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Abstract

Time evolution of two dimensional quantum lattices are subject to the "curse of dimen-
sionality" and therefore numerical simulations are unable to reach large number of
time steps for even intermediate sized lattices. In this thesis a number of new methods
already applied on 1+1 dimensional networks of (almost) dual unitary gates [18] are
combined with a new class of rank 8 tensors, so called ternary unitary gates [25], to
grant new insights in 2+1 dimensional systems. While these gates allow for exact
computation of spatiotemporal correlation functions, non trivial results are limited to
a very small region of the network and the class of such gates is very limited. The
combination of these methods allows for the approximation of non trivial correlation
functions within the entire light pyramid and a larger number of gates, while allowing
the computation at arbitrary high times and lattice sizes. While the original 1+1D work
still had exponentially scaling cost, a new method of evaluation of this approximation
is shown here, that has polynomial runtime and memory requirements and therefore
allows for much larger number of time steps. Additionally, the conditions necessary
for the approximation error to be bound were further refined to be verifiable, even in
this higher dimensional setting. This new method is verified under a toy model using
random longitudinal fields, and generically generated gates. Additionally, the question
of an optimal contraction order for the original tensor network is investigated, in order
to verify the numeric results with the exact solutions.
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Zusammenfassung

Die exakte Zeitentwicklung zweidimensionaler Quantensysteme unterliegt dem so-
genannten "Curse of dimensionality", weshalb numerische Simulationen dieser auf
weniger Zeitschritte beschränkt sind. In dieser Arbeit werden eine Reihe von bekannten
Methoden, welche bereits erfolgreich in 1+1 dimensionalen System von gestörten dual
unitary Gates angewandt wurden [18], kombiniert mit einer neuen Klasse von Rang
8 Tensoren, so genannten ternary unitary gates [25]. Während die exakten Korrela-
tonsfunktionen für diese Art von Gattern bereits effizient gelöst wurde, sind nicht
triviale Resultate auf sehr spezifische Gitterpositionen beschränkt, und die Generalität
dieser Klasse ist ebenfalls stark beschränkt. Die Verallgemeinerung der Störungs-
theorie von 1+1 auf 2+1 dimensionale Systeme, erlaubt eine effiziente Näherung der
Korrelationsfunktion für gestörte ternary unitaries, welche in nicht trivialen Korrela-
tionsfunktionen innerhalb der gesamten Lichtpyramide resultiert, und eine größere
Menge an Gattern erlaubt. Die originale Methode, welche weiterhin exponentiell in
der Zeit wachsende Kosten aufwies, wurde weiter verbessert hin zu einer kubischen
Skalierung des Rechenaufwandes. Zusätzlich wurde die Bedingung, unter welcher
die Approximation hält, auf 2+1 Dimensionen erweitert und abgewandelt, um den
Rechenaufwand zu reduzieren. Die resultierende Methode wurde numerisch verifiziert,
zunächst unter Zuhilfenahme eines durch zufällige Magnetfelder reduzierten Systems,
und letztendlich für unmodifizierte ternary unitaries. Die optimale Kontraktionsrei-
henfolge des exakten Tensornetzes wird ebenfalls besprochen und implementiert, um
den Näherungsfehler numerisch zu überprüfen.
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1. Introduction

The simulation of quantum many-body systems with local interactions is a vital process
of understanding the dynamics of systems and Interaction models [2], where physical
implementations are hard to realize or can only be partly analyzed [32]. Especially
in situations, where finite size effects can change the results drastically [8], efficient
simulation methods for large system sizes are highly sought after. Especially the
combination of real-time evolution and systems of two or more dimensions typically
leads to exponentially high computational cost [11, 16]. However, in specific systems,
the calculation of two-point correlation function can be done efficiently, even though
the full time evolution would be exponentially expensive [5, 6].

The simulation of two-point, time-evolved correlation functions of local observables
can already give vital information about various macroscopical quantities, especially
when used in the context of linear response theory [1, 21]. While there are certain
systems with analytic solutions [13], these are far between and oftentimes of limited
generality. Recently, a new class of operators, called "dual unitary" [28], has been
defined. These gates, behaving unitarily in both time and spatial direction, allow
the construction of brickwork-type quantum circuits, that result in exactly solvable
two-point correlation functions [4]. This specific class of gates has sparked several
new developments [9, 15, 36], and have been further generalized to different types of
networks [10, 14, 24], with one of the most recent development being the perturbation
around this dual-unitary point [18], leading to efficient evaluation methods of corre-
lation functions in 1+1 dimensions while allowing for a broader class of gates to be
applied.
With the generalization of this concept to ternary unitary gates [25], a class of gates
showing unitary behaviour in time and both spatial dimensions, the exact calculation
of correlation functions for infinite states in 2+1 dimensions has been accomplished.
From this, further research is needed, to generalize the results achieved for dual unitary
circuits into higher dimensions. In this thesis, an efficient calculation algorithm for
two-point correlation functions for gates, that are perturbed around the ternary unitary
point, is shown and numerically verified.
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2. Problem Setting

2.1. Lattice structure and correlation functions

The goal of this thesis is to generalize the path sum formula for two-point correlation
functions from 1+1D [18] to 2+1D. In the original work, the correlation function was
shown as a sum over all possible paths, and further refined to only incorporate so-called
"skeleton" paths, which radically reduced computational complexity.

For this, we consider a two-dimensional system of qudits with side length L, arranged
in a tetragonal lattice. Each site is therefore representing a local quantum system with
Hilbert space H ' Cd, described by a basis of orthonormal state B = {|j〉 , j =

0, ..., d− 1}. The time evolution of an initial state is governed by an operator U , which
applies one discrete time step on the system, and consists of the local rank 8 tensor Ux,y

applied in a shifted manner:

U =
⊗

x,y odd

Ux,y
⊗

x,y even
Ux,y, (2.1)

with Ux,y acting on sites (x,y), (x+1,y), (x,y+1) and (x+1,y+1). Additionally, by assuming
translation invariance, namely Ux,y = U with the local gate U, um,n,o,p

i,j,k,l ∈ C, this can be
described diagrammatically as

(2.2)
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2. Problem Setting

with the gates U and U† being defined as:

U=

32

10

76

54

U†=

32

10

76

54 (2.3)

Additionally, these gates are assumed to fulfill the unitarity condition:

= =

(2.4)

Additionally, we assume spatial periodic boundary conditions, and we consider the
system to be in the infinite-temperature limit, resulting in tracing over the top and
bottom legs, essentially assuming periodic boundary conditions in time, denoted by:

...

(2.5)

2.2. Folded picture

Further on, we adopt the so-called "folded" representation of the tensor network [3], by
combining two rank 8 d-dimensional tensors U and U† to one rank 8 (d2)-dimensional
tensor W ∈ Rd8,d8

. This trick has been used in several successful applications [26,
6, 30], and allows us to represent this new gate in the basis of different operators
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2. Problem Setting

B f = {|#〉 , | j〉 , j = 1, ..., d2 − 1} being applied to the individual legs:

〈O1, O2, O3, O4|W |O5, O6, O7, O8〉 = tr[(O1⊗O2⊗O3⊗O4)U†(O5⊗O6⊗O7⊗O8)U].
(2.6)

O5 O6

O7 O8

O1

O3
O2

O4

(2.7)

It is straightforward to see if either the top four or bottom four operators are the
identity operator, the unitarity of the original gate U leads to the gates contracting. The
unitarity is therefore conserved in the relation:

W |Id, Id, Id, Id〉 = = = |Id, Id, Id, Id〉
(2.8)

Furthermore, we are in the limit of infinite temperature states, which translates to
applying the identity state on both the top and bottom sides of the network before the
folding. The representation of a time-evolved operator O acting on this initial state
on site (x, y) is as follows (for clarity, only one time step and only a small number of
tensors is shown):

4



2. Problem Setting

1
dL−1 Ox,y(t) =

Ox,y

=>

Ox,y

= |Ox,y(t)〉

(2.9)
To get the correlation function 〈O1

x1,y1
|O2

x2,y2
〉, one needs to apply the second operator

on the corresponding position at the top of the diagram, and Id operators everywhere
else. For simplicity, we can assume the position of the bottom operator from now on to
be (0,0), since any other position corresponds to a shift in the coordinates of the top
operators, or a rotation of the system, and denote the correlation function 〈O1

0,0|O2
x2,y2
〉

as C(x, y, T)O1,O2
Assuming now, that we are in the thermodynamic limit of L-|x|>T

and L-|y|>T, and using the Unitality relation, this leads to a simplified structure of a
(possibly shifted) double pyramid:
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2. Problem Setting

Ox2,y2

Ox1,y1

=〈Ox1,y1 |Ox2,y2(t)〉

(2.10)

To allow for an easier description of the directions, the whole network gets turned by
45◦ around the time axis:

−1,−1

−1, 0

−1, 1

−1, 2

0,−1

0, 0

0, 1

0, 2

1,−1

1, 0

1, 1

1, 2

2,−1

2, 0

2, 1

2, 2

=>
−2, 0

−1, 1

0, 2

1, 3

−1,−1

0, 0

1, 1

2, 2

0,−2

1,−1

2, 0

3, 1

1,−3

2,−2

3,−1

4, 0

(2.11)

It’s important to note, that this is a top-down view on one slice in time, where each of
the green tensors has 8 legs, 4 upwards and 4 downwards, that overlap in this view.
The coordinates of the individual sites change from (x,y) to (x+y,y-x). In this picture,
each tensor leg goes either up, down, left or right, and applying one tensor always
goes one step forward in time. Other than in the 1+1 dimensional case, where time and
space directions were combined, here we combine the two space dimensions, and time
is untouched, still describing the number of operations that have to be applied.
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2. Problem Setting

2.3. Ternary unitary gates

A special case are so-called ternary unitary gates, which expand the unitarity relation
into all 3 directions and are from here marked in orange. This threefold unitality
relation can also be directly translated into the folded picture:

= =

(2.12)

= , =

(2.13)

It has been shown, that this kind of gate only produces finite correlation functions for
operators directly on the light beam of the first operator. This result can be explained
intuitively in the folded picture:

=〈Ox1,y1 |Ox2,y2(t)〉

Ox2,y2

Ox1,y1

=

Ox2,y2

Ox1,y1

=

(2.14)
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2. Problem Setting

The Identity operators are again, for visibility, not shown everywhere but only at the top
and bottom, and where the ternary unitality relation is used. By repeatedly applying it,
the entire network starts collapsing from the left and right, until only traces over the
operators are left, which are zero for all traceless operators. The only case where this is
not the case is if there are no gates that have 4 identities applied on any sideward face,
i.e. if the second operator is exactly on the firsts lightray, in which case the correlation
function is easily calculated by 〈Ox′,y′ |Ox,y(t)〉 = 〈Ox′,y′ |WT |Ox,y(0)〉. While this result
allows for very fast calculation of these functions, it is of limited interest. Instead, we
now want to further expand this on systems that have non-trivial correlations inside
the light pyramid, by looking at two different ways of breaking this relation:

1. low density, unit strength The system mainly consists of ternary unitary gates,
with only individual sites being exchanged for non-ternary unitary ones. There is
no need for a regular pattern, it is only assumed that the distance between two
perturbed sites is large. This case is mainly interesting for the argument of the
later approximations.

2. unit density, low strength The system consists only of non-ternary unitary, how-
ever, the parameter that describes the strength of the perturbation on each gate is
assumed to be small. This case shows non-trivial correlation functions inside the
entire light pyramid.

2.4. Gate generation

General Gates

While the generation of general ternary unitary gates is still under investigation, there
are ways of generating a subset of them from dual unitaries. From now we focus on the
smallest possible set of gates, with dimension 2 on each leg, where a general unitary
form for rank 4 tensors (two site gates) is known [19, 37]:

U = eiφ(u1 ⊗ u2)V[J](u†
3 ⊗ u†

4), (2.15)

with
V[J1, J2, J3] = exp[i(J1σx ⊗ σx + J2σy ⊗ σy + J3σz ⊗ σz)] (2.16)

ui = ei(αi/2)σz
ei(βi/2)σy

ei(γi/2)σz
. (2.17)

These gates, originally having 16 parameters, are dual unitary for J1=J2= π
2 . By instead

choosing J1=J2= π
2 + η, we get a parameter controlling the strength of the perturbation

around the dual unitary and later ternary unitary point. These gates can be combined in
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2. Problem Setting

two different fashions to generate (almost) ternary unitary gates. Either by generating
4 such dual unitaries, and "stacking" them to each connect 2 neighboring sites, or using
only 2 of these and connecting 2 diagonally neighboring sites each, as seen in figure 2.1,
creating a "crossed" structure. For the crossed structure, the two dual unitaries never
connect, and the number of parameters of the folded gate is quite straightforward.
With each gate having 14 parameters, but the phase canceling out in the folded picture,
we gain a total of 26 parameters plus the parameter for breaking the ternary unitarity η.
For the stacked structure, 4 dual unitaries are originally constructed, however, several
single site gates cancel out, as seen in figure 2.1. By only allowing 3 rotational gates
within two site gates, this leads to a final number of 40 free parameters. We further
denote the folded gate with a perturbation η as Wη , with the exception of Wη=0 = Wtu

being the ternary unitary folded gate.

Reduced Gates

Following the original 1+1D idea, a reduced case is introduced to investigate the validity
of the generalization to 2+1D, as well as allowing for a more intuitive description of the
methods used later. The corresponding gates are based on the more general, stacked,
exactly ternary unitary gate U described earlier (J1=J2= π

2 ):

1. A magnetic field of variable strength is applied on each site, which corresponds
to the gate U being modified as

Ũ = (eφ1σz ⊗ eφ2σz ⊗ eφ3σz ⊗ eφ4σz) ·U · (eφ5σz ⊗ eφ6σz ⊗ eφ7σz ⊗ eφ8σz) (2.18)

2. The correlation function is averaged with respect to each magnetic field strength
individually. This corresponds to applying the single site Haar-measure of the
U(1) group and results in the projection of the folded gate Wtu to the subspace
spanned by the Identity and Sz operator, leading to the reduced folded gate w.

Intuitively, this can be understood as only the Identity and Sz operators surviving the
average, and all other elements of the folded gate to be zero. This folded reduced gate
has dimension 2 on each leg, acting non trivially only in the basis B = {|#〉 , | 〉}, and
therefore allows for benchmarking on larger system sizes, and an on/off interpretation
on the legs, either having the Identity or Sz operator applied, leading to only one
correlation function being non-zero: C(x, y, T)σz,σz = C(x, y, T). As shown later, while
this Haar measure does simplify the problem massively, it does not result in trivial
results for the correlation functions. Of this reduced folded gate, only 32 elements are
needed to be zero for the ternary unitality condition to hold. Instead of modifying the
parameters J1, J2 as in the general case, we add a perturbation ε · wpert after folding

9



2. Problem Setting

the gate, giving more precise control over the strength of the perturbation. The gate
wpert has non-zero elements only for exactly those 32 elements. Additionally, due to
the commutation relation [ei(α/2)σz

], σz] = 0, the outer single site z rotations also vanish,
leading to only 36 parameters.

= =>

Haar
measure
over φi

Figure 2.1.: Left: Construction of stacked ternary-unitary gate U out of dual-unitary
ones.
Middle: Individual one- and two-site operators for general ternary-unitary
gates, with the σz rotation gates being marked in black and σy rotations in
grey.
Right: Construction for reduced gates, with the outer 8 ei(αi/2)σz

operations
vanishing in the average.

=

Figure 2.2.: Left: Construction of crossed ternary-unitary gate U out of dual-unitary
ones.
Right: Individual one- and two-site operators for general ternary-unitary
gates.

10



3. Strategy and Conditions

3.1. Path sum representation

From now on we focus on the minimal version by looking at two-dimensional wires
and the reduced gates. This means that at each leg of the reduced gate w only 2 states
can be applied: The identity or Sz state. The correlation function C(x,y,T) can then be
calculated by inserting the identity in form of |Sz〉 〈Sz|+ |Id〉 〈Id|= | 〉 〈 |+ |#〉 〈#|
at each leg. This returns a large number of 2V(x,y,T) terms, where V(x, y, T) is the
volume of the light pyramid spanned by the operators. However, a significant portion
of these have zero contribution. In this representation each element of the folded gate
stands for one piece, connecting Sz operators on the tensor legs with each other and
the correlation function is simply the sum over all paths. These pieces can be grouped
into different types:

bare propagator turn curve merge split complex

(3.1)
To rule out all the paths that have zero contribution, a set of "rules" can be formed for
these paths:

1. The two projectors in the inserted identity have no overlap => "Sz legs" must
connect to "Sz legs"

2. Unitality leads to zeros in the first row and column => no turns in time(zero Sz
states connecting upwards) are allowed

3. Expansion in ε => all turns, curves and other elements that have zero Sz states on
one sidewards face are suppressed with ε

11



3. Strategy and Conditions

Intuitively, this simply means we only need to look at paths that connect the two
applied operators, without having any dead ends or turns in time:

C(4,2,2)= + + +...

(3.2)

3.2. Skeleton Paths simplification

When summing over all these paths, one essentially does the contraction of the network
sequentially, leading to the same result, with worse runtime but less memory required.
In order to improve the actual runtime, we further improve this analogously to the 1+1D
case. We therefore approximate the result with so-called "skeleton paths", meaning
all paths with constant width of one. For these paths, only 16 elements are relevant,
according to their in- and output directions in the rotated picture:

output/input ` r b t
r b1,1 ε · b2,1 ε · b3,1 ε · b4,1

` ε · b1,2 b2,2 ε · b3,2 ε · b4,2

t ε · b1,3 ε · b2,3 b3,3 ε · b4,3

b ε · b1,4 ε · b2,4 ε · b3,4 b4,4

Table 3.1.: Skeleton path elements of reduced gates to allow for an easier description
of skeleton paths. For ternary unitary gates that are perturbed with an
additional gate, all turns and curves are suppressed by a factor of ε

The 4 bare propagators are on the diagonal and are the dominant part, while the 4
turn and 8 curve weights are each suppressed by ε and set to zero for the pure ternary
unitary case. While this can be exact in a handful of cases, it is a good approximation
for a larger number of cases, namely whenever the more complex paths are suppressed
due to smaller merge or split weights. While we keep the exact conditions for this

12



3. Strategy and Conditions

to hold for a later section, the intuitive explanation for the low density, unit strength
is as follows: When constructing the network, only a handful of gates will be the
non-ternary unitary kind. The network can now be separated into multiple layers,
parallel to one of the faces of the pyramid. While the paths can still take a large number
of complex shapes, they are limited to straight propagation between layers involving
perturbed gates. Within those layers, several different starts can be constructed. Under
the assumption, that the density is low and we are far away from the opposite face
of the pyramid (in this case large x’), the distance between two perturbed layers
becomes large. One can now construct the operator of one such layer, and calculate
its eigenvectors and eigenvalues, and only the eigenvector with the highest eigenvalue
will give the dominant contribution. To visualize this, the skeleton contribution to the
correlation function for such a locally disturbed ternary unitary network with y’=0 can
be expressed as:

C(4,2,2)= = +

(3.3)
This figure is simplifying the underlying concepts drastically to keep the visualization
clearly structured. For larger systems, the number of skeleton and non skeleton paths
grows exponentially, and an important assumption is that the distance between the
perturbed gates is large.
The argument for the unit density, low strength case is highly similar: For each order
n in the perturbation expansion, n turns are scattered across the entire path. The
majority of terms will still have large distances between these, and the argument still
holds, assuming large distances between the first and second operator. However, the
calculation becomes even more complicated: Instead of having fixed points in the
network, where turns/curves are allowed, they can be anywhere, but in each order n
of ε only n of them are allowed. The question of how to evaluate these large numbers
of terms is addressed later.

13



3. Strategy and Conditions

3.2.1. Exact cases

While not necessarily of physical interest, there are cases where the skeleton results
are exact. These cases can still be useful for understanding the basic idea, as well as
verifying the correctness of the skeleton computation compared to a full contraction of
the network. These can be put into two groups:

1. Reduced curves: If the ternary unitary elements are not all zero, but in each of
the two directions (up/down or left/right) there is only one non-zero curve or
turn element, this allows the correlation function to be non-trivial on a number
of coordinates within the light pyramid, but not all. This can be explained by
the conditions for allowed paths: In order to have no open ends, only 3 different
direction changes are allowed for each direction. By having zero weights for all 3
of these turns in 2 of the directions, the paths are "locked in" after a maximum of
2 turns, not allowing the formation of any complex paths.

2. No merge or split weights: If either all merge or all split weights are zero. While
this is a very straightforward reason as to why only skeleton diagrams can
contribute, this interestingly is a case independent of the ternary unitary attribute.

3.3. Conditions for bound approximation error

The skeleton path approximation does not always give the dominant contribution to
the correlation function, in fact, multiple specific requirements must be fulfilled for
this to be the case. In the case of a low density of perturbed gates, one can assume
several layers of operators between each perturbed gate. These layers are parallel to
one of the light pyramid’s faces, and are applied repeatedly to gain the correlation
functions. Assuming a large distance between two of these layers, only the eigenvector
with leading eigenvalue will give a dominant contribution. We therefore group the
eigenvectors into two groups: Eigenvector of support 1, i.e. of the form |#...# #...#〉,
that have a non-identity operator acting on only one single site, and those of support
greater than one, acting on at least two sites.
Furthermore, the exact structure of these transfer operators must be defined. The faces
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3. Strategy and Conditions

of the pyramid are triangular networks of folded gates:

(3.4)

However, opposite sides have opposite orientations, and each layer in between changes
from one shape to the other. In order to guarantee all kinds of these shapes, this triangle
gets completed to a square lattice of folded gates. Additionally, these layers are applied
in a shifted manner, meaning that a state acting on two sites on one gate in one layer,
outputs on two sites on two different gates on the next. Keeping this in mind, and
furthermore requiring all paths to start in one common location and converge together
again, we can limit our investigation of the transfer operator to parallel paths, meaning
reducing the two open directions to one by applying the identity state on one input
and output leg. The resulting operator with side lengths j and k is further regarded to
as Al,n

j,k ∈ Rdj·k,dj·k
, with the upper index l and n identifying the states applied on the

right and left side in a binary representation {l1, l2, ...}2, is defined as:

Al,n
j,k :=

dk

∑
m1,...,mj=1

Al,m1
1,k ⊗ An1,m2

1,k ⊗ ...⊗ A
mj,n
1,k (3.5)

Al,n
1,k :=

d

∑
m1,...,mk=1

W l2,m1,n2
l1,0,n1

⊗W l4,m2,n4
l3,0,n3

⊗ ... (3.6)

W l2,m1,n2
l1,0,n1

:= 〈l1|0 〈0|2 〈n1|4 W |l2〉4 |m1〉5 |n2〉7 (3.7)
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3. Strategy and Conditions

A00
j,k = A3,9

j,k =

(3.8)
With 4 different orientations of the operator, and 2 propagation directions each, there
are 8 operators to be investigated in total, A00

j,k − H00
j,k.

By defining the projectors of the subspaces of the pure identity state and the subspaces
of eigenvectors of support 1

P0
j,k := |#〉⊗j·k 〈#|⊗j·k (3.9)

Px,y
j,k := |#〉⊗y·k+x | 〉 |#〉⊗j·k−y·k+x 〈#|⊗y·k+x 〈 | 〈#|⊗j·k−y·k+x (3.10)

we can conclude
Property 1 a): The operator A00

j,k in the reduced case takes the following block diagonal
form:

A00
j,k = P0

j,k + b3,3

x=j,y=k

∑
x=1,y=1

Px,y
j,k + rj,k, (3.11)

Property 1 b): The operator A00
j,k in the general case takes the following block diagonal

form:

A00
j,k = P0

j,k +
x=j,y=k,l=3

∑
x=1,y=1,l=1

λl P
x,y,l
j,k + rj,k, (3.12)

with λl and vl being the eigenvalues of eigenvectors of the gate 〈###|W |###〉 and

Px,y,l
j,k := |#〉⊗y·k+x |vl〉 |#〉⊗j·k−y·k+x 〈#|⊗y·k+x 〈vl | 〈#|⊗j·k−y·k+x (3.13)

This property intuitively splits the reduced transfer operator into 3 parts, the identity
projector, the projector of the subspace of eigenvectors of support 1, and the rest acting
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3. Strategy and Conditions

only on eigenvectors of support more than 1. Therefore, we can conclude

Property 2: Under the assumption, that

1. The minimal distance µ1 between two layers of perturbed gates is large

2. The norm of the rest term |rj,k| can be bound by some value r<b3,3 or in the
general case r<max(λl)

We can substitute A00
j,k with P0

j,k + b3,3 ∑
x=j,y=k
x=1,y=1 Px,y

j,k , and the relative error R(x,y,T)=

|C(x,y,T)−Csk(x,y,T)
C(x,y,T) | is bound by O(( r

b3,3
)µ1) or in the general case O(( r

max(λl)
)µ1). The

same reasoning works for each of the other 7 planar operators B00
j,k − H00

j,k and their
respective spacing between perturbed gates. This substitution is equivalent to only
taking skeleton diagrams into consideration.

The straightforward way of binding this norm, constructing the operator A00
j,k from the

folded gate W, removing the eigenvectors of support zero and one, and calculating the
leftover norm or eigenspectrum, is unfortunately not viable. Due to the 2D structure,
the resulting operator with side lengths j is a 2j2 × 2j2 matrix in the reduced case
(4j2 × 4j2 in the general case), resulting in a runtime of O(2j2), and even for a side
length of just 4, already 32 GB of memory are required assuming 64-bit double precision
floating point numbers. Therefore, a more efficient method is needed.

3.3.1. Condition 1: planar propagators

Property 3: The operator A00
j,k also takes the following alternative block diagonal form:

A00
j,k = P0

j,k +
m=2k,x=j

∑
m=1,x=1

ΛmPx,m
j,k + Rj,k, (3.14)

where Λm and Vm are the eigenvalues and eigenvectors of A00
1,k, and

Px,m
j,k := |#〉⊗x |Vm〉 |#〉⊗k−2 〈#|⊗x 〈Vm| 〈#|⊗k−2 . (3.15)

This divides the operator A00
j,k into 3 parts: The pure identity eigenstate, a number

of complex eigenstates that are limited to a single vertical slice of the operator, and a
rest that is acting on an orthogonal subspace. With this, we can bind the eigenvalues of
all eigenvectors that are acting on more than one slice by binding the norm of the last
term |Rj,k| = τj,k, and requiring it to be smaller than the bare propagator weight with
the recursive condition:
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3. Strategy and Conditions

Condition 1:

τj,k ≤ max(τj−1,k, |R00
1,k| · |τ∗j,k|+

2k

∑
m
|A0m

1,k| · |Am0
j−1,k|) ≤ b3,3

τ∗j,k ≤ max(τ∗j−1,k, |R00
1,k| · |A00

j−1,k|+
2k

∑
m
|A0m

1,k| · |Am0
j−1,k|)

(3.16)

Proof : To bind the norm, we first recursively define the planar propagator A00
j,k as

followed:

A00
j,k = A00

1,k ⊗ A00
j−1,k +

2k

∑
m=1

A0m
1,k ⊗ Am0

j−1,k (3.17)

This corresponds to inserting the identity in the shape of ∑2k

m=0 |m〉 〈m|, where the left
term is simply the inserted identity state. The right turn includes a linear slice and
another planar structure with reduced length, where m is the inserted state in binary
notation. The resulting planer operator with arbitrary states applied to its left side can
be separated as well:

Aln
j,k = Al0

1,k ⊗ A0n
j−1,k +

2k

∑
m=1

Alm
1,k ⊗ Amn

j−1,k (3.18)

Additionally, the shape of some of those slices can be shown to be:

A00
1,k =

(
1 0
0 R00

1,k

)
A0m

1,k =

(
0 0
0 R0m

1,k

)
Am

1,km0 =

(
0 0
0 Rm0

1,k

)
(3.19)

It is now important to differentiate between the two terms on the right side:

1. The state with the inserted identity has no "connections" between the two parts,
both can however contain whatever projectors limited to their subspace. The
only parts that contribute to the first two terms of equation 3.18 are the identity
projector in either of the two structures or both. Intuitively, this means if no
operators are applied in the slice, one simply needs to look on the right side, if
no operators are applied on the right side, the left side falls into the subspace of
the left two terms of equation 3.18.

2. The states with inserted operators in between definitely have operators applied
on both sides and therefore fall into the subspace of the rest term defined in
equation 3.18.
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3. Strategy and Conditions

By using these separations into subspaces, and in a second step applying the triangle
inequality on the expansion of the propagator, the norm of rj,k can be bound by:

τj,k := |Rj,k| = max(τj−1,k, |R00
1,k ⊗ (A00

j−1,k − P00
j−1,k) +

2k

∑
m

A0m
1,k ⊗ Am0

j−1,k|)

≤ max(τj−1,k, |R00
1,k| · |(A00

j−1,k − P00
j−1,k)|+

2k

∑
m
|A0m

1,k| · |Am0
j−1,k|)

= max(τj−1,k, |R00
1,k| · |τ∗j,k|+

2k

∑
m
|A0m

1,k| · |Am0
j−1,k|),

(3.20)

which involves the new norm τ∗j,k, defined as the norm of the shortened operator
without the identity projector. Using the same inequality again leads to

τ∗j,k := |(A00
j−1,k − P00

j−1,k)| =max(τ∗j−1,k, |R00
1,k ⊗ A00

j−1,k +
2k

∑
m

A0m
1,k ⊗ Am0

j−1,k)

≤ max(τ∗j−1,k, |R00
1,k| · |A00

j−1,k|+
2k

∑
m
|A0m

1,k| · |Am0
j−1,k|)

(3.21)

It is clear to see that τ1,k = 0 and τ∗1,k = |R00
1,k|, which allows to recursively solve for an

upper bound of τj,k to limit the highest eigenvalue of any eigenvector of A00
j−1,k that acts

on more than one slice, concluding the proof.

While the direct approach required the norm or eigenvalue decomposition of an
operator of size 2j·k× 2j·k, this requires the norm of 2j operators of size 2j× 2j, drastically
reducing the amount of memory and time required.
The implementation of this can be described in five steps:

1. Construct chains of operators for all 2j possible states applied on each side (It is
crucial to apply the states on each gate before combining them to the chain, to
reduce computational overhead)

2. Calculate the norm of each chain

3. Calculate the norm of blocks of length up to j-1, as required for the calculation of
τj,k

4. Start recursively calculating τ∗j,k, τ∗j−1,k, ...

5. Calculate recursively τj,k, τj−1,k, ...
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3. Strategy and Conditions

It should be noted, that this method can be used for both reduced and generic gates.
The only difference is, in the generic gate, the parameter to compare the rest norm to is
not simply the weight of the Sz propagator, but the highest eigenvalue of the gate:

=


1 0 0 0
0 b1,1

4,4 b1,2
4,4 b1,3

4,4
0 b2,1

4,4 b2,2
4,4 b2,3

4,4
0 b3,1

4,4 b3,2
4,4 b3,3

4,4


(3.22)

However, this can only be done for a finite-sized layer. While this does not give a
rigorous condition, under which the skeleton paths will be dominant for arbitrary-sized
layers, when analyzing the norm of the rest for various sizes, as done in figure 3.1,
strong evidence is shown that there are gates for which this holds even for arbitrarily
large structures. Assuming this, one can expect to see 3 different classes of gates:

1. Gates, where the skeleton diagrams dominate for arbitrarily large structures. In
this case, the bound should quickly stop growing with size and stay below the
bare propagator.

2. Gates, where there is an eigenvector with support larger than one, with the
highest eigenvalue, yet only a limited number of those. The bound grows slowly,
but surpasses the bare propagator eigenvalue.

3. Gates, where some of the split and merge weights are high enough, that eigenval-
ues of vectors with large support keep growing, resulting in the bound to grow
rapidly.

In figure 3.1, the upper bound for the rest norm for each of those 8 layers of growing
size is shown for gates 1-4. For the first 3 gates, the condition holds, leading to an
almost immediate stop of growth. For the last gate, this condition is broken and the rest
norm grows rapidly. It is important to note, that while the bound can grow arbitrarily
large, the norm itself is limited to values smaller than one.
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Figure 3.1.: Growth of the upper bound of the rest norm τj,k as described in 3.20 for
gates 1-4 with regard to the side length of the operator layer. As expected,
for gates 1-3 the bound stagnates quickly and stays under the corresponding
eigenvalue of support 1 (shown in dashed lines). For gate 4, the terms
of the bound add up rapidly, meaning the correlation of this gate is not
captured by the skeleton approximation.

3.3.2. Condition 2: Linear propagators

What is left to find is a bound of the eigenvalues of support larger than 1, that are
limited to one slice of the propagator operator. For this, linear chains of the gates must
be constructed, and all but on propagation directions are reduced with identity states
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3. Strategy and Conditions

applied:

(3.23)

This propagator A##1,k , with n being the length of the chain, i and j determining the
direction of the structure and the open legs, and the upper index describing the states
applied at the end, can for all directions be split apart into orthogonal subspaces again:
Property 4: In the reduced case, the propagator A##1,k takes the following block diagonal
form:

A##1,k = P0
1,k + b3,3

y=k

∑
y=1

Px,y
1,k + r1,k, (3.24)

which is merely the reduction of condition 1 for a grid of width 1.
This propagator of length n can be described by propagators of length n-1 with the

following relation:

P##n,i,j = P##n−1,i,j ⊗
(

1 0
0 a

)
+ P# n−1,i,j ⊗

(
0 0
0 b

)
(3.25)

P# n,i,j = P# n−1,i,j ⊗
(

c d
e g

)
+ P##n−1,i,j ⊗

(
0 0
0 f

)
(3.26)

This is, in fact, the exact same structure as in the 1+1D case. Additionally, the elements
of the tensor were renamed to recover the same nomenclature as used in the 1+1D case
(b3,3 = a) and depend on both the direction of the propagator and the open direction.
With this, one can derive
Condition 2 a):

|r1,k| ≤ a2 +
|b f |

1− α
for a2 +

|b f |
1− α

< |a| (3.27)

This allows us to quickly check, whether condition 2 holds for a reduced gate, by
applying this condition on the 12 possible linear propagators.
For generic gates, this recursive relation becomes more complicated, since each propa-
gator of length n needs 4 propagators of length n-1 to be accurately described. Instead,
the Condition there is simply
Condition 2 b): The next to leading eigenvalue of A##1,k has eigenvectors of support one
and has a finite gap to the first eigenvalue with eigenvector of support higher than one.
In order to investigate this property for a given length k, there is a number of ways:
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3. Strategy and Conditions

1. Evaluate the eigendecomposition of A##1,k and compare the dominant eigenvec-
tors.

2. Compute the norm of the operator A##1,k − P0
1,k −∑

x=1,y=k,l=3
x=1,y=1,l=1 λl P

x,y,l
1,k , which acts

as an upper bound of all eigenvalues with eigenvector of support more than one.

3. Use the power method to calculate the dominant eigenvector.

This shows a similar result as shown in figure 3.1, namely either rapidly growing
eigenvalues of support higher than one, or barely any growth.

This leads to the final result:
Property 5: If both Condition 1 and either Condition 2a) or 2b) are fulfilled (depending on
the kind of gate), the rest norm is bound to be smaller than the bare propagator/highest
eigenvalue with eigenvector of support 1, and the error of the skeleton diagram
approximation if bound by O(( r

b3,3
)µ1) or respectively in the general case O(( r

max(λl)
)µ1).

3.3.3. Simplified case with path-picture

empty dead-end bare propagator curve split

(3.28)
The total propagator layer can also be described as the sum over all different kinds of
paths through it, however with far fewer restrictions. To visualize this, one can imagine
it as a 2D layer of tensors, each connecting to 4 neighbors, and a connection orthogonal
to the drawing layer. With the addition of these two extra legs, all kinds of elements
are allowed: Dead ends, lines, all 4 curves, splits and merges. With all curves being
allowed, there is no clear time direction anymore, so the differentiation between splits
and merges is redundant. With the triangle equation, one can get an upper bound of
the norm of this propagator by drawing out all different paths, and by summing over
the individual paths. To get the weights, however, one must instead take the norm of
the matrices generated by applying the 4 states inside the layer. With the addition of
dead ends, this leads to a massive amount of contributions. While the sum over all
these paths does give an upper bound for the norm of the rest, this bound is not very
tight and rarely helpful. To further refine and construct a toy model for this picture, to
help understand how these complex eigenvectors can have relevant eigenvalues even
though all individual elements are small, it can be reduced by assuming all merge and
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3. Strategy and Conditions

splits weights within one layer to be zero. This leads to only the bare propagators and
dead ends still existing. This leads to 8 of the terms in condition 1 being automatically
fulfilled, and condition 2 now completely vanishes. This situation can be interpreted as
followed:
The paths are not allowed to split within one of the 8 layer-propagators defined
earlier. However, they can split along the 2 main diagonals of the system, and with a
combination of curves and multiple of these splits and merges, there are still a number
of complex thickened paths the full contraction considers. When manually constructing
such gates, and calculating their correlation function and relative error, the results
showed still a complex non-trivial correlation function and finite errors within the
entire light pyramid.
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4. Calculation

In order to calculate the skeleton correlation function, an efficient evaluation of all
skeleton paths must be found. We first focus on the case of the reduced gate w, for
which we show two different approaches of evaluation, each with its own advantages.
For readability, we focus the discussion here on the case of density one, but small
perturbation strength ε, however, both approaches can be applied to the small density
case as well. For the generic gate W, the simple path sums picture breaks down, which
leads to a more complex evaluation and only one viable approach.

4.1. Reduced Gates

4.1.1. Analytic order expansion approach

The total number of skeleton diagrams grows exponentially with T, and its individual
terms are difficult to structure. We begin by constructing all possible strings of length
T of turn/propagator/curve weights as described in 3.1. The maximum number of
curves/turns is restricted by the width b of the resulting light pyramid. We can order
these by their number, position and direction of curves/turns:

C(x′, y′, T) =
w

∑
n=0

∑
l1,...,ln

∑
d1,...,dn−1

[bl1
d1,d1

bd1,d2 bl2,l2
d2,d2

...bdn−1,dn bln
dn,dn
· εn] (4.1)

with the following constraints acting on l1, ..., ln and d1, ..., dn−1:

∑
n

δdn,1 · ln − δdn,2 · ln = x′, ∑
n

δdn,3 · ln − δdn,4 · ln = y′, ∀i, j < nmax : di 6= dj (4.2)

In order to gain an analytic solution to evaluate this, we want to develop the correlation
function in orders of ε and cut off at some order nmax:

C(x′, y′, T) =
nmax

∑
n=0

∑
l1,...,ln

∑
d1,...,dn−1

[bl1
d1,d1

bd1,d2 bl2,l2
d2,d2

...bdn−1,dn bln
dn,dn
· εn] + Rnmax(x′, y′, T)

= Cnmax(x′, y′, T) + Rnmax(x′, y′, T)

(4.3)
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4. Calculation

To reduce the number of terms and gain an explicit sum instead of a large sum with
certain conditions applied, all terms with the same curves and turns (without disre-
garding their order) are grouped together, and evaluated by a number of combinatorial
factors and a system of linear equations:

C(x′, y′, T)nmax =
nmax

∑
n=0

4

∑
j1=1...jn−1=1

jk 6=jk+1

∑
l

εn · bj0,j1 ...bjn−1,jn · bα
1,1 · b

β
2,2 · b

γ
3,3 · b

δ
4,4

·
(

α + nr

nr

)(
β + nl − 1

nl − 1

)(
γ + nt − 1

nt − 1

)(
δ + nb − 1

nb − 1

) (4.4)

This n-th order approximation is the result of the following reordering steps:

1. construct all combinations of curves with length n that have the right input and
output direction(depending on the x and y coordinate of operators). For matching
directions this returns 3

4 (3
n−1 − (−1)n−1) in n-th order, and 1

4 (3
n − (−1)n) for

non matching ones.

2. multiply each term by bα
1,1 · b

β
2,2 · b

γ
3,3 · bδ

4,4 with dx and dy being the relative distance
after the curves have been applied:

a) α− β = dx
2

b) γ− δ =
dy
2

c) α + β + γ + δ = T − n

d) If any of the 4 propagators are not allowed by the curve structure, set its
exponent to zero. Otherwise, if all 4 are allowed (starting from n=3) add a
sum over l = α + β

3. multiply each term by (α+nr
nr

)(β+nl−1
nl−1 )(γ+nt−1

nt−1 )(δ+nb−1
nb−1 ), with:

a) (n
k) =


n!

k!(n−k)! if 0 ≤ k ≤ n

1 if k=n

0 else

b) nr is the number of turns outputting to the right etc.

Given the exponentially growing number of terms in each order, it is only viable to
use the first couple of orders. On the other hand, similar to the 1+1D case needing the
first two terms to cover the whole light cone, in 2+1D the first 4 orders are necessary
to cover the entire light pyramid, which is why we show these explicitly for even x and y:
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1. 0th order:

a) δx,Tδy,TbT
1,1

2. 2nd order:

a) δx,yb1,2b2,1 · b
0.5(T−2+ x′

2 )
1,1 · b0.5(T−2− x′

2 )
1,1 (0.5(T+ x′

2 )
1 )

b) δy,Tb1,3b3,1 · b
x′−2

2
1,1 · b

y′−2
2

3,3 (0.5·x′
1 )

c) δx,Tb1,4b4,1 · b
x′−2

2
1,1 · b

−y′−2
2

4,4 (0.5·x′
1 )

3. 3rd order:

a) b1,2b2,3b3,1 · b
0.5(T−3+ x′

2 )
1,1 · b0.5(T−3− x′

2 )
2,2 · b

y′−2
2

3,3 (0.5(T−1+ x′
2 )

1 )

b) b1,2b2,4b4,1 · b
0.5(T−3+ x′

2 )
1,1 · b0.5(T−3− x′

2 )
2,2 · b

−y′−2
2

4,4 (0.5(T−1+ x′
2 )

1 )

c) b1,3b3,2b2,1 · b
0.5(T−3+ x′

2 )
1,1 · b0.5(T−3− x′

2 )
2,2 · b

y′−2
2

3,3 (0.5(T−1+ x′
2 )

1 )

d) b1,3b3,4b4,1 · b
x′−2

2
1,1 · b

0.5(T−4+ y′
2 )

3,3 · b0.5(T−4− y′
2 )

4,4 (0.5·x′
1 )

e) b1,4b4,2b2,1 · b
0.5(T−3+ x′

2 )
1,1 · b0.5(T−3− x′

2 )
2,2 · b

−y′−2
2

4,4 (0.5(T−1+ x′
2 )

1 )

f) b1,4b4,3b3,1 · b
x′−2

2
1,1 · b

0.5(T−4+ y′
2 )

3,3 · b0.5(T−4− y′
2 )

4,4 (0.5·x′
1 )

This approach has two advantages. First, if one is interested in correlation functions
for a specific set of locations (x, y, T), but different gates, that all fulfill the necessary
conditions and have small ε, one only needs to solve for α, ..., δ on each term once, and
can simply plug in different parameters. Secondly, this analytical approach allows
for derivatives with respect to the gates parameters, and in extension for the original
Hamiltonians parameters, if one is interested in these. However, if one is interested
in one specific gate on a large number of locations, one needs to solve for α, ..., δ on
each position individually. Additionally, the number of terms one needs to consider
grows exponentially with nmax, so this is only viable for small ε, which is already a
requirement for the skeleton approximation in the first place.

4.1.2. Numeric layer approach

As a second, numerical approach, a type of dynamic programming can be used to
numerically evaluate the skeleton correlation function by calculating them layer by
layer. This can best be described by an example with a small number of timesteps T:
The skeleton correlation at T=2 only ever contains one term, consisting only of two
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weights depending on the input and output directions, e.g. CS(0, 0, 2) = ε2 · b1,2 · b2,1,
CS(1, 1, 1) = ε · b1,1 · b1,2. The correlation of positions on the third layer already contains
up to 4 terms: CS(0, 0, 3) = ε3 · b1,2 · b2,1 · b1,2 + ε3 · b1,3 · b3,4 · b4,2 + ε3 · b1,4 · b4,3 · b3,2 +

ε · b1,1 · b1,2 · b2,2. This can however be rewritten as CS(0, 0, 3) = CS(0, 0, 2) · ε · b1,2 +

CS(0, 1, 2) · ε · b4,2 + CS(1, 0, 2) · ε · b3,2 + CS(1, 1, 2) · b2,2.
This rephrasing allows us to describe the correlation function at any point (x, y, T) by
only using the correlation function of the 4 positions below, relying on the fact that
skeleton paths are only acting on one site at each time steps, allowing one to ignore all
other positions. The skeleton correlation function CS(x, y, T) on tensor leg k therefore
only depends on the 4 results from the last layer, with their relative position depending
on which output leg the wanted position is, and the 4 weights outputting to leg k:

CS(x, y, T) =CS(x̃, ỹ, T − 1) · al,0 + CS(x̃ + 1, ỹ, T − 1) · al,1+

CS(x̃, ỹ + 1, T − 1) · al,2 + CS(x̃ + 1, ỹ + 1, T − 1) · al,3,
(4.5)

with l = x mod 2 + 2 · (y mod 2) defining the output leg, which is periodic in x and
y with period 2, x̃ = x mod 2, ỹ = y mod 2 defining the 4 relative positions that can
lead to a result in the next layer at (x, y, T), and al,m being the matrix element connecting
the legs l and m as defined in 2.3. The implementation of this recursive method is quite
straightforward:
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Algorithm 1: SkeletonCorrelationLayerByLayer
Input : An array [wi,j],i,j=1,...,4, with each element being the float containing the

weight from leg i to leg j, maximum time T
Output : Skeleton correlation function for t=1,...,T

1 firstLayer=[[1,0],[0,0]]
2 correlations=[firstLayer]
3 for T in range(T) do
4 nextLayer=GetNextLayer(gate, T, correlations[-1])

correlations.append(nextLayer)
5 end for
6 return correlations

Algorithm 2: GetNextLayer
Input : An array [wi,j],i,j=1,...,4, with each element being the float containing the

weight from leg i to leg j, an array [ck,l] containing last layers results, int
T

Output : Skeleton correlation function for t=T
1 correlations=np.zeros([2T,2T])
2 for x in range(2T) do
3 for y in range(2T) do
4 out=x%2+2(y%2)
5 for in in range(4) do
6 correlations[x][y]+=win,out · ck′,l′

7 end for
8 end for
9 end for

10 return correlations

By building up from the bottom to the top, this allows for an efficient calculation of
the skeleton paths for entire layers at once. With a linear number of layers, quadratic
number of sites in each layer, and constant cost per site independent of the position,
this results in a complexity of O(T3) as shown in figure 4.1. The runtime is shown for
different values of T for both the so far outlined "simple" solution, as well as the in
section 4.4 explained improved version, including the preparation of parameters, but
excluding the generation of the gate since that depends on the type of gate used. While
for small T, the cubic nature is not quite visible yet, it later is clearly visible, especially
in the magnified graph. While the runtime advantage over the exact contraction is quite
visible already (about 1000s for 120 time steps), it is important to keep in mind the two
other factors that increase this advantage even further. This simulation requires only a
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minimal amount of memory, since no large vectors are constructed, and calculates the
correlation for the entire light pyramid up to T in this time, instead of only a single
point.
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Figure 4.1.: Runtime growth with the number of timesteps for reduced gates (blue) and
general gates (orange). The improved runtime (shown as dashed) lines
show a significant initial cost due to the initial contractions. All 4 show an
asymptotic cubic scaling for large time steps, visible in the magnified plot
(b).

4.2. Generic Gates

In the case of Generic Gates things become more complicated, since 3 different operators
can be applied at each position. However, the path sum interpretation can still be used
by adjusting it: Instead of summing over simple paths, one needs to sum over all paths
with different "colors" at each point in time, with the colors standing for one of the
3 spin operators. This increases the number of possible paths by a factor of 3T, and
since the order of colors matters, the order expansion approach becomes inefficient.
However, the layer-by-layer approach still works with a slight modification, instead
of using 4 results from the previous layer, one now needs to sum over the 3 possible
applied operators on the last 4 positions:

CS(x, y, T)O1,O2 =
k′=3,O=3

∑
k′=0,O=1

CS(x′, y′, T)O,O2 · aO1,O
k,k′ , (4.6)
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with aO1,O
k,k′ being the element of the folded gate W with operator O1 applied on the top

leg k, and operator O applied to the bottom leg k’. The implementation of this works
very similarly to the reduced case. Before starting the calculation, one must preprocess
the folded gate W by changing it into the 3x3 matrices corresponding to one of the 3
operators applied on one input and output leg. After this step, one merely needs to
adjust the dimensions of the entries and the multiplication with a matrix product:

Algorithm 3: SkeletonCorrelationLayerByLayerFull
Input : An array [wi,j],i,j=1,...,4, with each element being the 3x3 submatrix

containing the weights from leg i to leg j, maximum time T, integer
inputOp

Output : Skeleton correlation function for t=1,...,T
1 firstLayer=[[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]]]
2 firstlayer[0,0,inputOp]=1
3 correlations=[firstLayer]
4 for T in range(T) do
5 nextLayer=GetNextLayer(gate, T, correlations[-1])

correlations.append(nextLayerFull)
6 end for
7 return correlations

Algorithm 4: GetNextLayerFull
Input : An array [wi,j],i,j=1,...,4, with each element being the 3x3 submatrix

containing the weights from leg i to leg j, an array [ck,l] containing last
layers results as 3 element vectors, int T

Output : Skeleton correlation function for t=T
1 correlations=np.zeros([2T,2T])
2 for x in range(2T) do
3 for y in range(2T) do
4 out=x%2+2(y%2)
5 for in in range(4) do
6 correlations[x][y]+=win,out · ck′,l′

7 end for
8 end for
9 end for

10 return correlations

While this is in fact more computationally expensive, due to the matrix multiplications
required, it only adjusts the prefactor of the cost, not the cubic scaling itself. The
required memory remains negligible.
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4.3. Exact solutions for benchmarking

In order to numerically verify the approximation exact results are necessary. While
these can be generated by contracting the folded network, the required time and
memory grow exponentially, and the question of contraction order is complicated on
its own. In order to reach later times we limit our coordinates to positions on a line
parallel to the light ray, meaning that for each value of T, we chose x and y as T − 2 · b,
b being the width of the largest layers in the resulting corridor. This leads to structures
similar to the following:

(4.7)
These corridors have the advantage that the largest tensor size is constant for corridors

of different lengths T but the same width b, and the runtime scales linearly with corridor
length. With a number of 1

3 b(b + 1)(2b + 1) + b2 · (T − 2b) gates (and a number of 4T2

states applied to those gates, whose contraction is trivial so they are not of importance
here), exhaustive search is not applicable, and even most greedy search algorithms fail
to find efficient contraction orders for step numbers used in the comparisons of around
50 layers applied [33], resulting in multiple hundred gates. In order to contract these
efficiently, one needs to deconstruct them into "pyramid double-faces", meaning two
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connected faces of the light pyramid opposite of the growth direction of the corridor,
resulting for b = 3 in the following structure, rotated around for better visibility:

5

6

2 7

8

3

1 4 9

(4.8)

After contracting the first such layer, the next is constructed and contracted onto the last
layer by starting at the middle top corner, and going outwards while prioritizing lower
points, as indicated by the numbers. The reason for this rather unintuitive contraction
order is, while one such layer has a fixed number of open legs, during the contraction of
the next layer onto the last, this number can jump drastically if the wrong order is used.
If simply contracting the next layer from the bottom up, the leg number temporarily
increases by 7 for b = 3, leading to an increase of memory required by a factor of d7. In
this specific order however, the maximum tensor size is limited to the dimension of one
such double face, specifically db·(2b−1). The actual network contractions were done by
using a modifier version of [23] and the opt einsum library [34].

4.4. Weakness and Mitigation

As mentioned, the skeleton path approximation is based on the assumption, that the
distance between curves is large. For the low density, unit strength case this is a given,
but for the reverse case, it is assumed that at each given order in ε, the number of
constellations where the turns are close to each other is small compared to the number
of cases where they are far apart, which are then again sufficiently suppressed. The
terms omitted can now be categorized into different kinds of structures:

1. low hight The first kind of structures, that expand into non-skeleton paths only
for a smaller number of time steps, before recombining again. The width of these
terms is naturally limited by the height, a kind of "sub-pyramid" of a smaller
scale.
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2. low width, high height The second kind of structure can follow a non-skeleton
path for longer times, but never spreads far. It is essentially multiple paths parallel
to each other, merging later in time again.

3. high height, high width The last kind is the most unhandy to calculate, large
times and width require a complete contraction of the entire pyramid to account
for these.

The last kind is impossible to account for without cost-intensive contractions, while
the second kind follows a kind of corridor structure that was already used to get exact
comparison values, which would allow for it to be calculated with limited amounts of
memory, yet the number of terms would still lead to long computation times. However,
both these kinds fortunately are exactly, what conditions 1&2 guarantee to suppress,
long times of width larger than 1. This leaves the first type as the main problem, short
"blips" in time where the paths widen, and then quickly recombine. Fortunately, there
is a way to account for these, without having to contract the network for each position
in the pyramid. To explain this, the concrete example of the smallest possible blip is
chosen, with height Ts=3, meaning that the skeleton path widens, continues for one
time step as a thickened path, and recombines again.
First, the weight for each of those parts of a path must be calculated. While for the
skeleton paths the height of each part was 1, and the weights were simply the elements
of the tensor, we now need to contract the T=3 pyramid for all possible operators
applied at the top and bottom, where the path can split up in between, but is only on
a single leg at the top and bottom, resulting in the weights Ak′,k,xt,yt , where k and k’
describe the input and output leg and xt, yt describe the relative tensor position.

(4.9)
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This introduces an initial cost of 80 (720 for the non-reduced gates, due to the 3
operators applicable at each position) contractions for T’=3 networks, but does not affect
the scaling of the algorithm. Furthermore, one now needs to redefine the recursive
relation for the correlation at a point (x, y, T) as follows: This introduces an initial cost
of 80 contractions for T’=3 networks,

CS(x, y, T) =
xt=1,yt=1

∑
xt=−1,yt=−1

k′=3

∑
k′=0

CS(x′, y′, T − 3) · Ak′,k,xt,yt (4.10)

This means, that one now needs the correlation function of the last and third last layer,
to calculate the next one, resulting in a similar recursive simulation as before. When
modifying the simulation, however, one needs to be careful, if the original part is kept,
to not count the skeleton paths twice now. While the cubic runtime is conserved by
this, the cost of each position is increased, since more past positions must be taken into
account. To generate the correlation function at a time T, for a folded gate with leg
dimension d, and including complex paths of height Ts, a resulting complexity for T of
O(d2 · T2

s · T3)is achieved, however with an exponential in Ts initial cost. For Ts = T,
this recovers the complete contraction of the network with exponential in T cost.
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5.1. Reduced Gates

5.1.1. Correlation for small times
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Figure 5.1.: Exact results (a), skeleton results (b), and relative error (c) of gate 1 for all
top operator positions at a constant time T=8 and a perturbation strength
of ε=0.01. The overall structure is completely preserved, with error barely
reaching 1%.

As a first test, the correlation was computed for a full time layer for T=8, where exact
results were still reachable. A full comparison between the skeleton and exact results
for the reduced gate 1 with ε=0.01 are seen in figure 5.1, as well as the corresponding
errors. The shape of the resulting correlation is remarkably similar to the approximated
results, with errors of less than 1%. While the maximum correlation in this regime is
conserved to the clearly visible light ray, the entire light pyramid displays a non-zero
correlation, making it much more interesting than the pure ternary unitary case. To
check for the complexity this kind of gate can produce, the same procedure was done
for reduced gates 2 and 3 with the same perturbation strength in figure 5.2. While all
gates share the strong light ray, the correlation in the rest of the light pyramid behaves
very differently, further showing the interest of this subclass of gates. In particular for
gate 3, the correlation is visible to be stronger along two of the other edges of the light
pyramid than on the original light ray.
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Figure 5.2.: Exact results (left), skeleton results(middle) and relative error (right) of gate
2 (top) and 3 (bottom) for all top operator positions for a constant time
T=8 and perturbation strength ε = 0.01. Again, the correlation structure is
conserved to a high detail for all tested gates. Additionally, the distribution
is very different for the individual gates, showing how much more versatile
the almost ternary unitary gate class is compared to the exactly ternary
unitary one.
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5.1.2. Behaviour for larger times
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Figure 5.3.: Exact (solid curves) and skeleton (dotted curves) correlation results for
gates 1&4 and a constant perturbation strength ε = 0.01. The correlation is
compared for various numbers of timesteps T, yet always with a constant
distance to the lightray as indicated in the plots. The error of the approxi-
mation is not visible on the scale of the plot for gates fulfilling conditions
1&2, gate 4 however does not fulfill them and the error along direction 4 is
clearly visible.

To check the validity of the approximation for larger times, both the skeleton correlation
and exact solution were calculated along a parallel line to the light-ray for different
times. The resulting correlations can be seen in figure 5.3. For each gate, the simulation
was run in all four directions by rotating the gate after folding it, which corresponds to
going into a different direction and applying it on the opposite leg of the first tensor
applied.

For the different distances to the light ray available, the error between the exact
and skeleton results is undetectable on the correlation plot, which is why the relative
error is shown as well in figure 5.4. While the error behaves somewhat erratic for
small times, it becomes more stable for larger times and larger distances. Especially
interesting is the fact that for gate 1, for distances of 4 or 6, the error of 2 different
directions converge, which was not seen in 1+1D. This is due to a key difference: For
the propagation in one direction, two different propagator planes can be repeatedly
applied, but also each plane can be applied in two different directions. If one such
plane has a highly dominant eigenvector, yet still less relevant than the bare propagator,
this main error source is shared for two different directions.
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Gate 4 does not fulfill the requirements described in section 3.3, however, it was
only broken along one direction. This is reproduced by the error in that direction
being of the order of 1, the skeleton diagrams fail to approximate the results at all,
however, the other directions aren’t affected at all. This leads to the conclusion, that
even when one of the conditions in section 3.3 is broken, it only affects the areas where
the corresponding propagator layer is applied many times. It would be of interest, how
the middle area of the light pyramid, where all 4 propagators are of equal relevance,
behaves in this case. However, the memory and time required to get exact solutions in
that area are massive and beyond the scope of this thesis.
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Figure 5.4.: Relative error between exact results and skeleton approximation for gates
1-4 and a constant perturbation strength ε = 0.01, along a parallel to
the light rays as with the distance indicated in the plots. The error stays
approximately constant for different timesteps since the expected behavior
of decaying error requires a higher distance from the edge of the light
pyramid. For the non-suitable gate 4, the error is constantly of the order of
one, allowing us to immediately identify gates not being suitable.
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5.1.3. Perturbation strength

10 3 10 2 10 1

10 31

10 27

10 23

10 19

10 15

10 11

10 7

C(
44

,4
4,

50
)

full results direction=0
skeleton results direction=0
full results direction=1
skeleton results direction=1
full results direction=2
skeleton results direction=2
full results direction=3
skeleton results direction=3

(a)

10 3 10 2 10 110 6

10 5

10 4

10 3

10 2

10 1

100

R(
48

,4
8,

50
)

skeleton error direction=0
skeleton error direction=1
skeleton error direction=2
skeleton error direction=3

(b)

10 3 10 2 10 110 6

10 5

10 4

10 3

10 2

10 1

100

R(
46

,4
6,

50
)

skeleton error direction=0
skeleton error direction=1
skeleton error direction=2
skeleton error direction=3

(c)

10 3 10 2 10 110 6

10 5

10 4

10 3

10 2

10 1

100
R(

44
,4

4,
50

)

skeleton error direction=0
skeleton error direction=1
skeleton error direction=2
skeleton error direction=3

(d)

Figure 5.5.: Correlation for the reduced gate 1 at maximum reached distance (a) for
varying perturbation strength ε, and the relative error of the same gate for
different distance (b-d). The approximation error is not visible on the scale
of the Correlation plot, even for relatively large perturbation strengths. For
ε going to zero, the error also vanished as expected.

To analyze the behavior of the approximation for different strengths of the perturbation
strength ε, the correlation is shown for gate 1, as well as the relative error for different
distances to the light ray. Again, in the correlation plots, the difference is not visible,
even for relatively large perturbation strengths of ε=0.1. Interestingly, even for small
corridor widths, the relative error goes to zero for small perturbation strengths. There
are significant spikes in the error, most likely due to the time not being high enough
(T=50) and certain relatively dominant complex paths canceling each other out for cer-
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tain perturbation strengths. The further one goes in time, the better the approximation
works, however, the exponential decay leads to increasingly small correlations for very
high times. To further prove the stability and convergence of the error for small ε, the
relative error for the maximum reached corridor width is shown in 5.6 for gates 2 and
3, as well as the correlation and error for gate 4. As expected, for the direction that
does not fulfill the condition, the approximation fails to reproduce the results, and the
error does not converge to zero for small ε, reproducing the 1+1D expectation.
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Figure 5.6.: Top: Relative error of the skeleton approximation for gates 2&3. As ex-
pected, the relative error goes to zero for small perturbation strengths.
Bottom: Correlation (left) and relative error (right) for the non-suitable gate
4. The error is clearly visible on the scale of the correlation itself, leading to
a constant relative error of one. Even for vanishing perturbation strengths,
the error stays constant and does not vanish.
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5.1.4. Order Expansion

Since two different methods two calculate the skeleton correlation were developed, we
now want to compare the second, less precise method of expanding in different orders
of ε and generating an analytical solution to this to the original result. Since the number
of terms in each order grows exponentially, we only take into account third and fourth
order terms, compared to the full skeleton result. Instead of comparing these to the
exact solution, we compare them to the skeleton results, allowing us to investigate the
behavior inside the entire light pyramid, instead of just the border areas. For this, 4
points were chosen for the same time T=50 with even coordinates for both operators:

1. x = 44, y = 44 The point already used in the last chapters, marking the largest
corridor reached so far.

2. x = 40, y = 40 Another point on the parallel to the light ray, however unreachable
with exact contractions.

3. x = 0, y = 2 A point off of any of the four main diagonals, close to the center
for a maximum size of the pyramid, therefore leading to the highest number of
orders possible.

4. x = −10, y = 24 A random point, chosen far off the four main diagonals, yet still
far enough inside the pyramid to offer high order terms.

For gate 1, the resulting relative error with respect to the full skeleton diagrams is
shown in figure 5.7 for the different positions. Additionally, the individual graphs were
fitted to check the resulting order of the error for small ε. It is quite straightforward to
see, that the resulting error order is dependent on the operator position, specifically
being higher on the parallel to the light ray. This is due to the fact, that not all orders
have terms on each position, due to the constraints of the number of turns/curves.
Furthermore, the stability of the error is highly dependent on both the gate and the
position of the operator. To understand this, one has to think about what a small
perturbation ε means here, or rather small compared to what. For each gate, there are
4 propagator weights, which are the parameters ε must be small compared to, which
results in good approximation for very small ε in all cases. However, if one of the 4
propagator weights is significantly smaller than the other 3, an edge case can occur: In
certain areas, where some or all of the other 3 weights are mainly applied, the third
and fourth order approximation still works well, while in other places, where the low
propagator weight is the relevant parameter, higher order terms become more relevant.
Therefore, while the results for very small perturbations are still reliable, the numerical
layer-by-layer method should be preferred, unless derivatives are needed, in which
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case, due to the short runtime of both methods, a comparison with the full skeleton
results should always be done as well.
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Figure 5.7.: Limited order skeleton results for gate 1. The individual colors show the
relative order of the approximation up to third and fourth order, each being
compared to a polynomial fit to show the order of the error for small ε,
which is position dependent. The chosen positions are: Within a small
corridor used for the last sections (a), further inside the light pyramid where
exact results aren’t available (b), close to the middle of the pyramid off the
main diagonal where the pyramid volume is maximal (c), far off the main
diagonals (d).
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5.1.5. Improved Results

As explained in section 4.4, the approximation for the unit density case is based on the
assumption, that the distance between the perturbed gates is large. However, paths
that split and then merge very quickly again, but stay skeleton paths for the rest of the
time, are allowed. With the improved version, these kinds of paths can also be taken
into account, without requiring large amounts of memory. To further investigate, how
big the improvement of this is, the results for the improved algorithms with the same
parameters as in section 5.1.3 are shown in figure 5.8. While the behavior is again a
little erratic for higher perturbation strengths, it generally leads to an improvement of
the relative error of up to one order of magnitude. Especially interesting is, that while
the improved results can sometimes produce their own spikes of low errors, when
the original skeleton results showed one, the improved version shows a similar spike,
for lower ε. This can sometimes lead to slightly higher errors for specific parameters,
when the original results are in such a spike, while the improved ones have already
left it. These results only take into consideration complex structures of height up to
three time steps, which is still a very manageable amount of memory and computation
time. However, it serves as a proof of concept, that this method allows to fine tune
the simulation precision, according to what kind of resources and time are available.
However, as seen in the result for gate 4, this slight improvement is not able to give good
results for gates not fulfilling conditions 1&2, since those have dominant eigenvectors
of support larger than 1, which require complex structures of constant width, but
maximum height.
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Figure 5.8.: Comparison of the original skeleton error (solid lines) and the improved
error (dashed lines) for gates 1-4. The actual improvement ranges from
almost none to a factor of 10, depending on the dominant error source:
Either subleading eigenvalues can lead to large paths that contribute to the
error, or small splits and merges can do the same, depending on the gate.
Only the second kind is captured by the improved algorithm. Gate 4 shows
that, if conditions 1&2 are not fulfilled, the improved algorithm does not
capture the results either, as expected.
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5.2. Generic Gates

5.2.1. Stacked gates
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Figure 5.9.: Correlation (top) and relative error (bottom) for symmetrically stacked
gates 5 (left) and 6 (right) as defined in A. For each, the colors correspond
to different distances from the light cone. The error stays small even for
relatively high values of η, especially gate 6, where the error is multiple
orders of magnitude smaller than for the rest of the tested gates.

The described methods and improvements are now applied to the full case, without
the randomized magnetic field. The first kind is the stacked structure, as described in
section 2.4, and essentially implements nearest-neighbor interactions. The folded gate
W has dimension 4 on each leg, resulting in significantly higher memory and calculation
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requirements for the exact comparison results. For this reason, only corridors of width
2 and 3 are compared, for symmetric gates 5&6 with their parameters shown in A. The
rotational symmetry of these gates allows us to only investigate one direction, with
the results shown in figure 5.9. Two things become clear right away: The skeleton
approximation is still able to reproduce highly accurate results, however, the change
in relative error by using the improved version is significantly lower. This is likely
due to a different error source: While the eigenvalues of support larger than 1 were
significantly smaller than the bare propagator weight for reduced gates, short complex
paths were by far the biggest source of error, whereas now, there are more eigenvalues
almost as large as the bare propagator eigenvalue, which is also generally higher since
it not simply the weight of the Sz state applied on each side, but the highest eigenvalue
of the submatrix. While it may seem counter-intuitive, a higher propagator eigenvalue
is not necessarily ideal. To understand this, one can take a look at the norm of the
operator acting on states acting on two neighboring gates. This norm consists of two
parallel lines (a2) and some additional term for an H-like structure (two parallel lines
connected within the layer). The difference between this and the bare propagator
a is maximized by maximizing a− a2, namely for a=0.5. Therefore, the main error
source in this case appears to be a large number of subleading eigenvectors, resulting
in a relevant contribution. This error source however becomes smaller for large T
and most importantly, larger corridor widths, which unfortunately aren’t available for
comparison. Additionally, the relative error for gate 6 is incredibly small. This is merely
a result of the randomized gate generation, and should not be seen as the expected
error range.
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5.2.2. Crossed gates
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Figure 5.10.: Correlation (top) and relative error (bottom) for symmetric crossed gates
7 (left) and 8 (right) as defined in A. For each, the colors correspond to
different distances from the light cone. While the error grows significantly
faster, the skeleton approximation still manages to highly accurately ap-
proximate the correlation function for small η. The improved error is
shown on the right as dashed lines, that are barely different from the
original error, due to the absence of turn weights.

Applying the approximation to gates 7&8, generated by the crossed structure of section
2.4, which incorporates next nearest neighbor interactions instead, again with rotational
symmetries used to reduce computational cost. The results are shown in figure 5.10,
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and display a slightly different picture. While the error is still small for small η, it grows
much quicker, which is simply a product of different split and merge weights compared
to the example gates for the stacked structure. However, the improved method appears
to give almost no reduction in error at all. This is due to the structure of the gate, which
does not allow for curves at all, only straights and turns. These elements are however
crucial for the small expansions and reductions the improved method incorporates,
which leads to the conclusion that these are barely relevant for the error in this case,
which is again dominated by the subleading eigenvalues. While the error is higher in
these examples, the comparison still clearly shows that for both proposed structures,
the skeleton approximation is able to approximate the exact results with high accuracy
for small η, as intended.
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6. Application outlook: Verification on a
quantum computer

Now that the stability of perturbations around the ternary unitary point is verified,
and the efficient calculation schemes are in place, we want to briefly touch upon
possible applications on a quantum computer. While the size of NISQ era quantum
computers is ever increasing [29], and numerous new kinds of quantum algorithms
have been discovered, the difficulty of error correction and noise benchmarking is still
ongoing [31]. While methods for one or two-qubit benchmarking, such as randomized
benchmarking [17], are available, benchmarking of larger systems are usually based
on implementing whole algorithms and verifying their results [31]. This leads to the
potential application of the skeleton approximation for perturbed dual-/ternary-unitary
gates: While we perturbed the ternary unitary attribute, the unitarity is never touched
upon and allows for the direct implementation on a quantum computer, while the
classical verification can be done efficiently. However, there is a number of problems to
be addressed before one can implement it:

Initial state preparation

This work was based on the infinite temperature initial state, or essentially tracing over
the time direction after the time evolution. This non pure state can not be prepared by
unitary operations alone, and therefore requires additional methods. In order to to gain
this initial state, ancillary qubits can be used. By applying Hadamard gates on each of
the computational qubits qi, and CNOT gates between the computational qubits qi and
the ancillary qubits q′i, one can prepare the initial Bell state |Θ+〉 = |0〉qi

|0〉q′i + |1〉qi
|1〉q′i

[27]. By taking the partial trace over the ancillary system Trq′i
(|Θ+〉 〈Θ+|) = 1, we can

prepare the main system in the maximally mixed state, as required. Alternatively, one
could statistically sample this trace by preparing the system in random initial states,
and averaging over the individual results.

Measurement

Calculating the quantity 〈O1
x′,y′ |O2

x,y(t)〉 for any initial state is not an easy task, even
less so for the infinite temperature one. The naive approach, of evolving the initial
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6. Application outlook: Verification on a quantum computer

state |Ψ〉 forward in time before applying the second operator |Ψ′〉 = O2
x,yU t |Ψ〉, and

doing the same with the same initial state, but applying the first operator before the
time evolution |Ψ′′〉 = U tO2

x,y |Ψ〉, one can calculate the contribution to the correlation
function of this particular initial state by taking the overlap of the two evolved states,
which in returns requires the full state tomography of each state vector. Instead, one
can employ a Hadamard test [20] to estimate the the expectation value of a unitary U′.
By defining the entire circuit, including the forward and backward time evolution and
both operators, as U′ = O2

x,yU tO1
x′,y′U †t, we can evaluate Re〈Ψ|U′ |Ψ〉 by evaluating the

quantum circuit

q0

q1

1c

H

J1, J2, J3, ...
U

H

0

Number of required qubits

The main issue of simulating correlation functions in 2+1D is the number of required
qubit. For T timesteps, we require a number of T2 gates in the first time step, resulting
in a required 4 · T2 main qubits, or 8 · T2 + 1 total qubits when including the ancillary
qubits and the extra qubit for the Hadamard test. This means, that in order to even reach
10 timesteps, the required number of 801 qubits is not viable. However, the efficient
numerical evaluation of section 4.2 can also be used in 1+1D systems, and significantly
boosts the classical speed over the original exponentially expensive approach [18]. The
required qubit number of 2 · T allows for the simulation of large enough number of
timesteps for the skeleton error to be suppressed sufficiently for an error benchmarking
of the quantum computer used. The additional advantage is, while both the general
perturbed dual unitary in 1+1D and the stacked structure 2.1 in 2+1D systems only
require nearest neighbour interactions, the interpretation of a 2-dimensional lattice as a
string of qubits may require, depending on the interaction layout of the qubits, gates
acting on far apart qubits.
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7. Conclusion and outlook

First, let us summarize the results of this thesis: We started by recapitulating the basic
ideas and results of ternary unitary gates and their, while efficiently solvable, rather
simple correlation patterns. We transferred these gates and their conditions into the
folded picture 2.9, and introduced the idea of ternary unitality 2.8. After covering
the current state of generation for this class of gates, we introduced the basic ideas
of [18] by introducing the interpretation of correlations functions as path sums, and
focusing the discussion on paths with constant width of 1, so-called "skeleton paths".
After classifying the individual elements of the folded gate into different "shapes", the
condition of when the skeleton path approximation results in a bounded error had to
be heavily modified: The shape of the operator in 2+1D is a planar network of gates,
resulting in rapidly growing operator dimensions, which was solved by constructing
the recursive conditions 1 (3.16) and 2 (3.27).

The next question was how to evaluate these skeleton diagrams in the more complex
2+1 dimensional setting. While in the 1+1D case, an analytic solution of the skeleton
contribution for arbitrarily high orders of the perturbation was found for the reduced
gates, the general case still required the contraction of an exponentially fast growing
number of terms. We introduced a finite order analytical approximation of the skeleton
diagrams 4.4 for the reduced gates, but most importantly developed a numeric algo-
rithm to evaluate all orders of skeleton diagrams, for both the reduced and general
setting, that scales polynomially with T and can be adjusted to arbitrary dimensions.
This method allowed further improvements to the skeleton approximation, allowing
us to account for short splittings of the paths. This new approximation method, while
having a high initial computational cost, still scales polynomially with T and can be
arbitrarily adjusted for higher precision at a higher runtime cost. We finally did the
numerical simulations for several different gates and did an elaborate verification of the
results by comparing them with exact contractions of the tensor network. In order to
get these exact results, a network structure was identified that allows for a large number
of timesteps while keeping the memory requirements constant, and the question of
optimal network contraction order was discussed. Finally, a potential application of
this model is briefly touched upon, as a way of verifying and benchmarking quantum
computer results with this efficient evaluation of quantum time evolution.
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7. Conclusion and outlook

While these results give a solid foundation for the usage of the new class of ternary
unitary operators, a whole number of possible paths for further research have opened
up. Firstly, one could focus on generalizing the method furthermore: So far, only a
subset of ternary unitary gates was investigated, since no general description of all
ternary unitary gates is found yet, therefore one further extension of the field would be
to try to construct such a general parametrization from the parametrization of general
unitary operators [12, 35]. Additionally, the used initial state of a thermally mixed state
is, while useful for this work, rather limiting its use cases. The generalization to other
solvable states described in [25] would increase the field of possible applications. The
gates applied in this thesis were specifically kept as general as possible, and generated
with randomized parameters to allow for an impartial testing of the method. However,
since this has successfully been done, fine-tuning of the parameters could allow for the
generation of gates where this method works particularly well, in order to use it to
benchmark other methods that allow the computation of long-time correlation functions.
The application to specific already studied Hamiltonians with special attributes, such
as conserved charges [22] or certain types of transport [7], is also a necessary next step
to verify, whether the method is able to capture the right physics behind such systems.

Additionally, the comparison to quantum computer results can be further expanded
upon. While it was only briefly touched upon in this thesis, the results of the time
evolution can also be computed on a physical quantum computer and compared. The
required number of qubits is quite high for two-dimensional systems, however, the
modification to one-dimensional systems is minuscule. This would allow us to verify
larger quantum circuits with small classical computational power needed. Before doing
the physical implementation, different noise models and their effect on the resulting
correlation function could be modelled.

Finally, we categorized the error sources into 3 different categories: low height, low
width, high height, and lastly high height, high width. While the last kind seems
impossible to handle without contracting large networks, and the first kind is already
accounted for in the improved algorithm, the second kind was barely touched upon,
however, the algorithm can in fact be adjusted to incorporate these terms: By contracting
tensor network of a certain height T’, with states acting on 2 bottom and 2 top sites,
one can calculate the weights of such paths of width 2. By initially calculating all such
weights in addition to the weights of small splittings that converge again within T’, the
initial cost would be again increased, however by adjusting the recursive part one can
take paths into consideration that have a width of 2 for arbitrarily long times, without
having to contract any networks of height higher than T’. While the cubic runtime
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would still be preserved, the prefactor and more importantly the initial contraction cost
would be increased noticeably.
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A. Numerical gate parameters

In order to allow the verification of the results, the parameters used for the individual
gates 1-8 are shown in the following. The parameters of the reduced gates 1-4 are
split into the 4 individual dual unitaries, that make up the total ternary unitary. As
mentioned earlier, there 4 one qubit gates between the two qubit gates combine to only
three of them.
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A. Numerical gate parameters

Table A.1.: Parameters of the dual unitary gates used to generate the suitable reduced
gates 1-3 used in the numerical simulations. The other parameters are set to
J1 = J2 = π

2 .

Gate 1 1 2 3 4
sub-gatee 1, βi 2.528048 3.284062 3.005824 3.489408
sub-gatee 1, γi 3.414195 4.780848 4.475981 3.893577
sub-gatee 2, βi 2.097164 1.374768 0.413486 6.175558
sub-gatee 2, γi 0.803341 2.024007 0.445747 1.412271
sub-gatee 3, βi 6.187363 0.180529 2.2097 2.393635
sub-gatee 3, γi 4.80136 5.898679 2.00867 2.717326
sub-gatee 4, βi 0.431593 3.79281 4.998742 0.201113
sub-gatee 4, γi 2.861663 4.964801 6.211535 3.669157

J3 2.704715 6.118913 2.170599 4.010173

Gate 2 1 2 3 4
sub-gate 1, βi 2.465789 3.883337 2.588233 0.015487
sub-gate 1, γi 5.554538 5.560289 1.88753 3.704452
sub-gate 1, βi 1.851934 1.809145 5.167708 3.934424
sub-gate 1, γi 0.694152 0.003323 5.919805 0.889075
sub-gate 1, βi 2.692985 5.207199 4.510396 0.749123
sub-gate 1, γi 3.747192 0.815283 0.487161 5.222617
sub-gate 1, βi 3.697565 4.860755 4.120799 3.504175
sub-gate 1, γi 1.119961 1.511631 3.179635 2.492827

J3 1.050167 0.408881 5.465021 3.44303

Gate 3 1 2 3 4
sub-gate 1, βi 3.400222 0.182299 4.610277 2.481544
sub-gate 1, γi 5.039411 1.598575 0.357419 5.445314
sub-gate 1, βi 0.481686 5.298137 5.334042 6.103895
sub-gate 1, γi 2.421395 5.997226 2.800782 4.208004
sub-gate 1, βi 1.64811 0.03223 3.413042 2.98826
sub-gate 1, γi 3.998454 6.146238 5.709296 5.71866
sub-gate 1, βi 5.988128 2.588377 5.435063 4.223414
sub-gate 1, γi 3.950778 1.731387 5.634429 1.299937

J3 4.185168 1.986093 1.872411 1.13672
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A. Numerical gate parameters

Table A.2.: Parameters of the dual unitary gates used to generate the not suitable
reduced gates 4 used in the numerical simulations. The other parameters
are set to J1 = J2 = π

2 .

Gate 4 1 2 3 4
sub-gate 1, βi 5.603175 6.054872 2.409234 4.974555
sub-gate 1, γi 3.323145 3.569129 5.815695 0.446333
sub-gate 1, βi 4.889303 5.466448 6.14884 5.021261
sub-gate 1, γi 2.89956 4.904209 0.74314 4.020742
sub-gate 1, βi 2.605398 1.662252 4.864654 2.866077
sub-gate 1, γi 3.571576 0.11806 3.880718 3.845911
sub-gate 1, βi 2.258855 2.745953 4.383346 0.378408
sub-gate 1, γi 4.189419 4.213742 1.321873 0.810068

J3 2.749442 5.231505 3.27887 4.284003

Table A.3.: Parameters of the perturbed dual unitary gate used for the construction of
the symmetric stacked gates 5&6 and symmetric crossed gates 7&8. The
gate is used 4/2 times to construct one perturbed ternary unitary gate. The
other parameters are set to J1 = J2 = π

2 + η.

Gate α1 β1 γ2 α2 β2 γ1 J3

gate 5 5.610006 0.676427 3.738822 5.610006 0.676427 3.738822 0.261988
gate 6 4.846351 3.132212 1.412439 4.846351 3.132212 1.412439 4.704874
gate 7 5.610006 3.738822 3.328941 2.085891 3.738822 3.328941 0.676427
gate 8 0.479459 3.383469 3.148633 4.900374 3.383469 3.148633 6.144889
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Figure B.1.: Limited order skeleton results for gate 2. The individual colours show the
relative order of the approximation up to third and forth order, each being
compared to a polynomial fit to show the order of the error for small ε,
which is position dependant. The chosen positions are from left to right:
within a small corridor used for the last sections, further inside the light
pyramid, where exact results aren’t available, close to the middle of the
pyramid off the main diagonal, where the pyramid volume is maximal, far
off the main the diagonals.
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Figure B.2.: Limited order skeleton results for gate 3. The individual colours show the
relative order of the approximation up to third and forth order, each being
compared to a polynomial fit to show the order of the error for small ε,
which is position dependant. The chosen positions are from left to right:
within a small corridor used for the last sections, further inside the light
pyramid, where exact results aren’t available, close to the middle of the
pyramid off the main diagonal, where the pyramid volume is maximal, far
off the main the diagonals.
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