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Abstract
Neural Networks (NNs) are nowadays used in many application areas for solving
increasingly complex tasks. Therefore, more and more resources are required for
training and deployment. One approach to reduce the resource requirements is to use
structured matrices in NNs. In this thesis, I study NNs whose weight matrices have
a particular structure, namely they are sequentially semiseparable (SSS). I show that
for NNs with SSS weight matrices, computational resources required for inference
can be reduced. In addition, such networks can achieve better prediction accuracy
compared to their standard counterparts depending on the problem at hand. The
performance depends on the method used to bring the structure into the network, for
which I compare three different approaches. Lastly, I investigate how the behavior
compares to NNs with structured weight matrices of different types. The experiments
show that the achieved results depend on the chosen structure. Accordingly, the
number of parameters need not be the dominant criterion for prediction accuracy. The
choice of a suitable structure for a given task also plays an important role.

Kurzzusammenfassung
Neuronale Netze werden heute in vielen Anwendungsbereichen zur Lösung immer
komplexerer Aufgaben eingesetzt. Hierbei werden für das Training und den Einsatz
der Netze immer mehr Rechenressourcen benötigt. Ein Ansatz zur Reduzierung die-
ses Ressourcenbedarfs ist die Verwendung strukturierter Matrizen. In dieser Arbeit
untersuche ich den Einsatz von Matrizen mit einer bestimmten Struktur in neurona-
len Netzen: Sequentiell Semiseparable (SSS) Matrizen. Ich zeige, dass für neuronale
Netzemit SSSGewichtsmatrizen die für die Inferenz erforderlichen Rechenressourcen
reduziert werden können. Darüber hinaus können solche Netze je nach Problemstel-
lung eine bessere Vorhersagegenauigkeit als Netze mit unstrukturierten Gewichtsma-
trizen erreichen. Die Genauigkeit hängt von der Methode ab, mit der die Struktur in
das Netz eingebracht wird. Im Vergleich mit neuronalen Netzen mit strukturierten Ge-
wichtsmatrizen anderer Strukturklassen stellt sich heraus, dass die erzielten Ergebnis-
se von der gewählten Struktur abhängen. Demnach muss die Anzahl der Parameter
nicht das ausschlaggebende Kriterium für die Vorhersagegenauigkeit sein. Auch die
Wahl einer geeigneten Struktur passend zur gegebenen Aufgabenstellung spielt eine
wichtige Rolle.
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1. Motivation

1.1. Trade-off between Complexity and Efficiency

In the domain of machine learning, there is often a fine line between necessary com-
plexity and efficient use of resources. However, it is especially important in today’s
world to set this trade-off appropriately. This is due to the fact that besides the savings
through reduced server costs for training or deploying a model, we are also interested
in the impact on the environment. The goal is to eliminate unnecessary computational
effort, for example in order to reduce the CO2 fingerprint of a model.

The research of this thesis focuses on this line between complexity and efficiency.
My focus is on saving computational operations when using modern NNs. These net-
works are often particularly large and computationally expensive to train and to use.
Here, we are interested in investigating not only possible savings but also the impact
on the prediction accuracy of the network.

There are several approaches to make the training and deployment of NNs more
computationally efficient. My approach to achieve these computational savings is to
exploit structures in the networks. Specifically, I am looking at matrix structures that
allow computations for matrices to be performed with fewer operations and to store
the matrix with fewer number of parameters (taking advantage of the structure). In
the following, I first give a motivational example for a case, where resources can be
spared by using structured matrices in NNs. Subsequently, I give an overview over the
computational problems for modern NNs. These problems can be tackled by using
structured matrices, which are introduced in the following section. Finally, I present
the outline of this thesis.

1.2. Motivational Example: Neural Networks controlling
Drones

In this work, I investigate methods that can make the use of NNs more efficient. To
illustrate what this means, I use a running example at some passages. It is about an
autonomously flying quadrotor drone, which is controlled by an NN. This setting serves
as an application example for the use of NNs on resource constrained hardware. In
order to robustly control a drone, the sensory input data must be quickly evaluated
and appropriate motor outputs must be set in real time. The drone considered in my
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1. Motivation

Takeoff weight 28.6g
Onboard Microcontroller STM32F405 (168 MHz, 192kb SRAM, 1Mb flash)
Onboard Sensors 3 axis accelerometer / gyroscope,

z-axis LIDAR sensor
Flight time with stock battery 7 minutes

Table 1.1.: Specifications of the Crazyflie 2.1 drone.

example is the Crazyflie 2.11 drone, which is often used in research projects. The
drone has an onboard microcontroller with 168MHz processing power and 1Mb flash
memory (more specifications are given in Table 1.1).
In my example, I refer to the experimental setup described in [35]. In this setting,

a standard fully-connected Feed-Forward Neural Network (FFNN) is used to compute
the pulse width modulation (PWM) signals for the quadrotor motors. For this, sensor
inputs from the gyroscope as well as the accelerometer are used as inputs to the
NN (together with additional information like the deviation from the target position and
the previous action taken by the NN). In order to robustly control the drone, control
inputs must be delivered at high frequency (typically around 1000Hz). Therefore, the
duration for the NN inference should be in the order of 1ms, whereas all computations
are performed on the microcontroller of the drone. Besides the computation resources,
the energy resources are also restricted. Using the onboard battery, the drone can fly
for about 7 minutes without recharging in the standard mode (which means without
NN controller). This flight time might be reduced, if more energy is consumed for
performing NN inference on the microcontroller of the drone. There are two possible
design criteria for the NN controller:

• Reducing the inference time in order to increase the frequency of the control
signals

• Reducing the ressource consumption per evaluation (and hence the energy con-
sumption) at fixed frequency of the control signals

The choice of the design criterion depends on the target application.
Potential real-world applications for NN controlled drones are search and rescue

missions [61, 89], detecting and tracking animals [9, 66], or spotting wild fires [44, 58].
In this thesis, I do not focus on a specific application domain. Therefore, I also do
not address concerns about regulations or safety of autonomous flying drones. When
comparing the resource consumption of the standard approach withmethods proposed
in this thesis, I assume that the power consumption and inference time is proportional
to the number of operations performed. In a real world setting, this might not exactly

1https://www.bitcraze.io/products/crazyflie-2-1/

12

https://www.bitcraze.io/products/crazyflie-2-1/


1.3. Modern Neural Network Architectures

be the case, since these metrics depend on the implementation of the algorithm and
the hardware used.

1.3. Modern Neural Network Architectures

In the last years, NNs have been used to solve increasingly complex tasks. These
include for example beating the best human player in the game of Go [71], generating
images, text or music [6, 8, 46], or achieving remarkable results in the domain of image
classification [41, 53, 70, 76]. However, as the difficulty of the tasks increases, so does
the complexity of the networks required to accomplish them. Therefore, modern NN
architectures often comprise millions (or even billions) of parameters.

The increased number of parameters in the network comes with multiple challenges
[50], including the following.

• The training and inference times increase with the number of parameters, since
more operations have to be performed in order to propagate information through
the network. Therefore, modern NNs are often trained and deployed to special-
ized hardware, where the training phase can still last for several weeks [71].
With respect to the example of an NN controlled drone, this means that the time
between sensor readouts and the motor outputs increases with larger NNs. For
example, we measured in our paper [52] that inference with a network contain-
ing layers with 30 hidden neurons takes 0.4ms on the drone microcontroller. In
comparison, inference with a network comprising 6 hidden neurons takes only
0.06ms.

• As the number of operations required for inference increases, so does the
amount of energy consumed. In the drone example, the power consumption
directly affects the flight time, since the onboard battery has a limited capac-
ity. In our experiments, it has been shown that the flight time can vary up to 20
seconds (approximately 5% of the standard flight time) depending on how the
drone is controlled. The energy consumption can also be an issue for applica-
tions, which are not battery driven. This is due to the fact that higher energy
costs lead to higher operating costs. Moreover, CO2 emissions can increase
with energy consumption, thus contribute to today’s climate change [74].

• The memory requirements of modern NNs can be an issue depending on the
available hardware setting. For example, the MobileNet V2 model designed for
computer vision tasks on mobile devices has 3.4 million parameters, requiring
more than 12MB in the Imagenet pretrained version provided by Google2. In
comparison, there is only 1Mb of flash memory and 100kb of SRAM available

2https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classifica
tion/5
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1. Motivation

on the microcontroller of the drone example. This means that such a large Con-
volutional Neural Network (CNN) does not fit into the working memory of the
microcontroller, nor into the available internal memory.

• In addition to storage requirements, bandwidth requirements related to storage
operations can also be a bottleneck [75]. Regarding the drone example, the time
needed for copying data from flash memory to SRAM can play a role for the NN
inference time. This is especially the case if the whole NN does not fit into the
working memory. Even if inference takes place on a GPU, memory bandwidth
can be a bottleneck, whereas on-chip memory bandwidth plays the major role
[42].

The presented challenges are particularly severe for applications targeting mobile
devices or embedded hardware. In this case, the available computational and memory
resources are limited. Despite these challenges, the demand for applications using
NNs on resource constrained hardware is increasing. This includes, for example, face
detection algorithms on smartphones [82] or edge computing applications [13].

Matrices play a major role in the resource requirements of NNs. In densely con-
nected FFNNs, the parameters of each network layer are grouped in matrices (referred
to as weight matrices in the following). For storing such a weight matrix W ∈ Rn×m,
nm values have to be specified. In addition, performing inference with the network
requires computational operations for multiplying the weight matrix of a layer with its
inputs, which are grouped into vectors. These matrix-vector multiplications require
O(nm) operations in general.

1.4. Structured Matrices

Not all matrices W ∈ Rn×m require nm parameters to be stored in order to be fully
defined. This is the case for data sparsematrices. The entries of data sparse matrices
have a certain relationship to each other, which we denote as structure.

Definition 1 A matrix A ∈ Rm×n is called data sparse or structured, if it is defined by
less than O(mn) parameters.

Definition 1 allows different orders of magnitude for the number of parameters required
for defining the structured matrix. For example, for the case n = m, there are many
structure types which require O(n) parameters. These structures often show their
advantages already for small matrix dimension n. In contrast, other structure types re-
quire O(n logκ n) parameters (for κ ∈ N). Algorithms for such structures often require
large matrix dimensions n in order to being more efficient than the standard algorithms
for unstructured matrices.
Note that data sparse matrices need not be sparse. Sparse matrices, in contrast to

data sparse matrices, contain many zero-valued entries.
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1.5. Goal and Thesis Outline

Definition 2 A matrix A ∈ Rm×n is called sparse, if it has less than O(nm) nonzero
entries.

Both, sparse and data sparse matrices, can be described with less than O(mn)
parameters. However, in structured matrices, there is no need that any entry is zero.
Instead, due to the structure in the matrix, fewer parameters are required in order to
define the whole matrix.

For some matrix structures, not only parameters can be saved, but also efficient al-
gorithms exist for multiplying the matrix with a vector. This results in a subquadratic
order of operations required for computing the matrix-vector product as well as param-
eters required for storing the matrix.

The advantages of structured matrices can also be used in NNs if the weight ma-
trices are structured. In this case, fewer parameters are needed to store the weight
matrices. Moreover, computational resources can be saved when information is propa-
gated through the network. Operations can be saved due to the reduced effort required
to compute the product between the structured weight matrix and the input vector. This
can lead to smaller inference times as well as energy savings.

There are many different types of structures that can be present in a matrix. We
introduce the four main structure classes in our survey paper [50]: SSS matrices,
hierarchical matrices, matrices of low displacement rank, and products of sparse ma-
trices. These classes are based on different types of structures, which means that
the relationship between the elements in the matrix differs. In this thesis, I focus on
SSS matrices, which originate from time-varying systems theory [21]. This structure
is defined in Section 3.1.

1.5. Goal and Thesis Outline

In this thesis, I set the focus on SSS matrices applied to NNs. I am interested in how
NNs behave when their weight matrices are sequentially semiseparable. This refers
to the prediction accuracy as well as the potential savings in the required memory and
computational resources. Moreover, I investigate ways to bring the structure into the
fully-connected layers of NNs and compare the observed effects of using SSS weight
matrices to using other types of structured matrices in NNs.

The remainder of this thesis is organized as follows. I first give an overview over
existing work about structured matrices and how they are used in NNs in Chapter 2.
Then, I introduce the concepts on which this thesis is built in Chapter 3. This includes
the class of SSS matrices, and different architectures of NNs and how they are trained
traditionally. In the subsequent Chapter 4, I introduce my research questions and hy-
potheses. The methods used for my experiments are introduced in Chapter 6. Here, I
show how SSSmatrices can be approximated starting from trained weight matrices, or
how they can be trained using gradient descent. In the following Chapter 7, I discuss
the answers to my research questions and determine for each hypothesis whether it

15



1. Motivation

can be falsified or verified. This is based on observations and results obtained from
our previous publications. Finally, I conclude my findings in Chapter 8. The summaries
of my first author publications, on which this thesis is based, can be found in the ap-
pendix.
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2. Related Work

2.1. Matrices of Low Displacement Rank

Arguably the best known structure class are matrices of low displacement rank [63].
This structure class includes Toeplitz, Hankel, Vandermonde and Cauchy matrices,
which arise in many linear algebra problems. The underlying idea is that the entries of
a matrix M might be shifted and modified versions of other entries in the matrix [63].
This means, that after applying the operator matrices A and B, the resulting matrix
L(M) has low rank. Depending on the type of the displacement, applying the operator
matrices is defined differently. For displacement operators of the Sylvester type, L(M)
is given by

L(M) = ∇A,B(M) = AM − MB. (2.1)

Correspondingly, L(M) is given by

L(M) = ∆A,B(M) = M − AMB (2.2)

for displacement operators of the Stein type.
Matrices of low displacement rank occur and have been used in many linear alge-

bra applications [63]. This includes algorithms for adaptive filtering [45], for solving
systems of equations [7, 36], and algebraic computations in general [3, 64]. For ex-
ample, Gustavson and Yun [36] presented an algorithm, which can be used to solve a
Toeplitz system of linear equation with O(n log2 n) operations. Pan [63] gives a com-
prehensive overview over applications and algorithms using or based on matrices of
low displacement rank.

One of the most popular network architectures for NNs, the CNN, is implicitly based
on matrices of low displacement rank. This is, because the weight matrices of CNNs
can be represented as sparse Toeplitz Matrices. In the domain of images, this archi-
tecture has been demonstrated to yield better performance in terms of computational
requirements as well as generalization capabilities compared to traditional NNs [55,
76]. Other works focus on explicitly using weight matrices of low displacement rank in
NNs. For example, Sindhwani et al. [73] used Toeplitz-like weight matrices in NNs. In
their end-to-end training pipeline, they optimized the low rank matrices of the displace-
ment representation, while fixing the operator matrices. In contrast, Thomas et al. [78]
introduced a class of matrices of low displacement rank, which facilitates training the
operator matrices end-to-end together with the low-rank components. In addition to
these results concerning the practical use and training of neural with weight matrices

17



2. Related Work

of low displacement rank, there exist also theoretical results. For example, Zhao et al.
[87] analyzed the properties of these networks, showing for example that the universal
approximation theorem holds for NNs with weight matrices of low displacement rank.
Another proof is given by Liu et al. [60]. They showed that the universal approximation
theorem holds for Toeplitz or Hankel weight matrices in NNs with arbitrary width and
fixed depth, as well as in NNs with arbitrary depth and fixed width.

2.2. Hierarchical Matrices

The idea behind Hierarchical matrices (H matrices) [37] is that even if the overall ma-
trix has full rank, there might still be parts in the matrix which have a low rank. If these
low rank parts are taken into account when storing the matrix and performing compu-
tations, storage and computational resources can be saved. In order to represent a
matrix asH -matrix, the parts of the matrix are arranged in a tree (the so called block
cluster tree), so that the matrices at the leaves of the tree are either small or have a low
rank [37]. In this representation, the matrix can be efficiently multiplied with a vector.
For this purpose, the individual leaves of the block cluster tree are multiplied with the
corresponding entries in the vector (making use of the low-rank property of the leaves).
Subsequently, the intermediate results are merged to obtain the overall result of the
matrix-vector multiplication.
There are several application domains in whichH -matrices are used [37, 38]. This

includes, for example the efficient treatment of discrete integral equations [5], support
solving eigenvalue problems [27], finite element methods [88], and solving large scale
algebraic matrix Riccati equations [33].
H -matrices have also been used in the domain of NNs. They can, for example, be

used as weight matrices in NNs, which results in a multiscale structure in the network
[24]. The number of parameters needed to define the weight matrix can be further
reduced by usingH2 matrices [23], which are a special type ofH -matrices. Besides
being used as weight matrices in NNs,H -matrices can be used to speed up the train-
ing of the network. For example, Chen et al. [12] proposed to use H -matrices for
approximating the Generalized Gauss-Newton Hessian, which can be used to spare
resources during (second-order) training, analyzing NNs, and estimating learning rates
[12]. Also Ithapu proposed to analyze NNs using H -matrices, by investigating the
inter-class relationships of deep learning features using a multi-resolution matrix fac-
torization [43]. Moreover, Wu et al. [84] proposed to compress NNs by applying the
Hierarchical Tucker decomposition [32] to NNs.

2.3. Products of Sparse Matrices

Another structure class is given by products of sparse matrices. Note that the product
of sparse matrices is not sparse in general. Therefore, many dense matrices can be

18



2.4. Sequentially Semiseparable Matrices

(approximately) represented by products of sparse matrices [16], which in turn can be
beneficial for storing the matrix or performing computations with it. In order to fully
define a sparse matrix as defined in Definition 2, the values of the non-zero elements
of the matrix must be determined together with their positions in the matrix. These val-
ues defining the sparse matrix can be stored in different ways. For example, the com-
pressed sparse column matrix format can be used, which shows good performance
for computations performed on CPUs [34].

Sparse matrices arise in various application areas and disciplines [22]. This in-
cludes, for example, economic modelling, navier-stokes problems, power network
modelling, or astrophysics. Such sparse linear system problems can be solved di-
rectly by using iterative methods [69]. Also, products of sparse matrices play a role in
linear algebra. For example, both the operators of the widely used Discrete Wavelet
Transform as well as the Fourier Transform can be expressed based on products of
sparse matrices [1, 56].

Sparse matrices have been used early in NNs [40, 57]. There are different methods
for obtaining sparse weight matrices, including regularization [83], pruning techniques
[4], and hand-tuned heuristics [19]. In contrast, the research field concerning the use
of products of sparse matrices in NNs is rather young. In this context, it has been
proposed several times to use Butterfly matrices as weight matrices in NNs [1, 15, 16,
59]. Butterfly matrices have a fixed sparsity pattern. Using them in NNs has the advan-
tage that the positions of the non-zero elements are fixed throughout the training. This
makes NNs comprising Butterfly weight matrices trainable end-to-end, by avoiding the
non-differentiable problem of finding the right sparsity pattern. Instead of training the
NN with products of sparse matrices end-to-end, the products of sparse matrices can
also be identified by approximation. For this purpose, Magoarou et al. [56] presented
an algorithm that can be used to approximate matrices with products of sparse ma-
trices. Based on this algorithm, Giffon et al. [28] showed that CNNs with products of
sparse matrices as weight matrices can yield better accuracy-compression trade-offs
than other popular NN compression methods.

2.4. Sequentially Semiseparable Matrices

First publications touching the concepts of semiseparable matrices date back to 1937
[25, 81]. SSS matrices, in particular, are relevant for various application domains like
computational science or engineering. For example, SSS matrices occur when de-
scribing time-varying systems using a state-space representation [21]. They have a
block structure defined by multiple smaller matrices, whereas the block matrices de-
scribe the input-output behavior of a time-varying system at different time steps. This
is explained in more detail in Section 3.1, where I formally define SSS matrices.

SSS matrices have some interesting properties. Furthermore, there are efficient al-
gorithms for performing various linear algebra operations with such matrices [81]. This

19



2. Related Work

Structured Weight Matrices Other Approaches
Matrices of Low Sindhwani et al. [73] -

Displacement Rank Thomas et al. [78]
Zhao et al. [87]
Liu et al. [60]

H -matrices Fan et al. [24] Ithapu [43]
Fan et al. [23] Chen et al. [12]
Wu et al. [84]

Products of Sparse Dao et al. [15] Magoarou et al. [56]
Matrices Dao et al. [16]

Li et al. [59]
Ailon et al. [1]

SSS matrices - Zamarreno and Vega [86]
Van Lint et al. [80]
Titti et al. [79]

Table 2.1.: Examples of prior work in which the different structure classes have been used in
the domain of NNs.

includes, for example, solving SSS systems of equations [11], or inverting SSS matri-
ces [20]. An important result for SSS matrices is that they can be efficiently multiplied
with a vector [10, 30]. Being a special member of the class of semiseperable matrices,
other properties which have been shown for general semiseparable matrices also ap-
ply to SSS matrices. I refer to [81] for an overview of the results for the general class
on semiseparable matrices.
Prior to the work presented in this thesis, SSS matrices have not been used as

weight matrices in NNs. Instead, related work using SSS matrices in the context of
NNs focused on finding suitable architectures for time-varying system applications.
This includes State-Space NNs [80, 86], which introduce non-linearity into the rep-
resentation of time-varying systems, and Time-Varying NNs [79], whose weights can
change over time.

2.5. Summary: Structured Weight Matrices

In the previous four sections, I presented the four main structure classes, which have
been used in the context of NNs. I onlymentioned the results, which aremost important
for the scope of this thesis. For a more detailed overview, please refer to our survey
paper [50], where we analyzed the structure classes in detail and compared them to
each other in two benchmarks.

The contributions for each structure class in the domain investigated in this thesis are

20



2.5. Summary: Structured Weight Matrices

summarized in Table 2.1. It is evident, that all structure classes can potentially be used
as weight matrices in NNs. However, prior to the work presented in this paper, only
three of the four structure classes have been investigated with respect to the effects of
using them as weight matrices in NNs.

So far, SSS matrices have been used in classical linear algebra problems. The aim
of this work is to also investigate possible applications of SSSmatrices in NNs. I chose
this structure class for my investigations for two reasons. On the one hand, there is
a large body of theory available for SSS matrices, which can be used for theoretical
considerations about their use-cases. On the other hand, this class is particularly
exciting, since there have been no studies on the possible use of SSS matrices in NNs
yet.
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3. Background

3.1. Sequentially Semiseparable Matrices

Definition

I introduce SSS matrices in the context of time varying systems. This is intuitive, be-
cause when describing time varying systems using state-space methods, the SSS
structure naturally occurs. For time-varying systems, the output ak at the k th time
step with k = 1, . . . , p can be computed by

xk+1 = Ak xk + Bkuk, (3.1)

x̂k = Ek x̂k+1 + Fkuk+1, (3.2)

a(1)
k
= Ck xk + Dkuk, (3.3)

a(2)
k
= Gk x̂k, (3.4)

yielding
ak = a(1)

k
+ a(2)

k
. (3.5)

Here, uk is the input to the system at time step k. xk and x̂k are the causal and anti-
causal state of the system respectively. The matrices Ak , Bk , Ck , Dk , Ek , Fk and Gk

describe the behavior of the system. For example, Bk maps inputs to future states.
Note that the dimension of the matrices are not constant. This is due to the fact that
state, input, or output dimensions might change over time. In the following, I refer to
the k th time step as the k th computation stage, since the matrices considered in this
thesis need not to be connected to physical properties.

By concatenating the inputs uk and outputs ak into vectors u and a, the input-output
behavior of the system can be expressed in operator space

a = Tu, (3.6)

where T is the SSS operator matrix defined as

T = D + C(I − Z A)−1ZB

+ G(I − ZT E)−1ZT F .
(3.7)
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Here, I is the identity matrix and Z is a down-shift matrix

Z =

©­­­­­«
0 0

1
. . .
. . .

. . . 0
0 1 0

ª®®®®®¬
. (3.8)

A, B, C, D, E , F and G are block-diagonal matrices, each comprising p matrices

A = diag([A1, . . . , Ap]) (3.9)

(B, C, D, E , F and G matrices respectively). The resulting matrix has a particular
structure based on the block matrices

T =


D1 G1F2 G1E2F3 G1E2E3F4

C2B1 D2 G2F3 G2E3F4

C3A2B1 C3B2 D3 G3F4

C4A3A2B1 C4A3B2 C4B3 D4

 (3.10)

(exemplary shown for the case p = 4 here).

Efficient Matrix-Vector Multiplication

Depending on the dimensions of uk , ak , xk , and x̂k , the product between an SSS
matrix T ∈ Rr×v with an arbitrary vector can be computed efficiently. I denote the
maximum dimension of all causal and anti-causal states as d, i.e.

max
k

dim(xk) ≤ d (3.11)

and
max
k

dim(x̂k) ≤ d. (3.12)

Furthermore, I assume that
max
k

dim(uk) < d (3.13)

and
max
k

dim(ak) < d (3.14)

(which is typically the case when looking at time-varying systems). As a result, com-
puting the product between an SSS matrix and an arbitrary vector can be performed
withO(pd2) operations (compared toO(rv) in the standard case). This can be seen by
looking at Equations 3.1-3.5, which can be used to compute the outcome of the matrix-
vector multiplication. Therefore, we can expect a reduction for the required number of
operations if d is sufficiently small. Besides the reductions for the computational costs,
the storage cost also decreases to the same order of magnitude.
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3.2. Neural Networks

Neural Network Architectures

In FFNNs, information is passed from from anterior layers to posterior layers. Recurrent
connections are prohibited, since information is always passed forward. Other types,
for example recurrent NNs, are outside the scope of this thesis.

I consider two specific types of FFNNs, namely fully connected NNs and CNNs.
The latter type is usually used for image-based tasks, and may also contain a fully
connected part.

Fully connected NNs got their name from the fact that each neuron in one layer
is connected to all neurons in the following layer. I define fully connected NNs
N(x,W1, . . .WL, b1, . . . , bL) as composition of L layer mappings Λ f for f = 1, . . . , L
(with L ≥ 1)

N(x,W1, . . . ,WL, b1, . . . , bL) =ΛL(WL, bL, ·) ◦ · · · ◦

Λ2(W2, b2, ·) ◦ Λ1(W1, b1, x),
(3.15)

where x is the input to the NN with x ∈ Rm. W f and b f are the weight matrices and
biases which parameterize the network.

Each layer mappingΛ f consists of a matrix-vector multiplication between the weight
matrixW f and the inputs to the layer (which are the outputs of the previous layerΛ f−1),
followed by adding a bias b f and applying a (nonlinear) activation function σf

Λ f (W f ,Λ f−1, b f ) = σf (W fΛ f−1 + b f ). (3.16)

The activation function σf is applied element-wise to its inputs. The inputs for the first
layer Λ1 are given by the input layer Λ0, which equals the inputs to the NN Λ0 = x.
Nowadays, there are many applications for NNs in the domain of images. This in-

cludes, for example, image recognition, object detection and image segmentation. In
this domain, decisions must be made based on given images. Transferred to the NN
domain, this means that the inputs to the network are tensors I ∈ Rr×s×c, where r × s
are the dimensions of the image, and c are the number of channels in the image.
For addressing image based problems with NNs, usually CNNs are used. CNNs are

another type of FFNNs with a special architecture. They typically consist of a feature
extractor part and a classifier part. The feature extractor part comprises convolutional
and pooling layers, which are designed to extract features from images. After the
feature extractor part, the activations get reorganized into a vector, which is fed to the
classifier part. Typically, the classifier part is a fully connected NN.

Convolutional layers consist of several feature maps Λ f , j for j = 1, . . . , cout , which
form the channels of the layer output Λ f with cout channels. The feature maps are
computed by cross-correlating the inputsΛ f−1 comprising cin channels with the kernel
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3. Background

Figure 3.1: Schematic illustration of two convolutional layers with a single feature map each.
Each convolutional layer extracts features using its receptive field, which is cross-correlated
with the input to the layer. By stacking multiple layers on top of each other, features with
different degrees of abstraction can be extracted.

of the feature map K f , j ∈ R
s×r

Λ f , j = σf

(
b f , j +

cin∑
t=1

K f , j ∗ Λ f−1,t
)
, (3.17)

where ∗ is the cross-correlation operator, σf is the activation function, which is applied
element-wise, and b f , j are the biases of the j th feature map [65]. The dimensions of
the kernel define the size of the receptive field of the feature map and are treated as
hyperparameters. Additional hyperparameters are the stride of the cross-correlation
operation and the padding of the inputs. The cross-correlation operator is the same
as a convolutional operator with a flipped kernel, giving CNNs originally their name.
However, since the cross-correlation operator is more straightforward to implement
[31], it has replaced the convolution operator in most machine learning frameworks.
A schematic illustration of two convolutional layers with each having a single feature
map is given in Figure 3.1.
The second type of layers commonly used in CNNs are pooling layers. Pooling lay-

ers build summary statistics of nearby outputs in the previous layer. The aim is to
make the representation approximately invariant to minor modifications of the input
(e.g. translations) [31]. One example is the max pooling layer, which returns the max-
imum activation of different regions in its inputs. For that, a receptive field is moved
over the inputs and for every displacement the maximum activation is determined.
Pooling layers do not introduce additional trainable parameters into the NN. However,
they can introduce additional hyperparameters, like for example the size or the stride
of the receptive field used for the pooling operation.

The focus of this work lies on the matrix-vector multiplication in the NN. For this
operation, the computational as well as storage costs scale quadratically with the size
of the weight matrices. Due to the classifier part typically being a fully connected NN,
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3.2. Neural Networks

this also affects modern CNN architectures. This can especially be important for the
storage cost, because the weights of the convolutional layers are shared. As a result,
the fully connected layers of deep CNNs typically make up the large majority of the
parameters [85].

Backpropagation

NNs are trained to have a certain input-output behavior. For that, the training set
(Xtrain,Ytrain) consisting of input samples Xtrain and corresponding labels Ytrain is used.
The input set and labels each comprise m samples, which are used as examples how
the inputs should be transformed into outputs. In order for the NN to match the desired
transformation, the weights and biases of the network need to be adjusted. This can be
done by using the backpropagation algorithm [67], which is a gradient-descent based
method.

When NNs are trained using backpropagation, they are first initialized randomly,
which means that random values are assigned to the weights and biases in the net-
work. The training consists of iteratively adjusting the weights and biases in multiple
training epochs. Each training epoch consists of three steps: A forward pass, a back-
ward pass and a gradient descent step. During the forward pass of the k th epoch, the
outputs of the NNYpred for the samples in the training set are computed. These outputs
are then compared with the desired outputs Ytrain using a loss function L(Ypred,Ytrain).
During the backpropagation step, the loss determined by the loss function is derived
with respect to the parameters of the network

δL(Ypred,Ytrain)

δW (k)
f

(3.18)

and
δL(Ypred,Ytrain)

δb(k)
f

(3.19)

for f = 1, . . . , L (kernel parameters in CNNs analogously). During this step, the gra-
dients are propagated from layer to layer in the network, giving the backpropagation
algorithm its name. Subsequently, the weights and biases are updated by taking a
step in the negative direction of the gradient

W (k+1)
f

= W (k)
f
− α

δL(Ypred,Ytrain)

δW (k)
f

for f = 1, . . . , L (3.20)

(other parameters analogously). The step-size α can either be fixed (usually to small
values like 10−3), or adapted during training (for example using a step-size optimizer
like Adam [47]).

Since this procedure can be very resource intensive, often the training set is split
into several mini batches. Then, one training epoch consists of subsequently updating
the weights and biases of the network with respect to all mini batches.
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My research questions are related to the use of SSS matrices in NNs. Here, I am inter-
ested in the benefits of using SSS weight matrices, the differences between methods
used to bring the structure into the NN, and the behavior compared to weight matrices
of other structure types. For each of these areas of interest, I formulate one research
question, which I answer in this thesis. In order to answer the questions, I formulate
hypotheses which are verified or falsified throughout the thesis.

The first research question is about the benefits of using SSS matrices as weight
matrices in NNs. In contrast to other matrix structures, the structure class of SSS
matrices has not been investigated in the domain of NNs yet. By answering the first
question, I investigate the advantages of using this structure class in NNs.

Research Question 1 What are the benefits of using SSS matrices as weight matri-
ces in NNs in terms of generalization capability and resource requirements?

I address this question by examining the following two hypotheses.
Hypothesis 1.1: NNs with SSS matrices achieve equal or better test prediction accu-
racy, despite having fewer trainable hyperparameters compared to standard NNs.
Hypothesis 1.2: The time needed for propagating information through the NN can be
decreased by using SSS weight matrices in NNs.

In the context of the drone example introduced in Section 1.2, Hypothesis 1.1 inves-
tigates whether networks with a small number of parameters are suitable for controlling
the drone. Analogously, Hypothesis 1.2 addresses the question whether SSS matri-
ces can be used to reduce the inference time for controlling the drone. The time saved
could then be used, for example, to achieve a higher control frequency. Both hypothe-
ses are connected with each other by the trade-off on how many parameters can be
spared to increase the control frequency so that the control is still flying sufficiently
good and robust.

There are several ways in which structure can be introduced into the NN. For ex-
ample, it can be imposed during training, or the weight matrices can be approximated
with structured weight matrices after training. This raises the question how the choice
of the method, that brings the structure into the network, influences the performance
of the resulting NN.

Research Question 2 Which influence does the choice of the method used to bring
SSS structure into NNs have on the test accuracy?
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To answer this research question, I compare two methods for introducing structure
into NNs. In the following, I refer to approaches based on training data as data driven
methods. For example, if a NN used for controlling a drone is trained based on sen-
sory data collected while flying on example trajectories, I would refer to this approach
as data driven. In contrast, non data driven methods do not require any training data.
Instead, with non data driven methods, the approach is to extract data from already
trained models (for example by approximating the weight matrices of the model). Re-
garding the drone example, non data driven methods can be used if we already have
an NN, which is able to robustly control the drone. In this case, we can analyze the
given network in order to improve it by for example exploiting structure present in the
given weight matrices. This leads to the following two hypotheses, which I investigate
in order to answer Research Question 2.
Hypothesis 2.1: NNs with SSS weight matrices optimized using a data driven ap-
proach achieve higher test prediction accuracy than NNs whose weight matrices are
approximated with SSS matrices after training.
Hypothesis 2.2: Fine-tuning NNs with approximated SSS weight matrices leads to
higher test accuracy than training NNs with SSS weight matrices from scratch.

As mentioned before, there are several matrix structure classes which can be used
in the domain of NNs. For the use in NNs, the most interesting structure types are
those that reduce the computational resources needed to deploy the network. Usu-
ally, the reduced resource consumption is associated with a reduction in the number
of parameters. Here the question arises, which influence the choice of the structure
has on the performance of the network (while fixing the number of parameters in the
network). Regarding the drone example, the question is if using one matrix structure
in the weight matrices of the NN in favor of another structure type can lead to a more
robust flying performance. This question is addressed by my third research question.

Research Question 3 Which influence does the choice of the structure class brought
into the NN have on the achieved test accuracy?

To answer this question, I examine two hypotheses regarding the impact of the chosen
structure.
Hypothesis 3.1: The test prediction accuracy of NNs with structured weight matrices
approximated from trained weight matrices does not depend on the structure type if
the number of parameters is the same.
Hypothesis 3.2: NNs with SSS weight matrices achieve the same prediction accu-
racy as NNs comprising structured weight matrices of other types when trained using
gradient-descent.
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Summary

Structured matrices can help to reduce the vast resource consumption of modern NNs.
However, information about matrix structures is quite fragmented. In this paper, we
give an overview over the four main matrix structure classes and provide references to
research papers in which structured matrices are used in the domain of NNs. I use this
overview in this thesis as a basis for my literature review and for classifying the state-
of-the-art. Moreover, we present two benchmarks in the paper. First, we benchmark
the error for approximating different test matrices with structured matrices of different
types. Second, we compare the prediction performance of NNs in which the weight
matrix of the last layer is replaced by structured matrices. I use the results of these
benchmarks to answer the third research question of this thesis, concerning the effect
of using different structure types in the weight matrices of NNs.

Own Contributions

• Conduct literature review to identify relevant sources and classification of the
found sources into structure classes in cooperation with Prof. Diepold

• Experimental design of the benchmarks presented in the paper

• Implementation and execution of the benchmarks with subsequent discussion
of the results

• Identification of research areas which are currently relevant for the field
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Abstract
Modern neural network architectures are becoming larger and deeper, with increas-
ing computational resources needed for training and inference. One approach toward
handling this increased resource consumption is to use structured weight matrices.
By exploiting structures in weight matrices, the computational complexity for propa-
gating information through the network can be reduced. However, choosing the right
structure is not trivial, especially since there are many different matrix structures and
structure classes. In this paper, we give an overview over the fourmainmatrix structure
classes, namely semiseparable matrices, matrices of low displacement rank, hierar-
chical matrices and products of sparse matrices. We recapitulate the definitions of
each structure class, present special structure subclasses, and provide references to
research papers in which the structures are used in the domain of neural networks.
We present two benchmarks comparing the classes. First, we benchmark the error
for approximating different test matrices. Second, we compare the prediction perfor-
mance of neural networks in which the weight matrix of the last layer is replaced by
structured matrices. After presenting the benchmark results, we discuss open research
questions related to the use of structured matrices in neural networks and highlight
future research directions.
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1 Introduction

1.1 StructuredMatrices

When talking about structuredmatrices, we build on the notion of data-sparsematrices.
Data sparsity means that the representation of an n×n matrix requires less thanO(n2)
parameters. In contrast to sparse matrices, data sparsematrices must not contain zero
entries. Instead, there is a relationship between the entries of the matrix. The simplest
examples are rank 1 matrices of the form u · vT , for vectors u, v ∈ Rn . Other easily
identifiable examples of data sparse matrices are Toeplitz or Hankel matrices, which
may hold 2n − 1 parameters.

In other, less obvious cases, data sparsity implies that the entries of the respective
structured matrices have an intrinsic relationship to each other. As an example for

such a relationship, we can point at orthogonal matrices, which comprise n(n−1)
2 free

parameters. However, orthogonal matrices have obviously O(n2) parameters, which
means that they do not belong to the class of data-sparse matrices.

We are particularly interested in data-sparsematrices, forwhichwe canfind efficient
algorithms, for example, computing thematrix–vector product with an arbitrary vector
with less than O(n2) operations. There exist various matrix structures, which serve as
candidates for accomplishing this goal. However, the knowledge on the subject area is
quite fragmented containing many approaches originating from diverse fields. In this
paper, we give an overview over the fourmost important structure classes.We put these
classes in relation to each other, helping to reveal their boundaries and limitations. By
that, we categorize the state-of-the-art in the field of structured matrices.

1.2 Computational Challenges for Neural Networks

Neural networks solve increasingly complex tasks of machine intelligence, like beat-
ing humans in the game of Go [78]. However, with increasing complexity of the
problems, the complexity of the networks also increases significantly. This creates a
trend toward deep networks [45, 90], which consist of a large number of layers and
millions of parameters. This increase in complexity creates challenges for practical
implementations, where the number of arithmetic operations grows disproportionally
fast.

This trend results in the following list of technical challenges:

Training time
The training of deep neural networks can last severalweeks even onmodern computing
architectures. For example, the training of the AlphaGo Zero network, which is able
to beat the best human Go players, took 40 days (on specialized hardware) [78]. Long
training times result in high costs, for example, due to high server costs. Moreover,
long training periods effectively hinder to adapt quickly to new data.

Inference time
The more operations need to be performed in order to compute the output of a neural
network, themore time is needed for the computation. Thus, the inference time directly
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scales with the number of operations in the neural network (neglecting parallelization
capabilities). If the inference takes too long, the applicability of a neural network is
restricted to certain applications, where fast inference is not essential. For example,
the AlphaGo Zero network needed specialized hardware to be able to answer with
reasonably low response time, which is required for playing a game of Go. In the case
of AlphaGo Zero, 4 tensor processing units were used in order to perform inference in
at most 5 s, and previous versions were distributed on up to 176 GPUs for calculating
the next move in real time [78].

Memory requirements
Large neural networks consist of many parameters, which need to be stored. For
example, the popular pre-trained ResNet50 [45] network needs 98MB memory space
(provided by the keras project1). This is by far not the upper limit—there are much
bigger architectures available and in use. The required memory capacity can be
problematic for resource constraint devices, such as mobile devices, smartphones
or microcontrollers. For standard computers (PCs), the amount of memory required
to load the whole model into RAM may also be prohibitive.

Memory bandwidth requirements
Besides the large memory needed to store the parameters of a given deep neural net-
work, it is also an issue to provide the memory bandwidth necessary to facilitate fast
learningor fast inference. Indeed, it has been shown that for deepneural networksmem-
ory access is themain bottleneck for processing [82]. Therefore, significant processing
speedups can be achieved by optimizing the memory access to reduce bandwidth [46].

Power consumption
As the amount of operations for performing training or during inference increases,
the power consumption also increases. Again, the increasing power consumption is
challenging for mobile devices or, more generally, for all battery-driven systems.
Besides the costs arising with increased power consumption, neural networks might
thus contribute to today’s climate change. For example, training big natural language
processing models including hyper parameter search can produce up to twice the
amount of CO2 produced by an average American within one year [81]. Therefore,
we are usually interested in reducing the power requirements.

1.3 Goals and Organization

Numerous researchers have contributed to mitigate the aforementioned problems. For
example, a survey on increasing the efficiency of neural networks is given by Sze et
al. [82]. In this paper, we focus on approaches using structured matrices in the domain
of neural networks, which has the potential to overcome all mentioned problems.

We see two main advantages of using structured matrices in neural networks to
save resources compared to other approaches. First, for many structures, it is possible
to train the neural network end-to-end. This means that conventional, well-tested
training algorithms such as backpropagation can be used for training. In comparison,

1 https://keras.io/.
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most methods to save resources in neural networks start only after the training, which
may lead to worse results. Second, in contrast to the common mindset that resource
savings in neural networks always lead to performance losses, we assume that the
choice of the right structure can even improve the performance. This is the case if
the chosen structure fits the problem, and thus the search space for the weights of the
neural network is restricted in a meaningful way.

Contribution
Our main contribution is to give an overview over the most important matrix structure
classes, and to present two benchmarks comparing the classes. We briefly introduce
each structure class, and mention efficient algorithms. For each class, we analyze the
computational requirements for computing the matrix–vector product, which plays a
major role in neural networks. Moreover, we review approaches where each structure
has been used in the domain of neural networks. Through this, our survey offers a
starting point to choosing the right structure for a given problem.

Organization
The paper is organized as follows—we first introduce the four main structure classes
which we identified from literature, namely semiseparable matrices, matrices of
low displacement rank, hierarchical matrices, and products of sparse matrices. Sub-
sequently, we set the structure classes into relation to each other, showing their
boundaries. We present two benchmarks comparing the structure classes. The first
benchmark investigates the error for approximating different test matrices. The sec-
ond benchmark compares the prediction performance of neural networks, in which
the weight matrix of the last layer is replaced by a structured matrix. In the follow-
ing section, we point out open research questions and future research directions for
using structured matrices in the domain of neural networks. Finally, we summarize
our findings and draw a conclusion.

2 Classes of StructuredMatrices

2.1 Semiseparable Matrices

The first notion of semiseparable matrices [87] appears in work published in 1937 by
Gantmakher and Krein [33, 86]. Since then, there has been a number of publications
and generalizations of results to the class of semiseparable matrices [86]. The moti-
vation for research about semiseparable matrices originates from various application
domains for computational science and engineering, such as for example time-varying
system theory [22], where the matrices appear in the context of simulating physical
phenomena and systems. The most prominent representatives in this class are tridiag-
onal matrices and other banded matrices along with their inverses.

Definition
We focus on the definition of sequentially semiseparable matrices [22]. A sequentially
semiseparable matrix T has a block structure based on the matrices Ak , Bk , Ck , Dk ,
Ek , Fk and Gk
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Fig. 1 Schematic Illustration of
the partitioning of a sequentially
semiseparable matrix. The
rectangular shapes of the
submatrices illustrate that the
input, output, and state
dimensions associated with the
sequentially semiseparable
matrix can change between
timesteps
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗ ∗
∗ ∗

∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

∗
∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗

∗
∗
∗
∗

∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

∗ ∗
∗ ∗

Ti, j =

⎧
⎪⎨

⎪⎩

Di for i = j,

Ci Ai−1 . . . A j+1Bj for i < j,

Gi Ei+1 . . . E j−1Fj for i > j .

(1)

This structure arises in the transfermatrix of a time-varying systemwith state equations

xk+1 = Akxk + Bkuk, (2)

x̂k = Ek x̂k+1 + Fkuk, (3)

a(1)
k = Ckxk + Dkuk, (4)

a(2)
k = Gk x̂k+1, (5)

and
ak = a(1)

k + a(2)
k , (6)

which reveals why this structure is closely related to the theory of time-varying sys-
tems. In the domain of time-varying systems, xk refers to the state of the causal part
of the system at timestep k (x̂k to the anti causal part respectively), uk are the inputs to
the system at timestep k and ak are the outputs respectively. Note that the dimensions
of the Ak , Bk , Ck , Dk , Ek , Fk and Gk might change for different timesteps, which
reflects the fact that the state, the input as well as the output dimension might change
over time. This structure leads to a sequentially partitioning of the matrix as exem-
plary illustrated in Fig. 1. There are also other definitions for semiseparable matrices
[87], for example, for quasiseparable matrices. A matrix S is called a quasiseparable
matrix if all the subblocks taken out of the strictly lower triangular part of the matrix
(respectively the strictly upper triangular part) are of rank 1.

Special Structures
The class of semiseparable matrices can be seen as collection of slightly dif-
ferent definitions for semiseparability [87], such as sequentially semiseparable,
generator-representable semiseparable, semiseparable plus diagonal and quasisepara-
ble matrices. For example, the class of semiseparable plus diagonal matrices extends
the class of semiseparable matrices by adding a diagonal to the semiseparable matrix.
The set of generator-representable semiseperablematrices includes allmatrices, where
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the upper and lower triangular parts are coming from a rank 1 matrix (in contrast to
general semiseparable matrices, where the sub-blocks of the lower or upper triangular
matrix may come from different rank 1 matrices). Another class of semiseparable
matrices are hierarchically semiseparable matrices [87], which are closely connected
with the class of hierarchical matrices introduced in Sect. 2.3. Examples for special
matrices belonging to the class of semiseparable matrices are band matrices [24] or
their inverses [75].

Efficient Algorithms
By exploiting the semiseparable structure, the number of operations for computing
the matrix vector product can usually be reduced to O(nd2), where d is the maximum
state dimension

d = max
k

(max(dim(xk), dim(x̂k))). (7)

This reduction comes froman efficient computational scheme exploiting the sequential
structure, which is based on systematically using intermediate results of matrix–vector
products of the submatrices. Depending on the structure at hand, there are numer-
ous other fast algorithms available, which may not apply for the general class of
semiseparable matrices. A rigorous historic overview of the results found for the class
of semiseparable matrices is given by Vandebril et al. [86]. For example, there is a
fast algorithm for calculating the inverse of a generator representable plus diagonal
semiseparable matrix [23].

Application to Neural Networks
Kissel et al. [51, 52, 52] analyzed the effect of using sequentially semiseparable weight
matrices in neural networks. They introduced the Backpropagation through states
algorithm [51], which can be used to train neural networks with sequentially semisep-
arable weight matrices. Moreover, they showed how trained weight matrices can be
approximated with sequentially semiseparable matrices [50, 52]. Their experiments
showed that depending on the task at hand, neural networks with sequentially semis-
perable weight matrices are able to outperform their standard counterparts in terms of
generalization performance [51].

2.2 Matrices of Low Displacement Rank

The class of matrices with Low Displacement Rank (LDR) [67] unifies the proba-
bly most prominent matrix structures, including Toeplitz, Hankel, Vandermonde and
Cauchy matrices. The idea of a displacement representation originates from model-
ing stochastic signals, which may exhibit mild forms of non-stationarity, leading to
notions such as Toeplitz-like or Hankel-like displacements [67].

Definition
For analyzing the displacement rank [67] of a matrix M , either the displacement
operators of the Sylvester type

L(M) = ∇A,B(M) = AM − MB, (8)
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(b) Hankel Matrix MH(u, v)
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(c) Vandermonde Matrix MV (u)
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(d) Cauchy Matrix MC(u, v)

Fig. 2 Schematic drawings of the most popular low displacement rank special cases. The displacement
structure can be seen in all four matrices: The same values (or modified values) appear in different positions
of the matrices

or of the Stein type
L(M) = �A,B(M) = M − AMB, (9)

can be used. A and B are operator matrices defining the displacement. A matrix has
low displacement rank if the displacement matrix L(M) is of low rank. There exists an
abundance of possible definitions for the displacement operators and hence this class
is quite big.

Efficient Algorithms
There exist efficient algorithms for certain tasks given that the rank of the dis-
placement matrix L(M) is small. This is based on the assumption that the matrix
can be compressed using the displacements, and that operations can be performed
faster using the compressed version. The original matrix can be recovered (decom-
pressed) from the displacements. The overall operation scheme can be described as
Compress → Operate → Decompress. By exploiting this scheme, inter alia the
matrix–vector multiplication can be made more efficient. This leads, for example, to
O(n log(n)) operations for Toeplitz andHankel matrices, andO(n log2(n)) operations
for Vandermonde and Cauchy matrices in order to compute the matrix–vector product
of a matrix M ∈ Rn×n with an arbitrary n-dimensional vector [80].
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Table 1 Operator matrices and rank of the corresponding displacements for Toeplitz, Hankel, Cauchy and
Vandermonde matrices

Matrix type Symbol A B Rank(∇A,B (M))

Toeplitz matrix MT (u, v) Z1 Z0 ≤ 2

Hankel matrix MH (u, v) Z1 ZT
0 ≤ 2

Vandermonde matrix MV (u) D(u) Z0 ≤ 1

Cauchy matrix MC (u, v) D(u) D(v) ≤ 1

Operator matrices are given with respect to the Sylvester displacement (Eq.8)

Special Structures
Themost popular special members of this structure class are Toeplitz, Hankel, Vander-
monde and Cauchy matrices (depicted in Fig. 2). For these special cases, the operator
matrices are based on f -circulant matrices

Z f =

⎛

⎜
⎜
⎜
⎜
⎝

0 f

1
. . .

0
. . .

. . .

0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

, (10)

or diagonal matrices D(u) defined by the vector u. For example, the operator matrices
for a Toeplitz matrix MT (u, v) as depicted in Fig. 2 with respect to the Sylvester
displacement operator are A = Z1 and B = Z0. Hence, the displacement matrix for
a Toeplitz matrix L(MT (u, v)) is given by

L(MT (u, v)) = ∇Z1,Z0(MT (u, v)) = Z1MT (u, v) − MT (u, v)Z0. (11)

For all Toeplitz matrices MT (u, v), the rank of the displacement matrix L(MT (u, v))

fulfills
rank(L(MT (u, v))) ≤ 2. (12)

The displacement operators for the other special cases are given in Table 1.

Application to Neural Networks
There are several approaches in literature using matrices of low displacement rank in
neural networks. The most prominent example is the Convolutional Neural Network
(CNN) architecture [66], which is based on sparse Toeplitz Matrices. Convolutional
Neural Networks are due to their efficiency and prediction performance the number
one choice in machine learning tasks related to images nowadays [45, 53, 79]. In
CNNs, the structure is usually encoded implicitly by the connections between the
neurons. There are also interesting approaches for improving traditional CNNs. For
example, Quaternion CNNs [34, 68, 95] perform operations on images represented
in the quaternion domain, which enables them to outperform standard real-valued
CNNs on several benchmark tasks. Other approaches focused on matrix structures
apart from neural network architectures. Liao and Yuan proposed to use matrices with
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Fig. 3 Schematic Illustration of
a (very simple) hierarchical
matrix. The cyan parts are
low-rank submatrices
(admissible blocks), and the
purple parts are full-rank
submatrices (inadmissible
blocks)
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a circulant structure in Convolutional Neural Networks [60] and Cheng et al. replaced
the linear projections in fully connected neural networks with circulant projections
[13]. Appuswamy et al. [4] combined the efficient weight representation used in neu-
romorphic hardware with block Toeplitz matrices arising in discrete convolutions,
which resulted in a family of convolution kernels that are naturally hardware effi-
cient. It has also been proposed to replace weight matrices with general matrices of
low displacement rank in neural networks. For example, Sindhwani et al. [80] used
Toeplitz-like weight matrices, which include inter alia circulant matrices as well as
Toeplitz matrices and their inverses. Moreover, Thomas et al. [84] introduced a class
of low displacement rank matrices for which they trained the operators as well as their
low-rank components in the neural network. Other works investigate the theoretical
properties of neural networks with weight matrices of low displacement rank. For
example, Zhao et al. [94] inter alia showed that the universal approximation theorem
holds for these networks. Another proof showing that the universal approximation
theorem holds for neural networks comprising Toeplitz or Hankel weight matrices is
given by Liu et al. [61]. Their approach can be viewed as a Toeplitz-, Hankel-, or
LU-based decomposition of neural networks. In particular, they present two proofs
for the universal approximation theorem: One for neural networks with fixed depth
and arbitrary width, and a second for neural networks with fixed width and arbitrary
depth.

2.3 Hierarchical Matrices

Hierarchical matrices (H-matrices) are based on the principle, that even if the overall
matrix does not have a low rank, there might still be low-rank sub-blocks in the matrix.
Therefore, the idea is to partition a matrix into sub-matrices using suitable (potentially
complex) index sets and exploit the low-rank structure of the sub-matrices in this
decomposition.

Definition
H-matrices are defined by block cluster trees [9, 41, 43]. The block cluster tree decom-
poses the matrix into admissible and non-admissible blocks. Being admissible means
that the regarded block has a low-rank structure, and therefore can be decomposed
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into two matrices with at most rank r (with r being smaller than the dimensions of the
block). The overall aim is to find a block cluster tree for a given matrix, such that large
parts of the matrix can be approximated by low-rank matrices (and still be close to the
original matrix). In Fig. 3, an example partitioning of a hierarchical matrix is depicted.
In order to determine the block cluster tree, first the row and column indices of the
regarded matrix are organized in cluster trees, i.e., set decomposition trees for the row
and column index sets of the matrix. This can, for example, be done by geometric
bisection or regular subdivision. Based on these cluster trees, the block cluster tree
can be defined by forming pairs of clusters on the cluster trees recursively. The number
of leaves in the block cluster tree determines the complexity for arithmetic operations.
Therefore, while constructing the block cluster tree, it is desirable to ensure that blocks
become admissible as soon as possible. Using these building blocks, H-matrices are
defined as follows [43]. Let L ∈ RI×I be a matrix and TI×I a block cluster tree for L
consisting of admissible and non-admissible leaves. L is calledH-matrix of blockwise
rank r, if for all admissible leaves B ∈ Rτ×σ defined by TI×I

rank(B) ≤ k, (13)

with k ∈ N.

Efficient Algorithms
There are fast algorithms for the different sub-classes and special forms of this structure
class. Moreover, for general H-matrices, there is a fast algorithm for matrix–vector
multiplication (O(kn log(n)) under moderate assumptions) [41, 43]. Efficient algo-
rithms for arithmetic operations with H-matrices exploit the fact, that the matrix is
sub-divided into admissible and non-admissible smaller block-matrices. Based on
this decomposition, arithmetic operations can be conducted faster by exploiting the
low-rank structure of admissible blocks. The overall result can then be obtained by
combining the results from the sub-blocks.

Special Structures
The class of H-matrices unifies several other structures based on hierarchical decom-
positions. These classes include [2] hierarchically off-diagonal low-rank matrices
(HOLDR) [3], hierarchically semi-separable matrices (HSS) [11, 87], H2-matrices
[41, 42], and matrices based on the fast multipole method (FMM) [5, 6, 18, 30, 39,
40]. The relationships of the subclasses to each other as well as their separation from
each other are described in [3].

Application to Neural Networks
Fan et al. [27] proposed to use hierarchical matrices in neural networks, which results
in a multiscale structure inside the neural network. Later, they extended their approach
to H2-matrices, which led to comparable results as with their original approach, but
reduced number of parameters. Chen et al. [12] proposed to approximate the Gen-
eralized Gauss–Newton Hessian by a hierarchical matrix, which can be used during
training, for analyzing neural networks, estimating learning rates or other applications.
Hierarchical matrix approaches have also been used to analyze and compress trained
neural networks. For example, Ithapu used a multi-resolution matrix factorization to
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analyze the inter-class relationships of deep learning features [48]. Wu et al. [89]
applied the Hierarchical Tucker decomposition [38] to neural networks in order to
compress fully connected layers as well as convolutional kernels. They argued that
the hierarchical matrix format obtained by the Hierarchical Tucker decomposition has
advantages for compressing weight matrices in fully connected layers compared to
the Tensor Train decomposition, which has been used before. Another approach is to
use wavelets in neural networks [20, 25, 26, 32, 49, 71, 74, 93]. The resulting net-
works are called wavelet networks and make the time-frequency zooming property of
wavelets usable in neural networks [49]. Wavelet networks are often constructed from
multiresolution analysis or multiresolution approximation [25, 26, 49].

2.4 Products of Sparse Matrices

The structure classes presented in the previous sections represent data-sparsematrices.
In contrast, the focus of this section are products of sparsematrices.While data-sparse
matrices may be full matrices, i.e., all n2 matrix entries are different from zero, we
talk of sparse matrices if the matrices only contain few non-zero entries (for example,
O(n) non-zero entries) [76]. This is an extremely important class of matrices with
numerous applications and a long tradition. Exploiting the zero entries directly leads
to faster algorithms for several arithmetic operations, since operations can potentially
be omitted. This class is somewhat different then the ones mentioned before, as this
type of sparse structure does not lend itself well for an algebraic characterization.

The product of sparse matrices is not sparse in general. Therefore, even many
dense matrices can be represented as product of sparse matrices. For well known
fast linear transforms, such as the Fast Fourier Transform [15], the Discrete Wavelet
Transform [62] or the Hadamard transform [77], there is a structured representation as
product of sparse matrices [1, 55]. In fact, the notion of sparsity and structure in linear
maps seems to be fundamentally linked [16, 19]. It follows, that all efficient matrix–
vector multiplication algorithms can be factorized into products of sparse matrices.
The conclusion from these results is [17] that all forms of structure are captured by
the representation of linear maps as product of sparse matrices (supported by results
from arithmetic circuit theory [10]).

Definition
Sparse Matrices comprise only few nonzero elements [76]. This definition is some-
what vague, but in general the resulting fast algorithms are faster the fewer nonzero
entries the matrix has. An example of a sparse matrix is depicted in Fig. 4. The sparsity
pattern of a sparse matrix can either be structured (i.e., the nonzero elements are dis-
tributed following a regular pattern) or unstructured (with irregularly located nonzero
entries). There are different storage schemes which can be used to store sparse matri-
ces. Selecting the right storage scheme is crucial for implementing fast algorithms and
depends on the application at hand (more specifically the arithmetic operations which
should be performed with the sparse matrix as well as the sparsity pattern at hand).
Popular storage scheme examples are the coordinate, compressed sparse row as well
as the compressed sparse column matrix format. For example, the coordinate format
consists of three arrays. The first array contains the values of the nonzero entries in
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Fig. 4 Schematic example of a
sparse matrix. Most of the
entries are zero. The few
non-zero elements are
distributed without (obvious)
regularity within the matrix
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the matrix, whereas the second and third array contain the row and column indices of
the positions of these values in the matrix respectively.

Efficient Algorithms
Bounds on the complexity of efficient algorithms for sparse matrices depend on the
number of non-zero elements in the matrix as well as the pattern of their distribution.
Depending on the number of non-zero entries, there are fast algorithms for computing
the matrix vector product. This does also apply for the product of sparse matrices,
such that the number of operations for multiplying the product of sparse matrices with
an arbitrary vector are proportional to the number of nonzero elements in the sparse
matrices [16]. Fast algorithms for sparse matrix vector multiplication might suffer
from several memory accessing problems [37]. This includes for example the irregular
memory access for the vector with which the sparse matrix is multiplied [83] or the
indirect memory references in the sparse matrix (due to the fact that only the non-zero
elements of the matrix are stored) [73]. Since these problems can have a significant
influence on the performance of considered arithmetic operationswith sparsematrices,
there have been several approaches proposed to overcome these problems [28, 35, 47,
72, 85] or tune sparse matrices for specific hardware [7, 29, 64].

Special Structures
A special form of sparse matrices are Butterfly matrices [59, 69], which encode the
recursive divide-and-conquer structure of the Fast Fourier Transform [17]. Butterfly
matrices are composed as a product of butterfly factormatrices. Kaleidoscopematrices
[17], in turn, are the product of butterfly matrices. Dao et al. proposed Kaleidoscope
matrices, because in general, it is difficult to find the best sparsity pattern for the sparse
matrix factorization (since this is a discrete, non-differentiable search problem). They
showed that Kaleidoscope matrices have a similar expressivity as general products of
sparse matrices and that various common structured linear transforms lie within this
structure class.

Application to Neural Networks
Sparsity has probably been the first structure applied to neural networks. Obtaining
sparse weight matrices has for example been addressed by Hassibi and Stork [44] and
Le Cun et al. [57]. Their approaches used information from second-order derivatives
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in order to remove unimportant weights from the network. More recent work uses
group lasso regularization for structured sparsity learning [88], pruning techniques [8],
hand-tuned heuristics [21] or obtain sparse neural networks by chance [31]. Products
of sparse matrices have also been used in neural networks. In Butterfly networks [1,
58], the inputs to a neural network are connected to the outputs of the network using the
butterfly structure. It has been shown, that the regular Convolutional Neural Network
architecture is a special Inflated-Butterfly-Net (where inflated means that there are
dense cross-channel connections in the network) [91]. Moreover, Li et al. [58] showed
that the approximation error of Butterfly networks representing the Fourier kernels
exponentially decays with increasing network depth. Dao et al. [16] also incorporated
Butterfly matrices into end-to-end Machine Learning pipelines and showed that they
were able to recover several fast algorithmsuch as theDiscreteFourierTransformor the
Hadamard Transform. To overcome the non-differentiable search problem of finding
the right sparsity pattern, Dao et al. [17] proposed to use Kaleidoscope matrices in
neural networks.By that, the optimization problem remains differentiablewhile having
similar expressiveness as general sparse matrix products. Giffon et al. [36] showed
that replacing weight matrices in deep convolutional neural networks by products of
sparse matrices can yield a better compression-accuracy trade-off than other popular
low-rank-based compression techniques. Their approach is based on the algorithm
proposed by Magoarou et al. [55], which finds a sparse matrix product approximation
of a given matrix using projected gradient steps.

3 Relations and Comparison

3.1 Structure Classes Overview and Boundaries

After introducing the four main structure classes, we give an overview over the sub-
classes, which are contained in the main structure classes. Moreover, we show that
the boundaries between the structure classes are not strict, which means that some
matrices can be represented in the methodology of different structure classes.

We consider the four structure classes presented in the previous chapters as the
main classes of structured matrices. These classes can be used to categorize particular
matrix structures which can be found in literature. Since research about structured
matrices is fragmented and approaches originate from different fields, there are sub-
classes which are special cases of the four main structure classes. The relations of
these sub-classes are depicted in Fig. 5.

Even though the four main structure classes are based on different mathematical
concepts, there are still matrix classes that can be efficiently represented in multiple
structure frameworks. Low-rank matrices are an example of this. These can be repre-
sented as semiseparable matrices (since the blocks taken out of a low-rank matrices
are again of low rank), hierarchical matrices (by decomposing the whole matrix into a
single admissible block), as well as matrices with low displacement rank [84]. More-
over, a rank r matrix A ∈ Rn×n with A = EPT can straightforwardly be represented
by a product of two sparse matrices A = V M with V , M ∈ Rn×n by setting the first
r columns of V to E (and the first r rows of M to PT respectively).
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Hierarchical Matrices
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Toeplitz-like Matrices

Vandermonde-like Matrices

Cauchy-like Matrices

Semiseparable
Matrices

Quasiseparable Matrices

Sequentially
Semiseparable

Matrices

Band-Matrices

Tridiagonal Matrices

Products of
Sparse Matrices

Kaleidoscope Matrices

Butterfly Matrices

Sparse Matrices

Fig. 5 Overview over the four main structure classes and structure sub-classes which they contain. The
four main classes generalize concepts and approaches of special structure classes, which originated from
different fields. The part about hierarchical matrices is redrawn after [2]

3.2 Benchmark: Test Matrix Approximation

One use case is that an arbitrary matrix is given, which is to be approximated with
a structured matrix. If the approximated matrix is sufficiently close to the original
matrix (in a metric suitable for the problem), then the original matrix can be replaced
by the structured matrix. Thus, memory and potentially computational resources can
be saved. In the domain of neural networks, this means that a weight matrix from a
trained network is investigated to check if it possesses a certain structure. If a structure
is (approximately) present, then the original weight matrix can be replaced with the
new weight matrix represented in the structured matrix framework. The predictions
of the neural network are then ideally similar to those before the modification, but
memory and computational resources are saved.
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Which structure is suited best for approximation depends on the task at hand as well
as the selected metric. In this section, we give an overview over the approximation
capabilities of the structure classes for different test matrices. We use the Frobenius
norm as a metric for how close the approximated matrix is to the original, since this
has been found to be a good surrogate for comparing weight matrices [52]. With our
benchmark, we aim to give a notion in which structure classes are particularly suitable
for approximating certain matrix types. However, this cannot be seen as a conclusive
assessment that one structure class is always preferable to another. The choice of the
right structure class still depends on the task and context at hand.

We use the following test matrices in our benchmark:

• RandomMatrices (with randomly uniform distributed entries in the range [−1, 1[)
• Orthogonal Matrices
• Low Rank Matrices
• Matrices with linearly distributed singular values (in the interval [0.1, 1.0]).
• Sequentially Semiseparable Matrices (with statespace dimension set to 5)
• Products of SparseMatrices (comprising 3matrices eachwith 90%sparsity respec-
tively)

• Hierarchical Matrices (with geometrically inspired block cluster trees as intro-
duced in [42] with η = 0.5)

• Matrices with low displacement rank (Toeplitz, Hankel and Cauchy matrices)
• Weight matrices from Imagenet-pretrained vision models provided by PyTorch
[70] (GoogleNet, InceptionV3, MobilenetV2, and Resnet18)

For each of the test matrix classes, we instantiate 3 matrices of shape 300 × 300
(except for the weight matrices taken out of the vision models), and approximate them
using structured matrices of the presented classes. The code used for running our
experiments and our test matrices (together with the scripts for generating them) are
available on GitHub.2

For approximating the test matrices with sequentially semiseparable matrices, we
use the approach described in [52] (performing a hyperparameter search for different
number of stages), using the TVSCLib3 implementation. Also, the approximation
for products of sparse matrices is based on the approach presented in [52], which is
in turn based on an algorithm proposed by Magoarou and Gribonval [55]. We treat
the number of sparse factors as well es the sparsity distribution across the factors as
hyperparameters, forwhichwe performa search.Our implementation for theH-matrix
approximation uses a greedy approach for assigning low-rank components to the leaf
nodes of a block cluster tree. The block cluster tree is treated as hyperparameter, where
we compared the admissibility criterion from Hackbusch and Börm [42] (for different
values of η) with the approach of building block cluster trees with equally distributed
low-rank patches of same size. For approximation with matrices of low displacement
rank, we try multiple approaches. First, we investigate the approach presented in [52],
which finds an approximation based on gradient-descent updates for the displacements
as well as the operator matrices. Second, we employ a direct approximation scheme

2 https://github.com/MatthiasKi/structurednets.
3 https://github.com/MatthiasKi/tvsclib.
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using fixed operator matrices for Toeplitz-like matrices inspired by Sindhwani et al.
[80]. After applying the operator matrices, we find the truncated displacements by
performing a Singular Value Decomposition (SVD) on the original displacements.
We also show the approximation result for low-rank matrices as a baseline. This
approximation is also based on the SVD.

As expected, the approximation error becomes smaller if more parameters are used
for approximating the given matrix. Moreover, the approximation algorithms perform
particularly good if the investigated matrix has the structure which is used by the
approximation approach. For the methods we compared, the approximation approach
of using products of sparse matrices resulted in consistently good results for all test
matrices. This supports results from Dao et al. [17], stating that the structure class of
products of sparse matrices is very powerful for approximating structured transforms.
The results of our benchmark are depicted in Fig. 6.

For the approximated weight matrices of PyTorch vision models, we draw a similar
conclusion. The products of sparse matrices achieved the best approximation results.
This is in line with the findings in [52], where this observation has already been made
for smaller weight matrices. For the considered weight matrices, usingH-matrices for
approximation does not seem to provide much advantage over our baseline, low-rank
matrices. In all cases considered, both produce similar approximation results. The
approximation with sequentially semiseparable matrices led to the worst results. This
was also observed in earlier experiments with smaller weight matrices [52].

We did not include the results for using matrices of low displacement rank in the
plots for two reasons. First, the methods given in literature refer to square matrices,
which renders them inapplicable for the considered weight matrices. This is not a
general limitation, since the framework of matrices with low displacement rank is
also applicable to non-square matrices [84]. However, the given algorithms for using
matrices of low displacement rank, for example, for recovering a matrix from its dis-
placements, cannot trivially be extended to non-square matrices. Second, the approach
introduced by Kissel et al. [52] for approximating square weight matrices using matri-
ces of low displacement rank is only practically usable for small matrices. This is,
because the algorithm consumes too much memory and computing resources when
the matrices are large (which is the case in our benchmark). Using less sophisticated
approaches with fixed operator matrices (for example for Toeplitz-like or Hankel-like
matrices) resulted in bad approximation results for all test matrices, except for the
ones with the corresponding structure. Therefore, we conclude that the design of prac-
tically usable algorithms for the approximation of low displacement rank matrices is
still an open task. However, note that apart from approximating given matrices, there
are efficient algorithms for training (square) weight matrices with low displacement
rank from scratch [80, 84].

Note that the approximation algorithms used in our benchmark are subject to ongo-
ing research, and for each class there is still a lot room for improvement. Our goal was
to show a fair comparison in which the hyperparameters of the individual approaches
were tuned with comparable effort. Therefore, it is totally possible that improving the
approximation algorithm for one of the structure classes (or developing better heuris-
tics for finding hyperparameters) might render it superior to all other classes in the
future.
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Fig. 6 Results of the approximation benchmark: We approximated several test matrices with structured
matrices of different classes, namely hierarchical matrices (HMat), low-rank matrices (LR), products of
sparse matrices (PSM), and sequentially semiseparable matrices (SSS). The approximation error becomes
smaller if more parameters are available for approximation. If the test matrix has certain structure, we
observe that the approach using the very structure performs best. In all other cases, the products of sparse
matrices showed the best approximation capabilities
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Table 2 Hyperparameters used during training in our fine-tuning benchmark

Hyperparameter Value

Patience 2

Min. val. loss improvement 0.01

Loss Cross entropy

Optimizer Stochastic gradient descent

Number training runs η 10

Learning rate at run i = 0, . . . , η − 1 0.5i

Batch size 150.000

Number of parameters ∼ 20% of original matrix

3.3 Benchmark: Fine-Tuning

The weight matrices of neural networks are typically trained using gradient-descent
(backpropagation).Considering that the backpropagation-based training led to remark-
able results for neural networks in the past, we investigate the effects of training a
structured weight matrix using gradient-descent. For that, we replace the last layer
of pretrained PyTorch vision models by structured matrices of different classes (as
explained in the previous section). Then, we fine-tune the weight matrix on the same
dataset on which the original model was trained. By that, we can compare the predic-
tion accuracy of the model before and after the fine-tuning.

We report the prediction accuracy results on the validation set, with which the
models were trained originally. This validation set is not used during our fine-tuning.
For the fine-tuning, we use a portion of the training data (randomly split before the
training begins) as validation set. This validation set is used to determine when the
training stops. We stop the training when the validation loss does not improve by at
least 0.01 over 2 steps. For each model, there are 10 training runs based on Stochastic
Gradient Descent with different learning rates. We start with learning rate α = 1,
and multiply the learning rate with 0.5 after each training run. Between training runs,
we restore the model with lowest validation loss from the previous training run. All
important hyperparameters can be found in Table 2.

The gradients used for training are not determined by deriving the prediction loss
with respect to the weight matrix entries. Instead, we take the derivative of the pre-
diction loss with respect to the parameters determining the structured weight matrix.
Details about how this can be done for sequentially semiseparable weight matrices are
given by Kissel et al. [51]. The gradients for the other structures can be determined
analogously (in our experiments, we use the PyTorch auto differentiation tools for
determining the gradients). The code used for running our experiments is available on
Github.4

For all models, the fine-tuning was able to improve the prediction accuracy com-
pared to the non-fine-tuned version. The accuracy improvements were smaller for
models, which achieved high prediction accuracy directly after approximation. For

4 https://github.com/MatthiasKi/structurednets.
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Fig. 7 Accuracy before and after fine-tuning of different PyTorch vision models. The weight matrix of
the last layer is replaced with a hierarchical matrix (HMat), a low-rank matrix (LR), products of sparse
matrices (PSM), or a sequentially semiseparable matrix (SSS). As expected, the fine-tuning improved the
prediction accuracy in all cases. However, for the products of sparse matrices, the improvements are too
small to be seen for some models in the figure (supposedly because they already showed good prediction
accuracy before fine-tuning). Themodels with sequentially semiseparable weightmatrix showed the biggest
improvements. Nevertheless, their final prediction performance remains behind other structures
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the products of sparse matrices, the improvements were so small, and that for some
models, they are not even visible in Fig. 7.

Analogous to the results in Sect. 3.2, the models with products of sparse matri-
ces achieved the best prediction accuracy after fine-tuning. This resulted in achieving
almost the same performance as the baseline models for some of the vision mod-
els. Other structured matrices also achieved remarkable results after fine-tuning. This
leads to the conclusion that for different types of structured matrices, many of the
parameters can be spared while achieving almost the same results as the baseline. In
this benchmark, the networks with products of sparse matrices consistently achieved
the best results.

The neural networks with sequentially semiseparable weight matrix could not keep
up with the performance of the other networks. They showed significant lower pre-
diction accuracy after fine-tuning than the baseline. However, the fine-tuning led to
remarkable improvements in the prediction accuracy. In all experiments, the accuracy
was more than doubled after fine-tuning, which are much greater improvements than
observed with other networks. This is in line with previous results, which showed
that approximation of weight matrices with sequentially semiseparable matrices led
to poor results [52], but by training such networks from scratch, it was possible to
even increasing generalization performance [51].

4 Limitations and Discussion

The presented structures have been applied to neural networks, where they have been
used for faster inference, faster training, or for network analysis. However, some
questions remain unanswered to this day. In the following, we highlight two research
areas in the context of neural networks with structured weight matrices for which we
identified relevant unanswered questions.

Theoretical results for the use of structuredmatrices in neural networks are still very
limited. For neural networks with weight matrices of low displacement rank, Zhao et
al. [94] proved that the universal approximation theorem still holds and they gave
upper bounds for the approximation error. However, proving similar results for other
classes of structured matrices is still the subject of ongoing research. In particular,
theoretical insights regarding approximation errors for problems with different data
distributions can be helpful for selecting a suitable network. For example, they can
help to decide whether a large network with structured weight matrices is preferable
to a small network with standard weight matrices, depending on the problem at hand.
Thus, the first research area we identified is about the question how the performance
of neural networks with structured weight matrices depends on the target application.
The first intuition is that the choice of a suitable structure used in the network depends
very much on the application domain (as indicated by the success of CNNs in image-
based domains). To our knowledge, however, this effect has not been explicitly studied
yet. We consider our benchmarks as initial insights for selecting an appropriate weight
matrix structure. In summary, if there is no indicator that a particular structure is suit-
able for the given problem, products of sparse matrices are a very good choice. These
performed robustly very well in both of our benchmarks. However, we recommend to
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perform a hyperparameter search considering different structure classes, if the com-
putational resources needed for the training play a minor role. This hyperparameter
search might reveal another structure class that fits the problem at hand particularly
well.

The second area we identified is structure-aware training. By this we mean the
methodology of how structures can be introduced into the weight matrices of neural
networks. In the aforementioned preliminary work, various strategies were pursued
in this regard: Regularization techniques, training using backpropagation or approx-
imation of weight matrices with structured matrices after training. But there is still
limited knowledge aboutwhichmethod to select for a given problem.Moreover, hybrid
approaches for selecting and combining the right methods could be developed. We
consider the development of algorithms that find the right structure without hand-
tuning and excessive expert knowledge critical to make the overall approach useful
for a wide range of problems.

The aim of this paper is to give an overview over the most important structure
classes and relevant structure sub-classes. However, it is of course not possible to
cover all structures that have ever been studied. Therefore, we would like to mention
a few structures that we did not consider.

First, we would like to mention kernel-based approaches. These are not explicit
structures, which can be represented by dependencies between the matrix elements.
Rather, we consider kernel-based approaches as implicit structures, since operations
are spared through the kernel trick. In this context, we consider approaches that learn
kernel functions from data [54], kernel-based weight matrices or layers in neural
networks [14, 65].

Second, we did not address complex tensor decompositions or factorizations. For
example, Yang et al. [92] showed how the adaptive fastfood transform can be used
to reparameterize the matrix–vector multiplication in neural networks. Lebedev et al.
[56] used a polyadic decomposition (CP decomposition) to decompose convolution
kernel tensors into a sum of rank-one tensors. Moczulski et al. [63] replaced linear
transformations with a product of diagonal matrices combined with the discrete cosine
transform. Their ACDC layers can be used to replace any linear transformation in the
network and is able to reduce the number of parameters from O(n2) to O(n) as well
as the number of operations from O(n2) to O(n log(n)).

5 Conclusion

In this paper, we gave an overview over the four main matrix structures and special
sub-classeswhich they contain.We introduced each of the structure classes by showing
their definition, and giving reference to research papers in which the structure is used
in the domain of neural networks. Each of the presented structure classes facilitates an
efficient matrix–vector multiplication algorithm. Since matrix–vector multiplications
are usually the dominant factor for the computational cost of neural networks, using
such structures in neural networks has the potential to reduce the required computa-
tional cost immensely, finally leading to reduced CO2 emissions as well as reduced
electricity costs.
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In the two benchmarks presented in this paper, we compared the approximation
capabilities of structured matrices of different classes, as well as the prediction per-
formance of deep vision models containing structured matrices. Products of sparse
matrices showed to be the most promising structure class since this structure consis-
tently achieved good results in both benchmarks. However, choosing the right structure
still depends on the problem at hand.

Our survey illustrates that the use of structured matrices in neural networks is
still a fairly young research area. There are still many open questions, and we pre-
sented two research areas we consider most important in the discussion section. These
are structure-aware training algorithms as well as analyzing the relationship between
structured weight matrices in neural networks and the target application.
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Summary

During the training of NNs with SSS weight matrices, it must be ensured that the SSS
structure does not vanish. For that, we introduce a training algorithm called Backprop-
agation through states in this paper (recapitulated in Section 6.4 of this thesis). Using
this algorithm, NNs with SSS weight matrices can be trained end-to-end, whereas it is
guaranteed that the weight matrix remains structured throughout the training. In order
to benchmark NNs trained with the backpropagation through states algorithm, we an-
alyze the prediction performance of trained NNs on several standard benchmark prob-
lems. I use the results of these benchmarks in Section 7.1 as evidence that NNs with
SSS weight matrices can outperform standard NNs in terms of prediction accuracy.
Moreover, we show in this paper that depending on the hardware, using SSS weight
matrices can lead to a reduction in computation time for computing the matrix-vector
product. In particular, using SSS weight matrices on the microcontroller introduced in
the motivational example in Section 1.2 of this thesis can result in faster computations.

Own Contributions

• Literature review of previous work in the field and comparable approaches

• Mathematical formulation and analysis of the presented algorithm in cooperation
with Martin Gottwald

• Design, implementation and execution of the experiments listed in the paper
based on code examples by Martin Gottwald and Biljana Gjeroska

• Analysis of the time needed to use the presented method in collaboration with
Mathias Korte
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Abstract. Matrix-Vector multiplications usually represent the domi-
nant part of computational operations needed to propagate information
through a neural network. This number of operations can be reduced
if the weight matrices are structured. In this paper, we introduce a
training algorithm for neural networks with sequentially semiseparable
weight matrices based on the backpropagation algorithm. By exploiting
the structures in the weight matrices, the computational complexity for
computing the matrix-vector product can be reduced to the subquadratic
domain. We show that this can lead to computing time reductions on a
microcontroller. Furthermore, we analyze the generalization capabilities
of neural networks with sequentially semiseparable matrices. Our exper-
iments show that neural networks with structured weight matrices can
outperform standard feed-forward neural networks in terms of test pre-
diction accuracy for several real-world datasets.

Keywords: Structured matrices · Neural networks · Efficient inference

1 Introduction

In recent years, the trend for neural networks has been towards larger and deeper
networks [8,20]. Together with the size of the networks, the demand for com-
puting resources also increased. For example, the number of operations needed
to propagate information through the neural network can significantly increase
with the network width. This limits the usability of neural networks for many
applications, especially for real-time applications or on mobile platforms.

The major computational costs for propagating information through a neural
network are typically attributed to matrix vector products. At each layer, the
inputs are multiplied with the weight matrix of the layer, which amounts to
O(nm) operations (for a weight matrix W ∈ Rm×n). These computational costs
can be reduced if the weight matrix possesses a specific structure. This is due

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Marreiros et al. (Eds.): EPIA 2022, LNAI 13566, pp. 476–487, 2022.
https://doi.org/10.1007/978-3-031-16474-3_39
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to the fact that for some matrix structures, there are efficient algorithms for
multiplying the matrix with a vector with subquadratic order of operations.

Therefore, if the weight matrices of a neural network are structured, the
number of operations for propagating information through the network can be
reduced significantly. It has been observed that weights of a neural network
tend to be structured after training [3]. Besides observing the structure after
training, one can also enforce structure in the weight matrices during training.
This has been shown for example by Sindhwani et al. [12] or Thomas et al. [14]
for matrices with low displacement rank.

In this paper, we focus on Sequentially Semiseparable Matrices, which are
related to linear time-varying system theory [4]. Our contribution is two-fold.
First, we introduce a training algorithm for neural networks with sequentially
semiseparable weight matrices. Our algorithm ensures that the weight matrices
remain structured while optimizing the training error. Second, we compare the
generalization performance of structured neural networks with standard feed-
forward neural networks on four real-world datasets.

The paper is organized as follows. We first give an overview over approaches
of using structured matrices in neural networks and work connecting semisep-
arable matrices with neural networks in literature. In the subsequent section,
we introduce neural networks with sequentially semiseparable weight matrices.
Afterwards, we present our training algorithm Backpropagation through states.
The results of our experiments are shown and discussed in Sect. 5. Finally, we
summarize our findings and draw a conclusion.

2 Literature Review

Several approaches for finding structure in trained weight matrices, or imposing
structure constraints during training have been proposed recently. Here, most
often matrices of low displacement rank have been used in neural networks. For
example, Sindhwani et al. [12] proposed to train neural networks with toeplitz-
like weight matrices and Thomas et al. [14] introduced a class of low displacement
rank matrices, which can be trained end-to-end including the operator matrices.
Zhao et al. [22] proved some theoretical properties for neural networks with
weight matrices of low displacement rank.

Another structure, which has been applied to neural networks, are hierarchi-
cal matrices [5]. Connecting Hierarchical matrices with semiseparable matrices
results in hierarchically semiseparable matrices [2,18].

Finding the right structure for a given problem is difficult, especially since
the right structure depends on the problem at hand. Therefore, we regard
the previously mentioned approaches not as competitors, but as complemen-
tary approaches. For a specific problem, one of the structures from literature
might work very good, and for another problem the structure analyzed in this
paper might be better. Hence, we think it is crucially important to have several
structure-aware training or approximation methods for neural networks, in order
to find the best approach for a given problem.
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In this paper, we are focusing on sequentially semiseparable matrices. The
concept of this structure dates back until 1937 [6,17]. Sequentially semiseparable
matrices are closely related to the theory of time varying systems [4], since this
structure appears when describing a time varying system. Other definitions of
semiseparability have been introduced by Vandebril et al. [18] - for example for
quasiseparable matrices.

To the best of our knowledge, (sequentially) semiseparable matrices have
not been applied as weight matrices in neural networks yet. Related work, which
used semiseparable matrices in the domain of neural networks focused on finding
suitable neural network architectures for time-varying system applications. For
example, the aim of State-Space Neural Networks [16,21] is to introduce non-
linearity into the state space representation of time-varying systems. Another
example are Time-Varying Neural Networks (TV-NN) [15], in which the weights
of the network change over time in order to adapt to non-stationary input sig-
nals. Our method differs from such approaches in that we do not intend to design
application specific network architectures. Instead, in our approach we constrain
the weight matrices in neural networks to have sequentially semiseparable struc-
ture. Our approach refers generically to neural networks, and explicitly not to a
specific target application.

3 Neural Networks with Sequentially Semiseparable
Weight Matrices

We define neural networks as function G(u)

ŷ = G(u), (1)

where u are the inputs to the network and ŷ the outputs respectively. G is a
composition of layer mappings

G(u) = (Lr ◦ · · · ◦ L1)(u), (2)

where the neural network consists of r layers and Li is the mapping of the ith

layer. In this paper, we focus on structures in densely connected feed-forward
neural networks. For these layers, the mappings are of the form

Li(u) = σ(Wiu + θi), (3)

where Wi is a weight matrix and θi the biases of the respective layer. σ is the
activation function of the layer, which is applied element-wise to its inputs.

We are interested in the special case that the weight matrices Wi are struc-
tured. In particular, we want them to be sequentially semiseparable, which allows
us to use results from time-varying systems theory [4] to increase the efficiency of
information propagation. Sequentially semiseparable matrices can be expressed
as

Wi = D + C(I − ZA)−1ZB

+ G(I − ZT E)−1ZT F.
(4)
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Here, I is the identity matrix and Z is a down-shift matrix

Z =

⎛
⎜⎜⎜⎜⎝

0 0

1
. . .

. . .
. . . 0

0 1 0

⎞
⎟⎟⎟⎟⎠

. (5)

A, B, C, D, E, F and G are block-diagonal matrices, each comprising of k
matrices

A = diag([A1, . . . , Ak]) (6)

(B, C, D, E, F and G matrices respectively). In the context of time-varying
system theory, the matrices A, . . . , G define the behavior of a time-varying sys-
tem. For example, A maps the previous state of the system to the next state,
and B maps the previous state to the current output. Note that the dimensions
of the Ak, Bk, Ck, Dk, Ek, Fk and Gk matrices are not constant. In general
we have dim(Ai) �= dim(Aj) for i �= j (Bk, Ck, Dk, Ek, Fk and Gk matrices
respectively). This reflects the fact that the state, input and output dimension
can change for different k.

In order to apply the results from time varying system theory to our matrix
vector products Wiu, the input vector u as well as the output vector ŷ must be
partitioned into p segments

u =
(
u1 . . . up

)T
(7)

(ŷ respectively). Note that both, u and ŷ, must be partitioned into the same
amount of segments. However, the segments can be of different size, which means
that in general

dim(uj) �= dim(ŷj) for j = 1 . . . p. (8)

Finding a good partitioning depends on the problem at hand. In our exper-
iments, we set dim(uj) = dim(ŷj) = 1 for j = 1 . . . p. This results in p = n for
square weight matrices W ∈ Rn×n.

Exploiting the structure of our weight matrices, the product between Wi and
an arbitrary input vector u can be performed in the state-space representation.
The corresponding state equations are

xk+1 = Akxk + Bkuk (9)

x̂k = Ekx̂k+1 + Fkuk (10)

ŷ
(1)
k = Ckxk + Dkuk (11)

ŷ
(2)
k = Gkx̂k+1 (12)

ŷk = ŷ
(1)
k + ŷ

(2)
k , (13)

where xk+1 is the state of the causal part of the matrix, and x̂k the state of
the anti-causal part respectively. The computational graph of these operations
is illustrated in Fig. 1.
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Fig. 1. Computational graph for computing the matrix-vector product in state space.
This illustrates the operations described by Eqs. 9–13. In terms of time varying systems,
xk and x̂k describe the state of the system, uk are inputs and ŷk are outputs.

We usually have

max
k

{dim(xk)} = max
k

{dim(x̂k)} = d. (14)

Moreover, we assume that

max
k

{dim(uk)} < d (15)

and
max

k
{dim(ŷk)} < d. (16)

In this scenario, the computational complexity for computing the matrix-vector
product for a square weight matrix W ∈ Rn×n reduces from O(n2) to O(pd2).
We run experiments with values of d in the range d = 1, . . . 5.

4 Backpropagation Through States

We consider neural networks as defined in Eq. 2 with at least one weight matrix
of the form given in Eq. 4. If such a network would be trained with the standard
backpropagation algorithm, the structure would most probably vanish during
training. That is, after updating a structured weight matrix W according to
the gradient taken with respect to the entries of the matrix We,l, the matrix
is in general not sequentially semiseparable anymore. To solve this, we propose
our training algorithm Backpropagation through States, which ensures that the
matrix stays sequentially semiseparable after updating the weights. We introduce
the necessary steps for a given linear layer with sequentially semiseparable weight
matrix W . These steps can be combined with the standard backpropagation steps
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Fig. 2. Neural network architectures used in our experiments. The CNN architecture
is used for image-based datasets, and the standard architecture in all others. The
classifier part consisting of two hidden layers stays the same for our standard networks
and convolutional networks. The feature extractor part used for image-based datasets
consists of two convolutional layers followed by pooling layers. In our experiments,
we focus on the weight matrix W1. We compare the generalization performance for
W1 being a sequentially semiseparable matrix, a rank 1 matrix or a standard weight
matrix.

for the rest of the network, which might as well contain non-fully connected parts
like convolutional layers.

The key idea of Backpropagation through states is to derive the training error
with respect to the entries in the Ak, Bk, Ck, Dk, Ek, Fk and Gk matrices instead
of the entries in W . We illustrate the approach in the following exemplary for
the setting dim(uk) = dim(ŷk) = 1 for k = 1 . . . p.

Figure 1 depicts the data flow in the state space model for computing the
outputs ŷ. Ck, Dk and Gk do not influence the state of the system. Therefore,
these matrices contribute only to a single output segment

δL(y, ŷ)

δCk
=

δL(y, ŷ)

δŷk
xT

k , (17)

δL(y, ŷ)

δDk
=

δL(y, ŷ)

δŷk
uk, (18)

δL(y, ŷ)

δGk
=

δL(y, ŷ)

δŷk
x̂T

k+1, (19)

where L(y, ŷ) refers to the loss based on the desired output y and the predicted
output ŷ.

In contrast, Ak, Bk, Ek and Fk change the state of the system. By that, they
can contribute to past or future outputs (depending if the matrices belong to
the causal or anticausal part). During backpropagation, the influence of these
matrices for other output segments must also be considered, which results in
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δL(y, ŷ)

δAk
=

p∑

s=k+1

δL(y, ŷ)

δŷs

δ(C̃(s, k)Akxk)

δAk
(20)

=

p∑

s=k+1

δL(y, ŷ)

δŷs

(
xT

k ⊗ C̃(s, k)
)

(21)

and

δL(y, ŷ)

δBk
=

p∑

s=k+1

δL(y, ŷ)

δŷs

δ(C̃(s, k)Bkuk)

δBk
(22)

=

p∑

s=k+1

δL(y, ŷ)

δŷs

(
uT

k ⊗ C̃(s, k)
)

, (23)

where ⊗ denotes the Kronecker product and

C̃(s, k) = Cs

f=s−1∏

k+1

Af . (24)

The gradients for the anticausal part (Ek and Fk) can be computed
analogously.

In order to compute the gradients for Ak, Bk, Ek and Fk, the error gets propa-
gated through the states, which gives our algorithm its name. In our experiments,
we used auto-differentiation provided by pytorch1 to compute the gradients. Our
code can be found on GitHub2.

Empirically, we noticed that initializing the Ak, Bk, Ck,Dk, Ek, Fk and Gk

matrices randomly often leads to numerical instability. The resulting weight
matrix might have a very big condition number, which led to problems dur-
ing inference as well as during training (vanishing and exploding gradients). In
order to overcome this problem, we propose to initialize the weight matrix W
glorot-uniform randomly. The required parameter matrices are then obtained by
performing balanced model reduction [4,10] on the randomly initialized weight
matrix. By that, the training procedure becomes more stable, while still allow-
ing for indirectly randomly initialized parameter matrices. Note that the weight
matrix reconstructed from the parameter matrices obtained by balanced model
reduction in general differs from the original glorot-uniform initialized weight
matrix.

5 Experiments and Discussion

In our experiments we investigate the prediction accuracy of neural networks
with a sequentially semiseparable weight matrix compared to standard neural
networks. The architectures of the networks used in our experiments are depicted

1 https://pytorch.org/.
2 https://github.com/MatthiasKi/statespace learning.



Backpropagation Through States 483

Fig. 3. Generalization performance of standard neural networks, neural networks with
one sequentially semiseparable weight matrix, and neural networks with one rank 1
weight matrix on different datasets. Neural networks with semiseparable weight matri-
ces consistently achieve a better test accuracy. This effect is especially visible for models
with 300 neurons. In contrast, the rank 1 weight matrix approach could not improve
the test prediction accuracy on all datasets.

in Fig. 2. In our comparison, we focus on the weight matrix between the first and
the second densely connected hidden layer, corresponding to W1 in the Figure.
We investigate the effect of constraining W1 to be sequentially semiseparable
compared to a non-restricted weight matrix or a weight matrix of rank 1. The
number of neurons in the hidden layers was set to 300 so that the parameters
in the weight matrix under study account for approximately 90% of the total
number of parameters in the neural network (assuming that the parameters in
the convolutional layers are shared). In order to compare the results with the
scenario where the weight matrix does not represent the dominant part of the
parameters, we also perform all experiments with 50 neurons in the hidden layers.

All experiments are repeated 5 times to account for random initialization of
the weight matrices and stochastic effects. We chose 5 repetitions, because this
was still reasonable considering the computation time. Moreover, we assume
that with this number of repetitions the effect of the random initialization can
be estimated well. We report the mean and standard deviation of the test pre-
diction accuracy over those runs. Each model has been trained for 200 epochs,
followed by training until convergence on a validation set, which comprises 15%
of the training data (randomly split at the beginning of the training). Thus,
the number of epochs is determined data-driven, and is not set in advance as a
hyperparameter. The most important hyperparameters are listed in Table 2.

We train all models on four real-world datasets (see Table 1), inter alia
obtained from the UCI machine learning repository3:

– The Pen-Based Digit Recognition dataset [1], which contains resampled coor-
dinates of individuals drawing digits.

– The Motion Capture Hand Postures dataset [7], for which the aim is to predict
the correct hand posture given the coordinates of 11 markers. There are many

3 https://archive.ics.uci.edu/.
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Table 1. Characteristics of the datasets used in the experiments.

Name Inp. Dim. Classes # Train # Test

Pendigits 16 10 7494 3,498

Hand postures 36 5 62,476 15,619

MNIST (28, 28) 10 60,000 10,000

CIFAR10 (3, 32, 32) 10 50,000 10,000

Table 2. Overview over hyperparameters used in our experiments.

Hyperparameter Value

Repetitions per experiment 5

dim(uk), dim(ak) ∀k 1

Optimizer Adam (β1 = 0.9, β2 = 0.999, lr = 1e − 3)

Training loss function Cross entropy

Validation set share 15%

Convergence patience 20

missing values in the dataset (which we mask with zeros) and the marker
positions have been permuted between different recordings. At each iteration,
we randomly split the samples in the datapoint into training (80% of the data)
and test (20% of the data) set.

– The MNIST digits classification dataset, which contains grayscale images of
handwritten digits.

– The CIFAR10 images classification dataset, which comprises color images
from 10 different categories.

We use the proposed split of the data into training and testing data if not stated
otherwise.

Our experiments show that the generalization performance can be improved
by deploying sequentially semiseparable matrices to neural networks. This effect
is visible for the models with 300 hidden neurons as well as the models with 50
hidden neurons. The optimal state space dimension depends on the dataset at
hand. For example, for the MNIST dataset the best performance was achieved
with d = 4, whereas for the hand postures dataset the optimal state dimension
was d = 1. The results of our experiments are depicted in Fig. 3. Our observations
are in line with previous observations in literature. For other structure classes,
it has also been observed that in some cases the prediction accuracy can be
increased by using structured weight matrices [9,11,13,19].

The results of our 50 hidden neuron model experiments show that the perfor-
mance gain of our models is not only due to the standard neural network being
overparameterized. We suspect that the latter is the case for the model with
300 neurons trained on the pen-based digits recognition dataset as well as the
hand postures dataset. The fact that the small model achieved better test accu-
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Fig. 4. Comparison of the time needed for computing the matrix-vector product of a
100-dimensional matrix on a STM32F405 microcontroller. When the state dimension
is small, the matrix-vector product using a sequentially semiseparable matrix can be
performed in a fraction of the time needed for the dense counterpart. However, with
increasing state dimension, the time needed for computing the matrix-vector product
also increases, finally reaching a break-even point with the dense counterpart.

racies on these datasets suggests that the larger network was overparameterized
and thus the training stopped early due to overfitting. In contrast, the models
with sequentially semiseparable weight matrix suffered far less from overfitting
problems, since these networks inherently comprise fewer parameters. This can,
however, not only be attributed to the reduced number of parameters, since the
rank 1 weight matrix approach could not consistently outperform the standard
neural network.

Interestingly, in our experiments, the inference as well as training times
increased for neural networks with sequentially semiseparable weight matrices,
even though the number of operations required for inference decreased. This has
two reasons. Firstly, we executed our experiments on an AMD Ryzen Threadrip-
per 3990X 64-Core Processor. When computing the matrix-vector product for
a standard matrix, the operations could be distributed over 64 available cores.
However, computing the matrix-vector product for sequentially semiseparable
matrices has fewer parallelization capabilities, since in order to compute the
output of timestep k + 1, the state of timestep k is required. Therefore, the
sequential computation scheme prohibits elaborate parallelization of the opera-
tions. The fact that our code is implemented in Python also plays a role here.
Our for-loops implemented in Python cannot keep up with the speed of the
C-routines used by pytorch. Secondly, computing the computational graph for
gradient updates is more complex in our proposed algorithm. As explained in
Sect. 4, the training error is propagated through all states. This results in a
longer chain of derivatives, similar as obtained in deep neural networks. Con-
structing and evaluating this computational graph might result in longer training
times. Usually, this is not a problem, because for most applications the infer-
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ence time is the most important factor, and the training time plays a minor
role. In summary, we expect longer training times for the proposed method. The
reduced number of required operations might not necessarily lead to reduced
inference times, since the inference time depends on the targeted hardware and
the implementation at hand. However, on hardware with few processing units
(like for example microcontrollers), we can expect speed-ups regarding the infer-
ence times. We illustrate this by measuring the time needed for computing the
matrix-vector multiplication between a matrix A ∈ R100×100 and a random vec-
tor on a STM32F405 microcontroller with 168 MHz. Figure 4 shows that the
matrix-vector product for the sequentially semiseparable matrix can be com-
puted in a fraction of the time compared to the dense matrix. The computation
time increases with increasing state dimension, until the break-even point with
the dense computation is reached.

6 Conclusion

We introduced an algorithm for training neural networks with sequentially
semiseparable weight matrices. The key idea of the proposed algorithm is to
backpropagate the training loss to the matrices generating the structured weight
matrix, instead of the entries in the weight matrix directly. By that, it is pos-
sible to reduce the training loss while maintaining the structure in the weight
matrices throughout training. Moreover, our algorithm can be combined with the
standard backpropagation algorithm. This allows for training neural networks
comprising structured as well as non-structured weight matrices.

To validate our algorithm, we ran experiments using four real-world datasets.
Two key findings resulted from our experiments. First, using structured matrices
in neural networks can increase the generalization performance of the network.
This finding confirms previous observations from literature, but now applied
to sequentially semiseparable weight matrices. Second, computing the product
between a sequentially semiseparable matrix and a vector can hardly be paral-
lelized without losing the advantages of reduced required number of operations.
Therefore, the structure investigated in this paper is mostly relevant to applica-
tions running on non-parallelized hardware such as microcontrollers.
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Summary

The focus of this paper lies on approximating weight matrices of trained NNs. For that,
we consider four structure classes, namely low rank matrices, matrices of low displace-
ment rank, SSS matrices, and products of sparse matrices. For each structure class
it is shown how weight matrices can be approximated with structured matrices corre-
sponding to the respective class. We compare the approaches to each other using
weight matrices from NNs trained for controlling a quadrotor drone. The experimental
setting is the same as in the motivational example introduced in Section 1.2 of this
thesis. In our benchmark, we approximate the trained weight matrices using matrices
from each structure class and analyze the flying capabilities of the controller based on
the approximated NN. The aim of our comparison is to analyze the trade-off between
reduction of the number of parameters in the weight matrices and the performance re-
garding flying robustly in the real world. Our results show that there is structure in the
weight matrices, which can be exploited to speed up inference, while still being able to
perform the flight maneuvers in the real world.

Own Contributions

• Literature review on related approaches as well as for identification of algorithms
that could be used for finding structure in matrices

• Implementation of the algorithms described in the paper

• Execution of experiments in simulation as well as in the real world in collabora-
tion with Sven Gronauer and Mathias Korte

• Analysis, interpretation and discussion of the results
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Abstract. We consider the task of using a neural network for control-
ling a quadrotor drone to perform flight maneuvers. For that, the net-
work must be evaluated with high frequency on the microcontroller of the
drone. In order to maintain the evaluation frequency for larger networks,
we search for structures in the weight matrices of the trained network.
By exploiting structures in the weight matrices, the propagation of infor-
mation through the network can be made more efficient. In this paper,
we focus on four structure classes, namely low rank matrices, matrices
of low displacement rank, sequentially semiseparable matrices and prod-
ucts of sparse matrices. We approximate the trained weight matrices with
matrices from each structure class and analyze the flying capabilities of
the approximated neural network controller. Our results show that there
is structure in the weight matrices, which can be exploited to speed up
the inference, while still being able to perform the flight maneuvers in
the real world. The best results were obtained with products of sparse
matrices, which could even outperform non-approximated networks with
the same number of parameters in some cases.

Keywords: Neural control · Structured matrices · Fast inference

1 Introduction

Neural networks are universal function approximators [3]. Therefore, they are
used in an increasing number of areas. One such area is neural drone control,
where a neural network is used to control an autonomously flying drone. In our
case, we focus on performing flight maneuvers with a Crazyfly 2.1 quadrotor
drone1. For that, we train a neural network in simulation using reinforcement
learning, and then deploy the network to the real-world (sim-to-real). This train-
ing pipeline is explained in detail in [9].

In this paper, we focus on implementing the flying policy in form of the
neural network efficiently on the drone. For flying robustly, the neural network

1 https://www.bitcraze.io/products/crazyflie-2-1/.
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must be evaluated on the drone with a high frequency. This is challenging, since
we require that all calculations are performed on board of the drone, i.e. on a
STM32F405 microcontroller with 168MHz.

Since we use densely connected layers in our policies, the dominant cost for
propagating information through the network arises in form of matrix-vector
multiplications. For example, to compute the matrix-vector product of a matrix
Rn×n requires O(n2) operations. In this paper, we aim to reduce this order
of required operations by exploiting structures in the weight matrices of the
network. If the weight matrices possess certain structures, the order of required
operations needed shrinks to the subquadratic domain. For example, if the weight
matrix has many zero entries, the propagation can be made more efficient by
exploiting the sparsity in the matrix. For sparse matrices, this results in O(k)
operations for matrices with k nonzero entries. In Sect. 3, we present other matrix
structures which can be used for making the inference more efficient.

Our contribution is two fold. First, we introduce several methods which
can be used for approximating given weight matrices with structured matrices.
Second, we perform extensive experiments for finding structures in the trained
weight matrices of a neural network used for neural drone control. This leads to
findings regarding the best approximation methods and approximation norms.

The rest of this paper is organized as follows. First, we review approaches in
literature that have been used to make neural network evaluation faster. Here, we
mainly focus on exploiting structures in the weight matrices of neural networks.
In the subsequent section, we introduce the methods we used for approximat-
ing weight matrices in neural networks. In Sect. 5, we show the results of our
experiments in a simulation environment as well as on our drone flying in the
real-world. Finally, we summarize our findings and give a conclusion.

2 Literature Review

There are several approaches in literature targeting to reduce the time required
for neural network inference [18]. These include for example optimizing the
dataflow [18], quantization techniques [15], using specialized hardware [8], as
well as knowledge distillation [10]. For example, many approaches in neural net-
work training or post-processing aim at producing sparse weight matrices [1,14].
Using these approaches, the number of operations needed for computing the
matrix-vector multiplication decreases, as explained in the introduction.

In this paper, we focus on structured matrices. Structured matrices can be
described with less than O(n2) parameters. In contrast to sparse matrices, struc-
tured matrices must not contain zeros. Instead, their entries have a relationship
to each other, which we denote as structure. The research field of structured
matrices is fragmented, which means that there are many different special cases
of matrix structures. In this paper, we are interested in structures for which
the multiplication of the structured matrix with an arbitrary vector requires
subquadratic order of operations. Therefore, we focus on four structure classes,
namely low rank matrices, matrices of low displacement rank [16], sequentially
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semiseparable matrices [7] and products of sparse matrices [4,5,13] (note that
the product of sparse matrices is not sparse in general). An introduction to each
of these classes is given in Sect. 3.

There are several approaches in literature, where structured matrices have
been applied to neural networks. For example, weight matrices in neural networks
have been replaced by structured matrices to be trained using the backpropa-
gation algorithm afterwards [4,5,17,19,20]. To the best of our knowledge, there
is no extensive comparison of approximating a given weight matrix in a neural
net with different kind of structures yet.

3 Methodology

Our aim is to reduce the number of operations required for inference using a
trained neural network. For that, we search for structures in the trained weight
matrices in order to replace the original weight matrices with structured coun-
terparts. Since the application of this paper is neural drone control, our trained
network is able to control a quadrotor drone to fly a specific maneuver (in this
paper, we investigate the task of flying in a circle). We start from a given neural
network J , which is a composition of layer mappings

J(u) = (Lr ◦ · · · ◦ L1)(u), (1)

where the neural network consists of r layers and Li is the mapping of the ith

layer. We focus on densely connected feed-forward neural networks, i.e. the layer
mappings are of the form

Li(u) = σ(Wiu + θi), (2)

where Wi is a weight matrix, θi are the biases of the respective layer, and σ the
activation function of the layer, which is applied element-wise to its inputs.

Given the trained neural network J , we search for structure in its weight
matrices Wi. We say that Wi approximately possesses a certain structure, if
there is a matrix Ŵi which has the desired structure and

||Wi − Ŵi||N < ε. (3)

|| · ||N is a matrix norm (for example the Frobenius norm) and ε is the maxi-
mum error which we tolerate. If the tolerance is chosen too big, the approximated
network does not fly in the real world. On the opposite side, if ε is chosen too
small, we might not find a structured matrix Ŵ which fulfills the requirements.
In practice, we usually do not know the right tolerance beforehand. Therefore,
our approach is to find the best approximation Ŵi for a given weight matrix Wi

with respect to different structure classes. Afterwards, the approximated weight
matrix Wi is evaluated in terms of number of parameters and flying capabilities
of the overall network.
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We investigate four matrix structure classes in order to find approximations
for our given weight matrices Wi. These four structure classes are introduced in
the following. The code used for runnning our experiments can be found online2.

3.1 Low Rank Matrices

The most straightforward matrix structure we investigate are low rank matrices.
If our weight matrix Wi ∈ Rm×n has rank r < min(m,n), it can be expressed as

Wi = GH, (4)

with G ∈ Rm×r and H ∈ Rr×n. Since Wi most likely does not possess a low
rank, we are interested in finding a low rank approximation for Wi.

We follow two independent approaches for finding low rank approximations.
The first approach uses the singular value decomposition (SVD) of Wi as

Wi = USV T . (5)

Using the SVD, we can find the best 2-norm as well as Frobenius norm rank
r approximation for Wi by setting all singular values σj with j > r to zero

Ŝj,j =

{
σj ifj ≤ r

0 else
. (6)

This results in G = U
√

Ŝ and H =
√

ŜV T . We are also interested in the
approximation result if we target other norms than the 2-norm or the Frobenius
norm. Therefore, we have a second approach, which consists of glorot-uniform
randomly initializing the matrices G and H. Both matrices are then optimized
using gradient descent to minimize

min ||Wi − GH||N , (7)

where N is the norm we aim to minimize (−1, 1, −2, inf, − inf or the nuclear
norm). We use Adam [11] with the pytorch3 standard hyperparameters and
initial learning rate of 0.1 as step-size optimizer. Each optimization is repeated
5 times taking the best approximation result in order to account for the random
initialization of the initial G and H. We train until the loss reduction between
two optimization steps is smaller than 1e − 4.

3.2 Matrices of Low Displacement Rank

Matrices of low displacement rank [16] build on the notion that a matrix might
possess low rank after displacing its entries. The displacement rank can for exam-
ple be measured using the Sylvester type operators

L(Wi) = ∇A,B(Wi) = AWi − WiB = GH. (8)

2 https://github.com/MatthiasKi/drone structures.
3 https://pytorch.org/.
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Here, A and B are fixed operator matrices. Wi ∈ Rm×n is said to have a low
displacement rank, if L(Wi) has low rank, i.e. G ∈ Rm×r and H ∈ Rr×n with
r < min(m,n).

In this paper, we follow the approach from Thomas et al. [19] and learn the
operator matrices A and B jointly with the matrices G and H. For that, we
parameterize the operator matrices as tridiagonal plus corner matrices, which
includes many well-known standard operators. Therefore, our parameterization
inter alia contains toeplitz-like, hankel-like, vandermonde-like and cauchy-like
matrices [19].

We formulate the problem of finding suitable A, B, G and H matrices as
optimization problem

min
A,B,G,H

||Wi − decompress(A,B,G,H)||N , (9)

where N is the norm we want to minimize (chosen from −1, 1, −2, 2, inf, − inf,
nuclear or Frobenius norm). The decompress() method recovers the matrix Ŵi

from the determined displacement operators

Ŵi = decompress(A,B,G,H)

= Σr
i=1K(A,Gi)K(BT ,HT

i )T ,
(10)

which has a displacement rank at most 2r [19]. Here K(A, v) denotes the n × n
Krylov matrix where the ith column is determined as Aiv. We denote the ith

column of G with Gi (HT
i respectively). Note that this approach can only be

used for approximating square matrices Wi.
We determine suitable A, B, G and H matrices using stochastic gradient

descent. Each approximation run consists of three subsequent optimizations with
different learning rates (1, 0.1 and 0.01), whereas each optimization run contin-
ues until the minimization loss can not be improved more than 1e − 5. Each
approximation run is repeated 5 times (taking the best approximation result) in
order to account for the random initialization of the A, B, G and H matrices.

3.3 Sequentially Semiseparable Matrices

Sequentially Semiseparable Matrices originate from Time Varying Systems the-
ory [7]. This structure naturally arises when describing the input-output behavior
of a time varying system, and is defined as

Wi = D + C(I − ZA)−1ZB

+ G(I − ZT E)−1ZT F.
(11)

Here, I is the identity matrix and Z is a down-shift matrix

Z =

⎛
⎜⎜⎜⎜⎝

0 0

1
. . .

. . .
. . . 0

0 1 0

⎞
⎟⎟⎟⎟⎠

. (12)
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A, B, C, D, E, F and G are block-diagonal matrices, each comprising of n
matrices

A = diag([A1, . . . , An]) (13)

(B, C, D, E, F and G matrices respectively). In the context of time-varying sys-
tem theory, the matrices A, . . . , G define the behavior of a time-varying system.
For example, A maps the previous state of the system to the next state and B
maps the previous state to the current output.

In order to find an approximation of Wi which possesses the sequentially
semiseparable structure, we use the time-varying system realization theory in
combination with balanced model reduction [7,12]. We describe our approach
for square matrices Wi ∈ Rn×n for better illustration. This approach can be
straightforwardly extended to non-square cases (for more details we refer to our
code). We set the input and output dimensions to 1, which results in Dj ∈ R1×1.
Then, we determine the biggest possible state dimension d which still has less
than the allowed number of parameters. This results in realization matrix shapes
Ak ∈ Rd×d, Bk ∈ Rd×1, Ck ∈ R1×d, Dk ∈ R1×1, Ek ∈ Rd×d, Fk ∈ Rd×1 and
Gk ∈ R1×d for k = 1, . . . , n. These realization matrices are obtained by the
standard realization approach [7], but cutting out all singular values σl for l > d
from the Hankel matrices obtained during realization.

3.4 Products of Sparse Matrices

As shown in Sect. 2, there exist many approaches for promoting sparsity in the
weight matrices of neural networks. We build on this theory, but in contrast
to most existing literature, we investigate products of sparse matrices. Recently,
interesting results about weight matrices represented as product of sparse matri-
ces have been reported [4–6]. In general, the product of sparse matrices is not
sparse. Moreover, the notion of sparsity and structure in linear maps seems
to be fundamentally linked [4,6], which leads to the conclusion that all efficient
matrix-vector multiplication algorithms can be factorized into products of sparse
matrices [5].

In order to approximate a given weight matrix Wi ∈ Rm×n with a product
of sparse matrices Fj , we minimize

||Wi −
k∏

j=1

Fj ||F , (14)

with
k∑

j=0

nnz(Fj) ≤ ψ, (15)



Structured Weight Matrices for Neural Drone Control 531

where nnz() denotes the number of nonzero elements in a matrix and ψ is the
maximum number of nonzero elements in the product. We treat the number of
sparse matrices k as a hyper parameter and fix the shapes of Fj

Fj

⎧
⎪⎨
⎪⎩

∈ Rm×max(m,n) if j = 1

∈ Rmax(m,n)×n if j = k

∈ Rmax(m,n)×max(m,n) else

. (16)

We do not need to optimize the shapes of the factors if they are chosen large
enough, because smaller shapes are contained as submatrices of larger shapes.

We use the algorithm proposed by Magoarou and Gribonval [13] in order to
find Fj . They proposed to use the Proximal Alternating Linearized Minimization
(PALM) [2] algorithm for iterative factorization of a given matrix into sparse
factors. The PALM algorithm updates the factors of the sparse product using
projected gradient descent steps (in our case we use a projection onto matrices
with prescribed sparsity). Based on this, Magoarou and Gribonval proposed to
follow a hierarchical approach, where they subsequently add sparse factors to
the product in order to approximate a given matrix.

In our experiments, we used this hierarchical approximation algorithm based
on PALM for approximating the Wi matrices. We repeated the approximation
for different hyperparameters in order to find the best combination for a given
weight matrix. For that, we tried different numbers of factors in the product
(k = 1, . . . , 9) and different distributions of the number of nonzero elements
across the factors in the product. The different distributions were generated by
fixing the number of nonzero elements in the last factor nnz(Fk) and determining
the number of nonzero elements following a linear

nnz(Fj) = floor(α + mj), (17)

or exponential distribution

nnz(Fj) = floor(αemj). (18)

The parameters m and α can be determined using nnz(Fk) and the constraint
given in Eq. 15. In each experiment, we tried different values for nnz(Fk), equally
distributed in the range [0.1ψ, 0.9ψ]. If k = 1, the product over sparse matrices
reduces to a single sparse matrix. In this case, we skip the hierarchical optimiza-
tion scheme and simply use the ψ elements with highest absolute value in the
resulting sparse matrix.

4 Experimental Setup

In our experiments, we approximate the weight matrices of two 2-hidden-layered
neural networks. We chose to investigate models with 6 and 30 hidden neurons
respectively, in order to compare the approximation results for different model
sizes. Both models are able to fly in the real world (whereas the bigger model
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Fig. 1. Comparison of the rewards obtained after approximating certain layers of a
neural network for different hidden layer sizes. The approximation tends to be better
for networks containing larger weight matrices. For such networks, approximating the
input and/or hidden layer weight matrix yields best performance. However, for smaller
networks, the effect that approximation errors in early layers of the network might get
amplified in later layers becomes apparent. For these networks, it might be better to
remove parameters in deeper layers (for example the output layer).

is more robust). For evaluating the models, the original weight matrices are
substituted by approximated counterparts in the neural network. The resulting
network is evaluated in terms of its flying capabilities in the simulation. For
that, we measure the cumulated reward obtained during flying, which was used
to train the original model. Hence, the evaluation metric is independent of the
matrix norm used during approximation.

Each model is evaluated in terms of its cumulated reward over 500 test tra-
jectories in simulation. The reward takes into account the deviation of the drone
position to the ideal position for flying the maneuver, plus terms penalizing unde-
sired flying behaviors such as shaking or drastically changing the motor outputs
frequently. We report the mean and the standard deviation of the obtained
reward. A reward higher than −25 usually means that the drone is able to fly in
the real world (the reward is optimally around −10). If the reward is in the range
[−80,−25], this means that the neural network is occasionally able to perform
the flight maneuver, but also crashes sometimes. Rewards lower than −80 lead
to crashes of the drone in the real world (as well as in simulation) for most times.

5 Results

The approximation results tend to be better for bigger weight matrices than
for smaller ones (as shown in Fig. 1). This particularly affects approximating
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Fig. 2. Rewards achieved by our approximated models compared to models with differ-
ent number of hidden neurons trained from scratch. Models where we removed a small
number of parameters achieved similar rewards like the non-approximated counter-
parts. If too many, parameters were removed, the models trained from scratch usually
outperformed the approximated models.

the output matrix of the network, which leads to worse results compared to
the other matrices (depending on the number of hidden neurons). Since our
network produces 4 outputs, the size of the output matrix has usually an order
of magnitude less parameters. This results in 4z parameters (with z being the
hidden layer size), compared to z2 parameters in the hidden layer matrix and
40z parameters in the input layer matrix. The network with 6 hidden neurons
is less affected by this, because here the hidden layer does not have significantly
more parameters than the output layer. Instead, another effect plays a major
role here: Errors introduced by approximating the input layer can be amplified
while being propagated through the other layers. Hence, in the case of the small
network, removing parameters from deeper layers results in better performance.

Therefore, we suspect that more structures are present in the bigger weight
matrices. This might be due to overparameterization of the bigger network.
Figure 2 shows that a hidden layer size with more than 12 neurons does not
result in significant improvements of the obtained cumulated reward. Therefore,
we suspect that the model with 30 hidden neurons is overparameterized, which
might contribute to the good approximation capabilities.

In order to investigate the tradeoff between parameter reduction and flight
capability, we approximated both models with different number of parameters.
In the 30 hidden neuron model both, the input layer as well as the hidden layer
weight matrix, are approximated with products of sparse matrices. In the 6 hid-
den neuron model, only the input layer is approximated. The weight matrices
are approximated using products of sparse matrices, since this resulted in the
best performance. Figure 2 shows the results for the approximated models. Sur-
prisingly, there were even approximated models which performed better than
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Table 1. Time needed for inference on the drone microcontroller. The models with
100% parameter share refer to the original models. In the other models, weight matrices
have been approximated with products of sparse matrices.

# Neurons 6 6 6 6 30 30 30 30 30

Parameter share [%] 100 80 70 60 100 80 70 60 50

Mean inference time [ms] 0.058 0.068 0.054 0.05 0.4 0.44 0.38 0.34 0.3

their non-approximated counter parts with the same number of parameters. For
the model with 30 neurons in the hidden layer, approximation of the weight
matrices led to similar performance like training a model with the same number
of parameters from scratch, if not too many parameters were removed.

Our approximated models were able to control the drone to fly the circle
maneuver even in the real-world. We recorded videos to show the flying perfor-
mance of the different models compared to the original models4. Moreover, we
measured the time needed for inference on the drone microcontroller. The results
are shown in Table 1. It can be seen, that the time required for inference decreases
if there are fewer parameters in the network. However, the computations with
sparse matrices also produce an overhead compared to the standard matrix-
vector multiplication. Thus, the approximation is only worthwhile in terms of
inference time reduction if a certain reduction of the parameters is reached.

A comparison of the performance of the different approximation methods is
shown in Fig. 3. Here, we compare the cumulated reward obtained by a model
with 30 hidden neurons, for which we approximated the hidden layer weight
matrix with 80% of the original number of parameters. It can be seen that the
Frobenius and 2-Norm approximation led to the best results for the low rank
approximation as well as the low displacement rank approximation methods.
Moreover, approximations based on the nuclear norm led to acceptable approx-
imations as well as the 1-norm approximation used in the low rank approach.
Using the −1, −2, inf or − inf norms led to consistently bad results.

We would like to point out that for smaller matrices or fewer number of
parameters the low displacement rank approach as well as the sequentially
semiseparable matrices approach tended to produce poor results. We suspect
that this is due to the fact that these matrix structures usually only have advan-
tages for large matrices. Therefore, results might be different for larger neural
networks than the ones used in our experiments. However, in some rare cases,
the sequentially semiseparable approximation performed very good compared to
the other methods.

4 https://youtu.be/PVaTnagaUzs.
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Fig. 3. Comparison of the achieved reward by approximating the hidden layer weight
matrix of a model with 30 hidden neurons with 80% of it’s parameters. The product of
sparse matrices yields the best results. Regarding the low rank and low displacement
rank approaches, using the 2-Norm or the Frobenius Norm as optimization objective led
to the best results. The nuclear and the 1-Norm also achieved acceptable approximation
results, whereas approximating the weight matrix targeting other norms led to bad
simulation rewards.

6 Conclusion

We analyzed the weight matrices of a trained neural network used for neural
drone control. For that, we approximated the trained weight matrices of the
network with structured matrices using four different approaches. Our results
showed that the weight matrices possess structure, which can be exploited to
speed up the inference. Approximating the weight matrices with products of
sparse matrices showed to be the most promising approach in our experiments.
With this approach, we could achieve approximations with fewer parameters,
which almost had the same flying capabilities as the original model. In the case of
very small networks, the approximation could even outperform neural networks
with the same number of parameters trained from scratch.
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Summary

Modern CNNs comprise millions of parameters. Therefore, the use of these networks
requires high computing and memory resources. In this paper, we propose to reduce
these resource requirements by using structured matrices. For that, we replace weight
matrices of the fully connected classifier part of several pre-trained CNNs by SSS Ma-
trices. By that, fewer parameters are required to define the weight matrices of these
layers, and the time required for computing the product between the weight matrix and
an input vector can be reduced. In our experiments, we compare the prediction per-
formance of NNs with standard weight matrices and rank one weight matrices to NNs
with SSS weight matrices. I use the results of these experiments in this thesis to show
that the choice of the structure class used in NNs does have an impact on the achieved
test accuracy. Furthermore, we show in the paper that the combination of approximat-
ing pretrained weight matrices with SSS matrices followed by gradient-descent based
training leads to the best prediction results (compared to just approximating or training
from scratch).

Own Contributions

• Development and formulation of the algorithms in collaboration with Klaus
Diepold

• Design, implementation and execution of the experiments mentioned in the pa-
per

• Analysis and discussion of the results
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Abstract. Modern Convolutional Neural Networks (CNNs) comprise
millions of parameters. Therefore, the use of these networks requires high
computing and memory resources. We propose to reduce these resource
requirements by using structured matrices. For that, we replace weight
matrices of the fully connected classifier part of several pre-trained CNNs
by Sequentially Semiseparable (SSS) Matrices. By that, the number of pa-
rameters in these layers can be reduced drastically, as well as the number
of operations required for evaluating the layer. We show that the combi-
nation of approximating the original weight matrices with SSS matrices
followed by gradient-descent based training leads to the best prediction
results (compared to just approximating or training from scratch).

1 Introduction

Modern Convolutional Neural Networks (CNNs) consist of many layers and mil-
lions of parameters. By that, they are able to achieve remarkable results in
image-based problem domains, like image recognition [1, 2]. However, as the
number of parameters increases, so does the computational effort required for
deploying the network. This is especially a problem for applications targeting
mobile devices or embedded hardware like microcontrollers. For these applica-
tions, the use of modern CNN architectures is often not possible due to insuffi-
cient computing and / or memory resources.

Deep CNNs are often designed similarly. First, there is a feature extractor
part, which consists of convolutional and pooling layers. After the feature ex-
tractor part, the activations are flattened and put into the classifier part. The
classifier usually consists of fully-connected feed-forward layers. A large part of
the parameters of the network is typically located in the classifier part, since the
parameters in the convolutional filters are shared. As a result, evaluating the
classifier part involves performing large matrix-vector multiplications.

Our goal is to reduce the resources needed in the classifier part of deep CNNs.
For that, we focus on the last (i.e. fully-connected) layer of the network. Prop-
agating information through this layer requires O(nm) operations for a weight
matrix W ∈ Rn×m. This order of magnitude can be reduced to the subquadratic
domain if the weight matrix of the layer has a specific structure. Particularly, we
are interested in using Sequentially Semiseparable (SSS) matrices as weight ma-
trices in neural networks. This matrix structure typically arises when describing
linear time-varying systems [3].

Our contribution is two-fold. First, we investigate the effect of replacing the
last weight matrix of several state-of-the art CNN models with a SSS matrix. By
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that, we can analyze the trade-off between number of parameters and prediction
accuracy of the overall recognition model. Second, we study the influence of the
method used to bring the structure into the neural network. Here, we compare
the achieved prediction performance of different approaches like approximating
the weight matrix, training an SSS weight matrix from scratch, or the combined
approach of approximation and training.

The rest of this paper is organized as follows. We first give an overview
over approaches in literature, which use structured matrices in the context of
neural networks. Subsequently, we introduce the methods we use to bring the
SSS structure into the neural network. In Section 4, we present and discuss our
experimental results. Finally, we draw a conclusion.

2 Literature Review

Several approaches in literature proposed the use of structured matrices in neural
networks. In this context, matrices of low displacement rank are often used [4].
Prominent representatives of this structure class are Toeplitz matrices, which are
connected to CNNs. Other approaches focused on Toeplitz-like weight matrices
[5], or trained the operator matrices together with the low-rank components end-
to-end in a neural network [6]. Moreover, it has been shown that the universal
approximation theorem holds for neural networks with weight matrices of low
displacement rank [7].

Other matrix structures used in neural networks are hierarchical matrices [8]
and products of sparse matrices [9]. For example, Fan et al. [10] proposed to use
hierarchical matrices in neural networks. Later, they extended their approach to
H2 matrices [11]. Several authors proposed to use products of sparse matrices
(particularly butterfly matrices) in neural networks [9, 12, 13, 14]. The idea here
is that the product of sparse matrices is not sparse in general. Therefore, many
dense matrices can be represented as a product of sparse matrices.

3 Methods

Our goal is to replace a weight matrix W ∈ Rn×m from a trained neural network
with an SSS matrix Ŵ . The SSS matrix has the form

Ŵ = D + C(I − ZA)−1ZB +G(I − ZTE)−1ZTF. (1)

Here, I is the identity matrix and Z is a down-shift matrix containing ones
on the subdiagonal and zeros everywhere else. A, B, C, D, E, F and G are
block-diagonal matrices, where each matrix contains p sub-matrices

A = diag([A1, . . . , Ap]) (2)

(B, C, D, E, F and G matrices respectively). This structure naturally arises
when describing time-varying systems [3], where matrices A, . . . , G explain the
behavior of a system. For example, C maps the state of the system to the
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output, and D maps the inputs of the system to the outputs. Note that the
dimensions of the Ak, Bk, Ck, Dk, Ek, Fk and Gk matrices can change for
different k = 1, . . . , p. This is due to the fact that input, state and output
dimensions might change over time.

We explore two approaches for replacing a given weight matrix with an SSS
matrix. The first approach starts from a randomly initialized SSS matrix, which
is trained using Backpropagation through States [15] (this is a data-driven ap-
proach). In contrast, no training data is required for the second approach. In-
stead, the original weight matrix is approximated using a model order reduction
method. For both approaches, suitable dimensions for Ak, . . . , Gk need to be
found. We set these dimensions with the aim to achieve a uniform distribution
of the input and output dimensions in the SSS representation. This means, that
for a given weight matrix W ∈ Rn×m, which is to be approximated with an SSS
matrix with p stages, the resulting input dimensions dim(uk) are

dim(uk) =

{
floor(m

p ) + 1 for k ≤ m− floor(m
p )p,

floor(m
p ) else

(3)

(output dimensions analogously). The dimension of the states dk is fixed to be
constant for all k (dk = d for all k). We treat d as a hyper parameter to control
the number of parameters available in the SSS matrix.

We use Backpropagation through States in order to train SSS weight matrices.
The key idea of the algorithm is to derive the training loss L with respect to
the parameters of the structure, not with respect to the entries of the resulting
weight matrix Ŵi,j . This results in gradients of the form

δL
δAk

,
δL
δBk

,
δL
δCk

,
δL
δDk

,
δL
δEk

,
δL
δFk

,
δL
δGk

. (4)

We compute these gradients using automatic differentiation as provided by the
pytorch machine learning framework1. The other steps of the training procedure
remain the same as in standard neural network training.

In order to approximate a given weight matrix with an SSS matrix, we use a
model order reduction method [3, 16]. This is based on the standard approach
for finding a balanced state-space realization for a given transfer operator (which
is the original weight matrix in our case). As part of the realization algorithm,
the Hankel matrices Hi of the operator are decomposed into observability and
controllability matrices (Oi and Ci respectively) using the Singular Value De-
composition

Hi = UiSiV
T
i , Oi = Ui

√
Si, Ci =

√
SiV

T
i . (5)

At this step, we cut out the smallest singular values until the realization has
the desired state dimension (d in our case). By that, we obtain a realization
Ŵ , which performs similar to the original weight matrix W , but with a reduced
amount of parameters. This procedure is called balanced model reduction for
time-invariant systems [3].

1https://pytorch.org/
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Fig. 1: Approximation with subsequent training led to the best results for all
models (the resulting SSS matrix comprises 20% of the parameters).

4 Results

We conduct experiments with pretrained deep convolutional neural networks
obtained from pytorch, namely AlexNet, VGG16, ResNet18, InceptionV3, Mo-
bilenetV2, and GoogleNet. The models are pretrained on the ImageNet 2012
dataset for image recognition [17]. For our experiments, we selected two subsets
of images from the overall Imagenet dataset. Each subset comprises 100 classes
from the original dataset (animals and objects), whereas each class comes with
approximately 1000 training images and 50 validation images. By that, we can
compare the effects on two distinct datasets for several models. We report the
mean and standard deviation of the accuracy on the ImageNet validation set.
This set has not been used in our training procedure (but it might have been
used for pretraining the models).

We replace the weight matrix of the last, fully-connected layer with an SSS
matrix. For this, we compare three approaches: Approximating the weight ma-
trix, approximation followed by training, and training the sequentially semisep-
arable matrix from scratch (after random initialization). Our code used for
conducting the experiments can be found online2.

Replacing the original weight matrix with an SSS matrix obtained from bal-
anced model reduction consistently led to bad prediction accuracy for the result-
ing model in all experiments. However, the combined approach of approximation

2https://github.com/MatthiasKi/structurednets
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Fig. 2: Evaluating the last layer of the InceptionV3 model requires less time
after replacing the weight matrix with an SSS matrix. However, the prediction
accuracy of the InceptionV3 model also decreases.

followed by training led to better results than training a similar SSS matrix from
scratch. The achieved final accuracy is lower than when using the original weight
matrix, whereas the gap between the original accuracy and the accuracy of the
model with SSS matrix depends on the model. For some models, the combined
approach of approximating and training the SSS weight matrices achieved very
good results, yielding a good trade-off between reduction in parameters and
reduction of accuracy in these models. These results are depicted in figure 1.

Besides the accuracy of the final model, we are also interested in the duration
required for running inference. For that, we compared the time required for
evaluating the last layer of the InceptionV3 model (depicted in Figure 2). This
speed comparison is implemented in C and executed on a single CPU core (of an
Intel Core i-7-8750H CPU with 2.20 GHz). The time required for evaluating the
matrix-vector multiplication increases with the number of parameters in the SSS
matrix. For all investigated parameter shares the required computation time is
significantly lower after replacing the original weight matrix with an SSS matrix.

5 Conclusion

We analyzed the effect of replacing weight matrices in the dense layers of deep
CNNs with SSS matrices. The resulting modified layers require significantly less
parameters to be stored, and can be evaluated much faster than the original
layers. This is due to the structure of the SSS matrix, which facilitates efficient
matrix-vector multiplication with subquadratic order of operations.

Our results showed that there is a trade-off between reducing the number
of parameters and decrease in prediction accuracy. The performance depends
on the number of parameters in the SSS matrix and the model at hand. We
conclude that there is a lot of potential in the approach of optimizing trained
neural networks by introducing SSS matrices.
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algorithms for linear transforms using butterfly factorizations. In International Confer-
ence on Machine Learning, pages 1517–1527. PMLR, 2019.
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Summary

In this paper, we analyze the approximation capabilities of NNs comprising SSS weight
matrices. In particular, we investigate SSS matrices with one dimensional state vari-
able. This class of matrices is quite limited in their expressiveness, but it facilitates an
efficient matrix-vector multiplication algorithm. Our contribution is to prove that neural
networks comprising SSS matrices with one dimensional state variable are univer-
sal approximators. With our proof, we show that the same approximation capabilities
which have been shown for weight matrices of low displacement rank also apply for
SSS weight matrices. I use this result in this thesis as a basis to analyze the benefits
of using SSS weight matrices in NNs. In the proof, it is shown that these NNs can ap-
proximate any function with arbitrary accuracy. With this knowledge, experiments can
be conducted to investigate the trade-off between approximation accuracy and number
of parameters in the NN.

Own Contributions

• Literature Research for existing proofs and similar approaches

• Development of the proof presented in the paper and formulation of the Universal
Approximation Theorem in collaboration with Klaus Diepold

• Discussion of the presented proof and its implications
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Abstract. One approach towards handling the large resource require-
ments of modern neural networks is to use structured weight matrices.
In this paper, we analyze the approximation capabilities of such neural
networks. In particular, we investigate sequentially semiseparable (SSS)
matrices with one dimensional state variable. This class of matrices is
quite limited in their expressiveness, but it facilitates an efficient matrix-
vector multiplication algorithm. Our contribution is to prove that neural
networks comprising SSS matrices with one dimensional state variable
are universal approximators. With our proof, we show that the same ap-
proximation capabilities which have been shown for weight matrices of
low displacement rank also apply for SSS weight matrices.

Keywords: Matrix Structures · Efficient Inference · Sequentially Semisep-
arable Matrices.

1 Motivation

Modern neural networks achieve remarkable results in several domains. This is
based, among other things, on the fact that networks are becoming ever larger
and deeper. State-of-the-art networks often comprise millions of parameters [15,
26], requiring large computational resources for training and inference. Some
applications even require specialized hardware for using these networks [22].

One approach to deal with this increasing resource consumption is to use
structured weight matrices.

Definition 1. A matrix A ∈ Rm×n is called structured, if it is defined by less
than O(mn) parameters.

In contrast to sparse matrices, structured matrices don’t need to contain zeros.
Instead, a structured matrix can be dense and is defined by the relationship of few
parameters. Besides the apparent memory savings, there are efficient algorithms
for some classes of structured matrices that can save computational resources
for performing various linear algebra operations.

There are many types of structured matrices. Two prominent examples are
hierarchical matrices [2] and matrices of low displacement rank [20]. In this
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paper, we focus on another structure class that occurs when describing time-
varying systems using state-space methods [9]: SSS matrices. The number of
parameters defining an SSS matrix is inter alia determined by the dimension
of the state variable of the described system. Every matrix can be represented
as SSS matrix if the state dimension is large enough. However, matrices defined
with low dimensional state variable are of particular interest. For these matrices,
there exist an efficient matrix-vector multiplication algorithm [13, 3]. This means
that memory as well as computational resources can be saved when the matrix
is represented as SSS matrix. Matrix-vector multiplications play a major role
for the computational cost required for inference with neural networks [28, 19].
Therefore, using SSS matrices in neural networks can significantly reduce the
computational demands of neural networks.

Typically, it is not evident which matrix structure type is best suited for
a given problem. This is, because there is not one single structure which out-
performs all others when being used in neural networks. Moreover, there is a
trade-off between reduction in parameters, inference time, and prediction accu-
racy of the resulting model. Therefore, it is important to have a repertoire of
possible matrix structures, which can be used in neural networks. By that, dif-
ferent structure types can be tested for the problem at hand. By focusing on SSS
matrices in this paper, we give the theoretical foundation needed to add them
to the repertoire of matrix structures, which can be used in neural networks.

Many theoretical insights in the field of neural networks build on the univer-
sal approximation theorem, proven by Cybenko in [5]. His theorem states that
neural networks with sigmoidal activation function can be used to approximate
any function to a desired accuracy. In [29], Zhao et al. show that this theorem
also holds for neural networks comprising weight matrices of low displacement
rank. Based on these results, our main contribution is to prove that Cybenko’s [5]
universal approximation theorem also holds for neural networks comprising SSS
matrices with one dimensional state variable. By that, we show that the same
approximation capabilities, which have been shown for neural networks compris-
ing matrices of low displacement rank, also hold for neural networks comprising
SSS matrices.

The rest of this paper is organized as follows. We first give an overview over
previous work using structured matrices in neural networks. Subsequently, we
define sequentially semiseparable matrices and explain how they can be used
in neural networks. Our main contribution is given in Section 4, in which we
show that the universal approximation holds for neural networks comprising
sequentially semiseparable matrices with one dimensional state variable. Finally,
we summarize our findings and draw a conclusion.

2 Literature Review

The research about semiseparable matrices dates back until 1937 [12, 25]. This
class of matrices has some interesting properties, and there exist efficient algo-
rithms for several applications. For example, the inverse of a generator repre-
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sentable plus diagonal semiseparable matrix can be computed in an efficient way.
Vandebril et al. [25] give a comprehensive overview over the results achieved with
semiseparable matrices.

A special member of the class of semiseparable matrices are SSS matrices [9],
which occur when describing time-varying systems using a state-space represen-
tation. We define SSS matrices formally in Section 3. Depending on the prop-
erties of the SSS matrix (which refers foremost to the dimension of the state
variable), SSS matrices can be efficiently multiplied with vectors. This makes
them particularly interesting for use in neural networks, since a large part of
the computational costs for the use of neural networks is spent on matrix-vector
multiplications. This is why SSS matrices have been used for example in the
domain of neural drone control [18], or for approximating large matrices arising
in deep convolutional networks [16]. Moreover, Kissel et al. [17] proposed the
backpropagation through states algorithm, which can be used for training neural
networks with SSS weight matrices.

Besides SSS matrices, there are many other types of structured matrices.
Some of them have been used in neural networks. For example, Fan et al. [11,
10] used hierarchical weight matrices in neural networks, resulting in a multiscale
structure. Especially for products of sparse matrices, there have been promising
results recently. A product of sparse matrices is in general not sparse. It has
been shown that many dense matrices can be well approximated with products
of sparse matrices [7, 8, 6], showing promising results when applied to neural
networks [7, 1, 27].

The most popular structure class used in neural networks are matrices of low
displacement rank. This class includes well known matrix types like Toeplitz,
Hankel, Vandermonde, and Cauchy matrices. Even convolutional neural net-
works can be described as standard neural network with weight matrices of low
displacement rank (using sparse Toeplitz matrices). Sindhwani et al. [23] pro-
posed to use Toeplitz-like matrices, which can be trained end-to-end with the
rest of the network. Moreover, Thomas et al. [24] trained displacements as well as
operator matrices end-to-end as part of the neural network training procedure.
Zhao et al. [29] contributed theoretical results regarding neural networks with
weight matrices of low displacement rank. They showed that these networks are
universal approximators.

The topics of this paper also touch the concepts of structured sparsity learn-
ing [21, 14]. However, we do not focus on sparse matrices. The structured matrices
we consider are usually dense and thus do not contain zeros. This distinguishes
our approach from structured sparsity learning, which aims to identify zero en-
tries in a matrix that have some structural relationship to each other. However,
it is possible that the concepts used to describe the structure in both approaches
do overlap with each other.
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3 Sequentially Semiseparable Matrices

In the following, we define SSS matrices based on the matrix-vector product
y = Tu, where y ∈ Rm is the resulting vector, T ∈ Rm×n is the SSS matrix,
and u ∈ Rn is the input vector. Analogous to the results from Zhao et al. [29],
we consider square matrices in this paper (i.e. m = n). This is, however, not a
general limitation for SSS matrices, since they are defined for arbitrary matrix
shapes.

SSS matrices occur when describing time-varying systems using a state-space
representation. In time-varying system theory, T is called the Toeplitz operator,
u are the system inputs, and y are the system outputs. The Toeplitz operator
describes the time-varying input-output behavior of the system. That is, for each
timestep k = 1, . . . , p, the outputs of this timestep yk for a causal system are
computed based on the inputs uk and the state of the system at this timestep
xk:

yk = Ckxk +Dkuk (1)

with
xk+1 = Akxk +Bkuk. (2)

Ak, Bk, Ck and Dk for k = 1, . . . , p are matrices describing the system behavior.
The Toeplitz operator corresponding to the system has a particular structure

T =




D1 0 0 0
C2B1 D2 0 0
C3A2B1 C3B2 D3 0
C4A3A2B1 C4A3B2 C4B3 D4


 . (3)

Since we do not investigate physical systems, we call the number of timesteps p
computation stages throughout the paper.

In the following, we restrict the dimensions of inputs, outputs and the state
variable to one at each computation stage. This limits the expressiveness of the
class considerably. As mentioned before, SSS matrices with arbitrary state vari-
able dimension can represent any matrix. With the limitation to one dimensional
input, output, and state variable, this expressiveness is lost, and some matrices
can no longer be represented. Moreover, we restrict the SSS matrix to be a lower
diagonal matrix (which corresponds to a causal Toeplitz operator). This fur-
ther restricts the expressiveness of the structure class. However, since the class
of lower diagonal SSS matrices is contained in the general class of SSS matri-
ces, a proof for lower diagonal SSS matrices directly also applies to general SSS
matrices.

With the aforementioned limitations, we can define SSS matrices.

Definition 2. A lower triangular SSS matrix T ∈ Rn×n with one dimensional
input, output and state variable at each computation stage, is defined as

T = D + C(I − ZA)−1ZB, (4)



Neural Networks with Sequentially Semiseparable Weight Matrices 5

where D, C, A, and B are diagonal matrices

A =




a1 0
a2

. . .
0 ap


 (5)

(other matrices respectively), and Z is a down-shift matrix defined as

Z =




0 0

1
. . .
. . . . . . 0

0 1 0



. (6)

Note that in the general case, the A, B, C and D matrices are block diagonal
matrices. However, since we consider the case that the inputs, outputs and states
are one dimensional, the entries on the diagonals of the A, B, C and D matrices
result as scalars.

Matrices of the form given in Definition 2 can efficiently be multiplied with a
vector using the representation given in Equation 1 and 2. Here, the index k on
matrices refers to the kth entry on the diagonal of the matrix. It can be seen that
in our case with one dimensional state variable, the matrix-vector multiplication
can be computed with O(n) operations, compared to O(n2) operations required
by the standard algorithm [13, 3].

We are interested in using matrices as defined in Definition 2 in neural net-
works. For that, analogously to the approach from Zhao et al. [29], we stack r
SSS matrices, and use the resulting matrix as weight matrix in a single layer
feed-forward neural network with sigmoidal activation function. The resulting
network function is given by

N(u) =

rn∑

j=1

αjσ(w
T
j u+ θj). (7)

Here, αj are weighing factors for the outputs at each neuron j and θj is the bias
of the neuron. The overall weight matrix is defined as

W =
[
T1 . . . Tr

]
, (8)

where T1, . . . Tr are SSS matrices as defined in Definition 2 and wj denotes the
jth column of W .

4 Universal Approximation Theorem

Cybenko [5] proved that single hidden layered neural networks with sigmoidal
activation functions are universal approximators. In his proof, he showed that
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assuming that the set of functions S represented by a neural network is not dense
in the space of continuous functions C(In) on the n-dimensional unit cube In
([0, 1]n) results in a contradiction. For that, he used the Hahn-Banach theorem to
show that following his assumption that S is not dense in C(In), there must be a
linear functional L on C(In) with the property that L 6= 0, but L(R) = L(S) = 0
(with R being the closure of S). This then leads to the contradiction, since the
discriminatory function σ(yTx+θ) is in R for all y and θ. Therefore, the subspace
S must be dense in C(In).

In the following, we show that the universal approximation theorem formu-
lated by Cybenko also applies to networks comprising SSS matrices with one
dimensional state variable, as defined in Equation 7. For that, we show that the
two requirements on which the universal approximation theorem for standard
feedforward neural networks is based, do also apply for our networks: First, we
show that the set of functions of the form N(u) defined in Equation 7 (P in the
following) is a linear subspace of C(In). Second, we show that all functions of
the form σ(yTx + θ) are contained in P . Our approach is based on Cybenko’s
work, and also follows the approach from Zhao et al. [29], who showed that
neural networks with weight matrices of low displacement rank are universal
approximators.

Lemma 1. The set of functions P of the form N(u) as defined in Equation 7
is a linear subspace of C(In).

Proof. We look at the function N(u) defined in Equation 7. By setting

α̃j = βαj ∀j, (9)

we have

∀β ∈ R : ∀N(u) ∈ P : ∃Ñ(u) ∈ P :

Ñ(u) = βN(u).
(10)

With
α(V ) =

[
α(H) α(G)

]
(11)

(where α(V ) denotes the weighing factors of V (u), other variables respectively),

W (V ) =
[
W (H) W (G)

]
, (12)

and
θ(V ) =

[
θ(H) θ(G)

]
, (13)

we have

∀H(u), G(u) ∈ P :

V (u) = H(u) +G(u) ∈ P. (14)

Combining the results in Equation 10 and equation 14, it directly follows that

∀H(u), G(u) ∈ P, κ, γ ∈ R :

κH(u) + γG(u) ∈ P. (15)
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We now show that the representation property [29] is fulfilled by structured
matrices as defined in Definition 2. The representation property is fulfilled, if for
any vector v ∈ Rn, there exist a matrix T such that v ∈ Rn is a column of T .

Lemma 2 (Representation Property of SSS matrices with one dimen-
sional state variable).

∀y ∈ Rn : ∃T =
[
t1 . . . tn

]
(16)

with T of the form as defined in Definition 2 and t1 = y.

Proof. We need to show that it is always possible to have

T = D + C(I − ZA)−1ZB =
[
y ∗ . . . ∗

]
(17)

Since the state variable is one dimensional, A, B, C and D are diagonal matrices.
In the following, we refer to the ith column of a matrix A by A(i). ZB is a diagonal
matrix shifted down by one entry, in particular

ZB(1) =
[
0 b1 0 . . . 0

]T
. (18)

Therefore we have

C(I − ZA)−1ZB(1) = b1(C(I − ZA)−1)(2). (19)

This can be seen by looking at the product G(ZB(1)) with G = C(I − ZA)−1




G1,1 G1,2 . . . G1,n

G2,1 G2,2 . . . G2,n

...
...

...
...

Gn,1 Gn,2 . . . Gn,n







0
b1
0
...
0



. (20)

As (I −ZA) is a bidiagonal matrix, the entries of (I −ZA)−1 can be computed
using the Neumann expansion [9], and are given by [4]

((I − ZA)−1)i,j =





0 for i < j

1 for i = j∏i−1
f=j af for i > j

, (21)

where af denotes the f th element on the diagonal of A. Note that we switched
the indices in the original formula from Chatterjee as we are considering a lower -
triangular bidiagonal matrix - using the fact that

(I − ZA)−1 = (((I − ZA)T )−1)T . (22)
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Now it can be seen that

D(1) + b1(C(I − ZA)−1)(2) =




d1
b1c2

b1c3
∏2

f=2 af
...

b1cn
∏n−1

f=2 af




(23)

Therefore, if we set ak = bk = 1 for all k, d1 = y1, dk = 0 for all k > 1 and
ck = yk for all k we have t1 = y.

Based on lemma 2, we can now show that any function of the form

f(x) = σ(yTx+ θ) (24)

can be represented with a neural network as defined in Equation 7, where the
number of SSS matrices in the network is limited to one (i.e. r = 1).

Corollary 1.

∀y, θ : ∃T, θ̃, α :
n∑

j=1

αjσ(t
T
j x+ θ̃j) = σ(yTx+ θ),

(25)

with T =
[
t1 . . . tn

]
and T is of the form defined in Definition 2.

Proof. According to lemma 2, we can chose T such that t1 = y. Moreover, we
set α1 = 1 and αj = 0 for all j 6= 1 as well as θ̃j = θ for all j. This results in

n∑

j=1

αjσ(t
T
j x+ θ̃j) = σ(tT1 x+ θ)

= σ(yTx+ θ).

(26)

Using lemma 1 and corollary 1, it directly follows that Cybenko’s theorem
[5] also applies for neural networks as defined in Equation 7.

Theorem 1 (Universal Approximation Theorem for Neural Networks
comprising SSS matrices with one dimensional state variable). Let σ
be any continuous discriminatory function. Then functions of the form given in
Equation 7 are dense in C(In). In other words, given any f ∈ C(In) and ε > 0,
there is a function N(u) ∈ P for which

|N(u)− f(u)| < ε ∀u ∈ In. (27)

Proof. Based on Cybenko’s universal approximation theorem, this follows di-
rectly from Lemma 1 and corollary 1.
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5 Discussion

It is evident that neural networks with arbitrary SSS weight matrices are uni-
versal approximators. This is, because all matrices can be represented exactly
as SSS matrices, if the state dimension is large enough. In contrast, it is not
straightforward that neural networks comprising SSS matrices with one dimen-
sional state variable are universal approximators. Our results show that neural
networks with SSS weight matrices have the same approximation capabilities as
neural networks with weight matrices of low displacement rank [29].

However, these results do not directly lead to neural networks with fewer
parameters in practice. This is due to two reasons. First, the proof is based on
the fact, that there can be multiple SSS matrices in the neural network. This
is in line with previous results for matrices of low displacement rank and the
standard universal approximation theorem. For practical applications, however,
we are more interested in finding structured weight matrices, which perform
sufficiently well (in contrast to perfectly represent a desired mapping). There is
a trade-off between matrices that solve the problem more accurately and matrices
for which there are more efficient algorithms for computing the matrix-vector
product.

The second reason is that although we proved that neural networks com-
prising SSS matrices with one dimensional state variable are universal approx-
imators, we did not present an algorithm to find such networks. The recently
introduced backpropagation through states algorithm [17] can be used to train
neural networks with SSS weight matrices. However, it does not provide any
guarantees regarding the approximation error. Thus, an algorithm that finds the
best structured neural network with guarantees is still lacking.

Nevertheless, it is an important result that neural networks with one dimen-
sional state variable are universal approximators. This provides a framework for
finding practically applicable algorithms and structures that will lead to more
efficient neural networks. Finding these algorithms is still an ongoing research
topic.

6 Conclusion

We showed that the universal approximation theorem holds for neural networks
comprising SSS weight matrices with one dimensional state variable. Thus, we
have shown that SSS matrices in neural networks have the same approximation
capabilities as matrices of low displacement rank. Our results prove that any
function can be learned by a neural network with SSS matrices. However, our
result does not include an upper bound on the number of parameters needed in
practice to accurately approximate a function to a desired degree.
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6. Methods

6.1. Experimental Setting

I investigate the effect of using structured weight matrices in NNs by analyzing the
outcomes of several experiments. In these experiments, NNs are trained to fit several
benchmark datasets, and I am interested in the accuracy after training. All investigated
experiments have the same experimental setting, which is depicted in Figure 6.1. First,
the weight matrices of the NN are either initialized randomly (in case of training the NN
from scratch), or the weights are taken from a pretrained model (in the fine-tuning
case). The NN contains at least one layer with a structured weight matrix, for example
the last fully-connected layer of a deep vision model. Second, the NN is trained in
order to fit a specific dataset. In my analysis, I examine the training results regarding
different datasets ranging from computer vision problems to standard regression tasks.
The training is conducted by splitting the data into a training, validation and a test set.
The gradients for optimizing the model parameters are computed based on the training
set, while the validation set is used to compare results of different training runs used to
determine the hyperparameters. Possible hyperparameters are the number of epochs
the model is trained, or the number of neurons in a layer. After training the model
based on the training and validation sets, the model is evaluated on the test set.

In our papers, we presented experimental results for different datasets, NN archi-
tectures, as well as different types of structured matrices. I compare the performance
of models used in these experiments in order to answer the research questions posed
in Section 4. In the following, I summarize the experimental setting of each of our four
papers:

• Deep Convolutional Neural Networks with Sequentially Semiseparable Weight
Matrices [48]: In this paper, we conduct experiments using the Imagenet dataset
[68] and pretrained PyTorch [65] vision models. We replace the weight matrix in
the last layer of the model with an SSS matrix. Different approaches are investi-
gated for finding the SSS weight matrices used for replacement: approximating
a trained weight matrix, training the SSS weight matrix from scratch, and the
combined approach of approximation with subsequent fine-tuning. The predic-
tion performance of the resulting models are compared to each other as well as
to the prediction performance of standard NNs.

• Structured Matrices and their Application in Neural Networks: A Survey [50]:
Similar to the experiments in [48], in this paper, we replace the weight matrix of
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Neural Network
with randomly initialized

weights

Different architectures:
 - Fully Connected NNs
 - Convolutional NNs

Trained Neural Network
Evaluate

Performance
on the test set

Approximate the
structured weight

matrix and copy other
weights from a

pretrained model

Train the model from
scratch based on the
training and validation

set

Approach 1

Approach 3

Approach 2 Approximate and
Fine-Tune

(Combining the other
approaches)

Benchmarking different datasets:
- Image based Datasets like
Imagenet, MNIST and CIFAR10
- Regression Datasets like
Pendigits or Hand Postures Dataset
- Real-World data of flying drones

Figure 6.1: Overview over the setting of the analyzed experiments. The network is either a
CNN with structured weight matrix in the last layer, or a fully connected NN with structured
weight matrices. There are different approaches investigated for training the NN. Moreover,
different benchmark datasets are used for the analysis. The outcomes of the experiments are
then compared in terms of prediction accuracy on the test set, which has not been used during
the training.

the last layer of pretrained PyTorch [65] deep vision models. For that, we use
structured matrices of different types (including SSS matrices). We present two
benchmarks. In the first benchmark, we approximate test matrices (including
weight matrices extracted from the pretrained models) using structured weight
matrices of different types. In the second benchmark, the pretrained weight
matrices are approximated and subsequently finetuned using gradient-descent
based training.

• Backpropagation Through States: Training Neural Networks with Sequentially
Semiseparable Weight Matrices [51]: In this paper, we compare the prediction
performance of trained NNs on several standard benchmark problems. In partic-
ular, the prediction performance of standard FFNNs as well as NNs comprising
rank 1 weight matrices are compared to the prediction performance of NNs com-
prising SSS weight matrices. The latter NNs are trained from scratch using the
Backpropagation through states algorithm, which is introduced in the paper.

• Exploiting Structures in Weight Matrices for Efficient Real-Time Drone Control
with Neural Networks [52]: This paper investigates NNs with structured matri-
ces used in a real-world setting. For that, weight matrices of NNs capable of
controlling quadrotor drones are approximated with structured matrices of differ-
ent types. Subsequently, we compare the flying capabilities of the resulting NN
based controller in simulation as well as on real drones.
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6.2. Weight Matrix Partitions
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Figure 6.2: Two example partitions for a vector of size 8 (which could either be the outputs
before applying the activation function or the inputs to a layer in a NN). Both partitions are
suitable and would describe different systems in the real-world. In my experiments, I favor
partition 1 over partition 2, because the dimensions of the stages are distributed more evenly
in this setting.

In the following sections, I describe the methods used in the mentioned papers in
order to bring the SSS structure into the weight matrices of NNs.

6.2. Weight Matrix Partitions

In a standard application scenario, the SSS matrix at hand describes the behavior of
a time-varying system. In such a setting, the matrix typically represents the transfer
operator of a physical system. Therefore, the input and output dimensions are fixed by
the physical conditions. An example of this is a robot that interacts with its environment.
At each time step, it is given how many sensor values are available to the robot, and
how many actuator control outputs the robot can set. This number determines the uk
and ak dimensions for all computation stages k = 1, . . . , p as presented in Section
3.1.

Weight matrices, however, do not describe a physical system, but the relationship
between neurons in different layers of a NN. This results in the fact that the partition of
a weight matrix with respect to input and output dimensions is not predefined. Specif-
ically, this means that the vector inputs and outputs of the network can be partitioned
in various ways. The partition groups the neurons of a layer, such that their outputs
before applying the activation function can be computed together at the same com-
putation stage. Moreover, it also defines the order in which the neuron outputs are
computed. For example, in a NN, the outputs of neurons 1 − 9 could be computed
together in the first computation stage. Subsequently in the scond computation stage,
the outputs of the neurons 10− 14 might be computed, and so on. This is exemplarily
shown for two different partitions in Figure 6.2.

In order to find a suitable partition, I choose to approximately evenly distribute the
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input and output dimensions across the computation stages. Hence, for a given weight
matrix W ∈ Rn×m, which is to be approximated with an SSS matrix with p stages, the
resulting input dimensions are

dim(uk) =

{
f loor(mp ) + 1 for k ≤ m − f loor(mp )p,

f loor(mp ) else
(6.1)

and the output dimensions analogously

dim(ak) =

{
f loor( np ) + 1 for k ≤ n − f loor( np )p,

f loor( np ) else
. (6.2)

By using the proposed distribution, the number of inputs and outputs are approx-
imately equal in all computational steps. In particular, there are no outliers with a
particularly large number of inputs or outputs. This is important for the analysis of the
required computational resources, as described in Section 3.1.

Thus, the proposed method represents a simple heuristic to determine the number
of inputs and outputs. There is some potential for improvement here. Heuristics can
be designed to find better partitions, taking into account the computational resources
required for storing the matrix as well as performing matrix-vector multiplications. For
example, a recursive method can be used for this as explored in the Master’s thesis
from Stephan Nüßlein, which I supervised [62]. However, these techniques are outside
the scope of this thesis.

I treat the number of computation stages p as hyper parameter, whereas the optimal
number of computation stages depends on the problem at hand. Note that the choice of
this hyper parameter affects the resource requirements for computing the matrix-vector
product. This is, because if p is very small, the average size of the input and output
dimension necessarily increases (which might result in higher computational costs, as
explained in Section 3.1). In contrast, if p is big, information might need to be passed
through many computation stages. This can result in large state vectors required to
preserve the state information (or in information loss, if the size of the state vector is
restricted). Therefore, I perform a hyper parameter search in order to determine p. For
example, values in the range [

min(n,m)
10

;
min(n,m)

2

]
(6.3)

can be used to find a suitable p.

6.3. Approximation of Weight Matrices

Often a matrix is only approximately structured. In our case, this means that we can
find an SSSmatrix that approximately equals a given weight matrix. This can be useful,
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for example, when a trained NN is given. Then, there is no need to train a new network
containing structured matrices. Instead, the standard weight matrices can be replaced
by approximated SSS matrices. We analyzed one way to approximate a given weight
matrix by an SSS matrix in our papers [48, 52]. In the following, I recapitulate this
approach briefly.

Starting from a given weight matrix W , the aim is to find an SSS matrix Ŵ by mini-
mizing

min
Ŵ
| |W − Ŵ | |. (6.4)

This can be done using a model order reduction method [21]. As first step, we need to
determine a partition of the matrix as explained in the last section (i.e., the dimensions
for the inputs, outputs and state variables are to be defined). Subsequently, we cut out
the Hankel matricesHk from W , which we use to determine a state-space realization
Σ for W . Note that in the following, I describe the procedure for determining the causal
variables of the realization. The anti-causal variables can be determined analogously.

In order to find a state-space realization, the Hankel matrices are decomposed
into observability and reachibility matrices (Ok and Ck respectively). I focus on bal-
anced state-space realization in this thesis, which means that the reachability Grami-
ans CkCTk of the resulting realization equal the observability Gramians OT

k
Ok

CkC
T
k = Θ = O

T
k Ok . (6.5)

In order to obtain a balanced realization, the Hankel matricesHk are decomposed into
observability and reachability matrices in a balanced way. This can be done using the
Singular Value Decomposition (SVD)

Hk = UkSkVT
k . (6.6)

We are not interested in finding an exact realization for W , but a realization Σ̂, which
is close to Σ, but matches the predefined partition. In particular, the size of the state
variables dk , which are defined by the ranks of the Hankel matrices

dk = rank(Hk), (6.7)

is limited. I use a model order reduction method (called balanced model reduction in
the time-invariant case) [21] to ensure that the ranks of the Hankel matrices are small
enough. For that, I use the dk largest singular values from Sk and cut out the others

S̃k =

©­­­­­­­­­«

σk,1

. . .

σk,dk

0
. . .

0

ª®®®®®®®®®¬
, (6.8)
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where σk, j is the j th singular value in Sk . The remaining singular values are then
evenly distributed in order to obtain the observability and reachibility matrices of the
balanced realization

Ôk = Uk

√
Ŝk (6.9)

and
Ĉk =

√
ŜkVT

k . (6.10)

Subsequently Ak , Bk , Ck and Dk can be determined using Ok and Ck [21], whereas
Ek , Fk and Gk can be determined using the reachability and observability matrices of
the Hankel matrices corresponding to the anti-causal part of the weight matrix. Dk

can be read directly from the diagonal of the weight matrix (taking into account the
respective number of inputs and outputs). Moreover, Bk and Ck can be read of the
reachability and observability matrices, respectively. Here, Bk is defined by the first
columns of the reachibility matrix Ck , and Ck is defined by the first rows of the observ-
ability matrix Ok . The number of rows or columns is defined by the corresponding input
or output dimension. The Ak matrices can either be computed using the reachability
matrices

Ak =
←−
C kC

†

k
(6.11)

or the observability matrices
Ak = O

†

k
Ok↑ . (6.12)

Here, † refers to the Moore-Penrose pseudo-inverse, Ok↑ is the upshifted version of
the observability matrix, and

←−
C k is the left shifted version of the controllability matrix.

The resulting realization Σ̂ is defined by Ak , Bk , Ck , Dk , Ek , Fk , and Gk . Σ̂ corre-
sponds to the weight matrix Ŵ , whereas Ŵ is an approximated version of W , which is
defined according to the given partition. We provide a Python implementation of this
approximation method in our TVSCLib1 GitHub repository.

6.4. Training Neural Networks with Sequentially
Semiseparable Matrices

NNs are typically trained using gradient-descent based methods like the backprop-
agation algorithm (see Section 3.2). However, if NNs with SSS weight matrices are
trained using the standard backpropagation algorithm, the structure in the weight ma-
trices most likely vanishes. This is due to the fact that in the training procedure, the
gradients are computed with respect to the entries in the weight matrices, without ac-
counting for the structure in the matrix. In order to overcome this problem, we propose
a training algorithm called Backpropagation through states [51] designed for training
NNs with SSS weight matrices. Using our algorithm, it is ensured that the structure in

1https://github.com/MatthiasKi/tvsclib
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the SSS weight matrices is preserved throughout the training. In the following, I briefly
recapitulate the approach described in the paper.

The key idea of the Backpropagation through states algorithm is to derive the training
loss with respect to the parameters defining the structure, in contrast to derive the loss
with respect to the entries in the weight matrices. SSS matrices are defined by the
submatrices Ak , Bk , Ck , Dk , Ek , Fk , and Gk for k = 1, . . . , p (see Section 3.1). In our
approach, the training loss L(a, â) based on the prediction of the network â and the
target output a is derived with respect to these submatrices

δL(a, â)
δAk

(6.13)

(other matrices analogously). These gradients can be used to update the submatrices

A( f+1)
k

= A( f )
k
− α

δL(a, â)

δA( f )
k

for f = 1, . . . , L, (6.14)

where ( f ) indicates the f th training step and α is the step size used for optimization.
By optimizing the submatrices which define the weight matrix, the entries in the weight
matrix change without altering the structure of the weight matrix. Particularly, the size
of the inputs, outputs and state variables stays the same throughout the training.

ThematricesCk , Dk andGk contribute only to a single output segment. In particular,
they have no influence on the states xk or x̂k . Therefore, their gradients are given by

δL(a, â)
δCk

=
L(a, â)
δak

xTk , (6.15)

δL(a, â)
δDk

=
L(a, â)
δak

uk, (6.16)

and
δL(a, â)
δGk

=
L(a, â)
δak

x̂Tk+1. (6.17)

In contrast, Ak , Bk , Ek and Fk do influence the states xk and x̂k . By altering the states,
these matrices have an influence on past or future outputs (depending if they alter the
causal or the anti-causal state). This effect needs to be considered when computing
the gradients, resulting in

δL(a, â)
δAk

=

p∑
s=k+1

δL(a, â)
δâs

δ(C̃(s, k)Ak xk)
δAk

(6.18)

=

p∑
s=k+1

δL(a, â)
δâs

(
xTk ⊗ C̃(s, k)T

)
(6.19)
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and

δL(a, â)
δBk

=

p∑
s=k+1

δL(a, â)
δâs

δ(C̃(s, k)Bkuk)
δBk

(6.20)

=

p∑
s=k+1

δL(a, â)
δâs

(
uTk ⊗ C̃(s, k)T

)
, (6.21)

where ⊗ denotes the Kronecker product and

C̃(s, k) = Cs

f=s−1∏
k+1

Af . (6.22)

The gradients for the anticausal part (Ek and Fk ) can be computed analogously. Dur-
ing these computations, the gradients are propagated through the states, giving the
algorithm its name. Note that in modern machine learning frameworks like for exam-
ple PyTorch [65], these gradients can also be computed using automatic differentia-
tion tools without using analytical formulas. We provide a Python implementation of
the Backpropagation through states training algorithm in our StructuredNets GitHub
repository2.
In the course of setting up an NN, the parameters of the network (thus its weight

matrices and biases) are usually initialized randomly. This step is also necessary, if an
NN with SSS weight matrices is to be trained from scratch. In our experiments [51], we
noticed that initializing the submatrices Ak , . . . , Gk randomly can lead to numerical
instabilities. Empirically, it turned out that approximating a random matrix in order to
initialize the submatrices leads to a more stable training procedure. The approach
presented in the previous section can be used to perform the approximation. For that,
first, a standard matrix is initialized randomly. This can be done using a standard
approach like for example Glorot-uniform initialization [29]. During the approximation,
the input, output and state dimensions are set in order tomatch the desired dimensions.
It should be noted, that the approximated weight matrix does not equal the randomly
initialized matrix in general. This is due to the fact that in the approximation step, state
dimensions might be pruned.

2https://github.com/MatthiasKi/structurednets
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7.1. Benefits of Structured Weight Matrices in Neural
Networks

I first analyze the effect of using SSS matrices as weight matrices in NNs. These net-
works can represent any function just like standard NNs. This is evident by the fact that
any weight matrix can be represented by an SSS matrix if the SSS matrix is parame-
terized with enough variables. However, we are particularly interested in SSS matrices
with few parameters, since we expect to save memory and computational resources
when performing operations with these matrices. Interestingly, the Universal Approx-
imation property holds even for NNs with SSS weight matrices with one dimensional
state variable [49]. This means that a NN containing only weight matrices composed
of SSS matrices with one dimensional state variable can still approximate any function
with arbitrary accuracy. Following from this result, these networks have the same ap-
proximation capabilities as standard NNs [14], as well as NNs with weight matrices of
low displacement rank. For the latter, the Universal Approximation Theorem has been
proven by Zhao et al. [87]. However, the proof is based on the assumption that any
number of SSS matrices with one-dimensional state variable may be combined in the
NN. Therefore, despite the proof of the universal approximation theorem, the ques-
tion remains open of what advantages the use of SSS weight matrices in NNs brings
with respect to generalization capabilities and resource consumption. To answer this
question, I look at the results from three of our papers [48, 51, 52].

In the first paper [51], we analyzed the prediction performance of NNs with SSS
weight matrix on several standard benchmark problems [2, 18, 26, 54]. The models
were trained using backpropagation through states, starting from randomly initialized
weight matrices. Depending on the hyper parameter setting, the models with SSS
weight matrix were able to outperform their standard counterpart in all benchmark
problems. In our second paper [48], we replaced the last weight matrix of several
deep CNNs [41, 55, 70, 72, 76, 77] pretrained on the Imagenet dataset [17] by SSS
matrices. In contrast to the first paper, the modified CNNs did not achieve higher pre-
diction accuracy than the original models. I suspect that this is due to the fact that
these models were pretrained with standard weight matrices. The SSS matrices were
added to the model after pretraining. Therefore, the SSS weight matrix needed to
adapt to the rest of the model. Training the whole model with structured matrices from
scratch might lead to better results. Regarding our experiments with NNs controlling
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drones [52], we observed that the standard weight matrices outperformed the SSS
weight matrices in terms of their ability to robustly control the drone. We suspect that
this is due to the network size used in the experiments. Since SSS matrices typically
show their benefits if the matrix dimensions become large. In our experiments, how-
ever, at most 30 neurons were used in the hidden layers, thus leading to rather small
weight matrices. In contrast, other types of structured matrices like products of sparse
matrices [56] or matrices of low displacement rank [63] showed better performance
after approximation.
Considering these results, I conclude that for some problems, models with SSS

weight matrices are able to outperform their standard counterparts in terms of gener-
alization capabilities. However, this does not hold in general. For NNs trained with
standard methods, introducing SSS weight matrices seemed to result in inferior pre-
diction accuracy. Therefore, I conclude that Hypothesis 1.1 is false in general, but can
be true depending on the problem at hand.

Besides the accuracy of the final model, we are also interested in the duration re-
quired for performing inference. In our paper [51], we concluded that the reduction
in computation time depends on the architecture to which the model is deployed. For
our experiments performed on the microcontroller of the introductory drone example
(see Section 1.2), the time required for computing the matrix-vector product was sig-
nificantly shorter for SSS matrices with few parameters compared to dense matrices.
This is in line with the expectation and has also been shown for other types of struc-
tured matrices [52] like products of sparse matrices [56]. As a result, SSSmatrices can
be used to achieve a higher control frequency when controlling drones with NNs. How-
ever, we observed that on computing hardware with parallelization capabilities (such
as multi-core CPUs), the execution time for computing the product between an SSS
matrix and a vector could be higher than for a standard matrix-vector multiplication,
even if the total number of operations required to compute the result is lower. This is
due to the sequential computation order required for computing the matrix-vector prod-
uct with an SSS matrix. In the domain of time-varying systems, this reflects the fact
that the state of the previous timestep is required to compute the state and output of the
current time step (in the causal case). Therefore, this algorithm cannot be parallelized
as much as the standard algorithm for calculating the matrix-vector product. We made
the observation that the use of SSS matrices can lead to shorter inference times in
our second paper as well [48]. Here we measured the time required for inference on
a single processor core (i.e., on non-parallelized hardware).
Based on these observations, I conclude that Hypothesis 1.2 is correct. The time

needed for propagating information through the NN can be decreased by using SSS
weight matrices. However, this also depends on the architecture to which the NN is
deployed. Significant speedups can only be expected on non-parallelized hardware
such as single-core processors, microcontrollers, or embedded hardware.
In summary, there are benefits when using SSS matrices in NNs. Depending on the

problem at hand, the prediction accuracy of a model with SSS weight matrices can be
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higher than its standard counterpart. This is, however, not always the case. Moreover,
the time required for inference can be reduced by using SSS weight matrices in NNs.
This results in a trade-off between the number of parameters in the SSS matrix and
the time required for computing the matrix-vector product.

7.2. Impact of the Training Method Choice on the Test
Accuracy

The second research question is about the influence of the choice for the method
used to bring the SSS structure into the weight matrices of NNs. In order to analyze
this, I compare three different methods for bringing structure into the NN. In the first
method, the SSS weight matrix is initialized randomly, followed by gradient-descent
based training (using backpropagation through states [51]). This data driven approach
is called training from scratch in the following. For the second method, the NN is first
trained using any training method (like standard backpropagation). Afterwards, the
trained weight matrices are approximated with SSS matrices (i.e., this method is non
data driven). By that, the weight matrices in the trained network can be replaced with
their structured counterparts. The third method combines the first two approaches.
First, trained weight matrices are approximated with SSS matrices. Subsequently, the
network is trained using backpropagation through states (this step is called fine-tuning
in the following).

We compared all three approaches applied to deep CNNs [41, 55, 70, 72, 76, 77]
used for image classification in our paper [48]. One result of the paper is that the
method of replacing the original weight matrix with an approximated SSS matrix led to
bad results in all experiments. Specifically, for all investigated models and datasets,
the data driven approach of training the SSS weight matrices led to higher test accu-
racy. These results are supported by observations made in another paper of ours [52].
Here, we replaced weight matrices in a NN used for controlling a drone by structured
matrices of different types. Replacing the trained weight matrices with SSS matrices
led to bad flying performance most of the time. However, the size of the investigated
networks may have had an impact on the results (since the networks were very small).
Note that in contrast to these results regarding the use of SSS weight matrices, a good
flying performance could be achieved by using other types of structured matrices for
approximation. The trade-off between reduction of parameters in the network and re-
sulting flying performance was particularly good for products of sparse matrices [56],
which has also been observed in other works [16, 28]. Based on the evidence of both
papers, I conclude that Hypothesis 2.1 is true: The data driven approach of optimizing
SSS weight matrices leads to better results than approximating trained weight matri-
ces. This is in line with the results for other types of structured matrices given in our
survey paper [50]. In the fine-tuning benchmark of the paper, it was shown that for
all matrix structure types (including products of sparse matrices [56] and hierarchical
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matrices [39]), it was possible to improve the prediction accuracy by fine-tuning the
approximated weight matrices.

Comparing the approaches of training the SSS weight matrices from scratch against
fine-tuning SSS matrices after approximation, the fine-tuning approach led to the best
results. Note that both of these methods incorporate a data driven training stage. I
assume that the results of the experiments would also apply to other problem domains,
since the behavior has been observed for many different NNs and two different subsets
of Imagenet classes. Thus, I conclude that Hypothesis 2.2. is also verified.

Since both hypotheses associated with Research Question 2 have been verified, I
conclude that the choice of the training method used for introducing SSS matrices into
NNs does have an impact on the achieved test accuracy. Our experiments indicate
that the most promising approach is to approximate trained weight matrices with SSS
matrices, followed by fine-tuning using backpropagation through states.

7.3. Impact of the Structure Class Choice on the Test
Accuracy

The third research question examines the impact of the structure class chosen to be
used in the NN. One of the main characteristics in the selection of suitable matrix
structures is the number of parameters needed to describe a matrix. The question
arises whether the type of structure is playing a role at all for the prediction accuracy
of the overall NN when matrix structures with the same number of parameters are
compared to each other.
First, I investigate the effect of the structure class choice when approximating a

trained weight matrix. For that, I look at the results in our paper [52], which consid-
ers a similar experimental setting as introduced in my introductory example in Section
1.2. Here, we approximated weight matrices of NNs used for controlling drones with
different types of structured matrices. Specifically, we compare four approximation
approaches based on different matrix structure types, namely low rank approximation
based on the SVD, approximating matrices of low displacement rank based on the
approach from Thomas et al. [78], approximating SSS matrices using time-varying
systems theory [21], and approximating products of sparse matrices based on the ap-
proach proposed by Magoarou and Gribonval [56]. Each of the approximated matrices
contained (almost) the same number of parameters. The results showed that depend-
ing on the chosen structure, the resulting performance of the NNs with approximated
weight matrices were very different. This effect was particularly visible when the ap-
proximated matrices comprised few parameters. In this case, for example, products of
sparse matrices tended to outperform other types of structure. The same conclusion
can be drawn when looking at the benchmark results presented in our survey paper
[50]. In this benchmark, we approximated several test matrices with structured matri-
ces of different types. We observed that choosing the right structure for approximation
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depends on the problem at hand. Nevertheless, products of sparse matrices achieved
very promising results in most cases. Based on these results I conclude that Hypoth-
esis 3.1 is false. The structure type used for approximating trained weight matrices
does play a role even if the number of parameters is the same.

A similar effect can be observed when training structured weight matrices in NNs. In
our paper [51], we compared the prediction results of NNs with different types of struc-
tured weight matrices trained from scratch. In particular, we compared the prediction
performance of NNs with rank one weight matrices to NNs with SSS weight matrices.
Our results showed that standard NNs outperformed NNs with low rank weight matri-
ces on most benchmarks. In contrast, NNs with SSS weight matrices achieved better
prediction results than the standard models on all benchmark datasets. However, in
this comparison it was not ensured that the networks comprise the same number of
trainable parameters. In another benchmark presented in our survey paper [50], we
compared the prediction performance of several pretrained deep CNNs for which the
weight matrix of the last layer had been replaced with structured matrices of different
types. Specifically, we compared the approaches of using low rank matrices, products
of sparse matrices [56], hierarchical matrices [39], and SSS matrices. After replacing
the weight matrix with a structured matrix, the layer was trained using gradient descent
on the same data which was used for pretraining. The results of this benchmark show
that the modified NNs achieved different prediction performance. Indeed, after the
gradient-descent based training, the NNs with SSS weight matrices showed the worst
prediction accuracy. In contrast, networks with products of sparse weight matrices
showed consistently good performance. For some CNNs architectures, this structure
type achieved a similar prediction accuracy as the baseline models, even though there
were significantly fewer parameters in the last weight matrix. This observation is in line
with other research results, which showed that NNs with products of sparse matrices
as weight matrices can achieve very good prediction performance with few parame-
ters [16, 28]. From that, I conclude that Hypothesis 3.2 is false. Also when training
NNs with structured weight matrices using gradient-descent, the choice of the structure
class used in the network has an impact on the achieved test accuracy.

Since both hypotheses of Research Question 3 are falsified, I conclude that the
choice of the structure class introduced into the weight matrices of NNs does have
an impact on the achieved test accuracy. Choosing a suitable structure type seems
to depend on the problem at hand. In our experiments with NNs used for controlling
drones, for example, products of sparse matrices consistently achieved good results. I
suspect that the difference in performance is due to the fact that some structure types
can represent morematrices than others. For example, any low rankmatrix can also be
represented in the framework of SSS matrices. Therefore, it can be expected that the
use of SSS matrices in NNs leads to better results (if the matrices are large enough).
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In this work, I investigate NNs with structured weight matrices. Particularly, the focus
lies on SSS weight matrices. I am interested in the effects of using SSS weight matri-
ces in NNs with focus on resource consumption and generalization capabilities, also
compared to other structure types. In order to examine these effects, I look at three
research questions.

The first question asks about benefits, which can be gained by using SSS weight
matrices in NNs. As result of my research, I find that for some problems, NNs with
SSS weight matrices can achieve better test prediction accuracy even if they comprise
fewer parameters. Moreover, by exploiting the structure of the weight matrices, the
time required for inference can be reduced (depending on the hardware architecture
being used).

Following the second research question, I next analyze the influence of the train-
ing method used to bring the structure into the NN. Here, I compare three methods:
approximating given weight matrices, training SSS weight matrices from scratch, or
the combined approach of first approximating given weight matrices followed by train-
ing (fine-tuning). The combined approach of approximation and training showed to be
the most promising one, thus achieving the best prediction results in the conducted
experiments. I also observe that data driven training approaches outperformed ap-
proximation based methods in most experiments.

My third research question aims at comparing different matrix structures, which can
be used in NNs. The goal is to investigate the impact of the structure class choice with
respect to the number of trainable parameters in the structuredmatrix. For both training
methods, gradient-descent based training as well as approximation, the experiments
show that the choice of the structure class has an impact on the achieved results. This
leads to the conclusion that the structure class used in the NN should be selected in
order to fit the problem at hand.

Overall, the results show that the use of structured matrices in NNs is promising in
terms of required computing and storage resources. This is particularly important for
modern network architectures, which often comprise several million parameters. More-
over, the generalization capability of NNs can be increased using structured weight
matrices depending on the given problem. However, it is not trivial to choose the right
structure for a given problem. Incorporating any structured matrix does not necessarily
lead to improvements.

117





Bibliography

[1] N. Ailon, O. Leibovitch, and V. Nair. “Sparse linear networks with a fixed butter-
fly structure: theory and practice”. In: Proceedings of the Thirty-Seventh Confer-
ence on Uncertainty in Artificial Intelligence. Vol. 161. PMLR, 2021, pp. 1174–
1184.

[2] F. Alimoglu and E. Alpaydin. “Methods of combining multiple classifiers based
on different representations for pen-based handwritten digit recognition”. In: Pro-
ceedings of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks
Symposium (TAINN 96. Citeseer. 1996.

[3] D. Bini and V. Y. Pan. Polynomial and matrix computations: fundamental algo-
rithms. Springer Science & Business Media, 2012.

[4] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. “What is the state of
neural network pruning?” In: Proceedings of machine learning and systems 2
(2020), pp. 129–146.

[5] S. Börm and L. Grasedyck. “Hybrid cross approximation of integral operators”.
In: Numerische Mathematik 101 (2005), pp. 221–249.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, et al. “Language models are few-shot
learners”. In: Advances in neural information processing systems 33 (2020),
pp. 1877–1901.

[7] J. R. Bunch. “Stability of methods for solving Toeplitz systems of equations”. In:
SIAM Journal on Scientific and Statistical Computing 6(2) (1985), pp. 349–364.

[8] P. Casella and A. Paiva. “Magenta: An architecture for real time automatic com-
position of background music”. In: International Workshop on Intelligent Virtual
Agents. Springer. 2001, pp. 224–232.

[9] C. Chalmers, P. Fergus, C. A. Curbelo Montanez, S.N. Longmore, and S.A.
Wich. “Video analysis for the detection of animals using convolutional neural
networks and consumer-grade drones”. In: Journal of Unmanned Vehicle Sys-
tems 9(2) (2021), pp. 112–127.

[10] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen,
and D. White. “Some fast algorithms for sequentially semiseparable represen-
tations”. In: SIAM Journal on Matrix Analysis and Applications 27(2) (2005),
pp. 341–364.

119



BIBLIOGRAPHY

[11] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A.-J. van der Veen. “Fast
stable solver for sequentially semi-separable linear systems of equations”. In:
High Performance Computing—HiPC 2002: 9th International Conference Ban-
galore, India, December 18–21, 2002 Proceedings. Springer. 2002, pp. 545–
554.

[12] C. Chen, S. Reiz, C. Yu, H.-J. Bungartz, and G. Biros. “Fast Approximation of the
Gauss–Newton Hessian Matrix for the Multilayer Perceptron”. In: SIAM Journal
on Matrix Analysis and Applications 42(1) (2021), pp. 165–184.

[13] J. Chen and X. Ran. “Deep learning with edge computing: A review”. In: Pro-
ceedings of the IEEE 107(8) (2019), pp. 1655–1674.

[14] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:Math-
ematics of control, signals and systems 2(4) (1989), pp. 303–314.

[15] T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Ré. “Learning fast algorithms for
linear transforms using butterfly factorizations”. In: International conference on
machine learning. PMLR. 2019, pp. 1517–1527.

[16] T. Dao, N. S. Sohoni, A. Gu, M. Eichhorn, A. Blonder, M. Leszczynski, A. Rudra,
and C. Ré. “Kaleidoscope: An efficient, learnable representation for all structured
linear maps”. In: arXiv preprint arXiv:2012.14966 (2020).

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A large-
scale hierarchical image database”. In: 2009 IEEE conference on computer vi-
sion and pattern recognition. Ieee. 2009, pp. 248–255.

[18] L. Deng. “The mnist database of handwritten digit images for machine learning
research”. In: IEEE Signal Processing Magazine 29(6) (2012), pp. 141–142.

[19] T. Dettmers and L. Zettlemoyer. “Sparse networks from scratch: Faster training
without losing performance”. In: arXiv preprint arXiv:1907.04840 (2019).

[20] P. Dewilde and A.-J. van der Veen. “Inner–outer factorization and the inversion
of locally finite systems of equations”. In: Linear Algebra and its Applications
313(1-3) (2000), pp. 53–100.

[21] P. Dewilde and A.-J. Van der Veen. Time-varying systems and computations.
Springer Science & Business Media, 1998.

[22] I. S. Duff, R.G. Grimes, and J.G. Lewis. “Sparse matrix test problems”. In: ACM
Transactions on Mathematical Software (TOMS) 15(1) (1989), pp. 1–14.

[23] Y. Fan, J. Feliu-Faba, L. Lin, L. Ying, and L. Zepeda-Núnez. “A multiscale neural
network based on hierarchical nested bases”. In: Research in the Mathematical
Sciences 6(2) (2019), pp. 1–28.

[24] Y. Fan, L. Lin, L. Ying, and L. Zepeda-Núnez. “Amultiscale neural network based
on hierarchical matrices”. In: Multiscale Modeling & Simulation 17(4) (2019),
pp. 1189–1213.

120



BIBLIOGRAPHY

[25] F. Gantmakher and M. Krein. “Sur les matrices complètement non négatives et
oscillatoires”. In: Compositio mathematica 4 (1937), pp. 445–476.

[26] A. Gardner, J. Kanno, C. A. Duncan, and R. Selmic. “Measuring distance be-
tween unordered sets of different sizes”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2014, pp. 137–143.

[27] P. Gerds and L. Grasedyck. “Solving an elliptic PDE eigenvalue problem via
automated multi-level substructuring and hierarchical matrices”. In: Computing
and Visualization in Science 16(6) (2013), pp. 283–302.

[28] L. Giffon, S. Ayache, H. Kadri, T. Artières, andR. Sicre. “PSM-nets: Compressing
Neural Networks with Product of Sparse Matrices”. In: 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE. 2021, pp. 1–8.

[29] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedfor-
ward neural networks”. In: Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics. Vol. 9. Proceedings of Machine
Learning Research. PMLR, May 2010, pp. 249–256.

[30] G.H. Golub and C. F. Van Loan. Matrix computations. JHU press, 2013.

[31] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[32] L. Grasedyck. “Hierarchical singular value decomposition of tensors”. In: SIAM
Journal on Matrix Analysis and Applications 31(4) (2010), pp. 2029–2054.

[33] L. Grasedyck, W. Hackbusch, and B.N. Khoromskij. “Solution of large scale al-
gebraic matrix Riccati equations by use of hierarchical matrices”. In: Computing
70 (2003), pp. 121–165.

[34] J. L. Greathouse and M. Daga. “Efficient sparse matrix-vector multiplication on
GPUs using the CSR storage format”. In: SC’14: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE. 2014, pp. 769–780.

[35] S. Gronauer, M. Kissel, L. Sacchetto, M. Korte, and K. Diepold. “Using simu-
lation optimization to improve zero-shot policy transfer of quadrotors”. In: 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2022, pp. 10170–10176.

[36] F. Gustavson and D. Yun. “Fast algorithms for rational Hermite approximation
and solution of Toeplitz systems”. In: IEEE Transactions on Circuits and Systems
26(9) (1979), pp. 750–755.

[37] W. Hackbusch.Hierarchical matrices: algorithms and analysis. Vol. 49. Springer,
2015.

[38] W. Hackbusch. “Survey on the technique of hierarchical matrices”. In: Vietnam
Journal of Mathematics 44 (2016), pp. 71–101.

121

http://www.deeplearningbook.org
http://www.deeplearningbook.org


BIBLIOGRAPHY

[39] W. Hackbusch and S. Börm. “Data-sparse approximation by adaptive H2-
matrices”. In: Computing 69(1) (2002), pp. 1–35.

[40] B. Hassibi and D. Stork. Second order derivatives for network pruning: Optimal
brain surgeon. Morgan Kaufmann, 1993.

[41] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recog-
nition”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[42] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M.A. Laurenzano, S. Mahlke, L.
Tang, and J. Mars. “Deftnn: Addressing bottlenecks for dnn execution on gpus
via synapse vector elimination and near-compute data fission”. In: Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture.
2017, pp. 786–799.

[43] V. Ithapu. “Decoding the Deep: Exploring class hierarchies of deep represen-
tations using multiresolution matrix factorization”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2017,
pp. 45–54.

[44] Z. Jiao, Y. Zhang, J. Xin, L. Mu, Y. Yi, H. Liu, and D. Liu. “A Deep Learning
Based Forest Fire Detection Approach Using UAV and YOLOv3”. In: 2019 1st
International Conference on Industrial Artificial Intelligence (IAI). 2019, pp. 1–5.

[45] T. Kailath. “A view of three decades of linear filtering theory”. In: IEEE Transac-
tions on information theory 20(2) (1974), pp. 146–181.

[46] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive growing of gans for
improved quality, stability, and variation”. In: arXiv preprint arXiv:1710.10196
(2017).

[47] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015.

[48] M. Kissel and K. Diepold. “Deep Convolutional Neural Networks with Sequen-
tially SemiseparableWeight Matrices”. In: ESANN 2022 Proceedings (European
Symposium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning) (2022).

[49] M. Kissel and K. Diepold. “Neural Networks comprising Sequentially Semisep-
arable Matrices with one dimensional State Variable are Universal Approxi-
mators”. In: Springer Communications in Computer and Information Science
(2023).

[50] M. Kissel and K. Diepold. “Structured Matrices and their Application in Neural
Networks: A Survey”. In: New Generation Computing (2023).

122



BIBLIOGRAPHY

[51] M. Kissel, M. Gottwald, B. Gjeroska, P. Paukner, and K. Diepold. “Backpropaga-
tion Through States: Training Neural Networks with Sequentially Semiseparable
Weight Matrices”. In: Proceedings of the 21st EPIA Conference on Artificial In-
telligence (2022).

[52] M. Kissel, S. Gronauer, M. Korte, L. Sacchetto, and K. Diepold. “Exploiting Struc-
tures in Weight Matrices for Efficient Real-Time Drone Control with Neural Net-
works”. In: Proceedings of the 21st EPIA Conference on Artificial Intelligence
(2022).

[53] A. Krizhevsky. “One weird trick for parallelizing convolutional neural networks”.
In: arXiv preprint arXiv:1404.5997 (2014).

[54] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny im-
ages. Tech. rep. (0). Toronto, Ontario: University of Toronto, 2009.

[55] A. Krizhevsky, I. Sutskever, and G.E. Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Communications of the ACM 60(6) (2017),
pp. 84–90.

[56] L. Le Magoarou and R. Gribonval. “Flexible multilayer sparse approximations of
matrices and applications”. In: IEEE Journal of Selected Topics in Signal Pro-
cessing 10(4) (2016), pp. 688–700.

[57] Y. LeCun, J. Denker, and S. Solla. “Optimal brain damage”. In: Advances in
neural information processing systems. 1990, pp. 598–605.

[58] W. Lee, S. Kim, Y.-T. Lee, H.-W. Lee, and M. Choi. “Deep neural networks for
wild fire detection with unmanned aerial vehicle”. In: 2017 IEEE International
Conference on Consumer Electronics (ICCE). 2017, pp. 252–253.

[59] Y. Li, X. Cheng, and J. Lu. “Butterfly-Net: Optimal Function Representation
Based on Convolutional Neural Networks”. In: Communications in Computa-
tional Physics 28(5) (2020), pp. 1838–1885.

[60] Y. Liu, S. Jiao, and L.-H. Lim. “LU decomposition and Toeplitz decomposition of
a neural network”. In: arXiv preprint arXiv:2211.13935 (2022).

[61] E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, A. Mitropoulos, and
A. Gasteratos. “Unsupervised human detection with an embedded vision sys-
tem on a fully autonomous UAV for search and rescue operations”. In: Sensors
19(16) (2019), p. 3542.

[62] S. Nüßlein. “Algorithms for Matrix Approximations with Time Varying Systems”.
en. Master’s thesis. Technische Universität München, 2022.

[63] V. Pan. Structured matrices and polynomials: unified superfast algorithms.
Springer Science & Business Media, 2001.

[64] V. Y. Pan. “Solving a polynomial equation: some history and recent progress”.
In: SIAM review 39(2) (1997), pp. 187–220.

123



BIBLIOGRAPHY

[65] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 2019, pp. 8024–8035.

[66] A. Rivas, P. Chamoso, A. González-Briones, and J.M. Corchado. “Detection
of cattle using drones and convolutional neural networks”. In: Sensors 18(7)
(2018), p. 2048.

[67] D. Rumelhart, G. Hinton, and R. Williams. “Learning representations by back-
propagating errors”. In: nature 323(6088) (1986), pp. 533–536.

[68] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei. “ImageNet Large
Scale Visual Recognition Challenge”. In: International Journal of Computer Vi-
sion (IJCV) 115(3) (2015), pp. 211–252.

[69] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.
[70] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. “Mobilenetv2: In-

verted residuals and linear bottlenecks”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 4510–4520.

[71] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, et al. “Mastering the game of go without
human knowledge”. In: nature 550(7676) (2017), pp. 354–359.

[72] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition”. In: 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. 2015.

[73] V. Sindhwani, T. N. Sainath, and S. Kumar. “Structured transforms for small-
footprint deep learning”. In: Proceedings of the 28th International Conference
on Neural Information Processing Systems-Volume 2. 2015, pp. 3088–3096.

[74] E. Strubell, A. Ganesh, and A. McCallum. “Energy and Policy Considerations
for Deep Learning in NLP”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. 2019, pp. 3645–3650.

[75] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. “Efficient processing of deep neural
networks: A tutorial and survey”. In: Proceedings of the IEEE 105(12) (2017),
pp. 2295–2329.

[76] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich. “Going deeper with convolutions”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

124



BIBLIOGRAPHY

[77] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. “Rethinking the
inception architecture for computer vision”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2016, pp. 2818–2826.

[78] A. Thomas, A. Gu, T. Dao, A. Rudra, and C. Ré. “Learning compressed trans-
forms with low displacement rank”. In: Advances in neural information process-
ing systems 2018 (2018), p. 9052.

[79] A. Titti, S. Squartini, and F. Piazza. “A new time-variant neural based approach
for nonstationary and non-linear system identification”. In: 2005 IEEE Interna-
tional Symposium on Circuits and Systems. IEEE. 2005, pp. 5134–5137.

[80] J. Van Lint, S. Hoogendoorn, and H. J. van Zuylen. “Accurate freeway travel time
prediction with state-space neural networks under missing data”. In: Transporta-
tion Research Part C: Emerging Technologies 13(5-6) (2005), pp. 347–369.

[81] R. Vandebril, M. Van Barel, G. Golub, and N. Mastronardi. “A bibliography on
semiseparable matrices”. In: Calcolo 42(3) (2005), pp. 249–270.

[82] P. Viola and M. Jones. “Robust real-time face detection”. In: International journal
of computer vision 57(2) (2004), pp. 137–154.

[83] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. “Learning structured sparsity in
deep neural networks”. In: Proceedings of the 30th International Conference on
Neural Information Processing Systems. 2016, pp. 2082–2090.

[84] B. Wu, D. Wang, G. Zhao, L. Deng, and G. Li. “Hybrid tensor decomposition in
neural network compression”. In: Neural Networks 132 (2020), pp. 309–320.

[85] Z. Yang, M. Moczulski, M. Denil, N. De Freitas, A. Smola, L. Song, and Z. Wang.
“Deep fried convnets”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2015, pp. 1476–1483.

[86] J. Zamarreño and P. Vega. “State space neural network. Properties and appli-
cation”. In: Neural networks 11(6) (1998), pp. 1099–1112.

[87] L. Zhao, S. Liao, Y. Wang, Z. Li, J. Tang, and B. Yuan. “Theoretical properties for
neural networks with weight matrices of low displacement rank”. In: international
conference on machine learning. PMLR. 2017, pp. 4082–4090.

[88] X. Zhao, X. Hu, W. Cai, and G.E. Karniadakis. “Adaptive finite element method
for fractional differential equations using hierarchical matrices”. In: Computer
Methods in Applied Mechanics and Engineering 325 (2017), pp. 56–76.

[89] J.G.C. Zuluaga, J. P. Leidig, C. Trefftz, and G. Wolffe. “Deep Reinforcement
Learning for Autonomous Search and Rescue”. In: NAECON 2018 - IEEE Na-
tional Aerospace and Electronics Conference. 2018, pp. 521–524.

125





A. Reprinting Licenses

A.1. Structured Matrices and their Application in Neural
Networks: A Survey

The paper [50] is published under the Creative Commons Attribution 4.01 International
license, which allows reprinting the content. No changes were made to the original
publication. The license is reproduced in the following.

1https://creativecommons.org/licenses/by/4.0/

127



6/19/24, 3:56 PM creativecommons.org/licenses/by/4.0/legalcode.txt

https://creativecommons.org/licenses/by/4.0/legalcode.txt 1/6

Attribution 4.0 International

=======================================================================

Creative Commons Corporation ("Creative Commons") is not a law firm and

does not provide legal services or legal advice. Distribution of

Creative Commons public licenses does not create a lawyer-client or

other relationship. Creative Commons makes its licenses and related

information available on an "as-is" basis. Creative Commons gives no

warranties regarding its licenses, any material licensed under their

terms and conditions, or any related information. Creative Commons

disclaims all liability for damages resulting from their use to the

fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and

conditions that creators and other rights holders may use to share

original works of authorship and other material subject to copyright

and certain other rights specified in the public license below. The

following considerations are for informational purposes only, are not

exhaustive, and do not form part of our licenses.

     Considerations for licensors: Our public licenses are

     intended for use by those authorized to give the public

     permission to use material in ways otherwise restricted by

     copyright and certain other rights. Our licenses are

     irrevocable. Licensors should read and understand the terms

     and conditions of the license they choose before applying it.

     Licensors should also secure all rights necessary before

     applying our licenses so that the public can reuse the

     material as expected. Licensors should clearly mark any

     material not subject to the license. This includes other CC-

     licensed material, or material used under an exception or

     limitation to copyright. More considerations for licensors:

    wiki.creativecommons.org/Considerations_for_licensors

     Considerations for the public: By using one of our public

     licenses, a licensor grants the public permission to use the

     licensed material under specified terms and conditions. If

     the licensor's permission is not necessary for any reason--for

     example, because of any applicable exception or limitation to

     copyright--then that use is not regulated by the license. Our

     licenses grant only permissions under copyright and certain

     other rights that a licensor has authority to grant. Use of

     the licensed material may still be restricted for other

     reasons, including because others have copyright or other

     rights in the material. A licensor may make special requests,

     such as asking that all changes be marked or described.

     Although not required by our licenses, you are encouraged to

     respect those requests where reasonable. More considerations

     for the public:

    wiki.creativecommons.org/Considerations_for_licensees

=======================================================================

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree

to be bound by the terms and conditions of this Creative Commons

Attribution 4.0 International Public License ("Public License"). To the

extent this Public License may be interpreted as a contract, You are

granted the Licensed Rights in consideration of Your acceptance of

these terms and conditions, and the Licensor grants You such rights in

consideration of benefits the Licensor receives from making the

Licensed Material available under these terms and conditions.



6/19/24, 3:56 PM creativecommons.org/licenses/by/4.0/legalcode.txt

https://creativecommons.org/licenses/by/4.0/legalcode.txt 2/6

Section 1 -- Definitions.

  a. Adapted Material means material subject to Copyright and Similar

     Rights that is derived from or based upon the Licensed Material

     and in which the Licensed Material is translated, altered,

     arranged, transformed, or otherwise modified in a manner requiring

     permission under the Copyright and Similar Rights held by the

     Licensor. For purposes of this Public License, where the Licensed

     Material is a musical work, performance, or sound recording,

     Adapted Material is always produced where the Licensed Material is

     synched in timed relation with a moving image.

  b. Adapter's License means the license You apply to Your Copyright

     and Similar Rights in Your contributions to Adapted Material in

     accordance with the terms and conditions of this Public License.

  c. Copyright and Similar Rights means copyright and/or similar rights

     closely related to copyright including, without limitation,

     performance, broadcast, sound recording, and Sui Generis Database

     Rights, without regard to how the rights are labeled or

     categorized. For purposes of this Public License, the rights

     specified in Section 2(b)(1)-(2) are not Copyright and Similar

     Rights.

  d. Effective Technological Measures means those measures that, in the

     absence of proper authority, may not be circumvented under laws

     fulfilling obligations under Article 11 of the WIPO Copyright

     Treaty adopted on December 20, 1996, and/or similar international

     agreements.

  e. Exceptions and Limitations means fair use, fair dealing, and/or

     any other exception or limitation to Copyright and Similar Rights

     that applies to Your use of the Licensed Material.

  f. Licensed Material means the artistic or literary work, database,

     or other material to which the Licensor applied this Public

     License.

  g. Licensed Rights means the rights granted to You subject to the

     terms and conditions of this Public License, which are limited to

     all Copyright and Similar Rights that apply to Your use of the

     Licensed Material and that the Licensor has authority to license.

  h. Licensor means the individual(s) or entity(ies) granting rights

     under this Public License.

  i. Share means to provide material to the public by any means or

     process that requires permission under the Licensed Rights, such

     as reproduction, public display, public performance, distribution,

     dissemination, communication, or importation, and to make material

     available to the public including in ways that members of the

     public may access the material from a place and at a time

     individually chosen by them.

  j. Sui Generis Database Rights means rights other than copyright

     resulting from Directive 96/9/EC of the European Parliament and of

     the Council of 11 March 1996 on the legal protection of databases,

     as amended and/or succeeded, as well as other essentially

     equivalent rights anywhere in the world.

  k. You means the individual or entity exercising the Licensed Rights

     under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

  a. License grant.

       1. Subject to the terms and conditions of this Public License,



6/19/24, 3:56 PM creativecommons.org/licenses/by/4.0/legalcode.txt

https://creativecommons.org/licenses/by/4.0/legalcode.txt 3/6

          the Licensor hereby grants You a worldwide, royalty-free,

          non-sublicensable, non-exclusive, irrevocable license to
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Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the

following conditions.

  a. Attribution.

       1. If You Share the Licensed Material (including in modified

          form), You must:

            a. retain the following if it is supplied by the Licensor

               with the Licensed Material:

                 i. identification of the creator(s) of the Licensed

                    Material and any others designated to receive

                    attribution, in any reasonable manner requested by

                    the Licensor (including by pseudonym if

                    designated);

                ii. a copyright notice;

               iii. a notice that refers to this Public License;

                iv. a notice that refers to the disclaimer of
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                 v. a URI or hyperlink to the Licensed Material to the

                    extent reasonably practicable;

            b. indicate if You modified the Licensed Material and

               retain an indication of any previous modifications; and

            c. indicate the Licensed Material is licensed under this

               Public License, and include the text of, or the URI or

               hyperlink to, this Public License.

       2. You may satisfy the conditions in Section 3(a)(1) in any

          reasonable manner based on the medium, means, and context in

          which You Share the Licensed Material. For example, it may be

          reasonable to satisfy the conditions by providing a URI or

          hyperlink to a resource that includes the required

          information.

       3. If requested by the Licensor, You must remove any of the

          information required by Section 3(a)(1)(A) to the extent

          reasonably practicable.

       4. If You Share Adapted Material You produce, the Adapter's

          License You apply must not prevent recipients of the Adapted

          Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that

apply to Your use of the Licensed Material:

  a. for the avoidance of doubt, Section 2(a)(1) grants You the right

     to extract, reuse, reproduce, and Share all or a substantial

     portion of the contents of the database;

  b. if You include all or a substantial portion of the database

     contents in a database in which You have Sui Generis Database

     Rights, then the database in which You have Sui Generis Database

     Rights (but not its individual contents) is Adapted Material; and
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  c. You must comply with the conditions in Section 3(a) if You Share

     all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
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Rights include other Copyright and Similar Rights.
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     ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT

     KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT

     ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

  b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE

     TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,

     NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,

     INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,

     COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR

     USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN

     ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR

     DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR

     IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

  c. The disclaimer of warranties and limitation of liability provided

     above shall be interpreted in a manner that, to the extent

     possible, most closely approximates an absolute disclaimer and

     waiver of all liability.

Section 6 -- Term and Termination.

  a. This Public License applies for the term of the Copyright and

     Similar Rights licensed here. However, if You fail to comply with

     this Public License, then Your rights under this Public License

     terminate automatically.
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agree that the rights granted to you under this License do not include the right to
modify, edit, translate, include in collective works, or create derivative works of the
Licensed Material in whole or in part unless expressly stated in your RightsLink
Licence Details. You may use the Licensed Material only as permitted under this
Agreement and will not reproduce, distribute, display, perform, or otherwise use or
exploit any Licensed Material in any way, in whole or in part, except as expressly
permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent
permitted by these Terms and Conditions, by your RightsLink Licence Details and
by any applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed
Material, e.g. where a license has been purchased for print use only, separate
permission must be obtained for electronic re-use. Similarly, a License is only valid
in the language selected and does not apply for editions in other languages unless
additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is
expressly excluded from the License.

1. 5. Rights for additional reuses such as custom editions, computer/mobile
applications, film or TV reuses and/or any other derivative rights requests require
additional permission and may be subject to an additional fee. Please apply to
journalpermissions@springernature.com or bookpermissions@springernature.com
for these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You
acknowledge and agree that nothing in this License limits or restricts Licensor's rights
in or use of the Licensed Material in any way. Neither this License, nor any act,
omission, or statement by Licensor or you, conveys any ownership right to you in any
Licensed Material, or to any element or portion thereof. As between Licensor and you,
Licensor owns and retains all right, title, and interest in and to the Licensed Material
subject to the license granted in Section 1.1. Your permission to use the Licensed
Material is expressly conditioned on you not impairing Licensor's or the applicable
copyright owner's rights in the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or
formatting purposes provided such alterations do not alter the original meaning or
intention of the Licensed Material and the new figure(s) are still accurate and
representative of the Licensed Material. Any other changes including but not
limited to, cropping, adapting, and/or omitting material that affect the meaning,
intention or moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any
such reuse must include a clear acknowledgment of this permission visible at the
same time as the figures/tables/illustration or abstract and which must indicate that
the Licensed Material is not part of the governing OA license but has been
reproduced with permission. This may be indicated according to any standard
referencing system but must include at a minimum 'Book/Journal title, Author,
Journal Name (if applicable), Volume (if applicable), Publisher, Year, reproduced
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with permission from SNCSC'.

4. STM Permission Guidelines

4. 1. An alternative scope of license may apply to signatories of the STM
Permissions Guidelines ("STM PG") as amended from time to time and made
available at https://www.stm-assoc.org/intellectual-
property/permissions/permissions-guidelines/.

4. 2. For content reuse requests that qualify for permission under the STM PG, and
which may be updated from time to time, the STM PG supersede the terms and
conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer
apply at the time of publication, further permission must be sought from the
Rightsholder. Contact journalpermissions@springernature.com or
bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of
purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical
communications project

Reuse up to distribution or time period indicated
in License

Reuse in a
dissertation/thesis Lifetime of thesis

Reuse in a
journal/magazine Lifetime of journal/magazine

Reuse in a book/textbook Lifetime of edition
Reuse on a website 1 year unless otherwise specified in the License

Reuse in a
presentation/slide
kit/poster

Lifetime of presentation/slide kit/poster. Note:
publication whether electronic or in print of
presentation/slide kit/poster may require further
permission.

Reuse in conference
proceedings Lifetime of conference proceedings

Reuse in an annual report Lifetime of annual report
Reuse in training/CME
materials

Reuse up to distribution or time period indicated
in License

Reuse in newsmedia Lifetime of newsmedia
Reuse in
coursepack/classroom
materials

Reuse up to distribution and/or time period
indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed
Material in print. In electronic form, this acknowledgement must be visible at the
same time as the figures/tables/illustrations or abstract and must be hyperlinked to
the journal/book's homepage.

6. 2. Acknowledgement may be provided according to any standard referencing
system and at a minimum should include "Author, Article/Book Title, Journal
name/Book imprint, volume, page number, year, Springer Nature".
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7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms
apply: Print rights of the Version of Record are provided for; electronic rights for
use only on institutional repository as defined by the Sherpa guideline
(www.sherpa.ac.uk/romeo/) and only up to what is required by the awarding
institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required.
Please contact journalpermissions@springernature.com or
bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according
to current citation standards and include the following acknowledgement:
'Reproduced with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All
amounts payable by you under this License are exclusive of any sales, use,
withholding, value added or similar taxes, government fees or levies or other
assessments. Collection and/or remittance of such taxes to the relevant tax authority
shall be the responsibility of the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to
license reuse of the Licensed Material. You are solely responsible for ensuring
that the material you wish to license is original to the Licensor and does not
carry the copyright of another entity or third party (as credited in the
published version). If the credit line on any part of the Licensed Material indicates
that it was reprinted or adapted with permission from another source, then you
should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO
THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES
THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER
REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS
ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE
CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS,
INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND
ANY IMPLIED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR
BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR
FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT,
PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING
OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR
USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF
ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF
WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE
(INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF
PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF
THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION
APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE
OF ANY LIMITED REMEDY PROVIDED HEREIN.
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10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the
applicable period shown in Clause 5.1 above. Thereafter, this license will be
terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment
is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be
construed, interpreted and determined in accordance with the laws of the Federal
Republic of Germany without reference to the stipulations of the CISG (United
Nations Convention on Contracts for the International Sale of Goods) or to
Germany ́s choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes
arising out of this License shall be decided exclusively by the courts of or having
jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the
benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues
please contact springernaturesupport@copyright.com or +1-855-239-3415 (toll free in
the US) or +1-978-646-2777. For questions on Springer Nature licensing please visit
https://www.springernature.com/gp/partners/rights-permissions-third-party-distribution

Other Conditions:

Version 1.4 - Dec 2022

Questions? customercare@copyright.com.
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Licence Details. You may use the Licensed Material only as permitted under this
Agreement and will not reproduce, distribute, display, perform, or otherwise use or
exploit any Licensed Material in any way, in whole or in part, except as expressly
permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent
permitted by these Terms and Conditions, by your RightsLink Licence Details and
by any applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed
Material, e.g. where a license has been purchased for print use only, separate
permission must be obtained for electronic re-use. Similarly, a License is only valid
in the language selected and does not apply for editions in other languages unless
additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is
expressly excluded from the License.

1. 5. Rights for additional reuses such as custom editions, computer/mobile
applications, film or TV reuses and/or any other derivative rights requests require
additional permission and may be subject to an additional fee. Please apply to
journalpermissions@springernature.com or bookpermissions@springernature.com
for these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You
acknowledge and agree that nothing in this License limits or restricts Licensor's rights
in or use of the Licensed Material in any way. Neither this License, nor any act,
omission, or statement by Licensor or you, conveys any ownership right to you in any
Licensed Material, or to any element or portion thereof. As between Licensor and you,
Licensor owns and retains all right, title, and interest in and to the Licensed Material
subject to the license granted in Section 1.1. Your permission to use the Licensed
Material is expressly conditioned on you not impairing Licensor's or the applicable
copyright owner's rights in the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or
formatting purposes provided such alterations do not alter the original meaning or
intention of the Licensed Material and the new figure(s) are still accurate and
representative of the Licensed Material. Any other changes including but not
limited to, cropping, adapting, and/or omitting material that affect the meaning,
intention or moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any
such reuse must include a clear acknowledgment of this permission visible at the
same time as the figures/tables/illustration or abstract and which must indicate that
the Licensed Material is not part of the governing OA license but has been
reproduced with permission. This may be indicated according to any standard
referencing system but must include at a minimum 'Book/Journal title, Author,
Journal Name (if applicable), Volume (if applicable), Publisher, Year, reproduced
with permission from SNCSC'.

4. STM Permission Guidelines
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4. 1. An alternative scope of license may apply to signatories of the STM
Permissions Guidelines ("STM PG") as amended from time to time and made
available at https://www.stm-assoc.org/intellectual-
property/permissions/permissions-guidelines/.

4. 2. For content reuse requests that qualify for permission under the STM PG, and
which may be updated from time to time, the STM PG supersede the terms and
conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer
apply at the time of publication, further permission must be sought from the
Rightsholder. Contact journalpermissions@springernature.com or
bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of
purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical
communications project

Reuse up to distribution or time period indicated
in License

Reuse in a
dissertation/thesis Lifetime of thesis

Reuse in a
journal/magazine Lifetime of journal/magazine

Reuse in a book/textbook Lifetime of edition
Reuse on a website 1 year unless otherwise specified in the License

Reuse in a
presentation/slide
kit/poster

Lifetime of presentation/slide kit/poster. Note:
publication whether electronic or in print of
presentation/slide kit/poster may require further
permission.

Reuse in conference
proceedings Lifetime of conference proceedings

Reuse in an annual report Lifetime of annual report
Reuse in training/CME
materials

Reuse up to distribution or time period indicated
in License

Reuse in newsmedia Lifetime of newsmedia
Reuse in
coursepack/classroom
materials

Reuse up to distribution and/or time period
indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed
Material in print. In electronic form, this acknowledgement must be visible at the
same time as the figures/tables/illustrations or abstract and must be hyperlinked to
the journal/book's homepage.

6. 2. Acknowledgement may be provided according to any standard referencing
system and at a minimum should include "Author, Article/Book Title, Journal
name/Book imprint, volume, page number, year, Springer Nature".

7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms
apply: Print rights of the Version of Record are provided for; electronic rights for
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use only on institutional repository as defined by the Sherpa guideline
(www.sherpa.ac.uk/romeo/) and only up to what is required by the awarding
institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required.
Please contact journalpermissions@springernature.com or
bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according
to current citation standards and include the following acknowledgement:
'Reproduced with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All
amounts payable by you under this License are exclusive of any sales, use,
withholding, value added or similar taxes, government fees or levies or other
assessments. Collection and/or remittance of such taxes to the relevant tax authority
shall be the responsibility of the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to
license reuse of the Licensed Material. You are solely responsible for ensuring
that the material you wish to license is original to the Licensor and does not
carry the copyright of another entity or third party (as credited in the
published version). If the credit line on any part of the Licensed Material indicates
that it was reprinted or adapted with permission from another source, then you
should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO
THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES
THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER
REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS
ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE
CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS,
INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND
ANY IMPLIED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR
BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR
FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT,
PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING
OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR
USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF
ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF
WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE
(INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF
PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF
THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION
APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE
OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the
applicable period shown in Clause 5.1 above. Thereafter, this license will be
terminated and all rights granted hereunder will cease.
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10. 2. Licensor reserves the right to terminate the License in the event that payment
is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be
construed, interpreted and determined in accordance with the laws of the Federal
Republic of Germany without reference to the stipulations of the CISG (United
Nations Convention on Contracts for the International Sale of Goods) or to
Germany ́s choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes
arising out of this License shall be decided exclusively by the courts of or having
jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the
benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues
please contact springernaturesupport@copyright.com or +1-855-239-3415 (toll free in
the US) or +1-978-646-2777. For questions on Springer Nature licensing please visit
https://www.springernature.com/gp/partners/rights-permissions-third-party-distribution

Other Conditions:

Version 1.4 - Dec 2022

Questions? customercare@copyright.com.
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The permission to reprint the paper [48] is permitted by the copyright transfer agree-
ment, as shown in the following permission letter and agreement details.
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