
Department of Mathematics
TUM School of Computation, Information and Technology
Technical University of Munich

A Verified Functional Implementation of
the Schönhage-Strassen-Algorithm

Jakob Schulz

Thesis for the attainment of the academic degree

Master of Science

at the TUM School of Computation, Information and Technology of the Technical University of Munich

Supervisor:
Prof. Tobias Nipkow

Advisor:
Emin Karayel

Submitted:
Munich, 31st July 2023

I hereby declare that this thesis is entirely the result of my own work except where otherwise indicated. I

have only used the resources given in the list of references.

Munich, 31st July 2023 Jakob Schulz

v

Zusammenfassung

Der Schönhage-Strassen-Algorithmus multipliziert zwei ganze Zahlen der Länge 𝑛 in O (𝑛 log𝑛 log log𝑛)
Schritten auf einer mehrbändigen Turing-Maschine. Zentrales Ziel dieser Arbeit ist es, eine verizierte

Implementierung sowie verizierte Laufzeitschranken anzugeben.

Als Repräsentation der Zahlen wählen wir boolsche Listen, auf denen zunächst grundlegende Algorith-

men zur Addition, Subtraktion und klassischen Multiplikation angegeben werden, sowie eine verizierte

Implementierung der Karatsuba-Multiplikation mit Laufzeit O
(
𝑛log2 3

)
.

Der bereits vorhandene AFP-Eintrag zu Zahlentheoretischen Transformationen [AK22] wird angepasst,

um für bestimmte Restklassenringe anwendbar zu sein, die im Schönhage-Strassen-Algorithmus benötigt

werden.

Schließlichwird eine Implementierung des Schönhage-Strassen-Algorithmusmit der erwähnten Laufzeit

von O (𝑛 log𝑛 log log𝑛) basierend auf dem Original-Paper [SS71] gegeben.

Abstract

The Schönhage-Strassen-Algorithm multiplies two integers of length 𝑛 in O (𝑛 log𝑛 log log𝑛) steps on a

multitape Turingmachine. Themain goal of this thesis is to give a veried implementation of the algorithm

as well as veried runtime bounds.

Integers are represented as LSBF (least signicant bit rst) boolean lists, on which simple algorithms

for addition, subtraction and grid multiplication are given as well as a veried implementation of the

Karatsuba-Multiplication with runtime O
(
𝑛log2 3

)
.

The already existing AFP-entry for Number Theoretic Transforms [AK22] is adapted to a more general

setting, which allows its application to certain quotient rings used in the Schönhage-Strassen-Algorithm.

After some nal preparations, an implementation of the Schönhage-Strassen-Algorithm with runtime

O (𝑛 log𝑛 log log𝑛) based on the original paper [SS71] is given.

vii

Contents

1 Introduction 1
1.1 Method for Runtime Verication . 1

1.2 The estimation Tactic . 2

2 Preliminaries 3
2.1 Sums in Monoids . 3

3 Binary Representations 5
3.1 Addition . 5

3.2 Truncating and Filling . 7

3.3 Comparison and Subtraction . 7

3.4 Multiplying/Dividing by Powers of 2 . 8

3.5 Subdividing Lists . 8

3.6 The bitsize Function . 9

3.6.1 The next-power-of-2 Function . 9

3.7 Grid Multiplication . 10

4 The Karatsuba-Algorithm 11

5 Number Theoretic Transforms 15
5.1 Number Theoretic Transforms . 15

5.2 Fast Number Theoretic Transforms . 18

6 The Schönhage-Strassen-Algorithm 21
6.1 Preliminaries . 21

6.1.1 Representations in ℤ
2
𝑘 . 21

6.1.2 Representations in ℤ𝐹𝑘 . 22

6.2 FNTTs in ℤ𝐹𝑘 . 24

6.3 A Special Residue Problem . 28

6.4 The Schönhage-Strassen-Algorithm in ℤ𝐹𝑚 . 29

6.4.1 Residues in ℤ
2
𝑛+2 . 30

6.4.2 Residues in ℤ𝐹𝑛 . 32

6.4.3 Combining the Residues and Constructing the Result 34

6.4.4 Implementation . 35

6.5 The Schönhage-Strassen-Algorithm in ℕ . 37

7 Conclusion 39

A Appendix 41

Bibliography 47

1

1 Introduction

The main goal of this thesis is to verify the result of the original paper from Schönhage and Strassen

[SS71], which states that it is possible to multiply integers (or equivalently natural numbers) of length 𝑛

in O (𝑛 log𝑛 log log𝑛) steps using a multitape Turing machine. The verication is done in Isabelle/HOL

[NPW22].

We will work explicitly on binary representations rather than on Isabelle’s built-in nat-type directly. In
particular, we will use the type nat-lsbf = bool list with the least signicant bits coming rst in the list

(LSBF-representation). Chapter 3 goes through the implementation of basic arithmetic operations on this

representation as well as conversion functions from and to nat and some other auxiliary functions needed.

After these preparations, a veried implementation of the multiplication algorithm by Karatsuba and

Ofman [KO62] with runtime O
(
𝑛log2 3

)
is given in Chapter 4. This algorithmwill be needed as a subroutine

of the Schönhage-Strassen-Algorithm.

Next, the necessary theory about Fast Number Theoretic Transforms (FNTTs) is discussed in Chapter

5. The implementation is based on the work of Ammer and Kreuzer [AK22], who describe FNTTs in the

context of elds. We adapt the theory to the more general setting of rings with adequate primitive roots

of unity. The theoretical background is largely based on the lecture ”Computeralgebra” held by Kemper

[Kem21] in the winter semester 2021/2022 at TUM.

Finally, a veried implementation of the Schönhage-Strassen-Algorithmwith runtimeO (𝑛 log𝑛 log log𝑛)
is developed in Chapter 6, following the original paper from Schönhage and Strassen [SS71].

Since the Isabelle code contains formal proofs for our statements, there is no need to reproduce them in

the same level of detail here. Instead, we will omit proofs of trivial statements,
1
but give informal versions

of the proofs formore complicated ones. In both cases, wewill give references to the corresponding Isabelle

proofs.
2

An overview of all Isabelle theory les is given in Table A.2. Moreover, the appendix contains an

overview over some specic notations in Table A.1.

1.1 Method for Runtime Verification

Since there is no built-in measurement of runtime in Isabelle, there are two common methods for formal-

izing the runtime of some function 𝑓 : 𝛼 → 𝛽 :

1. Dene an independent runtime function 𝑇𝑓 : 𝛼 → ℕ.

2. Dene a function 𝑓tm : 𝛼 → (𝛽 ×ℕ), where the runtime is returned in the second entry.

The secondmethod can be implemented concisely using the timemonad dened in Nipkow [Nip17], which

canmanage the runtime component automatically. For more complicated functions, this method is cleaner,

less error-prone and we will hence use it for our runtime verication.

Also, we will always formally (i.e. in Isabelle code) prove that 𝑓tm indeed calculates 𝑓 in its rst compo-

nent, i.e. that val (𝑓tm x) = 𝑓 x, but will generally not talk about that in this thesis. Moreover, note that, in

theory, it is possible to just dene e.g.

fun f-tm where f-tm x = return (f x)

resulting in a runtime of 0. However, we will avoid such insensible things and will write our functions in

a way such that the runtime of each used function is accounted for. Additionally, we will always replace

1
As is done in normal mathematical textbooks as well.

2
For lemmas, this will mostly be done by writing the name of the corresponding Isabelle lemma next to the number/name of

the lemma, see e.g. Lemma 5.12.

1 Introduction

2

the equation symbol ”=” in each denition of a function 𝑓tm by the symbol ”=1” dened in [Nip17] in order

to account for any constant time that might be needed for processing the function call itself. For a simple

example, see Figure 3.1.

As a last few comments:

1. Some functions (like the rev function) are dened in a way such that the resulting runtime is subop-

timal, but have code equations with better runtime. Hence, we will mostly consider the equations

returned by code-thms for runtime verication.

2. For functions on nat, we will also consider the output of code-thms, which results in a worse run-

time than they may have after code generation (e.g. the additionm + n of somem, n of type nat will
be linear in m and n rather than logarithmic). We will treat the resulting runtime as a conservative

bound, and use the type nat-lsbf (which explicitly represents numbers in binary) whenever that is

insucient.

3. Although runtime bounds given in Landau notation are easier to read, doing proofs is often easier

with explicit bounds. In the Isabelle code, we will therefore mostly give explicit bounds, while the

informal proofs will still mostly work with Landau notation.

1.2 The estimation Tactic

For many runtime proofs, the estimation tactic dened in Estimation_Method will be useful. It’s idea is
the following: assume we want to prove some inequality like

𝑓 (𝑛) + 𝑓 (2𝑛) + 1 ≤ 10𝑛2 + 2 (∀𝑛 ∈ ℕ) (1.1)

and we have a bound of the form

𝑓 (𝑛) ≤ 𝑛2 (∀𝑛 ∈ ℕ) . (1.2)

As a rst step to show (1.1), an informal proof would apply the inequality (1.2) to the left-hand side and

then continue by proving

𝑛2 + (2𝑛)2 + 1 ≤ 10𝑛2 + 2. (1.3)

In Isabelle, this could be done using an equation chain. However, sometimes it would be easier if one

would be able to just state ”use the inequality (1.2) and do simplications to show (1.1)” directly. This is

the main idea behind the estimation tactic, which can be applied to the goal (1.1) using (1.2) as estimate
argument and leaves the goal (1.3), which can be shown using simp. In Isabelle code:

lemma f-le: f n ≤ n2

proof . . . qed

lemma f n + f (2 ∗ n) + 1 ≤ 10 ∗ n2 + 1

1. f n + f (2 ∗ n) + 1 ≤ 10 ∗ n2 + 1

apply (estimation estimate: f-le)

1. n2 + (2 ∗ n)2 + 1 ≤ 10 ∗ n2 + 1

by simp

Applying an estimate to subterms of course requires that the surrounding operators satisfy monotonic-

ity properties. The estimation tactic knows some common ones, mostly ones of operations on nat, but
sometimes, additional goals may be leftover and need to be handled as well.

3

2 Preliminaries

2.1 Sums in Monoids

In Isabelle, sums of the form

∑
𝑖∈𝐼 𝑎𝑖 can be expressed by dierent means:

(a) For the operator (+) on a type class satisfying the locale monoid-add, one can use sum-list (map f
xs) (syntactic sugar: ∑ i← xs. f i) as well as sum f I (syntactic sugar:

∑
i ∈ I . f i).

(b) For the operator (⊕) in the locale abelian-monoid, one can use nsum f I (syntactic sugar:
⊕

i ∈ I .
f i).

Since we will work in the context cring, we need to write sums using the ⊕ operator. For convenience,

we want to dene a notation similar to sum-list. For that, we dene the function monoid-sum-list:

context abelian-monoid
begin

fun monoid-sum-list :: [′c⇒ ′a, ′c list] ⇒ ′a where
monoid-sum-list f [] = 0
| monoid-sum-list f (x # xs) = f x ⊕ monoid-sum-list f xs

end

as well as syntactic sugar by adapting the code from nsum:

syntax
-monoid-sum-list :: index ⇒ idt⇒ ′c list⇒ ′c⇒ ′a
((3

⊕
--←-. -) [1000, 0, 51, 10] 10)

translations⊕
Gi←xs. b
 CONST abelian-monoid .monoid-sum-list G (_i. b) xs

Note that this denition yields the unconditional simplication rule monoid-sum-list .simps(2), compared

to the slightly more complicated lemma nsum-insert (see Figure 2.1).

monoid-sum-list .simps(2) nsum-insert

Carrier assumptions

f ∈ F → carrier G
f a ∈ carrier G

Other assumptions

nite F
a ∉ F

Statement

(
⊕

i← (x # xs) . f i) (
⊕

i ∈ (insert a F) . f i)
= f x ⊕ (

⊕
i← xs. f i) = f a ⊕ (

⊕
i ∈ F . f i)

Figure 2.1 Comparison between insertion rules for monoid-sum-list resp. nsum.

Moreover, we get a congruence rule monoid-sum-list-cong similar to nsum-cong, but without the as-

sumption that the summands have to be in the carrier (see Figure 2.2).

2 Preliminaries

4

monoid-sum-list-cong nsum-cong[OF re]
Carrier assumptions f ∈ A→ carrier G
Other assumptions

∧
i. i ∈ set xs =⇒ f i = g i

∧
i. i ∈ A =⇒ f i = g i

Statement (
⊕

i← xs. f i) = (
⊕

i← xs. g i) (
⊕

i ∈ A. f i) = (
⊕

i ∈ A. g i)

Figure 2.2 Comparison between congruence rules for monoid-sum-list resp. nsum.

For simplicity, we will from now on write all sums using the symbol

∑
. Standard lemmas about sums in

the context of monoids are proven in Preliminaries/Monoid_Sums. One such lemma is the geometric

sum lemma, formulated in the context of commutative rings:

Lemma 2.1 [geo-monoid-sum-list]. Let 𝑅 be a commutative ring and 𝑥 ∈ 𝑅. Then, we have

(1 − 𝑥) ·
𝑟−1∑︁
𝑖=0

𝑥𝑖 = 1 − 𝑥𝑟

Proof. The proof is done by induction on 𝑟 . If 𝑟 = 0, both sides equal 0. Otherwise, with 𝑟 = 𝑠 + 1, we have

(1 − 𝑥) ·
(𝑠+1)−1∑︁
𝑖=0

𝑥𝑖 = (1 − 𝑥) ·
(
𝑥𝑠 +

𝑠−1∑︁
𝑖=0

𝑥𝑖

)
IH

= (1 − 𝑥) · 𝑥𝑠 + (1 − 𝑥𝑠) = 1 − 𝑥𝑠+1.

5

3 Binary Representations

In order to obtain suciently ecient algorithms, we need to represent natural numbers with logarithmic

size. An obvious candidate would be the datatype num dened in HOL.Num:

datatype num = One | Bit0 num | Bit1 num

However, we will represent natural numbers as bool lists for the following reasons:
1. We can use any list function (like rev) without redening it.
2. num represents the strictly positive natural numbers. Allowing 0 makes many algorithms simpler.

3. The representation of natural numbers using num is unique. However it is sometimes more conve-

nient to allow leading/trailing zeros in order to control the length of representations.

Hence, we dene:

type-synonym nat-lsbf = bool list

The conversion functions from and to nat can then be dened by

fun to-nat :: nat-lsbf ⇒ nat where
to-nat [] = 0
| to-nat (x#xs) = (eval-bool1 x) + 2 ∗ to-nat xs

fun from-nat :: nat⇒ nat-lsbf where
from-nat 0 = []
| from-nat x = (if x mod 2 = 0 then False else True)#(from-nat (x div 2))

This denes a least signicant bit rst (LSBF) encoding, i.e. from-nat 2 = [False, True]. Note that the

encoding is not unique, since e.g. [False, True] and [False, True, False, False] both represent the same

number. We will allow this non-uniqueness, since it makes some algorithms easier. The representation is

correct in the sense that to-nat (from-nat x) = x.2

In Binary_Representations/Binary_Representations, some useful lemmas are shown in the

section nat/int in lsbf and conversions. The most important lemmas are:

lemma to-nat-app: to-nat (xs @ ys) = to-nat xs + (2 ^ length xs) ∗ to-nat ys
lemma to-nat-length-bound: to-nat xs < 2 ^ length xs
lemma to-nat-length-lower-bound: to-nat (xs @ [True]) ≥ 2 ^ length xs
lemma to-nat-drop-take: to-nat xs = to-nat (take k xs) + 2 ^ k ∗ to-nat (drop k xs)

The lemma to-nat-drop-take also implies the following two lemmas that will be used often:

lemma to-nat-take: to-nat (take k xs) = to-nat xs mod 2 ^ k
lemma to-nat-drop: to-nat (drop k xs) = to-nat xs div 2 ^ k

3.1 Addition

In order to dene addition on nat-lsbf, we rst dene some auxiliary functions:

• bit-add-carry adds three single bits and returns the sum in two bits. It is dened exhaustively for

any input combination.

1eval-bool has the same semantics as of-bool, but is dened in a slightly dierent way and on a non-generic type. This slightly

simplies some proofs later.

2
See the Isabelle lemma to-nat-from-nat.

3 Binary Representations

6

• inc-nat increments a number by one:

fun inc-nat :: nat-lsbf ⇒ nat-lsbf where
inc-nat [] = [True]
| inc-nat (False # xs) = True # xs
| inc-nat (True # xs) = False # (inc-nat xs)

• add-carry adds two numbers and a carry bit:

fun add-carry :: bool⇒ nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
add-carry False [] y = y
| add-carry False x [] = x
| add-carry True [] y = inc-nat y
| add-carry True x [] = inc-nat x
| add-carry c (x#xs) (y#ys) = (let (a, b) = bit-add-carry c x y in a#(add-carry b xs ys))

Finally, we dene

denition add-nat :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
add-nat x y = add-carry False x y

Lemma 3.1 [add-nat-correct]. The addition dened by add-nat is correct, i.e. to-nat (add-nat x y) = to-nat
x + to-nat y.

For our runtime proofs, we will also need lemmas about the length of the results. The most important

lemmas here are the following:

lemma length-inc-nat-lower : length (inc-nat xs) ≥ length xs
lemma length-inc-nat-upper : length (inc-nat xs) ≤ length xs + 1
lemma length-inc-nat-i : length (inc-nat xs) = length xs←→ (∃ ys zs. xs = ys @ False # zs)
lemma inc-nat-last-bit-True: length (inc-nat xs) = Suc (length xs) =⇒ ∃ zs. inc-nat xs = zs @ [True]

corollary length-add-nat-lower : length (add-nat xs ys) ≥ max (length xs) (length ys)
corollary length-add-nat-upper : length (add-nat xs ys) ≤ max (length xs) (length ys) + 1
corollary add-nat-last-bit-True: length (add-nat xs ys) = max (length xs) (length ys) + 1 =⇒∃ zs. add-nat xs ys = zs
@ [True]

We will not describe all runtime proofs in detail. However, we will look at one specic runtime formal-

ization as a typical example, namely that of the inc-nat function (see Figure 3.1).

inc-nat inc-nat-tm
inc-nat [] = [True] inc-nat-tm [] =1 return [True]
inc-nat (False # xs) = True # xs inc-nat-tm (False # xs) =1 return (True # xs)
inc-nat (True # xs) = False # (inc-nat xs) inc-nat-tm (True # xs) =1 do {

r ← inc-nat-tm xs;
return (False # r)
}

Figure 3.1 Comparison of the inc-nat function with its time monad version

The correctness of the monad version can be shown by induction and simp:

lemma val-inc-nat-tm[simp]: val (inc-nat-tm xs) = inc-nat xs
by (induction xs rule: inc-nat-tm.induct) simp-all

The runtime can now be shown to be linearly bounded:

lemma time-inc-nat-tm-le: time (inc-nat-tm xs) ≤ length xs + 1
by (induction xs rule: inc-nat-tm.induct) simp-all

3.2 Truncating and Filling

7

In general, if we have a runtime monad version f-tm of some function f, the correctness proof (which we

will always name val-f-tm) can be done with very little manual work. The runtime bound, however, of

course will require more eort if f is more complicated.

Let us conclude this section with the following lemma.

Lemma 3.2 [time-add-nat-tm-le]. Adding two numbers represented in nat-lsbf can be done in linear time.
More explicitly: The runtime of adding xs and ys is at most 2 ∗ max (length xs) (length ys) + 3.

3.2 Truncating and Filling

In this section, we will look at two functions that switch between dierent binary representations of the

same natural number. The rst function is the truncate-function, which deletes all trailing zeros:

fun truncate-reversed :: bool list⇒ bool list where
truncate-reversed [] = []
| truncate-reversed (x#xs) = (if x then x#xs else truncate-reversed xs)

denition truncate :: nat-lsbf ⇒ nat-lsbf where
truncate xs = rev (truncate-reversed (rev xs))

We call some 𝑥 of type nat-lsbf truncated if applying truncate to it has no eect:

abbreviation truncated where truncated x ≡ truncate x = x

The section truncating and filling of Binary_Representations/Binary_Representations
now contains a large number of lemmas about properties of the truncate function that are intuitively clear,

which is why we will omit most of them here. Just to give a few examples, we have:

lemma truncate-length-ineq: length (truncate xs) ≤ length xs
lemma truncated-i : truncated x ←→ (x = [] ∨ last x = True)
lemma truncate-as-take:

∧
xs. ∃ n. truncate xs = take n xs

lemma to-nat-eq-imp-truncate-eq: to-nat xs = to-nat ys =⇒ truncate xs = truncate ys
lemma truncate-and-length-eq-imp-eq:
assumes truncate xs = truncate ys length xs = length ys
shows xs = ys

Contrary to deleting trailing zeros, we may also append trailing zeros in order to get a dierent repre-

sentation. This is done with the ll function:

denition ll where ll n xs = xs @ replicate (n − length xs) False

The ll function satises:

lemma to-nat-ll [simp]: to-nat (ll n xs) = to-nat xs
lemma length-ll ′: length (ll n xs) = max n (length xs)
lemma ll-take-com: ll k (take k xs) = take k (ll k xs)

3.3 Comparison and Subtraction

In order to implement comparison on nat-lsbf, we dene the following auxiliary functions:

• compare-nat-same-length-reversed takes two bool lists of the same length as argument and compares

them lexicographically:

fun compare-nat-same-length-reversed :: bool list⇒ bool list⇒ bool where
compare-nat-same-length-reversed [] [] = True
| compare-nat-same-length-reversed (False#xs) (False#ys) = compare-nat-same-length-reversed xs ys
| compare-nat-same-length-reversed (True#xs) (False#ys) = False
| compare-nat-same-length-reversed (False#xs) (True#ys) = True
| compare-nat-same-length-reversed (True#xs) (True#ys) = compare-nat-same-length-reversed xs ys
| compare-nat-same-length-reversed - - = undened

3 Binary Representations

8

• If we have two numbers in the LSBF encoding with equal length, we can reverse them and then

compare them with the lexicographic order:

fun compare-nat-same-length :: nat-lsbf ⇒ nat-lsbf ⇒ bool where
compare-nat-same-length xs ys = compare-nat-same-length-reversed (rev xs) (rev ys)

• In order to compare any two numbers in LSBF encoding, we append zeros to the shorter number,

making both numbers have equal length:

denition make-same-length :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf × nat-lsbf where
make-same-length xs ys = (let n = max (length xs) (length ys) in ((ll n xs), (ll n ys)))

Finally, we dene a comparison function on nat-lsbf :

denition compare-nat :: nat-lsbf ⇒ nat-lsbf ⇒ bool where
compare-nat xs ys = (let (ll-xs, ll-ys) = make-same-length xs ys in compare-nat-same-length ll-xs ll-ys)

Lemma 3.3 [compare-nat-correct]. The denition of compare-nat is correct, i.e. compare-nat xs ys = (to-nat
xs ≤ to-nat ys).

Lemma 3.4 [time-compare-nat-tm-le]. Comparing two numbers of type nat-lsbf can be done in linear time.

Now, we are ready to dene subtraction on nat-lsbf :

denition subtract-nat :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
subtract-nat xs ys = (if compare-nat xs ys then [] else
let (ll-xs, ll-ys) = make-same-length xs ys in
inc-nat (butlast (add-nat ll-xs (map Not ll-ys))))

Lemma 3.5 [subtract-nat-correct]. The denition of subtract-nat is correct, i.e. subtract-nat xs ys = (to-nat
xs) − (to-nat ys).

If the validity of Lemma 3.5 is not clear to the reader, there is also an informal proof in Appendix A.

Lemma 3.6 [time-subtract-nat-tm-le]. Subtracting two numbers of type nat-lsbf can be done in linear time.

3.4 Multiplying/Dividing by Powers of 2

Dividing some number represented in nat-lsbf by a power 2
𝑘
can simply be done by dropping the rst 𝑘

bits.
3
In order to multiply by a power 2

𝑘
, we can just shift the number 𝑘 digits to the right:

denition shift-right :: nat⇒ nat-lsbf ⇒ nat-lsbf where
shift-right n xs = (replicate n False) @ xs

Lemma 3.7 [to-nat-shift-right]. Applying shift-right n to xs eectively multiplies xs by 2
n, i.e. to-nat

(shift-right n xs) = 2 ^ n ∗ to-nat xs.

Lemma 3.8 [time-drop-tm, time-shift-right-tm]. Multiplying or dividing a number of type nat-lsbf by a
power of 2 can be done in linear time.

3.5 Subdividing Lists

For the Karatsuba-Algorithm, we will need to split the binary representation of a number in two halves.

For that, we dene the following functions:

3
See the Isabelle lemma to-nat-drop.

3.6 The bitsize Function

9

fun split-at :: nat⇒ ′a list⇒ ′a list × ′a list where
split-at m xs = (take m xs, drop m xs)

denition split :: nat-lsbf ⇒ nat-lsbf × nat-lsbf where
split xs = (let n = length xs div (2::nat) in split-at n xs)

For the implementation of the Schönhage-Strassen-Algorithm, we also need to split binary representations

into multiple blocks of the same size. Therefore, we dene a function subdivide that, given some 𝑛 > 0 and

some list xs, splits xs into blocks of size 𝑛:

fun subdivide :: nat⇒ ′a list⇒ ′a list list where
subdivide 0 xs = undened
| subdivide n [] = []
| subdivide n xs = take n xs # subdivide n (drop n xs)

For example, we have:

subdivide 2 [0..<6] = [[0, 1], [2, 3], [4, 5]]
subdivide 3 [0..<6] = [[0, 1, 2], [3, 4, 5]]

The number represented by the subdivided list is related to the numbers represented by the blocks as

follows:

Lemma 3.9 [to-nat-subdivide]. Assume 𝑛 > 0 and length xs = 𝑛 · 𝑘 . Then,

to-nat xs =
𝑘−1∑︁
𝑖=0

to-nat (subdivide n xs ! i) · 2𝑖 ·𝑛 .

3.6 The bitsize Function

We dene a function bitsize, which calculates the number of bits needed in order to represent some number

of type nat in nat-lsbf.

fun bitsize :: nat⇒ nat where
bitsize 0 = 0
| bitsize n = 1 + bitsize (n div 2)

Lemma 3.10 [bitsize-eq]. The function bitsize is correct, i.e. bitsize n = length (from-nat n).

Other lemmas can be found in Binary_Representations/Binary_Representations in the section

the bitsize function and include:

lemma bitsize-length: bitsize n ≤ k←→ n < 2 ^ k
lemma bitsize-mono: n1 ≤ n2 =⇒ bitsize n1 ≤ bitsize n2

3.6.1 The next-power-of-2 Function

Using the bitsize function, we can dene another auxiliary function that, when applied to some 𝑛 ∈ ℕ,

returns the smallest power 2
𝑘
s.t. 𝑛 ≤ 2

𝑘
:

fun is-power-of-2 :: nat⇒ bool where
is-power-of-2 0 = False
| is-power-of-2 (Suc 0) = True
| is-power-of-2 n = ((n mod 2 = 0) ∧ is-power-of-2 (n div 2))

fun next-power-of-2 :: nat⇒ nat where
next-power-of-2 n = (if is-power-of-2 n then n else 2 ^ (bit-size n))

3 Binary Representations

10

3.7 Grid Multiplication

The ”usual” multiplication algorithm, also called grid multiplication, multiplies two numbers 𝑥,𝑦 ∈ ℕ

given in binary representation by consecutively adding copies of 𝑦 for every 1 appearing in the represen-

tation of 𝑥 (see Figure 3.2).

1 0 1 1 × 0 1 1

0 1 1

0 1 1

0 1 1

0 1 1 1 0 0 1

=

+
+

=

Figure 3.2 Visualization of grid multiplication.

Using our type nat-lsbf, this procedure can be implemented as follows:

fun grid-mul-nat :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
grid-mul-nat [] - = []
| grid-mul-nat (False#xs) y = False # (grid-mul-nat xs y)
| grid-mul-nat (True#xs) y = add-nat (False # (grid-mul-nat xs y)) y

Lemma 3.11 [grid-mul-nat-correct]. The function grid-mul-nat is correct, i.e. to-nat (grid-mul-nat x y) =
to-nat x ∗ to-nat y.

Lemma 3.12 [time-grid-mul-nat-tm-le]. The implementation of grid-mul-nat has quadratic runtime. More
precisely: If xs has length𝑛 and ys has length𝑚, then the runtime of grid-mul-nat xs ys is inO (𝑛 ·max{𝑛,𝑚}).

11

4 The Karatsuba-Algorithm

The Karatsuba-Algorithm [KO62] is a simple recursive multiplication algorithm that achieves a runtime of

O
(
𝑛log2 3

)
bit operations and hence is an improvement compared to grid multiplication. Let us rst give an

informal explanation of the algorithm. Assume 𝑥,𝑦 ∈ ℕ both have length 2
𝑘+1

in binary representation.

Divide both into smaller blocks 𝑥0, 𝑥1, 𝑦0, 𝑦1 of length 2
𝑘
s.t. 𝑥 = 𝑥0 + 𝑥1 · 2𝑘 and 𝑦 = 𝑦0 + 𝑦1 · 2𝑘 . Then, we

have

𝑥 · 𝑦 = (𝑥0 + 𝑥1 · 2𝑘) · (𝑦0 + 𝑦1 · 2𝑘) = 𝑥0 · 𝑦0 + (𝑥1 · 𝑦0 + 𝑥0 · 𝑦1) · 2𝑘 + 𝑥1 · 𝑦1 · 22𝑘 .

Since multiplications by powers of 2 and addition can both be done in linear time, the time needed in order

to evaluate the right hand side (RHS) of the equation is essentially the time needed for the 4multiplications

of the smaller blocks. The main ingredient of the Karatsuba-Algorithm is the observation that the term

𝑥1 ·𝑦0 + 𝑥0 ·𝑦1 can be replaced by a term that makes use of the results of 𝑥0 ·𝑦0 and 𝑥1 ·𝑦1, needing only 1

additional multiplication of small blocks:

𝑥1 · 𝑦0 + 𝑥0 · 𝑦1 = 𝑥0 · 𝑦0 + 𝑥1 · 𝑦1 − (𝑥0 − 𝑥1) · (𝑦0 − 𝑦1)

Since e.g. 𝑥0 − 𝑥1 might be negative, however, and negative numbers can not be represented in the type

nat-lsbf, we need to be careful when calculating this term. The function subtract-nat dened in Section 3.3

returns 0 if the result in ℤwould be negative (which is consistent with the denition of subtraction on the

type nat).
We begin by dening an auxiliary function that, given some numbers 𝑎, 𝑏, calculates |𝑎 − 𝑏 |:

denition abs-di :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
abs-di x y = add-nat (subtract-nat x y) (subtract-nat y x)

Using this function, we will rst calculate |𝑥0 − 𝑥1 | · |𝑦0 − 𝑦1 | and then, depending on the sign of (𝑥0 −𝑥1) ·
(𝑦0 − 𝑦1), add to or subtract from 𝑥0 · 𝑦0 + 𝑥1 · 𝑦1:

𝑥0 · 𝑦0 + 𝑥1 · 𝑦1 − (𝑥0 − 𝑥1) · (𝑦0 − 𝑦1)

=

{
𝑥0 · 𝑦0 + 𝑥1 · 𝑦1 − |𝑥0 − 𝑥1 | · |𝑦0 − 𝑦1 | if (𝑥0 ≤ 𝑥1) ←→ (𝑦0 ≤ 𝑦1)
𝑥0 · 𝑦0 + 𝑥1 · 𝑦1 + |𝑥0 − 𝑥1 | · |𝑦0 − 𝑦1 | else

Example 4.1. Consider the LSBF representations 𝑥 = 0111 and 𝑦 = 1101 of length 4. We start by building
the smaller blocks:

1 0 1 1

𝑥0 𝑥1

1 1 0 1

𝑦0 𝑦1

𝑥 = 𝑦 =

Next, we calculate the absolute dierences:

0 1 1 0|𝑥0 − 𝑥1 | = |𝑦0 − 𝑦1 | =

Now, we perform the three necessary multiplications recursively or simply by grid multiplication:

1 1𝑥0 · 𝑦0 =

0 1 1𝑥1 · 𝑦1 =

0 1|𝑥0 − 𝑥1 | · |𝑦0 − 𝑦1 | =

4 The Karatsuba-Algorithm

12

Since 𝑥0 ≤ 𝑥1, but𝑦0 > 𝑦1, we need to add the three results in order to obtain 𝑥0 ·𝑦0+𝑥1 ·𝑦1−(𝑥0−𝑥1) · (𝑦0−𝑦1):

1 1

0 1 1

0 1

1 1 0 1

+
+

=

Finally, we can combine this result with the results 𝑥0 · 𝑦0 and 𝑥1 · 𝑦1 to the term 𝑥0 · 𝑦0 + (𝑥0 · 𝑦0 + 𝑥1 · 𝑦1 −
(𝑥0 − 𝑥1) · (𝑦0 − 𝑦1)) · 22 + 𝑥1 · 𝑦1 · 24 = 𝑥 · 𝑦:

1 1

1 1 0 1

0 1 1

1 1 1 1 0 0 0 1

+
+

=

The assumption that the length of the input numbers 𝑥,𝑦 is some power 2
𝑘
is needed to assure that

not only 𝑥 and 𝑦 are of the same length, but also the input numbers of each recursive call have matching

lengths. Our rst version of the algorithm now looks like this:

fun karatsuba-on-power-of-2-length :: nat⇒ nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
karatsuba-on-power-of-2-length k x y =

(if k ≤ karatsuba-lower-bound
then grid-mul-nat x y
else let
(x0, x1) = split x;
(y0, y1) = split y;
k-div-2 = (k div 2);
prod0 = karatsuba-on-power-of-2-length k-div-2 x0 y0;
prod1 = karatsuba-on-power-of-2-length k-div-2 x1 y1;
prod2 = karatsuba-on-power-of-2-length k-div-2
(ll k-div-2 (abs-di x0 x1))
(ll k-div-2 (abs-di y0 y1));

add01 = add-nat prod0 prod1;
r = (if (compare-nat x1 x0) = (compare-nat y1 y0)
then subtract-nat add01 prod2
else add-nat add01 prod2)

in
add-nat
(add-nat prod0 (shift-right k-div-2 r))
(shift-right k prod1))

The rst argument 𝑘 is the length of the two numbers 𝑥 and 𝑦. karatsuba-lower-bound is any constant in

ℕ≥1. We get the following correctness result:

Lemma 4.2 [karatsuba-on-power-of-2-length-correct]. Assume 𝑘 = 2
𝑙 , length x = k and length y = k. Then,

to-nat (karatsuba-on-power-of-2-length k x y) = to-nat x ∗ to-nat y.

Now, if 𝑥,𝑦 ∈ ℕ are given in binary representation without any assumption on their length, we can just

append trailing zeros to satisfy the assumptions of Lemma 4.2. Using our next-power-of-2 function from

section 3.6.1 , we dene:

fun karatsuba-mul-nat :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
karatsuba-mul-nat x y = (let k = next-power-of-2 (max (length x) (length y)) in
karatsuba-on-power-of-2-length k (ll k x) (ll k y))

13

The correctness theorem is now an easy corollary from Lemma 4.2:

Lemma 4.3 [karatsuba-mul-nat-correct]. The function karatsuba-mul-nat is correct, i.e.

to-nat (karatsuba-mul-nat x y) = to-nat x ∗ to-nat y.

The runtime proof is a bit more complicated:

Lemma 4.4 [time-karatsuba-mul-nat-tm-le, time-karatsuba-mul-nat-bound-bigo]. Given binary represen-
tations xs and ys, karatsuba-mul-nat xs ys multiplies xs and ys in a runtime of O

(
𝑚log

2
3
)
, where 𝑚 =

max{length xs, length ys}.

Proof. The proof proceeds in the following steps:

1. Show a runtime bound for the auxiliary function karatsuba-on-power-of-2-length:
(i) Dene a recursive function ℎ : ℕ→ ℕ according to the structure of

karatsuba-on-power-of-2-length:

ℎ(𝑘) :=
{
O

(
𝑘2

)
if 𝑘 ≤ karatsuba-lower-bound

O (𝑘) + 3 · ℎ(𝑘/2) else.

(ii) Show that ℎ indeed is a runtime bound.
1

(iii) Show that ℎ ∈ O
(
𝑘 log2 3

)
. This is done by dening a variant h-real : ℕ → ℝ, for which the

master-theorem tactic of the Akra-Bazzi theory [Ebe15] can be applied.
2

2. Use that bound to obtain a statement about the runtime of karatsuba-mul-nat:
(i) Dene a function𝑔3 : ℕ→ ℕ that upper-bounds the runtime of karatsuba-mul-nat. In particu-

lar, 𝑔(𝑚) should bound the runtime of our Karatsuba implementation on inputs with maximum

length𝑚. Due to our conservative assumptions on the runtime of functions on nat and accord-
ing to the denition of karatsuba-mul-nat, this function is chosen as

𝑔(𝑚) := O (𝑘) + ℎ(𝑘),

where 𝑘 is the result of next-power-of-2 m (see section 3.6.1).

(ii) Show that 𝑔 indeed is a runtime bound of karatsuba-mul-nat.4

(iii) Show that 𝑔 ∈ O
(
𝑚log

2
3
)
. An informal

5
proof is as follows: Since 𝑘 is the smallest power of 2

which is larger than𝑚, we have 𝑘 ≤ 2 ·𝑚, i.e. 𝑘 =: 𝑘 (𝑚) ∈ O (𝑚). Moreover, by 1. (iii) we have

O (𝑘) + ℎ(𝑘) = O
(
𝑘 log2 3

)
. Lemma 4.5 now shows that indeed 𝑔(𝑚) ∈ O

(
𝑚log

2
3
)
.

Lemma 4.5 [powr-bigo-linear-index-transformation]. Assume 𝑖 : ℕ → ℕ is linearly bounded, i.e. 𝑖 (𝑛) ∈
O (𝑛), and 𝑓 ∈ O (𝑛𝑝) with 𝑝 > 0 and 𝑓 : ℕ→ ℝ. Then, 𝑓 (𝑖 (𝑛)) ∈ O (𝑛𝑝).

Proof. By assumption, there exist constants 𝑐1, 𝑐2 > 0 and 𝑁1, 𝑁2 ∈ ℕ s.t.

𝑖 (𝑛) ≤ 𝑐1 · 𝑛, (𝑛 ≥ 𝑁1) (4.1)

|𝑓 (𝑛) | ≤ 𝑐2 · 𝑛𝑝 . (𝑛 ≥ 𝑁2) (4.2)

Hence, if 𝑛 ≥ 𝑁1 and 𝑖 (𝑛) ≥ 𝑁2, we have

|𝑓 (𝑖 (𝑛)) |
(4.2)
≤ 𝑐1 · 𝑖 (𝑛)𝑝

(4.1)
≤ 𝑐1 · 𝑐𝑝

2︸︷︷︸
=:𝑐

·𝑛𝑝 .

1
This is done in the Isabelle lemma time-karatsuba-on-power-of-2-length-tm-le-h.

2
See the Isabelle lemma h-real-bigo.

3
This function is called time-karatsuba-mul-nat-bound in the Isabelle code.

4
This is done in the Isabelle lemma time-karatsuba-mul-nat-tm-le.

5
Formally, this is done in the Isabelle lemma time-karatsuba-mul-nat-bound-bigo.

4 The Karatsuba-Algorithm

14

Since there are only nitely many 𝑗 ≤ 𝑁2, we can dene

𝑐 𝑓 := max

𝑗≤𝑁2

|𝑓 (𝑗) |.

Hence, for all 𝑛 ∈ ℕ with 𝑖 (𝑛) ≤ 𝑁2, we have

|𝑓 (𝑖 (𝑛)) | ≤ 𝑐 𝑓 ,

and so we can conclude that for all 𝑛 ≥ 𝑁1, we have

|𝑓 (𝑖 (𝑛)) | ≤ 𝑐 𝑓 + 𝑐 · 𝑛𝑝 .

Since O
(
𝑐 𝑓 + 𝑐 · 𝑛𝑝

)
= O (𝑛𝑝), we are done.

15

5 Number Theoretic Transforms

In this chapter, let (𝑅, +, ·, 0, 1) be a commutative ring, and 𝑅× := { 𝑥 ∈ 𝑅 | ∃𝑦 ∈ 𝑅 : 𝑥 · 𝑦 = 1 } be the unit
group of 𝑅.

5.1 Number Theoretic Transforms

Denition 5.1 [root-of-unity-def, primitive-root-def]. Let 𝑛 > 0. An element ` ∈ 𝑅 is called
(a) (𝑛-th) root of unity if `𝑛 = 1

(b) (𝑛-th) primitive root if `𝑛 = 1 and `𝑖 ≠ 1 for all 𝑖 ∈ {1..<𝑛}.
In a context where 𝑛 is xed, we dene the group of roots of unity 𝑅1

:= { ` ∈ 𝑅 | ` is an 𝑛-th root of unity }.

Lemma 5.2 [roots-of-unity-group-is-group]. Let 𝑛 > 0. Then, (𝑅1, ·, 1) is a group. In particular, if ` is a root
of unity, so is `𝑖 for any 𝑖 ∈ ℤ.

Proof. 1𝑛 = 1, so 1 ∈ 𝑅1
. Moreover, for 𝑥,𝑦 ∈ 𝑅1

, we have (𝑥 · 𝑦)𝑛 = 𝑥𝑛 · 𝑦𝑛 = 1, so 𝑥 · 𝑦 ∈ 𝑅1
. Hence, 𝑅1

is

a submonoid of the multiplicative monoid 𝑅. Now, for any 𝑥 ∈ 𝑅1
, we have 𝑥 · 𝑥𝑛−1 = 𝑥𝑛 = 1, i.e. 𝑥 has an

inverse in 𝑅1
.

Lemma 5.3 [primitive-root-inv, primitive-root-recursion]. Assume ` is an 𝑛-th primitive root. Then:
(a) `−1 is an 𝑛-th primitive root.
(b) If 𝑛 = 2𝑘 , then `2 is a 𝑘-th primitive root.

Proof. (a) According to Lemma 5.2, `−1 is a root of unity. Now, let 𝑖 ∈ {1..<𝑛} and assume

(
`−1

)𝑖
= 1.

Then, also 1 = `𝑛 · `−𝑖 = `𝑛−𝑖 . But since 𝑛 − 𝑖 ∈ {1..<𝑛}, this contradicts the assumption that ` is an

𝑛-th primitive root.

(b) Obviously, we have

(
`2

)𝑘
= `𝑛 = 1. Moreover, let 𝑖 ∈ {1..<𝑘}. Then,

(
`2

)𝑖
= `2𝑖 , and since

2𝑖 ∈ {1..<𝑛}, it follows that `2𝑖 ≠ 1.

Denition 5.4 [NTT-def, cyclic-convolution-def]. Let ` ∈ 𝑅, and 𝑎 = (𝑎0, . . . , 𝑎𝑛−1) ∈ 𝑅𝑛 . The Number
Theoretic Transform (NTT) of 𝑎 w.r.t. ` is dened as

NTT` (𝑎)𝑖 :=
𝑛−1∑︁
𝑗=0

𝑎 𝑗 ·
(
`𝑖

) 𝑗 (𝑖 ∈ {0, . . . , 𝑛 − 1}).

For another vector 𝑏 = (𝑏0, . . . , 𝑏𝑛−1) ∈ 𝑅𝑛 , we dene the cyclic convolution 𝑎 ★𝑏 ∈ 𝑅𝑛 by

(𝑎 ★𝑏)𝑖 :=
𝑛−1∑︁
𝑗=0

𝑛−1∑︁
𝑘=0

𝑗+𝑘≡𝑛𝑖

𝑎 𝑗 · 𝑏𝑘 =

𝑛−1∑︁
𝑗=0

𝑎 𝑗 · 𝑏 (𝑖− 𝑗) mod𝑛 (𝑖 ∈ {0, . . . , 𝑛 − 1}).

As it turns out, the classic convolution rule for discrete fourier transforms carries over to NTTs, as long

as the NTT is done w.r.t a root of unity.

Lemma 5.5 [root-of-unity-power-sum-product]. Assume ` is an 𝑛-th root of unity. Then(
𝑛−1∑︁
𝑖=0

𝑎𝑖 · `𝑖
)
·
(
𝑛−1∑︁
𝑗=0

𝑏 𝑗 · ` 𝑗
)
=

𝑛−1∑︁
𝑘=0

𝑛−1∑︁
𝑖=0

𝑎𝑖 · 𝑏 (𝑛+𝑘−𝑖) mod𝑛 · `𝑘 .

5 Number Theoretic Transforms

16

Proof. Because ` is an 𝑛-th root of unity, we have `𝑖 = ` 𝑗 for all 𝑖, 𝑗 ∈ ℤ with 𝑖 ≡𝑛 𝑗 . Moreover, the map

𝑗 ↦→ (𝑛 + 𝑗 − 𝑖)mod𝑛 denes a permutation of {0, . . . , 𝑛 − 1} for any 𝑖 ∈ {0, . . . , 𝑛 − 1}. Thus:(
𝑛−1∑︁
𝑖=0

𝑎𝑖 · `𝑖
)
·
(
𝑛−1∑︁
𝑗=0

𝑏 𝑗 · ` 𝑗
)
=

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑎𝑖 · 𝑏 𝑗 · `𝑖+𝑗

=

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑎𝑖 · 𝑏 (𝑛+𝑗−𝑖) mod𝑛 · `𝑖+(𝑛+𝑗−𝑖) mod𝑛
(index permutation)

=

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑎𝑖 · 𝑏 (𝑛+𝑗−𝑖) mod𝑛 · ` 𝑗 (𝑖 + (𝑛 + 𝑗 − 𝑖)mod𝑛 ≡𝑛 𝑗 .)

Theorem 5.6 (Convolution rule) [convolution-rule]. Let 𝑎 = (𝑎0, . . . , 𝑎𝑛−1), 𝑏 = (𝑏0, . . . , 𝑏𝑛−1) ∈ 𝑅𝑛 and
assume ` is an 𝑛-th root of unity. Then, for all 𝑖 ∈ {0, . . . , 𝑛 − 1}, we have

NTT` (𝑎)𝑖 · NTT` (𝑏)𝑖 = 𝑁𝑇𝑇` (𝑎 ★𝑏)𝑖 .

Proof. By Lemma 5.2, `𝑖 is also an 𝑛-th root of unity. Hence, we have

NTT` (𝑎)𝑖 · NTT` (𝑏)𝑖 =
(
𝑛−1∑︁
𝑗=0

𝑎 𝑗 ·
(
`𝑖

) 𝑗) · (𝑛−1∑︁
𝑘=0

𝑏𝑘 ·
(
`𝑖

)𝑘)
=

𝑛−1∑︁
𝑘=0

𝑛−1∑︁
𝑗=0

𝑎 𝑗 · 𝑏 (𝑛+𝑘− 𝑗) mod𝑛 ·
(
`𝑖

)𝑘
(Lemma 5.5)

=

𝑛−1∑︁
𝑘=0

(𝑎 ★𝑏)𝑘 ·
(
`𝑖

)𝑘
= NTT` (𝑎 ★𝑏)𝑖

Other results like the inversion rule, however, need additional assumptions. This motivates our next

denition.

Denition 5.7. Let ` be an 𝑛-th primitive root.
(a) ` is called good if ∀𝑖 ∈ {1..<𝑛} : ∑𝑛−1

𝑗=0

(
`𝑖

) 𝑗
= 0.

(b) If 𝑛 = 2𝑘 , ` is said to satisfy the halfway property if `𝑘 = −1.

Lemma 5.8 [inv-good, inv-halfway-property]. Let ` be an 𝑛-th primitive root.
(a) If ` is good, so is `−1.
(b) If ` satises the halfway property, so does `−1.

Proof. (a) Assume ` is good and let 𝑖 ∈ {1..<𝑛}. Then 𝑛 − 𝑖 ∈ {1..<𝑛} and hence, since `𝑛 = 1,

0 =

𝑛−1∑︁
𝑗=0

(
`𝑛−𝑖

) 𝑗
=

𝑛−1∑︁
𝑗=0

(
`−𝑖

) 𝑗
.

(b) If `𝑘 = −1, then
(
`−1

)𝑘
=

(
`𝑘

)−1
= (−1)−1 = −1.

Before we can state the inversion rule, we still need one more thing. Note that there exists a unique ring

homomorphism 𝜑 : ℤ → 𝑅, given by 𝜑 (0) := 0, 𝜑 (𝑛 + 1) := 𝜑 (𝑛) + 1 and 𝜑 (−𝑛) := −𝜑 (𝑛) (𝑛 ≥ 0). For

simplicity, we will just write 𝑛 ∈ 𝑅 instead of 𝜑 (𝑛) ∈ 𝑅.

5.1 Number Theoretic Transforms

17

Theorem 5.9 (Inversion rule) [inversion-rule]. Let ` be a good 𝑛-th primitive root and 𝑎 = (𝑎0, . . . , 𝑎𝑛−1) ∈
𝑅𝑛 . Then

NTT`−1
(
NTT` (𝑎)

)
= 𝑛 · 𝑎,

where 𝑛 · 𝑎 = (𝑛 · 𝑎0, . . . , 𝑛 · 𝑎𝑛−1).

Proof. Let 𝑖 ∈ {0, . . . , 𝑛 − 1}. Then,

NTT`−1
(
NTT` (𝑎)

)
𝑖
=

𝑛−1∑︁
𝑗=0

NTT` (𝑎) 𝑗 ·
(
`−𝑖

) 𝑗
=

𝑛−1∑︁
𝑗=0

𝑛−1∑︁
𝑘=0

𝑎𝑘 ·
(
` 𝑗

)𝑘 · (`−𝑖) 𝑗
=

𝑛−1∑︁
𝑘=0

(
𝑎𝑘 ·

𝑛−1∑︁
𝑗=0

(
`𝑘−𝑖

) 𝑗)
.

In order to continue, let 𝑘 ∈ {0, . . . , 𝑛 − 1} and consider three cases:

Case 1: 𝑘 = 𝑖 . Then, 𝑘 − 𝑖 = 0, and hence

𝑛−1∑︁
𝑗=0

(
`𝑘−𝑖

) 𝑗
=

𝑛−1∑︁
𝑗=0

1 = 𝑛.

Case 2: 𝑘 > 𝑖 . Then 𝑘 − 𝑖 ∈ {1..<𝑛}, and hence, since ` was assumed to be good,

𝑛−1∑︁
𝑗=0

(
`𝑘−𝑖

) 𝑗
= 0.

Case 3: 𝑘 < 𝑖 . Then 𝑖 − 𝑘 ∈ {1..<𝑛}. Moreover, `−1 is good because of Lemma 5.8 (a). Hence,

𝑛−1∑︁
𝑗=0

(
`𝑘−𝑖

) 𝑗
=

𝑛−1∑︁
𝑗=0

((
`−1

)𝑖−𝑘) 𝑗
= 0.

So, we can continue our calculation as follows:

𝑛−1∑︁
𝑘=0

(
𝑎𝑘 ·

𝑛−1∑︁
𝑗=0

(
`𝑘−𝑖

) 𝑗)
=

𝑛−1∑︁
𝑘=0

(
𝑎𝑘 · 𝑛 · 𝛿𝑖,𝑘

)
= 𝑛 · 𝑎𝑖 .

The following lemma now gives sucient conditions which assure ` is a good primitive root in all

situations that we will consider. Note that, in particular, the lemma implies that if 𝑅 is a eld, any primitive

root is good.

Lemma 5.10 [suciently-good]. Let ` be an 𝑛-th primitive root and assume
(a) 𝑅 is an integral domain or
(b) 𝑛 = 2

𝑘 for some 𝑘 > 0 and ` satises the halfway property.
Then, ` is good.

Proof. Let 𝑖 ∈ {1..<𝑛}. We show

∑𝑛−1
𝑗=0

(
`𝑖

) 𝑗
= 0 in either case.

(a) Note that, since ` is a primitive root, `𝑖 ≠ 1, i.e. 1 − `𝑖 ≠ 0. Since `𝑛 = 1, we have

(
`𝑖

)𝑛
= 1, and

hence

0 = 1 −
(
`𝑖

)𝑛
=

(
1 − `𝑖

)
·
(
𝑛−1∑︁
𝑗=0

(
`𝑖

) 𝑗)
using Lemma 2.1 Since 𝑅 is an integral domain and 1 − `𝑖 ≠ 0, this shows

∑𝑛−1
𝑗=0

(
`𝑖

) 𝑗
= 0.

5 Number Theoretic Transforms

18

(b) Write 𝑖 = 𝑟 · 2𝑙 with 𝑟 odd. We show the claim by induction on 𝑙1.

Case 𝑙 = 0: We have

𝑛−1∑︁
𝑗=0

(`𝑟) 𝑗 =
2
𝑘−1−1∑︁
𝑗=0

(`𝑟) 𝑗 +
2
𝑘−1−1∑︁
𝑗=0

(`𝑟)2
𝑘−1+𝑗

=

2
𝑘−1−1∑︁
𝑗=0

(
(`𝑟) 𝑗 + (`𝑟)2

𝑘−1+𝑗
)
.

Since ` satises the halfway property, i.e. `2
𝑘−1

= −1, we have

(`𝑟)2
𝑘−1+𝑗

=

(
`2

𝑘−1
)𝑟
· (`𝑟) 𝑗 = (−1)𝑟 · (`𝑟) 𝑗 𝑟 odd

= − (`𝑟) 𝑗 .

In particular, the above sum evaluates to 0.

Case 𝑙 > 0: Note that

𝑛−1∑︁
𝑗=0

(
`𝑟 ·2

𝑙
) 𝑗

=

2
𝑘−1−1∑︁
𝑗=0

((
`2

)𝑟 ·2𝑙−1) 𝑗 + 2
𝑘−1−1∑︁
𝑗=0

((
`2

)𝑟 ·2𝑙−1)2𝑘−1+𝑗
and ((

`2
)𝑟 ·2𝑙−1)2𝑘−1+𝑗

=

(
`2

𝑘
)𝑟 ·2𝑙−1

·
((
`2

)𝑟 ·2𝑙−1) 𝑗
=

((
`2

)𝑟 ·2𝑙−1) 𝑗
since `2

𝑘

= 1, so

𝑛−1∑︁
𝑗=0

(
`𝑟 ·2

𝑙
) 𝑗

= 2

2
𝑘−1−1∑︁
𝑗=0

((
`2

)𝑟 ·2𝑙−1) 𝑗
.

Moreover, `2 is a 2
𝑘−1

-th primitive root by Lemma 5.3 (b). In order to use our induction hy-

pothesis (concluding that the sum is 0), we need to show that 𝑘 −1 > 0, `2 satises the halfway

property and that 𝑟 · 2𝑙−1 ∈ {1..<2𝑘−1}.
First, assume for contradiction that 𝑘 − 1 = 0. Then, 𝑛 = 2

𝑘 = 2, and since 𝑖 = 𝑟 · 2𝑙 < 𝑛, it

follows that 𝑟 · 2𝑙 < 2. But 𝑙 > 0 and 𝑟 is odd, a contradiction.

So, indeed 𝑘 − 1 > 0. Moreover, (
`2

)
2
𝑘−2

= `2
𝑘−1

= −1,

i.e. `2 satises the halfway property. Finally, 1 ≤ 𝑟 · 2𝑙−1 (since 𝑟 is odd) and 𝑟 · 2𝑙−1 = 1

2
· 𝑟 · 2𝑙 <

1

2
· 𝑛 = 2

𝑘−1
.

5.2 Fast Number Theoretic Transforms

If we calculate the NTT via its denition NTT` (𝑎)𝑖 =
∑𝑛−1

𝑗=0 𝑎 𝑗 ·
(
`𝑖

) 𝑗
, we need to iterate over 𝑎 for every

index 𝑖 < 𝑛. This results in a quadratic runtime in 𝑛 (measured in ring operations). The Fast Number

Theoretic Transform (FNTT) is an algorithm that obtains a better runtime of O (𝑛 log𝑛) ring operations

and was already formalized for NTTs in elds by Ammer and Kreuzer [AK22]. We adapt the implemen-

tation to our needs, but will not prove runtime bounds in terms of ring operations. Instead, we will later

show runtime bounds in terms of bit operations for concrete implementations of the FNTT in our rings of

interest. First, let us show the following lemma that lies at the heart of the FNTT.

1
Note that during the induction, 𝑛 and ` will change, i.e. we cannot do a simple induction on 𝑙 in the xed context of our lemma.

For formal details, we refer to the corresponding Isabelle lemma.

5.2 Fast Number Theoretic Transforms

19

Lemma 5.11 [NTT-recursion-1, NTT-recursion-2]. Assume 𝑛 = 2𝑘 is even. Let ` be an 𝑛-th primitive root
that satises the halfway property (i.e. `𝑘 = −1) and assume 𝑎 = (𝑎0, . . . , 𝑎𝑛−1) ∈ 𝑅𝑛 . Write 𝑎even :=

(𝑎0, 𝑎2, . . . , 𝑎𝑛−2) and 𝑎odd := (𝑎1, 𝑎3, . . . , 𝑎𝑛−1). Then, for any 𝑗 < 𝑘 , we have

NTT` (𝑎) 𝑗 = NTT`2 (𝑎even) 𝑗 + ` 𝑗 · NTT`2 (𝑎odd) 𝑗
NTT` (𝑎)𝑘+𝑗 = NTT`2 (𝑎even) 𝑗 − ` 𝑗 · NTT`2 (𝑎odd) 𝑗

Proof. Splitting even and odd terms, we obtain

NTT` (𝑎) 𝑗 =
𝑛−1∑︁
𝑖=0

𝑎𝑖 · `𝑖 𝑗

=

𝑘−1∑︁
𝑖=0

𝑎2𝑖 · `2𝑖 𝑗 +
𝑘−1∑︁
𝑖=0

𝑎2𝑖+1 · ` (2𝑖+1) 𝑗

=

𝑘−1∑︁
𝑖=0

𝑎2𝑖 ·
(
`2

)𝑖 𝑗 + ` 𝑗 · 𝑘−1∑︁
𝑖=0

𝑎2𝑖+1 ·
(
`2

)𝑖 𝑗
= NTT`2 (𝑎even) 𝑗 + ` 𝑗 · NTT`2 (𝑎odd) 𝑗

and similarly

NTT` (𝑎)𝑘+𝑗 =
𝑛−1∑︁
𝑖=0

𝑎𝑖 · `𝑖 (𝑘+𝑗)

=

𝑘−1∑︁
𝑖=0

𝑎2𝑖 · `2𝑖 (𝑘+𝑗) +
𝑘−1∑︁
𝑖=0

𝑎2𝑖+1 · ` (2𝑖+1) (𝑘+𝑗)

=

𝑘−1∑︁
𝑖=0

𝑎2𝑖 ·
(
`2

)𝑖 𝑗 · (`2𝑘)𝑖︸︷︷︸
=1

+ `𝑘︸︷︷︸
=−1

·` 𝑗 ·
𝑘−1∑︁
𝑖=0

𝑎2𝑖+1 ·
(
`2

)𝑖 𝑗 · (`2𝑘)𝑖︸︷︷︸
=1

= NTT`2 (𝑎even) 𝑗 − ` 𝑗 · NTT`2 (𝑎odd) 𝑗 .

Moreover, the Schönhage-Strassen-Algorithm relies on the following lemma:

Lemma 5.12 [NTT-dis]. In the situation of Lemma 5.11, we have

NTT` (𝑎) 𝑗 − NTT` (𝑎)𝑘+𝑗 = 2 · ` 𝑗 · NTT`2 (𝑎odd) 𝑗 .

Proof. The equation follows by just inserting the equalities given in Lemma 5.11.

Lemma 5.11 immediately yields a recursive procedure to calculate the NTT for vectors of a length which

is a power of 2. We will write our rst version similarly as in [AK22]:

fun FNTT ::
′a⇒ ′a list⇒ ′a list where

FNTT ` [] = []
| FNTT ` [x] = [x]
| FNTT ` [x, y] = [x ⊕ y, x 	 y]
| FNTT ` a = (let n = length a;

nums1 = [a!i. i← lter even [0..<n]];
nums2 = [a!i. i← lter odd [0..<n]];
b = FNTT (` [^] (2::nat)) nums1;
c = FNTT (` [^] (2::nat)) nums2;
g = [b!i ⊕ (` [^] i) ⊗ c!i. i← [0..<(n div 2)]];
h = [b!i 	 (` [^] i) ⊗ c!i. i← [0..<(n div 2)]]

in g@h)

5 Number Theoretic Transforms

20

Theorem5.13 [FNTT-NTT]. Let𝑛 = 2
𝑘 , ` be an𝑛-th primitive root with `2

𝑘−1
= −1, and𝑎 = (𝑎0, . . . , 𝑎𝑛−1) ∈

𝑅𝑛 . Then, FNTT ` a = NTT` (𝑎).

Proof. The proof is done via induction on ` and 𝑎 with induction rule FNTT.induct. The recursive case

then follows from Lemma 5.11. For details, we refer to the corresponding Isabelle proof.

As described in [AK22], the list comprehensions need to be implemented carefully in order to get the

desired runtime. Similarly as in [AK22] we therefore dene a second algorithm FNTT ′ that makes use of

the evens-odds function dened in Number_Theoretic_Transform.Butterfly in order to get rid of

the rst two list comprehensions. In a second step, we dene a third algorithm FNTT ′′ that rewrites the
last two list comprehensions in a way so that the verication of our concrete implementation in the ring

ℤ𝐹𝑛 (given in section 6.2) becomes a bit easier. We end up with the following algorithm:

fun FNTT ′′ :: ′a⇒ ′a list⇒ ′a list where
FNTT ′′ ` [] = []
| FNTT ′′ ` [x] = [x]
| FNTT ′′ ` [x, y] = [x ⊕ y, x 	 y]
| FNTT ′′ ` a = (let n = length a;

nums1 = evens-odds True a;
nums2 = evens-odds False a;
b = FNTT ′′ (` [^] (2::nat)) nums1;
c = FNTT ′′ (` [^] (2::nat)) nums2;
g = map2 (⊕) b (map2 (⊗) [` [^] i. i← [0..<(n div 2)]] c);
h = map2 (_x y. x 	 y) b (map2 (⊗) [` [^] i. i← [0..<(n div 2)]] c)

in g@h)

Agreement of FNTT, FNTT ′and FNTT ′′ is shown in the Isabelle lemmas FNTT ′-FNTT and FNTT ′′-FNTT ′.

21

6 The Schönhage-Strassen-Algorithm

6.1 Preliminaries

We will use the theory HOL-Number_Theory.Residues, which denes residue rings ℤ𝑛 by using the

carrier set {0..𝑛 − 1} with elements of type int.

6.1.1 Representations in ℤ
2
𝑘

For this subsection, x some 𝑘 ∈ ℕ>0 and write 𝑛 = 2
𝑘
.

We will represent the elements of ℤ𝑛 by boolean lists of length 𝑘 with the least signicant bit coming

rst (LSBF). For the correctness proofs, we dene the encoding/decoding functions from-residue-ring and

to-residue-ring:1

denition to-residue-ring :: nat-lsbf ⇒ int where
to-residue-ring xs = int (to-nat xs) mod int n

denition from-residue-ring :: int⇒ nat-lsbf where
from-residue-ring x = ll k (from-nat (nat x))

In order to get from any representation of a number in ℕ to the representation of its residue modulo 2
𝑘
,

we further dene the function reduce, which just takes the 𝑘 least signicant bits (or appends trailing zeros

if necessary). In total, we have the following conversion functions:
2

ℤ𝑛
∧
= residue-ring n

nat-lsbf
(length 𝑘)

ℕ
∧
= nat

nat-lsbfreduce

to-residue-ringfrom-residue-ring to-nat from-nat

_x . int x mod n

Addition can just be transferred from the nat-lsbf type using the reduce function:

denition add-mod where
add-mod x y = reduce (add-nat x y)

However, since ℤ𝑛 is a ring, additive inverses always exist. Hence, we do not want to transfer the subtrac-

tion from nat-lsbf, but dene it s.t. it matches the subtraction in ℤ𝑛 . Considering two elements 𝑥,𝑦 ∈ ℤ𝑛

with 𝑥 ≤ 𝑦, we note that 𝑥 + 2𝑘 ≥ 𝑦 in ℕ and that 𝑥 ≡ 𝑥 + 2𝑘 mod 𝑛. So, the subtraction may be dened

as follows:

denition subtract-mod where
subtract-mod xs ys =
(if compare-nat xs ys then

1
The application of mod int n in the denition of to-residue-ring is not necessary, but makes some lemmas easier.

2
This is not a commutative diagram! (But it would be one without the from functions.)

6 The Schönhage-Strassen-Algorithm

22

reduce (subtract-nat ((ll k xs) @ [True]) ys)
else
subtract-nat xs ys)

Lemma 6.1 [time-add-mod-tm-le, time-subtract-mod-tm-le]. Addition and subtraction in ℤ
2
𝑘 can be done

in linear time.

6.1.2 Representations in ℤ𝐹𝑘

For this subsection, x some 𝑘 ∈ ℕ and let 𝑛 := 𝐹𝑘 := 2
2
𝑘 + 1.

Elements ofℤ𝑛 will be represented by boolean lists of length 2
𝑘+1

in the LSBF encoding. This introduces

a non-uniqueness dierent than the possibility of trailing zeros, since e.g. the binary encodings of 0 and

𝑛 of length 2
𝑘+1

both represent the same number 0 ∈ ℤ𝑛 . This non-uniqueness can be eliminated by

yet another function reduce, that, given some list 𝑥 in this non-unique representation, produces a binary

encoding of 𝑥 mod𝑛. Moreover, we have conversion functions from-residue-ring and to-residue-ring from

and to ℤ𝐹𝑘 similar as with ℤ
2
𝑘 . Finally, we also implement a function from-nat-lsbf that can be used to

obtain a non-unique representation of length 2
𝑘+1

for the residue of any number in LSBF representation

modulo 𝑛.

Here is an overview of the conversion functions:

ℤ𝑛
∧
= residue-ring n

nat-lsbf
(length 2

𝑘+1
)

ℕ
∧
= nat

nat-lsbf
nat-lsbf

(value < 𝑛)

from-nat-lsbf

to-residue-ringfrom-residue-ring to-nat from-nat

_x . int x mod n

reduce

Both implementations of reduce and from-nat-lsbf make use of the fact that in ℤ𝐹𝑘 , we have 2
2
𝑘 ≡ −1,

and hence also 2
2
𝑘+1 ≡ 1. The reduce function takes some number 𝑥 of length 2

𝑘+1
as argument, which can

be split into two numbers 𝑦, 𝑧 of length 2
𝑘
each. Their values are related by 𝑥 = 𝑦 + 𝑧 · 22𝑘 ≡ 𝑦 − 𝑧, and a

representant of 𝑥 in {0..<𝑛} may hence be calculated as follows:

𝑥 mod𝑛 =

{
𝑦 − 𝑧 if 𝑦 ≥ 𝑧

(𝑦 + 𝑛) − 𝑧 else.

In order to implement the function from-nat-lsbf, we note that for any 𝑙 ∈ ℕ and 𝑎𝑖 ∈ ℕ (𝑖 ∈ {0, . . . , 𝑙}):

𝑙∑︁
𝑖=0

𝑎𝑖 · 2𝑖 ·2
𝑘+1 ≡

𝑙∑︁
𝑖=0

𝑎𝑖

Hence, the implementation of these four functions can be done as follows:

fun to-residue-ring :: nat-lsbf ⇒ int where
to-residue-ring xs = int (to-nat xs) mod int n
fun from-residue-ring :: int⇒ nat-lsbf where
from-residue-ring x = ll (2 ^ (k + 1)) (from-nat (nat x))

denition reduce :: nat-lsbf ⇒ nat-lsbf where
reduce xs = (let (ys, zs) = split xs in
if compare-nat zs ys then

6.1 Preliminaries

23

subtract-nat ys zs
else
subtract-nat (add-nat (True # replicate (2 ^ k − 1) False @ [True]) ys) zs)

function from-nat-lsbf :: nat-lsbf ⇒ nat-lsbf where
from-nat-lsbf xs = (if length xs ≤ 2 ^ (k + 1) then ll (2 ^ (k + 1)) xs

else from-nat-lsbf (add-nat (take (2 ^ (k + 1)) xs) (drop (2 ^ (k + 1)) xs)))

It can be seen easily that the reduce function has linear runtime (see Isabelle lemma time-reduce-tm-le).
However, the runtime of from-nat-lsbf is not so obvious:

Lemma 6.2 [time-from-nat-lsbf-tm-le]. Assume the length of xs is at most 𝑐 · 2𝑘+1, and that 2𝑘+1 ≥ 4 (i.e.
𝑘 ≥ 1). Then, the runtime of from-nat-lsbf is in O

(
𝑐2 · 2𝑘+1

)
.

Proof. Write 𝑒 := 2
𝑘+1

. Assume that length xs ≤ 𝑙 . We want to dene a function 𝑔3 : ℕ→ ℕ, where 𝑔(𝑙) is
an upper bound for the runtime of from-nat-lsbf xs. Let xs ′ := add-nat (take e xs) (drop e xs) and consider
the following cases:

Case 1: length xs ≤ 𝑒. In that case, from-nat-lsbf only adds trailing zeros to xs in linear runtime, i.e. in

O (𝑒).
Case 2: length xs > 2 · 𝑒. Then, xs ′ has at least 𝑒 − 1 bits less than xs. Since the calculation of xs ′ has a

runtime of O (𝑒 + 𝑙), we have 𝑔(𝑙) = O (𝑒 + 𝑙) + 𝑔(𝑙 − (𝑒 − 1)).
Case 3: length xs ∈ {𝑒 + 1, . . . , 2 · 𝑒}. Then, xs ′ has a length of at most 𝑒 + 1, and the recursive call

from-nat-lsbf xs ′will produce some xs ′′ = add-nat (take e xs ′) (drop e xs ′) with length xs ′′ ≤ 𝑒 . Both

the calculation of xs ′ and xs ′′ need O (𝑒 + 𝑙) time, and from-nat-lsbf xs ′′ returns after zero-padding
the argument in linear time. Hence, the total runtime in this case is in O (𝑒 + 𝑙).

In total, this gives rise to a recursive runtime bound of the form

𝑔(𝑙) :=
{
O (𝑒 + 𝑙) if 𝑙 ≤ 2 · 𝑒
O (𝑒 + 𝑙) + 𝑔(𝑙 − (𝑒 − 1)) else,

where the constants hidden in the O-notation are the same for each 𝑙 . This recursive equation is solved

explicitly in the Isabelle lemma time-from-nat-lsbf-tm-bound-closed:

𝑔(𝑥 + 𝑙 · (𝑒 − 1)) = O
(
𝑙 · (𝑒 + 𝑥) +

(∑︁
{0..<𝑙}

)
· (𝑒 − 1)

)
. (𝑒 + 2 ≤ 𝑥 ≤ 2𝑒, 𝑙 ≥ 0) (6.1)

We now want to look at 𝑔(𝑐 · 𝑒), which gives us our desired runtime bound. Without loss of generality,

assume 𝑐 · 𝑒 > 2 · 𝑒 . Then, after writing

𝑐 · 𝑒 = 𝑥 ′ + 𝑦′ · (𝑒 − 1)

with 𝑦′ < 𝑒 − 1, we can rewrite this term as

𝑥 ′ + 𝑦′ · (𝑒 − 1) = 𝑥 + 𝑦 · (𝑒 − 1)

where

𝑥 =

{
𝑥 ′ + 2(𝑒 − 1) if 𝑥 ′ ≤ 2

𝑥 ′ + (𝑒 − 1) else

was chosen s.t. 𝑒 + 2 ≤ 𝑥 ′ ≤ 2𝑒 . Finally, we can apply (6.1) and get

𝑔(𝑐 · 𝑒) = 𝑔(𝑥 ′ + 𝑦′ · (𝑒 − 1)) = O
(
𝑦′ · (𝑒 + 𝑥 ′) +

(∑︁
{0..<𝑐}

)
· (𝑒 − 1)

)
= O

(
𝑐2 · 𝑒

)
.

3
Named time-from-nat-lsbf-tm-bound in the Isabelle code

6 The Schönhage-Strassen-Algorithm

24

Addition can now be transferred from nat-lsbf using the from-nat-lsbf function, but since the result of

add-nat xs ys may only have length 2
𝑘+1

or 2
𝑘+1 + 1 (if xs and ys both have length 2

𝑘+1
), we simplify the

denition as follows:

denition add-fermat where
add-fermat xs ys = (let zs = add-nat xs ys in if length zs = 2 ^ (k + 1) + 1 then inc-nat (butlast zs) else zs)

Lemma 6.3 [time-add-fermat-tm-le]. Addition in ℤ𝐹𝑘 can be done in linear time.

Before implementing subtraction we will rst implement two other functions that we will also need later:

denition multiply-with-power-of-2 :: nat-lsbf ⇒ nat⇒ nat-lsbf where
multiply-with-power-of-2 xs m = rotate-right m xs

denition divide-by-power-of-2 :: nat-lsbf ⇒ nat⇒ nat-lsbf where
divide-by-power-of-2 xs m = rotate-left m xs

Here, rotate-left and rotate-right are list rotation functions, where rotate-left is an alternative implementa-

tion of the rotate function from HOL.List.

Lemma 6.4 [multiply-with-power-of-2-correct, divide-by-power-of-2-correct]. Let xs be a representation of
𝑥 ∈ ℤ𝐹𝑘 and𝑚 ∈ ℕ.
(a) multiply-with-power-of-2 xs m calculates a representation of 𝑥 · 2𝑚 .
(b) divide-by-power-of-2 xs m calculates a representation of 𝑥 · 2−𝑚 .

Proof. (a) Let ys be the rst 2𝑘+1 −𝑚 elements of xs and zs be the remaining𝑚 elements, representing

𝑦, 𝑧 ∈ ℕ. Rotating xs by𝑚 elements results in the list zs @ ys representing 𝑧 + 𝑦 · 2𝑚 . Moreover, in

ℤ𝐹𝑘 we have

𝑧 + 𝑦 · 2𝑚 ≡𝐹𝑘 𝑧 · 22𝑘+1 + 𝑦 · 2𝑚 =

(
𝑦 + 22𝑘+1−𝑚

)
· 2𝑚 = 𝑥 · 2𝑚 .

(b) Let 𝑦 ∈ ℤ𝐹𝑘 be the value represented by rotate-left m xs. Since rotate-right m (rotate-left m xs) = xs,
we get by (a):

𝑦 · 2𝑚 = 𝑥 .

Since 2 ∈
(
ℤ𝐹𝑘

)×
, this implies 𝑦 = 𝑥 · 2−𝑚 .

Lemma 6.5 [time-multiply-with-power-of-2-tm-le, time-divide-by-power-of-2-tm-le]. Multiplying or divid-
ing by powers of 2 in ℤ𝐹𝑘 can be done in linear time. More precisely: Multiplying or dividing xs by 2𝑚 can be
done in O (max{𝑚, length xs}), i.e. O

(
max{𝑚, 2𝑘 }

)
if length xs = 2

𝑘+1.

Using the fact that 2
2
𝑘 ≡𝐹𝑘 −1, we can rewrite 𝑥 − 𝑦 ≡𝐹𝑘 𝑥 + 𝑦 · 22𝑘 for elements 𝑥,𝑦 ∈ ℤ𝐹𝑘 and hence

dene:

denition subtract-fermat where
subtract-fermat xs ys = add-fermat xs (multiply-with-power-of-2 ys (2 ^ k))

Lemma 6.6 [time-subtract-fermat-tm-le]. Subtraction in ℤ𝐹𝑘 can be done in linear time.

6.2 FNTTs in ℤ𝐹𝑘

As in Section 6.1.2, x some 𝑘 ∈ ℕ and let 𝑛 := 𝐹𝑘 := 2
2
𝑘 + 1. Recall our general FNTT algorithm in the

context of a commutative ring 𝑅:

6.2 FNTTs in ℤ𝐹𝑘

25

fun FNTT ′′ :: ′a⇒ ′a list⇒ ′a list where
FNTT ′′ ` [] = []
| FNTT ′′ ` [x] = [x]
| FNTT ′′ ` [x, y] = [x ⊕ y, x 	 y]
| FNTT ′′ ` a = (let n = length a;

nums1 = evens-odds True a;
nums2 = evens-odds False a;
b = FNTT ′′ (` [^] (2::nat)) nums1;
c = FNTT ′′ (` [^] (2::nat)) nums2;
g = map2 (⊕) b (map2 (⊗) [` [^] i. i← [0..<(n div 2)]] c);
h = map2 (_x y. x 	 y) b (map2 (⊗) [` [^] i. i← [0..<(n div 2)]] c)

in g@h)

Wewant to give an implementation of this algorithm in 𝑅 = ℤ𝐹𝑘 . The Schönhage-Strassen-Algorithm uses

` ∈ {2, 4}. In the recursive calls of the FNTT, the primitive root will hence always be a power of 2. The

multiplication by the powers of ` needed in order to calculate g and h can hence be implemented using the

multiply-with-power-of-2 function. Similarly, for ` = 2
−1
, the divide-by-power-of-2 function can be used.

Since these functions work on the exponent, we will also just keep track of the exponents of the primitive

roots.

Moreover, we need to implement the calculation of g and h carefully in order to achieve a sucient

runtime. We therefore dene the auxiliary function t-combine-b-c-aux that combines the lists b and c
elementwise by rst multiplying resp. dividing (specied by the input function g) the entry in c and then

adding resp. subtracting (specied by the input function f) the result from the entry in a (the parameter

(revs, e) accumulates the result):

fun t-combine-b-c-aux :: (nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf) ⇒ (nat-lsbf ⇒ nat ⇒ nat-lsbf) ⇒ nat ⇒ nat-lsbf list
× nat⇒ nat-lsbf list⇒ nat-lsbf list⇒ nat-lsbf list where
t-combine-b-c-aux f g l (revs, e) [] [] = rev revs

| t-combine-b-c-aux f g l (revs, e) (b # bs) (c # cs) =
t-combine-b-c-aux f g l ((f b (g c e)) # revs, (e + l) mod 2 ^ (k + 1)) bs cs
| t-combine-b-c-aux f g l - - - = undened

The concrete combination functions can then be dened as:

denition t-combine-b-c-add where
t-combine-b-c-add l bs cs = t-combine-b-c-aux add-fermat multiply-with-power-of-2 l ([], 0) bs cs
denition t-combine-b-c-subtract where
t-combine-b-c-subtract l bs cs = t-combine-b-c-aux subtract-fermat multiply-with-power-of-2 l ([], 0) bs cs

denition it-combine-b-c-add where
it-combine-b-c-add l bs cs = t-combine-b-c-aux add-fermat divide-by-power-of-2 l ([], 0) bs cs
denition it-combine-b-c-subtract where
it-combine-b-c-subtract l bs cs = t-combine-b-c-aux subtract-fermat divide-by-power-of-2 l ([], 0) bs cs

Ultimately, this leads to the following implementation of the FNTT ′′ blueprint:

fun t :: nat⇒ nat-lsbf list⇒ nat-lsbf list where
t l [] = []
| t l [x] = [x]
| t l [x, y] = [add-fermat x y, subtract-fermat x y]
| t l a = (let nums1 = evens-odds True a;

nums2 = evens-odds False a;
b = t (2 ∗ l) nums1;
c = t (2 ∗ l) nums2;
g = t-combine-b-c-add l b c;
h = t-combine-b-c-subtract l b c
in g@h)

6 The Schönhage-Strassen-Algorithm

26

The it function is dened similarly.

The correctness of this implementation follows from Lemma 5.13 after showing that the assumptions

are satised:

Lemma 6.7 [ord-2]. The order of 2 in the multiplicative group
(
ℤ𝐹𝑘

)× is 2𝑘+1.
Proof. Since 22

𝑘+1 ≡𝐹𝑘 1, the order of 2must be a divisor of 2
𝑘+1

, i.e. some power 2
𝑖
with 𝑖 ≤ 𝑘 + 1. Assume

for contradiction that 𝑖 ≤ 𝑘 . Then

1 = 1
2
𝑘−𝑖 ≡𝐹𝑘

(
2
2
𝑖
)
2
𝑘−𝑖

= 2
2
𝑘 ≡𝐹𝑘 −1,

a contradiction.

Lemma 6.8 [two-powers-primitive-root]. Let 𝑘 ∈ ℕ. Assume 𝑖 ≤ 𝑘 and 𝑖 + 𝑠 = 𝑘 + 1. Then, 22𝑖 is a 2
𝑠-th

primitive root in ℤ𝐹𝑘 .

Proof. We have (
2
2
𝑖
)
2
𝑠

= 2
2
𝑖+𝑠

= 2
2
𝑘+1 ≡𝐹𝑘 1.

Next, let 𝑗 ∈ {1..<2𝑠 }. Using the assumptions, we have 𝑗 · 2𝑖 ∈ {1..<2𝑘+1}. By Lemma 6.7, this implies(
2
2
𝑖
) 𝑗

= 2
𝑗 ·2𝑖 .𝐹𝑘 1.

Lemma 6.9 [t-correct, it-correct]. Let 𝑎′ ∈
(
ℤ𝐹𝑘

)𝑛 where 𝑛 = 2
𝑙 for some 𝑙 ∈ ℕ>0. Assume a is a

representation of 𝑎′, i.e. 𝑎′ = map to-residue-ring a. Moreover, assume 𝑖 + 𝑙 = 𝑘 + 1 for some 𝑖 ∈ ℕ, and let
𝑠 := 2

𝑖 .
(a) t s a correctly calculates a representation of NTT2

𝑠 (𝑎′).
(b) it s a correctly calculates a representation of NTT2

−𝑠 (𝑎′).

Proof. (a) By induction, using the induction rule t .induct, we getmap to-residue-ring a = FNTT ′′2𝑠 𝑎′.4

The lemmas FNTT ′′-FNTT ′ and FNTT ′-FNTT then show FNTT ′′ 2𝑠 𝑎′ = FNTT 2
𝑠 𝑎′.

By Lemma 6.8, 2
𝑠
is a 2

𝑙
-th primitive root. Moreover,

(2𝑠)2
𝑙−1

= 2
2
𝑖+𝑙−1

= 2
2
𝑘 ≡𝐹𝑘 −1.

Hence, the assumptions of Lemma 5.13 are satised and we conclude FNTT 2
𝑠 𝑎′ = NTT2

𝑠 (𝑎′).
(b) The proof is similar to (a). In order to apply Lemma 5.13, use Lemma 5.3 (a) and Lemma 5.8 (b) and

proceed as in (a).

In order to show a runtime bound for the t function, we rst need to bound the runtime of the auxiliary

functions:

Lemma 6.10 [time-evens-odds-tm-le]. The function evens-odds has linear runtime in the length of the list
argument.

Lemma 6.11 [time-t-combine-b-c-aux-tm-le]. Assume bs and cs are lists of the same length with entries
of length 𝑒 := 2

𝑘+1. Let 𝑓 be a function nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf and assume the runtime of 𝑓 xs ys
is in O

(
2
𝑘 + length xs + length ys

)
(which is satised for 𝑓 ∈ {add-fermat, subtract-fermat} due to Lem-

mas 6.3 and 6.6). Moreover, let 𝑠 < 𝑒 and let 𝑔 be one of the two functions multiply-with-power-of-2-tm or
divide-by-power-of-2-tm. Then, the runtime of t-combine-b-c-aux f g l (revs, s) bs cs is in

O (length revs + (𝑒 + 𝑙) · length bs) .
4
See the Isabelle lemma t-correct ′.

6.2 FNTTs in ℤ𝐹𝑘

27

Proof. Note that the property 𝑠 < 𝑒 is preserved in recursive calls because of the application ofmod 2 ^ (k +
1). Now, each element𝑏 of the list bs is processed together with the corresponding element 𝑐 of the list cs in
the function call f b (g c s), which (by assumptions and Lemma 6.5) takes time O

(
2
𝑘 + 2 · 𝑒 +max{𝑠, 𝑒}

)
=

O (𝑒). Moreover, the calculation of (s + l) mod 2 ^ (k + 1) takes time O (𝑠 + 𝑙 + 𝑒) = O (𝑙 + 𝑒) (due to

our conservative estimates for functions on the nat type). In total, each element of the list bs contributes
O (𝑒 + 𝑙) to the runtime and one element to the accumulator.

After all elements are processed, the accumulator contains length bs + length revs elements which are

reversed in time O (length bs + length revs).
Thus, the total runtime is in

O (length bs + length revs + length bs · (𝑒 + 𝑙)) = O (length revs + length bs · (𝑒 + 𝑙)) .

Lemma 6.12 [time-t-tm-le, time-it-tm-le]. Assume 𝑎 ∈
(
ℤ𝐹𝑘

)
2
𝑚

. Then, t l a resp. it l a have a runtime
of O

(
𝑚 · 2𝑚 · 2𝑘 + 𝑙 · 22𝑚

)
.

Proof. Using Lemmas 6.3, 6.6, 6.10 and 6.11, the denition of t gives rise to the following recursive runtime

equation:

𝑡 (𝑙, 𝑎) =

O (1) if 𝑎 = []
O (1) if 𝑎 = [x]
O

(
2
𝑘
)

if 𝑎 = [x,y]
O

(
3 · length 𝑎 + 2 · (𝑙 + 2𝑘) · length 𝑎

2

)
+ 𝑡 (2𝑙, 𝑎even) + 𝑡 (2𝑙, 𝑎odd) else.

Here, the summands in the last equation arise as follows:

• O (3 · length 𝑎) is the time needed to split 𝑎 into its even-/odd-indexed part and appending 𝑔 and ℎ

in the last line.

• O
(
2 · (𝑙 + 2𝑘) · length 𝑎

2

)
is the time needed to combine the results of the recursive calls due to Lemma

6.11.

• The last two summands are the runtime of the recursive t calculations.
Rewriting this equation in terms of𝑚 yields the recursive equation

𝑡 (𝑙,𝑚) =

O (1) if𝑚 = 0

O
(
2
𝑘
)

if𝑚 = 1

O
(
2 · 2𝑚 + (𝑙 + 2𝑘) · 2𝑚

)
+ 2 · 𝑡 (2𝑙,𝑚 − 1)

= O
(
(𝑙 + 2𝑘) · 2𝑚

)
+ 2 · 𝑡 (2𝑙,𝑚 − 1) else.

In the Isabelle proof, the constants hidden in the O-notation are given explicitly. For an informal proof,

we will just use any simple constants and dene

𝑔(𝑙,𝑚) :=

1 if𝑚 = 0

2
𝑘

if𝑚 = 1

(𝑙 + 2𝑘) · 2𝑚 + 2 · 𝑔(2𝑙,𝑚 − 1) else.

6 The Schönhage-Strassen-Algorithm

28

The equation for𝑚 > 1 can be solved as follows:

𝑔(𝑙,𝑚) = 2
0 · (20 · 𝑙 + 2𝑘) · 2𝑚 + 21 · 𝑔(21 · 𝑙,𝑚 − 1)

= 2
0 · (20 · 𝑙 + 2𝑘) · 2𝑚 + 21 · (21 · 𝑙 + 2𝑘) · 2𝑚−1 + 22 · 𝑔(22 · 𝑙,𝑚 − 2)

= . . .

=

(
𝑚−1∑︁
𝑖=0

2
𝑖 · (2𝑖 · 𝑙 + 2𝑘) · 2𝑚−𝑖

)
+ 2𝑚−1 · 𝑔(2𝑚−1 · 𝑙, 1)

=

(
𝑚−1∑︁
𝑖=0

(2𝑖 · 𝑙 + 2𝑘) · 2𝑚
)
+ 2𝑚−1 · 2𝑘

=

(
𝑚−1∑︁
𝑖=0

2
𝑖

)
· 𝑙 · 2𝑚 +𝑚 · 2𝑘 · 2𝑚 + 2𝑚−1 · 2𝑘

= (2𝑚 − 1) · 𝑙 · 2𝑚 +𝑚 · 2𝑘 · 2𝑚 + 2𝑚−1 · 2𝑘 .

This shows that 𝑔(𝑙,𝑚) ∈ O
(
𝑚 · 2𝑘 · 2𝑚 + 𝑙 · 22𝑚

)
.

6.3 A Special Residue Problem

We need to solve the following problem in the Schönhage-Strassen-Algorithm: Given b ∈ ℤ𝐹𝑛 and [∈
ℤ

2
𝑛+2 , nd the unique 𝑧 ∈ {0..<𝐹𝑛 · 2𝑛+2} s.t. 𝑧 ≡𝐹𝑛 b and 𝑧 ≡

2
𝑛+2 [. Schönhage and Strassen [SS71] give an

explicit solution by

𝛿 :≡
2
𝑛+2 [− b ∈ ℤ

2
𝑛+2, (6.2)

𝑧 := b + 𝛿 · (22𝑛 + 1) . (6.3)

This can be implemented as follows:

denition solve-special-residue-problem where
solve-special-residue-problem n b [=

(let 𝛿 = int-lsbf-mod .subtract-mod (n + 2) [(take (n + 2) b) in
add-nat b (add-nat (replicate (2 ^ n) False @ 𝛿) 𝛿))

Lemma 6.13 [solve-special-residue-problem-correct, special-residue-problem-unique-solution]. Let 𝑛 ≥ 2,
b ∈ ℤ𝐹𝑛 and [∈ ℤ

2
𝑛+2 . Then, 𝑧 as given in (6.2) and (6.3) is the unique solution in {0..<𝐹𝑛 · 2𝑛+2} satisfying

𝑧 ≡𝐹𝑛 b and 𝑧 ≡
2
𝑛+2 [.

Proof. Since 𝑛 ≥ 2, we have 2
𝑛 ≥ 𝑛 + 2, and hence

𝑧 = b + 𝛿 + 𝛿 · 2
2
𝑛︸︷︷︸

≡
2
𝑛+20

≡
2
𝑛+2 b + 𝛿 ≡

2
𝑛+2 [.

𝑧 ≡𝐹𝑛 b follows immediately from the denition of 𝑧. The uniqueness is a consequence of the chinese

remainder theorem
5
, since 𝐹𝑛 and 2

𝑛+2
are coprime.

Since all involved functions have linear runtime, we immediately get:

Lemma 6.14 [time-solve-special-residue-problem-tm-le]. The function solve-special-residue-problem has lin-
ear runtime, i.e. O (2𝑛 + length [+ length b) or simply O (2𝑛) if length [= 𝑛 + 2 and length b = 2

𝑛+1.

5
See Isabelle lemma chinese-remainder-very-simple-nat.

6.4 The Schönhage-Strassen-Algorithm in ℤ𝐹𝑚

29

6.4 The Schönhage-Strassen-Algorithm in ℤ𝐹𝑚

In this section, we will describe our implementation of the Schönhage-Strassen-Algorithm for numbers in

ℤ𝐹𝑚 in Isabelle. We will implement the algorithm step by step, as in the original paper [SS71].

All functions from Sections 6.1.1, 6.1.2 and 6.2 are dened in locales int-lsbf-mod resp. int-lsbf-fermat
xing the resp. parameter 𝑘 . In order to use these functions, we specify the qualied versions here, e.g.

int-lsbf-mod .reduce (n + 2) for the reduce function in the context of representations of ℤ
2
𝑛+2 .

Assume a and b are representations of numbers in ℤ𝐹𝑚 . If𝑚 is small, i.e. 𝑚 < 3, we just use the classic

gridmultiplication in order tomultiply a and b and convert the result using the int-lsbf-fermat .from-nat-lsbf
function.

For the rest of this section, let𝑚 ≥ 3. Dene

𝑛 :=

{
𝑚+1
2

if𝑚 is odd

𝑚+2
2

if𝑚 is even,

i.e.𝑚 = 2𝑛 − 1 if𝑚 is odd and𝑚 = 2𝑛 − 2 otherwise. Moreover, dene

𝑛oe :=

{
𝑛 + 1 if𝑚 is odd

𝑛 if𝑚 is even.

Note that𝑚 + 1 = (𝑛− 1) +𝑛oe. The rst step is to subdivide 𝑎 and 𝑏 into a list 𝑎′ resp. 𝑏′ containing blocks
of size 2

𝑛−1
. Since they are representations of numbers in ℤ𝐹𝑚 , i.e. have length 2

𝑚+1
, there will be 2

𝑛oe

such blocks (see Figure 6.1).

a: 𝑎′0 𝑎′1 · · · 𝑎′2𝑛oe−1

2
𝑛−1

2
𝑛−1

2
𝑛−1

2
𝑚+1 = 2

𝑛oe · 2𝑛−1

Figure 6.1 Constructing a ′ from a.

As in [SS71], we dene for verication purposes:

𝑐′ 𝑗 :=
2
𝑛oe−1∑︁
𝜎=0

𝑎′𝜎 · 𝑏′ (2𝑛oe+𝑗−𝜎) mod 2
𝑛oe (𝑗 ∈ {0..<2𝑛oe}) (6.4)

𝑧′ 𝑗 := 𝑐′ 𝑗 − 𝑐′2𝑛oe−1+𝑗 + 2𝑛oe+2𝑛 (
𝑗 ∈ {0..<2𝑛oe−1}

)
(6.5)

𝑧′ 𝑗 := 2
𝑛oe+2𝑛 (

𝑗 ∈ {2𝑛oe−1..<2𝑛oe}
)

(6.6)

6 The Schönhage-Strassen-Algorithm

30

The trick of Schönhage and Strassen is now to rewrite the product 𝑎 · 𝑏 in terms of the 𝑧′ 𝑗 6:

𝑎 · 𝑏 =

(
2
𝑛oe−1∑︁
𝜎=0

𝑎′𝜎 · 2𝜎 ·2
𝑛−1

)
·
(
2
𝑛oe−1∑︁
𝜌=0

𝑏′𝜌 · 2𝜌 ·2
𝑛−1

)
≡𝐹𝑚

2
𝑛oe−1∑︁
𝑗=0

2
𝑛oe−1∑︁
𝜎=0

𝑎′𝜎 · 𝑏′ (2𝑛oe+𝑗−𝜎) mod 2
𝑛oe · 2𝑗 ·2

𝑛−1
(Lemmas 5.5, 6.8)

=

2
𝑛oe−1∑︁
𝑗=0

𝑐′ 𝑗 · 2𝑗 ·2
𝑛−1

=

2
𝑛oe−1−1∑︁
𝑗=0

𝑐′ 𝑗 · 2𝑗 ·2
𝑛−1 +

2
𝑛oe−1−1∑︁
𝑗=0

(𝑐′
2
𝑛oe−1+𝑗 − 2𝑛oe+2𝑛 + 2𝑛oe+2𝑛) · 2(2𝑛oe−1+𝑗) ·2𝑛−1

=

2
𝑛oe−1−1∑︁
𝑗=0

𝑐′ 𝑗 · 2𝑗 ·2
𝑛−1 + 22𝑛oe−1 ·2𝑛−1 ·

2
𝑛oe−1−1∑︁
𝑗=0

(𝑐′
2
𝑛oe−1+𝑗 − 2𝑛oe+2𝑛) · 2𝑗 ·2𝑛−1

+
2
𝑛oe−1−1∑︁
𝑗=0

2
𝑛oe+2𝑛 · 2(2𝑛oe−1+𝑗) ·2𝑛−1

≡𝐹𝑚
2
𝑛oe−1−1∑︁
𝑗=0

(𝑐′ 𝑗 − 𝑐′2𝑛oe−1+𝑗 + 2𝑛oe+2𝑛) · 2𝑗 ·2𝑛−1

+
2
𝑛oe−1−1∑︁
𝑗=0

2
𝑛oe+2𝑛 · 2(2𝑛oe−1+𝑗) ·2𝑛−1 (22𝑛oe−1 ·2𝑛−1 = 2

2
𝑚 ≡𝐹𝑚 −1)

=

2
𝑛oe−1∑︁
𝑗=0

𝑧′ 𝑗 · 2𝑗 ·2
𝑛−1

. (6.7)

So, it suces to calculate the 𝑧′ 𝑗 for 𝑗 ∈ {0..<2𝑛oe−1} in order to obtain the product 𝑎 · 𝑏 in ℤ𝐹𝑚 . The

Schoenhage-Strassen-Algorithm proceeds as follows:

1. Calculate the residues of 𝑧′ 𝑗 modulo 2
𝑛+2

.

2. Calculate the residues of 𝑧′ 𝑗 modulo 𝐹𝑛 .

3. Combine the results to reconstruct 𝑧′ 𝑗 ∈ ℤ𝐹𝑚 .

6.4.1 Residues in ℤ
2
𝑛+2

In order to calculate the residues of 𝑧′ 𝑗 modulo 2
𝑛+2

, it suces to consider the 𝑛 + 2 least signicant bits
of each of the 𝑎′𝜎 and 𝑏′𝜌 due to (6.4). However, calculating the residues of the 𝑧′ 𝑗 directly would still

take O (2𝑛 ·𝑀 (𝑛)) time for each 𝑗 , where 𝑀 (𝑛) is the time needed to multiply two numbers in ℤ𝑛+2. In
total, the calculation of all 𝑧′ 𝑗 would hence need O

(
2
2𝑛 ·𝑀 (𝑛)

)
time, which is not fast enough unless𝑀 (𝑛)

would be in O (𝑛).
Schönhage and Strassen solve this problem by performing a single multiplication, from whose result

the residues of the 𝑧′ 𝑗 can be read o. As a rst step, the 𝑛 + 2 least signicant bits of each 𝑎′𝜎 , dened as

𝛼𝜎 , are padded with trailing zeros to get numbers of length 3𝑛 + 5.7 The concatenation of these segments,

called𝑢, then has length 2
𝑛oe · (3𝑛+5). Similarly, 𝛽𝜌 and 𝑣 are dened for 𝑏

′
𝜌 . An illustration of the process

for 𝑢 can be found in Figure 6.2.

6
This equation is labelled result0 in the Isabelle proof of schoenhage-strassen-correct ′.

7
It would suce to pad the residues to length 2𝑛 + 4 + 𝑛oe, but for simplicity (and since it does not matter for the asymptotic

runtime) we just use 3𝑛 + 5 in any case.

6.4 The Schönhage-Strassen-Algorithm in ℤ𝐹𝑚

31

𝑎′0 𝑎′1 · · · 𝑎′2𝑛oe−1

2
𝑛−1

2
𝑛−1

2
𝑛−1

𝑛 + 2

𝛼0 0

3𝑛 + 5

𝑛 + 2

𝛼1 0

3𝑛 + 5

𝑛 + 2

𝛼2𝑛oe−1 0

3𝑛 + 5

· · ·

𝛼0 0 𝛼1 0 · · · 𝛼2𝑛oe−1 0

2
𝑛oe · (3𝑛 + 5)

𝑢:

Figure 6.2 Constructing u from a ′.

Now, we can multiply 𝑢 and 𝑣 roughly in time O (𝑀 (𝑛 · 2𝑛)), e.g. in O
(
(𝑛 · 2𝑛)log2 3

)
when using

Karatsuba-Multiplication (see Lemma 4.4), which will be fast enough. The result may vary in length,

but we can just delete or append trailing zeros to ensure a length of 2
𝑛oe+1 · (3𝑛 + 5).8 Let us call the result

with this length 𝑢𝑣 .

Subdividing 𝑢𝑣 into 2
𝑛oe+1

blocks 𝛾0, 𝛾1, . . . , 𝛾2𝑛oe+1−1 of size 3𝑛 + 5 each, we have9

𝑢𝑣 =

2
𝑛oe+1−1∑︁
𝑘=0

𝛾𝑘 · 2𝑘 · (3𝑛+5)

and

𝑢𝑣 = 𝑢 · 𝑣 =

(
2
𝑛oe−1∑︁
𝑖=0

𝛼𝑖 · 2𝑖 · (3𝑛+5)
)
·
(
2
𝑛oe−1∑︁
𝑗=0

𝛽 𝑗 · 2𝑗 · (3𝑛+5)
)

=

2
𝑛oe−1∑︁
𝑖=0

2
𝑛oe−1∑︁
𝑗=0

𝛼𝑖 · 𝛽 𝑗 · 2(𝑖+𝑗) · (3𝑛+5)

=

2
𝑛oe+1−1∑︁
𝑘=0

2
𝑛oe−1∑︁
𝑖=0

2
𝑛oe−1∑︁
𝑗=0

𝛿𝑖+𝑗,𝑘 · 𝛼𝑖 · 𝛽 𝑗︸ ︷︷ ︸
=:𝛾 ′𝑘

·2𝑘 · (3𝑛+5) .

Because 𝛾𝑘 < 2
3𝑛+5

and 𝛾 ′𝑘 < 2
𝑛oe · 2𝑛+2 · 2𝑛+2 ≤ 2

3𝑛+5
, the following lemma shows that 𝛾𝑘 = 𝛾 ′𝑘 for

𝑘 ∈ {0..<2𝑛oe+1}.

Lemma 6.15 [power-sum-nat-eq]. Let 𝑥, 𝑐, 𝑛 ∈ ℕ, 𝑎𝑖 , 𝑏𝑖 ∈ ℕ (𝑖 ∈ {0..<𝑛}). Assume 𝑥 > 1, 𝑐 > 0 and
𝑎𝑖 , 𝑏𝑖 < 𝑥𝑐 for all 𝑖 ∈ {0..<𝑛}. Moreover, assume

𝑛−1∑︁
𝑖=0

𝑎𝑖 · 𝑥𝑖 ·𝑐 =
𝑛−1∑︁
𝑖=0

𝑏𝑖 · 𝑥𝑖 ·𝑐 .

Then, 𝑎𝑖 = 𝑏𝑖 for all 𝑖 ∈ {0..<𝑛}.
8
Of course, we need to formally prove this in Isabelle. This is done in the proof of schoenhage-strassen-correct ′ in the line to-nat
uv = to-nat u ∗ to-nat v.

9
See the equation with label to-nat-𝛾 in the proof of schoenhage-strassen-correct ′.

6 The Schönhage-Strassen-Algorithm

32

Proof. Under the assumptions, the 𝑗-th coecient in the sums can be extracted:

𝑎 𝑗 =

⌊∑𝑛−1
𝑖=0 𝑎𝑖 · 𝑥𝑖 ·𝑐

𝑥 𝑗 ·𝑐

⌋
mod𝑥𝑐 =

⌊∑𝑛−1
𝑖=0 𝑏𝑖 · 𝑥𝑖 ·𝑐

𝑥 𝑗 ·𝑐

⌋
mod𝑥𝑐 = 𝑏 𝑗 .

Now, note that we can rewrite 𝑐′𝑘 in ℤ
2
𝑛+2 as follows (for 𝑘 ∈ {0..<2𝑛oe}):10

𝑐′𝑘 =

2
𝑛oe−1∑︁
𝜎=0

𝑎′𝜎 · 𝑏′ (2𝑛oe+𝑘−𝜎) mod 2
𝑛oe

≡
2
𝑛+2

2
𝑛oe−1∑︁
𝜎=0

𝛼𝜎 · 𝛽 (2𝑛oe+𝑘−𝜎) mod 2
𝑛oe

=

2
𝑛oe−1∑︁
𝜎=0

2
𝑛oe−1∑︁
𝜌=0

[𝜎 + 𝜌 ≡2𝑛oe 𝑘] · 𝑎′𝜎 · 𝑏′𝜌

=

2
𝑛oe−1∑︁
𝜎=0

2
𝑛oe−1∑︁
𝜌=0

([𝜎 + 𝜌 = 𝑘] + [𝜎 + 𝜌 = 𝑘 + 2𝑛oe]) · 𝑎′𝜎 · 𝑏′𝜌

= 𝛾 ′𝑘 + 𝛾 ′2𝑛oe+𝑘 = 𝛾𝑘 + 𝛾2𝑛oe+𝑘 .

Hence, for 𝑗 ∈ {0..<2𝑛oe−1}:

𝑧′ 𝑗 = 𝑐′ 𝑗 − 𝑐′2𝑛oe−1+𝑗 + 2𝑛oe+2𝑛

≡
2
𝑛+2 (𝛾 𝑗 + 𝛾2𝑛oe+𝑗) − (𝛾2𝑛oe−1+𝑗 + 𝛾2𝑛oe+2𝑛oe−1+𝑗)

= (𝛾 𝑗 − 𝛾2𝑛oe−1+𝑗) + (𝛾2·2𝑛oe−1+𝑗 − 𝛾3·2𝑛oe−1+𝑗)

Dividing [𝛾0, . . . , 𝛾2𝑛oe+1−1] into four blocks 𝛾 (0) , 𝛾 (1) , 𝛾 (2) , 𝛾 (3) of length 2
𝑛oe−1

, i.e. 𝛾
(𝑖)
𝑗

= 𝛾𝑖 ·2𝑛oe−1+𝑗 , we can
hence calculate (with additions/subtractions in ℤ𝑛+2)

[𝑗 :=

(
𝛾
(0)
𝑗
− 𝛾 (1)

𝑗

)
+

(
𝛾
(2)
𝑗
− 𝛾 (3)

𝑗

)
and conclude [𝑗 ≡2𝑛+2 𝑧′ 𝑗 .

Runtime

The construction of𝑢 resp. 𝑣 can be done in linear runtime, butwewill not discuss the details here. As noted

earlier, their multiplication needs time O
(
(𝑛 · 2𝑛)log2 3

)
. Splitting 𝑢𝑣 into the blocks 𝛾0, 𝛾1, . . . , 𝛾2𝑛oe+1−1 can

again be done in linear time, i.e. in O (𝑛 · 2𝑛) since𝑢𝑣 has length 2
𝑛oe+1 · (3𝑛+5). Similarly, subdividing the

list [𝛾0, . . . , 𝛾2𝑛oe+1−1] into the four blocks𝛾 (0) , 𝛾 (1) , 𝛾 (2) , 𝛾 (3) can be done inO (𝑛 · 2𝑛). Finally, since addition
and subtraction in ℤ𝑛+2 can be done in linear time by Lemma 6.1, calculating all [𝑗 (for 𝑗 < 2

𝑛oe−1
) needs

a runtime of O (𝑛 · 2𝑛).

6.4.2 Residues in ℤ𝐹𝑛

Let 𝑗 ∈ {0..<2𝑛oe}. Since

𝑐′ 𝑗 =
2
𝑛oe−1∑︁
𝜎=0

𝑎′𝜎 · 𝑏′ (2𝑛oe+𝑗−𝜎) mod 2
𝑛oe ≡𝐹𝑛 (𝑎′ ★𝑏′) 𝑗 (6.8)

10
Corresponding Isabelle equation: 𝛾c in the proof of schoenhage-strassen-correct ′.

6.4 The Schönhage-Strassen-Algorithm in ℤ𝐹𝑚

33

with 𝑎′ = (𝑎′0, . . . , 𝑎′2𝑛oe−1), 𝑏′ = (𝑎′0, . . . , 𝑎′2𝑛oe−1) ∈
(
ℤ𝐹𝑛

)
2
𝑛oe

, we transform 𝑎′ and 𝑏′ using NTTs in

the ring ℤ𝐹𝑛 , multiply them componentwise and use inverse NTTs to transform the result back. As in

Schönhage and Strassen [SS71], we will use ` := 2
𝑝
as primitive root, where

𝑝 :=

{
1 if𝑚 is odd

2 else.

As a rst step, we calculate

𝑎 := NTT` (𝑎′), ˆ𝑏 := NTT` (𝑏′)

using the function int-lsbf-fermat .t. Note that e.g. the entries of 𝑎′ have length 2𝑛−1, and hence need to be
padded to a length of 2

𝑛+1
rst in order to be representations of numbers inℤ𝐹𝑛 . The t function produces

the correct result due to Lemma 6.9 (a), because 𝑝 = 2
𝑝−1

(since 𝑝 ∈ {1, 2}) and (𝑝 − 1) + 𝑛oe = 𝑛 + 1.
The componentwisemultiplication needs to be done inℤ𝐹𝑛 . Hence, we can call the algorithm recursively

to calculate

𝑐 𝑗 := 𝑎 𝑗 · ˆ𝑏 𝑗 (𝑗 ∈ {0..<2𝑛oe}).

However, this would lead to a total runtime worse than O (𝑛 log𝑛 log log𝑛). Schönhage and Strassen point
out that, since it is enough to obtain the dierences 𝑐′ 𝑗 − 𝑐′2𝑛oe−1+𝑗 for 𝑗 ∈ {0..<2𝑛oe−1}, we only need to

calculate 𝑐 𝑗 if 𝑗 is odd. So, we recursively calculate

𝑐odd := (𝑐1, 𝑐3, . . . , 𝑐2𝑛oe−1) ∈
(
ℤ𝐹𝑛

)
2
𝑛oe−1

.

Next, the inverse NTT

𝑐dis := NTT`−2 (𝑐odd)

is calculated using the int-lsbf-fermat .it function, where `−2 = 2
−2𝑝 = 2

−2𝑝
. This can be done due to

Lemma 6.9 (b), since 𝑝 + (𝑛oe − 1) = 𝑛 + 1.
We will now show how the residues of the 𝑧′ 𝑗 can be obtained from 𝑐dis. First, by Theorem 5.9 and

Lemma 5.10, we have
11

NTT`−1 (NTT` (𝑐′mod
)) = 2

𝑛oe · 𝑐′
mod

where 𝑐′
mod

= (𝑐′0mod 𝐹𝑛, . . . , 𝑐
′
2
𝑛oe−1mod 𝐹𝑛) ∈

(
ℤ𝐹𝑛

)
2
𝑛oe

. Hence, for 𝑗 ∈ {0..<2𝑛oe−1},

𝑐′ 𝑗 − 𝑐′2𝑛oe−1+𝑗 ≡𝐹𝑛 2
−𝑛oe ·

(
NTT`−1 (NTT` (𝑐′mod

)) 𝑗 − NTT`−1 (NTT` (𝑐′mod
))

2
𝑛oe−1+𝑗

)
= 2
−𝑛oe · 2 · `− 𝑗 · NTT`−2 (NTT` (𝑐′mod

)odd) 𝑗 (Lemma 5.12)

= 2
−𝑛oe · 2 · `− 𝑗 · NTT`−2 (NTT` (𝑎′ ★𝑏′)odd) 𝑗 ((6.8))

By Theorem 5.6, we haveNTT` (𝑎′★𝑏′)𝑖 = 𝑎𝑖 · ˆ𝑏𝑖 = 𝑐𝑖 for all 𝑖 ∈ {0..<2𝑛oe}. In particular,NTT` (𝑎′★𝑏′)odd =
𝑐odd. Inserting this and the denition of 𝑐dis, we get

𝑐′ 𝑗 − 𝑐′2𝑛oe−1+𝑗 ≡𝐹𝑛 2
−𝑛oe · 2 · `− 𝑗 · (𝑐dis) 𝑗

and thus

𝑧′ 𝑗 ≡𝐹𝑛 2
−𝑛oe · 2 · `− 𝑗 · (𝑐dis) 𝑗 + 2𝑛oe+2𝑛 =: b 𝑗 ∈ ℤ𝐹𝑛 .

Runtime

Calculating the NTTs 𝑎 and
ˆ𝑏 needs time O

(
𝑛oe · 2𝑛oe · 2𝑛 + 𝑝 · 22𝑛oe

)
= O

(
𝑛 · 22𝑛

)
by Lemma 6.12. More-

over, we need to recursively calculate 𝑐𝑖 for all odd 𝑖 ∈ {0..<2𝑛oe}, i.e. have 2𝑛oe−1
recursive calls for the

multiplications in ℤ𝐹𝑛 .

Each b 𝑗 can be calculated bymultiplying (𝑐dis) 𝑗 with 2−𝑛oe+1−𝑝 · 𝑗 ≡𝐹𝑛 2
2
𝑛+1−(𝑛oe+𝑝 · 𝑗−1)

, which can be done

in O (2𝑛) using Lemma 6.5, and adding 2
𝑛oe+2𝑛

to the result, which can be done in O (𝑛 + 2𝑛) = O (2𝑛) by
11
Equation aux1 in the proof of schoenhage-strassen-correct ′.

6 The Schönhage-Strassen-Algorithm

34

Lemma 6.3. Since there are 2
𝑛oe−1

indices 𝑗 ∈ {0..<2𝑛oe−1}, the calculation of all b 𝑗 from 𝑐dis needs time

O
(
2
2𝑛

)
.

Thus, calculating all b 𝑗 from 𝑎′ and 𝑏′ needs a total time of O
(
𝑛 · 22𝑛

)
+ 2𝑛oe−1 ·𝑇 (𝑛), where 𝑇 (𝑛) is the

recursive runtime for multiplication in ℤ𝐹𝑛 .

6.4.3 Combining the Residues and Constructing the Result

After calculating b 𝑗 and [𝑗 for 𝑗 ∈ {0..<2𝑛oe−1}, we can use the function solve-special-residue-problem to

obtain some 𝑧 𝑗 ∈ {0..<𝐹𝑛 · 2𝑛+2} which is the unique solution to the equation system

𝑧 𝑗 ≡𝐹𝑛 b 𝑗

𝑧 𝑗 ≡2𝑛+2 [𝑗 .

Since 𝑧′ 𝑗 also solves this equation system, we therefore have 𝑧 𝑗 = 𝑧′ 𝑗 .

Recalling (6.7), i.e.

𝑎 · 𝑏 ≡𝐹𝑚
2
𝑛oe−1∑︁
𝑗=0

𝑧′ 𝑗 · 2𝑗 ·2
𝑛−1

,

we are now ready to calculate the nal result by inserting

𝑧′ 𝑗 =

{
𝑧 𝑗 if 𝑗 ∈ {0..<2𝑛oe−1}
2
𝑛oe+2𝑛

if 𝑗 ∈ {2𝑛oe−1..<2𝑛oe}.

In order to implement this eciently, we dene the function combine-z, which, given some 𝑙 ∈ ℕ>0 and a

list zs = [𝑧𝑠0, . . . , 𝑧𝑠𝑠−1] of numbers each having length at least 𝑙 , returns a representation of

𝑠−1∑︁
𝑖=0

𝑧𝑠𝑖 · 2𝑖 ·𝑙 .

Since 𝑧𝑠0, . . . , 𝑧𝑠𝑖−1 are the only numbers relevant for the 𝑖 ·𝑙 least signicant bits of the result, we can store

these 𝑖 · 𝑙 bits in an accumulator and iteratively calculate the next 𝑙 bits of the result. As long as there are

at least two entries 𝑧𝑠𝑖 , 𝑧𝑠𝑖+1 left, we proceed as follows:

1. Append the least signicant 𝑙 bits of 𝑧𝑠𝑖 to the accumulator.

2. Add the remaining bits of 𝑧𝑠𝑖 to 𝑧𝑠𝑖+1 to obtain some number 𝑟 .

3. Replace 𝑧𝑠𝑖+1 by 𝑟 and continue with the list [𝑟, 𝑧𝑠𝑖+2, . . . , 𝑧𝑠𝑠−1].
If there is only one element in the list left, we append it to the accumulator, too. Finally, when there are no

more elements left, we can return the result from the accumulator. An illustration of the procedure with

𝑙 = 2 can be found in Figure 6.3. As a further modication, we store the accumulator in reverse, so that

adding the next bits to it can be done in constant time. Ultimately, we obtain the following algorithm:

fun combine-z-aux where
combine-z-aux l acc [] = concat (rev acc)
| combine-z-aux l acc [z] = combine-z-aux l (z # acc) []
| combine-z-aux l acc (z1 # z2 # zs) = (let
(z1h, z1t) = split-at l z1 in
combine-z-aux l (z1h # acc) ((add-nat z1t z2) # zs)
)

denition combine-z :: nat⇒ nat-lsbf list⇒ nat-lsbf where
combine-z l zs = combine-z-aux l [] zs

We will only state the correctness and runtime lemmas without proof here.

6.4 The Schönhage-Strassen-Algorithm in ℤ𝐹𝑚

35

accumulator list calculation

[] [101, 111, 11]
1 0 1

1 1 1

0 0 0 1

[10] [0001, 11]
0 0 0 1

1 1

1 0 1

[10, 00] [101]
[10, 00, 101] []

Result: 1000101

Figure 6.3 Visualization of the algorithm used for the combine-z-function.

Lemma 6.16 [combine-z-correct]. Let 𝑙 ∈ ℕ>0, and let zs = [𝑧𝑠0, . . . , 𝑧𝑠𝑠−1] be a list of numbers in LSBF
representation, each of length at least 𝑙 . Then, combine-z l zs returns a representation of

𝑠−1∑︁
𝑖=0

𝑧𝑠𝑖 · 2𝑖 ·𝑙 .

Lemma 6.17 [time-combine-z-tm-le]. Let 𝑙 ∈ ℕ>0, and let zs = [𝑧𝑠0, . . . , 𝑧𝑠𝑠−1] be a list of numbers in LSBF
representation, each of length at most (!) 𝐿. Then, combine-z l zs runs in time O ((𝑙 + 𝐿) · 𝑠).

Runtime

Calculating each of the 𝑧 𝑗 from the b 𝑗 and [𝑗 using solve-special-residue-problem takes time O (2𝑛) by
Lemma 6.14. Hence, calculating all 𝑧 𝑗 for 𝑗 ∈ {0..<2𝑛oe−1} takes O

(
2
𝑛oe−1 · 2𝑛

)
= O

(
2
2𝑛

)
time.

Constructing the list 𝑧′ = [𝑧′
0
, . . . , 𝑧′

2
𝑛oe − 1] from the 𝑧 𝑗 (𝑗 ∈ {0..<2𝑛oe−1}) can be done in linear time, i.e.

in O (2𝑛).
Constructing the result from 𝑧′, i.e. applying the combine-z function to it with block size 𝑙 = 2

𝑛−1
, takes

time O
(
(2𝑛−1 + (2𝑛 + 𝑛 + 4)) · 2𝑛oe

)
= O

(
2
2𝑛

)
by Lemma 6.17, using that w.l.o.g. all entries of 𝑧′ have

length at most 2
𝑛 + 𝑛 + 4.12

In total, the construction of the result from the b 𝑗 and [𝑗 thus takes time O
(
2
2𝑛

)
.

6.4.4 Implementation

Combining all previous considerations, we get the following implementation and correctness result:

function schoenhage-strassen :: nat⇒ nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
schoenhage-strassen m a b =
(if m < 3 then int-lsbf-fermat .from-nat-lsbf m (grid-mul-nat a b) else
let
n = (if odd m then (m + 1) div 2 else (m + 2) div 2);
oe-n = (if odd m then n + 1 else n);

12
For the entries 𝑧′

𝑗
= 2

𝑛oe+2𝑛
, this is obvious. For the entries 𝑧′

𝑗
= 𝑧 𝑗 ∈ {0..<𝐹𝑛 ·2𝑛+2}, this follows since 𝐹𝑛 ·2𝑛+2 < 2

2
𝑛+1 ·2𝑛+2 =

2
2
𝑛+𝑛+3

. Note that we could hence also assume w.l.o.g. that all entries of 𝑧′ have length at most 2
𝑛 +𝑛+3, however weakening

this bound simplies some Isabelle code.

6 The Schönhage-Strassen-Algorithm

36

— residue mod 2
𝑛+2

a ′ = subdivide (2 ^ (n − 1)) a;
𝛼 = map (int-lsbf-mod .reduce (n + 2)) a ′;
u = concat (map (ll (3∗n + 5)) 𝛼);
b ′ = subdivide (2 ^ (n − 1)) b;
𝛽 = map (int-lsbf-mod .reduce (n + 2)) b ′;
v = concat (map (ll (3∗n + 5)) 𝛽);
uv = ensure-length ((3∗n + 5) ∗ 2 ^ (oe-n + 1)) (karatsuba-mul-nat u v);
𝛾 = subdivide (2 ^ (oe-n − 1)) (subdivide (3∗n + 5) uv);
[= map4 (_x y z w.

int-lsbf-mod .add-mod (n + 2)
(int-lsbf-mod .subtract-mod (n + 2) (take (n + 2) x) (take (n + 2) y))
(int-lsbf-mod .subtract-mod (n + 2) (take (n + 2) z) (take (n + 2) w))
)
(𝛾 ! 0) (𝛾 ! 1) (𝛾 ! 2) (𝛾 ! 3);

— residue mod 𝐹𝑛
prim-root-exponent = (if odd m then 1 else 2);
a-dft = int-lsbf-fermat .t n prim-root-exponent (map (ll (2 ^ (n + 1))) a ′);
b-dft = int-lsbf-fermat .t n prim-root-exponent (map (ll (2 ^ (n + 1))) b ′);
c-dft-odds = map2 (schoenhage-strassen n) (evens-odds False a-dft) (evens-odds False b-dft);

c-dis = int-lsbf-fermat .it n (prim-root-exponent ∗ 2) c-dft-odds;

b ′ = map2 (_cj j. int-lsbf-fermat .add-fermat n
(int-lsbf-fermat .multiply-with-power-of-2 cj (2 ^ (n + 1) − (oe-n + prim-root-exponent ∗ j − 1)))
(int-lsbf-fermat .from-nat-lsbf n (replicate (oe-n + 2 ^ n) False @ [True])))

c-dis [0..<2 ^ (oe-n − 1)];
b = map (int-lsbf-fermat .reduce n) b ′;

— Combine the residues and construct the result

z = map2 (solve-special-residue-problem n) b [;
z-lled = map (ll (2 ^ (n − 1))) z;
z-consts = replicate (2 ^ (oe-n − 1)) (replicate (oe-n + 2 ^ n) False @ [True]);
z-sum = combine-z (2 ^ (n − 1)) (z-lled @ z-consts);
result = int-lsbf-fermat .from-nat-lsbf m z-sum

— return the resulting sum

in result)

Lemma 6.18 [schoenhage-strassen-correct ′]. Let 𝑎 and 𝑏 be representations of numbers in ℤ𝐹𝑚 . Then,
schoenhage-strassen m a b calculates 𝑎 · 𝑏 ∈ ℤ𝐹𝑚 .

Our previous runtime considerations yield a recursive runtime equation of the form

𝑇 (𝑚) = O
(
𝑛 · 22𝑛 + (𝑛 · 2𝑛)log2 3

)
+ 2𝑛oe−1 ·𝑇 (𝑛)

where 𝑇 (𝑘) is the runtime of schoenhage-strassen m a b with 𝑎, 𝑏 ∈ ℤ𝐹𝑚 and 𝑛, 𝑛oe are dened as in the

beginning of section 6.4. In the Isabelle code, the function f is a more verbose recursive runtime bound

(with less simplications). Inserting the denitions of 𝑛 and 𝑛oe (and doing some simplications, e.g. using

that (𝑛 · 2𝑛)log2 3 ∈ O
(
2
2𝑛

)
13
) yields another runtime bound f ′ given by

𝑓 ′(𝑚) =
{
𝑐0 if𝑚 < 3

𝑐1 ·𝑚 · 2𝑚 + 𝑐2 + 2b
𝑚+1
2
c · 𝑓 ′

(⌊
𝑚+2
2

⌋)
if𝑚 ≥ 3

13
Isabelle lemma kar-aux-lem.

6.5 The Schönhage-Strassen-Algorithm in ℕ

37

with some constants 𝑐0, 𝑐1, 𝑐2 > 0.
14

Hence, the only thing left to do for our runtime verication is to nd

a closed bound for 𝑓 ′.
This is done similarly as in [SS71]: Dening 𝛾0 := 2𝑐1 + 𝑐2, one can show

15

𝑓 ′(2𝑛 − 2) ≤ 𝛾0 · 𝑛 · 22𝑛−2 + 2𝑛−1 · 𝑓 ′(𝑛)
𝑓 ′(2𝑛 − 1) ≤ 𝛾0 · 𝑛 · 22𝑛−1 + 2𝑛 · 𝑓 ′(𝑛)

(for 𝑛 ≥ 3) and then, using induction on 𝑘 :16

𝑓 ′(𝑚) ≤ 𝛾 · 𝑘 · 2𝑘+𝑚 (6.9)

for 𝑘 ≥ 1,𝑚 ≤ 2
𝑘 + 1 and 𝛾 := max{𝛾0, 𝑓 ′(0), 𝑓 ′(1), 𝑓 ′(2), 𝑓 ′(3)}.

Thus, we can choose 𝑘 ≈ log
2
(𝑚) and get a runtime bound of approximately

17

𝛾 · log
2
(𝑚) ·𝑚 · 2𝑚 .

Writing 𝑙 := 2
𝑚+1

for the length of the input numbers 𝑎 and 𝑏, we have𝑚 ≈ log
2
(𝑙) and hence a runtime

bound of O
(
log

2
(log

2
(𝑙)) · log

2
(𝑙) · 𝑙

)
.

6.5 The Schönhage-Strassen-Algorithm in ℕ

In order to multiply any two numbers 𝑎, 𝑏 ∈ ℕ, we just choose an𝑚 ∈ ℕ such that

1 𝑚 is large enough so that 𝑎 · 𝑏 < 𝐹𝑚 holds in ℕ, i.e. we can calculate the product by multiplying 𝑎

and 𝑏 in ℤ𝐹𝑚

2 𝑚 is small enough so that the multiplication in ℤ𝐹𝑚 is fast enough for our desired runtime bound.

The following choice of𝑚 suces:

denition schoenhage-strassen-mul where
schoenhage-strassen-mul a b = (let m = max (bitsize (length a)) (bitsize (length b)) + 1 in
int-lsbf-fermat .reduce m (schoenhage-strassen m (ll (2 ^ (m + 1)) a) (ll (2 ^ (m + 1)) b))
)

Theorem 6.19 [schoenhage-strassen-mul-correct]. Let 𝑎, 𝑏 ∈ ℕ be given in LSBF representation. Then,
schoenhage-strassen-mul a b correctly calculates a representation of 𝑎 · 𝑏 ∈ ℕ.

Proof. Let𝑚 := max{bitsize (length a), bitsize (length b)} + 1.
For 𝑐 ∈ {𝑎, 𝑏}, we have length c < 2

bitsize (length c)
, and hence length c < 2

𝑚−1
by denition of 𝑚. In

particular, length c ≤ 2
𝑚+1

, so the length of ll (2 ^ (m + 1)) c is precisely 2𝑚+1, i.e. 𝑎′ := ll (2 ^ (m + 1)) a
and 𝑏′ := ll (2 ^ (m + 1)) b satisfy the assumption of Lemma 6.18.

Hence, schoenhage-strassen m 𝑎′ 𝑏′ calculates a representation of 𝑎′ · 𝑏′ ∈ ℤ𝐹𝑚 .

Applying int-lsbf-fermat .reduce m yields a result 𝑐 where 𝑐 ≡𝐹𝑚 𝑎′ ·𝑏′ ≡𝐹𝑚 𝑎 ·𝑏 ∈ ℕ and 𝑐 < 𝐹𝑚 . If we can

also show that ℕ 3 𝑎 · 𝑏 < 𝐹𝑚 , we can conclude 𝑐 = 𝑎 · 𝑏 ∈ ℕ.

For that, note that 𝑎 < 2
length a < 2

2
𝑚−1

using that length a < 2
𝑚−1

(similarly for 𝑏), and thus

𝑎 · 𝑏 < 2
2
𝑚−1 · 22𝑚−1 = 2

2
𝑚

< 𝐹𝑚 .

Theorem 6.20 [time-schoenhage-strassen-mul-tm-le, schoenhage-strassen-bound-bigo]. The implementa-
tion schoenhage-strassen-mul performs integer multiplication in O

(
𝑛 · log

2
(𝑛) · log

2
(log

2
(𝑛))

)
.

More precisely: given input numbers 𝑎, 𝑏 in LSBF representation with length a ≤ 𝑛 and length b ≤ 𝑛,
schoenhage-strassen-mul a b needs O

(
𝑛 · log

2
(𝑛) · log

2
(log

2
(𝑛))

)
bit operations.

14
The Isabelle lemmas time-schoenhage-strassen-tm-le and f-le-f ′ show that f ′ is indeed a runtime bound.

15
Isabelle lemma f ′-oe-rec.

16
Isabelle lemmas f ′-le-aux1 and f ′-le-aux2.

17
See the upcoming Theorem 6.20.

6 The Schönhage-Strassen-Algorithm

38

Proof. The calculation of 𝑚 can be done in linear time, i.e. in O (𝑛). Applying ll (2 ^ (m + 1)) can be

done in O
(
2
𝑚+1)

. The runtime of the main part of the algorithm, namely the multiplication in ℤ𝐹𝑚 , can

be estimated by

𝛾 · bitsize m · 2bitsize m+𝑚

using equation (6.9) for 𝑘 := bitsize m. Finally, applying the int-lsbf-fermat .reduce function can be done in

linear time, i.e. in O (2𝑚).
Note that, using the assumptions and the monotonicity of the bitsize-function, we have𝑚 ≤ bitsize n+1.

Hence, we get a total runtime in

O
(
𝑛 + 2𝑚 + bitsize m · 2bitsize m+𝑚

)
= O

(
𝑛 + 2bitsize n + bitsize (bitsize n + 1) · 2bitsize (bitsize n + 1) · 2bitsize n

)
.

The bitsize-function can now be estimated by the log-function as follows:
18

bitsize n ≤ log
2
(𝑛) + 1

Thus, the runtime bound can be rewritten to

O
(
𝑛 + 2log2 (𝑛) + log

2
(log

2
(𝑛)) · 2log2 (log2 (𝑛)) · 2log2 (𝑛)

)
= O

(
𝑛 · log

2
(𝑛) · log

2
(log

2
(𝑛))

)
.

18
Isabelle lemma bitsize-le-log.

39

7 Conclusion

We have given an implementation of the Schönhage-Strassen-Multiplication in Isabelle, as well as a de-

tailed runtime verication using time monads. Along the way, we also implemented and veried the

runtime of primitive operations and the Karatsuba-Multiplication on natural numbers given in binary

representation. Further, we gave a commutative ring version of Number Theoretic Transforms and imple-

mented the estimation tactic.

As next steps, the following would be possible:

• Specialize our NTT version to the context of nite elds, obtaining some of the proofs done by

Ammer and Kreuzer [AK22] as consequence of the more general proofs.

• Similarly, specialize the NTT to the context of complex numbers, obtaining some proofs done by

Ballarin [Bal05].

• Restructure some Isabelle proofs. Most importantly, the proofs of t-carrier, it-carrier, t-correct ′

and it-correct ′ contain many duplicate statements, e.g. that the lengths of the recursive arguments

are again powers of 2, that could be outsourced to an adequate locale.

• Improve automation for the time verication process.

41

A Appendix

𝑎 ≡𝑛 𝑏 𝑎 ≡ 𝑏 mod 𝑛

ℕ {0, 1, 2, . . . }
ℕ>0 {1, 2, 3, . . . }
{𝑎..<𝑏} { 𝑥 ∈ ℕ | 𝑎 ≤ 𝑥 < 𝑏 }

[𝑃]
{
1 if 𝑃 holds

0 else

𝛿𝑖, 𝑗 [𝑖 = 𝑗]
𝑓 : 𝛼 → 𝛽 𝑓 : 𝛼1 → 𝛼2 → · · · → 𝛼𝑛 → 𝛽 if 𝑓 is a function taking 𝑛 curried arguments

𝐹𝑛 2
2
𝑛 + 1∑

𝑋
∑

𝑥∈𝑋 𝑥

𝑎 ★𝑏 cyclic convolution of 𝑎 and 𝑏, see Denition 5.4

Table A.1 Overview of used notation.

Proof of Lemma 3.5. For simplicity, assume that xs and ys have the same length (otherwise, the reader may

replace them by ll-xs resp. ll-ys in the following paragraphs). If to-nat xs ≤ to-nat ys, the claim follows

by correctness of compare-nat. So, assume to-nat xs > to-nat ys. Note that adding ys to its complement

results in a list consisting only of True bits:

ys 0 1 1 0 1

1map Not ys+ 0 0 1 0

=
1 1 1 1 1

This implies to-nat (map Not ys) = 2 ^ (length ys) − 1 − to-nat ys. Moreover, since to-nat xs > to-nat ys,
it can be seen that adding xs to map Not ys results in an overow bit. This bit can be cut o by applying

butlast, eectively decreasing the result by 2 ^ (length ys). In total, we get:

to-nat (inc-nat (butlast (add-nat xs (map Not ys))))
= 1 + to-nat (butlast (add-nat xs (map Not ys)))
= 1 + to-nat xs + (2 ^ (length ys) − 1 − to-nat ys) − 2 ^ (length ys)
= to-nat xs − to-nat ys.

A Appendix

42

File Description Sections SLOC

Estimation_Method.thy Proof tactic for applying inequalities (with

focus on type nat) in a forward-manner

1.2 38

Preliminaries/
Preliminaries.thy General Preliminaries 263

Monoid_Sums.thy Finite sums in the context of abelian monoids

and commutative rings

2.1 558

Sum_Lemmas.thy Lemmas about the existing sum-list-function 545

Ring_Lemmas.thy Auxiliary lemmas in commutative rings 221

Binary_Representations/
Abstract_Representations.thy Abstraction of the properties of a representa-

tion

127

Abstract_Representations_2.thy More general abstraction of representations 115

Binary_Representations.thy Binary Representations using the nat-lsbf -
type; basic arithmetic operations

3 1891

Binary_Representations-Runtime.thy Runtime formalization 1059

Runtime_Lemmas.thy Specic lemma explicitly solving a recursive

runtime inequality

106

Karatsuba/
Karatsuba.thy Karatsuba-Multiplication on natural num-

bers

4 430

Karatsuba-Runtime.thy Runtime formalization 669

NTT_Rings/
NTT_Rings.thy Theory for Number Theoretic Transforms

(NTTs) in rings: primitive roots of unity, con-

volution rule, inversion rule

5.1 914

FNTT_Rings.thy Theory for Fast Number Theoretic Trans-

forms (FNTTs) in rings

5.2 739

Schoenhage_Strassen/
Z_mod_power_of_2.thy Representations of and operations on ℤ

2
𝑘 6.1.1 248

Z_mod_power_of_2-Runtime.thy Runtime formalization 113

Z_mod_Fermat.thy Representations of and operations on ℤ𝐹𝑘

(including FNTTs)

6.1.2,

6.2

2160

Z_mod_fermat-Runtime.thy Runtime formalization 1414

Schoenhage_Strassen.thy The Schönhage-Strassen-Algorithm (after

some nal preparations)

6.3,

6.4, 6.5

2419

Schoenhage_Strassen-Runtime.thy Runtime formalization 2808

Runtime_Lemmas_Landau.thy Auxiliary lemmas about Landau-Notation for

functions of type nat⇒ nat
162

For simplicity, SLOC refers to the total number of lines in the source le, including comments and empty

lines.

Table A.2 Overview of le contents.

43

List of Figures

2.1 Comparison between insertion rules for monoid-sum-list resp. nsum. 3

2.2 Comparison between congruence rules for monoid-sum-list resp. nsum. 4

3.1 Comparison of the inc-nat function with its time monad version 6

3.2 Visualization of grid multiplication. 10

6.1 Constructing a ′ from a. 29

6.2 Constructing u from a ′. 31

6.3 Visualization of the algorithm used for the combine-z-function. 35

45

List of Tables

A.1 Overview of used notation. 41

A.2 Overview of le contents. 42

47

Bibliography

[AK22] T. Ammer and K. Kreuzer. “Number Theoretic Transform”. In: Archive of Formal Proofs (2022).
https://isa-afp.org/entries/Number_Theoretic_Transform.html, Formal proof development.

issn: 2150-914x.

[Bal05] C. Ballarin. “Fast Fourier Transform”. In: Archive of Formal Proofs (2005). https://isa-afp.org/
entries/FFT.html, Formal proof development. issn: 2150-914x.

[Ebe15] M. Eberl. “The Akra-Bazzi theorem and the Master theorem”. In: Archive of Formal Proofs
(2015). https://isa-afp.org/entries/Akra_Bazzi.html, Formal proof development. issn: 2150-

914x.

[KO62] A. Karatsuba and Y. Ofman. “Multiplication of many-digital numbers by automatic computers”.

In: Dokl. Akad. Nauk SSSR 145 (2 1962). http://mi.mathnet.ru/dan26729, pp. 293–294.

[Kem21] G. Kemper.Computeralgebra. University Lecture at the Technical University ofMunich.Winter

term. 2021/2022.

[NPW22] T. Nipkow, L. Paulson, andM.Wenzel.A Proof Assistant for Higher-Order Logic. https://isabelle.
in.tum.de/doc/tutorial.pdf. Springer, 2022.

[Nip17] T. Nipkow. “Veried Root-Balanced Trees”. In: Asian Symposium on Programming Languages
and Systems, APLAS 2017. Ed. by B.-Y. E. Chang. Vol. 10695. LNCS. https://www21.in.tum.de/

~nipkow/pubs/aplas17.pdf. Springer, 2017, pp. 255–272.

[SS71] A. Schönhage and V. Strassen. “Schnelle Multiplikation großer Zahlen”. In: Computing 7 (1971),
pp. 281–292.

https://isa-afp.org/entries/Number_Theoretic_Transform.html
https://isa-afp.org/entries/FFT.html
https://isa-afp.org/entries/FFT.html
https://isa-afp.org/entries/Akra_Bazzi.html
http://mi.mathnet.ru/dan26729
https://isabelle.in.tum.de/doc/tutorial.pdf
https://isabelle.in.tum.de/doc/tutorial.pdf
https://www21.in.tum.de/~nipkow/pubs/aplas17.pdf
https://www21.in.tum.de/~nipkow/pubs/aplas17.pdf

	1 Introduction
	1.1 Method for Runtime Verification
	1.2 The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 estimation Tactic

	2 Preliminaries
	2.1 Sums in Monoids

	3 Binary Representations
	3.1 Addition
	3.2 Truncating and Filling
	3.3 Comparison and Subtraction
	3.4 Multiplying/Dividing by Powers of 2
	3.5 Subdividing Lists
	3.6 The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bitsize Function
	3.6.1 The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 next-power-of-2 Function

	3.7 Grid Multiplication

	4 The Karatsuba-Algorithm
	5 Number Theoretic Transforms
	5.1 Number Theoretic Transforms
	5.2 Fast Number Theoretic Transforms

	6 The Schönhage-Strassen-Algorithm
	6.1 Preliminaries
	6.1.1 Representations in 2k
	6.1.2 Representations in Fk

	6.2 FNTTs in Fk
	6.3 A Special Residue Problem
	6.4 The Schönhage-Strassen-Algorithm in Fm
	6.4.1 Residues in 2n+2
	6.4.2 Residues in Fn
	6.4.3 Combining the Residues and Constructing the Result
	6.4.4 Implementation

	6.5 The Schönhage-Strassen-Algorithm in

	7 Conclusion
	A Appendix
	Bibliography

