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Abstract

Safety has always been a paramount concern for the aviation industry. With the ever-increasing
complexity of aircraft systems and flight operations, it is crucial to effectively address uncertainties
during different flight phases, such as takeoff and landing, to ensure the highest level of safety.
While significant advancements have been made in modeling these scenarios, challenges persist in
bridging the gap between simulated experiments and real-world situations.

This Ph.D. dissertation delves into the application of data-driven uncertainty quantification
techniques in aviation to enhance flight safety. Monte Carlo methods have been widely utilized
to capture uncertainties, but their computational demands often render them impractical. As an
alternative, surrogate models have gained popularity, offering accurate approximations of compu-
tational models at a lower computational cost.

The central focus of this research is the incorporation of vine copula models in uncertainty
quantification problems. Vine copulas are flexible and interpretable multivariate distribution
functions that can effectively model complex data dependence structures. By employing vine cop-
ula models, we can account for intricate relationships among the studied variables, providing a
more comprehensive understanding of uncertainty propagation throughout flight operations.

A key advantage of the proposed approach is its data-driven nature, eliminating the need for
assumptions about the underlying system dynamics. This allows for greater adaptability and
applicability to a wide range of aviation scenarios, promoting more accurate safety evaluations
and decision-making processes. To demonstrate the effectiveness of the data-driven uncertainty
quantification framework, extensive numerical experiments are conducted using real-world flight
data. The results reveal significant improvements in uncertainty modeling compared to tradi-
tional methods. Moreover, the thesis also explores the interpretability of vine copula models, pro-
viding valuable insights into the complex dependencies between key flight variables.

In conclusion, this Ph.D. dissertation contributes to the field of aviation safety by offering a
robust and practical approach to enhance flight safety through data-driven uncertainty quantifi-
cation with vine copula models. By bridging the gap between simulations and real-world opera-
tions, this research paves the way for more informed and effective safety protocols in the aviation
industry, ultimately benefiting pilots, passengers, and all stakeholders involved.
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Zusammenfassung

Die Sicherheit ist seit jeher ein zentrales Anliegen der Luftfahrtindustrie. Angesichts der ständig
zunehmenden Komplexität der Flugzeugsysteme und des Flugbetriebs ist es von entscheidender
Bedeutung, Unsicherheiten während verschiedener Flugphasen wie Start und Landung effektiv
zu berücksichtigen, um ein Höchstmaß an Sicherheit zu gewährleisten. Obwohl bei der Mod-
ellierung dieser Szenarien erhebliche Fortschritte erzielt wurden, besteht die Herausforderung
darin, die Kluft zwischen simulierten Experimenten und realen Situationen zu überbrücken.

Diese Dissertation befasst sich mit der Anwendung datengesteuerter Verfahren zur
Quantifizierung von Unsicherheiten in der Luftfahrt, um die Flugsicherheit zu erhöhen. Monte-
Carlo-Methoden sind weit verbreitet, um Unsicherheiten zu erfassen, aber ihr Rechenaufwand
macht sie oft unpraktisch. Als Alternative haben Surrogatmodelle an Popularität gewonnen, die
genaue Annäherungen an Berechnungsmodelle bei geringeren Rechenkosten bieten.

Das Hauptaugenmerk dieser Forschung liegt auf der Einbeziehung von Vine-Copula-Modellen
in Probleme der Unsicherheitsquantifizierung. Vine-Copulas sind flexible und interpretierbare
multivariate Verteilungsfunktionen, die komplexe Datenabhängigkeitsstrukturen effektiv mod-
ellieren können. Durch den Einsatz von Vine-Copula-Modellen können wir die komplizierten
Beziehungen zwischen den untersuchten Variablen berücksichtigen und so ein umfassenderes
Verständnis der Unsicherheitsausbreitung während des gesamten Flugbetriebs erreichen.

Ein wesentlicher Vorteil des vorgeschlagenen Ansatzes ist sein datengesteuerter Charakter, der
Annahmen über die zugrunde liegende Systemdynamik überflüssig macht. Dies ermöglicht eine
größere Anpassungsfähigkeit und Anwendbarkeit auf ein breites Spektrum von Luftfahrtszenar-
ien und fördert genauere Sicherheitsbewertungen und Entscheidungsprozesse. Um die Wirk-
samkeit des datengesteuerten Rahmens für die Quantifizierung von Unsicherheiten zu demon-
strieren, werden umfangreiche numerische Experimente mit realen Flugdaten durchgeführt. Die
Ergebnisse zeigen signifikante Verbesserungen in der Unsicherheitsmodellierung im Vergleich zu
traditionellen Methoden. Darüber hinaus wird in der Dissertation die Interpretierbarkeit von
Vine-Copula-Modellen untersucht, die wertvolle Einblicke in die komplexen Abhängigkeiten zwis-
chen wichtigen Flugvariablen liefern.

Zusammenfassend lässt sich sagen, dass diese Dissertation einen Beitrag zur Flugsicherheit leis-
tet, indem sie einen robusten und praktischen Ansatz zur Verbesserung der Flugsicherheit durch
datengesteuerte Unsicherheitsquantifizierung mit Vine-Copula-Modellen bietet. Indem sie die
Lücke zwischen Simulationen und realem Betrieb schließt, ebnet diese Forschung den Weg für
fundiertere und effektivere Sicherheitsprotokolle in der Luftfahrtindustrie, was letztlich Piloten,
Passagieren und allen Beteiligten zugute kommt.
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1 Introduction

Aviation, as one of the most critical modes of modern transportation, has transformed the world
by connecting people and economies across the globe. Ensuring flight safety remains a paramount
concern for the aviation industry as the complexity of aircraft systems and flight operations contin-
ues to evolve. With the ever-increasing reliance on advanced technologies and data-driven decision-
making, addressing uncertainties during different flight phases, particularly landing, becomes im-
perative to uphold the highest safety standards for passengers, crew, and aircraft.

1.1 Background andMotivation

Mathematical models have been crucial for decades in helping scientists understand the physi-
cal world and predict various phenomena. The advent of digital computers in the 20th century
led to the emergence of numerical simulations, which allowed for higher-fidelity models by solv-
ing complex equations. In recent years, the growth in computational power and storage capacity
has made computer simulations indispensable in designing engineering systems and monitoring
various processes. However, mathematical models (computational models) inherently represent
approximations of real-world phenomena, leading to suboptimal designs and predictions with
potential consequences in terms of safety and financial losses. To address this risk, researchers
have developed a field called uncertainty quantification, which models the diverse sources of un-
certainty and propagates them to performance indicators.

In recent years, the increase in computing and storage capacity has facilitated a shift from
knowledge-driven to data-driven methodologies in various fields (Vapnik 1998). Data-driven ap-
proaches construct approximate models non-intrusively, solely based on available data, without re-
lying on prior knowledge of the system’s inner workings (Lataniotis et al. 2020). These approaches
have seen significant success in applications like face/handwriting recognition, sentiment anal-
ysis, and natural language understanding (Shinde and Shah 2018). In aviation safety, combining
uncertainty quantification techniques and data-driven models offers an opportunity to develop
more accurate and comprehensive models that capture complex dependencies among variables,
ultimately leading to improved safety evaluations and more reliable flight operations.

1.2 Uncertainty Quantification Framework

The field of uncertainty quantification (UQ) deals with managing and characterizing uncertain-
ties in mathematical models and simulations. This is important because many scientific and en-
gineering problems involve inherent variability and incomplete knowledge. UQ helps to improve
the reliability and robustness of predictions and decisions in the face of these uncertainties.
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1 Introduction

Step B

Quantification of 
Sources of uncertainty 

Step A

Model(s) of the system
Assessment criteria

Step C

Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

Step C’

Sensitivity Analysis

Figure 1.1: Uncertainty quantification framework.

Uncertainty can arise from various sources such as measurement errors, incomplete knowledge,
and model simplifications. UQ aims to quantify these uncertainties and assess their impact on
the model’s predictions or outcomes of interest. This involves using probabilistic and statistical
methods to analyze uncertain quantities and their distribution, variability, and correlation.

The UQ framework involves several key steps that enable a comprehensive understanding of
uncertainty propagation and its effect on model predictions (Sudret 2007). These steps are illus-
trated in Figure 1.1 and include

• Step A: Defining the computational model.

• Step B: Identifying uncertain input parameters.

• Step C: Propagating uncertainty.

• Step C’: Iterative updating of uncertainty sources.

However, propagating uncertainties can be computationally intensive, requiring many runs of
the computational model (see, e.g., Monte Carlo methods (Ripley 2009)). To address this, Sudret
2007 suggests using surrogate models. These models are used as an approximation of the compu-
tational model based on a limited number of runs, reducing computational complexity.

1.3 Problem Statement

In the past, uncertainty quantification often assumed that studied variables were either mutually
independent or followed a multivariate elliptical distribution. Among the latter, Gaussian distri-
butions were commonly employed due to their simplicity in modeling and fitting to data using
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1.4 Research Objectives

pairwise correlation coefficients (Lebrun and Dutfoy 2009). Some advanced uncertainty quantifi-
cation techniques also required mutually independent inputs for their implementation. While
the Gaussian assumption facilitated a convenient representation of input dependencies, it may
introduce bias in estimates when the real dependence structure deviates from this assumption.
However, the validity and impact of the Gaussian assumption were rarely quantified, and novel
methodologies in uncertainty quantification mainly focused on refining estimation techniques
rather than accommodating different probabilistic input models (Torre et al. 2019).

Recently, significant advances in dependence modeling have emerged within the statistical com-
munity with the widespread adoption of copula models, particularly vine copulas. Copula theory
enables the separate modeling of dependence (using multivariate copula functions) and marginal
behavior (using univariate cumulative distribution functions) in joint distributions. This flexibil-
ity allows for building multivariate probability distributions by individually selecting each ingre-
dient (Joe 2014). Although copulas have found applications in engineering, particularly in earth-
quake (Goda 2010; Goda and Tesfamariam 2015; Zentner 2017) and sea waves engineering (De Michele
et al. 2007; Masina et al. 2015; Montes-Iturrizaga and Heredia-Zavoni 2016), their use has been lim-
ited to low-dimensional or relatively simple copula families, such as multivariate Gaussian or
Archimedean families. In higher dimensions, constructing and selecting copulas that accurately
represent the coupling of the phenomena of interest can be challenging. Vine copulas, introduced
by Joe 1996a and Bedford and R. M. Cooke 2002, simplify this process by expressing multivariate
copulas as a product of simpler bivariate copulas conditioned on a set of variables. Consequently,
vine models offer ease of interpretation and exceptional flexibility. While vine copulas have been
widely used in financial applications (Aas 2016; Czado 2019), their potential in engineering has been
largely overlooked. Recent studies have started to explore their application in reliability analysis
(F. Wang and H. Li 2017a; F. Wang and H. Li 2017b), particularly when only partial information (cor-
relation coefficients) is available, and in combination with Monte Carlo simulations for reliability
analysis (F. Wang and H. Li 2018).

1.4 ResearchObjectives

The main goal of this Ph.D. thesis is to explore the application of vine copula models in uncer-
tainty quantification for flight safety, specifically in runway overrun. To achieve this, the thesis
has four specific objectives:

(i) Develop Surrogate Models with Vine Copulas: This objective aims to create surrogate
models to physics-based models using vine copulas. By using vine copulas, we aim to achieve
improved computational efficiency while maintaining the fidelity of the underlying system
dynamics.

(ii) Model Input Dependencies with Vine Copulas in Uncertainty Quantification: The
second objective involves using vine copulas to model input dependencies in uncertainty
quantification problems. By capturing the complex relationships among input variables, we
can better understand and quantify uncertainties during different flight phases. This will
enable a more comprehensive representation of the joint probability distribution, enhancing
the accuracy of uncertainty predictions.

5
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(iii) Develop a Vine Copula Correction for Physics-Based Model Output: The third objec-
tive involves developing a vine copula-based correction technique for physics-based model
outputs. This approach aims to refine physics-based model predictions by incorporating
data-driven corrections, improving the accuracy and reliability of flight safety assessments.

(iv) Create a Vine Copula-Based UQ Method for Estimating Rare Event Probabilities:
The final objective focuses on developing a specialized vine copula-based uncertainty quan-
tification method for estimating rare event probabilities in flight safety scenarios. This method
aims to enhance the precision of rare event probability estimates and offers valuable insights
into their occurrence and potential impacts on flight operations. Rare events, such as critical
failures, are of utmost importance in aviation safety and require specialized techniques for
reliable estimation.

1.5 Significance of the Study

The potential impact of this Ph.D. study on aviation safety is expected to be substantial. By uti-
lizing data-driven uncertainty quantification with vine copula models, it aims to improve the un-
derstanding and management of uncertainties during flight operations. Such advancements can
lead to the development of more effective risk assessment strategies, proactive safety protocols,
and optimized flight procedures, ultimately enhancing the safety of pilots, passengers, and air-
craft worldwide.

One key aspect of this study is the development of efficient surrogate models using vine copulas.
These models offer an accurate approximation of high-fidelity physics-based models, which can
be constructed with reduced computational costs. This advancement can lead to faster response
times in identifying potential safety hazards, facilitating timely interventions, and improving over-
all safety performance.

The study also explores rare event estimation using vine copula-based subset simulation, an un-
certainty quantification technique. This is crucial as rare events, such as critical failures, require
specialized techniques for accurate estimation. The development of a dedicated vine copula-based
UQ method for estimating rare event probabilities can enhance risk assessment capabilities, en-
abling aviation stakeholders to make informed decisions and implement targeted safety measures.
By gaining a better understanding of the occurrence and impact of rare events, the aviation in-
dustry can adopt proactive risk mitigation strategies, leading to a higher level of preparedness and
resilience in the face of unforeseen events.

Overall, the application of vine copula models in the estimation of rare events can significantly
contribute to the overall safety and reliability of flight operations.

1.6 Dissertation Structure

In this study, the thesis is divided into four parts: Prelude, Foundation, Applications, and Con-
clusions. The introduction in Prelude sets the stage by providing a comprehensive overview of
the thesis.

The Foundation Part includes two chapters: Chapter 2 and Chapter 3. Chapter 2 explains the
dataset that will be used throughout the thesis, including its source and data collection methods.

6



1.7 Publications

We analyze the data using various exploratory techniques such as histograms, scatter plots, and
correlation plots to identify patterns. Chapter 3 presents the mathematical foundation of our
methods. This chapter explains random variables, random vectors, copulas, and vine copulas.
These concepts are essential in characterizing uncertainties in statistical models and will be used in
subsequent chapters to explore their application in uncertainty quantification for aviation safety.

In the Applications Part, we aim to achieve the objectives listed in Section 1.4 by using and
expanding on the mathematical foundation in Chapter 3. In Chapter 4, we analyze the impact of
specific input factors using a D-vine regression-based surrogate model to predict the probability
of a flight attaining a safe speed of 80 knots before a large threshold on the runway. Chapter 5
proposes an error correction approach to physical models designed to calculate the distance re-
quired to reach 80 knots. We provide and explore two solutions: a linear regression model and
a new D-vine copula-based correction. Additionally, in Chapter 5, we introduce a multivariate
statistical input model for the contributing factors, enabling the simulation of a large sample of
error-corrected predictions with either independent or dependent inputs based on an R-vine cop-
ula model. Chapter 6 introduces a new D-vine-based subset simulation method called DVR-SuS,
which uses again the D-vine regression to model the probability of runway overruns as charac-
terized by a large distance to achieve the safe speed of 80 knots. This novel approach allows us
to estimate the probability of rare events occurring under certain conditions. To explore larger
thresholds in the tail, the method incorporates a Monte Carlo-based subset simulation (Au and
J. L. Beck 2001).

In the Conclusions Part, Chapter 7 provides a summary of the new approaches and findings
achieved through the Ph.D. research.

1.7 Publications

The results of the thesis are submitted or prepared for submission in the following articles:

• Alnasser, H., Czado, C. (2023). An Application of D-Vine Regression for the Identifica-
tion of Risky Flights in Runway Overruns. Annals of Applied Statistics. To be submitted.

• Alnasser, H., Czado, C. (2023). D-Vine-Based Subset Simulation for Runway Overruns.
Reliability Engineering & System Safety. Submitted.

• Alnasser, H., Beller, L., Czado, C., Hanebeck, A., Pfahler, M. (2023). D-vine-based cor-
rection of physics-based model output for the identification of runway overruns. IEEE
Access. To be submitted.
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2 Flight Data

2.1 Introduction

The practice of recording flight data has a long history that dates back to World War II. During this
time, military aircraft were equipped with ’V-g’ recorders that collected airspeed and load factor
data to improve structural design (Grossi 2006). Later on, continuous trace recorders were intro-
duced that considered aircraft height to assess structural and aerodynamic implications. In 1957,
Dr. David Warren and his team at Aeronautical Research Laboratory (ARL) invented a combined
voice and data recorder (Sear 2001). Since then, regulatory bodies have mandated the installation
of flight data recorders (FDR) and cockpit voice recorders (CVR) in large commercial aircraft for
accident investigation purposes.

Airlines install quick access recorders (QARs) in their fleets to monitor aircraft systems and flight
crew performance on a routine basis. The QAR is typically placed in an easily accessible location,
such as the avionics bay, whereas the FDR and CVR are usually located in the tail of the aircraft,
which is more challenging to reach. Unlike the CVR and FDR, the QAR is not required to be
installed by regulation. The airline can configure the parameters recorded by the QAR or choose
to record the same parameters as the FDR. One of the benefits of using the QAR is that it can be
downloaded easily without needing specialized equipment (Dismukes et al. 2017).

2.2 Data Description

For this analysis, we are using a dataset that is similar to the one mentioned in Drees 2016 and X.
Wang et al. 2020. This dataset comprises of 11 continuous variables that are known as contributing
factors. Along with these factors, there is a response variable, which is the distance from run-
way threshold to the controllable speed of 80 knots (148.16 kmh). We will refer to this response
variable as th80 from now on. The contributing factors are listed in Table 2.1 and are essentially
parameters that can be observed or derived and might contribute to runway overrun incidents. It
is worth mentioning that, as assumed in Drees 2016, a runway overrun incident occurs when the
stop margin (SM) is below zero. The stop margin is calculated by subtracting the landing distance
(LD) from the landing field length (LFL), and is represented asSM := LFL−LD. For a better
understanding, refer to the illustration in Figure 2.1.

It is worth noting that our assumption is that an aircraft needs to achieve a ground speed of 80
knots before reaching a fixed threshold c. This 80 knots ground speed is considered safe for pilots
to maintain control of the aircraft (Drees 2016). Therefore, we define runway overrun as occurring
when an aircraft surpasses the fixed threshold c at a speed greater than 80 knots.

To ensure accurate data analysis, we focused on 711 flights that shared the same aircraft type
and landed on the same runway in both directions. We removed any constant discrete factors

11



2 Flight Data

Landing distance (LD)

Touch-down
(td)

Stop margin (SM)

c

Landing field length (LFL)

Runway threshold

(th)

Figure 2.1: Stop margin illustration.

Table 2.1: Description of contributing factors and their measurement units.
Contributing Factor Definition
Headwind speed (hws) Headwind speed measured at touchdown (td) in m/s.

Temperature (temp) Temperature in Kelvin provided by the METeorological Aerodrome Report (METAR).
Reference air pressure (refAP) Reference air pressure in hPa.

Approach speed deviation (asd) Deviation in speed between target approach speed and the actual true airspeed at td in m/s.
Time of deploying reversers (trd) Time reversers deployed after td in seconds s.
Time of deploying spoilers (tsd) Time spoilers deployed after td in s.

Landing mass (lm) Landing weight taken at td in kg.
Time of starting brake (tbs) Time brakes started after td in s.
Duration of braking (bd) Brake duration until 80 knots in s.

Threshold (th) Beginning of the touchdown zone.
Touchdown Distance (td) Distance from th to touchdown point in m.

Equivalent acceleration (ea) Constant deceleration from td to 80 kts in m/s2.

that were present in all 711 flights, such as specific aircraft system settings during landing. Further
details about these system settings can be found in Table 2.2. For example, when the flaps and slats
are fully extended, this generates more drag and allows the aircraft to fly slower at higher power
settings (Anderson 2007; Sforza 2014). In Table 2.2, we shaded the configurations and weather
conditions that we observed in our flight data.

Table 2.2: Aircraft systems, their configurations, and runway conditions.
flapConfig1 : CONF 0◦ CONF 10◦ CONF 20◦ CONF 25◦ CONF 30◦

slatConfig2 : CONF 0◦ CONF 5◦ CONF 10◦ CONF 20◦

revThrust3 : 3/ALL OUT FullRev 2 OUT
splrSysStat4 : OP ≤ 2 FAULT ≤ 4 FAULT 5/ALL FAULT
brkSysStat5 : OP DEGRADED INOP
rwyCond6 : DRY WET VICINITY

1Flap configuration position at different degrees.
2Slat configuration position at different degrees.
3Reverse thrust either applied fully or partially.
4Spoiler system status either operative or partially/fully inoperative.
5Brake system status (operative, degraded, inoperative).
6Runway condition.
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2.3 Data Visualization

2.3 Data Visualization

When analyzing data, the first step is often visualizing it to better understand its patterns and
structures. This process can help us identify outliers, trends, clusters, and distributions, which can
then be used to generate hypotheses. To get an overview of the contributing factors and response
variable, Figure 2.2 shows that there are 711 observations (flights) in the dataset. The maximum
distance observed from the runway threshold to controllable speed of 80 knots is 2,606.722 m,
and the observations for lm are divided by 1,000 for easier visualization. Additionally, Figure 2.3
shows the number of unique observations for each variable among the 711 flights, revealing that
tsd has the lowest number of unique observations, which may be due to rounding or measurement
errors.

Figure 2.2: Data summary of the flight dataset.

We analyze the input parameters in Table 2.1 and the response variable, th80, by visualizing
their histograms in Figure 2.4. We notice that some factors like trd and tbs have significant skew-
ness, making the use of a normal distribution inappropriate. Additionally, lm displays bimodal
behavior, suggesting the need for a mixture of univariate distributions. Selecting the apppropriate
marginal distributions is crucial in building vine copulas, and we will provide our selection in the
Applications Part. The selection of marginal distributions will be tailored to each application.

Figure 2.3: Number of unique observations among the considered variables.
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Figure 2.4: Marginal histograms of contributing factors and th80.

In addition, we include pairwise scatter plot matrices in the lower diagonal panels and pairwise
empirical Kendall’s τ̂K , defined in Equation 3.14, on the upper diagonal panels in Figure 2.5.
The diagonal panels exhibit density plots of the contributing factors and th80. Furthermore, we
have included fitted linear regression lines in blue for each variable paired with another, and 90%
pointwise confidence intervals. For instance, the scatter plot and empirical Kendall’s τ̂K illustrate
a positive linear relationship between th80 and lm, with τ̂K value of 0.46.
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2.3 Data Visualization
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Figure 2.5: Pairwise scatter plots displayed on the lower diagonal panels, pairwise τ̂K dependence on the
upper diagonal, and density plots of the variables on the diagonal panels.
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3 Preliminaries

3.1 Introduction

The third chapter of this thesis is dedicated to exploring the fundamental concepts and essen-
tial tools necessary for uncertainty quantification. In the context of uncertainty quantification
workflow, identifying and modeling sources of uncertainty within a system are crucial steps. In a
probabilistic setting, uncertainties are appropriately represented by random variables, which as-
sign numerical values to different outcomes of a random experiment. However, when dealing
with multiple uncertain parameters with potential dependencies, the concept of random vectors
becomes necessary. This allows us to capture complex relationships and interdependencies among
several variables. Moreover, to effectively characterize and quantify the complex dependencies
among multiple variables, this chapter introduces the concepts of copulas and vine copulas, which
provide a powerful framework for analyzing multivariate probabilistic relationships.

In the realm of data-driven uncertainty quantification, we take an approach by refraining from
assuming prior knowledge about the underlying probability distributions. Instead, we adopt a
data-driven perspective, inferring the distributional characteristics from a limited number of ob-
servations. This chapter presents a concise discussion of these foundational concepts from prob-
ability theory, focusing on the formalism and tools that will be employed in the subsequent chap-
ters of the thesis. By gaining a solid understanding of these preliminary concepts, we set the stage
for effectively handling uncertainties and advancing the study of aviation safety through data-
driven uncertainty quantification with vine copula models. These tools and techniques will en-
able us to develop accurate and reliable models that capture complex dependencies in aviation
systems, leading to improved flight safety evaluations and decision-making processes.

3.2 Random Variables

Definitions

In probability theory and statistics, a random variable is a function that associates numerical val-
ues with outcomes of a random experiment. The function is defined on the sample space of the
experiment, mapping each outcome to a real number. Random variables are denoted by capital
letters, such as X , Y , or Z , and their specific values are denoted by lowercase letters, e.g., x, y, or
z. A random variable can be either discrete or continuous, depending on the nature of the random
experiment it represents.
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3 Preliminaries

Discrete Random Variable

A discrete random variable takes on a countable set of distinct values with associated probabilities.
The probability mass function (PMF) of a discrete random variable X is defined as:

P (X = x) = p(x) for x ∈ Support(X)

where P (X = x) is the probability that the random variable X takes on the value x, and p(x) is
the probability mass function evaluated at x. The sum of the probabilities for all possible values
of X must equal 1: ∑

x∈Support(X)

P (X = x) = 1.

The cumulative distribution function (CDF) of a discrete random variable X is given by:

F (x) = P (X ≤ x) =
∑

t≤x

P (X = t).

The mean or expected value of a discrete random variable X is defined as:

E[X] =
∑

x∈Support(X)

x · P (X = x),

while the variance of a discrete random variable X is defined as:

V ar(X) = E[(X − E[X])2] =
∑

x∈Support(X)

(x− E[X])2 · P (X = x).

Continuous Random Variable

A continuous random variable takes on values in a continuous range. The probability density
function (PDF) of a continuous random variable X is denoted as f(x) and satisfies the following
properties:

1. f(x) ≥ 0 for all x.

2. The total area under the curve of the PDF is equal to 1:
∫ ∞

−∞
f(x) dx = 1.

The cumulative distribution function (CDF) of a continuous random variable X is given by:

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt.
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3.2 Random Variables

The mean or expected value of a continuous random variable X is defined as:

E[X] =

∫ ∞

−∞
x · f(x) dx,

while the variance of a continuous random variable X is defined as:

V ar(X) = E[(X − E[X])2] =

∫ ∞

−∞
(x− E[X])2 · f(x) dx.

Correlation between Random Variables

The Pearson correlation coefficient between two random variables X and Y is a measure of their
linear relationship. For a pair of random variables with finite variances, the correlation coefficient
ρXY is defined as:

ρXY =
Cov(X,Y )√

V ar(X) · V ar(Y )

where Cov(X,Y ) = E[(X − E[X])(Y − E(Y ))] represents the covariance between X and
Y . The correlation coefficient ρXY takes values between -1 and 1, where -1 indicates a perfect
negative linear relationship, 1 indicates a perfect positive linear relationship, and 0 indicates no
linear relationship.

Univariate Distribution Example

In this thesis, we primarily focus on continuous random variables, which are commonly encoun-
tered in engineering applications. A continuous random variable X can take any value within a
specific range, and its probability distribution is described by the PDF f(x).

One prominent example of continuous distributions is the Gaussian distribution, denoted as
X ∼ N (µ, σ2). The PDF of a Gaussian distribution is given by:

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (3.1)

where µ represents the mean of the distribution, and σ is the standard deviation (or equivalently,
the variance σ2). The Gaussian distribution is fully characterized by these two parameters, and its
density is symmetric around the mean µ. The CDF for the Gaussian distribution does not have a
closed-form solution and is usually represented in terms of the error function.

In the context of uncertainty quantification, the Gaussian distribution is often assumed for cer-
tain physical phenomena due to its simplicity and tractability. However, it is essential to verify the
validity of this assumption, as real-world systems may exhibit deviations from Gaussian behavior.
By exploring alternative distributions and employing data-driven techniques, such as vine copula
models, we aim to capture more accurate and comprehensive representations of uncertainties in
aviation safety applications.
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3 Preliminaries

3.3 Random Vectors

In many engineering applications, we often encounter scenarios where multiple uncertain param-
eters need to be considered jointly. Such collections of random variables are referred to as random
vectors. LetX = (X1, X2, . . . , Xd)

T be a random vector with d components. Each component
Xi is a random variable representing a specific uncertain quantity.

Joint PDF

The joint probability density function (PDF) of the random vectorX, denoted by f(x), provides a
comprehensive description of the likelihood ofX taking on specific valuesx = (x1, x2, . . . , xd)

T .
In other words, it describes the probability distribution of the entire random vector X. The joint
PDF satisfies the following properties:

∫

Rd

f(x) dx = 1 (3.2)

f(x) ≥ 0, for all x ∈ Rd (3.3)

Joint CDF

The joint cumulative distribution function (CDF) of the random vectorX, denoted byF (x), gives
the probability thatX takes a value less than or equal to the specific valuesx = (x1, x2, . . . , xd)

T .
It represents the cumulative probability distribution of the entire random vector X. The joint
CDF is defined as:

F (x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xd) (3.4)

where P (·) denotes the probability measure.

Marginal PDF and CDF

From the joint PDF and CDF, we can obtain the individual marginal PDFs and CDFs of each
component Xj by integrating or summing out the other components. The marginal PDF of Xj ,
denoted by fXj (xj), describes the probability distribution of the individual random variableXj .
Similarly, the marginal CDF of Xj , denoted by FXj (xj), gives the probability that Xj takes a
value less than or equal to xj . The marginal PDF and CDF are computed as:

fXj (xj) =

∫

Rd−1

f(x1, x2, . . . , xj−1, xj , xj+1, . . . , xd) dx1dx2 . . . dxj−1dxj+1 . . . dxd,

(3.5)

FXj (xj) = P (Xj ≤ xj) =

∫ xj

−∞
fXj (t) dt. (3.6)
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3.4 Copulas

Multivariate Gaussian distribution as an example

Gaussian random vectors are commonly used in engineering practice as a multivariate extension
of Gaussian random variables introduced in the previous section. A Gaussian random vector,
denoted byX ∼ N (µX,C), is completely defined by its mean value vectorµX and its covariance
matrix C through the following joint PDF:

fX(x) =
1

(2π)M/2
√

det(C)
exp

(
−1

2
(x− µX)TC−1(x− µX)

)
, (3.7)

where x = (x1, x2, . . . , xd) is the vector of values for each component of X.
The mean vector µX of X contains the expected value of each component, i.e.,

µX = (µX1, µX2, . . . , µXd). The covariance matrix C of X is a square, symmetric, and an
assumed positive definite matrix of size d× d with elements:

Ci,j = Cov(Xi, Xj), (3.8)

where Cov(Xi, Xj) represents the covariance between the i-th and j-th components of X.
Gaussian random vectors offer a powerful tool for modeling uncertainties in systems with mul-

tiple correlated variables. Their joint PDF captures the intricate relationships among the compo-
nents, making them particularly valuable in applications requiring comprehensive uncertainty
quantification. However, to capture complex dependencies among multiple variables, Gaussian
random vectors are limited in this regard.

3.4 Copulas

In UQ problems, multivariate inputs are typically represented by random vectors. The statistical
properties of ad-dimensional random vectorX are fully described by its joint CDFFX(x), which
defines both the marginal CDFs of each component Xj (Fj(xj) = FXj (xj) = P (Xj ≤ xj)
for j = 1, . . . , d) and the dependencies among the variables. Standard parametric families of
joint CDFs have specific marginal distributions. For example, in the case of a multivariate Gaus-
sian distribution, the associated distributions are univariate normal distributions. However, more
flexible models are needed to allow for different types of marginal distribution functions and to
allow for more complex tail dependence.

Copulas and Sklar’s Theorem

A d-dimensional copula is defined as a d-variate joint CDF C : [0, 1]d → [0, 1] with standard
uniform marginals, i.e., C(1, . . . , 1, uj , 1, . . . , 1) = uj for all uj ∈ [0, 1] and j = 1, . . . , d.
Sklar 1959 establishes a relationship between joint CDFs and copulas. For any d-variate CDF FX

with marginals F1, . . . , Fd, there exists a d-dimensional copula CX such that

FX(x) = CX(F1(x1), . . . , Fd(xd)). (3.9)
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3 Preliminaries

The copula CX is unique on [0, 1]d if FX is absolutely continuous, and it can be expressed as

CX(u) = FX(F−1
1 (u1), . . . , F

−1
d (ud)) (3.10)

for u ∈ [0, 1]d. Conversely, for any d-dimensional copula C and any set of d univariate CDFs Fj

with domain Dj (j = 1, . . . , d), the function F : D1 × . . .×Dd → [0, 1] defined by

F (x) = C(F1(x1), . . . , Fd(xd)) (3.11)

is a d-variate CDF with marginals CDF’s F1, . . . , Fd.
The representation in Equation 3.9 ensures that any joint CDF can be expressed in terms of its

marginals and a copula. In our work, we consider absolutely continuous CDFsFX. We can derive
copulas of known families of joint CDFs from the representation Equation 3.10. Furthermore,
we can construct a multivariate CDF F , as in Equation 3.11, by specifying the marginal behav-
iors using univariate CDFs Fj and the dependence properties using a copula C . Sklar’s theorem
allows us to decouple the modeling of the joint behavior of the components of X into two sepa-
rate problems: first, modeling the marginals Fj , and then transforming the original components
Xj into uniform random variables Uj = Fj(Xj), leading to the transformation X 7→ U =
(U1, . . . , Ud)

T . The joint CDF of U is the associated copula CX.
Sklar’s theorem can also be stated in terms of probability densities. If X has a Probability Den-

sity Function (PDF) fX(x) = ∂dFX(x)/∂x1 . . . ∂xd and the copula has a density cX(u) =
∂dCX(u)/∂u1 . . . ∂ud, then the following relation holds:

fX(x) = cX(F1(x1), . . . , Fd(xd))
d∏

j=1

fj(xj). (3.12)

Copula-based measures of dependence

Since copulas provide a complete description of multivariate dependencies, it is natural to intro-
duce dependence measures based solely on the copula and independent of the marginals. These
measures, known as measures of concordance, encompass various approaches. For instance, Spear-
man’s correlation coefficient is an example, defined for a random pair (X1, X2) as:

ρS(X1, X2) := ρP (F1(X1), F2(X2)),

where ρP represents the classical Pearson correlation coefficient, and F1 and F2 are the marginal
distribution functions of X1 and X2, respectively.

Another measure is Kendall’s tau, denoted as τK(X1, X2), which evaluates the probability
that the relative order of the random variables (X1, X2) is preserved, and is defined as:

τK(X1, X2) := P ((X1 − X̃1)(X2 − X̃2) > 0)− P ((X1 − X̃1)(X2 − X̃2) < 0),

where (X̃1, X̃2) is an independent copy of (X1, X2).
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3.4 Copulas

For a copula C associated with the joint distribution of (X1, X2), Spearman’s correlation co-
efficient and Kendall’s tau can be expressed in terms of the copula as follows:

ρS(X1, X2) = 12

∫∫

[0,1]2
C(u, v) du dv − 3 = 3− 12

∫∫

[0,1]2
u
∂C(u, v)

∂u
du dv, (3.13)

and

τK(X1, X2) = 1−4

∫∫

[0,1]2
C(u, v) dC(u, v)−1 = 1−4

∫∫

[0,1]2

∂C(u, v)

∂u

∂C(u, v)

∂v
du dv,

(3.14)
respectively. These equations are well-defined provided that the copula partial derivatives exist
and are not degenerate at the borders (Czado 2019; Joe 2014).

It should be noted that when (X1, X2) are independent, τK = 0 and ρS = 0. If τK =
1, it implies ρS = 1, and (X1, X2) follows a strictly increasing function α(·). Conversely, if
τK = −1, ρS = 1, and (X2, X1) follows a strictly decreasing function β(·) (Embrechts et al.
2002). Further, various copula-based measures of pairwise concordance and their multivariate
extensions exist (Scarsini 1984; Taylor 2007), but these are not utilized in this thesis.

Additionally, copulas can describe asymptotic tail dependence, which characterizes the behav-
ior of extreme events. The joint distribution of (X1, X2) is said to be upper tail dependent if the
probability that one of the two variables takes values in its upper tail (i.e., high quantiles), given
that the other has taken values in its upper tail, does not go to zero as the quantile level α goes
to 1. Analogously, lower tail dependence refers to the behavior of low quantiles. Tail dependence
allows for simultaneous extremes and is commonly used to model systemic risks (Brechmann et al.
2013).

Formally, if (X1, X2) with marginals F1 and F2 are upper tail dependent, then the upper tail
dependence coefficient λu is defined as:

lim
u→1−

P (X1 > F−1
1 (u) | X2 > F−1

2 (u)) = λu > 0, (3.15)

and if they are lower tail dependent, then the lower tail dependence coefficient λl is defined as:

lim
u→0+

P (X1 < F−1
1 (u) | X2 < F−1

2 (u)) = λl > 0, (3.16)

provided that these limits exist. These coefficientsλu andλl are entirely determined by the copula
C of (X1, X2) and can be expressed as:

λu = lim
u→1−

1− 2u+ C(u, u)

1− u
, λl = lim

u→0+

C(u, u)

u
, (3.17)

respectively.

Copula Examples

Here we present three families of parametric copulas. A comprehensive list of classical families of
copulas and their properties can be found in Nelsen 2007, Joe 2014, and Czado 2019, for example.
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The first copula we consider is the independence copula, defined as:

C(II)(u) =

d∏

j=1

uj .

For the case of d = 2, the independence copula yields Spearman’s rho ρ
(II)
S = 0, Kendall’s tau

τ
(II)
K = 0, and tail dependence coefficients λ(II)

u = λ
(II)
l = 0.

Next, we examine the Gaussian copula, also known as the normal copula, for a Gaussian random
vector X with correlation matrix R = (ρij)d×d and marginals Fj ∼ N (µj , σ

2
j ), where j =

1, . . . , d. The Gaussian copula is given by:

CN (u) =
1√

det(R)
exp


−1

2




Φ−1(u1)
...

Φ−1(ud)




T

· (R−1 − I) ·




Φ−1(u1)
...

Φ−1(ud)





, (3.18)

where Φ−1 denotes the inverse of the univariate standard normal cumulative distribution func-
tion and I is the identity matrix of rank d. For d ≥ 3, variables coupled by a Gaussian copula with

correlation matrix R are paired by a Gaussian pair copula with correlation matrix
[

1 ρij
ρij 1

]
.

Consequently, their Spearman’s rho is ρ(N )
S = 6

π arcsin
(ρij

2

)
, their Kendall’s tau is τ (N )

K =
2
π arcsin(ρij), and their tail dependence coefficients are λ

(N )
u = λ

(N )
l = 0. Therefore, the

multivariate Gaussian copulas cannot model tail dependence.
Lastly, we introduce the bivariate Gumbel–Hougaard copula, often referred to as the Gumbel

copula. It incorporates upper tail dependence and is expressed as:

C(GH)(u, v) = exp

(
−
[
(− log u)θ + (− log v)θ

]1/θ)
, θ ∈ [1,+∞). (3.19)

When θ = 1, the Gumbel copula reduces to the independence copula C(GH)(u, v) = uv.
The Gumbel copula’s Kendall’s tau is τ (GH)

K = θ−1
θ , and its upper tail dependence coefficient is

λ
(GH)
u = 2− 2

1
θ . As θ increases from 1 to +∞, λ(GH)

u increases from 0 to 1, while the lower tail
dependence coefficient λ(GH)

l = 0.

3.5 Vine Copulas

Using the copula approach in Section 3.4 allows us to specify arbitrary margins, such as Gamma
or Beta distributions for Xj . However, the choice of multivariate copula families was limited
with regard to the allowable degree of asymmetric tail dependence in the past. To increase model-
ing flexibility, Joe 1996b constructed multivariate copulas from bivariate copulas using the idea of
conditioning. By utilizing conditioning variables, a valid multivariate copula distribution can be
built using bivariate copulas. With multiple ways to select the necessary conditioning variables,
Bedford and R. Cooke 2001 proposed a graphical structure called a vine tree structure, which led to
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3.5 Vine Copulas

the birth of the regular (R)-vine copula class. This topic is discussed in recent books such as Joe
2014 and Czado 2019.

The regular vine tree structure consists of a set of linked trees V = (T1, . . . , Td−1). Each tree
consists of a set of nodes, denoted as N , and a set of edges, denoted as E, where T = (N,E).
If V = (T1, . . . , Td−1) satisfies the following conditions, then it is an R-vine tree sequence on d
elements:

(i) T1 is a tree with node set N1 = {1, . . . , d} and edge set E1

(ii) For j ≥ 2, Tj is a tree with node set Nj = Ej−1 and edge set Ej

(iii) For j = 2, . . . , d−1 and {a, b} ∈ Ej , it must hold that |a∩ b| = 1 (proximity condition)

The proximity condition ensures that connected nodes in tree Tj , where j ≥ 2, are only possi-
ble if the corresponding edges inTj−1 share a common node. Each edge of a tree is associated with
a bivariate pair copula, and the product of all these pair copula densities, which are evaluated at
conditional distribution functions, is then a valid joint copula density. The modeling potential,
including step-wise estimation approaches, was first discussed in Aas et al. 2009, where the term
pair copula construction (PCC) for constructing vine copulas was used.

Aas 2016 reviewed the use of PCC in financial applications, while Chapter 11 of Czado 2019
presented further applications in the engineering and life sciences domains. More recently, Czado
and Nagler 2022a provided an overview of vine copula-based modeling.

The following notations are needed to describe the conditional distributions in the vine copula
classes. For a d-dimensional random vector X, let a set D ⊂ {1, . . . , d} such that XD is a sub
random vector and xD is its value. For i, j ∈ {1, . . . , d}\D, we define:

• CXi,Xj ;XD(·, ·; xD) is the bivariate copula associated with the conditional distribution
of (Xi, Xj) given XD = xD. We use the following abbreviation Cij;D(·, ·; xD) and
cij;D(·, ·; xD) for the distribution function and density, respectively.

• FXi|XD(·|xD) is the univariate conditional distribution of the random variable Xi given
XD = xD, which is abbreviated by Fi|D(·|xD).

• CUi|UD(·|uD) is the conditional distribution of the probability integral transform (PIT)
random variable Ui given UD = uD, which is abbreviated by Ci|D(·|uD).

In the R-vine copula class, each edge in the set of d− 1 trees consists of a bivariate conditioned
set and a conditioning set. Let Nj and Ej denote the nodes and edges of tree Tj , where 1 ≤ j ≤
d − 1. We can define the union of an edge e ∈ Ei as Ae := {j ∈ N1|∃e1 ∈ E1, . . . , ei−1 ∈
Ei−1 : j ∈ e1 ∈ . . . ∈ ei−1 ∈ e}. Thus, we can define the conditioning set of an edge
e = {a, b} asDe := Aa∩Ab, and the conditioned set asCe := Ce,a∪Ce,b, whereCe,a := Aa\De

and Ce,b := Ab \ De. For example, if the edge e = {a = {2, 3}, b = {2, 4}}, then the union
set Ae = {2, 3, 4}, the conditioned set Ce = {3, 4}, with Ce,a = {3} and Ce,b = {4}, and the
conditioning set De = {2} since Aa = {2, 3} and Ab = {2, 4}.

In general, we define the set of bivariate copula densities by B = {cj(e),l(e);D(e)|e ∈ Ei, 1 ≤
i ≤ d − 1}, with j(e) and l(e) being the conditioned indices and D(e) being the conditioning
set. This allows us to express the joint density of the R-vine class as:
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f(x1, x2, . . . , xd) =
d∏

i=1

fi(xi)×
d−1∏

i=1

∏

e∈Ei

cj(e),l(e);D(e)

(
F (xj(e)|xD(e)), F (xl(e)|xD(e))

)
.

(3.20)

Here, we make use of the simplifying assumption, where we assume that cj(e),l(e);D(e) does not
depend on the conditioning value xD(e). For example, c3,4;2

(
·, ·;x2

)
is independent of the con-

ditioning value X2 = x2.

Example 1. 6-dimensional R-vine. We demonstrate the previously introduced concepts using a
specific 6-dimensional R-vine. In Figure 3.1, we present the R-vine tree sequence with all possible
edges for trees T2 and T3, following the proximity condition. The R-vine with solid connecting
lines is the one we focus on, and its corresponding density is as follows:

f(x1, x2, . . . , x6) =f6(x6) · f5(x5) · f4(x4) · f3(x3) · f2(x2) · f1(x1)
· c1,2 · c2,6 · c3,6 · c4,6 · c4,5 (T1)

· c1,6;2 · c2,3;6 · c2,4:6 · c5,6:4 (T2)

· c1,3;26 · c3,4:26 · c2,5:46 (T3)

· c1,4;236 · c3,5:246 (T4)

· c1,5;2346. (T5)

We abbreviated cj,l;D
(
F (xj |xD), F (xl|xD)

)
by cj,l;D for simplicity. For instance, c3,5;246 rep-

resents c3,5;246
(
F (x3|x2, x4, x6), F (x5|x2, x4, x6)

)
.

In addition, for the edge that corresponds to c3,5;246, the union is Ae = {3, 5, 2, 4, 6}, the
conditioned sets are Ce,a = {3} and Ce,b = {5}, and the conditioning set is De = {2, 4, 6}
since Aa = {2, 3, 4, 6} and Ab = {2, 4, 5, 6}.

However, for our conditional risk assessment approaches in the Applications Part, we will use
drawable (D)-vines, which are a popular sub-class of regular vines. The D-vine regression (DVR),
first proposed by Kraus and Czado 2017, allows for flexible modeling of the dependence between
the response and covariates and for forward variable selection. These attributes make the DVR
approach suitable for our applications.

Czado 2010 expresses the joint density f in the case of a D-vine distribution as:

f(x1, x2, . . . , xd) =

d∏

k=1

fk(xk)×
d−1∏

j=1

d−j∏

i=1

ci,i+j;i+1,...,i+j−1

(

Fi|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1), Fi+j|i+1,...,i+j−1(xi+j |xi+1, . . . , xi+j−1)
)
,

(3.21)

where fk is the PDF ofFk, and ci,i+j;i+1,...,(i+j−1) is the PDF of the bivariate (conditional) cop-
ula associated with (Xi, Xi+j) given Xi+1 = xi+1, . . . , Xi+j−1 = xi+j−1. For traceability
reasons in higher dimensions, again, we make use of the simplifying assumption, where we as-
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Figure 3.1: Graphical representation of a 6-dimensional R-vine (the dotted lines in treesT2 andT3 indicate
the edges allowed by the proximity condition but were not chosen for the vine tree sequence).

sume that ci,j;D does not depend on the conditioning value XD. The dependence on XD is solely
captured by the arguments in Equation 3.21.

An illustration of a 4-dimensional D-vine distribution is given in Example 2, and its graphical
representation is shown in Figure 3.2. The variables represented in tree T1 are the nodes, whereas
the non-conditional bivariate copula densities in Example 2 correspond to the edges of tree T1.
The order in which the variables are arranged in tree T1 is arbitrary, and for this specific order, we
denote it as X1 −X2 −X3 −X4. In general, the order of variables in T1 of a D-vine determines
all other trees. The edges 12, 23, and 34 become nodes in tree T2. The nodes 12 and 23 can be
connected by an edge denoted by 13; 2 since the edges 12 and 23 share the common node 2 in
tree T1.

Example 2. 4-dimensional D-vine.
A D-vine distribution for d = 4 has a joint density given by

f(x1, x2, x3, x4) =f4(x4)f3(x3)f2(x2)f1(x1)

c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3)) · c34(F3(x3), F4(x4)) (T1)

c13;2(F1|2(x1|x2), F3|2(x3|x2)) · c24;3(F2|3(x2|x3), F4|3(x4|x3)) (T2)

c14;23(F1|23(x1|x2, x3), F4|23(x4|x2, x3)). (T3)
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Figure 3.2: Graphical representation of a 4-dimensional D-vine with order X1 −X2 −X3 −X4.

Note that f(x1, x2, x3, x4) is decomposed into

f4|123(x4|x1, x2, x3) · f3|12(x3|x1, x2) · f2|1(x2|x1) · f1(x1),

where each conditional density is considered separately. We write f3|12(x3|x1, x2) in terms of
bivariate copulas and a marginal density using Sklar’s theorem (Equation 3.9) as follows:

f3|12(x3|x1, x2) =
f13|2(x1, x3|x2)
f1|2(x1|x2)

=
c13;2(F1|2(x1|x2), F3|2(x3|x2)) · f1|2(x1|x2) · f3|2(x3|x2)

f1|2(x1|x2)
= c13;2(F1|2(x1|x2), F3|2(x3|x2)) · f3|2(x3|x2), (3.22)

where, further, we decompose f3|2(x3|x2) into

f3|2(x3|x2) =
f23(x2, x3)

f2(x2)

=
c23(F2(x2), F3(x3)) · f2(x2) · f3(x3)

f2(x2)

= c23(F2(x2), F3(x3)) · f3(x3).

Similarly, we write f4|123(x4|x1, x2, x3) as

f4|123(x4|x1, x2, x3) = c14;23(F1|23(x1|x2, x3), F4|23(x4|x2, x3))
· c24;3(F2|3(x2|x3), F4|3(x4|x3)) · c34(F3(x3), F4(x4)) · f4(x4).

To fit a D-vine copula with a specific order to given data, the pair copulas in Equation 3.21
will be estimated parametrically for our applications. Evaluating the conditional distributions
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3.5 Vine Copulas

Fi|i+1,...,j−1(xi|xi+1, . . . , xj−1) in Equation 3.21, we only need pair copulas specified in the
lower trees of the D-vine. Together with the simplifying assumption, this allows us to deter-
mine them recursively (Joe 1996b). In detail, let D = {i + 1, . . . , j − 1}, then we can write
Fi|i+1,...,j−1(xi|xi+1, . . . , xj−1) as Fi|D(xi|xD). Subsequently, we can express Fi|D(xi|xD)
for l ∈ D and D−l := D\{l} as

Fi|D(xi|xD) = hi|l;D−l

(
Fi|D−l

(
xi|xD−l

)
|Fl|D−l

(
xl|xD−l

))
, (3.23)

where for i, j /∈ D, i < j, hi|j;D(u|v) := ∂Cij;D(u, v)/∂v = Ci|j;D(u|v) and, similarly,
hj|i;D(v|u) = ∂Cij;D(u, v)/∂u = Cj|i;D(v|u). These are called h-functions, which are associ-
ated with the pair-copula Cij;D. Note that the h-functions are independent of the specific value
xD for XD because of the simplifying assumption. A general property of vine densities is that all
required conditional distribution functions can be determined using only h-functions.

Example 3. Conditional distribution functions
We illustrate how to determine conditional distribution functions for a three-dimensional vector
X = (X1, X2, X3)

⊤:

F3|12(x3|x1, x2) =
∫ x3

−∞
f3|12(t3|x1, x2) dt3

=

∫ x3

−∞
c13;2(F1|2(x1|x2), F3|2(t3|x2)) · f3|2(t3|x2) dt3

=

∫ x3

−∞

∂

∂F1|2(x1|x2)
∂

∂F3|2(t3|x2)
C13;2(F1|2(x1|x2), F3|2(t3|x2))

· f3|2(t3|x2) dt3

=
∂

∂F1|2(x1|x2)

∫ x3

−∞

[
∂

∂t3
C13;2(F1|2(x1|x2), F3|2(t3|x2))

]
dt3

=
∂

∂F1|2(x1|x2)
C13;2(F1|2(x1|x2), F3|2(x3|x2))

= h1|3;2
(
h1|2(x1|x2)|h3|2(x3|x2)

)
.

Estimation and Selection of Vine CopulaModels

Our approach to estimating vine copula models is done in steps. Firstly, we estimate the marginal
distribution functions and use the obtained data to create pseudo copula data. Next, we utilize
the copula data to estimate an appropriate vine copula. However, for this vine copula model, we
face three problems, which increase in complexity

1. Given the vine tree sequence and pair copula families, we estimate the copula parameters.

2. Given the vine tree sequence and a list of pair copula families, we select the best family and
estimate the corresponding parameters for each edge in the vine.
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3. We select the vine tree structure and the pair copula families and estimate the corresponding
parameters for each edge.

To solve Problem 1, we utilize the sequential estimation method discussed in Section 2 of Czado
and Nagler 2022b. This approach allows us to quickly estimate the parameters of each pair copula
separately for all trees. Hobæk Haff 2013, Stöber and Schepsmeier 2013, and Schepsmeier and Stöber
2014 have examined the asymptotic properties of the parameter estimators, including their stan-
dard errors.

For Problem 2, we follow a similar approach to Problem 1, where we fit the parameters for each
family in the candidate list of pair copula families and select the one that minimizes the Akaike
Information Criterion (AIC) or Bayesian Information Criterion (BIC).

Problem 3 presents the greatest challenge, as the number of vine tree structures grows exponen-
tially with the dimensionality of the problem. The number of tree structures can be calculated
using the formula d! × 2(d−2)(d−3)/2−1, as stated in Joe and Kurowicka 2011. For example, when
d = 4, 5, 6, there are 96, 7680, and 2949120 R-vine tree structures, respectively. To address this
issue, Dissmann et al. 2013 developed a greedy selection algorithm based on fitting the strongest
dependencies first. This is a natural choice, as errors in the estimation process can be propagated
in the sequential estimation approach, and we would ideally prefer to find sparse models. To mea-
sure the strength of dependence, we use the empirical Kendall’s, τ̂K for a generic pair K = (j, l)
of indices. The Dissmann algorithm selects tree T1 using a maximal spanning tree algorithm with
|τ̂K | between any pair of variables as weights. Once tree T1 is determined, all pair copula families
and parameters are selected and estimated using the approaches outlined in Problems 1 and 2, re-
spectively. For tree T2, all possible edges allowed by the proximity condition are considered, and
|τ̂K′ | for K ′ , a generic pair K ′

= (j, l;D), is used as a weight for selecting the maximal span-
ning tree for T2. We continue this process until all trees, pair copula families, and parameters are
selected and estimated.

3.6 D-Vine Regression (DVR)

Kraus and Czado 2017 proposed a D-vine copula regression (DVR) considering the conditional den-
sity of the response variable Y given some covariates (input parameters) X1, X2, . . . , Xd, for
d ≥ 1 using a D-vine distribution of order Y −X1 − · · · −Xd. Since the joint density of X is
again a D-vine and using Equation 3.21, The authors expressed the associated conditional density
as

fY |X(y|x1, x2, . . . , xd) =

fY (y)×
d−1∏

j=1

cV,Uj ;U1,...Uj−1(FY |X1,...,Xj−1
(y|x1, . . . , xj−1), FXj |X1,...,Xj−1

(xj |x1, . . . , xj−1)),

(3.24)

where V = FY (Y ) and Uj = FXj (Xj) for j = 1, . . . d. Equation 3.24 shows that an empty
conditioning set represents unconditional pair copula terms. To estimate and infer, Kraus and
Czado 2017 followed a two-step approach recommended by Joe and Xu 1996. The first step in-
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volves fitting the observed data to marginal distributions FY , FXj , j = 1, . . . , d, and construct-
ing pseudo copula data vi = F̂Y (yi), ui,j = F̂Xj (xi,j), j = 1, . . . , d; i = 1, . . . , n. The
choice of parametric or nonparametric univariate distributions can be made for the estimation of
marginal distributions. In the second step, Kraus and Czado 2017 uses the associated conditional
copula likelihood (cll) with v = (v1, . . . , vn)

⊤ and uj = (u1,j , . . . , un,j)
⊤ given by

cll(v|u1, . . . , ud) =

n∏

i=1

d−1∏

j=1

cV,Uj ;U1,...Uj−1(CV |U1,...,Uj−1
(v|ui,1, . . . , ui,j−1), CUj |U1,...,Uj−1

(ui,j |ui,1, . . . , ui,j−1)),

(3.25)

to estimate pair-copula families and their associated parameters using maximum likelihood (ML).
Kraus and Czado 2017 used this two-step approach to construct the quantiles of the associated

conditional response given a fixed covariate vector. In our application of this setup for the estima-
tion of risk probabilities, we do not require conditional quantiles, but the conditional distribution
function FY |X1,...,Xd

associated with Equation 3.24.
While X1 − · · · −Xd is the assumed order of covariates, there are actually d! orders to choose

from. To select the best order, Kraus and Czado 2017 proposed a forward selection procedure that
eliminates non-influential input parameters and prevents overfitting. As a first covariate, they
choose the variable Xj1 , which maximizes the conditional copula likelihood assuming only the
presence of a single covariate, that is, find j1 such that cll(v|uj1) = maxj=1,...,dcll(v|uj) holds.
Now select Xj1 as the first covariate, giving the D -vine Y − Xj1 . In the next step, investigate
which of the remaining covariates Xj , j ̸= j1 gives the maximal cll(v|uj1 , uj). We call this
variableXj2 , giving the three-dimensionalD−vine with orderY −Xj1 −Xj2 . Proceed this way
until you have aD-vine with orderY −Xj1−· · ·−Xjd selected. Hence, by utilizing the forward
selection procedure, non-influential input parameters are eliminated to prevent overfitting.
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4 AnApplication of D-vine
Regression for the Identification
ofRisky Flights in RunwayOverrun

Runway overruns are a significant concern in aviation safety and are the most common type
of landing incident. To prevent such incidents, it is important to identify the factors that con-
tribute to runway overruns. Previously, costly and specialized methods such as physics-based and
statistical-based models have been proposed to estimate runway overrun probabilities. However,
we propose a statistical approach that can quantify the probability that an aircraft exceeds a chosen
threshold at a speed of 80 knots given a set of influencing factors. This approach uses the D-vine
regression (DVR) in Section 3.6, which allows for complex tail dependence and is computationally
tractable. We analyze the dataset in Chapter 2 and identify 41 flights with an estimated probability
of risk greater than 10−3 for a chosen threshold. We rank the effects of each influencing factor for
these flights and showed that the complex dependency patterns between some of the influencing
factors for the 41 flights are non-symmetric. Compared to physics-based and statistical-based ap-
proaches, the D-vine regression approach has an analytical solution and can efficiently estimate
very small probabilities without relying on simulation-based methods.

4.1 Introduction

According to the International Air Transport Association (IATA), air passenger numbers are ex-
pected to recover by 2024, surpassing pre-COVID levels by 3% . This gradual increase in passen-
gers, both domestically and internationally, emphasizes the need for improved safety procedures.
Although there has been a decrease in the number of incidents related to commercial aviation over
the past 50 years, the consequences of such incidents can still result in loss of life and significant
economic costs. This motivates aviation companies and international aviation agencies to identify
and evaluate various risks that lead to such incidents. In 2006, the International Civil Aviation
Organization (ICAO) published the first risk management guidelines, which have since been up-
dated and widely accepted by air transport authorities and aviation manufacturers . However, the
number of incidents (accidents) related to runway overruns has not decreased, prompting avia-
tion safety oversight authorities to adopt a more proactive approach to identifying and predicting
safety-related trends (ICAO 2013).

Mitigating the risk of runway excursions classified by IATA, such as undershoots, veeroffs, and
runway overruns, is essential. These excursions account for about 22% of all civil aviation inci-
dents (accidents) between 1959 and 2019 (Zhao and Zhang 2022). The increased danger during
landing is due to multiple factors, such as weather conditions and the decisions pilots must make
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while landing (L. Wang et al. 2014; Wong et al. 2006; You et al. 2013). For example, unstabilized ap-
proach, tail- or cross-wind, high speed, and poor use of reverse thrust have been identified as rele-
vant causes of runway overruns.

However, access to flight data from incidents (accidents) is limited due to confidentiality rea-
sons. A database of air traffic accidents compiled by Valdés et al. 2011 assigned frequencies to fac-
tors contributing to 53 runway overruns. The authors identified long landings and high access
approach speeds as the riskiest factors. The distance to controllable speed during landing is con-
sidered a precursor to runway overrun. We propose a novel surrogate approach to estimate the
conditional probability that the distance to controllable speed of 80 knots exceeding a chosen
threshold increases the chances of runway overrun, given a set of risk factors.

There are two main approaches to modeling runway excursions that have been discussed in the
literature. One approach involves creating a physics-based model that is simulation-based. The
other approach uses statistical models that make use of relevant flight data.

In the area of physics-based models, researchers such as Drees et al. 2014 and Drees 2016 have
compiled a list of risk factors that can influence the probability of runway overrun. These factors
are used as input parameters for a deterministic physical model, which calculates the associated
runway distance to a controllable speed using flight dynamics. To simulate the input parameters, a
statistical distribution for each risk factor is estimated using operational flight data obtained from
the quick access recorder (QAR), refer to Chapter 2 for more information regarding the dataset.
The physical model is then used to generate the associated runway distance for each input value.
The risk probability is quantified by counting the number of simulations that yield a runway
distance over a chosen critical threshold.

To reduce the number of simulations needed to obtain a risk probability estimate, researchers
such as Au and J. L. Beck 2001 have used the subset simulation approach. Furthermore, Drees 2016
proposed comparing the observed distance to the controllable speed of the QAR data to validate
the model. However, X. Wang et al. 2020 noted a bias in the model output resulting from either the
physical model or the distribution fitting error of the risk factors. To address this issue, X. Wang
et al. 2020 proposed using a faster deterministic surrogate model, specifically a polynomial chaos
expansion surrogate. The authors also optimized the input distributions fitted to the physical
model to better match the observed distribution from the QAR data.

Several statistical approaches have also been utilized. For example, unconditional frequency
and hierarchical Bayesian models have been considered in Arnaldo Valdés et al. 2018. Gu and P. Wang
2014 used a linear regression model for the landing distance, while Wagner and Barker 2014 applied
logistic regression and its Bayesian version. Both models were used to model the probability of
fatalities using 1400 records of runway excursions that occurred between 1970 and 2009. The
problem of hard landings was also considered in Hu et al. 2016, where a support vector machine
model was applied. In addition, discrete Bayesian networks have been utilized. Zwirglmaier and
Straub 2016, for example, used Taylor’s first-order expansion to perform the necessary discretiza-
tion of a designed Bayesian network. Ayra et al. 2019 used the graphical network interface (GeNIe)
software (ByesFusion 2020), which starts with a network proposed by experts. Most recently, Zhao
and Zhang 2022 developed a neural network to model the landing distance.

Although the physics-based modeling approach of Drees 2016 with the calibration of the input
parameters suggested by X. Wang et al. 2020 allows for the identification of risk conditions, both
models do not allow for quantifying the effect of each risk factor on the occurrence of a runway
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overrun. Current statistical models, while not simulation-based, have other shortcomings. The
suggestions of C. Wang, Drees, Gissibl, et al. 2014 and Arnaldo Valdés et al. 2018 are unconditional
and, therefore, cannot model the influence of several risk factors together. This task is achieved
with Bayesian network approaches; however, they require the discretization of continuously mea-
sured risk factors. Moreover, Bayesian network approaches are often based on networks that use
subjective knowledge from experts. This suggests that there is room to develop a flexible statistical
framework to allow the identification of risky flights and quantify the effect of influencers. Such
a framework should also be able to model dependency patterns among the variable of interest,
given here by the distance to controllable speed and the set of contributing factors, especially in
the tails.

We use the DVR approach discussed earlier in Section 3.6. This approach allows us to express
the conditional distribution function of the variable of interest, given the potential influencing
factors analytically. In addition, DVR is well suited to model extremely small conditional proba-
bilities, allowing for tail dependence. In Section 4.3, We present how the DVR approach is utilized
to identify risky flights from the dataset in Chapter 2. Risky flights are defined as those that have a
distance to a controllable speed greater than 2,500 meters with an estimated probability > 10−3.
Among the 711 flights, we identify 41 as risky. Additionally, we rank the marginal effect of each
contributing factor on risky flights in Section 4.3. The ranking, in descending order, is given as fol-
lows: brake duration, headwind speed, brake start time, touchdown, equivalent acceleration, and
approach speed deviation. Furthermore, we study the joint behavior for all pairs of contributing
factors for risky flights. This shows a non-Gaussian dependence among the contributing factors.
We show a non-symmetric dependence between the time brake started and brake duration, as well
as between headwind speed and equivalent acceleration.

We further investigate whether a standard linear quantile regression (LQR) approach of R. W.
Koenker and Bassett 1978 and R. Koenker and Hallock 2001 is able to estimate such small risk prob-
abilities. We show that the LQR is limited in this respect. More specifically, we encounter the
pitfall of quantile crossing when applying our data.

4.2 Methodology: D-Vine-Based SurrogateModel

We introduce LQR as a benchmark model before proceeding to estimate rare event probabilities
using DVR.

Linear Quantile Regression

In the field of quantile regression, various methods have been proposed in the literature. One of
the most popular ones is the LQR (R. Koenker and Hallock 2001; R. W. Koenker and Bassett 1978).
Other methods include local quantile regression (Spokoiny et al. 2013), semiparametric quantile
regression (Noh et al. 2015), and nonparametric quantile regression (Q. Li et al. 2013). Although the
latest versions of LQR are nonparametric (R. Koenker, Chernozhukov, et al. 2017), we have opted
to use the parametric version introduced by R. Koenker 2005 for our proposed approach, as it is
also parametric.
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The parametric LQR, developed by R. W. Koenker and Bassett 1978, is a technique used for esti-
mating conditional quantiles of a response variableY based ond covariates, X = (X1, . . . , Xd)

⊤.
The conditional quantile function is represented as:

q(l)α (x1, . . . , xd) := F−1
Y |X(α|x1, . . . , xd), (4.1)

where FY |X denotes the conditional distribution function of Y given X = x, and α ∈ (0, 1) is
the quantile level. The LQR estimator is known for its robustness in the presence of non-normal
errors and outliers (Hao and Naiman 2007), providing a comprehensive representation of the con-
ditional response distribution for various α levels. A significant limitation of the LQR approach,
however, is that the regression lines for multiple quantile levels may intersect, as illustrated in Fig-
ure 4.1 using the observed QAR data. Additionally, according to Bernard and Czado 2015, Equa-
tion 4.1 is only satisfied when the response and covariates (Y,X) are jointly multivariate normally
distributed.
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Figure 4.1: Fitted quantile regression lines for th80 vs. bd at α = (0.01, 0.05, 0.1, 0.2)⊤.

Estimation of rare event probabilities

To calculate the probability of a rare event, specifically whenY is greater than a fixed value c, given
that X = x, we use the following equation:

αc(x) := P (Y > c|X = x) = 1− P (Y ≤ c|X = x)
= 1− FY |X1,...,Xd

(c|x1, . . . , xd),
(4.2)
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This formula allows us to calculate the probability of a rare event occurring under specific condi-
tions.

To estimate αc(x) in the LQR case, a bisection algorithm is utilized as outlined in Algorithm
1 in the supplementary section, Section 4.5. The purpose of the algorithm is to narrow down the
interval in whichαc(x) lies through iterative steps. This is necessary as rare event probabilities for
LQR cannot be estimated directly.

For the D-vine regression, we can express the conditional distribution functionFY |X1,...,Xd
(c|x1, . . . , xd)

in terms of the conditional distribution function of V given U1, . . . , Ud from the copula CV,U.
This is shown below:

FY |X1,...,Xd
(c|x1, . . . , xd) = P (V ≤ FY (y)|U1 = F1(x1), . . . , Ud = Fj(xd))

= CV |U1,...,Ud
(FY (c)|F1(x1), . . . , Fd(xd))

Therefore, we can define αc(x) as 1− CV |U1,...,Ud
(FY (c)|F1(x1), . . . , Fd(xd)).

To obtain samples of the joint distribution functionFY,X with conditional distributionFY |X(c|x1, . . . , xd),
we use iterative inverse probability transformations. For example, to obtain a sample (c, x1, . . . , xd) ∈
Rd+1 from FY,X, we follow the steps indicated by the Rosenblatt transform (Rosenblatt 1952):

1. Sample wj
iid∼ U [0, 1], j = 1, 2, . . . , d+ 1

2. Set 



xd := F−1
Xd

(wd+1)

xd−1 := F−1
Xd−1|Xd

(wd|xd)
xd−2 := F−1

Xd−2|Xd−1,Xd
(wd−1|xd−1, xd)

...
x1 := F−1

X1|X2,...,Xd
(w2|x2, . . . , xd)

c := F−1
Y |X1,...,Xd

(w1|x1, . . . , xd).

Therefore, (c, x1, . . . , xd) is a random sample from FY,X with

F−1
Y |X1,...,Xd

(w1|x1, . . . , xd) = c.

4.3 Application: QAR Flight Data

To estimate the probability of a critical event for the response variable th80, we use Equation 4.2.
This estimation considers the contributing factors listed in Table 2.1, denoted by X. The equation
is represented as follows:

αc(xi) = 1− P (th80i ≤ c|Xi = xi). (4.3)

This equation is applied to the 711 flights of the dataset discussed in Chapter 2, indexed by i =
1, . . . , 711. The threshold c is selected to be lower than the Landing Field Length (LFL), such
that there is sufficient distance for the aircraft to leave the runway or stop safely. As shown in
Figure 4.2, th80 represents the distance from the runway threshold to 80 knots (kts), and the

39



4 An Application of D-vine Regression for the Identification of Risky Flights in Runway Overrun

Figure 4.2: Runway with markings such as th, td, th80 and SM.

distance from the runway threshold to touchdown is represented by td. It is essential to mention
that td is considered a contributing factor. In the following section, we provide more information
on the (DVR) used to estimate these probabilities.

DVR estimation

We begin by estimating the marginal distribution functions for all variables, using a combination
of parametric distributions and a mixture of univariate normal distributions (McLachlan and Peel
2000). Figure 4.8 in the supplementary section, Section 4.5, displays the fitted marginal distribu-
tions and the corresponding histograms on the pseudo copula scale (PIT values) on the right of
each sub-figure. Additionally, Table 4.4 in the supplementary section, Section 4.5, lists the uni-
variate distribution families fitted for each variable. Some of the fitted parametric distributions,
such as the skew Student t used for fitting refAP and hws, consist of more than two parameters.

After estimating the marginal distribution functions, we present three different panels in Fig-
ure 4.3: the marginally normalized contour plots on the lower diagonal, the PIT of the variables
on the copula scale, and the Kendall’s tau dependence between the variables on the upper diago-
nal. The normalized contour plots represent the transformation of a bivariate copula density to a
bivariate distribution with standard normal margins and density g(z1, z2), where

g(z1, z2) = c(Φ(z1),Φ(z2)) · ϕ(z1) · ϕ(z2).

Here we use Φ(·) and ϕ(·) to denote the distribution and density of a standard normal distribu-
tion, respectively. It is important to note that the relationship between th80 and lm is particularly
strong, with an empirical τ̂K value of 0.46. On the other hand, hws is negatively related to th80,
with a τ̂K value of -0.25. The pseudo copula data for each variable is derived from the fitted
marginal distribution and is approximately uniform, as can be seen in the diagonal panels of Fig-
ure 4.3. Out of the 711 flights we studied, we observed only 33 unique values for tsd. This is
evident in the pairwise scatter plots, where vertical and horizontal lines can be seen in the upper
diagonal panels of Figure 4.3. Additionally, the normalized contour plots on the lower diagonal
panels are used to evaluate departure from elliptical shapes, which arise from the Gaussian copula
assumption. This can be seen in the contour panel between th80 and the contributing factor lm.

To analyze the dataset, we use the R package called vinereg (Nagler 2021). We fit two DVR
models using this package. The first model, MGauss

b−fit , utilizes the best-fitted margins from Ta-
ble 4.4 in the supplementary section, Section 4.5. This model only uses Gaussian pair-copulas in
the D-vine. The second model, MDV

b−fit, allows for parametric pair-copula families in the D-vine.
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Figure 4.3: Dependence exploration for flight data (normalized contour plots on the lower diagonal panels,
histograms of the PIT values on the diagonal panels and pairwise scatter plots of the PIT values
with an associated τ̂K value on the upper diagonal panels).

The parametric pair-copula families class includes families with one and two parameters (Nagler
and Vatter 2021).

We determined the importance order of the contributing factors in relation to the risk of run-
way overrun using the forward selection procedure explained in Section 3.6. Both models resulted
in the same order and did not select tsd as a candidate to improve the model fit. The order of im-
portance of the contributing factors is listed in Table 4.1.

Table 4.1: D-vine order of importance of contributing factors.
Order

lm td hws ea asd temp tbs bd trd refAP tsd
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Table 4.2: There are two fitted LQR models with different significance levels for contributing factors - one at α = 0.5 and the other at
α = 0.9.

Variable (quantile) th80 (α = 0.5) th80 (α = 0.9)
Value Std. Error p_value Value Std. Error p_value

(Intercept) 362.91 512.81 −733.18 1,327.30
hws −32.13 3.91 ∗∗∗ −40.86 5.11 ∗∗∗

temp 4.01 0.74 ∗∗∗ 3.27 1.18 ∗∗∗

refAP −1.55 0.44 ∗∗∗ −0.29 1.31
asd 27.59 3.54 ∗∗∗ 38.22 5.28 ∗∗∗

trd 8.99 4.19 ∗∗ 16.32 10.16
tsd 14.21 14.55 13.95 29.66
lm 3.95 0.42 ∗∗∗ 5.86 0.47 ∗∗∗

tbs 25.47 5.25 ∗∗∗ 10.02 3.59 ∗∗∗

bd 21.19 6.12 ∗∗∗ 0.88 4.30
td 1.01 0.03 ∗∗∗ 0.89 0.08 ∗∗∗

ea 212.14 37.42 ∗∗∗ 209.27 55.53 ∗∗∗

Observations 711

Note: ∗p_value<0.1; ∗∗p_value<0.05; ∗∗∗p_value<0.01

LQR estimation

We use the R package quantreg to fit the LQR model for the response variable th80 conditioned
on all contributing factors listed in Table 2.1. It is represented as:

q(l)α (hws, . . . , ea) := F−1
th80|X(α|hws, . . . , ea) (4.4)

4.4 is used for different quantile levels, with α ranging from 0 to 1. Table 4.2 summarizes the
estimated LQR for two different quantile levels: α = 0.5 and α = 0.9. The significance of the
contributing factors on the response changes depending on the quantile level. For example, at
α = 0.5, the contributing factor bd has a p-value of less than 0.001, whereas at α = 0.9, the
p-value increases to over 0.80. We used the bootstrap method proposed by R. Koenker and Hallock
2001 to calculate standard error estimates. Note that for both quantile levels, the contributing
factor tsd has a p-value greater than 0.1, which matches to the result from the fitted DVR.

Certain estimates may not be exclusive to oneα value. This means that it is possible for different
quantile levels to have the same estimate q̂(l)α for one observation. To better understand this issue,
take a look at Figure 4.4 which highlights two α values that share the same conditional quantile
estimate q̂(l)α = 1460 for flight 442. This problem is known as quantile crossing and is present in
our data.

MLR estimation

We perform a multiple linear regression (MLR) analysis and obtain regression parameter estimates
of the following:

th80i = β0 +

11∑

j=1

βjxij + ϵi. (4.5)
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Figure 4.4: Non unique quantile levels, α, at the same threshold c = 1460 for flight 442.

In this equation, xij represents the jth contributing factor, and ϵi represents a normally dis-
tributed error with a zero mean and σ2 variance for flight i.

When performing backward stepwise selection, we found that tsd is not a relevant variable in
the estimated MLR, similar to the fitted DVR and LQR. The adjusted R2 for the fitted MLR is
87%, and we use this model to estimate rare event probabilities as defined in Equation 4.3.

Risky flight probability estimation

First, we want to investigate the ability of the models to estimate extreme low risk probabilities.
For this we choose a lower bound of 10−13. Table 4.3 lists the number of flights with estimated
probabilities αc(xi) greater than 10−13 for i = 1, . . . , 711. This is for three different threshold
values c in meters, specifically c = (2200, 2400, 2500)⊤. The estimated rare event probability,
α̂c(xi), was computed using the bisection algorithm for the estimated LQR of Equation 4.4 and
the Rosenblatt transform for DVR. The probability estimation for the estimated LQR model
used all contributing factors, and variable selection was not performed. However, for the esti-
mated DVR and MLR models, ten of the contributing factors were used, with tsd being left out.
The choice of the three different thresholds was based on the landing field length, as discussed in
Chapter 2.

It is worth noting that the estimated LQR model at α = 0.5 could not provide estimates
greater than 10−13 beyond the observed maximum distance of th80 (2,606.77 m). On the other
hand, the estimated DVR and MLR models were able to provide nonzero estimates beyond this
maximum observed distance.
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Table 4.3: Number of flights with estimates of αc(xi) > 10−13 for LQR, MLR, MGauss
b−fit , and MDV

b−fit

at three different thresholds c (in m).
LQR (%) MLR (%) MGauss

b−fit (%) MDV
b−fit (%)

2200 m 204 (28.69%) 556 (78.20%) 709 (99.72%) 708 (99.58%)
2400 m 52 (7.31%) 373 (52.46%) 709 (99.72%) 703 (98.87%)
2500 m 21 (2.95%) 254 (35.72%) 706 (99.30%) 691 (97.19%)

Identification of risky flights

We analyze 711 flights and find 41 flights with an estimated risk probability of α̂c(xi) > 0.001
and a threshold of c = 2500 m using MDV

b−fit. The highest risk probability estimate in this group
was 0.202. Compared to other approaches, MDV

b−fit identified the most flights with a high risk
probability α̂c(xi) > 0.001 for c = 2500m.

We will focus on studying the relationship between contributing factors and estimated risk
probabilities for risky flights. Specifically, we will analyze the 41 flights identified using MDV

b−fit,
with estimated risk probabilities falling in the range of (0.001, 0.203). To transform these esti-
mates to the real number line of (−∞,∞), we use the logit function as follows:

ηr = logit(α̂c(xr)) = ln

(
α̂c(xr)

1− α̂c(xr)

)
, (4.6)

with r = 1, . . . , 41.

In addition, we want to compare the impact of the contributing factors from MDV
b−fit on the

estimated risk probability ηr. To achieve this, we standardize the factors Xkj , j = 1, . . . , 10,
using the equation:

zrkj :=
xrkj − x̄kj√∑41
r=1(xrkj

−x̄kj
)2

N−1

, where x̄kj =
1

41

41∑

r=1

xrkj

with r = 1, . . . , 41.

We present pairwise scatter plot matrices on the lower diagonal and pairwise τ̂K on the upper
diagonal in Figure 4.5. The diagonal panels display density plots of the estimated risk probabilities
on the logit scale and the contributing factors on the standardized scale. Additionally, we include
fitted linear regression lines in blue for each variable paired with another, along with 90% point-
wise confidence intervals. For example, the scatter plot and τ̂K dependence show a positive linear
relationship between hws and tbs, with τ̂K value of 0.37.

We analyze the scatter plots in Figure 4.5 and find that the relationship between the estimated
logit of risk probabilities and the standardized contributing factors can be explained linearly. There-
fore, we fit a multiple linear regression:

αc(xrkj ) = β0 +

10∑

j=1

βjzrkj + ϵr, (4.7)
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Figure 4.5: Pairwise scatter plots displayed on the lower diagonal panels, pairwise τ̂K dependence on the
upper diagonal and density plots of the variables on the diagonal panels.

Here,αc(xrkj ) represents the estimated logit of the risk probability for flightr, withr = 1, . . . , 41.
The error term ϵr follows a normal distribution with zero mean and σ2 variance for flight r. To
summarize the results, we have presented the estimated output in Table 4.5 in the supplementary
section, Section 4.5. This shows that a one standard deviation increase in hws results in a −1.44
decrease in the estimated logit of the risk probabilities. Equation 4.7) has an adjusted R2 = 0.80,
indicating that the ten D-vine selected contributing factors account for 80% of the variability in
the estimated logit of the risk probabilities.

We have also visually represented our findings in Figure 4.6, which displays two groups of box
plots for each contributing factor (red: risk and green: non-risk). The risk group corresponds to
flights with an estimated risk probability> 10−3, while the non-risk group corresponds to flights
with an estimated risk probability < 10−3. Some contributing factors, such as hws, show major
differences in the box plots for the two flight groups.

To determine the factors that have the most impact on the response variable, we rank them
based on the size of their corresponding regression coefficient in Table 4.5 in the supplementary
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section, Section 4.5. The top six contributors (hws, ea, td, asd, tbs, bd) were then used to fit an-
other multiple linear regression, which resulted in an adjusted R2 = 0.60. We also examined the
pairwise dependence between these contributing factors, as shown in Figure 4.7. In this figure,
we use empirical distribution functions to fit the margins instead of univariate parametric distri-
butions, due to the small sample size of r = 41. Among the lower diagonal panels, two panels
showed a departure from the Gaussian copula assumption by the non-elliptical shape of their con-
tour lines. Specifically, the contour panel between hws and ea showed a positive tail dependence,
while the panel between tbs and bd showed a strong negative tail dependence.
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Figure 4.6: Box-plots of each contributing factor indicating the two different flight groups, red: risk and
green: non-risk.
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Figure 4.7: Dependence exploration for risky flights (normalized contour plots on the lower diagonal, his-
tograms of the PIT values on the diagonal and pairwise scatter plots of the PIT values with
associated τ̂K values on the upper diagonal panels).

4.4 Conclusion andOutlook

We have found that the probability of a flight slowing down to the safe speed of 80 knots can
be predicted using input factors. By using a D-vine regression, we were able to estimate these
probabilities and identify 41 flights out of 711 that had a higher risk of decelerating to a controllable
speed at a large threshold. We analyzed the contributing factors for these risky flights and ranked
them based on their impact. The top factors included brake duration, headwind speed, time brake
started, touchdown, equivalent acceleration, and approach speed deviation. We also examined
the relationships between these factors and found that there was a non-symmetric dependence
between time brake started and brake duration, as well as between headwind speed and equivalent
acceleration.

Our statistical approach does not require simulation or expert knowledge in network design,
unlike other methods. Additionally, our approach can estimate probabilities beyond the observed
maximum distance of the controllable speed, which is not possible with a classical LQR approach.
We have demonstrated that our approach is effective in quantifying the probability of the runway
overrun precursor given by th80 and identifying the contributing factors. In future investigations,
we plan to focus on similar scenarios such as early landing and veer-offs, which are also important
for aviation safety.
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4.5 SupplementaryMaterials

Algorithm 1: Bisection algorithm for the LQR
for i = 1, . . . , n do

Choose a and b∈ (0, 1) with a < b.
Evaluate q̂α(x1, . . . , xd) in (4.1) for both α = a and α = b.
if q̂c(x1, . . . , xd) ∈ (q̂a(x1, . . . , xd), q̂b(x1, . . . , xd)) then

1. Increase a by δ, δ ∈ (0, 1).
2. Repeat.

else
if q̂c(x1, . . . , xd) ̸= q̂a(x1, . . . , xd) & q̂c(x1, . . . , xd) ̸= q̂b(x1, . . . , xd) then

1. Increase b by δ and decrease a by δ, δ ∈ (0, 1).
2. Repeat.

else
if q̂c(x1, . . . , xd) = q̂a(x1, . . . , xd) & q̂c(x1, . . . , xd) ̸= q̂b(x1, . . . , xd)

then
Return a.

else
Return b.

end
end

end
end

Table 4.4: Fitted parametric marginal distributions for the contributing factors in Table 2.1 and th80 as
well as their parameter estimates.

Variable Selected Distribution Parameter Estimates
th80 Normal [µ̂, σ̂] = [1739.943, 259.2278]
hws Skew Student t. [ξ̂, ω̂, α̂, ν̂] = [-0.7578, 2.9865, 1.4194, 19]
temp Log-Normal [µ̂, σ̂] = [5.6462, 0.0245]
refAP Skew Student t. [ξ̂, ω̂, α̂, ν̂] = [1023.067, 9.8146, -1.3456, 9]
asd Skew Normal [ξ̂, ω̂, α̂] = [0.3789, 1.8669, 0.6545]
trd Generalized Extreme Value [µ̂, σ̂, ν̂] = [2.9832, 0.7539, 0.0580]
tsd Log Normal [µ̂, σ̂] = [1.2064, 0.0826]

[µ̂1, µ̂2, µ̂3, µ̂4] = [265.3788, 304.4632, 336.5114, 342.8597]
lm Mixture of Normals [σ̂1, σ̂2, σ̂3, σ̂4] = [24.928, 16.6916, 4.0202, 1.4208]

[ω̂1, ω̂2, ω̂3, ω̂4] = [0.2636, 0.4957, 0.1013, 0.1393]
tbs Generalized Extreme Value [µ̂, σ̂, ν̂] = [1.6125, 1.5624, 0.5771]

[µ̂1, µ̂2] = [10.7978, 18.3855]
bd Mixture of Normals [σ̂1, σ̂2] = [4.3706, 2.8982]

[ω̂1, ω̂2] = [0.282, 0.7180]
td Gamma [α̂, β̂] = [12.6204, 0.0285]
ea Skew Normal [ξ̂, ω̂, α̂] = [-1.722, 0.2500, 0.9385]
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(a) Density estimates and histograms for: th80, hws, temp
& refAP.
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(b) Density estimates and histograms for: asd, trd, tsd &
lm.
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(c) Density estimates and histograms for: tbs, bd, td & ea.

Figure 4.8: Density estimates on the original scale for all variables on the left of each sub figure and their
corresponding histograms on the copula scale.

Table 4.5: Summary output of the estimated multiple linear re-
gression in (4.7). The table includes estimated coeffi-
cients (Estimate), standard errors (Std. Error), t statistic
values (t value) and p_values.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.20 0.10 -53.82 0.00

hws -1.44 0.17 -8.62 0.00
ea 1.15 0.15 7.78 0.00
td 1.06 0.13 8.01 0.00

asd 1.02 0.12 8.33 0.00
tbs 0.96 0.24 3.97 0.00
bd 0.83 0.26 3.19 0.00
lm 0.47 0.12 4.02 0.00
trd 0.46 0.10 4.38 0.00

temp 0.28 0.11 2.48 0.02
refAP -0.22 0.11 -1.97 0.06

Table 4.6: Summary output of a fitted multiple linear regression
on a subset of the contributing factors.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.20 0.14 -38.42 0.00

bd 1.12 0.32 3.50 0.00
hws -1.09 0.21 -5.24 0.00
tbs 1.07 0.31 3.46 0.00
td 1.05 0.18 5.95 0.00
ea 1.02 0.20 5.11 0.00

asd 0.96 0.17 5.75 0.00
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5 D-Vine-Based Correction of
Physics-BasedModel Output for
the Identification of Runway
Overruns

To estimate the risk of an overrun of a runway, dynamic flight-based physical models are com-
monly used to predict an associated risk metric. Here, we consider the risk metric given by the
distance to a controllable speed of 80 knots after landing. We used the data introduced in Chap-
ter 2. Even if the input values of the physical model are set to the ones derived from the observed
flights, the predicted risk metrics of the physical model are biased. Therefore, we propose to cor-
rect the predictions of the physical model using a D-vine regression (DVR) for the error term. For
more information about DVR, refer to Section 3.6. Here, we study two correction models: lin-
ear regression and D-vine copula regression. The first model does not allow for asymmetry in the
tails, while the second model allows for this. The results show that both corrections improve the
predictions of the physical model, but the D-vine copula-based corrections more closely resemble
the measured risk metrics.

In another step, we generate dependent input values to increase the prediction accuracy of the
risk metrics’ desired tail probabilities by simulating many predictions. For this purpose, an R-
vine copula is trained using the quick access recorder (QAR)-derived input values. By feeding the
physical model with simulated dependent R-vine-based input values, we can better reconstruct
the measured risk metrics distribution and tail probabilities than by using simulated inputs based
on independent marginal input distributions. This demonstrates the importance of addressing
asymmetric tail dependencies among input values.

5.1 Introduction

Runway and taxiway excursions are, to this day, the most frequent accidents in commercial and
civil aviation. In the 2015 IATA Runway Safety Accident Analysis Report, 415 accidents were ana-
lyzed; 90 have been classified as runway or taxiway excursions. Although these types of accidents
are the least dangerous to occupants, they still pose a great financial burden for the operator (IATA
2015). Therefore, it is important to understand these types of accidents better and investigate the
contributing factors. In this Chapter, overruns during landing are addressed.

The study conducted by C. Wang, Drees, and Holzapfel 2014 discusses a physically motivated
approach that uses operational and environmental data to establish relationships among technical,
physical, and operational aspects of a given operation. Equations of motion based on Newton’s
second law are used to replicate the aircraft’s behavior given a set of input values. C. Wang, Drees,
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Gissibl, et al. 2014 then used this model in a subset simulation approach over varying input values to
quantify the risk of a runway overrun. This approach is computationally demanding but makes it
possible to include all types of systems of interest for the analysis and make predictive statements
on how operational changes might impact the associated risk. However, calibrating the parametric
physical model to represent real-world system behavior is challenging.

There are also data-driven approaches that, based on a data set, quantify the risk of a given
operation. Most of these have been developed for financial institutions Jonkman et al. 2003, Rocco
2014 and Bakshi et al. 2022. Within the aerospace domain, Barratt et al. 2018 propose a method
for constructing probabilistic trajectory models of aircraft. In Höhndorf, Nagler, et al. 2022, the
authors use a Rauch-Tung-Striebel smoother to increase data quality and resolution. A copula
approach is used for an analytical revision of the physical model. In an early study, the authors of
Kim et al. 1996 aim to locate appropriate high-speed exits from the runway.

In Alnasser and Czado 2022, a statistical surrogate approach is proposed using DVR to estimate
the distance to a controllable speed after landing. This copula regression approach is very flexible
and allows for nonlinear non-additive effects of the input variables. For more additional informa-
tion, see Chapter 4.

Here we perform a predictive analysis using a physical model approach together with a statistical
correction model for the error. This means that instead of using the DVR approach of Alnasser
and Czado 2022 for the prediction of the output directly, we build a statistical model for the error
term resulting from the physical model applied to the observed data. For this, we fit a DVR to the
observed error using the contributing factors as input to the regression formulation and compare
this approach to a linear regression model.

This study quantifies the risk of an aircraft not reaching 80 knots ground speed within a pre-
defined distance. The corresponding safety metric is defined by the safety margin (SM), see Fig-
ure 2.1 for illustration. As the available landing distance is known for a given airport, calculating
the stop margin becomes a matter of determining the actual landing distance.

The main contributions of this chapter are summarized as follows.

• We introduce a novel approach of using DVR to correct the output of the physical model
describing the aircraft’s dynamics.

• We present error correction approaches based on DVR and multiple linear regression. This
correction is applied to the observed data and simulated input data. Here, we distinguish
between independent and dependent inputs using an R-vine model.

5.2 Methodology: Physics-BasedModel, D-vine Correction
Model, & Dependent Inputs

Physics-based model

The physical model described in this section is based on C. Wang, Drees, and Holzapfel 2014 and
Koppitz et al. 2019 and is summarized here for completeness.
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Equations ofMotion

The aircraft’s dynamics can be described by a first-order nonlinear differential equation in the
form

ẋ = f(x,w, η), (5.1)

where the vector x denotes the system’s states, the vector w denotes the system’s inputs and the
vector η denotes the system’s physical parameters. Here we only use the systems states x and no
system’s inputsw and fix the system’s physical parameters η. The rate of change over time of each
of the states is represented by the vector ẋ = f(x). The following two simplifying assumptions
are made before elaborating on the model in more detail.

• The model is assumed to behave as a point mass model. Hence all forces act through a single
point.

• As veer-off is not considered, lateral motions are disregarded.

In total, four forces can be identified that act on the model. Those are aerodynamic FA, propul-
sion FP , gravitational FG, and braking forces FB . As mentioned, all forces are assumed to act
through the center of gravity.

Aerodynamic forces

These forces are further divided into drag force FD and lift force FL. In vector form, these can be
represented as:

FA =

(
FD

FL

)
= q · S ·

(
−CD

−CL

)
, (5.2)

where q = 1
2 · ρ · V 2

TAS represents the dynamic pressure and S the reference surface area of the
aircraft’s wing, whereas the true airspeed is given by VTAS . The dimensionless coefficients CD

and CL have been determined in Sembiring et al. 2013; C. Wang, Drees, and Holzapfel 2014 using
parameter estimation techniques for all relevant aircraft configurations.

PropulsionModel

The following thrust model developed in Koppitz et al. 2019 allows to calculate the three compo-
nents of thrust, namely gross thrust of the bypass FT,byp, the core FT,core, and the intake mo-
mentum FT,int. All three components are a function of fan speed N1, static pressure ps, static
temperature Ts, and true airspeed VTAS , .i.e.,




FT,byp

FT,core

FT,int


 = f(N1, ps, Ts, VTAS). (5.3)

The intake momentum FT,int can easily be computed using the relationship between mass flow
through the engine m0 and VTAS given by

FT,int = ṁ0 · VTAS . (5.4)
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Look-up tables with data from GasTurb are required to calculate ṁ0 as well as the remaining
forcesFT,core andFT,byp. The total propulsive force is now defined as the sum of the three thrust
components. As the thrust vector is assumed to be aligned with the aircraft’s longitudinal axis, no
lateral or vertical components exist for this force. We obtain

FP = FT,byp + FT,core − FT,int. (5.5)

BrakingModel

The braking force FB is dependent on aircraft-specific and external factors. External factors are
runway conditions (e.g., dry, ice, wet, etc.). Aircraft-dependent parameters are braking force ap-
plied by the (auto-)pilot, deployment of spoilers, and thrust reversers. The physical braking model
used here can be found in Koppitz et al. 2019 and is given by

FB = Fx,Aero + FP + FG + Fbrake. (5.6)

The total braking force that acts on an aircraft can be described by the sum of aerodynamic
forces acting parallel to the runway axis Fx,Aero, propulsive forces FP , gravitational forces due to
sloping runway FG, and actual braking forces Fbrake. The braking force at time t is determined
by the relationship outlined in

Fbrake = µcmd(t) · Fz. (5.7)

Fz represents the net vertical force acting on the landing gear, resulting from the difference be-
tween lift force and aircraft’s weight, Fz = FL − FG. The friction coefficient µcmd(t) is de-
pendent on time and adjusted such that constant acceleration is reached during rollout. This
acceleration rate is stored in the QAR data. The friction force increases towards the runway’s end
until a maximum value, dependent on runway conditions, is reached.

5.3 Application: QAR Flight Data

Building a statistical model for the error arising from physical model
applied to the observed QAR flight data

We built two statistical models, namely DVR and multiple linear regression (MLR), for the error
term after the physical model was applied to the observed values for the 11 contributing factors
in Table 2.1. For that, we collect the contributing factors for the ith flight in the vector xobsi with
elements xobsij , i = 1, . . . , 711, j = 1, . . . , 11. The resulting predicted distances to reach 80
knots, from the runway threshold, from the physical model discussed in Section 5.2 using the
observed input xobsi are denoted by th80phys(xobsi ). Therefore, the error for the ith flight is given
by

ϵobsi = th80obsi − th80phys(xobsi ) for i = 1, . . . , 711, (5.8)

where th80obsi is the observed value for the ith flight. To build the DVR model using ϵobsi as a
response with predictors xobsi for i = 1, . . . , 711, we first fit appropriate marginal distributions
for each of the contributing factors. For this, we allow for both parametric and nonparametric
kernel density estimation (KDE) based distributions using the R package kde1d, respectively. The
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resulting marginal density fits are given in Figure 5.1, while the selected univariate distributions
and their estimated parameters are given in Table 5.1.
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Figure 5.1: Marginal histograms of (ϵobsi , xobs
i ) for i = 1, . . . , 711 and their fitted marginal densities.

Next, we explore the pairwise dependence among the contributing factors (xobs) and errors
(ϵobs) after the effects of the marginal distributions are removed. For this, we show contour plots
of pairs of marginally normalized scores in the left panel of Figure 5.2. Any departure from el-
liptical contour shapes indicates that a bivariate Gaussian copula is not appropriate to capture
the pairwise dependence. In detail, we assume that we have fitted univariate distribution func-
tions F̂j , j = 1 . . . , 11, and F̂ϵ available giving the pseudo copula data uij = F̂j(x

obs
ij ) and

vi = F̂ϵ(ϵ
obs
i ). The scatter plots of pairs of (uij , j = 1 . . . , 11; vi) are contained in the up-

per triangular panels of the left side of Figure 5.2 together with the empirical pairwise Kendall
estimates τ̂K showing some strong pairwise dependence. As mentioned earlier, τK is more ap-
propriate for detecting nonlinear dependence structures than standard Pearson correlations. For
example, the contributing factors tbs and bd have an estimated τ̂K = −0.40, while lm and bd
have τ̂K = 0.35. In addition, the response ϵobs and hws have an estimated τ̂K = −0.21. The
diagonals are histograms of the pseudo data, while the lower triangular panels are contour plots
of pairs of marginally normalized scores zϵi = Φ−1(ϵobsi ) and zij = Φ−1(uij). The presence of
non-elliptical shapes indicates a non-Gaussian dependence here.
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Table 5.1: Fitted marginal distributions and parameters for the observed errors and contributing factors
(KDE corresponds to a kernel density fit).

Variable Selected distribution Parameters
ϵ Univariate kernel density estimation (KDE) -

hws KDE -
temp KDE -
refAP Skew Student t. [ξ̂, ω̂, α̂, ν̂] = [1023.067, 9.815, -1.346, 9]

asd Skew Normal [ξ̂, ω̂, α̂] = [0.379, 1.867, 0.655]
trd Generalized Extreme Value [µ̂, σ̂, ν̂] = [2.983, 0.754, 0.058]
tsd KDE -

[µ̂1, µ̂2, µ̂3, µ̂4] = [336.511, 304.463, 265.379, 342.860]
lm Mixture of Normals [σ̂1, σ̂2, σ̂3, σ̂4] = [4.020, 16.692, 24.928, 1.421]

[ω̂1, ω̂2, ω̂3, ω̂4] = [0.101, 0.496, 0.264, 0.139]
tbs KDE -

[µ̂1, µ̂2] = [18.358, 10.795]
bd Mixture of Normals [σ̂1, σ̂2] = [2.898, 4.370]

[ω̂1, ω̂2] = [0.718, 0.282]
td Gamma [α̂, β̂] = [12.620, 0.028]
ea KDE -

Table 5.2: DVRobs: Order of the contributing factors (Var.) and their variable index (Ind).
Var. hws lm tbs bd ea temp refAP td trd asd tsd
Ind. 1 2 3 4 5 6 7 8 9 10 11

Further, we include the pairwise scatter plot of errors and contributing factors on the right side
of Figure 5.2. Univariate density plots of each variable are given on the diagonal. In contrast, the
lower triangular panels display the scatter plot between each pair of variables together with a fitted
linear regression line (in blue). We give the estimated Pearson correlation coefficient ρ̂ measuring
the linear relationship between variable pairs in the upper right corner panels. We see high absolute
values for between tbs and bd (ρ̂ = −0.68), between lm and bd (ρ̂ = 0.49) and ϵobs and hws
(ρ̂ = −0.30), indicating that the contributing factors influence the error, so not all dependence
on the contributing factors have been removed by the physical model.

Next, we fit a D-vine regression model allowing only parametric pair copulas to (ϵobsi , xobsi )
and denote this fitted model by DVRobs = DVRobs

ϵ|X. This orders the contributing factors by
decreasing importance, and the order is given in Table 5.2 together with their index, used later as
an abbreviation. The fitted model DVRobs requires 58 bivariate copula parameters, and the fitted
copula families and their parameter estimates are given in Table 5.7 in the supplementary section,
Section 5.5.

Defining an error correction to the physical model applied toQAR
flight data

Now we define a correction to the output of the physical model applied to the observed QAR
data. In particular, we define

th80corri = th80phys(xobsi ) + ϵ̂(xobsi ), (5.9)
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Figure 5.2: Left: Pairwise contour plots of the marginally normalized scores derived from (ϵobsi , xobs
i ) ,

Right: Pairwise scatter plots of (ϵobsi , xobs
i ), i = 1, . . . , 711.

where ϵ̂(xobsi ) is either ϵ̂DV R(xobsi ) = F̂−1
DVRobs

(0.5|xobsi ) when the DVR model is fitted to
the error or ϵ̂MLR(xobsi ) = F̂−1

MLRobs
(0.5|xobsi ) = ÊMLRobs

(ϵi|xobsi ) when the MLR model
is used. Here F̂−1

DVRobs
(0.5|xobsi ) denotes the fitted median of the associated conditional distri-

bution of ϵ given the observed contributing factor xobsi from the DVR model. Furthermore,
ÊMLRobs

(ϵi|xobsi ) = F̂−1
MLRobs

(0.5|xobsi ) is the fitted mean/median using the MLR model for
ϵ using predictors xobsi from the ith observed flight for i = 1, . . . , 711.

Next, we investigate whether the correction given in Equation 5.9 improves the output of
the physical model applied to the observed data. For this, recall that th80obsi is the observed
value of th80, th80phys(xobsi ) is the output of the physical model using the observed data xobsi ,
th80corr,DVRobs

i is the error correction in Equation 5.9 when the DVRobs model is used, and
th80corr,MLRobs

i is the error correction in Equation 5.9 when the MLRobs model is used for flight
i, respectively. The associated fitted densities of these quantities are given in graph Figure 5.3, Fig-
ure 5.4, and Figure 5.5. Visually, we see that the D-vine regression-based error correction (in blue)
can better represent the fitted density of the observed values of th80 (in green) than the physical
model output density (in red), as well as using the MLR correction (in orange). This shows that
this error correction approach might be applicable when a large number of Monte Carlo simula-
tions from the physical model are needed using simulated input data. This will be studied next.

Error corrections to the physical model outputs based on simulated
input QAR data

We now investigate how the error correction approach for the physical model outputs suggested
in Section 5.2 can be applied to the physical model using a large number of simulated QAR flight
data inputs. For this, we need an appropriate multivariate statistical model for the contributing

57



5 D-Vine-Based Correction of Physics-Based Model Output for the Identification of Runway
Overruns

Figure 5.3: Observed inputs: Kernel density plots of the observed response th80obsi , the physical predictions
th80phys(xobs

i ), the MLR corrected predictions th80corr,MLRobs

i , and DVR corrected predic-
tions th80corr,DVRobs

i , i = 1, . . . , 711.

factors to be used to simulate from. This should be based on the QAR flight data’s observed
contributing factors xobsi . From the left side of Figure 5.2, we deduce that such a model should be
a more general model than the multivariate Gaussian distribution. Therefore, we propose fitting
a flexible R-vine distribution to xobsi , i = 1, . . . 711 to accommodate the observed non-Gaussian
dependence structure. For the marginal distributions of the contributing factors, we use again
the distributions specified in Table 5.1. The resulting fitted R-vine distribution with the chosen
R-vine tree structure, selected pair copula families, and their estimated copula parameters is given
in Table 5.8 in the supplementary section, Section 5.5. A plot of the first tree of fitted the R-vine
tree structure is shown in Figure 5.6.

This fitted R-vine distribution is then used to simulate a large number (R) of input vectors
(see Chapter 6 of Czado 2019 for simulation algorithms from specified R-vine distributions). We
call these simulated input vectors xdepr for r = 1, . . . , R. These are then used as inputs to the
physical model of Section 5.2, giving the outputs th80phys(xdepr ). To add an error correction,
we predict the associated error of the physical output using xdepr as input by the conditional me-
dian of the DVR model DVRobs and the MLR model MLRobs defined above, respectively. The
resulting error prediction for the physical output using xdepr as input we denote by ϵ̂DVR(xdepr )
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Figure 5.4: Dependent simulated inputs: Kernel density plots of the observed th80obsi , i = 1, . . . , 711
values, the physical output values th80phys(xdep

r ) based on dependent xdep
r as input, the MLR

error corrected physical output values th80corr,MLRobs
r , and the DVR error corrected physical

output values th80corr,DVRobs
r , r = 1, . . . , R.

and ϵ̂MLR(xdepr ) for the models MLRobs and DVRobs, respectively. Finally, this gives rise to the
correction of the physical model output using simulated input vectors as

th80corr,DVRobs
r = th80phys(xdepr ) + ϵ̂DVR(xdepr ),

th80corr,MLRobs
r = th80phys(xdepr ) + ϵ̂MLR(xdepr )

for r = 1, . . . , R. (5.10)

Figure 5.4, the resulting fitted densities of the physical model output th80phys(xdepr ) (in red),
the corrected physical model output th80corr,MLRobs

r using the MLR model (in orange), and the
corrected physical output th80corr,DVRobs

r based on the DVR (in blue) are compared to the fitted
output density of th80obsi (in green) for simulated values R = 83, 928. We initially simulated
R = 100, 000 values for the input of the physical model, but 16, 072 values resulted in pseudo
copula values outside the [0, 1] interval. From visual inspection, we see that the correction based
on the DVR, th80corr,DVRobs

r , works better than the physical model using simulated input vectors
from the fitted R-vine copula model specified in Table 5.8 together with the marginal specifica-
tions of Table 5.1. The physical model still produces a bias, and the MLR-based correction is
unable to reproduce the kurtosis and tail behavior of the fitted th80obs density.

Next, we are interested in the effects of using independent inputs xindr instead of the dependent
R-vine inputs. In this case, we independently simulate each contributing factor from the marginal
specifications given in Table 5.1. Comparing Figure 5.4 to Figure 5.5, we see that the DVR error-
based corrections perform better using dependent inputs compared to independent input to the
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Figure 5.5: Marginally independent simulated inputs: Kernel density plots of the observed th80obsi , i =
1, . . . , 711 values, the physical output values th80phys(xind

r ) based on independent xind
r as

input, the MLR error corrected physical output values th80corr,MLRobs
r , and the DVR error

corrected physical output values th80corr,DVRobs
r , r = 1, . . . , R.

physical model. The need to correct the physical model is visible in both setups. Further, the
MLR-based error correction is not as successful as the DVR based for both setups.

To complement our visual inspection of Figure 5.3, Figure 5.4, and Figure 5.5, we also report
the pairwise Hellinger distances first introduced in Hellinger 1909 using the density estimates of
Figure 5.3, Figure 5.4, and Figure 5.5. Recall that the Hellinger distance between two densities
f and g is given by dH = 1 −

∫ √
f(x)g(x) dx. The Hellinger distance is chosen over the

Wasserstein distance since we are interested in comparing fitted densities of the response variable.
It is an overall assessment of the distance between two densities and thus averaging over tails and
the center of the distribution. Hence, it does not pay attention to the tails only, which is of par-
ticular interest here. Therefore, in Table 5.3, we report the Hellinger distance only for the upper
tail region between 2,500m and 3,000m. Kernel density estimation of the densities was used with
cross-validated bandwidth selection as suggested by Scott and Terrell 1987. Using the observed data,
we see that this estimated Hellinger distance is the lowest for the DVR-based correction compared
to the MLR-based one. For independent simulated inputs, the MLR-based correction is lower
than the DVR-based one, while the opposite is true for dependent simulated inputs. However,
the distances are generally lower for dependent compared to independent simulated inputs. Note
that for each column, different inputs are used. Thus, the estimates are changing.
The overall framework of this approach is summarized in the flowchart provided in Figure 5.7.

Finally, in Table 5.4 to Table 5.6, we report the estimated risk probabilities of seeing a value of
th80 greater than 2.500m based on using the observed data (Table 5.4), simulated independent
inputs (Table 5.5) and R-vine dependent inputs (Table 5.6) to the physical model. Here, 2.500m
represents a large value for the distance from the runway threshold to where 80 knots is reached.

60



5.3 Application: QAR Flight Data

gumbel(0.07)

frank(−0.15)

bb7(−0.15)

gumbel(0.14)

clayton(−0.08)

frank(0.34)
joe(−0.39)

gaussian(−0.21)

clayton(0.1)

frank(0.07)

temp

td

tsd

trd

lmtbs

bd

hws

refAP

asd

ea

Tree 1

Figure 5.6: Tree 1 of fitted R-vine among the contributing factors with selected pair copula family and τ̂K .

Table 5.3: Pairwise Hellinger distance from 2,500m to 3,000m using the density estimates of Figure 5.3,
Figure 5.4, and Figure 5.5

Observed inputs Dependent inputs Independent inputs
th80obs, th80phys 0.00135 0.00194 0.00253

th80obs, th80corr,MLRobs 0.00045 0.00138 0.00163
th80obs, th80corr,DVRobs 0.00027 0.00129 0.00214

Table 5.4: Observed inputs.
Observed data >2,500m/711

th80i 0.0014

th80physi 0.0042

th80corr,MLRobs
i 0.0000

th80corrDVRobs
i 0.0000

From Table 5.4, we see that, as expected, the estimated probability of risk derived from the physical
model is the largest. At the same time, both error corrections do not result in observations with
a th80 value greater than 2.500m. Therefore, a larger Monte Carlo sample is needed, and the
corresponding estimation results are given in Table 5.4, Table 5.5, and Table 5.6. Here, we see
that the structure of the input values affects the estimated risk probabilities. Given the superior
performance of the R-vine-based simulated dependent inputs with the DVR error correction, we
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Figure 5.7: Flowchart illustrating the correction approach for the physical model.

would trust the associated risk probability estimate of 0.0013 the most. This is also closest to the
empirical estimate of 0.0014 based on the observed values of th80.

Table 5.5: Simulated independent inputs.
Independent inputs >2,500m/105

th80physr 0.0051

th80corr,MLRobs
r 0.0021

th80corrDVRobs
r 0.0037

Table 5.6: Simulated dependent inputs.
Dependent inputs >2,500m/83,928

th80physr 0.0030

th80corr,MLRobs
r 0.0015

th80corrDVRobs
r 0.0013

5.4 Conclusion andOutlook

We have developed various approaches to correct errors in a physical model that predicts the dis-
tance required to reach 80 knots from the runway threshold. This prediction is often used as a risk
indicator for runway overrun. After conducting an initial analysis, we found that a simple linear
regression model could correct some of the observed systematic bias from the physical model us-
ing only the available data. However, we achieved better results with a novel D-vine copula-based
correction (refer to Figure 5.3, Figure 5.4, and Figure 5.5).
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We also proposed using a multivariate statistical input model for the contributing factors to the
physical model. This allowed for the simulation of a large sample of error-corrected predictions,
using either independent or dependent inputs based on an R-vine model. We also studied the
effects of using a D-vine-based or linear regression-based error model. Using a dependent input
model for the simulation showed that the D-vine error model performed better than the linear
regression model (refer to Figure 5.3, Figure 5.4, and Figure 5.5). However, for the independent
inputs, all investigated models performed worse compared to the dependent input case (compare
Table 5.5 and Table 5.6). Neglecting the dependence between the contributing factors resulted in
a decline in predictive simulated performance using the proposed error correction of the physical
model compared to a model correction approach with dependent inputs.

Our results indicate the potential to correct flight dynamic models for other types of incident
and accident metrics in the future. Additionally, we can extend the simulation-based error cor-
rection to estimate risk probabilities more extreme than the one considered here by following a
subset simulation approach (Au and Y. Wang 2014).

5.5 SupplementaryMaterials

63



5 D-Vine-Based Correction of Physics-Based Model Output for the Identification of Runway
Overruns

Table 5.7: Fitted DVRobs
ϵ|X using the variable abbreviations of Table 5.2.

tree edge conditioned conditioning family rotation parameters df tau loglik

1 1 1, 2 gumbel 90 1.25 1 -0.20 45.50
1 2 2, 8 gaussian 0 -0.11 1 -0.07 4.02
1 3 8, 9 indep 0 0 0.00 0.00
1 4 9, 10 joe 270 2.14 1 -0.39 192.02
1 5 10, 12 joe 90 1.27 1 -0.13 31.59
1 6 12, 3 indep 0 0 0.00 0.00
1 7 3, 4 joe 90 1.08 1 -0.05 3.12
1 8 4, 11 indep 0 0 0.00 0.00
1 9 11, 6 indep 0 0 0.00 0.00
1 10 6, 5 gaussian 0 -0.09 1 -0.06 3.00
1 11 5, 7 indep 0 0 0.00 0.00

2 1 1, 8 2 bb8 90 2.49, 0.69 2 -0.21 38.50
2 2 2, 9 8 indep 0 0 0.00 0.00
2 3 8, 10 9 gumbel 180 1.64 1 0.39 163.52
2 4 9, 12 10 joe 0 1.21 1 0.11 15.73
2 5 10, 3 12 gumbel 0 1.07 1 0.07 6.57
2 6 12, 4 3 frank 0 0.62 1 0.07 3.48
2 7 3, 11 4 clayton 270 0.08 1 -0.04 1.72
2 8 4, 6 11 indep 0 0 0.00 0.00
2 9 11, 5 6 gaussian 0 -0.13 1 -0.08 5.79
2 10 6, 7 5 gumbel 180 1.16 1 0.14 20.98

3 1 1, 9 8, 2 gumbel 0 1.18 1 0.15 26.39
3 2 2, 10 9, 8 gumbel 90 1.36 1 -0.27 63.59
3 3 8, 12 10, 9 bb8 270 1.36, 0.96 2 -0.14 23.31
3 4 9, 3 12, 10 indep 0 0 0.00 0.00
3 5 10, 4 3, 12 clayton 270 0.11 1 -0.05 2.86
3 6 12, 11 4, 3 indep 0 0 0.00 0.00
3 7 3, 6 11, 4 indep 0 0 0.00 0.00
3 8 4, 5 6, 11 frank 0 -0.55 1 -0.06 2.72
3 9 11, 7 5, 6 bb7 90 1.14, 0.19 2 -0.15 26.41

4 1 1, 10 9, 8, 2 t 0 0.31, 5.21 2 0.20 39.83
4 2 2, 12 10, 9, 8 clayton 0 0.23 1 0.10 16.80
4 3 8, 3 12, 10, 9 frank 0 -0.88 1 -0.10 7.82
4 4 9, 4 3, 12, 10 indep 0 0 0.00 0.00
4 5 10, 11 4, 3, 12 bb7 90 1.05, 0.03 2 -0.04 2.68
4 6 12, 6 11, 4, 3 gaussian 0 0.12 1 0.08 5.13
4 7 3, 5 6, 11, 4 indep 0 0 0.00 0.00
4 8 4, 7 5, 6, 11 joe 270 1.03 1 -0.02 1.36

5 1 1, 12 10, 9, 8, 2 t 0 -0.14, 7.51 2 -0.09 16.31
5 2 2, 3 12, 10, 9, 8 joe 180 1.08 1 0.05 5.59
5 3 8, 4 3, 12, 10, 9 clayton 0 0.22 1 0.10 7.82
5 4 9, 11 4, 3, 12, 10 bb8 180 1.26, 0.89 2 0.08 7.29
5 5 10, 6 11, 4, 3, 12 bb8 180 1.40, 0.8604426 2 0.10 9.74
5 6 12, 5 6, 11, 4, 3 frank 0 -1.34 1 -0.15 17.21
5 7 3, 7 5, 6, 11, 4 clayton 180 0.13 1 0.06 4.78

6 1 1, 3 12, 10, 9, 8, 2 gaussian 0 0.15 1 0.09 7.85
6 2 2, 4 3, 12, 10, 9, 8 joe 270 1.12 1 -0.06 3.90
6 3 8, 11 4, 3, 12, 10, 9 indep 0 0 0.00 0.00
6 4 9, 6 11, 4, 3, 12, 10 gaussian 0 -0.09 1 -0.06 3.31
6 5 10, 5 6, 11, 4, 3, 12 clayton 270 0.09 1 -0.04 2.74
6 6 12, 7 5, 6, 11, 4, 3 indep 0 0 0.00 0.00

7 1 1, 4 3, 12, 10, 9, 8, 2 frank 0 -0.58 1 -0.06 2.89
7 2 2, 11 4, 3, 12, 10, 9, 8 gaussian 0 -0.11 1 -0.07 4.59
7 3 8, 6 11, 4, 3, 12, 10, 9 clayton 90 0.09 1 -0.04 2.71
7 4 9, 5 6, 11, 4, 3, 12, 10 gumbel 0 1.07 1 0.07 4.90
7 5 10, 7 5, 6, 11, 4, 3, 12 indep 0 0 0.00 0.00

8 1 1, 11 4, 3, 12, 10, 9, 8, 2 joe 270 1.02 1 -0.01 1.49
8 2 2, 6 11, 4, 3, 12, 10, 9, 8 joe 0 1.04 1 0.02 1.51
8 3 8, 5 6, 11, 4, 3, 12, 10, 9 gaussian 0 -0.14 1 -0.09 7.11
8 4 9, 7 5, 6, 11, 4, 3, 12, 10 gaussian 0 0.14 1 0.09 6.87

9 1 1, 6 11, 4, 3, 12, 10, 9, 8, 2 joe 0 1.03 1 0.02 1.01
9 2 2, 5 6, 11, 4, 3, 12, 10, 9, 8 bb8 0 1.85, 0.8314381 2 0.19 34.42
9 3 8, 7 5, 6, 11, 4, 3, 12, 10, 9 joe 0 1.04 1 0.02 1.45

10 1 1, 5 6, 11, 4, 3, 12, 10, 9, 8, 2 indep 0 0 0.00 0.00
10 2 2, 7 5, 6, 11, 4, 3, 12, 10, 9, 8 gaussian 0 -0.15 1 -0.09 8.09

11 1 1, 7 5, 6, 11, 4, 3, 12, 10, 9, 8, 2 indep 0 0 0.00 0.00
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Table 5.8: Fitted R-vine to xobs
i , i = 1, . . . , 711, using the variable abbreviations of Table 5.2.

tree edge conditioned conditioning family rotation parameters df tau loglik

1 1 2, 9 gumbel 0 1.07 1 0.07 6.04
1 2 10, 6 bb7 90 1.12, 0.21 2 -0.15 25.80
1 3 6, 5 gumbel 180 1.16 1 0.14 21.72
1 4 5, 8 clayton 270 0.19 1 -0.08 9.43
1 5 7, 9 frank 0 3.40 1 0.34 98.45
1 6 8, 9 joe 270 2.14 1 -0.39 192.02
1 7 9, 1 gaussian 0 -0.33 1 -0.21 40.71
1 8 1, 4 clayton 180 0.23 1 0.10 12.94
1 9 3, 11 frank 0 0.62 1 0.07 3.47
1 10 4, 11 frank 0 -1.42 1 -0.15 19.19

2 1 2, 7 9 clayton 270 0.14 1 -0.07 6.24
2 2 10, 5 6 indep 0 0 0.00 0.00
2 3 6, 8 5 indep 0 0 0.00 0.00
2 4 5, 9 8 indep 0 0 0.00 0.00
2 5 7, 8 9 gaussian 0 0.37 1 0.24 52.02
2 6 8, 1 9 gaussian 0 -0.23 1 -0.14 18.71
2 7 9, 4 1 indep 0 0 0.00 0.00
2 8 1, 11 4 clayton 0 0.21 1 0.09 11.16
2 9 3, 4 11 indep 0 0 0.00 0.00

3 1 2, 8 7, 9 clayton 180 0.13 1 0.06 3.99
3 2 10, 8 5, 6 gumbel 180 1.10 1 0.09 8.95
3 3 6, 9 8, 5 indep 0 0 0.00 0.00
3 4 5, 7 9, 8 gaussian 0 -0.12 1 -0.08 5.15
3 5 7, 1 8, 9 clayton 0 0.30 1 0.13 14.85
3 6 8, 4 1, 9 gumbel 0 1.07 1 0.06 4.51
3 7 9, 11 4, 1 joe 90 1.24 1 -0.12 25.78
3 8 1, 3 11, 4 indep 0 0 0.00 0.00

4 1 2, 5 8, 7, 9 indep 0 0 0.00 0.00
4 2 10, 9 8, 5, 6 indep 0 0 0.00 0.00
4 3 6, 7 9, 8, 5 indep 0 0 0.00 0.00
4 4 5, 1 7, 9, 8 indep 0 0 0.00 0.00
4 5 7, 4 1, 8, 9 clayton 270 0.22 1 -0.10 10.20
4 6 8, 11 4, 1, 9 joe 0 1.27 1 0.13 24.18
4 7 9, 3 11, 4, 1 indep 0 0 0.00 0.00

5 1 2, 6 5, 8, 7, 9 gaussian 0 0.12 1 0.07 4.97
5 2 10, 7 9, 8, 5, 6 indep 0 0 0.00 0.00
5 3 6, 1 7, 9, 8, 5 gumbel 90 1.06 1 -0.06 4.79
5 4 5, 4 1, 7, 9, 8 clayton 90 0.12 1 -0.06 4.85
5 5 7, 11 4, 1, 8, 9 bb8 270 1.59, 0.88 2 -0.16 25.92
5 6 8, 3 11, 4, 1, 9 indep 0 0 0.00 0.00

6 1 2, 1 6, 5, 8, 7, 9 indep 0 0 0.00 0.00
6 2 10, 1 7, 9, 8, 5, 6 frank 0 -0.93 1 -0.10 8.33
6 3 6, 4 1, 7, 9, 8, 5 indep 0 0 0.00 0.00
6 4 5, 11 4, 1, 7, 9, 8 frank 0 0.85 1 0.09 6.51
6 5 7, 3 11, 4, 1, 8, 9 joe 180 1.13 1 0.07 3.45

7 1 2, 4 1, 6, 5, 8, 7, 9 indep 0 0 0.00 0.00
7 2 10, 4 1, 7, 9, 8, 5, 6 clayton 90 0.12 1 -0.06 4.67
7 3 6, 11 4, 1, 7, 9, 8, 5 indep 0 0 0.00 0.00
7 4 5, 3 11, 4, 1, 7, 9, 8 indep 0 0 0.00 0.00

8 1 2, 11 4, 1, 6, 5, 8, 7, 9 indep 0 0 0.00 0.00
8 2 10, 11 4, 1, 7, 9, 8, 5, 6 indep 0 0 0.00 0.00
8 3 6, 3 11, 4, 1, 7, 9, 8, 5 indep 0 0 0.00 0.00

9 1 2, 10 11, 4, 1, 6, 5, 8, 7, 9 indep 0 0 0.00 0.00
9 2 10, 3 11, 4, 1, 7, 9, 8, 5, 6 indep 0 0 0.00 0.00

10 1 2, 3 10, 11, 4, 1, 6, 5, 8, 7, 9 indep 0 0 0.00 0.00
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In aviation safety, runway overruns are significant due to their high frequency of occurrence.
Therefore, identifying factors contributing to runway overruns can help mitigate the risk and
prevent such incidents (accidents). Physics-based and statistical models have been used to esti-
mate runway overrun risk probabilities. However, they are computationally expensive or require
expert knowledge. We previously proposed in Chapter 4 a flexible nonlinear statistical approach
to quantify the risk probability of an aircraft exceeding a chosen threshold at a controllable speed
of 80 knots, given a set of influencing factors. The proposed method is a nonlinear regression
based on D-vine copulas, offering low computational complexity and allowing for complex tail
dependence present in the data. For example, the D-vine regression (DVR) identified 5.8% of the
observed flights to have an estimated risk probability > 10−3 for a chosen threshold at 2, 500
meters. To go further in the tail, for example, at 3, 000 m, we propose the DVR in combina-
tion with a Monte Carlo subset simulation-based approach, which we call DVR-SuS. The newly
developed method accounts for highly dependent non-Gaussian random variables and provides
risk probabilities as small as 10−9 for more significant thresholds. We apply the DVR-SuS to the
quick access recorder (QAR) data of Chapter 2, which allow us to identify and investigate factors
that influence runway overruns under significant thresholds for varying risk probability. We show
that the DVR-SuS can generate samples in the failure domain while preserving the features of
the observed data. Also, the running time for larger thresholds is under three minutes, indicating
the speediness of the DVR-SuS approach. Therefore, the DVR-SuS approach should be consid-
ered when an efficient data-driven surrogate model is desired, especially for estimating rare event
probabilities.

6.1 Introduction

Uncertainty quantification (UQ) allows one to estimate desired statistics of a system response sub-
ject to stochastic input. Reddy 2019 defines a deterministic computational model M, i.e., a finite
element code, as a set of mathematical equations that expresses the important features of a phys-
ical system in terms of variables that describe a phenomenon of interest. Therefore, the model
takes in a set of D possibly coupled input parameters, modeled by a random vector X with a joint
CDFFX and PDF fX. The computational model then transforms X into an uncertain univariate
output Y = M(X).

Of interest in UQ are various statistics of Y , such as the CDF of Y , the moments of Y , and
the probability of extreme events , e.g., small or large quantiles of Y . However, since M is gen-
erally a complex differential equation model, analytical solutions are generally not available. The
system behavior is only known pointwise in correspondence with the input xi sampled from FX,
where the model gives the response yi = M(xi), i = 1, . . . , n. One strategy to study the UQ
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of such systems is by Monte Carlo simulation (MCS). MCS draws independent and identically
distributed (i.i.d) samples xi from FX, then obtains an estimate ŷi = M(xi). Generally, MCS
requires the sample size n to be large enough to adequately cover the input probability space.
However, this is not convenient when M is computationally expensive. For this reason, alterna-
tive approximation techniques have been proposed. Techniques such as first- and second-order
reliability methods (FORM Hasofer and Lind 1974, SORM Fiessler et al. 1979), importance sam-
pling (IS, Melchers and A. T. Beck 2018), and subset simulation (Au and J. L. Beck 2001) in reliability
analysis are used for the estimation of small failure probabilities, while polynomial chaos expan-
sions (PCE, R. Li and Ghanem 1998), kriging (Matheron 1967), and other meta-modeling techniques
are used for the estimation of the moments of Y .

Because M is a deterministic code, the uncertainty in Y is due to the uncertainty in X. There-
fore, a suitable statistical model for X with components Xj , j = 1, 2, . . . , d, is needed to study
the UQ of Y . Historically, the components of X are assumed to be mutually independent or to
have the dependence structure of a multivariate elliptical distribution (Lebrun and Dutfoy 2009).
Gaussian distributions are commonly used in the latter because they are simple to model and fit to
data. In particular, Gaussian distributions require only the estimation of pairwise correlation co-
efficients. However, some advanced UQ techniques require mutually independent inputs, such as
FORM, SORM, and some types of subset simulation (Papaioannou et al. 2015). The most general
transformation of the probabilistic input space, the Rosenblatt transform (Rosenblatt 1952), maps
the input vector X to a vector Z with independent components. This transformation requires
the computation of univariate conditional CDFs. On the other hand, when FX has a Gaussian
dependence structure, the map is known and is referred to as the Nataf transform (Nataf 1962).
Neglecting the dependence structure, particularly when it deviates from the Gaussian assump-
tion, may introduce bias in the resulting estimates (Torre et al. 2019).

Despite the availability of tools to transform the probabilistic input space to benefit from ad-
vanced UQ techniques, the system may still be difficult to describe mathematically. The system
may contain many parameters and a complex structure, or the performance function, the response
of the system, is implicit and highly nonlinear (Xiao et al. 2020). For example, FORM and SORM
require linearization of the performance function around a design point, , i.e., the most probable
failure point (MPFP), in a suitable transformed probabilistic input space. These methods have sig-
nificant drawbacks, especially when the computational model, M, is highly nonlinear or in the
presence of multiple failure modes. Simulation-based techniques are used instead because they
are robust and unbiased (Moustapha et al. 2022). However, the convergence rate in this class of
methods is extremely slow, particularly when the target failure probability is small. The slow con-
vergence results from a large number of calls to the costly computational model used to evaluate
the system.

In the past decade, surrogate models have seen a surge in the structural reliability community.
Surrogate models are cost-efficient approximations of the original computational modelM. Fur-
thermore, the combination of surrogate models and MCS methods offers a good balance between
accuracy and efficiency (Youn and P. Wang 2009). The idea is to build a surrogate of the computa-
tional model that will be used to locate the failure domain. The efficiency results from the evalu-
ations of the performance function only in regions of interest in a sequential manner, leading to
a precise identification of the surface of the performance function and henceforth of the failure
domain.
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6.1 Introduction

The first usage of approximate surrogate models in place of costly computational models ap-
peared in the works of Faravelli 1989. The author proposed a response surface method (RSM) in
which a polynomial regression is used in terms of the spatial averages of the input variables. The
proposed method was used to estimate the probability of failure of a pressurized light water re-
actor vessel, where the influence of the cladding on some structural response variables was exam-
ined. Later, Hurtado 2004 introduced support vector machines (SVMs) to the structural reliabil-
ity community and applied them with an MCS method. However, until Bourinet et al. 2011, the
combination of SVMs and subset simulation was not used to estimate small failure probabilities.
The combined method places a small number of training points in the random variables space
to build SVM classifiers as surrogates. Although this approach provides probabilities of failure
for values as small as 10−7, the number of calls to the evaluation function is still relatively high
(a few hundred to a few thousand). More importantly, machine learning models require higher
computational costs (e.g., computational time and memory usage) and larger data sets (Fan et al.
2019). Furthermore, they do not take into account the multivariate behavior of the tail, which
is important in estimating the probability of rare events. For example, the multivariate normal
distribution requires that all univariate and multivariate distributions be normal and allows only
for a symmetric dependence structure, neglecting the tail dependence (Czado 2019).

Recently, dependence modeling has seen significant advances in the statistical community with
the widespread application of copula-based models, particularly vine copula-based models. Cop-
ula theory allows one to separate the model dependence (by multivariate copulas) from the marginal
behavior (by univariate CDFs) of joint distributions, thus providing a flexible way to build mul-
tivariate probability models by selecting each ingredient individually (Joe 1996b; Joe 2014; Nelsen
2007). Copulas have recently been used in various engineering studies, such as earthquakes (Goda
2010; Goda and Tesfamariam 2015; Zentner 2017) and sea waves (De Michele et al. 2007; Jäger et al. 2019;
Masina et al. 2015; Montes-Iturrizaga and Heredia-Zavoni 2016). Masina et al. 2015 used a copula-based
approach to quantify the probability of coastal flooding on the coast of Ravenna. The authors
concluded that extreme value copula families seem to capture the observed upper tail dependence
between sea level fluctuation peaks and significant wave heights, thus providing an accurate prob-
ability of failure.

However, copula applications are often limited to low-dimensional problems. Building and
selecting copulas that adequately represent the coupling of the phenomena of interest in higher
dimensions is a complex problem. Instead, vine copulas are used. For example, Höhndorf, Czado,
et al. 2017 investigated the relationship among variables arising from operational flight data (OFD)
using marginal regression models with a vine copula. In addition, vine copula-based models were
used in reliability analysis. Jiang et al. 2015 used a vine copula model to quantify uncertainties in
loadings and material properties of a mechanical structure.

More recently, the use of a subclass of vine copula-based models, DVR, has been shown to
be more applicable, for example, compared to standard linear quantile regression (LQR) (R. W.
Koenker and Bassett 1978). The DVR, proposed by Kraus and Czado 2017, sequentially fits a con-
ditional likelihood optimal D-vine copula to a response of interest Y given some covariates X =
(X1, X2, . . . , Xd). D-vine copulas are used since they allow deriving conditional densities with-
out integration, unlike the general R-vine copulas. Thus, this class of vine copula models is suit-
able for extremely large and small conditional probabilities.
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6 D-Vine-Based Subset Simulation

In Chapter 4, the DVR was applied to describe the risk of runway overruns and to identify risky
flights. We identified 5.77% of 711 flights to be risky, which means that these flights have a condi-
tional probability of risk > 10−3 exceeding a threshold 2, 500 meters (m) at a controllable speed
of 80 knots on a runway after landing. Going further in the tail of the response, i.e., at 3, 000 m,
given the covariates, is more critical if the runway length is just above 3, 000 m, leaving a smaller
distance to stop. The weight of the aircraft usually determines the length of the runway. For exam-
ple, international wide-body flights, which carry a large amount of fuel and, therefore, are heavier,
may require a minimum of 3,048 m for landing (Air Planning 2021). This gives the motivation to
investigate flights that exceed higher thresholds, that is, 2,800 or 3,000 m, at a controllable speed
of 80 knots with different levels of conditional risk probability.

We apply DVR, fitted to the 711 observed QAR flights of Chapter 2, in combination with a
modified version of subset simulation (SuS), DVR-SuS. This novel approach allows us to go fur-
ther in the tail and generate a user-defined number of flights that exceed a large threshold c inex-
pensively (flights in the failure domain) while still preserving the observed characteristics of the
QAR data. We investigate the associated contributing factors of more than 1, 000 flights with the
probability of conditional risk > 10−6 belonging to the failure domain for c = 2, 800 m and
c = 3, 000 m. These flights come from three fitted DVR models: normal marginal distributions
and Gaussian pair-copulas, best-fit marginal distributions and Gaussian pair-copulas, and best-
fit marginal distributions and parametric pair-copulas are used. The DVR with best-fit marginal
distributions and parametric pair-copulas gives the best overall fit according to the Akaike infor-
mation criterion (AIC) score.

6.2 Methodology: DVR &Rare Event Probabilities

Rare event probability estimation

Given a model M : Rdx 7→ R, which predicts the response y ∈ Y ⊂ R based on a vector of
covariates x ∈ X ⊂ Rdx of the model, the response is grouped into a failure domain F or a safe
domain f. The sets X and Y represent the covariates of the model and the response, respectively.
Both F and f are identified by the so-called limit state function g : Rdx 7→ R, that gives the
domains as:

f = {y ∈ Y|y = M(x), x ∈ X , g(y) > 0}, and
F = {y ∈ Y|y = M(x), x ∈ X , g(y) ≤ 0}.

Here, the limit state function g is specified as g = g(y) = c−y = c−M(x) for a fixed threshold
c.

In a probabilistic setting, the covariates and the response are modeled as random, and their
observations are distributed according to the PDFs FX(x) and fY (y). Therefore, the probability
of failure, Pf , in this context, is expressed as the probability of a model response belonging to the
failure domain F :

Pf = P (y ∈ F) =

∫

R
IF (y)fY (y)dy, (6.1)
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with IF 7→ {0, 1}, the indicator function, which is defined as:

IF =

{
0 ⇐⇒ Y ∈ f,

1 ⇐⇒ Y ∈ F
(6.2)

An analytical computation of the probability of failure is rarely possible in practice. Direct
numerical integration is not feasible either due to the small scale of Pf and the high-dimensional
covariate vector. Efforts to overcome these challenges have been proposed in Hasofer and Lind
1974, Rackwitz and Flessler 1978, Hohenbichler et al. 1987, Tvedt 1990, and Cai and Elishakoff 1994.
They proposed to represent the limit state function g using simpler approximate methods. Here,
we focus on simulation-based methods such as crude Monte Carlo simulation (MCS) and subset
simulation (SuS).

Simulation-based methods

This section discusses sampling methods, particularly those used to assess the risk (reliability) of
rare events. The idea is to generate samples in the outcome space i.e., random realizations of a
joint PDF fX in an MCS way to find an estimate of the failure probability Pf . We want to con-
struct an estimator P̂f close to the unknown failure probability Pf for any generated sample x
from X with PDF fX. Monte Carlo methods have been shown to be robust in solving complex
multidimensional problems and problems with complex failure regions (Gogu 2021). We review
the well-known MCS method in brief, followed by SuS in the next section.

To define the estimator P̂f for MCS, we use the law of large numbers to approximate Pf in
Equation 6.1) as:

P̂f ≈ 1

R

R∑

i=1

IF (yi), (6.3)

with R the number of evaluations of the model M(·). It can be shown that the variance of this
estimator is equal to:

V ar(P̂f ) =

√
1− Pf

Pf ·R . (6.4)

When a sufficiently accurate estimate of a very small Pf is desired (i.e., Pf < 10−3), a large
number of model evaluations M(·) are required. In realistic engineering applications, addition-
ally, a single evaluation of M(·) could take several minutes to hours, leading to a situation where
the MCS application becomes computationally intractable quickly. This inefficiency can be im-
proved by variance reduction techniques such as SuS.

Subset simulation (SuS)

The SuS method, proposed by Au and J. L. Beck 2001, has become widely used in the commu-
nity of structural reliability over the years. Although similar methods have been proposed in the
statistical community, e.g. the seminal work of Kahn and Harris 1951 in the context of particle trans-
mission, SuS still draws significant attention. This is due to its efficiency in estimating small failure
probabilities, especially in high-dimensional parameter spaces (Au and J. L. Beck 2001).
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6 D-Vine-Based Subset Simulation

Conceptual SuS idea

The idea of SuS is to represent the small probability of failurePf as a product of the larger and se-
quentially estimated probabilities of intermediate events Em, m = 0, . . . ,M. The intermediate
events are nested so that E = EM ⊂ EM−1 ⊂ · · · ⊂ E1 ⊂ E0 and Em = {y : g(y) ≤ bm},
where b0 > b1, . . . , > bM = 0 are threshold values. From the inclusion rule and successive
conditioning, we have the following.

Pf = P[E] = P[EM ] = P(EM |EM−1)P[EM−1] = · · ·

= P(EM |EM−1)P(EM−1|EM−2) . . .P(E1|E0)P[E0] =
M∏

m=0

Pm, (6.5)

where P0 = P[E0] and Pm = P(Em|Em−1) for m = 1, . . . ,M. Zuev et al. 2012 give guid-
ance on the selection of the conditional probability P0 ∈ [0.1, 0.3]. The value P0 = 0.1 is
often chosen in the literature even though none of the MCS-generated samples in the event E0

belongs to F . In this case, the event E0 represents an MCS iteration followed by SuS iterations
for Em, m ≥ 1, and the choice of the value 0.1 is often used. The MCS sampling procedure
uses independent input variables Zi for i = 1, 2, . . . , d, and, similarly, SuS uses the so-called
modified Metropolis algorithm (MMA) for sampling, which is a subclass of Markov chain Monte
Carlo (MCMC) algorithms (Au and J. L. Beck 2001). Therefore, Pf becomes a product of M + 1
probabilities, each of which is necessarily greater thanPf and therefore easier to estimate thanPf .

Before describing the D-vine-based subset simulation, we explain three scales that we use fre-
quently in the next section. First, suppose that we have observed data (yi, xi,1, . . . , xi,d) for
i = 1, 2, . . . , n. Since the observed data are in their natural units of measurement, we refer to
(yi, xi,1, . . . , xi,d) for i = 1, 2, . . . , n as data on the original scale. Second, the data on the cop-
ula scale refer to (v̂i, ûi,1, . . . , ûi,d), where v̂i = F̂Y (yi) ∈ [0, 1] and ûi,j = F̂j(xi,j) ∈ [0, 1]
for i = 1, 2, . . . , n and j = 1, 2, . . . , d. Thirdly, the data on the marginally normalized scale re-
fer to (ẑyi , ẑxi,1 , . . . , ẑxi,d

), where ẑyi := Φ−1(v̂i) = Φ−1(F̂Y (yi)) and ẑxi,j
:= Φ−1(ûi,j) =

Φ−1(F̂j(xi,j)) for i = 1, 2, . . . , n and j = 1, 2, . . . , d. Here Φ is the standard normal CDF,
and the dependence structure captured by the copula for (yi, xi,1, . . . , xi,d) for i = 1, 2, . . . , n is
unchanged through these three transformations. The transformations are illustrated in Figure 6.1,
where, for ease of notation, we remove the hat̂ .

Rare event probability estimation usingD-vine-based subset simulation

As an alternative approach to alleviate computational burden or results bias, the model M(·) is
usually approximated by a less computationally intensive surrogate model Ŷ = M̂(X). Data-
driven surrogate models aim to describe the phenomena of interest using observed data, while
some aim to reduce computational effort taken to evaluate the full model M(·) by using simpler
mathematical relationships.

We extend the DVR approach of Section 3.6 by combining it with SuS, which we denote by
(DVR-SuS). This newly developed approach allows us to go further in the tail of Equation 3.24,
account for complex dependencies in the data, and estimate failure probabilities as small as 10−9.
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6.2 Methodology: DVR & Rare Event Probabilities

Figure 6.1: Graphical representation of the scales: the original scale, the copula scale, and the marginally
normalized scale for a specified vine distribution with an associated vine copula.

Next, we provide a conceptual idea of the DVR-SuS approach, followed by the DVR-SuS algo-
rithm.

Conceptual idea of DVR-SuS

We use the same two-step approach described in Section 3.5 to fit a DVR to observed data (yobsi , xobsi,j ),
i = 1, 2, . . . , n and j = 1, 2, . . . , d.We denote the fitted DVR byMobs

DVcop
and has a conditional

density given by
f̂Y |X1,x2,...,Xd

(yobs|xobs1 , xobs2 , . . . , xobsd ). (6.6)

The conditional distribution function associated with Equation 6.6 is used to estimate the condi-
tional risk probabilities. Furthermore, we use the modelMobs

DVcop
to construct intermediate events

Em,m = 0, 1, . . . ,M, in Equation 6.5 needed to estimate the probability of failure Pf .
In the first iteration, m = 0, of DVR-SuS, an MCS is implemented. Unlike the MCS itera-

tion in Section 6.2, we generate model-based R independent copula realizations from Mobs
DVcop

:

(vrm , urmj ), rm = 1, 2, . . . , R and j = 1, 2, . . . , d. We transform these copula realizations to
the original scale (yrm , xrmj )usingyrm := F−1

Y (vrm) andxrmj := F−1
j (urmj ), rm = 1, 2, . . . , R

and j = 1, 2, . . . , d. Then we determine gc(yrm) for a threshold value c and define the failure
domain Fm := {rm : gc(y

rm) ≤ 0}. If |Fm| < k, k is the desired number of observations in
Fm, set the conditional probability Pm to the value 0.1, and continue with a subset iteration.

The subset iteration starts with estimating the conditional risk probabilities, αc(xrm), de-
fined in Equation 4.2) for rm = 1, 2, . . . , R usingMDV obs

cop
. Subsequently, we determine the em-

pirical (1−Pm)% quantile of {αc(xrm), rm = 1, 2, . . . , R}, which we denote by Q̂1−Pm
α,c .This

enables us to introduce a seed set, Sm+1 := {rm : αc(xrm) > Q̂1−Pm
α,c }. From the seed set, we

obtain empirical variances (σ2), minimum (min) and maximum (max) values after transforming
(vrm , urmj ) for rm ∈ Sm+1 and j = 1, 2, . . . , d to the marginally normalized scale. We now gen-

73



6 D-Vine-Based Subset Simulation

erate Tm+1 new independent normal realizations (zsrm+1
y , zs

rm+1
xj ), rm+1 = 1, 2, . . . , Tm+1,

whereTm+1 = (1−Pm)×R.Here, the realizations are truncated on [min−σ,max+σ] for each
variable. For example, zsrm+1

y ofN(0, 1) is truncated on [minzsrmy −σzsrmy ,maxzsrmy +σzsrmy ],
where minzsrmy = min{zsrmxj

, rm ∈ Sm+1}, maxzsrmy = max{zsrmxj
, rm ∈ Sm+1}, and

σzsrmy = empirical standard deviation of{zsrmxj
, rm ∈ Sm+1}. We transform these indepen-

dent normal realizations to the copula scale (vsrm+1
y , us

rm+1
xj ), rm+1 = 1, 2, . . . , Tm+1, and

j = 1, 2, . . . , d. After which, we apply the iterative inverse probability transformations dis-
cussed in Section (4.2) to obtain observations withMobs

DVcop
dependence structure. Now we trans-

form these copula realizations with the dependence structure to the original scale (yrm+1 , x
rm+1

j ),

rm+1 = 1, 2, . . . , Tm+1 and j = 1, 2, . . . , d, to determine αc(xrm+1) using Mobs
DVcop

and de-
fine Fm+1 := {rm+1 : gc(y

rm+1) ≤ 0}. If |Fm+1| < k, set m = m + 1, Pm = 0.1, and
rm = 1, 2, . . . , Tm.

Repeat the subset iteration until |Fm+1| > k, then setM = m+1 and estimate the failure
probability in Equation 6.1 as

Pf =

M∏

m=0

Pm,

with PM = |FM |
TM

.

Note that our goal here is to have k observations in the failure domain F , rather than stopping
the subset iteration when at least one observation belongs to the failure domain F . Therefore,
we do not focus on estimating the probability of rare events as in reliability analysis, but rather
on the number of observations exceeding a certain threshold with a specific risk probability. This
way allows us to investigate the characteristics of the contributing factors in the failure domain.
In the next section, we outline the DVR-SuS algorithm and provide a flow chart to summarize
the approach.

DVR-SuS algorithm and flowchart

The DVR-SuS algorithm is outlined below. All steps, from the fitting of a DVR to obtaining the
probability of failure Pf , are included in the algorithm. Additionally, we add a flowchart at the
beginning to summarize the algorithm steps.
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• Set𝑚 = 0 and 𝑘, 𝑅 ∈ ℤ+

• Fit a DVR model to 𝑦𝑖
𝑜𝑏𝑠, 𝑥𝑖,𝑗

𝑜𝑏𝑠 ,𝑀𝐷𝑉𝑐𝑜𝑝
𝑜𝑏𝑠 .

crude Monte Carlo simulation 

• Generate 𝑅 model-based independent

realizations: 𝑣𝑟𝑚 , 𝑢𝑗
𝑟𝑚 , 𝑟𝑚= 1, 2,… , 𝑅.

• Transform to the original scale:

𝑦𝑟𝑚 , 𝑥𝑗
𝑟𝑚 , 𝑟𝑚= 1, 2, … , 𝑅.
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𝒓𝒎 ≤ 0, 𝑟𝑚 = 1, 2, … , 𝑅.

• Define ℱ𝑚 ≔ {𝑟𝑚: 𝑔𝑐 𝑦
𝒓𝒎 ≤ 0}

• If 𝐹𝑚 < 𝑘, set 𝑃𝑚 = 0.1
• and continue with subset iteration

• Find a seed set 𝑺𝑚+1 ≔ 𝑟𝑚: 𝛼𝑐 𝒙
𝒓𝒎 > 𝑄𝛼,𝑐
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• Generate 𝑇𝑚+1 = (1 − 𝑃𝑚) × 𝑅 independent truncated normal realizations:

𝑧𝑠𝑦
𝑟𝑚+1 , 𝑧𝑠𝑥𝑗
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• Transform to the copula scale:

𝑣𝑠𝑦
𝑟𝑚+1 , 𝑢𝑠𝑥𝑗

𝑟𝑚+1

• Apply the Rosenblatt transform to induce the𝑀𝐷𝑉𝑐𝑜𝑝
𝑜𝑏𝑠 dependence structure

• Transform to the original scale: 𝑦𝑟𝑚+1 , 𝑥𝑗
𝑟𝑚+1

• Determine 𝑔𝑐 𝑦
𝒓𝒎+𝟏 ≤ 0, 𝑟𝑚+1 = 1, 2, … , 𝑇𝑚+1.

• Define ℱ𝑚+1 ≔ {𝑟𝑚+1: 𝑔𝑐 𝑦
𝒓𝒎+𝟏 ≤ 0}

• Set𝑚 = 𝑚+ 1, 𝑟𝑚 = 1, 2, … , 𝑇𝑚

Subset iteration 

Start

Figure 6.2: Flow chart of the DVR-SuS algorithm

Algorithm 2: Initialization of the DVR-SuS algorithm
Input: Observed data (yobsi , xobsi,j ), i = 1, 2, . . . , n and j = 1, 2, . . . , d.
Output: L observations (yl, xl,j), l = 1, 2, . . . , L and j = 1, 2, . . . , d.
Initialize:

• Set m = 0

• k, k ∈ Z+, number of desired observations in the failure domain Fm

• R,R ∈ Z+

• Fit a DVR model to (yobsi , xobsi,j ), i = 1, 2, . . . , n and j = 1, 2, . . . , d

– Obtain:

* Fitted marginal distributions F̂Y and F̂j , j = 1, 2, . . . , d

* DVR copula with order V − Uq1 − · · · − Uqd , where (q1, q2, . . . , qd)⊤ is an
arbitrary permutation of (1, 2, . . . , d)⊤. Re-order the variables so that the
order is V − U1 − · · · − Ud.

* Fitted pair-copula families ĉV Uj ;U1,...,Uj−1 and ĉUjUj+q ;Uj+1,...,Uj+q−1 with
corresponding copula parameters θ̂V Uj ;U1,...,Uj−1 and θ̂UjUj+q ;Uj+1,...,Uj+q−1 ,
j = 1, 2, . . . , d and q = j, j + 1, . . . , d.

– Remove the hat̂ for ease of notation

– Denote the fitted DVR model by Mobs
DVcop
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6 D-Vine-Based Subset Simulation

Algorithm 3: DVR-SuS algorithm
1: CMS iteration: Crude Monte Carlo simulation (CMS) [m = 0]
2: Generate model-based R independent copula realizations from Mobs

DVcop
: (vrm , urmj ),

rm = 1, 2, . . . R, j = 1, 2, . . . , d.
3: Transform (vrm , urmj ) to the original scale (yrm , xrmj ), rm = 1, 2, . . . , R and

j = 1, 2, . . . , d:
4: Determine gc(yrm), rm = 1, 2, . . . , R.
5: Define Fm := {rm : gc(y

rm) ≤ 0}
6: If |Fm| < k, set Pm = 0.1 and continue with Subset iteration
7: Subset iteration:
8: Compute αc(xrm) based on Mobs

DVcop
, rm = 1, 2, . . . , R.

9: Determine Q̂1−Pm
α,c := empirical (1− Pm)% quantile of {αc(xrm), rm = 1, 2, . . . , R}.

10: Set a seed set Sm+1, Sm+1 := {rm : αc(xrm) > Q̂1−Pm
α,c }.

11: Transform (vrm , urmj ) for rm ∈ Sm+1 to the marginally normalized scale:
12: Determine empirical variances:
13: Determine min and max values:
14: Generate Tm+1 independent truncated normal realizations:
15: Transform (zs

rm+1
y , zs

rm+1
xj ) to the copula scale (vsrm+1

y , us
rm+1
xj ),

rm+1 = 1, 2, . . . , Tm+1, j = 1, 2, . . . , d:
16: Transform these independent observations (usrm+1

y , us
rm+1
xj ) to observations with the

Mobs
DVcop

dependence structure for rm+1 = 1, 2, . . . , Tm+1:
17: Transform (vs

rm+1
y , us

rm+1
xj ) to the original scale (yrm+1 , x

rm+1

j ),
rm+1 = 1, 2, . . . , Tm+1 and j = 1, 2, . . . , d:

18: Determine gc(yrm+1), rm+1 = 1, 2, . . . , Tm+1.
19: Define Fm+1 := {rm+1 : gc(y

rm+1) ≤ 0}
20: If |Fm+1| < k, set m = m+ 1, Pm = 0.1, rm = 1, 2, . . . , Tm, and repeat Subset

iteration

21: Repeat Subset iteration until |Fm+1| > k, then set M = m+ 1 and estimate the
failure probability Pf as:

Pf =

M∏

m=0

Pm,

with PM = |FM |
TM

.

6.3 Application: QAR Flight Data

In this section, we will perform our analysis. We will be discussing the necessary steps for applying
DVR-SuS, starting from fitting a DVR model to the dataset introduced in Chapter 2 to generating
failure domain samples. Lastly, we examine a pair of selected factors in the failure domain using
bivariate contour lines.

76



6.3 Application: QAR Flight Data

Data analysis

We are interested in modeling the influence of contributing factors on the distance to a control-
lable speed of 80 knots. In particular, our objective is to quantify the conditional probability that a
flight has a distance to the controllable speed of 80 knots, th80, greater than a threshold c given by
P (th80 > c|X = x). This corresponds to Equation 4.2, where the response Y is now replaced
by th80.

To investigate the influence of contributing factors at threshold values c = 2, 800 m and c =
3, 000 m, we apply DVR-SuS. Without SuS, it is only feasible to obtain a few numbers of flights
in the failure domain with a threshold value c = 2, 500m using Mobs

DVcop
.

DVR estimation

We start by fitting marginal distributions to the response, th80, and the contributing factors to
construct the copula data vi = F̂th80(th80i) and ui,j = F̂j(xi,j), where F̂th80 and F̂j are the
estimated distribution functions of th80 and Xj , j = 1, 2, . . . , d, respectively. Upon examina-
tion of the marginal histograms in Figure 6.3, we observe the need for skewed and multimodal
distributions. We also fit a normal distribution to the response and each contributing factor to
show that considering a normal distribution for each variable neglects some characteristics of the
observed data. We denote the normally fitted margins by MNorm while the best-fit margins by
Mfit to the observed QAR data. Table 6.1 and Table 6.2 list the fitted marginal distributions and
their parameters, respectively.

Table 6.1: MNorm margins and their parameters.
Variable Selected distribution Parameters
th80 Normal [µ̂, σ̂] = [1739.943, 259.228]
hws Normal [µ̂, σ̂] = [1.189, 2.265]
temp Normal [µ̂, σ̂] = [283.294, 6.982]
refAP Normal [µ̂, σ̂] = [1016.790, 7.545]
asd Normal [µ̂, σ̂] = [1.195, 1.679]
trd Normal [µ̂, σ̂] = [3.465, 1.062]
tsd Normal [µ̂, σ̂] = [3.353, 0.277]
lm Normal [µ̂, σ̂] = [302.756, 31.830]
tbs Normal [µ̂, σ̂] = [3.931, 4.459]
bd Normal [µ̂, σ̂] = [16.246, 4.803]
td Normal [µ̂, σ̂] = [443.384, 121.847]
ea Normal [µ̂, σ̂] = [-1.721, 0.250]

Table 6.2: Mfit margins and their parameters.
Variable Selected distribution Parameter estimates
th80 Normal [µ̂, σ̂] = [1739.943, 259.228]
hws Univariate kernel density estimation -
temp Univariate kernel density estimation -
refAP Skew Student t. [ξ̂, ω̂, α̂, ν̂] = [1023.067, 9.815, -1.346, 9]
asd Skew Normal [ξ̂, ω̂, α̂] = [0.379, 1.867, 0.655]
trd Generalized Extreme Value [µ̂, σ̂, ν̂] = [2.983, 0.754, 0.058]
tsd Univariate kernel density estimation -

[µ̂1, µ̂2, µ̂3, µ̂4] = [336.511, 304.463, 265.379, 342.860]
lm Mixture of Normals [σ̂1, σ̂2, σ̂3, σ̂4] = [4.020, 16.692, 24.928, 1.421]

[ω̂1, ω̂2, ω̂3, ω̂4] = [0.101, 0.496, 0.264, 0.139]
tbs Univariate kernel density estimation -

[µ̂1, µ̂2] = [18.358, 10.795]
bd Mixture of Normals [σ̂1, σ̂2] = [2.898, 4.370]

[ω̂1, ω̂2] = [0.718, 0.282]
td Gamma [α̂, β̂] = [12.620, 0.028]
ea Univariate kernel density estimation -

We explore the pairwise dependencies for MNorm and Mfit, respectively. Each subfigure in
Figure 6.4 contains three distinct panels. For our data set, Figure 6.4 shows strong dependencies
between th80 and some contributing factors, as well as between only contributing factors. For
example, there is a strong dependence between th80 and lm with τ̂K = 0.46, and a strong de-
pendence between tbs and bdwith τ̂K = −0.40. In addition, the marginally normalized contour
plots demonstrate a severe departure from the Gaussian copula assumption. This can be seen for
pairs such as th80 and lm, th80 and bd, and lm and bd in both subfigures of Figure 6.4. How-
ever, due to the mismatch of the marginal normal distribution of some variables, some marginally
normalized contour plots in Figure 6.4 (a) are difficult to interpret. This is caused by using an inap-
propriate marginal distribution. That is, using a normal margin for lmneglects the observed mul-
timodality shown for lm in Figure 6.3. Instead, Figure 6.4 (b) shows almost perfect uniform[0, 1]
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Figure 6.3: Marginal histograms of observed QAR data with fitted densities usingMNorm margins (in red)
and Mfit margins (in blue).

histograms, indicating a better marginal representation of the observed QAR data. Furthermore,
the corresponding pseudo-copula data approximate the true copula data much better.

We fit three DVR models to our dataset using the R package vinereg (Nagler 2021). In the first
model, we used normal margins and only Gaussian pair copulas in the D-vine. We call this model
MGauss

Norm , where the subscript Norm, represents the fitted normal margins, and the superscript
Gauss, represents the selected pair-copula family in the D-vine. Table 6.3 lists the three fitted
DVR models. Best-fit refers to the best-fit margins specified in Table 6.2, and we only allow para-
metric pair-copula families in MDV

fit . The class of parametric pair-copula families is quite large
and includes families of one and two parameters, such as Gumbel and Student t (Nagler and Vatter
2021).

To compare the three fitted DVR models, we report in Table 6.4 the maximized copula condi-
tional log-likelihood (cll_c) based on Equation 3.25, the associated AIC and Bayesian informa-
tion criterion (BIC) values (AIC_c and BIC_c), the number of estimated pair-copula parame-
ters (n_par), and the full joint log-likelihood on the copula scale (ll_c). From Table 6.4, we see
that MDV

fit is the preferred model based on both AIC_c and BIC_c.
We list the importance order of the contributing factors in relation to the risk of overrun based

on the forward selection procedure discussed in Section (3.6). We only include the D-vine order of
MDV

fit sinceMGauss
Norm is a multivariate normal distribution, and the order of contributing factors is

irrelevant. MGauss
fit has the same D-vine order as MDV

fit . It is important to mention that the three

78



6.3 Application: QAR Flight Data

th80

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.25

hws

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2
0.067

−0.011

temp

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.014

0.0073

−0.014

refAP

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.0075

0.12

−0.0087

−0.061

asd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.031

−0.0075

−0.01

0.033

−0.059

trd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.004

−0.078

0.076

−0.004

−0.033

0.16

tsd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.46

−0.057

−0.024

0.021

−0.036

−0.028

0.0062

lm

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.14

−0.0021

−0.046

0.045

0.045

−0.10

0.026

−0.03

tbs

z1

z 2

z1

z 2

z1

z 2

0.27

−0.21

0.079

−0.049

−0.013

0.098

0.036

0.35

−0.40

bd

z1

z 2

z1

z 2

0.31

−0.053

−0.041

0.0034

−0.07

0.013

−0.15

0.02

0.087

−0.044

td

z1

z 2

0.082

0.078

0.012

0.068

−0.16

0.084

0.034

−0.075

0.11

−0.067

−0.0016

ea

(a) MNorm.
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(b) Mfit.

Figure 6.4: Pairwise dependence exploration of the QAR data (lower triangular panels: marginally normal-
ized contours, diagonal panels: histograms of copula data, and upper triangular panels: pairwise
scatter plots and τ̂K of the copula data).

Table 6.3: Three fitted DVR models with their margins and pair-copula families specified in subscript and
superscript, respectively.

Model Margins Pair-copula family
MGauss

Norm Normal Gaussian
MGauss

fit Best-fitted Gaussian
MDV

fit Best-fitted Parametric

DVR models do not select tsd as a candidate to improve the fit of the model. However, we choose
to include it for comparison with a physics-based model that requires tsd (Koppitz et al. 2019). In
Table 6.5, we see that the MDV

fit order of importance places landing mass (lm), touchdown (td),
and headwind speed (hws) as the three main contributing factors that lead to the risk of a runway
overrun.

Table 6.5: MDV
fit D-vine order of importance of contributing factors.

Model Order
MDV

fit lm td hws ea asd temp tbs bd trd refAP tsd

DVR-SuS results

Since our objective is to investigate the influence of the contributing factors that lead to the risk
of overrun at high threshold values c = 2, 800 m and c = 3, 000 m, respectively, we apply the
DVR-SuS algorithm introduced in Section (6.2). These values are large enough since only one
observed QAR flight exceeds the controllable speed of 80 knots at 2, 500 m. In particular, we
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Table 6.4: The results of three fitted DVR models on the copula scale (cll_c : conditional log-likelihood,
AIC_c, BIC_c, n_par : the number of pair-copula parameters, and ll_c : maximum joint
log-likelihood).

Model cll_c AIC_c BIC_c n_par ll_c
MGauss

Norm 724.20 -1316.40 -1015.00 66 1450.28
MGauss

fit 706.01 -1280.02 -978.62 66 1275.43
MDV

fit 754.53 -1397.06 -1141.33 56 1520.91

are interested in the characteristics of the contributing factors x of a large sample of flights in the
failure domain, which have αc(x) > 10−6 for c = 2, 800 m and c = 3, 000 m.

We run the DVR-SuS algorithm for each DVR fitted in Table 6.3 with k = 1, 000 and R =
100, 000, and their results are presented in Table 6.6 for c = 2, 800 m and c = 3, 000 m, re-
spectively. Each subtable consists of the iteration m = 0, MCS, and the iteration m ≥ 1, SuS.
We also include the number of flights in the failure domain |Fm| and flights having an estimated
conditional risk probability greater than 10−6, αc(x) > 10−6. The probability of failure Pf is
estimated as P0 × P1 × · · · × |FM |

TM
. For example, for c = 2, 800 m, MGauss

Norm has 19,133 flights
in the failure domain after one iteration, so Pf = P0 × |F1|

T1
= 0.1 × 19,133

90,000 = 0.0213. The
last column in the subtables represents the running time of the DVR-SuS algorithm in seconds.
It is worth mentioning that DVR-SuS is a relatively fast algorithm. For simplicity, we will de-
note flights in the failure domain F with αc(x) > 10−6 by DV R − SuSF

αc
. Therefore, using

the three fitted DVR models in Table 6.3, we have MGauss
Norm − SuSF

αc
, MGauss

fit − SuSF
αc

, and
MDV

fit −SuSF
αc

for c = 2, 800m and c = 3, 000m. In particular, we had 19, 133 flights coming
from MGauss

Norm − SuSF
αc

for c = 2, 800 in the failure domain, but using Mobs
DVcop

only 14, 472
flights had a risk probability of αc(x) > 10−6.

Table 6.6: DVR-SuS results based on fitted DVR models. The table contains the number of flights in the
failure domain |F|, the estimated probability of failure Pf , the number of flights with the esti-
mated probability of conditional risk αc(x) > 10−6, and the running time in seconds (sec.).

(a) DVR-SuS results for c = 2, 800 m.
Model Iteration m = 0 Iteration m = 1 M Pf αc(x) > 10−6 Time in sec.
MGauss

Norm |F0| = 1, P0 = 0.1 |F1| = 19, 133, P1 =
19,133
90,000 1 0.0213 14,472 130.19

MGauss
fit |F0| = 1, P0 = 0.1 |F1| = 14, 440, P1 =

14,440
90,000 1 0.0160 10,471 178.00

MDV
fit |F0| = 3, P0 = 0.1 |F1| = 8, 869, P1 =

8,869
90,000 1 0.0099 4,651 134.25

(b) DVR-SuS results for c = 3, 000 m
Model Iteration m = 0 Iteration m = 1 M Pf αc(x) > 10−6 Time in sec.
MGauss

Norm |F0| = 0, P0 = 0.1 |F1| = 13, 782, P1 =
13,782
90,000 1 0.0153 13,782 128.94

MGauss
fit |F0| = 0, P0 = 0.1 |F1| = 10, 204, P1 =

10,204
90,000 1 0.0113 10,204 138.54

MDV
fit |F0| = 0, P0 = 0.1 |F1| = 4, 133, P1 =

4,133
90,000 1 0.0046 4,133 134.25
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Figure 6.5 shows the fitted marginal densities of the contributing factors selected byMGauss
Norm −

SuSF
αc

, MGauss
fit − SuSF

αc
, and MDV

fit − SuSF
αc

for c = 2, 800 m and c = 3, 000 m. The
marginal densities are fitted using kernel smoothing, and the QAR observed (Obs.) contribut-
ing factor density line, in black, is also added for comparison. The figure clearly shows that the
marginal densities of MGauss

Norm − SuSF
αc

for both c = 2, 800 m and c = 3, 000 m do not ac-
curately represent the marginal characteristics observed of the contributing factors seen in Fig-
ure 6.3. On the other hand, the marginal densities ofMGauss

fit −SuSF
αc

, andMDV
fit −SuSF

αc
for

c = 2, 800 m and c = 3, 000 m in Figure 6.5 reflect the observed marginal features of the con-
tributing factors. For example, the contributing factor lm shows multimodality in the QAR data,
and this is visible in the marginal density of lm in both MGauss

fit − SuSF
αc

, and MDV
fit − SuSF

αc

for c = 2, 800 m and c = 3, 000 m despite the restriction to only the Gaussian pair copula in
MGauss

fit − SuSF
αc

.
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Figure 6.5: Marginal densities using kernel smoothing of the contributing factors from the DVR-SuS re-
sults for c = 2, 800m and c = 3, 000m. Flights withαc(x) > 10−6 are included. In addition,
the fitted marginal density line based on the observed QAR data (Obs.) of each contributing
factor is added in black.
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Figure 6.6: Bivariate contour lines of lm and bd for c = 2, 800 m.

Next, pairwise dependencies of the associated contributing factors ofMGauss
Norm−SuSF

αc
,MGauss

fit −
SuSF

αc
, and MDV

fit − SuSF
αc

are explored for c = 2, 800 m and c = 3, 000 m. Figure 6.8,
similar to Figure 6.4, displays marginally normalized contour plots, marginal histograms of the
copula data, and pairwise scatter plots with estimated τK value of the copula data. On examina-
tion of Figure 6.8, we see that there is a slight change in dependencies between c = 2, 800 m and
c = 3, 000m forMGauss

Norm −SuSF
αc

, MGauss
fit −SuSF

αc
, andMDV

fit −SuSF
αc

. However, there is
a more evident change in the dependencies between MGauss

Norm − SuSF
αc

, MGauss
fit − SuSF

αc
, and

MDV
fit −SuSF

αc
. For example, lm and bd ofMGauss

Norm −SuSF
αc

have τ̂K = −0.33 for c = 2, 800

m and c = 3, 000 m, while lm and bd of MGauss
fit − SuSF

αc
have τ̂K = −0.41 for c = 2, 800

m and c = 3, 000 m. Furthermore, MDV
fit − SuSF

αc
gives τ̂K = −0.39 between lm and bd for

c = 2, 800 m and τ̂K = −0.40 between lm and bd for c = 3, 000 m.

Furthermore, we examine the bivariate contour lines ofMGauss
Norm −SuSF

αc
,MGauss

fit −SuSF
αc

,
and MDV

fit − SuSF
αc

for c = 2, 800 m and c = 3, 000 m. We choose pairs with |τ̂Kendall| >
0.25, and Table 6.7 lists the pairs chosen for c = 2, 800 m and c = 3, 000 m. Each subtable
consists of the pair, the selected pair-copula family, its rotation and parameters, and an estimated
τ̂Kendall. Figure 6.6 shows the bivariate contour lines of MGauss

Norm −SuSF
αc

, MGauss
fit −SuSF

αc
,

and MDV
fit − SuSF

αc
for the pair lm and bd. The bivariate contour lines on the copula scale

are in the upper row, while on the original scale, they are in the lower row. Figure 6.7 shows the
bivariate contour lines between lm and bd for c = 3, 000 m. It can be seen in Figure 6.6 that the
bivariate contour lines show a negative correlation between lm and bd, and the contour lines of
MDV

fit − SuSF
αc

are asymmetric. Furthermore, it can be interpreted from the bivariate contour
lines MGauss

Norm − SuSF
αc

, MGauss
fit − SuSF

αc
, and MDV

fit − SuSF
αc

, that heavier aircrafts require
a shorter brake duration.
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6.4 Conclusion and Outlook

Table 6.7: The selected pairs with |τ̂K | > 0.25 based on DVR-SuS. Each table contains the pair, the se-
lected pair-copula family, the rotation and parameters of the chosen family, and the estimated
τ̂K .

(a) Pairs for c = 2, 800 m.
pair family rotation parameters tau

MGauss
Norm − SuSF

αc
lm, bd Gaussian 0 -0.48 -0.32
lm, tbs Frank 0 -2.64 -0.28
lm, bd Gaussian 0 -0.60 -0.41

MGauss
fit − SuSF

αc
lm, tbs Gaussian 0 -0.52 -0.35
hws, lm Gaussian 0 -0.41 -0.27
lm, bd bb8 90 3.73, 0.75 -0.39

MDV
fit − SuSF

αc
lm, tbs bb8 270 4.98, 0.56 -0.35
hws, bd Gaussian 0 0.47 0.31

(b) Pairs for c = 3, 000 m.
pair family rotation parameters tau

MGauss
Norm − SuSF

αc
lm, bd Gaussian 0 -0.48 -0.32
lm, tbs Frank 0 -2.64 -0.28
lm, bd Gaussian 0 -0.60 -0.41

MGauss
fit − SuSF

αc
lm, tbs Gaussian 0 -0.53 -0.36
hws, lm Gaussian 0 -0.41 -0.27
lm, bd bb8 90 4.66, 0.65 -0.40

MDV
fit − SuSF

αc
lm, tbs bb8 270 4.46, 0.60 -0.35
hws, bd Gaussian 0 0.47 0.31

6.4 Conclusion andOutlook

We used the approach of Chapter 4 to generate a new data-driven surrogate model, DVR, to
describe the risk of runway overruns and to estimate conditional rare event probabilities. We as-
sumed that a runway overrun occurs when an aircraft exceeds a threshold c at a speed of 80 knots
or greater. We modeled this phenomenon by th80, which is the distance from the runway thresh-
old (beginning of the runway) to the controllable speed of 80 knots. Therefore, a runway overrun
occurs when th80 > c, for a fixed c.

In reliability analysis, an undesirable event is an event in which the system fails. For our ap-
plication, a runway overrun is a failure event, and we combined a modified version of the subset
simulation (SuS) with DVR to go further in the tail of th80. We denote this approach by DVR-
SuS. Unlike other methods, DVR-SuS draws samples, in the MCS iteration, from a fitted DVR
on observed data before implementing the subset iterations. We stop iterating the subsets once
the number of samples generated belongs to the failure domain F is greater than a prespecified
value k. This is different from the classical application of SuS, where the target is to stop when
the MCMC-generated samples belong to F .

We applied DVR-SuS to three fitted DVR models (MGauss
Norm , MGauss

fit , MDV
fit ) for two thresh-

old values c = 2, 800 m and c = 3, 000 m. We stop DVR-SuS when |F| > k, k = 1, 000, and
examine the associated contributing factors in the failure domain with αc(x) > 10−6. We noted
that the contributing factors that resulted from MGauss

Norm did not reflect the characteristics of the
observed data, while the contributing factors that resulted from MGauss

fit and MDV
fit did reflect

the characteristics of the observed data.

83



6 D-Vine-Based Subset Simulation

Furthermore, each implementation of DVR-SuS took a little more than two minutes for c =
2, 800 m and c = 3, 000 m, which implies efficiency and accurate reflection of the observed data
features if the best-fit marginal distributions are used in the fitted DVR model. We also restricted
our implementation to the probability of 0.1 for each intermediate event to occur when |F| < k.

For future work, the implementation of specifying a fixed conditional probability value for each
intermediate event if |F| < k will be performed adaptively according to the desired size of the
seed set in each intermediate event. Additionally, the fitting of a new DVR to the data generated
in each intermediate event will be investigated. In conclusion, as shown, the DVR-SuS is a suitable
data-driven surrogate model for computationally expensive physics-based models where the goal
is to estimate rare event failure probabilities and characterize the contributing factors in the failure
domain.

6.5 SupplementaryMaterials
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Figure 6.7: Bivariate contour lines of lm and bd for c = 3, 000 m.

84



6.5 Supplementary Materials

hws

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.047

temp

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.0046

−0.014

refAP

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.12

0.0091

0.044

asd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.08

0.05

−0.02

0.061

trd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.071

−0.074

0.0014

0.0089

−0.11

tsd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.22

0.08

−0.047

0.068

0.11

−0.05

lm

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.14

−0.036

−0.002

−0.029

0.02

−0.029

−0.28

tbs

z1

z 2

z1

z 2

z1

z 2

0.18

−0.066

0.05

0.002

−0.089

−0.0096

−0.33

0.16

bd

z1

z 2

z1

z 2

0.11

−0.02

0.019

0.058

−0.096

0.14

−0.11

−0.076

0.026

td

z1

z 2

−0.095

−0.01

−0.032

0.11

−0.11

0.02

0.10

−0.14

0.052

0.07

ea

(a) MGauss
Norm − SuSF

αc
for c = 2, 800

m.

hws

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.033

temp

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.039

−0.016

refAP

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.12

−0.0053

0.056

asd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.058

0.036

−0.039

0.043

trd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.073

−0.068

0.015

0.021

−0.13

tsd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.23

0.076

−0.076

0.058

0.11

−0.045

lm

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.15

−0.049

0.02

−0.018

0.016

−0.021

−0.28

tbs

z1

z 2

z1

z 2

z1

z 2

0.17

−0.071

0.081

0.0032

−0.095

−0.0095

−0.33

0.16

bd

z1

z 2

z1

z 2

0.10

−0.024

0.013

0.042

−0.098

0.16

−0.11

−0.062

0.043

td

z1

z 2

−0.12

−0.024

−0.038

0.11

−0.11

0.022

0.11

−0.14

0.037

0.063

ea

(b) MGauss
Norm −SuSF

αc
for c = 3, 000

m.

hws

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.047

temp

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.016

−0.001

refAP

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.12

−0.0058

0.055

asd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.038

0.037

−0.044

0.027

trd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.068

−0.078

0.015

0.014

−0.14

tsd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.27

0.075

−0.064

0.071

0.05

−0.026

lm

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.24

−0.02

−1.5e−05

−0.051

0.064

−0.049

−0.35
tbs

z1

z 2

z1

z 2

z1

z 2

0.24

−0.067

0.09

−0.024

−0.085

−0.017

−0.41

0.25

bd

z1

z 2

z1

z 2

0.076

−0.036

0.032

0.08

−0.10

0.16

−0.066

−0.12

0.0055

td

z1

z 2

−0.10

−0.039

−0.038

0.11

−0.091

0.023

0.073

−0.12

0.023

0.059

ea

(c) MGauss
fit − SuSF

αc
for c = 2, 800

m.

hws

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.049

temp

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.0063

−0.0053

refAP

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.12

−0.0089

0.058

asd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.057

0.048

−0.041

0.033

trd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.06

−0.076

0.006

0.021

−0.15

tsd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.27

0.093

−0.058

0.079

0.084

−0.043

lm

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.23

−0.032

−0.00073

−0.064

0.032

−0.042

−0.37

tbs

z1

z 2

z1

z 2

z1

z 2

0.24

−0.087

0.081

−0.031

−0.12

0.0098

−0.41

0.25

bd

z1

z 2

z1

z 2

0.079

−0.027

0.016

0.081

−0.10

0.18

−0.09

−0.098

0.039

td

z1

z 2

−0.11

−0.044

−0.027

0.12

−0.073

0.011

0.068

−0.12

0.022

0.052

ea

(d) MGauss
fit −SuSF

αc
for c = 3, 000

m.

hws

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.066

temp

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.021

0.042

refAP

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.011

−0.018

0.06

asd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.0019

0.036

0.0021

0.0048

trd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.068

−0.072

−0.00012

−0.00092

−0.15

tsd

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

−0.29

0.079

−0.072

−0.0064

0.0082

−0.027

lm

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.31

−0.024

−0.0014

−0.04

0.055

−0.055

−0.36

tbs

z1

z 2

z1

z 2

z1

z 2

0.33

−0.077

0.063

0.0021

−0.094

0.013

−0.39

0.29

bd

z1

z 2

z1

z 2

0.18

−0.037

0.0089

0.079

−0.11

0.19

−0.14

−0.043

0.10

td

z1

z 2

−0.15

−0.0086

−0.012

0.10

−0.11

0.0073

0.20

−0.21

−0.062

0.024

ea

(e) MDV
fit − SuSF

αc
for c = 2, 800 m.
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(f) MDV
fit −SuSF

αc
for c = 3, 000m.

Figure 6.8: Exploration of pairwise dependencies (marginally normalized contour plots on the lower tri-
angular panels, marginal histograms of the copula data, and pairwise scatter plots with an τ̂K
value of the copula data on the upper triangular panels.
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7 Conclusions

7.1 Summary

The presented work aims to bridge the gap between the uncertainty quantification and statis-
tics communities, with the ultimate goal of enabling uncertainty quantification in engineering
problems using vine copulas. Two main characteristics were carefully addressed: (i) handling de-
pendent inputs for physics-based models and (ii) adopting a purely data-driven approach, which
implies that the system under investigation is only known through a limited number of available
observations.

While the statistical community has proposed various techniques for modeling dependent data
using vine copulas, these methods have primarily found extensive applications in the financial do-
main, leaving their potential in engineering largely overlooked. In this thesis, we strive to amal-
gamate the "best of both worlds" by leveraging vine copulas to develop cost-effective surrogate
models for physics-based models, generate dependent inputs to computational models, incorpo-
rate corrections to assumed computational model outputs, and estimate rare event probabilities
through methods like subset simulation.

To lay the groundwork, we introduced in the Foundation Part the data used and the mathe-
matical basis of our methods. Chapter 2 gave an overview of the dataset, its source, and the data
collection process. Subsequently, we employed exploratory techniques, including histograms,
pairwise scatter plots, and correlation plots, to gain deeper insights into the data and identify un-
derlying pairwise dependence patterns.

Notably, our analysis revealed that certain observed variables exhibit significant skewness and
bimodality. Furthermore, pairwise scatter plots indicated positive and negative dependencies not
only among the contributing factors but also with the response variable.

In Chapter 3, we recalled and introduced critical concepts such as random variables, random
vectors, copulas, and vine copulas, facilitating a seamless transition between sections in the Ap-
plications Part without distraction.

Moving to the Applications Part, Chapter 4 presented our use of a D-vine-based surrogate
model to analyze and quantify the impact of specific input factors and predict the probability
of a flight having a controllable speed of 80 knots before 2,500 m on the runway. In particular,
we identified 41 of 711 flights that have an estimated probability greater than 10−3 of exceeding
the distance of 2,500 m with a speed greater than 80 knots. Importantly, the surrogate model sur-
passed the linear regression model in the identification process and eliminated the issue of quantile
crossings often encountered in the classical linear quantile regression.

Chapter 5 centered around error correction in physical model outputs developed to calculate
the distance required to reach 80 knots from the runway threshold. We explored two solutions
for the error correction term: a linear regression error model and a D-vine copula-based correc-
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7 Conclusions

tion. Notably, the D-vine copula-based correction yielded results more closely aligned with the
observed quantity of interest.

Additionally, we developed a multivariate statistical input model given by an R-vine distribu-
tion for the contributing factors, enabling the simulation of a large sample of error-corrected pre-
dictions dependent inputs to the physics-based model. Furthermore, when comparing the use of
dependent and independent inputs to the physics-based model, we noticed a preference for de-
pendent inputs for both correction approaches. Using dependent inputs to the physical model
showed that the D-vine-based correction is preferred over the linear regression-based correction.

Lastly, in Chapter 6, we proposed a novel subset simulation method, DVR-SuS, which uses
a D-vine model in conjunction with a version of subset simulation to model the probability of
runway overruns and estimate the probability of rare events occurring under desired conditions.
This proposed framework proved to be highly efficient, providing fast runtimes even for scenarios
involving very small probabilities.

This thesis presents a novel set of tools that enable the practical application of uncertainty quan-
tification to a diverse range of problems, effectively addressing complex variable dependencies and
handling interdependent inputs. These two critical aspects carry significant practical implications,
particularly given the prevalence of relevant challenges in fields such as aviation safety, earthquake
engineering, weather forecasting, hydrogeology, and control engineering, where high-dimensional
and dependent input spaces are prevalent.
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