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Abstract

Cancer immunotherapy by checkpoint modulation has shown high efficacy in a large va-

riety of neoplasms and is currently transforming the treatment of malignant diseases. In

this context, understanding the nature of immunological tumor recognition or ignorance

is of utmost importance to further improve current immunotherapeutic approaches.

As can be seen, i.e., in the process of immunosurveillance, mutated peptide ligands

(neoantigens) that can be predicted in silico from cancer genome sequencing data or that

can be identified by mass spectrometry approaches may serve as highly tumor-specific

target antigens (TSA). Some selected clonal neoantigens may be of particular relevance

for prolonged responses. In contrast, otherwise, clonal evolution and immunoediting of

neoantigens may be closely related and associated with cross-resistance to targeted drugs

and immunotherapy. However, these pipelines are still subject to crucial limitations re-

garding target specificity and therapeutic feasibility.

By detailed analysis of the mutanome, resulting peptide specifications, and associated

HLA binding predictions for a comprehensive proteogenomic data set for 32 patients

across 25 tumor types, it could, among other findings, be shown that a significant part of

non-wild type HLA-binding peptides results from variants identified on aberrantly ex-

pressed RNA transcripts. This not only underlines the importance of RNA-centered vari-

ant detection but may, consequently, notably amplify the available neoepitope repertoire,

eventually resulting in the adaption of pre-existing identification pipelines. Further-

more, an immunogenicity assessment assay was used to measure neoantigen-dependent

interferon-based T-cell responses in patient blood samples to screen for possible target

candidates.

Successful characterization and classification of potential neoantigens will greatly en-

hance our understanding of tumor immune system interactions, leading to the identifi-

cation of novel biomarkers and effective combinatorial strategies in immuno-oncology.
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Zusammenfassung

Die Behandlung von Krebserkrankungen durch Immuntherapien, insbesondere mittels

Checkpoint Modulation, hat in verschiedenen Studien hohe Wirksamkeit gezeigt und

verändert gerade grundlegend die bisher etablierten Therapiekonzepte. Ein umfassendes

Verständnis der Tumorerkennung durch das menschliche Immunsystem ist daher von

höchster Bedeutung, um aktuelle Ansätze in der Immuntherapie weiter zu verbessern.

Die genaue Betrachtung von Prozessen wie der "Immunosurveillance" zeigt, dass mu-

tierte Peptidliganden (Neoantigene), die aus Krebsgenomsequenzierungsdaten in silico

vorhergesagt oder durch Massenspektrometrie identifiziert werden können, als hoch tu-

morspezifische Zielantigene dienen können. Einige klonale Neoantigene sind dabei von

besonderer Bedeutung, da sie möglicherweise langanhaltende tumorspezifische Immun-

antworten hervorrufen, welche therapeutischen Nutzen besitzen. Jedoch können klonale

Evolution und Immunoediting spezielle Resistenzen gegenüber zielgerichteten Medika-

menten im Rahmen der Immuntherapie hervorrufen. Aktuelle Verfahren zur Entdeckung

solcher Neoantigene haben daher noch einige Limitationen, unter anderem eine unzurei-

chende Spezifität sowie therapeutische Relevanz im klinischen Kontext.

Mithilfe des Mutanoms, der Eigenschaften der daraus resultierenden Peptide sowie der

Simulation ihrer Bindungseigenschaften konnten wichtige Merkmale der durch MHC

Klasse I präsentierten Peptide sowie deren genetische Ursachen untersucht werden. Die

Auswertung von Datensätzen von 25 verschiedenen Tumorarten, die von 32 Patienten

erhoben wurden, zeigte die herausragende Bedeutung von nicht kanonisch entstande-

nen, aberrant exprimierten RNA-Transkripten. Diese Ergebnisse unterstreichen nicht nur

die Wichtigkeit der Sequenzierung von RNA-Daten, sondern auch, dass das Repertoire

an Neoantigenen möglicherweise durch umfassendere nicht exonische Analysen noch

deutlich erweitert werden kann. Daraus ergeben sich Anpassungen der Pipelines zur
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Identifizierung von Neoantigenen.

Darüber hinaus wurden Interferon-basierte in vitro Stimulationsversuche durchgeführt,

um immunogene spezifische T-Zell-Klone gegen einzelne Neoantigene zu detektieren

und zu charakterisieren. Auf diese Weise sollten potenzielle Zielstrukturen auf ihre Im-

munogenität getestet werden.

Eine erfolgreiche Charakterisierung und Klassifizierung von Neoantigenen und der da-

durch ausgelösten Immunantworten ist notwendig, um unser Verständnis der Interakti-

on von Tumor und Immunsystem zu verbessern. Hierdurch kann die Entdeckung neuer

Biomarker, sowie die Entwicklung effektiver kombinatorischer Behandlungsstrategien

entschieden vorangebracht werden.
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1 Introduction

1.1 Immunotherapy as an integral part of cancer treatment

strategies

When William B. Coley started injecting mixtures of live and inactivated Streptococ-

cus bacteria to patients with bone sarcomas in 1891 to induce sepsis and anti-tumor re-

sponses, he was maybe not aware of performing the first ever documented active cancer

immunotherapy intervention (Esfahani et al., 2020). More than 120 years later, the anti-

CTLA4 antibody Ipilimumab was approved, marking a new era for cancer immunother-

apies. For the first time, a therapy could significantly increase the survival rate of patients

with metastatic melanoma, a feat that had been impossible with conventional treatments

(Mellman et al., 2011). Concomitantly many different immunotherapeutic regimes such

as cancer vaccines, oncolytic viruses, adoptive transfer of activated T cells, and antibod-

ies blocking immune-checkpoint pathways have shown to be highly promising treatment

modalities for a variety of cancer entities (Farkona et al., 2016).

All of these approaches aim to modulate the immune system such that malignant cells

are not only considered natural targets but, as a result, can be detected and attacked by

cells of the immune system. This idea traces back to the concept of tumor immunogenic-

ity, which states that proteins expressed in cancer cells may function as tumor antigens

and trigger an immune response (Smyth et al., 2006). However, the interaction between

the immune system and cancer cells within the tumor microenvironment is complex. It

may not only lead to tumor destruction (known as "immunosurveillance") but can also

promote further tumor growth (Bui & Schreiber, 2007). These two phenomena, generally

described as "immunoediting," are currently subject of intense research (O’Donnell et al.,

2019).

1



2 1.1 Immunotherapy as an integral part of cancer treatment strategies

In many ways unscrambling the interplay of cancer and the immune system remains a

highly complex challenge, yet many successful implementations of different immunother-

apies can be mentioned (Hegde & Chen, 2020). The following will briefly outline the most

widely applied and promising immunotherapeutic modalities.

1.1.1 Therapies with monoclonal antibodies

One of the most prominent tools when using the immune system to target cancer cells are

monoclonal antibodys (mAbs). These proteins consist of a Fab and an Fc region, which

allows them to bind possible targets as well as components of the immune system with

high affinity and specificity. Thus, mAbs can mediate immune responses helping to at-

tack and destroy cancer cells (Kimiz-Gebologlu et al., 2018). Depending on the specific

antibody subtype, a variety of different mechanisms with specialized functions such as

antibody dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxi-

city (CDC) can be distinguished (Scott et al., 2012; Zahavi & Weiner, 2020).

Monoclonal antibodies, as used in nowadays therapies, are clonal versions of a specified

antibody isotype directed against a specific target antigen. Different examples illustrate

the various mechanisms that can be utilized to reduce tumor growth.

Cetuximab is an antibody against epidermal growth factor receptor (EGFR), which, when

up-regulated, is associated with tumor cell proliferation. By blocking the ligand binding

and receptor dimerization, Cetuximab induces apoptosis of the target cell. (Li et al., 2005).

It can be used for cancers with overexpression of EGFR, such as colorectal cancer. In con-

trast, Trastuzumab, an anti-human epidermal growth factor receptor 2 (HER2)-antibody

is used to treat HER2-amplified breast cancers by inhibiting receptor hetero-dimerization

and consequential signal perturbation (Chen et al., 2003).

Rituximab, a widely applied mAbs already approved in 1997, utilizes more indirect

mechanisms. It targets CD20-positive B cells through CDC, ADCC, and antibody-dependent

cellular phagocytosis (ADCP) and is used to treat B-cell malignancies, including diffuse

large B-cell lymphoma, follicular lymphoma and chronic lymphocytic leukemia (Salles

et al., 2017; Pierpont et al., 2018).

Beyond the previously mentioned areas in which mAbs can be utilized for cancer ther-

apy, the tumor microenvironment provides additional valuable targets for mAbs-based
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immunotherapy. Different mAb were designed to inhibit the up-regulation of tumor an-

giogenesis by either directly targeting and deactivating VEGF!s (VEGF!s) (Bevacizumab)

or by blocking the VEGF! receptor (Ramucirumab) (Sullivan & Brekken, 2010).

Using mAbs in antibody-drug conjugates (ADCs) represents another therapeutic ap-

proach in cancer immunotherapy. Here the antibody is utilized to deliver either radionu-

clides, biological toxins, or ultratoxic payload as agents for direct internalization in target

cancer cells (Chau et al., 2019). Since showing impressive activity against treatment-

refractory cancers, different ADCs are currently approved for cancer treatment (Drago

et al., 2021). Brentuximab vedotin, for example, has proven to be beneficial in some cases

of stage III or IV of Hodgkin’s Lymphoma (Ansell et al., 2022) and Trastuzumab emtan-

sine, Inotuzumab ozogamicin and Enfortumab vedotin find successful application Her2-

positive breast cancer, acute lymphoblastic leukemia, and bladder cancer (von Minckwitz

et al., 2019; Bhojwani et al., 2019; Powles et al., 2021).

1.1.2 Therapies with antibodies modulating the immune response

Besides the previously described use of mAbs to target cancer cell epitopes, another anti-

tumor strategy involves targeting immune cells to boost immune responses (Zahavi &

Weiner, 2020). A relatively new but nowadays widespread approach is the inhibition

of immune checkpoints, which are control pathways that regulate immune responses to

prevent tissue damage and maintain self-tolerance. To prevent cancer cells from exploit-

ing these checkpoints to down-regulate the immune response, mAbs, so-called immune

checkpoint inhibitors, can be used to target inhibitory checkpoints, thereby enhancing

T-cell activation (Pardoll, 2012). The blockade of cytotoxic T-lymphocyte-associated anti-

gen 4 (CTLA4) with Ipilimumab, i.e., which was the first identified checkpoint inhibitor

approved for cancer treatment in 2011, showed immensely successful results in the treat-

ment of metastatic melanoma patients (Hodi et al., 2010). In 2015, Nivolumab and Pem-

brolizumab were the first checkpoint inhibitors used to treat advanced non-small-cell

lung cancer (NSCLC) (Borghaei et al., 2015; Garon et al., 2015), followed by others such

as Atezolizumab (2016), Avelumab and Durvalumab (2017) which were also applied for

the treatment of head and neck cancer, bladder cancer, Merkel cell cancer as well as classic

Hodgkin’s lymphoma (Rotte et al., 2018; Inman et al., 2017; Socinski et al., 2018; Antonia
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et al., 2018; D’Angelo et al., 2018). By blocking programmed cell death 1 receptor (PD-1)

or its ligand programmed cell death receptor ligand 1 (PD-L1), both part of the PD-1

signaling pathway, these mAbs inhibit down-regulation of T cell-mediated immune re-

sponses and thus can avoid tumor immune evasion (Akinleye & Rasool, 2019). Besides

PD-1 and CTLA4, lymphocyte-activated gene 3 (LAG-3), another group of cell surface

inhibitory receptors, is being evaluated at various stages of pre-clinical and clinical de-

velopment (Chocarro et al., 2022; Andrews et al., 2017). Moreover, a variety of other

targets and their respective pathways, such as T cell immunoreceptor with Ig and ITIM

domain (TIGIT) or VISTA! (VISTA!), are currently under investigation not only as poten-

tial therapeutic targets but also as prognostic markers and biomarkers for immunother-

apy (Chauvin & Zarour, 2020; Tagliamento et al., 2021).

1.1.3 Cell-based therapies

Another immunotherapeutic approach uses autologous or allogenic T cells that recog-

nize specific structures on the surface of tumor cells. Earlier attempts during the 1980s

where for the first time tumor-infiltrating lymphocytes (TILs) were extracted, expanded,

and reinfused (Rosenberg et al., 1994), have demonstrated encouraging efficacy and led to

modern TIL-based approaches that are nowadays tested in Phase 2 clinical trials (Schoen-

feld et al., 2021; O’Malley et al., 2021). However, the most notable clinical progress with

adoptive cell therapy (ACT) began with the development of receptor-engineered lym-

phocytes (Waldman et al., 2020). Unlike conventional T cells, these therapies have the

crucial advantage in that they bypass MHC-restrictions by using a synthetic chimeric

antigen receptor (CAR). This receptor can directly detect target molecules on the surface

of malignant cells, which allows it to bind cancer cells even after having downregulated

MHC expression. This ability of CARs to form non-classical immune synapses facili-

tates the mediation of anti-tumoral effects via perforin, granzymes, and cytokines (Ben-

mebarek et al., 2019). By avoiding the classical MHC-antigen binding of normal T cells,

usually required for any canonical T-cell based immune response (Zareie et al., 2021),

approaches with CAR T cells targeting CD19 showed promising efficacy in the treat-

ment of B cell acute lymphoblastic leukaemia (B-ALL) (Maude et al., 2014), multiple sub-

types of B-cell lymphoma (Brudno & Kochenderfer, 2018) and in the treatment of patients

with relapsed or refractory mantle-cell lymphoma (Wang et al., 2020). Newer trials with
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CAR T cells targeting B cell maturation antigen (BCMA), which is expressed on plasma

cells, even indicate promising results in patients with multiple myeloma (Mikkilineni &

Kochenderfer, 2021; Raje et al., 2019). Moreover, CD30 CAR T cells have been success-

fully used for the treatment of relapsed and refractory Hodgkin Lymphoma (Ramos et al.,

2020). The pool of potential targets for various cancer types is continuously growing as

an increasing number of CAR T cell therapies are subject to clinical investigations.

Besides the potential and recent success, severe toxicity, restricted trafficking, limited

tumor infiltration, reduced activation of CAR T cells within solid tumors, and finally,

tumor heterogeneity with antigen escape are just some of the key challenges that still

remain and that need to be addressed to overcome therapeutic limitations (Bonifant et al.,

2016; Majzner & Mackall, 2018; Rafiq et al., 2020). In addition, interactions between CAR

T cells and the TME! (TME!) play a critical role since they have been associated with

limited local accessibility of tumor cells and reduced functionality of CAR T cells (Rafiq

et al., 2020; Sterner & Sterner, 2021).

1.1.4 Cancer vaccines

The principles of vaccination against different diseases caused by bacteria or viruses have

been well-established for many decades. Not only are there vaccines against many differ-

ent pathogens available, but also is their use indispensable in terms of preventive health

care (Bonanni, 1999).

Even cancer-prophylactic vaccines targeting certain oncoviruses, i.e. human papillo-

mavirus (HPV) and hepatitis B virus (HBV) that are directly involved in tumor patho-

genesis are nowadays widely disposed (Lowy & Schiller, 2006; Arzumanyan et al., 2013).

Immunization programs with these vaccines contribute substantially to preventing dif-

ferent malignant diseases such as cervical or liver cancer (Falcaro et al., 2021; McGlynn

et al., 2021).

There are three broad categories of tumor antigens: tumor associated antigens (TAAs),

cancer testis antigens (CTAs), and TSA!s (TSA!s). TAAs are proteins that are also en-

coded in the normal genome and that are hence present in different tissues. Using them

as therapy targets requires an abnormally high expression level on tumor cells to circum-

vent central tolerance (Hogquist et al., 2005). Although CTAs are also encoded in normal
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cells, their expression is restricted to certain germ cell tissue and cancer cells (Simpson

et al., 2005). In contrast, TSA!s are not encoded in the normal host genome but arise,

amongst others, as a consequence of tumor-specific mutations (Schumacher & Schreiber,

2015; Gubin et al., 2015). These novel protein sequences that are highly specific for tu-

mor cells cannot be found on healthy tissue and are therefore less susceptible to mecha-

nisms of immunological tolerance, making them promising targets for immunotherapy

(Heemskerk et al., 2013).

The concept of a therapeutic vaccine against tumor diseases is similar to a classical vac-

cine but requires specific target structures on the surface of the tumor cell. In contrast

to TAAs, which were shown to function as possible vaccination targets already in the

1970s (Hanna & Peters, 1978) and that can also be expressed on healthy tissues, it has

been provided firm evidence that TSA!s not only induce more specific but also more ro-

bust immune responses (Jiang et al., 2019). Tumor-restricted expression of these targets

ensures that there are no adverse effects due to on-target, off-tumor damage to healthy

tissue caused by unspecific T cell reactivity (Schumacher et al., 2019).

In 2012, Castle et al. could show that by identifying nonsynonymous somatic point mu-

tations in murine melanoma cells with next-generation sequencing (NGS), they could not

only provide possible neoantigen targets for vaccination but also prove immunogenicity

for a substantial fraction of neoantigens within a mouse model (Castle et al., 2012). Newer

trials suggest that major histocompatibility complex (MHC) class II-restricted neoanti-

gens have a key function in the activation and the successful interplay between CD8+

and CD4+ T cells, beneficial for establishing anti-tumor responses (Alspach et al., 2019).

Moreover, clinical trials have shown that by injecting high-risk Melanoma patients with

ribonucleic acid (RNA) encoding for individual mutations, CD4+ and CD8+ T-cell re-

sponses could be induced that led to an increased progression-free survival (Sahin &

Türeci, 2018). The identification of the required genetic variants was based on NGS and

the help of MHC class I and class II binding predictions. Similar results could be ob-

served in different studies, repeatedly pointing out the beneficial outcome of a subse-

quent immune checkpoint inhibition (ICI) therapy (with anti-PD-1) in case of progres-

sion, associated with an expanded repertoire of neoantigen-specific T cells (Ott et al.,

2017; Sahin & Türeci, 2018). Current studies are investigating the synergistic effects be-

tween vaccination and ICI, the selection criteria of efficient neoepitopes, and their deliv-
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ery platform (Saxena et al., 2021).

1.2 Limitations of immunotherapy

1.2.1 Mechanisms of Resistance

Understanding the mechanisms of resistance used by different malignancies to escape the

immune system is indispensable for developing novel strategies to overcome the current

limitations of immunotherapy.

Recent NGS analyses of a vast number of tumors indicate remarkable differences for

intratumor heterogeneity (ITH) for different cancers. In parts, this can be explained by

different genetic and epigenetic processes, such as somatic mutations or DNA methyla-

tion, that underlie carcinogenesis (Alexandrov et al., 2013a). The resulting clonal diver-

sity is linked to therapeutic failure, drug resistance, and poor clinical outcome (Mazor

et al., 2016; McGranahan & Swanton, 2017).

A widely known mechanism of immunoevasion is based on the ability of cancer cells to

inactivate or epigenetically regulate the expression of genes encoding antigen-processing

components, leading to diminished MHC class I expression (Sade-Feldman et al., 2017).

By reducing antigen-processing and presentation (APP), the tumor escapes immuno-

surveillance. It avoids elimination by CD8+ T cells, resulting in reduced response rates

to therapies that target MHC-class I restricted antigens, such as ICI (Dhatchinamoorthy

et al., 2021).

To address this problem, MHC class-I independent targeting strategies, such as CAR T

cells, have been developed. However, those approaches are faced with various chal-

lenges, such as antigen escape or lineage switch, which are also a direct result of ITH and

have been observed in CD19+-CAR T cell therapies (Majzner & Mackall, 2018).

1.2.2 Adverse effects of cancer immunotherapy

Despite an increasing number of successful immunotherapeutic treatments and contin-

uous improvements in different related clinical areas, a notably high fraction of patients
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treated, i.e., with ICI experience significant immune-related adverse events (irAEs). Typ-

ical adverse effects range from mild skin abnormalities to severe impacts on multiple

organs of the body, such as the GI tract, the lungs, the liver, the renal system, the en-

docrine glands, or the cardiovascular and ocular systems (Michot et al., 2016; Brahmer

et al., 2018).

A diversity of mechanisms contribute to the genesis of these side effects. These in-

clude exacerbation of pre-existing autoimmunity, such as by certain HLA haplotypes or

single nucleotide polymorphisms (SNPs), aberrant presentation of generally restricted

self-peptides, such as CTAs, or loss of tolerance driven by the TME! (Burke et al., 2020;

Weinmann & Pisetsky, 2019). Although adverse effects may result from a combination

of these mechanisms, there is evidence suggesting a connection between anti-tumor im-

munity and autoimmunity, with shared transcriptional signatures present in both pro-

cesses (Schnell et al., 2020). The differences, but also the similarities in the process of

immunoregulation could be a key starting point to enhance anti-tumor immunity with-

out increasing autoimmunity.

As the field of immunotherapy keeps evolving, clinicians will have to face the conse-

quences of irAEs, which require a high level of awareness and skilled management to

ensure best patient outcomes (Martins et al., 2019). Moreover, advanced biomaterials

and drug delivery systems could help to effectively control the therapy application, im-

prove their potency and thereby reduce toxic side effects (Riley et al., 2019). Although

good techniques for controlling irAEs have been established in the last years, irAEs re-

main a key challenge in the clinical setting and will encourage to advance towards the

development of more specific immunotherapies.
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1.3 The significance of neoantigens in immunotherapy

1.3.1 A variety of sources for possible specific target antigens

Although immunotherapeutic approaches have proven effective in a wide range of hu-

man malignancies, the therapeutic potential of T-cell-based techniques has yet to be fully

explored (Leko & Rosenberg, 2020). The activation of T cells and, thus, the effectiveness

of therapy critically depends on recognizing cancer peptide epitopes and their ability

to induce cancer rejection mechanisms. As was shown by Tumeh et al. (2014) for PD-1

ICI exploiting pre-existing, but negatively regulated CD8+ T cell repertoires is of central

importance to induce desired cytotoxic T-cell activities.

The mechanisms responsible for the emergence of neoantigens are diverse. They can

include somatic mutations (i.e. DNA variants), chromosomal aberrations, or other non-

canonical products such as defective ribosomal products (DRiPs), that are presented on

MHC class-I molecules (Dersh et al., 2021). These aberrantly expressed proteins are pro-

posed to constitute an important additional source of tumor neoantigens (Laumont et al.,

2016).

The exact rules for endogenous antigen presentation, including processes like protein

cleavage and gene expression, are still the subject of intensive studies (Villani et al., 2018).

Further experimental validation of predicted neoepitopes is needed, as only a tiny subset

of peptides will be processed and presented in the context of MHC on the cell surface

(Vitiello & Zanetti, 2017).

1.3.2 Immunoinformatics and the rules of antigen presentation

Presentation of antigens on MHC molecules represents a fundamental principle of im-

munotherapy and is necessary for any target recognition by T cells. However, the under-

lying selection criteria or rules for MHC presentation remain largely unknown, which

is a result of the highly polygenic and polymorphic nature of the MHC, giving rise to

a particular set of molecules with individual peptide-binding specificities (Abualrous

et al., 2021). This enormous variety of MHC allotypes mapped to the individually unique

peptide landscape requires sophisticated immunoinformatics for binding prediction and
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subsequent epitope discovery (Nielsen et al., 2020).

Structural features of the MHC-specific binding groove regulate the formation of peptide

MHC (pMHC) complexes, a process modified by two peptide editors. They shape the

presented peptidome, thereby favoring the binding of high-affinity antigens (Wieczorek

et al., 2017).

After years of intensive trials of affinity prediction with simple motif-based models, such

as the SYFPEITHI prediction model (Rammensee et al., 1999), that were focused on cata-

loging and classification of different binding motifs, the development of modern machine

learning algorithms in the 1990s cleared the way for a variety of entirely new approaches.

The idea of these methods is to minimize the error between an experimentally validated

training data set and the corresponding predictions of the model, which can subsequently

be used to predict new unknown data (Nielsen et al., 2020). Even though different pro-

posed models such as hidden Markov models (HMMs), quantitative structure-affinity

relationship (QSAR)-based affinity models, and artificial neural networks (ANNs) ini-

tially suffered from low accuracy due to a lack of data, advancements in the field of

high-throughput peptide–MHC-binding assays, as well as different publicly available

databases, i.e., the immune epitope database (IEDB), led to increasing improvements in

their performance (Nielsen et al., 2003; Peters et al., 2006; Vita et al., 2015).

Despite the emergence of a huge variety of competing models with increasingly pre-

cise binding predictions in the last years, predicting the MHC ligandome (the peptide

repertoire presented by MHC molecules) remains challenging. At this point, mass spec-

trometry (MS) may provide additional information on naturally presented peptides re-

sulting from mechanisms like proteasomal cleavage or translocation by the transporter

associated with antigen processing (TAP) molecule that are needed for profound compre-

hension of MHC-mediated antigen presentation (Nielsen et al., 2005; Larsen et al., 2005;

Caron et al., 2015).

New MS approaches combining experimental and computational techniques facilitated

the discovery of MHC ligands and led to the development of eluted ligand (EL) datasets

with annotated MHC restrictions (Bassani-Sternberg et al., 2015). The combination of MS

based MHC class I presentation likelihood together with quantitative binding affinity

predictions of ANNs has led to the development of improved prediction models, such as
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NetMHCpan-4.0 and MHCflurry (Jurtz et al., 2017; O’Donnell et al., 2018).

1.3.3 Towards T cell epitope discovery

Despite the increasing efforts to improve current MHC-based prediction algorithms, the

greater goal remains the identification of suitable targets eliciting effective anti-tumor T-

cell responses. This raises the fundamental question of the nature of neoantigen immuno-

genicity and the accuracy of above described binding prediction algorithms in forecasting

T-cell reactivity. Although previous experiments generally indicate a low rate of experi-

mental validation of in silico predicted neoepitopes, it was claimed that the majority of

immunogenic peptides share a strong predicted HLA binding, with a peak in length of 9

amino acids (AAs) (9-mers) (Trolle et al., 2016; Bjerregaard et al., 2017).

Detailed studies of the MHC class I immunopeptidome revealed that the entire MHC

class I–associated peptide (MAP) repertoire covers only a small fraction of expressed

exomic sequences resulting in a heterogeneous representation of protein-coding genes

within the MAP repertoire. This indicates that a substantially high fraction of genes does

not produce MAPs, which could, together with limitations in the TCD8+R-repertoire, ex-

plain low response rates for predicted neoepitopes (Yewdell & Bennink, 1999; Pearson

et al., 2016).

To address this issue, which has major implications on the feasibility of personalized

identification pipelines, it was suggested to combine sequencing methods with MS-methods

to select for MHC class I binding peptides. After the demonstration of this work-flow

for two widely used murine models (Yadav et al., 2014), mass spectrometry analysis

of human leukocyte antigen (HLA) bound peptides from mono-allelic cell lines as well

as from human melanoma cells were shown to greatly contribute to improve possible

neoantigen discovery pipelines (Abelin et al., 2017; Bassani-Sternberg et al., 2016).

Recent publications even claim that MS represents the only unbiased methodology to

comprehensively examine the repertoire of naturally presented HLA binding peptides,

furthermore including post-translational modified peptides (Bassani-Sternberg, 2018).

However, this increased specificity and thus reduced false discovery rate (FDR) due

to MS-based epitope selection directly results in reduced sensitivity since even modern

tandem mass spectrometry (MS/MS)-pipelines only reflect a tiny fraction of the MHC lig-
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andome. The finite amount of available material, the chemical properties of the epitope,

or the lack of suitable antibodies for some HLA alleles are just some of the limitations

responsible for a restricted coverage of the immunopeptidome (Purcell et al., 2019).

Most recently, the discovery of MHC class I presented peptides originating from novel

or unannotated open reading frames (nuORFs) or from non-coding yet aberrantly ex-

pressed RNA transcripts could re-emphasize the importance of MS-based approaches for

the identification of immunogenic neoantigens (Laumont et al., 2018; Ouspenskaia et al.,

2022). Studies done on proteasome-spliced peptides (PSPs) also claim that a significant

part of the HLA ligandome could be explained by alternative tumor-specific splicing

events that are known to be far more abundant than somatic single-nucleotide variants

(Mylonas et al., 2018; Hoyos & Abdel-Wahab, 2018; Kahles et al., 2018a). Although the ex-

tent to which all these RNA-seq-based peptides ultimately contribute to the immunopep-

tidome is still unknown, their significance as a potential source of neoantigens for cancer

immunotherapy might be huge (Erhard et al., 2018; Shen et al., 2019).

Further detailed analysis of RNA-seq data and experimental immunogenicity assessment

of potential pipeline-derived neoantigens may provide deeper insight into the underly-

ing mechanisms responsible for the formation of immunogenic cancer neoantigens.



2 Material and Methods

2.1 Material

2.1.1 Technical Equipment

# Device Company

1 Analytical balance SI-64 Denver Instrument Sartorius AG, Göttingen,

Germany

2 APOLLO Liquid nitrogen

vacuum container

Cryotherm, KirchenSieg, Germany

3 Autoclave Systec V95 Systec GmbH, Linden, Germany

4 BIOSAFE MD sample

container

Cryotherm, Kirchen/Sieg, Germany

5 Centrifuge 5417R Eppendorf AG, Hamburg, Germany

6 Centrifuge 5810R Eppendorf AG, Hamburg, Germany

7 Centrifuge with vortex 7-0040 neoLab Migge GmbH, Heidelberg, Germany

8 EcoVac Vacuum Pump schuett-biotec GmbH, Göttingen, Germany

9 Growth chamber WTC BINDER GmbH, Tuttlingen, Germany

10 HERAfreezeTM BASIC -86°C

Freezer

Thermo Fisher scientific, Waltham, USA

11 ImmunoSpot S6 Ultra-V

Analyzer

CTL - Europe GmbH, Bonn, Germany

13
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12 Incubator BBD 6220 Heraeus Holding GmbH, Hanau, Germany

13 Incubator CB 150 BINDER GmbH, Tuttlingen, Germany

14 Irradiation chamber Cs137

Type Ob 29/902-1

Buchler GmbH, Braunschweig, Germany

15 Laminar flow HERAsafe KS 15 Heraeus Holding GmbH, Hanau, Germany

16 LS6000 sample container tec-lab GmbH, Taunusstein, Germany

17 Magnetic stirrer RH basic 2 IKA®-Werke GmbH & CO. KG, Staufen, Ger-

may

18 Microscope Axiovert 40 C Carl Zeiss AG, Feldbach, Schweiz

19 Multichannel pipets Eppendorf AG, Hamburg, Germany

20 Multifuge 3 S-R Heraeus Holding GmbH, Hanau, Germany

21 Multifuge 3s Heraeus Holding GmbH, Hanau, Germany

22 NALGENE Cryo 1°C Freezing

Container

Thermo Fisher Scientific, Waltham, USA

23 Neubauer improved counting

chamber

Karl Hecht GmbH & Co KG, Sondheim/Röhn,

Deutschland

24 Pipets Eppendorf AG, Hamburg, Germany

25 Pipette controller INTEGRA Biosciences GmbH, Biebertal, Ger-

many

26 Precision balance 440 KERN & SOHN GmbH, Balingen, Germany

27 Premium -20°C Freezer Liebherr-International Deutschland GmbH,

Biberach an der Riß, Germany

28 Refrigerator Profi line Liebherr-International Deutschland GmbH,

Biberach an der Riß, Germany

29 Rotina 420R Andreas Hettich GmbH & Co.KG, Tuttlingen,

Germany

30 SunriseTM absorbance reader Tecan Group Ltd., Maännedorf, Switzerland
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31 Vortex Mixer 7-2020 neoLab Migge GmbH, Heidelberg, Germany

32 Vortexer Reax top Heidolph Instruments GmbH & Co.KG,

Schwabach, Germany

33 Vortex-Genie 2 Scientific Industries, Inc., New York, USA

34 Waterbath Memmert GmbH + Co. KG, Schwabach, Ger-

many

35 Ziegra Ice machine ZIEGRA Eismaschinen GmbH, Isernhagen,

Germany

Table 2.1: Devices

2.1.2 Consumables

# Consumable Company

1 Cell culture flask (T25, T75,

T175)

Greiner Bio-One GmbH, Frickenhausen, Ger-

many

2 CyroPure tubes Sarstedt AG & Co., Nümbrecht, Germany

3 EIA/RIA plates Corning, New York, USA

4 Falcons (15ml, 50 ml) BD Biosciences, Franklin Lakes, USA

5 Filcon 30 µm filter Syntec International, Dublin, Ireland

6 Gloves Dermatril P KCL GmbH, Eichenzell, Germany

7 MAHAS4510 MultiScreen-HA

0.45 µm ELIspot plate

Merck KGaA, Darmstadt, Germany

8 Microtubes (1.2 ml) Alpha Laboratories, Hampshire, UK

9 neoScrew Micro tubes 1.5ml

brown

neoLab Migge GmbH, Heidelberg, Germany

10 Nitrile gloves Abena A/Sm Aabenraa, Denmark
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11 Non-tissue culture treated

plates (6-/24-well)

BD Biosciences, Franklin Lakes, USA

12 NuncTM Cell culture flask

(80cm2)

Thermo Fisher Scientific, Waltham, USA

13 Parafilm M laboratory film Pechiney Plastic Packaging, Chicago, USA

14 Pipet tips (10/20/300/1250 µl) Sarstedt AG & Co., Nümbrecht, Germany

15 Screw Cap Micro Tubes Sarstedt AG & Co., Nümbrecht, Germany

16 Sealing foil (ELISA) Alpha Laboratories, Hampshire, UK

17 Serological Pipets (5ml, 10ml,

25ml, 50ml)

Sarstedt AG & Co., Nuümbrecht, Germany

18 Stericup/Steritop 0.22 µm fil-

ters

Merck KGaA, Darmstadt, Germany

19 Syringe filters (0.2, 0.45 µm) TPP Techno Plastic Products AG, Trasadingen,

Schweiz

20 Tissue culture-treated plates

(48-well)

BD Biosciences, Franklin Lakes, USA

21 Tissue culture-treated plates (6-

/12-/24-well, round/flat bot-

tom 96-well)

TPP Techno Plastic Products AG, Trasadingen,

Schweiz

Table 2.2: Consumables

2.1.3 Chemicals and Reagents

# Chemical, Reagent Company

1 AIM V™ Thermo Fisher Scientific, Waltham, USA

2 Bovine Serum Albumine (BSA) Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany



2.1 Material 17

3 Cyclosporin A Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

4 DEPC H2O Thermo Fisher Scientific, Waltham, USA

5 Dulbecco’s Modified Eagle

Medium (DMEM)

Thermo Fisher Scientific, Waltham, USA

6 Dimethylformamide (DMF) Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

7 Dimethyl sulfoxide (DMSO) Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

8 Ethanol Merck KGaA, Darmstadt, Germany

9 Fetal calf serum (FCS) Thermo Fisher Scientific, Waltham, USA

10 Ficoll Biochrom GmbH, Berlin, Germany

11 Ionomycin Merck KGaA, Darmstadt, Germany

12 Isopropanol Merck KGaA, Darmstadt, Germany

13 L-Glutamine Thermo Fisher Scientific, Waltham, USA

14 Milk powder Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

15 Non-essential amio acids

(NEAA)

Thermo Fisher Scientific, Waltham, USA

16 Opti-MEM® I Thermo Fisher Scientific, Waltham, USA

17 Paraformaldehyde (PFA) Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

18 PBS (Gibco) Thermo Fisher Scientific, Waltham, USA

19 PBS powder without Ca2+,

Mg2+

Merck KGaA, Darmstadt, Germany

20 Penicilline/Streptomycin Thermo Fisher scientific, Waltham, USA
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21 Phorbol 12-myristate

13-acetate (PMA)

Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

22 Prostaglandine E2 (PGE2) Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

23 Protamine Sulfate MP Biomedicals GmbH, Illkirch, France

24 RPMI-1640 Thermo Fisher Scientific, Waltham, USA

25 Sodium acetate (C2H3NaO2) Merck KGaA, Darmstadt, Germany

26 Sodium azide (NaN3) Merck KGaA, Darmstadt, Germany

27 Sodium Pyruvate Thermo Fisher Scientific, Waltham, USA

28 Streptavidin-HRP Mabtech AB, Nacka Strand, Sweden

29 Sulfuric acid Carl Roth GmbH + Co. KG, Karlsruhe,

Germany

30 TRIzol reagent Thermo Fisher scientific, Waltham, USA

31 Trypane blue Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

32 Trypsine/EDTA Thermo Fisher Scientific, Waltham, USA

33 Tween 20 Sigma-Aldrich Chemie GmbH, Taufkirchen,

Germany

34 VLE-RPMI 1640 Biochrom GmbH, Berlin, Germany

Table 2.3: Chemicals and Reagents

2.1.4 Buffers & media

# Solution/buffer used for Ingredients

1 Acetate buffer ELISpot 46.9 ml H2O + 4.6 ml C2H4O2 (0.2 M ) +

11ml C2H3NaO2 (0.2 M )
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2 AEC buffer ELISpot 500 µl AEC solution + 9.5ml Acetate

buffer, filtered (0.45 µm)

3 AEC solution ELISpot 20 µl AEC chromogen (b= 1 drop) in 1 ml

of AEC substrate

4 Blocking solution ELISA PBS + 1% (m/v) milk powder

5 ELISA coating buffer ELISA H2O + 0.1mol/l NaHCO3 + 0.03 mol/l

Na2CO3, pH = 9.5

6 HRP-complex solution ELISpot 10ml PBS + 50 µl von Strp. / HRP +

50 µl �FCS

7 Washing buffer ELISpot,

ELISA

PBS + 0.05% (v/v) Tween 20

8 �FCS various FCS, inactivated for 20 min at 58 °C

9 �HS various HS, inactivated for 20 min at 58 °C

Table 2.4: Composition of solutions and buffer

# Medium / buffer Ingredients

1 AIM-V AIM-V (Thermo Fisher Scientific), no supplements

2 cRPMI RPMI supplemented with 10% �FCS, 10mM

non-essential amino acids, 1 mM sodium pyruvate,

2mM L-Glutamine, 100 U/ml Penicillin and 100 µg/ml

Streptomycin

3 Freezing medium 90% �FCS + 10% DMSO

4 T-cell medium (TCM) RPMI 1640 supplemented with 5% v/v �FCS, 5% �HS,

10mM non-essential amino acids, 1 mM sodium

pyruvate, 2mM L-Glutamine, 100 U/ml Penicillin, 100

µg/ml Streptomycin, 10 mM HEPES buffer and

16.6 µg/ml Gentamycin
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Table 2.5: Composition of media

2.1.5 Kits & Antibodies

# Kit Application Company

1 BD OptEIA™Human

IL-2 ELISA Set

Measurement of

cytokines in supernatant

BD Biosciences, Franklin

Lakes, USA

2 BD OptEIA™Human

IFN-� ELISA Set

Measurement of

cytokines in supernatant

BD Biosciences, Franklin

Lakes, USA

3 BD OptEIA™TMB

Substrate Reagent Set

Measurement of

cytokines in supernatant

BD Biosciences, Franklin

Lakes, USA

4 Venor GeM OneStep

mycoplasma detection kit

Testing cell lines for

infection with

mycoplasma

Minerva Biolabs GmbH,

Berlin, Germany

Table 2.6: Kits

# Antibody Clone Conjugation Company

1 anti-human IFN-� mAb

(coating)

1-D1K - Mabtech AB, Nacka Strand,

Sweden

2 anti-human IFN-� mAb

(capture)

7-B6-1 biotinylated Mabtech AB, Nacka Strand,

Sweden

Table 2.7: Antibodies
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2.1.6 Cytokines

# Cytokine Company

1 OKT-3 provided by Elisabeth Kremmer

2 Poly-I:C InvivoGen, San Diego, USA

3 recombinant human GM-CSF PeproTech, London, UK

4 recombinant human IFN-g PeproTech, London, UK

5 recombinant human IL-1b PeproTech, London, UK

6 recombinant human IL-2 PeproTech, London, UK

7 recombinant human IL-4 PeproTech, London, UK

8 recombinant human IL-7 PeproTech, London, UK

9 recombinant human IL-15 PeproTech, London, UK

10 recombinant human TNF-a PeproTech, London, UK

Table 2.8: Cytokines

2.1.7 Peptide order

# Patient Seq_ID Order-No.

(Dgpep-

tides)

Sequence Molar mass

[g/mol]

1 ImmuNEO-

01

IN_01_a S-4071 ALSGHLETL 940,07

2 IN_01_b S-4072 DAAGRNSW 875,9

3 IN_01_c S-4073 GMGSESKASF 1000,1

4 IN_01_d S-4074 KGDSPQVKLKY 1262,48

5 IN_01_e S-4075 KKGGLIGS 758,92
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6 IN_01_f S-4076 LEAKGQAL 828,97

7 IN_01_g S-4077 LEHGGAIMA 898,06

8 IN_01_h S-4078 LLGSAVHE 824,92

9 IN_01_i S-4079 SHLYSDPG 874,89

10 IN_01*wt_b S-4080 DAARRNSW 975,01

11 IN_01_2 / FLAKKPSAV 960,17

12 IN_01*wt_1 / FLAKKSSAV 950,13

13 IN_01_1 / ALAAVVTEV 872,01

14 ImmuNEO-

04

IN_04_a S-4181 AGPGNRVL 782,88

15 IN_04_b S-4182 AGVVLGGL 684,82

16 IN_04_c S-4183 CVYKNPVI 935,14

17 IN_04_d / FFTLISVSF /

18 IN_04_e / FLALFWITI /

19 IN_04_f S-4186 FLLLLLKNF 1120,42

20 IN_04_g S-4187 GAGALLCTHL 955,13

21 IN_04_h S-4188 GLAATFASL 849,97

22 IN_04_i S-4189 GSPGGPVSI 769,84

23 IN_04_j S-4190 HVGGAGLEHL 989,08

24 IN_04_k S-4191 KTKEMSNNVK 1178,35

25 IN_04_l S-4192 LGGTGASF 708,75

26 IN_04_m S-4193 NTLMSLSDM 1011,17

27 IN_04_n S-4194 QKRLYYQLFFNCSWY 2059,34

28 IN_04_o S-4195 SLPQNLLYL 1060,24

29 IN_04_p S-4196 SYLSNISY 946
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30 IN_04_q S-4197 THIDAGRF 915,99

31 IN_04_r S-4198 TSLAANTF 823,89

32 IN_04_s S-4199 TVHSTSIAF 962,05

33 IN_04_h S-4200 GLTATFASL 879,99

34 ImmuNEO-

05

IN_05_b S-4201 ASQTAGIAGVR 1030,16

35 IN_05_c S-4202 DIFSRISQR 1121,24

36 IN_05_d S-4203 ETNKSLLKR 1088,28

37 IN_05_e S-4204 FLSLADHAT 974,09

38 ImmuNEO-

09

IN_09_a S-4205 YHLMPFRQHCWQSL 1846,14

39 ImmuNEO-

11

IN_11_a S-4206 AAAAPARGL 796,91

40 IN_11_b S-4207 ARETLLETL 1045,18

41 IN_11_c S-4208 ETSAPASSL 861,89

42 IN_11_d S-4209 GTPSSTTL 762,8

43 IN_11_e S-4210 ISAAELHHV 976,08

44 IN_11_f S-4211 LNITHGILY 1043,21

45 IN_11_g S-4212 LNLREKKNK 1142,35

46 IN_11_h S-4213 RLQDAVPV 897,03

47 IN_11_i S-4214 SAAELHHV 862,92

48 IN_11_j S-4215 SRAAAAPAR 869,96

49 IN_11_e S-4216 ISAAELRHV 995,13

50 ImmuNEO-

15

IN_15_a S-4225 RVVHVSTSQK 1140,29
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51 ImmuNEO-

19

IN_19_a S-4081 DQATCLRSTKFTIY 1646,86

52 IN_19_b S-4082 FFQDKAWFY 1251,38

53 IN_19_c S-4083 GRPGTRPAL 924,05

54 IN_19_d S-4084 GWGVAGTM 777,88

55 IN_19_e S-4085 ITRGQEFE 979,07

56 IN_19_f S-4086 LLEAGRLR 927,12

57 IN_19_g S-4087 PTDAELMS 862,96

58 IN_19_h S-4088 SESNVDRLM 1050,16

59 IN_19_i S-4089 STLVLDEFKR 1207,4

60 IN_19_j S-4090 TLGGWGGQDLR 1159,28

61 IN_19_k S-4091 TNLGFSKK 894,05

62 IN_19_l S-4092 VASISLTK 817,99

63 diverse IN_09_b S-4094 VVHVSTSQK 984,13

64 diverse IN_05_c S-4093 QLRASGQLK 1000,17

65 diverse IN_09_b_WT S-4096 VVHLSTSQK 998,16

66 diverse IN_05_c_WT S-4095 HLRASGQLK 1009,19

Table 2.9: Peptides order from DGpeptides Co., Ltd, Hangzhou city, Zhejiang province,
China.

2.2 Computational Methods: Dataset Analysis

2.2.1 Genetic variants

All subsequent considered peptides, in the following described as proteogenomic neoanti-

gen candidates (NACs), and their immunological testings originate from the dataset anal-
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# R-Package Version Description

1 base 4.2.1 The R base package

2 dplyr 1.0.9 A grammar of data manipulation

3 ggHighlight 0.4.0 Highlight lines and points

4 ggplot2 3.4.0 Create Elegant Data Visualization

5 ggrepel 0.9.1 Automatically position non-overlapping text

6 graphics 4.2.1 The R graphics package

7 gridExtra 2.3 Miscellaneous Functions for "Grid"

8 tidyverse 1.3.2 Tidy messy data

9 Eulerr 6.1.1 Area-Proportional Euler and Venn Diagrams

10 readr 2.1.2 Read rectangular data

Table 2.11: Used software packages for R Studio.

ysis of genetic variants. These data contain DNA mutations found on exome level, as well

as RNA alterations found on RNA level (transcriptome). Mutation calling was performed

by Sebastian Lange. For details on the method, see (Lange et al., 2020; Kim et al., 2018;

Benjamin et al., 2019).

For further analysis of the genetic variants, all corresponding tsv-files for all patients,

forming the dataset with all identified variants, were imported to "R" and merged into

one data frame. With this, the corresponding variable "Metastasis" was assigned via file-

name insertion. See Appendix A, 2.1 for details.

2.2.1.1 R packages

For all data set analysis RStudio 2022.07.1 Build 554 was used on macOS 12.6.1. The

relevant R-packages are listed in table 2.11.

2.2.1.2 Data overview

The DNA data set contained 40 tumor samples from 32 patients. The RNA data set con-

tained 32 tumor samples from 26 patients.

The different correlation and cleanup procedures can be reproduced using the corre-
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sponding R-script (see Appendix A, 2.1). For the visualization of overlapping sets of

data (i.e., the overlap of genomic variants of two metastases), the R-package eulerr (see:

https://rdrr.io/cran/eulerr/) was used.

2.2.1.3 Tumor variant frequency

Certain parameters from WES! (WES!) and RNA sequencing (RNA-Seq) were used to

assess particular quality control aspects of the dataset. The number of mutated and non-

mutated reads for tumor and normal samples, respectively, could be used as markers to

evaluate the validity of each identified variant.

For this purpose, the tumor VF! (VF!), that is a quantity describing the mutation coverage

at a particular locus, was calculated:

V Ftumor =
# readsmutated

# readsmutated +# readsWT
=

ADtumor

ADtumor +RDtumor
(2.1)

It is essential to notice that the significance of the tumor VF! depends on the sequencing

depths and the number of total reads in the tumor. In order to account for this fact,

several filtering criteria are discussed in the next step.

2.2.1.4 Filtering

For all further characterization of the mutational landscape, the dataset was modified

such that every observation referred to a unique variant. This unique variant was de-

fined by the following variables: chromosome number (CHROM),position of the base

pair (POS),reference nucleotide (REF),altered nucleotide (ALT).

In the next step, all genetic variants were split up into two groups based on their VF!, their

mutated coverage (mutated reads), and their total coverage (total reads). The following

values were applied as thresholds (TH):

V Ftumor �0.05 (2.2)

ADtumor �3 (2.3)

ADtumor +RDtumor �5 (2.4)

https://rdrr.io/cran/eulerr/
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Preliminarily, all variants in the dataset that exhibited more than one mutated read in the

normal control (RDnormal) tissue had been rejected.

2.2.2 Neoantigen candidates

Before any experimental validation of neoantigens, the dataset of possible NACs had to

be analyzed. Input data for the used pipeline were two .tsv-files (originating from pFind

(Chi et al., 2015) and from PROSIT (Gessulat et al., 2019) raw data), that were imported

to R.

The contained columns for pFind were "patientID", "CHROM", "POS", "Seq", "SeqMarked",

"SeqGroup", "multiGene", "multiEntity", "multiPatient", "gene", "calledBy", "comment", "True-

Hit", "nReps", "nFound", "mutationType", "transcriptTypes", "geneBiotype", "transcriptBio-

type", "EFFECT", "scoreMS", "TumorAD.Mutect2", "TumorRD.Mutect2", "NormalAD.Mutect2",

"NormalRD.Mutect2", "TumorAD.StrelkaRNA", "TumorRD.StrelkaRNA", "NormalAD.StrelkaRNA",

"NormalRD.StrelkaRNA", "header".

The contained columns for PROSIT were "patientID", "Seq", "SeqMarked", "gene", "True-

Hit", "calledBy", "nReps", "nFound", "CHROM", "POS", "mutationType", "transcriptTypes",

"geneBiotype", "transcriptBiotype", "EFFECT", "PostErrorProb", "TumorAD.Mutect2", "Tu-

morRD.Mutect2", "NormalAD.Mutect2", "NormalRD.Mutect2", "TumorAD.StrelkaRNA", "Tu-

morRD.StrelkaRNA", "NormalAD.StrelkaRNA", "NormalRD.StrelkaRNA", "header", "REF",

"ALT".

The two created data frames were merged and annotated by additional reference data

(Master_ID/Patient_ID, HLA-types, and tumor entity data). Next, tumor VF!s for Mu-

tect2 and Strelka were calculated, and .csv-files were generated for predictions with netMHC

and MHCflurry (cp. Section 2.2.3). After merging the data frame with the obtained rank

and binding affinity predictions, the best binding alleles were extracted, and duplicates

were eliminated patient-wise.

Next, a FASTA file was generated to be used with basic local alignment search tool

(BLAST) provided by the National Center for Biotechnology Information (NCBI) (Bo-

ratyn et al., 2013). On https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=

blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome the FASTA-file was sub-

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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# True Hit Case description Procedure

1 yes The nucleotide sequence encoding the emerged
peptide contains the called mutation.

Inclusion

2 no The same ORF contains the called mutation and
the peptide representing nucleotide sequence
without any overlap.

Exclusion

3 maybe Same as in case "no" but the mutation is either a
frameshift (FS) mutation being upstream (US) of
the peptide sequence or a splice donor/splice
acceptor mutation or the peptide sequence is
fully intronic.

Individual
decision based on
blat

Table 2.13: Distinction of different cases arising from mutation calling.

mitted (Algorithm: blastp; protein-protein BLAST) and the received Alignment-Hit-Table

was imported to R. After processing and merging to the peptide data, sequences with

more than two BLAST-hits were filtered out. Sequences that produced one or two hits in

the BLAST search were checked manually by individual database research.

To provide information about the peptide underlying mutation, the nucleotide sequence

of the peptide was mapped to the associated segment of the genome (to blat) with the

genome browser supplied by the UCSC! (UCSC!) (Kent, 2002; Kuhn et al., 2013). Depend-

ing on the "TrueHit"-classification (see table 2.13) a priori three cases were distinguished:

For all cases classified as "maybe", an individual decision for each peptide was made con-

sidering the present peptide-mutation context found by blatting. Here the crucial criteria

were intron inclusion, the relative position of mutation, the position of peptide, muta-

tion effects on the start/stop codon, frame of peptide, and peptide aberrance from the

assigned sequence of WT-peptide. Additionally, it was checked if the mutation-induced

nucleotide sequence could generically be found on another (WT-)gene or chromosome

("multimapping"). A detailed scheme for the classification of NACs based on the assess-

ment of the criteria mentioned above can be found in Appendix C. For all NACs, a unique

sequence ID (Seq_ID) was assigned that was used to create a list for peptide orders.

Finally, the reference (REF) and the alternative (ALT) sequence at the mutation site were

extracted from the header, and a new data frame with WT peptides was generated. This

was processed similarly as the data frame for NACs, with the corresponding binding

affinities of the non-mutated WT-peptides.
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# Method Strong Binder ("SB") Weak binder ("WB") No binder

1 Percentile rank based < 0.5% < 2.0% > 2.0%

2 Binding affinity based Kd < 50nM Kd < 500nM Kd > 500nM

Table 2.15: Thresholds for affinity- and rank-based peptide selection.

The respective R-script can be found in Appendix A, 2.3.

2.2.3 Prediction of peptide-MHC class I binding affinities

One of the major problems in neoepitope discovery deals with the effectiveness of antigen

presentation and, based on this, with the binding between peptide and the patient’s MHC

class I molecules. This section describes the applied in silico methods to estimate this

binding strength.

2.2.3.1 Technical background

In order to assess the quality of this binding, there are several neural network-based

methods, such as netMHC or MHCflurry, that can estimate the binding affinity of an epi-

tope, based on typically 50-100 experimentally validated peptide-binding affinity mea-

surements. These predictions can either be performed by an "allele-specific" approach

(Andreatta & Nielsen, 2016), whereby separate predictors are trained for each MHC-I

allele individually (O’Donnell et al., 2018) or by a "pan-allelic" approach. In the former

case, the model is closed, meaning that only the peptide sequence of interest is taken as

an input. The model using "pan allelic" architecture, integrates both inputs, the peptide

sequence, and a representation of the MHC allele (Nielsen & Andreatta, 2016a). Con-

sidering the vast number of different MHC-I types, a pan-allele approach represents a

feasible option and may be advantageous for rare HLA types.

2.2.3.2 Data acquisition procedure and threshold selection

To prioritize potential strong binding peptides that generally are associated with a higher

probability of antigen presentation (Gfeller & Bassani-Sternberg, 2018) and thus even-
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tually lead to higher immunogenicity, all NACs were assessed utilizing two different

prediction algorithms. Here, all possible pairings of NAC and disposable HLA-alleles

(HLA-alleles that the corresponding patients inherited) were considered. The best bind-

ing HLA-allele for each patient/NAC group was determined with both prediction meth-

ods. The value of the corresponding nano-molar affinity and the MHC-associated per-

centile rank was used to quantify the binding affinity. Here, the percentile rank repre-

sents the ranked binding affinity compared to a large set of random natural peptides

(Andreatta & Nielsen, 2016). Fixed thresholds for strong and weak binders were chosen,

according to the recommendations of (Moutaftsi et al., 2006) and (Zhao & Sher, 2018) for

both percentile rank and nano-molar binding affinity method, respectively. These are dis-

played in table 2.15. A prioritization of NACs was then made based on the above-raised

values.

To assess the MHC class I binding affinity of potential NACs (cp. Section 2.2.2), two

different tools for binding affinity prediction were used (see table 2.17). The technical

application of both tools is described in the following.

The prerequisite for binding affinity prediction was the result of the corresponding HLA

typing, which was done by AG Rad with the help of xHLA (Xie et al., 2017), BWAKit (Li,

2013) and OptiType (Szolek et al., 2014).

2.2.3.3 netMHC 4.0

Setup A Linux-based version of the software netMHC 4.0 provided by the Department

of Health Technology of the Technical University of Denmark was requested for academic use

at https://services.healthtech.dtu.dk/cgi-bin/sw_request. The tool was

installed according to instructions on a dedicated 1 CPU, 2GB RAM server with CentOS

7-7.1908. As a requirement for the installation, the package tcsh.x86_64EMZ9 had to be

installed.

Input A FASTA file with the corresponding peptide sequences was generated for each

patient with R. The associated three to six MHC alleles (HLA-A, HLA-B, and HLA-C) per

patient were filtered according to their availability in the set of trained netMHC predic-

tors and subsequently exported as .csv-file with R.

https://services.healthtech.dtu.dk/cgi-bin/sw_request
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# Software Package Version Model Predictor Type

1 MHCflurry 2.0.0 models_class1_presentation allele-specific

2 MHCflurry 2.0.0 models_class1_pan pan-allele

3 netMHC 4.0a - allele-specific

Table 2.17: Used software releases and models for binding affinity prediction.

Implementation A Python script was used (see Appendix A, 1.1) to pass the sequences

with the appropriate alleles to netMHC 4.0. The obtained .xls (.tsv) files were imported to

R and integrated with the existing peptide data.

2.2.3.4 MHCflurry

Setup The open-source software package MHCflurry was installed with Python pack-

age installer (pip) 20.0.2 on a macOS 10.12.6 together with the required packages.

Input A CSV file, with the columns peptide and allele, was used as input for MHCflurry.

The sequences in column peptide were in 1-Letter notation, allele contained the corre-

sponding HLA types. The additional columns Patient_ID, Master_ID, Seq_ID and allele_nr

were only used for data integration with R.

Implementation A Python script was used to loop through all input files and to execute

MHCflurry for each patient-specific input file. The code can be found in Appendix A, 1.2.

The resulting .csv files were imported to R and integrated with the existing peptide data.

2.3 Cell biological Methods

2.3.1 Cell-Culture

Until May 2019, thawing, freezing, and cultivation of cells was performed in the labora-

tory unit in building 549 (Schneckenburgerstr. 6). All later cell-culture-related work was
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realized in laboratories in building 522 (Einsteinstr. 25). Work with primary cells and

cell lines, as well as EBV-transformed cells were done in agreement with S1 and S2 safety

guidelines and under sterile conditions.

2.3.1.1 Thawing, counting and freezing of cells

After extraction of cell-media suspension containing cryotubes from the liquid nitrogen

storage and subsequent cooled transport, cells were quickly thawed using a 37 °C wa-

ter bath until being partly melted. By adding small amounts of RPMI, they were then

transferred to a falcon with pre-tempered media at the ratio of 1:10 for the successive

washing step. Herefore, the cells were spun down for 5 min 500 g, and the supernatant

was poured off and replaced by 1 ml of fresh media.

For consecutive counting, 10 µl of cell suspension was diluted in Trypane blue according

to the expected cell concentration and pipetted on a Neubauer counting chamber, which

was then analyzed under the light microscope, such that all alive single cells could be

counted in all four quadrants. The corresponding cell concentration could then be calcu-

lated by:

ccells [1/ml] =
Ncells, counted

Nquadrants, counted
· d · 104 (2.5)

where d is the dilution factor of the cell suspension in Trypane blue.

For cryo-preservation, cells that were beneficial for future applications were washed, re-

suspended in a freezing medium, and transferred to cryotubes with an aliquot size of 1

ml. Using a pre-cooled Nalgene Cryo 1 °C Freezing Container, the cryotubes were cooled

down to -80 °C and then relocated to the liquid nitrogen tank the next day for long-term

storage.

2.3.1.2 Cultivation of cell lines

Through known cell concentrations, the cell-media suspension could be diluted with the

corresponding amount of media for further cultivation. For cell lines, freshly prepared

complete RPMI (cRPMI) was used, and cells were split up twice a week or if a sufficiently

high cell density was assumed, according to the color of the media. Cells were stored at 37
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°C, and their growth was frequently controlled and evaluated under the light microscope.

Primary cells were transferred to AIM V according to the protocol for in-vitro stimulation

of T cells (see Section 2.3.2).

2.3.1.3 Isolation of primary cells

To attain sufficient amounts of peripheral blood mononuclear cells (PBMCs) for further

in-vitro stimulation, whole blood (or leukapheresis products) had to be separated into

their components. Ficoll gradient density centrifugation (Noble & Cutts, 1967) was used

for this. 35 ml of RPMI-diluted whole blood (ratio 1-2:1) was slowly poured into a 50 ml

falcon containing 15 ml of previously prepared Ficoll solution, such that the boundary

layer between both matters was maintained. After 25 minutes of centrifugation at 880g,

using the option for reduced acceleration and deceleration, the leukocyte layer was care-

fully removed with a serological pipet. Last, the obtained suspension was washed with

RPMI twice for further use in stimulation assays or other applications.

2.3.1.4 Generation of EBV-transformed lymphoblastoid cell lines (LCL)

Supernatant from Epstein-Barr virus (EBV) was used to induce in-vitro transformation

of B-cells to obtain immortalized lymphoblastoid cell lines (LCLs) (Anderson & Gusella,

1984) for later antigen presentation. Initially, semi-adherent growing B95-8 cells had to be

seeded and expanded in cRPMI until reaching a concentration of 0, 5� 1 · 106 cells. After

being stimulated with PMA (cPMA=20 ng/ml) for one hour at 37 °C, cells were washed

and taken back to culture for further three days. The harvested supernatant was then

purified with 0,45 µm sterile filters and was stored in aliquots of 1 ml at -80 °C until use.

Next, 5 Mio freshly isolated or thawed PBMCs were resuspended in 1 ml cRPMI and

incubated with 1 ml EBV supernatant for two hours at 37 °C. After adding 1,5 µl of

Cyclosporine A (ccyc-A=2 mg/ml) and 1 ml of additional cRPMI, the infected cells were

transferred to two T25 flasks. They were then further incubated at 37 °C.

Once a week, 1 ml of medium was changed with fresh cRPMI until after 3-5 weeks,

macroscopically visible clusters indicated a successful transformation. Further expan-

sion was performed until reaching sufficient cell numbers. Cells were then cryopreserved
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until use.

2.3.2 In-vitro stimulation of T cells

To check for antigen-specific T-cell responses in primary cells, a modified version of

an accelerated co-cultured dendritic cell (acDC) assay (Martinuzzi et al., 2011) was per-

formed. Here T cells were stimulated, expanded, and co-cultured with antigen-presenting

cells (APCs) before measuring their interferon-� (IFN-�) production with ELISpot (Ranieri

et al., 2014).

2.3.2.1 T-cell stimulation and DC culture

Patient PBMCs were thawed, washed, counted (cp. Section 2.3.1.1) and cultivated in AIM

V, in a 96-well plate (flat bottom) supplemented with 0.1 ng/µl granulocyte-macrophage

colony-stimulating factor (GM-CSF) and 0.1 ng/µl interleukin 4 (IL-4). Depending on

patient-related sample availability, the applied cell concentrations varied between 105

and 6 · 105 cells per well.

After incubation at 37 °C for 24 hours peptide (cend=1 ng/µl; solved in DMSO) was added

along with interleukin 7 (IL-7) (cend=0.5 ng/ml), TNF-a! (TNF-a!) (cend=50 ng/ml) and

interleukin-1� (IL-1�) (cend=10 ng/ml). tetradecanoyl phorbol acetate (PMA) (cend=1

ng/µl) and Ionomycin (cend=2 ng/µl) were added to wells selected for positive control.

Instead of peptide solution, 1 µl of DMSO was added to wells selected for negative con-

trol. Cell transfer to previously coated ELISpot plates was performed after 24 hours of

incubation at 37 °C and washing with AIM V. The ELISpot assay is described in Section

2.3.2.2.

Afterward, T cells were re-transferred to a 96-well plate (round bottom), washed and cul-

tivated in TCM supplemented with cend=5 ng/ml IL-7 and cend=5 ng/ml IL-15 for 10-12

days. During the expansion of T cells, IL-7 and IL-15 were added every two days, and the

medium was changed according to the cell density as indicated by the color. To ensure an

appropriate cell concentration, all wells were checked under the light microscope twice a

week, and cells were eventually transferred to a suitable larger well plate.
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ELISPot
Plate

Day -1 Day 0 Day 1

Peptides

A B CPBMCs 1st ELISpot

Day 2

Cytokines:

PBMCs
+ GM-CSF
+ IL-4

Peptide
+ IL-7
+ TNF-a
+ IL-1b

Continue cultivation

20h incubation
Early T-cell
responses

Day 10 – 13

+ IL-7
+ IL-15

ELISPot
Plate

2nd ELISpot

72h incubation
with HLA-matched
target cells

In-vitro expansion

Figure 2.1: Schematic representation of T-cell stimulation, expansion, and correspond-
ing analysis with ELISpot. Two ELISpot analyses were performed, one 24
hours after stimulation with peptides and cytokines, the other at day 10-13
after expansion of T cells with IL-7 and IL-15. The second ELISpot measures
IFN-� secretion caused by co-incubation with target cells.

2.3.2.2 Immunogenicity assessment with ELISpot

At day 0, capture antibody solution (cAB 1-D1K=10 ng/µl; solved in PBS) was freshly pre-

pared, corresponding ELISpot plates were coated with 50 µl per well and incubated at 4

°C overnight. Two hours before use, the antibody was discarded, and the ELISpot plate

was washed four times with PBS (200 µl), each time leaving it to incubate at RT for 10

min. Afterward, all wells were blocked with 150 µl TCM for at least 45 minutes at 37 °C.

To detect early T-cell reactivities (day 1), cells were transferred to the previously coated

ELISpot plate directly after discarding the block and incubated for 20 hours at 37 °C.

For detection of late T-cell responses (after expansion; day 10-13), an equal number (10000-

20000) of preliminary peptide-pulsed target cells (cp. Section 2.3.1.4) was co-incubated

with the T cells for 72 hours at 37°C. Here, all conditions (pulsed, WT-pulsed, unpulsed,

positive control, negative control) were placed on the same ELISpot plate. After incuba-

tion, the supernatant was taken off and stored at -20 °C for later analysis. The cells were

then either transferred back to a 96-well plate (round bottom) for further cultivation,

washing and freezing, or they were discarded.

For the development of the assay, the ELISpot plates were washed six times with washing

buffer, beating the plates to dry between each washing step. Next, IFN-� antibody 7-

B6-1-Biotin was diluted in PBS with 0,5% BSA (cAB=2 ng/µl) and 100 µl were added

to each well for subsequent incubation at RT for 2 hours. After repeating the washing
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procedure, 100 µl of streptavidin horseradish peroxidase (Strep-HRP) complex solution

was added to each well for a further 90 minutes of incubation in the dark and at RT. The

consecutively performed washing step was done twice with washing buffer and then

twice with PBS only.

To visualize bound components, 100 µl of AEC solution was added to each well, and

the ELISpot plate was then quickly stored in the dark for 5-15 min of incubation at RT.

When spots were clearly visible (positive control), the reaction was stopped with abun-

dant deionized water. To prevent smearing of spots, all plates were directly dried out for

30 min with the help of the airflow in the fume hood and then stored in the dark until

further analysis. Read-out was done within three days on an ImmunoSpot S6 Ultra-V

Analyzer using Immunospot software 5.4.0.1 (CTL-Europe).

The detailed protocol can be found in Appendix C, 3.2.2.

2.3.2.3 Cloning by limiting dilution

To detect reactivities in the case of clonal T cells and possible TCR identification, single

clones had to be extracted from the previously expanded T-cell culture by dilution to a

final concentration of ⇠ one cell / well. These single T cells were co-cultured in TCM

with previously �-irradiated (30 Gy) feeder cells at a concentration of 50000 feeder cells

per well. Additionally, the medium was supplemented with 50 U/ml IL-2, 5 ng/ml IL-7,

5 ng/ml IL-15, and 30 ng/ml OKT-3. To avoid wrong cell concentrations due to possible

counting errors, the dilution of T cells was performed such that two different final T-cell

concentrations (c1=1 cell/well, c5=5 cells/well) were realized. 200 µl of each dilution was

plated on four 96-well plates.

For cultivation, IL-2 was added every three days to a concentration of 50 U/ml, and

IL-7 and IL-15 were added once a week to a concentration of 5 ng/ml. In the case of

observable clones after 15 to 20 days, T cells were analyzed for specific responses with

ELISpot (cp. Section 2.3.2).
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2.3.2.4 ELISA

For the detection of cytokine release during different incubation procedures (early T-cell

responses on ELISpot plates or co-cultures with target cells) BD OptEIATM Human IFN-�,

IL-2 or TNF-a! ELISA Set was used following the instructions of the manufacturer. 150

µl of cell culture supernatant was gained directly after incubation and was stored at -20

°C. Coating of a 96-well ELISA plate was done one day before analysis. Therefore 50 µl

of the corresponding capture antibody (IFN-�, IL-2 or TNF-a!) diluted in ELISA coating

buffer (1:250) had to be added to each well carefully, avoiding bubbles. Subsequently, a

sealing foil was put on the plate and incubated at four °C overnight.

After washing the plate three times with washing buffer, 200 µl of a 1% m/v milk pow-

der in PBS solution was added to each well, and the plate was incubated at RT for one

hour for blocking. In the meanwhile, the supernatant, as well as the ELISA standard,

were thawed. Since the ELISA standard stock concentration may vary for each lot, the

corresponding lot information had to be considered for further dilution.

After dissolving stock solutions in incubation buffer (AIM V or TCM, respectively) to a

concentration of cstart=1000 pg/ml for IFN-� and cstart=500 pg/ml for IL-2 and TNF-a!

a 1:1 titration series was performed in five microtubes, plus one microtube with buffer

only:

dilution (1) : buffer + ELISA standard ! c = cstart

dilution (i) : 500µl buffer + 500µl dilutioni�1; i = 2, .., 6 ! c =
cstart
2i�1

dilution (7) : 500µl buffer ! c = 0

The plates were washed three times with washing buffer, and the standard dilutions (1)-

(7) (in duplicates) as well as the supernatant (50 µl per well each) were pipetted.

After 1 hour of incubation at RT, the plates were washed five times, and AB-enzyme con-

jugate solution was prepared diluting detection antibody (IFN-�: 1:250, IL-2 and TNF-a!:

1:500) and HRP (1:250) in blocking solution. Subsequently, 50 µl of AB-enzyme conju-

gate solution was pipetted to each well, and plates were closed with the sealing foil and

incubated for one hour at RT. The plates were washed seven times, and 100 µl of freshly

prepared substrate solution (Substrate A + B from BD OptEIATM TMB Substrate Reagent
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Set; mixed in a ratio of 1:1) for incubation was added in the dark to start the enzyme

reaction.

After approx. 10-20 min, the wells containing the standard appeared from dark to light

blue, which was used as a lead to stop the reaction by adding 50 ml of sulfuric acid.

For analysis, the optical density was measured with an absorbance at 450 nm and a ref-

erence of 570 nm with Sunrise™absorbance reader. The optical density was normalized to

concentrations using the obtained calibration curve from the wells with the ELISA stan-

dard.



3 Results

3.1 Computational Analysis and Integration of Data

3.1.1 Overview of the genetic, proteogenomic and bioinformatical pipeline

To demonstrate the integration of this work into the context of the ImmuNeo project, a

brief overview of the whole pipeline will be given (see Fig. 3.1). This includes different

bioanalytical methods, such as NGS and MS, as well as other bioinformatical tools, like

mutation calling and prediction of MHC class I binding affinities.

At the time of writing, the ImmuNeo MASTER cohort, which represents the foundation

of this work, comprised 32 patients with different tumor entities. The corresponding list

of tumor entities of all ImmuNeo patients can be found in Appendix B, 1. Data acquisi-

tion was performed in two initially independent strands that constitute the basis of the

pipeline.

On the one hand, there is the data set containing the information on genetic variants from

patients included in the ImmuNeo MASTER cohort or from ImmuNeo Plus samples.

Here, analyzed at the DKFZ facility (Horak et al., 2021), two levels of genetic variants

were acquired, exome data from WES! and WGS! (WGS!) as well as transcriptome data

from RNA-Seq (Genomics & Transcriptomics). On the other hand, there is the proteoge-

nomic data set containing information about the presented immunopeptidome, which

was acquired by HLA class I peptide (pHLA) Immunoprecipitation with successive pep-

tide purification (peptide elution) and MS/MS analysis (Immunopeptidomics).

As a first step, the raw data from WES!/WGS!, as well as from RNA-Seq, had to be

analyzed by different tools to identify somatic single nucleotide variants (SNVs) and

insertion-deletion mutations (indels). For this mutation calling, data from both sources

39
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Figure 3.1: Schematic representation of the pipeline. License: see List of Figures.
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were analyzed with the corresponding software MuTect2 (Benjamin et al., 2019) and Strelka2

(Kim et al., 2018; Lange et al., 2020), respectively. Furthermore, filtering of all identified

variants for SNP was realized using the SNP database (dbSNP) (Sherry et al., 1999). In

addition to the mutation data, the resulting VCF! (VCF!) file also contained variant fre-

quencies that were integrated into filtering procedures.

For the subsequent VCF! translation, a WT-DNA! (WT-DNA!) sequence was obtained

from Ensemble92 protein database, and all relevant mutations were introduced. In a next

step, all possible open reading frames (ORFs) were determined and translated to AAs.

All new ORFs were predicted for non-coding regions or intron inclusions.

Next, MaxQuant (Cox & Mann, 2008; Tyanova et al., 2016), pFind (Chi et al., 2018), and

PROSIT (Gessulat et al., 2019) were used to match the full length ORF (as FASTA format)

to the spectral data from MS/MS such, that every possible tryptic peptide (8 to 15-mer)

was considered. All the WT-peptides were filtered out using the Human Protein Atlas

(Uhlen et al., 2017).

In the following post-processing, the resulting raw data were annotated (i.e., to obtain

corresponding gene biotypes or MS tools for each peptide), and SNPs with an allele fre-

quency (AF) greater than 1% were filtered out. Additional information from HLA-typing,

as well as tumor VF! data, were annotated.

Subsequent predictions of MHC class I binding affinities were performed with the open-

source tool MHCflurry (O’Donnell et al., 2018) and with netMHC, a formerly established

proprietary tool for binding affinity estimation (Jurtz et al., 2017). Then, the best binding

alleles were estimated for each peptide. Further details can be found in section 2.2.3. To

check for already known peptide sequences in literature, a BLAST search (Altschul et al.,

1990; Johnson et al., 2008) with subsequent filtering was performed on all NACs.

As a last step, the corresponding nucleotide sequences associated with unclear NACs

were compared to the human reference genome with the UCSC! genome browser (Kent,

2002). Here, individual quality control based on different variant properties (position

of mutation with respect to the localization of the exon/intron/splice site given by the

primary transcript, mutation type, known transcripts, etc.) was performed, and peptides

were rejected according to assessment.
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All peptides with sequences of 8-15 AAs passing the procedures mentioned above were

then assessed for in-vitro immunogenicity. This experimental testing was performed as

described in section 2.3.2.

The principal work of this thesis consisted of developing scripts to annotate, analyze, cor-

relate, and display mutational and peptide-specific data, to design prioritization methods

based on BLAST and on results of in silico binding affinity prediction and apply them to

the group of NACs. Finally, potential peptides were assessed for immunogenicity with

interferon-based T-cell stimulation assays.

3.1.2 Characterization of the mutanome

The genomic and transcriptomic data set contains information on both, the genetic vari-

ants on DNA and those on RNA level. This data not only contributes to subsequent

identification of potentially reactive neoantigens (NAs), but it also helps to develop a

more accurate picture of the mutational landscape of the tumor.

The performed assessments included the evaluation of sequencing parameters, the DNA

and RNA overlap, for comparison of repertoires, the genetic background of the identi-

fied variants for characterization and the analysis of variants shared between different

patients and different metastasis of the same patient.

3.1.2.1 Assessment of sequencing parameters

As a first step, the sequencing parameters (see Section 2.2.1) were assessed. This helped

to contextualize the obtained variant data within the identification pipeline and led to

the evaluation of plausible filtering criteria (cp. Eq. 2.2-2.4).

For details on filtering criteria, see Methods Section 2.2.1.4. All variants not complying

with one or more of these filtering criteria were termed "outliers". The remaining variants

were termed "inliers".

Coverage For DNA variants, the mean value of total reads of all identified variants was

roughly 140 (25th to 75th percentile ranged from 70 to 220 reads; Fig. 3.2). Considering the
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Figure 3.2: Coverage per altered locus for both DNA and RNA variants. The spread
of the number of total reads (coverage) for all identified mutations is sep-
arately displayed for DNA and RNA level utilizing a boxplot (DNA: blue,
RNA: green). A black horizontal line depicts the corresponding median of
both distributions. The corresponding whiskers are displayed by two black
vertical lines for each boxplot. Grey dots depict outliers.

alterations on RNA level, the mean value was found to be shifted towards lower values.

A closer look revealed that even if the majority of identified RNA variants had fewer

total reads (25th to 75th percentile ranged from 5 to 80 reads), distribution outliers were

found at high coverage values. Per average, RNA variants exhibited lower sequencing

depths. This impression could be confirmed by looking at the detailed histograms for

coverage of DNA and RNA (Fig. 3.3). Here, most identified variants on DNA resembled

a Gaussian distribution with a peak roughly at 180 reads. In comparison on RNA level,

the identified alterations did not exhibit such a clear canonical distribution.

While for DNA, both the filtered ("Inliers", blue) and the unfiltered ("Outliers", yellow)

variants exhibited a qualitatively similar distribution (Fig. 3.3), for RNA, two different

peaks could be observed: The majority of inliers ranged between 5 and 100, outliers

however, were either found to be below the threshold (Ntotal reads = 5, red dotted line) or

between 100 and 300 reads.

Tumor VF In terms of tumor VF! (cp. Section 2.2.1.3), the RNA distribution was much

wider and had a mean value of 0.25, whereas for DNA, more than 50% of all identified
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Figure 3.3: Histogram of the distribution of the coverage per altered locus for Inliers
and Outliers, for DNA and RNA level. The distribution of the number of
total reads per identified variant is displayed as a histogram for all variants
meeting the filtering criteria (Inliers: blue) and for the remaining variants not
meeting the criteria (Outliers: yellow). The upper panel depicts the distribu-
tion for DNA variants and the lower panel for RNA variants. The red dotted
vertical line indicates the threshold for the filtering criteria.

variants had a tumor VF! below 0.25, with a mean value of approximately 0.08 (Fig. 3.4).

A substantial part of all variants, but especially of those detected on DNA level (Fig. 3.5,

upper panel), yielded a tumor VF! below 5% (red dotted line) and were classified as "out-

liers" (yellow). Interestingly, the majority of variants on exome level with a tumor VF of

1 were rejected due to low coverage. In contrast, on RNA level, less than 50% of these

high-VF alterations (and also a significant proportion of alterations at specific tumor VF

values that correspond to certain fractions arising from low read numbers) were filtered

out. For low and intermediate values of tumor VF, there was a broad distribution of vari-

ants passing the filtering criteria (Fig. 3.5), for DNA and RNA. Relatively fewer variants

were identified with a tumor VF of > 50%.

3.1.2.2 Assessment of DNA and RNA overlap

After eliminating duplicates, the data set contained a total of approximately 139.000 vari-

ants thereof, 9.900 DNA variants (7.1%), and 128.000 RNA alterations (92.9%). Since RNA

data was not available for all tumor samples, the analysis of cross-level variants (variants
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Figure 3.4: Tumor Variant frequency for both DNA and RNA variants. The two box-
plots depict the distribution of the tumor VF of all identified variants on DNA
and RNA level. Although the median, displayed by the horizontal black
line, on transcriptome level is significantly higher than on exome level, the
interquartile range on RNA level covers more than half of the whole range,
indicating that the distribution here is much wider.
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Figure 3.5: Distribution of the tumor variant frequency depending on the filtering cri-
teria for DNA and RNA variants. The histogram depicts the distribution
of the tumor VF for all identified variants with regard to the filtering crite-
ria (blue: Inliers, yellow: Outliers) for DNA level variants (upper panel) and
RNA level variants (lower panel). The red dotted line indicates the threshold
for filtering criteria.
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identified on RNA and DNA level) was based on a data subset containing only those

samples with cross-level data availability. For this, the following tumor samples were

excluded from the analysis: 11_T1, 16_T1, 20_T1, 34_T1, 31_T1, 14_T1, 25_T1, 25_T2.

From the resulting 132.000 total variants, more than 5000 variants were identified in both

data sets (Fig. 3.6), resulting in an overlap of 3.8%. By application of filtering criteria, as

described in Section 2.2.1.4, 56% of all DNA variants and 35% of all RNA variants were

classified as "outliers" (Fig. 3.7). This highlights that although having a much higher

number of total reads, the exome data set had a much higher percentage of outliers,

basically due to a vast fraction of variants with a very low tumor VF. This finding could

also be confirmed by acknowledgment of the high peak in the histogram (Fig. 3.5, upper

panel), which is located below the 5%-threshold (red dotted line) and represents all the

outliers that were rejected due to low VF.

Next, the number of genetic variants was assessed for all patients with respect to their

specific disease entity. For both levels of variants, DNA and RNA, the distribution did not

show correlations between tumor entities and mutational burden (Fig. 3.8). It could be

observed that the number of variants found for different metastasis and hence different

tissue samples from the same tumor did not show divergent patterns but a major overlap.

The comparison of DNA and RNA reads yielded a substantial difference in the size of

the corresponding subsets (cp. Fig. 3.6). The number of RNA variants was found to be

approximately ten times higher than the number in the corresponding DNA data subset.

When considering the applied filtering criteria (for details, see Section 2.2.1.4), the rele-

vant group of exome variants was found to be even more diminished in comparison to

the group of filtered RNA alterations.

To address the question of mutually shared DNA and RNA variants for different sub-

groups with similar entities, parametrized subsets of variants had to be compared in

terms of congruence. Due to the heterogeneous cohort with 26 different entities among 32

patients, a further assignment into four disease groups ("Carcinoma", "Sarcoma", "Melanoma",

"Other") was performed to categorize the results and to facilitate the deduction of possi-

ble correlations or dependencies.

As before, (cp. Fig 3.6) all identified variants were assigned according to their detec-
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Figure 3.6: Venn diagram showing the overlap of variants identified on DNA and RNA
level for all variants and for Inliers only, respectively. Each Venn diagram
shows the three fractions of unique variants identified either on DNA (blue),
on RNA (green), or on both levels (DNA and RNA, teal). All variants (left
panel) were compared with those fulfilling the filtering criteria (right panel).
Only tumor samples with available DNA and RNA data were considered for
this analysis.
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Figure 3.7: Fraction of DNA and RNA variants classified as Inliers and Outliers, re-
spectively. The corresponding fractions of variants for both levels (DNA and
RNA) that were assigned to the group of Inliers (darker color) and Outliers
(lighter color) are displayed together with the corresponding absolute num-
bers of variants. Left panel: DNA, blue; Right panel: RNA, green.

Figure 3.8: Total number of genetic variants identified on DNA and RNA level. For
each sample and patient in the cohort, the total number of genetic variants
identified on DNA level (upper plot) and RNA level (lower plot) is illustrated.
By applying criteria on sequencing parameters, all found variants were clus-
tered into a group of "Inliers" meeting the filtering criteria (darker blue/green)
and a group of "outliers" not meeting the criteria (lighter blue/green). No
RNA data was available for patients IN-11-T1, IN-14, IN-16, IN-20, IN-25, IN-
31, IN-34.
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Figure 3.9: Overlap of DNA and RNA variants for different subsets of entities consid-
ering all identified variants. The different Venn diagrams show the overlap
of shared DNA and RNA variants assigned to different subgroups associated
with the tumor entity of the corresponding patient. The teal areas represent
the overlapping fraction. The sizes of the circles hereby correspond to the ab-
solute number of variants, whereas the percentages refer to the relative frac-
tion within each specific subgroup. The biggest overlap (5.2 %) could be ob-
served for variants identified in Melanoma patients.
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Figure 3.10: Overlap of DNA and RNA variants for different subsets of entities con-
sidering only variants passing the filtering criteria. The different Venn
diagrams show the overlap of shared DNA and RNA variants assigned to
different subgroups associated with the tumor entity of the corresponding
patient, where only variants classified as "Inliers" were considered. The teal
areas represent the overlapping fraction. The sizes of the circles hereby cor-
respond to the absolute number of variants, whereas the percentages refer to
the relative fraction within each specific subgroup.
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tion level (DNA only, DNA + RNA and RNA only), but additionally clustered into each

disease subgroup. It could be observed that for different subgroups, the relative over-

lap of variants varied significantly (Fig. 3.9). Whereas more than 5.9% of all variants

identified in Melanoma samples (n=8) were only found on exome level, for samples of

the carcinoma group (n=14), this value dropped to less than 1.8%, suggesting that vari-

ant coverage through RNA-Seq was even more effective in these cases. For the sarcoma

group, intermediate levels of overlap were found.

Repeating the above analysis with the data set of filtered variants (see Section 2.2.1.4)

indicated that the overlap of DNA and RNA variants is generally significantly smaller

for inliers or that a significant part of outliers is shared between DNA and RNA (Fig.

3.10). This may have major implications for the emergence of immunogenic neoantigens

and will be discussed in Chapter 4.

3.1.2.3 Classification and genetic assessment of variants

As seen before, the identification of genetic variants on the RNA level has led to an ap-

proximately ten times higher variant yield than on exome level. To address the question

if post-transcriptional modifications, such as RNA editing, or if rather structural differ-

ences within the identification pipeline were responsible for this "variant-gap", detailed

genetic analysis had to be made.

Genetic biotype The genetic biotype, that is, the classification of the genetic origin (the

mutated gene) of all identified variants, was assessed with respect to the corresponding

detection level. Here, only variants passing the filtering criteria (cp. Sec. 3.1.2.1) were

taken into consideration (Inliers).

While more than 20% of the RNA variants resulted from regulatory RNAs (see Fig. 3.11),

which was significantly higher than on DNA level (only 4% regulatory RNAs), the vast

majority of variants for both regimes were detected on protein-coding regions. However,

there was a notable difference for DNA variants (78% protein-coding) compared to RNA

variants (54% protein-coding). Interestingly, processed transcripts, TECs, and sense in-

tronics only played a minor role in terms of genetic biotype for DNA-identified variants

(together <1%). For RNA variants, this fraction rose to roughly 7%.
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Figure 3.11: Genetic Biotype of DNA and RNA variants. The fraction of the most im-
portant genetic biotypes of all variants assigned to "Inliers" are displayed for
DNA (left panel) and RNA (right panel) level.

Variant type To go more into detail, in a next step, the variant type itself was assessed

by grouping all mutations into subgroups according to their genetic effect. It was mainly

discriminated between non-coding and coding missense, splice site, intron, and other

minor effects.

Again, assigning all variants to the DNA and RNA group revealed that for DNA, the cod-

ing missense variants were clearly dominating (64%), whereas, for RNA, most variants

belonged to the group of non-coding missense variants (45%; Fig. 3.12). The fraction of

coding missense variants on RNA level was only about 30%.

Remarkably, splice site and intron variants accounted for roughly 20% on RNA level but

only 2% on DNA level. At the same time, frameshift events seemed more likely on DNA

level (6%) than on RNA level (2%).

All variants assigned to other groups, taken together, were responsible for less than 3%

for RNA variants and less than 6% for DNA variants.

Mutation type Further assessment, according to the associated mutation type of all

variants, showed that roughly 89% of all DNA variants and 96% of all RNA variants re-

sulted from substitution events (see Fig. 3.13).
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Figure 3.12: Genetic Variant type of DNA and RNA variants. The fraction of different
variant types is illustrated for all variants meeting the filtering criteria for
both, DNA and RNA level (left and right panel, respectively).

Only a substantially smaller fraction originated from deletions (DNA 7%; RNA 4%). In-

sertions and multi-substitutions appeared to be rare (DNA 4%) to extremely rare events

(RNA <0.5%).

Gene mapping for RNA variants Mapping all identified variants to their associated

genes was done to eventually highlight genetic conspicuousness for different tumors.

First, all variants related to a certain gene were counted and weighted by the gene size,

that is, the length of the gene in number of base pairs.

The 25 genes with the highest density of variants had a range of eight to 35 mutations

per 100 bp (Fig. 3.14(a), blue and yellow bars). Considering only variants matching the

filtering conditions (cp. Sec. 2.2.1.4; blue bars in Fig. 3.14(a)), there was no qualitative

difference for the six most mutated genes. Either way, gene "RF00017" would still be the

gene with the highest density of variants (followed by "AC018638.1 and "AC092718.4").

Interestingly, the fraction of variants being rejected by the filtering criteria varied dramat-

ically between the different genes. Whereas variants from some genes (i.e., "SNRPGP15",

"RPL24P2") seemed to be the result of nearly only inliers (passing the filtering criteria),

some variants from other genes appeared to include a notable fraction of outliers (e.g.,

"AC099560.2").

For a more detailed data analysis, only variants matching the filtering criteria were in-
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Figure 3.13: Mutation type of DNA and RNA variants. The doughnut plot depicts the
different fractions of mutation types according to the level of identification
(DNA variants: left panel; RNA variants: right panel). Substitution consti-
tuted the major fraction (88.7 % and 96.2 %, respectively). On RNA level
almost no insertions or multi-substitutions were observed.

cluded.

Specifying all variants by the tumor entity group of the corresponding sample, it could

be seen that the individual fractions (according to the size of the sub-cohort) were com-

parable in size for most of the genes (see Fig. 3.14(b)). Nevertheless, some genes did

not comply with this observation and exhibited a different behavior. First, variants in

gene "RF00017" and "SNRPGP2" were exclusively found in Carcinoma-, Sarcoma- and

Melanoma patients. Second, variants mapped to gene "IGHV3-6" were found to be sig-

nificantly more abundant in tumors assigned to the Melanoma group than in other tumor

types.

For an unbiased comparison of the most relevant (i.e., most mutated) genes between

the different entity groups, the results were weighted by the occurrence in the particular

group. The mutational load (i.e., the number of variants per 100bp per patient) in all three

major groups was comparable with slightly increased levels in the case of the Melanoma

patients (see Fig. 3.15).

The mutational load for "Other" was found to be decreased roughly by a factor of two. Be-

sides this, it could be shown that the three highest ranked genes ("RF00017", "AC018638.1",

and "AC092718.4") were still within the first four genes with the highest mutational load

for each of the three major groups (i.e., Carcinoma, Sarcoma, and Melanoma). Their val-
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ues, however, varied significantly (for "AC018638.1") between 0.45 and 0.76 mutations

per 100bp on average. For both, patients that did not belong to one of these three groups

(denoted as "Other"), there were no variants identified within this gene.

According to the former observation of highly abundant variants in gene "IGHV3-6", this

gene was ranked first for Melanoma patients with more than 1.1 mutations per 100bp per

average. Interestingly, for the other entity groups, this gene was not ranked within the

top ten genes and only reached a value of 0.11 to 0.22 mutations per 100bp on average.

With one exception ("IL 10RB-AS1"), all genes that were found to be within the first 15

genes with the highest mutational load exhibited a gene length between 220 and 700 bp

(see color distribution in Fig. 3.15).

Gene mapping for DNA variants Due to the significantly lower number of detected

DNA variants compared to the transcriptome, ranking genes according to their variant

density yielded a considerable number of very short genes, containing only one or two

mutations. Hence, a threshold was introduced to avoid a certain selection bias due to

a very low number of base pairs, which required genes to exhibit a minimum of three

mutations to be considered in the analysis.

The bigger part of the genes had a roughly two orders of magnitude lower mutation den-

sity than the highest-ranked genes for RNA variants (see Fig. 3.16(a)). Strikingly, one

gene ("DUX4L37") showed a mutation density that was increased by one order of mag-

nitude compared to others. Curiously, it was found to carry this high number of variants

only for the Carcinoma and the Sarcoma group (first bar in upper panels in Fig. 3.16(b)).

The same held true for gene "HNRNPKP4", which again was found to only show muta-

tions in patients from the Carcinoma and the Melanoma group.

In contrast and even more interesting, variants in gene "LINC00273" and "SALL1P1"

could only be identified in patients from the Sarcoma and the Melanoma group (see Fig.

3.16(b)). For variants from the Melanoma group, gene "LINC00273" was even the one

with the highest mutation density of all genes, with an average of 0.017 mutations per

100bp (Sarcoma: 0.014).

Higher-ranked genes were generally shorter (the four highest-ranked genes range be-

tween 700 bp and 1450 bp), whereas longer genes did not exhibit a correspondingly

higher number of variants. In this regard, gene "FO538757" seemed peculiar since it car-

ried more than 0.1 mutations per 100 bp with a gene length of almost 10.200 bp. For
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(a)

(b)

Figure 3.14: Genes with most RNA variants per locus. The barplot depicts the muta-
tional burden of the genes exhibiting the genes with the highest mutational
variability per 100 bp. The total number of variants of a gene was weighted
by its corresponding sequence length. (a), The filtering condition’s impact on
each gene’s mutational burden is illustrated. Here some genes have a strong
bias towards unreliable variants, meaning that the majority of their identi-
fied variants did not meet the filtering criteria (i.e., "AC099560.2"). (b), All
Inliers were further classified according to their assigned entity subgroup,
revealing some anomalies, i.e. for gene "IGHV3-6".
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Figure 3.15: Genes with the highest density of RNA variants for each entity group. The
15 genes with the highest mutational burden are displayed for each of the
four entity groups. For better comparability, the mutational burden is ad-
justed to represent the average value (mean) per patient and per 100 bp. The
color code indicates the length of each specific gene. With one exception,
most genes with high mutational burden had less than 1000bp.

patients assigned to group "Other", genes with the highest density of variants were, on

average longer than 20.000 bp with no significant variant densities in short genes. Inter-

estingly, gene "MUC3A", which was ranked for all groups besides the Carcinoma group,

exhibited a mutation density that was roughly five times increased for patients of group

"Other", compared to those of the Sarcoma or the Melanoma group (on average).

3.1.2.4 Variants shared between different samples

Another classification strategy, which can be used for pattern recognition of big data sets,

such as the numerous variants identified in this pan-cancer cohort, is to rank subgroups

of variants by the number of patients carrying the specific mutation. With this, it is pos-

sible to uncover entity-independent or crossover tumor-associated variants. These might

be connected to neoantigens, representing highly attractive targets for immunotherapy.

Besides, the assessment of variants for certain shared groups offers the possibility to dis-

cover variants that are associated, i.e., with specific tumor entities.

The assignment of all variants from both groups (DNA and RNA) to subsets according to
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Figure 3.16: Genes with the highest density of DNA variants. (a), The 15 genes with
the highest mutational burden (density) are displayed together with the cor-
responding gene size (color code). Here all DNA variants ("Inliers", whole
cohort) were considered (total value). (b), For each of the four entity groups,
the 15 genes with the highest mutational burden are displayed. For reasons
of comparability, the mutational burden was adjusted such that it represents
the average value (mean) per patient and per 100 bp. The color code indi-
cates the length of each specific gene.
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(a) DNA (b) RNA

Figure 3.17: Variants grouped by the number of carriers. All fractions of variants accord-
ing to the number of patients carrying this variant are displayed for DNA (a)
and RNA (b) level. All variant subsets of more than four patients carrying
this variant are grouped and displayed with one color (dark blue/green).

the number of patients that carry these variants revealed that the major part of all variants

could solely be found in only one patient (see Fig. 3.17). Interestingly, this value differed

markedly for variants detected on exome level (96.8%), and variants detected on RNA

level (88.8%). With increasing set size, this means by going from sets of variants shared

between fewer patients to those sets shared by more patients, the overall fraction of the

corresponding variants decreased dramatically. Only 0.3% of all variants were shared by

more than four patients in the DNA case.

The number of shared variants on RNA level dropped quickly with increasing set size

(increasing numbers of overlapping patients). Still, it then remained relatively constant

(see Fig. 3.18(b)), leading to a fraction of 3.4% of all variants that could be found in five

or more patients (see Fig. 3.17(b)). Of note, RNA variants even shared between all 26

patients were detected. For DNA variants, only sporadic mutations were found in more

than six patients, and no single variant could be found in more than 14 patients (cp. Fig.

3.18(a)).
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(a) DNA

(b) RNA

Figure 3.18: Number of variants grouped by subsets of patients carrying the variant.
All variants were grouped according to the number of patients carrying this
specific variant, and the number of variants of each of these subsets is illus-
trated for all possible sizes of subsets. (a), DNA variants. (b), RNA variants.
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3.1.2.5 Overlap of variants between multiple metastases of one patient

To investigate the phenomenon of tumor heterogeneity, it is inevitable to compare differ-

ent metastases from the exact tumor origin and hence from the same patient. The whole

cohort contained seven cases of tumor samples from the same primary tumor as well as

different metastases. DNA and RNA data were available in six cases, so an extensive

analysis of variants shared by different tumor manifestations could be performed.

Assignment of all unique variants to either one of the available, both two or (in the case of

patient 19) all three metastasis, facilitated to display the corresponding overlap of variants

identified on DNA (see Fig. 3.19), on RNA (see Fig. 3.20) and on both levels (see Fig. 3.21).

The fraction of the shared mutations on exome level (Fig. 3.19(b), purple area) was

biggest for patient 17 (Melanoma, 55% overlap) and relatively small for patient 24 (Adreno-

cortical-CA, Fig. 3.19(e), purple area) and patient 27 (Fibrosarcoma, Fig. 3.19(f), purple

area), that both showed an overlap of approx. 12 %. As before, in the case of patient

17, for patient 19 (also Melanoma), again there was a rather big mutational overlap of all

three tumor manifestations (44%, see brown ellipse in Fig. 3.19(c)) with some minor in-

tersection regions of variants shared by only two metastasis comprising between 2% and

4%.

Regarding the overlap of variants that were identified on RNA level, a similar picture

could be observed: Again, the most remarkable overlap was found to be present in the

Melanoma patient (patient 17, 42%; see Fig. 3.20(b)). This time, the overlap with the small-

est fraction of shared variants on RNA level was found for patient 23 (Rhabdomyosar-

coma, 13% overlap). For patient 19, the triple-overlap decreased to roughly 28% with

slightly increased double-overlap regions (varying between 4% and 7%; Fig. 3.20(c)).

Since no RNA Data was available for tumor T2 of patient 11, no statement could be made

here.

In addition, the overlap of variants found on both detection levels (DNA and RNA) was

investigated. Due to a significantly reduced number of mutations meeting the demands,

the evidence here was limited. Nevertheless, displaying the different shared fractions of

variants yielded a comparable pattern. Both Melanoma patients (patient 17 and patient

19) were found to hold the most shared variants between different metastasis (40% and
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30%, respectively; see Figs. 3.21(b) and 3.21(c)). Patient 27 and patient 24 were found

to have less than ten percent of variants shared between both metastases (7% for patient

27 and 8% for patient 24, respectively; cp. Figs. 3.21(f) and 3.21(e)). Considering the

symmetry (i.e., the balance) of the displayed shared fractions, it might seem peculiar that

for patient 19 (Melanoma), each overlapping, partly overlapping, and non-overlapping

fractions were rather equal in size, meaning that shared variants were distributed evenly.

The resulting picture is a well-balanced distribution with comparable intersections (Fig.

3.20(c)). It should be noted that in the case of patient 11 both mutation sharing tumors

had different tumor entities and were not metastasis of the same primary.

3.1.3 Assessment of selection criteria for peptide candidates

3.1.3.1 Prediction of peptide-MHC class I binding affinities

To identify altered peptide candidates, translated fragments from obtained sequencing

data were used to predict their potential binding to defined HLA alleles. All binding

affinity prediction was assessed as described in Section 2.2.3. The results for MHCflurry-

based predictions (percentile rank) are displayed in Fig. 3.22, and the results for netMHC-

based predictions (percentile rank) are shown in Fig. 3.23.

From these results, each NAC was assigned a best binding HLA allele with a correspond-

ing best binding affinity (percentile rank and nano-molar affinity). For reasons of simplic-

ity in the following only results for percentile rank will be illustrated. For the predictions,

realized with MHCflurry, 53 out of 94 assessed NACs (see Appendix B, 2.1), had a pre-

dicted best percentile rank below 2% (weak and strong binders; cp. red dashed line in

the lower panel of Fig. 3.24). Of these, 31 NACs were classified as strong binders with a

percentile rank <0.5%.

For the predictions done with netMHC, only 31 out of 94 assessed NACs had a best per-

centile rank value below 2% (weak and strong binders; cp. red dashed line in the upper

panel of Fig. 3.24). Out of these, 17 NACs were classified as strong binders.
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Figure 3.19: DNA variants shared by multiple metastases. The numbers and the per-
centages in the colored areas refer to the number of unique mutations and
their fractions in the corresponding metastasis, respectively.
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Figure 3.20: RNA variants shared by multiple metastases. The numbers and the per-
centages in the colored areas refer to the number of unique mutations and
their fractions in the corresponding metastasis, respectively. (a), For patient
11 no RNA data was available for tumor T2.
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Figure 3.21: Variants found on both, DNA and RNA level, shared by multiple metas-
tases. The numbers and the percentages in the colored areas refer to the
number of unique mutations and their fractions in the corresponding metas-
tasis, respectively. (a), For patient 11 no RNA data was available for tumor
T2.
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Figure 3.22: Prediction of MHC class I binding affinities with MHCflurry. Neoanti-
gen candidates are displayed vs. HLA-I alleles. Every dot represents the
predicted binding affinity for a NAC-HLA pairing. The color of the dot indi-
cates the percentile rank. All values greater than 2% ("no binders"; cp. table
2.15) are colored equally.
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Figure 3.23: Prediction of MHC class I binding affinities with netMHC. Neoantigen
candidates are displayed vs. HLA-I alleles. Every dot represents the pre-
dicted binding affinity for a NAC-HLA pairing. The color of the dot indi-
cates the percentile rank. All values greater than 2% ("no binders"; cp. table
2.15) are colored equally.
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Figure 3.24: Distribution of binding predictions (percentile rank). The distribution of
the percentile rank for all 94 NACs is displayed for netMHC (upper panel)
and MHCflurry (lower panel). The red dashed line represents the threshold
for weak binders (2%). Cp. table 2.15.
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Figure 3.25: Comparison of selection methods for MHCflurry. The binding affinity of
each NAC-HLA pairing is plotted versus its percentile rank. The resulting
dots can be fitted with a sigmoidal regression curve revealing the nature of
the dependence of both selection methods for the same HLA allele. The verti-
cal and horizontal dashed lines correspond to the thresholds for weak (green)
and strong (red) binders, respectively.

3.1.3.2 Comparison of rank vs. dissociation constant weighted binding affinity

prediction

For each pairing of NAC-HLA allele, an in silico prediction with two different output

methods was performed, yielding a rank and a nano-molar affinity. Comparing both

selection methods by plotting the binding affinity versus the percentile rank for each

composition revealed the allele dependence of their relation (see Fig.3.25). Every value

was classified by the estimated binding type (see Tbl. 2.15; circle: No binder, square:

Weak binder, triangle: Strong binder). All binders of the same HLA-allele could be fitted

by a sigmoidal curve (dashed colored lines) specific for this predictor within the model.

Each curve exhibited an allele-specific offset (horizontal shift) that led to a distribution

width of roughly 0.6 orders of magnitude.

In the high-affinity regime, the regression curve deviates from the data points leading to

higher fitting errors. The corresponding thresholds for weak and strong binders for both

methods are displayed by horizontal (Kd-method) and vertical (rank-method) dot-dashed

lines, respectively.
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Next, the used prediction algorithms were compared. Therefore the results of the pre-

dictions with netMHC and MHCflurry were plotted in terms of a percentile rank and

absolute binding affinity (Fig. 3.26). Each dot represents a NAC-HLA allele match, re-

sulting in 580 possible combinations for the whole cohort.

Since netMHC did not provide modeling data for all identified HLA-alleles at the time

of writing, predictions could only be determined for 478 of these pairings.

The Pearson correlation coefficient, used to describe the correlation between the per-

centile rank of netMHC and MHCflurry, yielded a value of R = 0.81, p < 2.2 ⇤ 10�16,

indicating a strong positive association. To visualize this correlation, a linear regression

model, illustrated by the black curve with the corresponding 95% confidence interval, is

displayed in Figs. 3.26(a) and 3.26(b), respectively.

By splitting up the regression line fitting according to the binding type classification (see

Fig 3.26(a), cp. Tbl. 2.15, grey: No binder, green: Weak binder, red: Strong binder),

some remarkable differences could be revealed. Whereas correlations for both prediction

algorithms seemed to have similar slopes in the strong binding regime and for no binders,

a negative slope was observed for those assigned to the group of weak binders. Here the

predictions of the percentile rank seemed to differ significantly from the results of other

binding types, indicating that netMHC estimates tended to higher values (i.e., bigger

distances between data points and the red dashed line representing x = y).

A slightly diminished Pearson correlation of R = 0.74, p < 2.2 ⇤ 10�16 could be deter-

mined for the correlation between both results of the nano-molar affinity (depicted by

the dissociation constant Kd), which still indicated a strong positive association between

both methods (see Fig. 3.26(b)).

By coloring the dots according to the binding type classification (realized according to

the results of the percentile rank method) and, at the same time, plotting threshold lines

for weak binders and strong binders (realized according to the results of the nano-molar

affinity method; green, respectively red dash-dotted horizontal and vertical lines), major

differences of both approaches could be uncovered. An apparent clustering of dots in the

upper part of Fig. 3.26(b), seemed to deviate significantly from the expected regression

line in the regime of intermediate affinities. In contrast, for very high affinities, both

results appeared to be in good agreement (red dots in the lower left part of the figure).
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Furthermore, a significant part of these aberrant dots was classified as strong binding

pairings (percentile rank method), further emphasizing the big discrepancy.

In general, it could be observed that values estimated by netMHC tended to higher levels

of Kd (cluster of red dots in the left upper part and cluster of green dots in the middle

upper part of Fig. 3.26(b)). To check on a possible association of the concordance of the

two prediction tools with the incidence of an HLA-allele, all 92 pairings that satisfied the

constraint for weak or strong binders for at least one of the two prediction algorithms

were displayed together with their corresponding allele frequencies in a large German

population cohort (n=39689; see http://www.allelefrequencies.net/; Fig. 3.27).

The linear regression line (R = 0.62, p < 1.5⇤10�9, 95%-interval grey shaded) indicated a

positive, although again slightly diminished, Pearson correlation for this set of pairings.

A humble tendency for more frequent alleles (brighter dots) to exhibit less divergence

could be observed. There was no clustering, or qualitative difference between frequently

and less frequently expressed HLA alleles.

The use of binding affinity predictions as a selection criterion for NACs yet required a

unique and comparable value for ranking the different sequences of interest. Hence the

most feasible and self-evident way was to use the HLA-allele showing the best value

(i.e., the lowest value for Kd or percentile rank) since this represented the setting where

MHC class I antigen presentation was most likely to happen for the respective NAC.

However, with this approach, other alleles of the same patient were not considered for

selection anymore, implicating that even slightly lower affinity values could lead to an

allele rejection. On the other hand, a direct affiliation between NACs and HLA-allele

significantly simplified the procedures in the subsequent cell-culture experiments and

hence may be advantageous in terms of feasibility.

The complete list of NACs with the corresponding best binding HLA-alleles and their

estimated binding affinities can be found in Appendix B, 2.1.

3.1.4 Specifications of Neoantigen candidates

Based on the data set for all identified variants (see Section 3.1.2) as well as on the pro-

teogenomic data (Tretter et al., 2023) an algorithm implementing various software tools

http://www.allelefrequencies.net/
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Figure 3.26: Pearson correlation analysis between both prediction algorithms. Each
dot represents a NAC-HLA-allele pairing. The results of the predictions of
netMHC are plotted vs. those from MHCflurry. The binding type classi-
fication was done according to the constraints (see Tbl. 2.15) for the rank
method in both cases. The Pearson correlation coefficient R and p-value are
shown together with the linear regression lines, which in (a) is fitted for each
binding type individually (red: Strong binder, green: Weak binder, black:
No binder) and in (b) is fitted for all data points together (black line). Their
95% confidence intervals are illustrated accordingly. (a), The dashed, red line
corresponds to x = y. (b), The dash-dotted green and red horizontal and ver-
tical lines illustrate the thresholds for weak (green) and strong (red) binders.
NACs with only one prediction available are not shown.
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Figure 3.27: Comparison of the divergence between both prediction algorithms and
the corresponding MHC allele frequency. The percentile rank of all NAC-
HLA-allele parings classified as weak or strong binder (for at least one of
both algorithms) are displayed for both prediction algorithms together with
their linear regression curve (black line) and the corresponding 95%-interval
(grey shaded). The color of the dots represents the known HLA-allele fre-
quency in a German reference population. The dashed, red line corresponds
to x = y.

(pFind, Prosit; for details see Section 2.2 and Section 3.1.1) was used to integrate the data

and obtain a dataset with all possible neoantigens (NACs). Since mass spectrometry fa-

cilitates selection for naturally presented peptides, this method was favored over purely

binding prediction based epitope discovery methods.

The data containing sequences of all 94 identified NACs and further peptide and origin-

specific, as well as patient-associated information, will be discussed in this section.

3.1.4.1 Peptide Candidates from DNA and RNA variants

Besides containing the peptide sequences, the NAC dataset inherits some of the quanti-

ties already included in the dataset of variants (see Section 3.1.2.2), allowing to correlate

the peptides of interest not only to clinical data, such as tumor entity and metastatic site

but also to the genetic origin, the immunopeptidomic calling method and the level of

detection of the associated variant.

As illustrated in Fig. 3.28, the major part (N=83) of all NACs resulted from RNA discov-
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Figure 3.28: Balloon plot to illustrate the number of NACs (peptide candidates) iden-
tified by the different immunopeptidomic calling algorithms and for dif-
ferent sources. The color and size of the dots represent the number of NACs
identified for a specific calling algorithm and a source.

ery, only three candidates emerged solely from DNA variants, and eight NACs could be

found in both sources. Again, considering the fraction of NACs identified on RNA level,

the vast majority (N=47) could be found with both calling algorithms pFind and Prosit,

whereas 36 NACs were detected either with pFind or with Prosit. Peptide candidates

identified on exome and RNA level seemed predominantly to be found only by the tool

pFind.

As discussed above (cp. Section 3.1.3), the tumor VF! was again used to assess the group

of NACs. Considering the subgroups of NACs according to their level of detection, it

could be seen that the mean tumor VF! was roughly double for RNA-identified peptides

compared to those identified on exome level (see Fig. 3.29). By classifying into "inliers"

and "outliers" according to criteria defined in section 3.1.2.1, it became evident that the

variance of the tumor VF! within the group of outlier peptides was significantly higher

than that of the group of inliers.

To further evaluate the NACs with regard to possible in-vitro immunogenicity, the re-

sults from different binding affinity estimations were assessed. Depicting the predictions

obtained with mhcflurry (cp. Fig 3.22) revealed that all 94 peptide candidates underlie

a widespread distribution with a dissociation constant ranging from >10.000 to far be-
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Figure 3.29: Distribution of the tumor VF of the identified variant forming the basis of
the NACs for both DNA and RNA. The distribution of the tumor variant
frequency of all identified NACs is illustrated through boxplots, comprising
each DNA-only (blue), RNA-only (green), and variants found on both levels
(violet), respectively. A black horizontal line represents the median of each
distribution, and the number N of peptides of each group is annotated.

low 100 (see Fig. 3.30). Further discrimination according to the level of detection into

peptides identified on exome and transcriptome level led to the striking observation that

seven out of eight NACs identified on both regimes (DNA and RNA) were estimated to

have Kd<100, which is generally associated to a very high binding affinity. This then

led to the assumption that an agreement of results for different detection sources may

increase the specificity of the method. More, it could be seen that "DNA-only"-peptides

also underlay this clustering effect to some degree. Interestingly none of these eleven

NACs detected on DNA level yielded variant frequencies above 0.5.

A similar but less unambiguous effect was observed by highlighting the proteomic tool.

NACs that were identified by both tools, pFind and Prosit, seemed to cluster more likely

in the regime of low Kd (red dots in Fig. 3.31). In contrast, NACs found only by one

of the MS tools (green and blue dots) seemed to be more uniformly distributed over all

regimes of Kd and hence did not exhibit a tendency towards higher binding affinities.
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Figure 3.30: Assessment of NACs according to the prediction of their binding proper-
ties and the underlying tumor VF with their associated detection level. (a)
The binding affinity (Kd) or (b) the percentile rank is displayed versus the
tumor VF for every identified NAC.
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Figure 3.31: Assessment of NACs according to the prediction of their binding proper-
ties and the underlying tumor VF with their associated Proteomic tool. (a)
The binding affinity (Kd) or (b) the percentile rank is displayed versus the
tumor VF for every identified NAC.
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Figure 3.32: Genetic assessment of NAC underlying variants. (a), The genetic biotype
of the 94 NACs are illustrated according to their corresponding fraction. (b),
variant type assessment for all NACs.

3.1.4.2 Classification and genetic assessment of NACs

The assessment of the genetic origin revealed that the vast majority of all identified NACs

(approx. 64%) resulted from variants in protein-coding regions (Fig. 3.32(a)). This was

found to be in good agreement with the prior results from the genetic biotype assessment

of all variants, which showed a fraction of 78% for DNA and a fraction of 54% for RNA-

based variants (cp. section 3.1.2.3). Pseudogenes and regulatory RNAs were found to be

responsible for nearly all the rest of all identified NACs (19.1% and 12.8%, respectively).

By repeating the variant type analysis for all variants associated with one of the identi-

fied NACs (cp. section 3.1.2.3), an interesting shift could be observed. Whereas before-

hand, the major part of all variants was found to be either non-coding or coding missense

(DNA: 86%, RNA: 76%; see Fig. 3.12), this fraction was observed to be significantly di-

minished to 58% for those variants associated to the group of NACs. Furthermore, NACs

from splice site and intron variants now (with 35%) even represented the major part (non-

codings 32%, coding missenses 27%, see Fig. 3.32(b)). In contrast, for all variants, this

fraction was found to be only 2% for DNA and 20% for RNA variants. Only six out of 94

NACs (6.4%) resulted from frameshift mutations, which still implied a slightly increased

fraction compared to the group of all variants (DNA: 6.3%, RNA: 2.2%).

3.1.4.3 NAC distribution within the cohort

Considering all cohort patients, in 24 patients, one or more NACs could be identified. The

number of potential neoantigens fluctuated from 1 to 14 peptides (see Fig. 3.33) with an
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Figure 3.33: Total number of NACs identified on DNA and RNA level. The total num-
ber of identified NACs is displayed for every patient grouped by four dif-
ferent entity subsets. The color indicates the underlying detection source for
every identified NAC.

average of 3.9 NACs per patient. Whereas in some patients, respectively tumor samples,

all NAC-discovery is due to identification on DNA level (i.e., no available RNA-data as

in patient 34 and tumor one from patient 11; see Fig. 3.33) most of the patients showed

at least one peptide based on variants detected on RNA level. In some patients with

multiple metastases, the yield of NAC was similar in both tumors (patient 19; tumor

2 and 4), while others showed a more heterogenous structure (patient 24, only NACs

identified in tumor 2).

3.1.4.4 High affinity MHC alleles

Since immunogenic responses of reactive CD8+ T cells that were investigated in this work

mainly resulted from neoantigens presented by MHC class I, a closer look at the distribu-

tion of HLA alleles was necessary. Here all three loci, "HLA-A", "HLA-B", and "HLA-C",

were considered independently. Comparison of the different allele frequencies within

the cohort with those of the German reference population (Gonzalez-Galarza et al., 2019)

led to some interesting observations.

The HLA allele with the overall highest frequency in the cohort was found to be HLA-

A03:01 (n=8), which was detected in one-third of all patients. This allele has only a fre-
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quency of 14.7% within the German reference population (see Fig. 3.34(a)). Whereas the

most common allele within the German reference population (HLA-A02:01) seemed to

be roughly as frequent as in the cohort compared to the reference population (29% vs.

26.7%), the allele HLA-A11:01 exhibited a relatively high frequency in the cohort (n=7).

It could be detected in about 29% of the cohort’s patients, but less than 6 % of the German

population is a carrier of this allele. Similar observations could be made for HLA-B and

HLA-C epitopes, where very rare HLA-types could be found in a significant part of the

cohort (i.e., HLA-B37:01, HLA-B40:02, and HLA-C01:02; see Fig. 3.34(b) and 3.34(c)).

By performing in silico predictions of binding affinities (see Section 2.2.3 and 3.1.3.1) for

all possible MHC class I - neoantigen combinations, and classification of all available

alleles for one specific peptide, different observations could be made.

First, all three HLA subtypes (HLA-A, HLA-B, HLA-C) were similarly likely to be the

most probable binding partner (per average). Hence in terms of numbers, no clear ten-

dency could be observed. Second, different specific HLA alleles differed significantly

in terms of binding affinity, although they were identified comparably often as the best-

binding allele for a group of peptides. For example, the allele A11:01 was found to be

the best binding allele for seven peptides within six patients (Fig. 3.35(a)). With one

exception, they all yielded a binding affinity in the strong binding regime. In compar-

ison for the allele C06:02, which was found to be the best binding allele in eight cases

(five patients), only one yielded a suitable binding affinity that did not classify in the

non-binding regime.

Third, both ranking parameters (lowest dissociation constant vs. lowest percentile rank)

were compared head-to-head. Kd-based ranking favors a preferential predicted binding

to HLA-C, whereas analysis of the percentile rank seems to favor binding an HLA-A or

HLA-B allele (see Fig. 3.35(b)). However, most of these peptides belonged to the low-

affinity group, i.e., non-binder. The results for peptides that were most likely to bind to

an HLA-B allele not only appeared to be more stable considering both prediction values

but also showed a greater HLA variability, meaning that there were more different HLA-

B subtypes (17 vs. nine for HLA-A, cp. Fig. 3.35(b)), that were identified as best binding

HLA allele.
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Figure 3.34: Distribution of HLA types within the cohort. The additional labels refer to
the according HLA allele frequencies in the reference population.



82 3.1 Computational Analysis and Integration of Data

H
LA
−C

H
LA
−B

H
LA
−A

C1703
C1601
C1504
C1402
C1203
C1202
C0704
C0702
C0701
C0602
C0501
C0401
C0102
B5601
B5201
B4403
B4002
B3906
B3801
B3701
B3502
B2705
B1801
B1501
B1402
B0801
B0702
A6801
A6601
A3301
A3001
A2902
A2601
A1101
A0301
A0201

01 02 03 04 05 08 11 13 15 17 18 19 22 23 24 27 28 30 32 33 34 36 37 38 all
Patient

H
LA

 a
lle

le
NACs sharing highest
affinity HLA allele
(count)

1

3

5

7

9

0

2500

5000

7500

10000
Kd (mean)

(a) According to the binding affinity (Kd)

H
LA
−C

H
LA
−B

H
LA
−A

C1703
C1601
C1402
C1203
C1202
C0704
C0701
C0602
C0501
C0401
C0102
B5601
B5201
B5101
B4403
B4402
B4002
B3906
B3801
B3701
B3502
B2705
B2704
B1801
B1501
B1402
B0801
B0702
A6801
A6601
A3301
A3001
A2601
A2301
A1101
A0301
A0101

01 02 03 04 05 08 11 13 15 17 18 19 22 23 24 27 28 30 32 33 34 36 37 38 all
Patient

H
LA

 a
lle

le

NACs sharing highest
affinity HLA allele
(count)

1

3

5

7

9

0

5

10

15

20
Rank (mean)

(b) According to the percentile rank

Figure 3.35: Best binding HLA-alleles for all NACs displayed for each patient. For all
possible combinations of HLA-allele and patient, the corresponding number
of NACs is displayed (size of the dot) together with the mean binding affin-
ity (a) and the percentile rank (b) (color of the dot). HLA alleles from one of
the three HLA loci affiliated with the MHC class I are depicted together, sep-
arated by a dashed line. The last column represents the sum of all patients
(size of the dot) and the mean of all individual affinity values assigned to this
HLA-allele over the whole cohort (color of the dot).
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3.1.4.5 Assessment of mutational variability of binding affinities

Out of all 94 identified NACs, 51 contained a somatic mutation localized within the pep-

tide sequence and hence could be associated with their corresponding WT! (WT!) pep-

tide. In case of an actual presentation of the WT! peptide, the NAC could hence be com-

peting for the same binding sites at the appropriate MHC class I molecule. A comparison

of both predicted binding affinities, the WT! sequence and the sequence with a single

somatic mutation, may help to estimate the likelihood of MHC class I neoantigen presen-

tation. Thus, the affinity change from WT! to mutated peptide was assessed.

As an indicator of the change in affinity, the difference in the logarithmic rank of both

peptides was used

�log(rank) = log 10(rank(peptidemutated))� log 10(rank(peptideWT )) (3.1)

�log(rank) gives the change in the order of magnitude of the estimated rank for each

NAC/WT couple.

34 out of 51 NACs were subject to an increased estimated binding affinity (reduced rank,

reduced �log(rank)). In contrast, for 14 NACs, a lower binding affinity was observed

(see Fig. 3.36). In three cases, there was no difference at all. The average (mean) for

�log(rank) was observed to be about -0.22. This implied that among all identified NACs

with a somatic mutation within the peptide sequence, the majority tended to exhibit an

increased affinity compared to the WT peptide. Classifying the binding types for the

wildtype and the mutated peptides showed that two NACs, for which the corresponding

WT peptide had been rated as non-binder, now shifted towards the strong binding value

and three towards the weak binding regime (red and orange bars in Fig. 3.36; see Table

2.15 for definition of binding regimes). Four peptides experienced a shift from weak to

strong binder (green bars in Fig. 3.36).

Out of 14 NACs that, through the mutation, showed reduced binding properties, only

two peptides were down-ranked as weak or non-binders when compared to their corre-

sponding WT sequence. Considering the predicted HLA allele that exhibited the highest

binding affinity, five cases were holding a lower �log(rank) by interchanging the present

allele for the mutated version of the peptide (see Fig. 3.36). Four of these five were asso-
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ciated with an increased overall binding affinity, whereas one showed a lower affinity.
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3.2 In-vitro stimulation of T cells

The assessment of immunogenicity of possible neoantigens (NACs) was done with an

accelerated Dendritic cell culture (acDC) involving T cells from patient blood samples

(i.e., from patient PBMCs, for details cp. Sec. 2.3.2). Until the writing of this thesis, 57

different NACs were tested within 192 assays with samples from eight different patients.

However, due to continuous modification of different bioinformatical procedures, a ma-

jor part of the already assessed NACs had to be deprecated retroactively. This was due

to an updated control database that led to the identification of 41 WT-peptides out of the

57 initially identified NACs. These peptides were hence considered in a separate section

(see 3.2.2). The other 37 NACs were not assessed for one of the following reasons: They

were either deprecated before being tested, there was insufficient patient material for

testing, or the synthesizing process of the peptides could not be performed successfully.

3.2.1 Assessment of actual NACs

At the moment of the writing of this thesis, 16 out of 57 tested NACs were still listed as

potential neoantigens and are designated as "actual NACs" in the following. Thus, the

results of 26 assays were assessed for immunogenicity and are shown in this section. The

complete list of actual NACs can be found in Appendix B, 2.1.

To investigate NAC immunogenicity, the amount of T-cell reactivity for different condi-

tions had to be compared. Here, two conditions were evaluated, namely pulsing with

the NAC of interest and pulsing with a WT or irrelevant peptide, respectively, and the

corresponding number of spot forming units (SFUs) was assessed.

The final immunogenicity assessment of all realized assays was then done based on two

quantities. First,

�SFU = NSFU, AG�pulsed �NSFU, irP�pulsed (3.2)

where NSFU, AG�pulsed and NSFU, irP�pulsed are the mean values of the number of SFUs

for the antigen-pulsed and irrelevant peptide-pulsed condition, respectively. Second,

RSFU, rel =
NSFU, AG�pulsed

NSFU, irP�pulsed
. (3.3)
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For NACs to be considered as "immunogenic", �SFU had to be greater than 50, and

RSFU, rel had to be greater than two.

Of the actual NACs, none fulfilled these criteria (Fig. 3.37(a)).

Looking again at the binding affinities of the assessed NACs, no clustering or obvious

correlation between �SFU or RSFU, rel and the predicted affinities could be detected (see

Fig. 3.37(b)).

3.2.2 Assessment of deprecated NACs

This section describes the experimental results of the remaining 41 NACs. Since they

were no longer listed as actual neoantigen candidates due to pipeline modifications, they

were labeled as "deprecated" in the following. Most deprecated peptides were found in

patients 1, 11, and 19.

The complete list of deprecated NACs can be found in Appendix B, 2.2.

Again all deprecated NACs were analyzed based on the two conditions "antigen-pulsed"

and "irrelevant-pulsed" according to Equations 3.2 and 3.3.

Considering the same thresholds as before, three of 116 measurements (2.6%) for three

different NACs were found to meet the criteria for immunogenicity (see Fig. 3.38(a)). The

data points showed a large spread in �SFU (50 to 162) and a relatively narrow spread in

RSFU, rel (2.1 to 3.5). The identified peptides resulted from patients 1, 11, and 19.

Plotting the binding affinity (percentile rank) of the identified peptides indicates a vague

positive correlation trend between �SFU and the predicted binding affinity. (Fig. 3.38(b)).
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Figure 3.37: Assessment of Immunogenicity of actual NACs with two conditions. For
all tested NACs �SFU is displayed versus RSFU, rel. (a), All data points meet-
ing the conditions for immunogenicity are highlighted (with colors), and the
corresponding thresholds are depicted with dashed grey lines. The remain-
ing data points are illustrated with light grey dots. (b), The corresponding
best percentile rank is shown for all actual and immunogenic NACs within
the same representation. Lighter colors represent higher binding affinities.
The shown data has been produced together with Celina Tretter. It was in parts pub-
lished by Tretter et al. (2023)
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Figure 3.38: Assessment of Immunogenicity of deprecated NACs with two conditions.
For all deprecated but tested NACs �SFU is displayed versus RSFU, rel. (a),
All data points meeting the conditions for immunogenicity are highlighted
(with colors), and the corresponding thresholds are depicted with dashed
grey lines. The remaining data points are illustrated with light grey dots.
(b), The corresponding best percentile rank is shown for all deprecated and
immunogenic NACs within the same representation. Lighter colors repre-
sent higher binding affinities. The shown data has been produced together with
Celina Tretter.





4 Discussion

4.1 Preliminary remark

The ImmuNeo project is composed of different sub-projects collaborating by continu-

ous exchange of data with subsequent modifications of workflows. For this reason, the

pipeline and all described results in this work depict an in-process project status, thereby

centering on some aspects of a scientific process underlying permanent improvement

and modification at different levels. Thus, there is no claim, neither for completeness nor

for the up-to-date nature of the presented data.

4.2 Mutanome variations

4.2.1 Patient and disease dependent fluctuations in the genetic landscape

Since only a small fraction of somatic non-synonymous mutations (NSMs) are repre-

sented as neoantigens that may serve as immunogenic targets for therapy (Garcia-Garijo

et al., 2019), a reliable and acceptably comprehensive analysis of the mutanome was re-

quired. However, the genetic landscape between different patients varied significantly.

Especially for DNA, the number of genetic variants fluctuated tremendously, leading to

mutanome size variations between 20 variants for patient 16 and 750 variants for patient

38. The final NACs outcome was observed to correlate with the number of DNA and

RNA variants, indicating that a high number of variants (i.e., as for patient 38) would

have an increased likelihood for significantly higher numbers of detected NACs.

The huge variety of DNA and RNA variants found in the data can be explained partially

by a high variation of tumor mutational burden (TMB) across tumor types (Chan et al.,

91
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2019). Disease entity-specific mappings of these variations indicate that the number of

variants per bp found in melanoma samples may be 10 to 100-times higher than in low-

TMB tumor entities, which is in good agreement with the mutanome data of ImmuNeo

patients (Chalmers et al., 2017; Zehir et al., 2017). However, a significant spread of the

distribution is also observed within the same cancer type (Chan et al., 2019), which can

be explained by different tumor-specific factors (such as UV-light and smoking) causing

tumor somatic mutations responsible for certain entities (Alexandrov et al., 2013b). For

the ImmuNeo data set, these variations range from roughly 120 to 500 DNA variants

within the group of melanoma patients, which is also in good agreement with the data

described in above mentioned literature.

The tumors of patient 11 and patient 38 inherited markedly higher numbers of variants

than the rest of the cohort. For patient 11, a mismatch repair deficiency (MMRD) was di-

agnosed, which is known to be associated with a significantly increased TMB (Grant et al.,

2021). However, the corresponding RNA variant count (data availability only for tumor

two) did not exhibit high values compared to the rest of the cohort. With a DNA variant

count above 750, the TMB of patient 38 exceeded all other investigated tumor samples.

Considering that a recent publication describes malignant peripheral nerve sheath tu-

mor (MPNST)-like melanomas as high TMB entities (Pimentel Muniz et al., 2020), this

might be an interesting finding. MPNST-like melanomas could thus shape up a tumor

entity with above-average responses to immunotherapeutic treatments.

In comparison, a less homogeneous distribution for variant counts on RNA level (except

for melanoma) may indicate that also other factors than the TMB could explain observed

data. Such other parameters may also be causal for unexpected high or low DNA vari-

ant counts. First, data acquisition related factors have to be mentioned. Here especially,

the size of the analyzed tumor tissue and the intra- and inter-tumoral heterogeneity are

of outstanding importance. They may directly affect the number of possibly detectable

variants (Litchfield et al., 2020; Shi et al., 2018; Jacoby et al., 2015) and directly depend

on the anatomical region as well as the size of the resected tumor tissue. The sequenc-

ing depth and the quality of the DNA sequencing itself are other parameters potentially

influencing the results (Griffith et al., 2015).

When analyzing variants shared between different samples, a statistical validation would

require a much higher number of patients within the same tumor entity group. Hence,
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assessing a much bigger cohort focusing on specific cancer entities would be demanded

to support described findings further.

In summary, low numbers of variants turned out to be a crucial limitation for discov-

ering possible neoantigens in most patients. In this context, the data set did not only

reflect canonical somatic mutations on coding exons as well as mutations on non-coding

regions. Due to the additional assessment of the transcriptome, different transcriptional

and post-transcriptional events were also detected, revealing additional complexity of

tumor evolution and immunogenicity. Hence, this has to be considered for all further

hypotheses on disease development, progression, drug response, and clinical outcome.

Exploiting all possible repertoires of variants seems indispensable for future identifica-

tion pipelines.

4.2.2 Differences in DNA and RNA variant coverage

By inclusion of RNA-seq data in the identification pipeline, the ImmuNeo project could

substantially increase the number of genetic variants and neoantigens, especially for non-

melanoma entities. A special methodology combined tumor RNA-seq with normal WES

data to exclude false positive RNA variants. This procedure was shown to be the most

feasible and effective option for calling RNA variants (Hashimoto et al., 2021).

In the context of NAC validation, a distinct classification of variants is of utmost im-

portance. Here, variants simultaneously detected on exome and transcriptome levels

were assumed to have an a priori higher likelihood of an actual presentation, therefore

eliciting immunogenicity in vitro. However, the detailed comparison of RNA and DNA

variants led to the intriguing observation of a tiny shared fraction of DNA and RNA vari-

ants within the ImmuNeo cohort (⇠ 1.4% of all detected variants). This value fluctuates

significantly considering different entities, with melanoma patients showing the highest

overlap (⇠ 3.5%) to values below 1% for other entities.

The fraction of DNA variants covered by RNA is relatively stable (between 30% for

melanoma and 42% for others, Fig. 3.10), but a vast amount of RNA variants cannot

be detected on DNA level (only between 0.6% for others and 3.8% for melanoma). This

may underline the importance of RNA-seq to detect variants not occurring at the DNA
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level but being the result of RNA processing events like alternative splicing and RNA

editing (Eisenberg & Levanon, 2018; Tan et al., 2017; Xu et al., 2018). Thus, these RNA-

associated events, as previously reported, may contribute substantially to the diversi-

fication of the cancer proteome, qualifying RNA-seq as a valuable additional source of

potential neoantigens (Peng et al., 2018; Laumont et al., 2018).

Nonetheless, exploiting the transcriptome to expand the source of possible cancer neoanti-

gens (Zhou et al., 2020) comes with certain limitations. First, bioinformatic algorithms

directly influence the variant outcome. As they differ extensively across different gene

panel platforms, a certain degree of transparency is needed for setting biologically moti-

vated thresholds, such as cut-offs for variant allele frequencies (Chan et al., 2019). Second,

the applied filtering criteria (cp. Sec. 2.2.1.4) led to entirely different exclusion profiles

between DNA and RNA, meaning that the distribution of variant reads of the underly-

ing RNA data caused that only one-third of all possible RNA variants were excluded (cp.

Fig. 3.7). In comparison, on DNA level, more than half of all variants were rejected due

to these criteria, even though there was no a priori evidence for higher FDR in DNA than

in RNA data. Further optimization of filtering strategies for RNA compared to DNA

here may balance the ratio of false positive data to false negative candidates and help to

increase the likelihood of the detection of true neoantigens.

Detailed analysis of dataset-specific parameters of the underlying RNA-seq data revealed

a clearly reduced mean sequencing coverage per identified variant compared to DNA

data. Both distributions, for DNA and RNA, exhibited different characteristics, with the

RNA data indicating a higher variability in coverage and sequencing depth, which could

be responsible for an increased artifact yield of RNA-based NACs compared to those

based on DNA data.

At the time of this writing, the Genotype-Tissue Expression (GTex) database was incorpo-

rated into the bioinformatic procedures of the ImmuNeo project to detect and exclude

read contamination of RNA-seq data (Nieuwenhuis et al., 2020). Due to these pipeline

modifications that were not part of this work and that were hence not considered in the

results part, a fraction of the identified RNA variants turned out to be labeled as mutant,

although these alterations could be detected in healthy tissues to a varying extent. Ap-

plying these considerations to the actual dataset of this work may critically alter results

based on RNA variant analysis. Reanalysis of proteomic data with spectral angle analy-
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sis and other validation methods were therefore integrated into the actual version of the

manuscript accepted for publication (Tretter et al., 2023).

4.2.3 Intermetastatic variant analysis

As shown by previous publications, single-cell sequencing of different clonal subpopu-

lations from different metastasis (and its corresponding primary tumor) provides insight

into tumor evolution and pathogenesis (Navin et al., 2011; Jones et al., 2008). The genetic

analysis of the different tumor metastases for several ImmuNeo patients reveals not only

the overlap size, allowing for estimating the size of the subclonal populations. The re-

sults also show a symmetric overlap in the case of patient 19. A well-balanced picture

was observed for the three different tumor tissues when considering the distribution and

intersections of variants. This observation supports the notion that further information

about tumor evolution might be concealed in this data. Further in-depth analysis of se-

quencing data with methods such as "lineage-tracing" could even guide future therapeu-

tic strategies, as they indicate that metastasis-private mutations do not seem to be drivers

of cancer spread but might be associated with drug resistance (Gui & Bivona, 2022; Hu

et al., 2020).

Again, in the context of this inter-metastatic variant analysis, the results for melanoma

patients have to be highlighted. Here the mutual variant overlap exceeds those of all

other assessed entities (Fig. 3.21). A potential explanation for this remarkable result

could be found by discussing different melanoma-adapted tumor progression models

as suggested by Motwani & Eccles (2021). Further inter-metastatic analysis of different

tumor entities could not only emphasize and explain the outstanding performance in the

immunotherapeutic treatment of melanoma diseases but identify other eligible entities

for these treatment modalities.
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4.3 HLA binding affinity predictions

4.3.1 In silico binding predictions as selection method for neoantigens

So far, most approaches have used the well-known canonical repertoires, that is, the us-

age of DNA data as templates for MS spectra matching. In comparison, the realized

repertoire extension with transcriptome data comes with a substantially increased num-

ber of possible targets. However, a primary experimental evaluation of all emerging

peptides would not only be resource-consuming but, as time is critical for most therapy

settings, not feasible for routine clinical application (Arnaud et al., 2020). For reasons of

technical feasibility, an efficient pipeline for neoantigen discovery hence requires, at any

rate, a rigorous selection method that a priori divides potential NACs, that are capable of

inducing durable T cell responses from other peptides that are less likely to be an effective

target (Zaidi et al., 2020).

Up to this writing, in silico peptide binding prediction algorithms depicts the most fre-

quent option to rank potential NACs for the likelihood of eliciting an immunogenic T

cell response (Wells et al., 2020). By this means, in the ImmuNeo project, about one-third

to one-half of all NACs could be ranked as potential binders (depending on the used

algorithm), and one-half of these were further classified as strong binders (Fig. 3.24).

Nevertheless, a comparison of both algorithms indicates that, especially for the interme-

diate regime (weak binders), comparably lower prediction reliability has to be assumed

since a great extent of divergence was observed between both tools. In this regard, it has

to be taken into consideration that the key pre-selection of potential targets was realized

by the inclusion of MS data providing additional evidence for the actual presentation

of respective NACs. Ongoing adjustments and improvements of the used prediction al-

gorithms, together with advancements in the field of immunopeptidomics, may lead to

promising future solutions (Conev et al., 2022; Bulik-Sullivan et al., 2019; Chong et al.,

2022).
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4.3.2 Divergent prediction outcomes based on methods and tools

Besides the general challenge of ranking possible neoantigens for potential immuno-

genicity, a comparison of the rank method and nano-molar binding affinity prediction

has shown major discrepancies when using well-established thresholds from literature

(Bonsack et al., 2019). Applying both methods in a parallel approach yielded signifi-

cantly different results. A direct comparison could hence be used to describe the es-

timated binding properties of the collectivity of the corresponding HLA-allele in the

model. Following the line of argument of Paul et al. (2013), this allele-specific distri-

bution could reflect that different alleles also vary in terms of epitope repertoire size,

hence exhibiting better immunogenic properties in general. Alternatively, a variation

in the immunogenicity-associated affinity threshold could also cause this effect, indicat-

ing that allele-dependent thresholds are necessary for a comparable selection in terms of

immuno-response. Furthermore, this observation could be explained through differently

trained HLA predictors that are used by binding prediction algorithms (Jurtz et al., 2017;

Nielsen & Andreatta, 2016b).

The deviation was also explicit for best binding HLA assignment, where a significantly

higher fraction of NACs was assigned to HLA-A and HLA-B alleles when using the per-

centile rank method. In contrast, using the binding affinity method strongly favored

HLA-C alleles. Depending on defined thresholds, this might generally lead to an under-

representation of specific alleles. As mentioned above, general HLA-independent thresh-

olds for all samples and alleles could be causal for this bias. In contrast, specific allele-

adapted thresholds might provide a more accurate picture of peptide binding strengths.

As indicated by Fig. 3.25, the deviation is highest for intermediate regimes, where the

distance between the sigmoidal binding curves is greatest.

4.4 Specifications of NACs

4.4.1 NAC detection level analysis

In good agreement with the results of the analysis of DNA/RNA variant overlap, where

97% of all variants were identified on RNA and only 4.4% on DNA level, most NACs
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(97%) were based on RNA variant data and about 12% were based on DNA variant data.

The threefold gain of DNA-based NACs compared to the DNA fraction of all variants in-

dicates an enormously increased likelihood for DNA variants to generally induce poten-

tial neoantigens. Although only a limited number of DNA-based NACs were detected,

this observation may serve as a hint towards DNA as a more reliable data resource. Fur-

thermore, this supports the necessity of vigilant multimodal validation when analyzing

primary RNA data, as mentioned above. Different publications intensively discussed to

which frequency somatic mutations generate potentially targetable neoantigens and con-

sequently which fraction of tumors generate NACs that can elicit a sufficient immune

response (Tran et al., 2015; Yarchoan et al., 2017; Parkhurst et al., 2019). In broad agree-

ment, it was stated that only a tiny fraction of all somatic mutations give rise to cancer

neoantigens that may potentially lead to spontaneous T cell responses (Lang et al., 2022).

Numbers, however, vary depending on the entity, detection mode, and sensitivity. The

analyzed data for variants and NACs of the ImmuNeo project suggest that based on the

underlying pipeline, only a small number of candidates can be validated as immuno-

genic. However, this still does not show proof for being a functional cancer neoantigen.

With a fourfold increased NAC yield per RNA variant, patient 4 (renal cell carcinoma)

was identified as a clear outlier with remarkable properties. A total of 14 NACs were

generated by less than 3.500 RNA variants resulting in a yield of 0.4%. None of these

peptides had favored restriction for HLA-A alleles (Kd-method). Most of them seemed

to be restricted to HLA-C1203 (6 NACs) and HLA-B1501 (4 NACs). This is of particular

interest since recent publications found evidence for a correlation between better clinical

outcomes and a high number of HLA-A restricted neoepitopes in clear cell carcinomas

(Matsushita et al., 2016).

It will be interesting to follow if the results of further analysis of HLA-B and HLA-C

restricted neoepitope properties confirm these correlations found here.

4.4.2 Genetic origin

A major finding of the genetic variant type analysis that was realized with the ImmuNeo

dataset indicates that the contribution of splice sites and intron variants to the identi-

fied NAC repertoire is much greater than a priori estimated by the fraction of splice sites



4.4 Specifications of NACs 99

and intron variants across all DNA and RNA variants. As repeatedly stated by recent

publications, increased alternative splicing events in tumors may be causal for a con-

siderable repertoire of potentially immunogenic peptides (Xie et al., 2023). These may

be induced by mutations in RNA cis-regulatory elements, trans-acting regulators, or the

core spliceosome and may be up to 30% more abundant in tumors as in normal samples,

as an analysis across 32 cancer types suggests, using The Cancer Genome Atlas (Kahles

et al., 2018b).

4.4.3 Correlation between NAC source and binding affinity score

The detailed analysis of all NACs concerning their source revealed two major findings.

First, those NACs that were based on variants identified on both DNA and RNA level

exhibited, on average, a significantly higher binding affinity. Second, the same trend

could be observed for NACs identified with both proteomic tools (pFind and PROSIT).

When considering the nano-molar binding affinity (Fig. 3.30(a)), seven out of eight NACs

that were simultaneously detected on DNA and RNA level exhibit values below 100 nM.

In comparison, for all NACs identified on RNA level only, a uniform spread over all

affinity regimes could be observed (For DNA-only, the low number of NACs does not

allow a conclusion). Despite this unambiguous result, it is striking that all of these RNA

and DNA-based NACs show low to moderate variant frequencies. Together with the

findings from the distributions of the tumor VF and total reads (Fig. 3.5 and 3.3), this

may indicate a tendency of NACs with high tumor VF to result from variants with lower

sequencing depths and hence higher risk of being false positive results. Alternatively

these observations could be explained by immune editing events.

When considering the dependence of the nano-molar binding affinity on the used pro-

teomic tool, a similar trend could be observed. An increased affinity with Kd values less

than 100 nM could hence be observed for 19 out of 30 NACs that were covered by pFind

and PROSIT at the same time. Here, NACs that were solely identified with one of both

tools exhibited a significantly lower fraction of high-affinity candidates. (pFind: eight out

of 50; PROSIT: five out of 13). Again, a slight tendency towards lower variant frequen-

cies could be observed, however, with less explicit results. Besides the effect of being

statistically more valid by the detection of two independent tools, this correlation could
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also be explained through some entanglement between proteomic detection algorithms

and binding predictors, both tending to prioritize sequences that, for some reasons, are

"easier" to detect and hence have more available training data.

Both findings suggest that a combined approach, not only of exome and transcriptome

data but also of different proteomic tools, could markedly improve response rates and

function as a helpful selection method. On the one hand, this concept could be extended

to WGS! to increase potential variant repertoires. On the other hand, the integration of

further proteomic search algorithms, such as MSfragger (Kong et al., 2017), could sub-

stantially advance neoepitope discovery.

4.4.4 NAC-repertoire variability

Across the whole cohort, the patient-specific number of NACs was found to vary sub-

stantially. As indicated by further analysis of the corresponding immunopeptidomic

data set by Tretter et al., the number of NACs strongly correlated with the size of the

immunopeptidome. Hence, higher NAC-specificity due to matching MS-spectra to vari-

ants comes with the cost of reduced NAC-outcome since MS-approaches mapping only a

fraction of the complete immunopeptidome of a tumor sample (Tretter et al., 2023). This

limitation might be due to sample loss during the IP and the subsequent peptide purifi-

cation processes (Zhang et al., 2019). Low instrument sensitivity, limitations of analysis

strategies, and the requirement of abundant tissue samples are further shortcomings of

MS/MS approaches (Macklin et al., 2020). Here it is suggested that optimizing machine-

learning tools for the MS spectra matching and scoring procedures, together with in-

creased sensitivity of MS instruments, will impact and improve MS discovery pipelines

for neoantigens (Chong et al., 2022).

Important insight into the clinical impact is gained by combining different data sources.

Correlating NAC yield and mutational load with clinical courses of the different enti-

ties is decisive for the revelation of potential associations and for linking immunological

response behavior to directly measurable and quantifiable parameters.
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4.5 Experimental validation with acDC assay

4.5.1 Advantages of dendritic co-culture

There are different experimental methods for the detection of specific T-cell responses.

Whereas long-known approaches using multimerized pMHC ligands for a given popu-

lation of T cells require a priori knowledge of the MHC restriction of each peptide, the as-

say used in this work was shown to sensitively detect T cell immune responses also with

scarce patient material (Martinuzzi et al., 2011; Hadrup et al., 2009). Since no separate

generation of antigen-presenting cells was possible, cell co-cultivation in combination

with a highly sensitive ELISpot measurement provided the most feasible option.

Though experimental procedures are tedious, the realized approach offers the possibility

to directly assess T cell functionality upon specific stimulation in contrast to mere anti-

gen binding capacity, which is analyzed in pMHC approaches. Besides, the quality of

the assay outcome can be monitored by observation of T cell growth. Yet, signs of T cell

exhaustion may hamper the detectability of present neoantigen-specific T cell responses

and the aspect of only one assessed cytokine IFN-� places a crucial limitation for the

detection of immune responses in general. Furthermore the application of fixed concen-

trations of peptides for the stimulation might limit the scope of detection. Besides, the

specific controls facilitate a good signal-to-noise ratio, especially for higher cell numbers.

4.5.2 Quality of primary patient samples

All realized assays that intended to confirm T cell immunogenicity against the identified

epitopes were done with freshly thawed PBMCs. However, there were huge differences

between the different patients concerning the sample quality. By the time of thawing,

samples from some patients exhibited strong tendencies to clot together, forming a sticky

cell bulk which was connected with lower cell number outcome and mostly lower cell

viability. For future assays, it seems indispensable to precisely survey this phenomenon,

which was already described in earlier publications, and eventually avoid a loss of cells

by incorporation of a DNAse (benzonase nuclease) treatment (García-Piñeres et al., 2006;

Smith et al., 2001).
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The general problem of overall high cell number variations and low cell yield for partic-

ular patients was responsible for certain limitations that resulted in a higher likelihood of

missing relevant immune responses. In order to distinguish between the required condi-

tions pulsed, unpulsed, and irrelevantly pulsed, the number of cells was only sufficient

for singlet approaches on assay Day 1 (exception: experiment acDC 01# 4 with Triplets)

and duplicate approaches on assay Day 13. Realizing triplicates of each condition would

probably have reduced statistical aberrations and hence was implemented into the ongo-

ing projects later if possible.

4.5.3 Technical considerations

The readout procedure, which was done with the ELISpot analyzer ImmunoSpot S6 Ultra-

V required different threshold settings, which were adjusted according to the quality

of the scanned image of the ELISpot plate, but also on the individual properties of the

formed colonies. As a result, some of the analysis had to be done with different threshold

settings, which in principle, could have affected the comparability of the results. How-

ever, this error can be neglected due to generally low colony counts. The image quality,

directly linked to the focus level of acquired pictures, was another source of variabilities.

Low sharpness of the acquired images might have significantly affected counting events

of nearby SFUs, which, however, was individually controlled after readout and, in the

case of our results, a rarely seen event. Of note, due to excessive dot density, the pos-

itive control was not considered the same way but only served as a qualitative control.

Guidelines for standardized ELISpot evaluation by Janetzki et al. may help to adjust cor-

responding reading parameters to increase the reliability and comparability of the results

(Janetzki et al., 2015). Other important consensus initiatives that are important for good

manufacturing practice (GMP) and clinical translation could only partially be complied

with due to limited patient material (Moodie et al., 2010).

4.6 Conceptional considerations of multi-omics approaches

The ImmuNeo discovery pipeline for tumor neoantigens, whose approaches and results

are described in this thesis, is based on several individually developed sub-projects re-
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alized by different research groups. The combined workflow aiming to merge these

groups’ results comes with different challenges and structural limitations that will be

discussed in the following. It is important to mention that all described aspects are espe-

cially relevant for further clinical translation and exceed the feasibility and the financial

means of this project.

Standardized sample acquisition and preparation were required since all subsequent con-

siderations are based on the primary patient sample. However, different tumor entities

are clinically treated by different surgical units and hence different specialists, each time

with its own methodology and specifics. Furthermore, tumor sample withdrawal was

realized over various institutions and sites with individual standard operating proce-

dures (SOPs). The observed variation of tumor sample sizes and qualities, which for

the most part may be a result of individual tumor status and hence of its evolution and

growths, complicated subsequent sample preparation standards and led to different pre-

requisites for further analysis like WES! or MS/MS. The macroscopic texture (soft vs.

solid) and the fraction of potentially necrotic tumor parts or hypoxic areas are additional

unswayable parameters that must be mentioned in this context. This challenge became

especially explicit for RNA-sequencing analysis, where lacking sample material led to

missing RNA data in eight cases.

Intra-tumor heterogeneity constitutes another closely linked challenge not only for com-

prehensive data acquisition. Earlier studies analyzing intratumor heterogeneity in pri-

mary renal carcinoma claimed that more than 63% of all somatic mutations were not de-

tectable across every tumor region (Gerlinger et al., 2012). This suggests that, i.e., incom-

plete resections or not incomprehensively prepared samples might not reflect the com-

plete mutational landscape of a tumor, which is essential for the detection of subclonal

tumor cell populations. In recent publications, it was even shown that single-sample re-

constructions of subclonal populations systematically underestimate intra-tumoural het-

erogeneity, indicating that interpretations of specific architectures and subclonal variants

should be made cautiously (Liu et al., 2020). In a clinical context, intra-tumor hetero-

geneity poses widely known therapeutic limitations since heterogeneity might not only

be required for but can even promote tumor development and progression as suggested

earlier (McGranahan & Swanton, 2015). As clonal diversity (the size of sub-clonal frac-

tions) has shown to be associated with poor clinical outcome after treatment with chemo-
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and radiotherapy (Andor et al., 2016), it might also impose certain limitations for tumor

neoantigen related therapeutic approaches (El-Sayes et al., 2021; Xie et al., 2022; Sanli

et al., 2019). This becomes evident as different strategies of immune evasion in terms

of quantitative modulation or qualitative alteration of the presented antigen repertoires,

such as modulated antigen expression levels or HLA-I surface levels, have been observed

in the past (Jhunjhunwala et al., 2021). Besides, since tumor evolution underlies not

only genetic mutations but also epigenetic and transcriptomic alterations, newer stud-

ies claim that exclusively genomic approaches fail to explain the evolution of ITH (Black

& McGranahan, 2021), hence necessitating multi-omics approaches to characterize tumor

mutanomes comprehensively.

To face this limitation of exclusive genomic analyses, RNA-seq data was included and

formed an integral part of the ImmuNeo pipeline. However, data artifacts were more

likely than for DNA data. Here a missing specific control for RNA variants that derive

from RNA processing events might be causal for the contingently high abundance of

artifacts in RNA data. No control with healthy (normal) tissue could be done here since

these variants cannot be validated by matched-normal DNA samples (cp. paragraph on

implementation of GTex in Section 4.2.2).

A pipeline-specific but thus structural limitation was caused by the interdependence of

different sub-pipelines whose outcomes were crucial for further analysis and pipeline

development. Due to the nature of combining several on-the-edge technologies, an in-

evitable need for continuous adaption of different methods to novel insights in each re-

search field necessitated continuous adaption of each sub-project. Here small pipeline-

related changes, i.e., updates in bioinformatical databases or pipeline improvements,

caused tremendous changes in the approval of possible NACs, which could then com-

pletely alter priory established prioritization strategies, and results. Furthermore, experi-

mentally confirmed candidates had to be reconsidered and re-evaluated distinctly. These

technical issues indicate that the bioinformatical procedures concerning Genomics, Tran-

scriptomics, and Proteomics data are still shaped by ongoing development. Continuous

improvements are warranted and ongoing to obtain robust pipelines for further analysis.
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Appendix A: Source code

1 Scripts in Python

1.1 Run netMHC

1

2

3 import csv # module for reading and writing .csv-file

4 import os

5

6 # REMINDER: out commented version: debug mode for linux server/macOS.

7

8 folder_input = "/root/netMHC/input_files/mut_peptides_3/"

9 #folder_input = "/Users/.../input_files/mut_peptides/

preselected_for_netMHC/"

10 folder_output = "/root/netMHC/output_files/mut_peptides_3/"

11

12 # read .csv file and create array "alleles"

13

14 with open(folder_input+’alleles.csv’) as csvfile:

15 reader = csv.reader(csvfile, delimiter=’ ’, quotechar=’|’)

16 alleles = list(csv.reader(csvfile))

17

18 # iterate to delete all NAs

19 for i in range(len(alleles[0][1:])):

20 for k in alleles:

21 try:

22 k.remove(’NA’)

23 except ValueError:

24 pass

25

26 patients=[]

27 for i in range(len(alleles)):

28 patients.append(alleles[i][0])

29

30 for x in range(len(patients)):

139
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31 os.system("netMHC -a " + ’,’.join(alleles[x][1:])+" -l

8,9,10,11,12,13,14,15 -xls -xlsfile " + folder_output + "result_"

+ patients[x] + "_netMHC.tsv " + folder_input + patients[x] + ".

fasta > " + folder_output + "result_" + patients[x] + "_netMHC.

csv")

32 # print("netMHC -a " + ’,’.join(alleles[x][1:])+" -l

8,9,10,11,12,13,14,15 -xls -xlsfile " + folder_output + "result_"

+ patients[x] + "_netMHC.tsv " + folder_input + patients[x] + ".

fasta > " + folder_output + "result_" + patients[x] + "_netMHC.

csv")

Listing 1: Implementation of netMHC

1.2 Run MHCflurry

1 import csv # module for writing .csv-file

2 import os

3

4 folder_all = "/Users/.../Python/input_files/mut_peptides/all"

5

6 from os import walk

7

8 g = []

9 pep_nrs_C = []

10

11 for (dirpath, dirnames, filenames) in walk(folder_all):

12 g.extend(filenames)

13 break

14

15 for j in range(len(g)):

16 pep_nrs_C.append(g[j][3:5])

17 print(j+1, "in All: " + g[j][0:5])

18

19 n_patients_C = len(pep_nrs_C)

20

21 command_1 = ("mhcflurry-predict /Users/.../Python/input_files/

mut_peptides/all/IN_")

22 command_2 = (".csv --out /Users/.../Python/result_files/mut_peptides/")

23 command_3 = ("models_class1_presentation/result_")

24 command_4 = ("_st.csv")

25

26 for p in range(n_patients_C):

27 # standard model (class1)
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28 command_st = command_1 + str(pep_nrs_C[p]) + command_2 + command_3 +

str(pep_nrs_C[p]) + command_4

29 os.system(command_st)

30 print(command_st)

Listing 2: Implementation of MHCflurry
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2 Scripts in R

2.1 Characterization of the mutanome

1 #### MUTATION ANALYSIS PLOT FOR THESIS####

2

3 library(tidyverse)

4 library(openxlsx)

5 library(stringr)

6 library(reshape2)

7 library(ggplot2)

8 library(extrafont)

9 library(ggrepel)

10 library(grid)

11 library(FinCal)

12 library(gridExtra)

13 library(RColorBrewer)

14 library(grDevices)

15 library(ggpubr)

16 library(cowplot)

17 library(remotes)

18 library(webr)

19 library(moonBook)

20 library(plotly)

21 library(ggrepel)

22 library(ggbreak)

23 library(hrbrthemes)

24 library(viridis)

25 library(ggExtra)

26 library(eulerr)

27 library(ggh4x)

28

29

30 #### (1) #### import all .tsv files from folder and add to one

dataframe _________________________________________________________

___________________________________________________________________

______________

31 path.tsv.files="mutation_calling/raw_data/2022_07_20/"

32

33 # old: path.tsv.files="mutation_calling/2019_06_05/results_out/"

34 tsv.files=list.files(path=path.tsv.files, pattern = "*.tsv", full.names

= T)

35 all.patients_DF = plyr::ldply(tsv.files, read.delim)# fread

36

37 #### (2) #### correct TumorVF & NormalVF ______________________________

___________________________________________________________________
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___________________________________________________________________

__________

38 all.patients_DF <- mutate(all.patients_DF, TumorVF=TumorAD/(TumorAD+

TumorRD))

39 all.patients_DF <- mutate(all.patients_DF, NormalVF=NormalAD/(NormalAD+

NormalRD))

40

41 #### (3) #### Import references _______________________________________

___________________________________________________________________

___________________________________________________________________

_

42 source(file = "functions/import.references.R")

43

44 all.patients_DF <- all.patients_DF %>%

45 rename(Master_ID=patientID)

46 all.patients_DF$Master_ID_group <- as.factor(str_sub(all.patients_DF$

Master_ID,1,6))

47 all.patients_DF <- merge(reference.master, all.patients_DF, by.x = "

Master_ID", by.y = "Master_ID_group") %>%

48 select(-Master_ID) %>%

49 rename(Master_ID = Master_ID.y) %>%

50 merge(reference.entity) %>%

51 mutate(Tumor_entity=str_replace_all(Tumor_entity, c("nonseminomatous

germ cell tumor"="Non-sem. germ cell tumor",

52 "Desmoplastic small-round-cell

tumor"="Desmopl.small-

round-cell tumor",

53 "atypical carcinoid of the

lung"="Atypical lung

carcinoid",

54 "Mukoedidermoid Carcinoma"="

Mukoepidermoid Carcinoma",

55 "Urothelcacrinoma"="

Urothelcarcinoma",

56 "adrenocortical carcinoma"="

Adrenocortical carcinoma")

)) %>%

57 mutate(EFFECT=str_replace_all(EFFECT, c("non_coding_transcript_exon_

variant"="Non-coding transcript exon variant",

58 "missense_variant"="Missense variant",

59 "splice_donor_variant"="Splice donor

variant",

60 "splice_acceptor_variant"="Splice

acceptor variant",

61 "non_coding_transcript_exon_variant"="

Non-coding transcript exon variant"
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,

62 "stop_gained"="Stop gained",

63 "splice_donor_variant&intron_variant"="

Splice donor variant & intron

variant",

64 "frameshift_variant"="Frameshift

variant",

65 "disruptive_inframe_deletion"="

Disruptive inframe deletion",

66 "splice_acceptor_variant&intron_variant

"="Splice acceptor variant & intron

variant",

67 "Splice donor variant&intron_variant"="

Splice donor variant & intron

variant",

68 "Splice acceptor variant&intron_variant

"="Splice acceptor variant & intron

variant"))) %>%

69 mutate(geneBiotype=str_replace_all(geneBiotype, c("3prime_overlapping

_ncRNA"="3’-overlapping ncRNA",

70 "antisense" = "Antisense",

71 "processed_pseudogene"="

Processed Pseudogene",

72 "protein_coding"="Protein Coding

",

73 "transcribed_Processed

Pseudogene"="Processed

Pseudogene (transcribed)",

74 "unProcessed Pseudogene"="

Unprocessed Pseudogene",

75 "sense_intronic"="Sense Intronic

",

76 "transcribed_Unprocessed

Pseudogene;processed_

transcript"="Unprocessed

Pseudogene (transcribed) +

pt",

77 "transcribed_Unprocessed

Pseudogene"="Unprocessed

Pseudogene (transcribed)",

78 "unitary_pseudogene"="Unitary

Pseudogene",

79 "processed_transcript"="

Processed Transcript",

80 "IG_V_pseudogene"="Variable

chain IG Pseudogene",
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81 "sense_overlapping"="Sense

overlapping")))

82

83 ### (4) ### General modifications of dataset __________________________

___________________________________________________________________

___________________________________________________________________

______________

84

85 all.patients_DF["Tumor_ID"] <- paste0(all.patients_DF$Patient_ID, str_

sub(all.patients_DF$Master_ID, 7,9))

86 all.patients_DF["Mutation_ID"] <- paste(all.patients_DF$CHROM, all.

patients_DF$POS,all.patients_DF$REF, all.patients_DF$ALT, sep = "_"

)

87 all.patients_DF["Metastasis"] <- str_sub(all.patients_DF$Master_ID,

8,9)

88 all.patients_DF["Patient_NR"] <- paste0(str_sub(all.patients_DF$Patient

_ID, 4,5))

89 all.patients_DF <- all.patients_DF %>%

90 mutate(Tumor_entity_short_simple=ifelse(all.patients_DF$Tumor_entity_

short=="Melanoma", "Melanoma", ifelse(all.patients_DF$Tumor_

entity_short=="Sarcoma", "Sarcoma", ifelse(all.patients_DF$Tumor_

entity_short=="Carcinoma", "Carcinoma", "Other")))) %>%

91 mutate(filter5=ifelse(TumorVF>0.05 & (TumorAD+TumorRD)>4 & (TumorAD

>2), "Inliers", "Outliers")) # Filter for TumorVF > 5% and

minimal coverage of reads of 5 and minimal tumor reads of 3

92

93 ## create new column Biotype_group

94 all.patients_DF <- all.patients_DF %>%

95 mutate(Biotype_group=geneBiotype) %>%

96 mutate(Biotype_group=ifelse(grepl("pseudogene", geneBiotype, ignore.

case = T), "Pseudogene", Biotype_group)) %>%

97 mutate(Biotype_group=ifelse(geneBiotype %in% c("bidirectional_

promoter_lncRNA", "macro_lncRNA"), "lncRNA", Biotype_group)) %>%

98 mutate(Biotype_group=ifelse(geneBiotype %in% c("Sense overlapping", "

IG_V_gene", "IG_C_gene", "TR_V_gene", "non_coding"), "Others",

Biotype_group)) %>%

99 mutate(Biotype_group=ifelse(Biotype_group %in% c("3’-overlapping

ncRNA", "misc_RNA", "lncRNA", "snoRNA", "snRNA", "miRNA", "scaRNA

", "rRNA", "vaultRNA", "lincRNA", "Antisense"), "Regulatory RNAs"

, Biotype_group))

100

101 ## Debug check occurrence of each biotype

102 test <- group_by(all.patients_DF, Biotype_group) %>%

103 summarise(N=n()) %>%

104 arrange(desc(N))

105 test
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106

107 ## create new column Effect_group

108 all.patients_DF <- all.patients_DF %>%

109 mutate(Effect_group=EFFECT) %>%

110 mutate(Effect_group=ifelse(grepl("exon", EFFECT, ignore.case = T), "

Non-coding", Effect_group)) %>%

111 mutate(Effect_group=ifelse(grepl("missense", EFFECT, ignore.case = T)

, "Coding missense", Effect_group)) %>%

112 mutate(Effect_group=ifelse(grepl("splice", EFFECT, ignore.case = T),

"Splice site & intron", Effect_group)) %>%

113 mutate(Effect_group=ifelse(grepl("stop", EFFECT, ignore.case = T), "

Stop gained", Effect_group)) %>%

114 mutate(Effect_group=ifelse(grepl("Frameshift", EFFECT, ignore.case =

T), "Frameshift", Effect_group)) %>%

115 mutate(Effect_group=ifelse(Effect_group %in% c("Non-coding","Coding

missense", "Splice site & intron", "Stop gained", "Frameshift"),

Effect_group, "Others"))

116

117 ## Debug check occurrence of each Effect_group

118 test <- group_by(all.patients_DF, Effect_group)%>%

119 summarise(N=n()) %>%

120 arrange(desc(N))

121 test

122

123 ### (5) ### For Variant plot __________________________________________

___________________________________________________________________

_________________________________________________________________

124

125 variants <- all.patients_DF

126 variants <- variants %>%

127 mutate(Patient_NR_plot=ifelse(variants$Metastasis=="T2"|variants$

Metastasis=="T4", NA, Patient_NR)) %>%

128 mutate(Metastasis_plot=ifelse(variants$Patient_NR=="19"|variants$

Patient_NR=="11"|variants$Patient_NR=="17"|variants$Patient_NR=="

23"|variants$Patient_NR=="24"|variants$Patient_NR=="25"|variants$

Patient_NR=="27", Metastasis, "")) %>%

129 mutate(Pat_Met=paste0(Patient_NR, "_", Metastasis))

130

131 variants_unique <- variants %>%

132 distinct(Tumor_ID, Mutation_ID, SOURCE, GENE, .keep_all=T) %>% #

Mainly differences in ORF are cut off, but we want to keep the

GENE differences

133 group_by(Tumor_ID, Mutation_ID, SOURCE) %>%

134 summarise(across(!c(GENE), first), GENE=paste0(GENE, collapse = ";"))

# vermutlich elegante Loesung, aber nicht sehr Rechen-effizient

135



2 Scripts in R 147

136 # Save Plot

137 save.path = "plots/Thesis/Variants/"

138 speichern <- function(name){

139 save.filename = paste(save.path,name, ".pdf", sep = "")

140 ggsave(save.filename, width = 20, height = 10, dpi = "retina")

141 }

142

143 speichern_grid <- function(name){

144 save.filename = paste(save.path,name, ".pdf", sep = "")

145 ggsave(save.filename, g, width = 20, height = 10, dpi = "retina")

146 }

147

148 ### (6) ### Themes ____________________________________________________

___________________________________________________________________

___________________________________

149

150 theme_donut <- function(){

151 theme(aspect.ratio = 1,

152 strip.text = element_text(size = 30),

153 legend.key.size = unit(2.5, ’cm’),

154 legend.title = element_text(size=30),

155 legend.text = element_text(size=30))

156 }

157

158 theme_basic <- function(){

159 theme_minimal()+

160 theme(axis.title = element_text(size=30),

161 axis.text = element_text(size=30),

162 axis.text.y.right = element_blank(),

163 axis.ticks.x=element_blank(),

164 panel.grid.major.x=element_blank(),

165 panel.grid.minor=element_blank(),

166 legend.key.size = unit(2.5, ’cm’),

167 legend.title = element_text(size=30),

168 legend.text = element_text(size=30),

169 strip.text.y = element_text(size = 30))

170 }

171

172 theme_PS <- function(){

173 theme(

174 plot.title=element_text(size=20, hjust = 0.5),

175 #plot.background = element_rect(fill = "transparent",colour = NA),

176 #panel.grid.major = element_line(color = "grey", linetype = "dotted

", size=0.4),

177 panel.grid.major = element_blank(),

178 panel.grid.minor = element_blank(),



148 2 Scripts in R

179 panel.background = element_rect(fill = "transparent",colour = NA),

180 #panel.border = element_rect(color = "white", fill = NA),

181 #axis.line = element_line(color = "grey"),

182 axis.ticks = element_line(color = "grey"),

183 axis.text = element_text(size = 16),

184 axis.text.x = element_text(angle = 0),

185 axis.title = element_text(size = 16,face="bold"),

186 legend.text = element_text(size = 16),

187 legend.title = element_text(size= 16,face="bold")

188 )

189 }

190

191 ### PLOT 1b ### _______________________________________________________

___________________________________________________________________

________________________________

192

193 overview1 <- variants %>%

194 distinct(SOURCE, Patient_ID, Patient_NR, Master_ID, CHROM, POS, REF,

ALT, .keep_all = T) %>%

195 group_by(SOURCE, mutationType) %>%

196 summarise(count_variants=n()) %>%

197 rename("Variants"=SOURCE)

198 levels(overview2$Variants) <- c("DNA", "RNA")

199

200 PieDonut(overview1, aes(Variants, mutationType, count=count_variants),

201 pieAlpha = 1.0, donutAlpha = 1.0, color = "black",

202 labelpositionThreshold=0.05, labelposition = 1,

203 ratioByGroup=T, start=0,

204 r0=0.4,r1=1.2,r2=2.0)

205

206 overview2 <- variants %>%

207 distinct(SOURCE, Patient_ID, Patient_NR, Master_ID, CHROM, POS, REF,

ALT, .keep_all = T) %>%

208 group_by(SOURCE, filter5) %>%

209 summarise(count_variants=n()) %>%

210 rename("Variants"=SOURCE) %>%

211 ungroup() %>%

212 mutate(filter5=as.factor(filter5))

213 levels(overview2$Variants) <- c("DNA", "RNA")

214

215 ggplot(overview2, aes(x = filter5, y = count_variants, fill = Variants)

) +

216 geom_col() +

217 scale_fill_viridis_d()

218 #coord_polar("y")

219



2 Scripts in R 149

220 PieDonut(overview2, aes(Variants, filter5, count=count_variants),

221 pieAlpha = 1.0, donutAlpha = 1.0, color = "black",

222 labelpositionThreshold=0.05, labelposition = 0,

223 ratioByGroup=T, start=0,

224 r0=0.4,r1=1.2,r2=2.0)

225

226 grid.newpage()

227 g <- grid.arrange(p1, p21)

228

229 hsize <- 2

230

231 overview2 <- variants %>%

232 distinct(SOURCE, Patient_ID, Patient_NR, Master_ID, CHROM, POS, REF,

ALT, .keep_all = T) %>%

233 group_by(SOURCE, filter5) %>%

234 summarise(count_variants=n()) %>%

235 rename("Variants"=SOURCE) %>%

236 mutate(x = hsize)

237 levels(overview2$Variants) <- c("DNA", "RNA")

238

239 ggplot(overview1, aes(x = hsize, y = count_variants, fill =

mutationType)) +

240 geom_col(color = "black") +

241 geom_text(aes(label = count_variants),

242 position = position_stack(vjust = 0.5)) +

243 coord_polar(theta = "y") +

244 scale_fill_brewer(palette = "GnBu") +

245 xlim(c(0.2, hsize + 0.5)) +

246 theme(panel.background = element_rect(fill = "white"),

247 panel.grid = element_blank(),

248 axis.title = element_blank(),

249 axis.ticks = element_blank(),

250 axis.text = element_blank())

251

252 #creating simulated data

253 data <- data.frame(c(’Solar Panels’, ’Fossil Fuels’, ’Wind Turbines’),

c(15,80,5), c(40, 40, 20))

254 colnames(data) <- c(’Energy Source’, ’United States’, ’European Union’)

255

256 plot3 <- plot_ly(data) %>%

257 add_pie(labels = ~‘Energy Source‘, values = ~‘United States‘, type =

’pie’, marker = list(line = list(width = 2)),hole = 0.7, sort = F

) %>%

258 add_pie(data, labels = ~‘Energy Source‘, values = ~‘European Union‘,

259 domain = list(

260 x = c(0.15, 0.85),
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261 y = c(0.15, 0.85)),

262 sort = F)

263

264 plot2 <- plot_ly(overview2) %>%

265 add_pie(overview2, labels = ~‘Variants‘, values = ~‘count_variants‘,

266 domain = list(

267 x = c(0.15, 0.85),

268 y = c(0.15, 0.85)),

269 type = ’pie’, hole = 0,

270 sort = F)

271

272 plot4 <- plot_ly(overview1) %>%

273 add_pie(overview2, labels = ~‘mutationType‘, values = ~‘count_

variants‘,

274 domain = list(

275 x = c(0.15, 0.85),

276 y = c(0.15, 0.85)),

277 type = ’pie’, hole = 0,

278 sort = F)

279

280 ### PLOT 2a ### Quality of the variant data ___________________________

___________________________________________________________________

____________________________________________________________

281

282 sequencing_QA <- variants %>%

283 distinct(SOURCE, Patient_ID, Patient_NR, Master_ID, CHROM, POS, REF,

ALT, .keep_all = T) %>%

284 mutate(total_reads=TumorAD+TumorRD)

285

286 #for labeling

287 sequencing_QA$SOURCE <- as_factor(sequencing_QA$SOURCE)

288 levels(sequencing_QA$SOURCE) <- c("RNA", "DNA")

289

290 ggplot(sequencing_QA, aes(x=reorder(SOURCE, desc(SOURCE)), y=total_

reads, fill=SOURCE))+

291 geom_boxplot(varwidth = TRUE, outlier.alpha = 0.01, outlier.color = "

grey", outlier.size = 5, alpha=0.7, lwd=1)+

292 stat_summary(fun = median, fun.max = length,

293 geom = "text", aes(label = paste("N=", ..ymax..)), size=10,

alpha=0.7, vjust = -1) +

294 scale_fill_manual(values=c("#bae4b3", "#2171b5"))+

295 #geom_hline(aes(yintercept=5), color="red", linetype="dotted", size

=1.5)+

296 coord_cartesian(ylim = c(0, 500))+

297 theme_basic()+

298 theme(legend.position = "none")+
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299 #facet_grid(~fct_infreq(Effect_group))+

300 labs(y="Coverage per altered locus (total reads)", x="", fill="")

301

302 speichern("total_reads_boxplot_2")

303

304 ggplot(sequencing_QA, aes(x=reorder(SOURCE, desc(SOURCE)), y=TumorVF,

fill=SOURCE))+

305 geom_boxplot(varwidth = TRUE, outlier.alpha = 0.01, outlier.color = "

grey", outlier.size = 5, alpha=0.7, lwd=1)+

306 stat_summary(fun = median, fun.max = length,

307 geom = "text", aes(label = paste("N=", ..ymax..)), size=10,

alpha=0.7, vjust = -1) +

308 scale_fill_manual(values=c("#bae4b3", "#2171b5"))+

309 #geom_hline(aes(yintercept=5), color="red", linetype="dotted", size

=1.5)+

310 coord_cartesian(ylim = c(0, 1))+

311 theme_basic()+

312 theme(legend.position = "none")+

313 #facet_grid(~fct_infreq(Effect_group))+

314 labs(y="Tumor VF", x="", fill="")

315

316 speichern("TumorVF_boxplot")

317

318 addline_format <- function(x,...){

319 gsub(’\\s’,’\n’,x)

320 }

321

322 ggplot(sequencing_QA, aes(x=fct_infreq(Biotype_group), y=total_reads,

fill=SOURCE))+

323 geom_boxplot(varwidth = TRUE, outlier.alpha = 0.01, outlier.color = "

grey", outlier.size = 5, alpha=0.7, lwd=1)+

324 #stat_summary(fun = median, fun.max = length,

325 # geom = "text", aes(label = paste("N=", ..ymax..)), size=10, alpha

=0.7, vjust = -1) +

326 scale_fill_manual(values=c("#bae4b3", "#2171b5"))+

327 #geom_hline(aes(yintercept=5), color="red", linetype="dotted", size

=1.5)+

328 coord_cartesian(ylim = c(0, 500))+

329 theme_basic()+

330 theme(axis.text.x = element_text(size=24))+

331 labs(y="Coverage per altered locus (total reads)", x="", fill="")+

332 scale_x_discrete(labels=function(x){sub("\\s", "\n", x)})

333

334 speichern("total_reads_boxplot_detail9")

335

336
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337 p <- ggplot(sequencing_QA, aes(x=total_reads, y=TumorVF, color=SOURCE))

+

338 geom_point()+

339 scale_color_manual(values=c("#bae4b3", "#2171b5"))+

340 coord_cartesian(xlim = c(0, 2000))+

341 theme_basic()+

342 labs(x="Total reads", y="Tumor VF", color="")

343

344 ggMarginal(p, type="boxplot")

345

346 ggplot(sequencing_QA, aes(x=total_reads, fill=filter5))+

347 geom_density(alpha=0.5, adjust = 0.6)+

348 geom_vline(aes(xintercept=5), color="red", linetype="dotted", size

=1.5)+

349 scale_fill_manual(values=c("#6495ED", "#FFD54D"))+

350 scale_y_continuous(breaks = scales::breaks_extended(n = 5))+

351 scale_x_log10(breaks=c(1,10,100,1000,10000,100000), limits=c

(0.5,100000))+

352 theme_basic()+

353 theme(panel.grid.major.x=element_line())+

354 facet_grid(rows = vars(reorder(SOURCE, desc(SOURCE))))+

355 labs(x="Total reads", y="Density distribution", fill="Filtering")

356

357 speichern("total_reads_density")

358

359

360 ggplot(sequencing_QA, aes(x=total_reads, fill=filter5))+

361 geom_histogram(binwidth = 0.1)+

362 geom_vline(aes(xintercept=5), color="red", linetype="dotted", size

=1.5)+

363 scale_fill_manual(values=c("#6495ED", "#FFD54D"))+

364 scale_y_continuous(breaks = scales::breaks_extended(n = 5))+

365 scale_x_log10(breaks=c(1,10,100,1000,10000,100000), limits=c

(0.5,100000))+

366 theme_basic()+

367 theme(panel.grid.major.x=element_line())+

368 facet_grid(rows = vars(reorder(SOURCE, desc(SOURCE))), scales="free_y

")+

369 labs(x="Total reads", y="Variants (count)", fill="Filtering")

370

371 speichern("total_reads_histogram")

372

373

374 ggplot(sequencing_QA, aes(x=TumorVF, fill=filter5))+

375 geom_density(alpha=0.5, adjust = 0.1)+

376 geom_vline(aes(xintercept=0.05), color="red", linetype="dotted", size
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=1.5)+

377 scale_fill_manual(values=c("#6495ED", "#FFD54D"))+

378 scale_y_continuous(breaks = scales::breaks_extended(n = 5))+

379 theme_basic()+

380 theme(panel.grid.major.x=element_line())+

381 facet_grid(rows = vars(reorder(SOURCE, desc(SOURCE))), scales="free_y

")+

382 labs(x="Tumor VF", y="Density distribution", fill="Filtering")

383

384 speichern("TumorVF_density")

385

386

387 ggplot(sequencing_QA, aes(x=TumorVF, fill=filter5))+

388 geom_histogram(bins = 100, col="grey")+

389 geom_vline(aes(xintercept=0.05), color="red", linetype="dotted", size

=1.5)+

390 scale_fill_manual(values=c("#6495ED", "#FFD54D"))+

391 scale_y_continuous(breaks = scales::breaks_extended(n = 5))+

392 theme_basic()+

393 theme(panel.grid.major.x=element_line())+

394 facet_grid(rows = vars(reorder(SOURCE, desc(SOURCE))), scales="free_y

")+

395 labs(x="Tumor VF", y="Variants (count)", fill="Filtering")

396

397 speichern("TumorVF_histogram")

398

399

400 ### PLOT 2b ### Inliers vs. Outliers __________________________________

___________________________________________________________________

_____________________________________________________

401

402 Filtering <- variants_unique %>%

403 group_by(filter5, SOURCE) %>%

404 filter(!Pat_Met %in% c("11_T1","16_T1","20_T1","34_T1","31_T1","14_T1

","25_T1","25_T2")) %>%

405 summarise(N.filter5=n()) %>%

406 ungroup() %>%

407 group_by(SOURCE) %>%

408 mutate(perc = 100*round(N.filter5/colSums(across(where(is.numeric)))

,3)) %>%

409 arrange(desc(N.filter5)) %>%

410 arrange(match(filter5, c("Inliers", "Outliers"))) %>% #workaroung

damit die Bennenung der labels die richtige Reihenfolge hat

411 mutate(csum = rev(cumsum(rev(perc))),

412 pos = perc/2 + lead(csum, 1),

413 pos = if_else(is.na(pos), perc/2, pos))
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414 Filtering$SOURCE <- as_factor(Filtering$SOURCE)

415 levels(Filtering$SOURCE) <- c("RNA", "DNA")

416 Filtering$annotation <- c("128.700", "8.800", NA, NA)

417 #Filtering$color <- c("#31a354", "#3182bd", "#e5f5e0", "#deebf7")

418

419 ### PLOT

420 cp <- coord_polar(theta = "y")

421 cp$is_free <- function() TRUE

422 ggplot(Filtering, aes(x = 1, y = perc, fill = fct_inorder(filter5))) +

423 geom_col(width = 0.5, color = 1) +

424 geom_label_repel(data = Filtering,

425 aes(y = pos, label = paste0(N.filter5,"\n",perc, "%")),

426 size = 12, nudge_x = 1, show.legend = FALSE,

427 box.padding = 0.5) +

428 geom_text(aes(x=0.2, y=0, label=annotation), size=14)+

429 cp+

430 #scale_fill_manual(values=c("#A7C7E7", "#6495ED", "#31a354", "#e5f5e0

"))+

431 scale_fill_brewer(palette = "Greens", direction=-1)+

432 #scale_fill_brewer(palette = "Pastel1") +

433 theme_void()+

434 theme_donut()+

435 theme(legend.position="bottom", legend.title = element_blank())+

436 guides(fill = guide_legend(title = "Filtering")) +

437 xlim(c(0.2, 1.5))+

438 facet_wrap(~reorder(SOURCE, desc(SOURCE)), scales = "free")

439

440 speichern("Filtering_greens")

441

442

443 ### PLOT 3 ### Variant frequencies (DNA and RNA) - filtered and

unfiltered ________________________________________________________

___________________________________________________________________

_______________________________

444

445 count_variants <- variants %>%

446 distinct(SOURCE, Patient_ID, Patient_NR, Master_ID, CHROM, POS, REF,

ALT, .keep_all = T) %>%

447 group_by(SOURCE, filter5, Master_ID) %>%

448 summarize(count_variants=n(), Pat_Met=first(Pat_Met), Patient_NR=

first(Patient_NR), Patient_NR_plot=first(Patient_NR_plot),

Metastasis=first(Metastasis), Metastasis_plot=first(Metastasis_

plot), Tumor_entity=first(Tumor_entity), Tumor_entity_short_

simple=first(Tumor_entity_short_simple), mean_TumorVF=mean(

TumorVF)) %>%

449 ungroup() %>% # Add empty Entries for Strelka manually (no RNA data
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for some Samples)

450 add_row(SOURCE="StrelkaRNA", filter5="Inliers", Master_ID="64EMZ9_T1"

, count_variants=0, Patient_NR="11", Patient_NR_plot="11",

Metastasis="T1", Metastasis_plot="T1", Tumor_entity="Endometrium-

CA", Tumor_entity_short_simple="Carcinoma") %>%

451 add_row(SOURCE="StrelkaRNA", filter5="Outliers", Master_ID="64EMZ9_T1

", count_variants=0, Patient_NR="11", Patient_NR_plot="11",

Metastasis="T1", Metastasis_plot="T1", Tumor_entity="Endometrium-

CA", Tumor_entity_short_simple="Carcinoma") %>%

452 add_row(SOURCE="StrelkaRNA", filter5="Inliers", Master_ID="9YW2AD_T1"

, count_variants=0, Patient_NR="16", Patient_NR_plot="16",

Metastasis="T1", Metastasis_plot="", Tumor_entity="Adenocarcinoma

", Tumor_entity_short_simple="Carcinoma") %>%

453 add_row(SOURCE="StrelkaRNA", filter5="Outliers", Master_ID="9YW2AD_T1

", count_variants=0, Patient_NR="16", Patient_NR_plot="16",

Metastasis="T1", Metastasis_plot="", Tumor_entity="Adenocarcinoma

", Tumor_entity_short_simple="Carcinoma") %>%

454 add_row(SOURCE="StrelkaRNA", filter5="Inliers", Master_ID="M218BR_T1"

, count_variants=0, Patient_NR="20", Patient_NR_plot="20",

Metastasis="T1", Metastasis_plot="", Tumor_entity="Testicle-CA",

Tumor_entity_short_simple="Carcinoma") %>%

455 add_row(SOURCE="StrelkaRNA", filter5="Outliers", Master_ID="M218BR_T1

", count_variants=0, Patient_NR="20", Patient_NR_plot="20",

Metastasis="T1", Metastasis_plot="", Tumor_entity="Testicle-CA",

Tumor_entity_short_simple="Carcinoma") %>%

456 add_row(SOURCE="StrelkaRNA", filter5="Inliers", Master_ID="LRE6DV_T1"

, count_variants=0, Patient_NR="34", Patient_NR_plot="34",

Metastasis="T1", Metastasis_plot="", Tumor_entity="Mucinous

Adenocarcinoma", Tumor_entity_short_simple="Carcinoma") %>%

457 add_row(SOURCE="StrelkaRNA", filter5="Outliers", Master_ID="LRE6DV_T1

", count_variants=0, Patient_NR="34", Patient_NR_plot="34",

Metastasis="T1", Metastasis_plot="", Tumor_entity="Mucinous

Adenocarcinoma", Tumor_entity_short_simple="Carcinoma") %>%

458 add_row(SOURCE="StrelkaRNA", filter5="Inliers", Master_ID="NLSTH8_T1"

, count_variants=0, Patient_NR="31", Patient_NR_plot="31",

Metastasis="T1", Metastasis_plot="", Tumor_entity="

Rhabdomyosarcoma", Tumor_entity_short_simple="Sarcoma") %>%

459 add_row(SOURCE="StrelkaRNA", filter5="Outliers", Master_ID="NLSTH8_T1

", count_variants=0, Patient_NR="31", Patient_NR_plot="31",

Metastasis="T1", Metastasis_plot="", Tumor_entity="

Rhabdomyosarcoma", Tumor_entity_short_simple="Sarcoma") %>%

460 add_row(SOURCE="StrelkaRNA", filter5="Inliers", Master_ID="XVM4XC_T1"

, count_variants=0, Patient_NR="14", Patient_NR_plot="14",

Metastasis="T1", Metastasis_plot="", Tumor_entity="Melanoma",

Tumor_entity_short_simple="Melanoma") %>%

461 add_row(SOURCE="StrelkaRNA", filter5="Outliers", Master_ID="XVM4XC_T1
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", count_variants=0, Patient_NR="14", Patient_NR_plot="14",

Metastasis="T1", Metastasis_plot="", Tumor_entity="Melanoma",

Tumor_entity_short_simple="Melanoma") %>%

462 add_row(SOURCE="StrelkaRNA", filter5="Inliers", Master_ID="42D9U7_T1"

, count_variants=0, Patient_NR="25", Patient_NR_plot="25",

Metastasis="T1", Metastasis_plot="T1", Tumor_entity="WT-GIST",

Tumor_entity_short_simple="other") %>%

463 add_row(SOURCE="StrelkaRNA", filter5="Outliers", Master_ID="42D9U7_T1

", count_variants=0, Patient_NR="25", Patient_NR_plot="25",

Metastasis="T1", Metastasis_plot="T1", Tumor_entity="WT-GIST",

Tumor_entity_short_simple="other") %>%

464 add_row(SOURCE="StrelkaRNA", filter5="Inliers", Master_ID="42D9U7_T2"

, count_variants=0, Patient_NR="25", Patient_NR_plot=NA,

Metastasis="T2", Metastasis_plot="T2", Tumor_entity="WT-GIST",

Tumor_entity_short_simple="other") %>%

465 add_row(SOURCE="StrelkaRNA", filter5="Outliers", Master_ID="42D9U7_T2

", count_variants=0, Patient_NR="25", Patient_NR_plot=NA,

Metastasis="T2", Metastasis_plot="T2", Tumor_entity="WT-GIST",

Tumor_entity_short_simple="other") %>%

466 mutate(Tumor_entity_short_simple = fct_reorder(Tumor_entity_short_

simple, count_variants, .fun=’length’ ))

467

468 count_variants_DNA <- count_variants %>%

469 filter(SOURCE=="Mutect2")

470 count_variants_RNA <- count_variants %>%

471 filter(SOURCE=="StrelkaRNA")

472

473 p1 <- ggplot(count_variants_DNA, aes(x=reorder(Pat_Met, desc(Tumor_

entity_short_simple)), y=count_variants, fill=reorder(filter5, desc

(filter5)), width=.75))+

474 geom_bar(colour="black", stat = "identity")+

475 scale_y_continuous(breaks = scales::breaks_extended(n = 6))+

476 #theme_minimal()+

477 theme_basic()+

478 theme(axis.text.x=element_blank(), axis.ticks.x=element_blank(),

panel.grid.major.x=element_blank())+

479 geom_label(aes(label=Patient_NR_plot, y=max(count_variants)/-11),

fill="white", size = 8, label.r=unit(0.5,"lines"), label.padding=

unit(0.08,"lines"))+

480 geom_text(aes(label=Metastasis_plot, y=max(count_variants)/-33), size

=8)+

481 geom_hline(yintercept = 0)+

482 scale_fill_brewer(palette = "Blues")+

483 #scale_fill_manual(values=c("#A7C7E7", "#6495ED"))+

484 labs(x="", y="DNA variants (count)", fill="")

485
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486 p2 <- ggplot(count_variants_RNA, aes(x=reorder(Pat_Met, desc(Tumor_

entity_short_simple)), y=count_variants, fill=reorder(filter5, desc

(filter5)), width=.75))+

487 geom_bar(colour="black", stat = "identity")+

488 scale_y_continuous(breaks = scales::breaks_extended(n = 6))+

489 #theme_minimal()+

490 theme_basic()+

491 theme(axis.text.x=element_blank(), axis.ticks.x=element_blank(),

panel.grid.major.x=element_blank())+

492 geom_label(aes(label=Patient_NR_plot, y=max(count_variants)/-9), fill

="white", size = 8, label.r=unit(0.5,"lines"), label.padding=unit

(0.08,"lines"))+

493 geom_text(aes(label=Metastasis_plot, y=max(count_variants)/-30), size

=8)+

494 geom_hline(yintercept = 0)+

495 scale_fill_brewer(palette = "Greens")+

496 #scale_fill_manual(values=c("#A7C7E7", "#6495ED"))+

497 labs(x="Patient ID, Entity, Tumor", y="RNA variants (count)", fill=""

)

498

499 grid.newpage()

500 g <- grid.arrange(p1, p2)

501 speichern_grid("VariantsCount_test_3")

502

503

504 ### PLOT 4 ### DNA/RNA overlap (all patients and subgroup of patients)

___________________________________________________________________

___________________________________________________________________

____________________

505

506 coverage_all <- variants %>%

507 distinct(SOURCE, Patient_ID, Patient_NR, Master_ID, CHROM, POS, REF,

ALT, .keep_all = T) %>%

508 filter(!Pat_Met %in% c("11_T1","16_T1","20_T1","34_T1","31_T1","14_T1

","25_T1","25_T2")) %>%

509 #filter(filter5=="Inliers") %>%

510 #filter(Tumor_entity_short_simple=="other") %>%

511 mutate(variant=paste0(Master_ID, CHROM, POS, REF, ALT)) %>%

512 group_by(SOURCE) %>%

513 summarise(mutation=paste0(variant, collapse = ";"), N.mutations=n())

514 Mutect2 <- as.vector(str_split(coverage_all$mutation[1],";", simplify =

T))

515 StrelkaRNA <- as.vector(str_split(coverage_all$mutation[2],";",

simplify = T))

516 mutation.called.by <- list("WES"=Mutect2,"RNA-Seq"=StrelkaRNA)

517
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518 Venn.plot.2(mutation.called.by, save.plot = T, "coverage_other_Inliers"

)

519

520 ### Plot 5a ### :: Variant Type analysis :: ___________________________

___________________________________________________________________

_____________________________________________________________

521

522 VT <- variants_unique %>%

523 #filter(!Pat_Met %in% c("11_T1","16_T1","20_T1","34_T1","31_T1","14_

T1","25_T1","25_T2")) %>%

524 filter(filter5=="Inliers") %>%

525 group_by(Effect_group, SOURCE) %>%

526 summarise(N.effect_group=n()) %>%

527 ungroup() %>%

528 group_by(SOURCE) %>%

529 mutate(perc = 100*round(N.effect_group/colSums(across(where(is.

numeric))),3)) %>%

530 arrange(desc(N.effect_group)) %>%

531 arrange(match(Effect_group, c("Non-coding", "Coding missense", "

Splice site & intron", "Stop gained", "Frameshift", "Others")))

%>% #workaroung for labeling to be in the right order

532 mutate(csum = rev(cumsum(rev(perc))),

533 pos = perc/2 + lead(csum, 1),

534 pos = if_else(is.na(pos), perc/2, pos))

535 VT$SOURCE <- as_factor(VT$SOURCE)

536 levels(VT$SOURCE) <- c("RNA", "DNA")

537 VT <- VT %>%

538 group_by(SOURCE) %>%

539 mutate(Summen=sum(N.effect_group))

540 #VT$annotation <- c("128.700", "8.800", NA, NA, NA, NA, NA, NA, NA, NA,

NA, NA)

541 VT$annotation <- c("83.993", "4.631", NA, NA, NA, NA, NA, NA, NA, NA,

NA, NA)

542

543 ### PLOT

544 cp <- coord_polar(theta = "y")

545 cp$is_free <- function() TRUE

546 ggplot(VT, aes(x = 1, y = perc, fill = fct_inorder(Effect_group))) +

547 geom_col(width = 0.5, color = 1) +

548 geom_label_repel(data = VT,

549 aes(y = pos, label = paste0(N.effect_group,"\n",perc, "%

")),

550 size = 12, nudge_x = 1, show.legend = FALSE,

551 box.padding = 0.5) +

552 geom_text(aes(x=0.2, y=0, label=annotation), size=14)+

553 cp+
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554 scale_fill_brewer(palette = "Pastel1") +

555 theme_void()+

556 theme_donut()+

557 guides(fill = guide_legend(title = "Variant type")) +

558 xlim(c(0.2, 1.5))+

559 facet_wrap(~reorder(SOURCE, desc(SOURCE)), scales = "free")

560

561 speichern("Variant_type_2")

562

563

564 ### Plot 5b ### :: Mutation Type analysis :: __________________________

___________________________________________________________________

______________________________________________________________

565

566 MT <- variants_unique %>%

567 #filter(!Pat_Met %in% c("11_T1","16_T1","20_T1","34_T1","31_T1","14_

T1","25_T1","25_T2")) %>%

568 filter(filter5=="Inliers") %>%

569 group_by(mutationType, SOURCE) %>%

570 summarise(N.mutationType=n()) %>%

571 ungroup() %>%

572 group_by(SOURCE) %>%

573 mutate(perc = 100*round(N.mutationType/colSums(across(where(is.

numeric))),3)) %>%

574 arrange(desc(N.mutationType)) %>%

575 arrange(match(mutationType, c("substitution", "deletion", "insertion"

, "multi-substitution"))) %>% #workaroung damit die Bennenung der

labels die richtige Reihenfolge hat

576 mutate(csum = rev(cumsum(rev(perc))),

577 pos = perc/2 + lead(csum, 1),

578 pos = if_else(is.na(pos), perc/2, pos))

579 MT$SOURCE <- as_factor(MT$SOURCE)

580 levels(MT$SOURCE) <- c("RNA", "DNA")

581 MT <- MT %>%

582 group_by(SOURCE) %>%

583 mutate(Summen=sum(N.mutationType))

584 #MT$annotation <- c("128.700", "8.800", NA, NA, NA, NA, NA, NA)

585 MT$annotation <- c("83.993", "4.631", NA, NA, NA, NA, NA, NA)

586

587 ### PLOT

588 cp <- coord_polar(theta = "y")

589 cp$is_free <- function() TRUE

590 ggplot(MT, aes(x = 1, y = perc, fill = fct_inorder(mutationType))) +

591 geom_col(width = 0.5, color = 1) +

592 geom_label_repel(data = MT,

593 aes(y = pos, label = paste0(N.mutationType,"\n",perc, "%
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")),

594 size = 12, nudge_x = 1, show.legend = FALSE,

595 box.padding = 0.5) +

596 geom_text(aes(x=0.2, y=0, label=annotation), size=14)+

597 cp+

598 scale_fill_brewer(palette = "Pastel1") +

599 theme_void()+

600 theme_donut()+

601 guides(fill = guide_legend(title = "Mutation type")) +

602 xlim(c(0.2, 1.5))+

603 facet_wrap(~reorder(SOURCE, desc(SOURCE)), scales = "free")

604

605 speichern("Mutation_type_inliers_2")

606

607 MT <- variants_unique %>%

608 group_by(Tumor_ID, Mutation_ID) %>%

609 summarise(Effect_group=first(Effect_group), SOURCE=paste0(sort(unique

(SOURCE)), collapse = "+")) %>%

610 ungroup() %>%

611 group_by(Effect_group, SOURCE) %>%

612 summarise(N.effect_group=n()) %>%

613 arrange(desc(N.effect_group))

614

615 ggplot(MT, aes(x=reorder(Effect_group, desc(N.effect_group)), y=N.

effect_group, fill=SOURCE))+

616 geom_col(position = "dodge")

617

618

619 ### Plot 5c ### :: BioType analysis :: ________________________________

___________________________________________________________________

________________________________________________________

620

621 BT <- variants_unique %>%

622 filter(filter5=="Inliers") %>%

623 group_by(Biotype_group, SOURCE) %>%

624 summarise(N.Biotype_group=n()) %>%

625 ungroup() %>%

626 group_by(SOURCE) %>%

627 mutate(perc = 100*round(N.Biotype_group/colSums(across(where(is.

numeric))),3)) %>%

628 arrange(desc(N.Biotype_group)) %>%

629 arrange(match(Biotype_group, c("Protein Coding", "Regulatory RNAs", "

Pseudogene", "Processed Transcript", "TEC", "Sense Intronic", "

Others"))) %>% #workaroung damit die Bennenung der labels die

richtige Reihenfolge hat

630 mutate(csum = rev(cumsum(rev(perc))),
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631 pos = perc/2 + lead(csum, 1),

632 pos = if_else(is.na(pos), perc/2, pos))

633 BT$SOURCE <- as_factor(BT$SOURCE)

634 levels(BT$SOURCE) <- c("RNA", "DNA")

635 BT <- BT %>%

636 group_by(SOURCE) %>%

637 mutate(Summen=sum(N.Biotype_group))

638 #BT$annotation <- c("128.700", NA, NA, "9.900", NA, NA, NA, NA, NA, NA,

NA, NA, NA, NA)

639 BT$annotation <- c("83.993", NA, NA, "4.631", NA, NA, NA, NA, NA, NA,

NA, NA, NA, NA)

640

641 ### PLOT

642 cp <- coord_polar(theta = "y")

643 cp$is_free <- function() TRUE

644 ggplot(BT, aes(x = 1, y = perc, fill = fct_inorder(Biotype_group))) +

645 geom_col(width = 0.5, color = 1) +

646 geom_label_repel(data = BT,

647 aes(y = pos, label = paste0(N.Biotype_group,"\n",perc, "

%")),

648 size = 12, nudge_x = 1, show.legend = FALSE,

649 box.padding = 0.5) +

650 geom_text(aes(x=0.2, y=0, label=annotation), size=14)+

651 cp+

652 scale_fill_brewer(palette = "Pastel1") +

653 theme_void()+

654 theme_donut()+

655 guides(fill = guide_legend(title = "Genetic biotype")) +

656 xlim(c(0.2, 1.5))+

657 facet_wrap(~reorder(SOURCE, desc(SOURCE)), scales = "free")

658

659 speichern("Biotype_4")

660

661

662 ### Plot X ### :: Gene Analysis :: ____________________________________

___________________________________________________________________

____________________________________________________

663 genelength <- reference.genelength2[!duplicated(reference.genelength2),

] %>%

664 mutate(gene.length=end-start) %>%

665 distinct(transcriptID, .keep_all = TRUE) %>%

666 mutate(geneName.old = geneName, geneName=str_sub(geneName, 1, 8))

667

668 GA.badmatch <- variants %>%

669 select(Patient_ID, Patient_NR, FEATUREID, CHROM, Tumor_ID, Metastasis

, Pat_Met, Mutation_ID, SOURCE, GENE, filter5, Tumor_entity,
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Tumor_entity_short, Tumor_entity_short_simple) %>%

670 mutate(transcript.id=str_sub(FEATUREID, 1,15)) %>%

671 #distinct(Pat_Met, Mutation_ID, SOURCE, filter5, .keep_all = TRUE)

%>%

672 distinct(Patient_ID, Mutation_ID, SOURCE, filter5, .keep_all = TRUE)

%>%

673 merge(genelength, by.x = "transcript.id", by.y = "transcriptID", all.

x = TRUE) %>%

674 filter(is.na(gene.length)) %>%

675 mutate(GENE.merge=str_sub(GENE, 1,8)) %>%

676 merge(distinct(genelength, geneName, .keep_all = TRUE), by.x = "GENE.

merge", by.y = "geneName", all.x = TRUE, suffixes = c(".x", ""))

%>%

677 select(-contains(".x"), -GENE.merge, -geneName)

678

679 GA <- variants %>%

680 select(Patient_ID, Patient_NR, FEATUREID, CHROM, Tumor_ID, Metastasis

, Pat_Met, Mutation_ID, SOURCE, GENE, filter5, Tumor_entity,

Tumor_entity_short, Tumor_entity_short_simple) %>%

681 mutate(transcript.id=str_sub(FEATUREID, 1,15)) %>%

682 #distinct(Pat_Met, Mutation_ID, SOURCE, filter5, .keep_all = TRUE)

%>%

683 distinct(Patient_ID, Mutation_ID, SOURCE, filter5, .keep_all = TRUE)

%>%

684 merge(genelength, by.x = "transcript.id", by.y = "transcriptID", all.

x = TRUE) %>%

685 filter(!is.na(gene.length)) %>%

686 bind_rows(GA.badmatch) %>%

687 select(-geneName) %>%

688 rename(geneName="geneName.old") %>% #GENE: hat keine NAs, geneName:

HAT 114 NA-Eintraege, wo keine Zuordnung und damit keine

genelength bestimmt werden konnte

689 # group and filter such, that multi metastasis sharing variants are

only counted ONCE.

690 mutate(temp=ifelse(filter5=="Inliers", 2, 1)) %>%

691 group_by(Patient_ID, Mutation_ID) %>%

692 filter(temp==max(temp)) %>%

693 select(-temp) %>%

694 group_by(GENE, SOURCE) %>%

695 mutate(N.variants.per.gen.test=n()) %>%

696 ungroup()

697

698 GA.filter <- GA %>%

699 group_by(GENE, Pat_Met, SOURCE, filter5) %>%

700 summarise(N.variants.per.gene.per.tumor=n(), N.variants.per.gen.test=

first(N.variants.per.gen.test), geneName=paste(unique(geneName),
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collapse = "; "), Tumor_entity=paste(unique(Tumor_entity),

collapse = " + "), Tumor_entity_short=unique(Tumor_entity_short),

Tumor_entity_short_simple=paste(unique(Tumor_entity_short_simple

), collapse = " + "), gene.length=mean(gene.length)) %>%

701 #mutate(N.variants.normalized=ifelse(is.na(gene.length), NA, 100*N.

variants.per.gen.test/gene.length)) %>%

702 group_by(GENE, SOURCE, filter5) %>%

703 summarise(N.variants.per.gene=sum(N.variants.per.gene.per.tumor),

geneName=paste(unique(geneName), collapse = "; "), Tumor_entity_

short_simple=paste(unique(Tumor_entity_short_simple), collapse =

" + "), gene.length=mean(gene.length)) %>%

704 mutate(N.variants.normalized=ifelse(is.na(gene.length), NA, 100*N.

variants.per.gene/gene.length)) %>%

705 arrange(desc(N.variants.normalized)) %>%

706 group_by(GENE, SOURCE) %>%

707 mutate(N.variants.normalized.sum=sum(N.variants.normalized)) %>%

708 mutate(filter5=as.factor(filter5)) %>%

709 filter(SOURCE=="Mutect2") %>%

710 filter(N.variants.normalized.sum>0.41)

711 #filter(N.variants.normalized.sum>8.3)

712

713 ggplot(GA.filter, aes(x=reorder(GENE, N.variants.normalized.sum), y=N.

variants.normalized, fill=fct_rev(filter5)))+

714 geom_col(position = "stack")+

715 coord_flip()+

716 theme_minimal()+

717 theme(legend.key.size = unit(2.5, "cm"), legend.text = element_text(

size=30), legend.title = element_text(size=30))+

718 theme(axis.title = element_text(size=30), axis.text = element_text(

size=30), axis.text.y = element_text(size=26), axis.text.y.right

= element_blank(), axis.ticks.x=element_blank())+

719 theme(panel.grid.major.y = element_blank(), panel.grid.minor=element_

blank(), strip.text.y = element_text(size = 30))+

720 scale_fill_manual(values=c(alpha("#6495ED", 0.8), alpha("#FFD54D",

0.8)), breaks=c("Inliers", "Outliers"), labels=c("Filtered", "

Outliers"))+

721 labs(x="Gene", y="Mutations per 100bp", fill="")

722

723 speichern("GA.1_1_11i")

724

725

726 GA.entity <- GA %>%

727 group_by(GENE, SOURCE, filter5, Tumor_entity_short_simple) %>%

728 summarise(N.variants.per.gene.per.tumor=n(), N.variants.per.gen.test=

first(N.variants.per.gen.test), geneName=paste(unique(geneName),

collapse = "; "), Tumor_entity=paste(unique(Tumor_entity),
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collapse = " + "), gene.length=mean(gene.length)) %>%

729 mutate(N.variants.normalized=ifelse(is.na(gene.length), NA, 100*N.

variants.per.gene.per.tumor/gene.length)) %>%

730 group_by(GENE, SOURCE, filter5) %>%

731 mutate(N.variants.normalized.sum=sum(N.variants.normalized)) %>%

732 select(-N.variants.per.gen.test) %>%

733 filter(filter5=="Inliers") %>%

734 mutate(Tumor_entity_short_simple=as.factor(Tumor_entity_short_simple)

) %>%

735 group_by(GENE, SOURCE) %>%

736 mutate(N.variants.normalized.total=sum(N.variants.normalized), N.

variants.per.gene.per.tumor.sum=sum(N.variants.per.gene.per.tumor

)) %>%

737 arrange(desc(N.variants.normalized.total)) %>%

738 filter(SOURCE=="Mutect2") %>%

739 filter(N.variants.per.gene.per.tumor.sum>2) %>%

740 #filter(N.variants.normalized.total>8.3)

741 filter(N.variants.normalized.total>0.02)

742

743 # scheme plot RNA

744 ggplot(GA.entity, aes(x=fct_rev(fct_inorder(GENE)), y=N.variants.

normalized, fill=factor(Tumor_entity_short_simple, levels = c("

Other", "Melanoma", "Sarcoma", "Carcinoma"))))+

745 geom_col(position = "stack")+

746 theme_minimal()+

747 theme(legend.key.size = unit(2.5, "cm"), legend.text = element_text(

size=30), legend.title = element_text(size=30))+

748 theme(axis.title = element_text(size=30), axis.text = element_text(

size=30), axis.text.y = element_text(size=30), axis.text.y.right

= element_blank(), axis.ticks.x=element_blank())+

749 theme(panel.grid.major.y = element_blank(), panel.grid.minor=element_

blank(), strip.text.y = element_text(size = 30))+

750 coord_flip()+

751 scale_fill_brewer(palette="Pastel1", breaks=c("Carcinoma", "Sarcoma",

"Melanoma", "Other"), labels=c("Carcinoma", "Sarcoma", "Melanoma

", "Other"))+

752 labs(x="Gene", y="Mutations per 100bp", fill="")

753

754 # scheme plot DNA

755 ggplot(GA.entity, aes(x=fct_rev(fct_inorder(GENE)), y=N.variants.

normalized, fill=gene.length))+

756 geom_col(position = "stack")+

757 theme_minimal()+

758 theme(legend.key.size = unit(2.5, "cm"), legend.text = element_text(

size=30), legend.title = element_text(size=30))+

759 theme(axis.title = element_text(size=30), axis.text = element_text(



2 Scripts in R 165

size=30), axis.text.y = element_text(size=26), axis.text.x.top =

element_blank(), axis.ticks.x=element_blank())+

760 theme(panel.grid.major.y = element_blank(), panel.grid.minor=element_

blank(), strip.text.y = element_text(size = 30))+

761 coord_flip()+

762 scale_y_continuous(limits=c(0,2.4), breaks = c(0, 0.05, 0.1, 0.15,

0.20, 0.25, 0.3, 2.2, 2.3, 2.4))+

763 scale_y_break(c(0.26,2.3), scales = 0.12, space = 0.8)+

764 #scale_fill_brewer(palette="Pastel1", breaks=c("Carcinoma", "Sarcoma

", "Melanoma", "Other"), labels=c("Carcinoma", "Sarcoma", "

Melanoma", "Other"))+

765 scale_fill_viridis_c(direction = -1, alpha = 0.6, breaks=c

(0,5000,10000,15000,20000,25000,30000,35000), limits=c(0,36000),

begin = 0, end = 0.95)+

766 labs(x="Gene", y="Mutations per 100bp", fill="Genesize \n[bp]")

767

768 # Detail plots

769 GA.help <- GA %>%

770 distinct(Patient_ID, Tumor_entity_short_simple) %>%

771 group_by(Tumor_entity_short_simple) %>%

772 summarise(N.patients.per.entity=n())

773

774 GA.entity.single <- GA.entity %>%

775 mutate(GENE=as.factor(GENE)) %>%

776 arrange(desc(N.variants.normalized)) %>%

777 group_by(Tumor_entity_short_simple) %>%

778 mutate(row.rank=row_number()) %>%

779 ungroup() %>%

780 filter(row.rank<16) %>%

781 merge(GA.help, by.x = "Tumor_entity_short_simple", by.y = "Tumor_

entity_short_simple") %>%

782 # for DNA: *1000 for better readability

783 #mutate(N.variants.normalized.per.patient=N.variants.normalized/N.

patients.per.entity)

784 mutate(N.variants.normalized.per.patient=1000*N.variants.normalized/N

.patients.per.entity)

785 expression(paste("Volume ", m^{3}))

786 # RNA

787 for (i in c("Carcinoma", "Sarcoma", "Melanoma", "Other")) {

788 temp <- ggplot(filter(GA.entity.single, Tumor_entity_short_simple==i)

, aes(x=reorder(GENE, N.variants.normalized), y=N.variants.

normalized.per.patient, fill=gene.length))+

789 geom_col()+

790 theme_basic( )+

791 coord_flip()+

792 scale_fill_viridis_c(direction = -1, alpha = 0.6, breaks=c
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(0,500,1000,1500,2000,2500), limits=c(0,2500), begin = 0, end =

1)+

793 labs(x=ifelse(i %in% c("Carcinoma", "Melanoma"), "Gene", ""), y=

ifelse(i %in% c("Melanoma", "Other"), "Mutations per 100bp (mean

)", ""), fill="Genesize \n[bp]")+

794 #guides(fill = guide_legend(override.aes = list(size = 1)))

795 theme_minimal()+

796 theme(legend.key.size = unit(2, "cm"), legend.key.width = unit(1, "

cm"), legend.text = element_text(size=26), legend.title =

element_text(size=26))+

797 theme(axis.title = element_text(size=26), axis.text = element_text(

size=26), axis.text.y = element_text(size=22), axis.text.y.right

= element_blank(), axis.ticks.x=element_blank())+

798 theme(panel.grid.major.y = element_blank(), panel.grid.minor=element

_blank(), strip.text.y = element_text(size = 26))+

799 #annotate("text", x = 5.0, y = ifelse(i=="Carcinoma", 9 ,ifelse(i=="

Sarcoma", 7.2 , ifelse(i=="Melanoma", 4 , 0.75 ))),

800 # label = ifelse(i=="Carcinoma","Carcinoma" ,ifelse(i=="Sarcoma", "

Sarcoma" , ifelse(i=="Melanoma","Melanoma" ,"Other"))),

801 # angle=90, size=12, vjust = 0, alpha=0.3)

802 annotate("text", x = 7.5, y = ifelse(i=="Carcinoma", 0.53 ,ifelse(i

=="Sarcoma", 0.7 , ifelse(i=="Melanoma", 0.85 , 0.34 ))),

803 label = ifelse(i=="Carcinoma","Carcinoma" ,ifelse(i=="Sarcoma"

, "Sarcoma" , ifelse(i=="Melanoma","Melanoma" ,"Other"))),

804 angle=90, size=12, vjust = 0, alpha=0.4)

805 nam=paste0("plot_",i)

806 assign(nam, temp)

807 }

808

809 ggarrange(plot_Carcinoma, plot_Sarcoma, plot_Melanoma, plot_Other, ncol

=2, nrow=2, common.legend = TRUE, legend="right")

810

811 speichern("grid_7_b")

812

813

814 # DNA

815 for (i in c("Carcinoma", "Sarcoma", "Melanoma", "Other")) {

816 temp <- ggplot(filter(GA.entity.single, Tumor_entity_short_simple==i)

, aes(x=reorder(GENE, N.variants.normalized), y=N.variants.

normalized.per.patient, fill=gene.length))+

817 geom_col()+

818 theme_basic( )+

819 coord_flip()+

820 #scale_fill_viridis_c(direction = -1, alpha = 0.6, breaks=c

(0,5000,10000,15000,20000,25000,30000,35000), limits=c(0,36000),

begin = 0, end = 0.95, na.value = "black")+
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821 scale_fill_viridis_c(direction = -1, alpha = 0.6, breaks=c

(0,10000,20000,30000,40000,50000), limits=c(0,50000), begin = 0,

end = 0.95, na.value = "black")+

822 labs(x=ifelse(i %in% c("Carcinoma", "Melanoma"), "Gene", ""), y=

ifelse(i %in% c("Melanoma", "Other"), expression(paste("

Mutations per 100bp (mean) [ x ", 10^{-3}, " ]")), ""), fill="

Genesize \n[bp]")+

823 #guides(fill = guide_legend(override.aes = list(size = 1)))

824 theme_minimal()+

825 theme(legend.key.size = unit(2, "cm"), legend.key.width = unit(1, "

cm"), legend.text = element_text(size=26), legend.title =

element_text(size=26))+

826 theme(axis.title = element_text(size=26), axis.text = element_text(

size=26), axis.text.y = element_text(size=22), axis.text.y.right

= element_blank(), axis.ticks.x=element_blank())+

827 theme(panel.grid.major.y = element_blank(), panel.grid.minor=element

_blank(), strip.text.y = element_text(size = 10))

828 #scale_y_continuous(limits=ifelse(i=="Carcinoma", c(0,0.055) ,ifelse

(i=="Sarcoma", c(0,0.16) , ifelse(i=="Melanoma", c(0,0.017) , c

(0,0.006) ))),

829 # breaks = ifelse(i=="Carcinoma", c(0,0.05) ,ifelse(i=="Sarcoma", c

(0,0.15) , ifelse(i=="Melanoma", c(0,0.015) , c(0,0.002, 0.004)

))))#+

830 #annotate("text", x = 7.5, y = ifelse(i=="Carcinoma", 0.53 ,ifelse(i

=="Sarcoma", 0.7 , ifelse(i=="Melanoma", 0.85 , 0.34 ))),

831 # label = ifelse(i=="Carcinoma","Carcinoma" ,ifelse(i=="Sarcoma", "

Sarcoma" , ifelse(i=="Melanoma","Melanoma" ,"Other"))),

832 # angle=90, size=12, vjust = 0, alpha=0.4)

833 nam=paste0("plot_",i)

834 assign(nam, temp)

835 }

836

837 plot_Carcinoma <- plot_Carcinoma+

838 #plot_Carcinoma+

839 scale_y_continuous(limits=c(0,60), breaks = c(0,1,2,3,4,5,50,60)) +

840 scale_y_break(c(5,48), scales = 0.12, space = 0.6)+

841 theme(axis.text.x.top = element_blank())+

842 annotate("text", x = 7.5, y = 4.6 , label = "Carcinoma", angle=90,

size=12, vjust = 0, alpha=0.4)+

843 guides(fill="none")

844

845

846 plot_Sarcoma <- plot_Sarcoma+

847 #plot_Sarcoma+

848 scale_y_continuous(limits=c(0,165), breaks = c

(0,5,10,15,20,25,150,160)) +
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849 scale_y_break(c(25,145), scales = 0.30, space = 0.6)+

850 theme(axis.text.x.top = element_blank())+

851 annotate("text", x = 7.5, y = 23 , label = "Sarcoma", angle=90, size

=12, vjust = 0, alpha=0.4)+

852 guides(fill="none")

853

854 plot_Melanoma <- plot_Melanoma+

855 #plot_Melanoma+

856 scale_y_continuous(limits=c(0,20), breaks = c(0,2,4,6,8,15,20)) +

857 scale_y_break(c(8,15), scales = 0.12, space = 0.6)+

858 theme(axis.text.x.top = element_blank())+

859 annotate("text", x = 7.5, y = 7.25 , label = "Melanoma", angle=90,

size=12, vjust = 0, alpha=0.4)+

860 guides(fill="none")

861

862 plot_Other <- plot_Other+

863 annotate("text", x = 3.5, y = 3.7 , label = "Other", angle=90, size

=12, vjust = 0, alpha=0.4)

864

865

866 ggarrange(print(plot_Carcinoma), print(plot_Sarcoma), print(plot_

Melanoma), print(plot_Other), ncol=2, nrow=2, common.legend = TRUE,

legend="right")

867 speichern("grid_8_j")

868 #speichern_grid("grid_2")

869

870 #

#####################################################################################################################################################################################

871

872 ggplot(GA.entity.single, aes(x=reorder(GENE, N.variants.normalized.

total), y=N.variants.normalized, fill=gene.length))+

873 geom_col()+

874 theme_basic()+

875 coord_flip()+

876 #scale_fill_brewer(palette="Pastel1", breaks=c("Carcinoma", "Sarcoma

", "Melanoma", "Other"), labels=c("Carcinoma", "Sarcoma", "

Melanoma", "Other"))+

877 scale_fill_viridis_c(direction = -1, alpha = 0.6, breaks=c

(0,500,1000,1500,2000,2500), limits=c(0,2500))+

878 labs(x="Gene", y="mutations per 100bp", fill="")+

879 facet_grid2(rows = vars(factor(Tumor_entity_short_simple, levels = c(

"Carcinoma", "Sarcoma", "Melanoma", "Other"))), scales = "free",

independent="all")

880

881
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882 ### Plot 6 ### :: Shared Mutations :: _________________________________

___________________________________________________________________

_______________________________________________________

883

884 ### DNA ###

885 SM_DNA <- variants_unique %>%

886 filter(SOURCE=="Mutect2") %>%

887 group_by(Patient_ID, Mutation_ID) %>%

888 summarise(N.tumor.per.mut.per.patient=n(), GENE=paste0(unique(GENE),

collapse = ";"), Metastasis=paste0(unique(Metastasis), collapse="

,"), mutationType=paste0(unique(mutationType), collapse = ";"),

Effect_group=paste0(unique(Effect_group), collapse = ";"), Tumor_

entity=paste0(unique(Tumor_entity), collapse = ";")) %>%

889 ungroup() %>% group_by(Mutation_ID) %>%

890 summarise(N.patient.per.mut=n(), N.total.per.mut=sum(N.tumor.per.mut.

per.patient), GENE=paste0(unique(as.vector(str_split(paste0(GENE,

collapse = ";"),";", simplify = T))),collapse=";"), mutationType

=paste0(unique(mutationType), collapse = ";"), Effect_group=

paste0(unique(Effect_group), collapse = ";"), Tumor_entity=paste0

(unique(as.vector(str_split(paste0(Tumor_entity, collapse = ";"),

";", simplify = T))),collapse=";"))

891 #summarise(N.patient.per.mut=n(), N.total.per.mut=sum(N.tumor.per.mut

.per.patient), GENE=paste(unique(GENE), collapse = "+++"))

892

893 ggplot(SM_DNA %>% slice_max(N.patient.per.mut, n=15), aes(width=.75))+

894 geom_col(aes(x=reorder(Mutation_ID, desc(-N.patient.per.mut)), y=N.

patient.per.mut), fill=alpha("#2171b5", 0.4), color="black")+

895 geom_label(size=8, aes(x=reorder(Mutation_ID, desc(-N.patient.per.mut

)), y= 0.5, hjust = 0, label=GENE))+

896 scale_y_continuous(breaks = scales::breaks_extended(n = 8))+

897 coord_flip()+

898 labs(y="Patients carrying the mutation (count)", x="Mutation ID (with

corresponding Gene)")+

899 theme_basic()+

900 theme(axis.text.y=element_text(size=16), panel.grid.major.y=element_

blank(), panel.grid.major.x = element_line())

901

902 speichern("Shared_Mutation_DNA")

903

904 ### RNA ###

905 SM_RNA <- variants_unique %>%

906 filter(SOURCE=="StrelkaRNA") %>%

907 group_by(Patient_ID, Mutation_ID) %>%

908 summarise(N.tumor.per.mut.per.patient=n(), GENE=paste0(unique(GENE),

collapse = ";"), Metastasis=paste0(unique(Metastasis), collapse="

,"), mutationType=paste0(unique(mutationType), collapse = ";"),
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Effect_group=paste0(unique(Effect_group), collapse = ";")) %>%

909 ungroup() %>% group_by(Mutation_ID) %>%

910 summarise(N.patient.per.mut=n(), N.total.per.mut=sum(N.tumor.per.mut.

per.patient), GENE=paste0(unique(as.vector(str_split(paste0(GENE,

collapse = ";"),";", simplify = T))),collapse=";"), mutationType

=paste0(unique(mutationType), collapse = ";"), Effect_group=

paste0(unique(Effect_group), collapse = ";"))

911

912 ggplot(SM_RNA %>% slice_max(N.patient.per.mut, n=15), aes(width=.75))+

913 geom_col(aes(x=reorder(Mutation_ID, desc(-N.patient.per.mut)), y=N.

patient.per.mut), fill=alpha("#bae4b3", 0.4), color="black")+

914 geom_label_repel(size=8, aes(x=reorder(Mutation_ID, desc(-N.patient.

per.mut)), y=4, hjust = 0, label=GENE))+

915 scale_y_continuous(breaks = scales::breaks_extended(n = 8))+

916 coord_flip()+

917 labs(y="Patients carrying the mutation (count)", x="Mutation ID (with

corresponding Gene)")+

918 theme_basic()+

919 theme(axis.text.y=element_text(size=16), panel.grid.major.y=element_

blank(), panel.grid.major.x = element_line())

920

921 speichern("Shared_Mutation_RNA")

922

923

924 SM_DNA_gr <- SM_DNA %>%

925 mutate(temp=1) %>%

926 pivot_wider(names_from = mutationType, values_from = temp) %>%

927 mutate(temp=1) %>%

928 pivot_wider(names_from = Effect_group, values_from = temp) %>% # 4

Mutationen die rausfallen, vertretbar

929 group_by(N.patient.per.mut) %>%

930 summarise(N.mutations.per.group=n(), GENE=paste0(unique(as.vector(str

_split(paste0(GENE, collapse = ";"),";", simplify = T))),collapse

=";"), across(c(4:13), ~ sum(.x, na.rm = T)))

931

932 ggplot(SM_DNA_gr, aes(x=as.factor(N.patient.per.mut), y=N.mutations.per

.group))+

933 #geom_col(aes(width=.75), fill=alpha("#6495ED", 0.75), color="black")

+

934 geom_col(aes(width=.75), fill=alpha("#2171b5", 0.55), color="black")+

935 scale_y_continuous(limits=c(0,8000), breaks = c(0, 10, 20, 30, 40,

160, 180, 200, 7000, 8000))+

936 scale_y_break(c(200,7000), scales = 0.15, space = 0.5)+

937 scale_y_break(c(40,160), scales = 0.25, space = 0.5)+

938 theme_basic()+

939 labs(x="# patients carrying the variants", y="Shared variants (count)
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")

940

941 speichern("Shared_Mutation_sets_DNA_2")

942

943 SM_DNA_gr_pie <- SM_DNA_gr %>%

944 mutate(perc = 100*round(N.mutations.per.group/colSums(across(starts_

with("N.mutations"))),4)) %>%

945 mutate(N.patient.per.mut = ifelse(perc<0.2, "5-14", N.patient.per.mut

)) %>%

946 group_by(N.patient.per.mut) %>%

947 summarise(perc=sum(perc), N.mutations.per.group=sum(N.mutations.per.

group)) %>%

948 mutate(csum = rev(cumsum(rev(perc))),

949 pos = perc/2 + lead(csum, 1),

950 pos = if_else(is.na(pos), perc/2, pos),

951 perc_annotaed = round(perc, digits = 1))

952 SM_DNA_gr_pie$annotation <- c(paste0(sum(SM_DNA_gr$N.mutations.per.

group)), NA, NA, NA, NA)

953

954 cp <- coord_polar(theta = "y")

955 cp$is_free <- function() TRUE

956 ggplot(SM_DNA_gr_pie, aes(x = 1, y = perc, fill = fct_inorder(N.patient

.per.mut))) +

957 geom_col(width = 0.5, color = 1, alpha=0.8) +

958 geom_label_repel(data = SM_DNA_gr_pie,

959 aes(y = pos, label = paste0(N.mutations.per.group,"\n",

perc_annotaed, "%")),

960 size = 12, nudge_x = 1, show.legend = FALSE,

961 box.padding = 0.5,

962 alpha=0.8) +

963 geom_text(aes(x=0.2, y=0, label=annotation), size=14)+

964 cp+

965 scale_fill_brewer(palette = "Blues") +

966 theme_void()+

967 theme_donut()+

968 guides(fill = guide_legend(title = "Patients sharing \nthe variants")

) +

969 xlim(c(0.2, 1.5))

970

971 speichern("Shared_Mutation_sets_DNA_Pie_2")

972

973

974 ### RNA ###

975

976 SM_RNA_gr <- SM_RNA %>%

977 mutate(temp=1) %>%
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978 pivot_wider(names_from = mutationType, values_from = temp) %>%

979 mutate(temp=1) %>%

980 pivot_wider(names_from = Effect_group, values_from = temp) %>% # 4

Mutationen die rausfallen, vertretbar

981 group_by(N.patient.per.mut) %>%

982 summarise(N.mutations.per.group=n(), GENE=paste0(unique(as.vector(str

_split(paste0(GENE, collapse = ";"),";", simplify = T))),collapse

=";"), across(c(4:13), ~ sum(.x, na.rm = T)))

983

984 ggplot(SM_RNA_gr, aes(x=as.factor(N.patient.per.mut), y=N.mutations.per

.group))+

985 geom_col(aes(width=.75), fill=alpha("#bae4b3", 0.75), color="black")+

986 scale_y_break(c(5000,65000), scales = 0.15, space = 0.5)+

987 #scale_y_break(c(1700,3900), scales = 0.25)+

988 scale_y_break(c(1000,1600), scales = 0.25, space = 0.5)+

989 scale_y_continuous(limits=c(0,75000), breaks = c(0,250, 500, 750,

1000, 2000, 4000, 70000))+

990 theme_basic()+

991 labs(x="# patients sharing the variants", y="Shared variants (count)"

)

992

993 speichern("Shared_Mutation_sets_RNA")

994

995

996 SM_RNA_gr_pie <- SM_RNA_gr %>%

997 mutate(perc = 100*round(N.mutations.per.group/colSums(across(starts_

with("N.mutations"))),4)) %>%

998 mutate(N.patient.per.mut = ifelse(perc<1, "5-26", N.patient.per.mut))

%>%

999 group_by(N.patient.per.mut) %>%

1000 summarise(perc=sum(perc), N.mutations.per.group=sum(N.mutations.per.

group)) %>%

1001 mutate(csum = rev(cumsum(rev(perc))),

1002 pos = perc/2 + lead(csum, 1),

1003 pos = if_else(is.na(pos), perc/2, pos),

1004 perc_annotaed = round(perc, digits = 1))

1005 SM_RNA_gr_pie$annotation <- c(paste0(sum(SM_RNA_gr$N.mutations.per.

group)), NA, NA, NA, NA)

1006

1007 cp <- coord_polar(theta = "y")

1008 cp$is_free <- function() TRUE

1009 ggplot(SM_RNA_gr_pie, aes(x = 1, y = perc, fill = fct_inorder(N.patient

.per.mut))) +

1010 geom_col(width = 0.5, color = 1, alpha=0.8) +

1011 geom_label_repel(data = SM_RNA_gr_pie,

1012 aes(y = pos, label = paste0(N.mutations.per.group,"\n",
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perc_annotaed, "%")),

1013 size = 12, nudge_x = 1, show.legend = FALSE,

1014 box.padding = 0.5,

1015 alpha=0.8) +

1016 geom_text(aes(x=0.2, y=0, label=annotation), size=14)+

1017 cp+

1018 scale_fill_brewer(palette = "Greens") +

1019 theme_void()+

1020 theme_donut()+

1021 guides(fill = guide_legend(title = "Patients sharing \nthe variants")

) +

1022 xlim(c(0.2, 1.5))

1023

1024 speichern("Shared_Mutation_sets_RNA_Pie_2")

1025

1026

1027 SM_DNA_gr <- SM_DNA_gr %>%

1028 pivot_longer(cols=c(8:13), names_to = "Effect_group", values_to = "

value")

1029

1030 # Experimentel

1031

1032 Entity_shared <- variants_unique %>%

1033 filter(SOURCE=="Mutect2") %>%

1034 group_by(Tumor_entity_short, Effect_group) %>%

1035 summarise(count=n()) %>%

1036 ungroup() %>% group_by(Tumor_entity_short) %>%

1037 mutate(test = count/colSums(across(starts_with("count"))))

1038

1039 ################### Mutational Overlap (VENN) with EULERR

###############################################################################################

1040

1041 for (i in unique((filter(variants_unique, grepl("T2", Master_ID)|grepl(

"T4", Master_ID)))$Patient_ID)){

1042 euler <- variants_unique %>%

1043 filter(Patient_ID==i) %>%

1044 group_by(Mutation_ID, Metastasis) %>%

1045 summarise(level=paste0(SOURCE, collapse = ";")) %>%

1046 filter(str_detect(level, ";")) %>%

1047 #filter(SOURCE=="Mutect2") %>%

1048 #filter(SOURCE=="StrelkaRNA") %>%

1049 distinct(Mutation_ID, Metastasis, .keep_all = TRUE) %>%

1050 group_by(Metastasis) %>%

1051 summarise(mutation=paste0(Mutation_ID, collapse = ";"), N.

mutations=n())
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1052 Tu1 <- as.vector(str_split(euler$mutation[1],";", simplify = TRUE)

)

1053 Tu2 <- as.vector(str_split(euler$mutation[2],";", simplify = TRUE)

)

1054 Tu4 <- as.vector(str_split(euler$mutation[3],";", simplify = TRUE)

)

1055

1056 metas <- list(T1=c(Tu1), T2=c(Tu2), T4=c(Tu4))

1057 if(unique(is.na(Tu2))){metas[[2]]=NULL}

1058 if(unique(is.na(Tu4))){metas[[3]]=NULL}

1059

1060 euler(metas)$stress

1061 euler(metas)$diagError

1062

1063 print(plot(euler(metas, shape = "ellipse"),

1064 #counts = list(cex=3, font=7),

1065 quantities = list(type = c("counts", "percent"), font=1, round

=1, cex=1.2),

1066 key = TRUE,

1067 #quantities = TRUE,

1068 #percentages = TRUE,

1069 #counts = FALSE,

1070 #fills =list(fill=c(viridis::viridis(n = 3))),

1071 alpha = 0.5,

1072 if(i=="IN_19"){fill = c("lightblue2", "lightsalmon","#99CC99",

"plum", "#80B6AB", "#E0BB99", "#A18F8F")}

1073 else{fills = list(fill = c("lightblue2", "lightsalmon","plum2"

, "", "", "", ""))},

1074 edges=list(lty = 1),

1075 #factor_names = T,

1076 labels=list(font=2, cex=1.6),

1077 legend = F,

1078 newpage = TRUE

1079 ))

1080

1081 dev.copy(pdf, paste0("plots/Thesis/Variants/euler_DNARNA_", i, ".

pdf"))

1082

1083 dev.off()

1084 }

1085

1086 #

#######################################################################################################################################################

Listing 3: Pipeline for characterization of the mutanome
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2.2 Assessment of selection criteria for neoantigen candidates

1 library(tidyverse)

2 library(openxlsx)

3 library(stringr)

4 library(reshape2)

5 library(ggplot2)

6 library(extrafont)

7 library(ggrepel)

8 library(scales)

9 library("ggpubr")

10

11 source(file = "Peptides/ImmuNeo_peptides_all_V7.R")

12 source(file = "functions/import.references.R")

13

14

15 theme_PS <- function(){

16 theme(

17 plot.title=element_text(size=20, hjust = 0.5),

18 plot.background = element_rect(fill = "transparent",colour = NA),

19 panel.grid.major = element_line(color = "grey", linetype = "dotted",

size=0.6),

20 panel.grid.minor = element_blank(),

21 panel.background = element_rect(fill = "transparent",colour = NA),

22 panel.border = element_rect(color = "white", fill = NA),

23 #axis.line = element_line(color = "grey"),

24 axis.line = element_blank(),

25 axis.ticks = element_line(color = "grey"),

26 axis.text = element_text(size = 30),

27 axis.text.x = element_text(angle = 0),

28 axis.title = element_text(size = 30),

29 legend.text = element_text(size = 26),

30 legend.key.size = unit(1.0, ’cm’),

31 legend.title = element_text(size= 30)

32 )

33 }

34

35 theme_basic <- function(){

36 theme_minimal()+

37 theme(axis.title = element_text(size=30),

38 axis.text = element_text(size=30),

39 axis.text.y.right = element_blank(),

40 axis.ticks.x=element_blank(),

41 panel.grid.major.x=element_blank(),

42 panel.grid.minor=element_blank(),

43 legend.key.size = unit(2.5, ’cm’),
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44 legend.title = element_text(size=30),

45 legend.text = element_text(size=30),

46 strip.text.y = element_text(size = 30))

47 }

48

49 extract_duplicates <- function(x){

50 duplicates <- list()

51 l <- 1

52 for (i in (1:length(x)-1)) {

53 for (k in ((i+1):length(x))) {

54 if (x[k]%in%x[i]){

55 duplicates[[l]] <- x[i]

56 l <- l+1

57 }

58 }

59 }

60 return(duplicates)

61 }

62

63 compare_predictions <- function(x){

64 #duplicates <- extract_duplicates(str_sub(colnames(x), 1, 17))

65 all.HLA <- as.list(unique(str_sub(colnames(select(x, starts_with("HLA

"))), 1, 17)))

66 for (i in (1:length(all.HLA))) {

67 colpair <- str_subset(colnames(x), all.HLA[[i]])

68 #varname_Delta <- ifelse(str_detect(colpair[[1]],"rank"), paste0("

Delta.", str_sub(colpair[[1]],1,17)), paste0("Delta.", str_sub(

colpair[[1]],1,23)))

69 varname_Diff_rel <- ifelse(str_detect(colpair[[1]],"rank"), paste0(

str_sub(colpair[[1]],1,17),".diff_rel"), paste0(str_sub(colpair

[[1]],1,23),".diff_rel"))

70 #x <- mutate(x,!!varname_Delta := abs(x[[(colpair[[1]])]]-x[[(

colpair[[2]])]]))

71 if(length(colpair)>1){x <- mutate(x,!!varname_Diff_rel := (x[[(

colpair[[1]])]]-x[[(colpair[[2]])]]) / x[[(colpair[[1]])]])}

72 if(str_detect(colpair[[1]],"rank")){

73 varname_Binder_type <- paste0("Binder_type.", str_sub(colpair

[[1]],1,17))

74 if(length(colpair)>1){

75 x <- mutate(x,!!varname_Binder_type := ifelse(x[[(colpair[[1]])

]]<2 |x[[(colpair[[2]])]]<2, ifelse(x[[(colpair[[1]])]]<0.5 |

x[[(colpair[[2]])]]<0.5, "SB", "WB"), NA))

76 }

77 else{

78 x <- mutate(x,!!varname_Binder_type := ifelse(x[[(colpair[[1]])

]]<2 |x[[(colpair[[1]])]]<2, ifelse(x[[(colpair[[1]])]]<0.5 |
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x[[(colpair[[1]])]]<0.5, "SB", "WB"), NA))

79 }

80 }

81 }

82 return(x)

83 }

84

85 predictions_to_long <- function(x){

86 x <- x %>%

87 select(-(contains("Delta"))) %>%

88 pivot_longer(starts_with("HLA")) %>%

89 separate(name, into = c("allele", "temp", "BA_type", "predictor"),

sep = "([\\.])", convert = TRUE) %>%

90 select(-temp) %>%

91 pivot_longer(contains("Binder"), names_to = "name", values_to = "

Binder_type") %>%

92 separate(name, into = c(NA, "allele_2", NA, NA), sep = "([\\.])",

convert = TRUE)

93 y <- x %>%

94 merge(x=select(., (Patient_ID:value)), y=select(., Seq, (allele_2:

Binder_type)), by.x=c("allele","Seq"), by.y=c("allele_2","Seq"))

%>%

95 distinct(.keep_all = T) %>%

96 select(Patient_ID, Master_ID, Seq, allele, everything()) %>%

97 mutate_if(is.numeric, round, digits=3)

98 return(y)

99 }

100

101 #######################

102

103 ### DELETE MEL15 DATA ###

104

105 predictions.all[[25]]=NULL

106

107 predictions.all.diff <- lapply(predictions.all, compare_predictions)

108 predictions.all.diff.long <- lapply(predictions.all.diff, predictions_

to_long)

109

110 # Add "real individual" Binder_type and correct the old binder_type to

best binder_type

111 NEW <- bind_rows(predictions.all.diff.long) %>%

112 rename("Binder_type_max"=Binder_type) %>%

113 mutate(Binder_type=ifelse(BA_type=="rank", ifelse(value<2, ifelse(

value<0.5, "SB", "WB"),NA), ifelse(BA_type=="prediction",ifelse(

value<500, ifelse(value<50, "SB", "WB"),NA), NA))) %>%

114 mutate(Binder_type=ifelse(predictor=="diff_rel", Binder_type_max,
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Binder_type))

115

116 #######################

117

118 threshold.method.comparison <- NEW %>%

119 filter(predictor=="mhcflurry") %>%

120 select(-Binder_type) %>%

121 pivot_wider(names_from = BA_type, values_from = value) %>%

122 mutate(Binder_type_prediction=ifelse(prediction<500, ifelse(

prediction<50, "SB", "WB"),NA)) %>%

123 mutate(Binder_type_rank=ifelse(rank<2, ifelse(rank<0.5, "SB", "WB"),

NA)) %>%

124 mutate(Binder_type=ifelse(Binder_type_prediction==Binder_type_rank,

Binder_type_rank, "SB")) %>%

125 mutate(Binder_type=ifelse(!is.na(Binder_type_prediction), Binder_type

_prediction, Binder_type_rank)) %>%

126 group_by(allele) %>%

127 mutate(N.bindertypes=n()) %>%

128 filter(N.bindertypes>16)

129 threshold.method.comparison$Binder_type[is.na(threshold.method.

comparison$Binder_type)] <- "NB"

130

131 ggplot(data = threshold.method.comparison, aes(x=rank, y=prediction,

color=allele))+

132 geom_point(size=4, aes(shape=Binder_type), alpha=0.7)+

133 geom_point(size=2, colour = "white", aes(shape=Binder_type))+

134 geom_smooth(span = 0.5, linetype = "dashed", size=0.5, se = F, alpha

=0.9)+

135 theme_PS()+

136 theme(legend.position = "right")+

137 scale_x_log10(limits=c(min(affinity.comparison.prediction$netMHC),NA)

, breaks = scales::trans_breaks("log10", function(x) 10^x),

labels = scales::trans_format("log10", scales::math_format(10^.x)

))+

138 scale_y_log10()+

139 geom_vline(xintercept = 2, color="#02d9d9", linetype="dotdash", size

=0.7)+

140 geom_vline(xintercept = 0.5, color="red", linetype="dotdash", size

=0.7)+

141 geom_hline(yintercept = 500, color="#02d9d9",linetype="dotdash", size

=0.7)+

142 geom_hline(yintercept = 50, color="red",linetype="dotdash", size=0.7)

+

143 labs(x="Percentile Rank", y="Binding affinity [nM]", shape="Binding

type", color="HLA-allele")

144
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145 speichern("Test")

146

147 ####################### Good binders vs. best binders (total cohort)

##############

148

149 # Number of "good binders" (SB or WB) per allele and per method

150 good.binder.alleles <- NEW %>%

151 mutate(pep.length=nchar(Seq)) %>%

152 filter(predictor=="mhcflurry" & BA_type=="prediction" & (Binder_type

=="SB"|Binder_type=="WB")) %>%

153 #distinct(Seq, allele, .keep_all = T) %>%

154 group_by(allele) %>%

155 summarise(pep.length.mean=mean(pep.length), N.good_binder=n())

156

157 # Number of "best binders" (BA) (for one prediction algorithm)

158 best.binder.alleles <- IN.10 %>%

159 #distinct(Seq, allele.best.BA.MHCflurry, .keep_all = T) %>%

160 #filter(allele.best.BA.MHCflurry==allele.best.rank.MHCflurry) %>%

161 mutate(pep.length=nchar(Seq)) %>%

162 group_by(allele.best.BA.MHCflurry) %>%

163 summarise(pep.length.mean=mean(pep.length), N.best_binder=n()) %>%

164 rename("allele"=allele.best.BA.MHCflurry)

165

166 allele.comparison <- merge(good.binder.alleles, best.binder.alleles, by

="allele", suffixes = c(".good",".best"), all = TRUE) %>%

167 merge(reference.allele.frequency, all.x = TRUE) %>%

168 mutate(allele=str_replace_all(allele,"HLA-", "")) %>%

169 mutate(allele=str_replace_all(allele,c("A"="A*", "B"="B*", "C"="C*"))

)

170 allele.comparison$N.good_binder[is.na(allele.comparison$N.good_binder)]

<- 0

171 allele.comparison$N.best_binder[is.na(allele.comparison$N.best_binder)]

<- 0

172 allele.comparison$allele_frequency[is.na(allele.comparison$allele_

frequency)] <- 0

173

174 ggplot(allele.comparison, mapping = aes(x=N.good_binder, y=N.best_

binder))+

175 geom_point(aes(size=allele_frequency))+

176 scale_size(range=c(0.5,8))+

177 geom_label_repel(aes(label=allele))+

178 #geom_text(aes(label=allele), vjust = 0, nudge_y = 0.15, check_

overlap = TRUE)+

179 #scale_x_continuous(breaks = seq(0,14,2))+

180 #scale_y_continuous(breaks = seq(0,14,2))+

181 theme_PS()+
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182 labs(x="# of associated WB & SB (total cohort)", y="# peptides

yielding best binding allele", size="Allele Frequency")

183

184 speichern("test")

185

186 ####################### # of Peptide candidates per HLA-allele (within

total cohort) vs. allele frequency #############

187

188 peptide.per.allele <- NEW %>%

189 filter(BA_type=="prediction") %>%

190 filter(predictor=="mhcflurry") %>%

191 group_by(allele) %>%

192 mutate(N.peptide.per.allele=n()) %>%

193 group_by(allele, Binder_type) %>%

194 summarize(N.peptide.per.allele.Binder_type=n(), N.peptide.per.allele=

max(N.peptide.per.allele)) %>%

195 merge(reference.allele.frequency, all.x = TRUE) %>%

196 mutate_at(c("allele_frequency"), as.numeric) %>%

197 ungroup() %>%

198 mutate(allele=str_replace_all(allele,"HLA-", "")) %>%

199 mutate(allele=str_replace_all(allele,c("A"="A-", "B"="B-", "C"="C-"))

) %>%

200 group_by(allele) %>%

201 mutate(N.bindertypes=n()) %>%

202 filter(N.peptide.per.allele>4)

203

204 coeff <- 0.02

205

206 ggplot(data=peptide.per.allele, aes(x=reorder(allele, desc(N.peptide.

per.allele))))+

207 geom_bar(aes(fill=Binder_type, y=N.peptide.per.allele.Binder_type),

position="stack", stat="identity")+

208 geom_col(aes(y=(allele_frequency/N.bindertypes)/coeff))+

209 geom_text(aes(label=round(allele_frequency, digits = 2), y = 2),

color="white", size=5, angle=90)+

210 theme_PS()+

211 theme(axis.text.x = element_text(angle = 45))+

212 scale_y_continuous(

213 # Features of the first axis

214 name = "# of peptide candidates (within total cohort)",

215

216 # Add a second axis and specify its features

217 sec.axis = sec_axis(~.*coeff, name="Allele frequency", breaks = seq

(0,1,0.1))

218 )+

219 labs(fill="Binding Type", x="MHC allele")
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220

221 ####################### Directly compare ranks MHCflurry vs. netMHC for

WB and SB considering the allele frequency

########################

222

223 affinity.comparison.rank <- NEW %>%

224 filter(BA_type=="rank" & predictor!="diff_rel") %>%

225 #filter(!is.na(Binder_type_max)) %>%

226 #filter(Binder_type_max=="WB") %>%

227 #filter(value<2) %>%

228 select(-Binder_type) %>%

229 pivot_wider(names_from = predictor, values_from = value) %>%

230 merge(reference.allele.frequency, all.x = TRUE)

231 #filter((mhcflurry*netMHC)<5)

232 affinity.comparison.rank$allele_frequency[is.na(affinity.comparison.

rank$allele_frequency)] <- min(affinity.comparison.rank$allele_

frequency, na.rm = T)

233

234

235 affinity.comparison.prediction <- NEW %>%

236 filter(BA_type=="prediction" & predictor!="diff_rel") %>%

237 #filter(!is.na(Binder_type_max)) %>%

238 #filter(value<2) %>%

239 select(-Binder_type) %>%

240 pivot_wider(names_from = predictor, values_from = value) %>%

241 merge(reference.allele.frequency, all.x = TRUE)

242 affinity.comparison.prediction$allele_frequency[is.na(affinity.

comparison.prediction$allele_frequency)] <- min(affinity.comparison

.prediction$allele_frequency, na.rm = T)

243

244 ### match affinity.comparison with actual peptide list

245

246 NACs <- unique(DF.plot$Seq)

247 affinity.comparison.rank <- affinity.comparison.rank %>%

248 filter(Seq %in% NACs)

249 affinity.comparison.prediction <- affinity.comparison.prediction %>%

250 filter(Seq %in% NACs)

251

252 ggplot(affinity.comparison.rank, mapping = aes(x=mhcflurry, y=netMHC))+

253 geom_point(aes(size=allele_frequency))+

254 scale_size(range=c(0.1,6))+

255 geom_abline(intercept = 0, slope = 1, color="red", linetype="dashed")

+

256 geom_smooth(method = "lm", se=TRUE, span=100)+

257 scale_x_log10(limits=c(0.0005,NA), breaks = scales::trans_breaks("

log10", function(x) 10^x), labels = scales::trans_format("log10",



182 2 Scripts in R

scales::math_format(10^.x)))+

258 scale_y_log10(limits=c(0.0005,NA), breaks = scales::trans_breaks("

log10", function(x) 10^x), labels = scales::trans_format("log10",

scales::math_format(10^.x)))+

259 theme_PS()+

260 labs(x="Prediction rank MHCflurry", y="Prediction rank netMHC", size=

"Allele Frequency")

261

262 speichern("Rank_comparison_all_pairings_1")

263

264 ggplot(affinity.comparison.prediction, mapping = aes(x=mhcflurry, y=

netMHC))+

265 geom_point(aes(size=allele_frequency))+

266 scale_size(range=c(0.1,6))+

267 geom_abline(intercept = 0, slope = 1, color="red")+

268 geom_smooth(method = "lm", se=F)+

269 scale_x_log10(limits=c(min(affinity.comparison.prediction$netMHC),NA)

, breaks = scales::trans_breaks("log10", function(x) 10^x),

labels = scales::trans_format("log10", scales::math_format(10^.x)

))+

270 scale_y_log10(limits=c(min(affinity.comparison.prediction$netMHC),NA)

, breaks = scales::trans_breaks("log10", function(x) 10^x),

labels = scales::trans_format("log10", scales::math_format(10^.x)

))+

271 theme_PS()+

272 labs(x="Binding affinity prediction MHCflurry (Kd [nM])", y="Bindng

affinity prediction rank netMHC (Kd [nM])", size="Allele

Frequency")

273

274 ##### Spearman/Pearson - Correlation between netMHC and MHCflurry

#############

275

276 ggscatter(affinity.comparison.rank, x = "mhcflurry", y = "netMHC",

277 add = "reg.line", conf.int = TRUE,

278 cor.coef = TRUE, cor.coef.size = 10, cor.method = "pearson",

279 xlab = "MHCflurry", ylab = "netMHC", show.legend = FALSE, size

=5

280 #, fill = "Binder_type_max"

281 )+

282 geom_abline(intercept = 0, slope = 1, color="red", linetype = "

dashed")+

283 #geom_point(aes(color=Binder_type_max), size=2)+

284 geom_point(aes(color=allele_frequency), size=4)+

285 scale_color_viridis_c(alpha = 1, begin=0.2, end=1, breaks=c

(0,0.05,0.10,0.15,0.20,0.25), limits=c(0,0.2), na.value = "

yellow")+
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286 #yscale("log10", .format = TRUE)+

287 #xscale("log10", .format = TRUE)+

288 scale_x_log10(limits=c(min(affinity.comparison.prediction$

netMHC),NA), breaks = scales::trans_breaks("log10",

function(x) 10^x), labels = scales::trans_format("log10",

scales::math_format(10^.x)))+

289 scale_y_log10(limits=c(0.01,NA), breaks = scales::trans_breaks(

"log10", function(x) 10^x), labels = scales::trans_format("

log10", scales::math_format(10^.x)))+

290 theme_PS()+

291 #scale_color_hue(labels = c("SB", "WB", "No binder"))+

292 theme(legend.key.size = unit(2.0, ’cm’), legend.position = "

right")+

293 guides(fill="none")+

294 #guides(colour = guide_legend(override.aes = list(size=10)))+

295 labs(x="Percentile rank MHCflurry", y="Percentile rank netMHC",

296 #color="Binding type",

297 color="Allele frequency\n(reference pop.)",

298 fill=""

299 )

300

301 speichern("pearson_correlation_rank_all_pairings_mod_16")

302

303 ggscatter(affinity.comparison.prediction, x = "mhcflurry", y = "netMHC"

,

304 add = "reg.line", conf.int = TRUE,

305 cor.coef = TRUE, cor.coef.size = 10, cor.coef.coord = c(3,1.5),

cor.method = "pearson",

306 xlab = "MHCflurry", ylab = "netMHC", size=3)+

307 #geom_abline(intercept = 0, slope = 1, color="red", linetype =

"dashed")+

308 geom_point(aes(color=Binder_type_max), size=2)+

309 #yscale("log10", .format = TRUE)+

310 #xscale("log10", .format = TRUE)+

311 scale_x_log10(limits=c(11,NA), breaks = scales::trans_breaks("

log10", function(x) 10^x), labels = scales::trans_format("

log10", scales::math_format(10^.x)))+

312 scale_y_log10(limits=c(min(affinity.comparison.prediction$

netMHC),NA), breaks = scales::trans_breaks("log10",

function(x) 10^x), labels = scales::trans_format("log10",

scales::math_format(10^.x)))+

313 theme_PS()+

314 scale_color_hue(labels = c("SB", "WB", "No binder"))+

315 theme(legend.key.size = unit(2.0, ’cm’), legend.position = "

right")+

316 guides(colour = guide_legend(override.aes = list(size=10)))+
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317 geom_segment(x=2.699, y=Inf, xend=2.699, yend=-Inf, colour="#02

d9d9", alpha=1, linetype="dotdash", size=0.4)+

318 geom_segment(x=Inf, y=2.699, xend=-Inf, yend=2.699, colour="#02

d9d9", alpha=1, linetype="dotdash", size=0.4)+

319 geom_segment(x=1.699, y=Inf, xend=1.699, yend=-Inf, colour="red

", alpha=1, linetype="dotdash", size=0.4)+

320 geom_segment(x=Inf, y=1.699, xend=-Inf, yend=1.699, colour="red

", alpha=1, linetype="dotdash", size=0.4)+

321 #geom_rect(xmin=0, ymin=0, xmax=2.6999, ymax=2.6999, alpha=0.2,

fill="red")+

322 labs(x="Binding affinity MHCflurry (Kd [nM])", y="Bindng

affinity netMHC (Kd [nM])", color="Binding Type\n(rank

method)")

323

324 speichern("pearson_correlation_affinity_all_pairings_mod_5")

325

326 #######################

327

328 # Save Plot

329 save.path = "Peptides/plots/20_08_Prediction_Analysis/"

330 speichern <- function(name){

331 save.filename = paste(save.path,name, ".pdf", sep = "")

332 ggsave(save.filename, width = 20, height = 10, dpi = "retina")

333 }

Listing 4: Pipeline for the assessment of selection criteria for neoantigen candidates

2.3 Specifications of neoantigen candidates

1 # import Tidyverse

2 library(tidyverse)

3 library(openxlsx)

4 library(stringr)

5 library(reshape2)

6 library(ggplot2)

7 library(extrafont)

8

9

10 ################## DOCUMENTATION ###################

11 ####################################################

12 # Different DF evolve from selection process

13

14 ### IN.all.peptides: all peptides imported from the 2 .tsv-files for
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PROSIT and pFind respectively

15 # (*) DISCARD comment, REF, ALT, multiEntity, multiPatient,

multiGene

16 # (*) SUM collapsed values for the 8 cols: TumorAD.Mutect2 etc.

17

18 ### IN.1.all :

19 # (*) Patient_ID reference, (*) Tumor_entity + Metastatic_site

20

21 ### IN.2.base:

22 # (*) TumorVF values

23

24 ### IN.2.avail:

25 # (*) All peptides from patients with HLA-Alleles available in MHC_

flurry

26

27 ### IN.3 + IN.4:

28 # (*) DFs with sequences for processing in Python with MHC_flurry

29

30 ### IN.6.list & IN.6.list.unique:

31 # (*) DETAILED List with Predictions for all alleles

32 # (*) BA.best for best allele

33 # (*) unique: eliminated all doubles within one patient

34

35 ### IN.7.list & IN.7.list.unique:

36 # (*) SUMMARY List with BA.best and most important parameters for

evaluation

37

38

39 ### IN.9.Order:

40 # (*) INCLUDES BLAST-Information (n_identicals, hit_loci, e_value)

41 # (*) EXCLUDES all peptides with more than 2 blast hits

42

43 ### IN.7.NEW.HLA.C.WB.BA / IN.7.NEW.HLA.C.WB.rank:

44 # (*) Peptides that have significantly improved BA / rank through

consideration of HLA-C

45

46

47 # import all .tsv files from folder and add to one dataframe

48 # path.tsv.files="Peptides/rawfiles/tsv/"

49 # tsv.files=list.files(path=path.tsv.files, pattern = "pFind_

allPatients_hitsAll_processed", full.names = T)

50 # IN.all.peptides.pFind <- plyr::ldply(tsv.files, read.delim, na.

strings = c("","NA")) %>%

51 # filter(TrueHit=="maybe" | TrueHit=="yes")

52

53 ## Load combined file (.tsv):
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54 IN.all.peptides.combined <- read_csv("Peptides/rawfiles/tsv/allPatients

_hitsAll_Pfind-PROSIT_forPhilipp_2.tsv") %>%

55 # IN.all.peptides.combined <- read_csv("Peptides/rawfiles/tsv/

allPatients_hitsAll_MaxQ-PROSIT_forPhilipp_old.tsv") %>%

56 filter(TrueHit=="maybe" | TrueHit=="yes")

57

58

59 ## Load pFind file (.tsv):

60 IN.all.peptides.pFind <- read_tsv("Peptides/rawfiles/tsv/allPatients_

hitsAll_processed_pFind.tsv") %>%

61 filter(TrueHit=="maybe" | TrueHit=="yes")

62 IN.all.peptides.pFind["MS.tool"] <- "pFind"

63 #IN.all.peptides.pFind.2["batch.pipeline"] <- "2"

64

65

66 ## Load PROSIT file (.tsv) -- only the one with peptideScore --:

67 IN.all.peptides.Prosit <- read_tsv("Peptides/rawfiles/tsv/allPatients_

FDR005_hitsAll_processed_PROSIT_peptideScore.tsv") %>%

68 filter(TrueHit=="maybe" | TrueHit=="yes") %>%

69 mutate(patientID=str_sub(patientID, 1, 9))

70 IN.all.peptides.Prosit["MS.tool"] <- "PROSIT"

71 #IN.all.peptides.Prosit["batch.pipeline"] <- "1"

72

73

74 # function to bind two dfs with different cols (and different order of

cols)

75 rbind.match.columns <- function(input1, input2) {

76 n.input1 <- ncol(input1)

77 n.input2 <- ncol(input2)

78 names.union <- union(names(input1),names(input2))

79 input1[c(setdiff(names.union,names(input1)))] <- NA

80 input2[c(setdiff(names.union,names(input2)))] <- NA

81

82 if (n.input2 < n.input1) {

83 TF.names <- which(names(input2) %in% names(input1))

84 column.names <- names(input2[, TF.names])

85 } else {

86 TF.names <- which(names(input1) %in% names(input2))

87 column.names <- names(input1[, TF.names])

88 }

89

90 return(rbind(input1[, column.names], input2[, column.names]))

91 }

92

93 IN.all.peptides <- rbind.match.columns(IN.all.peptides.Prosit, IN.all.

peptides.pFind) %>%
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94 select(-comment, -multiEntity, -multiPatient, -multiGene) %>%

95 select(patientID, CHROM, POS, Seq, SeqMarked, SeqGroup, gene, MS.tool

, calledBy, TrueHit, nReps, nFound, mutationType, transcriptTypes

, geneBiotype, transcriptBiotype, EFFECT, scoreMS, everything())

96

97 # use new combined file (Niklas) for further analysis

98 IN.all.peptides <- IN.all.peptides.combined %>%

99 rename(MS.tool=quantBy)

100

101

102 # function to sum all collapsed semicolon-separated values in a certain

column

103 sum.collapsed <- function(x){

104 sum(as.numeric(unlist(strsplit(as.character(x),";",fixed = T))))

105 }

106

107 # old

108 # IN.all.peptides<- data.frame(IN.all.peptides[1:19], apply(IN.all.

peptides[20:27],c(1,2),sum.collapsed),IN.all.peptides[28:ncol(IN.

all.peptides)])

109

110 # adapted to niklas’ new data

111 IN.all.peptides<- data.frame(IN.all.peptides[1:18], apply(IN.all.

peptides[19:26],c(1,2),sum.collapsed),IN.all.peptides[27:ncol(IN.

all.peptides)])

112

113

114 # IMPORT REFERENCES

115 source(file = "functions/import.references.R")

116

117 # change name of first column and add col "Master_ID_group" by use of

str_sub

118 colnames(IN.all.peptides)[1] <- "Master_ID"

119 IN.all.peptides$Master_ID_group <- as.factor(str_sub(IN.all.peptides$

Master_ID,1,6))

120 IN.1.all <- select(IN.all.peptides, Master_ID, Master_ID_group,

everything())

121 # Renaming rows etc.

122 IN.1.all <- merge(reference.master, IN.1.all, by.x = "Master_ID", by.y

= "Master_ID_group") %>%

123 select(-Master_ID) %>%

124 rename(Master_ID = Master_ID.y) %>%

125 merge(reference.entity) %>%

126 select(Patient_ID, Master_ID, everything())

127

128 #### IN.2: Selection of rows ####
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129 IN.2.base <- IN.1.all %>%

130 mutate(total_reads.StrelkaRNA = TumorAD.StrelkaRNA+TumorRD.StrelkaRNA

) %>%

131 mutate(total_reads.Mutect2 = TumorAD.Mutect2+TumorRD.Mutect2) %>%

132 mutate(TumorVF.StrelkaRNA = TumorAD.StrelkaRNA / (TumorAD.StrelkaRNA+

TumorRD.StrelkaRNA)) %>%

133 mutate(TumorVF.Mutect2 = TumorAD.Mutect2 / (TumorAD.Mutect2+TumorRD.

Mutect2)) %>%

134 select(Patient_ID,Master_ID,CHROM,POS,Seq,gene,Tumor_entity,calledBy,

nReps,nFound,transcriptTypes,TumorVF.Mutect2,TumorVF.StrelkaRNA,

total_reads.Mutect2,total_reads.StrelkaRNA,TumorAD.Mutect2,

TumorRD.Mutect2,TumorAD.StrelkaRNA,TumorRD.StrelkaRNA,everything

()) %>%

135 arrange(Patient_ID)

136 IN.2.base.export <- IN.2.base %>%

137 select(Patient_ID, Master_ID, Seq) %>%

138 distinct(Patient_ID, Master_ID, Seq)

139

140 # available.alleles-reference

141 alleles_available = unlist(c(reference.alleles.available))

142 alleles_available.netMHC = unlist(c(reference.alleles.available.netMHC)

)

143

144 process_df_for_netMHC <- function(input_DF, Seq_column, reference.HLA){

145 output <- input_DF %>%

146 merge(reference.HLA) %>%

147 pivot_longer(-(Patient_ID:Seq_column), names_to = "allele_nr",

values_to = "allele", values_drop_na = T) %>%

148 rename(peptide=Seq_column) %>%

149 arrange(Patient_ID) %>%

150 mutate(netMHC.available = str_detect(allele, paste0(alleles_

available.netMHC, collapse = "|")), id=Patient_ID, allele=as.

factor(allele)) %>%

151 select(id, Patient_ID, everything()) %>%

152 filter(netMHC.available==T) %>%

153 select(-id, -netMHC.available)

154 }

155

156 process_df_for_prediction_all <- function(input_DF, Seq_column,

reference.HLA){

157 output <- input_DF %>%

158 merge(reference.HLA) %>%

159 pivot_longer(-(Patient_ID:Seq_column), names_to = "allele_nr",

values_to = "allele", values_drop_na = T) %>%

160 rename(peptide=Seq_column) %>%

161 arrange(Patient_ID)
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162 }

163

164 # IN.2.exported.pred_avail <- process_df_for_prediction_available(IN.2.

base.export, Seq_column = "Seq", reference.HLA = reference.HLA)

165 IN.2.exported.netMHC <- process_df_for_netMHC(IN.2.base.export, Seq_

column = "Seq", reference.HLA = reference.HLA)

166 IN.2.exported.all <- process_df_for_prediction_all(IN.2.base.export,

Seq_column = "Seq", reference.HLA = reference.HLA)

167

168 # Export .csv file for MHCflurry

169

170 for (i in unique(IN.2.exported.all$Patient_ID)){

171 IN.2.exported.all.selected <- IN.2.exported.all %>%

172 filter(Patient_ID==i)

173 write.csv(IN.2.exported.all.selected, file = paste0("../../Python/

input_files/mut_peptides/all/", i, ".csv"), row.names=FALSE)

174 }

175

176

177 # Export Fastas for netMHC

178 IN.2.exported.netMHC.peptides <- IN.2.exported.netMHC %>%

179 distinct(Patient_ID, peptide, .keep_all = F) %>%

180 group_by(Patient_ID) %>%

181 #mutate(Seq_ID=letters[row_number()]) %>%

182 mutate(Seq_ID=sprintf("%03d", row_number())) %>%

183 mutate(Seq_ID=paste0(Patient_ID,sep="_",Seq_ID,sep="_",peptide)) %>%

184 select(Seq_ID,everything()) %>%

185 mutate(Seq_ID=paste0(sep=">",Seq_ID)) %>%

186 mutate(Seq=as.character(peptide)) %>%

187 ungroup() %>%

188 select(Patient_ID,Seq_ID,peptide) %>%

189 as.data.frame()

190

191 for (i in unique(IN.2.exported.netMHC.peptides$Patient_ID)){

192 IN.2.exported.netMHC.peptides.single <- IN.2.exported.netMHC.peptides

%>%

193 filter(Patient_ID==i) %>%

194 select(Seq_ID,peptide)

195 temp <- data.frame(x=1:(2*nrow(IN.2.exported.netMHC.peptides.single))

)

196 for (x in temp$x) {

197 temp[x,2] <- c(IN.2.exported.netMHC.peptides.single[floor((x-1)/2)

+1,((x+1)%%2)+1])

198 }

199 IN.2.exported.netMHC.peptides.single <- temp %>%

200 select(-x)
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201 write_csv(IN.2.exported.netMHC.peptides.single, path = paste0("../../

Python/input_files/mut_peptides/preselected_for_netMHC/", i, ".

fasta"), col_names = F)

202 }

203

204 # Export HLA alleles for netMHC

205 IN.2.exported.netMHC.alleles <- IN.2.exported.netMHC %>%

206 distinct(Patient_ID, allele, .keep_all = T) %>%

207 select(Patient_ID, allele_nr, allele) %>%

208 pivot_wider(names_from = allele_nr, values_from = allele) %>%

209 select(Patient_ID, "HLA-A.1", "HLA-A.2", "HLA-B.1", "HLA-B.2", "HLA-C

.1", "HLA-C.2")

210

211 write_csv(IN.2.exported.netMHC.alleles, path = "../../Python/input_

files/mut_peptides/preselected_for_netMHC/alleles.csv", col_names =

F)

212

213 ############ DO PREDICTIONS WITH MHC_FLURRY / NETMHC ##############

214

215 #### Import predictions (MHCflurry) as DF ####

216 path.predictions.mut <- dir(’../../Python/result_files/mut_peptides/

models_class1_presentation/’, pattern="*.csv", full.names=TRUE)

217 #path.predictions.mut <- dir(’../../Python/result_files/mut_peptides/

models_class1_pan/’, pattern="*.csv", full.names=TRUE) #for old

results (old peptides)

218 predictions.mhcflurry.long <- lapply(path.predictions.mut, read.csv)

219

220 #### Import predictions (netMHC) as DF ####

221 path.predictions.mut <- dir(’../../Python/result_files/mut_peptides/

netMHC/tsv/’, pattern="*.tsv", full.names=TRUE)

222 predictions.netMHC.raw <- lapply(path.predictions.mut, read_tsv)

223

224 # reshape predictions for each DF in list (MHCflurry)

225 process.predictions <- function(x)

226 {

227 select(x, Patient_ID, Master_ID, allele, peptide, mhcflurry_affinity,

mhcflurry_affinity_percentile) %>%

228 group_by(Patient_ID, Master_ID, allele, peptide) %>%

229 summarise(BA.prediction.mhcflurry=mean(mhcflurry_affinity), BA.

percentile.mhcflurry=mean(mhcflurry_affinity_percentile)) %>%

230 gather(key=mhcflurry_type, value=prediction.value, -(Patient_ID:

peptide)) %>%

231 unite(temp, allele, mhcflurry_type, sep = ".") %>%

232 spread(temp, prediction.value) %>%

233 rename(Seq="peptide")

234 }
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235

236 process.predictions_old <- function(x)

237 {

238 select(x, Patient_ID, Master_ID, allele, peptide, mhcflurry_

prediction, mhcflurry_prediction_percentile) %>%

239 group_by(Patient_ID, Master_ID, allele, peptide) %>%

240 summarise(BA.prediction.mhcflurry=mean(mhcflurry_prediction), BA.

percentile.mhcflurry=mean(mhcflurry_prediction_percentile)) %>%

241 gather(key=mhcflurry_type, value=prediction.value, -(Patient_ID:

peptide)) %>%

242 unite(temp, allele, mhcflurry_type, sep = ".") %>%

243 spread(temp, prediction.value) %>%

244 rename(Seq="peptide")

245 }

246

247 # reshape predictions for each DF in list (netMHC)

248 process.predictions.netMHC <- function(x){

249 cols_with_BA.pred = grep("HLA",colnames(x))

250 temp <- x %>%

251 rename_at(vars(starts_with("HLA")), funs(str_replace(.,"$",".BA.

prediction.netMHC"))) %>%

252 rename_at(vars(cols_with_BA.pred+1), funs(colnames(x)[grep("HLA",

colnames(x))])) %>%

253 rename_at(vars(cols_with_BA.pred+1), funs(str_replace(.,"$",".BA.

percentile.netMHC"))) %>%

254 slice(2:nrow(.)) %>%

255 rename(Seq = ...2) %>%

256 mutate(Patient_ID=str_sub(...3,1,5)) %>%

257 select(Patient_ID,Seq,everything(),-contains("...")) %>%

258 mutate_at(vars(c(3:ncol(.))), as.numeric)

259 distinct(temp)

260 }

261

262 # DEBUG ####################

263 test <- predictions.netMHC.raw[[1]]

264 cols_with_BA.pred = grep("HLA", colnames(test))

265

266 testneu <- test %>%

267 rename_at(vars(starts_with("HLA")), funs(str_replace(.,"$",".BA.

prediction.netMHC"))) %>%

268 rename_at(vars(cols_with_BA.pred+1), funs(colnames(test)[grep("HLA",

colnames(test))])) %>%

269 rename_at(vars(cols_with_BA.pred+1), funs(str_replace(.,"$",".BA.

percentile.netMHC"))) %>%

270 slice(2:nrow(.)) %>%

271 rename(Seq = ...2) %>%
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272 mutate(Patient_ID=str_sub(...3,1,5)) %>%

273 select(Patient_ID,Seq,everything(),-contains("...")) %>%

274 mutate_at(vars(c(3:ncol(.))), as.numeric)

275

276 reference.alleles.available.test <- read_csv2("rawfiles/references/

available.alleles_reference_3.csv")

277

278 test <- setdiff(reference.alleles.available, reference.alleles.

available.test)

279

280 ###########################

281

282 predictions.mhcflurry.wide <- lapply(predictions.mhcflurry.long,

process.predictions)

283 #predictions.mhcflurry.wide <- lapply(predictions.mhcflurry.long,

process.predictions_old) #for old results (old peptides)

284 predictions.netMHC.wide <- lapply(predictions.netMHC.raw, process.

predictions.netMHC)

285

286 # Merge both predictions & sort and select

287 predictions.all.raw <- purrr::map2(predictions.mhcflurry.wide,

predictions.netMHC.wide, merge)

288

289 sort_and_select.predictions <- function(x){

290 temp <- x %>%

291 rename_at(vars(1:ncol(.)), funs(str_replace(., "percentile", "rank")

)) %>%

292 select(sort(names(.))) %>%

293 select(Patient_ID, Master_ID, Seq, everything()) %>%

294 mutate_if(is.numeric, round, digits=4)

295 }

296

297 predictions.all <- lapply(predictions.all.raw, sort_and_select.

predictions)

298

299 # DF with available predictions

300 IN.2.avail <- IN.2.base %>%

301 merge(reference.HLA) %>%

302 unite("allele", -(1:(ncol(.)-6)), sep = ",") %>%

303 mutate(mhcflurry.available = str_detect(allele, paste0(alleles_

available, collapse = "|")), id=Patient_ID, allele=as.factor(

allele)) %>%

304 mutate(netMHC.available = str_detect(allele, paste0(alleles_available

.netMHC, collapse = "|")), id=Patient_ID, allele=as.factor(allele

)) %>%

305 filter(netMHC.available==T) %>%
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306 select(-id)

307

308

309 #### IN.5: Divide IN.2.selection into elements in a list

310 IN.5.list.all <- split(IN.2.base, f=IN.2.base$Patient_ID)

311 IN.5.list.avail <- split(IN.2.avail, f=IN.2.avail$Patient_ID)

312

313 #### IN.6: Merge predictions with IN.5.list.avail into new List

314 IN.6.list.raw <- purrr::map2(IN.5.list.avail, predictions.all, merge,

by.x=c("Seq","Master_ID"), by.y=c("Seq","Master_ID"))

315

316 # Modify DFs in IN.6.list: Define functions for lists - final list (6)

and plot(7)

317

318 find_best_binder <- function(x) {

319 temp <- rename(x, Patient_ID=Patient_ID.x) %>%

320 select(-Patient_ID.y) %>%

321 select(Patient_ID, Master_ID, everything()) %>%

322 mutate(BA.best=do.call(pmin, x[grep("BA.prediction",colnames(x))]))

%>%

323 mutate(BA.rank.best=do.call(pmin, x[grep("BA.percentile",colnames(x)

)])) %>%

324 mutate(allele.BA.best=colnames(x[grep("BA.prediction",colnames(x))])

[apply(x[grep("BA.prediction",colnames(x))],1,which.min)]) %>%

325 mutate(allele.BA.best=substr(allele.BA.best, 1,9)) %>%

326 mutate(allele.rank.best=colnames(x[grep("BA.percentile",colnames(x))

])[apply(x[grep("BA.percentile",colnames(x))],1,which.min)]) %>%

327 mutate(allele.rank.best=substr(allele.rank.best, 1,9))

328 }

329

330 find_best_binder_2 <- function(x) {

331 temp <- rename(x, Patient_ID=Patient_ID.x) %>%

332 select(-Patient_ID.y) %>%

333 select(Patient_ID, Master_ID, everything()) %>%

334 mutate(BA.best.MHCflurry=do.call(pmin, x[grep("BA.prediction.

mhcflurry",colnames(x))])) %>%

335 mutate(BA.best.netMHC=do.call(pmin, x[grep("BA.prediction.netMHC",

colnames(x))])) %>%

336 mutate(Rank.best.MHCflurry=do.call(pmin, x[grep("BA.rank.mhcflurry",

colnames(x))])) %>%

337 mutate(Rank.best.netMHC=do.call(pmin, x[grep("BA.rank.netMHC",

colnames(x))])) %>%

338 mutate(allele.best.BA.MHCflurry=colnames(x[grep("BA.prediction.

mhcflurry",colnames(x))])[apply(x[grep("BA.prediction.mhcflurry"

,colnames(x))],1,which.min)]) %>%

339 mutate(allele.best.BA.MHCflurry=substr(allele.best.BA.MHCflurry,
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1,9)) %>%

340 mutate(allele.best.BA.netMHC=colnames(x[grep("BA.prediction.netMHC",

colnames(x))])[apply(x[grep("BA.prediction.netMHC",colnames(x))

],1,which.min)]) %>%

341 mutate(allele.best.BA.netMHC=substr(allele.best.BA.netMHC, 1,9)) %>%

342 mutate(allele.best.rank.MHCflurry=colnames(x[grep("BA.rank.mhcflurry

",colnames(x))])[apply(x[grep("BA.rank.mhcflurry",colnames(x))

],1,which.min)]) %>%

343 mutate(allele.best.rank.MHCflurry=substr(allele.best.rank.MHCflurry,

1,9)) %>%

344 mutate(allele.best.rank.netMHC=colnames(x[grep("BA.rank.netMHC",

colnames(x))])[apply(x[grep("BA.rank.netMHC",colnames(x))],1,

which.min)]) %>%

345 mutate(allele.best.rank.netMHC=substr(allele.best.rank.netMHC, 1,9))

%>%

346 left_join(reference.allele.frequency, by=c("allele.best.BA.MHCflurry

"="allele")) %>%

347 rename("allele.frequency.MHCflurry"=allele_frequency) %>%

348 left_join(reference.allele.frequency, by=c("allele.best.BA.netMHC"="

allele")) %>%

349 rename("allele.frequency.netMHC"=allele_frequency)

350 }

351

352 sum_up_DF <- function(x) {

353 temp <- select(x, Patient_ID, Master_ID, Seq, SeqMarked, CHROM, POS,

gene, TrueHit, calledBy, MS.tool, Tumor_entity, Tumor_entity_

short, Tumor_state, Metastatic_site, Tumor_origin, total_reads.

StrelkaRNA, total_reads.Mutect2, TumorVF.StrelkaRNA, TumorVF.

Mutect2, BA.best.MHCflurry, BA.best.netMHC, allele.best.BA.

MHCflurry, allele.best.BA.netMHC, Rank.best.MHCflurry, Rank.best.

netMHC, allele.best.rank.MHCflurry, allele.best.rank.netMHC,

transcriptTypes, mutationType, transcriptBiotype, geneBiotype,

EFFECT, scoreMS, scorePeptide, allele.frequency.MHCflurry, allele

.frequency.netMHC, header)

354 }

355

356 #### Final Lists (with double entries of peptides if i) resulting from

different genes, ii) resulting from different metastasis)####

357 # IN.6: complete list with all BA-predictions for all alleles

respectively

358 # IN.7: summary list of basic information with BA.best

359 IN.6.list <- lapply(IN.6.list.raw, find_best_binder_2)

360 IN.7.list <- lapply(IN.6.list, sum_up_DF)

361

362 #### Unique peptide selection (unique in (Patient,Seq) - may contain

double multilets-Seq from different patients); will "distinct" rows
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with the same Peptide)

363 modify_DF_unique <- function(x) {

364 temp1 <- x %>%

365 mutate(Master_ID_group=as.factor(str_sub(Master_ID,1,6))) %>%

366 select(Patient_ID, Master_ID_group, everything()) %>%

367 distinct(Patient_ID, Master_ID_group, Seq, .keep_all = T) %>%

368 select(-Master_ID,-TumorVF.StrelkaRNA,-TumorVF.Mutect2,-MS.tool, -

CHROM, -POS, -scoreMS, -scorePeptide)

369 temp2 <- x %>%

370 mutate(Master_ID_group=as.factor(str_sub(Master_ID,1,6))) %>%

371 select(Patient_ID, Master_ID_group, everything()) %>%

372 group_by(Patient_ID, Master_ID_group, Seq) %>%

373 summarise(Metastasis = paste0(str_sub(Master_ID,8,9),collapse = ";")

, MS.tool = paste0(sort(MS.tool), collapse = ";") , TumorVF.

StrelkaRNA = max(TumorVF.StrelkaRNA), TumorVF.Mutect2 = max(

TumorVF.Mutect2), CHROM = paste0(CHROM, collapse = ";"), POS =

paste0(POS, collapse = ";"), scoreMS=min(scoreMS, na.rm = T),

scorePeptide=max(scorePeptide)) %>%

374 mutate(scoreMS=ifelse(is.infinite(scoreMS), NA, scoreMS))

375 # alternatively: group_by(Patient_ID, Master_ID_group, Seq) %>%

376 # summarise_all(list( ~ paste0(.,collapse = " + ")))

377 temp2["MS.tool"] <- unlist(lapply(temp2$MS.tool, function(x) {paste0(

unique(as.vector(str_split(x,";", simplify = T))),collapse=" + ")

} ))

378 temp2["Metastasis"] <- unlist(lapply(temp2$Metastasis, function(x) {

paste0(unique(as.vector(str_split(x,";", simplify = T))),collapse

=" + ")} ))

379 temp2["Chrom"] <- unlist(lapply(temp2$CHROM, function(x) {paste0(

unique(as.vector(str_split(x,";", simplify = T))),collapse=" + ")

} ))

380 temp2["Pos"] <- unlist(lapply(temp2$POS, function(x) {paste0(unique(

as.vector(str_split(x,";", simplify = T))),collapse=" + ")} ))

381 temp <- merge(temp1, temp2) %>%

382 select(Patient_ID, Master_ID_group, Metastasis, Seq, SeqMarked,

Chrom, Pos, gene, TrueHit, MS.tool, everything()) %>%

383 select(-CHROM,-POS) %>%

384 select(-header, everything()) %>%

385 mutate_if(is.numeric, round, digits=6)

386 }

387

388 IN.6.list.unique <- lapply(IN.6.list, modify_DF_unique)

389 IN.7.list.unique <- lapply(IN.7.list, modify_DF_unique)

390

391 # Create a DF for all Patients with BA.best

392 IN.7.unique <- bind_rows(IN.7.list.unique) %>%

393 mutate(allele.best=paste0(allele.best.BA.MHCflurry, sep=";", allele.
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best.BA.netMHC, sep=";", allele.best.rank.MHCflurry, sep=";",

allele.best.rank.netMHC))

394 IN.7.unique["allele.best"] <- unlist(lapply(IN.7.unique$allele.best,

function(x) {paste0(unique(as.vector(str_split(x,";", simplify = T)

)),collapse=", ")} ))

395 IN.7 <- bind_rows(IN.7.list)

396

397 # Create a DF for each Patient

398 for(i in names(IN.6.list.unique)){

399 assign(paste0(i), IN.6.list.unique[[i]])

400 }

401

402 #### IN.8: Create a DF with all peptides (also non-predicted ones and "

non-uniques")

403 # IN.7.left <- IN.1.all %>%

404 # filter(!(Seq %in% IN.7.unique$Seq)) %>%

405 # mutate(TumorVF.StrelkaRNA = TumorAD.StrelkaRNA / (TumorAD.StrelkaRNA+

TumorRD.StrelkaRNA)) %>%

406 # mutate(TumorVF.Mutect2 = TumorAD.Mutect2 / (TumorAD.Mutect2+TumorRD.

Mutect2))

407 # colnames.minimal <- intersect(colnames(IN.7.left), colnames(IN.7.

unique))

408 # colnames.new <- setdiff(colnames(IN.7.unique),colnames(IN.7.left))

409 # IN.7.left <- IN.7.left %>%

410 # select(colnames.minimal)

411 # IN.7.left[c(colnames.new)] <- NA

412 # IN.8 <- rbind(IN.7.unique, IN.7.left)

413 #

414

415 #### BLAST (IN.9) ####

416

417 ## Export to Fasta for BLAST!!!!!

418

419 # add a patient-peptide specific ID

420 IN.7.Order <- IN.7.unique %>%

421 group_by(Patient_ID) %>%

422 #mutate(Seq_ID=letters[row_number()]) %>%

423 mutate(Seq_ID=sprintf("%03d", row_number())) %>%

424 mutate(Seq_ID=paste0(Patient_ID,sep="_",Seq_ID,sep="_",Seq)) %>%

425 select(Seq_ID,everything())

426

427 IN.7.FASTA <- IN.7.Order %>%

428 mutate(Seq_ID=paste0(sep=">",Seq_ID)) %>%

429 mutate(Seq=as.character(Seq)) %>%

430 ungroup() %>%

431 select(Seq_ID,Seq) %>%
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432 as.data.frame()

433

434 temp <- data.frame(x=1:(2*nrow(IN.7.FASTA)))

435 for (x in temp$x) {

436 temp[x,2] <- c(IN.7.FASTA[floor((x-1)/2)+1,((x+1)%%2)+1])

437 }

438 IN.7.FASTA <- temp %>%

439 select(-x)

440

441 write_delim(IN.7.FASTA, file = "Peptides/blast/FASTA_for_blast/IN.7.

FASTA.csv", delim = "", col_names = F)

442

443 ############ INTERMEDIATE STEP: BLAST WITH NCBI, DOWNLOAD "HIT TABLE

CSV" AND REPLACE EXISTING FILE IN FOLDER BLAST_RESULT

##############

444

445 ## Import blast Hit Table ##

446 path.blast.table = list.files(path = "Peptides/blast/blast_result/")

447 BLAST.hits <- read_csv(file = paste0("Peptides/blast/blast_result/",

path.blast.table), col_names = F)

448 colnames(BLAST.hits) <- c("Seq_ID", "locus", "percent_identity", "n_pep

_frame", "n_missmatch", "n_gap_loci", "aa_start", "aa_end", "tsc_aa

_start", "tsc_aa_end", "e_value", "max_score", "positives")

449 BLAST.hits <- BLAST.hits %>%

450 mutate(Seq=str_replace_all(Seq_ID, c("IN_"="", "Me_"="", "

[1234567890]"="", "_"=""))) %>%

451 mutate(n_pep=str_length(Seq)) %>%

452 select(Seq_ID,Seq,n_pep, everything()) %>%

453 filter(n_pep_frame>=n_pep) %>%

454 filter(percent_identity==100)

455 BLAST.hits.summary <- BLAST.hits %>%

456 distinct(Seq,locus,tsc_aa_start, .keep_all = T) %>%

457 group_by(Seq_ID) %>%

458 summarise(n_identicalhits=n(), hit_loci=paste0(locus, collapse = ";")

, e_value=mean(e_value), Seq=first(Seq)) %>%

459 select(Seq,everything(),-Seq_ID)

460

461 ## Create DF with BlAST Information and kick-out all entries with more

than 2 BLAST-hits ##

462 IN.9 <- merge(IN.7.Order, BLAST.hits.summary, all = T) %>%

463 rename("BLAST.n_identicalhits"=n_identicalhits, "BLAST.hit_loci"=hit_

loci, "BLAST.e_value"=e_value) %>%

464 filter(BLAST.n_identicalhits <=2 | is.na(BLAST.n_identicalhits)) %>%

465 select(Patient_ID, Master_ID_group, Metastasis, Seq, everything())

%>%

466 arrange(Patient_ID)
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467

468 ###### go on only for Data with Patient-wise shared peptides #######

469

470 ## Every entry unique in Seq

471 IN.9.Order.1 <- IN.9 %>%

472 select(-Patient_ID,-(Tumor_entity:Tumor_origin),-BLAST.n_

identicalhits,-BLAST.e_value,-BA.best.MHCflurry,-BA.best.netMHC,-

allele.best.BA.MHCflurry,-allele.best.BA.netMHC,-TumorVF.Mutect2

,-TumorVF.StrelkaRNA) %>%

473 group_by(Seq) %>%

474 summarise_all(list(first))

475 IN.9.Order.2 <- IN.9 %>%

476 group_by(Seq) %>%

477 summarise(Seq_ID_n=n(), Patient_ID=paste0(Patient_ID, collapse = ",")

, Tumor_entity=paste0(Tumor_entity, collapse = ","), Tumor_entity

_short=paste0(Tumor_entity_short, collapse = ","), Tumor_state=

paste0(Tumor_state, collapse = ","), Metastatic_site=paste0(

Metastatic_site, collapse = ","), Tumor_origin=paste0(Tumor_

origin, collapse = ","), BLAST.n_identicalhits=mean(BLAST.n_

identicalhits), BLAST.e_value=mean(BLAST.e_value), BA.best.

MHCflurry.min=min(BA.best.MHCflurry), BA.best.MHCflurry.max=max(

BA.best.MHCflurry), BA.best.netMHC.min=min(BA.best.netMHC), BA.

best.netMHC.max=max(BA.best.netMHC), allele.best.BA.MHCflurry=

paste0(allele.best.BA.MHCflurry, collapse = ";"), allele.best.BA.

netMHC=paste0(allele.best.BA.netMHC, collapse = ";"), TumorVF.

StrelkaRNA=mean(TumorVF.StrelkaRNA), TumorVF.Mutect2=mean(TumorVF

.Mutect2))

478 IN.9.Order.2["allele.best.BA.MHCflurry"] <- unlist(lapply(IN.9.Order.2$

allele.best.BA.MHCflurry, function(x) {paste0(unique(as.vector(str_

split(x,";", simplify = T))),collapse=",")} ))

479 IN.9.Order.2["allele.best.BA.netMHC"] <- unlist(lapply(IN.9.Order.2$

allele.best.BA.netMHC, function(x) {paste0(unique(as.vector(str_

split(x,";", simplify = T))),collapse=",")} ))

480 ## Label shared Peptides with "*" and distinguish between BA.best.min

and BA.best.max for those peptides

481 IN.9.Order <- merge(IN.9.Order.1,IN.9.Order.2) %>%

482 select(Seq_ID,Seq,Patient_ID,Master_ID_group,Metastasis,SeqMarked,

Chrom, Pos, gene,TrueHit,MS.tool,Tumor_entity:Tumor_origin,BLAST.

n_identicalhits,BLAST.hit_loci,BLAST.e_value,everything()) %>%

483 mutate(is.crosspatient_pep = Seq_ID_n > 1,

484 Seq_ID = ifelse(is.crosspatient_pep, paste0(str_sub(Seq_ID,1,9)

, "*", as.character(Seq), sep = ""), Seq_ID)) %>%

485 select(-is.crosspatient_pep, -Seq_ID_n) %>%

486 mutate(BA.best.MHCflurry.min=round(BA.best.MHCflurry.min, digits = 0)

, BA.best.netMHC.min=round(BA.best.netMHC.min, digits = 0), BA.

best.MHCflurry.max=round(BA.best.MHCflurry.max, digits = 0), BA.
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best.netMHC.max=round(BA.best.netMHC.max, digits = 0), TumorVF.

StrelkaRNA=round(TumorVF.StrelkaRNA, digits = 3), TumorVF.Mutect2

=round(TumorVF.Mutect2, digits = 3)) %>%

487 arrange(Seq_ID) %>%

488 select(-header, everything()) %>%

489 select(Seq_ID:calledBy, allele.best, BA.best.MHCflurry.min, BA.best.

netMHC.min, Rank.best.MHCflurry, Rank.best.netMHC, TumorVF.

StrelkaRNA:TumorVF.Mutect2, everything())

490 peptides.n.summary <- IN.9.Order %>%

491 group_by(Patient_ID) %>%

492 summarise(N_peptides=n())

493

494

495 ## Create DF for HLA matching LCLs (input DF is IN.9 where the list is

not collapsed to unique Seq yet, but Blasts are already filtered

out) ### done with MHCflurry ###

496 IN.alleles <- IN.9 %>%

497 group_by(allele.best) %>%

498 summarise(Seq_IDs=paste0(Seq_ID, collapse = ","), Patient_IDs=paste0(

Patient_ID, collapse = ";"))

499 IN.alleles["Patient_IDs"] <- unlist(lapply(IN.alleles$Patient_IDs,

function(x) {paste0(unique(as.vector(str_split(x,";", simplify = T)

)),collapse=",")} ))

500 #distinct(Patient_ID,allele.best, .keep_all = T) %>%

501 IN.alleles.patients <- IN.9 %>%

502 group_by(Patient_ID, allele.best.BA.MHCflurry, allele.best.rank.

MHCflurry) %>%

503 summarise(Seq_IDs=paste0(Seq_ID, collapse = ","), BA.min=min(BA.best.

MHCflurry,BA.best.netMHC)) %>%

504 mutate(isequal=(allele.best.BA.MHCflurry==allele.best.rank.MHCflurry)

, allele.best.rank.MHCflurry=ifelse(isequal, "", allele.best.rank

.MHCflurry), BA.min=round(BA.min, digits = 0)) %>%

505 select(-isequal)

506

507 ## Create DF with WT-peptides from possible substitution-peptides

508

509 # fs: Frameshift mutation

510 # If **ABCDEF --> Mutation lies x bp upstream and leads to complete

frameshift peptide --> no WT

511 # If ABCD*E*F --> mutation lies in the peptide and all downstream aa’s

are changed --> WT has 1 to 9 changed aa’s

512

513 IN.WT <- IN.9 %>%

514 mutate(temp=as.vector(strsplit(header, split=’|’, fixed=T)))

515 IN.WT["substitution"] <- unlist(lapply(IN.WT$temp, function(x) {unlist(

x)[10]}))
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516 IN.WT <- IN.WT %>%

517 select(-temp) %>%

518 mutate(substitution=str_remove(substitution, pattern = "p.")) %>%

519 mutate(substitution=str_replace_all(substitution, c(

520 "Ala"="A", "Arg"="R", "Asn"="N", "Asp"="D", "Cys"="C",

521 "Gln"="Q", "Glu"="E", "Gly"="G", "His"="H", "Ile"="I",

522 "Leu"="L", "Lys"="K", "Met"="M", "Phe"="F", "Pro"="P",

523 "Ser"="S", "Thr"="T", "Trp"="W", "Tyr"="Y", "Val"="V",

524 "[1234567890]"=">", ">>>>"=">", ">>>"=">", ">>"=">"

525 ))) %>%

526 mutate(substitution=ifelse(substitution=="NA", NA, substitution)) %>%

527 mutate(AA_WT=ifelse(is.na(SeqMarked), NA, str_sub(substitution, start

= 1, end = 1))) %>%

528 mutate(AA_WT=ifelse(AA_WT=="*", NA, AA_WT)) %>%

529 mutate(AA_WT=ifelse(grepl("[*][*]", SeqMarked), NA, AA_WT)) %>% # AA_

WT is "NA" for upstream mutations

530 mutate(WT_Seq=str_replace(SeqMarked, "[*].[*]", AA_WT)) %>%

531 mutate(WT_Seq=ifelse(grepl("[*][*]", WT_Seq), NA, WT_Seq)) %>%

532 rename(Master_ID=Master_ID_group) %>% # (!!!) column renamed!

533 filter(is.na(WT_Seq)==F) #%>%

534 #select(SeqMarked, substitution, AA_WT, WT_Seq)

535 IN.WT.export <- IN.WT %>%

536 select(Patient_ID, Master_ID, Seq_ID, WT_Seq)

537

538

539 #### Export peptide-list for mhc-flurry

540 IN.WT.exported <- process_df_for_prediction_all(IN.WT.export, Seq_

column = "WT_Seq", reference.HLA = reference.HLA)

541 #purrrlyr::by_row(~write.csv(.$data, file = paste0("../../Python/

input_files/wt_peptides/", .$id, ".csv")))

542

543 for (i in unique(IN.WT.exported$Patient_ID)){

544 IN.WT.exported.selected <- IN.WT.exported %>%

545 filter(Patient_ID==i)

546 write.csv(IN.WT.exported.selected, file = paste0("../../Python/input_

files/wt_peptides/", i, ".csv"), row.names=FALSE)

547 }

548

549 #### Import WT-predictions as DF ####

550 path.predictions.wt <- dir(’../../Python/result_files/wt_peptides/

models_class1_presentation/’, pattern="*.csv", full.names=TRUE)

551 IN.WT.predictions.mhcflurry.long <- lapply(path.predictions.wt, read.

csv)

552

553 process.predictions_WT <- function(x)

554 {
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555 select(x, Patient_ID, Master_ID, Seq_ID, allele, peptide, mhcflurry_

affinity, mhcflurry_affinity_percentile) %>%

556 group_by(Patient_ID, Master_ID, Seq_ID, allele, peptide) %>%

557 summarise(BA.prediction.mhcflurry=mean(mhcflurry_affinity), BA.

percentile.mhcflurry=mean(mhcflurry_affinity_percentile)) %>%

558 gather(key=mhcflurry_type, value=prediction.value, -(Patient_ID:

peptide)) %>%

559 unite(temp, allele, mhcflurry_type, sep = ".") %>%

560 spread(temp, prediction.value) %>%

561 rename(Seq="peptide")

562 }

563 sum_up_DF_WT <- function(x) {

564 temp <- select(x, Patient_ID, Master_ID, Seq_ID, substitution, WT_Seq

, Chrom, Pos, gene, BA.best, allele.BA.best, BA.rank.best, allele

.rank.best, header)

565 }

566

567 # long to wide

568 IN.WT.predictions.mhcflurry.wide <- lapply(IN.WT.predictions.mhcflurry.

long, process.predictions_WT)

569 # as list

570 IN.WT.list <- split(IN.WT, f=IN.WT$Patient_ID)

571 # Merge with predictions

572 IN.WT.BA.list <- purrr::map2(IN.WT.list, IN.WT.predictions.mhcflurry.

wide, merge, by.x=c("Seq_ID", "Master_ID"), by.y=c("Seq_ID", "

Master_ID")) #by.x=c("Seq","Master_ID"), by.y=c("Seq","Master_ID")

573 # find best binders

574 IN.WT.BA.list <- lapply(IN.WT.BA.list, find_best_binder)

575 IN.WT.BA.list <- lapply(IN.WT.BA.list, sum_up_DF_WT)

576 IN.WT.BA <- bind_rows(IN.WT.BA.list) %>%

577 mutate(allele.best=paste0(allele.BA.best, sep=";", allele.rank.best))

%>%

578 select(Patient_ID:gene, allele.best, everything()) %>%

579 mutate_at(c("BA.best", "BA.rank.best"), round, digits=6)

580 IN.WT.BA["allele.best"] <- unlist(lapply(IN.WT.BA$allele.best, function

(x) {paste0(unique(as.vector(str_split(x,";", simplify = T))),

collapse=", ")} ))

581

582 ###### Check which peptides have significantly improved BA/rank through

new HLA-C predictions with MHCflurry and netMHC ########

583

584 check.HLA.C.binder.BA <- function(x){

585 temp <- x %>%

586 mutate_if(is.numeric, round, digits=2) %>%

587 filter( (grepl("C", allele.best.BA.MHCflurry) & BA.best.MHCflurry

<500 ) | (grepl("C", allele.best.BA.netMHC) & BA.best.netMHC
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<500)) %>%

588 filter_at(vars(starts_with("HLA-A"), starts_with("HLA-B"), -contains

("rank")), all_vars(.>2000) )

589 }

590

591 check.HLA.C.binder.rank <- function(x){

592 temp <- x %>%

593 mutate_if(is.numeric, round, digits=2) %>%

594 filter( (grepl("C", allele.best.rank.MHCflurry) & Rank.best.

MHCflurry<2 ) | (grepl("C", allele.best.rank.netMHC) & Rank.best

.netMHC<2)) %>%

595 filter_at(vars(starts_with("HLA-A"), starts_with("HLA-B"), -contains

("prediction")), all_vars(.>2) )

596 }

597

598 remove.empty.lists <- function(x){

599 if(nrow(x)==0){return(NA)}

600 else

601 return(x)

602 }

603

604 IN.7.NEW.HLA.C.WB.BA.1 <- lapply(IN.6.list, check.HLA.C.binder.BA)

605 IN.7.NEW.HLA.C.WB.BA.2 <- lapply(IN.7.NEW.HLA.C.WB.BA.1, sum_up_DF)

606 IN.7.NEW.HLA.C.WB.BA.3 <- lapply(IN.7.NEW.HLA.C.WB.BA.2, modify_DF_

unique)

607 IN.7.NEW.HLA.C.WB.BA <- bind_rows(IN.7.NEW.HLA.C.WB.BA.3)

608

609 IN.7.NEW.HLA.C.WB.rank.1 <- lapply(IN.6.list, check.HLA.C.binder.rank)

610 IN.7.NEW.HLA.C.WB.rank.2 <- lapply(IN.7.NEW.HLA.C.WB.rank.1, sum_up_DF)

611 IN.7.NEW.HLA.C.WB.rank.3 <- lapply(IN.7.NEW.HLA.C.WB.rank.2, modify_DF_

unique)

612 IN.7.NEW.HLA.C.WB.rank <- bind_rows(IN.7.NEW.HLA.C.WB.rank.3)

613

614 #

###############################################################################################################################

615

616 #### Kick-Out Mel_15 peptides #####

617 IN.7.Mel15 <- IN.7.unique

618 IN.7 <- IN.7.unique %>%

619 filter(Patient_ID!="Me_15")

620 IN.10.Mel15 <- IN.9

621 IN.10 <- IN.9 %>%

622 filter(Patient_ID!="Me_15")

623 IN.WT.Mel15 <- IN.WT.BA

624 IN.WT <- IN.WT.Mel15 %>%
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625 filter(Patient_ID!="Me_15")

626

627 ##### Which DFs are needed??? All functions + some DFs

628 rm(list=setdiff(setdiff(ls(), lsf.str()), c(

629 "IN.7.Mel15",

630 "IN.7",

631 "IN.9.Order",

632 "IN.10",

633 "IN.10.Mel15",

634 "IN.WT.Mel15",

635 "IN.WT",

636 "IN.8",

637 "IN.6.list",

638 "IN.6.list.unique",

639 "IN.7.NEW.HLA.C.WB.BA",

640 "IN.7.NEW.HLA.C.WB.rank",

641 "IN.alleles",

642 "IN.alleles.patients",

643 "predictions.all")))

644

645 #### KICK-OUT PEPTIDES #####

646 # delete row 5, 6, 19 and 40

647 # IN.10 <- IN.9[-c(5,6,19,40), ]

648

649 #### EXPORT to .csv ####

650 export.data <- function(){

651

652 # List IN.6 - Unique

653 erer::write.list(IN.6.list.unique, file = "Peptides/exported_csv/IN.

peptides.list.unique.csv")

654 write.xlsx(IN.6.list.unique, file = "Peptides/exported_xlsx/IN.

peptides.list.unique.xlsx")

655 # DF IN.7 - Unique

656 write_csv(IN.7.unique, path = "Peptides/exported_csv/IN.peptides.

summary.unique.csv")

657 write.xlsx(IN.7.unique, file = "Peptides/exported_xlsx/IN.peptides.

summary.unique.xlsx")

658 # DF IN.9

659 write_csv(IN.9, path = "Peptides/exported_csv/IN.9.csv")

660 write.xlsx(IN.9, file = "Peptides/exported_xlsx/IN.9.xlsx")

661 # DF IN.10

662 #write_csv(IN.10, path = "Peptides/exported_csv/IN.10.csv")

663 #write.xlsx(IN.10, file = "Peptides/exported_xlsx/IN.10.xlsx")

664 # DF IN.WT.BA

665 write_csv(IN.WT.BA, path = "Peptides/exported_csv/IN.WT.BA.csv")

666 write.xlsx(IN.WT.BA, file = "Peptides/exported_xlsx/IN.WT.BA.xlsx")
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667 # DF IN.alleles

668 write_csv(IN.alleles, path = "Peptides/exported_csv/IN.alleles.csv")

669 write.xlsx(IN.alleles, file = "Peptides/exported_xlsx/IN.alleles.xlsx

")

670 # DF IN.alleles.patients

671 write_csv(IN.alleles.patients, path = "Peptides/exported_csv/IN.

alleles.patients.csv")

672 write.xlsx(IN.alleles.patients, file = "Peptides/exported_xlsx/IN.

alleles.patients.xlsx")

673 # DF IN.NEW.HLA.C.WB.BA

674 write_csv(IN.7.NEW.HLA.C.WB.BA, path = "Peptides/exported_csv/IN.

improve.BA.by.HLA_C.csv")

675 write.xlsx(IN.7.NEW.HLA.C.WB.BA, file = "Peptides/exported_xlsx/IN.

improve.BA.by.HLA_C.xlsx")

676 # DF IN.NEW.HLA.C.WB.rank

677 write_csv(IN.7.NEW.HLA.C.WB.rank, path = "Peptides/exported_csv/IN.

improve.rank.by.HLA_C.csv")

678 write.xlsx(IN.7.NEW.HLA.C.WB.rank, file = "Peptides/exported_xlsx/IN.

improve.rank.by.HLA_C.xlsx")

679

680 }

Listing 5: Pipeline for assessment of specifications of neoantigen candidates

2.4 Import reference data

1 ############ IMPORT REFERENCES #############

2 # for the raw data please contact p.seifert@tum.de

3

4 library(tidyverse)

5 library(openxlsx)

6 library(stringr)

7

8 reference.entity <- read.csv2("rawfiles/references/entity_reference_

masterID_2.csv")

9 reference.master <- read_csv2("rawfiles/references/master_reference.csv

")

10 reference.HLA <- read_csv2("rawfiles/references/HLA.types_reference_2.

csv")

11 reference.HLA.thesis <- read_csv2("rawfiles/references/HLA.types_

reference_2_thesis.csv")

12 reference.alleles.available <- read_csv2("rawfiles/references/available

.alleles_reference_3.csv")
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13 reference.alleles.available.netMHC <- read_csv2("rawfiles/references/

available.alleles_reference_netMHC.csv")

14 reference.allele.frequency <- read_csv2("rawfiles/references/allele_

frequency.csv") %>%

15 mutate(allele_frequency=as.numeric(allele_frequency))

16 reference.genelength <- read_tsv("rawfiles/references/hsa_GRCh38_

gencode_v36_genes.tsv")

17 reference.genelength2 <- read_tsv("rawfiles/references/hsa_GRCh38_

gencode_v36_transcripts.tsv")

18

19 theme_PS <- function(){

20 theme(

21 plot.title=element_text(size=20, hjust = 0.5),

22 plot.background = element_rect(fill = "transparent",colour = NA),

23 panel.grid.major = element_line(color = "grey", linetype = "dotted",

size=0.8),

24 panel.grid.minor = element_blank(),

25 panel.background = element_rect(fill = "transparent",colour = NA),

26 panel.border = element_rect(color = "white", fill = NA),

27 #axis.line = element_line(color = "grey"),

28 axis.ticks = element_line(color = "grey"),

29 axis.text = element_text(size = 14),

30 axis.text.x = element_text(angle = 0),

31 axis.title = element_text(size = 16,face="bold"),

32 legend.text = element_text(size = 16),

33 legend.title = element_text(size= 16,face="bold")

34 )

35 }

Listing 6: Pipeline for loading all required reference data





Appendix B: Raw data

1 Entities of ImmuNeo patients

Patient Tumor entity Tumor entity group Tumor origin

01 Thymus-CA Carcinoma Thymus

02 Mamma-CA Carcinoma Breast

03 Desmoplas. small round cell T. Sarcoma Abdomen

04 Renal Cell CA Carcinoma Kidney

05 Leiomyosarcoma Sarcoma Muscle

08 Neuroendocrine Ovarian-CA Carcinoma Ovar

09 Thyroid-CA Carcinoma Thyroid

11 Endometrium-CA Carcinoma Endometrium

13 Nonseminomatous Germ Cell T. Other Germ Cells

14 Melanoma Melanoma Skin

15 Testicle-CA Carcinoma Testicle

16 Adenocarcinoma Carcinoma Salivary Gland

17 Melanoma Melanoma Skin

18 Mamma-CA Carcinoma Breast

19 Melanoma Melanoma Skin

20 Testicle-CA Carcinoma Testicle

22 Melanoma Melanoma Skin

23 Rhabdomyosarcoma Sarcoma Muscle

24 Adrenocortical-CA Carcinoma Kidney

25 WT-GIST Other Intestine

26 Mucoepidermoid-CA Carcinoma Salivary Gland

207
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Patient Tumor entity Tumor entity group Tumor origin

27 Epitheloid Fibrosarcoma Sarcoma Connective Tissue

28 Clear Cell Sarcoma Sarcoma Soft tissue

30 Synovial Sarcoma Sarcoma Soft tissue

31 Rhabdomyosarcoma Sarcoma Muscle

32 Osteosarcoma Sarcoma Bone

33 Atypical Carcinoid of the Lung Carcinoma Lung

34 Mucinous Adenocarcinoma Carcinoma NA

35 Fibromyxoid Sarcoma Sarcoma NA

36 Adenocarcinoma Carcinoma Gastroesophageal Junction

37 Appednix-CA Carcinoma Appendix

38 MPNST Sarcoma Connective Tissue

2 List of NACs

2.1 Actual

Seq ID Seq Gene MS tool Rank

01_001 ALSGHLETL ANXA2P2 PFIND + PROSIT 0.0486

01_002 GHPSGARAM RAB8A PFIND 0.5538

01_003 KELCKQIQL GARS PROSIT 0.2636

01_004 KGDSPQVKLKY TFAM PFIND + PROSIT 3.5168

01_005 VEDHRARDVEV AC018630.2 PFIND + PROSIT 3.2747

01_006 VTGAVVSAVMCRK HLA-K PFIND 27.0765

02_001 TGGQKYRTK ZFAND5 PFIND 2.781

03_001 AASASRVQVI SNHG4 PFIND 1.5356

03_002 ESKDFCVM TBCA PFIND 12.4599

03_003 GSHDQAMHF GPSM2 PFIND + PROSIT 1.2015

03_004 TDGGGRAKL ARL8B PFIND + PROSIT 0.6051

03_005 TFQKKTKEM FRG1KP PFIND + PROSIT 0.0531
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Seq ID Seq Gene MS tool Rank

03_006 VDSRGSLF WASHC2A PROSIT 0.4512

04_001 AGVVLGGL PSMD8 PFIND 13.3492

04_002 FLLLLLKNF SF3B1 PFIND 1.0337

04_003 GHGQPWNSL LRP1 PFIND 0.1359

04_004 GLAATFASL MTMR9LP PFIND 0.8625

04_005 HAGAALHLH ZBTB12 PFIND 2.0799

04_006 IQDGSIHRI SDHAP1 PFIND + PROSIT 0.0432

04_007 KLQNASKKLF L3MBTL4 PFIND 0.7299

04_008 KSAGIAGL AC145207.5 PFIND 5.1398

04_009 KTKEMSNNVK FRG1DP PFIND 8.002

04_010 LGGTGASF AC112491.1 PFIND 3.5645

04_011 NTLMSLSDM MAP4K5 PFIND 4.8385

04_012 SYLSNISY ASPH PFIND + PROSIT 2.7266

04_013 TSLAANTF BTF3P10 PFIND 2.3298

04_014 TVHSTSIAF TMSB4XP4 PFIND + PROSIT 0.0561

05_002 DLLEPGGQR AC011447.6 PROSIT 0.0315

05_003 ETNKSLLKR CR381653.1 PFIND + PROSIT 0.0096

05_004 SLGAGRWRL AC053513.1 PFIND 3.8333

08_001 APVLKSAR HLA-J PFIND 3.7673

08_002 GLEPGKCSP TMEM161A PFIND 13.4719

08_003 GPLGPRGSI COL5A2 PFIND 0.0179

08_004 LSELDVSVR NUDC PFIND 4.9281

08_005 NRITEVSAK OTUD6B-AS1 PFIND + PROSIT 0.2124

08_006 PQESAPAAL CRIM1 PFIND 1.4491

08_007 SAGAAAQGRAGGAP GAB2 PROSIT 1.65

08_008 TQALVLAPTQ EIF4A1P4 PFIND 25.701

11_001 GGITAVTLN KRT8P33 PFIND + PROSIT 14.6679

11_002 RGISWRSHL SCART1 PFIND 1.3926

11_003 SAAELHHV CALM3 PFIND 0.2549

11_004 SRSVAQAGVQR AP003692.1 PROSIT 0.3479
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Seq ID Seq Gene MS tool Rank

11_005 VAAGPGAV PAXBP1 PFIND 1.335

13_001 KLPTLPKKY ANAPC4 PFIND 1.9233

13_002 LFKNLTIL MMADHC PROSIT 1.1467

15_001 ICTTSVSK ZDHHC20P4 PFIND 5.6149

15_002 LRAVTLIAK AC012435.1 PFIND 3.0226

17_001 AGLSHHAL AC145207.5 PFIND 0.5539

17_002 MQSRLTAA AC118344.2 PFIND + PROSIT 0.5945

18_001 KTSKAKNTK DIAPH1 PFIND 0.1559

18_002 MRLWSQLL AC090114.2 PFIND 2.1848

19_001 GRPGTRPAL BICDL1 PFIND 1.84

19_002 GSLNGGKPFLQAFY ALDH1A2 PROSIT 3.1525

19_003 KKYWVGAKL AP002840.2 PROSIT 8.9384

19_004 KVGSLAGF CNNM1 PFIND 14.4536

19_005 MPEHQSTAL C2;AL645922.1 PFIND + PROSIT 0.0037

19_006 RRLQRDKIA "NARF" PFIND 19.0906

19_007 SESNVDRLM COPG2 PFIND + PROSIT 0.108

19_008 STLVLDEFKR AC008038.1 PFIND + PROSIT 6.4807

19_009 VASISLTK RPL36AL PFIND + PROSIT 4.2156

22_001 PPSEAQPLP SPATA5L1 PFIND 18.796

23_001 ASASQSAGIIGMSH AC024075.2 PFIND 7.4174

23_002 GAPAPVMVEK COL6A3 PROSIT 0.4014

24_001 LPIYGRAR EPHB1 PROSIT 16.7907

24_002 SRVVGITGVP SCAND2P PFIND 7.024

24_003 STMVKGRQTTTK LDHB PROSIT 1.401

27_001 EGVAGPHSR SUSD3 PFIND 0.1164

28_001 DTAPSGESR APOPT1;AL139300.1 PFIND + PROSIT 2.912

28_002 EPLTTREI NET1 PFIND 1.7411

28_003 GARLSSGRL EIF3G PFIND 1.2322

28_004 RVWDVSGLRKK COPA PFIND 0.0686

28_005 SPRQPPLLL CDK13 PFIND + PROSIT 0.0011
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Seq ID Seq Gene MS tool Rank

28_006 VGSGLGPGWVM EPS8L2 PFIND 2.8371

28_007 VIHPPRPPK PINK1-AS PFIND + PROSIT 0.0061

30_001 QCKRSSSSYR ZDHHC13 PFIND + PROSIT 19.721

32_001 APKSSSGFSL AL033519.2 PFIND + PROSIT 0.0087

32_002 GPGSIQKR LRRC37A PFIND + PROSIT 4.6674

32_004 STMSALPNSR AC084809.1 PFIND + PROSIT 0.0725

33_001 EAEVEESLGLR LINC00884 PFIND 1.4252

34_001 SEVQDRAVP ZFP36L2 PFIND + PROSIT 0.9796

36_001 AGLGGVKL ARF5 PFIND 5.3217

37_001 ATERKEAK SMC1A PFIND 8.4507

37_002 DVVVVHRRR ACAA1 PFIND + PROSIT 0.2537

37_003 GSPSLSQR PYGO2 PFIND 4.3675

37_004 KFAQKVLR RPL7P9 PROSIT 8.9215

37_005 RLANTQAKKAK CDC5L PFIND 0.2839

37_006 SAADVVVVHR ACAA1 PFIND + PROSIT 0.0261

37_007 TVGVPTVLEKLQK EHHADH PFIND 6.161

37_008 VDANRKIY TSG101 PROSIT 1.5454

38_001 DVIRKALQY DPYD PFIND + PROSIT 0.0021

38_002 RPHVGIHL POFUT1 PFIND + PROSIT 0.114

38_003 SITPGTVL RPL6;AC115223.1 PFIND 0.3868

38_004 SQSTTASLFKK PRUNE1 PFIND + PROSIT 0.3612

38_005 STTASLFKK PRUNE1 PFIND + PROSIT 9e-4

2.2 Deprecated

Seq ID Seq Gene MS tool Rank

01_R01 ALAAVVTEV NA NA NA

01_R02 FLAKKPSAV AL591846.1 PROSIT + pFind 0.1726

01_R04 DAAGRNSW AL133216.2 PROSIT + pFind 10.6157
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Seq ID Seq Gene MS tool Rank

01_R05 GMGSESKASF IGFN1 pFind 8.9717

01_R06 KKGGLIGS LINC01694 PROSIT + pFind 46.7781

01_R07 LEAKGQAL CROCC pFind 2.9272

01_R08 LEHGGAIMA AC106820.2 pFind 5.7191

01_R09 LLGSAVHE TANGO6 pFind + PROSIT 25.9041

01_R10 SHLYSDPG TYK2 PROSIT 36.8145

01_R11 DAARRNSW NA NA NA

04_R01 AGPGNRVL PSMD8 pFind 25.2304

04_R02 CVYKNPVI PTPN14 pFind 10.8594

04_R03 FFTLISVSF ANAPC4 pFind 0.8044

04_R04 FLALFWITI AP000766.1 pFind 1.192

04_R05 GAGALLCTHL DUX4L50 pFind 9.21

04_R06 GSPGGPVSI COL3A1 PROSIT 2.9413

04_R07 HVGGAGLEHL AC087190.3 pFind 3.8001

04_R08 QKRLYYQLFFNCSWY SHPRH PROSIT 33.058

04_R09 SLPQNLLYL AC112721.2 PROSIT 6.5878

04_R10 THIDAGRF CXorf36 pFind 3.0535

04_R11 GLTATFASL NA NA 1.6

09_R01 YHLMPFRQHCWQSL KLHL14 PROSIT 22.3645

11_R01 AAAAPARGL SF1 pFind 19.705

11_R02 ARETLLETL SDC4 pFind 1.4147

11_R03 ETSAPASSL C3 pFind 31.454

11_R04 GTPSSTTL DSCAML1 pFind 22.6244

11_R05 ISAAELHHV CALM3 PROSIT 2.6362

11_R06 LNITHGILY SMC4 pFind 4.095

11_R07 LNLREKKNK TRANK1 pFind 5.158

11_R08 RLQDAVPV ASMTL pFind 0.4269

11_R09 SRAAAAPAR SF1 PROSIT 1.451

19_R01 DQATCLRSTKFTIY F9 PROSIT 8.5661

19_R02 FFQDKAWFY PARP14 pFind + PROSIT 0.0489
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Seq ID Seq Gene MS tool Rank

19_R03 GWGVAGTM AC112721.2 pFind 18.8456

19_R04 ITRGQEFE AC008771.1 pFind 28.9686

19_R05 LLEAGRLR GABPB1-AS1 pFind + PROSIT 18.4337

19_R06 PTDAELMS PYGL pFind 0.6449

19_R07 TLGGWGGQDLR ZNF37BP pFind 36.865

19_R08 TNLGFSKK PIK3C2G PROSIT 56.5224

S*_R01 VVHVSTSQK AC115837.1 pFind 0.1283

S*_R02 QLRASGQLK PTMAP5 pFind 0.1844
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3 Results of acDC assays (detailed)

3.1 For actual NACs

3.1.1 Not reactive

19_009 [7] (l)

19_009 [4] (l)

19_009 [2] (l)

19_008 [7] (i)

19_008 [4] (i)

19_008 [2] (i)

19_007 [7] (h)

19_007 [4] (h)

19_007 [2] (h)

19_001 [7] (c)

19_001 [4] (c)

19_001 [2] (c)

11_003 [4] (i)

11_003 [2] (i)

01_004 [CE] {03} (d)

01_004 [CE] {02} (d)

01_004 [CE] {01} (d)

01_004 [9] (d)

01_004 [27] (d)

01_004 [23] (d)

01_001 [CE] {03} (a)

01_001 [CE] {02} (a)

01_001 [CE] {01} (a)

01_001 [9] (a)

01_001 [27] (a)

01_001 [23] (a)

0 100 200 300 400
SFU

N
AC

 ID

Condition

Antigen pulsed

Irrelevant pulsed

Unpulsed

Figure 1: Detailed result of acDC assays (actual, not reactive)
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3.2 For deprecated NACs

3.2.1 Reactive

19_R05 [4] (f)

11_R08 [4] (h)

01_R05 [23] (c)

0 100 200 300
SFU

N
AC

 ID

Condition

Antigen pulsed

Irrelevant pulsed

Unpulsed

Figure 2: Detailed result of acDC assays (deprecated, reactive)
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3.2.2 Not reactive

01_R11 [CE] {03} (wt)
01_R11 [CE] {02} (wt)
01_R11 [CE] {01} (wt)

01_R11 [7] (wt)
01_R11 [4] (wt)
01_R11 [2] (wt)
01_R11 [9] (wt)

01_R11 [27] (wt)
01_R11 [23] (wt)

01_R10 [CE] {03} (i)
01_R10 [CE] {02} (i)
01_R10 [CE] {01} (i)

01_R10 [9] (i)
01_R10 [27] (i)
01_R10 [23] (i)

01_R09 [CE] {03} (h)
01_R09 [CE] {02} (h)
01_R09 [CE] {01} (h)

01_R09 [9] (h)
01_R09 [27] (h)
01_R09 [23] (h)

01_R08 [CE] {03} (g)
01_R08 [CE] {02} (g)
01_R08 [CE] {01} (g)

01_R08 [9] (g)
01_R08 [27] (g)
01_R08 [23] (g)

01_R07 [CE] {03} (f)
01_R07 [CE] {02} (f)
01_R07 [CE] {01} (f)

01_R07 [9] (f)
01_R07 [27] (f)
01_R07 [23] (f)

01_R06 [CE] {03} (e)
01_R06 [CE] {02} (e)
01_R06 [CE] {01} (e)

01_R06 [9] (e)
01_R06 [27] (e)
01_R06 [23] (e)

01_R05 [CE] {03} (c)
01_R05 [CE] {02} (c)
01_R05 [CE] {01} (c)

01_R05 [9] (c)
01_R05 [27] (c)

01_R04 [CE] {03} (b)
01_R04 [CE] {02} (b)
01_R04 [CE] {01} (b)

01_R04 [7] (b)
01_R04 [4] (b)
01_R04 [2] (b)
01_R04 [9] (b)

01_R04 [27] (b)
01_R04 [23] (b)

01_R03 [31] (wt)
01_R03 [10] (wt)
01_R02 [31] (#2)
01_R02 [10] (#2)
01_R01 [31] (#1)
01_R01 [10] (#1)

0 100 200 300
SFU

N
AC

 ID

Condition

Antigen pulsed

Irrelevant pulsed

Unpulsed

Figure 3: Detailed result of acDC assays (deprecated, reactive, 01)
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11_R12 [4] (wt)
11_R12 [2] (wt)

11_R11 −>IN_05 [1] {03} (c)
11_R11 −>IN_05 [1] {02} (c)
11_R11 −>IN_05 [1] {01} (c)

11_R11 [4] (c)
11_R11 −>IN_11 [3] {04} (c)
11_R11 −>IN_11 [3] {03} (c)
11_R11 −>IN_11 [3] {02} (c)
11_R11 −>IN_11 [3] {01} (c)

11_R11 [2] (c)
11_R10 [4] (b)

11_R10 −>IN_11 [3] {04} (b)
11_R10 −>IN_11 [3] {03} (b)
11_R10 −>IN_11 [3] {02} (b)
11_R10 −>IN_11 [3] {01} (b)

11_R10 [2] (b)
11_R10 −>IN_09 [1] {03} (b)
11_R10 −>IN_09 [1] {02} (b)
11_R10 −>IN_09 [1] {01} (b)

11_R09 [4] (j)
11_R09 [2] (j)

11_R08 [2] (h)
11_R07 [4] (g)
11_R07 [2] (g)
11_R06 [4] (f)
11_R06 [2] (f)

11_R05 [4] (e)
11_R05 [2] (e)
11_R04 [4] (d)
11_R04 [2] (d)
11_R03 [4] (c)
11_R03 [2] (c)
11_R02 [4] (b)
11_R02 [2] (b)
11_R01 [4] (a)
11_R01 [2] (a)

09_R01 −>IN_09 [1] {01} (a)

0 250 500 750
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N
AC

 ID

Condition

Antigen pulsed

Irrelevant pulsed

Unpulsed

Figure 4: Detailed result of acDC assays (deprecated, reactive, 02)
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19_R08 [7] (k)

19_R08 [4] (k)

19_R08 [2] (k)

19_R07 [7] (j)

19_R07 [4] (j)

19_R07 [2] (j)

19_R06 [7] (g)

19_R06 [4] (g)

19_R06 [2] (g)

19_R05 [7] (f)

19_R05 [2] (f)

19_R04 [7] (e)

19_R04 [4] (e)

19_R04 [2] (e)

19_R03 [7] (d)

19_R03 [4] (d)

19_R03 [2] (d)

19_R02 [7] (b)

19_R02 [4] (b)

19_R02 [2] (b)

19_R01 [7] (a)

19_R01 [4] (a)

19_R01 [2] (a)

11_R10 −>IN_28 [1] {02} (b)

11_R10 −>IN_28 [1] {01} (b)

11_R10 −>IN_24 [1] {04} (b)

11_R10 −>IN_24 [1] {03} (b)

11_R10 −>IN_24 [1] {02} (b)

11_R10 −>IN_24 [1] {01} (b)

0 250 500 750 1000
SFU

N
AC

 ID

Condition

Antigen pulsed

Irrelevant pulsed

Unpulsed

Figure 5: Detailed result of acDC assays (deprecated, reactive, 03)



Appendix C: Classification of Variants

219



220

peptide rel.

within 
peptide --> --> --> in-frame --> --> yes 1

coding x 2
non-coding cryptic MAP 3

not in-frame --> --> cryptic MAP 4
coding x 5

non-coding cryptic MAP 6
not in-frame --> --> cryptic MAP 7
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not in-frame --> --> yes 9

stop lost --> --> --> yes 10

exonic (other splice 
region variant) --> --> --> --> yes 11

full intronic (splice 
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--> --> --> --> yes 12

coding x 15
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Figure 1: Classification of variants; substitutions
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peptide rel.

in-frame --> --> yes 29
not in-frame --> --> yes 30

coding x 31
non-coding cryptic MAP 32

not in-frame --> --> cryptic MAP 33
stop lost ORF rescue? --> --> ?? 34

coding x 35
non-coding cryptic MAP 36

not in-frame --> --> yes 37
coding x 38

non-coding cryptic MAP 39
not in-frame --> --> yes 40

stop lost --> --> --> yes 41
yes --> yes 42
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not in-frame --> --> yes 44
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--> --> --> --> yes 45
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coding x 48
non-coding cryptic MAP 49

not in-frame --> --> cryptic MAP 50

yes --> yes 51

no --> x 52

yes --> yes 53

no --> x 54

coding x 55
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no --> x 61
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Figure 2: Classification of variants; insertions, deletions, duplications
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Day Date Time Procedure Duration Step Substep

-1 Montag 9:00 DC & T-Cell Stimulation 1a 1a Thaw PBMCs froom ImmuNEO#1 from 3 tome points 
28.10.19 1b Thaw PBMCs from healthy donor (JuTh untrans. 5Mio, 14.09.15)

2 in 15mL-falcon with AIM-V  (washing)
3 Spin 500g, 5min
4 Pour off medium
5 Resuspend in 1ml AIM-V (per 20 million cells)
6 Count cells and insert number in H7
7 Spin 500g, 5min and resuspend in appropriate amount of AIMV

11:30 8 add cytokines (freshly thawed)

1b 1 Distribute in wells (96 well plate, flat bottom):
(200 µl per well)

2 Add PBS to empty wells
3 Incubate @ 37°C

2 1 Dissolve peptides if needed in DMSO and prepare 1:10 dilutions in AIM V
see table "Labor_Tabellen_Peptides_ImmuNEO" for calculation

0 Dienstag 10:15 T-Cell activation 3 1 Make Master-Mixes of Medium (always thaw fresh cytokines when older than 2 weeks)
29.10.19 12:00 T-Cell stimulation 2 Add MasterMixes to well plate

3 Add Peptide to well plate
4 Add PMA/Iono to + wells, add DMSO 1:10 in AIM-V to - wells
5 Incubate @ 37°C

Coat ELISpot plate 4 1 Prepare Capture AB solution
2 Add to Elispot plate (50 µl per well)
3 Incubate @ 4°C for over night

1 Mittwoch Wash ELISpot plate 5 1 Discard coating AB (in the hood)
30.10.19 2 Wash 4x with PBS (200µl per well; leave it each time for 10 min)

3 Block with 150 µl/well TCM for 45-60 min @ 37°C

Prepare cells for ELISpot 6 1

2 Resuspend cells in 150 µl AIM-V 
3 Transfer cells to new 96 well-plate (round bottom, 200µl)
4 Spin 500g, 5min
5 Exchange AIM-V medium (100 µl)
6 Discard Block of ELISpot plate
7 Transfer cells to washed ELISpot plate
8 Add PBS to empty wells
9 Incubate @ 37°C

2 Donnerstag +24h Take cells to culture 7 1 Take 100 µl supernatants and freeze @ -20°C 
31.10.19 (from ELISpot plate) 2 Resuspend cells in 100 µl RPMI

3 Transfer cells to new 96 well-plate (round bottom)
4 Spin 500g, 5min
5 Exchange medium to TCM + IL7/15 (Culture medium)

 (take off a 120 µl and add 120 µl IL-7/15-TCM solution)
6 Incubate @ 37°C, Cultivation for one week

ELISpot development 8 1 Wash 6x with PBS + 0,05% Tween (gut ausklopfen dazwischen)
2 Add Antibody  (100 µl/well)
3 Incubate 2h @ RT
4 Wash 6x with PBS + 0,05% Tween (gut ausklopfen dazwischen)
5 Add Peroxidase complex (100 µl/well)
6 Incubate (1-)2h @ RT (dark!!!)

Prepare AEC solution 9 1 Prepare AEC Solution max. 15 min before use
2 Vortex or mix
3 Wash ELISpot plate 2x with PBS + 0,05% Tween (gut ausklopfen)
4 Wash ELISpot plate 2x with PBS 
5 Pipett AEC Solution (100 µl/well)

8

4 Samstag Addition of cytokines 10 Add IL-7/IL-15 to the cells (20µL/well)
02.11.19 (Prepare for DAY 5/7) Prepare solution for day 5/7

7 Dienstag Addition of cytokines 11 Add IL-7/IL-15 to the cells (20µL/well)
05.11.19 (Prepare for DAY 5/7) Prepare solution for day 5/7

Scan ELISPOT plate

8 Mittwoch Addition of cytokines 12 Add IL-7/IL-15 to the cells
06.11.19

10 Freitag Coat ELISpot plates 14 1 Prepare Capture AB solution
08.11.19 2 Add to Elispot plate (50 µl per well)

3 Incubate @ 4°C

12 Sonntag Change Cells to bigger plate 15a 1 Prepare 400 µl of TCM with IL-7/IL-15 per well in new 48 well plate
10.11.19 2 Take 200 µl of each well (good growing) to the new well plate

Addition of cytokines 15b Add 20 µl IL-7/IL-15 (feed solution) to the cells (bad growing)

7
Stop the reaction with abundant deionised water; remove the plastic and continue washing

Leave the plate dry out then wrap it in paper and store it for a couple of days

2h

(and transfer them to ELISPot 
plate)

Take 100 µl supernatants in 96-well plate (round bottom) and freeze @ -20°C (Parafilm)

(no longer than 15 min prior to 
use)

6 Incubate reaction in the dark until the positive control is visible (don't stop too late, spots 
need to be distinguishable
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13 Montag Count target cells 17 1 Take LCLs from Incubator 
11.11.19 2 spin down 500g, 5min

3 pour off medium and resuspend in 1ml AIM-V
4 Well plate (round bottom): 90µl Tryphanblue (0,4%) + 10µl cells
5 count: c = (N_cells/#quadrants)*dilution*10.000 [1/ml]
6 Fill in x Eppis for each pulsed peptide/ Eppi for wt-pulsed / Eppi for unpulsed

(Wash Target cells) 18 1 Add RPMI (1-2 ml)
2 Spin 500g, 5min
3 Take off supernatants and discard (vacuum pump)

Pulse Target cells 19 1 add respective Volume AIM-V and 1 µM peptide to pulsed cells/wt-pulsed 
(V_end = 200 µl for each)

2 spin down unpulsed cells, add respective volume Aim-V
3 Incubate @ 37 °C for 2h

Prepare ELISpot plate 20 1 Tilt to remove the antibody 
2 Wash 4x with PBS (200µl per well; leave it each time for 10 min)
3 Block with 150 µl/well TCM for 45-60 min @ 37°C

Count T-cells 21 1 Prepare wellplate (round bottom) with Tryphanblue for each well
in the according t-cell plate (5:1 dilution; Hood)

2 Resuspend each well and then take 10 µl to the corresp. well
3 count all 4 quadrants and insert in "Calc"

Wash T-cells 22 1 Prepare one Eppi for each Peptide-blood-condition with 1ml TCM each
2 Add V_cells from calc-sheet to each Epi
3 and replace the volume with the corresponding volume of fresh TCM
4 Spin 500g, 5min
5 Take off supernatants and discard (vacuum pump)

Resuspend cells of each Epi in TCM
Put T cell plates back into incubator

Prepare PMA/Iono 23 1 15 ml Falcon
2 add TCM and PMA and Ionomycin

Wash Target cells 2x 24 1 Add TCM (1-2 ml)
2 Spin 500g, 5min
3 Take off supernatants and discard (vacuum pump)
4 Repeat washing steps (1-3) 1x
5 Resuspend in TCM

Pipett T-cells 25 1 Tilt ELISpot plate
2 Pipett T-cells (100 µl) as designed (Vortex each EPI before)

Pipett Target cells 26 1 Pipett Target cells as designed (Vortex each time)
Pipett positve control 2 Pipett prepared PMA and Ionomycin solution (Step 23)
Pipett negative control 3 Pipett 100µl TCM in wells as designed

4 Incubate ELISpot plate @ 37 °C for 72h
14 Dienstag Addition of cytokines 1 Add IL-7/IL-15 to well plates

12.11.19

16 Donnerstag 28 1 Take 100 µl supernatants and freeze @ -20°C 
14.11.19

ELISpot development 29 1 Wash 6x with PBS + 0,05% Tween (gut ausklopfen dazwischen)
2 Add Antibody  (100 µl/well)
3 Incubate 2h @ RT
4 Wash 6x with PBS + 0,05% Tween (gut ausklopfen dazwischen)
5 Add Peroxidase complex (100 µl/well) (prepare in cell culture)
6 Incubate 1-2h @ RT (dark!!!)

Prepare AEC solution 30 1

2 Vortex or mix
3 Wash ELISpot plate 2x with PBS + 0,05% Tween (gut ausklopfen)
4 Wash ELISpot plate 2x with PBS 
5 Pipett AEC Solution (100 µl/well)

8

Tr
ag

et
 ce

lls
T 

ce
lls

T-
Ce

lls

Prepare AEC Solution max. 15 min before use (prepare in molecular lab)

Ta
rg

et
 C

el
ls

Leave the plate dry out then wrap it in paper and store it for a couple of days

6 Incubate reaction in the dark until the positive control is visible ~2-10 min (don't stop too 
late, spots need to be distinguishable)

7
Stop the reaction with abundant deionised water; remove the plastic and continue washing

Figure 1: Detailed protocol for acDC in vitro stimulation assay.
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Ethical vote

The study was approved by the institutional review boards (Ethics Commission of the
Medical Faculty of Technical University Munich (protocol 193/17S) and Ethics Com-
mittee of the Medical Faculty of Heidelberg University (protocol S-206/2011)) and all
patients provided written informed consent under these protocols. The study was con-
ducted in accordance with the Declaration of Helsinki. Blood collection of healthy donors
and the use of this material for the functional experiments in this study was approved by
the Ethics Commission of theMedical Faculty of Technical UniversityMunich (protocol
521/18 SAS) and all participants provided written informed consent under this protocol.
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