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Kurzfassung

Die Identifikation von lärmerzeugenden Strukturflächen spielt eine enorm wichtige Rolle
im Entwurf von vibroakustischen Systemen, weil schwingende Strukturen Schall in ihre
Umgebung emittieren. Insbesondere in der Fahrzeugakustik ist das Verfahren der Flächen-
beitragsanalyse weit verbreitet, um diejenigen Flächen an der Karosserie zu identifizieren,
die am meisten zum Schalldruckpegel an der Fahrerposition beitragen. Jedoch hat sich
bisher keine Zielgröße für akustische Innenraumprobleme durchgesetzt. In klassischen
Flächenbeitragsanalysen wird der Schalldruckpegel an der relevanten Position als Ziel-
größe herangezogen. Dies begünstigt allerdings mehrere Nachteile: Erstens ist der
lokale Schalldruckpegel stark positionsabhängig. Die Identifikation von Flächenbeiträ-
gen wird somit insbesondere in Frequenzbereichen und Regionen mit niedrigen Schall-
drücken erschwert. Zweitens sind nach aktuellem Stand der Forschung Flächenbeiträge
positiv oder negativ, wodurch akustische Kurzschlüsse begünstigt werden. Des Weiteren
beschränken sich bestehende Verfahren auf einen einzelnen Auswertepunkt. Flächen-
beiträge in Bezug auf ein gesamtes Volumen werden bisher nicht berücksichtigt. Letzlich
leiden bestehende Verfahren darunter, dass das frequenzabhängige Helmholtz-Problem
wiederholt für jede relevante Frequenz gelöst werden muss. Bei großen Frequenzbere-
ichen oder feinen Frequenzauflösungen führt dies zu einem erheblich hohen Berech-
nungsaufwand.

Das Ziel dieser Arbeit ist die Entwicklung eines robusten numerischen Verfahrens für
die effiziente Berechnung von Flächenbeiträgen in Innenräumen. Die Flächenbeitrags-
analyse wird in eine Randelementeformulierung implementiert. Somit ist lediglich die
geometrische Diskretisierung des umschließenden Randes erforderlich. Als Zielgröße
wird die Schallenergie bzw. die Schallenergiedichte betrachtet. Somit wird nicht nur die
Aussagekraft der Flächenbeiträge erhöht sondern auch der akustische Kurzschluss um-
gangen. Die Vorhersage der Flächenbeiträge ist besonders in Frequenzbereichen und
Positionen mit geringen Schalldruckwerten robust. Darüber hinaus wird die energie-
basierte Beitragsanalyse dahingehend erweitert, dass Flächenbeiträge bezüglich des
eingeschlossenen Volumens ermittelt werden können. Zur Steigerung der Effizienz wird
die Schallenergie im Volumen durch die Schallenergiedichten an einer Punkteschar ap-
proximiert. Schließlich wird ein Multi-Fidelity-Ansatz für akustische Simulationen mit der
Randelementemethode vorgestellt, um Frequenzganganalysen von akustischen Syste-
men zu beschleunigen. Die Grundlage hierfür bilden Gaussprozesse, die wiederum auf
dem Bayes’schen Wahrscheinlichkeitsprinzip basieren. Dadurch werden Unsicherheiten
berücksichtigt, die beispielsweise durch beschränkte Information über die Modellparame-
ter oder durch Fertigungstoleranzen auftreten können. Die in dieser Thesis entwickelten
Verfahren werden anhand einer industriellen Problemstellung, nämlich dem niederfre-
quenten Dröhngeräusch in Fahrzeugen, validiert.

Insgesamt wird in dieser Doktorarbeit ein effizientes und robustes Diagnosewerkzeug für
die Identifikation von schallerzeugenden Quellen auf schwingenden Oberflächen vorge-
stellt. Die Schallenergiedichte als kombinierte Druck-Schnelle Zielgröße ermöglicht dabei
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tiefere Einblicke in das akustische Verhalten eines Systems. Darüber hinaus wird ein
probabilistisches Verfahren für effiziente Frequenzganganalysen vorgestellt. Somit sind
Vorhersagen über das Systemverhalten möglich, auch wenn nur Teilinformationen vor-
liegen. Dies ebnet den Weg für eine schnelle Entscheidungsfindung gerade in der frühen
Entwicklungsphase.
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Abstract

Owing to physical principles, sound is emitted from vibrating structures into the ambient
fluid. The identification of vibrating patterns is thus an important aspect in the design
of vibroacoustic systems. Particularly in the realm of automotive acoustics, the theory
of contribution analysis is frequently used to retrieve chassis components contributing
most to the sound pressure level at the driver’s position. As a purely numerical method,
contribution analyses allow to identify critical components in early design stages. How-
ever, research to date has not yet defined a suitable control objective for interior acoustic
problems. In current contribution analysis methods, the sound pressure level at a certain
position is used as a control objective, which implies a series of difficulties. Firstly, the
sound pressure level is highly sensitive to the position of the relevant evaluation point. By
this means, the identification of vibrating surfaces becomes particularly complicated in re-
gions with low sound pressures. In addition to this, current techniques suffer from acoustic
short circuits caused by bipolar surface contributions. Moreover, traditional methods are
limited to contributing surfaces with respect to a single evaluation point. The surface
contributions regarding the enclosed volume is not yet explored. Finally, the underlying
acoustic problem involves the treatment of the frequency-dependent Helmholtz problem.
To date, the Helmholtz equation is repetitively solved for each relevant frequency. This
becomes extremely inefficient when broad frequency bands or fine frequency resolutions
are analyzed.

This cumulative thesis introduces a robust and efficient method for contribution analyses
in interior acoustics. It is embedded in a boundary element formulation and requires thus
only a discretization of the enveloping surface. In the proposed method, the sound energy
density is regarded as a control objective. This enables accurate and robust predictions
even at frequency regimes and locations with low sound pressure levels. Moreover, the
energy-based contribution analysis is extended to surface contributions regarding an en-
tire volume. By interpreting the surface contributions to the energy density as integration
points, the contributing surfaces related to the sound energy are efficiently obtained. On
top of that, a multi-fidelity Gaussian process is developed for accelerated frequency sweep
analyses. In the spirit of a Bayesian method, the proposed technique allows to account
for uncertainties. This feature is of particular interest in early design phases, as it paves
the way to consider uncertainties arising from limited knowledge on model parameters or
tolerances due to manufacturing processes. To validate the proposed method, the low
frequency booming noise problem occurring in vehicle cabins is analyzed throughout this
thesis.

Taken together, this thesis presents an accurate and robust diagnosis tool to trace sound
radiating sources on vibrating surfaces. By using the sound energy density as a con-
trol objective, a combined pressure-velocity quantity is introduced, which allows to gain
deeper insight into the properties of the acoustic system. In addition to this, a probabilistic
method is proposed for accelerated frequency sweep analyses enabling decision making
processes under limited information.
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1 Introduction

Exposure to noise is a growing public health concern worldwide and poses a major envi-
ronmental problem. In their report in 2011, the World Health Organization Regional Office
for Europe identified that noise is related to numerous human diseases. To quantify the
health impact of noise, they have applied a disability-adjusted life-year criterion. For the
European countries, they have calculated 61 000 years for ischaemic heart disease, 45
000 years for cognitive impairment of children, 903 000 years for sleep disturbance, 22
000 years for tinnitus, and 587 000 years for annoyance. This makes approximately 1 618
000 healthy life years per year that are lost due to noise. These observations indicate that
there is an urgent need to address the health problems caused by noise [1].

According to physical principles, vibrating structures interacting with the ambient fluid lead
to pressure perturbations, which result in emitted sound. While we perceive sound from
musical instruments as pleasant, we typically consider sound emissions of modern in-
dustrial products disturbing or harmful. Specialists and researchers in that field, thus,
aim to mitigate undesired sound emissions to reduce the impact on their environment.
Vibrating structures as central noise mechanisms are omnipresent in the interior of mod-
ern transportation systems. A non-exhaustive list encompasses aircraft fuselages, train
compartments, automotive passenger cabins, and passenger cabins of modern vertical
take-off and landing aircraft. Consequently, identifying sound producing vibration patterns
on the structural surface is of great interest [2, 3]. In engineering practice, experience has
demonstrated that implementing noise mitigation techniques in the early design stages
yields quieter and better products. Apparently, actions in the early phases lead to sub-
stantial cost benefits [4]. In early design stages, experts and practitioners can rarely apply
experimental measurements to identify sound sources on surfaces, as product prototypes
are seldom available in these stages. Numerical methods, on the other hand, allow the
analysis of surface contributions for various configurations at the early design phase en-
abling a fast decision-making process. Regarding applications in exterior acoustics, the
radiated sound intensity is widely adopted for evaluations of the sound emission level.
However, an equivalent quantity needs to be established for interior acoustic problems.
On top of that, specialists are challenged to make decisions under partial information,
as early design candidates are subject to numerous uncertainties potentially arising from
parameter variations or manufacturing tolerances.

The overarching aim of this thesis is to develop a powerful diagnosis tool to trace sound
sources on vibrating structures. Therefore, a numerical contribution analysis method is
implemented, which can be readily integrated into an early design phase of a product
development cycle. Prior to the implementation, a control objective for interior acoustic
problems is defined enabling an accurate and robust formulation for the contribution anal-
ysis. The proposed method is then extended from a single evaluation point to a series of
evaluation points to recover surface contributions to the acoustic quantities in entire vol-
umes. The low frequency booming noise problem in passenger car cabins is investigated
for validation purposes. In the final step, a multi-fidelity modeling paradigm is adopted,
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1 Introduction

combining predictions of highly accurate but costly simulations with small-scale models,
which might be less accurate but fast to obtain. In this way, a holistic approach is proposed
to improve the efficiency in decision-making pipelines.

1.1 State of the art

This chapter is composed of two themed parts. The first part deals with the state of the
art on sound source identification problems on vibrating surfaces. Over the past decades,
various approaches have been proposed to identify sound producing surfaces:

• Near-field acoustic holography (NAH)

• Equivalent source methods (ESM)

• Inverse boundary element method (IBEM)

• The Helmholtz least-squares (HELS) method

• Surface and panel contribution analysis

• Supersonic and non-negative surface contributions

In the work [5], the developments in these topics are traced until 2004. The first subsection
overviews existing research on NAH and ESM (Sec. 1.1.1). Previous studies in the IBEM
and HELS are presented in Sec. 1.1.2. A detailed review of surface and panel contribution
analysis methods is provided in Sec. 1.1.3, while Sec. 1.1.4 reviews studies on supersonic
and non-negative intensity. The second part proceeds with the review on the state of
the art of probabilistic surrogate modeling, including Gaussian processes in acoustics
(Sec. 1.1.5) and multi-fidelity models in the context of fast frequency sweeps (Sec. 1.1.6).

1.1.1 Near-field acoustic holography and equivalent source methods

NAH provides an experimental technique that reconstructs a three-dimensional sound
field based on pressure measurements on a two-dimensional surface. Researchers in
that field refer to this surface as the hologram. The sound pressure on the hologram
is used as a boundary condition for a known Green’s function. The three-dimensional
sound field is reconstructed by convolving the hologram data with the Green’s function.
Based on that solution, the vector-valued intensity field is obtained, which visualizes the
energy flow within the structure [6, 7, 2]. This technique has been initially investigated
on elementary geometries, e.g., of planar [6], cylindrical [8], and spherical shape [9] and
then transferred to interior noise reduction problems in aircraft fuselages [10, 11]. For
arbitrarily shaped surfaces, the boundary element method (BEM) has been incorporated
in NAH schemes [12, 13]. NAH has been further improved by measuring the normal
particle velocity instead of the sound pressure. In their article [14], Jacobsen and Liu
have demonstrated that the particle velocity data provides a robust alternative to sound
pressure measurements.
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1.1 State of the art

Another technique to recover sound sources involves the group of equivalent source
methods (ESMs). In the ESM, a superposition of equivalent point sources is deployed at
auxiliary positions to recover the sound radiation or scattering pattern of a structure [15].
The power of these sources is determined such that they fulfill the measured data. This
results in an inverse problem, requiring special treatment of the ill-posed system matrix.
In contrast to finite element or boundary element formulations, the vibrating structure
is not discretized in the ESM. As such, the ESM designates a meshless method [16].
Due to their simplicity, ESMs have received considerable attention leading to numerous
cross-sectional studies. For instance, it has been incorporated in the NAH to increase the
efficiency in the recovery procedure [17]. Moreover, the ESM has been integrated into an-
other holographic reconstruction framework to alleviate the singularities associated with
the BEM system matrix [18]. In another study, the ESM has been integrated into an NAH
scheme, where the measurements are obtained with particle velocity transducers [19]. In
close analogy to [14], Zhang et al. identified that a velocity-based analysis is less sen-
sitive than traditional pressure-based methods. The ESM has further demonstrated its
effectiveness in sound field separation techniques. This technique is advantageous to
mitigate the impact of perturbing sound sources [20]. In interior acoustics, a monopole-
based ESM has been successfully applied in a source identification problem [21]. Further
work has applied an extension to dipole equivalent sources to recover sound sources on
a vibrating ship hull [22]. The review article [16] provides a detailed overview tracing the
developments in ESMs until 2017. More recent studies focus on ESM-based holographic
reconstructions at large scale. These involve sparse formulations to alleviate the ill-posed
nature inherent to reconstruction methods [23, 24, 25, 26, 27, 28].

1.1.2 Inverse BEM and Helmholtz least-squares method

In general, the BEM is used to compute the radiated or scattered sound field from a vi-
brating structure. This procedure is also known as forward simulation. By reversing that
step the backward simulation or the inverse problem is stated. Regarding the BEM, this
means that the vibration pattern on a structure is computed by imposing a known sound
field. From this, the concept of the IBEM has emerged. The initial study on IBEM can be
traced back to 1992. In that work, the IBEM has been incorporated in an NAH method in
order to recover sound sources on arbitrarily shaped structures [29]. Moreover, the IBEM
has been applied to an interior vehicle noise problem. In that work, the velocity, the pres-
sure and the sound power on an enveloping structure have been recovered by measuring
the sound pressure inside the vehicle cabin [30]. The authors in the aforementioned stud-
ies have emphasized the ill-posed nature associated with the acoustic inverse problem.
The reason for this is a singularity in the acoustic system matrix leading to non-physical
results. In order to treat the ill-posed problem, regularization techniques have been thor-
oughly investigated. A non-exhaustive list of these methods includes the Tikhonov regu-
larization [31, 12], the truncated singular value decomposition (SVD) [32, 33], and Krylov
subspace iterative methods [13]. In a cross-sectional study [18], a hybrid IBEM and ESM
approach is incorporated in an NAH. In the initial step, the limited number of measured
data is enriched by sound field data from multiple equivalent sources. Based on the com-
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1 Introduction

bined data set, the vibration pattern is computed by means of the IBEM. Another research
deals with the comparison between the IBEM and the ESM. The authors have favored the
ESM, as the IBEM is associated with higher computational costs. The reason for this is
that the IBEM system matrix assembly involves the numerical discretization of a bound-
ary integral equation, while the system matrix related to the ESM is directly evaluated.
Moreover, the authors have demonstrated that the ESM can achieve similar reconstruc-
tion errors for a specific choice of evaluation points [34]. For a detailed presentation of
the fundamentals on IBEM-based NAH, the interested reader is referred to the work [35].
Modern research on IBEM also focuses on sparse regularization techniques. In a recent
study, for instance, acoustic radiation modes have been effectively applied in a sparse
formulation [36]. In sound source identification problems, the BEM is generally preferred
to the finite element method (FEM). The reason for this is that the BEM only requires the
numerical discretization of the surface, which is the relevant part of the structure in sound
radiation and scattering problems. However, for the sake of completeness, it should be
mentioned that research has been also conducted on the inverse FEM to recover sound
sources in two-dimensional cavities [37, 38] and three-dimensional [39] aircraft fuselages.

Instead of solving the acoustic inverse problem, one could possibly think about optimizing
the source parameters such that the measured data is fulfilled. This idea is central to
the concept of the Helmholtz least-squares (HELS) method. In the HELS method, a
spherical wave expansion is used to recover a sound field computed with the BEM [40,
41]. The method of least-squares is then applied to find the best fit of the wave expansion
coefficients with respect to the measured sound pressure [42]. In the field of interior
acoustics, the HELS method has been investigated for elementary sound sources such as
cylinders and spheres [43]. Moreover, a combination of the NAH and the HELS method
has been developed for a panel contribution analysis. In that study, the authors have
focused on the sound power as a quality criterion [44].

1.1.3 Surface and panel contribution analysis

The first incidence of panel or surface contribution analysis in the scientific literature can
be traced back to a research group around Ishiyama [45]. In 1988, the authors imple-
mented ACOUST/BOOM, a BEM-based research code to compute the sound pressure
radiated by a vibrating structure. The term ’BOOM’ refers to booming noise, which des-
ignates the most disturbing noise in vehicle cabins. Booming noise generally occurs at
frequencies up to 200 Hz. In their method, the authors compute the sound pressure inside
the domain by the product of the velocity excitation and a coefficient vector relating the
transfer function from a boundary element to the sound pressure in the domain. They
used the so-called contribution ratio as the control objective to perform the contribution
analysis. The contribution ratio is defined by the ratio of sound pressure induced by one
element to the total sound pressure [46].

Since then, the definition of the coefficient vector has evolved. For instance, Adey et
al. [47] have introduced the term acoustic contributions to refer to that quantity. In ad-
dition, they have modified the coefficients by a correction factor to account for a phase
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1.1 State of the art

shift between the sound pressure on the boundary and the sound pressure at the inter-
nal point [48]. In another work [49], these transfer functions have been understood as
sensitivities regarding the particle velocity. As such, the authors have introduced them
as global acoustic sensitivities. Dong et al. [50] also support this view by interpreting
the coefficient vector as sensitivities of the sound pressure at the evaluated position. In
their work, the authors have developed a design sensitivity analysis based on the adjoint
variable method. In 2000, a recorded patent popularized the term acoustic transfer vec-
tor [51]. Marburg [52, 53] provides a further definition of the coefficient vector, describing
them as influence coefficients. While various definitions have been proposed, this thesis
will use the term influence coefficients, as suggested by Marburg.

As already mentioned, contribution analysis has been of great interest in vehicle interior
noise problems. For this reason, it has received considerable attention from developers
of commercial software packages. The initial implementation of a panel contribution anal-
ysis can be traced back to SYSNOISE developed by Coyette [49, 54]. Since its release
in 1993, it has been applied to numerous vehicle interior noise problems ranging from
passenger [55], mini-bus [56], and tractor cabins [57]. Nowadays, SYSNOISE is part of
Siemens Simcenter and runs under the name LMS Virtual Lab. Another implementation
based on the equivalent radiated power (ERP) is supported in LS-DYNA [58]. COMSOL
Multiphysics®, on the other hand, has implemented a panel contribution analysis based
on the numerical Green’s function. For a limited number of evaluation points, the authors
have concluded that their method provides an efficient alternative to traditional techniques
based on BEM or FEM [59].

Besides numerical methods, surface contributions have also been assessed with exper-
imental methods. In close analogy to [45], Muhlmeier et al. have measured the ratio
of the sound pressure of each chassis part with respect to the total sound pressure
at the driver’s seat [60]. In addition to the air-borne transfer function, structure-borne
transfer paths have been considered by measuring the acceleration on various chassis
panels [61]. Microflown Technologies has reported another experimental surface contri-
bution analysis. In the first step, the transfer functions are measured from a monopole
sound source located at the driver’s position to reference microphones at the enveloping
surfaces. Secondly, the particle velocity at the surfaces is measured during an opera-
tional state. Then, by assuming acoustic reciprocity, the contribution of each panel can
be evaluated [62, 63]. In another study, De Bree and Basten replaced the microphones
with particle velocity sensors in the reference measurement. The authors have indicated
that the analysis procedure is less sensitive to environmental conditions when particle
velocity sensors are used [64]. HEAD acoustics have developed a similar measurement
technique based on the reversibility of the sound path. In contrast to traditional methods,
where sensors are applied on each panel, the authors have sequentially analyzed the
response of each panel [65].

1.1.4 Supersonic intensity and non-negative intensity

In a landmark study, Williams introduced the supersonic intensity (SSI) as a control objec-
tive for evaluating exterior acoustic problems [66]. As an alternative to the sound intensity,
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the SSI considers only the radiation of supersonic wave components, as the subsonic
wave components are evanescent in the near-field and are, thus, not contributing to the
far-field. By applying the SSI, sound sources on vibrating structures can be directly iden-
tified, as the SSI filters out non-radiating wave components. Moreover, the SSI has been
formulated for rectangular shaped structures, where the results were concurrent with fun-
damental corner and edge radiation modes of vibrating planar structures [67]. The SSI
has been further extended to vibrating structures of arbitrary shapes [68]. In that study,
the authors developed a BEM-based technique in which non-radiating wave components
are filtered out using the SVD. Williams [2] uses the radiation circle to distinguish be-
tween subsonic and supersonic wave components. Wave components inside the radia-
tion circle are defined as supersonic components. On the other hand, the evanescent
subsonic wave components lie outside the radiation circle. However, a transformation to
the wave number domain is required because the radiation circle is defined in that do-
main. To abridge that transformation, Fernandez-Grande et al. have introduced a spatial
filter function to transfer the properties of the radiation circle to the spatial domain [69, 70].

Marburg et al. [71] have introduced another control objective related to exterior acoustics.
The authors have formulated the non-negative intensity (NNI) with either zero or positive-
only contributions. In this way, near-field cancellation effects due to alternating positive
and negative signs are avoided. While Marburg et al. have initially focused on sound
radiation problems, Liu et al. [72] have extended the NNI to sound scattering problems.
Therefore, they computed the NNI on the scattering object and a different far-field receiver
surface. In another study [73], the authors have demonstrated that the NNI can effectively
determine the directivity of scattered sound waves. Since then, the NNI has been estab-
lished as a viable control objective in multiple applications. For instance, Wilkes et al. [74]
have implemented the NNI for fluid-structure interaction problems at large scale. Liu et
al. [75] have used the NNI to reconstruct vibrating patterns on structures with inhomo-
geneous damping characteristics, while Karimi et al. have focused on systems that are
excited by a turbulent boundary layer or a diffuse sound field [76]. In a more recent study,
the NNI has been applied to identify the contributions from Antarctic krill to the scattered
sound at the target strength of underwater objects [77].

In a cross-sectional study, Williams [78] has derived spatial convolution formulas based
on hologram measurements to identify the NNI distributed on a vibrating planar surface.
He has pointed out that by using a hologram with a combined microphone and velocity-
probe measurements, a smooth intensity distribution can be recovered. Another work
deals with the comparison between the SSI and the NNI [79]. The findings from the com-
parison suggest that both intensity quantities can be used as a viable control objective.
A slightly deteriorated performance has been observed for the SSI at lower frequencies.
However, this issue has been alleviated by introducing a cut-off coefficient to the spatial
convolution formula. Another intensity-based control objective, the useful intensity, has
been proposed by Correa and Tenenbaum [80]. Regarding the filtering step, the useful
intensity relies on the acoustic radiation modes, whereas the NNI relies on the modal
decompostion of the acoustic impedance matrix. As the acoustic radiation modes are
closely related to the eigensolution of the acoustic impedance matrix, the useful intensity
provides a similar approach to the NNI. The evidence reviewed here highly supports the
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1.1 State of the art

idea of an alternative control objective to the sound intensity. The SSI and NNI designate
the most prominent approaches, as they avoid cancellation effects in the near-field. These
studies outline an essential role for intensity formulas, as they provide efficient techniques
to recover sound sources on vibrating structures.

Regarding interior acoustics, a similar control objective has yet to be established. While
intensity-type quantities are suitable for outward-radiating problems, Koopmann and Fahn-
line suggest using the sound energy density as a control objective for inward-radiating
problems [3]. Existing research on active noise control recognizes the vital role of sound
energy densities. For instance, the sound energy density has been effectively applied
to control sound in interior transmission problems [81, 82, 83]. Moreover, the sound
energy density has been used as a control objective to treat the noise problem in cou-
pled structural-acoustic cavities [84]. In another study, Sommerfeldt and Nashif [85] have
demonstrated that an energy-based control system provides higher robustness than a
pure pressure-based technique.

1.1.5 Gaussian processes in acoustics

Early examples of research on Gaussian processes (GPs) include problems in hyrdro-
science [86] and geostatistics [87], where GPs have been adopted for interpolations of
stochastically variable spatial data. In the early literature, however, the term kriging was
used to refer to a GP. For a thorough review of kriging, particularly its origins, the inter-
ested reader is referred to [88, 89]. It is only since the works of Mackay [90] and Williams
and Rasmussen [91] that the study of GPs has gained momentum. Since then, the term
Gaussian process has been widely adopted. Modern studies on GPs involve their appli-
cation for the solution of linear [92] as well as nonlinear, time-dependent partial differential
equations [93].

Awareness of GPs in acoustics is relatively recent, having possibly first been described
by Hensman et al. [94], who have implemented GPs to localize sound producing surfaces
on an aerospace component. In the field of acoustical oceanography, a great deal of
research on GPs has focused on identifying and localizing sources producing sound in
the ocean [95, 96, 97, 98, 99]. GPs have been further applied to estimate the direction
of arrival [100] and to reduce uncertainties in the predicted sound field [101]. Beyond
that, GPs have been specialized for sound field reconstruction problems by introducing
a plane wave expansion [102] or the inhomogeneous solution of the Helmholtz equation
to the kernel function [103, 104]. More recent research on GPs involves their application
as a surrogate in transfer path analyses [105] and identifying rock cracks based on the
emitted sound [106].

1.1.6 Multi-fidelity modeling and fast frequency sweeps

Craig et al. [107] have initially articulated the concept of a multi-fidelity model. Multi-
fidelity modeling has been then popularized by Kennedy and O’Hagan [108]. In the early
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literature, research on multi-fidelity modeling has focused on the approximation of the
output of a complex simulation model by using small-scale models, which are fast to
evaluate. In particular, Kennedy and O’Hagan have defined a multi-fidelity model as a
combination of a model with the highest possible fidelity and its lower fidelity version.
For that purpose, they introduced the term autoregressive to refer to their multi-fidelity
concept. In their multi-fidelity model, they have used GPs as surrogates for the different
fidelity levels, which are linearly correlated. That idea has been extended to multiple
fidelity levels utilizing a recursive formulation for the autoregressive model [109, 110]. In
more recent studies, multi-fidelity GPs have been applied for the inference of random
fields [111] and in the design optimization of super-cavitating hydrofoils [112, 113].

Multi-fidelity models relying on the formulation of Kennedy and O’Hagan, see [108], as-
sume a linear correlation between the fidelity levels. Several studies have explored the
extension of multi-fidelity models to nonlinearly correlated levels to assess more complex
correlations between the fidelity levels. For instance, by stacking GPs for each fidelity
level, deep GPs have been implemented, allowing nonlinear correlations between the
levels [114]. Deep GPs have been validated on discontinuous correlation functions [115,
116] and applied to a real-world problem combining numerical and experimental data [117].
As an alternative to GPs, neural networks have been used as surrogates in a multi-fidelity
method [118]. Using this approach, nonlinearities in the correlation functions have also
been effectively captured [119]. Recent evidence demonstrates that multi-fidelity models
are effective in structural health monitoring applications [120, 121].

In general, multi-fidelity models allow approximations of a function by combining the re-
sults of computational costly simulations with solutions of small-scale simulations. This
concept can be transferred to the efficient solution of parameter-dependent problems,
for which multi-fidelity models have demonstrated their effectiveness, see [118]. Turning
now to the field of acoustics, the solution of the Helmholtz equation with the BEM implic-
itly depends on the frequency. Thus, the solution in a specific frequency range requires
repetitive assemblies of the system matrices. So far, this problem has been only treated
with deterministic methods. For instance, a greedy reduce basis method has been devel-
oped for vibroacoustic problems [122, 123]. In another approach, the BEM matrices are
decoupled from the frequency. The size of the remaining frequency-independent BEM
matrices is then reduced through model order reduction methods. This technique has
been successfully applied on acoustic [124, 125] as well as on coupled structural acous-
tic systems [126, 127].

1.2 Contributions and accomplishments

The present cumulative thesis contributes to the research areas of computational acous-
tics and uncertainty quantification. It comprises three peer-reviewed publications, which
provide efficient and robust techniques to tackle the vehicle interior noise problem stated
in the Introduction, see Chapter 1. The remaining part of this thesis proceeds by refer-
ring to the publications as Paper A, Paper B, and Paper C. The key contributions and
accomplishments of this thesis are summarized as follows:
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• In Paper A, the surface contributions based on sound energies are introduced. In
particular, the derivation of their formulation and implementation in a BEM frame-
work is presented. The proposed method is validated with an industrial application,
the vehicle interior noise problem, with booming noise representing the most promi-
nent source of disturbance.

• While the previous paper focuses on surface contributions regarding a single evalu-
ation point, Paper B provides an extension to multiple field points leading to an ap-
proximation of the energy-based surface contributions concerning the entire cavity.
The proposed method is studied on two numerical examples, the inward radiating
sphere problem and the vehicle cabin noise problem.

• The proposed methods in the first two publications rely on the solution of the Helmholtz
equation for each frequency. Thus, Paper C presents an approximation of the fre-
quency sweep for a broad frequency range. For this purpose, a multi-fidelity Gaus-
sian process has been developed and validated for the vehicle cabin noise problem.
Moreover, the accuracy and the computational runtime of the proposed approxima-
tion has been compared to the fully resolved frequency sweep with the BEM.

Chapter 3 provides detailed summaries of the publications Paper A, Paper B, and Paper
C and an accurate description of the contributions of all authors. The reprints of the
publications are given in Appendix A.
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2 Energy-based surface contributions
and multi-fidelity Gaussian
processes

This chapter is organized as follows: The first part deals with the interior acoustic problem
in the frequency domain governed by the Helmholtz equation, see Sec. 2.1. The next
section provides the fundamentals of the BEM in acoustics (Sec. 2.2). The third section,
Sec. 2.3, is concerned with the evaluation of acoustic quantities within the computational
domain. This involves evaluations at single and multiple field points. Sec. 2.4 introduces
the energy quantities in sound waves. In Sec. 2.5, the formulation of the energy-based
surface contributions is presented. The theoretical background on GPs is outlined in
the following section, Sec. 2.6. The final section in this chapter, Sec. 2.7 involves the
formulation of multi-fidelity models using GPs.

2.1 Acoustic Helmholtz equation

In the linear acoustic theory, sound waves are constituted by small perturbations of the
sound pressure and density compared to their ambient values. In addition, it is assumed
that the ambient flow can be neglected. By this means, the propagation of sound is
expressed by the acoustic wave equation [128]

∇2 p̃(⃗x, t) =
1
c2

0

∂ 2 p̃(⃗x, t)
∂ t2 x⃗ ∈ Ω ⊂ R3 (2.1)

with the sound pressure p̃(⃗x, t) and the speed of sound c0 in the ambient fluid. The
acoustic wave equation underlies the fundamental principles in continuum mechanics,
such as conservation of mass, balance of momentum, and the constitutive equation. For
details on the derivation of the wave equation, the interested reader is referred to [128,
129].

By assuming a time-harmonic sound pressure, the concept of separation of variables can
be applied. This is expressed by

p̃(⃗x, t) =R
{

p(⃗x)e−iωt
}

(2.2)

with i =
√
−1 and ω = 2π f denoting the imaginary unit and the angular frequency. Sub-

stituting Eq. (2.2) in Eq. (2.1) yields the three-dimensional Helmholtz equation describing
the propagation of sound waves in the frequency domain

∇2 p(⃗x)+ k2 p(⃗x) = 0 x⃗ ∈ Ω ⊂ R3, (2.3)
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2 Energy-based surface contributions and multi-fidelity Gaussian processes

with k = ω/c denoting the wave number. In the scope of this work, the focus is on interior
acoustic problems. A schematic overview of an interior Helmholtz problem is depicted in
Fig. 1.

Figure 1: Definition of an interior acoustic problem. The computational acoustic domain
Ω is enclosed by its boundary Γ. The normal vector n⃗ points outward into the
complementary domain Ωc. This figure is adopted from [130].

For the solution of the Helmholtz equation, boundary conditions need to be satisfied. In
acoustics, Robin boundary conditions are particularly important, as they allow to model
absorbing behavior on the boundaries. The Robin boundary condition is stated as

v f (⃗x)− vs(⃗x) = Y (⃗x)p(⃗x) x⃗ ∈ Γ ⊂ R2, (2.4)

with the normal fluid particle velocity v f (⃗x), the normal structural particle velocity vs(⃗x),
and the boundary admittance Y (⃗x). Note that, for Y (⃗x) = 0, the Robin boundary condition
degrades to a Neumann boundary condition. The linearized Euler’s equation relates the
fluid particle velocity v f (⃗x) to the derivative of the sound pressure in normal direction

v f (⃗x) =
1

iωρ0

∂ p(⃗x)
∂n(⃗x)

x⃗ ∈ Γ ⊂ R2 (2.5)

with ρ0 denoting the density of the ambient fluid [131].

2.2 Boundary element method in acoustics

The method of weighted residuals is applied to obtain the weak formulation of the Helmholtz
equation (Eq. 2.3). This implies the multiplication of the Helmholtz equation with the test
function χ (⃗x) and the integration over the domain Ω

∫

Ω

χ (⃗x)
[
∇2 p(⃗x)+ k2 p(⃗x)

]
dΩ = 0. (2.6)
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A double partial integration of Eq. (2.6) then yields
∫

Γ

iωρ0χ (⃗x)v f (⃗x)− p(⃗x)
∂ χ (⃗x)

∂n(⃗x)
dΓ+

∫

Ω

p(⃗x)
[
∇2

χ (⃗x)+ k2
χ (⃗x)

]
dΩ = 0. (2.7)

Eq.(2.7) consists of one boundary integral and one domain integral. By substituting the
test function with the fundamental solutions G(⃗x, y⃗), the domain integral is rewritten as an
integral-free term. The fundamental solutions G(⃗x, y⃗) satisfy

∇2G(⃗x, y⃗)+ k2G(⃗x, y⃗) =−δ (⃗x, y⃗), (2.8)

where δ (⃗x, y⃗) denotes the Dirac function. The free space Green’s function G(⃗x, y⃗) relates
the sound pressure at the field point x⃗ to a monopole source located in y⃗ in a free-field
environment. For three-dimensional acoustic fields, the Green’s function is specified by

G(⃗x, y⃗) =
1

4π

eikr(x⃗,y⃗)

r(⃗x, y⃗)
x⃗, y⃗ ∈ R3 (2.9)

with the Euklidean distance r(⃗x, y⃗) = |⃗x− y⃗| between the field point x⃗ and the source
point y⃗. Note that the positive exponent assures outward propagating sound waves [128].

With the property in Eq. (2.8), the domain integral term in Eq. (2.7) is reformulated as
∫

Ω

p(⃗x)
[
∇2G(⃗x, y⃗)+ k2G(⃗x, y⃗)

]
dΩ =

∫

Ω

p(⃗x) [−δ (⃗x, y⃗)]dΩ =−c(y⃗)p(y⃗) (2.10)

with the coefficient c(y⃗) denoting a geometric quantity, which characterizes the contour of
the boundary at y⃗. On smooth surfaces, for instance, the coefficient c(y⃗) adopts to 0.5.
By introducing Eq. (2.10) in Eq. (2.7), the Kirchhoff-Helmholtz boundary integral equation
is formulated as

c(y⃗)p(y⃗)+
∫

Γ

∂G(⃗x, y⃗)

∂n(⃗x)
p(⃗x)dΓ(⃗x) = iωρ0

∫

Γ

G(⃗x, y⃗)v f (⃗x)dΓ(⃗x) (2.11)

The term representation formula is also commonly used for Eq. (2.11). This definition
highlights that the sound pressure can be evaluated at an arbitrary position in Ω or Γ by
only considering the solution on the boundary. Prior to the discretization step, the Robin
boundary condition posed in Eq. (2.4) is included in the Kirchhoff-Helmholtz boundary
integral equation. The resulting equation then reads

c(y⃗)p(y⃗)+
∫

Γ

[
∂G(⃗x, y⃗)

∂n(⃗x)
− iωρ0G(⃗x, y⃗)Y (⃗x)

]
p(⃗x)dΓ(⃗x) = iωρ0

∫

Γ

G(⃗x, y⃗)vs(⃗x)dΓ(⃗x).

(2.12)
For the boundary element formulation, the method of weighted residuals is applied once
again to Eq. (2.12). In the scope of this work, we use the collocation method to discretize
the weak formulation of Eq. (2.12). This means that the additionally introduced test func-
tions are substituted by the Dirac function δ (⃗x, z⃗), where z⃗ denotes the location of the
collocation point. In this way, the boundary integral equation is satisfied at a finite number
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2 Energy-based surface contributions and multi-fidelity Gaussian processes

of collocation points [128].

In the discretization step, approximation functions for the sound pressure, the structural
particle velocity, and the boundary admittance are introduced

p(⃗x) =
N

∑
l=1

ϕl (⃗x)pl =φT(⃗x)p, (2.13)

vs(⃗x) =
N̄

∑
j=1

ϕ̄ j (⃗x)vs j = φ̄T(⃗x)vs, (2.14)

Y (⃗x) =
Ñ

∑
k=1

ϕ̃k(⃗x)Yk = φ̃T(⃗x)Y , (2.15)

where p, vs, and Y denote the discrete sound pressure, the discrete structural particle
velocity, and the discrete boundary admittance at the position x⃗. The number of the
basis functions φ, φ̄, and the φ̃ are represented by N, N̄, and Ñ, respectively. In practice,
boundary elements with piecewise discontinuous polynomial functions are widely adopted
for the approximation of acoustic quantities. In that case, it can be assumed that N = N̄ =
Ñ with N representing the number of degrees of freedom. As a consequence, the basis
functions are assumed to be identical, i.e., φ= φ̄= φ̃. For more details on the derivation
of discontinuous boundary elements, the interested reader is referred to [132, 133].

By applying the collocation method and introducing the discrete representation of the
physical quantities, the integral equation adapts to

c(z⃗l)pl +
∫

Γ

{
∂G(⃗x, z⃗l)

∂n(⃗x)
− iωρ0G(⃗x, z⃗l)

[
N

∑
j=1

ϕ j (⃗x)Yj

]}[
N

∑
k=1

ϕk(⃗x)pk

]
dΓ(⃗x)

= iωρ0

∫

Γ

G(⃗x, z⃗l)

[
N

∑
m=1

ϕm(⃗x)vsm

]
dΓ(⃗x). (2.16)

Note that the first term in the equation above is analytically integrated according to the re-
lation in Eq. (2.10). After rearranging this equation, the matrix of the single layer potential
is introduced as

gl j = iωρ0

∫

Γ

G(⃗x, z⃗l)ϕ j (⃗x)dΓ(⃗x). (2.17)

Analogously, the matrix of the double layer potential and the integral-free term are ex-
pressed by

hl j = c(z⃗l)δl j +
∫

Γ

∂G(⃗x, z⃗l)

∂n(⃗x)
ϕ j (⃗x)dΓ(⃗x). (2.18)

By this means, the acoustic linear systems of equations can be formulated in matrix form

[H(ω)−G(ω)Y(ω)]p(ω) = G(ω)vs(ω) (2.19)

with the complex-valued system matrices G(ω) and H(ω), which are neither positive def-
inite nor Hermitian. The boundary admittance matrix Y(ω) contains only diagonal entries
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for constant discontinuous approximation functions. The notation of the system matrices
with ω as an argument highlights that these matrices implicitly depend on the frequency.
As such, they have to be assembled for each discrete frequency. The sound pressure
solution becomes, thus, frequency-dependent. For frequency sweep analyses, the linear
system of equations in Eq. (2.19) has to be evaluated for each discrete frequency within
the frequency range of interest [131].

2.3 Evaluation on single and multiple field points

Once the acoustic linear system of equations in Eq. (2.19) is solved, the sound pressure
can be obtained at field points inside the acoustic domain, i.e., y⃗ ∈Ω. For the computation
of the sound pressure at a single field point, the representation formula in Eq. (2.11) is
adapted to

pi(y⃗) = iωρ0

∫

Γ

G(⃗x, y⃗)vs(⃗x)dΓ (⃗x)−
∫

Γ

[
∂G(⃗x, y⃗)

∂n(⃗x)
− iωρ0 G(⃗x, y⃗)Y (⃗x)

]
p(⃗x)dΓ(⃗x).

(2.20)

The subscript i denotes that the sound pressure is evaluated at an interior field point. Note
that the integral-free term c(y⃗) equals to one in the equation above, as the field point y⃗ is
located inside the acoustic domain Ω. In matrix form, Eq. (2.20) reads

pi(y⃗) = gT(y⃗)vs −
[
hT(y⃗)−gT(y⃗)Y

]
p (2.21)

with the boundary integral operators g(y⃗) and h(y⃗) expressed as

gl(y⃗) = iωρ0

∫

Γ

G(⃗x, y⃗)ϕl dΓ(⃗x), (2.22)

hl(y⃗) =
∫

Γ

∂G(⃗x, y⃗)

∂n(⃗x)
ϕl dΓ(⃗x). (2.23)

The operators g(y⃗) and h(y⃗) can be understood as rows of the system matrices G(ω)
and H(ω) with the field point y⃗ treated as a collocation point. By inserting the solution
from Eq. (2.19) in Eq. (2.21), all matrix-vector products involve the multiplication with the
structural particle velocity vector vs. The sound pressure at a field point can then be
equivalently expressed by

pi(y⃗) =
{

gT(y⃗)−
[
hT(y⃗)−gT(y⃗)Y

]
(H−GY)−1G

}
vs = bT(y⃗)vs (2.24)

where all matrices are comprised in b(y⃗), which is of size N × 1. This quantity denotes
the influence coefficients of the structural particle velocity regarding the sound pressure
at the field point y⃗. In the literature, the term acoustic transfer vector is commonly used
to refer to that quantity [131].

By applying the linearized Euler equation (Eq. (2.5)) on Eq. (2.20), the fluid particle veloc-
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ity can also be evaluated at a field point inside the domain Ω [134]

v⃗i(y⃗) =
∫

Γ

∇G(⃗x, y⃗)vs(⃗x)dΓ(⃗x)−
[∫

Γ

∇ 1
iωρ0

∂G(⃗x, y⃗)

∂n(⃗x)
−∇G(⃗x, y⃗)Y (⃗x)

]
p(⃗x)dΓ(⃗x).

(2.25)

Note that the field point particle velocity v⃗i(y⃗) is a vector-valued quantity, since it is defined
in three spatial directions {x,y,z}. For the sake of compactness, the matrix form is also
introduced for the field point particle velocity

v⃗i(y⃗) =
{

g̃T(y⃗)−
[
h̃T(y⃗)− g̃T(y⃗)Y

]
(H−GY)−1G

}
vs = b̃T(y⃗)vs (2.26)

with the boundary integral operators related to the internal fluid particle velocity

g̃l(y⃗) =
∫

Γ

∇G(⃗x, y⃗)ϕl dΓ(⃗x), (2.27)

h̃l(y⃗) =
1

iωρ0

∫

Γ

∂G(⃗x, y⃗)

∂n(⃗x)
ϕl dΓ(⃗x). (2.28)

In close analogy to Eq. (2.24), b̃(y⃗) refers to the particle velocity-related influence coef-
ficients. More specifically, this quantity refers to the sensitivities of the field point particle
velocity regarding the structural particle velocity. As opposed to that, the quantity b(y⃗)
is understood as the sensitivities of the field point sound pressure with respect to the
structural particle velocity. Since the field point particle velocity is defined in three spatial
directions, b̃(y⃗) is of size N ×3 [130].

For the evaluation of the sound pressure on multiple field points, Eq. (2.24) is modified to

pi(y⃗ j) = iωρ0

∫

Γ

G(⃗x, y⃗ j)vs(⃗x)dΓ(⃗x)−
∫

Γ

[
∂G(⃗x, y⃗ j)

∂n(⃗x)
− iωρ0 G(⃗x, y⃗ j)Y (⃗x)

]
p(⃗x)dΓ(⃗x)

(2.29)

with the index j = 1,2, ...,Np denoting the identity of the field point. The total number of
field points is represented by Np. Analogously, Eq. (2.29) can be expressed in a compact
matrix form

pi(y⃗ j) =
{

gTj (y⃗ j)−
[
hT

j (y⃗ j)−gTj (y⃗ j)Y
]
(H−GY)−1G

}
vs = bT

j (y⃗ j)vs (2.30)

wit the sound pressure-related influence coefficients b j(y⃗ j) at multiple field points. Since
b j(y⃗ j) refers to Np field points, it is of size N ×Np. The particle velocity at multiple field
points can be obtained in a similar way. For this purpose, Eq. (2.25) adapts to

v⃗i(y⃗ j) =
∫

Γ

∇G(⃗x, y⃗ j)vs(⃗x)dΓ(⃗x)−
[∫

Γ

∇ 1
iωρ0

∂G(⃗x, y⃗ j)

∂n(⃗x)
−∇G(⃗x, y⃗ j)Y (⃗x)

]
p(⃗x)dΓ(⃗x).

(2.31)
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In compact matrix form, this equation reads

v⃗i(y⃗ j) =
{

g̃Tj (y⃗ j)−
[
h̃T

j (y⃗ j)− g̃Tj (y⃗ j)Y
]
(H−GY)−1G

}
vs = b̃T

j (y⃗ j)vs, (2.32)

where b̃ j(y⃗ j) denotes the particle velocity-related influence coefficients regarding a set of
field points. For multiple field points, the size of b̃ j(y⃗ j) adopts to N ×3Np [139].

2.4 Energy in sound waves

For sound waves propagating in fluids, energy appears in two forms [129]: potential and
kinetic energy. The potential sound energy designates the stored energy due to the com-
pression of the fluid particles. It is formulated as

Ep =
1

2ρ0c2
0

∫

Ω

p(y⃗)p∗(y⃗) dΩ, (2.33)

where ()∗ denotes the conjugate complex operation. As such, the potential sound energy
is proportional to the sound pressure. The kinetic sound energy, on the other hand, is
determined by the motion of the particles. It depends on the fluid particle velocity and is
expressed by

Ek =
ρ0

4

∫

Ω

v⃗ f (y⃗) · v⃗∗
f (y⃗) dΩ. (2.34)

The total sound energy transported in sound waves is then defined by the sum of both
energy forms

Et = Ep +Ek =
1

2ρ0c2
0

∫

Ω

p(y⃗)p∗(y⃗) dΩ+
ρ0

4

∫

Ω

v⃗ f (y⃗) · v⃗∗
f (y⃗) dΩ. (2.35)

As an energy quantity, the unit of the sound energy is [kgm2/s2] = [J].

The sound energy densities are derived by referencing the sound energy to a unit volume.
For instance, the potential sound energy density at the position y⃗ reads

ep(y⃗) =
1

2ρ0c2
0

p∗i (y⃗)pi(y⃗). (2.36)

Analogously, the kinetic sound energy density at y⃗ is expressed by

ek(y⃗) =
ρ0

4
v⃗∗

i (y⃗)⃗vi(y⃗). (2.37)

The total sound energy density composed by the sum of both energy density forms is
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2 Energy-based surface contributions and multi-fidelity Gaussian processes

then formulated as

et(y⃗) = ep(y⃗)+ ek(y⃗) =
1

2ρ0c2
0

p∗i (y⃗)pi(y⃗)+
ρ0

4
v⃗∗

i (y⃗)⃗vi(y⃗). (2.38)

As the sound energy densities in Eqs. (2.36)–(2.38) are defined at the field point y⃗, the
sound pressure and the particle velocity at the same field point are used. Due to the
reference to a unit volume, the sound energy density has the unit [kg/ms2]. Note that the
sound energy, as well as the sound energy density, are real-valued quantities [130].

2.5 Surface contributions based on sound energy

Turning now to the contribution analysis, we initially introduce the formulation of the sur-
face contributions for a single evaluation point. For this purpose, the sound energy den-
sities at the evaluation point are used as control objectives. By substituting the field point
sound pressure in Eq. (2.36) with Eq. (2.24), the potential energy density can be equiva-
lently expressed by

ep =
1

2ρ0c2
0

p∗i pi =
1

2ρ0c2
0
(bTvs)

∗(bTvs) =
1

2ρ0c2
0

vHs
(

b∗bT
)

vs = vHs Apvs (2.39)

with ()H representing the complex conjugate operation. The matrix Ap, composed of the
dyadic product of the influence coefficients b, denotes the coupling matrix related to the
potential energy density. The rank of Ap equals to one when the surface contributions are
evaluated for a single field point. For the sake of conciseness, the dependence on y⃗ is
omitted here. In close analogy, the kinetic energy density in Eq. (2.37) can be reformu-
lated by using the expression of the field point particle velocity in Eq. (2.25)

ek =
ρ0

4
v⃗∗

i v⃗i =
ρ0

4
(b̃Tvs)

∗(b̃Tvs) =
ρ0

4
vHs
(

b̃∗b̃T
)

vs = vHs Akvs, (2.40)

where Ak denotes the coupling matrix related to the kinetic energy density. Since the
field point particle velocity is defined for three spatial directions, the matrix Ak is of rank
three. Consequently, the total sound energy density is obtained by computing the sum of
Eq. (2.39) and Eq. (2.40)

et = ep + ek = vHs

(
1

2ρ0c2
0

b∗bT+
ρ0

4
b̃∗b̃T

)
vs = vHs Atvs (2.41)

with At denoting the coupling matrix with respect to the total sound energy density. As
the matrix At is formulated as the sum of Ap and Ak, the rank of At equals to four. In
Eqs. (2.39)–(2.41), the sound energy densities are all expressed in a quadratic form.
By this means, the resulting surface contributions will be non-negative by definition. As
such, surface contributions based on sound energies avoid acoustic short circuits, which
alternating signs can cause.
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2.5 Surface contributions based on sound energy

To assess the energy-based surface contributions, the matrix square root of the coupling
matrix is required. For this purpose, we perform the eigendecomposition of the coupling
matrix

A =Ψ
H

ΛΨ (2.42)

with A representing the coupling matrix regarding the potential, the kinetic, and the to-
tal sound energy density. The eigenvectors and eigenvalues are stored in Ψ and Λ =
diag{λi}, respectively. Note that the coupling matrices are Hermitian and complex-valued.
As a consequence, the resulting eigenvalues are positive and real-valued. This allows to
compute the eigenvalues according to

√
Λ = diag{

√
λi}. By this means, Eq. (2.42) can

be rewritten as

A =Ψ
H
√

Λ
H√

ΛΨ . (2.43)

By introducing the normalization property of the eigenvectors, ΨΨH = I with the identity
matrix I, Eq. (2.43) adapts to

A =Ψ
H
√

Λ
H

I
√

ΛΨ =Ψ
H
√

Λ
H

ΨΨ
H
√

ΛΨ =
√

A
H√

A. (2.44)

Finally, the expression for the matrix square root of the coupling matrix can be derived
√

A =Ψ
H
√

ΛΨ . (2.45)

The surface contributions based on the sound energy density can now be defined. For
instance, the potential energy density in Eq. (2.39) can be expressed by

ep = vHs Apvs = vHs
√

A
H
p

√
Apvs =

N

∑
j=1

α
H
p j

αp j =
N

∑
j=1

µp j (2.46)

with µp j denoting the surface contributions related to the potential energy density. In the
equation above, the index j refers to the contributions of the node j to the potential energy
density at the field point. Similarly, the kinetic and the total energy density-based surface
contributions are derived

ek = vHs Akvs = vHs
√

A
H
k

√
Akvs =

N

∑
j=1

α
H
k j

αk j =
N

∑
j=1

µk j , (2.47)

et = vHs Atvs = vHs
√

A
H
t

√
Atvs =

N

∑
j=1

α
H
t j

αt j =
N

∑
j=1

µt j (2.48)

with the surface contributions based on the kinetic energy density µk j and the total sound
energy density µt j . As aforementioned, the energy-based surface contributions are unipo-
lar and, thus, non-negative due to their quadratic form. Moreover, they contain only real-
valued entries. Note that the present surface contributions µ are discrete entities, as they
depend on the resolution of the boundary element mesh. For instance, refining a bound-
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2 Energy-based surface contributions and multi-fidelity Gaussian processes

ary element mesh with N nodes by a factor of two would halve the values of the surface
contributions, i.e., µ j = e/N. For this purpose, we introduce a continuous version of the
surface contributions, which is evaluated by

µ =
√

Θη (2.49)

with the boundary mass matrix

Θkl =
∫

Γ

ϕkϕldΓ. (2.50)

The continuous surface contributions η are independent of the mesh resolution and are,
thus, used to visualize the results [130].

The sound energy is used as a control objective to identify contributing surfaces regarding
an entire volume. For this purpose, the volume integral is approximated by the finite sum
of the energy density at a field point grid. The field points within this grid are regularly dis-
tributed in the domain. The sound energy density at these points can then be understood
as integration points. The sum of the related energy densities yields an approximation for
the sound energy within the domain

∫

Ω

edΩ ≈
Np

∑
i=1

ei ·Vi =Vc

Np

∑
i=1

ei (2.51)

with the volume cell Vi related to the field point i. The volume of the cells are all constant,
i.e., Vi = Vc, when the field points are regularly distributed within the cavity. By approxi-
mating the total volume of the cavity, i.e., V ≈ Np ·Vc, the sound energy can be obtained
by using its averaged version

E ≈Vc

Np

∑
i=1

ei. (2.52)

In close analogy to Eqs. (2.39)–(2.41), the volume-related sound energy can be ex-
pressed in a quadratic form. For the potential sound energy, Eq. (2.33) is rewritten as

Ep =
1

2ρ0c2
0

Np

∑
i=1

(bT
i vs)

∗(bT
i vs) =

1
2ρ0c2

0
vHs

(
Np

∑
i=1

b∗
i bT

i

)
vs = vHs

(
Np

∑
i=1

Api

)
vs = vHs Apvs. (2.53)

In the equation above, Ap represents the coupling matrix regarding the potential energy,
which is approximated by the potential energy density at multiple field points. Thus, the
rank of the potential energy-related coupling matrix adapts to Np. Regarding the kinetic
sound energy, the quadratic formulation reads

Ek =
ρ0

4

Np

∑
i=1

(b̃T
i vs)

∗(b̃T
i vs) =

ρ0

4
vHs

(
Np

∑
i=1

b̃∗
i b̃T

i

)
vs = vHs

(
Np

∑
i=1

Aki

)
vs = vHs Akvs, (2.54)
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2.5 Surface contributions based on sound energy

where Ak denotes the coupling matrix regarding the kinetic energy. The rank of this matrix
adapts to 3Np, as the kinetic energy density is defined in three spatial directions. Since
the total sound energy is defined as the sum of the potential and the kinetic energy, the
quadratic form of the total sound energy can be expressed by

Et = Ep +Ek =
1

2ρ0c2

Np

∑
i=1

(bT
i vs)

∗(bT
i vs)+

ρ0

4

N

∑
i=1

(b̃T
i vs)

∗(b̃T
i vs) = vHs Apvs +vHs Akvs = vHs Atvs

(2.55)

with the coupling matrix At = Ap +Ak related to the total sound energy in the volume. As
such, the rank of At is 4Np [139].

Finally, by using the expression for the matrix square root in Eq.(2.45), the volume-related
surface contributions based on the sound energy can be similarly derived as

Ep = vHs Apvs = vHs
√

Ap
H√Apvs =

Nn

∑
j=1

α
∗
p j

αp j =
Nn

∑
j=1

µp j , (2.56)

Ek = vHs Akvs = vHs
√

Ak
H√

Akvs =
Nn

∑
j=1

α
∗
k j

αk j =
Nn

∑
j=1

µk j , (2.57)

Et = vHs Atvs = vHs
√

At
H√

Atvs =
Nn

∑
j=1

α
∗
t j

αt j =
Nn

∑
j=1

µt j , (2.58)

where Nn denotes the number of boundary element nodes. The surface contributions
related to the potential, the kinetic, and the total sound energy in the volume are denoted
by µp, µk, and µt , respectively. Once again, it should be highlighted that all energy-based
surface contributions are non-negative. Consequently, acoustic short circuits caused by
bipolar surface contributions are inherently avoided [139].

The entire algorithm for the energy-based contribution analysis is summarized in Algo-
rithm 1. It is not mandatory to explicitly evaluate the acoustic quantities at the field points,
e.g., the sound pressure, the particle velocity, or the sound energy density. Since we
are interested in the contributions of the enveloping surfaces, our investigations focus on
quantities associated with them. These are, in particular, the influence coefficients and
the coupling matrices related to the sound energy densities. It should be further noted
that the matrix inverse of (H−GY)−1 is not explicitly computed. The inverse operation is
circumvented by solving the related linear system of equations. For the sake of clarity, the
pseudo-algorithm is limited to the presentation of the surface contributions with respect
to a single field point. However, by substituting the expressions related to a single eval-
uation point with their multi-point counterpart, the algorithm can be readily adapted for
contribution analyses regarding multiple field points.
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2 Energy-based surface contributions and multi-fidelity Gaussian processes

Algorithm 1 Surface contribution analysis based on the sound energy density
1: input
2: boundary element mesh
3: boundary conditions vs(⃗x) and Y(⃗x)
4: Position of the field point y⃗
5: Acoustic quantities on the boundary
6: Assemble the single layer potential matrix G ▷ Eq.(2.17)
7: ... the double layer potential matrix H ▷ Eq.(2.18)
8: ... and the boundary mass matrix Θ ▷ Eq.(2.50)
9: Acoustic quantities at the field points

10: Assemble the boundary integral operator g ▷ Eq.(2.22)
11: ... and the boundary integral operator h ▷ Eq.(2.23)
12: Evaluate the influence coefficients regarding the sound pressure b ▷ Eq.(2.24)
13: Compute the influence coefficients w.r.t the particle velocity b̃ ▷ Eq.(2.32)
14: Surface contributions based on sound energy densities
15: Assemble the coupling matrix related to the potential energy density Ap ▷

Eq.(2.39)
16: ... the kinetic energy density Ak ▷ Eq.(2.40)
17: ... and the total sound energy density At ▷ Eq.(2.41)
18: Perform the eigendecomposition of Ap, Ak, and At ▷ Eq.(2.42)
19: Evaluate the discrete surface contributions for the potential energy density µp ▷

Eq.(2.46)
20: ... the kinetic energy density µk ▷ Eq.(2.47)
21: ... and the total sound energy density µt ▷ Eq.(2.48)
22: Compute the continuous surface contributions ηp, ηk, and ηt ▷ Eq.(2.49)
23: return
24: Surface contributions based on the potential energy density ηp
25: Surface contributions based on the kinetic energy density ηk
26: Surface contributions based on the total sound energy density ηt
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2.6 Gaussian process regression

2.6 Gaussian process regression

A finite set of data points x1, x2, ..., xn with a Gaussian distributed marginal density
P
(
y(x1),y(x2), ...,y(xn)

)
defines a Gaussian process (GP). By this means, a GP can be

understood as the probability distribution of an arbitrary function y(x) [90]. GPs consider
aleatoric and epistemic uncertainties. Aleatoric uncertainties are attributed to the random
outcome of a data generation process, e.g., the coin flip. As such, they are unaffected by
additional knowledge of the system or repetitions of the experiment. Thus, the aleatoric
uncertainty is commonly referred to as stochastic uncertainty. On the other hand, epis-
temic uncertainties refer to limited information on the underlying problem. They may arise
when specific effects are neglected in a model or when only limited knowledge of model
parameters exists. New information about the system mitigates epistemic uncertainties.
They are thus classified as systematic uncertainties. In GPs, aleatoric and epistemic
uncertainties can occur at the same time. For instance, the epistemic uncertainty due
to limited parameter information may interact with the stochastic outcome of an experi-
ment [135].

In the course of this thesis, GPs are used as surrogates to approximate the system
response in the frequency dimension. The related input variables are denoted by f =
[ f1, f2, ..., fn] representing a finite set of discrete frequencies. To avoid a clash of nota-
tion, the function to be estimated is declared by h(f) with the discrete frequency points as
arguments. In this way, h(f) represents the frequency response function of the acoustic
system. The related GP

h(f)∼ G P
(
m(f),cov(f, f′)

)
. (2.59)

is then specified by a mean function m(f) and a covariance function cov(f, f′). The quan-
tities f and f′ are associated with two frequency input sets. Instead of computing the
inner product of the input frequencies, the interaction between frequency points can be
expressed by the evaluation of the covariance function, or kernel, cov(f, f′). By doing so,
the interactions are transferred from the input space to the feature space enabling effi-
cient and practical analyses of the underlying features. In the literature, this procedure is
also known as the kernel trick. In this light, the choice of the kernel or covariance function
becomes of great importance [91, 140].

In the scope of this work, the squared exponential kernel is adopted for the covariance
function

cov(f, f′) = σ
2
f exp

(
− 1

2l2 (f− f′)T(f− f′)
)

(2.60)

with the characteristic length l and the signal variance σ2
f denoting the kernel parameters.

Closer inspection on Eq.(2.60) reveals that the covariance function solely depends on the
discrete input frequencies. Thus, the related covariance of the output system responses
is determined by the input frequencies’ covariance. For the squared exponential kernel,
it becomes apparent that the covariance increases when the input frequencies approach
each other. In contrast to this, larger spacing between the input frequencies results in a
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2 Energy-based surface contributions and multi-fidelity Gaussian processes

small covariance [91].

By evaluating the covariance function for a set of input frequencies f and f′, a prior prob-
ability distribution can be obtained for the unknown function. The mean function is set
to zero in this first step, and no observed data is considered. This defines the GP prior,
which is expressed by

h ∼ N
(
0,cov(f, f′)

)
(2.61)

with the entity N representing a multivariate Gaussian distribution. In the course of this
thesis, only real-valued quantities such as the sound pressure level or energy density
level are investigated. For this purpose, the real-valued multivariate Gaussian distribution
is adopted. A schematic representation of the GP prior is depicted in Fig. 2(a). It becomes
apparent that without any data, the mean of the GP is zero at each frequency. In addition
to this, the uncertainty referring to a 95 % confidence interval remains constant [91].

In that form, GP priors are relatively unspectacular and without practical importance. GPs
become particularly useful when information on the underlying problem is incorporated.
That information is manifested in observations of the physical process. In the scope of
this thesis, the frequency response h of an acoustic system accounts for the observed
data. The frequencies we are interested in the system response are sub-scripted with
the asterisk symbol, i.e., f∗. The entity h∗ represents the related unknown frequency
responses. The joint probability distribution of the observed and the unknown frequency
responses, h and h∗, can be then formulated as




h

h∗


∼ N


0,




K(f, f) K(f, f∗)

K(f∗, f) K(f∗, f∗)





 . (2.62)

Evaluating the covariance function for a pair of frequency inputs yields the covariance
matrix K. For n frequencies with available observations, the covariance matrix K(f, f) is of
size n×n. For n∗ frequencies, where the corresponding system response is unknown, the
covariance matrices K(f, f∗) and K(f∗, f∗) are of size n×n∗ and n∗×n∗, respectively. Note
that K(f∗, f) is the transpose of the matrix K(f, f∗), i.e. K(f, f∗)T = K(f∗, f) [91].

By computing the Schur complement of the block matrix K(f, f), the conditional probability
distribution for h∗ given f∗, f, and h is introduced by [91, 136]

P(h∗|f∗, f,h)∼ N (K(f∗, f)K(f, f)−1h,K(f∗, f∗)−K(f∗, f)K(f, f)−1K(f, f∗)) (2.63)

with the posterior mean h̄∗ = K(f∗, f)K(f, f)−1h and the posterior covariance cov(h∗) =
K(f∗, f∗)−K(f∗, f)K(f, f)−1K(f, f∗). With these two entities, the GP posterior is fully speci-
fied. Fig. 2(b) visualizes the GP posterior for given observations on the sound pressure
level. In this figure, it becomes clear that the posterior mean satisfies the observed SPL
values. Moreover, the posterior covariance, which corresponds to a 95 % confidence
interval, is small near the observations. For larger distances between the observations,
the posterior covariance increases. Note that the smooth profile of the posterior GP is
essentially determined by the characteristic length l of the kernel [91].
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Figure 2: GP prior without any observations yields a zero mean (blue) (a). GP posterior
with eight observations on the SPL (black crosses) results in a mean (blue),
which fulfills the observed data. The posterior covariance (blue-shaded area)
is small around the observations and large when the distance between the ob-
served data increases (b). In both figures, the uncertainty corresponds to a
95 % confidence interval (blue-shaded area).

Up to this point, the observed data referred directly to the values of the frequency re-
sponse function. Although this assumption is reasonable for numerical simulations, in
practical applications, observations may contain a considerable amount of additional mean-
ingless information called noise. The observations of noisy data can then be formulated
as

y = h(f)+ ε (2.64)

for additive independent identically distributed Gaussian noise, i.e. ε ∼N (0,σ2
n I), with σ2

n
representing the level of noise [137].

The covariance function from Eq.(2.60) can be reformulated for noisy observations

cov(f, f′) = K(f, f)+σ
2
n I = σ

2
f exp

(
− 1

2l2 (f− f′)T(f− f′)
)
+σ

2
n I. (2.65)

The noise-related matrix σ2
n I contains only entries on the diagonal due to the assumption

of independent identically distributed noise. The joint probability distribution of noisy data
y and unknown response function values h∗ then reads




y

h∗


∼ N


0,




K(f, f)+σ2
n I K(f, f∗)

K(f∗, f) K(f∗, f∗)





 . (2.66)
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In close analogy to Eq.(2.63), conditioning on the observations yields the posterior GP for
noisy observations

P(h∗|f∗, f,y)∼ N
(
h̄∗,cov(h∗)

)
, (2.67)

with the posterior mean h̄∗ and the posterior covariance cov(h∗)

h̄∗ = K(f∗, f)
[
K(f, f)+σ

2
n I
]−1 y, (2.68)

cov(h∗) = K(f∗, f∗)−K(f∗, f)
[
K(f, f)+σ

2
n I
]−1 K(f, f∗)T. (2.69)

Eqs. (2.67)-(2.69) fully specify the posterior GP. At this stage, the GP can be applied for
frequency response predictions in presence of noise [91].

An optimization problem is solved to find the parameters of the covariance function. The
optimal values for the kernel parameters are obtained by minimizing the negative marginal
log likelihood

logP(y|f) =−1
2

yT(K(f, f)+σ
2
n I)−1y− 1

2
log |K(f, f)+σ

2
n I|− n

2
log2π, (2.70)

which is adopted as the objective function. The first term in Eq.(2.70) corresponds to
the fit of the data, whereas the second term evaluates the complexity of the model. The
third term is understood as a normalizing constant. Thus, the solution of the minimization
problem results in parameters, which achieve the optimal trade-off between the quality
of the fit and the model complexity. To apply a gradient-based optimization method, the
derivatives of the negative log likelihood with respect to the kernel parameters θ j are
required. The related derivatives are expressed by

∂ logP(y|f)
∂θ j

=−1
2

yTK−1
y

∂Ky

∂θ j
K−1

y y− 1
2

tr
(

K−1
y

∂Ky

∂θ j

)
=

1
2

tr
((

ααT −K−1
y
) ∂Ky

∂θ j

)
(2.71)

with Ky = K(f, f)+σ2
n I and α = K−1

y y. A note of caution is due here, since the objective
function is non-convex. Therefore, it is important to bear in mind that multiple minima can
occur [138].

The formulation of a GP is schematically described in a pseudo-algorithm, see Algo-
rithm 2. Note that the covariance sub-matrix K(f, f)+σ2

n I is symmetric and positive defi-
nite. For this reason, the matrix inverse operation can be replaced by using the Cholesky
decomposition of that matrix. For the sake of conciseness, the pseudo-algorithm is only
shown for noisy observations.
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Algorithm 2 Gaussian Processes for frequency response function analyses
1: input
2: Frequencies with known response functions f
3: Corresponding known frequency response functions h
4: Covariance function cov(f, f′)
5: Noise level σ2

n
6: Relevant frequencies with unknown response functions f∗
7: Assembly of the covariance matrix
8: Assemble K(f, f), K(f, f∗), and K(f∗, f∗) ▷ Eq.(2.66)
9: Cholesky decomposition L := chol[K(f, f)+σ2

n I]
10: Substitute the matrix inverse L−TL−1 = [K(f, f)+σ2

n I]−1

11: Find the optimal kernel parameters
12: Evaluate the negative marginal log likelihood logP(y|f) ▷ Eq.(2.70)
13: Compute the gradient of the likelihood ∂ logP(y|f)/∂θ j ▷ Eq.(2.71)
14: Posterior GP mean and covariance
15: Evaluate the posterior GP mean h̄∗ ▷ Eq.(2.68)
16: Compute the posterior GP covariance cov(h∗) ▷ Eq.(2.69)
17: return
18: Posterior GP mean h̄∗
19: Posterior GP covariance cov(h∗)

2.7 Multi-fidelity modeling using Gaussian processes

In the following, we consider the most accurate model with the highest computational
costs as the high-fidelity (HF) model hH(f). A representation of that model on a lower
fidelity level is assumed as the low-fidelity (LF) model hL(f). In contrast to the HF model,
the LF model is fast to evaluate but relatively inaccurate. For two distinct input frequen-
cies, i.e., f ̸= f′, it can be assumed that no further information can be gained on hH(f)
by evaluating hL(f′) given the solution hL(f). This relation is manifested in a Markov-type
property, which can be expressed by [108]

cov
(
hH(f),hL(f′) | hL(f)

)
= 0. (2.72)

This property is inherent to autoregressive models, which predict the model response
based on previous observations. For two fidelity levels, an autoregressive model can be
formulated as [110]

hH(f) = η hL(f)+δ(f), (2.73)

where the approximation of the HF solution is realized as a surrogate model. This surro-
gate depends linearly on two distinct GPs

hL ∼ G P
(
0,covL

(
f, f′
))

, (2.74)
δ ∼ G P

(
0,covH

(
f, f′
))

. (2.75)
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with covL (f, f′) and covH (f, f′) denoting the covariance function associated with the LF and
the HF model, respectively. The relation between the HF and the model is established
by the coupling parameter η . By inspecting Eq.(2.73), it becomes apparent that the two
fidelity levels are decoupled when η = 0. In that case, one cannot expect any improvement
of the approximation, if additional LF data would have been included [115].

According to [108, 109], the multivariate GP for the multiple fidelity levels hL and hH can
be equivalently expressed by




hL

hH


∼ G P







0

0


 ,




covL(fL, fL) η covL(fL, fH)

η covL(fL, fH) η2 covL(fL, fH)+covH(fL, fH)





 . (2.76)

By substituting covLL = covL, covLH = covHL =η covL, and covHH =η2 covL+covH , Eq.(2.76)
can be rewritten in a simplified form




hL

hH


∼ G P







0

0


 ,




covLL(fL, fL) covLH(fL, fH)

covHL(fL, fH) covHH(fL, fH)





 . (2.77)

Introducing the unknown system response h∗ at the relevant frequencies f∗ yields the joint
probability density [115]




h∗

hL

hH



∼ G P







0

0

0



,




cov∗∗(f∗, f∗) cov∗L(f∗, fL) cov∗H(f∗, fH)

covL∗(fL, f∗) covLL(fL, fL) covLH(fL, fH)

covH∗(fH , f∗) covHL(fL, fH) covHH(fH , fH)






. (2.78)

In close analogy to Eq.(2.63), the conditional probability distribution of the unknown re-
sponse functions h∗ given the frequencies of interest f∗ and the solutions of the LF and
the HF model is expressed by

P(h∗|f∗, fL,hL, fH ,hH) = N (K∗K−1h,K∗∗−K∗K−1KT
∗ ), (2.79)

where the posterior mean h̄∗ and the posterior covariance cov(h∗) of the multi-fidelity GP
are obtained by

h̄∗ = K∗K−1h, (2.80)

cov(h∗) = K∗∗−K∗K−1KT
∗ . (2.81)

For the sake of conciseness, the dependencies on the input frequency sets are omitted
in the presentation of the mean and the sub-matrices of the covariance. Note that the
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compact notation in the equations above results from the following expressions:

h =

[
hL hH

]T
, (2.82)

K∗ =
[
cov∗L(f∗, fL) cov∗H(f∗, fH)

]
, (2.83)

K =




covLL(fL, fL) covLH(fL, fH)

covHL(fH , fL) covHH(fH , fH)


 , (2.84)

K∗∗ =
[
cov∗∗(f∗, f∗)

]
. (2.85)

In Eqs. (2.79)–(2.81), the multi-fidelity model using GPs is fully specified. However, in
these equations, the presence of noise is neglected. For noisy observed data, the condi-
tional probability density adapts to

P(h∗|f∗, fL,yL, fH ,yH) = N (K∗K−1y,K∗∗−K∗K−1KT
∗ ) (2.86)

with y = [yL yH ]
T as the noisy version of the unknown response function values h =

[hL hH ]
T. The sub-matrices K∗ and K∗∗ remain the same as in Eq.(2.83) and Eq.(2.85),

respectively. As opposed to that, the sub-matrix K is substituted by its noisy version Ky,
which is expressed by

Ky =




covLL(fL, fL)+σ2
nLI covLH(fL, fH)

covHL(fH , fL) covHH(fH , fH)+σ2
nHI


 , (2.87)

where σ2
nL and σ2

nH denote the noise level of the LF and the HF data, respectively. Due
to the independence assumption, only the diagonal entries of the covariance matrix are
affected by the noise levels. To obtain the noise level, the signal-to-noise ratio (SNR) is
introduced as

SNR = 10 · log
(

yyT

σ2
n

)
(2.88)

with σ2
n =

[
σ2

nL σ2
nH
]

representing the noise level of the LF and the HF data. The noise
level can then be estimated by prescribing a reasonable value for the SNR.

In the final step, the values of the parameters in the multi-fidelity GP are computed. They
are obtained in a similar way to Eq.(2.70), where an optimization problem is solved by min-
imizing the negative log likelihood function. Regarding the multi-fidelity GP, the negative
log likelihood for noisy observations adapts to

logP(y|f) =−1
2

yT
[
Ky +σ

2
n I
]−1 y− 1

2
log |Ky +σ

2
n I|− nL +nH

2
log2π (2.89)
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with nL and nH denoting the number of LF and HF data points, respectively. Analo-
gously, the derivative of the likelihood function with respect to the parameters can be
computed by Eq.(2.71). The set of parameters in the multi-fidelity GP then adapts to
θ j =

[
lL,σ f L, lH ,σ f H ,η

]
with

[
lL,σ f L

]
and

[
lH ,σ f H

]
related to the covariance function of

the LF and the HF model, respectively. Moreover, the coupling parameter η is introduced
to the optimization problem.

The implementation of the multi-fidelity GP is depicted in Algorithm 3. The pseudo-
algorithm of the multi-fidelity GP and the standard GP are very similar. However, their
main difference lies in the implementation of the covariance function. In contrast to
the standard GP, the covariance functions in a multi-fidelity GP imply the autoregres-
sive model in Eq.(2.73). This results in additional covariance sub-matrices regarding the
different fidelity levels. As a consequence, we obtain an extended version of the total
covariance matrix. Note that the expression for the derivative of the negative marginal
log likelihood in Eq.(2.71) also holds for multi-fidelity GPs. The only exceptions are that
the matrix Ky is computed according to Eq.(2.87) and that the parameter set in the multi-
fidelity model involves θ j =

[
lL,σ f L, lH ,σ f H ,η

]
with

[
lL,σ f L

]
and

[
lH ,σ f H

]
.
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Algorithm 3 Multi-fidelity model using Gaussian Processes
1: input
2: Frequencies with known LF response functions fL
3: ... and known HF response functions fH
4: Available LF frequency response solutions hL
5: ... and HF frequency response solutions hH
6: LF covariance function covL(f, f′)
7: HF covariance function covH(f, f′)
8: Noise level on the LF solutions σ2

nL
9: Noise level on the HF solutions σ2

nH
10: Frequencies at which the unknown response functions are approximated f∗
11: Assembly of the covariance matrix
12: Evaluate covLL(fL, fL), covLH(fL, fH), and covHH(fH , fH) for the known inputs
13: Compute cov∗L(f∗, fL)cov∗H(f∗, fH) with one frequency set of unknown responses
14: Evaluate cov∗∗(f∗, f∗) with two frequency sets of unknown responses
15: Assemble the sub-matrix K∗ ▷ Eq.(2.83)
16: ... the sub-matrix K, ▷ Eq.(2.84)
17: ... and the sub-matrix K∗∗ ▷ Eq.(2.85)
18: Perform the Cholesky decomposition L := chol(Ky)
19: Substitute the matrix inverse L−TL−1 = K−1

y
20: Find the optimal LF and HF kernel parameters
21: Evaluate the negative marginal log likelihood logP(y|f) ▷ Eq.(2.89)
22: Compute the gradient of the likelihood ∂ logP(y|f)/∂θ j
23: Posterior multi-fidelity GP mean and covariance
24: Evaluate the posterior multi-fidelity GP mean h̄∗ ▷ Eq.(2.80)
25: Compute the posterior multi-fidelity GP covariance cov(h∗) ▷ Eq.(2.81)
26: return
27: posterior multi-fidelity GP mean h̄∗
28: posterior multi-fidelity GP covariance cov(h∗)
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3 Summary of Appended Publications

This chapter summarizes the findings of the publications Paper A [105], Paper B [139],
and Paper C [140]. Moreover, the individual contributions of the authors are listed.
Reprints of the full publications are given in Appendix A.
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3 Summary of Appended Publications

3.1 Paper A

Energy density-based non-negative surface contributions in interior
acoustics

Caglar Gurbuz, Johannes Schmid, Marinus Luegmair, Steffen Marburg

Summary
Investigating vibrating surfaces as sound producing mechanisms is a continuing concern
for a wide range of interior acoustic problems. In automotive acoustics, vibrations of the
vehicle body lead to noise within the passenger cabin. The most prominent incident is
booming noise, which occurs in the lower frequencies below 200 Hz. Numerical methods
are suitable to treat this problem, as they allow investigations in early design stages and,
in contrast to experimental measurements, relatively fast predictions on the response be-
havior. Remarkably, the boundary element method is highly favorable for this task, since it
solely requires the discretization of the cabin boundary, which is the only relevant part for
the radiated sound. By this means, a contribution analysis can be performed to identify
those surfaces contributing most to the acoustic objective. For that purpose, the influence
coefficients, also known as acoustic transfer vectors, are computed, which account for the
sensitivity of the acoustic control objective regarding the structural excitation. Typically,
the sound pressure around the driver’s position is used as the control objective. However,
contribution analysis methods based on the sound pressure are prone to spatial varia-
tions of the evaluation point, particularly leading to deteriorated performances at either
frequencies or locations with low sound pressure values.

Therefore, a contribution analysis method is developed based on sound energy densities.
The sound energy density is a point-related quantity referring the energy to a specific
volume. As such, it can be evaluated at an arbitrary position in the sound field. The
sound energy density comprises the potential and the kinetic sound energy density. The
compression of the particles creates the potential sound energy density, while the kinetic
sound energy density is related to their motion. This means that the potential sound en-
ergy density is a pressure-dependent quantity, whereas the kinetic sound energy density
depends on the particle velocity. Consequently, using the sound energy density as a con-
trol objective, the contribution analysis method yields accurate and robust results even
in regions with low pressure values. An additional advantage of the proposed method is
that the surface contributions are non-negative by definition. Acoustic short circuits due
to bipolar entities are thus effectively avoided. The proposed contribution analysis is im-
plemented in a three-dimensional boundary element formulation enabling its application
to real-world industrial problems.

The booming noise problem in vehicle cabins is studied to validate the proposed method.
For that purpose, the boundary element mesh of a BMW cabin is analyzed. Prior to the
computation of the surface contributions, a frequency sweep analysis for the pressure
response is performed to determine the relevant frequencies, at which the surface contri-
butions are of significant interest. The first relevant frequency is adopted in a region with
low sound pressures. In contrast, the second and the third relevant frequency is close
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3.1 Paper A

to the resonance frequency of the undamped system and in a region with higher sound
pressure values, respectively.

The findings demonstrate that surfaces contributing to the sound energy density are ef-
fectively recovered, where purely pressure-based techniques have failed. This has been
particularly the case at frequencies with low sound pressure values. As a consequence,
the proposed method provides an accurate and, at the same time, robust technique to
identify sound producing sources on vibrating structures. Future work should be under-
taken to explore surfaces contributing to an entire cavity and surface contributions across
a broad frequency range. Further research could also focus on the experimental realiza-
tion of an energy-based contribution analysis.

Contributions
Caglar Gurbuz conceptualized and implemented the numerical algorithms. Caglar Gur-
buz and Steffen Marburg derived the mathematical formulations. Caglar Gurbuz, Jo-
hannes Schmid, and Marinus Luegmair prepared the numerical models. Caglar Gurbuz
performed the numerical analyses. Caglar Gurbuz drafted the manuscript. Caglar Gur-
buz, Johannes Schmid, Marinus Luegmair, and Steffen Marburg discussed the results.
All authors gave critical feedback and approved the final version of the manuscript.

Reference
C. Gurbuz, JD. Schmid, M. Luegmair and S. Marburg. Energy density-based non-negative
surface contributions in interior acoustics. Journal of Sound and Vibration, 527:116824,
2022.
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3.2 Paper B

Efficient analysis of energy-based surface contributions for an entire
acoustic cavity

Caglar Gurbuz, Steffen Marburg

Summary
The issue of booming noise has received considerable critical attention within the field
of noise, vibration, and harshness, as it poses high demands for passenger comfort. It
occurs in the lower frequency range and is caused by vehicle body vibrations. The sur-
face contribution analysis provides a valuable tool to identify the noise producing sources
on the vehicle body. This technique is incorporated in a boundary element formulation
and requires, thus, only a discretization of the cabin boundary. In current contribution
analysis methods, the relevant acoustic quantity is evaluated at a single point, typically
representing the position of the driver’s ear. However, far too little attention has been paid
to additional points of interest, such as the remaining passengers and the entire cabin
volume. Moreover, traditional contribution analysis methods focus on the sound pressure
as the relevant acoustic quantity. By doing so, the predictions of traditional techniques
can significantly deviate at positions or frequencies with small sound pressures, as the
sound pressure is highly susceptible to variations in the evaluated position.

This paper aims to develop a surface contribution analysis with respect to an entire acous-
tic cavity. For that purpose, the cumbersome integration over the volume is approximated
by adopting multiple evaluation points, which are regularly distributed in the sound field.
In contrast to traditional contribution analyses, the sound energy density is used as the
acoustic control objective, since it is less sensitive to variations in space. The sound
energy densities at distributed positions can be viewed as Gaussian integration points.
Thus, the summation of these points approximates the sound energy in the acoustic cav-
ity. Another advantage of using sound energies is that the related surface contributions
are defined as a non-negative quantity. Cancellation effects in the near-field are thus
inherently avoided. The volume-related contribution analysis is based on a boundary el-
ement discretization solving the three-dimensional Helmholtz equation. In this way, the
surface contribution analysis can be performed for arbitrarily shaped surfaces making the
proposed method readily applicable to industrial problems.

The proposed method is validated on two numerical examples. The first one involves an
academic study, the inward radiating sphere. In the second case, the volume-related con-
tribution analysis is transferred to the booming noise problem in a passenger cabin. BMW
has provided the related mesh. In both studies, the number of evaluation points gradually
increases from a single evaluation point, over a relatively coarse one, to a finely resolved
grid of distributed field points. The surface contributions to a single point are compared
to the contributions regarding the entire volume. In addition to this, the influence of the
number of field points is analyzed. The final step investigates the eigenvalue distribution
of the matrices associated to the energy-based surface contributions.

The results show that the surface contribution analysis can successfully identify contribut-
ing surfaces for an entire cavity. As the field points are regularly distributed, all surfaces
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3.2 Paper B

equally contribute in the radiating sphere problem. Regarding the vehicle booming noise
problem, the volume-related contribution analysis has revealed the most active parts in
the driver’s footwell. In contrast, the contribution analysis related to a single point has re-
covered surfaces in both the front passenger’s footwells and the rear of the cabin. More-
over, evidence from the findings suggests to use relatively coarse field point grids, as
sufficiently accurate approximations of the contributions have already been obtained by
the analysis on the coarse grid. Finally, it has been demonstrated that the eigenvalues
show a decaying behavior in both numerical examples.

Contributions
Caglar Gurbuz conceptualized and implemented the numerical algorithms. Caglar Gurbuz
and Steffen Marburg derived the mathematical formulations. Caglar Gurbuz performed
the numerical analyses. Caglar Gurbuz drafted the manuscript. Caglar Gurbuz and Stef-
fen Marburg discussed the results. All authors gave critical feedback and approved the
final version of the manuscript.

Reference
C. Gurbuz and S. Marburg. Efficient analysis of energy-based surface contributions for
an entire acoustic cavity. Journal of Theoretical and Computational Acoustics, 2022,
accepted for publication.
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3.3 Paper C

A multi-fidelity Gaussian process for efficient frequency sweeps in
the acoustic design of a vehicle cabin

Caglar Gurbuz, Martin Eser, Johannes Schaffner, Steffen Marburg

Summary
The main challenge faced by many experts is the accurate and, at the same time, fast
evaluation of complex acoustic systems. Recent developments in numerical methods en-
able accurate simulations, but usually for the burden of high computational costs and time
expenses. Thus, in engineering practice, accurate numerical simulations can only be per-
formed for a small sample size due to strict limitations on time and resources. As a con-
sequence, highly accurate numerical simulations become impractical in studies, where
a large number of simulations is required. This is typically the case in frequency sweep
analyses with the boundary element method in acoustics, since the Helmholtz equation
implicitly depends on the frequency. To obtain the response of an acoustic system in a
broad frequency band, the boundary element simulation needs to be performed for each
discrete frequency within the relevant frequency range.

This paper proposes a method for fast and accurate frequency sweep analyses. There-
fore, the concept of multi-fidelity modeling, which combines models of different fidelity
levels, is used. Within this concept, it is assumed that the models of the fidelity levels
are linearly correlated. In a multi-fidelity model with two levels, the model with the highest
accuracy is typically considered the high-fidelity model. In contrast, its representation on
a lower fidelity level is adopted as the low-fidelity model. Gaussian processes are used as
surrogate models for both fidelity levels to approximate the system response functions de-
pending on the frequency. The Gaussian processes are fit to numerical results obtained
from boundary element simulations. A boundary element mesh with a fine resolution is
used for the high-fidelity model, while a coarse version of the same mesh is adopted as
the low-fidelity model. In the spirit of a Bayesian method, Gaussian processes allow quan-
tifying uncertainties potentially caused by limited information on the model parameters.

For the validation of the multi-fidelity Gaussian process, the booming noise problem in
vehicle cabins is treated. As aforementioned, a coarse boundary element mesh of the
cabin is used for the low-fidelity model, whereas the cabin with a fine mesh resolution
is considered the high-fidelity model. Both meshes have been provided by BMW. In the
first case, the sound pressure level at the position of the driver’s ear is adopted as the
control objective, while the sound energy density at the same position is analyzed in the
second case. The final study assesses the computational runtime and the influences of
the number of low-fidelity and high-fidelity simulations. In all studies, the approximation
of the multi-fidelity model is referenced to the solution of the high-fidelity model at each
frequency.

This paper’s findings demonstrate the proposed method’s effectiveness, as the results of
the multi-fidelity model are consistent with the reference solution. This result is achieved
using only a minimal number of high-fidelity simulations. On the other hand, the number
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3.3 Paper C

of low-fidelity simulations is relatively high. However, since the low-fidelity solutions are
abundant, repetitive evaluations of the low-fidelity model are nearly negligible in terms of
computational costs. By this means, the proposed method drastically reduces the total
computational runtime for the entire frequency sweep. In addition, the proposed method
considers uncertainties, which typically occur in the parameters of the structural excitation
or the boundary admittance. Taken together, multi-fidelity Gaussian processes provide a
holistic approach for the efficient and robust approximation of the frequency-dependent
solution for the Helmholtz equation. As such, they alleviate the burden of excessive com-
putational costs, while maintaining a high accuracy in the results. So far, the selection of
the input frequencies is performed in a semi-empirical way. Future work should elaborate
a sophisticated selection strategy for the frequencies relevant for the high-fidelity simu-
lations. Further research should also concentrate on the correlation function between
the fidelity levels and may consider the implementation of nonlinear correlations. Finally,
the investigation and experimentation with various data generation sources are strongly
recommended.

Contributions
Caglar Gurbuz conceptualized and implemented the numerical algorithms. Caglar Gur-
buz derived the mathematical formulations. Caglar Gurbuz, Martin Eser, and Johannes
Schaffner performed the parameter studies. Caglar Gurbuz drafted the manuscript. Caglar
Gurbuz and Martin Eser discussed the results. All authors gave critical feedback and ap-
proved the final version of the manuscript.

Reference
C. Gurbuz, M. Eser, J. Schaffner and S. Marburg. A multi-fidelity Gaussian process for
efficient frequency sweeps in the acoustic design of a vehicle cabin. The Journal of the
Acoustical Society of America, vol. 153, no. 4, 2023.
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4 Discussion and Conclusions

Vibrating structures radiate sound due to their interaction with the ambient fluid. Apart
from musical instruments, the radiated sound is usually disturbing and generally perceived
as noise. Consequently, an efficient diagnosis tool is required to detect radiating hot spots
on vibrating surfaces. One prominent technique is the surface contribution analysis, which
is primarily applied to the booming noise problem in vehicle cabins. As booming noise
occurs in the low frequency range, it can be treated with wave-based numerical methods
such as the finite element and the boundary element method. For this specific task, it is
highly favorable to implement a contribution analysis in a boundary element formulation,
since the BEM solely requires a discretization of the structural surface, which is the only
relevant part in sound radiation problems. While intensity-type quantities are now well es-
tablished as control objectives in exterior acoustics, experts in interior acoustic analyses
still rely on the sound pressure at a specific position. The following issues are associ-
ated with this: Firstly, the sound pressure is susceptible to the position of the evaluation
point. Descreased performance is mainly expected at frequencies and locations with low
sound pressure values. Secondly, existing surface contribution methods are limited to a
single evaluation point. Present techniques do not consider multiple evaluation points and
entire volumes. Finally, investigations across a broad frequency range require repetitive
evaluations of the underlying acoustic system associated with high computational costs.

The present thesis addresses the issues associated with current contribution analysis
methods in interior acoustic problems. Paper A [130] provides a formulation of the surface
contributions based on the sound energy density. By this means, contributing surfaces are
retrieved in a robust way, as they are identified even at frequencies or locations with low
sound pressure values. In addition to this, energy-based surface contributions are always
non-negative by definition. This way, cancellation effects caused by positive and negative
contributions are effectively avoided. While Paper A focuses on contributions to a single
evaluation point, Paper B [139] extends the energy-based surface contributions for an
entire volume. Regarding efficiency, the cumbersome volume integral is approximated by
a finite sum over multiple evaluation points regularly distributed within the acoustic cavity.
Paper C presents a multi-fidelity model in order to accelerate frequency sweep analyses
for acoustic systems. In this way, repetitive evaluations of the costly high-fidelity model
are approximated by combining a small sample size of high-fidelity simulations with the
results of a lower fidelity version. Moreover, the proposed method is based on Gaussian
process surrogates, allowing predictions under uncertainties.

Detecting sound producing sources on vibrating structures is a continuing concern in
vibroacoustic systems. One prominent representative is the booming noise problem in
vehicle cabins, typically treated with a contribution analysis technique. Previous research
on this method is based on the influence coefficient vector describing the sensitivities of
the field point sound pressure regarding structural excitation [45, 47, 49]. Although well
established, this method implies two main disadvantages: Firstly, the sound pressure at a
certain position is susceptible to variations of that position. As a result, it is very challeng-
ing to detect surface contributions in regions with low sound pressures. Secondly, current
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methods can only retrieve contributing surfaces for excited surfaces, as the field point
sound pressure is evaluated by the dot product of the influence coefficients and the struc-
tural particle velocity on the boundary [131]. The literature on exterior acoustic problems
motivates the usage of intensity-type quantities as control objectives to identify sound
sources on vibrating structures [66, 71]. Another physical quantity combining pressure
and velocity is the sound energy or when referenced per unit volume, the sound energy
density. The sound energy density comprising the pressure-proportional potential energy
density and the velocity-proportional kinetic energy density has been suggested by multi-
ple authors as a control objective for interior acoustic problems, see [3, 85, 81, 84]. Thus,
Paper A introduces a contribution analysis method based on the sound energy density
for three-dimensional interior acoustic problems. The energy-based surface contributions
are expressed in a quadratic form resulting in only non-negative contributions. By do-
ing so, cancellation effects from bipolar contributions are avoided. In contrast to existing
techniques, the proposed method can identify contributing surfaces even in areas or at
frequencies with low sound pressures. On top of that, the energy-based contribution anal-
ysis allows detecting contributions from surfaces, which are not externally excited. By this
means, Paper A proposes an efficient and robust diagnosis tool to trace sound sources on
vibrating surfaces. Even though Paper A focuses on the vehicle interior noise problem, the
proposed method can be readily transferred to further interior acoustics problems, e.g.,
fuselages of traditional and electric vertical take-off and landing aircraft. With particle
velocity transducers being accessible, future work could concentrate on the experimen-
tal validation of the energy-based contributions analysis. Another fruitful area for future
research is the transformation of the surface contributions into the time domain enabling
investigations on room impulse responses.

Current techniques on contribution analyses merely focus on the surface contributions re-
garding only one evaluation point. In vehicle interior noise problems, this point is typically
fixed at the location of the driver’s ear. However, the surface contributions regarding the
other passengers still need to be considered. To the best of the author’s knowledge, no
existing method considers the surface contributions regarding multiple evaluation points
or an entire volume. Paper B, thus, extends the surface contributions regarding an entire
volume. The cavity volume is effectively approximated by using a grid of multiple regu-
larly distributed field points. In this paper, the surface contributions are again based on
the sound energy resulting in robust and, at the same time, non-negative contributions.
The proposed method is initially verified with an academic numerical example, the inward
radiating sphere, before its application to the vehicle interior noise problem. In both appli-
cations, the findings demonstrate that the surface contributions to the sound energy are
effectively recovered. In current methods, surface contributions related to the entire cav-
ity volume remain unconsidered. Thus, the volume-related energy surface contribution
analysis enables a new perspective into the characteristics of enclosed acoustic systems.
Future research should focus on the experimental validation of the proposed method. Be-
yond that, researchers and practitioners are encouraged to use volume-related energy
surface contributions to design cabins with possibly multiple listeners. This may become
particularly important in the era of autonomous driving vehicles. Further potential appli-
cations include but are not limited to the design of aircraft and train cabins.
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Engineers are typically confronted with time and budget constraints in the early design
phases of modern product development cycles. Consequently, numerous repeated simu-
lations of highly accurate models, essential in optimization problems and sensitivity anal-
yses, are usually difficult to realize. This brings engineers in very unfavorable situations,
since they are challenged to make decisions under limited observations. In typical fre-
quency sweep analyses with the BEM, the acoustic system is repetitively evaluated, as
the BEM system matrices implicitly depend on the frequency. The entire analysis is as-
sociated with high computational efforts, which are amplified for large frequency bands or
high frequency resolutions. One family of current techniques applies a series expansion
of the Green’s function to obtain frequency-independent system matrices and the model
order reduction of these matrices [124, 125, 126, 127]. Another group of methods in-
volves a reduced basis composed of successive solutions of the acoustic system through
a greedy algorithm [122, 123]. However, the techniques mentioned earlier do not account
for uncertainties. These are particularly important in early design stages, as their quan-
tification enables robust and flexible predictions when only a few system observations are
available. Therefore, Paper C introduces a multi-fidelity Gaussian process for accelerated
frequency sweep analyses under consideration of uncertainties. In the proposed method,
the two fidelity levels are realized as GPs approximating the frequency-dependent re-
sponse function of the acoustic system. The response functions are obtained by solving
the three-dimensional Helmholtz equation with the BEM. For this purpose, two different
models are regarded as the fidelity levels: A boundary element model with a coarse
mesh resolution is considered the low-fidelity model, whereas a finely resolved boundary
element mesh is treated as the model with high-fidelity. By combining the accuracy of
the high-fidelity model with the efficiency of its low-fidelity version, the proposed multi-
fidelity model effectively reduces the computational efforts while achieving a highly ac-
curate approximation of the frequency sweep analysis. Compared to current methods
with frequency-decoupled system matrices, the series expansion of the Green’s function,
which is strongly dependent on the underlying problem, is avoided. In comparison with
greedy reduced basis schemes, the proposed method requires only the storage of one
BEM system. Thus, the related memory demands are relatively modest. On top of that,
the proposed multi-fidelity model inherently considers uncertainties. These are particu-
larly interesting to engineering applications, as they can account for manufacturing toler-
ances or limited information on model parameters at early design phases. However, the
proposed technique relies on the fact that a lower fidelity representation of a high-fidelity
model exists. Moreover, the selection of the frequencies, at which the system responses
are relevant, is conducted semi-empirically with a pre-defined number of high-fidelity sim-
ulations. Lastly, it is assumed that fidelity levels are linearly correlated. So, multi-fidelity
models with non-linearly correlated fidelity levels still need to be addressed in the future.
Thus, the natural progression of this paper could be the implementation of non-linear cor-
relation functions to broaden the range of applications. Apart from that, a sophisticated
frequency selection strategy in the form of an a priori error estimator could leverage the
constraints imposed by the pre-defined set of frequencies.

In conclusion, this cumulative thesis provides an efficient and robust diagnosis tool to
trace sound sources on vibrating structures for interior acoustic problems. The proposed
techniques are implemented in a boundary element formulation. Beyond academic ex-
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amples, the proposed method has been transferred to an industrial application, where the
vehicle cabin noise problem has been effectively treated. The present thesis introduces
a contribution analysis technique on the basis of sound energy densities. Moreover, an
extended contribution analysis method is proposed enabling investigations of surface con-
tributions regarding an entire cavity. Finally, this thesis includes an approximation method
for accelerated frequency sweep analyses under uncertainties.
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A B S T R A C T

Vibrating structures have received considerable critical attention as they radiate sound into
enclosures where it is amplified by reflections. Surface and panel contribution analyses account
for a useful tool to identify sound sources on vibrating structures. Current commercial solutions
use the sound pressure at a field point inside the acoustic domain as the objective function.
Usually, a bar chart of panel contributions to the sound pressure at a single point is supplied.
A major drawback consists in the sound pressure strongly depending on the location of the
specific field point. This is particularly the case for field point locations in regions with low
sound pressure values. It is the aim of this study to formulate sound energy density-based
surface contributions to evaluate the energy flow in enclosing structures. These energy-based
contributions offer new insights into the properties of acoustic cavities, since they account for
an integrative evaluation of the sound pressure and the particle velocity. For this purpose, the
boundary element method has been applied to solve the three-dimensional Helmholtz equation
for interior acoustics. In analogy to the non-negative intensity, the energy-based contributions
are expressed in a quadratic form. By this means, acoustic cancellation effects due to alternating
signs are bypassed. The results reveal regions with high contributions to the sound energy
density at specific field points. Some of these surface regions appear almost inactive if only
the contributions to the sound pressure were analyzed. The findings of this study indicate that
energy-based surface contributions provide an effective quantity, particularly in regions with
low sound pressure values.

1. Introduction

Vibration patterns on structures are widely considered to be a crucial factor in acoustic noise problems. In particular, interior
acoustic problems have been the subject of many engineering applications including vehicle cabins, aircraft fuselages, and closed
rooms. Experts in this field are faced with the challenge to identify those surfaces of the structure which contribute most to the
radiated sound in certain regions inside the acoustic domain.

Over the past four decades, there has been a growing interest in surface or panel contribution analysis, particularly arising in
the automotive industry. The first systematic report on contribution analysis was carried out in 1988 by Ishiyama et al. [1]. They
presented a formulation based on boundary element method (BEM) system matrices to determine the sound pressure at a certain
location, e.g., at the driver’s ear. By this means, the sound pressure was determined by a scalar product of two vectors: the particle
velocity vector and the coefficient vector associated with the transfer function between the field point and a particular node of the
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boundary element mesh. Note that this transfer function should be understood as a discrete, and thus, mesh dependent function
which can be easily transformed into a continuous, and thus, mesh independent function, see for example [2,3].

Many definitions of this coefficient vector can be found, e.g., acoustic contributions [4], global sensitivities with respect to the
particle velocity [5], sensitivity associated with the adjoint variable method [6], and influence coefficients [2,3]. Since the patent by
Cremers et al. [7] was filed in 2000, the term acoustic transfer vector (ATV) has been widely used. It refers to the discrete coefficient
vector, which is associated with the nodal contributions. ATVs are commonly adopted in current finite element method (FEM) codes,
e.g., MSC Nastran [8] or LS-DYNA [9], to perform panel contribution analyses. More recent evidence [10] reports on a numerical
panel contribution analysis suitable for the BEM and the finite element method (FEM). The authors developed a numerical Green’s
function approach to evaluate the interaction between the vibrating structure and the sound pressure at an internal field point.

Initial work in this field with experimental techniques focused primarily on the interior noise in car cabins. Muhlmeier et al. [11]
developed a method by measuring the contribution of each chassis panel to the sound pressure at the driver’s position, whereas
Koners [12] reported on a method based on transfer path analysis.

Besides surface or panel contribution analyses, the following approaches have been proposed to tackle the acoustic inverse
problem: near-field acoustic holography (NAH), inverse BEM, inverse FEM, equivalent source methods (ESM), and far-field
holography. In NAH, sound pressure measurements on a two-dimensional surface, the hologram, are performed to reconstruct the
three-dimensional acoustic field. By convolving the measured data with the Green’s function, the vibration pattern of the structure
can be identified [13]. The inverse BEM designates a technique to recover vibrating surfaces contributing to the measured sound
pressure data. However, inverse problems are challenging due to the ill-posed nature of the acoustic transfer matrices. In an attempt
to solve this issue, regularization methods such as Tikhonov regularization [14], truncated singular value decomposition [15], or
Krylov subspace methods [16] were extensively studied. The principle idea of the equivalent source method (ESM) is to identify
surface contributions by replicating arbitrary sound sources with arrays of elementary sound sources [17,18]. As such, ESM methods
were integrated in inverse BEM [19,20] and NAH [21] schemes in order to leverage the singularities in the acoustic transfer matrix.
In the Helmholtz least-squares (HELS) method, the sound field obtained from a BEM simulation is reconstructed by a spherical
wave expansion, whose coefficients are determined by the least-squares method satisfying the sound pressure at the measurement
points [22–24]. Magalhaes and Tenenbaum have traced the advances in this topic until 2004 [25].

Regarding interior acoustics, NAH was performed to recover the particle velocity in an aircraft fuselage [26]. The inverse BEM
was applied in interior acoustics to reconstruct the vibration pattern in an automotive cabin [27]. Further applications on interior
acoustics using the inverse FEM have been reported for two-dimensional cavities [28] and industrial aircraft fuselages [29]. The
effectiveness of an ESM-based NAH technique was demonstrated for monopole [30] and dipole sources [31] in enclosed domains.
For cylindrical objects, a hybrid scheme combining the HELS method with the NAH was studied [32]. Moreover, a panel contribution
analysis based on the HELS was developed for interior acoustic problems [33]. All the studies mentioned above have tended to focus
on the sound pressure at an internal field point as the objective function.

In a major advance, Williams [34] introduced the supersonic intensity (SSI) as a new quantity. He concluded that only supersonic
wave components contribute to the far field, since subsonic components are evanescent in the near field. As such, he suggests to
use the SSI rather than the sound intensity for exterior acoustic problems. This concept has been extended to arbitrarily shaped
structures [35] and formulated in the wavenumber [34] as well as in the space domain [36].

Marburg et al. [37] introduced the non-negative contributions for exterior acoustic problems. This quantity can be interpreted
as a non-negative intensity (NNI) to evaluate the surface contributions in sound radiation problems. As the NNI is always positive,
cancellation effects due to the alternating sign inherent to acoustic intensities are circumvented. Correa and Tenenbaum [38]
proposed a similar formulation by introducing a quantity called useful intensity. To determine the relevant regions for radiation,
Correa and Tenenbaum used the acoustic radiation modes (ARM) as a filtering operator whereas Marburg et al. used the ARM to
compute the square root of the acoustic impedance matrix. Another approach to determine the NNI for planar structures based
on convolution formulas was derived by Williams [39]. In contrast to the SSI, data on either sound pressure or particle velocity
suffice to compute the NNI. A comparative study has shown that the SSI equals the NNI for certain parameters of the spatial
radiation filter [40]. Moreover, the NNI formulation was extended to scattered sound power [41] and back-calculations from
partially enveloping surfaces at the far-field [42]. Further applications of the NNI include coupled fluid–structure interactions at
large scale [43,44], stochastic excitations due to turbulent boundary layers or acoustic diffuse fields [45], and the reconstruction of
vibrating surfaces in the presence of inhomogeneous damping [46].

Regarding interior acoustic problems, Sommerfeldt and Nashif [47] draw our attention to an energy density-based approach for
global control. They have highlighted the deteriorated performance of sound pressure measurements when microphones are placed
in so-called localized silent zones [47]. The authors bypassed this issue with an energy-based approach, as the sound energy is
sensitive to both the sound pressure and the particle velocity [47]. Tanaka and Kobayashi [48] have taken advantage of this fact to
develop a control concept for acoustic cavities based on active noise and active vibration control. Energy-based methods have been
further applied on acoustically optimized designs [49] and on the active control of sound transmission into cavities [50–52].

Previous work on surface and panel contribution analysis in interior domains only focused on the sound pressure as an objective
function. However, sound pressure-based surface contributions are strongly dependent on spatial variation of the field point location.
This leads to a deterioration when the sound pressure is analyzed in regions with extremely low sound pressure values [48,50].

To the best of our knowledge, there are no results in the literature regarding a numerical method to evaluate surface contributions
on the basis of the sound energy in cavities.

The aim of the present work is to formulate a numerical, energy-based contribution analysis to evaluate the acoustic properties
in interior domains. In this context, we present a methodology to determine the sound energy flow in enclosing surfaces regarding
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Fig. 1. Helmholtz problem with the interior domain 𝛺 and the boundary 𝛤 . The normal vector �⃗� points outward into the complementary domain 𝛺𝑐 .

the sound energy density at an internal field point. Therefore, we have employed the energy density-based concept suggested by
Sommerfeldt and Nashif [47] or Koopmann and Fahnline [49]. In analogy to the NNI, we formulated a quadratic expression for the
acoustic energy which leads to real-valued, non-negative surface contributions [37].

The results of this method are encouraging, as they show that surface contributions can be identified in regions with low sound
pressure values too. The proposed method provides a valuable analysis tool to reconstruct vibration patterns on structures in interior
acoustic problems.

The paper is organized as follows: Section 2 briefly surveys the boundary element method to solve the three-dimensional
Helmholtz equation. Section 3 outlines the evaluation of the acoustic quantities at a field point. In Section 4, our formulation on
energy density-based surface contributions is described. Section 5 presents its application on a numerical example. Our conclusions
are drawn in Section 6.

2. Boundary element method

The brief outline of the boundary element method in this section is closely related to former introductions [53,54]. By assuming
a harmonic time dependency function e−i𝜔𝑡, sound radiation problems are governed by the Helmholtz equation

𝛥𝑝(�⃗�) + 𝑘2𝑝(�⃗�) = 0 𝒙 ∈ 𝛺 ⊂ R3, (1)

with 𝑝(�⃗�) denoting the scalar, complex-valued sound pressure in the acoustic domain 𝛺 and 𝑘 = 𝜔∕𝑐 the wavenumber, which is
composed by the angular frequency 𝜔 and the speed of sound 𝑐. The regarding Neumann boundary condition is related to the
derivative of the sound pressure in normal direction

𝑣𝑓 (�⃗�) =
1
i𝜔𝜌

𝜕𝑝(�⃗�)
𝜕𝑛(�⃗�)

, (2)

where 𝑣𝑓 (�⃗�) represents the fluid particle velocity at the boundary of the acoustic domain 𝛤 and 𝜌 the ambient density of the fluid.
The boundary admittance of the acoustic system is posed by the Robin boundary condition as

𝑣𝑓 (�⃗�) − 𝑣𝑠(�⃗�) = 𝑌 (�⃗�)𝑝(�⃗�) 𝒙 ∈ 𝛤 ⊂ R2, (3)

where 𝑣𝑠(�⃗�) and 𝑌 (�⃗�) denote the structural particle velocity and the boundary admittance, respectively. Note that the Robin
boundary condition degenerates to a Neumann boundary condition for 𝑌 (�⃗�) = 0. Fig. 1 illustrates the Helmholtz problem for interior
acoustics [54].

By combining the weak form of the Helmholtz equation with the fundamental solution, we deduce the following boundary
integral equation:

𝑐(�⃗�)𝑝(�⃗�) + ∫𝛤
𝜕𝐺(�⃗�, �⃗�)
𝜕𝑛(�⃗�)

𝑝(�⃗�)d𝛤 (�⃗�) = i𝜔𝜌∫𝛤
𝐺(�⃗�, �⃗�)𝑣𝑓 (�⃗�)d𝛤 (�⃗�), (4)

with 𝐺(�⃗�, �⃗�) denoting the Green’s function and 𝑐(�⃗�) a quantity representing the geometric composition of the boundary 𝛤 at
�⃗� [53,54]. For three-dimensional Helmholtz problems, the Green’s functions is defined by 𝐺(�⃗�, �⃗�) = ei𝑘𝑟∕(4𝜋𝑟) with the distance
𝑟 = 𝑟(�⃗�, �⃗�). By this means, it describes the effect of a monopole source at �⃗� on a receiver at the position �⃗�. On smooth surfaces,
e.g., inside a boundary element, we obtain 𝑐(�⃗�) = 0.5 [54].

Finally, substitution of the Robin boundary condition (Eq. (3)) into Eq. (4) and discretization with the collocation boundary
element method result in the following linear system of equations:

(𝑯 −𝑮𝒀 )𝒑 = 𝑮𝒗𝑠, (5)

with 𝑮 and 𝑯 denoting the global system matrices derived from the single-layer and the double-layer potential, respectively.
Note that 𝑮 and 𝑯 are neither Hermitian nor positive definite. By assuming piecewise constant approximation functions for the
admittance and discontinuous approximations for the sound pressure, the boundary admittance matrix 𝒀 contains only entries on
the diagonal [54].
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Fig. 2. Two-dimensional cavity surrounded by ten panels (left). The sound pressure is evaluated at the field point (red). The panel contributions are visualized
by a bar chart (right). Only panels with non-zero surface particle velocities contribute to the field point. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

3. Field point evaluation

Once the matrix system in Eq. (5) is solved, the sound pressure and the particle velocity are known on the boundary. To evaluate
the sound pressure inside the domain, we reformulate Eq. (4) including the Robin boundary condition Eq. (3)

𝑝(�⃗�) = i𝜔𝜌∫𝛤
𝐺(�⃗�, �⃗�)𝑣𝑠(�⃗�)d𝛤 (�⃗�)

− ∫𝛤

[

𝜕𝐺(�⃗�, �⃗�)
𝜕𝑛(�⃗�)

− i𝜔𝜌𝐺(�⃗�, �⃗�)𝑌 (�⃗�)
]

𝑝(�⃗�)d𝛤 (�⃗�) �⃗� ∈ 𝛺, (6)

where 𝑝(�⃗�) expresses the sound pressure at the field point �⃗�. In discrete form, the sound pressure at a field point is evaluated by

𝑝(�⃗�) = 𝒈𝑇 (�⃗�)𝒗𝑠 −
[

𝒉𝑇 (�⃗�) − 𝒈𝑇 (�⃗�)𝒀
]

𝒑 �⃗� ∈ 𝛺. (7)

By substituting the sound pressure solution on the boundary (Eq. (5)) in Eq. (7), we obtain

𝑝(�⃗�) =
{

𝒈𝑇 (�⃗�) −
[

𝒉𝑇 (�⃗�) − 𝒈𝑇 (�⃗�)𝒀
]

(𝑯 −𝑮𝒀 )−1𝑮
}

𝒗𝑠

= 𝒃𝑇 (�⃗�)𝒗𝑠 �⃗� ∈ 𝛺, (8)

with the column matrix 𝒃(�⃗�) also known as the acoustic transfer vector. [54,55]
To obtain the particle velocity at the field point, we make use of the relation in Eq. (2). By this means, the gradient of the sound

pressure in Eq. (6) yields the field point particle velocity [56]

�⃗�(�⃗�) = 1
i𝜔𝜌

∇⃗𝑝(�⃗�)

= ∫𝛤
∇⃗𝐺(�⃗�, �⃗�)𝑣𝑠(�⃗�)d𝛤 (�⃗�)

−
[

∫𝛤
∇⃗ 1
i𝜔𝜌

𝜕𝐺(�⃗�, �⃗�)
𝜕𝑛(�⃗�)

− ∇⃗𝐺(�⃗�, �⃗�)𝑌 (�⃗�)
]

𝑝(�⃗�)d𝛤 (�⃗�) �⃗� ∈ 𝛺. (9)

In discrete form, the field point particle velocity reads

𝑣(�⃗�) =
{

𝒈𝑇𝑗 (�⃗�) −
[

𝒉𝑇𝑗 (�⃗�) − 𝒈𝑇𝑗 (�⃗�)𝒀
]

(𝑯 −𝑮𝒀 )−1𝑮
}

𝒗𝑠

= 𝒃𝑇𝑗 (�⃗�)𝒗𝑠 �⃗� ∈ 𝛺, (10)

with the column matrix 𝒃𝑗 (�⃗�) denoting the influence coefficient vector regarding the spatial component 𝑗 of the particle velocity [54].
These influence coefficients 𝒃, Eq. (8), and 𝒃𝑗 , Eq. (10), can be understood as the sensitivity of the sound pressure or the particle

velocity at the point �⃗� with respect to the surface particle velocity.
Note that the traditional panel contribution (PC) analysis is assessed by evaluating Eq. (8)

𝑝(�⃗�) = 𝒃𝑇 (�⃗�)𝒗𝑠 =
𝑁𝑛
∑

𝑗=1
𝜂𝑗 �⃗� ∈ 𝛺, (11)

with 𝑁𝑛 denoting the number of nodes and 𝜂𝑗 the surface or panel contribution of an arbitrary node 𝑗 to the sound pressure at the
field point �⃗�. Usually, these panel contributions are visualized by means of a bar chart. A schematic overview of the traditional
analysis is depicted in Fig. 2. In this figure, the boundary of the acoustic domain is subdivided in ten panels (left). The contributions
of these panels regarding the sound pressure at the field point are illustrated in a bar chart. Note that only panels where the surface
particle velocity is non-zero contribute to the sound pressure at the field point, see Eq. (11).
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4. Energy density-based surface contributions

Two forms of energy are transported in sound waves: the potential energy due to the compression of the fluid particles and the
kinetic energy decisive for the particle motion. The potential energy 𝐸𝑝 and the kinetic energy 𝐸𝑘 are posed in terms of the sound
pressure 𝑝 and the particle velocity 𝑣 as follows:

𝐸𝑝 =
1

2𝜌𝑐2 ∫𝛺
𝑝(�⃗�)2 d𝛺, (12)

𝐸𝑘 =
𝜌
4 ∫𝛺

�⃗�𝑓 (�⃗�) ⋅ �⃗�𝑓 (�⃗�)∗ d𝛺, (13)

with ()∗ denoting the complex conjugate operation. Summation of the potential energy and the kinetic energy results in the total
acoustic energy [49,57]

𝐸𝑡 = 𝐸𝑝 + 𝐸𝑘 = 1
2𝜌𝑐2 ∫𝛺

𝑝(�⃗�)2 d𝛺 +
𝜌
4 ∫𝛺

�⃗�𝑓 (�⃗�) ⋅ �⃗�𝑓 (�⃗�)∗ d𝛺. (14)

The energy density, which is defined as the energy per unit volume, can be evaluated at discrete positions in the acoustic field.
As such, the potential energy density 𝑒𝑝, the kinetic energy density 𝑒𝑘 and the total energy density 𝑒𝑡 at �⃗� ∈ 𝛺 read

𝑒𝑝(�⃗�) =
1

2𝜌𝑐2
𝑝∗(�⃗�)𝑝(�⃗�), (15)

𝑒𝑘(�⃗�) =
𝜌
4
�⃗�∗(�⃗�)�⃗�(�⃗�), (16)

𝑒𝑡(�⃗�) = 𝑒𝑝(�⃗�) + 𝑒𝑘(�⃗�). (17)

The sound pressure 𝑝 and the particle velocity vector �⃗� at the interior field point are evaluated according to Eqs. (8) and (10),
respectively. Note that the energy density has units of energy per volume [kg∕ms2] [47,48,52].

By substituting Eq. (8) into Eq. (15) and omitting the indication of �⃗�-dependence, we can rewrite the potential energy density
in a quadratic form

𝑒𝑝 =
1

2𝜌𝑐2
(𝒃𝑇 𝒗𝑠)∗(𝒃𝑇 𝒗𝑠) =

1
2𝜌𝑐2

𝒗𝐻𝑠 𝒃∗𝒃𝑇 𝒗𝑠 = 𝒗𝐻𝑠 𝑨𝑝𝒗𝑠, (18)

with ()𝐻 denoting the complex conjugate transpose operation. The coupling matrix 𝑨𝑝 regarding the potential energy density is of
rank one leading to only one non-zero eigenvalue. Combining Eq. (16) with Eq. (10) yields the quadratic form for the kinetic energy
density

𝑒𝑘 =
𝜌
4
(𝒃𝑇𝑗 𝒗𝑠)

∗(𝒃𝑇𝒋 𝒗𝑠) =
𝜌
4
𝒗𝐻𝑠 𝒃∗𝑗 𝒃

𝑇
𝑗 𝒗𝑠 = 𝒗𝐻𝑠 𝑨𝑘𝒗𝑠, (19)

where 𝑨𝑘 identifies the coupling matrix regarding the kinetic energy density. With a rank of three, the matrix 𝑨𝑘 has exactly three
non-zero eigenvalues. We obtain the quadratic form for the total energy density by adding Eqs. (18) and (19)

𝑒𝑡 = 𝑒𝑝 + 𝑒𝑘 = 1
2𝜌𝑐2

𝑝∗𝑖 𝑝𝑖 +
𝜌
4
�⃗�𝐻𝑖 �⃗�𝑖 = 𝒗𝐻𝑠 𝑨𝑝𝒗𝑠 + 𝒗𝐻𝑠 𝑨𝑘𝒗𝑠 = 𝒗𝐻𝑠 𝑨𝑡𝒗𝑠 (20)

with the coupling matrix 𝑨𝑡 with respect to the total energy density. The matrix 𝑨𝑡 is of rank four resulting in four non-zero
eigenvalues. Note that the coupling matrices 𝑨𝑝, 𝑨𝑘, and 𝑨𝑡 are all Hermitian and complex-valued. The related eigenvalues are thus
positive and real-valued.

To compute the energy density based surface contributions 𝜇𝑗 , we need to decompose the coupling matrix 𝑨

𝑒 = 𝒗𝐻𝑠 𝑨𝒗𝑠 = 𝒗𝐻𝑠
√

𝑨
𝐻√

𝑨𝒗𝑠 =
𝑁𝑛
∑

𝑗=1
𝛼∗𝑗 𝛼𝑗 =

𝑁𝑛
∑

𝑗=1
𝜇𝑗 , (21)

with 𝛼𝑗 denoting a discrete entity on an arbitrary interpolation node 𝑗. Note that the energy density 𝑒 and the coupling matrix 𝑨
from the equation above are representative for the potential, the kinetic, and the total sound energy. Regarding the matrix square
root

√

𝑨, we first solve the following eigenvalue problem

𝑨 = 𝜳𝐻𝜦𝜳 (22)

with the eigenvectors 𝜳 and eigenvalues 𝜦 = diag{𝜆𝑘}. Second, we make use of the fact that the eigenvalues of the Hermitian matrix
𝑨 are real-valued and positive. This allows the formal expression

√

𝜦 = diag{
√

𝜆𝑘}. By exploiting the normalization condition for
eigenvectors 𝜳𝜳𝐻 = 𝑰 , Eq. (22) can be then reformulated to

𝑨 = 𝜳𝐻
√

𝜦
𝐻√

𝜦𝜳 = 𝜳𝐻
√

𝜦
𝐻
𝜳𝜳𝐻

√

𝜦𝜳 =
√

𝑨
𝐻√

𝑨. (23)

The square root of the matrix 𝑨 can be now computed by
√

𝑨 = 𝜳𝐻
√

𝜦𝜳 . In the final step, we formulate the energy density-based
surface contributions by incorporating Eq. (23) in Eqs. (18)–(20)

𝑒𝑝 = 𝒗𝐻𝑠 𝑨𝑝𝒗𝑠 = 𝒗𝐻𝑠
√

𝑨𝑝

𝐻√

𝑨𝑝𝒗𝑠 =
𝑁𝑛
∑

𝑗=1
𝛼∗𝑝𝑗 𝛼𝑝𝑗 =

𝑁𝑛
∑

𝑗=1
𝜇𝑝𝑗 , (24)
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Fig. 3. Field point at the position of the driver’s ear (red) from the front (a), the lateral (b) and rear view (c). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

𝑒𝑘 = 𝒗𝐻𝑠 𝑨𝑘𝒗𝑠 = 𝒗𝐻𝑠
√

𝑨𝑘
𝐻√

𝑨𝑘𝒗𝑠 =
𝑁𝑛
∑

𝑗=1
𝛼∗𝑘𝑗 𝛼𝑘𝑗 =

𝑁𝑛
∑

𝑗=1
𝜇𝑘𝑗 , (25)

𝑒𝑡 = 𝒗𝐻𝑠 𝑨𝑡𝒗𝑠 = 𝒗𝐻𝑠
√

𝑨𝑡
𝐻√

𝑨𝑡𝒗𝑠 =
𝑁𝑛
∑

𝑗=1
𝛼∗𝑡𝑗 𝛼𝑡𝑗 =

𝑁𝑛
∑

𝑗=1
𝜇𝑡𝑗 , (26)

with 𝜇𝑝𝑗 , 𝜇𝑘𝑗 , and 𝜇𝑡𝑗 identifying the potential, the kinetic, and the total energy density surface contributions, respectively. All
surface contributions are real-valued and non-negative. Note that the formulation presented here is only for the discrete surface
contributions. For visualization purposes, however, we will refer to the continuous surface contributions, as they are independent
of the topology of the underlying boundary element mesh. For more details on this topic, the interested reader is referred to the
article. [37]

An alternative solution for the sound energy density can be obtained with the FEM. However, as we are primarily interested in
the solution at the boundary, we favor a formulation based on the BEM. Another reason to use the BEM is the fact that the particle
velocity in the sound field can be determined analytically, see Eq. (10).

5. Numerical results

The numerical model to be investigated represents the cavity of a vehicle. which was provided by BMW. The density of air
and the related speed of sound were assumed to be 𝜌 = 1.21 kg∕m3 and 𝑐 = 343m∕s. The numerical model of the cavity consisted
of 8012 linear, discontinuous boundary elements resulting in 24 036 boundary element nodes. Following [58], we have chosen
twenty boundary elements per wavelength. We are aware that this discretization leads to a very fine resolved mesh. However, in
further analyses, e.g. fully coupled vibro-acoustic problems, a sufficiently fine mesh size is required. The cavity mesh is uniformly
distributed leading to minimal element edge length of 0.05m, a maximal edge length of 0.104m, and an average edge length of
0.065m. In comparison, the car cabin exhibits the dimensions of length 3.032m, width 1.554m, and height 1.283m. Regarding the
boundary admittance, we either imposed sound hard boundary conditions, 𝑌0 = 0, everywhere or the Robin boundary condition
𝜌𝑐𝑌1 = 𝑓∕𝑓ref with 𝑓ref = 2800Hz according to the reverberation time measurements published by Marburg and Hardtke [59]. The
numerical model was excited by vibrations at the footwell of the cabin, which were realized as Neumann boundary conditions with
the real-valued, normal particle velocity 𝑣𝑠 = 0.001m∕s. Moreover, we chose to evaluate the acoustic field quantities at the position
of the driver’s ear, as comfort requirements play a crucial role in the early vehicle design [60]. Fig. 3 shows the location of the field
point, which represents the position of the driver’s ear, from three different perspectives.

As certain vibroacoustic problems in vehicles, particularly booming noise, dominate at lower frequencies, the frequency range
was considered from 20Hz to 150Hz [60,61]. A schematic overview of the numerical model and its excitation is depicted in Fig. 4.

In the initial phase, we performed harmonic analyses in order to determine the frequencies to be investigated in more depth.
Therefore, we evaluated the sound pressure level, SPL = 20 log(𝑝∕𝑝ref) with the reference sound pressure 𝑝ref = 2.0 ⋅ 10−5 Pa, at
the location of the driver’s ear. The harmonic analyses were performed for 𝑌0 and 𝑌1. The resulting sound pressure levels for both
cases are displayed in Fig. 5. For hard reflecting walls, 𝑌0, the sound pressure level at the driver’s position is on average around
60 dB. While the SPL is minimal at 71Hz and 99Hz, resonance peaks occur at 78Hz, 109Hz, or 130Hz resulting in sound pressure
levels theoretically going to infinity. For 𝑌1, the sound pressure level at the location of the driver is around 60 dB below 110Hz.
In the frequency range from 110Hz to 150Hz, higher sound pressure levels can be observed around 75 dB. Minima and resonance
peaks do not occur due to the damping characteristics of the chosen boundary admittance parametrization. Fig. 5 indicates the
following frequencies of interest for the upcoming contributions analysis. The choice of the relevant frequencies is based on the 𝑌0
configuration. The first frequency can be spotted at 𝑓1 = 71Hz, where the SPL is very low. The resonance peak suggests a second
relevant frequency at 𝑓2 = 109Hz, whereas a third interesting frequency can be identified in the region of higher SPL values, for
instance 𝑓3 = 120Hz. The chosen frequency snapshots are illustrated by the vertical lines in Fig. 5.

Prior to the contribution analysis, a modal analysis up to 𝑓 = 150Hz is carried out in order to examine the mode shapes and
the eigenfrequencies of the cabin with respect to the sound pressure, see Fig. 6. In the modal analysis, the boundary admittance
is adopted to 𝑌0 on each element. The first mode shape occurring at 𝑓1 = 75Hz shows the sound pressure in the first axial mode
pattern (Fig. 6(a)). In the second mode shape at 𝑓2 = 109Hz the sound pressure is strongly pronounced in the footwell of the driver
(Fig. 6(b)), whereas the third mode shape at 𝑓3 = 130Hz can be identified as the second axial mode pattern (Fig. 6(c)). Note that a
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Fig. 4. Boundary mesh of the sedan cabin compartment excited by a real-valued, normal particle velocity on the left side of the footwell (red). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Sound pressure level at the driver’s ear evaluated for sound hard boundary conditions, 𝑌0 = 0 (dotted), and the boundary admittance 𝜌𝑐𝑌1 = 𝑓∕𝑓ref with
𝑓ref = 2800Hz (solid). The snapshots at 71Hz, 109Hz and 120Hz are denoted by the vertical lines (gray).

Fig. 6. Mode shapes of the cabin at the eigenfrequencies 𝑓1 = 75Hz (a), 𝑓2 = 109Hz (b), and 𝑓3 = 130Hz (c) with respect to the sound pressure. The boundary
admittance is adopted to 𝑌0 on each element.

further eigenfrequency occurs at 𝑓4 = 139Hz. However, as this eigenfrequency lies far enough away from the considered frequencies,
we have omitted the presentation of its mode shape for the sake of clarity.

Fig. 7 shows the sound energy density levels evaluated at the driver’s position for the potential, the kinetic, and the total energy
density. The results obtained from a harmonic analysis with hard reflecting walls are presented in Fig. 7(a), whereas Fig. 7(b) shows
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Fig. 7. Potential energy density (dashed), kinetic energy density (dotted), and total energy density (solid) evaluated at the location of the driver’s ear for sound
hard boundary conditions, 𝑌0 (a), and the boundary admittance 𝑌1 (b). The vertical lines denote the frequency snapshots at 71Hz, 109Hz, and 120Hz.

the results regarding absorbing boundary admittances. The sound energy density level was computed according to 𝐿𝑒 = 10 log(𝑒∕𝑒ref)
with the reference energy density 𝑒ref = 10−12 W∕m3.

Regarding the scenario with hard reflecting walls (Fig. 7(a)), there is a clear correlation between the potential energy density
levels and the sound pressure level in Fig. 5: The potential energy density is minimal at 71Hz and 99Hz and has resonance peaks
at 78Hz, 109Hz, 130Hz, and 139Hz. Below 110Hz, the potential energy level is on average 20 dB, while it amounts to 40 dB in the
frequency range from 110Hz to 150Hz. The kinetic energy density level, however, is around 40 dB over the entire frequency range
with peaks at 78Hz, 109Hz, and 130Hz as well. The total energy density level is nearly identical to the kinetic energy density level
in the frequency range from 20Hz to 110Hz. Above 110Hz, the total energy density level is higher than the kinetic energy density
level with peaks matching those with the potential energy density level, e.g., at 130Hz and 140Hz.

By applying absorbing boundary conditions (Fig. 7(b)), one can observe a potential energy density level around 20 dB for
frequencies below 100Hz. In the frequency range between 100Hz and 150Hz it reaches values around 37 dB. On average, the kinetic
energy density level exhibits higher values than the potential energy density for frequencies up to 115Hz. Above 115Hz, the kinetic
energy density level is approximately 33 dB. The total energy density level is nearly identical with the kinetic energy density level
in the frequency range from 60Hz to 110Hz. Outside this range, the total energy density level is higher than both, the potential and
the kinetic energy density level. As stated in Eq. (20), the total energy density is determined by the sum of the potential and kinetic
energy density. Thus, it becomes natural that the total energy density level is always higher than the potential and kinetic energy
density at the same position.

Returning to the aim posed at the beginning of this paper, the energy-based surface contributions are studied to evaluate acoustic
cavities, especially in areas where the SPL is very low. For this purpose, contribution analyses have been conducted in three case
studies based on the frequency snapshots resulting from the SPL (Fig. 5) and the sound energy density levels (Fig. 7) at the driver’s
position. In the initial case study, the frequency of interest was chosen from a frequency range with low SPL values, e.g., 𝑓1 = 71Hz.
With the kinetic energy mainly contributing to the total energy, the particle velocity at the driver’s position was inspected more
closely at 𝑓1. Second, the energy density-based surface contributions were analyzed at the resonance frequency, 𝑓2 = 109Hz. By
the fact that both the potential and kinetic energy contribute equally to the total energy density level, the effect of the absorbing
boundary conditions was further investigated at 𝑓2. The third case study dealt with a frequency snapshot from a frequency range
with intermediate SPL values between two mode shapes. Thus, the third relevant frequency was adopted to 𝑓3 = 120Hz. At this
frequency, the potential energy-based surface contributions were additionally compared to the traditional, sound pressure-based
surface contributions.

5.1. Surface contributions in a frequency range with low sound pressure

Fig. 8 shows the results for the potential (a), the kinetic (b), and the total energy density-based surface contributions (c) at
𝑓1 = 71Hz with respect to the driver’s position. In this case, the contribution analysis was performed for hard reflecting walls, i.e., the
boundary admittance being 𝑌0. The resulting surface contributions to the potential energy density are nearly zero everywhere,
whereas surfaces contributing to the kinetic energy density are detected in the front footwell and in the rear of the vehicle. Regarding
the surface contributions to the total energy density, sensitive regions are identified again in the front footwell and in the rear of
the vehicle.

As already stated in Fig. 5, a frequency range with low sound pressure regarding the driver’s position was detected at 𝑓1 = 71Hz.
At the same frequency, the potential energy density at the driver is nearly zero, while the kinetic energy density is very high. Thus,
surface contributions to the potential energy density are negligible at 𝑓1 = 71Hz. As a consequence, the total energy density surface
contributions are essentially determined by the kinetic energy density surface contributions. However, it is interesting to note that
the total energy density at the driver’s ear is considerably high at 𝑓1 = 71Hz in spite of a very low SPL value.
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Fig. 8. Potential energy density (a), kinetic energy density (b), and total energy density (c) surface contributions at 71Hz regarding the driver’s position. The
boundary admittance is adopted to 𝑌0 on each element.

The fact that the kinetic energy surface contributions are predominant at 𝑓1 = 71Hz motivates a closer inspection on the influence
coefficients regarding the particle velocity at the driver’s location, see Eq. (16). In Fig. 9, the resulting influence coefficients in the
three spatial directions are compared with the kinetic energy surface contributions at 𝑓1 = 71Hz. The boundary admittance 𝑌0 is
adopted on each element. The influence coefficients with respect to the particle velocity in 𝑥-direction are high in the front and
in the rear of the vehicle, while they are very low around the B-pillars (Fig. 9(a)). As far as the influence coefficients in y- and
𝑧-direction are concerned, only a small region above the driver seat appears sensitive with respect to structural vibrations in this
region. The influence coefficients in y- and 𝑧-direction of the remaining surfaces are nearly zero (Fig. 9(b), Fig. 9(c)). For the sake
of clarity, the kinetic energy surface contributions are displayed again in Fig. 9. As already discussed, surfaces contributing to the
kinetic energy density at the driver’s ear were identified in the front footwell and in the rear of the vehicle, see Fig. 9(d). The results
in this figure reveal that the kinetic energy surface contributions at this frequency and for an excitation in the lower left footwell
are essentially driven by the influence coefficients regarding the particle velocity in 𝑥-direction. This finding is further substantiated
by considering the axial mode pattern at the first eigenfrequency 𝑓1, see Fig. 6(a). The influence coefficients with respect to the
particle velocity in 𝑦- and 𝑧-direction play no role in the present load case.

5.2. Surface contributions at the resonance

The next part of this paper deals with the energy surface contributions at the resonance frequency 𝑓2 = 109Hz, see Figs. 5 and
7. The resulting potential, kinetic, and total energy density surface contributions are presented in Fig. 10. The upper row shows the
results for hard reflecting walls, i.e., for 𝑌0, whereas the lower row presents the results with the absorbing boundary, i.e. for 𝑌1.

Regarding the potential energy surface contributions for hard reflecting walls, active regions only become apparent in the
footwells of the front passenger seats, see Fig. 10(a). The same surfaces contribute in a similar way to the kinetic and to the total
energy density at the driver’s location (Figs. 10(b), 10(c)). In comparison with the second mode shape of the cavity (Fig. 6(b)), it
becomes apparent that especially the left part of the footwell is activated at 𝑓 = 109Hz. By imposing absorbing boundary conditions,
surfaces above the driver seat additionally contribute to the potential energy density, see Fig. 10(d). Kinetic and total energy surface
contributions are observed in the footwell of the driver seat, see Figs. 10(e) and 10(f), respectively.

For the case 𝑌0, the most surprising aspect of this result is that almost the same surfaces, namely the footwells in the front seats,
contribute to the potential and the kinetic energy density at the driver’s position. Regarding absorbing boundary conditions, a high
correlation is found between the kinetic energy and the total energy surface contributions at 𝑓2 = 109Hz, since surfaces contributing
to the total energy density are essentially covered by the kinetic energy surface contributions. Curiously, the total energy surface
contributions appear to be unaffected by the potential energy contributions, as surfaces contributing to the potential energy density,
e.g., the right front footwell or the roof lining above the driver, are not recovered in the total energy contribution analysis.

Closer inspection at Fig. 7 reveals that the composition of the total energy density at the resonance 𝑓2 = 109Hz changes
when absorbing boundary conditions are applied. For instance, in the undamped case, the potential energy and the kinetic energy
contribute equally to the total energy. However, by imposing more realistic, absorbing boundary conditions, we observe that the
potential energy density remains lower than the kinetic energy density. This shifts the energy composition in favor of the kinetic
energy, which leads to the fact that the kinetic energy dominates in the total energy balance at 𝑓2 = 109Hz. Similar to what was
already observed in Section 5.1, surfaces, which only contribute to the potential energy, are not necessarily contributing to the total
energy.

5.3. Surface contributions in a frequency range with intermediate sound pressure

Fig. 11 shows the results obtained from the contribution analysis at 𝑓3 = 120Hz for sound hard boundary conditions. The potential
(Fig. 11(a)), the kinetic (Fig. 11(b)), and the total energy density surface contributions (Fig. 11(c)) are compared with the magnitudes
of the sound pressure related influence coefficients (Fig. 11(d)), which are evaluated according to Eq. (8). Surfaces contributing to
the potential energy density are mainly apparent in the area of the driver’s footwell. Minor potential energy contributions can
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Fig. 9. Influence coefficients regarding the particle velocity in 𝑥-direction (a), 𝑦-direction (b), and 𝑧-direction (c) at 71Hz with respect to the driver’s position
and the kinetic energy density surface contributions (d). The boundary admittance is adopted to 𝑌0 on each element.

Fig. 10. Potential, kinetic, and total energy density surface contributions at 109Hz with respect to the driver’s location for sound hard boundary conditions,
i.e., the case of 𝑌0 (a–c), and the boundary admittance, i.e., the case of 𝑌1 (d–f).
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Fig. 11. Surface contributions based on the potential energy density (a), the kinetic energy density (b), and on the total energy density (c) and the influence
coefficients regarding the sound pressure at the driver’s position (d) at 120Hz. Sound hard boundary conditions are imposed on each element.

be detected on the roof liner above the driver seat and on the rear part of the vehicle. The kinetic energy surface contributions,
however, are nearly zero everywhere. As far as the total energy contributions are concerned, highly active regions are spotted again
in the driver’s footwell. Further marginal total energy contributions are identified above the driver’s position and in the rear of the
vehicle. The same active surfaces can be identified in the case of the sound pressure related influence coefficients. A comparison
with the mode shapes at 𝑓2 = 109Hz (Fig. 6(b)) and 𝑓3 = 130Hz (Fig. 6(c)) reveals that active regions occur at the driver’s footwell
and at the rear of the cabin, respectively. As we have selected the third relevant frequency, 𝑓3 = 120Hz, in between these two
eigenfrequencies, the active regions obtained with the contribution analysis concur very well with those in the second and third
mode shape. The distribution of the surface contributions is further supported by the chosen excitation, which is imposed at the
driver’s footwell and acts in the axial 𝑥-direction, see Fig. 4. As discussed in Section 5.1, the contribution analysis revealed that the
kinetic energy contributions dominate in frequency ranges with low sound pressure, e.g., at 𝑓1 = 71Hz. In contrast to this, we now
observe that the potential energy surface contributions are predominant in a frequency range with intermediate sound pressure. The
results obtained for the sound pressure related influence coefficients concur very well with the potential energy contributions. This
becomes natural as the potential energy density is formulated by the square of the sound pressure, see Eq. (15).

In summary, our results suggest an important role for energy density-based surface contributions. Active surfaces were efficiently
determined by the traditional, sound pressure related contribution analysis in a frequency range with high sound pressure, see the
results in Section 5.3. At frequencies with low sound pressure, however, we observed that contributing surfaces cannot be recovered
by purely considering the potential energy density or the associated sound pressure level, see Section 5.1. The reason for this is that
the potential energy density and the associated SPL were extremely low in these frequency ranges, which leads to negligible surface
contributions. Nevertheless, this weak spot was leveraged by analyzing the total energy density, particularly by the kinetic energy
density. As presented in Fig. 8, only an energy-based contribution analysis was able to recover the sound radiating surfaces.

Remark that a traditional, sound pressure-based contribution analysis would yield panel contributions only for panels where the
surface particle velocity is non-zero. Thus, panels which are not externally excited would be considered as insensitive. However,
our results clearly demonstrate that all surfaces can contribute to the acoustic energy density at the field point, even if they are
not externally excited. Moreover, cancellation effects are bypassed, as the energy-based surface contributions are non-negative
by definition. These findings therefore confirm the usefulness of an energy density-based contribution analysis, particularly at
frequencies with low sound pressure levels.



Journal of Sound and Vibration 527 (2022) 116824

12

C. Gurbuz et al.

6. Conclusion

In this paper, the aim has been to develop a methodology which enables the evaluation of an acoustic cavity by observing sound
energy densities. For this purpose, we have introduced a formulation for energy density-based surface contributions. To validate
our method, we performed BEM simulations of a car cabin from BMW. The results of this study show that sensitive surfaces were
effectively recovered by the energy-based contribution analysis. This was particularly the case at frequencies with low SPL values.
In the present study, we focused on surface contributions with respect to a single field point at single frequencies. Thus, a natural
progression of this work is an energy-based contribution analysis regarding multiple field points over several frequency bands.
Future work will further concentrate on extensions with respect to multiple load cases and more realistic excitation models. As the
total sound energy is sensitive to both, the sound pressure and the particle velocity, we think that our method could provide an
alternative approach to evaluate acoustic fields in interior domains.
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Sound radiation from vibrating structures is a crucial concern in the vehicle design process. One
effective tool to recover vibration patterns on surfaces is the surface contribution analysis. Recent
implementations, however, focus on surface contributions with respect to single evaluation points.
For a contribution analysis regarding an entire volume, the tedious volume integration is required.
This study aims to develop an efficient contribution analysis technique for the acoustic evaluation of
an entire cavity. In order to circumvent the cumbersome volume integral, the acoustic quantities are
evaluated at regularly distributed field points. For this purpose, the three-dimensional Helmholtz
equation is solved by using the boundary element method. Moreover, the eigendecomposition of
the accompanying coupling matrices is involved in the proposed method. In contrast to traditional
techniques, the sound energy is deployed as the objective function, since the sound energy is not
only sensitive to the sound pressure but also to the particle velocity. Another beneficial aspect is
that the energy-based contributions are nonnegative. In this way, acoustic short circuits are avoided.
The proposed method is validated for two numerical examples: the inward radiating sphere and the
vehicle interior noise problem. Initial findings already reveal that entire volumes can be analyzed
with the energy-based contribution analysis. By this means, our method designates an efficient
method to evaluate contributing surfaces with regard to entire cavities. This research emphasizes
the relevance of an energy-based contribution analysis, since they provide deep insights into the
acoustic behavior of cavities.

Keywords: Boundary element method; surface contribution analysis; sound energy.
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1. Introduction

In recent years, there has been an increasing interest in surface or panel contribution analy-

sis, which is mainly driven by the automotive industry. A first study on contribution analysis

can be traced back to Ishiyama et al. in 1988.1 In that study, the authors reported on a

technique based on the boundary element method (BEM) to evaluate the sound pressure

at the driver’s position. By this means, they computed the product of the particle velocity

and a coefficient vector, which refers to the transfer function between a BEM node and the

field point of interest. In recent literature, multiple terms were introduced in an attempt

to define the coefficient vector. For instance, the coefficient vector is referred to influence

coefficients,2 global sensitivities regarding the particle velocity3 or sensitivities computed

with the adjoint variable method.4 In 2000, a patent was recorded introducing the term

acoustic transfer vector (ATV). Surface contribution analyses based on ATVs can be found

in various commercial finite element method (FEM) software packages, e.g. in MSC,5 LS-

DYNA6 or in COMSOL.7 However, throughout this paper, the term influence coefficients

as introduced by Marburg et al.8,9 will refer to the coefficient vector.

Contribution analyses based on experimental measurements were primarily conducted

in the field of vehicle interior noise problems. For instance, an experimental technique was

introduced, in which the contribution of each chassis panel to the sound pressure at the

driver’s ear location was measured.10 Another experimental method based on transfer path

analyses was reported in the paper.11 Moreover, Microflown proposed a technique, which

focuses on panel contributions based on measurements of the particle velocity.12

Beyond that, vibrating surfaces can also be recovered by using the near-field acous-

tic holography (NAH).13 This technique has been also applied in interior problems. For

instance, vibrating surfaces were identified for an aircraft fuselage by using the NAH.14

Another method to reconstruct vibrating patterns on structures is the inverse BEM. Regard-

ing interior problems, the inverse BEM has been applied to recover vibrating patterns in

vehicle cabins.15 As an alternative to the inverse BEM, inverse FEM methods were studied

for an industrial aircraft fuselage16 and a spatial sound field.17 Further techniques to recon-

struct vibrating surfaces are the equivalent source method (ESM)18,19 and the Helmholtz

equation least-squares (HELS) method.20–22 The HELS method was also integrated in a

panel contribution analysis for interior as well as exterior acoustic problem.23 The litera-

ture by 2004 in this field has been reviewed by Magalhaes and Tenenbaum.24

For exterior acoustic problems, Williams25 noted that only the supersonic wave com-

ponent radiates to the far field, as the subsonic wave components are evanescent in the

near field regime. Based on that finding, he derived the supersonic intensity (SSI). He sug-

gested to prefer the SSI to the sound intensity as an objective function in exterior acoustic

applications. The idea of the SSI was expanded for structures with arbitrary shapes and

derived for analyses in the wavenumber domain25 and space domain.26 As an alternative to

the SSI, Marburg et al.27 formulated the nonnegative intensity (NNI) for exterior acoustics

problems. The NNIs are inherently positive by definition. By this means, acoustic short

circuits caused by alternating signs are abridged. Similarly, the useful intensity has been

introduced by Corrêa Junior and Tenenbaum.28 While these authors used the acoustic
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radiation modes (ARMs) for filtering purposes, Marburg et al. computed the square root

of the acoustic impedance matrix based on the ARMs. Further developments of the NNI

involve sound scattering problems,29 far-field analyses,30 coupled fluid–structure problems

at large-scale,31,32 stochastic excitation models33 and structures with inhomogeneous damp-

ing properties.34 For planar structures, the NNIs can be alternatively computed analytically

by using the convolution formulas from the paper.35 Lastly, a spatial radiation filter was

developed to determine the correlation between SSI and the NNI.36

Regarding interior acoustic problems, Sommerfeldt and Nashif37 emphasized that purely

sound pressure-based methods show a poor performance in regions, where the sound pressure

values are low. To alleviate this issue, these authors suggested to use sound energy densities

as an objective function, as these quantities are sensitive to both, the sound pressure and

the particle velocity. This concept has been widely adopted in the field of active control,

where it has been applied for vibrating structures38 and sound transmission problems in

cavities.39–41 In a recent study, a nonnegative surface contribution analysis using sound

energy densities as an objective function was developed for interior acoustic problems.42 In

close analogy to Sommerfeldt and Nashif,37 the authors have demonstrated that an energy

density-based method was able to identify contributing surface regions, which appeared

inactive when solely the sound pressure was analyzed. Their proposed framework is based

on a BEM formulation and is, thus, a purely numerical technique.

Koopmann and Fahnline published a book to better understand the design mechanisms

for silent structures.43 For exterior acoustic problems, they suggested the radiated sound

power as a global quantity for the objective function, see also Ref. 44. However, they have

pointed out that the radiated sound power is inappropriate for interior acoustic problems.

Since there is no widely adopted quantity in interior acoustics, the authors have suggested

to use the sound energy as the objective function.43

It is the aim of this study to implement the concept of the sound energy into a surface

contribution analysis scheme in order to identify vibration patterns on structures. The sound

energy, which is composed by the potential energy and the kinetic energy, is determined

by the volume integral over the sound energy density. In contrast to previous research,

where the sound pressure or the sound energy density has only been evaluated at single

positions, this study introduces global quantities to acoustically characterize entire cavities.

A thorough discussion on that topic is provided in the recent review paper.45

In this work, we approximate the cumbersome volume integral by evaluating a grid

with multiple regularly distributed field points. By this means, the energy density at the

field points can be interpreted as functional values for the integration. Thus, a finer grid

resolution yields a more accurate prediction of the sound energy in the cavity. Within this

context, we investigate how many field points are required for a plausible approximation of

the sound energy. In this way, we present a technique which allows to identify the energy flow

in structures by considering acoustic quantities observed only at a limited number of field

points. Moreover, the energy-based contribution analysis is accompanied with the eigenvalue

problem of the coupling matrices. Part of the aim of this study is to analyze the related

eigenvalues and check if they show a similar decaying behavior as those of the ARMs.46,47
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This paper is organized as follows. Section 2 briefly surveys the BEM for three-

dimensional Helmholtz equation in the frequency domain. Section 3 outlines the approxi-

mation of the energy-related volume integral. In Sec. 4, the formulation on energy-based

surface contributions is presented. Section 5 shows the results for two numerical examples,

a sphere and an industrial vehicle cabin. Our conclusions are drawn in Sec. 6.

2. Boundary Element Method

Acoustic problems with the harmonic time dependence e−iωt are governed by the Helmholtz

equation

Δp(�x) + k2p(�x) = 0, x ∈ Ω ⊂ R3, (1)

where p(�x) denotes the scalar, complex-valued sound pressure in the acoustic field Ω.

The wavenumber k = ω/c is composed by the angular frequency ω and the speed of

sound c. For interior acoustics, the most relevant boundary conditions (BCs) are the

Neumann BC

vf (�x) =
1

iωρ

∂p(�x)

∂n(�x)
, x ∈ Γ ⊂ R2 (2)

to consider vibration patterns on a rigid boundary Γ and the Robin BC

vf (�x)− vs(�x) = Y (�x)p(�x), x ∈ Γ ⊂ R2, (3)

to model the boundary admittance.48 The entities vf (�x) and vs(�x) denote the normal fluid

particle velocity and the normal structural particle velocity, respectively. The boundary

admittance is denoted by Y (�x), whereas the ambient density of the fluid is represented by

ρ. Note that, for Y (�x) = 0, the Robin BC degenerates to a Neumann BC.

Following Ref. 49, the boundary integral equation for Helmholtz problems can be

expressed by

c(�y)p(�y) +

∫

Γ

∂G(�x, �y)

∂n(�x)
p(�x)dΓ(�x) = iωρ

∫

Γ
G(�x, �y)vf (�x)dΓ(�x), (4)

where G(�x, �y) = eikr/(4πr) with the distance r = r(�x, �y) denotes Green’s function and

c(�y) a geometric quantity determined by the contour on the boundary Γ at �y. For instance,

c(�y) = 0.5 on smooth boundary elements.49 Substituting Eq. (3) in Eq. (4) and discretizing

with the collocation BEM yield the linear system of equations as

(H −GY )p = Gvs, (5)

where G and H denote the global acoustic system matrices. These system matrices are

neither Hermitian nor positive definite. For constant discontinuous interpolation functions,

the boundary admittance matrix Y contains only entries on the diagonal. For higher-order

polynomials, Y contains additional off-diagonal elements but is still a sparse matrix.49
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3. Approximation of the Energy-Related Volume Integral

To obtain the sound pressure pi(�yi) at N field points �yi inside the acoustic field, Eq. (4) is

evaluated in the domain Ω

pi(�yi) = iωρ

∫

Γ
G(�x, �yi)vs(�x)dΓ(�x)

−
∫

Γ

[
∂G(�x, �yi)

∂n(�x)
− iωρG(�x, �yi)Y (�x)

]
p(�x)dΓ(�x), �yi ∈ Ω (6)

or in discretized form8,9

pi(�yi) = gT
i (�yi)vs − [hT

i (�yi)− gT
i (�yi)Y ]p, (7)

with the column matrices

gi(�yi) = iωρ

∫

Γ
G(�x, �yi)ϕ(�x)dΓ(�x), (8)

hi(�yi) =

∫

Γ

∂G(�x, �yi)

∂n(�x)
ϕ(�x)dΓ(�x). (9)

These column matrices denote the boundary integral operators to compute the sound pres-

sure in Ω with the interpolation functions ϕ(�x) representing the approximations for the

sound pressure and the normal particle velocity. By substituting the sound pressure data

with p = (H −GY )−1Gvs, we obtain

pi(�yi) = {gT
i (�yi)−

[
hT
i (�yi)− gT

i (�yi)Y
]
(H −GY )−1G}vs

= bTi (�yi)vs, �yi ∈ Ω (10)

where the column matrices bi(�yi) represent the influence coefficients with respect to the

sound pressure at N field points.

The particle velocity inside the acoustic field is computed in a similar way. We apply

therefore the relation in Eq. (2) to Eq. (6) in order to obtain the particle velocity at N field

points50

�vi(�yi) =

∫

Γ

�∇�yi
G(�x, �yi)vs(�x)dΓ(�x)

−
[∫

Γ

�∇�yi

1

iωρ

∂G(�x, �yi)

∂n(�x)
− �∇�yi

G(�x, �yi)Y (�x)

]
p(�x)dΓ(�x), �yi ∈ Ω, (11)

or in matrix-form

�vi(�yi) = {g̃T
i (�yi)− [h̃

T
i (�yi)− g̃T

i (�yi)Y ](H −GY )−1G}vs

= b̃
T
i (�yi)vs, �yi ∈ Ω, (12)
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with the column matrices

g̃i(�yi) =

∫

Γ

�∇�yi
G(�x, �yi)ϕ(�x)dΓ(�x), (13)

h̃i(�yi) =

∫

Γ

�∇�yi

1

iωρ

∂G(�x, �yi)

∂n(�x)
ϕ(�x)dΓ(�x) (14)

denoting the boundary integral operator to compute the particle velocity in Ω. Analo-

gously, the column matrices b̃i(�yi) represent the influence coefficient vector with respect

to the particle velocity at N field points. Note that vi is expressed in bold letters, as it

contains data in three spatial dimensions {x, y, z}. The same holds for the entities g̃i, h̃i

and b̃i. The term influence coefficient vector is generally understood as the sensitivity

regarding the surface particle velocity. Note that in Eq. (10), bi denotes the sensitivities

of the sound pressure to the surface particle velocity, while b̃i in Eq. (12) expresses the

sensitivities of the particle velocity at N field point with respect to the surface particle

velocity.

4. Energy-Based Surface Contributions

Energy in sound waves is transported in two forms: potential and kinetic energy. The poten-

tial energy is generated by the compression of the fluid particles, whereas the kinetic energy

is produced when the fluid particles are moving. The potential energy Ep can be expressed

in terms of the sound pressure, while the kinetic energy Ek term is based on the fluid particle

velocity:

Ep =
1

2ρc2

∫

Ω
p(�x)p∗(�x)dΩ, (15)

Ek =
ρ

4

∫

Ω

�vf (�x) · �v∗
f (�x)dΩ. (16)

Note that the operator ()∗ denotes the complex conjugate form of the related quantity. On

this basis, the total sound energy is obtained by the sum of the potential energy and the

kinetic energy43,51

Et = Ep + Ek =
1

2ρc2

∫

Ω
p(�x)p∗(�x)dΩ +

ρ

4

∫

Ω
�vf (�x) · �v∗

f (�x)dΩ. (17)

As explained in Sec. 1, this study aims a contribution analysis to evaluate the total

sound energy in a cavity, see Eq. (17). To circumvent the cumbersome integration over the

entire volume, the energy density is investigated at multiple field points. Therefore, a field

point grid is required inside the cavity. For a considerable amount of field points, the average

energy density is qualitatively equivalent to the sound energy. The energy density represents

the energy concentrated on a zero reference volume. It is, thus, defined as energy per unit
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volume [kg/ms2] and can be evaluated at discrete locations in the acoustic domain.37,38,41

As such, the potential energy density ep, the kinetic energy density ek and the total energy

density et are expressed by

epi(�yi) =
1

2ρc2
p∗i (�yi)pi(�yi), (18)

eki(�yi) =
ρ

4
�v∗
i (�yi)�vi(�yi), (19)

eti(�yi) = epi(�yi) + eki(�yi), (20)

where the index i = 1, 2, . . . , N refers to the identity of the field point. The field point values

of the sound pressure p and the particle velocity �v are obtained according to Eqs. (10)

and (12).

The integration of the energy density over the acoustic domain can be approximately

obtained by the sum of the energy density at multiple field points regularly distributed

within the cavity

∫

Ω
edΩ ≈

N∑

i=1

ei · Vi = Vf

N∑

i=1

ei, (21)

with N and Vi denoting the total number of field points and the volume cell associated with

the field point i. For regularly spaced field points, the volume cells are equal, i.e. Vi = Vf .

The volume cell Vf can be then used to approximate the total volume V ≈ Vf ·N . In this

way, the averaged sound energy E can be expressed by

E ≈ Vf

N∑

i=1

ei. (22)

In a next step, the potential energy can be expressed in a quadratic form by substituting

Eqs. (10) and (18) into Eq. (22)

Ep =
Vf

2ρc2

N∑

i=1

(bTi vs)
∗(bTi vs) =

Vf

2ρc2
vH
s

(
N∑

i=1

b∗i b
T
i

)
vs

= vH
s

(
N∑

i=1

Api

)
vs = vH

s Apvs, (23)

where ()H denotes the complex conjugate transpose operation. The quadratic form is estab-

lished by the matrix Ap, which denotes the coupling matrix regarding the potential energy

densities at the field points. The matrix Ap is of rank N with N again denoting the total

number of field points. Note that the indication of �y-dependence is omitted here. The

quadratic expression for the kinetic energy is obtained analogously by rearranging Eq. (22)
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with Eqs. (19) and (12)

Ek = Vf
ρ

4

N∑

i=1

(b̃
T
i vs)

∗(b̃
T
i vs) = Vf

ρ

4
vH
s

(
N∑

i=1

b̃
∗
i b̃

T
i

)
vs

= vH
s

(
N∑

i=1

Aki

)
vs = vH

s Akvs, (24)

with Ak denoting the coupling matrix regarding the kinetic energy densities at the field

points. The rank of the matrix Ak is 3N , since Ak contains information in the three spatial

dimensions. The sum of the potential energy equation (23) and the kinetic energy equa-

tion (24) then yields the total energy

Et = Ep + Ek =
Vf

2ρc2

N∑

i=1

(bTi vs)
∗(bTi vs) + Vf

ρ

4

N∑

i=1

(b̃
T
i vs)

∗(b̃
T
i vs)

= vH
s Apvs + vH

s Akvs = vH
s Atvs (25)

with At denoting the coupling matrix with respect to the total energy densities at the field

points. As the matrix At is composed by the sum of Ap and Ak, the rank of At equals to

4N . Note that the coupling matrices Ap, Ak and At are all Hermitian and complex-valued.

The resulting eigenvalues are thus real-valued and positive.

To assess the energy-based surface contributions, the square root of the coupling matrix

A is required

E = vH
s Avs = vH

s

√
A

H√
Avs =

Nn∑

j=1

α∗
jαj =

Nn∑

j=1

μj, (26)

with αj denoting a discrete entity on the interpolation node j and μj the energy-based

surface contribution from the node j. Note that the equation above holds for the surface

contributions regarding the potential, the kinetic and the total energy. To compute the

square root of matrix A, the following eigenvalue problem has to be solved:
√
A = ΨH

√
ΛΨ, (27)

where
√
Λ and Ψ denote the diagonal matrix containing the square root of the eigenval-

ues λi and the related eigenvectors, respectively. For the sake of conciseness, the detailed

derivation of the matrix square root
√
A is omitted here. For more details, the interested

reader is referred to Ref. 42. In the final step, the energy-based surface contributions can

be formulated by incorporating Eq. (27) in Eqs. (23)–(25)

Ep = vH
s Apvs = vH

s

√
Ap

H√
Apvs =

Nn∑

j=1

α∗
pjαpj =

Nn∑

j=1

μpj , (28)
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Ek = vH
s Akvs = vH

s

√
Ak

H√
Akvs =

Nn∑

j=1

α∗
kjαkj =

Nn∑

j=1

μkj , (29)

Et = vH
s Atvs = vH

s

√
At

H√
Atvs =

Nn∑

j=1

α∗
tjαtj =

Nn∑

j=1

μtj , (30)

where μpj , μkj and μtj denote the potential, the kinetic and the total energy surface con-

tributions, respectively. Note that all energy surface contributions are real-valued and non-

negative. It should be further noted that the formulation above considers only a discrete

representation of the surface contributions. However, for visualization purposes, a contin-

uous version of the surface contributions is deployed, as they are independent from the

topology of the boundary element mesh. The continuous surface contributions η can be

obtained by solving the linear system of equations η = Θμ, where Θ denotes the boundary

mass matrix. For more details on that topic, the interested reader is referred to the paper.27

5. Numerical Results

In this work, two numerical models are to be investigated: At first, the academic example

of a sphere is analyzed. The second example focuses on an industrial application, a vehicle

interior noise problem. In both examples, the acoustic medium is air with a density of

ρ = 1.21 kg/m3 and speed of sound of c = 343m/s. In the final part of this study, the

eigenvalue decay of the coupling matrices is examined.

5.1. Sound radiation of a sphere

The numerical model of the sphere is of radius 1m and consists of 384 boundary elements

with piecewise constant interpolation functions. Regarding the BCs, we impose sound hard

BCs, Y = 0, on each element. A monopole excitation is imposed on the sphere. The related

normal particle velocity is real-valued and amounts to vs = 1.0m/s. The frequency of

interest is chosen to be f = 100Hz. Figure 1 shows the numerical model of the sphere.

First, we consider a dense grid of field points in order to find an accurate approximation

of the sound energy. Therefore, 504 field points are regularly distributed inside the sphere,

see Fig. 2. Note that locating the field points close to the boundary may cause numerical

issues. Thus, we suggest a minimum length of two elements between the boundary and the

field points in order to avoid any undesirable events.

The resulting energy-based surface contributions at 100Hz are shown in Fig. 3. The

potential energy surface contributions are high on every boundary element, see Fig. 3(a).

In contrast to this, we observe nearly no surface contributions with respect to the kinetic

energy (Fig. 3(b)). The total energy surface contributions, in turn, exhibit high values on

each element (Fig. 3(c)). In this case, the total energy contributions appear slightly higher

than those related to potential energy. This study already indicates that the potential energy

contributions are predominant in the present load case. The kinetic energy contributions
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Fig. 1. Mesh of the unit sphere with 384 constant, discontinuous boundary elements.

Fig. 2. Grid with 504 regularly distributed field points. The field points are distributed in a cuboid form.
For the sake of clarity, not all field points are shown.

are negligible here. Thus, surfaces contributing to the total energy can be retrieved by solely

analyzing the potential energy contributions.

In the next phase, the contribution analysis is performed regarding a single field point,

which is located in the vicinity of the center. Subsequently, the number of field points is

increased in order to analyze the convergence behavior of the energy surface contributions.

For this purpose, two relatively coarse field point grids are investigated. The first coarse
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Fig. 3. Surface contributions regarding the potential (a), kinetic (b) and total (c) energy at 100Hz. The
contributions are evaluated for the dense grid with 504 field points.

Fig. 4. (Color online) Three configurations for the field point grids (red). The first configuration contains
one field point (a). The second and the third grids consist of 19 (b) and 117 (c) regularly distributed field
points.

grid contains 19 field points, whereas 117 field points are regularly distributed in the second

grid. The single field point and the coarse field point grids are depicted in Fig. 4.

To study the convergence behavior of the energy-based contributions regarding the entire

cavity, the surface contributions are initially evaluated with respect to a single field point

located at [−0.1,−0.1,−0.1]. The resulting energy-based surface contributions at 100Hz are

shown in Fig. 5(a). The potential energy contributions show a pronounced dipole pattern

with active surfaces on one hemisphere (Fig. 5(I)(a)). At the same time, the kinetic energy

contributions are nearly zero everywhere on the sphere (Fig. 5(I)(b)). The total energy

contributions, in turn, exhibit a similar pattern as the energy contributions regarding the

potential energy, see Fig. 5(I)(c). In this case, the values of the surface contributions are

slightly smaller. For the present load case, the single field point analysis shows that the

kinetic energy contributions are negligible. In this case, the surface contributions to the

potential energy density are predominant, particularly, at the hemisphere, which is close to

the field point. The same surfaces can be identified in the total energy contribution analysis,

although they are less pronounced there.

In a next step, the surface contributions are studied on a coarse grid with 19 field

points. The resulting energy-based contributions are depicted in Fig. 5(II). The field points

are distributed according to Fig. 4(b). The surfaces contributing to the potential energy

densities can be identified on all elements, see Fig. 5(II)(a). The kinetic energy contributions,
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Fig. 5. Surface contributions regarding the potential (a), kinetic (b) and total (c) energy. The surface con-
tributions for a single field point are visualized in row (I). The contributions for 19 and 117 field points are
shown in rows (II) and (III), respectively. The contribution analysis is performed at 100Hz.

on the other hand, are nearly zero everywhere on the sphere (Fig. 5(II)(b)). The total

energy contributions are also identified for all elements. In comparison to the potential

contributions, the total energy contributions achieve slightly lower values (Fig. 5(II)(c)).

The multi-point analysis with 19 field points reveals contributing surfaces to the total energy

at every boundary element. The same elements can be also retrieved by solely investigating

the contributions to the potential energy, as the kinetic energy contributions are negligible

in this case.

Moreover, the energy-based contributions are analyzed for a the second coarse repre-

sentation of the volume. In this case, the coarse grid contains 117 field points, as shown in

Fig. 4(c). The results of the energy-based surface contributions for 117 field points at 100Hz

are visualized in Fig. 5(III). The results of the contribution analysis with 117 field points

are very similar to those with 19 field points. We again observe that all surfaces contribute

to the potential as well as to the total energy, see Figs. 5(III)(a) and 5(III)(c). No surface

contributions are detected regarding the kinetic energy (Fig. 5(III)(b)).

The results for this academic example already indicate that the concept of energy contri-

butions can be transferred from a single point to a multi-point analysis. The most interesting
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aspect of these results is that the composition of the potential and the kinetic energy con-

tributions to the total energy contributions nearly remains constant. This is observed in the

contribution analyses for the dense grid, the single field point and the coarse grids with 19

and 117 field points. Another interesting aspect is the allocation of the energy contributions.

For instance, in the single point analysis, we observe active regions at one pole of the sphere

(Fig. 5(I)(a)). With increasing number of field points, it becomes apparent that the energy

contributions are shifted to all elements, see Figs. 5(II)(a) and 5(III)(a). Moreover, the com-

parison of the multi-point results with the dense field grid reveals that the same surfaces

contribute to the total sound energy. This result is significant, as it shows that the surface

contributions regarding the total sound energy already converge for a grid with 19 or 117

field points. By this means, the volume integral can be approximated by using a relatively

coarse grid within the cavity. As such, the multi-point analysis provides important insights

for the interior acoustic problem in an efficient way. Note that the surface contributions are

always nonnegative. The reason for this is the quadratic expression in the formulation of

the energy contributions, see Eqs. (28)–(30).

5.2. Vehicle interior noise problem

Turning now to an industrial application, a vehicle interior noise problem is examined in the

second numerical example. The numerical model of the vehicle cabin has been provided by

BMW.42 It is discretized by 4420 boundary elements with constant pressure approximation.

The cabin is meshed with an average edge length of 0.09m. In relation to this, the vehicle

cabin is 3.032m long, 1.554m wide and 1.283m high. This leads to approximately 10 ele-

ments per wavelength at 400Hz, which is in accordance with Ref. 52. The boundary admit-

tance is modeled according to the reverberation time measurements reported in Ref. 53.

Therefore, the Robin BC ρcY = f/fref with fref = 2800Hz is imposed on each element.

Moreover, a Neumann BC with the real-valued, normal particle velocity vs = 0.001m/s is

imposed at the left footwell to excite the numerical model. Following Ref. 42, the frequency

of interest is chosen to be 71Hz. The mesh of the vehicle cabin is shown in Fig. 6.

Prior to the analysis with coarse field point grids, the energy contributions are initially

analyzed for a grid with densely arranged field points. Therefore, 441 regularly distributed

field points are employed. In this way, we obtain a sufficiently accurate approximation for

the energy surface contributions with regard to the cabin volume. The distribution of the

field points is depicted in Fig. 7.

The results of the contribution analysis are depicted in Fig. 8. The potential energy

surface contributions are nearly zero on each boundary element, see Fig. 8(a). Only trace

amounts can be observed in the front footwell of the driver’s seat. The kinetic surface

contributions, on the other hand, expose high values in the driver’s footwell as well as in

the rear of the vehicle cabin (Fig. 8(b)). Similarly, the total energy surface contributions

are also high in the driver’s footwell and in the rear (Fig. 8(c)). In comparison with the

kinetic energy, the total energy contributions appear slightly higher. In contrast to the

sphere problem in Sec. 5.1, the total energy contributions are here mainly determined by
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Fig. 6. Vehicle cabin mesh with 4420 constant, discontinuous boundary elements.

Fig. 7. Grid with 441 regularly distributed field points inside the vehicle cabin. For the sake of clarity, not
all field points are visualized.

the kinetic energy. This finding emphasizes the importance of the sound energy as the

objective function, since contributing surfaces would remain undetected in a pure sound

pressure-based contribution analysis.

In the next studies, the number of field points is incrementally increased from one single

point over 36 to 140 field points. Regarding the single field point analysis, the location of the

driver’s ear is adopted as the field point position. The surface contributions to this particular

position are crucial due to increasing comfort requirements on the design of the vehicle.54–56

In the multi-point analyses, 36 and 140 field points are regularly distributed inside the

cabin. As mentioned in Sec. 5.1, we use again a minimum length of two elements between

the boundary and the field points in order to avoid any undesirable events. The position
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Fig. 8. Surface contributions regarding the potential (a), kinetic (b) and total (c) energy density at 441 field
points. The analyses are performed at 71Hz.

Fig. 9. (Color online) Three configurations for the field point grids (red). The first configuration contains only
a single field point at the driver’s ear (a). The second and third grids contain 36 (b) and 140 (c) regularly
distributed field points. For the sake of clarity, not all 140 field points are visualized.

of the field points regarding the single point and the multi-point analyses is schematically

depicted in Fig. 9.

The resulting energy surface contributions regarding a single field point are depicted in

Fig. 10(I). Even though the results for a single point are extensively discussed in Ref. 42,

a brief outline of them is provided here for the sake of completeness. The potential energy

contributions are nearly zero on the entire boundary of the cabin, see Fig. 10(I)(a). On the

other hand, the surface contributions to the kinetic energy density expose high values in the

front footwells and in the rear of the cabin (Fig. 10(I)(b)). Similar results can be observed

for the total energy contributions. Contributing surfaces are also identified in the front and

rear part of the cabin. In comparison with the kinetic energy contributions, the total energy

contributions in the front part are even slightly higher (Fig. 10(I)(c)).

The energy contributions in the multi-point analysis with 36 evaluation points are

depicted in Fig. 10(II). Regarding the potential energy, no significant surface contributions

can be identified. Only trace amounts of surface contributions are detected in the region of

the front footwell, see Fig. 10(II)(a). The contribution analysis with respect to the kinetic

energy reveals contributing surfaces in the front footwell. Further contributing surfaces are

detected in the rear of the cabin (Fig. 10(II)(b)). The total energy contribution analysis

also indicates active regions in the front footwell and in the rear of the cabin. Compared to

the kinetic energy contributions, the total energy contributions are significantly higher in

the front part of the cabin, see Fig. 10(II)(c). The results of the multi-point analysis with

36 field points show that the surfaces contributing to total energy density are mainly driven

by the kinetic energy contributions. Although trace amounts of surface contributions can
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Fig. 10. Surface contributions in a vehicle cabin regarding the potential (a), kinetic (b) and total (c) energy.
The surface contributions to a single field point are depicted in the first row (I). The contributions for 36
and 140 field points are shown in rows (II) and (III), respectively. The analyses are performed at 71Hz.

be observed in the potential energy contribution analysis, the total energy contributions

appear to be unaffected by the potential energy contributions. The kinetic energy surface

contributions are also predominant here.

In the final part of this example, the energy contribution analysis is performed for

140 evaluation points. The resulting surface contributions are presented in Fig. 10(III). It

becomes apparent that the results with 140 field points are very similar to those with 36 field

points. Regarding the potential energy contributions, nearly no active regions are identified

(Fig. 10(III)(a)), while the kinetic energy contributions expose contributing surfaces in the

front footwell and in the cabin rear (Fig. 10(III)(b)). The same contributing surfaces are

again identified in the total energy contribution analysis, see Fig. 10(III)(c).

Taken together, the analyses with a single and multiple evaluation points already provide

important insights into the acoustic behavior of a vehicle cabin. Regarding the potential

energy, significant surfaces are neither identified in the single point nor in the multi-point

analyses. This is concurrent with the resulting potential energy contributions for the dense

grid with 441 field points. The more interesting finding is related to the kinetic energy

contributions. For instance, the single point analysis clearly indicates active surfaces in the

front and in the rear part of the cabin. The multi-point analyses with 36 and 140 field points

reveal the same regions, although they are less pronounced there. By comparing the results

from the coarse grids with the dense grid, the same contributing surfaces are identified. Very

similar results are also observed in the total energy contribution analysis. By increasing the
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number of field points from 1 to 140, one can observe that the contributing surfaces to the

sound energies are consistent with the surfaces in the analysis with 441 field points. These

findings demonstrate that a grid with 36 field points already suffices to recover the essential

surface contributions for the vehicle cabin. Thus, our results suggest that entire cabins can

be efficiently analyzed by evaluating the surface contributions only a for relatively coarse

grid. By this means, the cumbersome evaluation of the volume integral can be effectively

circumvented.

5.3. Study of eigenvalue decay of the coupling matrices

Lastly, the eigenvalues of the coupling matrices Ap,Ak andAt are analyzed. The eigenvalues

are computed for the radiating sphere and the vehicle cabin. The results for the first 20

eigenvalues are shown in Fig. 11. For the sphere, the resulting eigenvalues of the coupling

matrices with respect to the potential (blue), the kinetic (orange) and the total (green)

energy are shown in Fig. 11(a). The eigenvalue decomposition is performed at 100Hz for

the grid with 117 regularly distributed field points, as shown in Fig. 4(c). The eigenvalue

decomposition for the radiating sphere reveals four marginal eigenvalues with respect to

the potential energy. Regarding the kinetic energy, three significant eigenvalues can be

observed. The eigenvalue analysis for the total energy exposes four distinct eigenvalues.

The first three eigenvalues are very close to each other, whereas the fourth eigenvalue is

relatively small. Since the coupling matrix regarding the total energy is composed by the

sum of the matrices regarding the potential and kinetic energy, the eigenvalues related

to the total energy cover the eigenvalues related to the potential and the kinetic energy.

In particular, the first three eigenvalues are related to the kinetic energy, while the fourth

eigenvalue can be assigned to the potential energy. Surprisingly, the eigenvalues with respect

(a) Sphere (b) Vehicle cabin

Fig. 11. (Color online) Eigenvalues of the coupling matrices regarding the potential (blue), the kinetic
(orange) and the total energy density (green). The eigenvalues are shown for the sphere at 100Hz (left) and
for the vehicle cabin at 71Hz (right). The number of field points amounts to 117 in the sphere. In the vehicle
cabin, 140 field points are considered.
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to the kinetic energy are higher than those related to the potential energy, although we

observed in Sec. 5.1 that the energy contributions to the potential are predominant here.

This discrepancy could be attributed to the presented load case, in which the sphere is

uniformly excited. The eigenvalue analysis for the radiating sphere reveals only a small

number of distinct eigenvalues. This emphasizes the concept of energy contribution analyses

for a coarse grid in order to efficiently analyze the surface contributions for the acoustic

behavior in entire cavities. It should be noted that the eigenvalues show a decaying behavior.

This is in accordance with the eigenvalues analysis performed in the paper.46,47

Regarding the vehicle interior noise problem, the eigenvalues of the coupling matrices

regarding the potential (blue), the kinetic (orange) and the total (green) energy are depicted

in Fig. 11(b). The eigenvalue decomposition is performed at 71Hz for the multi-point anal-

ysis with 140 field points. The first four distinct eigenvalues with respect to the potential

energy are spotted at 1.5, 0.15, 0.02 and 0.003. Thereafter, the ratios between two adja-

cent eigenvalues are very small. Regarding the kinetic energy, three distinct eigenvalues are

observed around 7, 0.17 and 0.05. Two further significant eigenvalues can be noticed at 0.04.

The first eigenvalue corresponding to the total energy amounts approximately to 10. The

next distinct eigenvalues are around 0.2 and 0.19. After that, the eigenvalues with respect to

the kinetic and total energy decrease with a lower rate. Note that the eigenvalues regarding

the kinetic energy are here higher than those related to the potential energy. The eigenvalue

analysis shows that only few distinct eigenvalues can be observed, although the ranks of the

coupling matrices Ap,Ak and At are a multiple of the number of field points N . This again

demonstrates that the information contained in the field point grid is redundant. Thus, the

eigenvalue analysis supports the idea that a relatively coarse field point grid is sufficient in

order to obtain an efficient approximation for the energy contributions with respect to an

entire cavity. Once again, it should be pointed out that the eigenvalues are also decaying in

the vehicle cabin example.

6. Conclusion

This study is set out to assess the surface contributions in an entire acoustic cavity. In order

to bypass the cumbersome evaluation of the volume integral, the energy-based surface contri-

butions were determined on a grid of regularly distributed field points. The proposed method

relies on the acoustic energy density as an objective function. Our method is accompanied

by the eigendecomposition of the coupling matrices, which are computed by the BEM. To

validate the proposed method, the academic example of the sphere and an industrial vehi-

cle interior noise problem were investigated. Moreover, the eigenvalues associated with the

coupling matrix regarding the sound energy were investigated. The studies of the sphere

example have shown that the total energy contributions in cavities can be well approximated

by solely using coarse grids of regularly distributed field points. Regarding the vehicle cabin,

it also seems that multiple regularly distributed field points can be used to approximate the

total energy contributions. This paves the way for the efficient evaluation of the contribution

of vibrating surfaces within acoustic cavities. By this means, the energy surface contribution
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analysis provides deep insights on the acoustic behavior inside the cavity. Thus, the evi-

dence from this study highlights the importance of an energy-based contribution analysis.

Moreover, the vehicle interior noise problem demonstrated that the concept of energy-based

surface contributions can be transferred to industrial applications. Further research should

be undertaken to explore the eigenvalue distribution of the coupling matrices and how the

energy contribution analysis can be extended to sound absorption problems, e.g. decaying

sound fields or in situ applications. Moreover, research could also be conducted to determine

the effectiveness of energy contributions within the NAH method. This would be a fruitful

area for future work.
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ABSTRACT:
Highly accurate predictions from large-scale numerical simulations are associated with increased computational

resources and time expense. Consequently, the data generation process can only be performed for a small sample

size, limiting a detailed investigation of the underlying system. The concept of multi-fidelity modeling allows the

combination of data from different models of varying costs and complexities. This study introduces a multi-fidelity

model for the acoustic design of a vehicle cabin. Therefore, two models with different fidelity levels are used to

solve the Helmholtz equation at specified frequencies with the boundary element method. Gaussian processes (GPs)

are trained on each fidelity level with the simulation results to predict the unknown system response. In this way, the

multi-fidelity model enables an efficient approximation of the frequency sweep for acoustics in the frequency

domain. Additionally, the proposed method inherently considers uncertainties due to the data generation process. To

demonstrate the effectiveness of our framework, the multifrequency solution is validated with the high-fidelity (HF)

solution at each frequency. The results show that the frequency sweep is efficiently approximated by using only a

limited number of HF simulations. Thus, these findings indicate that multi-fidelity GPs can be adopted for fast and,

simultaneously, accurate predictions.
VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0017725
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I. INTRODUCTION

A key aspect in acoustic design processes is the fast and

accurate characterization of the acoustic system. Rising

requirements on modern products demand a drastic increase

in the complexity of the model. Consequently, design tasks,

such as sensitivity analyses and structural-acoustic optimiza-

tions, are generally associated with high computational costs

(Marburg, 2002). Thus, engineers and researchers are faced

with the challenge of finding solutions for large problems on

the basis of small data. Ideally, their models should be fast

to evaluate and, at the same time, highly accurate. However,

models with a high predictive quality are generally accom-

panied with high demands on resources and time, whereas

models, which are fast to evaluate, are usually less accurate.

Traditionally, detailed analyses are performed to assess

the acoustic properties of a system. These can either be cum-

bersome physical experiments, e.g., measurements in an

impedance tube or a reverberation chamber, or expensive

numerical simulations with the finite element method (FEM)

or boundary element method (BEM). At the same time, vari-

ous analytical and numerical models at small scale exist,

which can already yield a decent approximation of the rele-

vant acoustic solution. One specific problem in acoustics is

associated with the approximation of the frequency sweep

when using BEM simulations. Existing methods, e.g., greedy

approximation (Baydoun et al., 2020; Baydoun et al., 2021;

Jelich et al., 2021) or parametric model order reduction

(Panagiotopoulos et al., 2022; Xie and Liu, 2021; Xie et al.,
2022; Xie et al., 2023), already provide an efficient multifre-

quency solution technique. However, uncertainties, whether

in the model parameters or due to the random nature of the

data generation process, are not quantified within these

methods. The efficient solution for a wide frequency range

under uncertainties is particularly important in the acoustic

design of a vehicle cabin (Gurbuz et al., 2022a; Schmid

et al., 2022). Moreover, recent evidence suggests to prefer

the sound energy density to the sound pressure as a control

objective in interior acoustic problems (Cazzolato and

Hansen, 1998; Gurbuz and Marburg, 2022; Gurbuz et al.,
2022b; Koopmann and Fahnline, 1997; Sommerfeldt and

Nashif, 1994; Tanaka and Kobayashi, 2006). With the sound

energy density being sensitive to the sound pressure and par-

ticle velocity, the sound energy density provides a robust

objective function.

Gaussian processes (GPs) provide a useful technique to

substitute a complex model by an efficient surrogate model

(Hoffer et al., 2022). In the sense of a Bayesian method, GPs

allow to embed prior knowledge of the underlying problem

and further enable predictions under consideration of uncer-

tainties (Cutajar et al., 2019; Williams and Rasmussen,

2006). In particular, GPs account for two types of uncertain-

ties: aleatoric and epistemic. Aleatoric or statisticala)Electronic mail: caglar.guerbuez@tum.de

2006 J. Acoust. Soc. Am. 153 (4), April 2023 VC Author(s) 2023.0001-4966/2023/153(4)/2006/13
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uncertainties refer to the random nature of the data genera-

tion process. For instance, the output of an experiment

changes when repeated. In contrast to this, epistemic or sys-

tematic uncertainties are defined as uncertainties resulting

from limited knowledge of the underlying problem. In this

case, it involves simplifying assumptions on the model or

limited information on the model parameters. As a matter of

fact, epistemic uncertainties can be mitigated by incorporat-

ing additional information. Aleatoric uncertainties, on the

other hand, would remain unaffected here (H€ullermeier and

Waegeman, 2021; Soize, 2017).

Raissi et al. (2017b) reported on GPs which are used to

solve linear partial differential equations. These authors fur-

ther extended their method to time-dependent and nonlinear

problems (Raissi et al., 2018). In the field of acoustics, GPs

were adopted as a surrogate model in a transfer path analysis

of a vehicle cabin (Gurbuz et al., 2022a). GPs were further

used as an alternative to Bayesian inference (Schmid et al.,
2021) to infer a two-dimensional sound field based on a lim-

ited number of sound pressure observations (Caviedes-

Nozal et al., 2021). In ocean acoustics, GPs have been

applied in a source localization technique (Michalopoulou

et al., 2021) and the quantification of uncertainties

(Michalopoulou and Gerstoft, 2022; Yardim et al., 2011).

Further source localization methods based on GPs have

been reported for the sound emitted by a complex aerospace

component (Hensman et al., 2010) and general two-

dimensional sound radiation problems (Albert and Rath,

2020). In the latter work, the authors implemented a

physics-informed approach. In a more recent study, GPs

were integrated in a framework for the detection and charac-

terization of cracks in rocks (Jiang et al., 2022).

A multi-fidelity model allows the combination of multi-

ple models with differing fidelity levels. Typically, it con-

sists of a low-fidelity (LF) and high-fidelity (HF) model. LF

models can be attributed to low computational costs and

decreased accuracy, whereas HF models can achieve predic-

tions with higher accuracy for the burden of high expenses.

In many engineering fields, analytical or numerical models

at small scale can be regarded as LF models. On the other

hand, highly resolved numerical models or cumbersome

physical experiments can be considered to be HF models.

As such, the advantages of both fidelity levels, namely, fast

evaluations and high accuracy, are merged in a multi-

fidelity model.

The first serious discussion and analysis of multi-

fidelity modeling emerged in 1998 with the work of Craig

et al (1998), introducing multi-fidelity models on the basis

of linear regression. This model was further extended by

using Bayesian linear regression for high-dimensional prob-

lems (Cumming and Goldstein, 2009). Another landmark

study has been proposed by Kennedy and O’Hagan (2000),

who developed a multi-fidelity model based on GPs. This

method was further improved by a recursive formulation for

the different fidelity levels (Le Gratiet and Garnier, 2014).

Marburg and Hardtke (2001) applied the idea of multiple

models with different predictive capabilities on an acoustic

design task, yet, without using the term multi-fidelity. More

recent attention has focused on multi-fidelity models for the

solution of partial differential equations (Parussini et al.,
2017; Raissi et al., 2017a). Beyond GPs, artificial neural

networks have been implemented in multi-fidelity schemes

for parameter-dependent outputs (Guo et al., 2022) or dis-

continuities between the fidelity levels (Raissi and

Karniadakis, 2016). This type of multi-fidelity model was

further applied to a structural health monitoring problem

(Torzoni et al., 2023).

The aim of this study is the development of an efficient

multifrequency solution strategy for accurate predictions

under the consideration of uncertainties. For this purpose, a

multi-fidelity model comprising two levels of fidelity is

deployed. Regarding the LF and HF models, GPs are

adopted as surrogates. These surrogates are trained on the

sound field data obtained by the BEM. Therefore, the acous-

tic Helmholtz equation is solved for two different refine-

ments of the boundary element mesh. The solution of the

fine mesh is considered to be the HF data while the fre-

quency response of the coarse mesh is adopted as the LF

data. To validate the proposed multi-fidelity model, a vehi-

cle interior noise problem is investigated. As recently sug-

gested, we analyze two objective functions: the sound

pressure and sound energy density (Gurbuz et al., 2022b).

By using a multi-fidelity model, a high predictive quality

can be ensured for only a small number of BEM

simulations.

This paper is structured as follows. Section II briefly

outlines the Helmholtz equation, BEM, and relevant acous-

tic field quantities, i.e., the sound pressure and sound energy

density. Section III provides the fundamentals of GPs. In

Sec. IV, the theoretical background of multi-fidelity models

is provided. The results for an industrial vehicle interior

noise problem are presented in Sec. V. The conclusions are

drawn in Sec. VI.

II. BEM

The acoustic problem setup and BEM are only briefly

introduced here. For a detailed description, the interested

reader is referred to Marburg (2018), Marburg (2008), and

Wu (2002). By assuming the harmonic time dependence,

e�ixt, the interior acoustic problem in the frequency domain

is governed by the Helmholtz equation,

Dpð~xÞ þ k2pð~xÞ ¼ 0; ~x 2 X � R3; (1)

with the scalar, complex-valued sound pressure, pð~xÞ, in the

domain, X. The wavenumber is denoted by k ¼ x=c with

the angular frequency, x, and speed of sound, c. In this

study, we focus on air-filled domains. Thus, we introduce

the index “a” to refer to the material properties of air, i.e.,

for the speed of sound, c ¼ ca, and density, q ¼ qa.

The Robin boundary condition is formulated as (Suzuki

et al., 1989)

vf ð~xÞ � vsð~xÞ ¼ Yð~xÞpð~xÞ; ~x 2 C � R2; (2)
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where vf ð~xÞ; vsð~xÞ, and Yð~xÞ denote the normal fluid parti-

cle velocity, normal structural velocity, and boundary admit-

tance at the boundary, C. The sound pressure on the

boundary is related to the normal fluid particle velocity by

the linearized Euler equation,

vf ð~xÞ ¼
1

ixqa

@pð~xÞ
@nð~xÞ ; ~x 2 C � R2; (3)

where the ambient density of the acoustic medium is qa.

The normal structural particle velocity is used to impose a

vibrating pattern on the surface, whereas the Robin bound-

ary condition is adopted to model the absorbing behavior of

the enveloping structure.

The Kirchhoff-Helmholtz boundary integral equation

reads

cð~yÞpð~yÞ þ
ð

C

@Gð~x;~yÞ
@nð~xÞ pð~xÞdCð~xÞ

¼ ixqa

ð
C

Gð~x;~yÞvf ð~xÞdCð~xÞ; ~x;~y 2 C � R2; (4)

where the Green’s function is Gð~x;~yÞ ¼ eikr=ð4prÞ and the

Euclidean distance is r ¼ rð~x;~yÞ. The quantity, cð~yÞ, repre-

sents a geometric entity, which is determined by the bound-

ary contour at the position,~y. On smooth boundaries, cð~yÞ is

equal to 0.5 (Marburg, 2018). Finally, substituting Eq. (2)

into Eq. (4) and discretizing the resulting equation with the

collocation method yields the following linear system of

equations (Marburg, 2018; Marburg, 2008):

HðkÞ � GðkÞYðkÞ½ �pðkÞ ¼ GðkÞvsðkÞ: (5)

The entity, GðkÞ, denotes the matrix of the single layer

potential, whereas HðkÞ is referred to as the matrix of the

double layer potential. These matrices are neither Hermitian

nor positive definite. As the entries of the system matrices,

GðkÞ and HðkÞ, are determined by the Green’s function and

its normal derivative, respectively, it becomes obvious that

the system matrices depend on the wavenumber and, thus,

on the frequency. As a consequence, the sound pressure

solution, pðkÞ, in Eq. (5) depends on the frequency. To

obtain the system response in a certain frequency range, Eq.

(5) has to be solved for each discrete frequency within the

relevant frequency range.

In interior acoustic problems, it is widely adopted to

use the sound pressure at a specific location as an objective

function to characterize the acoustic system. The sound

pressure inside of a cavity can be obtained by evaluating

Eq. (4) in the acoustic field, X,

pið~yÞ ¼ ixqa

ð
C

Gð~x;~yÞvsð~xÞdCð~xÞ �
ð

C

�
@Gð~x;~yÞ
@nð~xÞ

� ixq Gð~x;~yÞYð~xÞ
�

pð~xÞdCð~xÞ; ~y 2 X; (6)

where pið~yÞ denotes the field point sound pressure.

Similarly, by exploiting Eq. (3), the particle velocity at a

field point is computed by

~við~yÞ ¼
ð

C

~rGð~x;~yÞvsð~xÞdCð~xÞ �
�ð

C

~r 1

ixqa

@Gð~x;~yÞ
@nð~xÞ

�~rGð~x;~yÞYð~xÞ
�

pð~xÞdCð~xÞ; ~y 2 X; (7)

where the field point particle velocity is ~við~yÞ (Wu and

Seybert, 1991).

Recent evidence (Cazzolato and Hansen, 1998; Gurbuz

et al., 2022b; Koopmann and Fahnline, 1997; Sommerfeldt

and Nashif, 1994), however, suggests to use the sound

energy density as a control objective because the sound

pressure evaluation shows a poor performance in regions

with low sound pressure values. This results from the fact

that the sound pressure heavily depends on the evaluated

position. Thus, a deteriorated performance is to be expected

when the sound pressure is observed in the vicinity of a

pressure node. As opposed to that, the sound energy density

is relatively robust to the position of the evaluation point.

Therefore, it was suggested as a control objective for inte-

rior acoustic problems.

With two energy forms transported in sound waves

(Kinsler et al., 2000), the sound energy density is composed

by the potential energy density,

epð~yÞ ¼
1

2qac2
a

p�i ð~yÞpið~yÞ; (8)

and the kinetic energy density,

ekð~yÞ ¼
qa

4
~v�i ð~yÞ~við~yÞ: (9)

The total sound energy density is then obtained by

etð~yÞ ¼ epð~yÞ þ ekð~yÞ

¼ 1

2qac2
a

p�i ð~yÞpið~yÞ þ
qa

4
~v�i ð~yÞ~við~yÞ: (10)

Equation (10) highlights that the sound energy density is

sensitive to the sound pressure and particle velocity. In this

way, the sound energy density provides a robust objective

function, particularly, in regions with low sound pressure

levels (SPLs). Further details on that topic are provided in

Gurbuz and Marburg (2022), Gurbuz et al. (2022b), and

Preuss et al. (2022).

III. GPS

A GP is defined as a collection of random variables

which are jointly Gaussian distributed. As such, a GP can be

interpreted as a probability distribution over functions. With

h denoting the unknown frequency response function, the

GP can be expressed by

hðfÞ � GP mðfÞ; covðf; f 0Þ
� �

: (11)

A GP is specified by a mean function, mðfÞ, and a covari-

ance function or kernel, covðf; f 0Þ, where f and f 0 denote two

sets of input frequency points (Raissi et al., 2017b).
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In this study, the squared exponential covariance function,

covðf; f 0Þ ¼ r2
f exp � 1

2l2
ðf � f 0ÞTðf � f 0Þ

� �
; (12)

with the characteristic length, l, and signal variance, r2
f , is

adopted. These parameters essentially specify the character-

istics of the GP. They are, thus, commonly referred to as

hyperparameters. Note that this covariance function depends

only on the frequency input points. The covariance of the

outputs, namely, the frequency response function, is only

determined by the input covariance. Closer inspection at

Eq. (12) reveals that the output increases when the distance

between the input points decreases (Williams and Rasmussen,

2006).

The GP prior, which defines the GP without any obser-

vations, can be then expressed by

h � N 0; covðf; f 0Þ
� �

; (13)

where N denotes a multivariate Gaussian probability distri-

bution. Note that the observed quantities are the real-valued

SPL and real-valued sound energy density level. Therefore,

the real-valued multivariate Gaussian distribution, N , was

chosen here. In this initial study, we assume that the fre-

quency response function is zero prior to the involvement of

any observed data. As a consequence, the mean function can

be set to zero.

So far, the GP prior in Eq. (13) does not account for any

physical information about the system. The great advantage

of GPs emerges by incorporating observed data of the

underlying physical process. Therefore, the joint probability

distribution of the observed function outputs, h, and the

unknown frequency responses, h�, at new frequencies, f�,
are introduced as

h

h�

" #
� N 0;

Kðf; fÞ Kðf; f�Þ
Kðf�; fÞ Kðf�; f�Þ

" # !
: (14)

The matrix, K, denotes the evaluated covariance function

for the frequencies, f, at which observations are available,

and frequencies, f�, at which the frequency responses are

unknown. For n known frequency points, the dimension of

Kðf; fÞ amounts to n� n. Analogously, for n�, frequency

points with unknown responses, the remaining sub-matrices,

Kðf�; fÞ; Kðf; f�Þ, and Kðf�; f�Þ are of sizes n� � n; n� n�,
and n� � n�, respectively. Now, by conditioning the joint

GP prior on the observed data, the joint posterior probability

distribution for the unknown frequency response function is

expressed by

Pðh�jf�;f;hÞ�N
�

Kðf�; fÞKðf;fÞ�1
h; Kðf�;f�Þ

�Kðf�; fÞKðf;fÞ�1
Kðf; f�Þ

	
: (15)

The interested reader is referred to the Appendix for an out-

line of the conditioning process.

Equation (15) serves as a viable implementation for

noiseless data. In reality, however, data generation processes

are subject to noise resulting in noisy observations. In that

case, the observations can be modeled with y ¼ hðfÞ þ �
under the assumption of additive Gaussian distributed noise.

For noisy observations, the covariance function in Eq. (12)

adapts to

covðf; f 0Þ ¼Kðf; fÞþr2
nI

¼ r2
f exp � 1

2l2
ðf� f 0ÞTðf� f 0Þ

� �
þr2

nI; (16)

where the noise level is r2
n and the identity matrix is I, i.e.,

� � Nð0; r2
nIÞ. The joint probability distribution of the

noisy observations, y, and frequency responses, h�, of inter-

est then reads

y

h�

" #
� N 0;

Kðf; fÞ þ r2
nI Kðf; f�Þ

Kðf�; fÞ Kðf�; f�Þ

" # !
: (17)

Conditioning the joint distribution in Eq. (17) on the

observed data yields then the predictive posterior GP,

Pðh�jf�; f; yÞ � N �h�; covðh�Þ
� �

; (18)

where

�h� ¼ Kðf�; fÞ Kðf; fÞ þ r2
nI


 ��1
y; (19)

covðh�Þ ¼ Kðf�; f�Þ �Kðf�; fÞ Kðf; fÞ þ r2
nI


 ��1
Kðf; f�ÞT :

(20)

The posterior GP is determined by the predictive mean, �h�,
and predictive covariance, covðh�Þ. By this means, the pos-

terior GP is fully specified and can be used as a surrogate

model for a complex acoustic system (Williams and

Rasmussen, 2006).

To obtain the optimal set of hyperparameters, the nega-

tive log likelihood function (Williams and Rasmussen,

2006),

log PðyjfÞ ¼ � 1

2
yTðKðf; fÞ þ r2

nIÞÞy

� 1

2
log jKðf; fÞ þ r2

nIj � n

2
log 2p; (21)

is minimized with respect to the characteristic length, l, sig-

nal variance, r2
f , and noise level, r2

n. Equation (21) estimates

how likely the observation is for the given training inputs.

In the literature, the term “training” is generally understood

as the treatment of the optimization problem in Eq. (21).

IV. MULTI-FIDELITY MODEL

Following Kennedy and O’Hagan (2000), we assume that

the prediction of the HF model, hHðfÞ, can be approximated

by the solution of a lower fidelity version, hLðfÞ. This property
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defines an autoregressive model, which is expressed by

(Kennedy and O’Hagan, 2000; Le Gratiet and Garnier, 2014)

hHðfÞ ¼ g hLðfÞ þ dðfÞ; (22)

with the coupling parameter, g, and two independent GPs,

hL � GP 0; covL f; f 0ð Þð Þ; (23)

d � GP 0; covH f; f 0ð Þð Þ: (24)

In Eqs. (22)–(24), the subscripts, L and H, denote the affilia-

tion to the LF and HF models, respectively. For g ¼ 0, it

becomes evident that the LF and HF models are uncorre-

lated. In this case, the multi-fidelity model will not lead to

any improvement (Raissi and Karniadakis, 2016). Note that

the multi-fidelity model in Eqs. (22)–(24) is adjustable by

two covariance functions, covL and covH. However, in this

initial study, the squared exponential covariance function in

Eq. (12) is adopted for both kernel functions.

By introducing the frequency and frequency response

function data pairs for the LF level, ½fL; hL�, and HF

level, ½fH; hH�, the multi-fidelity GP prior can be formu-

lated as

hL

hH

" #
� GP

 
0

0

" #
;

covLðfL; fLÞ g covLðfL; fHÞ
g covLðfL; fHÞ g2 covLðfL; fHÞ þ covHðfL; fHÞ

#2
4

1
A; (25)

or in compact form, where covLL ¼ covL; covLH ¼ covHL ¼ g covL, and covHH ¼ g2 covL þ covH ,

hL

hH

" #
� GP

0

0

" #
;

covLLðfL; fLÞ covLHðfL; fHÞ
covHLðfL; fHÞ covHHðfL; fHÞ

" # !
: (26)

By including the frequencies, f�, at which we are interested in the response function, h�, the multi-fidelity GP adapts to

h�

hL

hH

2
64

3
75 � GP

0

0

0

2
64
3
75;

cov��ðf�; f�Þ cov�Lðf�; fLÞ cov�Hðf�; fHÞ
covL�ðfL; f�Þ covLLðfL; fLÞ covLHðfL; fHÞ
covH�ðfH; f�Þ covHLðfL; fHÞ covHHðfH; fHÞ

2
64

3
75

0
B@

1
CA: (27)

Conditioning Eq. (27) on the observed LF and HF data then

yields the predictive posterior GP for the unknown fre-

quency responses,

Pðh�jf�; fL; hL; fH; hHÞ ¼ N ðK�K�1h;K��

�K�K
�1KT

� Þ; (28)

with

h ¼ hL hH


 �T
; (29)

K� ¼ cov�Lðf�; fLÞ cov�Hðf�; fHÞ

 �

; (30)

K ¼
covLLðfL; fLÞ covLHðfL; fHÞ
covHLðfH; fLÞ covHHðfH; fHÞ

" #
; (31)

K�� ¼ cov��ðf�; f�Þ

 �

: (32)

Equations (28)–(32) fully describe the posterior multi-

fidelity GP for noise-free predictions at the frequencies, f�,
where we are interested in the frequency responses.

For noisy observations, yL and yH , the predictive poste-

rior distribution is expressed by

Pðh�jf�; fL; yL; fH; fHÞ ¼ N ðK�K�1y;K��

�K�K
�1KT

� Þ; (33)

where y ¼ ½yL yH�. In addition to this, the covariance matrix

regarding the training points adapts to

K ¼
covLLðfL; fLÞ þ r2

nLI covLHðfL; fHÞ
covHLðfH; fLÞ covHHðfH; fHÞ þ r2

nHI

" #
; (34)

with the noise levels, r2
nL and r2

nH, inherent to the LF and

HF data, respectively.

Regarding the magnitudes of the acoustic quantities, the

noise level transfers to the signal-to-noise ratio (SNR)

according to

SNR ¼ 10 log
y yT

r2
n

 !
: (35)

In the first study, the SPL at the driver’s ear is adopted as

the objective function. In the second case, the sound energy

density level at the same field point is considered.

Last, the negative log likelihood function is rewritten as

log PðyjfÞ ¼ � 1

2
yT Kðf; fÞ þ r2

nI

 ��1

y� 1

2
log jKðf; fÞ

þ r2
nIj � nL þ nH

2
log 2p (36)

for the multi-fidelity GP with noisy observations, y.

Analogously, the input frequency points and noise levels for
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the LF and HF data are comprised in f ¼ ½fL fH� and

r2
n ¼ ½r2

nL r2
nH�, respectively. The corresponding numbers of

input points are denoted by nL and nH. In accordance with

Williams and Rasmussen (2006), Algorithm 1 schematically

depicts the implementation of the multi-fidelity GP. Note

that the matrix inversion of ½Kþ r2
nI� is circumvented by

using its Cholesky decomposition for the sake of computa-

tional efficiency and robustness.

V. NUMERICAL EXAMPLE

This section involves the boundary element analysis of

the vehicle cabin and training procedure of the multi-fidelity

GP. Moreover, the results of the multi-fidelity GP are inves-

tigated for two objective functions: the SPL and energy den-

sity level. In Sec. VI, the error of the multi-fidelity

approximation is analyzed.

A. Boundary element analysis of the cabin

In this study, the acoustic problem of an industrial vehi-

cle cabin is investigated. The boundary element model of

the cabin has been provided by BMW (Munich, Germany

Gurbuz et al., 2022b). The cabin has the following dimen-

sions: 3.032 m length, 1.554 m width, and 1.283 m height.

We assume that air is the acoustic medium with the density,

qa ¼ 1:21 kg=m3, and the speed of sound, ca ¼ 343 m=s.

Two different boundary element meshes of the cabin are

studied: A coarse mesh with 1906 degrees of freedom

(DOFs) is considered as the LF model, whereas a fine mesh

with 24 036 DOFs is adopted as the HF model. In the LF

model, boundary elements with constant pressure

interpolation are deployed while a linear discontinuous pres-

sure interpolation is used for the HF model (Marburg and

Schneider, 2003). The LF cabin model is meshed with an

average element edge length of 0.130 m, whereas the aver-

age element edge length in the HF mesh amounts to

0.065 m. This leads to 13 elements per wavelength at

200 Hz for the LF mesh and 26 elements per wavelength for

the HF mesh. The meshes for the LF and HF models are

schematically depicted in Fig. 1.

To excite the numerical model, we impose a structural

particle velocity at the driver’s footwell, i.e.,

vs ¼ 0:001 m=s. The excited boundary elements are visual-

ized in Fig. 2. Regarding the boundary admittance, we

impose the Robin boundary condition, qacaY ¼ f=fref , with

the reference frequency, fref ¼ 2800 Hz, on each boundary

element. In Marburg and Hardtke (1999), the reverberation

time was measured in a vehicle cabin at five frequencies

between 30 and 300 Hz. By using Eyring’s formula, the

average absorption coefficient and related boundary admit-

tance were computed. Marburg and Hardtke introduced the

reference frequency, fref ¼ 2800 Hz, because it provided the

best approximation for the magnitude of the boundary

admittance.

As customer comfort plays a crucial role in the design

of a vehicle cabin, the acoustic quantities are particularly

relevant at the position of the driver’s ear (Schmid et al.,
2022). A schematic visualization of the field point represent-

ing the location of the driver’s ear is depicted in Fig. 3. With

booming noise being the most prominent problem in the

vehicle interior design, the relevant frequency range is cho-

sen to be 20–200 Hz (Luegmair and Schmid, 2020).

Prior to the multi-fidelity analysis, the SPL and sound

energy density level are evaluated at the position of the driv-

er’s ear. These quantities are computed with the LF and HF

models; see Figs. 4(a) and 4(b), respectively. To express the

acoustic quantities on a dB scale, SPL ¼ 20 log ðjpj=prefÞ
and the sound energy density level, Le ¼ 10 log ðe=erefÞ, are

computed. For sound waves propagating in air, the reference

sound pressure and reference sound energy density adopt to

pref ¼ 2:0� 10�5 Pa and eref ¼ 1:0� 10�12 kg=ms2,

respectively.

The SPL data for the LF model exhibits low values in

the frequency range from 20 to 100 Hz with a small peak

ALGORITHM 1. Pseudo-code for the multi-fidelity GP.

Require: fL; fH (input frequencies), yL; yH (observations),

cov (covariance function), r2
nL; r2

nH (noise level), f� (target frequencies)

L ¼ cholðKþ r2
nIÞ

a ¼ LTnðLn½yL yH �
TÞ

evaluate predictive mean �h� ¼ K�a

b ¼ LnK�
evaluate predictive covariance covðh�Þ ¼ K�� � bTb

evaluate log likelihood log PðyjfÞ
return �h�; covðh�Þ; log PðyjfÞ

FIG. 1. (Color online) Two boundary

element meshes for the two fidelity

levels. A coarse mesh with 1906 DOFs

is adopted as the LF model (a). A finer

mesh with 24 036 DOFs is considered

as the HF model (b).
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around 75 Hz. In a previous study (Gurbuz et al., 2022b), we

performed the frequency sweep for the vehicle cabin with-

out damping, e.g., Y¼ 0. In that study, we observed the first

resonance frequency of the cabin at 71 Hz. In Fig. 4, the

peak around that frequency is, thus, attributed to the occur-

ence of the first resonance. Above 100 Hz, the SPL at the

driver’s ear is higher except at 150 Hz, where the SPL

decreases to 65 dB [Fig. 4(a)]. Here, again, two additional

resonances of the cabin occur at 145 Hz and 170 Hz (Gurbuz

et al., 2022b). As the SPL is evaluated here between two

resonances, a drop in the SPL response around 150 Hz

becomes natural. Turning now to the sound energy density

level with respect to the LF model, we observe a peak at

71 Hz, which is also attributed to the first resonance of the

cabin; see Gurbuz et al. (2022b). On average, the energy

density level is also higher for frequencies above 100 Hz

[Fig. 4(b)]. Around 150 Hz, a small drop in the frequency

response becomes apparent. As the energy density level is

composed by the potential energy density, which is, in turn,

determined by the sound pressure, the same explanation

applies to the peak and drop in the energy density level

response. Interestingly, we observe very similar SPL and

energy density level responses for the HF model. Even

though the HF data are generally on a lower level than the

data observed in the LF simulation, the profiles of the HF

and LF are in good agreement. In addition to a discretization

error, the higher average SPL and energy density level for

the LF mesh can be attributed to the area of the excited sur-

face. As a matter of fact, the excited surface of the LF mesh,

ALF ¼ 0:116 m2, is significantly larger than the excitation

area of the HF mesh, AHF ¼ 0:064 m2 (Fig. 2). Also, the LF

cabin with a length of 2:801 m is slightly shorter than the

HF cabin, which is 2:911 m long. By this means, the energy

supplied to the LF cabin turns out to be significantly higher

than that supplied to the HF cabin. It is worth noting that

discrepancies in the transported energy are inevitable

because meshes with different fidelity levels provide geome-

try approximations of varying quality. However, that cir-

cumstance is inherently considered within the proposed

framework. After all, a positive correlation between the LF

and HF data becomes apparent in Fig. 4, which is in accor-

dance with the linearity assumption in Eq. (22).

B. Multi-fidelity GP training

To implement the multi-fidelity GP, a data selection

strategy is required. The strategy proposes the frequencies,

fH, at which we evaluate the response function of the HF

model, hH. As the simulation of the HF model is accompa-

nied with high computational costs, we are interested in the

minimum possible number of HF simulations. At first

glance, it might seem adequate to choose data points, which

are equidistantly distributed across the frequency range.

However, as frequency responses can exhibit regions with

resonances or other active events, a more sophisticated

approach is required. In this initial study, we introduce an

empirical approach. First, the frequencies are identified, at

which we observe the maxima in the frequency response

and maxima of the curvatures in the LF data. Based on that

suggestion, we select a frequency distribution such that we

consider the largest possible frequency range. The HF simu-

lation is then performed at the resulting frequencies. This

approach is favorable because the LF model is fast to evalu-

ate. Thus, the LF solution is abundant for a wide frequency

range, which makes a sophisticated data acquisition strategy

irrelevant. As a consequence, we perform the LF BEM sim-

ulation at numerous frequencies, which are equidistantly

distributed over the entire frequency range.

FIG. 2. (Color online) Excited bound-

ary elements on the LF mesh (a) and

HF mesh (b) of the vehicle cabin,

where the excitation is modeled as a

Robin boundary condition with the

real-valued structural velocity,

vs ¼ 0:001 m=s.

FIG. 3. (Color online) The field point

position (red) at the driver’s ear from a

front view (left) and a lateral perspec-

tive (right). For the sake of concise-

ness, the field point position is only

depicted for the HF model.
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C. Sound pressure data

To assess the performance of the multi-fidelity GP, four

cases are investigated in the following:

(a) Small LF data set with 37 points, small HF data set

with four data points;

(b) large LF data set with 181 points, small HF data set

with four data points;

(c) small LF data set with 37 points, large HF data set

with eight data points; and

(d) large LF data set with 181 points, large HF data set

with eight data points.

By varying the number of relevant data points, we ana-

lyze the influence of LF and HF data points on the perfor-

mance of the proposed method. In the initial study, the noise

level, r2
n ¼ 0:5 dB, is prescribed on the SPL response of the

LF and HF models. Consequently, we obtain a SNR of

20:85 dB in the SPL analysis. Figure 5 shows the results for

the multi-fidelity GP with regard to the SPL at the driver’s

ear. In the initial step, we assign 37 frequencies to the LF

model and obtain the HF solution at four frequencies; see

Fig. 5(a). Then, the number of LF frequency points is

increased to 181 while the HF solution is still known at four

frequencies [Fig. 5(b)]. Subsequently, we study the case

with the HF solution at 8 frequencies based on the LF solu-

tion known at 37 frequencies [Fig. 5(c)]. In the final step,

the multi-fidelity GP approximation is investigated for 181

frequency points in the LF solution and 8 points in the HF

solution [Fig. 5(d)]. In all of the studies, the multi-fidelity

GP approximation is compared to a reference solution. The

reference solution is adopted by the HF solution at each fre-

quency. In the initial study with 37 LF and 4 HF frequencies

FIG. 4. The SPL (a) and energy den-

sity level (b) are evaluated with the LF

model (dashed) and HF model (solid).

The acoustic quantities are evaluated

at the position of the driver’s ear.

FIG. 5. (Color online) The SPL at the

position of the driver’s ear. The LF

approximation (blue) of the SPL is

evaluated at the LF frequency points

(black Y-shaped markers). The HF

approximation (orange) of the SPL is

evaluated at the HF frequency points

(orange crosses). The approximation of

the HF model is compared to the refer-

ence solution (green). The approxima-

tions are associated with 95%

confidence intervals (LF, light blue;

HF, light orange). The LF and HF data

are subject to noise corresponding to

SNR ¼ 20:85 dB.
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[Fig. 5(a)], one can observe a good agreement between the

HF approximation and reference solution. This is particularly

the case in the frequency range 20–100 Hz, where the refer-

ence solution is either consistent with the HF approximation

or at least lies within the 95% confidence interval. Even

though we observe slight deviations from the reference solu-

tion above 100 Hz, it becomes apparent that the profiles of

the HF approximation and reference are similar.

When the number of LF frequency points is increased

to 181, the HF approximation is even more consistent with

the reference solution; see Fig. 5(b). Small deviations are

only apparent around 140 Hz. Moreover, we observe that the

uncertainty interval is smaller in the LF approximation and

the HF approximation is affected in a similar way. By this

means, it becomes apparent that the reference solution is not

considered within the uncertainties at the frequency range

150–165 Hz. For the remaining frequencies, one can observe

that the HF approximation concurs well with the reference.

Interestingly, this is also the case between 70 and 170 Hz,

even though there is no HF frequency point in it.

In the next phase, the HF system responses are evaluated

at 8 frequencies while the LF solution is known at, again, 37

frequencies [Fig. 5(c)]. The additional HF frequency points

are placed in the frequency range between 70 and 170 Hz,

where we observe an improvement of the HF approximation.

This is particularly the case around 130 Hz, where the refer-

ence solution is either consistent with the HF approximation

or at least included in the uncertainty interval.

In the final step, we analyze the multi-fidelity GP with

181 LF frequency points and eight HF frequency points; see

Fig. 5(d). In this study, we observe that the HF approxima-

tion is extremely consistent with the reference solution.

This is especially the case around 130 Hz, where deviations

appeared in the previous studies. Marginal differences, how-

ever, occur around 160 Hz, where the HF approximation

slightly underestimates the reference solution. This discrep-

ancy can be attributed to a violation of the linearity assump-

tion in the correlation function; see Eq. (22). In particular,

this inconsistency may be caused by lags in the frequency

responses between the LF and HF response functions. The

present results already indicate that the HF solution can be

approximated with a drastically reduced number of HF sim-

ulations. The approximation can be improved by either add-

ing a few HF frequency points or a great number of LF

frequency points. Moreover, the findings show that the

uncertainties in the HF approximation can be reduced by

involving multiple frequency points. With the LF data being

fast to obtain and, thus, abundant, it becomes apparent to

prefer a large number of LF solutions for an efficient

approximation.

D. Sound energy density data

Turning now to the analysis with regard to the sound

energy density, the multi-fidelity GP is, again, initialized

with 37 LF and 4 HF frequency points. Based on that, the

number of frequency points is subsequently increased. In

this study, we also prescribe the noise level r2
n ¼ 0:5 dB on

the LF and HF data, resulting in a SNR of 18:51 dB. The

results of the multi-fidelity GP regarding the sound energy

FIG. 6. (Color online) The total sound

energy density level at the position of

the driver’s ear. The LF approximation

of the sound energy density level is

evaluated at the LF frequency points

(black Y-shaped markers). The HF

approximation (orange) of the energy

density level is evaluated at the HF fre-

quency points (orange crosses). The

approximation of the HF model is

compared to the reference solution

(green). The approximations are asso-

ciated with 95% confidence intervals

(LF, light blue; HF, light orange). The

LF and HF data are subject to noise

corresponding to SNR ¼ 18:51 dB.
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density are depicted in Fig. 6. In the initial analysis (37 LF

and 4 HF frequency points), the HF frequency points are

approximately selected at 20, 80, 140, and 200 Hz, resulting

in a nearly equidistant distribution; see Fig. 6(a). For this

constellation, the multi-fidelity GP already yields an accu-

rate approximation for the HF model. In particular, the reso-

nance around 70 Hz and the average profile of the sound

energy density level are recovered. Small deviations are

only apparent between 110 and 150 Hz and 160 and 200 Hz,

where the reference solution is overestimated. It is likely

that the cause of this discrepancy is a result of the lack of

HF solutions within these frequency ranges.

In the next phase, we increase the number of LF fre-

quency points to 181 while keeping the number of HF points

constant [Fig. 6(b)]. At first glance, one can observe an

improved approximation for the HF solution. Closer inspec-

tion further reveals that the HF approximation agrees well

with the reference solution for frequencies between 160 and

200 Hz. Although the profile of the HF approximation and

reference resemble each other, we still notice differences

between 110 and 150 Hz. Again, these differences are attrib-

uted to lags in the frequency responses between the LF and

HF models. The fact that the number of LF solutions is

increased leads to a decrease in the uncertainties and associ-

ated noise levels.

In the third study, we analyze, again, 37 LF points and

increase the number of HF points to 8 [Fig. 6(c)]. In compar-

ison to the initial study [Fig. 6(a)], the HF approximation

agrees well with the reference solution over the entire fre-

quency range. Small deviations similar to the results in Fig.

6(a) are only apparent above 170 Hz. By including addi-

tional HF solutions at 120 and at 170 Hz, the reference solu-

tion is considered in the uncertainty interval of the HF

approximation even between 110 and 150 Hz and 180 and

200 Hz. The level of uncertainty remains nearly equal com-

pared to the study in Fig. 6(a).

In the final case, the numbers of LF and HF frequency

points are increased, i.e., 181 LF and 8 HF points [Fig.

6(d)]. Here, one can observe that the HF approximation is

highly consistent with the reference solution, particularly,

between 20 and 110 Hz. Marginal deviations only occur

around 130 Hz, where the trend of the reference solution

cannot be adequately reproduced by the LF solution.

Interestingly, we observe that the reference solution does

not lie entirely in the uncertainty interval above 140 Hz.

There is a marginal discrepancy around 150 Hz, which can

be attributed to the presence of noise. The results of the

energy density analysis also show that the HF reference

solution can be well approximated by a multi-fidelity GP. At

closer inspection, one can conclude that including additional

HF data improves the approximation. However, the approxi-

mation can be similarly improved by solely including addi-

tional solutions of the LF model. The involvement of

numerous LF solutions should be treated with caution as this

approach is associated with the reduction of the uncertainty

level. Nonetheless, this approach is highly favorable

because a finer resolution of the LF solution provides an

efficient way to improve the approximation of the reference

solution at lower computational costs. Moreover, our results

demonstrate that the proposed method performs very well

even in the presence of noise. With the LF model being

computationally efficient, the proposed framework provides

an efficient method for the approximation of the frequency

sweep in boundary element analyses. By this means, accu-

rate and robust predictions can be achieved at lower costs by

using multi-fidelity GPs.

E. Error and runtime analysis

To assess the quality of the approximation, the R2 crite-

rion is introduced as (Pesaran and Smith, 1994)

R2 ¼ 1� y� � ŷHð ÞT y� � ŷHð Þ
y� � �yHð ÞT y� � �yHð Þ

; (37)

where y� is the approximation of the HF frequency response

function and ŷH is the HF reference solution. The entity, �yH,

denotes the mean value of the HF reference solution, which

is constantly distributed over the frequency range. For a per-

fect agreement between the approximation and reference

solution, we would obtain R2 ¼ 1. The resulting R2 values

for the predictions of the multi-fidelity GP are depicted in

Fig. 7. The results for the SPL analysis show that R2 values

around 0.95 are already achieved with two HF points; see

FIG. 7. (Color online) R2 values are

shown for the predictions of the multi-

fidelity GP with regard to the SPL

analysis (left) and energy density level

analysis (right).
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Fig. 7(a). By increasing the number of HF points, the R2 cri-

terion even amounts to 0.98. Regarding the LF data, we

achieve R2 values close to 0.95 for 60 and 100 LF points.

For more than 100 LF points, the R2 criterion rises to 0.98.

This result indicates that the influence of the LF points is

particularly strong when only a small number of HF points

are considered. For more HF points, the performance of the

multi-fidelity GP can be significantly improved by including

additional LF points. Moreover, this result demonstrates that

4 HF and 100 LF points already suffice to achieve highly

accurate predictions.

For the energy density analysis, the R2 value is around

0.90 when we consider only two HF points [Fig. 7(b)]. By

adding two further HF points, the R2 criterion rapidly

increases to values around 0.98. For more than four HF

points, the R2 value remains around 0.98. For 60 LF points,

the R2 criterion is around 0.90. By involving 100 or more

LF points, one can observe R2 values at 0.98. This finding

also shows that 4 HF and 100 LF points suffice for an

improved performance. The most interesting result to

emerge from the R2 data is that the performance of the

multi-fidelity GP is essentially improved by including only a

small number of HF points. Based on that, the performance

is further improved by adding a decent amount of LF points.

As anticipated, discrepancies in the approximation of the

HF solution occurred at frequencies where the assumption

of a linear correlation [Eq. (22)] was not valid. However, in

our studies, they were only marginal; see Figs. 5(d) and

6(d). Next, we observed that the discrepancies could be

reduced or at least considered in the uncertainty range by

including additional information. This was accomplished by

either involving the HF solution at a few more frequencies

[Figs. 5(c) and 6(c)] or the LF solution at a decent amount

of frequencies [Figs. 5(b) and 6(b)]. Presumably, advanced

nonlinear correlation functions would further alleviate this

issue.

Table I shows the comparison of the computational run-

time between the multi-fidelity GP and HF BEM simulation.

For this purpose, the approximation of the frequency sweep

is investigated for two cases. The first case refers to the

multi-fidelity GP with 37 LF and 4 HF simulations; see Fig.

5(a). In the second case, the frequency sweep is approxi-

mated with 181 LF and 8 HF simulations [Fig. 5(d)].

The resulting computational times are compared to the

reference method, where the HF simulation is performed at

181 frequencies. As the proposed method requires only a

small number of HF simulations, the computational effort is

drastically reduced. For instance, in the second case, the

runtime is reduced to 3.71 h, resulting in a relative time sav-

ing of 92.4%. The computational time is reduced even fur-

ther in the first case, where the approximation of the

frequency sweep is obtained in 1.39 h. In this way, 97.1% of

the total runtime is saved. Thus, multi-fidelity GPs provide

an efficient technique to overcome the burden of high com-

putational costs and time expense.

The present study raises the possibility to accelerate fre-

quency sweep studies with the BEM. However, it is impor-

tant to bear in mind that the present posterior multi-fidelity

GP only holds for the position of the driver’s ear and cannot

be extrapolated to an arbitrary evaluation point. As the

transfer functions of the cabin vary for different evaluation

points, the multi-fidelity GP needs to be trained again when

the position of the evaluation point changes. More specifi-

cally, the frequency selection strategy, as introduced in Sec.

V B, and the LF model simulations have to be performed

from scratch to obtain new proposals for the HF simulations.

In contrast to this, the frequency range remains unaffected

because it is defined by the underlying problem.

In the sense of a Bayesian method, multi-fidelity mod-

els based on GPs account for uncertainties within the data

generation process. In the context of the acoustic design of a

vehicle cabin, uncertainties are ubiquitous in early design

stages. They may occur in the boundary conditions, particu-

larly, in the excitation from the enveloping chassis or

boundary admittance of the cabin. Moreover, modifications

on the cabin geometry in the development cycle result in

variations of the evaluated position. Thus, the position of

the driver’s ear becomes an additional source of uncertainty.

Uncertainties can further occur as a result of simplifying

model assumptions. For the Helmholtz equation, this may

involve the assumption that the underlying acoustic problem

can be considered to be linear.

Finally, it should be noted that our findings are con-

ducted with a squared exponential covariance function.

Among the vast amount of covariance functions, complex-

valued and physics-based covariance functions (Caviedes-

Nozal et al., 2021) sound very promising as they account for

spatial information on the characteristics of the propagating

waves.

VI. CONCLUSIONS

This paper set out to improve the efficiency in the

design of acoustic systems. Therefore, a multi-fidelity model

was developed based on boundary element simulations of

two different meshes. A coarse resolution of the mesh was

adopted as the LF model, whereas a fine mesh was consid-

ered as the HF model. The fidelity levels were realized by

GPs, which were trained with the related frequency

responses. To demonstrate the effectiveness of our method,

we investigated a vehicle interior noise problem, where we

TABLE I. Runtime comparison of the multi-fidelity GPs with the full fre-

quency sweep for the HF BEM model (reference). The multi-fidelity GPs

are evaluated for 37 LF points, 4 HF points (case 1) and 181 LF points,

8 HF points (case 2). The runtime for a single LF simulation amounts to

30.45 s, whereas a single HF simulation required 965.04 s.

Multi-fidelity

GPs, case 1

Multi-fidelity

GPs, case 2

Reference

solution

Number of HF simulations 4 8 181

Number of LF simulations 37 181 —

Multi-fidelity GP training 20.87 s 142.05 s —

Total runtime 1.39 h 3.71 h 48.52 h
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analyzed the frequency response of the cabin with respect to

the driver’s ear. Regarding the objective function, the SPL

and sound energy density at the driver’s ear were used. In

our study, we compared the approximation of the multi-

fidelity GP with the HF solution at each frequency.

Moreover, we assessed the performance of the proposed

method by studying the influence of LF and HF solutions at

additional frequencies. The results in our study have shown

that the HF solutions were efficiently approximated by the

proposed method. In addition to this, sensitivities to model

parameters and uncertainties arising from the data genera-

tion process were inherently quantified. By this means,

multi-fidelity GPs provide an efficient and robust tool to

determine the frequency-dependent characteristics of acous-

tic systems. The evidence from our work, thus, emphasizes

the exploration of multi-fidelity GPs in acoustic problems.

With a rather semi-empirical approach to determine the rele-

vant frequencies, a natural progression of this work is to

implement a more elegant technique for the selection of fre-

quency points at which the HF model is evaluated. One pos-

sible strategy could involve a decision criterion in the form

of a loss function. Future work needs to examine the links

between the HF model and LF model because we only

focused on linearly correlated models in this study.

Moreover, we strongly recommend the integration of differ-

ent data generation sources in the proposed framework. This

involves particularly physical experiments as well as analyt-

ical solutions within a model of multiple fidelity levels.
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APPENDIX: CONDITIONING ON OBSERVED DATA

Following Williams and Rasmussen (2006), the joint

probability distribution of two Gaussian random vectors, x

and y, reads

x

y

" #
� N

lx

ly

" #
;

A C

CT B

" # !
: (A1)

The conditional probability distribution for x given y, then,

can be expressed by

PðxjyÞ ¼ N ðlx þ CB�1 y� lyð Þ;A� CB�1CTÞ: (A2)

In our study, the observations are stored in y while the

unknown function values are expressed by x.
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