13.3. We clearly observe superior performance in terms of the expec-
tation and variance of the estimator for the newly developed MLMC estimator for the
standard deviation. As a side note, the bias in the estimator σ̂ML,biased is also apparent,
resulting in a small offset compared to the reference solution.
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13 Numerical results for a one-dimensional benchmark

Method Mean Exact Variance Exact

MC 4.7198e-2

4.7246e-2

1.6967e-6

1.5493e-6

MLMC Mean (20 iter) 4.8073e-2 7.8906e-6
MLMC Sigma AA (1 iter) 4.7601e-2 1.6047e-6
MLMC Sigma AA (20 iter) 4.7598e-2 2.0572e-6
MLMC Sigma Opt (1 iter) 4.7848e-2 2.6471e-6
MLMC Sigma Opt (20 iter) 4.7785e-2 2.6936e-6

Table 13.3: Expectations and variances from the histograms of the different approaches in
Fig. 13.4 and Fig 13.5. The column labeled Exact shows the target value for
expectation and variance.

13.3.4 Scalarization

Lastly, we present the results for the new scalarization estimator, ζ̂ML,biased = µ̂1,ML +
ασ̂ML,biased. For the computation of the resource allocation, we select α = 3, which

yields ε2S ≈ 1.6175e-5 as the target for the variance V[ζ̂ML,biased]. Similar to previous
cases, this target is determined numerically by repeatedly estimating the estimator using
1000000 samples and computing its variance. We compare three different approaches
for computing the covariance term, as described in Section 12.4. The comparison of the
covariance approximation as described in Section 12.4.1.

Pearson correlation

In the first case, we utilize the Pearson correlation to compute the covariance term
of V[ζ̂ML,biased], as described in Section 12.4.1. The results are depicted in Fig. 13.6.
We observe the impact of employing the upper bound for estimating the variance: the
estimators are over-resolved, leading to a smaller variance compared to the target. While
we still achieve a good match with the reference solution, this conservative approximation
results in an unnecessary computational cost. It is important to note once again that
we observe the effect of the biased estimator arising from the estimation of the standard
deviation.

Bootstrap approximation

In the second case, we employ the Bootstrap approximation to compute the covariance
term of V[ζ̂ML,biased], as described in Section 12.4.2. Instead of a conservative upper
bound, we now utilize an approximation approach. The improvement resulting from
this choice is evident in Fig. 13.7: we observe a closer match between the histogram and
the target function in the left figure. Additionally, the best results are achieved when
using 20 iterations and numerical optimization.

When we examine the computational cost on the right, we notice that it is lower com-
pared to Fig. 13.6, thanks to the approximation rather than the use of an upper bound.
However, it is worth noting that the computational cost associated with computing
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Figure 13.6: Scalarization (Pearson). Left: Histogram over 1000 samples of ζ̂ML,biased for
x = 1 using the scalarization estimator described in Eq. (12.26) in green in com-
bination with using the Pearson correlation property described in Section 12.4.1
to bound the covariance term in Eq. (12.27). We compare to a MC reference
estimator in red. Right: Respective cost for the different estimators.

the Bootstrap estimator is not visualized here. This cost becomes especially significant
when combined with numerical optimization. While it may still be relatively small when
applied to expensive black-box functions, it becomes non-negligible compared to the
evaluation of analytic functions.
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Figure 13.7: Scalarization (Bootstrap). Left: Histogram over 1000 samples of ζ̂ML,biased

for x = 1 using the scalarization estimator described in Eq. (12.26) in green in
combination with using the Bootstrap approximation described in Section 12.4.2
to approximate the covariance term in Eq. (12.27). We compare to a MC reference
estimator in red. Right: Respective cost for the different estimators.

Correlation Lift

To address the concerns of having a conservative estimate for the Pearson bound or in-
flated computational cost for the Bootstrap approximation, we investigate the third case
of the Correlation Lift. It which involves estimating the covariance term using the rela-
tionship between the covariance of the mean and variance, as described in Section 12.4.3.
The results are presented in Fig. 13.8.

Once again, we observe a strong alignment between the histograms and the reference
solution, while achieving similar computational cost compared to the Bootstrap ap-
proach in terms of the number of samples. However, the computational cost associated
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13 Numerical results for a one-dimensional benchmark

with evaluating the covariance term itself is significantly lower than that of repeatedly
evaluating the Bootstrap term. Those cost do not show in the cost diagram.

Overall, it appears to be the most efficient strategy, as it offers the advantageous
features of both approaches. It combines the low computational overhead of Pearson’s
correlation with the high approximation quality of the Bootstrap method.
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Figure 13.8: Scalarization (Correlation Lift): Left: Histogram over 1000 samples of

ζ̂ML,biased for x = 1 using the scalarization estimator described in Eq. (12.26)
in green in combination with using the Correlation Lift approximation described
in Section 12.4.3 to bound the covariance term in Eq. (12.27). We compare to a
MC reference estimator in red. Right: Respective cost for the different estimators.

Comparison with the mean

In the final analysis, we include the MLMC estimator targeting the mean in the resource
allocation for the evaluation of the scalarization. The corresponding results are illus-
trated in Fig. 13.9. For clear comparison, we again use ε2E ≈ 2.2321e-6, as in the first
case. In this scenario, we employ the Correlation Lift for approximating the scalarization
and only present the results for 20 iterations combined with numerical optimization, for
clarity.
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Figure 13.9: Scalarization (Correlation Lift including mean). Left: Histogram over

1000 samples of ζ̂ML,biased for x = 1 using the different estimators described in
Eq. (6.26) in blue and Eq. (12.26) in green compared to a reference MC estimator
in red. The covariance term of Eq. (12.27) is approximated using Correlation Lift
approximation described in Section 12.4.3. We use numerical optimization and 20
iterations to find the resource allocation. Right: Respective cost for the different
estimators.
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A notable distinction becomes apparent when comparing the MLMC estimator target-
ing the mean with the other approaches. It significantly under-resolves the estimation,
resulting in a much larger variance at a lower computational cost. It becomes evident
that the allocation of resources in this case is insufficient to achieve the desired accuracy
level compared to the MC reference.

Tables 13.4 and 13.5 provide quantitative comparisons for the scalarization case. These
tables directly compare the three different approaches for approximating the covariance,
as well as their algorithmic implementations. Firstly, we reiterate that all approaches
yield improved results compared to using the standard MLMC estimator targeting the
mean. This reinforces the qualitative findings presented in Fig. 13.9.

Furthermore, while the approximation qualities of the newly developed MLMC esti-
mators targeting the scalarization are very similar, we do observe minor differences in the
variance of the estimator. Similar to the previous results, employing a single iteration
appears to yield a close match to the target variance when using the Pearson approxi-
mation. However, using 20 iterations tends to over-resolve the problem, resulting in a
smaller variance but higher computational cost. For both the Bootstrap and Correlation
Lift approaches, we find that using 20 iterations improves the variance approximation.

Mean

Pearson Bootstrap Correlation Lift Exact

MC 1.1417

1.1417

MLMC Mean (20 iter) 1.1443 1.1443 1.1443
MLMC Scalarization AA (1 iter) 1.1422 1.1423 1.1425
MLMC Scalarization AA (20 iter) 1.1424 1.1426 1.1426
MLMC Scalarization Opt (1 iter) 1.1423 1.1423 1.1423
MLMC Scalarization Opt (20 iter) 1.1423 1.1424 1.1424

Table 13.4: Expectations from the histograms of the different approaches in Fig. 13.6, 13.7, 13.8
and Fig 13.9. The column labeled Exact shows the target value for the expectation.

Variance

Pearson Bootstrap Correlation Lift Exact

MC 1.7739e-5

1.6175e-5

MLMC Mean (20 iter) 1.1259e-5 7.7175e-5 7.7175e-5
MLMC Scal. AA (1 iter) 1.6047e-5 1.3927e-5 1.4802e-5
MLMC Scal. AA (20 iter) 1.1947e-5 1.5989e-5 1.5708e-5
MLMC Scal. Opt (1 iter) 1.6534e-5 2.0454e-5 2.0591e-5
MLMC Scal. Opt (20 iter) 1.1998e-5 1.6989e-5 1.6451e-5

Table 13.5: Variances from the histograms of the different approaches in Fig. 13.6, 13.7, 13.8
and Fig 13.9. The column labeled Exact shows the target value for the variance.
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13 Numerical results for a one-dimensional benchmark

Based on these results, the Correlation Lift approximation demonstrates the best per-
formance and closely matches the target variance, while also considering computational
cost. Moreover, there is a slight improvement when using numerical optimization com-
pared to the analytic approximation.

Resource allocation profiles

We are going to conclude this section by examining the resource allocation profiles across
levels: in Table 13.6, we present the average resource allocation, specifically the number
of samples, for each level. The values are normalized with respect to the number of
samples used at the finest level. The table displays the allocations for different statistics,
including variance, standard deviation, and scalarization. We compare the standard
MLMC approach, which targets the mean, with our presented MLMC approaches that
target the respective statistics.

Statistic Estimator Target Level 1 Level 2 Level 3 Level 4

Variance
MLMC Mean 445.47 25.50 3.37 1

MLMC Variance 386.51 42.82 3.32 1

Sigma
MLMC Mean 452.31 25.92 3.43 1
MLMC Sigma 404.12 43.93 3.38 1

Scalarization
MLMC Mean 462.86 26.81 3.58 1

MLMC Scalarization 359.52 32.42 3.27 1

Table 13.6: We present the averaged and normalized sample profiles for different statistics,
comparing them to the standard MLMC estimator targeting the mean. In all cases,
we have used 20 iterations and numerical optimization for the MLMC estimators
targeting variance, standard deviation, and scalarization.

The key observation from this table is that we cannot simply scale the resource al-
location of the standard MLMC targeting the mean when considering other statistics.
Instead, we observe a redistribution of samples. Notably, there is an increase in sam-
ples allocated to the second level, while samples allocated to the first and third levels
decrease. Therefore, it is crucial to adapt the MLMC target to the specific SoI. Simply
scaling the standard MLMC estimator for the mean to vary its precision is insufficient
and does not capture the optimal allocation for different statistics.

13.3.5 Conclusions

Based on our findings, it is evident that using the appropriate MLMC estimators target-
ing the SoI is crucial for achieving the expected accuracy at the lowest computational
cost. We have demonstrated that relying solely on the MLMC estimator for the mean is
insufficient to reach a specific target. Conversely, approaches that align the OUU goal
with the allocation target are capable of achieving the desired accuracy.

Regarding algorithmic choices, we consistently obtained the best results when em-
ploying an iterative approach combined with numerical optimization to determine the
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resource allocation. This iterative process enhances the accuracy and robustness of the
estimators, leading to improved performance.

Additionally, we have highlighted the significance of selecting an appropriate covari-
ance approximation for the scalarization case. On the one hand, while Pearson correla-
tion may appear convenient and straightforward, it tends to over-resolve the estimator;
this results in unnecessary computational cost. On the other hand, bootstrapping yields
good results but incurs additional computational cost due to resampling. As a balanced
approach, we have shown that the correlation lift method presented in Section 12.4.3
strikes a favorable compromise in terms of performance and computational efficiency.
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...nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.

—Leonhard Euler [115]

Part IV

The derivative-free stochastic
nonlinear constrained optimization

method SNOWPAC





14 Extending NOWPAC to stochastic
problems

After having presented the deterministic derivative-free method NOWPAC [23] in Sec-
tion 8.3 of Part II, we are going to introduce our second contribution of this work,
SNOWPAC (stochastic NOWPAC), in the upcoming part. SNOWPAC is an extension
of NOWPAC as a stochastic derivative-free optimization method for OUU. It is able to
optimize constraint and computationally expensive black-box problems under uncertain
conditions. Let us first recapitulate the optimization problems that we consider:

In NOWPAC, we intended to solve deterministic optimization problems of the form
of Eq. (8.1), which we repeat here:

min f(x)

s.t. ci(x) ≤ 0, i = 1, ..., r.
(14.1)

In the OUU framework, instead of solving a deterministic f(x), we solve a robust
formulation as we have discussed in Chap. 9. Here, we introduce the stochastic parameter
θ and solve Eq (9.1), which was given as:

minRf (x,θ)

s.t. Rci(x,θ) ≤ 0, i = 1, ..., r.
(14.2)

In the next sections, we will answer the following questions:

� How do we compute the robustness measures R we discussed in Section 9.1?

� How do we adapt NOWPAC to be able to solve problems of the form of Eq. (14.2)?

We will first look at the statistical approximation of R in Section 14.1, where we
employ sampling estimators. Afterwards, we will discuss which challenges ensue because
of these approximations and which extension we add to NOWPAC because of that. These
extensions include a noise adapted trust-region management in Section 14.2, Gaussian
process supported noise correction in Section 14.3 and a feasibility restoration mode in
Section 14.4. Afterwards, we will present the SNOWPAC algorithm itself in Chap. 15.
We finish this part with presenting numerical results on the CUTEst benchmark set in
Chap. 16. The following part is based on our work in [221].
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14 Extending NOWPAC to stochastic problems

14.1 Statistical estimation of robustness measures

First, we observe that the presented measures for robustness and risk from Section 9.1
can be written in terms of an expectation,

Rb(x) := Eθ [B(x,θ)] , (14.3)

where the function B depends on the actual choice of measure. Throughout this work
we assume that B has finite variance. We present the integrand of different measures in
Table 14.1.

Measure Eq. integrant B(x,θ)

Rb0(x) (9.2) b(x,θ)

Rb1(x) (9.3) (b(x,θ)−R0(x)2

Rb2(x) (9.4) γc1b(x,θ) + (1− γ)c2(b(x,θ)−R0(x)2

Rb4(x) (9.7) 1(b(x,θ) ≥ 0)− (1− β)

Table 14.1: Integrand in Eq. (14.3) for different measures.

For the approximation of Eq. (14.3) at x, we use the MC sample average µ̂1 based on
N samples {θi}Ni=1,

E [B(x,θ)] = µ̂1 [B(x,θ)] + ε =
1

N

N∑
i=1

B(x,θi) + ε. (14.4)

Here, ε represents the error of the sample approximation. As we have described in
Section 6.3 about sampling, we know that

√
Nε is asymptotically normally distributed

with zero mean and variance σ2 = V[B(x,θ)] for N → ∞. This allows to define a
confidence interval around the approximated expected value, µ̂1 [B(x,θ)], which contains
E [B(x,θ)] with high probability.

To get a confidence interval

[µ̂1 [B(x,θ)]− ε, µ̂1 [B(x,θ)] + ε]

that contains E [B(x,θ)] with a probability exceeding ν ∈ ]0, 1[, we compute the sample
estimate σ̂biased(x) of the standard deviation of {B(x,θi)}Ni=1 using the unbiased variance
estimator,

σ̂biased(x)2 =
1

N − 1

N∑
i=1

(B(x,θi)− µ̂1[B(x,θ)])2 . (14.5)

Next, we set

ε̄ =
tν σ̂biased(x)√

N
,

with tν being a constant defining the confidence interval with respect to ν. This constant
reflects the Z-score for larger sample sizes. Here, we use ε̄ as an indicator for the upper
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bound on the sampling error ε ≤ ε̄ with probability exceeding ν. We choose tν = 2 in
our implementation, which yields a confidence level exceeding 0.975 for a sample size
N ≥ 60.

Given the sampling estimator, we approximate the measures as Rb = Rb + ε̄, which
results in the approximate robust optimization problem that we intent to solve:

minRf (x,θ)

s.t. Rci(x,θ) ≤ 0, i = 1, ..., r.
(14.6)

As a remark, we note that our proposed algorithm is not restricted to sample aver-
ages as discussed above. For example, we refer to [337, 338, 339] for a sophisticated
approximation and error analysis of the robustness measure R3.

The effectiveness of the NOWPAC algorithm (see Alg. 1) hinges on the accuracy
of the surrogate models mb

k. The surrogate offers us a way to approximate gradients
and compute an optimal point, when we solve the trust-region subproblem as given in
Eq. (8.8). Therefore, it is crucial to ensure that our algorithm is robust against the noise
ε̄x that arises from finite sampling approximations of the robustness measures. In the
next section, we will discuss how we can adapt the trust-region surrogate to account for
both the structural error in the surrogate approximations and the sampling error in the
evaluation of R ≈ R.

14.2 Noise-adapted trust-region management

The noise in the evaluations ofRb = Rb+ε̄ impacts the quality of our quadratic surrogate
models. Whereas we used minimum Frobenius norm models in the deterministic case of
NOWPAC as discussed in Section 8.2, their interpolation condition is disadvantageous
if we assume noisy evaluations. Under noise, we would not expect the surrogate points
to be interpolated exactly by the model, but rather approximately. This especially is
the case when an estimate of the noise is given, as in our case for ε̄.

The work in [173] presents updated minimum Frobenius norm surrogate models, which
incorporate the noise and meet error bounds to be fully linear. Instead of requiring
an exact interpolation at the surrogate points, the models require only approximate
interpolation. Repeating the quadratic surrogate from Eq. (8.5),

mb
k(xk + s) = mb

k(xk) + gks +
1

2
sTHks + qk, (14.7)

we find the coefficients of this model as

[qk,gk,Hk] = arg min
qk,gk,Hk

||Hk −Hk−1||2F : |mb
k(xi)− b(xi)| < ε̄, i = 1, ..., k. (14.8)

As we observe, instead of the interpolation condition {mb
k(xi) = b(xi)}ki=1, we require

only an approximate interpolation with an assumption on the noise, ε̄. As a conse-
quence, depending on this noise estimate, it results in different surrogate models. This
approximation tries to prevent overfitting to the data, which can be a result of the exact
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14 Extending NOWPAC to stochastic problems

interpolation condition under noisy assumption. We will showcase this in the following
example, where we also compare to a least squares regression model.

Example 10 (Comparison of quadratic models under noise). We juxtapose the min-
imum Frobenius norm model with approximate interpolation condition from Eq. (14.8)
(red dashed) with the minimum Frobenius norm model with exact interpolation con-
dition (green dotted) and a quadratic model found using least-squares regression, i.e.
[qk,gk,Hk] = arg minqk,gk,Hk

∑k
i=1(mb

k(xi) − b(xi))
2 (black solid). We use five data

points given as blue crosses for the surrogate models. The noise estimate, ε̄, for the
approximated interpolation condition is given in the title.

While the quadratic model does not change for the least-squares regression and exact
interpolation model for different noise estimates, we observe that including the noise
estimate in the approximate interpolation conditions changes the shape of the surrogate
model. While for a small noise estimate (ε̄ = 0.1) the surrogate model is similar to a
quadratic model, for a slightly larger noise estimates (ε̄ = 0.2), the surrogate is almost
linear. Thus, by including the noise as parameter, we observe that a linear function might
suffice as approximation, whereas least-squares regression and the exact interpolation
condition results in a quadratic model. Hence, we avoid overfitting to the data.
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Figure 14.1: Comparison of quadratic models using least squares, minimum Frobenius norm
with exact and approximated interpolation condition for different ε̄.

Given these surrogate models built from finite sample approximations with black-box
evaluations corrupted by noise, it is established in [173, Thm. 2.2] that they preserve
the fully-linear condition and meet the following error bounds,∥∥∥Rb(xk + s)−mRb

k (xk + s)
∥∥∥ ≤ κ1 ρ

2
k,∥∥∥∇Rb(xk + s)−∇mRb

k (xk + s)
∥∥∥ ≤ κ2 ρk,

(14.9)

with high probability ν.
The constants in these bounds,

κi = κi

(
ε̄kmaxρ

−2
k

)
, i ∈ {1, 2}, (14.10)

depend on the statistical upper bounds estimates for the noise term, ε̄kmax = max{ε̄i}ki=1,
as presented in Section 14.1, the trust-region radius ρk as well as on the poisedness
constant Λ ≥ 1 (see Remark 2).
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14.2 Noise-adapted trust-region management

We note two opposing properties in this bound: to improve the quality of the surrogate
models, we need to reduce the poisedness constant Λ of the points used to build the
regularized surrogate models. The bound also improves with a smaller trust-region
radius ρk. At the same time, however, we have to ensure boundedness of the error term
ε̄kmaxρ

−2
k , which grows with a decreasing trust-region size. We will discuss the balance of

both measures next.

Firstly, regarding the poisedness constant, we decrease its value Λ in every rejected
step by a user-prescribed factor γpoi ∈ ]0, 1] (down to Λmin). This helps to increase the
quality of the surrogate models until the trust region becomes small enough and the
noise term ε̄kmaxρ

−2
k in (14.10) starts dominating the poisedness constant Λ. We refer to

Alg. 3 for pseudo-code regarding the implementation.

Algorithm 3 Updating procedure for poisedness threshold

if Current trial step rejected then
Reduce poisedness constant of interpolation points
Set Λ = max{γpoi Λ, Λmin}

end if
if Current trial step successful then

Relax poisedness constant of interpolation points
Set Λ = min{Λ/γpoi, Λ0}

end if
Update surrogate models mf

k and mc
k

Secondly, if the maximal noise term ε̄kmax is of order ρ2
k, the bounds in (14.9) hold.

However, in the presence of noise, i.e. ε̄kmax > 0, the term ε̄kmaxρ
−2
k grows unboundedly for

a shrinking trust-region radius, and consequently, κ1 and κ2 also increase unboundedly,
violating the fully-linearity property of mRb

k . Therefore, to ensure the full linearity of the
surrogate models, it is necessary to impose an upper bound on the error term, ε̄kmaxρ

−2
k .

Our algorithm enforces the lower bound

ε̄kmaxρ
−2
k ≤ λ

−2
t , resp. ρk ≥ λt

√
ε̄kmax, (14.11)

on the trust-region radius for a λt ∈ ]0,∞[, where we set λt =
√

2 by default.

Algorithm 4 specifies the details of the implementation. Notice the difference to the
trust-region management in NOWPAC (see Alg. 1), where the trust region is only mod-
ified in the acceptance step.

Algorithm 4 Noise adapted updating procedure for trust-region radius.

Input: trust-region factor a ∈ {1, γdec, γinc, ω}, maximum trust region ρmax.

Set ρk+1 = max
{
aρk, λt

√
ε̄kmax

}
if ρk+1 > ρmax then

Set ρk+1 = ρmax

end if
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14 Extending NOWPAC to stochastic problems

The proposed noise-adapted trust-region management approach takes into account
both the structural error of the fully linear approximation and the highly probable up-
per bound on the error in the approximation of the robustness measures. This coupling,
however, prevents the trust-region radius from converging to zero, which results in lim-
ited accuracy of the surrogate models mRb

k and consequently, the optimization result.
While this approach effectively limits the impact of noise on the surrogate models, it also
restricts the level of accuracy that can be achieved; in other words, there is a trade-off
between the level of robustness to noise and the accuracy of the surrogate models. In
the next section, we will discuss a measure to reduce the noise itself to be able to reduce
the trust-region radius: GP surrogates.

14.3 Noise correction supported by Gaussian processes

We can improve the poisedness constant, and thus the surrogate, mainly through select-
ing points used for the surrogate; however, this is restricted by the evaluations available.
The alternative is to reduce the magnitude of the noise term ε̄kmax in order to increase
the accuracy of the optimization result.

We know from Section 6.3, that the MC sampling variance is σ2

N . A straight-forward
solution would, thus, be to increase the number of samples N to decrease the noise.
However, given that increasing the number of samples is prohibitively expensive since
the sampling error only decreases in the order of O( 1√

N
), this is infeasible. Hence, we

propose an alternative approach:

We introduce GP surrogates of Rb, as presented in Chap. 7, by training the surrogate
on previously evaluated optimization points {(xi, Rbi )}Ki=1 in a larger domain encom-
passing the trust region. By incorporating this second surrogate, we can decrease the
error and enhance the estimator’s smoothness. We leverage the GP’s global information,
which improves as the number of points increases. We take advantage of the GP’s consis-
tency properties and smooth behavior, as demonstrated in [280, 299, 319], most recently
in [198] and summarized in Section 7.5. In the following sections, we are going to show
how this approach helps us smooth the noisy evaluations and reduce the magnitude of
the noise term ε̄kmax.

14.3.1 Gaussian process construction

We refer to the information from Chap. 7 on GPs and repeat the GP estimators for mean
and variance, extending them to the notation of our algorithm for a general training data
(X,y) as

Mean: Gbk[y] := Gb[xk|X,y] = kxkX(Kb
XX + N)−1y, (14.12)

Variance: Vbk := V[xk|X] = kbxkxk − kbxkX(Kb
XX + N)−1kbXxk

, (14.13)

where we introduce the target function b ∈ {f, c1, ..., cr} and the current optimization
iteration k.
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14.3 Noise correction supported by Gaussian processes

Here, for the training data, X represents our already evaluated design points {xi}ki=1

and Rb denotes the corresponding evaluations of the measure {Rbi}ki=1. The symbols
kbxkX and Kb

XX denote the kernel vector and kernel matrix, respectively, evaluated at
every pair (x,x′),x,x′ ∈ X. The noise matrix N denotes a diagonal matrix with our
noise estimates ε̄bk coming from the evaluation of the robustness measures on its diagonal.
In what follows, we use the shorthand notation Gbk := Gbk[y] when the training set is clear
from the context to simplify notation. We note, that we build an independent GP for
each of the objective and constraint functions, b ∈ {f, c1, ..., cr}.

We consider already evaluated points with a distance smaller than ζ1ρk around the
current best design point xk for the construction of the GPs to incorporate more global
information compared to the local surrogates, i.e.

(X,Rb) = {(xj , Rbj) : ‖xj − xk‖2 ≤ ζ1ρk, j = 1, ...,K}. (14.14)

While this includes more points than for the local surrogate, we can still assume
stationarity of the GP surrogates, since we still restrict ourselves to a local domain
around the current optimal point. Of course, this specifically requires the current point
of evaluation xk being included in the training set. By default, we use a value of ζ1 = 3
to incorporate enough global information around the current design.

14.3.2 Gaussian process smoothing

To enhance the accuracy of the finite sample approximation Rbk, we need to reduce its
error. If the estimator is unbiased, this results in reducing the variance as we showed
in Section 6.3. We achieve this by incorporating the GP surrogate estimates Gbk[R] as
a second estimator, which gets more and more precise as the number of evaluations R
increases during the optimization process. We combine the two estimators using a linear
combination and adjust their contributions with a weighting factor γk. The resulting
smoothened evaluation is denoted as R̃bk and can be expressed as:

R̃bk = γkGbk[Rbk] + (1− γk)Rbk, (14.15)

where Rbk represents the noisy sampling estimate, and Gbk[Rbk] is the mean estimator of
the GP at the current evaluation xk.

However, what is the best choice for γk? Can we find the optimal γk to get the best
estimator R̃bk? We developed two options to choose γk in SNOWPAC: analytic and
heuristic smoothing.

Analytic smoothing

Under the valid assumption that Rbk is itself an unbiased estimator, we compute the root
mean squared error (RMSE) of R̃bk as

RMSE(R̃bk) = [γkE[Gbk[Rbk]−Rbk]]2 + V[γkGbk[Rbk] + (1− γ)Rbk]

= [γk(Gbk[Rbk]−Rbk)]2 + γ2
kV[Gbk[Rbk]] + (1− γk)2V[Rbk]

+ 2γk(1− γk)Cov[Gbk[Rbk], Rbk].
(14.16)

101



14 Extending NOWPAC to stochastic problems

The goal is to find the optimal
∗
γk to minimize (14.16) of the new estimator R̃bk. By

doing so, we can adjust its noise estimate

ε̃bk = tν ·min
γk

RMSE(R̃bk). (14.17)

Lemma 20. The optimal
∗
γk that minimizes arg minγk RMSE(R̃bk) is given as

∗
γk =

V[Rbk]− Cov[Gbk[Rbk], Rbk]
(Gbk[Rbk]−Rbk)2 + V[Gbk[Rbk]] + V[Rbk]− 2Cov[Gbk[Rbk], Rbk]

. (14.18)

Proof. Taking the derivative of (14.16) for γk and setting it equal to 0 gives us its optimal
value to minimize the error.

As a final step, we describe how to compute all the terms in (14.16) and (14.18). We
can compute them in closed form since the GP mean operator is linear.

Lemma 21. The variance of the GP mean estimator Gbk[Rbk] is given as:

V[Gbk[Rbk]] =
N∑
i=1

V[Rbi ](
N∑
j=1

kxkxj ((KXX + N)−1)[i,j])
2

≈
N∑
i=1

(
ε̄bi
tν

)2(

N∑
j=1

kxkxj ((KXX + N)−1)[i,j])
2

(14.19)

See D.2 for the proof.
Here, the notation X[i,j] denotes the element of X at position [i, j]. We want to make

the distinction clear that we compute the variance of the GP mean estimator V[Gbk[Rbk]]
in (14.19) which is not the same as the variance estimate Vbk of the GP surrogate.

Next, we have to compute the covariance term.

Lemma 22. The covariance between the GP mean estimator Gbk[Rbk] and sampling esti-
mator Rbk is given as:

Cov[Gbk[Rbk], Rbk] = V[Rbk]
N∑
j=1

kxkxj ((KXX + N)−1)[k,j]

≈ (
ε̄bk
tν

)2
N∑
j=1

kxkxj ((KXX + N)−1)[k,j].

(14.20)

See D.3 for the proof.
Here, too, we compute the covariance between two estimators, namely Gbk[Rbk] and Rbk

in (14.20) and not between evaluations themselves.
The last term in (14.16) and (14.18) that we still require is (Gbk[Rbk] −Rbk). We note

that this term is the bias of Gbk:

Bias(Gbk) = E[Gbk(x
(i)
k ; R)]−Rbk = Gbk(x

(i)
k ;E[R])−Rbk = Gbk[x

(i)
k ;R]−Rbk. (14.21)

We can approximate the bias term using a Bootstrap approach (cf. [106, 107]).

102



14.3 Noise correction supported by Gaussian processes

Remark 3. Estimating the bias through bootstrapping. Let X ∼ F be a
random variable whose cumulative distribution function is given by F (x). We denote
a parameter θ as a function of the distribution F , denoted as θ = T (F ) or θF for
short. Examples for θ include the mean or standard deviation. Let X1, X2, . . . , XN

be N random samples of X from the estimated cumulative distribution function F̂ .
An estimator θ̂, is a function of the sample, i.e. θ̂ = h(X1, X2, . . . , XN ). For
example, if θF = µF , then θ̂F̂ = 1

N

∑N
i=1Xi is an estimator for the mean.

We define the bias of the estimator θ̂F̂ as

BiasF (θ̂F̂ ) = EF [θ̂F̂ ]− θF . (14.22)

The bootstrap estimate of the bias is given as [107]

BiasF̂ (θ̂F̂ ) = EF̂ [θ̂F̂ ]− θ̂F̂ . (14.23)

The first term is approximated using the Bootstrap approach by resampling from F̂
with replacement, i.e. we draw N samples from our set of samples {X(i)}Ni=1 and

we repeat this process S times. Let {X̂(i)
s }Ni=1, s = 1, ..., S, denote a set of these

resampled samples. We can then approximate the term as

EF̂ [θ̂F̂ ] ≈ 1

S

S∑
s=1

θ̂(X̂s). (14.24)

In our case, we denote EF̂ [θ̂F̂ ] := E[Gbk(x
(i)
k ; R)] ≈ E[Gbk[x

(i)
k ; R̂]] as the Bootstrap

estimator for the first term where we draw S samples R̂ with replacement. For the second

term we have θF := Rbk and since Gbk(x
(i)
k ; R) estimates Rbk we get θ̂F̂ := Gbk(x

(i)
k ; R).

Thus, we approximate (14.21) by

Gbk[R]−Rbk ≈ E[Gbk[R̂]]− Gbk. (14.25)

With the derivations in Lemmas 21 and 22 and the Bootstrap approximation of
Eq. (14.25), we can compute

∗
γk, which results in the minimal RMSE for our smoothend

estimator R̃bk. The accuracy of the mentioned quantities is highly reliant on both the
GP’s approximation quality and the robustness measures Rb. The first improves with
more available evaluations, i.e. optimization steps. The second mainly depends on the
problem and the number of samples N . As a compromise, we offer a heuristic method
for computing γk rather than calculating

∗
γk, which is especially useful for small numbers

of samples or optimization steps.
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14 Extending NOWPAC to stochastic problems

Heuristic smoothing

We reduce the noise by applying a linear combination comparable to the one presented
in (14.15), and utilizing the GP variance estimator:

ε̃bk = γktν

√
Vbk + (1− γk)ε̄bk. (14.26)

The weight factor γk := e−
√
Vbk is chosen to approach 1 when the GP becomes more and

more accurate as indicated by the vanishing variance of the GP approximation.
The intention behind both the analytic and the heuristic error is to exploit posterior

consistency of the GP for Vbk converging to zero for an increasing number of evaluations
of Rb within a neighborhood of xk. In the limit, the GP mean converges to the exact
function Rb and the lower bound of Eq. (14.11) on the trust-region radius vanishes,
allowing for increasingly accurate optimization results.

14.3.3 Gaussian process error balancing

By utilizing both the fully linear and GP surrogate models, we can balance two sources
of approximation errors. On the one hand, there is a structural error in the approxima-
tion of the local surrogate models, as shown in Eq. (14.9), which can be managed by
controlling the size of the trust-region radius. On the other hand, we have the inaccuracy
in the GP surrogate itself, which is indicated by the variance Vbk of the GP. It is worth
noting that Algorithm 4 connects these two sources of errors by associating the size of
the trust-region radius with the size of the credible interval through Eq. (14.15). The
algorithm only permits the trust-region radius to decrease if Vbk becomes small.

Finally, we take three measures to ensure that Vbk reduces as xk gets closer to the
optimal design. Firstly, the number of black-box evaluations performed by the optimizer
during the optimization process naturally increases, which improves the quality of the
GP approximation approaching Rbk for an increasing number of evaluations (i.e. training
data), see [198, 280, 299, 319] and Section 7.5 of this thesis. However, these evaluations
may not be well-distributed around the current iterate xk, and may be localized.

Therefore, secondly, we draw additional points, x̂ ∼ N
(
xk, ζ2

√
ρkI
)
, with ζ2 = 3

10 ,
whenever a trial point is rejected to improve the geometrical distribution of the regression
points for the GP surrogates. A trial point being rejected may happen because it is
infeasible under the current GP-corrected constraint approximation in Eq. (14.15), or
the step is rejected (as in STEP 3 in Algorithm 1).

Thirdly, in addition to enriching the set of regression points, we re-estimate the GP
hyperparameters either after a user-prescribed number of black-box evaluations or af-
ter λk · n consecutively rejected or infeasible trial steps. Here, λk is a user-prescribed
constant. This avoids over-fitting problems as described in Chap. 7 or [62, 269].

14.4 Relaxed feasibility requirement

One of the essential components of Algorithm 1 involves ensuring the feasibility of all
intermediate design points xk through the feasibility requirement outlined in STEP 2.
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14.4 Relaxed feasibility requirement

Nevertheless, checking feasibility in the presence of noise can pose significant challenges.
For instance, we may accept a seemingly feasible point based on the current constraint
approximations, which may actually be infeasible due to the noise. Additionally, re-
sults might become infeasible (or feasible) due to the smoothening step of {R̃bci}

r
i=1 in

Eq. (14.15). Hence, it becomes necessary to expand NOWPAC’s abilities to handle
infeasible points by introducing a feasibility-restoration mode.

Consequently, the resulting algorithm operates in two modes—M1 and M2:

(M1) objective minimization and

(M2) feasibility restoration.

Whenever the current point xk seems feasible based on the current constraint approx-
imations, the algorithm operates in mode (M1). However, if xk becomes infeasible, the
algorithm switches to mode (M2). We present the switch in Alg. 5.

Algorithm 5 Switch between normal and feasibility restoration mode.

1: Input: Design x.
2: if R̃ci(x) ≤ 0 ∀ i = 1, ..., r then
3: Switch to mode (M1).
4: else
5: Switch to mode (M2).
6: end if

The switch between these two modes involves replacing the underlying trust-region
subproblem. In mode (M1), the standard subproblem

minmR̃
f

k (xk + sk),

s.t. m̄R̃ci
k (xk + sk) ≤ 0, i = 1 . . . r

‖sk‖ ≤ ρk

(14.27)

is solved to obtain a new trial point xk + sk. Here, m̄R̃ci
c denotes the inner-boundary

path augmented models of Rci as described in (8.9) using the updated evaluations R̃bk
from GP smoothening in Eq. (14.15). The subproblem

min
〈
gR̃

f

k , sk

〉
,

s.t. m̄R̃
ci

k (xk + sk) ≤ 0, i = 1 . . . r

‖sk‖ ≤ ρk

(14.28)

is used for computation of the criticality measure αk.
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14 Extending NOWPAC to stochastic problems

In mode (M2), we minimize the constraint violation instead of optimizing the objec-
tive, moving back into the feasible region. Thus, the subproblem

min
∑
i∈Ik

(
mR̃

ci

k (xk + sk)
2 + λgm

R̃
ci

k (xk + sk)
)
,

s.t. m̄R̃
ci

k (xk + sk) ≤ τi, i = 1 . . . r

‖sk‖ ≤ ρk

(14.29)

is solved for the computation of a new trial point xk + sk, along with

min
∑
i∈Ik

(
2mR̃

ci

k (xk) + λg

)〈
g
mR̃

ci
k

k , sk

〉
,

s.t. m̄R̃
ci

k (xk + sk) ≤ τi, i = 1 . . . r

‖sk‖ ≤ ρk

(14.30)

for computation of the corresponding criticality measure. We denote the set of violated
constraints as Ik = {i : R̃cik > 0, i = 1, . . . , r} and introduce the slack variables

τ := (τ1, . . . , τr), which we set as τi = max{R̃cik , 0}. The parameter λg ≥ 0 in (14.29)
and (14.30) is introduced to guide the feasibility restoration towards the interior of the
feasible domain. By default it is set to λg = 10−4.

The respective mode also affects the acceptance ratio rk. While we compute the
usual acceptance ratio in (M1), we adapt the terms to the formulations to the changed
objective of Eq. 14.29 in (M2). We compare the performance of the surrogate to the
sample measures on the violated constraints. Therefore, we adapt the algorithm as
shown in Alg. 6.

Algorithm 6 Compute acceptance ratio rk in normal and feasibility restoration mode.

1: Input: Current design xk and trial point xtrial = xk + sk.
2: if Mode (M1) then

3: rk = R̃f (xk)−R̃f (xtrial)

mR̃
f

k (xk)−mR̃fk (xtrial)
.

4: else

5: rk =

∑
i∈Ik

(R̃ci (xk)2+λgR̃ci (xk))−
∑
i∈Ik

(R̃ci (xtrial)
2+λgR̃ci (xtrial))∑

i∈Ik

(
mR̃

ci
k (xk)2+λgmR̃

ci
k (xk)

)
−
∑
i∈Ik

(
mR̃

ci
k (xtrial)2+λgmR̃

ci
k (xtrial)

) .

6: end if

14.5 Summary of the extensions to NOWPAC

Before we present the new algorithm, we summarize the changes to NOWPAC that are
required for OUU. As basic assumption for these changes, we expected the involved mea-
sures are approximated and an estimation of the approximation error is available. In our
context, we considered sampling estimators for the statistical estimation (Section 14.1).
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14.5 Summary of the extensions to NOWPAC

These approximated measures and the resulting noise required an updated trust-region
management. Firstly, we updated the surrogate models such that the fully-linear prop-
erty is still fulfilled, which introduced a lower bound on our trust-region radius (Sec-
tion 14.2). Secondly, to still be able to reduce the trust-region radius, we needed to
reduce the noise. Thus, we suggested GP models as second surrogates (Section 14.3).
Using these surrogates, we were able to smoothen the evaluations presenting an analytic
and heuristic approach (Section 14.3.2 and 14.3.2) and balance the error of the sampling
and the GP approximation (Section 14.3.3). Thirdly and finally, the noisy evaluations
and the smoothing step resulted in infeasible iterates, which we had not allowed in
NOWPAC. Hence, we presented a feasibility-restoration mode, where we change the
optimization problem guiding the optimizer back into the feasible region (Section 14.4).
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15 The stochastic trust-region algorithm
SNOWPAC

In this section, we present the algorithm SNOWPAC (stochastic NOWPAC). We start
off by summarizing all the default values for the internal parameters used in our imple-
mentation in Table 15.1.

Table 15.1: Default values for internal parameters of SNOWPAC.

Description Parameter Default value

Factor for lower bound on trust-region radii λt
√

2

Poisedness threshold Λ 100

Gradient contribution to feasibility restoration λg 10−4

Factor for GP training region ζ1 3

Constant for normal distribution to enrich GP ζ2
3
10

SNOWPAC is written in C++ and is available on Github under the BSD 2-Clause
license1. It can be used as a stand-alone solver. The installation requires cmake and can
be started by using the included install nowpac.sh script. In the script, the user can
modify the compilers and the installation path. The different possible settings, options
and install instructions of SNOWPAC are also available in the README.md file in the
repository.

For coupling SNOWPAC to the user’s application, the BlackBoxBaseClass.hpp serves
as interface to SNOWPAC. The class offers two methods called evaluate, which are re-
sponsible for the black-box evaluation. The two methods only differ in their number
of input parameters. The stochastic method for SNOWPAC requires a noise vector,
whereas the deterministic evaluate method for NOWPAC does not. The application
has to inherit from BlackBoxBaseClass.hpp, link to SNOWPAC and implement the
evaluate method, which is called by SNOWPAC for evaluations of objective and con-
straints. Thus, the random sampling and evaluation of measures is handled on the
application side. In the case of SNOWPAC, the evaluate method also returns noise
estimates for all functions, which are used for ε̄. We visualize the coupling in Fig. 15.1.

SNOWPAC is also available as an external solver in Dakota. It can be installed using
the option HAVE NOWPAC=True when building DAKOTA from source and chosen by set-
ting method to snowpac. The settings of SNOWPAC are set through the Dakota input

1https://github.com/snowpac/snowpac
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15 The stochastic trust-region algorithm SNOWPAC

TRM Surrogate
Optimization

Feasibility
Restoration

SNOWPAC
Derivative-free optimization

Black-box solver
BlackBoxBaseClass

evalute(std::vector<double> const x, 
            std::vector<double>& values,
            void *param)
evalute(std::vector<double> const x, 
            std::vector<double>& values,
            std::vector<double>& noise,
            void *param)

ApplicationClass
ApplicationParameters

ApplicationMethods

Figure 15.1: Coupling of SNOWPAC with black-box application via BlackBoxBaseClass.hpp.
We show also the new contributions of SNOWPAC: the updated trust-region
management (TRM), surrogate optimization with GPs and feasibility restoration
mode.

file, e.g., the initial radius of the trust region or the maximum number of function evalu-
ations. Dakota is then responsible for handling the communication between SNOWPAC
and the black-box application. Here, Dakota is also responsible for the sampling of
stochastic input variables and evaluation of measures. It makes use of its nested model,
where SNOWPAC can be defined as outer optimization method, whereas a sampling
method for a SoI is chosen as inner method. In the following, we give an example of
a setting for the setup of SNOWPAC in Lst 15.1, where all the different settings of
SNOWPAC are specified.

1 method ,
2 id method = ’OPTIM’
3 mode l po inter = ’OPTIM M’
4 snowpac
5 seed = 25041981
6 max func t i on eva lua t i ons = 100
7 t r u s t r e g i o n
8 i n i t i a l s i z e = 0.05
9 minimum size = 1 .0 e−6

10 c o n t r a c t t h r e s h o l d = 0.25
11 expand thresho ld = 0.75
12 c o n t r a c t i o n f a c t o r = 0 .50
13 e x p a n s i o n f a c t o r = 1 .50

Listing 15.1: Extract of Dakota input file for SNOWPAC.

Lastly, we present the algorithm for SNOWPAC in Alg. 4. The algorithm’s general
procedure closely follows the steps outlined in Algorithm 1 of NOWPAC. Additionally,
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it incorporates the generalizations we introduced in Sections 14.2-14.4 to handle noisy
black-box evaluations.

Algorithm 7 SNOWPAC

1: Construct the initial fully linear models mRf
0 , mRc

0 .

2: Set
∗
x = x0 and

∗
Rf = Rf (x0).

3: Switch Mode if feasibility restoration is necessary as in Alg. 5.
4: for k = 0, 1, . . . , nmax do
5: // STEP 0: Criticality step
6: while αk(ρk) is too small do
7: if ρk < ρmin then
8: Return

∗
x = xk,

∗
Rf = Rf (xk). STOP.

9: end if
10: Call Algorithm 4 with a = ω.
11: Evaluate Rf (x) and Rc(x) for randomly sampled x ∈ B(xk, ρk).
12: Update GPs and black-box evaluations.
13: Construct surrogate models mR̃f

k , mR̃c

k .
14: Switch Mode according to observed feasibility of trial point as in Alg. 5.
15: end while
16: // STEP 1: Step calculation
17: Compute a trial step xtrial = xk + sk via (14.27) or (14.29).
18: Evaluate Rf (xtrial) and Rc(xtrial).
19: Update Gaussian processes and black box evaluations.
20: // STEP 2: Check feasibility of trial point
21: if Rci(xtrial) > τi for an i = 1, . . . , r then
22: Call Algorithm 4 with a = ω.
23: Evaluate Rf (x) and Rc(x) for a randomly sampled x ∈ B(xk, ρk).
24: Update GPs, black-box evaluations and surrogate models.
25: Switch Mode to observed feasibility of trial point as in Alg. 5.
26: end if
27: // STEP 3: Acceptance of trial point and update trust region
28: Compute rk according to Algorithm 6.
29: if rk > η0 then
30: Set xk+1 = xtrial

31: Call Algorithm 4 with a = min{1, γinc}
32: else
33: Set xk+1 = xk, m

R̃f

k+1 = mR̃f

k and mR̃c

k+1 = mR̃c

k

34: Call Algorithm 4 with a = γdec
35: Evaluate Rf (x) and Rc(x) for a randomly sampled x ∈ B(xk, ρk).
36: end if
37: Update GPs and black-box evaluations.
38: Update surrogate models mR̃f

k (xk+1), mR̃c

k (xk+1).
39: end for
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15 The stochastic trust-region algorithm SNOWPAC

We discuss a two-dimensional test problem that helps develop an understanding of the
optimization process and the GP’s role in reducing noise in Example 11. We illustrate
how SNOWPAC utilizes GP surrogates and the feasibility restoration mode to identify
good approximations of an optimization problem’s optimal point. We also get some
insight into the convergence and the feasibility-restoration mode of SNOWPAC.

Example 11 (A two-dimensional test example). We regard the test problem 228 from
the CUTEst benchmark set, where we add artificial noise to create a stochastic problem
and use Rb0(x) as measure:

minE

[
sin(x− 1 + θ1) + sin

(
1

2
y − 1 + θ1

)2
]

+
1

2

(
x+

1

2

)2

− y,

s.t. E
[
−4x2(1 + θ2)− 10θ3

]
≤ 25− 10y,

E
[
−2y2(1 + θ4)− 10(θ4 + θ2)

]
≤ 20x− 15.

(15.1)

Here, we use the random variables θ = [θ1, . . . , θ4] ∼ U [−1, 1]4 and set the starting point
to (x0, y0) = (4, 3). To approximate the expected values, we employ N = 50 samples of
θ, and estimate the noise magnitudes using the method described in Section 14.1.

In Fig. 15.2 we plot the optimization results after 20 (top left), 40 (top right), and
100 (bottom) optimization steps. We make multiple observations in this example: first,
we observe that SNOWPAC is finding the optimal solution by first moving towards the
constraint and then along the constraint. Second, we see a reduction in the trust-region
radius when converging to the optimum, resulting in a more accurate surrogate. Third,
we notice the effect of the noise reduction technique discussed in Section 14.3 by plotting
the objective function and constraints as SNOWPAC sees them due to the correction with
the GP surrogates: in the vicinity of the current design point, we clearly see smoother
contour lines compared to the surrounding noisy evaluations in each of the figures. This
is especially visible in the trust region. As a result, noise is significantly reduced, which
facilitates efficient approximation of the optimal solution by SNOWPAC and shifts the
balance towards trusting the GP estimator. The darker area indicates that more weight
is given to the GP estimator, clearly showing the contribution of the GP. Moreover, we
see that the optimizer eventually gathers more and more black-box evaluations, yield-
ing an increasingly better noise reduction, also allowing a reduction in the trust region.
Fourth and finally, upon analyzing the constraint contours that are affected by a signifi-
cant amount of noise, it becomes apparent that relying solely on GP-supported black-box
evaluations and NOWPAC’s inner boundary path to ensure feasibility is not enough.
Therefore, the feasibility restoration mode, as presented in Section 14.4, is necessary,
which enables the optimizer to recover feasibility from seemingly infeasible points and
guides the optimizer back to a feasible solution.
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Figure 15.2: Realizations of the contour plots of the noisy objective function and constraints for
the optimization problem in Eq. (15.1). The exact optimal design and constraints
are indicated by a red cross and dotted red line, respecitvely. The plots show the
best point (green dot) and the optimization path (green line) after 20, 40 and 100
evaluations of the robustness measures; the lower right plot is zoomed in to the
neighborhood of the optimal point. The corresponding trust regions are indicated
by green circles. The gray cloud indicates the size of the weighing factor γis from
Eq. (14.15);the darker the area, the more weight is given to the GP. The GP
regression points are indicated by yellow dots.
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16 Numerical results on CUTEst
benchmark

Let us now validate the performance of our method on an optimization benchmark from
the CUTEst benchmark suite. We compare SNOWPAC to a variety of other methods in
the field of stochastic derivative-free optimization. This includes Bayesian optimization
methods, stochastic approximation methods, trust-region and direct-search methods.

Utilizing GP surrogate models in SNOWPAC connects the method with the successful
class of Bayesian optimization techniques [228, 229], and their nonlinear optimization
extensions that include using an augmented Lagrangian approach [146] or expected con-
strained improvement in the constrained Bayesian optimization (cBO) [129]. However,
unlike Bayesian optimization, SNOWPAC applies GP surrogates to smooth local trust-
region steps instead of concentrating on global optimization. In this section, we demon-
strate how combining efficient local optimization and a second layer of GP models for
smoothing produces an accurate and effective optimization technique. Furthermore, we
compare the performance of SNOWPAC with optimization codes, such as COBYLA [261]
and NOMAD [21], and stochastic approximation methods, such as SPSA [295, 296, 315]
and KWSA [179].

Since COYBLA and NOMAD are not designed for stochastic optimization, their per-
formance improves for smaller noise levels. We therefore vary the sample sizes to assess
their performance based on different magnitudes of noise in the sample approximations
of the robust objective function and constraints. We also compare the two different ap-
proaches of SNOWPAC to find the optimal γ∗k presented in the previous Section 14.3.2,
which we called the analytic and heuristic approach.

For all the following results we use a stationary squared exponential kernel

kb(x,x′) = (σbf )2 · exp

(
−1

2
(x− x′)TΛ−1

lb
(x− x′)

)
, (16.1)

for the construction of the GP surrogates in the upcoming sections with (σbf )2 ∈ R+

and lb = diag(Λlb) with lb = [lb1, ..., l
b
ddet

]T ∈ Rddet+ as the hyperparameters of the GP. To
determine the hyperparameters, we maximize the marginal likelihood of the estimator
using automatic relevance determination (ARD) [269, 318]. This means, we use different
length-scale hyperparameters for each dimension lbi , i = 1, ..., ddet. We estimate the
hyperparameters after a fixed number of optimization steps.
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16 Numerical results on CUTEst benchmark

16.1 Stochastic problem setting

To evaluate the performance of all optimizers, we utilize the Schittkowski optimization
benchmark set [158, 282], which is a part of the CUTEst benchmark suite for non-
linear constraint optimization. We pick the following eight problems: TP ∈ T P =
{29, 43, 100, 113, 227, 228, 268, 285}. This test set includes feasible domains with dimen-
sions ranging from 2 to 16 and a variable number of constraints ranging from 1 to 10.
The deterministic selection of problems is given in the Appendix D.4.

As the problems are deterministic, we introduce noise to the objective functions
(f(x) + θ0) and constraints ({ci(x) + θi}ri=1) where (θ0, θ1, ..., θr) ∼ U [−1, 1]1+r, and
we solve three classes of robust optimization problems as follows:

1. Minimization of the average objective function subject to the constraints being
satisfied in expectation:

minRf0(x)

s.t. Rc0(x) ≤ 0.
(16.2)

2. Minimization of the average objective function subject to the constraints being
satisfied in 95% of all cases:

minRf0(x)

s.t. Rc,0.95
4 (x) ≤ 0.

(16.3)

3. Minimization of the 95%-CVaR of the objective function subject to the constraints
being satisfied on average:

minRf,0.95
5 (x)

s.t. Rc0(x) ≤ 0.
(16.4)

16.2 Data profile metric

The authors [232] introduce data profiles to quantify the performance of the different
solvers over a collection of optimization runs, which we will use in this work as well.
To create this collection for the performance comparison, we solve each of the eight
optimization problems in T P with 100 random initial points and three different MC
sample sizes N ∈ {200, 1000, 2000}. Thus, we get a total number of 3 · 8 · 100 = 2400
optimization runs. We then denote the resulting benchmark set the collection of all
results P. The accuracy requirement for the objective and constraints function is given
by the tolerances εf and εc and defined as∣∣Rf (xk)−Rf (x∗)

∣∣
max{1, |Rf (x∗)|}

≤ εf and
r

max
i=1

{
[Rci(xk)]+

}
≤ εc. (16.5)

To generate the data profiles, we calculate the minimum number of optimization steps,
denoted as tp,S , required by solver S to meet this accuracy requirement for solving
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16.3 Data profile results

problem p ∈ P. We restrict the maximum number of optimization steps to 250 and
assign tp,S = ∞ if the accuracy requirement is not satisfied after 250 × N black box
evaluations. To determine if the accuracy requirement is met, we employ the precise
values of the robustness measures obtained in a post-processing phase. Finally, this
results in the data profile

dS(α) =
1

2400

∣∣∣∣{p ∈ P :
tp,S
np + 1

≤ α
}∣∣∣∣ , (16.6)

where np denotes the number of design parameters in problem p. We would like to point
out that while using the exact objective and constraint values of the robustness measures
in the post-processing step helps to eliminate the influence of noise on performance
evaluation, this deterministic information is generally not available. Therefore, we are
also going to provide a more detailed analysis of individual optimization results below
in the second part of this results section.

16.3 Data profile results

For all resulting figures in section, we use the same visualization. For SNOWPAC, we
show two approaches, showcasing the choice for the GP smoothing: analytic (”altyc”,
pink, dashed dot) and heuristic (”heur”, red, dotted). We compare to cBO (blue, solid),
COBYLA (purple, dashed), NOMAD (green, dotted), SPSA (orange, solid), and KWSA
(dark green, dashed dash). We start with the data profiles for the error thresholds
εf ∈ {1e-2, 1e-3} and εc ∈ {1e-2, 1e-3} in Figs. 16.1-16.3 for the three problems from
Eq. (16.2), Eq. (16.3) and Eq. (16.4).

Figure 16.1: Data profiles for Eq. (16.2) with the given tolerances εf/c ∈ {1e-2, 1e-3}.

We observe that both SNOWPAC methods effectively solve the majority of test prob-
lems within the designated budget of black box evaluations. For a tolerance of εf = 1e-2
and εc = 1e-2, we see that we solve more than 85% of the problems in less than 50
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16 Numerical results on CUTEst benchmark

(relative1) steps. SNOWPAC is also able to solve the most problems compared to the
other methods, which is indicated by the highest value of the data profile over all tol-
erances and robust formulations. When examining the performance for low values of α,
we notice that SNOWPAC demonstrates comparable or better performance compared
to the other solvers: SNOWPAC shows similar or even the steepest and also earliest
ascent in the profile. This indicates a fast search for the local optima, which is es-
pecially desirable when computing the robustness measures is computationally costly.
The performance of all methods worsens with decreasing tolerance, which is reasonable
due to the higher requirement in accuracy. Nevertheless, also for smaller tolerances,
SNOWPAC still performs best.

Figure 16.2: Data profiles for Eq. (16.3) with the given tolerances εf/c ∈ {1e-2, 1e-3}.

COBYLA and NOMAD perform well for larger thresholds that are of the same mag-
nitudes as the noise term in some test problems. Especially the results of COBYLA
decrease notably for tolerances εf = 1e-3 and εc = 1e-3. The noise reduction in SNOW-
PAC using the GP support helps to approximate the optimal solution more accurately,
resulting in better performance results. The stochastic approximation approaches SPSA
and KWSA, despite a careful choice of hyperparameters, do not perform well on the
benchmark problems. This can be explained by the limited number of overall optimiza-
tion iterations, which are not sufficient to achieve a good approximation of the optimal
solution using inaccurate gradients.

We cannot see, however, a big difference between the two SNOWPAC approaches. It
is also challenging to see where the individual algorithms perform best and if there are
certain problems where they perform worse. To further investigate this, we decrease the
tolerance even further to εf = 1e-4 and εc = 1e-4 and plot the result for the data profiles
in Fig. 16.4. While the performance of all methods is worse for such a low tolerance, we
now see a visible improvement when using the analytic approximation in SNOWPAC for
Eq. (16.2) (top left) and Eq. (16.4) (bottom). At this high level of accuracy, the analytic
approximation is the most reliable approach to find the optimal solution.

1Relative, since the number of steps is scaled by the dimension of the problem.
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16.3 Data profile results

Figure 16.3: Data profiles for Eq. (16.4) with the given tolerances εf/c ∈ {1e-2, 1e-3}.

Figure 16.4: Data profiles for Eqs. (16.2) (top left), (16.3) (top right) and (16.4) (bottom) and
thresholds εf = εc = 1e-4.
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16 Numerical results on CUTEst benchmark

16.4 Results for individual benchmark problems

For further insight, we show a detailed accuracy comparison of the individual optimiza-
tion results at termination, i.e. 250·N black box evaluations in Figs. 16.5 and 16.6. Here,
we show the accuracy of the optimization results at the approximated optimal points
at termination of the optimizers. The plots show the errors in the objective values,
the constraint violations and the errors in the approximated optimal designs found by
the optimizers at termination respectively. Since the optimal solution for test problem
268 is zero, we show the absolute error for this test problem. We use MATLAB’s box
plots to summarize the results for 100 optimization runs for each benchmark problem for
different sample sizes N ∈ {2000, 1000, 200} from left to right separately for each indi-
vidual robust formulation Eq. (16.2)-(16.4). The exact evaluation of the robust objective
function and constraints at the approximated optimal designs are shown to eliminate
the randomness in the qualitative accuracy of the optimization results. We denote the
approaches for SNOWPAC as (S) a for the analytic approximation and (S) h for the
heuristic due to space limitations.

We see that SNOWPAC most reliably finds accurate approximations to the exact op-
timal solutions. This is indicated by the lowest error for almost all test problems in
the objective (left column) as well as in the final design (right column). Note that all
optimizers benefit from increasing the number of samples for the approximation of the
robustness measures. In SNOWPAC, however, the GP surrogates additionally exploit
information from neighboring points to further reduce the noise, allowing for a better ac-
curacy in the optimization results. We expected SNOWPAC to perform worse for higher
dimensions due the necessity for more evaluations for high accuracy in the surrogate as
well as in the GP. While we see worse results for problem 100 (seven dimensions) and
285 (15 dimensions), where COBYLA performs best, we see good results for problem
113 (ten dimensional), where SNOWPAC performs best. Hence, the accuracy is most
likely connected to the GP and to the choice of kernel.

We confirm this by regarding the result for cBO, which fully depends on GPs and does
not use an additional surrogate. The results match well between SNOWPAC and cBO
for low-dimensional problems 29, 227, 228, but the accuracy of the results computed by
cBO begins to deteriorate in dimensions larger than 4. For cBO this has two reasons:
first, the global search strategy aims at variance reduction within the whole search
domain. This requires more function evaluations than in a local search, which we test
here. Second, the global nature of the GPs requires a suitable choice of kernels that fits
to the properties of the optimization problems, i.e. non-stationarity of the optimization
problem, which is not the case in all benchmark problems. A stationary kernel as given
in Eq. (16.1), may not properly reflect the properties of the objective functions and
constraints. Since SNOWPAC uses GPs only for correction and combines it with a local
surrogate, SNOWPAC reduces the problem of violated stationarity assumptions on the
objective function and constraints, the downside of GPs is mitigated and the method still
is able to perform well for higher dimensions while similar challenges like kernel choice
are still evident. A problem dependent choice of kernel function might help to reduce this
problem, however, this information is often hard to obtain in black-box optimization.
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16.4 Results for individual benchmark problems

1 2 1 5 6 5 31 5 2 20 15 6 98 98 10 90 96 91 7 10 17 53 49 48 57 53 51 37 53 56 56 50 50

1 2 3 1 1 1 12 9 2 12 5 7 81 89 88 5 4 23 1 1 11 12 4 53 48 43 24 29 36 21 26 26 1

9 10 5 1 77 81 85 77 80 70 2 3 1 12 12 23 100100100 50 69 66 64 59 72

1 5 4 2 81 80 81 31 31 32 38 41 30 100100100 2 3 5 5 5 2

Figure 16.5: Box plots of the errors in the approximated optimal objective values (left plots),
the constraint violations (middle plots) and the l2 distance to the exact optimal
solution (right plots) for the test problems 29, 43, 100, and 113 for Eq.(16.2).
The plots compare results for SNOWPAC analytic ((S) a), SNOWPAC heuristic
((S) h), cBO, COBYLA, NOMAD, SPSA and KWSA. All errors or constraint
violations below 1e-5 are stated separately below the threshold; the box plots
only contain data above this threshold.

We are going to regard this in an extension of SNOWPAC for adaptive kernel selection
in Section 17.1.

The middle column in Fig. 16.5 and 16.6 show the maximal constraint violations at
the approximated optimal designs. Here, SNOWPAC’s constraint handling, see [23], in
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16 Numerical results on CUTEst benchmark

1 1 4 1 47 49 57 13 13 19 26 34 40 55 53 44 31 24 29 25 36 24 1 1 4

1 5 1 2 3 2 2 7 4 4 8 7 4 100100 10 100100100 59 51 61 74 79 66 92 79 78 57 55 52 53 52 52 2 1 1

13 10 13 20 20 63 95 97 93 1 10 10 93 98 86 96 95 80

44 27 15 23 14 34 100100100 37 37 15 100100100 90 98 100 93 92 100

Figure 16.6: Box plots of the errors in the approximated optimal objective values (left plots),
the constraint violations (middle plots) and the l2 distance to the exact optimal
solution (right plots) for the test problems 227, 228, 268, and 285 for Eq. (16.2).
The plots compare results for SNOWPAC, cBO, COBYLA, NOMAD, SPSA and
KWSA. All errors or constraint violations below 1e-5 are stated separately below
the threshold; the box plots only contain data above this threshold.

combination with the feasibility-restoration mode from Section 14.4 allows the compu-
tation of approximate optimal designs that exhibit only small constraint violations well
below the noise level. SNOWPAC, on the one hand, tries to find a balance between
the constraint violation acceptable due to noise, while being as close to the optimum
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16.5 Summary and challenges of SNOWPAC

as possible. The methods SPSA, KWSA and also cBO, on the other hand, show very
little constraint violations which, however, results in suboptimal solutions found for the
objective as well as the design. This is indicated by the black dots and numbers below
the constraint violation of 1e-5. Given the stochastic nature of the problem, we allow
SNOWPAC minor inaccuracy in the constraints to allow for a better optimum (and still
control large deviations with the feasibility-restoration mode).

Finally, comparing the analytic and heuristic approach, we see that the analytic ap-
proach shows a lower relative error in the objective and the optimal design, especially
for lower dimensional problems, which was also reflected in the data profile for εf = 1e-4
and εc = 1e-4 in Fig. 16.4. This is due to the fact that the GP surrogates work especially
well in lower dimensions and therefore the optimal smoothing parameter is well approx-
imated. The improvement is, e.g., visible in test problem 29 and 228 of Fig. 16.5 and
Fig. 16.6. The analytic smoothing, nevertheless, also shows similar or even better results
for high-dimensional problems 100, 113 and 285. Combined with the results mentioned
above, this shows the validity of both approaches. We can decide which one to use,
based on the problem and the available computational resources.

16.5 Summary and challenges of SNOWPAC

This closes the first part of our second contribution, SNOWPAC. We showed the appli-
cability of the method for derivative-free stochastic black-box problems. This required
an extension to the deterministic method, NOWPAC, where we adapt the method to be
able to adjust for noise evaluations, employing an adapted trust-region management, a
GP surrogate for smoothing and a feasibility restoration mode. We also presented that
the method is able to compete with other approaches in the field, showing best results for
different problem formulations, sample sizes, deterministic and stochastic dimensions.

Still, challenges remain for the method. One challenge is the choice of kernel, which
impacts the overall performance of the surrogate and is connected to the problem. An-
other challenge is the rising computational cost with the available number of evaluations.
The evaluation cost of the GPs increases cubically with the number of evaluation point
due to the inversion of the kernel matrix. Also, the hyperparameter optimization of
the GP in SNOWPAC scales with the optimization steps. Finally, we only handled
continuous problems so far, but discrete problems are also of great interest in the field
of optimization, especially with rising interest in applications in machine learning. We
will discuss extensions to SNOWPAC to be able to handle such challenges in the next
chapter.
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17 Extensions for SNOWPAC

This chapter encompasses extensions to SNOWPAC to be able to cope with the previ-
ously mentioned challenges. In the upcoming sections, we will present implementations
of approximate GP methods in SNOWPAC to mitigate the decrease in performance for
higher number of iterations in Section 17.1. Subsequently, we will present an adaptive
choice of kernel for the GP surrogates in SNOWPAC in Section 17.2. Lastly, SNOW-
PAC was developed for continuous problems. Nevertheless, we often encounter problems
which also require optimization over discrete variables. Here, a common and fast grow-
ing field is neural network architecture search in machine learning, where we optimize for
the optimal design of a neural network. The parameters of the neural network itself are
often continuous, like the learning rate or the connection weights, but the parameters
of the neural network architecture comprise the number of hidden layers or the number
of neurons—discrete parameters. Hence, we will present an extension of SNOWPAC for
mixed-integer problems in the final Section 17.3.

17.1 Adaptive Gaussian process kernel selection in SNOWPAC

The choice of kernel plays an important role in the approximation quality of a GP. By
choosing the kernel, we set a prior for the function space that we want to approximate,
where kernels exist for (non-)smooth functions, for periodic functions, (in-)stationary
or even discontinuous functions. (See [103] for a broad selection of kernels.) Also,
combinations of kernels were explored in [102, 174, 220]. We discussed properties of
kernels and gave different examples in Section 7.3.

In this section, we investigate if and how the choice of certain kernels impacts the
performance in SNOWPAC. Since the GP plays an important role in the approximation
quality of the surrogate, we expect to require different kernels for the best approximation.
In this section, we even move a step further: instead of just testing different kernels,
we explore a strategy of automatically adapting the kernel based on the current best
fit. This work is based on a first explorative study for different kernels by the bachelor
student Marina Baumgartner starting from kernels presented in [269].

Kernel selection

In this study, we implemented four different kernel, where we define the squared distance

between points x and x′ as r(x,x′) =
∑ddet

i=1
(xi−x′i)2

l2i
scaled by the characteristic length

scale {li}ddeti=1 :
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17 Extensions for SNOWPAC

� Squared exponential:

kSE(x,x′) = σ2
f · exp

(
−1

2
(x− x′)TΛ−1

l (x− x′)

)
. (17.1)

This is the default kernel of SNOWPAC we have already presented in Eq. (16.1) and
repeat here for convenience1. The squared exponential kernel is the standard choice
in GPs. It is a smooth kernel, infinitely differentiable, with ddet+1 hyperparameters
for the variance σ and the ddet length-scale parameters li.

� Matérn:

kMatern,ν(x,x′) = σ2 21−ν

Γ(ν)

(√
2νr(x,x′)

)ν
Kν

(√
2νr(x,x′)

)
. (17.2)

Here, Kν is the modified Bessel function [1] and Γ(ν) =
∫∞

0 tν−1e−tdt is the Gamma
function. The Matérn kernel is a widely-used choice because of its adaptability due
to ν. It is k-times mean square differentiable if and only if ν > k. We have ddet +2
hyperparameters with σ, {li}ddeti=1 and ν.

There are a few special cases: the Matérn kernel represents a rather non-smooth
function for the choice ν = 3

2 , which results in

kMatern,ν= 3
2
(x,x′) =

(
1 +
√

3r(x,x′)
)

exp
(
−
√

3r(x,x′)
)
, ν > 0. (17.3)

The parameter ν = 5
2 was used to model discontinuities in [84] and can be computed

as

kMatern,ν= 5
2
(x,x′) =

(
1 +
√

5r(x,x′) +
5

3
r(x,x′)2

)
exp

(
−
√

5r(x,x′)
)
. (17.4)

There is another special case for ν = 1
2 , which results in the exponential covariance

kernel
kMatern,ν= 1

2
(x,x′) = exp

(
r(x,x′)

)
. (17.5)

For ddet = 1, this is the covariance function of the Ornstein-Uhlenbeck process,
which models the velocity of particles in Brownian motion [308].

� Rational quadratic:

kRQ(x,x′) = σ2

(
1 +

r(x,x′)

2α

)−α
, α > 0. (17.6)

This kernel has ddet + 2 hyperparameters with σ, {li}ddeti=1 and α. The properties of

the kernel change by changing α. Knowing that exp(x) = limddet→∞

(
1 + x

ddet

)ddet
,

we deduce that the rational quadratic kernel converges to the squared exponential
kernel (17.1) for α → ∞. For smaller values of α, the kernel function is able to
represent less smooth functions.

1without the notation b because we do not need to differentiate between objective and constraints.
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17.1 Adaptive Gaussian process kernel selection in SNOWPAC

� Exponential sine squared:

kESS(x,x′) = σ2exp

(
−
ddet∑
i=1

sin2(|xi − x′i|πp )

li

)
, p > 0. (17.7)

Due to the use of the sine, the kernel is able to reproduce periodic functions [103,
215]. The period p determines the distance between repetitions of the functions,
while we again have ddet parameters for the length scale and one parameter for the
noise as σ.

Kernel optimization in SNOWPAC

As stated in the previous section, SNOWPAC employs maximization of the marginal log-
likelihood to optimize the hyperparameters of the kernel function. To find the optimal
kernel, we run the hyperparameter optimization for each kernel. We pick the kernel that
achieves the largest marginal log-likelihood, therefore adapting best for the given data,
with the given hyperparameters. As a result, we employ different kernels for different
sections of the optimization and different kernels for the different functions, i.e. objective
and constraints. Formally, we write this problem as

min
k∈{kSE,kMatern,ν ,kRQ,kESS}

1

2
log |KXX + σ2

nI|+
1

2
yT (KXX + σ2

nI)−1y, (17.8)

where the kernel matrix KXX is build using k on each pair of data points.
The timing of the hyperparameter optimization is set by the user and can either be

run periodically by setting GP adaption factor or at specific optimization steps by
setting GP adaption steps. The functionality of selecting the adaptive kernel choice
is available in SNOWPAC by setting the option Kernel type to Kernel Opt. The GP
option GP Type has to be set to GP for this setting. Apart from the adaptive setting,
specific kernels can also be set for the full optimization by setting Kernel type to SE

(default), Matern, ESS or RQ.

Benchmark results

Let us have a look at the CUTEst benchmark results from before in Chap. 16, now also
comparing the kernel optimization. To downsample the results, we restrict ourselves to
the results for optimizing for Rf0 as given in (16.2). The kernel optimization is triggered
every 50 iterations. We show the data profiles for two tolerances εf = εc = 1e-2 and
εf = εc = 5e-4. We added a new line for SNOWPAC using the kernel optimization
as SNOWPAC KO (pink, dashed). We compare to heuristic SNOWPAC (red, dotted),
cBO (blue, solid), COBYLA (purple, dashed), NOMAD (green, dotted), SPSA (orange,
solid), and KWSA (dark green, dashed dash). The figure is given in Fig. 17.1.

We first observe that both approaches for SNOWPAC perform similarly for the lower
tolerance εf = εc = 1e-2. Similar to the comparison with the analytic solution, we,
however, see a difference when decreasing the tolerance to εf = εc = 5e-4. To reach
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Figure 17.1: The plots compare results for SNOWPAC using kernel optimization ((S) ko),
SNOWPAC heuristic ((S) h), cBO, COBYLA, NOMAD, SPSA and KWSA. The
data profiles for thresholds εf = εc = 1e-2 and εf = εc = 5e-4 on the objective
values and the constraint violation are shown on the left and right, respectively.

this low tolerance, the SNOWPAC needs more optimization iterations.This is directly
connected to the accuracy of the GP, which improves with the number of iterations, i.e.
the number of training points. For a more accurate GP, the kernel and hyperparameter
optimization is more accurate as well, which in turn results in improved results.

We now investigate further and look at the performance for individual problems.
Specifically, we regard the higher dimensional problems 100, which has seven design
dimensions and four constraints, and 285, which has 15 design dimensions and ten con-
straints. The results are given for the absolute error in the objective, the constraint
violation and the error in the design in the boxplots in Fig. 17.2. We use the abbre-
viation (S) ko for the kernel optimization in SNOWPAC. The plots compare results
for SNOWPAC using kernel optimization ((S) ko), SNOWPAC heuristic ((S) h), cBO,
COBYLA, NOMAD, SPSA and KWSA.

We note that using the kernel optimization improves the results in the objective and
in the design for both problems. For problem 285, we see a minor increase in the
constraint violation. Nonetheless, it seems that the kernel optimization shows promises
for higher dimensional problems, which might be challenging for the standard GP using
the squared exponential kernel only. Another point is that we allow more optimization
steps for higher dimensional problems resulting in a better approximation of the GP.

As a last observation for these results, we regard which kernels are actually chosen for
which function based on the optimization of the marginal likelihood. For this, we again
look at the two test problems 100 and 285. We take the runs we have used for plotting
the data profiles where we have a set of 300 optimization runs for each test problem (100
sample runs for three different sample sizes). For each run, we evaluate 250 optimization
steps and average the kernel used in the specific step over the 300 runs by assigning a
value of one to four to the kernel (1 = KSE, 2 = KMatern, 3 = KESS, 4 = KRQ). We plot
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Figure 17.2: Box plots of the errors in the approximated optimal objective values (left plots),
the constraint violations (middle plots) and the l2 distance to the exact optimal
solution (right plots) for the test problems 100 and 285 for (16.2). All errors or
constraint violations below 1e-5 are stated separately below the threshold and the
box plots only contain data above this threshold.

the resulting averaged kernels over the 250 optimization steps for each of the functions
in the test problem—objective and constraints. We illustrate the results in Fig. 17.3.

We see a change in the kernel almost every 50 optimization steps, i.e. after almost every
hyperparameter optimization. Notably, the different objective and constraint functions
indeed use different kernels and change kernels during the optimization, which is an
indicator that the choice of kernel is important for the function fit. Most of the functions
use some variation of the Matérn kernel or the ESS kernel, whereas the RQ kernel is not
used for those two problems.

We summarize the usage of different kernels over the full benchmark set in Fig. 17.4.
Here, we show the percentage of kernels used over all problems and optimization runs.
The Matérn kernel is the most prevalent kernel, followed by the SE and the ESS kernel.
In our test set, we only had a small amount of specific runs where the rational quadratic
kernel was used. The Matérn kernel offers more flexibility and the ESS kernel covers
periodic functions.

The result show that the option for multiple kernels in SNOWPAC provides great
flexibility for the GP surrogates in SNOWPAC to adapt to the specific problem. The
adaptive optimization for kernels also shows promising results in this set of benchmark
problems, specifically for higher dimensional problems. This, combined with the pos-
sibility to set the steps for the hyperparameter optimization adaptively at specified
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Figure 17.3: Evolution of the used kernel for test problem 100 (left) and 285 (right) for each
function—objective and constraints. We show the optimization steps on the x-axis
and the kernel used on the y-axis.

iterations, allows SNOWPAC to adapt better to the underlying problem and improve
optimization results.

SEMatern

ESS

Kernel distribution over all test problems

Figure 17.4: Distribution of all kernel over the full benchmark set in the bottom.

17.2 Approximate Gaussian processes in SNOWPAC

GPs are a main component in SNOWPAC for the surrogate to be able to perform well
despite noisy evaluations. The evaluations of the mean, Gbk, and variance, Vbk, as denoted
in Eq. 14.12, possess a specific characteristic: the kernel matrix (KXX + σ2

nI) must be
inverted during the calculation. The size of this kernel matrix expands in line with the
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number of training points, causing the computation of its conventional inverse to scale
cubically, i.e. in O(N3), where N presents the total number of these training points.
Furthermore, the inverse computation may trigger numerical errors, potentially leading
to the kernel matrix losing its positive semi-definite property.

The same computational restrictions hold for the hyperparameter optimization. The
most typical strategy is to estimate the hyperparameters by optimizing over the marginal
likelihood as outlined in Section 7.4. Once more, the optimization process requires
computing the inverse and determinant in each evaluation step. (However, it is worth
noting that, from an implementation perspective, the determinant can be obtained free
of charge by utilizing the Cholesky factorization from the inversion.)

Consequently, with interest in GP methods increasing, naturally, interest in improving
the performance of the method by reducing computational cost also rose. In response to
the costly inversion, the development of approximate Gaussian process (aGPs) methods
has been an innovative solution [268, 269]. In the sections to follow, we will delve into
aGPs, provide an introduction to hyperparameter estimation within these methods and
present the usage of aGPs in SNOWPAC based on the work in [222].

Reduced-rank approximation

The most successful methods in terms of both accuracy and performance, when compared
to the full GP, leverage a low-rank approximation of the matrix K. For instance, if
the kernel matrix K has a rank Q, it can be expressed as K = QQT ,Q ∈ RN×Q.
This representation can accelerate the matrix inversion computation by applying the
Woodbury formula (refer to App. B.1.1).

(QQT + σn
2In)−1 = σn

−2In − σn
−2Q(σn

2In + QTQ)−1QT . (17.9)

This approach is particularly useful for a degenerate kernel. Nevertheless, it can still
prove accurate even for a nondegenerate kernel, which might exhibit a rapidly decaying
eigenspectrum, characterized by swiftly diminishing eigenvalues, where such a low-rank
approximation remains effective.

The optimal reduced-rank approximation of K, in terms of the Frobenius norm, is
denoted by K = SΓST . Here, Γ ∈ RM×M is the diagonal matrix of the principal
M eigenvalues, and S ∈ RN×M represents the matrix of the corresponding orthonor-
mal eigenvectors [141]. However, such an eigendecomposition is also computationally
demanding, involving O(N3) operations.

An alternative, more commonly utilized approach, which instigated the development
of approximation methods, relies on a subset of the data, denoted as U ∈ RM×ddet . It
employs the Nyström construction as follows:

KXX ≈ KXUK−1
UUKUX, (17.10)

where KXU ∈ RN×M represents the kernel function evaluated on the training data
and the subset U. This subset is often also referred to as the active set or induced
points. Detailed derivations of the method can be found in [324], with the method
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and its properties further explored in [323]. Since we will consistently be employing
this matrix decomposition approximation in the upcoming sections, we introduce the
notation KAB ≈ sQAB = KAUK−1

UUKUB, where the set of induced points are defined
as U ∈ RM×ddet .

Finite-dimensional approximation

A distinct perspective is presented by [292], focusing on a specific point xi. The aim is
to approximate the kernel as a linear combination of all kernels from the active set:

k(xi,x) ≈
∑
j∈ I

cijk(xj ,x) =: k̂(xi,x), (17.11)

where cij represents certain coefficients, and I describes the index set of the active subset.
The authors in [292] also suggest a sparse greedy approach by proposing a criterion to
optimize, in order to find the best parameters and induced points:

E(C) =
n∑
i=1

‖k(xi,x)− k̂(xi,x)‖2H

= trK− 2tr(CKUX) + tr(CKUUCT ).

(17.12)

Here, the coefficients are organized in a matrix C ∈ RN×M . Minimizing E(C) yields
Copt = KXUK−1

UU. Consequently, we achieve the approximation:

KXX ≈ CoptKUX = KXUK−1
UUKUX, (17.13)

where the induced points U are selected as a subset of the training data X.

Unifying view

The authors in [268] provide a unifying perspective on aGPs. They interpret the algo-
rithms as exact inference with an approximate prior. This approach offers an advantage
in that it enables to compare different methods through the lens of various assumptions
on the prior. The set of M latent variables, defined as u = [u1, ..., uM ]T ∈ RM , is
termed inducing variables, while the corresponding set of input locations U ∈ RM×ddet
is referred to as inducing inputs or induced points, as earlier mentioned. We are now
interested in finding ways to modify the joint prior p(y, f∗) in a manner that reduces
computational cost.

For the induced points, we denote p(u) = N (u|0,KUU) as prior. We can recover the
joint of a GP as given in Eq. 7.5, by marginalizing u from the joint GP prior

p(y, f∗) =

∫
p(y, f∗,u)du =

∫
p(y, f∗)p(u)du. (17.14)

The authors introduce the major assumption of conditional independence between y
and f∗ given u, which results in

p(y, f∗) ≈ q(y, f∗) =

∫
q(y|u)q(f∗|u)p(u)du. (17.15)
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Applying the properties for Gaussian distributions as given in Appendix, Eq. (B.17),
on the joint distribution of y, f∗ and u u

y
f∗

 ∼ N (u,y, f∗|0,

 KUU KUX KUX∗

KXU KXX + σn
2I KXX∗

KX∗X KUX∗ KX∗X∗

), (17.16)

we derive the exact expressions for the two conditionals of Eq. (17.15):

� training:

p(y|u) = N (y|KXUK−1
UUu, (KXX + σn

2I)−QXX). (17.17)

� test:

p(f∗|u) = N (f∗|KX∗UK−1
UUu,KX∗X∗ −QX∗X∗). (17.18)

It is noteworthy that both equations Eq. (17.17) and Eq. (17.18) include the term
K −Q in their covariance function. This can be understood as indicating the amount
of information that Q—and hence, the induced variables u—contributes to y and f∗,
respectively. In terms of computational cost, the most complex operation now becomes
the matrix-matrix product KXUK−1

UU, with a complexity of O(NM2), as the inversion
over KUU scales with the number of induced points M at a rate of O(M3). Since we
assume that M << N , this offers a great lever for computational cost reduction. The
study by [268] provided a unifying interpretation for various aGP methods by demon-
strating that most methods differ only in how they approximate these test and training
conditionals.

As stated above, the topic of aGPs has been developed in the last decade and a variety
of methods and extensions has been developed since: the authors of [193] use the spectral
representation of the GP for sparsification. Vanhatalo and Vehtari [311] employ compact
support kernels, which quickly decrease to zero for a sparse representation of the GP.
The authors of [126, 156] discuss variational inference approaches. Wilson et al. [325]
presents massively scalable GPs, leveraging grid structure of the training points and the
resulting structure of the kernel matrix for better performance. The authors of [41, 42]
show ways of updating aGPs when new training data arrives during training. Cao et
al. [59] discuss different ways of optimizing the hyperparameters, including the induced
variables. The authors of [63] present ways of comparing aGP methods. A review about
recent developments is given in [208].

Implementation in SNOWPAC

We implemented three different aGPs in SNOWPAC that we are going to summarize
in this section. The first was presented by [255, 313] as the Subset of Regressor (SOR)
method. It uses the following priors for the training and test data:

� training:

qSOR(y|u) = N (y|KXUK−1
UUu, σn

2I). (17.19)
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� test:

qSOR(f∗|u) = N (f∗|KX∗UK−1
UUu,0). (17.20)

It has the predictive distribution

qSOR(f∗|y) = N (f∗|QX∗X(QXX + σn
2I)−1y,

QX∗X∗ −QX∗X(QXX + σn
2I)−1QXX∗).

(17.21)

The issue with SOR is that the predictive variance will tend to zero for points far away
from the inducing points (assuming the used kernel tends to zero for points far apart).

Following this line of thought, the Deterministic Training Conditional (DTC) method
was proposed by [284], building on the initial work by [199]. The primary concept is
to utilize the exact prior for the test conditional, instead of employing approximated
conditional priors for both the training and test conditionals. Below, we outline the
training and test priors:

� training:

qDTC(y|u) = N (f |KXUK−1
UUu, σn

2I). (17.22)

� test:

qDTC(f∗|u) = p(f∗|u) = N (f∗|KX∗UK−1
UUu,KXX −QXX). (17.23)

This results in the following predictive distribution:

qDTC(f∗|y) = N (f∗|QX∗X(QXX + σn
2I)−1y,

KX∗X∗ −QX∗X(QXX + σn
2I)−1QXX∗).

(17.24)

By employing the exact covariance matrix for test prediction, the predictive variance
does not decrease to zero for points distant from the induced points. Instead, it converges
to the prior variance KX∗X∗ . Here, KX∗X∗ supplants the term QX∗X∗ from SOR. Since
KX∗X∗ − QX∗X∗ is positive definite (see [269]), KX∗X∗ is larger than QX∗X∗ . The
additional term is the covariance of the exact test conditional, which approaches the
prior distribution if x∗ is far from the induced points. Consequently, the predictive
variance of DTC is never less than the variance provided by SOR.

In [293], the authors introduced a different approach named Sparse Pseudo-input
Gaussian process. Unlike DTC, this method suggests a distinctive approximation of
the training conditional, while retaining the exact test conditional. It was re-named
Fully Independent Training Conditional (FITC), reflecting the assumption of complete
conditional independence between the training function values. The training and test
priors are presented below:

� training:

qFITC(y|u) = N (f |KXUK−1
UUu, diag[KXX −QXX] + σn

2I). (17.25)
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� test:

qFITC(f∗|u) = p(f∗|u) = N (f |KX∗UK−1
UUu,KXX −QXX). (17.26)

Therefore, the predictive distribution is quite similar to that of DTC, apart from the
adjustment made by the diagonal matrix,

qFITC(f∗|y) = N (f∗|QX∗X(QXX + ΛFITC + σn
2I)−1y,

KX∗X∗ −QX∗X(QXX + ΛFITC + σn
2I)−1QXX∗),

(17.27)

where ΛFITC = diag[KXX −QXX].
Over the years, FITC has emerged as the preferred method, sparking a multitude of

improvements and variations: the authors of [235] introduce an efficient implementa-
tion of the algorithm, particularly with respect to hyperparameter estimation and the
calculation of the marginal likelihood. In another advancement, Walder et al. [314] pro-
pose adding more flexibility to FITC by suggesting the use of different length scales
li, i = 1, ..., ddet, for each induced point in the computation. The most recent develop-
ment in FITC is the online adaptation proposed by Biil et al. in [42]. In their approach,
they reformulate the training and evaluation of the predictive distribution to facilitate
the addition of training points in an online manner, eliminating the need to rebuild the
full kernel matrices KXX and QXX each time. Furthermore, in a subsequent publica-
tion [41], they demonstrated ways to add induced points online under the condition of
noisy training points.

Induced Points

Significant research has been invested in identifying the optimal subset of induced points.
Smola et al. [291] propose incrementally expanding the index set of induced points
through a greedy approach that minimizes the negative approximate maximum a poste-
riori estimate. The authors of [284] suggest a different error criterion by approximating
the marginal likelihood. They demonstrate that their algorithm attains the speed of a
random subselection of the induced points while yielding superior estimation accuracy.

Snelson et al. [293] suggest that the induced pair (U,u) need not be a subset of the
training points X. To demonstrate this, they designate U and u as pseudo-inputs and
pseudo-targets, respectively. As u does not represent a real observation, they are also
presumed to be noise-free. The only assumption about the induced points is a Gaussian
prior, as already employed in previous sections:

p(u|U) = N (u|0,KUU). (17.28)

In observing the posterior distribution, such as Eq. (17.24) and Eq. (17.27), we see
that it solely depends on the induced points U, with no reliance on the induced variables
u. Consequently, Snelson et al. [293] also suggest to allow the induced points to exist in
a continuous domain, as opposed to the discrete space of the training points subset. By
adopting this assumption, the induced points can serve as additional hyperparameters
in an optimization problem over the marginal likelihood, which we will explore in the
next section.
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Hyperparameter estimation for approximate Gaussian processes

A significant question that emerges is how to determine the optimal location for the
induced points? Although the authors of [284] and [291] propose a greedy approach
and select the induced points from the training set, we now have the opportunity to
optimize over a continuous domain. In the following section, we will present the process
of discovering appropriate induced points through optimization of the hyperparameters.

Besides the design parameters from the full GP parameter optimization,

ψ = [σf , l1, ..., lddet ] ∈ R(ddet+1)
+ , (17.29)

we also incorporate the M induced points from U as design parameters. Consequently,
this yields the following expanded parameter vector

ψaGP = [σf , l1, ..., lddet ,U] ∈ R +(ddet+1)+Mddet . (17.30)

The authors in [293] use a single constant length-scale vector l = [l1, ..., lddet ]
T , whereas

Walder et al. [314] propose to assign each induced point ui its own length-scale vector li
for calculating the kernel matrix KUX. We adhere to the conventional approach by [293]
as it introduces less dimensions (and, thus, less complexity) to the optimization problem.

To find the optimal hyperparameters, we employ the same approach as for the full GP
and the adaptive kernels: we solve for the negative marginal log-likelihood given as

min
ψaGP

− log p(y|X) = min
ψaGP

1

2
log |QXX + σn

2I|+ 1

2
yT (QXX + σn

2I)−1y. (17.31)

Following the unifying view by [268], we can use QXX and adapt it to the given low
rank approximation approach:

� Full GP: QXX = KXX.

� SOR & DTC: QXX = KXUK−1
UUKUX.

� FITC: QXX = KXUK−1
UUKUX + ΛFITC.

Substituting the low rank approximation into the optimization problem, Eq. (17.31),
we can leverage its structure to simplify the problem. We present the derivation for
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FITC, but it is similar for SOR and DTC:

min
ψaGP

− log p(y|X) =
1

2
log

∣∣∣∣KXUK−1
UUKUX + ΛFITC + σn

2I

∣∣∣∣
+

1

2
yT (KXUK−1

UUKUX + ΛFITC + σn
2I)︸ ︷︷ ︸

Γ

−1
y

=
1

2
log

(
|ΛFITC + σn

2I| · |K−1
UU| · |KUU

+ KUX(ΛFITC + σn
2I)−1KXU|

)
+

1

2
yTΓ−1y

=
1

2
log |ΛFITC + σn

2I| − 1

2
log |KUU|

+
1

2
log |KUU + KUX(ΛFITC + σn

2I)−1KXU|+
1

2
yTΓ−1y.

(17.32)

Employing the Woodbury-Morris formula Eq. (B.1.1) for inversion,

Γ−1 = (KXUK−1
UUKUX + ΛFITC + σn

2I)−1

= (ΛFITC + σn
2I)−1 − (ΛFITC + σn

2I)−1

·KXU(K−1
UU + KUX(ΛFITC + σn

2I)−1KXU)−1KUX

· (ΛFITC + σn
2I)−1,

(17.33)

this again results in an inversion of a M by M matrix instead of a N by N matrix.
We can also compute the gradients of the objective function with respect to each design

parameter analytically. This provides valuable information for the optimization process,
especially considering the high dimensionality of the problem. Specifically for aGPS,
this now yields an even higher dimensional optimization problem due to the induced
points. Though the individual operations to compute the gradients are straight-forward,
they are still quite involved and technical. Thus, we present the different formulations
in App. B.5.1 and B.5.2 for completeness.

Hock-Schittkowski Benchmark

In this section, we are going to employ SNOWPAC as a solver for the same benchmarks
as before from Chap. 16—specifically, TP ∈ T P = {29, 43, 100, 113, 227, 228, 268}—
now contrasting the previously outlined GP methods. We are focusing on the problem
formulation which seeks to minimize the expectation of the objective function while
maintaining feasibility in expectation (see Eq. (16.2)), and the setup remains the same
as before. For the sample estimators, we adopt varying sample sizes from the set N ∈
{200, 1000, 2000}. Additionally, for each GP method S ∈ {fullGP, SOR,DTC,FITC},
we carry out 100 optimization runs. We compare the relative error in the objective values,
the constraint violations, and the discrepancies in the approximated optimal design
relative to the deterministic solution. The sole exception is test problem TP = 268, for
which we exhibit the absolute error for the objective function, since the optimum is 0.
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The resulting plots are given in Fig. 17.5 and Fig. 17.6, with one row corresponding
to one test problem. The test problem number is given in the title. They display the
error in objective values, the approximated optimal design, and constraint violations
from left to right. Furthermore, each set of three boxplots for each method is organized
in ascending order of sample size N . Once again, these plots correspond to the first
problem formulation. The boxplots for the second OUU formulation, Eq. (16.3), yielded
similar outcomes and can be accessed in App. D.5.

4 13 14 1 3 1 1 3 37 45 37 78 70 75 33 54 61 10 3 10

5 7 15 1 2 1 24 21 23 78 83 86 2 2 47 89 92

11 32 46 5 8 11 2 3 37 38 35 75 75 76 4 12 10 16 16 29

11 32 46 5 8 11 2 3 37 38 35 75 75 76 4 12 10 16 16 29

Figure 17.5: SNOWPAC Schittkowski benchmark for test problem TP = 29, TP = 43, TP =
100 and TP = 113 for relative error of the objective function, absolute error in
optimal design and the constraint violations from left to right.
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1 10 9 5 50 68 72 31 40 30 33 32 33

1 1 37 27 32 20 24 21 29 38 58 18 25 21

3 6 11 1 7 7 51 57 51 64 70 71 72 67 59 49 57 42

100 100 100 83 94 90 100 100 100 100 100 100

Figure 17.6: SNOWPAC Schittkowski benchmark for test problem TP = 227, TP = 228 and
TP = 268 for relative error of the objective function, absolute error in optimal
design and the constraint violations from left to right.
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These findings align with our earlier observations. As expected, the full GP naturally
delivers the best outcomes. The Subset of Regressors, on the one hand, appears to
struggle the most in finding a solution within the given number of steps due to its
inherent limitation. Nonetheless, it is most reliable in consistently staying within the
feasible domain. On the other hand, the Fully Independent Training Conditional, being
the most refined approximation method showcased here, displays the top results among
the aGP techniques. The Deterministic Training Conditional falls between these two, a
conclusion that aligns with its approximation technique. Still, it is noteworthy that all
methods perform adequately even in higher dimensional scenarios. In this context, the
weighting between the noisy sampling evaluations and the GP estimate plays a crucial
role in maintaining a balance between the surrogates.

We again use the data profile presented by the authors in [232] to compare the different
approaches over the number of iterations. We pick the tolerances as εf ∈ {1e-2, 1e-3}
and εc ∈ {1e-2, 1e-3}. We compare the exact GP with the SOR, DTC and FITC.

The data profiles depicted in Figs. 17.7 and 17.8 for both optimization problems
Eq. (16.2) and Eq. (16.3) provide further support for the arguments mentioned earlier.
Once again, the GP method demonstrates superior results by quickly finding an optimal
solution. The second-fastest method is FITC, followed by DTC. SOR, on the other
hand, exhibits the poorest performance, with a convergence rate of only about 48% for
a tolerance of εf = εc = 1e-2. When employing a stricter tolerance of εf = εc = 1e-3,
there is a general decrease in the number of runs that reach the optimum. It is worth
noting that for small values of α, we observe a rapid initial descent in the GP, DTC,
and FITC methods. This quick initial improvement is desirable for any optimization
method, particularly when the black-box evaluations are costly.

Figure 17.7: Data profile for the different methods and different error tolerances εf ∈
{1e-2, 1e-3} and εc ∈ {1e-2, 1e-3} for optimization problem Eq. (16.2).

We summarize the results, which we observe over all plots: across the array of prob-
lems, the exact GP consistently provides the best results, which we expected since it is
the most accurate representation. The Subset of Regressors method tends to perform
the worst, often by a factor of ten or even a hundred. The Deterministic Training Con-
ditional method delivers better results than the Subset of Regressors approach utilizing
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Figure 17.8: Data profile for the different methods and different error tolerances εf ∈
{1e-2, 1e-3} and εc ∈ {1e-2, 1e-3} for optimization problem Eq. 16.3.

the exact prior for test conditionals. Among the aGPs, the Fully Independent Train-
ing Conditional shows the best result with the assumption of independence between
training values. Interestingly, in terms of constraint violations, the Subset of Regressors
method provides the least infeasible solution. Finally, even though the error tends to
grow with higher dimensions, all methods remain within acceptable error ranges and
show a reasonable approximation quality.

Hence, the aGP methods implemented in SNOWPAC offer an alternative if computa-
tional expense of the GP evaluation becomes a bottleneck. This is possible, if we look
at slowly converging problems where we have a high number of optimization iterations
combined with cost efficient evaluation of the black-box problem itself. We still suggest
to use the full GP as the standard surrogate for low numbers of evaluations or compu-
tationally expensive black-box applications since the inversion of the GP kernel matrix
will not be the bottleneck in those cases. The presented methods can be activated in
SNOWPAC by setting the option GP type to SOR, DTC or FITC. The default value GP

uses the full GP surrogate.

17.3 Mixed-integer optimization for SNOWPAC

Another use-case we envision for SNOWPAC is its application for optimization prob-
lems, where the optimization space not only encompasses continuous, but also discrete
variables. This is the case for mixed-integer problems which can be formulated as:

min
x

Rf (x,θ),

s.t. Rci(x,θ) ≤ 0, i = 1, ..., r.

l ≤ x ≤ u,

x = [xTc ,x
T
d ]T ∈ Rddet,c × Zddet,d ,

(17.34)
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where xTc and xTd denote our design in continuous and discrete space, respectively, such
that ddet,c + ddet,d = ddet. The vectors l ∈ Rddet and u ∈ Rddet denote lower and upper
box constraints.

We explore neural network architecture optimization as a useful field of applications: in
its most basic form, a neural network consists of layers of different types, where each layer
consists of neurons. The neurons between layers are connected with weights associated
to each connection. In each neuron, a simple mathematical operation is performed and
the weights weigh the importance of the neurons and the different layers. Through
the connection of all those simple operations (and the ability to compute the analytic
derivative of the operation), we aim to learn a target function. The learning takes place
using available data, i.e., we try to learn a function f(x), where we know f(xi) = yi
for a training set {(xi, yi)}Ni=1, and find the optimal weights for the connections through
numerical optimization. We do not dive into details of neural networks here but refer
to [46, 47, 196].

While the optimization for the best possible weights is in itself an intriguing task,
which has sparked one of the most cited papers in science2, we are more interested in
how to actually design the neural network itself. We would like to know how to pick
parameters, e.g., the right amount of layers, the right amount of neurons in each layer
or the learning rate.

In the work that we explored in form of a master thesis with the student Kislaya
Ravi [182], we have been working on an extension for SNOWPAC to be able to deal
with such mixed-integer problems. The new demands required changes to the developed
algorithm, which we will discuss next. The changes encompass adapting the trust-region
shape and the surrogate optimization, and implementing a branch-and-bound algorithm
for the solution of the integer design space. Finally, we will close this section with
benchmarks results for a mixed-integer benchmark set and neural network architecture
design for MNIST and CIFAR.

Trust-region shape

In SNOWPAC, the trust region takes the form of a sphere denoted as B(xk, ρk) =
x ∈ Rddet : ‖x− xk‖ ≤ ρk, with xk as the center and ρk as the radius of the trust region.
For mixed-integer problems, two kinds of design parameters are considered: integer and
continuous parameters. The minimum permissible change in integer parameters is one,
and must remain an integer. However, if the radius of the trust region (ρk) drops below
1, it becomes impossible to further alter the value of the integer parameters. As a result,
the optimizer halts its exploration of other integer values, causing it to become stagnant.
This implies that traditional trust-region mechanisms in SNOWPAC need to be modified
if we aim for convergence to a local minimum. However, keeping the trust-region radius
above one can prevent the algorithm from reaching convergence within the continuous
space.

2The paper by Kingma and Ba [181] has 150894 citations based on Google Scholar as of the day of
submission of this thesis.
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As a solution, we adapt the trust region from spherical to box shape. We define it as:

B(xk, ρk) = x ∈ Rddet : |x− xk| ≤ ρk. (17.35)

Here, instead of a scalar, ρk ∈ Rddet , is a ddet-dimensional vector, where each dimension
corresponds to the size of the box in each parameter dimension. For the integer dimen-
sions, we set the minimum of the trust-region size to one. The maximum is limited by
the upper and lower bounds, u and l, of the problem.

We, therefore, integrate all changes and define ρk as:

ρk = [ρZ
T
, ρR

T
]T ∈ Rddet,d × Rddet,c ,

where ρZi ∈ [1, ui − li)∀i = 1, ..., ddet,d,

and ρRj ∈ (0, uj − lj)∀j = 1, ..., ddet,c.

(17.36)

Surrogate optimization

Due to the changes of the optimization formulation and the trust region, we also have
to update the surrogate optimization. Since the surrogate is quadratic, the mixed-
integer problem belongs to the family of Mixed Integer Quadratic Constrained Problems
(MIQCP) respectively. Instead of a continuous quadratic problem, we now have to solve
a mixed-integer problem:

x̄k = arg min
x∈B(xk,ρk)

mRf

k (x)

s.t. mRci
k (x) ≤ 0 i = 1, 2, ..., r,

l ≤ x ≤ u,

x = [xTc ,x
T
d ]T ∈ Rddet,c × Zddet,d .

(17.37)

Several strategies exist for addressing this type of problem, as explored in depth
in [29, 39, 43, 44]. The chosen methodology is reliant on the Hessian of the surro-
gate model. If the Hessian is positive definite, we can employ the commercial software
solver CPLEX, as referenced in [49]. In cases where the Hessian is indefinite, but the
ddet,c-th principle leading sub-matrix is positive semidefinite, we can utilize the convex
reformulation scheme detailed in [44].

If neither of these conditions are met, we can resort to the general Branch and Bound
algorithm for problem resolution, as suggested in [238]. We have implemented this
algorithm for the surrogate optimization of SNOWPAC. We are going to describe the
idea of the algorithm and our implementation next.

Branch and Bound for surrogate optimization

The branch-and-bound technique is a frequently employed method for addressing NP-
hard combinatorial issues. It can be applied to a variety of problem types, including
the Traveling Salesman problem, the Graph Partitioning problem, and the Quadratic
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Assignment problem, as indicated in [71]. Initially, this approach was utilized to tackle
Mixed Integer Linear Programming problems, as outlined in [90]. This methodology was
subsequently expanded to non-linear problems, as documented in [51, 150, 300].

The fundamental concept of branch-and-bound algorithms revolves around utilizing
the continuous relaxation of the mixed-integer problem at hand. After relaxing it to
continuous, we can use standard continuous solvers to solve the problem. If the result of
the optimization is integer and feasible, we consider the problem solved. Otherwise, in
the branch step, we divide the problem at the current optimal point into two subproblem.
For each subproblem, we assign distinct upper and lower integer bounds—the bound
step. Next, we solve each subproblem individually and recursively repeat until we find a
minimal integer solution. In the end, we receive an optimal design as for the continuous
problem.

We, of course, have to do this for each integer dimension of the problem individually,
which can result in a computationally expensive problem. However, we can also prune
branches of the tree. This can happen, if, e.g. the lower bound of a sub-problem is
larger than the upper bound of the current best solution. We summarize the algorithm
in pseudo-code in Alg. 8.

Algorithm 8 Branch and Bound for mixed-integer problems

1: Input: ub, lb, x∗, f∗

2: Bound: Create a subproblem as Eq. (17.37) with bounds ub and lb
3: Relax integer criterion
4: Solve x̄ = arg min

m
ci
k ≤0

mf
k(x)

5: Set local minimum of the branch(f̄) as f̄ = mf
k(x̄)

6: if f̄ > f∗ then
7: Prune: Prune branch
8: return (x∗, f∗)
9: end if

10: if x̄j ∈ Z ∀ j = 1, ..., ddet,d then
11: Set f∗ = f̄
12: Set x∗ = x̄
13: return (x∗, f∗)
14: end if
15: Select l = arg max

0≤j≤ddet,d
(|x̄j | − floor(|x̄j |))

16: Set l̃b = lb and ũb = ub
17: Set l̃bl = ceil(x̄l)
18: Branch: Recursively call Alg. 8 with (l̃bl, ũb, x̄, f̄) for (x∗r , f

∗
r )

19: Set ũbl = floor(x̄l)
20: Branch: Recursively call Alg. 8 with (l̃b, ũbl, x̄, f̄) for (x∗l , f

∗
l )

21: Compare: b = arg min
b∈{l,r}

(f∗b )

22: return (x∗b , f
∗
b )
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17.3 Mixed-integer optimization for SNOWPAC

Compared to the original algorithm of SNOWPAC (see Alg. 7), our changes are
twofold: first, we substitute the continuous surrogate optimization by the mixed-integer
optimization, employing the branch-and-bound algorithm, Alg. 8. Second, the trust re-
gion itself is now box-shaped, not allowing ranges below one for the integer dimensions.
The GP still operates as before, smoothing the function values, and the fully-linear
surrogate model still present a continuous function.

Benchmark results

We assess and contrast the performance of our algorithm against other optimization
methods using a collection of benchmark problems. Apart from SNOWPAC, the com-
pared solvers include pySOT [112], TPE (Tree-Structured Parzen’s Estimator) [34, 35],
SMAC (Sequential Model-based Algorithm) [164, 165], and NOMAD [89, 195].

The benchmark problems used for comparison are detailed in Table 17.1, their com-
plete problem statements can be found in App. D.6.1. We categorize these benchmarks
into two types: the first type comprises Sphere problems, which are convex functions
with a single unique minimum. This set includes five problems, each with a progressively
increasing number of design parameters. This category is used to analyze, how varying
the dimensionality impacts the behavior of the different optimization tools. The sec-
ond category contains more challenging optimization problems. Some problems in this
group are multi-modal, meaning they have multiple local minima, while others feature
elongated axes for certain design parameters. By using this category of optimization
problems, we are able to assess the ability of various tools to handle specific complex
scenarios.

Sr.No. Category Problem Name n nd nc

1

Category 1 Sphere Problem [333]

2 1 1
2 4 2 2
3 6 3 3
4 8 4 4
5 10 5 5

6

Category 2

Ackley’s Function [10, 298, 333] 8 3 5
7 De Jong’s Problem [333] 5 3 2
8 Bohachevsky Function 1 [10, 48] 2 1 1
9 Bohachevsky Function 2 [10, 48] 2 1 1
10 Griewank Function [333] 10 5 5

Table 17.1: List of benchmark problems used for comparison of optimization tools.

Following the pattern of previous benchmark evaluations, we employ data profile plots
to aggregate the results. Each benchmark problem is solved 10 times, and the profile
graphs are plotted considering two accuracy thresholds, namely εf = 1e-1 and εf = 1e-2.
In each experiment series, we select a random integer starting point within the trust-
region. For SNOWPAC, an initial box-dimension is also necessary, which we specify. We
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start our results with the deterministic case before we move to a stochastic benchmark
test. Additionally, we resort to unconstrained cases.

Fig. 17.9 presents the performance profile for the first category of benchmark prob-
lems. Among all optimizers, SNOWPAC (depicted by the blue line) delivers the best
performance. This is closely followed by pySOT (red line), NOMAD (purple line), TPE
(orange line), and SMAC (green line). The performance of SNOWPAC and pySOT is no-
tably superior to the other tools, a fact attributable to their trust-region derivative-free
optimization method foundation. These tools rapidly converge towards a local minimum.

Figure 17.9: Data profile for the first category of Table 17.1 for εf = 1e-1 (left) and εf = 1e-2
(right).

SNOWPAC outperforms pySOT for smaller values of α, as it begins optimization with
a fully linear model, which necessitates at least n+1 evaluation points, with n being the
number of design parameters. Conversely, pySOT requires 2n + 1 points. This means
SNOWPAC starts searching for trial points ahead of pySOT, explaining its improved
performance for low α.

NOMAD is a directional search method and its performance is less impressive com-
pared to trust-region methods, as reflected in [239]. SMAC and TPE are methods based
on Bayesian optimization, with a tree structure added to expedite the calculation of trial
nodes [34, 165]. Bayesian Optimization underperforms compared to the trust-region
methods for continuous constrained problems, which is also observable in Fig. 17.9.

Fig. 17.10 presents the performance profile of the benchmarked optimization tools
across the second category of benchmark problems. As these optimization problems
are more challenging to solve than those in the first category, a decline in performance
is observed. Compared to the others, SNOWPAC ranks the highest. Meanwhile, the
performance profiles of TPE and SMAC are observed to be the lowest, primarily because
they are both grounded in Bayesian optimization.

Bayesian optimization typically underperforms in optimizing multi-modal functions
because it generates surrogates for the entire design space. Given the highly oscillatory
nature of multi-modal functions, many points are needed to generate a global surrogate.
Due to the inaccuracy of the surrogate, a substandard performance is observed from
TPE and SMAC.

Unlike the Bayesian optimization method, trust-region-based methods construct only
a local surrogate. An accurate local surrogate model can be assembled with just a few
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Figure 17.10: Data profile for the second category of Table 17.1 for εf = 1e-1 (left) and εf =
1e-2 (right).

points. As a result, trust-region-based optimization methods converge swiftly towards
a local minimum. However, for multi-modal functions, multiple local minima exist,
and it is not guaranteed to converge to the global minimum. If the global minimum is
dominant, i.e., there is a significant difference between function values from local minima,
the chances of finding the global minimum increase. Dewancker et al. provide a detailed
comparison of various Bayesian optimization tools for multi-modal functions in [97].

To close this section on benchmark results, we delve into the performance comparison
between the optimization tools when applied to stochastic functions. We only consider
the first category of benchmark problems, specifically the Sphere Problem [333], to which
we add a uniform noise. We take the expected value, R0 as the robustness measure that
needs to be optimized. To estimate the measure, we employ a sample size of 100.

Fig. 17.11 presents the performance profile graph for stochastic sphere functions. The
observed behavior parallels that of Fig. 17.9. The diminished performance of TPE and
SMAC is due to the fact that Bayesian optimization tends to underperform with high-
dimensional problems. Both SNOWPAC and pySOT deliver comparable performance,
which can be attributed to their common basis in the trust-region method. Addition-
ally, it is worth pointing out that although convergence appears somewhat slower (as
evidenced by the rightward shift of the profile curve), both SNOWPAC and pySOT
achieve similar accuracy to that seen in the deterministic case.

Figure 17.11: Data profile for stochastic sphere functions for εf = 1e-1 (left) and εf = 1e-2
(right).
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Neural network optimization

At the start of this chapter, we pointed out that the optimization of a neural network
architecture presents a significant challenge for mixed-integer optimization. As such, we
next put SNOWPAC to the test in this context: we establish four distinct setups to
compare various optimizers, ensuring the hyperparameters are scaled to be of similar
magnitude. The specifics of the scaling can be found in Tables D.1-D.4. We will now
delve into the fundamental structure of the four problems.

The problem design for this experiment draws inspiration from the work of Ilievski et.
al. [166]. In the first problem set, we optimize six hyperparameters of a Multilayer Per-
ceptron (MLP) network. Out of these six hyperparameters, two are integer parameters
while the remaining four are continuous. A detailed list of the optimized hyperparam-
eters can be found in Table D.1. This problem will be referred to as 6-MLP in the
subsequent discussions.

The MLP network comprises two hidden layers, with ReLU activation function in
between and a SoftMax loss term. Stochastic Gradient Descent (SGD) is employed
for training the weights of the neural network. The network’s objective is to clas-
sify grayscale images of handwritten digits from the renowned benchmark dataset,
MNIST [197].

MNIST is a database composed of handwritten digits represented as grayscale images.
Each image is labeled with a number ranging from 0 to 9, based on the depicted digit.
The dataset contains 60,000 training samples and 10,000 testing/validation samples.
The handwritten digits are size-normalized and centered in a fixed-size image, with each
image measuring 28 × 28 pixels. A few sample images from the MNIST dataset are
displayed on the left side of Fig. 17.12.

airplane automobile bird cat deer dog frog horse ship truck

Figure 17.12: Sample images from the MNIST [197] (left) and CIFAR10 datasets [187] (right).
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The second problem involves optimizing eight hyperparameters of a Convolutional
Neural Network (CNN). This includes four integer hyperparameters and four continuous
hyperparameters. The CNN architecture encompasses two convolutional blocks, each
consisting of a convolutional layer with batch normalization, followed by ReLU activation
and a 3 × 3 max-pooling layer. Following the convolutional blocks, we have two fully-
connected layers with LeakyReLU activation, and a SoftMax loss term is used.

The purpose of this network is to classify images into digits, employing the MNIST
dataset. We will refer to this problem as 8-CNN in the following discussions. For a
comprehensive breakdown of the optimized hyperparameters, please refer to Table D.2.

We follow the same format in the third problem. We just increase the number of
target hyperparameters to be optimized to fifteen, composed of five integer parameters
and ten continuous parameters. We will refer to this problem as 15-CNN in subsequent
discussions. For a detailed breakdown of the hyperparameters being optimized, please
refer to Table D.3.

The fourth problem considers the CIFAR-10 dataset. The network is trained to
classify colored images. The CIFAR-10 dataset [187] contains 60000 color images, each
measuring 32× 32 pixels. It features 10 classes, with each class comprising 6000 images.
The dataset includes 50000 training images and 10000 test images. Some sample images
from each CIFAR-10 class are displayed on the right side of Fig. 17.12. It involves
optimizing nineteen hyperparameters, which include five integer parameters and fourteen
continuous parameters. We refer to this problem as 19-CNN in further discussions. The
architecture is identical to that of 8-CNN and 15-CNN, with the addition of dropout
layers following the convolutional and fully-connected layers. For a detailed breakdown
of the hyperparameters being optimized, we refer to Table D.4.

While training neural networks is well-suited for graphical processing units, it still
demands significant computational resources. Consequently, it is advantageous to iden-
tify the optimal hyperparameter values within a restricted number of complete network
trainings. Hence, we cap the number of optimization iterations at 200 black-box evalu-
ations, where one black-box evaluation is equal to one full network training cycle. We
conduct five runs of each setup, each time using a different random seed for neural
network weight initialization. This random seed remains consistent across all methods.

We compare SNOWPAC against HORD [166], HORD-ISP [166] (both HORD and
HORD-ISP uses pySOT [112]), Spearmint [87], SMAC [164, 165] and TPE [34, 35].
Certain optimizers require an initial starting point. We document these initial points
in App. D.6.2. They represent a form of user-provided a priori information to the
optimizer. The optimization tools that require these starting points include SNOWPAC,
HORD-ISP, and SMAC. SNOWPAC also requires the specification of a starting trust-
region dimension. We determine this value such that the entire hyperparameter space
falls within the initial trust region. The starting trust-region box-dimension details are
provided in Table D.5.

Table 17.2 shows the mean and the standard deviation of percentage validation error
over five experiments. We observe that apart from MNIST 8-CNN, SNOWPAC reaches
the smallest validation error for the different benchmarks, also for the high-dimensional
problems.
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MNIST MNIST MNIST CIFAR-10
6-MLP 8-CNN 15-CNN 19-CNN

SNOWPAC 1.38 (0.03) 0.87 (0.08) 0.92 (0.13) 22.83 (1.27)
HORD 1.45 (0.03) 0.89 (0.05) 1.1 (0.14) 23.41 (0.73)

HORD-ISP 1.45 (0.05) 1.01 (0.06) 1.35 (0.36) 24 (0.26)
Spearmint 1.44 (0.04) 0.85 (0.07) 1.03 (0.06) 23.85 (0.78)

TPE 1.58 (0.02) 1.11 (0.04) 1.58 (0.09) 26.4 (0.38)
SMAC 1.51 (0.05) 0.92 (0.02) 1.35 (0.12) 24.06 (0.92)

Table 17.2: Mean and standard deviation (inside parenthesis) of percentage validation error
over 5 sample of experiments. We mark the best results for each case in bold.

We plot the number of function evaluations for the four distinct problems in relation
to the relative validation error in Fig. 17.13. We note that SNOWPAC rapidly finds its
optimal solution. This outcome is expected given that the loss-surface of a multilayer
network is typically highly convex with numerous local minimums [69]; this leads us to
anticipate a multi-modal objective for the neural network architecture as well. As stated
before, trust-region based optimization methods are known to quickly converge to such
local minima. SNOWPAC not only accomplishes this rapidly, but often finds the best
solution with the lowest validation error.

Figure 17.13: Average percentage validation error versus the number of function evaluations
for all the setups in scaled hyperparameter space for 6-MLP (top left), 8-CNN
(top right), 15-CNN (bottom left) and 19-CNN (bottom right).
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We conclude that the mixed-integer extension of SNOWPAC holds up well against
other methods in the field. This new extension paves the way for an intriguing area of
new applications for the method. While we have been focused on unconstrained methods
in these initial tests, we anticipate extending the method to tackle constrained problems,
once again using the inner boundary path to sidestep infeasible solutions. Given its
capability for OUU, we also see potential for its application in the pursuit of robust and
reliable neural networks, as opposed to merely searching within a deterministic space.
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I pass with relief from the tossing sea of Cause and
Theory to the firm ground of Result and Fact.

—Winston Churchill [70]

Part V

Multilevel Monte Carlo for
optimization under uncertainty





18 Connecting SNOWPAC with MLMC

As final question and third contribution in this work, we tackle the coupling of our
first contribution from Part III with our second contribution of Part IV. We present
how to use MLMC estimators in derivative-free OUU and answer the question if our
newly developed estimators have an impact on the performance of the optimization. We
already saw improvements regarding accuracy or computational cost for sampling alone
in Part III and wonder if this directly translates to OUU.

We, thus, will present how we link the new MLMC estimators with SNOWPAC in
this section. Afterwards, we will present results of this new approach in Chap. 19 on two
benchmark problems and a realistic wake-steering scenario, where we designed multilevel
cases. Both chapters of this part are based on work in [223] and [224].

We have discussed the algorithmic specifics of the MLMC resource allocation already
in Section 12.6. Now, we want to use these new MLMC methods as estimators of the
measures Ri, i = 1, 2, in SNOWPAC and compare it to the standard MLMC estimator,
R0, targeting the mean. For that, let us denote our newly presented MLMC estimators
for higher/order moments in Part III following the notation of our measures in Section 9.1
for an objective or constraint function b ∈ {f, c1, ..., cr}. We juxtapose the notations (and
the relevant equations) from the different chapters in Table 18.1.

Statistic Measure (Eq.) Estimator MLMC estimator (Eq.)

E Rb0 (9.2) Rb0 µ̂b1,ML (6.21)

V (Rb1)2 (9.3) (Rb1)2 µ̂b2,ML (12.9)

σ Rb1 (9.3) Rb1 σ̂b
ML,biased (12.21)

E + ασ Rb2 (9.4) Rb2 ζ̂b
ML,biased = µ̂b1,ML + ασ̂b

ML,biased (12.25)

Table 18.1: Notations for the different statistics and estimators from OUU and MLMC.

When combining this new MLMC strategy for higher-order moments with SNOW-
PAC, we not only use the new estimator. It is also necessary to offer an estimation
of the standard error for the generic objective Rf and constraint functions {Rci}ri=1.
This estimate is used for the noise εb, b ∈ {f, c1, ..., cr}, where SNOWPAC employs
εb = tν

√
V [Ri] as noted in Section 14.1. As a reminder, we employ the noise as lower

bound for the adjustment of the trust region, ρk ≥ λt
√
ε̄kmax, and when balancing of the

evaluations with the GP: R̃bk = γkGbk[Rbk] + (1 − γk)Rbk. In our case, we have already
calculated the variances of all new estimators because they are needed in their respective
resource allocation problems (either as constraint or objective). Hence, in Table 18.2,
we connect the variances of the MLMC estimators from Part III to the variance for the
estimator of measures in SNOWPAC of Part IV.
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Variance MLMC estimator Eq.

V[Rb0] V[µ̂b1,ML] (6.24)

V[(Rb1)2] V[µ̂b2,ML] (12.11)

V[Rb1] V[σ̂b
ML,biased] (12.23)

V[Rb2] V[ζ̂b
ML,biased] (12.27)

Table 18.2: Notations for the variance of the different estimators from OUU and MLMC.

We have two possibilities of using SNOWPAC with the new MLMC estimators coupled
to the application code. The first possibility is the coupling as described in Section 15. To
repeat, the black-box application is linked to SNOWPAC by implementing the interface
of the BlackBoxBaseClass from SNOWPAC. Evaluating the objective and constraints
is fully handled by the application. Hence, also the new MLMC estimators have to be
implemented on the solver side and are not directly available in SNOWPAC. SNOWPAC
only communicates the current design and expects a result plus a noise estimate for εb.
We visualize this pipeline schematically in Fig. 18.1.

TRM Surrogate
Optimization

Feasibility
Restoration

SNOWPAC
Derivative-free optimization

Black-box solverDesign

Statistics
Monte Carlo Multilevel Monte

Carlo

Forward UQ

Figure 18.1: Coupling of general surrogate models for a black-box solver with SNOWPAC where
the forward UQ evaluation is handled by the application.

The second possibility is using Dakota, where we implemented the new MLMC estima-
tors and which can be linked to SNOWPAC. In this case, the outer loop of the optimiza-
tion is orchestrated by Dakota. Dakota includes SNOWPAC as an externally-developed
solver, whose settings can be chosen by the user through the input file. Within this
setup, SNOWPAC deploys the previously mentioned trust-region management (TRM),
surrogate optimization, and the feasibility restoration, as presented in Part IV. It com-
municates the subsequent design step to Dakota, which then organizes the forward UQ
problem at the current design. Dakota takes charge of sampling, interacting with the
black-box application, and gathering the results, utilizing the MLMC estimators as pre-
sented in Part III. Finally, the computed statistics for both the objective, constraints
and noise estimates are transmitted to SNOWPAC for the ensuing optimization phase.
A schematic depiction of how SNOWPAC, the forward UQ problem in Dakota, and the
application of interest interact is shown in Fig. 18.2.

We can couple SNOWPAC with MLMC through the usage of nested models in
the Dakota input file. We choose snowpac as top-level method, where we can set
the settings as described in Section 15. In the nested model, we denote the opti-
mization problem by defining the accumulation of statistics through the primary -
and secondary response mapping. In the model, we also link to the submethod via
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Figure 18.2: Coupling of general surrogate models for a black-box solver with SNOWPAC as
outer-loop optimization method where the whole process is controlled by Dakota.

the sub method pointer. In the submethod block, we set multilevel sampling as
method, again with the settings as presented in Section 12.6. We give an example of the
nested models in the Dakota input file in Example 12.

Example 12 (Example for a nested model.). This nested model connects an optimiza-
tion problem with one objective and two constraints with the underlying MLMC sam-
ple estimator. The parameters variables - and response pointer point to the input
variables and output responses for the optimization problem. The sub method pointer

points to the MLMC method. We define in the response mapping how to combine
the returned responses. In this case, we have three response functions (one objective,
two constraints), where we get a mean and a standard deviation statistic for each. In
primary response mapping, which defines the objective, we, e.g., combine the mean of
the first response with three times the standard deviation of the first response. Hence,
this is a scalarization objective, Rf2 , with α = 3. For the secondary response mapping,
we use the mean of the second response in the first mapping, Rc10 , and the mean of the
third response in the second mapping, Rc20 . These correspond to our constraint functions.

1 model ,
2 i d mode l = ’OPTIM M’
3 nes t ed
4 v a r i a b l e s p o i n t e r = ’OPTIM V’
5 sub me thod po in t e r = ’UQ’
6 r e s p on s e s p o i n t e r = ’OPTIM R’
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18 Connecting SNOWPAC with MLMC

7 pr imary response mapping = 1 . 3 . 0 . 0 . 0 . 0 .
8 secondary response mapp ing = 0 . 0 . 1 . 0 . 0 . 0 .
9 0 . 0 . 0 . 0 . 1 . 0 .

Listing 18.1: Extract of Dakota input file for SNOWPAC with MLMC.

All our upcoming results are computed using Dakota, since it offers a convenient way
of coupling all our contributions. Dakota also provides parallelization, which is highly
effective for MC and MLMC since the evaluations are embarrassingly parallel. We still
remark that Dakota might be computationally disadvantageous compared to a direct link
of SNOWPAC and the application, when the model is computationally cheap. Dakota
communicates with the application through input and output files, where reading and
writing the files can become the bottleneck. Nevertheless, this is not to be expected
to be a common case apart from benchmark tests since these methods are specifically
intended for computationally expensive problems.
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19 Numerical results

Finally, we want to see how the new developments in MLMC sampling and derivative-
free stochastic optimization coupled together perform in a full OUU pipeline. Whereas
we have only regarded sampling in Part III, we now have to compute a sampling estimate
in each OUU iteration of SNOWPAC. We focus on comparing the expected value with
the scalarization as our new contribution.

In this chapter, we will present results for three different problems. First, we will revisit
Problem 18 in Section 19.2 from Chap. 13. However, now we will focus on optimization
instead of sampling only. Second, we will present results for the Rosenbrock function
in Section 19.3, a popular optimization benchmark. Third, we will end this section
with discussing a wake-steering scenario for wind power plants in Section 19.4. For all
cases, we design new multilevel test cases and validate our results against standard MC
sampling. Before we dive into the numerical results of both benchmarks, however, we will
present the experimental setup and define distance metrics that we use to quantitatively
assess our results in Section 19.1.

19.1 Experimental design and distance metrics

Prior to delving into the actual numerical results, we detail problem design and the error
quantities utilized for a quantitative assessment of the OUU workflows. For the first two
applications of Problem 18 in Section 19.2 and the Rosenbrock function in Section 19.3,
we are able to (at least numerically) compute a reference solution by computing the
target variance ε2X, where X ∈ {E, S}. We pick as target the variance of a MC estimator
using NL = 1000 samples on the finest level L. Consequently, as in the sampling case,
we anticipate the MLMC estimators to perform comparably to the MC estimator since
it is aiming for the same accuracy in ε2X.

In order to get quantitative comparisons between the different approaches, we execute
MX = 25 optimization runs for each method. A set of MMC = 25 independent MC
optimization runs serve as our reference point. For each of these runs, we extract the final
optimal design xX

i ∈ Rddet and xMC
i ∈ Rddet as identified after a fixed number of iterations

of SNOWPAC. We assign xXi,j to denote the j-th element of xX
i , and analogously for

xMC
i,j . This yields sets of final designs for MLMC and MC, represented as XX = {xX

i }M
X

i=1

and XMC = {xMC
i }M

MC

i=1 , respectively. We define the Euclidean distance between two

vectors as e(x,y) :=
√∑d

i=1(xi − yi)2, the difference between two vectors as d(x,y) :=

[|x0 − y0|, ..., |xd − yd|] ∈ Rd, the mean vector over a set as X := 1
M

∑M
i=1 xi and the

standard deviation value of a set as σ̂(X) = 1
M−1

∑M
i=1(xi −X)2.
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19 Numerical results

Using these definitions, we formulate three metrics as follows:

� The first metric quantifies the distance between the centers of two sets of designs

DistXC = e(X
X
,X

MC
).

� The second metric considers the distance in standard deviation values of the two
sets

DistXσ = d(σ̂(XX), σ̂(XMC)).

We highlight here, that this is a d-dimensional metric, showcasing the variation in
standard deviation across each dimension.

� Lastly, for our third metric, we utilize the root-mean-square deviation to the MC
reference solution as follows:

DistXRMSdev =

√√√√ 1

MX

MX∑
i=1

e(xX
i ,X

MC
)2.

The last metric is a common measurement used in bioinformatics for estimating the
average distance between atoms in proteins [86] or force differences in molecules [247],
to cite a few examples. Generally, this distance is calculated in relation to a benchmark
structure or an average atomic position. This metric is well-suited for our needs, since
we are interested in the variance between cluster of points with respect to a reference
solution. Additionally, it can be interpreted as a combination of the previous two metrics.

Using all three metrics, we are able to quantify the closeness of point clouds. In our
case, we will compare the point clouds from the optimal design found by the MLMC
estimator to the MC reference solution. Additionally, we can also compare point clouds
to the optimal solution using the two metric DistXC and DistXRMSdev. We will now revisit
our first benchmark application in Problem 18.

19.2 Problem 18

In this section, we extend the sampling results for Problem 18—as discussed in Sec-
tion 13.1—to OUU. Additional to the deterministic objective function,

fdet(x) =

{
(x− 2)2 if x ≤ 3

2 ln(x− 2) + 1 if x > 3,
(19.1)

that we want to minimize, we introduce a linear constraint g : R→ R:

g(x) =
4 ln(1.5)

5
(x− 1). (19.2)
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19.2 Problem 18

We employ the same stochastic four-level structure as in Section 13.2

f4(x, θ) = fdet(x) + θ3,

f3(x, θ) = fdet(x) + 1.1θ3,

f2(x, θ) = fdet(x) +

(
1

60
x+ 1.2

)
θ3,

f1(x, θ) = fdet(x) +
3

2
θ3,

(19.3)

where θ ∼ U(−0.5, 0.5) with the same cost ratio of Ci
Ci−1 = 10, with C4 = 1, s.t., C1 <

C2 < C3 < C4. Compared to the sampling case, where we were restricted at a specific
location x = 1, it is worth noting the contribution of θ is dependent on x for f2(x, θ).
As a result, we observe varying correlations across the levels and, consequently, different
resource allocations across x. Hence, the resource allocation changes throughout the
optimization over x. Therefore, we construct the new MLMC estimators and compute
the optimal resource allocation in each optimization step. We present an example on
this next.

Example 13 (Variance and resource allocation for MLMC targeting the mean). We
visualize the variance over levels as used for the resource allocation in Eq. (6.26) and the
resulting resource allocation for the MLMC estimator targeting the mean in Fig. 19.1.
We observe how the variance and thus the resource allocation varies over x, due to this
previously mentioned dependence. For Problem 18 and the MLMC targeting the mean,
these values are computed analytically for this example.
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Figure 19.1: The variance of level difference as used in the resource allocation (left) in Eq. (6.26)
and the resulting resource allocation (right) for the MLMC estimator targeting
the mean for all four levels over x.

To simplify the presentation, we limit our algorithmic choices based on the previ-
ous results and confine ourselves to using 20 iterations in conjunction with numerical
optimization. We continue to compare the three different methods for approximating
the covariance term for scalarization. We are interested in solving the following two
optimization problems:
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19 Numerical results

First, we regard the expected value, Rf0 , as reference test case as:

min
x

E[f4(x, θ)],

s.t. fdet(x) ≥ g(x).
(19.4)

Second, we consider our newly developed scalarization estimators, Rf2 , as:

min
x

E[f4(x, θ)] + 3σ[f4(x, θ)],

s.t. fdet(x) ≥ g(x),
(19.5)

Here, we select α = 3, which is a popular value in the field of OUU.
We use SNOWPAC for the optimization process. We initiate the optimization runs

from the starting point x = 0.25 and carry out the MX = 25 independent runs for
each case utilizing the different estimators discussed in this work. We terminate the
optimization after 100 iterations. The final designs found in each optimization run are
plotted in the subsequent diagrams. Additionally, we track the average computational
cost for a single iteration by keeping a record of the resource allocation throughout
the optimization process. The MLMC estimators employ the four levels as detailed in
Eq. (19.3).

For all following figures, the blue line represents the objective function; the black line
shows the constraint. The small figure in the bottom right corner displays the complete
function, while the area around the optimal design is magnified. Each marker denotes
the final design discovered by the individual run. We display the results when utilizing
a standard MC estimator with N4 = 1000 samples as red dots and compare them to the
final design found using a MLMC estimator targeting the mean (blue crosses) and, in the
second set of results, to a MLMC estimator targeting the scalarization (green triangles).
The yellow dot indicates the optimal design.

The results are computed using Dakota, where we use the coupling as described in
Chap. 18. We give an example of the input file for Dakota for the scalarization case in
the appendix in Lst E.1.
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Figure 19.2: Mean: The optimization outcomes for 25 separate runs following 100 iterations
when targeting formulation Eq.19.4 for MC (red dots) and MLMC targeting the
mean (blue crosses)

In the first scenario, we target the expectation, where the optimization problem is
solved as per Eq. (19.4) aiming for ε2E ≈ 2.2321e-6 and present the results in Fig. 19.2.
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19.2 Problem 18

Here, the final designs obtained by the MLMC mean (depicted by blue crosses) align well
with the MC designs (indicated by red dots). Observing the average computational cost
per iteration, the considerable advantage of utilizing MLMC methods becomes apparent.
In this scenario, we are capable of reducing the computational cost by approximately a
factor of 20, given this specific choice of computational cost.

The impact of the MLMC estimator selection becomes evident when we transition
to the scalarization case, as outlined in Eq. (19.5), where we apply ε2E ≈ 2.2321e-6 and
ε2S ≈ 1.6175e-5 for the respective approaches, as shown in Fig. 19.3. The outcomes
for different alternatives for approximating the covariance are displayed in the three
plots: the Pearson upper bound in Fig. 19.3a, the Correlation Lift in Fig. 19.3b, and the
Bootstrap approximation in Fig. 19.3c.
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(a) Pearson upper bound as described in Sec-
tion 12.4.1 to bound the covariance term of
Eq. (12.27).
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(b) Correlation Lift approximation as described
in Section 12.4.3 to approximate the covariance
term of Eq. (12.27).
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(c) Bootstrap approximation as described in Sec-
tion 12.4.2 to approximate the covariance term
of Eq. (12.27).
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(d) Cost average for a single evaluation for the dif-
ferent approaches. The cost are averaged over
25 optimization runs with 100 iterations each.

Figure 19.3: Scalarization: covariance approximation and cost comparison. Optimization re-
sults for 25 individual runs after 100 iterations when targeting formulation Eq.19.5
for MC (red dots), MLMC targeting the mean (blue crosses) and MLMC targeting
the scalarization (green triangles). In the first three figures, we contrast the dif-
ferent approximation strategies for the covariance term. The fourth figure shows
a cost comparison for all three approaches.

As in the sampling investigation in Section 13.1, we observe a much greater variation in
the optimal designs identified by the MLMC approach targeting the mean, represented as
blue crosses. Consequently, we observe a bias in the distribution of points targeting the
mean, which stems from the increased noise introduced by these samples and accounted
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19 Numerical results

for in SNOWPAC’s optimization process. However, our newly devised scalarization
estimators in green match well with the Monte Carlo reference solution in red.

This is also mirrored in the average computational cost for a single evaluation in
Fig. 19.3d. We note a very small average evaluation cost for the MLMC approach
targeting the mean (blue bar). The estimator is underresolved, as it does not use enough
samples, leading to a larger estimator variance. For the three MLMC strategies targeting
the scalarization (green bars), we see a cost reduction relative to the reference MC, albeit
less than for MLMC targeting the mean. This cost, however, aligns with the variance of
the reference solution.

When comparing the costs of the three strategies for approximating the covariance,
we find a familiar pattern: the highest cost is associated with the Pearson upper bound,
as it is indeed an upper bound and takes a conservative approach; the Correlation Lift
approximation and the Bootstrap approximation have slightly lower costs, but we must
consider additional computational cost for the Bootstrap approach. Therefore, we find
the Correlation Lift to be the most cost-efficient strategy.

Lastly, we assess the approximation quality of the new methods through quantitative
metrics displayed in Table 19.1. Using the metrics detailed in Section 19.1, we compute
the distance to the final designs relative to the reference MC solution. It is evident
that our novel MLMC method, which targets scalarization, is consistently closer to
the reference designs than the standard MLMC approach that targets the mean. The
smallest value in each column is highlighted in bold. For this scenario, the Pearson upper
bound appears to be a viable conservative choice.

Method X DistXC DistXσ DistXRMSdev

MLMC Mean E 4.1683e-3 7.2126e-4 4.3140e-3

MLMC Scal. (Pearson) S 5.6635e-4 1.1207e-4 5.4988e-4

MLMC Scal. (CorrLift) S 7.0536e-4 5.9096e-5 7.4629e-4

MLMC Scal. (Bootstrap) S 8.0911e-4 1.8353e-5 8.5709e-4

Table 19.1: Quantitative comparison of the proximity of the discovered final designs to the MC
reference solution. Each row corresponds to a different approach. The last three
columns indicate a distinct metric, while the second column specifying the target
of the estimator.

To summarize the findings from this section, we have demonstrated the efficiency of
the newly developed estimators for OUU. It is important to tailor the MLMC estimator
according to the specific formulation of the optimization problem at hand. We empha-
sized the importance of accurately approximating the covariance for the scalarization
scenario, which motivated the development of these new estimators. In the forthcoming
section, we will tackle a more complex optimization problem, namely, the constrained
Rosenbrock function, where we will construct a three-level test case.

164



19.3 Rosenbrock problem

19.3 Rosenbrock problem

As our second case, we utilize the constrained 2-D Rosenbrock optimization problem as
outlined in [289], a popular benchmark within the optimization field. In its deterministic
format, it is represented as follows:

min
x1,x2

f(x1, x2) = 100(x2 − x2
1)2 + (x1 − 1)2,

s.t. c1 : (x1 − 1)3 + 1− x2 ≤ 0,

c2 : (x1 + x2)− 2 ≤ 0.

(19.6)

The problem is depicted for x1 ∈ [−1.5, 1.5] and x2 ∈ [−0.5, 2.5] in Fig. 19.4. The
unconstrained problem has a unique global minimum at (1, 1), whereas this constrained
problem possesses a local minimum at (0, 0), along with a global minimum at (1, 1).
Small gradients render it difficult for optimization algorithms to identify the global
minimum.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
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Rosenbrock Optimization problem
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Figure 19.4: Graphical representation of the Rosenbrock function optimization problem. The
contour lines of the objective function are plotted along with the two grey con-
straints. The infeasible region is marked in grey. The local and global optima are
represented as an orange square and red pentagon, respectively.

To transform the deterministic problem into a stochastic one with multiple levels, we
employ the Ishigami function, adapted from the work in [264]. The specifics of the three
functions along with their respective mean and sigma are tabulated in Table 19.2. Here,
{θi}3i=1 ∼ U(−π, π) follow a uniform distribution, with a = 5 and b = 0.1.

We combine the Ishigami function with the Rosenbrock objective function f(x1, x2)
yield three levels: {f(x1, x2)+βI(i)(θ1, θ2, θ3)}3i=1. Moreover, to standardize the stochas-
tic influence of the Ishigami function in relation to the deterministic Rosenbrock func-
tion, we introduce a scaling factor β =

√
1e-4. We also assume the cost ratio among the

distinct levels to be Ci
Ci−1

= 10, i = 2, 3, with C3 = 1, so that C1 < C2 < C3.
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Level function µ
(i)
1 σ(i)

I(3)(θ1, θ2, θ3) = sin(θ1) + a sin(θ2)2 + bθ4
3 2.5 3.2931

I(2)(θ1, θ2, θ3) = sin(θ1) + 0.85a sin(θ2)2 + bθ4
3 sin(θ1) 2.125 3.1595

I(1)(θ1, θ2, θ3) = sin(θ1) + 0.6a sin(θ2)2 + 9bθ2
3 sin(θ1) 1.5 3.5308

Table 19.2: Three levels of the Ishigami function {I(i)}3i=1 and their corresponding mean µ
(i)
1

and standard deviation σ(i).

Consequently, this results in an optimization problem analogous to the earlier de-
scribed Problem 18, where we examine the formulation Rf2 :1

min
x1,x2
Rf2 [f + I(3)]− µ(3)

1 − 3σ3 = E[f + I(3)] + 3σ[f + I(3)]− µ(3)
1 − 3σ(3),

s.t. c1 : (x1 − 1)3 + 1− x2 ≤ 0,

c2 : (x1 + x2)− 2 ≤ 0.

(19.7)

We highlight that we subtract the mean value µ
(3)
1 and the standard deviation σ(3) to

align the solution with the deterministic scenario. As a result, the local and global
optima remain the same as those in the deterministic case.

We follow a similar methodology to our previous study: starting from the initial
point (x1, x2) = (0.25, 1.5), we conduct MX = 25 separate optimization runs for each
of the different methods, calculating the MLMC estimator. We look at two different
formulations for the MLMC resource allocation. In the first case, we fix the variance of
the estimator, minimizing the computational cost, as we have described throughout this
work. In the second case, we fix the cost of the estimator and minimize its variance, as
described in Rem. 1.

19.3.1 Variance constraint

The targets ε2E ≈ 1.0849e-5 and ε2S ≈ 8.8951e-5 are again determined by the reference
variance of a MC estimator with N3 = 1000 samples. To facilitate a fair comparison,
we limit all optimization runs to 250 iterations each and plot the final design found
for all the different runs. We also contrast the average computational cost per single
iteration. In order to decrease the volume of results, we fix the resource allocation to use
20 iterations and a numerical optimization. This decision is based on past results that
showed the best performance. Finally, we once more compare the different strategies of
covariance approximation.

The optimization results from 25 distinct runs are presented in Fig. 19.5. We pro-
ceed with a comparative analysis of the three methods of approximating the covariance
function in Figs. 19.5a- 19.5c. As before, the final optimal designs derived from the MC
approach are symbolized by red circles. The optimal designs acquired via the standard

1Please note that we are excluding the formulation Rf0 for this case as the MLMC estimator is not part
of our contribution.
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19.3 Rosenbrock problem

MLMC approach, which targets the mean, are denoted by blue crosses. The MLMC
estimator targeting scalarization, which is our novel method, is represented by green
triangles in the designs.
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(a) We use the Pearson upper bound as described
in Section 12.4.1 to bound the covariance term
of Eq. (12.27).
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(b) We use the Correlation Lift approximation as
described in Section 12.4.3 to approximate the
covariance term of Eq. (12.27).
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(c) We use the Bootstrap approximation as de-
scribed in Section 12.4.2 to approximate the
covariance term of Eq. (12.27).
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(d) Cost average for a single evaluation for the dif-
ferent approaches. The cost are averaged over
25 optimization runs with 250 iterations each.

Figure 19.5: Optimization results for 25 individual runs after 250 iterations for MC (red dots),
MLMC targeting the mean (blue crosses) and MLMC targeting the scalarization
(green triangles). In the first three figures, we contrast the different approximation
strategies for the covariance term. The fourth figure shows a cost comparison for
all three approaches.

The results are computed using Dakota, where we use the coupling as described in
Section 18. We give an example of the input file for Dakota for the scalarization case in
the appendix in Lst. E.2.

The results show a strong alignment between our newly developed MLMC estimators
and the MC reference solution. Additionally, the standard MLMC method demonstrates
superior performance compared to the results previously displayed. However, it is note-
worthy that their final design set reveals increased variance. The cause is apparent when
we examine the costs on the right side: the standard MLMC estimator recurrently un-
derresolves the estimators, yielding higher variance for the estimator and more noise in
SNOWPAC. As discussed in Part IV, the intensity of the noise is a crucial determinant
of SNOWPAC’s convergence.

Regarding the cost of approximating the covariance, we observe a scenario similar to
the prior example: the Pearson approximation tends to be overly conservative, thereby
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incurring unnecessary computational cost. The Bootstrap and Correlation Lift approxi-
mations yield similar, reduced costs, but if we include the additional computational ex-
penses of bootstrapping, the Correlation Lift approximation seems more advantageous.

For a more detailed numerical analysis, we again employ various metrics (Section 19.1)
to calculate the difference between the MLMC methods’ optimal designs and the MC
reference solution, as demonstrated in Table 19.3. All metrics indicate that our newly
introduced method consistently approximates the reference solution more closely across
all covariance approximations. The lowest value in each column, signifying the optimal
outcome, is highlighted in bold.

Method X DistXC DistXσ DistXRMSdev

MLMC Mean E 1.3519e-3 [1.9332e-4, 3.1944e-4] 1.3106e-3

MLMC Scal. (Pearson) S 1.2922e-3 [3.1977e-4, 2.7096e-4] 1.2249e-3

MLMC Scal. (CorrLift) S 1.2686e-3 [3.1931e-4, 1.3793e-4] 1.1886e-3

MLMC Scal. (Bootstrap) S 1.1108e-3 [9.8059e-5, 3.2164e-4] 9.7472e-4

Table 19.3: Quantitative comparison of the proximity of the discovered final designs to the MC
reference solution. Each row corresponds to a different approach. The last three
columns indicate a distinct metric, while the second column specifies the target of
the estimator.

Similar to Problem 18 from Section 19.2, we see once more that it is crucial to align
the MLMC allocation target with the corresponding configuration of the optimization
problem. Fine-tuning the estimation algorithm to the SoI ensures reliably and efficiently
achieving the desired accuracy. We also again point out the possible cost reduction when
employing MLMC methods compared to standard MC.

19.3.2 Cost constraint

In the following section, we ask ourselves the questions: how does the new MLMC
estimator perform when we fix the computational cost of the MLMC estimator to fit the
cost of the MC reference solution? How does that subsequently impact the noise and
trust-region radius and, thus, convergence in SNOWPAC? Since the MLMC estimator
is supposed to reduce the variance, does this translate to a higher accuracy in the
optimization and faster convergence?

For this setting, we take the same setup as before, with a change in the resource allo-
cation: instead of fixing the variance and minimizing the total computational cost of the
estimator, we now fix the computational cost to CT = 1000 and minimize the estimator
variance. Thus, we follow the formulation for the resource allocation as described in
Rem. 1. As reference, we use a MC estimator using 1000 samples. We again do 25 op-
timization runs for each approach, which we average over and compare the new MLMC
estimator targeting the scalarization to the MC estimator. We limit all optimization
runs to 250 iterations each and plot the final design found for all the different runs.
Then, we contrast the variance of the estimators over the iterations and further compare
the resulting noise ε̃f in SNOWPAC and the eventual trust-region radius ρ. Finally, we
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19.3 Rosenbrock problem

quantitatively compare which approach is closer to the optimal solution (1, 1) after 250
iterations.

In order to decrease the volume of results, we again fix the resource allocation to use
20 iterations and a numerical optimization. Furthermore, we employ the Correlation
Lift for the approximation of the covariance term. The results are again computed
by Dakota, where we use the coupling as described in Section 18. The input is based
Lst. E.2, only changing the convergence tolerance target to cost constraint as
given in the commented section in that listing.

The optimization results from 25 distinct runs are presented in Fig. 19.6 on the left.
We clearly see that the MLMC solutions on average are closer to the optimum compared
to the MC reference solution. When we regard the variance of the sample estimators, we
see the reason: on the one hand, the MC estimator variance fluctuates around its exact
variance of ε2S ≈ 8.8951e-5 we used in the previous section as variance constraint. On
the other hand, the MLMC estimator is able to reduce the variance of its estimator by
optimizing the resource allocation, while having the same computational cost as MC.
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Figure 19.6: Left: Optimization results for 25 individual runs after 250 iterations for MC (red
dots) and MLMC targeting the scalarization (green triangles) for cost constraint in
the resource allocation (left). Right: Variance of the MC (red, solid) and MLMC
targeting the scalarization (green, dashed dot) estimator compared to the exact
MC variance using 1000 samples (black, dotted).

How does this translate to SNOWPAC? We plot the noise value of ε̃fk on the left and
the trust-region radius ρk over the number of iterations on the right of Fig. 19.7. Note
here, that ε̃fk is already the value after GP smoothening. We clearly see the smoothening
effect, where the GP is able to reduce the noise, when we compare it to the variance of
the sample estimator from the previous figure. Moreover, MC and MLMC have similar
values at the start. However, we also note the reduced variance of the MLMC estimator
for increasing iterations resulting in a lower noise. The lower noise is the result of two
factors: first, the reduced variance from the MLMC estimator; second, a smaller noise
results in a smaller trust-region radius. We observe this in the right plot, where the
trust-region radius of MLMC is visibly smaller than MC over the optimization. The
smaller trust region results in more evaluations in closer vicinity and improves the GP
surrogate faster. Ultimately, this results in faster convergence of the method in this case,
since SNOWPAC converges based on a bound on the trust-region radius.
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Figure 19.7: Left: Noise value ε̃fk of the current best design at iteration k for MC (red, solid)
and MLMC targeting the scalarization (green, dashed dot). Right: Trust-region
radius ρk at iteration k for MC (red, solid) and MLMC targeting the scalarization
(green, dashed dot).

Quantitatively, we compare both the MC and the MLMC approach targeting the
scalarization to the optimal solution (1, 1) in Table 19.4. Since we compare to a single
point, we show the difference of the cluster centers, DistC, and the root-mean-square
deviation, DistXRMSdev, to (1, 1). For both metrics, we also see the quantitative improve-
ment of using the MLMC estimator, resulting in a more accurate solution compared to
MC for the same computational cost.

Method X DistXC DistXRMSdev

MC S 1.7912e-3 2.0122e-3

MLMC Scal. S 1.0766e-3 1.0840e-3

Table 19.4: Quantitative comparison of the proximity of the discovered final designs to the
exact solution [1, 1]. We compare the MC and new MLMC approach targeting the
scalarization. The last two columns indicate a distinct metric, while the second
column specifies the target of the estimator.

Note, that these results are from specific test conditions, where the variance of the
estimator is constant over the domain. Otherwise, the path of optimization plays a
role in the variance of the estimator, since the variance changes over the design space.
Nevertheless, in this second case, we see that, given the same computational cost, the
MLMC estimator is able to find a better local optimum faster. In the end, this results
in faster convergence of the algorithm in this case.

To sum it up for both test cases, we observe enhanced optimization performance
when implementing our newly devised estimators, even in the face of more demanding
test conditions. Both cases combined show the potential of the MLMC method when a
hierarchy of levels is available.
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19.4 Optimization under uncertainty for wake steering

In this final result section, we are interested in formulating and solving an OUU problem
for finding the optimal wake steering strategy of a wind power plant. We design a
multilevel case, employing our newly devloped MLMC estimators with SNOWPAC.
First, we discuss general wind power plant design in Section 19.4.1 before we talk about
wake steering in Section 19.4.2. Finally, we are going show results for two wake steering
formulations, for the expected total power production and the scalarized total power
production in Section 19.4.4.

19.4.1 Wind power plant design

Wind power plants, or wind farms, are critical components of the global renewable energy
infrastructure. They represent a clean, sustainable solution for generating electricity that
reduces our reliance on fossil fuels and helps to mitigate the effects of climate change.
They usually comprise several wind turbines ranging from a few to hundreds, depending
on the scale of the farm. These turbines are usually installed in areas with high wind
speeds, such as coastal regions, open plains, or on hills and ridges. Wind farms can also
be offshore, where the wind is typically stronger and more consistent.

The energy production process in a wind power plant begins when the wind turns
the turbine blades. This rotational energy is then converted into electrical energy by a
generator located within the turbine. Wind power is a variable source of energy, as its
generation depends on wind speed and direction. Despite the variability, wind power
provides numerous benefits: it is a renewable resource, meaning it will not deplete over
time like fossil fuels. Furthermore, wind power plants do not produce greenhouse gas
emissions while operating, contributing significantly to the reduction of carbon foot-
prints [11].

A lot of planning goes into finding the optimal design of a wind power plant [83].
We highlight three important factors. First, we need to find an optimal location, which
includes many considerations such as wind conditions (constant or high variations), the
connection to the power grid or the impact on the surroundings. Second, we need to
decide on the arrangement of turbines in the field. Here, we have to consider wake
effects. Wake describes the disturbed flow of air behind a wind turbine which interferes
with turbines downwind and hence can decrease the overall power production. Third, we
have to think about the turbine types we want to use considering recent developments
for horizontal but also vertical wind turbines [234].

We show one of the most popular examples for real wake effects in Fig. 19.8a. This
shows the Horns Rev II wind form located in the North Sea, 30 km west of Bl̊avandshuk
on the Danish west coast. The farm consists of 91 wind farms with a total capacity of
209 MW. The turbine towers have a height of 68 metres with a turbine blade diameter of
93 metres. The wind farm was opened in 2009 and is operated by Ørsted [340]. Due to
the foggy weather conditions in the picture, the wake of the individual turbines and how
it interferes with downwind turbines is clearly visible. An example of an experimentally
created turbine wake by a one-bladed rotor is given in Fig. 19.8b. We observe the
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helical vortices, which break down into a turbulent flow. The wake is created in a dye
visualization in water [201].

(a) Horns Rev II wind farm off the coast of Den-
mark The wake effects are visible due to low
hanging fog. Photo by: Bel Air Aviation
A/S [12]. January 26th, 2016. Used with per-
mission.

(b) Dye visualization in water of wake effect behind
one-bladed rotor [201]. Licensed under CC BY
3.0.

Figure 19.8: Example of a wind farm and experimental turbine wake.

19.4.2 Wake steering

Once a wind plant has been installed, its performance can be further improved by imple-
menting control techniques. Wake steering is one such effective control technique, where
turbines are purposefully yawed off the path of oncoming wind, instead of aligning per-
pendicularly [266, 267]. This causes the turbines to function as flow regulators, directing
the wake away from downstream turbines and drawing more momentum from higher el-
evations. However, designing effective wake-steering strategies can be challenging due
to variables such as the direction and intensity of incoming wind, turbulence levels, and
other factors. In addition, inaccuracies in wind sensors and yaw control systems add fur-
ther complexity in creating optimal wake steering strategies. The turbulent flow within
the turbine’s wake, characterized by high-vorticity regions interacting with other wakes
and downstream rotors, results in sensor readings with considerable uncertainty. This
makes it difficult to accurately determine each turbine’s yaw angle.

Control research often relies on low-fidelity, but cost-effective tools that simplify gov-
erning equations through linearization and layering of analytical wake shapes. Floris [243]
serves as a control-centric model for wake-steering simulation, offering a variety of wake
parametrizations, some of which consider the yaw-induced wake deflection and curl.
Wake deflection involves the shift in the wake’s path due to the yaw motion, which is
the turbine’s rotation around a vertical axis. Meanwhile, wake curl refers to the swirling
or torsional motion within the wake, again, as a result of the yaw motion. These compo-
nents play a vital role in creating efficient wake-steering strategies, aimed at optimizing
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a wind farm’s power output by controlling the influence of the wakes from upstream
turbines on those downstream.

One SoI of wake-steering scenarios is the average total power (ATP). It is given as the
expectation of the wind farm power output with T turbines for a given set of yaw angles
with respect to the site-specific joint distribution of wind speed and direction:

ATP (γ, u, φ) := E [fpower (γ, u, φ)]

= E

[
T∑
i=1

fpower (γi, u, φ)

]
(19.8)

where γ = [γ1, ..., γT ]T represents the vector of yaw angles, which we control, while the
inflow wind speed u and inflow wind angle φ are random variables.

Another SoI is the variation in the total power (VTP). Here, we consider the standard
deviation of the plant’s power output for the given set of yaw angles with respect to the
site-specific joint distribution of wind speed and direction,

VTP (γ, u, φ) := σ [fpower (γ, u, φ)]

=

√√√√V

[
T∑
i=1

fpower (γi, u, φ)

]
.

(19.9)

We then consider two OUU problems:

1. We optimize for the maximal expected ATP:

max
γ
Rf0(γ) := max

γ
ATP (γ, u, φ)

s.t. |γi| ≤ 30◦ for i = 1, . . . , T.
(19.10)

2. We maximize the ATP subject to a set of constraints on yaw angles, while mini-
mizing its variability, the VTP:

max
γ
Rf2(γ) := max

γ
ATP (γ, u, φ)− αVTP (γ, u, φ) ,

s.t. |γi| ≤ 30◦ for i = 1, . . . , T.
(19.11)

where we control the weight of the VTP through α.

19.4.3 Wind farm problem setup

We consider a wake steering problem for a wind farm with T = 9 turbines. The turbine
towers are 90 meters in height and the turbine rotors have a diameter of D = 126 meters
and imitate the NREL 5MW turbine [171]. We have three clusters of turbines with three
turbines each. In each cluster, the turbines are offset to each other by 3.5D meters in
x-direction, and about 0.5D meters in y-direction. Hence, we get wake effects in each
cluster of turbines. The distance between clusters is also set to about 3.5D meters such
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Figure 19.9: Wind farm setup with nine turbines facing the inflowing wind.

that we also expect wake effects between cluster. We present the setup in Fig. 19.9 with
a nominal wind speed of u = 7.5ms and a wind angle of φ = 270◦ (flow from left to right).

For the stochastic setting, we introduce randomness on the wind speed and wind angle.
We use u ∼ N (7.5ms , 1

m
s ) and φ ∼ N (270◦, 5◦) as new inflow conditions based on the

setting in [267]. In addition, we define a three-level setting for the multilevel case in
Table 19.5. For the finest level 3, we use 40 points for the turbine discretization and
a Gaussian velocity and deflection model for the wake effects (see [244] and references
therein for details about wake models). For the medium level 2, we reduce the turbine
discretization to a single point, but employ the same wake model. Finally, for the coarse
level 1, we also employ a single discretization point but use no wake model. This results
in the given relative computational cost structure for a single evaluation of the model
on each level as given in the last column.

Level ` Turbine grid points Wake model Relative cost C`
3 40 GCH 1

2 1 GCH 0.12

1 1 No wake 0.002

Table 19.5: Three-level design for MLMC wake steering scenario.

For these results, we cannot fix a target variance accuracy for the MLMC resource
allocation to compare to the MC results, since this would require to know the variance
of the MC estimator in each optimization step. This is neither analytically available (as
it was for Problem 18) nor numerically computable (as it was for Rosenbrock). Thus, we
use the resource allocation formulation targeting a certain cost, as described in Rem. 1
and as we presented for the Rosenbrock problem in Section 19.3.2. We set the target cost
CT = C3N3 with N3 = 1000 samples on the finest level, where the resource allocation
optimizes for the variance of the estimator. An example for the Dakota input file of such
a setting is given in the appendix in Lst. E.3.

19.4.4 Results

We first look at the optimization results for the maximal expected ATP from Eq. (19.10).
We compare the MC estimator with the MLMC estimator targeting the mean, both
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19.4 Optimization under uncertainty for wake steering

targeting the same computational cost. We note here that these results not only show
our third contribution of coupling MLMC with SNOWPAC, but also the performance of
SNOWPAC alone for a complex, high-dimensional black-box problem for the single-level
MC case.

In Fig. 19.10, we show the development of the optimal design for each of the two
cases. We observe that both approaches result in very similar optimal designs for the
yaw angles, albeit using different estimators. For the MLMC case, we see a lot of
movement in the design in the first 15 iterations; then the solution quickly seems to
converge. The MC estimator seems to take a little longer, with another visible change
after about 20 iterations. Given that both approaches seem to be converged afterwards,
we manually stopped the MLMC approach at that point after 58 optimization steps.
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Figure 19.10: Optimization results for the optimal design of yaw angles {γi}9i=1 for Eq. 19.10.
We compare optimization results for standard MC (left) and MLMC targeting
the mean (right).

This impression is consolidated when looking at the objective value of both approaches
over the number of iterations. We visualize this in Fig. 19.11. It seems that the optimizer
is able to converge quickly to a local maximum for both approaches. This behavior
strengthens the result we received in our benchmark tests for SNOWPAC. Based on the
initial movement of yaw angles after 15 iterations, both objectives also increase quickly.
We note another jump in the objective for the MC case after the previously mentioned
20 iterations, after which both approaches seem to converge. Additionally, we note that
the MC solutions objective seems to be larger than the MLMC objective in the end.

However, we have to be aware that the accuracy of the presented objective value is
limited by the accuracy of the employed estimators. Hence, to find the exact objective
value, we take the final design found by each approach and evaluate them numerically
using MC sampling on level 3 with N3 = 10000 samples over the random variables of
u and wind angle φ. From these sampling results, we can compute the ATP, the VTP
and the objective. We plot the resulting flow field in Fig. 19.12, where we put the values
of interest in the title of each subfigure. We compare optimization results for standard
MC (second from top), MLMC targeting the mean (third from top) to the inital setting
without any wake steering (top).
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Figure 19.11: Optimization results for the optimal design of yaw angles {γi}9i=1 for Eq. 19.10.
We compare optimization results for standard MC (red) and MLMC targeting
the mean (blue). The optimal path is plotted in solid while evaluations are
plotted as dashed line.
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Figure 19.12: Flowfield for different optimal designs found for the different approaches for
Eq. 19.10. We compare optimization results for standard MC (center), MLMC
targeting the mean (bottom) to the initial setting without any wake steering

(top). The values of interest for the objective Rf0 , ATP and VTP for each
approach are given in the title of each plot in MW.
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In this figure, we first observe that both approaches clearly try to minimize wake
effects by turning the turbines such that the inference with downwind turbines is reduced.
Looking at the objective value in the title of the results, we see that both approaches
find almost a similar local maximum value. Though not relevant for this optimization
scenario, we note the VATP value in the plot titles and also see almost no difference there.
Thus, we summarize that both approaches are valid for a complex, high-dimensional
problem, such as Eq. (19.10) with SNOWPAC finding an optimal result quickly. Finally,
we note that we are able to improve the total power production of this fictional wind
power plant by approximately 20% by moving the turbines.

Next, we present the results for the scalarization case of Eq. 19.11, where we use
α = 3. Here, we combine our contribution of SNOWPAC with the contribution of
the new MLMC estimator for the scalarization. We compare this contribution to the
standard MC and MLMC approaches.

In Fig. 19.13, we show the development of the optimal design for each of the three
cases. We first note that the MLMC approach targeting the mean has crashed after
about 65 optimization steps. On the one hand, we observe see that the MC solution
(top left) and the MLMC approach targeting the scalarization (bottom) tend to the
boundary of the allowed yaw angles. We also see a similarity in the design for both
approaches. On the other hand, we see the MLMC approach targeting the mean (top
right) yields a design with less yaw angle movement.
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Figure 19.13: Optimization results for the optimal design of yaw angles {γi}9i=1 for Eq. 19.11.
We compare optimization results for standard MC (top left), MLMC targeting
the mean (top right) and MLMC targeting the scalarization (bottom).
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As a result of this movement of the design, we see the development of the objective in
Fig. 19.14. Here, we plot the values that SNOWPAC uses for the optimization, which
are estimates by themselves. We see the largest value in the objective for the MLMC
approach targeting the scalarization in green, whereas the MC solution in red results in a
smaller optimum. The MLMC approach targeting the mean finds the smallest objective
value, fluctuates much more and does not show a steady increase in the objective.
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Figure 19.14: Optimization results for the optimal design of yaw angles {γi}9i=1 for Eq. 19.11.
We compare optimization results for standard MC (red), MLMC targeting the
mean (blue) and MLMC targeting the scalarization (green). The optimal path
is plotted in solid while evaluations are plotted as dashed line.

Finally, we want to quantify if this translates to an improved result. Hence, we quantify
the optimal results that each method found exactly. We again employ the final design
found by each approach and evaluate them numerically using MC sampling on level 3
with N3 = 10000 samples over the random variables of u and a wind angle φ. We plot
the resulting flow field in Fig. 19.15, where we put the computed objective, ATP, and
the VTP in the title of each plot. We compare optimization results for standard MC
(second from top), MLMC targeting the mean (third from top) and MLMC targeting
the scalarization (bottom) to the initial setting without any wake steering (top).

First of all, we observe that all approaches clearly try to steer the turbines to reduce
wake effects. We further note that objectives Rf2 for all approaches are negative; this
means that the standard deviation term is dominating the optimization. Regarding
the objective values, we see that MLMC targeting the scalarization (bottom) results in
the largest objective value. We also observe that our approach, MLMC targeting the
scalarization, results in the smallest value for VTP out of all approaches. This comes
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Figure 19.15: Flowfield for different optimal designs found for the different approaches for
Eq. 19.11. We compare optimization results for standard MC (second from
top), MLMC targeting the mean (third from top) and MLMC targeting the
scalarization (bottom) to the initial setting without any wake steering (top).

The values of interest for the objective Rf2 , ATP and VTP for each approach are
given in the title of each plot in MW.

with the trade-off of a smaller ATP value, which we expect from a robust optimization
scenario. The largest ATP value is found by MC, but its overall objective value Rf2 is
smaller compared to MLMC targeting the scalarization. MLMC targeting the mean has
neither the largest objective nor does it find the best result for ATP or VTP.

Regarding the resulting power output, we point out that we actually decrease the
average total power production of this wind power plant by approximately 5% by mov-
ing the turbines. This is a result of our more conservative optimization formulation.
However, at the same time, we also decrease the variation in the power production by
almost 6%. This is a reasonable formulation in practice if the total power production is
not the limiting factor, whereas power spikes should be avoided.

We conclude that our new approach is able to improve the results compared to stan-
dard MC, but also specifically compared to the classical MLMC approach, which targets
the mean estimator. By adapting the estimator target to the OUU formulation, we are
able to achieve better results, since the formulation itself is consistent with the problem.
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Lastly, we again see the capabilities of SNOWPAC, being able to converge to a (local)
solution quickly and reliably.
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To love the journey is to accept no such end. I have
found [...] that the most important step a person can
take is always the next one.

—Brandon Sanderson [279]

Part VI

Conclusion & Outlook





OUU is a topic of great significance for domains where robust and dependable so-
lutions are sought or required. This aspect holds particular relevance for industrial
sectors such as the defense, automobile, medical, or construction industry, but also for
the energy sector, as we have demonstrated in this thesis. With advances in modeling,
simulation, and computational capabilities, incorporating uncertainty into the optimiza-
tion process enhances the realism of the obtained results. Driven by these new demands
and possibilities, we introduced three major contributions in this work.

In our first contribution, we presented novel MLMC estimators for variance, standard
deviation, and scalarization (a linear combination of mean and standard deviation). The
motivation to develop these estimators, stems from their particular importance in OUU,
where they enable us to optimize not only statistics such as the mean but also the
standard deviation, seeking robust and reliable solutions. Given that the estimators are
constructed and evaluated repeatedly throughout the optimization process, it becomes
imperative to have precise estimators for the relevant statistics. The standard MLMC
estimator, optimized to achieve target precision for the mean, is, however, generally
insufficient for accurately estimating these statistics. Therefore, the multilevel resource
allocation problem must be adapted to specifically target these alternative statistical
objectives. Deriving the variances for these estimators comprises a significant aspect of
our work. The new estimators also included algorithmic developments, where we itera-
tively compute the resource allocation using an analytic approximation and numerical
optimization. We furthermore developed three estimators for the covariance term in the
scalarization case where we advocated for the use of the Correlation Lift approximation
due to its favorable trade-off between approximation quality and computational cost.
We showcased sampling results for a four-level test problem called Problem 18, where
we conducted a performance comparison between our newly developed estimators and
the MLMC estimator for the mean. To assess their efficacy, we utilized a single-level
MC estimator as a reference and designed the multilevel resource allocation to achieve
a comparable level of accuracy. Our findings demonstrated that our estimators align
more closely with the specific SoI, whereas the mean estimator lacks control beyond
the variance of the mean estimation. At the same time, we were able to reduce the
computational cost compared to classical MC by about a factor of five for this test
benchmark.

In our second major contribution, we presented the stochastic optimization method
SNOWPAC, which builds upon the derivative-free trust-region method NOWPAC. The
method relies on sampling estimators to evaluate the underlying OUU problem. How-
ever, this introduces noisy evaluations, where SNOWPAC offers three solutions. First,
we employed a noise-adapted trust-region management to restrict the trust-region radius
and surrogate model on the noise. Second, we presented GPs as second surrogates to
smoothen noise evaluations and effectively decrease the noise. Here, we derived the best
root-mean-square estimator to balance the sampling and GP evaluations and showed
ways to numerically approximate it. Lastly, since noise evaluations can lead to infeasi-
ble solution, we introduced a feasibility-restoration technique to find feasible solutions.
Based on these extensions, SNOWPAC was shown to be effective in identifying local op-
timal solutions even when confronted with noisy black-box evaluations. To validate its
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performance, we conducted comprehensive benchmark tests. We showed that SNOW-
PAC converges faster and more accurately to a local optimum than existing methods.
Moreover, the newly developed analytic smoothing specifically showed improved results
when high accuracy is required (and higher sample numbers are available). Furthermore,
we presented two extensions to the method to improve its performance for specific cases:
adaptive kernel selection and the use of approximate GPs to handle a large number of
evaluation. While SNOWPAC is particularly well-suited for robust optimization prob-
lems, its versatility extends beyond this scope. Here, we extended SNOWPAC to another
area of application, addressing mixed-integer optimization problems, with a particular
focus on neural network architecture design.

Lastly, in our third contribution, we integrated the newly developed MLMC estima-
tors with SNOWPAC in the Dakota software toolkit. We conducted experiments on two
benchmark problems to assess the impact of these estimators, where we extended both
problems to multilevel cases. The first problem involved a one-dimensional constrained
scenario, Problem 18, with one uncertain variable and four levels, while the second prob-
lem entailed the two-dimensional constrained Rosenbrock function with three uncertain
variables and three levels. Through our analysis, we observed a close alignment between
the results obtained using our new estimators with a standard MC reference solution for
both benchmarks. At the same time we were able to reduce the computational cost by
a factor five for both problems; thus, the cost savings in the sampling directly translates
to OUU. In contrast, the standard MLMC estimator for the mean fell short of achieving
the desired precision, resulting in suboptimal solutions. In the Rosenbrock example, we
also showed that using the MLMC estimator result in a faster convergence and higher
accuracy compared to MC when choosing the same computational cost. Finally, we
presented result for a wake steering problem with three levels in a realistic and complex
application, where we optimized for total power production with reduced variability.
We found improved solutions using our new MLMC approach compared to the MC
solution—for the same computational cost. We increased total power production for the
mean formulation by 20%, whereas we decreased the variation in power production for
the scalarized formulation by 5%, compared to the initial design. Hence, both robust
formulations achieved their goal. In contrast, the classical MLMC targeting the mean
was not able to reduce the objective and performed even worse than the standard MC
approach.

Looking ahead, we envision several future directions for our research. Firstly, with
regards to MLMC estimators, our objective is to broaden their scope to encompass
other formulations that are relevant to robust and reliable optimization problems. This
includes exploring CVaR or quantile estimation, both of which can be expressed using
sampling estimators. We are encouraged by the initial progress made by Ganesh et
al. [127] in this area, which demonstrates promising possibilities. Secondly, our future
work regarding SNOWPAC will include investigating the convergence properties of our
proposed stochastic derivative-free trust-region framework in terms of reaching first-
order critical points. Here, interesting new developments in adaptive sampling [33]
and GP posterior consistency results [198] can be useful. Furthermore, considering the
growing interest in derivative-free OUU, novel algorithms are emerging (e.g., Dzahini
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et al. [104, 105], Rinaldi et al. [273]), which provide an opportunity to validate and
compare SNOWPAC’s performance against these alternative approaches. Lastly, we are
also looking forward to apply MLMC estimators for more applications in OUU. Here, the
extension to multi-fidelity estimators for higher-order moments is of strong interest. This
would enable access to new fields of computationally challenging problems. Additionally,
this opens the door to also include new modelling approaches, like data-driven models,
as low-cost surrogate models.

Taking all these possible future developments into account, let us end this thesis in
the words of Pippin and Gandalf (or J.R.R. Tolkien):

Pippin: ”I didn’t think it would end this way.”
Gandalf: ”End? No, the journey doesn’t end here.[...]”

J.R.R. Tolkien [305]
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”Well, you can go on looking forward,” said Gan-
dalf. ”There may be many unexpected feasts ahead
of you.”

—J.R.R. Tolkien [304]

Part VII

Appendix





A Multilevel methods

A.1 Proof for optimal resource allocation for multilevel Monte
Carlo mean estimator

Referenced in Lemma 6.

Proof. The optimization problem is given as:

∗
NE
` = arg min

NE
`

CE
T :=

L∑
`=1

C`N
E
` ,

s.t. V[µ̂1,ML] = ε2E,

(A.1)

where V[µ̂1,ML] =
∑L

`=1
1
NE
`

V[Q` −Q`−1].

We employ the method of Lagrange multiplier for equality constraint problems and
form the Lagrange function

L(NE
` , λ) =

L∑
`=1

C`N
E
` + λ2(

L∑
`=1

1

NE
`

µ̂2[Q` −Q`−1]− ε2E). (A.2)

Next, we compute the partial derivatives for {NE
` }Li=1 and λ and set them to 0

∂L

∂NE
1

= C1 − λ2 1

(NE
1 )2

µ̂2[Q1 −Q0]
!

= 0

...

∂L

∂NE
L

= CL − λ2 1

(NE
L)2

µ̂2[QL −QL−1]
!

= 0

∂L

∂λ2
=

L∑
`=1

1

NE
`

µ̂2[Q` −Q`−1]− ε2E
!

= 0.

(A.3)

For ∂L
∂NE

`

, we get NE
` = λ

√
µ̂2[Q`−Q`−1]

C`
.
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We plug this into the last equation:

L∑
`=1

1

NE
`

µ̂2[Q` −Q`−1]− ε2E=0

⇔ 1

λ

L∑
`=1

√
C`

µ̂2[Q` −Q`−1]
µ̂2[Q` −Q`−1]− ε2E=0

⇔ 1

λ

L∑
`=1

√
C`µ̂2[Q` −Q`−1]=ε2E

⇔ λ = ε−2
E

L∑
`=1

√
C`µ̂2[Q` −Q`−1].

(A.4)
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Most of the following properties, identities and equation can be found in [254] and [141].

B.1 Matrix properties

B.1.1 Woodbury identity

Referenced in Section 17.2 and Eq. (17.33).
We find different version of the Woodbury identity in literature [254]:

(A + CBCT )−1 = A−1 −A−1C(B−1 + CTA−1C)−1CTA−1 (B.1)

(A + UBVT )−1 = A−1 −A−1U(B−1 + VTA−1U)−1VTA−1 (B.2)

B.1.2 Matrix derivatives and determinant

We decribe different rules regarding the derivative of a matrix and its determinant [254]:

∂(αX) = α(∂X), α ∈ R (B.3)

∂Tr(X) = Tr(∂X) (B.4)

∂X−1 = X−1(∂X)X−1 (B.5)

∂|X| = |X|Tr(X−1∂X) (B.6)

∂(log |X|) = Tr(X−1∂X) (B.7)

∂XT = (∂X)T (B.8)

B.2 Drawing functions from covariance kernel

Referenced in Section 7.1.
A covariance function represents a distribution over functions and employing it, we

can draw samples from this function space. The following steps show how to sample a
function by using the mean and covariance function:

Goal: Sample y ∼ N (y|m,K(X,X)).

1 Compute K(X,X) for sample location xi, i = 1, ..., n.

2.a Cholesky decomposition: K = LLT .
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2.b LDL decomposition: K = L′DL′T = L′D
1
2 (L′D

1
2 )T = LLT .

3. Generate: u ∼ N (u|0, I).

4. Compute: y = m + Lu.

B.3 Gaussian distribution properties for marginal distributions

Referenced in Section 7.2.
Given a marginal Gaussian distribution for x

p(x) = N (x|µ,Λ−1), (B.9)

and a conditional Gaussian distribution for y conditioned on x

p(y|x) = N (y|Ax + b,L−1). (B.10)

Then the marginal distribution of y is given by

p(y) = N (y|Aµ+ b,L−1 + AΛ−1AT ), (B.11)

and conditional distribution of x given y is given by

p(y) = N (y|Aµ+ b,L−1 + AΛ−1AT ),

p(x|y) = N (x|Σ(ATL(y − b) + Λµ),Σ),
(B.12)

with
Σ = (Λ + ATLA)−1. (B.13)

Further details can also be found in [47] and [269].

B.4 Conditional distribution of multivariate gaussians

Referenced in Section 7.2.

Lemma 23. Given a multivariate normal vector y ∼ N (y|µ,Σ), which can be parti-
tioned as

y =

[
y1

y2

]
, µ =

[
µ1

µ2

]
, (B.14)

and similarly

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (B.15)

The conditioned distribution of y2 conditioned on y1 is given as

y2|y1 ∼ N (y2|µ,Σ) (B.16)

where

µ = µ2 + Σ21Σ
−1
11 (y1 − µ1),

Σ = Σ22 −Σ21Σ
−1
11 Σ12.

(B.17)
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B.4 Conditional distribution of multivariate gaussians

Proof. Specific properties for multivariate Gaussians, which are used in the following are
described in [47, 269, 254].

We define z := y2 + Ay1, where A = −Σ21Σ
−1
11 and write

Cov[(, ]z,y1) = Cov[(, ]y2,y1) + Cov[(, ]Ay1,y1)

= Σ21 + AV[y1]

= Σ21 −Σ21Σ
−1
11 Σ11

= 0.

(B.18)

This implies that z and y1 are uncorrelated and, thus, independent. Employing the
linearity of the expected value, we derive the expected value of z as

E[z] = E[y2 + Ay1]

= E[y2] + AE[y1]

= µ2 + Aµ1,

(B.19)

and it follows

E[y2|y1] = E[z−Ay1|y1]

= E[z|y1]− E[Ay1|y1]

= E[z]−Ay1

= µ2 + Aµ1 −Ay1

= µ2 + A(µ1 − y1)

= µ2 + Σ21Σ
−1
11 (y1 − µ1).

(B.20)

We assume a mean of 0 without loss of generality.

We have the following relationship for the covariance matrix

V[y2|y1] = V[z−Ay1|y1]

= V[z|y1] + V[Ay1|y1]−ACov[(, ]z,−y1)− Cov[(, ]z,−y1)AT

= V[z|y1]

= V[z].

(B.21)

We prove the conditional variance employing above properties as

V[y2|y1] = V[z] = V[y2 + Ay1] =

= V[y2] + AV[y1]AT + ACov[(, ]y2,y1) + Cov[(, ]y1,y2)AT

= Σ22 + Σ21Σ
−1
11 Σ11Σ

−1
11 Σ12 − 2Σ21Σ

−1
11 Σ12

= Σ22 + Σ21Σ
−1
11 Σ12 − 2Σ21Σ

−1
11 Σ12

= Σ22 −Σ21Σ
−1
11 Σ12.

(B.22)
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B.5 Marginal likelihood optimization

B.5.1 Derivatives of log marginal likelihood terms

Referenced in Section 17.2.

We present the derivatives of different terms of the log marginal likelihood for aGP.
We limit ourselves to FITC though these results similarly extend to SOR and DTC. We
start off defining the different terms:

L1 := log |Λ + σn
2I|,

L2 := log |KUU|,
L3 := log |KUU + KUX(Λ + σn

2I)−1KXU|,
L4 := yTΓ−1y,

(B.23)

where Γ = (KXUK−1
UUKUX + Λ + σn

2I) is the noise matrix. The gradient is computed

with respect to the hyperparamter vector ψaGP = [σfn, l1, ..., lD,U]. A matrix derivative
is abbreviated as Ȧ := ∂A

∂ψAGP
for convenience.

The derivative of L1, where Λ = diag(KXX −KXUK−1
UUKUX) is given as:

∂L1

∂ψAGP

=
∂

∂ψAGP

(log |Λ + σn
2I|)

= Tr
(

(Λ + σn
2I)−1Λ̇

)
= Tr

(
(Λ + σn

2I)−1

diag( ˙KXX − ˙KXUK−1
UUKUX + KXUK−1

UU
˙KUUK−1

UUKUX −KXUK−1
UU

˙KUX)︸ ︷︷ ︸
Λ̇

)
.

(B.24)

The derivative for L2 is given as:

∂L2

∂ψAGP

=
∂

∂ψAGP

(log |KUU|)

= Tr(K−1
UU

˙KUU).

(B.25)
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The derivative for L3 is given as:

∂L3

∂ψAGP

=
∂

∂ψAGP

(log |KUU + KUX(Λ + σn
2I)−1KXU|)

= Tr
(

(KUU + KUX(Λ + σn
2I)−1KXU)−1 ∂

∂ψAGP

(KUU + KUX(Λ + σn
2I)−1KXU)

)
= Tr

(
(KUU + KUX(Λ + σn

2I)−1KXU)−1[ ˙KUU +
∂

∂ψAGP

(KUX(Λ + σn
2I)−1KXU)]

)
= Tr

(
(KUU + KUX(Λ + σn

2I)−1KXU)−1

[ ˙KUU + ˙KUX(Λ + σn
2I)−1KXU + KUX(Λ + σn

2I)−1 ˙KXU

−KUX(Λ + σn
2I)−1Λ̇(Λ + σn

2I)−1KUX]
)
.

(B.26)

The derivative for L4 is given as:

∂L4

∂ψAGP

=
∂

∂ψAGP

(yTΓ−1y)

= −yTΓ−1Γ̇Γ−1y

= −yTΓ−1 ∂

∂ψAGP

(KXUK−1
UUKUX + Λ + σn

2I)Γ−1y

= −yTΓ−1(
∂

∂ψAGP

(KXUK−1
UUKUX) + Λ̇)Γ−1y

= −yTΓ−1

( ˙KXUK−1
UUKUX −KXUK−1

UU
˙KUUK−1

UUKUX + KXUK−1
UU

˙KUX + Λ̇)

Γ−1y.

(B.27)

The derivatives of the different kernel matrices are given in App. B.5.2.

B.5.2 Derivatives of kernel matrices

Referenced in Section 17.2.

We present the derivatives of the kernel matrices KXX,KXU,KUX,KUU in relation
to the hyperparameters ψaGP = [σfn, l1, ..., lD,U]. It is essential to acknowledge that
these derivations are based on the application of the squared exponential kernel. This
kernel can be expressed as a product over one dimension, a characteristic that we exploit
throughout this chapter. The kernel is defined as:

k(xi,xj) = σ2
f

D∏
d=1

exp

(
(x

(d)
i − x

(d)
j )2

2l−1
d

)
. (B.28)
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B Gaussian processes

We compute the individual partial derivatives for σ2
f and l as:

∂k(xi,xj)

∂σ2
f

=
D∏
d=1

exp

(
(x

(d)
i − x

(d)
j )2

2l−1
d

)
,

∂k(xi,xj)

∂lk
= σ2

f

(x
(k)
i − x

(k)
j )2

2l2k

D∏
d=1

exp

(
(x

(d)
i − x

(d)
j )2

2l−1
d

)
.

(B.29)

This requires that xi is an element of X or U. . We then calculate the matrix derivatives
∂KXX

∂σ2
f

, ∂KXU

∂σ2
f

, ∂KUX

∂σ2
f

, ∂KXX
∂lk

, ∂KXU
∂lk

, and ∂KUX
∂lk

by applying the derived partial derivatives

to each constituent element.

The derivatives of the induced points are given as:

∂k(ui,uj)

∂u
(k)
i

= −
(u

(k)
i − u

(k)
j )

lk

D∏
d=1

exp

(
(u

(d)
i − u

(d)
j )2

2l−1
d

)
,

∂k(ui,ui)

∂u
(k)
i

= 1,

∂k(ui,uj)

∂u
(k)
h

= 0, h 6= i, h 6= j,

∂k(ui,xj)

∂u
(k)
i

= −
(u

(k)
i − x

(k)
j )

lk

D∏
d=1

exp

(
(u

(d)
i − x

(d)
j )2

2l−1
d

)
.

(B.30)
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B.5 Marginal likelihood optimization

The resulting matrices of different combinations of X and U are given as:

∂KUU

∂u
(k)
i

=



0 · · · ∂k(u1,uj)

∂u
(k)
i

· · · 0

...
. . .

...
...

∂k(ui,u1)

∂u
(k)
i

· · · ∂k(ui,ui)

∂u
(k)
i

· · · ∂k(ui,uM )

∂u
(k)
i

...
...

. . .
...

0 · · · ∂k(uM ,uj)

∂u
(k)
i

· · · 0



=



0 · · · ∂k(u1,uj)

∂u
(k)
i

· · · 0

...
. . .

...
...

∂k(ui,u1)

∂u
(k)
i

· · · 1 · · · ∂k(ui,uM )

∂u
(k)
i

...
...

. . .
...

0 · · · ∂k(uM ,uj)

∂u
(k)
i

· · · 0


,

∂KUX

∂u
(k)
i

=



0 · · · 0 · · · 0
...

. . .
...

...
∂k(ui,u1)

∂u
(k)
i

· · · ∂k(ui,ui)

∂u
(k)
i

· · · ∂k(ui,uM )

∂u
(k)
i

...
...

. . .
...

0 · · · 0 · · · 0


,

∂KXU

∂u
(k)
i

= (
∂KUX

∂u
(k)
i

)T

(B.31)
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C Multilevel Monte Carlo for higher order
moments

C.1 Proof: Unbiased estimator for variance

Referenced in Lemma 7.

Proof.

E[µ̂2] = E
[

1

N − 1

N∑
i=1

(Q(i) − µ̂1)2

]
=

1

N − 1

N∑
i=1

E
[
(Q(i))2 − 2Q(i)µ̂1 + µ̂2

1

]

=
1

N − 1

N∑
i=1

E
[
(Q(i))2

]
− E

[
2Q(i)µ̂1

]
+ E

[
µ̂2

1

]

=
1

N − 1

N∑
i=1

V
[
Q(i)

]
+ E

[
Q(i)

]2

− 2E
[
Q(i) 1

N

N∑
j=1

Q(j)

]

+ E
[

1

N

1

N

N∑
i=1

N∑
j=1

Q(i)Q(j)

]

=
1

N − 1

N∑
i=1

V[Q] + E[Q]2 − 2
1

N

(
E[Q2] + (N − 1)E[Q]2

)
+

1

N
(E[Q2] + (N − 1)E[Q]2)

=
1

N − 1

N∑
i=1

V[Q] + E[Q]2 − 1

N
E[Q2]− N − 1

N
E[Q]2

=
1

N − 1

N∑
i=1

V[Q] +
1

N
E[Q]2 − 1

N
E[Q2]

=
1

N − 1

N∑
i=1

V[Q]− 1

N
V[Q] =

1

N − 1

N∑
i=1

N − 1

N
V[Q]

= V[Q].

(C.1)
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C Multilevel Monte Carlo for higher order moments

C.2 Proof: Unbiased estimator for variance of variance

Referenced in Lemma 8.

Proof.

E
[

(N − 1)

N2 − 2N + 3

(
µ̂4 −

N − 3

N − 1
µ̂2

2

)]
=

(N − 1)

N2 − 2N + 3

(
E[µ̂4]− (N − 3)

(N − 1)
E[µ̂2

2]

)
=

(N − 1)

N2 − 2N + 3

(
µ4 −

N − 3

N − 1
E[µ̂2

2]

)
=

(N − 1)

N2 − 2N + 3

(
µ4 −

N − 3

N − 1

[
1

N

(
µ4 −

N − 3

N − 1
µ2

2

)
+ µ2

2

])
=

(N − 1)

N2 − 2N + 3

(
µ4 −

N − 3

N(N − 1)
µ4 +

(N − 3)2

N(N − 1)2
µ2

2 −
N − 3

N − 1
µ2

2

)
=

(N − 1)

N2 − 2N + 3

[(
1− N − 3

N(N − 1)

)
µ4 −

(
1− (N − 3)

N(N − 1)

)
(N − 3)

(N − 1)
µ2

2

]
=

(N − 1)

N2 − 2N + 3

(
1− N − 3

N(N − 1)

)
1

N

(
µ4 −

(N − 3)

(N − 1)
µ2

2

)
=

(N − 1)

N2 − 2N + 3

(
N2 − 2N + 3

N(N − 1)

)(
µ4 −

(N − 3)

(N − 1)
µ2

2

)
=

1

N

(
µ4 −

(N − 3)

(N − 1)
µ2

2

)
(C.2)
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C.3 Proof: Unbiased estimator for fourth central moment

C.3 Proof: Unbiased estimator for fourth central moment

Referenced in Lemma 9.

Proof. A biased estimator for the fourth central moment is given in [101, p.268, after
eq. (6)] as

E[µ̂4,biased] =
(N − 1)(N2 − 3N + 3)

N3
µ4 +

3(2N − 3)(N − 1)

N3
µ2

2

⇔µ4 =
1

N2 − 3N + 3

(
N3

N − 1
E[µ̂4,biased]− (6N − 9)µ2

2

)
.

(C.3)

Note that this is an unbiased estimator only if we use the exact value for µ2 since µ2
2 is

unbiased while µ̂2
2 is not. Therefore, we need an unbiased estimator for µ̂2

2 and we know
that

E[µ̂2
2] = V[µ̂2] + E[µ̂2]2

=
1

N

(
µ4 −

N − 3

N − 1
µ2

2

)
+ µ2

2.
(C.4)

Using both (C.3) and (C.4) we get the result

E


1

(N2 − 3N + 3)− (6N−9)(N2−N)
N(N2−2N+3)︸ ︷︷ ︸

(∗)

(
N3

N − 1
µ̂4,biased −

(6N − 9)(N2 −N)

N2 − 2N + 3
µ̂2

2

)


= (∗)
(

N3

N − 1
E[µ̂4,biased]− (6N − 9)(N2 −N)

N2 − 2N + 3
E[µ̂2

2]

)
= (∗)

(
N3

N − 1
E[µ̂4,biased]− (6N − 9)(N2 −N)

N2 − 2N + 3

[
1

N
(µ4 −

N − 3

N − 1
µ2

2) + µ2
2

])
= (∗)

(
N3

N − 1

[
(N − 1)(N2 − 3N + 3)

N3
µ4 +

3(2N − 3)(N − 1)

N3
µ2

2

]
−

(6N − 9)(N2 −N)

N2 − 2N + 3

[
1

N
(µ4 −

N − 3

N − 1
µ2

2) + µ2
2

])
= µ4.

(C.5)
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C Multilevel Monte Carlo for higher order moments

C.4 Proof: Delta method

Referenced in Lemma 10.

Proof. We can find an approximation by using a Taylor expansion of g(X) around µ1,
s.t.

g(X) = g(µ1) + g′(µ1)(X − µ1) + g′′(µ1)
(X − µ1)2

2!
+ ..., (C.6)

where we drop the higher terms to get

g(X) ≈ g(µ1) + g′(µ1)(X − µ1). (C.7)

Taking the variance on both sides yields

V[g(X)] ≈ V[g(µ1)] + V[g′(µ1)(X − µ1)] = g′(X)2V[X]. (C.8)

Denoting X := µ̂2 and g(X) :=
√
X, we get

V
[√

µ̂2

]
≈

(
1

2
√
µ̂2

)2

V[µ̂2] =
1

4µ̂2
V[µ̂2]. (C.9)

C.5 Proof: Covariance of variance

Referenced in Lemma 11.

Proof. Change to centered moments using Z
(i)
` = Q

(i)
` − µ̂1,` and Z

(i)
`−1 = Q

(i)
`−1 − µ̂1,`−1:

µ̂2,` =
1

N` − 1

N∑̀
i=1

Z
(i)
`

2
− 1

N`(N` − 1)

(
N∑̀
i=1

Z
(i)
`

)2

(C.10)

µ̂2,`−1 =
1

N` − 1

N∑̀
i=1

Z
(i)
`−1

2
− 1

N`(N` − 1)

(
N∑̀
i=1

Z
(i)
`−1

)2

(C.11)

Plug back in, and split up covariance

Cov[µ̂2,`, µ̂2,`−1] =
1

(N`−1)2
Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
(c1)

− 1

N`(N`−1)2
Cov

 N∑̀
i=1

Z
(i)
`

2
,

(
N∑̀
i=1

Z
(i)
`−1

)2
 (c2)

− 1

N`(N`−1)2
Cov

( N∑̀
i=1

Z
(i)
`

)2

,

N∑̀
i=1

Z
(i)
`−1

2

 (c3)

+
1

N2
` (N`−1)2

Cov

( N∑̀
i=1

Z
(i)
`

)2

,

(
N∑̀
i=1

Z
(i)
`−1

)2
 . (c4)
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C.5 Proof: Covariance of variance

Solve the four different terms independently:

(c1) Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
= N`Cov[Z`

2, Z`−1
2]

= N`Cov[Q`
2 − 2Q`µ1,` + µ1,`

2, Q`−1
2 − 2Q`−1µ1,`−1 + µ1,`−1

2]

= N`

(
Cov[Q`

2, Q`−1
2]− 2µ1,`−1Cov[Q`

2, Q`−1]− 2µ1,`Cov[Q`, Q`−1
2]

+ 4µ1,`µ1,`−1Cov[Q`, Q`−1]

)
.

(c2) Cov

 N∑̀
i=1

Z
(i)
`

2
,

(
N∑̀
i=1

Z
(i)
`−1

)2
 = Cov

 N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

N∑̀
j=1

Z
(i)
`−1Z

(j)
`−1


= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
+ Cov

 N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1


= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
= (c1)

since (making use of centered Z and independence of Z
(i)
`−1 to Z

(j)
`−1)

Cov

 N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1


= E

( N∑̀
i=1

Z
(i)
`

2

)
N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1

− E

[
N∑̀
i=1

Z
(i)
`

2

]
E

 N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1


= E

( N∑̀
i=1

Z
(i)
`

2

)
N∑̀
i=1

Z
(i)
`−1

N∑̀
j=1,j 6=i

Z
(j)
`−1

− E

[
N∑̀
i=1

Z
(i)
`

2

]
E

 N∑̀
i=1

Z
(i)
`−1

N∑̀
j=1,j 6=i

Z
(j)
`−1


= E

[(
N∑̀
i=1

Z
(i)
`

2

)
N∑̀
i=1

Z
(i)
`−1

]
E

 N∑̀
j=1,j 6=i

Z
(j)
`−1

− E

[
N∑̀
i=1

Z
(i)
`

2

]
E

[
N∑̀
i=1

Z
(i)
`−1

]

E

 N∑̀
j=1,j 6=i

Z
(j)
`−1

 = E

[(
N∑̀
i=1

Z
(i)
`

2

)
N∑̀
i=1

Z
(i)
`−1

]
N∑̀

j=1,j 6=i
E[Z

(j)
`−1]︸ ︷︷ ︸

=0

− E

[
N∑̀
i=1

Z
(i)
`

2

]
E

[
N∑̀
i=1

Z
(i)
`−1

]
N∑̀

j=1,j 6=i
E[Z

(j)
`−1]︸ ︷︷ ︸

=0

= 0
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C Multilevel Monte Carlo for higher order moments

(c3) Cov

( N∑̀
i=1

Z
(i)
`

)2

,

N∑̀
i=1

Z
(i)
`−1

2

 = Cov

 N∑̀
i=1

N∑̀
j=1

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

Z
(i)
`−1

2


= Cov

 N∑̀
i=1

Z
(i)
`

2
+

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

Z
(i)
`−1

2


= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
+ Cov

 N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

Z
(i)
`−1

2


= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
+ Cov

 N∑̀
i=1

Z
(i)
`

N∑̀
j=1,j 6=i

Z
(j)
` ,

N∑̀
i=1

Z
(i)
`−1

2


= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
+ E

 N∑̀
i=1

Z
(i)
`

N∑̀
j=1,j 6=i

Z
(j)
`

N∑̀
i=1

Z
(i)
`−1

2


− E

 N∑̀
i=1

Z
(i)
`

N∑̀
j=1,j 6=i

Z
(j)
`

E

[
N∑̀
i=1

Z
(i)
`−1

2

]

= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
+ E

[
N∑̀
i=1

Z
(i)
`

N∑̀
i=1

Z
(i)
`−1

2

]
E

 N∑̀
j=1,j 6=i

Z
(j)
`


− E

[
N∑̀
i=1

Z
(i)
`

]
E

 N∑̀
j=1,j 6=i

Z
(j)
`

E

[
N∑̀
i=1

Z
(i)
`−1

2

]

= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
= (c1), since E[Z

(i)
` ] = 0.
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C.5 Proof: Covariance of variance

(c4) Cov

( N∑̀
i=1

Z
(i)
`

)2

,

(
N∑̀
i=1

Z
(i)
`−1

)2


= Cov

 N∑̀
i=1

N∑̀
j=1

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

N∑̀
j=1

Z
(i)
`−1Z

(j)
`−1


= Cov

 N∑̀
i=1

Z
(i)
`

2
+

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

Z
(i)
`−1

2
+

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1


= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
+ Cov

 N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1


︸ ︷︷ ︸

=0

+ Cov

 N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

Z
(i)
`−1

2


︸ ︷︷ ︸

=0

+ Cov

 N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1


= Cov

[
N∑̀
i=1

Z
(i)
`

2
,

N∑̀
i=1

Z
(i)
`−1

2

]
︸ ︷︷ ︸

=(c1)

+ Cov

 N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1


= (c1) + Cov

 N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
` Z

(j)
` ,

N∑̀
i=1

N∑̀
j=1,j 6=i

Z
(i)
`−1Z

(j)
`−1


= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

Cov
[
Z

(i)
` Z

(j)
` , Z

(i)
`−1Z

(j)
`−1

]

= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

E[Z
(i)
` Z

(j)
` Z

(i)
`−1Z

(j)
`−1]− E[Z

(i)
` Z

(j)
` ]E[Z

(i)
`−1Z

(j)
`−1]

= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

E[Z
(i)
` Z

(i)
`−1]E[Z

(j)
` Z

(j)
`−1]− E[Z

(i)
` ]E[Z

(j)
` ]E[Z

(i)
`−1]E[Z

(j)
`−1]

= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

E[Z
(i)
` Z

(i)
`−1]E[Z

(j)
` Z

(j)
`−1]
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(c4) cont. = (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

E[Z
(i)
` Z

(i)
`−1]E[Z

(j)
` Z

(j)
`−1]

= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

E
[
(Q

(i)
` − µ1,`)(Q

(i)
`−1 − µ1,`−1)

]
E
[
(Q

(j)
` − µ1,`)(Q

(j)
`−1 − µ1,`−1)

]
= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

(
E[Q

(i)
` Q

(i)
`−1]− E[Q

(i)
` µ1,`−1]

− E[µ1,`Q
(i)
`−1] + E[µ1,`µ1,`−1]

)
(
E[Q

(j)
` Q

(j)
`−1]− E[Q

(j)
` µ1,`−1]− E[µ1,`Q

(j)
`−1] + E[µ1,`µ1,`−1]

)
= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

(
E[Q

(i)
` Q

(i)
`−1]− E[Q

(i)
` ]µ1,`−1

− µ1,`E[Q
(i)
`−1] + µ1,`µ1,`−1

)
(
E[Q

(j)
` Q

(j)
`−1]− E[Q

(j)
` ]µ1,`−1 − µ1,`E[Q

(j)
`−1] + µ1,`µ1,`−1

)
= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

(
E[Q

(i)
` Q

(i)
`−1]

− µ1,`µ1,`−1 − µ1,`µ1,`−1 + µ1,`µ1,`−1

)
(
E[Q

(j)
` Q

(j)
`−1]− µ1,`µ1,`−1 − µ1,`µ1,`−1 + µ1,`µ1,`−1

)
= (c1) +

N∑̀
i=1

N∑̀
j=1,j 6=i

(
E[Q

(i)
` Q

(i)
`−1]− µ1,`µ1,`−1

)
(
E[Q

(j)
` Q

(j)
`−1]− µ1,`µ1,`−1

)
= (c1) +N`N`−1(E[Q`Q`−1]− µ1,`µ1,`−1)2.
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C.5 Proof: Covariance of variance

Combine all terms and simplify:

Cov[µ̂2,`, µ̂2,`−1] =
1

(N`−1)2
N`

(
Cov[Q`

2, Q`−1
2]− 2µ1,`−1Cov[Q`

2, Q`−1]

− 2µ1,`Cov[Q`, Q`−1
2] + 4µ1,`µ1,`−1Cov[Q`, Q`−1]

)
(c1)

− 1

N`(N`−1)2
N`

(
Cov[Q`

2, Q`−1
2]− 2µ1,`−1Cov[Q`

2, Q`−1]

− 2µ1,`Cov[Q`, Q`−1
2] + 4µ1,`µ1,`−1Cov[Q`, Q`−1]

)
(c2)

− 1

N`(N`−1)2
N`

(
Cov[Q`

2, Q`−1
2]− 2µ1,`−1Cov[Q`

2, Q`−1]

− 2µ1,`Cov[Q`, Q`−1
2] + 4µ1,`µ1,`−1Cov[Q`, Q`−1]

)
(c3)

+
1

N2
` (N`−1)2

[
N`

(
Cov[Q`

2, Q`−1
2]− 2µ1,`−1Cov[Q`

2, Q`−1]

− 2µ1,`Cov[Q`, Q`−1
2] + 4µ1,`µ1,`−1Cov[Q`, Q`−1]

)
+N`(N`−1)(E[Q`Q`−1]− µ1,`µ1,`−1)2

]
(c4)

=
N2
` − 2N` + 1

N`(N`−1)2

(
Cov[Q`

2, Q`−1
2]− 2µ1,`−1Cov[Q`

2, Q`−1]

− 2µ1,`Cov[Q`, Q`−1
2] + 4µ1,`µ1,`−1Cov[Q`, Q`−1]

)
+

1

N`(N`−1)
(E[Q`Q`−1]− µ1,`µ1,`−1)2

=
1

N`

(
Cov[Q`

2, Q`−1
2]− 2µ1,`−1Cov[Q`

2, Q`−1]

− 2µ1,`Cov[Q`, Q`−1
2] + 4µ1,`µ1,`−1Cov[Q`, Q`−1]

)
+

1

N`(N`−1)
(E[Q`Q`−1]− µ1,`µ1,`−1)2.
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Substitute covariance term and µ by expected value

Cov[µ̂2,`, µ̂2,`−1] =
1

N`

(
Cov[Q`

2, Q`−1
2]− 2µ1,`−1Cov[Q`

2, Q`−1]

− 2µ1,`Cov[Q`, Q`−1
2] + 4µ1,`µ1,`−1Cov[Q`, Q`−1]

)
+

1

N`(N`−1)
(E[Q`Q`−1]− µ1,`µ1,`−1)2

=
1

N`

(
E[Q`

2Q`−1
2]− E[Q`

2]E[Q`−1
2]

− 2E[Q`−1](E[Q`
2Q`−1]− E[Q`

2]E[Q`−1])

− 2E[Q`](E[Q`Q`−1
2]− E[Q`]E[Q`−1

2])

+ 4E[Q`]E[Q`−1](E[Q`Q`−1]− E[Q`]E[Q`−1])

)
+

1

N`(N`−1)

(
E[Q`Q`−1]2 − 2E[Q`Q`−1]E[Q`]E[Q`−1]

+ E[Q`]
2E[Q`−1]2

)
=

1

N`

(
E[Q`

2Q`−1
2]− E[Q`

2]E[Q`−1
2]

− 2E[Q`−1]E[Q`
2Q`−1] + 2E[Q`−1]2E[Q`

2]

− 2E[Q`]E[Q`Q`−1
2] + 2E[Q`]

2E[Q`−1
2]

+ 4E[Q`]E[Q`−1]E[Q`Q`−1]− 4E[Q`]
2E[Q`−1]2)

)
+

1

N`(N`−1)

(
E[Q`Q`−1]2 − 2E[Q`Q`−1]E[Q`]E[Q`−1]

+ (E[Q`]E[Q`−1])2

)
.
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C.6 Proof: Unbiased estimator for expected value of product of means

C.6 Proof: Unbiased estimator for expected value of product
of means

Referenced in Lemma 12.

Proof.

E[µ̂1,`µ̂1,`−1] = E
[

N`

N` − 1
(µ̂1,`µ̂1,`−1)biased −

1

N` − 1
µ̂1,`[Q`Q`−1]

]
=

N`

N` − 1
E
[
(µ̂1,`µ̂1,`−1)biased

]
− 1

N` − 1
E
[
µ̂1,`[Q`Q`−1]

]
=

N`

N` − 1
E
[

1

N2
`

N∑̀
i=1

N∑̀
j=1

Q
(i)
` Q

(j)
`−1

]
− 1

N` − 1
E
[

1

N`

N∑̀
i=1

Q
(i)
` Q

(i)
`−1

]

=
N`

N` − 1

1

N2
`

N∑̀
i=1

N∑̀
j=1

E
[
Q

(i)
` Q

(j)
`−1

]
− 1

N` − 1

1

N`

N∑̀
i=1

E
[
Q

(i)
` Q

(i)
`−1

]

=
N`

N` − 1

1

N2
`

N∑̀
i=1

E
[
Q

(i)
` Q

(i)
`−1

]

+
N`

N` − 1

1

N2
`

N∑̀
i=1

N∑̀
j=1,j 6=i

E
[
Q

(i)
`

]
E
[
Q

(j)
`−1

]

− 1

N` − 1

1

N`

N∑̀
i=1

E
[
Q

(i)
` Q

(i)
`−1

]
=

1

N` − 1
E
[
Q`Q`−1

]
+ E

[
Q`

]
E
[
Q`−1

]
− 1

N` − 1
E
[
Q`Q`−1

]
= E

[
Q`

]
E
[
Q`−1

]
.

(C.12)
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C.7 Proof: Unbiased estimator for expected value of triple
product of means

Referenced in Lemma 13.

Proof.

E
[
µ̂1,`1 µ̂1,`2 µ̂1,`3

]
= E

[
N2
`

(N` − 1)(N` − 2)
(µ̂1,`1 µ̂1,`2 µ̂1,`3)biased

− 1

(N` − 1)(N` − 2)
µ̂1,`[Q`1Q`2Q`3 ]− 1

N` − 2

(
µ̂1,`[Q`1Q`2 ]µ̂1,`[Q`3 ]

+ µ̂1,`[Q`1Q`3 ]µ̂1,`[Q`2 ] + µ̂1,`[Q`2Q`3 ]µ̂1,`[Q`1 ]

)]
=

N2
`

(N` − 1)(N` − 2)
E
[
(µ̂1,`1 µ̂1,`2 µ̂1,`3)biased

]
− 1

N` − 2

(
E
[
µ̂1,`[Q`1Q`2 ]µ̂1,`[Q`3 ]

]
− 1

(N` − 1)(N` − 2)
E
[
µ̂1,`[Q`1Q`2Q`3 ]

]
+ E

[
µ̂1,`[Q`1Q`3 ]µ̂1,`[Q`2 ]

]
+ E

[
µ̂1,`[Q`2Q`3 ]µ̂1,`[Q`1 ]

])
=

N2
`

(N` − 1)(N` − 2)

1

N3
`

N∑̀
i=1

N∑̀
j=1

N∑̀
k=1

E[Q
(i)
`1
Q

(j)
`2
Q

(k)
`3

]

− 1

(N` − 1)(N` − 2)
E
[
Q`1Q`2Q`3

]
− 1

N` − 2

(
E
[
Q`1Q`2

]
E
[
Q`3

]
+ E

[
Q`1Q`3

]
E
[
Q`2

]
+ E

[
Q`2Q`3

]
E
[
Q`1

])
=

1

N`(N` − 1)(N` − 2)

(
N`(N` − 1)(N` − 2)µ1,`1µ1,`2µ1,`3 (case: i 6= j 6= k)

+N`(N` − 1)E[Q`1Q`2 ]E[Q`3 ] (case: i == j 6= k)

+N`(N` − 1)E[Q`1Q`3 ]E[Q`2 ] (case: i == k 6= j)

+N`(N` − 1)E[Q`2Q`3 ]E[Q`1 ] (case: j == k 6= i)

+N`E[Q`1Q`2Q`3 ]

)
− 1

(N` − 1)(N` − 2)
E
[
Q`1Q`2Q`3

]
− 1

N` − 2

(
E
[
Q`1Q`2

]
E
[
Q`3

]
+ E

[
Q`1Q`3

]
E
[
Q`2

]
+ E

[
Q`2Q`3

]
E
[
Q`1

])
= µ1,`1µ1,`2µ1,`3 .

(C.13)
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C.8 Proof: Unbiased estimator for expected value of quadruple product of means

C.8 Proof: Unbiased estimator for expected value of quadruple
product of means

Referenced in Lemma 14.

Proof.

E
[
µ̂2

1,`µ̂
2
1,`−1

]
= E

[
N3
`

(N` − 1)(N` − 2)(N` − 3)
(µ̂2

1,`µ̂
2
1,`−1)biased

− 1

N` − 3

(
µ̂1,`[Q`

2]µ̂1,`[Q`−1]2 + 4µ̂1,`[Q`Q`−1]µ̂1,`[Q`]µ̂1,`[Q`−1]

+ µ̂1,`[Q`]
2µ̂1,`[Q`−1

2]

)
− 1

(N` − 2)(N` − 3)

(
µ̂1,`[Q`

2]µ̂1,`[Q`−1
2] + 2µ̂1,`[Q`Q`−1]2

+ 2µ̂1,`[Q`
2Q`−1]µ̂1,`[Q`−1] + 2µ̂1,`[Q`]µ̂1,`[Q`Q`−1

2]

)
− 1

(N` − 1)(N` − 2)(N` − 3)
µ̂1,`[Q`

2Q`−1
2]

]
=

N3
`

(N` − 1)(N` − 2)(N` − 3)

1

N4
`

N∑̀
i=1

N∑̀
j=1

N∑̀
k=1

N∑̀
h=1

E[Q
(i)
` Q

(j)
` Q

(k)
`−1Q

(h)
`−1]

− 1

N` − 3

(
E[Q`

2]E[Q`−1]2 + 4E[Q`Q`−1]E[Q`]E[Q`−1] + E[Q`]
2E[Q`−1

2]

)
− 1

(N` − 2)(N` − 3)

(
E[Q`

2]E[Q`−1
2] + 2E[Q`Q`−1]2

+ 2E[Q`
2Q`−1]E[Q`−1] + 2E[Q`]E[Q`Q`−1

2]

)
− 1

(N` − 1)(N` − 2)(N` − 3)
E[Q`

2Q`−1
2]

=
1

N`(N` − 1)(N` − 2)(N` − 3)

(
N`(N` − 1)(N` − 2)(N` − 3)µ1,`

2µ1,`−1
2

(one pair: ij, ik, ih, jk, jh, kh :) +N`(N` − 1)(N` − 2)(
E[Q`

2]E[Q`−1]2 + E[Q`Q`−1]E[Q`]E[Q`−1]

+ E[Q`Q`−1]E[Q`]E[Q`−1] + E[Q`]E[Q`Q`−1]E[Q`−1]

+ E[Q`]E[Q`−1]E[Q`Q`−1] + E[Q`]
2E[Q`−1

2]

)
(two pairs: ih kh, ik jh, ih jk) +N`(N` − 1)(
E[Q`

2]E[Q`−1
2] + E[Q`Q`−1]2 + E[Q`Q`−1]2

)

(C.14)
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(triplets: ijk, ijh, jhk, ihk) +N`(N` − 1)(
E[Q`

2Q`−1]E[Q`−1] + E[Q`
2Q`−1]E[Q`−1]

+ E[Q`]E[Q`Q`−1
2] + E[Q`]E[Q`Q`−1

2]

)
+N`E[Q`

2Q`−1
2]︸ ︷︷ ︸

quadruple

)

− 1

N` − 3

(
E[Q`

2]E[Q`−1]2 + 4E[Q`Q`−1]E[Q`]E[Q`−1] + E[Q`]
2E[Q`−1

2]

)
− 1

(N` − 2)(N` − 3)

(
E[Q`

2]E[Q`−1
2] + 2E[Q`Q`−1]2 + 2E[Q`

2Q`−1]E[Q`−1]

+ 2E[Q`]E[Q`Q`−1
2]

)
− 1

(N` − 1)(N` − 2)(N` − 3)
E[Q`

2Q`−1
2] = µ1,`

2µ1,`−1
2.

C.9 Proof: Unbiased estimator for covariance of variance

Referenced in Lemma 15.

Proof. We use the previously proven unbiased estimators for products of expected values
to show that the estimator is unbiased:

E
[
Ĉov[µ̂2,`, µ̂2,`−1]

]
=

1

N`
E
[
µ̂1[µ̂2,`µ̂2,`−1]

]
+

1

N`(N` − 1)

(
E
[
µ̂1,`[Q`Q`−1]

]
− 2E

[
µ̂1,`[Q`Q`−1]µ̂1,`µ̂1,`−1

]
− E

[
(µ̂1,`µ̂1,`−1)2

])
=

1

N`
E[µ̂2,`µ̂2,`−1]

+
1

N`(N` − 1)

(
E[Q`Q`−1]− 2E[Q`Q`−1]µ1,`µ1,`−1 − (µ1,`µ1,`−1)2

)
.

(C.15)
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C.10 Proof: Unbiased estimator for multilevel variance of variance

C.10 Proof: Unbiased estimator for multilevel variance of
variance

Referenced in Lemma 16.

Proof. Using Lemma 8 and Lemma 15, we have

E
[
µ̂2[µ̂2,ML]

]
=

L∑
`=1

E
[
µ̂2[µ̂2,`]

]
+ E

[
µ̂2[µ̂2,`−1]

]
− 2E

[
Ĉov[µ̂2,`, µ̂2,`−1]

]

=

L∑
`=1

V[µ̂2,`] + V[µ̂2,`−1]− 2Cov[µ̂2,`, µ̂2,`−1].

(C.16)

C.11 Proof: Same level Cov[µ̂1,`, µ̂2,`]

Referenced in Lemma 17.

Proof. To proof this relation we first need a few ingredients by following the proof given
in [336]. Similar to the proof for the covariance term of Eq. (12.12) we use centered

variables Z
(i)
` = Q

(i)
` −µ1,` and Z

(i)
`−1 = Q

(i)
`−1−µ1,`−1. Using that variable we know that

µ̂2,`[Z`] =
1

N` − 1

N∑̀
i=1

Z(i)
` −

1

N`

N∑̀
j=1

Z
(j)
`

2

=
1

N` − 1

N∑̀
i=1

Q(i)
` − µ1,` −

1

N`

N∑̀
j=1

Q
(j)
` − µ1,`

2

=
1

N` − 1

N∑̀
i=1

Q(i)
` −

1

N`

N∑̀
j=1

Q
(j)
`

2

= µ̂2,`[Q`].

(C.17)

We furthermore know that

µ̂2,`[Z`] =
1

N` − 1

N∑̀
i=1

Z(i)
` −

1

N`

N∑̀
j=1

Z
(j)
`

2

=
1

N` − 1

N∑̀
i=1

(Z
(i)
` )2 − N`

N` − 1

(
1

N`

N∑̀
i=1

Z
(i)
`

)2

.

(C.18)
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C Multilevel Monte Carlo for higher order moments

Additionally, we will later on need the following two equalities for the product of
centered random variables:

E[

N∑̀
i=1

N∑̀
j=1

Z
(i)
` (Z

(j)
` )2] = E[N`(Z

(i)
` )3︸ ︷︷ ︸

i=j

+N`(N` − 1)Z
(i)
` (Z

(j)
` )2︸ ︷︷ ︸

i 6=j

]

= N`E[(Z
(i)
` )3] +N`(N` − 1)E[Z

(i)
` ]︸ ︷︷ ︸

=0

E[(Z
(j)
` )2]

= N`µ3,`

(C.19)

and

E[

N∑̀
i=1

N∑̀
j=1

N∑̀
k=1

Z
(i)
` Z

(j)
` Z

(k)
` ]

= E[N`(Z
(i)
` )3︸ ︷︷ ︸

i=j=k

+3N`(N` − 1)(Z
(i)
` )2Z

(j)
`︸ ︷︷ ︸

i 6=j=k∨i=j 6=k∨i 6=k=j

+N`(N` − 1)(N` − 2)Z
(i)
` Z

(j)
` Z

(k)
` ]

= N`E[(Z
(i)
` )3] + 3N`(N` − 1)E[(Z

(i)
` )2]E[Z

(j)
` ]︸ ︷︷ ︸

=0

+N`(N` − 1)(N` − 2)E[Z
(i)
` ]︸ ︷︷ ︸

=0

E[Z
(j)
` ]︸ ︷︷ ︸

=0

E[Z
(k)
` ]︸ ︷︷ ︸

=0

= N`µ3,`.

(C.20)

Next, we use the following relationship

Cov[µ̂1,`, µ̂2,`] = E[µ̂1,`µ̂2,`]− E[µ̂1,`]E[µ̂2,`]

= E[(µ̂1,` + µ1,` − µ1,`)µ̂2,`]− µ1,`µ2,`

= E[(µ̂1,` − µ1,`)µ̂2,` + µ1,`µ̂2,`]− µ1,`µ2,`

= E[(µ̂1,` − µ1,`)µ̂2,`] + µ1,`E[µ̂2,`]− µ1,`µ2,`

= E[(µ̂1,` − µ1,`)µ̂2,`].

(C.21)
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C.11 Proof: Same level Cov[µ̂1,`, µ̂2,`]

Given Eq. (C.17) and Eq. (C.18), we can rewrite Eq. (C.21) in centered form

E [(µ̂1,`[Q`]− µ1,`[Q`])µ̂2,`[Q`]] = E
[
µ̂1,`[Z

(i)
` ]µ̂2,`[Z

(i)
` ]
]

= E

[(
1

N`

N∑̀
i=1

Z
(i)
`

)(
1

N` − 1

N∑̀
i=1

(Z
(i)
` )2 − N`
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(C.22)

Next, we can use the relations from Eq. (C.19) and Eq. (C.20) to finalize the proof
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C.12 Proof: Lower level variance Cov[µ̂1,`, µ̂2,`−1]

Referenced in Lemma 18.

Proof. We need the following two relations for product of centered random variables for
this proof:
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and
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N∑̀
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Similarly to the first proof, we use the relation:

Cov[µ̂1,`, µ̂2,`−1] = E[µ̂1,`µ̂2,`−1]− E[µ̂1,`]E[µ̂2,`−1]

= E[(µ̂1,` + µ1,` − µ1,`)µ̂2,`−1]− µ1,`µ2,`−1

= E[(µ̂1,` − µ1,`)µ̂2,`−1 + µ1,`µ̂2,`−1]− µ1,`µ2,`−1

= E[(µ̂1,` − µ1,`)µ̂2,`−1] + µ1,`E[µ̂2,`−1]− µ1,`µ2,`−1

= E[(µ̂1,` − µ1,`)µ̂2,`−1].

(C.26)
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Given Eq. (C.17) and Eq. (C.18), we can rewrite Eq. (C.26) in centered form:
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Again, we use the relation for the product of centered variables from Eq. (C.24) and
Eq. (C.25):
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C.13 Resource allocation problem of variance for two-level example

C.13 Resource allocation problem of variance for two-level
example

Referenced in Section 12.6.
We give an example of the resource allocation problem targeting the variance, Eq. (12.10),

in Figs. C.1 and C.2, as a surface and contour plot, respectively. We compare OPT++
and NPSOL. Red circles show the optimization path. Red crosses show initial design,
red diamonds show final design. The initial point is set as [5, 5] to start in a region
of high gradients. The number in title corresponds to different seeds in Dakota. The
equality constrained for ε2V is visualized in magenta.

Figure C.1: Surface plot of the resource allocation objective function and variance constraint.
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Figure C.2: Contour plot of the resource allocation objective function and variance constraint.
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C.14 Problem 18 sampling: input file example

C.14 Problem 18 sampling: input file example

Referenced in Section 13.2.

1 environment ,
2 tabu la r da ta
3 t a b u l a r d a t a f i l e = ’ d ak o t a p r ob l e m1 8 s ca l a r i z a t i o n . dat ’
4 method pointer = ’OPTIM’
5
6 method ,
7 id method = ’OPTIM’
8 mode l po inter = ’OPTIM M’
9 centered parameter s tudy

10 s t e p s p e r v a r i a b l e = 500
11 s t e p v e c t o r = 0 .0
12
13 model ,
14 id model = ’OPTIM M’
15 nested
16 v a r i a b l e s p o i n t e r = ’OPTIM V’
17 sub method pointer = ’UQ’
18 r e s p o n s e s p o i n t e r = ’OPTIM R’
19 primary response mapping = 1 . 3 . 0 . 0 .
20 secondary response mapping = 0 . 0 . 1 . 0 0 .0
21
22 v a r i a b l e s ,
23 i d v a r i a b l e s = ’OPTIM V’
24 cont inuous de s i gn = 1
25 i n i t i a l p o i n t = 1
26 d e s c r i p t o r s = ’x ’
27
28 responses ,
29 i d r e s p o n s e s = ’OPTIM R’
30 o b j e c t i v e f u n c t i o n s = 1
31 n o n l i n e a r i n e q u a l i t y c o n s t r a i n t s = 1
32 n o n l i n e a r i n e q u a l i t y l o w e r b o u n d s = −1. e+50
33 no n l i n ea r i n equ a l i t y up pe r bo und s = 0
34 no g rad i en t s
35 no h e s s i a n s
36
37 ##########################
38 # begin UQ s p e c i f i c a t i o n #
39 ##########################
40 method ,
41 id method = ’UQ’
42 mode l po inter = ’HIERARCH’
43 m u l t i l e v e l s a m p l i n g
44 p i l o t s a m p l e s = 10000 1000 100 50
45 sample type random
46 f inal moments standard
47 max i t e r a t i on s = 20
48 conve rg enc e to l e r anc e 1.617509453025866 e−05
49 c o n v e r g e n c e t o l e r a n c e t y p e abso lu t e
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50 c o n v e r g e n c e t o l e r a n c e t a r g e t v a r i a n c e c o n s t r a i n t
51 a l l o c a t i o n t a r g e t s c a l a r i z a t i o n
52 opt imiza t i on
53 q o i a g g r e g a t i o n max
54 output s i l e n t
55
56 model ,
57 id model = ’HIERARCH’
58 v a r i a b l e s p o i n t e r = ’UQ V’
59 r e s p o n s e s p o i n t e r = ’UQ R’
60 sur roga t e h i e r a r c h i c a l
61 o r d e r e d m o d e l f i d e l i t i e s = ’MLModel ’
62
63 model ,
64 id model = ’MLModel ’
65 v a r i a b l e s p o i n t e r = ’UQ V’
66 i n t e r f a c e p o i n t e r = ’UQ I ’
67 r e s p o n s e s p o i n t e r = ’UQ R’
68 s imu la t i on
69 s o l u t i o n l e v e l c o n t r o l = ’ Af ’
70 s o l u t i o n l e v e l c o s t = 0 .01 1 .0 0 .1 0 .001
71
72 v a r i a b l e s ,
73 i d v a r i a b l e s = ’UQ V’
74 cont inuous de s i gn = 1
75 un i fo rm uncer ta in = 1
76 lower bounds = −0.5
77 upper bounds = 0 .5
78 d e s c r i p t o r s = ’ xi ’
79 d i s c r e t e s t a t e s e t r e a l = 2
80 num set va lues = 4 1
81 i n i t i a l s t a t e = 1 .5 0 .0
82 s e t v a l u e s = −6 1 .0 1 . 1 1 .5
83 d e s c r i p t o r s = ’ Af ’ ’Ac ’
84
85 i n t e r f a c e ,
86 i d i n t e r f a c e = ’UQ I ’
87 d i r e c t
88 a n a l y s i s d r i v e r = ’ problem18 ’
89 de a c t i va t e
90 r e s t a r t f i l e
91 eva lua t i on cache
92
93 responses ,
94 i d r e s p o n s e s = ’UQ R’
95 r e s p o n s e f u n c t i o n s = 2
96 no g rad i en t s
97 no h e s s i a n s

Listing C.1: Dakota input file for MLMC sampling of Problem 18 targeting the scalarization
case of Section 13.3.4.
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D The derivative-free stochastic nonlinear
constrained optimization method
SNOWPAC

D.1 Quantile sampling estimator

Referenced in Section 9.1.

In this excursion, we discuss smoothness properties of the robustness measures Rb,β3

and Rb,β4 . In Example 14 we show that Rb,β3 often exhibits large curvatures or even non-
smoothness in x, creating a challenge for approximating this robustness measure using
surrogate models. We therefore use the quantile reformulationRb,β3 over the probabilistic

constraints Rb,β3 .

Example 14 (Non-smoothness of Rb,β3 ). Let us consider the two constraints

c1(x, θ) = exp
(x

2

)
− 16(x− 2)2θ2 + x− 1,

c2(x, θ) = 30x+ θ,
(D.1)

which result in the two robust constraints

Rc1,β3 (x) = E [1(c1(x, θ) ≥ 0)]− (1− β),

Rc2,β3 (x) = E [1(c2(x, θ) ≥ 0)]− (1− β),
(D.2)

with θ ∼ N (0, 1) and β = 0.9. We compute the sample average estimator using 1000

samples and plot the robustness measures Rc1,β3 (top left) and Rc2,β3 (x) (bottom left) in

Fig. D.1. Besides the sample noise we observe that the response surface of Rc1,β3 has
kinks at x ≈ 0, x ≈ 1.5 and x ≈ 2.5 which violate the smoothness assumptions on
the constraints; for an in depths discussion about smoothness properties of probability
distributions we refer to [178, 309, 310]. Apart from the kinks, even in cases where Rc,β3

is arbitrarily smooth, cf. Rc2,β3 , it may be a close approximation to a discontinuous step

function. The quantile formulations of the probabilistic constraints, Rc1,β4 (top right)

and Rc2,β4 (bottom right) in Fig. D.1, on the other hand exhibit smooth behavior. 3

To approximate the quantile function Rb,β4 we can not rely on the standard MC es-

timator for approximating Rb,β4 anymore. Instead, we follow [338] and use the order
statistic bx1:N ≤ · · · ≤ bxN :N , bxi:N ∈ {b(x, θi)}Ni=1 to compute an approximation bx

β̄:N
of the
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Figure D.1: Sample approximation of Rc1,0.93 (upper left) and Rc1,0.94 (upper right) based on
resampling 1000 samples at each x. The thresholds 0 are plotted as dashed lines.
The lower plots show Rc2,0.93 (left) and Rc2,0.94 (right).

quantile bβ(x). More specifically we choose the standard estimator bx
β̄:N
≈ bβ(x) with

β̄ =


Nβ, if Nβ is an integer and β < 0.5,
Nβ + 1, if Nβ is an integer and β > 0.5,
N
2 + 1(U ≤ 0), if Nβ is an integer and β = 0.5,
bNβc+ 1, if Nβ is not an integer,

and U ∼ U [0, 1], yielding

bβ(x) = Rb,β3 (x) + εx = bxβ̄:N + εx. (D.3)

Since the order statistic satisfies

µb[b
x
l:N ≤ bβ(x) ≤ bxu:N ] ≥

u−1∑
i=l

(
N

i

)
βi(1− β)N−i =: π(l, u,N, β),

we use it to define a highly probable confidence interval
[
bkl:N , b

k
u:N

]
; see [94]. In the

same way as for the sample averages we obtain a highly probable upper bound ε̄x on εx
by choosing

ε̄x := max
{
bxβ̄:N − b

x
(β̄−i):N , b

x
(β̄+i):N − b

x
β̄:N

}
,
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D.2 Proof: Variance of Gaussian process mean estimator

for an i ∈ {1, . . . , N} such that π
(
β̄ − i, β̄ + i,N, β

)
≥ ν for the confidence level ν ∈ ]0, 1[.

We refer to [339] for a detailed discussion about optimal quantile estimators.

D.2 Proof: Variance of Gaussian process mean estimator

Referenced in Lemma 21.

Proof.

V[Gbk[Rbk]] = V[Gbk[xk;Rb(X)]] = V

 N∑
j=1

Rb(xj)
N∑
i=1

kxkxi(kxixj + δijσ
2
i )
−1̃


(Using: V[

N∑
i=1

aiXi] =
N∑
i=1

a2
iV[Xi] + 2

∑
1≤i<j≤N

aiajCov[Xi, Xj ])

=

N∑
j=1

V[Rb(xj)]

( N∑
i=1

kxkxi(kxixj + δijσ
2
i )
−1̃

)2

+ 2
∑

1≤j<k≤N

[( N∑
i=1

kxkxi(kxixj + δijσ
2
i )
−1̃

)
( N∑
i=1

kxkxi(kxixk + δikσ
2
i )
−1̃

)
Cov[Rb(xj), R

b(xk)]

]
(Using Cov[Rb(xj), R

b(xk)] = 0 for i 6= j)

=
N∑
j=1

V[Rb(xj)]

( N∑
i=1

kxkxi(kxixj + δijσ
2
i )
−1̃

)2

≈
N∑
j=1

(
ε̄bi
tν

)2( N∑
i=1

kxkxi(kxixj + δijσ
2
i )
−1̃

)2

(Writing it in matrix notation)

=
N∑
i=1

(
ε̄bi
tν

)2( N∑
j=1

kxkxj ((KXX + N)−1)[i,j]

)2

.

(D.4)
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D.3 Proof: Covariance of Gaussian process mean estimator
and sampling estimator

Referenced in Lemma 22.

Proof.

Cov[Gbk[Rbk], Rbk] = Cov[Gbk[xk;Rbk(X)], Rb(xk)]

= Cov[

N∑
j=1

Rb(xj)

N∑
i=1

kxkxi(kxixj + δijσ
2
i )
−1̃, Rb(xk)]

=
N∑
j=1

( N∑
i=1

kxkxi(kxixj + δijσ
2
i )
−1̃

)
Cov[Rb(xj), R

b(xk)]

(uncorrelated up to index N − 1 since xN = xk)

=

( N∑
i=1

kxkxi(kxixN + δiNσ
2
i )
−1̃

)
Cov[Rb(xN ), Rb(xk)]

= V[Rb(xk)]
N∑
i=1

kxkxi(kxixN + δiNσ
2
i )
−1̃

≈ (
ε̄bk
tν

)2
N∑
i=1

kxkxi(kxixN + δiNσ
2
i )
−1̃

(Writing it in matrix notation)

= (
ε̄bk
tν

)2
N∑
j=1

kxkxj ((KXX + N)−1)[k,j].

(D.5)

D.4 Hock-Schittkowski-collection

Referenced in Chap. 16, Section 17.1 and Section 17.2.

This section holds the test problem we consider from the Hock-Schittkowski-Collection
of optimization benchmarks ([157], [281], [282]). Those problems are also available in
the CUTEst optimization framework [144].

TP29

min f(x) = x1x2x3

s.t. c1 : −48 + x2
1 + 2x2 + 4x2

3 ≤ 0
(D.6)
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TP43

min f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. c1 : x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0

c2 : x2
1 + 2x2

2 + x2
2 + 2x2

4 − x1 − x4 − 10 ≤ 0

c3 : 2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5 ≤ 0

(D.7)

TP100

min f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2+

10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

s.t. c1 : 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127 ≤ 0

c2 : 7x1 + 3x2 + 10x2
3 + x4 − x5 − 282 ≤ 0

c3 : 23x1 + x2
2 + 6x2

6 − 8x7 − 196 ≤ 0

c4 : 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

(D.8)

TP113

min f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10− 7)2 + 45

s.t. c1 : 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0

c2 : 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

c3 : −8x1 + 2x2 + 5x9 − 2x10− 12 ≤ 0

c4 : 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

c5 : 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

c6 : 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

c7 : x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

c8 : −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

(D.9)

TP227

min f(x) = (x1 − 2)2 + (x2 − 1)2

s.t. c1 : x2
1 − x2 ≤ 0

c2 : x1 + x2
2 ≤ 0

(D.10)

TP228

min f(x) = x2
1 + x2

s.t. c1 : x1 + x2 − 1 ≤ 0

c2 : −x2
1 − x2

2 − 9 ≤ 0

(D.11)
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TP268

V =



−74 80 18 −11 −4
−14 −69 21 28 0
−66 −72 −5 7 1
−12 −66 −30 −24 3

3 8 −7 −4 1
4 −12 4 4 0

 ,v =



51
−61
−56
−69
10
−12

 ,W = VTV,w = vTV (D.12)

min f(x) = 14463 +
5∑
i=1

[
xi(

5∑
j=1

(Wijxj)− 2wi)

]
s.t. c1 : x1 + x2 + x3 + x4 + x5 − 5 ≤ 0

c2 : −10x1 − 10x2 + 3x3 − 5x4 − 4x5 + 20 ≤ 0

c3 : 8x1 − x2 + 2x3 + 5x4 − 3x5 − 40 ≤ 0

c4 : −8x1 + x2 − 2x3 − 5x4 + 3x5 + 11 ≤ 0

c5 : 4x1 + 2x2 − 3x3 + 5x4 − x5 − 30 ≤ 0

(D.13)

TP285

A ∈ Z10×15,a ∈ Z15,b ∈ Z10 (D.14)

min f(x) =

15∑
i=1

(−aixi)

s.t. ci : −bi +
10∑
j=1

15∑
k=1

(Ajkx
2
k) ≤ 0

(D.15)
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D.5 Approximate Gaussian processes in SNOWPAC

Referenced in Section 17.2.
Results for (16.3):

1 7 2 3 2 2 5 100 86 78 73 76 73 45 60 64 12 13 20

1 2 2 98 81 66 80 85 90 4 3 5 61 89 97

10 20 12 11 1 3 3 93 67 50 89 76 72 15 14 23 22 33 35

1 52 25 25 15 70 63 35 29 38 41 39 26

Figure D.2: SNOWPAC Schittkowski benchmark for test problem TP = 29, TP = 43, TP =
100 and TP = 113 for relative error of the objective function, absolute error in
optimal design and the constraint violations from left to right for optimization
problem (16.3).
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100 95 71 86 74 59 96 91 83 99 93 78

2 1 2 3 100 98 85 80 74 76 88 70 70 96 93 86

100 100 100 88 91 92 99 100 100 99 100 100

Figure D.3: SNOWPAC Schittkowski benchmark for test problem TP = 227, TP = 228 and
TP = 268 for relative error of the objective function, absolute error in optimal
design and the constraint violations from left to right for optimization problem
(16.3).
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D.6 Mixed integer optimization

D.6 Mixed integer optimization

D.6.1 Box-constrained problems

Referenced in Section 17.3.

1. Sphere Problem [333]: This is a simple convex problem. We use this problem
with various number of design parameters. It is turned mixed-integer by imposing
integer constraint on the first half number of design parameters.

min
x

f(x) =
n∑
i=1

x2
i ,

s.t. − 7 ≤ xi ≤ 7, i = 1, ..., n

xj ∈ Z, j = 1, ...,
n

2

xk ∈ R, k =
n

2
+ 1, ..., n.

(D.16)

This optimization problem has one global minimum at x∗ = (0, ..., 0) with f(x∗) =
0.

2. Ackley’s Function [10, 298, 333]: This is a multi-modal function. We use eight
dimensions with three integer design parameters and five real design parameters.

min
x

f(x) = −20exp

−1

5

√√√√ 1

n

n∑
i=1

x2
i

− exp[ 1

n

n∑
i=1

cos(2πxi)

]
+ 20 + e

s.t. − 7 ≤ xi ≤ 7, i = 1, ..., 8

xj ∈ Z, j = 1, 2, 3

xk ∈ R, k = 4, ..., n.

(D.17)

where n = 8. This optimization problem has many local minimums, with global
minimum at x∗ = (0, ..., 0) with f(x∗) = 0.

3. Weighted De Jong’s Function [333]: This is a uni-modal function. It is also
called hyper-ellipsoid function. Weighting of axis makes this optimization problem
a little difficult to solve. We use five dimensions and turn it into mixed-integer by
imposing integer constraint on the first three design parameters.

min
x

f(x) =
n∑
i=1

ix2
i ,

s.t. − 7 ≤ xi ≤ 7, i = 1, ..., n

xj ∈ Z, j = 1, 2, 3

xk ∈ R, k = 4, , , , n.

(D.18)

where n = 5. This optimization problem has one global minimum at x∗ = (0, ..., 0)
with f(x∗) = 0.
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4. Bohachevsky Problem 1 (BF1) [10, 48]: This is a multi-modal function.We
impose integer constraint on first variable.

min
x

f(x) = x2
i + 2x2

2 − 0.3cos(3πx1)− 0.4cos(4πx2) + 0.7

s.t. − 7 ≤ xi ≤ 7, i = 1, 2

x1 ∈ Z x2 ∈ R.

(D.19)

This optimization problem has many local minimums, with global minimum at
x∗ = (0, 0) with f(x∗) = 0.

5. Bohachevsky Problem 2 (BF2) [10, 48]: This is a multi-modal function. We
impose integer constraint on first variable

min
x

f(x) = x2
i + 2x2

2 − 0.3cos(3πx1)cos(4πx2) + 0.3

s.t. − 7 ≤ xi ≤ 7, i = 1, 2

x1 ∈ Z x2 ∈ R.

(D.20)

This optimization problem has many local minimums, with global minimum at
x∗ = (0, 0) with f(x∗) = 0.

6. Griewank’s Function [333]: This is a multi-modal function. We use ten dimen-
sions with five integer design parameters and five real design parameters.

min
x

f(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1

s.t. − 7 ≤ xi ≤ 7, i = 1, ..., 8

xj ∈ Z, j = 1, , .., 5

xk ∈ R, k = 4, ..., 8.

(D.21)

where n = 10. This optimization problem has many local minimums, with global
minimum at x∗ = (0, ..., 0) with f(x∗) = 0.

D.6.2 Hyperparameter list

Referenced in Section 17.3.

258



D.6 Mixed integer optimization

Hyperparameter(λ) Type Scaling Range Initial Point

Number of training Integer 5λ [1 , 10] 2
Epochs
Number of hidden Integer 2λ [4 , 10] 5
nodes
Learning rate of SGD Continuous 10λ [-3 , log100.2] -2
Momentum of SGD Continuous λ/10 [6 , 9] 8
Mean of Gaussian Continuous 10λ [-5 , -2] -4
initialization
Mean of Gaussian Continuous 10λ [-5 , -2] -4
initialization

Table D.1: List of hyperparameters for second category of 6-MLP problems with range and
initial point.

Hyperparameter(λ) Type Scaling Range Initial Point

Depth of first Conv layer Integer 2λ [1 , 7] 2
Depth of second Conv layer Integer 2λ [1 , 7] 2
Number of hidden nodes Integer 2λ [1 , 10] 5
in first FC layer
Number of hidden nodes Integer 2λ [1 , 10] 5
in second FC layer
Learning rate of SGD Continuous 10λ [-3 , log100.3] -1
Momentum of SGD Continuous λ/10 [6 , 9] 8
Weight decay rate Continuous 10λ [-5 , -2] -4
Learning rate decay Continuous 10λ [-5 , -2] -4

Table D.2: List of hyperparameters for second category of 8-CNN problems with range and
initial point.
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Hyperparameter(λ) Type Scaling Range Initial Point

Mini-batch size Integer 2λ [4 , 8] 5
Depth of first Conv layer Integer 2λ [1 , 7] 2
Depth of second Conv layer Integer 2λ [1 , 7] 2
Number of hidden nodes Integer 2λ [1 , 10] 5
in first FC layer
Number of hidden nodes Integer 2λ [1 , 10] 5
in second FC layer
Learning rate of SGD Continuous 10λ [-3 , log100.3] -1
Momentum of SGD Continuous λ/10 [6 , 9] 8
Weight decay rate Continuous 10λ [-5 , -2] -4
Learning rate decay Continuous 10λ [-5 , -2] -4
α leaky ReLU in first FC Layer Continuous λ/10 [0 , 5] 0.1
α leaky ReLU in second FC Layer Continuous λ/10 [0 , 5] 0.1
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for first FC layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for second FC layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for first Conv layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for second Conv layer

Table D.3: List of hyperparameters for second category of 15-CNN problems with range and
initial point.
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Hyperparameter(λ) Type Scaling Range Initial Point

Mini-batch size Integer 2λ [4 , 8] 5
Depth of first Conv layer Integer 2λ [1 , 7] 2
Depth of second Conv layer Integer 2λ [1 , 7] 2
Number of hidden nodes Integer 2λ [1 , 10] 5
in first FC layer
Number of hidden nodes Integer 2λ [1 , 10] 5
in second FC layer
Learning rate of SGD Continuous 10λ [-3 , log100.3] -1
Momentum of SGD Continuous λ/10 [6 , 9] 8
Weight decay rate Continuous 10λ [-5 , -2] -4
Learning rate decay Continuous 10λ [-5 , -2] -4
α leaky ReLU in first FC Layer Continuous λ/10 [0 , 5] 0.1
α leaky ReLU in second FC Layer Continuous λ/10 [0 , 5] 0.1
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for first FC layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for second FC layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for first Conv layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for second Conv layer
Dropout rate for first FC layer Continuous λ [0.00 , 0.80] 0.5
Dropout rate for second FC layer Continuous λ [0.00 , 0.80] 0.5
Dropout rate for first Conv layer Continuous λ [0.00 , 0.80] 0.5
Dropout rate for second Conv layer Continuous λ [0.00 , 0.80] 0.5

Table D.4: List of hyperparameters for second category of 19-CNN problems with range and
initial point.

6-MLP 8-CNN 15-CNN 19-CNN

Category 1 70 200 200 200
Category 2 5 5 5 5

Table D.5: Starting half box-dimension for SNOWPAC for all the hyperparameter optimiza-
tion problems.
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E Multilevel Monte Carlo for optimization
under uncertainty

E.1 Problem 18 OUU: input file example

Referenced in Section 19.2.

1 #@ * : DakotaConfig=HAVENOWPAC
2
3 environment ,
4 tabu la r da ta
5 t a b u l a r d a t a f i l e = ’ dako ta prob l em18 ouu sca l a r i za t i on . dat ’
6 method pointer = ’OPTIM’
7
8 ###########################
9 # begin opt s p e c i f i c a t i o n #

10 ###########################
11 method ,
12 id method = ’OPTIM’
13 mode l po inter = ’OPTIM M’
14 snowpac
15 seed = 25041981
16 max i t e r a t i on s = 100
17 max func t i on eva lua t i ons = 100
18 t r u s t r e g i o n
19 i n i t i a l s i z e = 0.05
20 minimum size = 1 .0 e−6
21 c o n t r a c t t h r e s h o l d = 0.25
22 expand thresho ld = 0.75
23 c o n t r a c t i o n f a c t o r = 0 .50
24 e x p a n s i o n f a c t o r = 1 .50
25 output s i l e n t
26
27 model ,
28 id model = ’OPTIM M’
29 nested
30 v a r i a b l e s p o i n t e r = ’OPTIM V’
31 sub method pointer = ’UQ’
32 r e s p o n s e s p o i n t e r = ’OPTIM R’
33 primary response mapping = 1 . 3 . 0 . 0 .
34 secondary response mapping = 0 . 0 . 1 . 0 .
35
36 v a r i a b l e s ,
37 i d v a r i a b l e s = ’OPTIM V’
38 cont inuous de s i gn = 1
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39 i n i t i a l p o i n t 0 .25
40 upper bounds 6
41 lower bounds 0
42 d e s c r i p t o r s ’ x ’
43
44 responses ,
45 i d r e s p o n s e s = ’OPTIM R’
46 o b j e c t i v e f u n c t i o n s = 1
47 n o n l i n e a r i n e q u a l i t y c o n s t r a i n t s = 1
48 n o n l i n e a r i n e q u a l i t y l o w e r b o u n d s = −1. e+50
49 no n l i n ea r i n equ a l i t y up pe r bo und s = 0
50 no g rad i en t s
51 no h e s s i a n s
52
53 ##########################
54 # begin UQ s p e c i f i c a t i o n #
55 ##########################
56 method ,
57 id method = ’UQ’
58 mode l po inter = ’HIERARCH’
59 m u l t i l e v e l s a m p l i n g
60 p i l o t s a m p l e s = 10000 1000 100 50
61 f inal moments standard
62 max i t e r a t i on s = 20
63 conve rg enc e to l e r anc e 1.617509453025866 e−05
64 c o n v e r g e n c e t o l e r a n c e t y p e abso lu t e
65 c o n v e r g e n c e t o l e r a n c e t a r g e t v a r i a n c e c o n s t r a i n t
66 sample type random
67 output s i l e n t
68 a l l o c a t i o n t a r g e t s c a l a r i z a t i o n
69 opt imiza t i on
70 q o i a g g r e g a t i o n max
71
72 model ,
73 id model = ’HIERARCH’
74 v a r i a b l e s p o i n t e r = ’UQ V’
75 r e s p o n s e s p o i n t e r = ’UQ R’
76 sur roga t e h i e r a r c h i c a l
77 o r d e r e d m o d e l f i d e l i t i e s = ’MLModel ’
78
79 model ,
80 id model = ’MLModel ’
81 v a r i a b l e s p o i n t e r = ’UQ V’
82 i n t e r f a c e p o i n t e r = ’UQ I ’
83 r e s p o n s e s p o i n t e r = ’UQ R’
84 s imu la t i on
85 s o l u t i o n l e v e l c o n t r o l = ’ Af ’
86 s o l u t i o n l e v e l c o s t = 0 .01 1 .0 0 .1 0 .001
87
88 v a r i a b l e s ,
89 i d v a r i a b l e s = ’UQ V’
90 cont inuous de s i gn = 1
91 un i fo rm uncer ta in = 1
92 lower bounds = −0.5

264



E.1 Problem 18 OUU: input file example

93 upper bounds = 0 .5
94 d e s c r i p t o r s = ’ xi ’
95 d i s c r e t e s t a t e s e t r e a l = 2
96 num set va lues = 4 1
97 i n i t i a l s t a t e = 1 .5 0 .0
98 s e t v a l u e s = −6 1 .0 1 . 1 1 .5
99 0 .0

100 d e s c r i p t o r s = ’ Af ’ ’Ac ’
101
102 i n t e r f a c e ,
103 i d i n t e r f a c e = ’UQ I ’
104 d i r e c t
105 a n a l y s i s d r i v e r = ’ problem18 ’
106 d ea c t i v a t e
107 r e s t a r t f i l e
108 eva lua t i on cache
109
110 responses ,
111 i d r e s p o n s e s = ’UQ R’
112 r e s p o n s e f u n c t i o n s = 2
113 no g rad i en t s
114 no h e s s i a n s

Listing E.1: Dakota input file for OUU using MLMC sampling of Problem 18 targeting the
scalarization case of Section 19.2.
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E.2 Rosenbrock OUU: input file example

Referenced in Section 19.3.

1 #@ * : DakotaConfig=HAVENOWPAC
2
3 environment ,
4 tabu la r data
5 t a b u l a r d a t a f i l e = ’ dako ta prob l em18 ouu sca l a r i z a t i on . dat ’
6 method pointer = ’OPTIM’
7
8 ###########################
9 # begin opt s p e c i f i c a t i o n #

10 ###########################
11 method ,
12 id method = ’OPTIM’
13 mode l po inter = ’OPTIM M’
14 snowpac
15 seed = 25041981
16 max i t e r a t i on s = 100
17 max func t i on eva lua t i ons = 100
18 t r u s t r e g i o n
19 i n i t i a l s i z e = 0.05
20 minimum size = 1 .0 e−6
21 c o n t r a c t t h r e s h o l d = 0.25
22 expand thresho ld = 0.75
23 c o n t r a c t i o n f a c t o r = 0 .50
24 e x p a n s i o n f a c t o r = 1 .50
25 output s i l e n t
26
27 model ,
28 id model = ’OPTIM M’
29 nested
30 v a r i a b l e s p o i n t e r = ’OPTIM V’
31 sub method pointer = ’UQ’
32 r e s p o n s e s p o i n t e r = ’OPTIM R’
33 primary response mapping = 1 . 3 . 0 . 0 .
34 secondary response mapping = 0 . 0 . 1 . 0 .
35
36 v a r i a b l e s ,
37 i d v a r i a b l e s = ’OPTIM V’
38 cont inuous de s i gn = 1
39 i n i t i a l p o i n t 0 .25
40 upper bounds 6
41 lower bounds 0
42 d e s c r i p t o r s ’ x ’
43
44 responses ,
45 i d r e s p o n s e s = ’OPTIM R’
46 o b j e c t i v e f u n c t i o n s = 1
47 n o n l i n e a r i n e q u a l i t y c o n s t r a i n t s = 1
48 n o n l i n e a r i n e q u a l i t y l o w e r b o u n d s = −1. e+50
49 no n l i n ea r i n equ a l i t y up pe r bo und s = 0
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50 no g rad i en t s
51 no h e s s i a n s
52
53 ##########################
54 # begin UQ s p e c i f i c a t i o n #
55 ##########################
56 method ,
57 id method = ’UQ’
58 mode l po inter = ’HIERARCH’
59 m u l t i l e v e l s a m p l i n g
60 p i l o t s a m p l e s = 10000 1000 100 50
61 f inal moments standard
62 max i t e r a t i on s = 20
63 conve rg enc e to l e r anc e 1.617509453025866 e−05
64 c o n v e r g e n c e t o l e r a n c e t y p e abso lu t e
65 c o n v e r g e n c e t o l e r a n c e t a r g e t v a r i a n c e c o n s t r a i n t
66 sample type random
67 output s i l e n t
68 a l l o c a t i o n t a r g e t s c a l a r i z a t i o n
69 opt imiza t i on
70 q o i a g g r e g a t i o n max
71
72 model ,
73 id model = ’HIERARCH’
74 v a r i a b l e s p o i n t e r = ’UQ V’
75 r e s p o n s e s p o i n t e r = ’UQ R’
76 sur roga t e h i e r a r c h i c a l
77 o r d e r e d m o d e l f i d e l i t i e s = ’MLModel ’
78
79 model ,
80 id model = ’MLModel ’
81 v a r i a b l e s p o i n t e r = ’UQ V’
82 i n t e r f a c e p o i n t e r = ’UQ I ’
83 r e s p o n s e s p o i n t e r = ’UQ R’
84 s imu la t i on
85 s o l u t i o n l e v e l c o n t r o l = ’ Af ’
86 s o l u t i o n l e v e l c o s t = 0 .01 1 .0 0 .1 0 .001
87
88 v a r i a b l e s ,
89 i d v a r i a b l e s = ’UQ V’
90 cont inuous de s i gn = 1
91 un i fo rm uncer ta in = 1
92 lower bounds = −0.5
93 upper bounds = 0 .5
94 d e s c r i p t o r s = ’ xi ’
95 d i s c r e t e s t a t e s e t r e a l = 2
96 num set va lues = 4 1
97 i n i t i a l s t a t e = 1 .5 0 .0
98 s e t v a l u e s = −6 1 .0 1 . 1 1 .5
99 0 .0

100 d e s c r i p t o r s = ’ Af ’ ’Ac ’
101
102 i n t e r f a c e ,
103 i d i n t e r f a c e = ’UQ I ’
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104 d i r e c t
105 a n a l y s i s d r i v e r = ’ problem18 ’
106 d ea c t i v a t e
107 r e s t a r t f i l e
108 eva lua t i on cache
109
110 responses ,
111 i d r e s p o n s e s = ’UQ R’
112 r e s p o n s e f u n c t i o n s = 2
113 no g rad i en t s
114 no h e s s i a n s

Listing E.2: Dakota input file for OUU using MLMC sampling of Rosenbrock targeting the
scalarization case of Section 19.3.
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E.3 Wind OUU: input file example

Referenced in Section 19.4.3.

1 #@ * : DakotaConfig=HAVENOWPAC
2
3 environment ,
4 tabu la r da ta
5 method pointer = ’OPTIM’
6
7 ###########################
8 # begin opt s p e c i f i c a t i o n #
9 ###########################

10 method ,
11 id method = ’OPTIM’
12 mode l po inter = ’OPTIM M’
13 snowpac
14 seed = 25041981
15 max func t i on eva lua t i ons = 200
16 t r u s t r e g i o n
17 i n i t i a l s i z e = 0.15
18 minimum size = 1 .0 e−6
19 c o n t r a c t t h r e s h o l d = 0.25
20 expand thresho ld = 0.75
21 c o n t r a c t i o n f a c t o r = 0 .50
22 e x p a n s i o n f a c t o r = 1 .50
23 output debug
24
25 model ,
26 id model = ’OPTIM M’
27 nested
28 v a r i a b l e s p o i n t e r = ’OPTIM V’
29 sub method pointer = ’UQ’
30 r e s p o n s e s p o i n t e r = ’OPTIM R’
31 primary response mapping = 1 . 3 .
32
33 v a r i a b l e s ,
34 i d v a r i a b l e s = ’OPTIM V’
35 cont inuous de s i gn = 9
36 i n i t i a l p o i n t 0*0 .
37 upper bounds 9*30 .
38 lower bounds 9*−30.
39 d e s c r i p t o r s ’ yaw angle 1 ’ ’ yaw angle 2 ’ ’ yaw angle 3 ’
40 ’ yaw angle 4 ’ ’ yaw angle 5 ’ ’ yaw angle 6 ’
41 ’ yaw angle 7 ’ ’ yaw angle 8 ’ ’ yaw angle 9 ’
42
43
44 responses ,
45 i d r e s p o n s e s = ’OPTIM R’
46 o b j e c t i v e f u n c t i o n s = 1
47 no g rad i en t s
48 no h e s s i a n s
49
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50 ##########################
51 # begin UQ s p e c i f i c a t i o n #
52 ##########################
53 method ,
54 id method = ’UQ’
55 mode l po inter = ’HIERARCH’
56 m u l t i l e v e l s a m p l i n g
57 p i l o t s a m p l e s = 5000 100 10
58 f inal moments standard
59 max i t e r a t i on s = 20
60 conve rg enc e to l e r anc e 1000
61 c o n v e r g e n c e t o l e r a n c e t y p e r e l a t i v e
62 c o n v e r g e n c e t o l e r a n c e t a r g e t c o s t c o n s t r a i n t
63 f i x e d s e e d
64 output debug
65 a l l o c a t i o n t a r g e t s c a l a r i z a t i o n
66 opt imiza t i on
67 q o i a g g r e g a t i o n max
68
69 model ,
70 id model = ’HIERARCH’
71 v a r i a b l e s p o i n t e r = ’UQ V’
72 r e s p o n s e s p o i n t e r = ’UQ R’
73 sur roga t e h i e r a r c h i c a l
74 o r d e r e d m o d e l f i d e l i t i e s = ’MLModel ’
75
76 model ,
77 id model = ’MLModel ’
78 v a r i a b l e s p o i n t e r = ’UQ V’
79 i n t e r f a c e p o i n t e r = ’UQ I ’
80 r e s p o n s e s p o i n t e r = ’UQ R’
81 s imu la t i on
82 s o l u t i o n l e v e l c o n t r o l = ’ model ’
83 s o l u t i o n l e v e l c o s t = 0.0025 1 .0 0 .12
84
85 v a r i a b l e s ,
86 i d v a r i a b l e s = ’UQ V’
87 cont inuous de s i gn = 5
88 normal uncerta in = 2
89 d e s c r i p t o r s = ’ HH vel ’ ’ wind angle ’
90 means = 7 .5 0
91 s t d d e v i a t i o n s = 1 5
92 d i s c r e t e s t a t e s e t s t r i n g = 1
93 num set va lues = 3
94 i n i t i a l s t a t e = ’ coarse ’
95 s e t v a l u e s = ’ coarse ’ ’ f i n e ’ ’medium ’
96 d e s c r i p t o r s = ’ model ’
97
98 i n t e r f a c e ,
99 i d i n t e r f a c e = ’UQ I ’

100 fo rk asynchronous eva lua t i on concur r ency = 1
101 a n a l y s i s d r i v e r = ’ inte r face DAK2Flor i s . sh ’
102 p a r a m e t e r s f i l e = ’ params . in ’
103 r e s u l t s f i l e = ’ r e s u l t s . out ’
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104 f i l e t a g
105
106 responses ,
107 i d r e s p o n s e s = ’UQ R’
108 r e s p o n s e f u n c t i o n s = 1
109 no g rad i en t s
110 no h e s s i a n s

Listing E.3: Dakota input file for OUU using MLMC sampling of Floris targeting the scalar-
ization case of Section 19.4.
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