
Technische Universität München
TUM School of Engineering and Design

Space-time multi-level hp-finite elements for heat evolution in laser
powder bed fusion additive manufacturing

Philipp Michael Kopp, M.Sc. (hons)

Vollständiger Abdruck der von der TUM School of Engineering and Design
der Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. habil. Stefan Kollmannsberger
Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Ernst Rank

2. Prof. Dr. Victor Calo
3. Prof. Dr.-Ing. habil. Fabian Duddeck

Die Dissertation wurde am 21.08.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Engineering and Design am 13.11.2023
angenommen.



Contents

1 Introduction 9
1.1 Laser powder bed fusion of metals . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 The problem of scales in PBF-LB/M simulations . . . . . . . . . . . . . . . . . 14
1.3 Space-time hp-finite element discretizations . . . . . . . . . . . . . . . . . . . . 15
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Formulation 21
2.1 Laser model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Phase change model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Time-stepping finite element formulation . . . . . . . . . . . . . . . . . . . . . 26
2.4 Continuous space-time weak formulation . . . . . . . . . . . . . . . . . . . . . 29
2.5 Space-time finite element discretization . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Solution of the nonlinear equation system . . . . . . . . . . . . . . . . . . . . . 39

3 The p-finite element method 40
3.1 Mesh and data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 High-order shape functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Tensor-product masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Location matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Trunk space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 The multi-level hp-finite element method 58
4.1 Hierarchical refinement and data structure . . . . . . . . . . . . . . . . . . . . 60
4.2 Tensor-product masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Location matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Simulation workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Refinement strategy based on laser path . . . . . . . . . . . . . . . . . . . . . 75
4.6 Slab compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Results 78
5.1 Singular benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 AMB2018-02 benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Hatched square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Performance comparison to time-stepping . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusion 93



Contents 3

Zusammenfassung
Das Laser-Pulverbettfusions-Verfahren ist eine additive Fertigungstechnologie für den Druck
dreidimensionaler Metallobjekte. Es bietet im Vergleich zu herkömmlichen Verfahren mehr
Gestaltungsfreiheit und oft geringere Herstellungskosten. Dabei bleiben einige Hürden zu
überwinden, die einen konsistenten automatischen Druckprozess verhindern. So können sich
beispielsweise Residualspannungen ansammeln, die dann unerwünschte Verformungen verur-
sachen. Übermäßiges oder fehlendes Schmelzen kann zu erheblichen Abweichungen vom ge-
ometrischen Modell führen und bestimmte Abkühlungsmuster können eine inkonsistente oder
unerwünschte Mikrostruktur bilden. Computersimulationen sind hier unerlässlich, um die
treibenden physikalischen Phänomene zu verstehen, geeignetere Prozessparameter zu finden
und damit die Qualität der gedruckten Objekte zu optimieren. Thermische Modelle basierend
auf der Wärmeleitungsgleichung sind dabei aufgrund des vergleichsweise niedrigen Berech-
nungsaufwandes attraktiv, da sie die Simulation längerer Zeiträume ermöglichen und dennoch
so viel Einblick in den Prozess geben, dass problematische Bereiche identifiziert werden kön-
nen.
Klassische Ansätze zur Approximation der Wärmeleitungsgleichung verwenden Finite

Elemente zur Diskretisierung der räumlichen Dimension in Kombination mit einem
Zeitschrittschema. Insbesondere hp-Finite Elemente können die Mehrskaligkeit der Lösung
erfassen, indem sie das Netz in Richtung Laserpunkt verfeinern und gleichzeitig den Poly-
nomgrad erhöhen um glatte Temperaturverläufe in der Peripherie darzustellen. Bei der Ver-
wendung von Zeitschrittverfahren für das Laser-Pulverbettfusions-Verfahren gibt es jedoch
zwei große Herausforderungen. Erstens wird die genaue zeitliche Auflösung, die im Umfeld
des Schmelzbads erforderlich ist, an anderer Stelle nicht benötigt, kann aber dort erhebliche
Rechenressourcen verbrauchen. Zweitens müssen einzelne Zeitschritte in einer Simulation des
gesamten Prozesses in potenziell unter einer Millisekunde berechnet werden. Zwar können
effiziente räumliche Diskretisierungen einzelne Zeitschritte in unter einer Sekunde berechnen,
jedoch erfordert eine weitere Reduktion um mehrere Größenordnungen eine massiv parallele
Implementierung. Bei solchen kleinen Problemgrößen dominiert allerdings der Kommunika-
tionsaufwand schnell und beschränkt somit eine Skalierung mit der Anzahl an Rechenknoten.
In dieser Arbeit wird eine alternative Methode zur Simulation der Temperaturentwicklung

im Laser-Pulverbettfusions-Verfahren vorgestellt, die auf einer Raum-Zeit-Diskretisierung mit
Finiten Elementen basiert. Hierbei ist die Zeit die vierte Dimension und die Finite-Elemente-
Netze und -Basisfunktionen hängen nicht nur von den drei räumlichen Dimensionen, sondern
auch von der Zeit ab. Durch die Wahl eines groben Netzes mit einer lokalen Verfeinerung in vier
Dimensionen in Richtung Laserpunkt wird die zeitliche Genauigkeit direkt an die räumliche
Genauigkeit gekoppelt. Die Simulation wird zusätzlich in aufeinanderfolgende Zeitabschnitte
mit kontrollierbarer Dauer aufgeteilt, wodurch die Problemgröße erhöht werden kann, um alle
potenziell verfügbaren Rechenressourcen in Anspruch nehmen zu können.
Um die Vorteile von hp-Methoden in einer Raum-Zeit-Diskretisierung zu nutzen, ist eine

effiziente Methode zur Konstruktion von hp-Basen auf vierdimensionalen Netzen erforderlich.
Die kürzlich eingeführte Multi-Level hp-Methode verwendet einen Überlagerungsansatz mit
einem einfacheren Regelwerk im Gegensatz zu klassischen Verfeinerungsstrategien, in denen
die zu verfeinernden Elemente ersetzt werden. Dabei wird eine objektorientierte Datenstruktur
aufgebaut, die es ermöglicht, die passenden Formfunktionen zu filtern und zu verbinden. Ur-
sprünglich vorgestellt für maximal drei Dimensionen, nimmt die Komplexität der Datenstruk-



Contents 4

tur in vier oder mehr Dimensionen dramatisch zu und effiziente Implementierungen werden
zunehmend schwieriger. Mit dieser Arbeit wird eine datenorientierte Alternative eingeführt,
die nur grundlegende Nachbarschaftsinformationen zwischen den Zellen des hierarchisch ver-
feinerten Netzes benötigt. Die hierzu entwickelten Algorithmen nutzen die reduzierte Menge
an gespeicherten Informationen, um eine hp-Basis zu konstruieren, die äquivalent zur ur-
sprünglichen Multi-Level hp-Methode ist und deren Einfachheit beibehält.
Dieser Ansatz wird anschließend verwendet, um eine Wärmegleichung mit temperat-

urabhängigen Koeffizienten zu diskretisieren, einschließlich eines Modells der scheinbaren
Wärmekapazität (apparent heat capacity) zur Berücksichtigung der latenten Schmelzen-
thalpie. Eine volumetrische Wärmequelle ermöglicht es dem Laser, im thermischen Mod-
ell in die Metalloberfläche einzudringen, wodurch dessen Gültigkeit in den Übergangsbere-
ich zwischen Konduktions- und Keyhole-Modus erweitert wird. Die verwendete Raum-
Zeit-Finite-Elemente-Formulierung testet mit den zeitlichen Ableitungen der Ansatzfunk-
tionen. Dies führt zu einer optimalen Methode, die es auch ermöglicht, die Simulation
in aufeinanderfolgende Zeitabschnitte aufzuteilen. Die Einführung einer auf das Laser-
Pulverbettfusions-Verfahren zugeschnittenen Netzverfeinerungsstrategie, die den unmittelbar
vorhergehenden Verlauf des Laserpfades berücksichtigt, ermöglicht eine Netzverfeinerung ohne
adaptive Schleife.
Die Implementierung der vorgestellten hp-Methode wird anhand eines linearen Poisson-

Problems mit einer Punktsingularität verifiziert. Die Konvergenz des Energiefehlers ist expo-
nentiell in Bezug auf die Anzahl der Unbekannten und die Laufzeit bleibt polynomial, was
mit den hergeleiteten Abschätzungen übereinstimmt. Anschließend wird der AMB2018-02-
Benchmark mit dem vorgestellten Raum-Zeit-Ansatz berechnet, bei dem die Modellparameter
so bestimmt werden, dass die Abmessungen des Schmelzbades mit den experimentellen Daten
übereinstimmen. Die Absorptivität und die Eindringtiefe werden benutzt, um die Breite und
Tiefe des Schmelzbades anzupassen und die Regularisierung des Scheinbare-Wärmekapazität-
Modells steuert dessen Länge. Unter Verwendung derselben Konfiguration wird danach ein
Quadrat mit einer Seitenlänge von einem Zentimeter auf der Oberfläche einer Metallplatte
schraffiert, um die Möglichkeit längerer Simulationen zu demonstrieren. Abschließend zeigt ein
Vergleich zwischen der Raum-Zeit-Diskretisierung und einem Zeitschrittschema mit lokaler hp-
Verfeinerung in drei Dimensionen eine deutliche Beschleunigung des Berechnungsprozesses zu-
gunsten der vierdimensionalen Raum-Zeit-Methode bei hohen peripheren Berechnungskosten.
In diesem Fall überwiegt der Vorteil einer gröberen peripheren zeitlichen Auflösung die er-
höhten Kosten, die sich aus der verstärkten Kopplung der Basisfunktionen und der direkten
Lösung des unsymmetrischen Gleichungssystems ergeben.



Abstract
Laser powder bed fusion is an additive manufacturing technology for printing three-
dimensional metal objects that offers more design freedom and often reduces manufacturing
costs over conventional approaches. There remain several challenges that prevent a consis-
tent automatic printing process. For example, residual stresses may accumulate and cause
unwanted deformations, excessive or lack of fusion can lead to significant deviations from
the geometric model, and specific cooling patterns may form an inconsistent or undesired
microstructure. Computer simulations are essential for understanding the driving physical
phenomena, and they can help improve the part quality by finding better process parameters.
Thermal models based on the heat equation are attractive due to their low computational
cost, which enables the simulation of longer durations while still giving some insight into the
process and allowing to identify problematic areas.
Classical approaches to discretize the heat equation use finite elements for the spatial di-

mension in combination with a time-stepping scheme. In particular, hp-finite elements can
resolve the multi-scale nature of the solution by refining the mesh towards the laser spot while
also allowing to elevate the polynomial degree to approximate the smooth temperature in the
periphery. Two major challenges exist when using time-stepping schemes for laser powder
bed fusion processes. First, the accurate temporal resolution required around the melt pool
is not needed elsewhere and may consume significant computational resources. Second, the
long duration of part-scale simulations may require computing single time steps in even less
than one millisecond. While efficient spatial discretizations can reduce the computational time
of a single time step below one second, their massively parallel implementation necessary to
further reduce the computational time is limited by the communication overhead that starts
to dominate when distributing individual time step meshes.
This thesis introduces an alternative way of simulating the temperature evolution in laser

powder bed fusion based on a space-time finite element discretization. In this setting, time is
the fourth dimension, and the finite element meshes and basis functions depend not only on
the three spatial dimensions but also on time. By choosing a coarse mesh and locally refining
the mesh in four dimensions towards the laser spot, the temporal accuracy is directly coupled
to the spatial accuracy. The simulation is split into consecutive time slabs with a controllable
duration, which allows increasing the problem sizes to utilize the available computational
resources optimally.
Exploiting the advantages of hp-methods in space-time discretizations requires an efficient

construction of hp-bases on four-dimensional meshes. The recently introduced multi-level
hp-method uses a refine-by-superposition approach with a simpler ruleset than classical refine-
by-replacement strategies. It builds on an object-oriented data structure that helps to filter
and connect matching shape functions and was initially presented for one, two, and three
dimensions. The complexity of the data structure grows dramatically in four or more dimen-
sions, and efficient implementations become increasingly difficult. This thesis introduces a
data-oriented alternative that only requires basic adjacency information between the cells of
the hierarchically refined mesh. The presented algorithms reduce the amount of stored infor-
mation needed to construct an hp-basis equivalent to the original multi-level hp-method while
maintaining its simplicity.
This approach is then used to discretize a heat equation with temperature-dependent coef-

ficients, including an apparent heat capacity model to account for the latent heat of fusion.



Contents 6

A volumetric heat source allows the laser to penetrate the metal surface within the thermal
model, extending its range of validity into the transition zone between conduction and keyhole
mode. The space-time finite element formulation uses the time derivative of the trial func-
tions as test functions, leading to an optimal method that allows separating the simulation
into consecutive time slabs. Introducing a mesh refinement strategy tailored to laser powder
bed fusion processes enables mesh refinements without an adaptive loop by considering the
recent history of the laser path.
The hp-refinement implementation is verified on a linear Poisson problem with a point

singularity. The convergence of the energy error is exponential with respect to the number of
unknowns, and the runtime stays polynomial, which agrees with the derived estimates. Then,
the AMB2018-02 benchmark is computed using the presented space-time approach, where the
model parameters are tuned to match the melt pool dimensions to the experimental data.
The absorptivity and the penetration depth are adjusted to fit the width and depth of the
melt pool, and the regularization of the apparent heat capacity controls its length. The same
setup is used to hatch a square with one centimeter side length on the surface of a metal plate
to demonstrate the possibility of longer simulations. Finally, a comparison of the space-time
discretization to a time-stepping scheme with local hp-refinement in three dimensions shows
significant speedups in favor of the space-time method when the peripheral computational cost
is high. In this case, the benefit of adapting the temporal accuracy outweighs the increased
cost resulting from the greater coupling of basis functions and the direct solution of the
unsymmetric equation system.



Acknowledgments
The work of this thesis was conducted during my time at the Chair for Computation in Engi-
neering and the Chair of Computational Modeling and Simulation at the Technical University
of Munich. It was funded in part by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through grant KO 4570/2-1, for which I am grateful. Many people I
met during this time shaped my path in one way or another or were just fun to be around.
First, I want to thank Professor Rank for allowing me to work and graduate in his team.

He trusted me after pitching the topic of this thesis to him and encouraged me to look into it,
although we already had a different topic in mind. The place and the people always felt special
to me and when asking why, one must first look to the top. Professor Rank has consistently
put great effort into creating an environment for his team that provides much freedom for
creativity while giving us the feeling that he has our back should there be any trouble. He
was always available to give great advice and continues to do so today. Since I can’t imagine
Professor Rank ever truly retiring, I’m confident that we will see more of him in the future.
Stefan Kollmannsberger equally contributed to the specialness of our group. Most of the

time, he puts his team before himself, enabling the people around him and setting them up for
success. This selflessness may not be very visible or shiny to the outside world, but it deserves
every possible credit. Still, he has accumulated an impressive academic record for which he
was finally rewarded recently, which makes me very happy. Of course, Stefan is a great person
to discuss science and life with. He often sees the bigger picture and helps to break out of
tunnel vision, which is sometimes easy to get stuck in. I’m sure we will continue to work on
many things together.
Victor Calo and I first met during HOFEIM 2014 at Frauenchiemsee, where I was a Bach-

elor’s student helping with the conference. Victor spent a lot of time and effort sharing his
experience with me, which was valuable in many ways. His view on science, particularly our
research field, which we discussed quite extensively during my visit to Perth in 2016, has been
very healthy for me since. He also helped me improve my scientific writing skills and under-
stand mathematical concepts. The discussions with him have always been great, and I hope
we continue this kind of exchange.
I also want to thank Professor Duddeck for agreeing to be the third reviewer and taking the

time to thoroughly read through my thesis. I know time is rare as a Professor, and I appreciate
the effort and helpful advice very much. Maybe there is a way to work on something together
in the future?
There are many other people that I want to mention. It all started with Tino Bog asking

me during an oral exam in 2012 whether I would be interested in a student job. He promised
they’d do a lot of object-oriented C++, which turned out to be very true. Later, I worked for
Nils Zander, who taught me how to do science and really set me up for the path I followed
since. Nils and Tino not only spent a lot of time and effort designing their new finite element
code but also made sure that the growing team of developers could learn from them as much
as possible. Over the years, Nina Korshunova, John Jomo, Lisa Hug, Ali Özcan, László
Kudela, Mohamed Elhaddad, Davide D’Angella, Alex Paolini, Oguz Oztoprak, and Benjamin
Wassermann joined. Chris Ertl and Nevena Perovic didn’t work on our code but were equally
part of the team. There are so many awesome memories, like the winter seminars every year,
the conferences and workshops we visited together, the regular coffee breaks with Nina and our
”jungle” office, or the ”science gone wrong” and other nerdy memes with László and Mohamed.



8

I also want to thank Hanne Cornils and Simon Vilgertshofer, with whom I shared some of the
administrative burdens.
After Covid then started a new chapter where most of the old team had graduated, and

Tim Bürchner, Vijay Holla, Leon Herrmann, Alireza Daneshyar, and Divya Singh joined. The
frequent discussions with Tim and Vijay, who I work with quite closely, are always something
I very much look forward to. Outside of TUM, we often met Lars Radtke, Andre Hildebrandt-
Raj, and Wadhah Garhuom from Hamburg and Massimo Carraturo from Pavia, who I am
happy to see again every time. Even further away, but still somehow part of my extended
academic world, are Philipp Bucher, Ege Gümüs, and Andrew Brodie. We met during our
Master’s studies and have shared many of the struggles since. I am also very thankful for the
continuous and loving support of my parents. Especially in recent years, our frequent coffees
often brought clarity that I didn’t have before.

Philipp Kopp
München, April 2024



9

Chapter 1

Introduction

1.1 Laser powder bed fusion of metals
Additive manufacturing (AM), also called 3D printing, is a family of methods for automatically
producing three-dimensional structures. Unlike subtractive approaches that remove material
during manufacturing (such as milling), additive methods successively add material to build
the final product. This is typically done in a layerwise fashion, where on each layer, new
material is added or consolidated selectively on areas that are inside of the designed structure.
As a result, the parts printed using AM techniques are limited in terms of feature size and
surface roughness. Before the manufacturing starts, a geometric model must be prepared in
a computer-aided design (CAD) software, where support structures may be added to ensure
the mechanical stability of the component and provide sufficient thermal dissipation. The
three-dimensional geometric model is then subdivided into thin horizontal slices for layerwise
manufacturing. The software constructs a path for each slice according to the process param-
eters that fills the areas inside the geometric model. The structure is then printed using this
path, after which several postprocessing steps (e.g., removing support structures) might be
necessary to obtain the final product.
The ISO 17296-2:2015(E) (2015) standard defines seven additive manufacturing process cat-

egories: vat photopolymerization, material jetting, binder jetting, powder bed fusion, material
extrusion, directed energy deposition, and sheet lamination. These categories vary significantly
in their application fields and used materials. Obtaining an overview of all available techniques
can be time-consuming as various manufacturers sell their approaches under different names.
For example, current entry-level consumer 3D printers often use fused filament fabrication
(FFM), also called fused deposition modeling (FDM), where molten thermoplastic material is
deposited through a nozzle. FFM/FDM falls in the category of material extrusion. Similar
ideas are used in directed energy deposition (DED) methods for printing metal structures.
Instead of directly depositing the material, the metal is supplied as cable or in powder form
by an inert gas carrier and melted in place by a high-power laser, an electron beam, or a
plasma arc. This technology allows printing large structures with aeronautics as one major
field of application, where it is used to print rocket engine components (Blakey-Milner et al.,
2021), for example. In construction, DED allows printing structural components or even en-
tire bridges, such as the MX3D bridge in Amsterdam (Buchanan & Gardner, 2019). Powder
bed fusion (PBF) methods are an alternative to DED for smaller structures that require more
accuracy. Instead of a selective deposition, metal powder is added to the entire layer and
then selectively melted by a laser (PBF-LB/M) or an electron beam (PBF-EB/M). Figure 1.1
shows a typical PBF-LB/M build chamber with an active laser. After finishing one layer,



1.1. Laser powder bed fusion of metals 10

Figure 1.1: Elements of a PBF-LB/M build chamber. From Harkin et al. (2022), used under
Creative Commons CC BY 4.0 license.

the build platform on the right moves downwards by one layer thickness, and the recoater
blade on the left supplies new metal powder from the powder supply onto the platform with
the partially built structure. Popular application fields of PBF methods besides aerospace
engineering are the automotive and medical industries, where high accuracy for smaller parts
is essential. Figure 1.2 shows a partially submerged titanium prosthesis manufactured with
PBF-EB/M and cleaned afterwards. Powder bed fusion is also used with thermoplastic ma-
terials in PBF-LB/P and PBF-EB/P. While this thesis focuses on PBF-LB/M, many of its
challenges exist in other PBF variants that may, therefore, equally benefit from the presented
space-time simulation approach.
Printing parts with PBF is a complex process involving many physical phenomena over many

spatial and temporal scales. Usually, only a small window of process parameters yields accept-
able results, and even within this window, manufacturing failures and defects in the printed
objects are common. Therefore, it is crucial to understand the process and develop computa-
tional models that allow optimizing the printing process based on the simulation results. A
comprehensive discussion of current PBF-LB/M technology can be found in Yadroitsev et al.
(2021). Current PBF-LB/M systems typically use a build chamber of 20 cm to 100 cm size
with a build plate that supports the printed structure. On each new layer of metal powder,
a high-power (typically infrared) laser scans the interior of the structure on the current in-
tersection plane using the computer-generated path from the preprocessing stage. Figure 1.3
shows two adjacent hatch lines with a sufficient melt pool overlap to avoid pores between
them. Afterwards, the build plate is moved downwards by one layer thickness, and a new
layer of powder is introduced by the recoating system that ensures a well-leveled surface (us-



1.1. Laser powder bed fusion of metals 11

Figure 1.2: Removal of Ti6Al4V powder around a titanium prosthesis scaffold manufactured
by PBF-EB/M. From Rongzeng et al. (2018), used under Creative Commons CC BY 4.0
license.

ing, for example, a leveling roller or blade). Moving the build plate has the advantage that
the recoating system and the laser focus plane do not need to move vertically.
When the laser light hits the metal (powder) surface, it is partially reflected and absorbed,

converting the radiant energy into heat. With enough laser power, the metal directly around
and behind the laser spot is melted for a short time. Common laser powers range from below
one hundred to a few hundred watts, but different powers can be necessary depending on the
width and speed of the laser. The laser intensities in the focus plane are often Gaussian profiles



1.1. Laser powder bed fusion of metals 12

Figure 1.3: Areas on the current layer are hatched if they lie inside the geometric model.
From Letenneur et al. (2017), used under Creative Commons CC BY 4.0 license.

with widths (4σ) of 60 µm to 250 µm. Typical laser velocities range from tens of centimeters
per second to over one meter per second. After the laser passes, the metal cools down quickly
and solidifies as the heat diffuses into the already-built structure. Figure 1.4 sketches the
physical phenomena around a laser beam traveling from left to right. The metal powder
surrounding the solidified object has a lower heat conductivity due to its porosity. Outside
the melt pool, heat conduction and the induced mechanical response dominate; inside the
melt pool, fluid flow and evaporation effects play an important role. The strong temperature
gradients towards the laser spot lead to a rapid decrease in density, causing the liquid to
expand under the laser spot. The strong density gradients also reduce the surface tension
on the liquid-gas interface enough to cause strong Marangoni forces. These are tangential to
the liquid surface and point towards regions of higher surface tension, driving the liquid on
top of the melt pool away from the laser spot. As a result, circulating flows in the melt pool

Figure 1.4: Physical phenomena in and around the melt pool. From Rausch et al. (2017),
used under Creative Commons CC BY 4.0 license.



1.1. Laser powder bed fusion of metals 13

Figure 1.5: High laser powers evaporate metal and push the melt pool surface into the substrate
due to recoil pressure. This change in geometry further increases the absorptivity and the melt
pool depth, causing keyholes that leave unwanted pores when collapsing. From Bayat et al.
(2019), used under Creative Commons CC BY-NC-ND 4.0 license.

significantly contribute to convective heat transport (see, e.g., Khairallah et al., 2016; Egorov
et al., 2020). Together with the normal component of the surface tension, the Marangoni forces
are one of the primary influences for the surface geometry of the melt pool. Additionally, with
high enough laser power, the liquid metal starts to boil, and the evaporation cools the surface
while pushing it downwards. This downward force, called recoil pressure, contributes to the
formation of a depression in the melt pool. In extreme cases, the deep cavities that can form
due to recoil pressure are called keyholes, and the process is said to be in keyhole mode (as
opposed to conduction mode), as Figure 1.5 shows.
The highly complex local dynamics in PBF-LB/M processes give rise to many potential

failures or defects in the final structure. Residual stresses occur when metal locally heats up
quickly, expands and compresses nearby material, and cools down again while staying under
tension. Depending on the laser path, these residual stresses can induce cracks or accumulate
and deform the printed structure. Other defects in the built structure are pores that can
originate from lack of fusion (LOF) or excessive heat. When the laser power density is too



1.2. The problem of scales in PBF-LB/M simulations 14

Figure 1.6: Window of feasible process parameters that result in sufficient fusion without
formation of keyholes. From Gordon et al. (2020), used under Creative Commons CC BY-
NC-ND 4.0 license.

low compared to the laser speed, the energy input onto the substrate surface is insufficient to
fully melt the powder layer, resulting in residual pores due to partially melted grains. On the
other hand, too much energy input can cause keyholes to periodically collapse with trapped air
inside (Figure 1.5). Figure 1.6 shows the process window of parameters that balance these two
extremes. However, the conditions during the manufacturing can vary greatly, depending on
the part geometry and the selected laser pathing. Closely arranged laser paths and insolating
surrounding powder can lead to significant local deviations from the optimal conditions within
the process window. The resulting overheating zones can cause dimensional inaccuracies and
porosity despite using parameters that perform well in an isolated setting.

1.2 The problem of scales in PBF-LB/M simulations
Computer simulations are essential for understanding and improving PBF-LB/M processes.
The first step in setting up a simulation is choosing a mathematical model that describes the
relevant phenomena in the process. For example, if one is interested in the coarse-scale ther-
mal evolution in PBF, then the local effects in the melt pool do not need to be resolved as long
as the energy balance is correct. The resulting partial differential equation (PDE) is defined
on a spatial domain and usually enforces the conservation of quantities like energy, mass, or
momentum. Solutions to such PDEs are functions in space and often time (e.g., the evolution
of a temperature field) that are usually hard or impossible to obtain as analytical expressions;
however, they can be approximated using numerical methods. These transform the contin-
uously defined PDE into a discrete system of equations that can be solved on a computer
and are called discretization methods. In PBF-LB/M simulations, it is common to discretize
the spatial part using the finite element method and combine it with a finite-difference-based



1.3. Space-time hp-finite element discretizations 15

time-stepping scheme. This allows a local refinement of the finite element mesh during each
time step towards the current position of the laser. The theoretical background of finite el-
ements and their combination with time-stepping schemes can be found in Hughes (2000).
The fundamental challenge in simulating PBF-LB/M processes is that detailed mathemati-
cal models are computationally expensive, and short fractions of the process already require
significant resources on current supercomputers. Conversely, models that can be solved for
the entire manufacturing process may not capture enough physical effects to gain the desired
insight into the process. A review of current simulation models for metal AM can be found in
Bayat et al. (2021).
To reliably predict the melt pool dynamics and related effects, such as lack of fusion or

keyhole porosity, the fluid flow in the melt pool and the influence of evaporation must be
included in the model. Resolving these effects on a scale of a few hundred micrometers over a
time span of minutes or hours far exceeds the capabilities of any current simulation framework.
However, the thermal evolution can already deliver valuable insights as most phenomena in
PBF are driven by heat transfer and distribution. For example, thermal models can predict
melt pool shapes (Kollmannsberger et al., 2019; Paulson et al., 2020), detect local overheating
zones (Ranjan et al., 2020), determine the microstructure formation (Gu et al., 2018; Nitzler et
al., 2021), or characterize the mechanical properties of the printed structure (Xie et al., 2021).
The simplicity of thermal models combined with a lower spatial and temporal resolution of
the laser spot results in much faster computations compared to higher fidelity models.
Part-scale simulations based on thermal models with time-stepping discretizations are still

very challenging and often impossible when fully resolving the laser path without using lumped
heat sources (that impose the equivalent heat of an entire line or layer at once). Classical ap-
proaches discretize only the spatial dimensions with finite elements and use a finite-difference
scheme to advance the temperature in time. In particular, hp-methods can discretize the indi-
vidual time steps efficiently by locally refining the mesh towards the laser spot (h-refinement)
while increasing the polynomial degree (p-refinement) in regions with a smooth temperature
field (Kollmannsberger et al., 2017; Kollmannsberger & Kopp, 2021). Two major challenges
exist for developing part-scale time-stepping methods for simulating PBF-LB/M processes.
First, they are restricted to the same time step length everywhere in space, leading to need-
lessly high temporal accuracy in regions further away from the laser. Depending on how
expensive these peripheral regions are to compute, the cost for one time step may become
prohibitively high. Second, efficiently using high-performance computing (HPC) resources
requires sufficiently large problem sizes. However, the simulation of significant parts of the
printing process often requires millions of time steps, leaving much less than one second to
compute individual time steps. Even if a capable adaptive spatial discretization reduces the
computational time to a few seconds on a single CPU, then a single matrix-vector multipli-
cation in the iterative solution of the linear equation system takes only a few milliseconds.
For such small problems, the communication overhead makes obtaining good parallel scaling
difficult.

1.3 Space-time hp-finite element discretizations
This thesis introduces an alternative way of simulating the thermal evolution in PBF-LB/M
that uses a four-dimensional finite element interpolation for uniformly discretizing space and



1.3. Space-time hp-finite element discretizations 16

x

t

T
im

e
st
ep
s

8–
16

(a) Time-stepping with local refinement in space
x

t

Se
co

nd
tim

e
sla

b

(b) Locally refined space-time finite elements

Figure 1.7: Discretization method comparison for a transient problem in one spatial dimension
with a moving heat source (source path in red, refinement region in dashed green). From Kopp,
Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

time. In this setting, elements have three spatial lengths and a duration (the length in time).
This allows refining the mesh in the combined four-dimensional space-time, such that finer
elements around the laser spot span a shorter duration and coarser elements in the peripheral
regions span a longer duration. The simulation duration is subdivided into a sequence of time
slabs that are solved consecutively to maintain reasonable problem sizes. This provides the
flexibility to increase the sizes of the linear systems originating from individual space-time
slabs according to the target environment. While desktop computers benefit from smaller
systems that are relatively cheap to compute, large HPC systems may require larger sys-
tems to reduce the overall communication overhead. Figures 1.7 and 1.8 demonstrate this
idea in one and two space dimensions. Such a method requires a suitable space-time weak
formulation that performs well for PBF-LB/M applications. As any PBF-LB/M process is
three-dimensional in space, a capable method for constructing four-dimensional, locally refined
hp-basis functions is necessary. To the author’s knowledge, no space-time hp-finite element
methods have been developed for simulating PBF-LB/M processes so far. However, several
recent approaches (Soldner & Mergheim, 2019; Hodge, 2021; Cheng & Wagner, 2021; Viguerie
et al., 2022) address the multi-scale nature of the solution by dividing the spatial domain into
several subdomains that are integrated with different time step lengths. The continuity across
the subdomains is enforced weakly, which allows to develop iterative schemes based on local
solutions of the individual problems. Such strategies can reduce the computational effort of
integrating peripheral regions in time, resulting in speedups over conventional methods with
a uniform time step length. The continuous space-time approach presented herein is com-
patible in space and time by construction, and heterogeneous time step lengths (i.e., element
durations) are an inherent property of the method.
The standard Bubnov-Galerkin finite element discretization for symmetric problems like



1.3. Space-time hp-finite element discretizations 17

x

y

t

0 500 1,000 1,400

Temperature [°C]

Figure 1.8: Three refined space-time slabs for a nonlinear heat equation in two spatial dimen-
sions. From Kopp, Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

Poisson’s equation uses the same space for the test and trial functions and results in the
best approximation (Hughes, 2000). Unfortunately, this result does not apply to the stan-
dard space-time formulation of the heat equation. The first derivative in time leads to an
unsymmetric bilinear form with different continuity requirements in the test and trial spaces,
rendering it a formulation of Petrov-Galerkin type. The space-time bilinear form does not de-
fine an inner product, and the finite element solution is not a projection in a naturally induced
(energy) norm. Showing uniform stability and quasi-optimality for pairs of discrete spaces for
such Petrov-Galerkin formulations is challenging (Führer & Karkulik, 2021). Steinbach (2015)
derives optimal convergence estimates of order p for standard continuous finite elements on
general space-time meshes, where p is the polynomial degree of the finite elements. They
require that the test space contains the trial space, and they later choose the same space for
both. They measure the error in a norm that is H1 in space and L2 in time. Initial numerical
experiments with the same C0 test and trial spaces show suboptimal convergence rates in the
space-time L2-norm for even polynomial degrees and non-local spurious oscillations that travel
backward in time in the presence of sharp, underresolved features in the solution. Moreover,
a C0 continuous test space does not directly allow the separation of the global space-time
problem into consecutive time slabs, which requires a discontinuous test space across certain
time slices.
An alternative approach based on a discontinuous test space was introduced by Aziz and

Monk (1989), where the test functions on each temporal interval are polynomials of degree
p − 1 in time that are not connected across the temporal interfaces. This method leads to
optimal convergence in the L2-norm and yields block-triangular systems that can be solved
consecutively. Under certain regularity conditions, the method is even superconvergent at the



1.3. Space-time hp-finite element discretizations 18

Before refinement

Classical hp Multi-level hp

Figure 1.9: Comparison of refine-by-replacement and refine-by-superposition strategies.

temporal mesh points. The authors also present an equivalent formulation that tests with the
time derivative of the trial functions (of degree p), which span the same space of piecewise
discontinuous polynomials of degree p − 1. They suggest that this approach can be used to
construct adaptive space-time finite element methods, which is confirmed by the results of
this thesis. Schieweck (2010) discusses an energy-decreasing property and combines Lagrange
interpolations with a Gauss-Lobatto quadrature in time to decouple the linear systems, and
Hussain et al. (2011) investigate suitable efficient parallel solution strategies. A similar space-
time formulation for continuous finite element interpolations was developed by Devaud and
Schwab (2018) and, in particular, Langer et al. (2019) and Langer and Yang (2020), who
use hierarchical B-Splines to construct an adaptive isogeometric space-time method. Loli
et al. (2022) add a high-order stabilization term to the isogeometric formulation to obtain
a triangular system in time that can be advanced step-wise. Discontinuous Galerkin (DG)
methods in time do not force continuity across element interfaces, even in the trial space,
and are often used to develop time-stepping schemes that are adaptive in space (Jamet, 1978;
Eriksson et al., 1985). Due to the reduced continuity, DG approaches lead to more unknowns,
rendering them less efficient than continuous methods. An overview and comparison of space-
time finite element methods for parabolic problems can be found in Akrivis et al. (2011) and
Steinbach and Yang (2019). Adaptive versions of the continuous and discontinuous Galerkin
methods in time that separately refine the spatial and temporal discretizations depending on
the error in a chosen quantity of interest were developed by Meidner and Vexler (2007) and
Schmich and Vexler (2008).
Finite element discretizations that can perform hp-refinements are particularly suitable to

approximate solutions that are smooth in large parts of the computational domain but have
local features that must be resolved. Classical replacement-based hp-methods in three dimen-
sions refine by substituting several fine elements in place of an original coarse element (for ex-
ample, eight fine cubes for one coarse cube). On the resulting incompatible interfaces between
coarse and fine elements, called hanging nodes, the shape functions of finer elements must be
constrained to the shape functions of the coarse neighbor. In higher dimensions, hanging nodes



1.3. Space-time hp-finite element discretizations 19

also refer to incompatible edges, faces, and so on. These constraints already develop complex
dependencies in three dimensions (Demkowicz et al., 1989; Demkowicz, 2006). The multi-level
hp-method introduced in Zander et al. (2015), Zander et al. (2016), Di Stolfo et al. (2016), and
Zander et al. (2022) simplifies the hp-basis construction by keeping the coarse elements in a
hierarchical data structure and essentially constructing a high-order finite element basis on the
meshes of each refinement level independently. Figure 1.9 demonstrates how hanging nodes
(nodes and edges) appear when replacing coarse elements and shows the alternative superpo-
sition approach followed by the multi-level hp-method. There, the treatment of hanging nodes
is transformed into a simple deactivation of overlay nodes on the left side. Further refinements
are possible by adding more hierarchical overlays with finer elements. The method builds an
object-oriented data structure to formulate two simple rules for obtaining linear independent
and C0 continuous basis functions that are complete up to a selected polynomial degree on
each leaf cell of the refinement tree. While this object-oriented data structure works well in
1D, 2D, and 3D, the number of entities grows exponentially for higher dimensions. In 3D, one
refined cube knows about its six faces, twelve edges, eight nodes, and eight child cubes (the
fine elements); each face knows about its four edges, four nodes, and four child faces; each
edge knows about the two nodes and two child edges; each vertex knows about its child vertex.
Additionally, all topological components carry a list of connected elements (cubes) to compare
their refinement levels and determine whether the component shall be active or inactive. In
four dimensions, one hypercube comprises eight cubes, twenty-four faces, thirty-two edges,
and sixteen nodes. Each again carries links to the topological sub-components, children, and
adjacent elements. The complexity of constructing and maintaining such a data structure in
four dimensions is significant, and efficient implementations with low memory management
overhead and favorable memory access patterns become increasingly challenging to develop.
To address the complexity of hp-refinements in four dimensions, an even simpler data struc-

ture is introduced in this thesis that only stores the direct topological relations between the
cells of the refinement tree (cubes in three dimensions or hypercubes in higher dimensions)
and not their sub-components (faces, edges, nodes). A consequence of this simplification is
that nodes, for example, are not explicitly stored anymore, and one cannot find all connecting
elements across a corner of an element by simply reading the list of connected elements of
that node. While not explicitly stored, this information still exists implicitly within the list of
the neighbors across the 2d interfaces for all elements, where d is the number of dimensions.
Therefore, this reduced data structure is complemented by a set of algorithms that construct
compatible p- and hp-basis functions equivalent to the original multi-level hp-method by im-
plicitly extracting much of the topological information rather than relying on explicit storage.
This is achieved by introducing a tensor-product mask and a location matrix for each cell of
the refinement tree that determines the activation state and the global basis function index
of its shape functions and formulating algorithms in terms of operations on the array slices of
these containers. By repeating these algorithms several times, the information travels across
multiple interfaces and reaches, for example, all elements connected to a node. Only the
leaves of the refinement tree are considered finite elements, as they form a non-overlapping
partition of the computational domain. This view hides the hierarchical nature to allow the
use of standard finite element procedures without any modifications. The combination with
the aforementioned continuous Petrov-Galerkin formulation leads to a stable and efficient
space-time method for simulating PBF-LB/M processes.



1.4. Outline 20

1.4 Outline
This thesis is structured as follows. Chapter 2 discusses a thermal model with a volumetric
heat source (Section 2.1) and an apparent heat capacity (Section 2.2) to consider the latent
heat of fusion. The time-stepping method introduced in Section 2.3 uses finite elements to
discretize in space and is the reference for evaluating the performance of the space-time fi-
nite element method. The presentation of the space-time finite element method is split into
three parts, starting with introducing the weak form in the continuous setting in Section 2.4.
Section 2.5 analyses two formulations with a continuous and a discontinuous test space and
compares their performance using two linear benchmark problems. Section 2.6 then discusses
the solution of the nonlinear equation system arising from a space-time finite element dis-
cretization of the nonlinear heat equation. Chapter 3 introduces the essential concepts for
constructing p-finite element bases for an arbitrary number of dimensions, starting with the
necessary topological information of a p-finite element mesh in Section 3.1. Section 3.2 dis-
cusses tensor-products of the integrated Legendre polynomials used as shape functions on each
finite element and the construction of the associated tensor-product masks (Section 3.3) and
location matrices (Section 3.4). These contain information on what shape functions are active
and what global basis function index they contribute to. Section 3.5 introduces the construc-
tion of trunk space initial tensor-product masks that only keep the essential functions required
for completeness. These concepts are then applied to multiple levels of p-finite elements in
Chapter 4 to construct hp-bases defined on the hierarchical mesh discussed in Section 4.1.
The major difference in the construction of tensor-product masks (Section 4.2) and location
matrices (Section 4.3) compared to Chapter 3 is the distinction between internal interfaces and
internal boundaries. These concepts are embedded into a standard finite element simulation
workflow in Section 4.4. Sections 4.5 and 4.6 then introduce an a priori refinement strategy
tailored to PBF-LB/M processes and the compatible separation of the four-dimensional hp-
meshes into consecutive time slabs by introducing additional ghost slabs across the initial and
final time slices of each slab. The presented approach is applied to several examples in Chap-
ter 5. A verification in Section 5.1 shows that the multi-level hp extension behaves optimally
for a simple Poisson problem. Section 5.2 then validates the presented space-time method
on the AMB2018 benchmark case. The same setup is used in Section 5.3 to hatch a square
centimeter for about one second and a path length of around one meter. As the last exam-
ple, Section 5.4 compares the performance of the space-time and time-stepping approaches.
Finally, Chapter 6 summarizes the main results of the thesis and discusses possible future
extensions and applications.
The presented multi-level hp extension was pre-published in Kopp, Rank, et al. (2022).

The content of Section 2.3, Chapter 3, Chapter 4 until after Section 4.4, and Section 5.1
is taken from this publication, including literal transcription. Similarly, the application to
thermal space-time PBF-LB/M simulations was pre-published in Kopp, Calo, et al. (2022).
The content of Chapter 2 without Section 2.3, Sections 4.5 – 4.6, and Sections 5.2 – 5.3 is
taken from this publication, including literal transcription. Footnotes 1 and 2 reference the
respective publications in the concerning sections and mark potential literal transcription.

1The following content is based on Kopp, Rank, et al. (2022). The main scientific research and its textual
elaboration was performed by the author of this work.

2The following content is based on Kopp, Calo, et al. (2022). The main scientific research and its textual
elaboration was performed by the author of this work.



21

Chapter 2

Formulation1,2

This chapter discusses the thermal model and introduces its time-stepping and Petrov-Galerkin
space-time finite element formulations. The strong form of the nonlinear heat equation is
defined as follows:

cu̇+∇ · (k∇u) =

u =

u =

n · k∇u =

f

u0

g

h

on Ω = S × T
on S, at t = t0

on ΓD
on ΓN .

(2.1)

The space-time domain Ω is the product of a d-dimensional spatial domain S (considered
time-invariant in this thesis) and a time interval T = (t0, t1]; u is the temperature, u̇ and
∇u are the time derivative and spatial gradient of the temperature. Moreover, c = c(u) and
k = k(u) are the heat capacity and the heat conductivity of the material, f is the volumetric
source function, g and h are the prescribed temperature and heat flux on the Neumann and
Dirichlet boundaries ΓN and ΓD, and u0 is the initial condition. The Neumann and Dirichlet
boundaries do not intersect (ΓD ∩ ΓN = ∅), and they together form the spatial boundary
during the simulation (ΓD ∪ ΓN = ∂S × T ). The heat flux c(u) is split into the density and
specific heat capacity c(u) = ρcs(u). In practice, ρ also depends on the temperature, but it is
assumed constant for simplicity.
The following sections use the terms time slab, time slice, and time step to refer to parts

of the space-time domain Ω. A time slab extracts a piece of Ω on a temporal subinterval
(ti, ti+1] ∈ T and is defined as S × (ti, ti+1]. Time slabs have the same d + 1 dimensions as
Ω and often refer to the subdomains on which individual space-time finite element problems
are computed. In contrast, time slices are d-dimensional spatial ”cuts” through Ω at times ti,
defined as S × ti. In specific contexts, a time slice or time slab may refer to the temperature
field on the respective subdomain instead of the subdomain itself. A time step is used in the
context of time-stepping methods and consists of a pair of time values (ti, ti+1) with a duration
or time step length of ∆ti = ti+1 − ti. The time-stepping scheme discussed in Section 2.3
formulates a finite element problem for advancing a known (spatial) temperature field on time
slice ti to the new temperature field on time slice ti+1. While time-stepping schemes operate
on temperature slices at discrete times, space-time formulations (like the one introduced in
Section 2.4) interpolate the temperature field on space-time slabs.



2.1. Laser model 22

2.1 Laser model2

x

y
z

(0, 0)

D4σ

0
−σz

Φ(x, y)

I(z)

Laser intensity Depth extension Volumetric source

Figure 2.1: Volumetric extension of the two-dimensional laser intensity profile in z-direction.

The laser heat input model has a significant impact on the quality of the thermal solu-
tion. Most current PBF-LB/M systems use lasers with wavelengths in the infrared spectrum,
spatially distributed over a Gaussian profile. The laser intensity is therefore modeled as

Φ(x, y) = P

2πσ2 exp
(
−x

2 + y2

2σ2

)
,

where P is the total power of the laser and σ is the width of the laser beam shape (often
given as D4σ = 4σ). The coordinate system is chosen so that the build plate and subsequent
layers lie in the x− y plane, and z is the vertical direction parallel to the laser beam. Other
shapes are possible and currently being investigated for improving the process quality and
productivity, for example, in Grünewald et al. (2021). In addition to the laser shape, the laser
path p : t→ (x, y, z) is given after slicing the geometric model and scanning the interior areas.
When encountering a metal surface, the electromagnetic waves are partially reflected and

absorbed, depending on the absorptivity of the material. With higher absorptivities, more
radiant energy of the electromagnetic waves is absorbed and converted into thermal energy
on the surface of the material. The absorptivity changes with factors such as temperature,
surface roughness, and angle of incidence, but these effects are often condensed into a single
absorptivity ν. For low temperatures and flat substrate surfaces, the heat input can be imposed
as a distributed heat flux on the top surface with

h(x, y) = ν Φ(x− px(t), y − py(t)). (2.2)

Such surface models deliver increasingly poorer results after the laser power is high enough
to reach melting and, eventually, boiling temperatures below the laser spot. Once evaporation
becomes dominant and recoil pressure-induced depressions and keyholes form, the effective
absorptivities dramatically increase, as shown by Trapp et al. (2017), for example. Besides
absorbing more energy, the heat enters below the original top surface, which has been melted
and pushed into the substrate by the recoil pressure. This increases the depth of the melt
pool more than a surface heat source model can predict, even when adjusting the effective
absorptivity accordingly.
Capturing these effects requires a detailed model that includes fluid flow and evaporation.

However, choosing a volumetric heat input can improve the results from thermal models if



2.2. Phase change model 23

there is not enough recoil pressure for keyholing. By allowing heat to be introduced over some
depth in the substrate, the melt pool depth can be calibrated to a given setup. To this end,
a penetration intensity function I(z) is selected, for example

I(z) = 1√
2πσz

exp
(
− z2

2σ2
z

)
, (2.3)

where σz is the penetration depth that can be chosen in relation to the laser parameters.
Then, the volumetric source function f is defined as

f(x, y, z, t) = ν I(z − pz(t)) Φ(x− px(t), y − py(t)). (2.4)

Figure 2.1 sketches the combination of Φ and I into a volumetric heat source. Allowing the
laser to penetrate the substrate to some degree is also beneficial when using a continuum
approach to model metal powder. On this scale, resolving individual grains is not feasible,
but the natural penetration of the laser light into the powder is still important. As Gusarov
et al. (2009) suggest, a volumetric heat source with an extension into the material similar
to (2.3) can account for this effect in a homogenized way. Similar models have been analyzed
by Zhang et al. (2018), Kollmannsberger et al. (2019), and Imani Shahabad et al. (2020).

2.2 Phase change model2

800 °C 1200 °C 1600 °C 2000 °C

0

0.5

1

fpc

S = 1
S = 2
ul + 200

800 °C 1200 °C 1600 °C 2000 °C
0

0.005

0.01

0.015

f ′
pc

S = 1
S = 2
ul + 200

Figure 2.2: Phase change regularization between solid and liquid states. From Kopp, Calo,
et al. (2022), used under Creative Commons CC BY 4.0 license.

The heat capacity of a material specifies how much energy is required to increase its tem-
perature by a fixed amount. The same energy is released when the material cools down to the
original temperature. This becomes quite extreme during phase transitions, where a significant
amount of latent heat must be spent in completing the phase transition before the temperature
can rise again. For simulating PBF-LB/M processes, the latent heat of fusion is essential for
obtaining more realistic temperatures in the melt pool. The otherwise higher temperatures
and temperature gradients lead to an artificially high diffusion of heat that results in overesti-
mating the melt pool width and depth and underestimating the melt pool length. While the



2.2. Phase change model 24

0 700 1,400 2,100 2,800

(a) Temperature [°C]

0 1.7 · 108 3.4 · 108

(b) Volumetric heat source [W m−3]

Top
view

Side
view

0 0.25 0.5 0.75 1
(c) Phase function fpc ◦ u [–]

0 12.5 25 37.5 50
(d) Apparent heat capacity c ◦ u [J m−3 °C−1].

Top
view

Side
view

Figure 2.3: Phase change between us = 1290 °C and ul = 1350 °C with S = 1. The laser
travels from right to left on top of an IN625 metal plate (see Section 5.2).

melting of pure metals is isothermal, the alloys commonly used in PBF-LB/M usually melt
over a temperature range that depends on the composition.
There are many ways of including the latent heat of fusion into a finite element simulation.

In particular, single-field approaches that do not introduce two separate solution fields for
the solid and liquid phases are attractive as they are comparably simple to implement. The
primary solution can either be the temperature or the enthalpy, from which the temperature
can be recovered afterwards. Temperature formulations are attractive for non-isothermal



2.2. Phase change model 25

phase changes where the transition can be described continuously. To this end, a phase
change function fpc(u) is defined, with a value of zero for fully solidified material and one
for fully liquid material. The interpolation between the solid temperature us and the liquid
temperature ul is typically done using a continuous function, for example,

fpc(u) = 1
2

(
tanh

(
u− um
uσ

)
+ 1

)
, (2.5)

where um and uσ are the melting temperature and the width of the phase change, defined as

um = ul + us
2 uσ = S

ul − us
2 . (2.6)

The regularization parameter S gives additional control over the smoothness of the phase
change, which is later used to improve the numerical behavior of the problem. The formulation
of (2.5) smoothly transitions between the solid and liquid states, containing most of the latent
heat of fusion between us and ul. The first and second derivatives of fpc with respect to
temperature are:

f ′pc(u) = 1
2uσ

(
1− tanh

(
u− um
uσ

)2)

f ′′pc(u) = 1
u2
σ

tanh
(
u− um
uσ

)(
tanh

(
u− um
uσ

)2
− 1

)
.

Figure 2.3a shows a temperature field computed from the volumetric source in Figure 2.3b,
using the material and laser parameters of Section 5.2. The composition u◦fpc of the temper-
ature u and the phase change function fpc evaluates to one inside the melt pool and transitions
to zero elsewhere in a very narrow zone, as Figure 2.3c shows.
Together with the latent heat of fusion L of the material, the heat equation (2.1) is aug-

mented with a latent heat term that stores the energy of the phase change, and hence its time
derivative acts as a heat source or sink:

ρcsu̇+ ρLḟpc +∇ · (k∇u) = f (2.7)

By applying the chain rule

˙fpc = ∂fpc(u)
∂t

= dfpc

du
∂u

∂t
= f ′pcu̇,

the standard form of the heat equation (2.1) can be recovered:

(ρcs + ρLf ′pc) u̇+∇ · (k∇u) = f. (2.8)

In (2.8), c(u) = ρcs(u) + ρLf ′pc(u) is called the apparent heat capacity. This formulation is
particularly attractive as it can be used with existing heat equation solvers and only requires
modifying the heat capacity. The derivative of fpc adds a sharp spike around the melting
temperature, as Figure 2.3d shows. This makes the numerical quadrature of the finite element
integrals challenging, especially since thermal models for PBF-LB/M often use only few ele-
ments to discretize the melt pool volume. Figure 2.3, however, uses 39× 13× 7 third-order



2.3. Time-stepping finite element formulation 26

finite elements across a melt pool with a size of about 400 µm× 130 µm× 35 µm. Reducing the
number of elements in this discretization requires further regularization of fpc (by increasing
S) to smooth the spike in c.
The formulation of (2.7) allows time-stepping schemes to introduce a separate finite differ-

ence approximation for ḟpc. Such schemes offer improved stability over formulations based
on (2.8), as discussed in Section 2.3. Technically, (2.7) can be used for isothermal phase tran-
sitions, but in practice, it still may be necessary to regularize the discontinuous phase change
function fpc. Because (2.7) does not naturally transfer to a single field space-time formulation,
Section 2.4 uses the apparent heat capacity version (2.8) instead.

2.3 Time-stepping finite element formulation1

This section discusses a time-stepping finite element formulation of (2.7) with dynamic refine-
ment and derefinement to compare to the space-time formulation introduced in Section 2.4,
which is the main focus of this thesis. The derivation follows closely the work presented
by Celentano et al. (1994) but uses Rothe’s method, where time is discretized first, instead of
using the method of lines, where space is discretized first. The formulation in terms of spatial
functions on the sequence of time slices allows the subsequent spatial discretization to change
between time steps, which is crucial for using dynamic hp-refinement with a time-stepping
scheme. Such approaches are commonly used in adaptive finite elements for time-dependent
problems (Kollmannsberger & Kopp, 2021; Kopp, Rank, et al., 2022). This thesis uses the
Wilson-θ scheme to discretize in time, which results in the conditionally stable, explicit, first-
order accurate Forward-Euler scheme for θ = 0, the unconditionally stable, implicit, second-
order accurate Crank-Nickolson scheme for θ = 1/2, and the unconditionally stable, implicit,
first-order accurate Backward-Euler scheme for θ = 1. Importantly, these characteristics hold
only for linear problems under certain regularity assumptions.
A time-stepping scheme subdivides the time interval T into a sequence of time steps from

tn to tn+1 and sequentially advances the solution on the associated time slices. Within a time
step, the time derivatives are approximated as

ρcs
∂u

∂t
≈ ρcn+θ

s

un+1 − un
∆t and ρL

∂fpc

∂t
≈ ρL

fn+1
pc − fnpc

∆t ,

where the n and n + 1 superscripts represent time slices at tn and tn+1, and the superscript
n+ θ indicates interpolation at θ between the values at tn and tn+1:

cn+θ = (1− θ) cn + θ cn+1.

The remaining terms of (2.7) without a time derivative are interpolated at tn+θ to obtain the
following time discretization:

ρcn+θ
s

un+1 − un
∆t + ρL

fn+1
pc − fnpc

∆t −∇ ·
[
k∇u

]n+θ
= fn+θ, (2.9)

where
[
k∇u

]n+θ
= (1− θ) k(un)∇un + θ k(un+1)∇un+1,



2.3. Time-stepping finite element formulation 27

fn+θ = (1− θ) fn + θfn+1.

The weak form of (2.9) then reads: Find un+1 ∈ un+1
g +H1

0 (S) such that

∫

S

ρcn+θ
s

∆t w
(
un+1 − un

)
+ ρL

∆t w
(
fn+1

pc − fnpc

)
+∇w ·

[
k∇u

]n+θ
dS

=
∫

S
wfn+θ dS +

∫

N
whn+θ dN , (2.10)

holds for all w ∈ H1
0 (S). In (2.10), N refers to the spatial component of the Neumann

boundary ΓN , such that N × T = ΓN , and un+1
g ∈ H1(S) is a smooth extension of the

Dirichlet function g into the domain interior. The Sobolev space H1
0 (S) contains real-valued

functions defined on S with zero values on the Dirichlet boundary and weakly defined first
derivatives. Sobolev spaces state the necessary continuity conditions and are essential in the
mathematical analysis of finite elements. Selecting a finite element subspace W n,h ⊂ H1

0 for
each time slice yields the interpolations unh = ∑

Nn
i û

n
i ∈ W n,h, where ûni are the space- and

time-independent coefficients (degrees of freedom) for time slice n. As the time slices are
discretized independently, the finite element meshes may differ, enabling the use of dynamic
mesh refinement. In one time step, the basis {Nn

i } for the current time slice and the basis
{Nn+1

i } for the next time slice do not have to coincide. Similarly, the number of coefficients
may differ between the discretizations of different time slices. From now on, the superscript in
Nn+1
i is omitted to simplify the notation. Using again the same test as trial functions allows

to obtain the discrete weak residual:

Rn
i (ûn+1) =

∫

S

ρcn+θ
s

∆t Ni

(
un+1
h − unh

)
+ ρL

∆t Ni

(
fn+1

pc − fnpc

)
+∇Ni ·

[
k∇uh

]n+θ
dS

−
∫

S
Nif

n+θ dS −
∫

N
Nih

n+θ dN . (2.11)

The material parameters cs and k and the phase change function fpc are now evaluated using
the discrete solution. Again the n + θ superscripts indicate an interpolation at θ between
the evaluations at tn and tn+1. Constructing an iterative scheme with second-order conver-
gence to find the coefficients ûn+1 that solve Rn

i (ûn+1) = 0 requires deriving the linearization
∂Rn

i /∂û
n+1
j . Using the intermediate results

∂un+1
h

∂ûn+1
j

= Nj,
∂unh
∂ûn+1

j

= 0,

and, therefore,

∂cn+θ
s

∂ûn+1
j

= (1− θ) c′ns
∂unh
∂ûn+1

j

+ θ c′n+1
s

∂un+1
h

∂ûn+1
j

= θ c′n+1
s Nj,

∂

∂ûn+1
j

[
cn+θ
s

(
un+1
h − unh

) ]
= cn+θ

s

∂un+1
h

∂ûn+1
j

+ ∂cn+θ
s

∂ûn+1
j

(
un+1
h − unh

)

= cn+θ
s Nj + θ c′n+1

s

(
un+1
h − unh

)
Nj



2.3. Time-stepping finite element formulation 28

∂

∂ûn+1
j

[
fn+1

pc − fnpc

]
= f ′n+1

pc
∂un+1

h

∂ûn+1
j

= f ′n+1
pc Nj

∂

∂ûn+1
j

[
k∇uh

]n+θ
= θkn+1∂

(
∇un+1

h

)

∂ûn+1
j

+ θ k′n+1 ∂u
n+1
h

∂ûn+1
j

∇un+1
h

= θkn+1∇Nj + θ k′n+1Nj∇un+1
h ,

the consistent linearization of (2.11) becomes:

T nij(ûn+1) =
∫

S

ρ

∆t
(
cn+θ
s + θ c′n+1

s

(
un+1
h − unh

)
+ Lf ′n+1

pc

)
NiNj dS

+
∫

S
θ∇Ni ·

(
kn+1∇Nj + k′n+1∇un+1

h Nj

)
dS.

(2.12)

The second ”stiffness” term in (2.12) involving the derivative of the conductivity k′ can be
omitted to maintain symmetry of the linear systems. This is often done and does not reduce
the convergence of the nonlinear iterations for the problems considered here by much; however,
for highly nonlinear conductivities, it may be needed. Now, a nonlinear iteration scheme is
constructed using (2.11) and (2.12), starting with an initial guess ûn+1, 0 for the coefficients of
time n+ 1:

ûn+1, k+1 = ûn+1, k + ∆ûn+1, k

T nij(ûn+1, k) ∆ûn+1, k
j = −Rn

i (ûn+1, k).
The computations in this thesis use the symmetric linearization outlined in this section.

Moreover, the L2 projection of unh onto the basis of time n+1 is used as an initial guess for the
nonlinear iterations. This projection could also be used in the finite element integrals (2.12)
and (2.11) instead of evaluating unh using the old finite element basis. However, such a linear
L2 projection does not conserve energy if the heat capacity depends on temperature.
The representation of the solution in two time slices requires two finite element bases (for tn

and for tn+1) to assemble the equation system resulting from one time step. The two bases are
constructed on different meshes when dynamically refining and derefining, resulting in element
interfaces located inside an element of the next mesh. The Gauss-Legendre quadrature used to
integrate the finite element integrals is designed to integrate polynomials exactly but delivers
poor results when integrating functions with low regularity. To prevent integrating over the C0

continuous element interfaces of the previous mesh, an integration cell may not overlap more
than one element per time slice mesh. The hierarchical refinements built in Chapter 4 allow
local solution features to be resolved using the same base mesh in all time steps to capture the
coarse scales, guaranteeing that finer elements of one mesh are always fully contained in the
coarser element of the other mesh. Using this structure, the integration cells to assemble an
element of the tn+1 mesh are found by first identifying the corresponding cell in the tn mesh.
This corresponding tn cell either is either coarser, identical, or overlayed by several finer cells.
The identical case is trivial and does not require special treatment. If the tn cell is coarser, the
quadrature points are distributed on the tn+1 element and mapped to the tn cell. If the tn cell
is a coarse parent of finer elements, the quadrature points are distributed on the finer elements
and mapped to the coarse parent (corresponding to the tn+1 element). The hierarchical mesh
and its data structure are discussed in Section 4.1.



2.4. Continuous space-time weak formulation 29

2.4 Continuous space-time weak formulation2

Instead of advancing the solution slice-by-slice, space-time finite elements discretize the entire
space-time domain with a d+ 1 dimensional finite element interpolation. Multiplying (2.1) by
a test function w and integrating by parts gives the following space-time weak form:
Find u ∈ ub + U0, such that

∫

Ω
w cu̇+∇w · k∇u dΩ =

∫

Ω
wf dΩ +

∫

ΓN
w h dΓN ∀w ∈ W0, (2.13)

where ub ∈ U satisfies the initial and Dirichlet conditions. The test and trial spaces U and
W incorporate the conditions on the functions w and u that allow the terms in (2.13) to
be integrated in space and time. To integrate the second term, the spatial gradients of w
and u must be defined (weakly), and their dot product must be integrable over space and
time. While this condition is sufficient for w, the time derivative in the first term leads to the
additional condition that u̇ must be defined (at least in an inner product with w). Because
the test and trial spaces differ, the method is of Petrov-Galerkin type.
The mathematical analysis of space-time finite elements is often based on Bochner spaces

of functions from the time interval T into a spatial Sobolev space Hs(S). In particular, the
test and trial spaces

W = L2(T ;H1(S))
U = L2(T ;H1(S)) ∩H1(T ;H−1(S))

define the existence conditions for (2.13). The test space W contains functions that for any
time t ∈ T yield a spatial function in H1(S), such that its spatial energy norm (H1-norm on
S) is square integrable in time (L2-norm on T ). The trial space additionally requires that
spatial slices of the time derivative are from H−1 and that their norm is square integrable in
time. In other words, the second condition requires u̇ to be defined in space, at least in the
sense of distributions. It may contain a Dirac delta, for example, since the test functions w
in the product wu̇ are continuous in space, as they are from H1(S), and the product with
an element from the dual space H−1(S) is well-defined in an integral sense. Moreover, the
restrictions ofW and U to functions that are zero on the Dirichlet boundary are again denoted
by W0 and U0.
A weak form is well-posed if it has a unique solution that can be bounded by the source

term (also called stability property; see Ern & Guermond, 2004, introduction of Chapter 2).
The weak form of linear problems can be written as b(u,w) = l(w), where b is called a bilinear
form and l a linear functional. For elliptic problems, the well-posedness of a weak form follows
from the Lax-Milgram theorem that requires b(u,w) to be bounded and coercive (positive-
definite). Unfortunately, Lax-Milgram cannot be used here, as (2.13) is parabolic, and the test
and trial spaces in the bilinear form are different; instead, an inf-sup stability condition must
be proven. In classic linear elasticity for structural mechanics, such inf-sup conditions can be
interpreted as requiring that for every non-zero displacement field (trial function), there is at
least one admissible virtual displacement (test function) that causes a non-zero virtual work
(the result of evaluating the bilinear form). Of course, this context does not apply to the space-
time formulation of the heat equation, but inf-sup conditions do not need such engineering
interpretations. They are the continuous equivalent of requiring the (stiffness) matrix to be



2.5. Space-time finite element discretization 30

invertible in the discrete setting (see Ern & Guermond, 2004, Remark 2.23). Schwab and
Stevenson (2009) show that (2.13) is well-posed, permitting a unique solution u. Interestingly,
stationary advection-diffusion problems have a very similar structure with a first and second
derivative. However, the standard weak form is coercive as the diffusion acts in all directions.

2.5 Space-time finite element discretization2

A finite element approximation of (2.13) constructs discrete subspaces Uh ⊂ U and W h ⊂ W
on a finite element mesh. In contrast to the discretization of the time slices in Section 2.3, the
mesh and the basis functions are now d+1 dimensional as they include the temporal dimension.
Unfortunately, the additional complexity related to the continuous parabolic problem transfers
to the discrete setting. For elliptic problems, the well-posedness result of the Lax-Milgram
theorem transfers to the discrete setting (Ern & Guermond, 2004, Proposition 2.19), and the
natural choice W h = Uh even yields the best approximation for symmetric bilinear forms
(Hughes, 2000, Chapter 4.1). For parabolic problems, stability must be proven again for each
pair of discrete spaces Uh and W h, and there is no obvious choice, such as selecting W h = Uh

for elliptic problems.

0
0

1

1x

t

u̇ − u′′ = 1
u(x, 0) = 0
u(0, t) = 0
u′(1, t) = 0

0

0.15

0.3

0.46

Figure 2.4: Problem setup for comparing the matrix structure of three test bases and their
numerical solution on a 3× 3 mesh.

This section compares two space-time finite element methods that use standard continuous
piecewise polynomials to represent the solution, but their test spaces are different. Figure 2.4
shows a simple linear heat problem with one spatial and one temporal dimension. Its dis-
cretization in Figure 2.5 uses the space-time tensor-product of three piecewise linear ”hat”
functions in space and time, resulting in nine basis functions Ni(x, t). This thesis uses such
standard finite element basis functions to span the trial spaces in space and time, although
local refinements and high-order basis functions are added later to improve the approximation
properties. The first method uses the same test and trial functions, which is intuitive and easy
to implement in existing finite element codes. Steinbach (2015) derives the discrete stability
of this method in a mesh-dependent norm and shows first and second-order convergence for
p = 1 and p = 2 in the energy norm (H1 norm in space, L2 norm in time). However, unlike in
symmetric, second-order problems, continuity in time is not necessary for the test functions.
The second method tests with piecewise constant functions supported only on one element



2.5. Space-time finite element discretization 31

I0(x) I1(x) I2(x)

I0(t)

I1(t)

I2(t)

x

t

N0(x, t)
N1(x, t)
N2(x, t)
N3(x, t)
N4(x, t)
N5(x, t)
N6(x, t)
N7(x, t)
N8(x, t)







I0(x) · I0(t)
I1(x) · I0(t)
I2(x) · I0(t)
I0(x) · I1(t)
I1(x) · I1(t)
I2(x) · I1(t)
I0(x) · I2(t)
I1(x) · I2(t)
I2(x) · I2(t)







N (x, t) ==

N6(x, t) = I0(x) · I2(t) N7(x, t) = I1(x) · I2(t) N8(x, t) = I2(x) · I2(t)

N3(x, t) = I0(x) · I1(t) N4(x, t) = I1(x) · I1(t) N5(x, t) = I2(x) · I1(t)

N0(x, t) = I0(x) · I0(t) N1(x, t) = I1(x) · I0(t) N2(x, t) = I2(x) · I0(t)

Figure 2.5: Space-time C0 basis functions from the tensor-product of piecewise linear ”hat”
functions after imposing a zero initial condition on the bottom edge and Dirichlet condition
on the left edge.



2.5. Space-time finite element discretization 32

I0(x) I1(x) I2(x)

P0(t)

P1(t)

P2(t)

x

t

Ñ0(x, t)
Ñ1(x, t)
Ñ2(x, t)
Ñ3(x, t)
Ñ4(x, t)
Ñ5(x, t)
Ñ6(x, t)
Ñ7(x, t)
Ñ8(x, t)







I0(x) · P0(t)
I1(x) · P0(t)
I2(x) · P0(t)
I0(x) · P1(t)
I1(x) · P1(t)
I2(x) · P1(t)
I0(x) · P2(t)
I1(x) · P2(t)
I2(x) · P2(t)







N (x, t) ==

Ñ6(x, t) = I0(x) · P2(t) Ñ7(x, t) = I1(x) · P2(t) Ñ8(x, t) = I2(x) · P2(t)

Ñ3(x, t) = I0(x) · P1(t) Ñ4(x, t) = I1(x) · P1(t) Ñ5(x, t) = I2(x) · P1(t)

Ñ0(x, t) = I0(x) · P0(t) Ñ1(x, t) = I1(x) · P0(t) Ñ2(x, t) = I2(x) · P0(t)

Figure 2.6: Tensor-product of piecewise linear ”hat” functions in space with piecewise constant,
discontinuous functions in time.



2.5. Space-time finite element discretization 33

I0(x) I1(x) I2(x)

İ0(t)

İ1(t)

İ2(t)

x

t

Ṅ0(x, t)
Ṅ1(x, t)
Ṅ2(x, t)
Ṅ3(x, t)
Ṅ4(x, t)
Ṅ5(x, t)
Ṅ6(x, t)
Ṅ7(x, t)
Ṅ8(x, t)







I0(x) · İ0(t)
I1(x) · İ0(t)
I2(x) · İ0(t)
I0(x) · İ1(t)
I1(x) · İ1(t)
I2(x) · İ1(t)
I0(x) · İ2(t)
I1(x) · İ2(t)
I2(x) · İ2(t)







N (x, t) ==

Ṅ6(x, t) = I0(x) · İ2(t) Ṅ7(x, t) = I1(x) · İ2(t) Ṅ8(x, t) = I2(x) · İ2(t)

Ṅ3(x, t) = I0(x) · İ1(t) Ṅ4(x, t) = I1(x) · İ1(t) Ṅ5(x, t) = I2(x) · İ1(t)

Ṅ0(x, t) = I0(x) · İ0(t) Ṅ1(x, t) = I1(x) · İ0(t) Ṅ2(x, t) = I2(x) · İ0(t)

Figure 2.7: Time derivatives of the standard C0 basis functions from Figure 2.5, spanning the
same space as the basis in Figure 2.6.



2.5. Space-time finite element discretization 34

48 −24 0 16 −5 0 0 0 0
−24 48 −24 −5 16 −5 0 0 0

0 −24 24 0 −5 8 0 0 0
8 −7 0 48 −24 0 16 −5 0

−7 8 −7 −24 48 −24 −5 16 −5
0 −7 4 0 −24 24 0 −5 8
0 0 0 8 −7 0 28 −11 0
0 0 0 −7 8 −7 −11 28 −11
0 0 0 0 −7 4 0 −11 14







û0

û1

û2

û3

û4

û5

û6

û7

û8







4
4
2
4
4
2
2
2
1







1
36

· = 1
36

Sa
m

e
as

tr
ia

lb
as

is

22 −8 0 0 0 0 0 0 0
−8 22 −8 0 0 0 0 0 0

0 −8 11 0 0 0 0 0 0
14 −10 0 22 −8 0 0 0 0

−10 14 −10 −8 22 −8 0 0 0
0 −10 7 0 −8 11 0 0 0
0 0 0 14 −10 0 22 −8 0
0 0 0 −10 14 −10 −8 22 −8
0 0 0 0 −10 7 0 −8 11







û0

û1

û2

û3

û4

û5

û6

û7

û8







2
2
1
2
2
1
2
2
1







1
18

· = 1
18

C
on

st
an

t
w

ith
lo

ca
ls

up
po

rt

8 2 0 −22 8 0 0 0 0
2 8 2 8 −22 8 0 0 0
0 2 4 0 8 −11 0 0 0

14 −10 0 8 2 0 −22 8 0
−10 14 −10 2 8 2 8 −22 8

0 −10 7 0 2 4 0 8 −11
0 0 0 14 −10 0 22 −8 0
0 0 0 −10 14 −10 −8 22 −8
0 0 0 0 −10 7 0 −8 11







û0

û1

û2

û3

û4

û5

û6

û7

û8







0
0
0
0
0
0
2
2
1







1
6

· = 1
6

T
im

e
de

riv
at

iv
e

of
tr

ia
lb

as
is

Figure 2.8: Linear system comparison for zero temperatures on the initial and left boundaries.



2.5. Space-time finite element discretization 35

instead of connecting pairs of linear shape functions in time to continuous basis functions
with support on two elements. This approach was introduced by Aziz and Monk (1989) and
is later referred to as the continuous Galerkin-Petrov method, see Schieweck (2010), Hussain
et al. (2011). Figure 2.6 shows the resulting test basis that is still continuous in space but
discontinuous in time. Interestingly, this approach reduces to a Crank-Nicolson time-stepping
scheme when using the tensor-product of a spatial and a temporal mesh together with a trape-
zoidal quadrature in time (Aziz & Monk, 1989). The same piecewise discontinuous test space
can also be obtained by using the time derivatives of the trial basis as a test basis. While
the support of the test functions is larger in this case, both bases can represent the same
piecewise constant functions in time, as Figure 2.7 shows. The advantage of this choice is the
close relation to the trial functions, which facilitates an implementation into a standard finite
element framework and conceptually simplifies the construction of hp-test bases.
For high-order finite element interpolations (trial bases), the first approach uses the same

(high-order piecewise polynomial) basis functions to test as the trial basis. This thesis uses in-
tegrated Legendre polynomials to construct high-order finite elements, as Chapter 3 discusses.
The second approach can be extended to higher-order bases by using Legendre polynomials
(or any other polynomial basis). Since, conceptually, the test basis seeks to approximate a
time derivative of the trial basis, it is discontinuous across the element interfaces in time. It
is one degree lower than the trial basis, which is continuous across the element interfaces in
time. Therefore, the test functions are again piecewise constants for a linear finite element
interpolation. A second-order interpolation yields a constant and a linear test function in time
on each element, and so on. Interestingly, this approach reduces the polynomial degree in time
of the second term of the weak form in (2.13) to p · (p − 1) instead of p2 for continuous trial
and test bases, where p is the polynomial degree of the temporal finite element interpolation.
This allows using only p instead of p + 1 Gauss-Legendre quadrature points in time while
still integrating the finite element system exactly (for a time-independent material). As an
alternative to using a local polynomial test basis of degree p − 1 on each element, one can
again use the time derivative of the trial basis. The resulting functions have a larger support
but span the same space.
A major difference between these approaches is how they split into sequential, slab-wise

schemes. Figure 2.8 sketches the linear systems that arise from evaluating the weak form
(2.13) with different test functions and the piecewise linear trial basis. The matrix and vector
entries correspond to the left- and right-hand sides of (2.13). The first equation system shows
how the continuous test basis introduces a coupling across the element interfaces in time,
preventing a split into separate systems. In contrast, the piecewise constant test functions
(second equation system) are supported on one element only and allow the problem to be
solved in three time slabs, containing three elements each. Figure 2.9 shows the decoupled
systems that use the solution on the final time slice of the previous slab as initial condition.
Lastly, in the third equation system of Figure 2.8, the test functions are the time derivatives
of the trial functions that again result in a coupling. Interestingly, the time derivative test
functions combined with a constant heat source lead to a counter-intuitive right-hand side,
where the only non-zero entries originate from the test functions with support on the final
(temporal) boundary.
The piecewise continuous and discontinuous test bases also behave differently when com-

pared on a linear heat equation in one spatial dimension. Figure 2.10a shows a simple bench-
mark problem setup, and Figure 2.10b shows the corresponding analytical solution. While



2.5. Space-time finite element discretization 36

22 −8 0
−8 22 −8

0 −8 11







û0

û1

û2







2
2
1







· =

22 −8 0
−8 22 −8

0 −8 11







û3

û4

û5







2
2
1







14 −10 0
−10 14 −10

0 −10 7







0.19
0.26
0.28







· = − ·

22 −8 0
−8 22 −8

0 −8 11







û6

û7

û8







2
2
1







14 −10 0
−10 14 −10

0 −10 7







0.23
0.37
0.42







· = − ·
û6

û7

û8







0.27
0.41
0.46







≈→

û3

û4

û5







0.23
0.37
0.42







≈→

û0

û1

û2







0.19
0.26
0.28







≈→

Figure 2.9: Sequential solution of the second system in Figure 2.8 after canceling 1/18 on both
sides of the equation.

the errors of the two space-time methods converge equivalently in the H1 norm in space (Fig-
ure 2.10c), the space-time L2 convergence of the continuous test basis is one order lower for
even polynomial degrees (Figure 2.10d). Figure 2.11 shows a similar setup with a narrow
Gaussian source of varying widths in the center of the space-time domain. The solution in-
terpolation uses 16 × 16 bilinear finite elements. The continuous test basis performs well
initially (for σ = 0.1), but the solution quality deteriorates after decreasing the width of the
point source. In particular, the discretization error results in spurious oscillations that are
non-local and propagate backwards in time. In contrast, the discontinuous test basis performs
much better. Although a discretization error is visible, its influence is local and does not
violate causality. These observations do not depend on the quadrature order (this example
uses p + 10 = 11 points per direction). Such sudden onsets or stops of the heat source are
very common in PBF-LB/M, and suitable discretization methods must provide reasonable
approximations even in the pre-asymptotic regime.
The properties outlined in this section motivate choosing a piecewise discontinuous basis

with degree p − 1 for the space-time discretization of PBF-LB/M problems. The remaining
task is to find an efficient implementation for this approach that can be used in a standard finite
element framework. The time derivative approach is the most straightforward, but numerical
experiments show that it may lead to an ill-conditioned global equation system. The element-
local, piecewise discontinuous polynomial basis does not suffer from this issue, but the resulting
element matrices are not square. Moreover, the shape functions must not be connected in time,
which interferes with the multi-level hp rules introduced in Chapter 4. As a compromise, the
time-derivative approach is modified by setting the rows of each element system to zero, that
originate from the second shape function (with negative constant derivative). In the linear
setting, this recovers the element-local piecewise constant approach: the negative contributions
to the functions in Figure 2.7 are set to zero, resulting in the basis shown in Figure 2.6. The
time-derivative of the additional high-order shape functions are element-local in time and do
not cause any non-local interactions. Finally, the explicit zeros in the global equation system



2.5. Space-time finite element discretization 37

0
0

1

1x

t

u̇− 1
100u

′′ = π sin(4πt)
u(x, 0) = u0(x)
u(0, t) = uL(t)
u′(1, t) = 0

uL(t) = sin(4πt)
4 u′ = 0

u0(x) = sin
(9πx

2

)

uex(x, t) = u0(x) e−( 9π
2 )2 t

100 + uL(t)

(a) Problem setup

−1 −0.5 0 0.5 1.1

(b) Analytical solution uex

p = 1, Bubnov p = 2, Bubnov p = 3, Bubnov p = 4, Bubnov
p = 1, Petrov p = 2, Petrov p = 3, Petrov p = 4, Petrov

101 102 103

10−7

10−5

10−3

10−1

101

103

√
N

R
el

at
iv

e
er

ro
r

in
‖·
‖ L

2 (
T

,H
1 (
S)

)
[%

]

(c) H1 norm in space, L2 norm in time

101 102 103
10−10

10−8

10−6

10−4

10−2

100

102

√
N

R
el

at
iv

e
er

ro
r

in
‖·
‖ L

2 (
T

,L
2 (
S)

)
[%

]

(d) L2 norm in space and time

Figure 2.10: Comparison of the error convergence of the continuous and discontinuous test
spaces for a linear heat equation in one (space) dimension with a smooth solution.

are filtered after finishing the assembly and before invoking the solution of the linear equation
system.



2.5. Space-time finite element discretization 38

0
0

1

1x

t

u̇ − 1
100u′′ = fδ

u(x, 0) = 0
u(0, t) = 0
u′(1, t) = 0

fδ(x, t) = 1
2πσ2 exp

(
−∆x2+∆t2

2σ2

)

∆x = x − 1
2 , ∆t = t − 1

2

(a) Problem setup

0

25

50

75

100

(b) Heat source for σ = 0.04

(c) Continuous W h, σ = 0.1 (d) Continuous W h, σ = 0.04 (e) Continuous W h, σ = 0.01

(f) Discontinuous W h, σ = 0.1 (g) Discontinuous W h, σ = 0.04 (h) Discontinuous W h, σ = 0.01

−1.2 0 2 4 6

Temperature

Figure 2.11: Causality violation of the continuous test space for an impulse heat source.



2.6. Solution of the nonlinear equation system 39

2.6 Solution of the nonlinear equation system2

The time derivative continuous Galerkin-Petrov method discussed in Section 2.5 results in the
following discrete weak form:
Find uh ∈ uhb +W h

0 , such that
∫

Ω
ẇ cu̇+∇ẇ · k∇u dΩ =

∫

Ω
ẇf dΩ +

∫

ΓN
ẇ h dΓN ∀w ∈ W0(Ω), (2.14)

where W h
0 is a standard continuous finite element space (now including the temporal dimen-

sion) with the additional condition that the gradient of the time derivative is defined. This
condition on the time derivative excludes elements such as triangles in space-time where the
Jacobian matrix of the element mapping is not diagonal (block diagonal in higher dimensions).
Still, the continuity of the temporal derivative condition allows for locally refined rectangular
elements with hanging nodes, as shown in Figure 1.7, for example.
The temperature dependency of the coefficients c and k renders (2.14) nonlinear. The

solution of the nonlinear finite element system is obtained using standard Newton-Raphson
iterations

ûk+1 = ûk + ∆ûk

Tij(ûk) ∆ûkj = −Ri(ûk),

around the temperature coefficients ûk. The tangent matrix Tij(ûk) and the residual Ri(ûk),
evaluated at iteration k, are defined as follows:

Ri(uh) =
∫

Ω
Ṅi cu̇

h +∇Ṅi · k∇uh − Ṅif dΩ−
∫

ΓN
Ṅi h dΓN , (2.15)

Tij(uh) = ∂Ri

∂ûj
=
∫

Ω
Ṅi

(
cṄj + c′u̇hNj

)
+∇Ṅi ·

(
k∇Nj + k′∇uhNj

)
dΩ, (2.16)

where c′ and k′ are the derivatives of c and k with respect to temperature. The iterations start
at û0 = 0 and stop once a reasonable reduction in the residual

∥∥∥Rk
∥∥∥ < ε ‖R0‖ is achieved. A

value of ε = 10−4 was chosen for the computations in this thesis, as smaller values did not
improve the solution noticeably.
The finite element systems are integrated in space with a standard Gauss-Legendre quadra-

ture rule with p + 1 points in each spatial direction. As the test functions have a maximum
polynomial degree of p − 1 in time, it may be sufficient to use only p quadrature points in
time to integrate the products of shape functions. However, more quadrature points may be
needed around a concentrated heat source as the rapid temperature changes and the material’s
nonlinearities can make the integrals quite rough. This quadrature inadequacy is especially
problematic when using an apparent heat capacity model to account for the phase change, as
Section 2.2 discussed.



40

Chapter 3

The p-finite element method1

In the p-version of the finite element method (Szabo & Mehta, 1978; Babuska et al., 1981),
the discretization is refined by increasing the polynomial degree, resulting in exponential
convergence of the error with respect to the polynomial degree and the number of unknowns if
the solution is smooth. This chapter introduces the basic ideas of the multi-level hp extension
that follows in Chapter 4 in the context of single p-finite element meshes without refinements
and with varying polynomial degrees per element and coordinate direction. This case is
well known by the community and allows to introduce the multi-level hp extension to higher
dimensions in a familiar setting.

3.1 Mesh and data structure
The meshes considered in this chapter consist of a set of cells that form a non-overlapping
partition of the computational domain Ω. A cell is a d-dimensional (hyper-)cuboid, i.e., a
line segment in one dimension, a quadrilateral in two dimensions, a cuboid or brick in three
dimensions, and so on. A finite element is a cell that supports basis functions and is used to
integrate the local finite matrices and vectors during the assembly of the global finite element
equation system. Both terms are used interchangeably in this chapter in the context of p-
finite elements. In Chapter 4, the parent cells in the hierarchically refined mesh are not finite
elements, as they overlap with the leaf cells and are not considered separate entities during
the assembly. Instead, their contributing shape functions are added to the non-overlapping
leaf cells that are the multi-level hp-elements.
Each cell is assigned a unique id between 0 and nel−1. Figure 3.1a shows the cell numbering

of an example mesh that is used throughout this chapter to demonstrate the construction
of a p-finite element basis. While there is no specific restriction on the cell numbering, this
particular choice seems natural as looping first over x (outer loop) and then over y (inner loop)
leads to contiguous memory access of element-associated data. The same style of numbering
the last dimension contiguously is also used in higher dimensions.
A cell has 2d local boundary faces, two per coordinate direction. Here, the term face is

used generically to refer to the bounding topologies of codimension 1, which are two bounding
nodes in one dimension, four bounding edges in two dimensions, six bounding faces in three
dimensions, eight bounding cubes in four dimensions, and so on. These faces are the local cell
boundaries that can either be part of the domain boundary ∂Ω or they can be interfaces to
other cells. To prevent ambiguity, the term boundary refers to the domain (mesh) boundary
and is not used in connection with local cell faces. The ids of both neighbor cells in d directions



3.2. High-order shape functions 41

0

1

2

3

4

5

6

7

8

9

10

11

boundary interface

(a) Cell (= element) numbering

Cell nl nr nb nt

0 -1 3 -1 1
1 -1 4 0 2
2 -1 5 1 -1
3 0 6 -1 4
4 1 7 3 5
5 2 8 4 -1
6 3 9 -1 7
7 4 10 6 8
8 5 11 7 -1
9 6 -1 -1 10
10 7 -1 9 11
11 8 -1 10 -1

(b) Left, right, bottom, and top neighbors

Figure 3.1: Example finite element mesh in two dimensions.

are stored in an adjacency array A of size (nel, d, 2), using a dedicated no-cell value for domain
boundary faces; for example, −1 for signed integers or the maximum representable number
for unsigned integers. Figure 3.1b shows the neighbor ids for all cells in 3.1a.
Unlike conventional p- and hp-finite element approaches, the mesh is not stored as a graph of

vertices, edges, faces, and so on; instead, the algorithms are formulated to only use adjacency
relations between cells. The main challenge in constructing C0 continuous basis functions is to
handle neighboring elements with varying polynomial degrees. To simplify the description of
the algorithms, the coordinate axes of neighboring elements are assumed to be aligned, which
is generally not true for unstructured meshes.

3.2 High-order shape functions1

This section discusses the tensor-products of integrated Legendre polynomials in the local
(reference) coordinates r0, . . . , rd−1, with ri ∈ [−1, 1], and their selective activation or deacti-
vation. First, the integrated Legendre polynomials of degree q in one dimension are defined
as

I0(r) = 1
2(1− r), I1(r) = 1

2(1 + r), Iq(r) = Pq(r)− Pq−2(r)√
4q − 2 for q > 1, (3.1)

I ′0(r) = −1
2 , I ′1(r) = 1

2 , I ′q(r) =
P ′q(r)− P ′q−2(r)√

4q − 2 for q > 1, (3.2)

I ′′0 (r) = 0, I ′′1 (r) = 0, I ′′q (r) =
P ′′q (r)− P ′′q−2(r)√

4q − 2 for q > 1, (3.3)

where Pq(r) are the Legendre polynomials of degree q:

P0(r) = 1, P1(r) = r, Pq(r) = 2q − 1
q

r Pq−1 −
q − 1
q

Pq−2 for q > 1,



3.2. High-order shape functions 42

Basis for p = 1:

Basis for p = 2:

Basis for p = 3:

Figure 3.2: One-dimensional Integrated Legendre shape functions. From Kopp, Rank, et al.
(2022), used under Creative Commons CC BY 4.0 license.

P ′0(r) = 0, P ′1(r) = 1, P ′q(r) = 2q − 1
q

(
Pq−1 + rP ′q−1

)
− q − 1

q
P ′q−2 for q > 1,

P ′′0 (r) = 0, P ′′1 (r) = 0, P ′′q (r) = 2q − 1
q

(
2P ′q−1 + rP ′′q−1

)
− q − 1

q
P ′′q−2 for q > 1.

Due to several characteristics, integrated Legendre polynomials in this form are the standard
choice in p-finite elements. First, I0 is the only non-zero function on the left node and I1 is
the only non-zero function on the right node. All higher-order polynomials with q > 1 are
zero on both nodes. A complete basis for a polynomial degree p is obtained by selecting the
functions {I0, . . . , Ip}. These bases are hierarchical; i.e., incrementing the polynomial degree
adds only one function to the previous basis. Figure 3.2 sketches integrated Legendre bases
for different polynomial degrees.
The construction of d-dimensional bases on a reference cube starts with the definition of

integrated Legendre polynomials {I0, . . . , Ipa} for each coordinate axis a ∈ {0, . . . , d−1}. The
polynomial degrees in different coordinate axes may vary; thus, p is now a tuple (p0, . . . , pd−1)
with possibly different polynomial degrees per axis. This feature, for example, allows choosing
different polynomial degrees in space and time for finite element discretizations of transient
problems, or it can reduce the number of unknowns in combination with a capable error
estimator. An element Nα in the tensor-product with the multi-index α

α = (α0, . . . , αd−1) ∈ {0, . . . , p0} × . . .× {0, . . . , pd−1}, (3.4)

is computed from the tensor-product of the univariate integrated Legendre polynomials in
each coordinate direction:

Nα(r) =
d−1∏

i=0
Iαi(ri), (3.5)

where r are the local coordinates r0 until rd−1 for each direction. In two dimensions, for
example, (3.5) becomes

N(α0, α1)(r0, r1) = Iα0(r0) Iα1(r1) for α0 ∈ {0, . . . , p0} and α1 ∈ {0, . . . , p1}, (3.6)



3.2. High-order shape functions 43

I0(r0) I1(r0) I2(r0) I3(r0)

I0(r1)

I1(r1)

I2(r1)

bottom
edge: N |(1,0)

top edge:
N |(1,1)

left edge:
N |(0,0)

right edge:
N |(0,1)

internal (bubble)
shape functions

Figure 3.3: Tensor-product of integrated Legendre shape functions for p = (3, 2). From Kopp,
Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.

where r0 and r1 are the two local coordinates. The functions in (3.5) and (3.6) are defined
locally on each element, and they span complete polynomial spaces in the reference coordinate
system. From now on, they are called shape functions to distinguish them from the finite
element basis functions constructed later by mapping the shape functions of several adjacent
elements from the reference to the global coordinates and ”gluing” them together conformingly.
Connecting or ”gluing” shape functions together means assigning them the same global basis
function index, as done by the algorithms of Sections 3.4 and 4.3.
Figure 3.3 displays the two-dimensional shape functions in (3.6) for p = (3, 2). Independent

of the polynomial degree, the first and second columns contain functions with support on the
left and right element edges, and the first and second rows contain functions with support
on the bottom and top edges. Similarly, in three dimensions, there are six two-dimensional
subsets in the three-dimensional tensor-product, containing functions with support on each of
the six faces.
This structure generalizes to a d-dimensional setting as follows. The tensor-product of the

univariate integrated Legendre polynomials yields a d-dimensional array N that is indexed by
the multi-index α, see (3.4) and (3.5). The functions with support on the first and second face
in the coordinate direction a of the d-dimensional reference cube contain the factors I0(ra)
and I1(ra), respectively. The subset of all such functions can be obtained by introducing an
array-slicing operation that extracts a d− 1-dimensional array slice (a subarray) from N . A
specific array slice is identified by an integer pair (a, b), where a ∈ {0, . . . , d − 1} defines the
fixed dimension (the axis the array slice is ”orthogonal” to) and b ∈ {0, pa − 1} the index
along the axis a. With this general definition, elements in the array slice N |(a,b) contain the
elements of Nα for which αa = b. In the context of this thesis, the only interesting array slices



3.3. Tensor-product masks 44

are those with b = 0 and b = 1, as they extract the shape functions with support on the two
faces in the direction a.
For example, in two dimensions, the array slice N |(0,1) is orthogonal to axis zero at index one,

and it contains the shape functions active on the right edge. Similarly, the array slice N |(1,0)
is orthogonal to axis one at index zero, and it contains the functions active on the bottom
edge. The remaining two array slices, N |(0,0) and N |(1,1), extract the shape functions on the
left and top edges. In three dimensions, the six array slices N |(0,0), N |(0,1), N |(1,0), N |(1,1),
N |(2,0), and N |(2,1) contain the functions with support on the left, right, front, back, bottom,
and top faces, respectively. In four dimensions, there are eight three-dimensional array slices
for each of the eight cubes, and so on. Together with the hierarchy in p, this framework forms
the basis for algorithmically connecting the shape functions into p- and hp-basis functions.
For example, in Section 4.2, homogeneous Dirichlet conditions are imposed on the boundaries
of overlay cells by simply deactivating the corresponding array slices in the tensor-product.
The presented algorithms extend well to higher dimensions because they do not introduce a
further classification of the shape functions into nodal modes, edge modes, face modes, and
so on, unlike traditional p- and hp-finite element approaches.

Remark 3.2.1 The integrated Legendre polynomials (3.1) can be expanded and evaluated us-
ing Horner’s scheme. However, the recursive definition is computationally more efficient when
computing all shape functions I0 − Ip at once.

3.3 Tensor-product masks1

Shape functions:

Biquadratic Bilinear

T (0)|(0,1) 6= T (1)|(0,0)

1 1 1
1 1 1

1 1 1
1 1

1 1

Tensor-product masks:

Figure 3.4: Second-order edge mode (shaded in red) in the quadratic left element is not present
in the linear right element, rendering the shape function sets of both elements incompatible.

In p-finite elements, the polynomial degree can be chosen independently on each element
and in each local direction. This introduces the challenge of having non-matching sets of
shape functions between elements with different polynomial degrees in the tangential directions
on the interface. For example, a vertical edge in two dimensions may have two adjacent
elements with different polynomial degrees in the vertical direction. When using hierarchical
polynomials, the basis with the lower degree is contained by the one on the other side of the
shared edge. As a result, the matching shape functions on the shared edge (up to the highest
common polynomial degree) can directly be connected to form global C0 basis functions. The



3.3. Tensor-product masks 45

Shape functions:

Basis functions:

T (0)|(0,1) ∧ T (1)|(0,0)

1 0 1
1 1 1

1 1 1
1 1

1 1

Tensor-product masks:

Figure 3.5: Remove left shape function without counterpart on the right element and only
connect the remaining two pairs of bilinear functions.

Shape functions:

Basis functions:

T (0)|(0,1) ∨ T (1)|(0,0)

1 1 1
1 1 1

1 1 1

1 0
1 1

1 1

Tensor-product masks:

Figure 3.6: Add corresponding second-order shape function on the right element and connect
three shape function pairs with support on the shared edge into three (global) basis functions.



3.3. Tensor-product masks 46

or

and

E

1 00 0
1 00 0
1 11 1

11 1 1
11 1 1
00 1 1

1 11 0
1 11 0
1 11 1

11 1 1
11 1 1
11 1 1

1 00 0
1 00 0
1 00 1

00 1 1
00 1 1
00 1 1

or

and

E

1 1
1 1
11 11

11 11 11
1 1 1

1 1 0
1 1 0
11 11 11

11 11 11
1 1 1 1 1

1 1
11 11

11 11 00
1 1 1

or

and

E

1 1
11 11

1 1
11 11

11 11
0 0 1 1

00 00

E or

0 0 1 1
0 0 1 1 1

0 0 1 1 1 11
0 0 1 1 11
00 00 11 11

11 11 11
11 11 11 0
0 0 0

0 0 1 1
0 0 1 1 1

0 0 1 1 1 11
0 0 1 1 11
11 11 11 11

00 00 11 11
11 11 11 11 0

11 11 11 11 0
0 0 0 0

Figure 3.7: Restore interface compatibility between the tensor-product masks of two cells by
comparing and overwriting the interface slices using logical operations. Array slices to be
compared are printed in boldface; blue entries were activated due to logical or ; red entries
were deactivated due to logical and. From Kopp, Rank, et al. (2022), used under Creative
Commons CC BY 4.0 license.

left side of Figure 3.4 shows the tensor-product shape functions of two elements: the left with
p = 2 and the right element with p = 1, both with uniform polynomial order in both directions.
The set of shape functions on the left element contains a quadratic mode, which is not present
in the right element, as indicated by the red color. The two linear shape functions have a
corresponding counterpart in the other element and are therefore colored in green. There are
two options for recovering two matching sets of shape functions: either the quadratic function
is removed on the left element, or the corresponding function is added in the right element.
In general, one can deactivate the additional functions on the element with a higher degree
(minimum degree strategy). Alternatively, new shape functions can be added to the element
with a lower degree (maximum degree strategy). Figures 3.5 - 3.6 apply these two options to
the example shown in Figure 3.4 and display the resulting basis functions after connecting the
matching shape functions.
This section details a data structure and an algorithm for obtaining sets of shape functions

for each finite element that are compatible across the element interfaces. Compatible means
that all shape functions that are non-zero on the element faces have a matching counterpart in
the neighbor, which allows them to be connected to C0 continuous basis functions in Section 3.4
(assigned to the same global basis function index). The data structure for storing the activation



3.3. Tensor-product masks 47

(2, 2)

(2, 1)

(3, 2)

(2, 3)

(1, 2)

(3, 1)

(2, 2)

(1, 1)

(2, 1)

(3, 3)

(2, 3)

(2, 2)

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1
1 1 1

1 1
1 1
1 1

1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1

1 1
1 1

1 1 1
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

(a) Polynomial degrees (b) Initial tensor-product masks

(c) Internal (gray), incompatible (red) and matching (green) shape functions in (b).

Figure 3.8: Initial activation of all p-finite element shape functions independent of the neigh-
bors. From Kopp, Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.

state of the tensor-product shape functions consists of a tensor-product mask for each finite
element. A tensor-product mask T (e) of an element with index e is a d-dimensional array of
Boolean entries T (e)

α that determine whether the corresponding shape function Nα(x) from
the tensor-product (3.5) is active in element e. Each tensor-product mask must be large
enough to store all active values; entries beyond are implicitly assumed zero. For a classical
p-finite element mesh in two dimensions with polynomial degree p in both directions, the
tensor-product masks become (p+ 1)× (p+ 1) sized matrices with only active entries.
The fully activated tensor-product masks are incompatible between elements with different

polynomial degrees on a shared interface. The right side of Figure 3.4 shows the two incom-
patible tensor-product masks for the elements with p = 2 and p = 1. They must be modified
to recover a state where pairs of functions from each element with support on the shared
interface can be combined to globally C0 continuous basis functions. This can be done by
either deactivating entries if they are not present in the neighbor (right side of Figure 3.5) or
activating entries in the neighbor if they are present in this element (right side of Figure 3.6).



3.3. Tensor-product masks 48

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 00 1 1
1 1 1 1
1 1 1 1

00 00 1
1 1 1
1 1 1
1 1 1

00 00
1 1
1 1

1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1

1 1
1 1

1 1 1
1 1 1

00 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

00 1 1
00 1 1
1 1 1
1 1 1

00 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 00 1 1
1 1 1 1
1 1 1 00

00 00 1
1 1 1
1 1 00
1 1 1

00 00
1 1
1 1

1 1 1 1
1 1 00 00

1 1 1
1 1 00
1 1 1

1 1
1 1

1 1 1
1 1 00

00 1 1 1
1 1 1 1
1 1 1 00
1 1 1 1

00 1 1
00 1 1
1 1 1
1 1 1

00 1 1
1 1 1
1 1 1

(a) Make tensor-product masks compatible using logical and: first over x-, then over y-interfaces

(b) Intermediate state after operating on x-interfaces (of Figure 3.8c) using logical and

(c) Final shape functions after operating on y-interfaces (of b) using logical and

Figure 3.9: Selectively deactivate shape functions using logical and operations on the element-
associated tensor-product masks to obtain compatible sets of shape functions.



3.3. Tensor-product masks 49

0 11 0
1 1 1
1 1 1
1 1 1

0 11 0
1 1 1
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1
1 1 1

1 1
1 1
1 1

11 0 0 0
1 1 1 1
1 1 1 1

11 11 0
1 1 1
1 1 1
1 1 1

0 11
11 11
1 1
1 1

0 11 0
1 1 1
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

0 11 0
1 1 1
1 1 1
1 1 1

0 11 0 0
1 1 1 11
1 1 1 0

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1
1 1 1

1 1 0 0
1 1 11 11
1 1 11 0

11 0 0 0
1 1 1 1
1 1 1 1

11 11 0
1 1 1
1 1 1
1 1 1

0 11 0
11 11 0
1 1 11
1 1 11

0 11 0
1 1 1
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 11

1 1 1
1 1 1
1 1 1

(a) Make tensor-product masks compatible using logical or : first over x-, then over y-interfaces

(b) Intermediate state after operating on x-interfaces (of Figure 3.8c) using logical or

(c) Final shape functions after operating on y-interfaces (of b) using logical or

Figure 3.10: Selectively deactivate shape functions using logical or operations on the element-
associated tensor-product masks to obtain compatible sets of shape functions.



3.3. Tensor-product masks 50

Algorithm 1 Construct compatible tensor-product masks for single p-finite element mesh.
1 // Compare the array slices (n, 1) and (n, 0) of the nd - arrays A0 and A1 using oper -
2 // ation op and overwrite them with the result . Data types are either bool or int.
3 void operateOnInterface (NdArray <Type >& A0 , NdArray <Type >& A1 , int n, Op op)
4 {
5 // Extract sizes of arrays in each direction without entry at index n
6 Vector s0 = sizes(A0);
7 Vector s1 = sizes(A1);
8
9 Vector sn0 = removeEntry (s0 , n);

10 Vector sn1 = removeEntry (s1 , n);
11
12 // Compute element -wise maximum sn of sn0 and sn1 and iterate over all
13 // entries in the Cartesian product [0, sn(0)] × . . . × [0, sn(d - 2)]
14 for( Vector in in productIndices ( maxarray (sn0 , sn1 )))
15 {
16 // Insert into index tuple in in axis direction
17 Vector i0 = insertEntry (in, n, 1); // second face of first element
18 Vector i1 = insertEntry (in, n, 0); // first face of second element
19
20 bool e0 = indexExists (i0 , s0);
21 bool e1 = indexExists (i1 , s1);
22
23 Type v0 = A0(i0) if e0 else noValue (Type);
24 Type v1 = A1(i1) if e1 else noValue (Type);
25
26 Type r = op(v0 , v1);
27
28 if(v0 6= r and not e0) resize (A0 , i0);
29 if(v1 6= r and not e1) resize (A1 , i1);
30
31 if(v0 6= r) A0(i0) = r;
32 if(v1 6= r) A1(i1) = r;
33 }
34 }
35
36 // Compare array slices of all cells with second neighbor if it exists
37 void operateOnInterfaces ( NdArrayList <Type >& A, Neighbors N , Op op)
38 {
39 for(int a from 0 to d - 1) // Loop over coordinate axes
40 for(int i from 0 to size(N )) // Loop over cell indices
41 if(int Na = N (i, a, 1); Na 6= −1)
42 operateOnInterface (A(i), A(Na), a, op);
43 }
44
45 MaskList createPfemMasks ( Neighbors N , Degrees p, String strategy )
46 {
47 MaskList M ;
48
49 // Activate full tensor - product (could use trunk space masks instead )
50 for( Vector pe in p)
51 M . append (Mask(pe + 1, true));
52
53 Op op = logicalAnd if strategy == " min_degree " else logicalOr ;
54
55 // Recover compatibility
56 for(int it from 0 to d - 2)
57 operateOnInterfaces (M , N , op);
58
59 return M ;
60 }



3.3. Tensor-product masks 51

The first strategy yields the minimum polynomial degree on the interface, and the second
yields the maximum. The mask of the right element in Figure 3.6 was enlarged to match the
higher polynomial degree of the neighbor on the interface.
Both strategies can be expressed in logical operations on the d − 1 dimensional interface

slices in the tensor-product masks of both elements. Similar to the previous section, these
operations use array slices to manipulate the Boolean mask entries corresponding to the shape
functions with support on the faces of the reference cube. In this context, an interface slice
refers to an array slice of a face with an existing neighbor (the face is not part of the domain
boundary). In two dimensions, these interface slices are columns or rows in the Boolean matrix
that are compared element-wise using a logical and to obtain the minimum-degree strategy
(Figure 3.5) or a logical or to obtain the maximum-degree strategy (Figure 3.6). The result
of the logical operation is then written back to both original interface slices. Moreover, these
logical operations rely on the property that elements outside the size of a mask are implicitly
inactive. Figure 3.7 shows more examples of logical operations on interface slices for two-
and three-dimensional elements. The logical or operation may again require enlarging some
of the tensor-product masks. Empty masks like those on the bottom right may occur in the
hierarchical version in Section 4.2.
In this setting, the tensor-product masks for p-finite element meshes are constructed in

two steps. First, all masks are initialized by activating the full tensor-product up to the
specified polynomial degrees. Figure 3.8 defines tuples of polynomial degrees for the mesh of
Figure 3.1, shows the resulting (incompatible) initial tensor-product masks, and visualizes the
corresponding shape functions. In the second step, compatibility is recovered on all element
interfaces using either logical and operations for obtaining minimum interface degrees or logical
or operations for maximum degrees. Figures 3.9 - 3.10 demonstrate these two variants to make
the initial tensor-product masks of Figure 3.8 compatible. The algorithm first loops over all
interfaces in x- and then in y-direction. Some pairs of tensor-product masks have different
sizes in the interface direction, which uses the definition that entries are inactive if they are not
explicitly stored. In d dimensions, the second step is carried out d−1 times to reach all elements
that the shape functions connect to. For example, in three dimensions, the basis functions
associated with an edge may be supported by four elements; hence, information needs to
travel diagonally by communicating over two interfaces. The second step of Section 4.2 may
clarify this information transfer as already two iterations are necessary in two dimensions.
Algorithm 1 shows the construction of tensor-product masks for a d-dimensional mesh.
One major difference compared to other p- and hp- finite element approaches is that they

often use data structures with unique entities for all topological subcomponents, such as
nodes, edges, and faces, with their associated polynomial degrees. For example, a unique edge
may be introduced for each pair of adjacent elements in a two-dimensional p-finite element
mesh, where the associated polynomial degree in the tangential direction is chosen from one
of the two elements. However, the resulting data structure becomes drastically more complex
with higher dimensions (containing 3d entities per element in total). There, the runtime and
memory requirements for creating and maintaining meshes may become dominant. Moreover,
evaluating the basis functions requires considering all subcomponents and their respective
polynomial degrees per local direction, which complicates the implementation and can also
negatively influence the performance of the linear system assembly.



3.3. Tensor-product masks 52

Algorithm 2 Construct location matrices for a single p-finite element mesh.
1 [ LocationMatrixList , int] initializeGlobalIndices ( MaskList M )
2 {
3 LocationMatrixList G; int nids = 0;
4
5 for(int i from 0 to size(M ) - 1)
6 {
7 Mask Mi = M (i);
8 LocationMatrix Gi(sizes(Mi));
9

10 // Loop over all tensor - product entries (d nested loops)
11 for( Vector j in productIndices (sizes(Mi)))
12 Gi(j) = nids ++ if Mi(j) else -1;
13
14 G. append (Gi);
15 }
16
17 return [G, n];
18 }
19
20 void removeUnassignedIndices ( LocationMatrixList & G, int nids)
21 {
22 Vector exists (nids , 0);
23 Vector map(nids , -1);
24
25 // Activate entries in exists vector
26 for( LocationMatrix Gi in G)
27 for( Vector j in productIndices (sizes(Gi)))
28 if(Gi(j) 6= -1)
29 exists (Gi(j)) = 1;
30
31 int nnew = 0;
32
33 // Count active dofs upwards into map
34 for(int i from 0 to nids - 1)
35 map(i) = nnew ++ if exists (i) else −1;
36
37 // Reassign indices in location matrices
38 for( LocationMatrix & Gi in G)
39 for( Vector j in productIndices (sizes(Gi)))
40 if(Gi(j) 6= -1)
41 Gi(j) = map(Gi(j))
42 }
43
44 // Create location matrix with global ids for each tensor - product mask
45 void createPfemLocationMatrices ( MaskList M , Neighbors N )
46 {
47 LocationMatrixList G, int nids = initializeGlobalIndices (M );
48
49 for(int it from 0 to d - 1)
50 operateOnInterfaces (G, N , minimum );
51
52 removeUnassignedIndices (G, nids);
53
54 return G;
55 }



3.3. Tensor-product masks 53

2 5 8
1 4 7
0 3 6

10 12 14
9 11 13

17 -1 22 24
16 19 21 23
15 18 20 -1

-1 -1 33
27 30 32
26 29 -1
25 28 31

-1 -1
35 37
34 36

39 41 42 43
38 40 -1 -1

46 49 51
45 48 -1
44 47 50

53 55
52 54

57 59 60
56 58 -1

-1 67 71 74
63 66 70 73
62 65 69 -1
61 64 68 72

-1 80 84
-1 79 83
76 78 82
75 77 81

-1 89 92
86 88 91
85 87 90

2 5 8
1 4 7
0 3 6

10 12 14
9 11 13

17 -1 22 24
16 19 21 23
15 18 20 -1

-1 -1 33
5 30 32
4 29 -1
3 28 31

-1 -1
12 37
11 36

19 41 42 43
18 40 -1 -1

30 49 51
29 48 -1
28 47 50

37 55
36 54

41 59 60
40 58 -1

-1 67 71 74
49 66 70 73
48 65 69 -1
47 64 68 72

-1 80 84
-1 79 83
55 78 82
54 77 81

-1 89 92
59 88 91
58 87 90

(a) Assign unique indices (b) Connect in x

2 5 8
1 4 7
0 3 6

10 12 14
1 4 7

17 -1 22 24
16 19 21 23
10 12 14 -1

-1 -1 33
5 30 32
4 29 -1
3 28 31

-1 -1
12 37
4 29

19 41 42 43
12 37 -1 -1

30 49 51
29 48 -1
28 47 50

37 55
29 48

41 59 60
37 55 -1

-1 67 71 74
49 66 70 73
48 65 69 -1
47 64 68 72

-1 80 84
-1 79 83
55 78 82
48 65 69

-1 89 92
59 88 91
55 78 82

2 5 8
1 4 7
0 3 6

9 10 11
1 4 7

13 -1 16 18
12 14 15 17
9 10 11 -1

-1 -1 24
5 21 23
4 20 -1
3 19 22

-1 -1
10 25
4 20

14 26 27 28
10 25 -1 -1

21 31 33
20 30 -1
19 29 32

25 34
20 30

26 35 36
25 34 -1

-1 40 44 47
31 39 43 46
30 38 42 -1
29 37 41 45

-1 50 53
-1 49 52
34 48 51
30 38 42

-1 55 57
35 54 56
34 48 51

(c) Connect in y (e) Eliminate unassigned indices using (d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1

1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1

1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1

0 1 2 3 4 5 6 7 8 -1 9 -1 10 -1 11 -1 12 13 -1 14 -1 15 16 17

18 -1 -1 -1 19 20 21 22 23 24 -1 -1 -1 25 -1 -1 -1 26 27 28 -1 -1 -1 29

30 31 32 33 -1 -1 -1 34 -1 -1 -1 35 36 -1 -1 -1 37 38 39 40 41 42 43 44

45 46 47 -1 -1 -1 48 49 50 -1 51 52 53 -1 -1 -1 54 55 -1 56 57

old index:
exists:

new index:

old index:
exists:

new index:

old index:
exists:

new index:

old index:
exists:

new index:

(d) Index map

Figure 3.11: Glue shape functions from Figure 3.9a together into compatible basis functions.
From Kopp, Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.



3.3. Tensor-product masks 54

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

35 36 37 38 39

40 41 42 43 44

45 46 47 48 49

50 51 52 53 54

55 56 57

Figure 3.12: Connected p-finite element basis functions according to Figure 3.11e.



3.4. Location matrices 55

3.4 Location matrices1

The tensor-product masks constructed in the previous section determine the active shape
functions for all elements, such that they have matching counterparts across all interfaces.
The remaining task is to connect sets of shape functions from different elements into basis
functions by assigning them to the same global basis function index. This data is stored
by introducing a location matrix for each tensor-product mask with equal size containing
the global basis function index for each active entry or otherwise some value, e.g., −1 or
the maximum representable number for inactive entries. In higher dimensions, the location
matrices are d-dimensional arrays containing the basis function indices.
The algorithm to populate the location matrices starts by assigning a unique global index

to all shape functions, counting upwards from zero. Figure 3.11a shows the initialization of
the location matrices for the tensor-product masks of the minimum-degree strategy (right side
of Figure 3.9a). Then, matching shape functions are connected by looping over all element
interfaces, comparing the corresponding interface slices in the location matrices using the
minimum operation (selecting the smaller of both indices), and overwriting them with the
result. The only difference to the interface operations in the second step of Section 3.3 is the
data type (integers instead of Boolean values) and the operation (minimum instead of logical
and or logical or). This step automatically determines the smallest index for each set of shape
functions that shall be connected and propagates this information back to their entries in the
location matrices. Figures 3.11b and 3.11c demonstrate this process by connecting the indices
in the x- and then in the y-direction. Mesh topologies that are not Cartesian (e.g., an L-
shaped domain with axis-aligned elements) may require again multiple iterations of this step.
This step leaves some empty indices (i.e., without contributions from any elements), as their
original shape functions have been assigned to a different index. These ”gaps” in the global
numbering are eliminated by constructing a new set of compressed indices in Figure 3.11e that
is obtained by applying the index map below. Figure 3.12 shows the resulting basis functions
for this example. Algorithm 2 summarizes the creation of the location matrices and thus
finalizes the construction of the p-finite element basis.

Remark 3.4.1 Linearizing a location matrix and filtering inactive entries (−1 values) yields
a global index vector called location maps or an element freedom table.

3.5 Trunk space1

Section 3.3 mentions that using all functions from the tensor-product is not always necessary.
Within a monomial basis,

{
rα0

0 · ... · r
αd−1
d−1

∣∣∣ for αi = 0, ..., pi
}
, (3.7)

one can pick only functions where ∑αi ≤ max pi without reducing the convergence order.
Figure 3.13 shows the monomials for a tensor-product space with p = (3, 4) compared to
the reduced basis containing only polynomials with a combined order smaller or equal to
max pi = 4.
As monomials are unsuitable for constructing compatible finite element bases, this concept

is transferred to integrated Legendre functions. In Section 3.3, the algorithm for compati-
ble shape functions started with a full tensor-product mask for leaf cells. Instead, one can



3.5. Trunk space 56

r4
1 r0r

4
1 r2

0r4
1 r3

0r4
1

r3
1 r0r

3
1 r2

0r3
1 r3

0r3
1

r2
1 r0r

2
1 r2

0r2
1 r3

0r2
1

r1 r0r1 r2
0r1 r3

0r1

1 r0 r2
0 r3

0

r4
1

r3
1 r0r

3
1

r2
1 r0r

2
1 r2

0r2
1

r1 r0r1 r2
0r1 r3

0r1

1 r0 r2
0 r3

0

tensor product space monomial trunk space

Figure 3.13: Monomials for p = (3, 4). From Kopp, Rank, et al. (2022), used under Creative
Commons CC BY 4.0 license.

construct initial trunk space masks by only activating entries of Mα if ∑αi ≤ max pi. The
integrated Legendre functions are hierarchical except in the first two functions (I0 and I1
are linear). As a result, a function with component I0(ri) must be inactive, when the corre-
sponding function with component I1(ri) is inactive. Therefore, the first array slice for each
coordinate axis is copied to the second array slice. Figures 3.14 and 3.15 demonstrate this
procedure on two- and three-dimensional examples.
The trunk space significantly reduces the number of unknowns compared to a tensor-product

space of the same polynomial degree without compromising the convergence order. Removing
basis functions that are not essential for polynomial completeness (and, thus, the convergence
order) decreases the computational cost significantly. However, this reduces the accuracy of
the solution at the same time. When increasing the polynomial degree to compensate, one
generally still obtains fewer degrees of freedom for a given accuracy at the cost of having higher
connectivity per unknown. With higher dimensions, the difference between them increases as

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

Initial mask for p = (5, 5)

1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

Compatibility nor-
mal to first axis

1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1

Compatibility nor-
mal to second axis

1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1

Initial mask for p = (6, 3)

1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1

Compatibility nor-
mal to first axis

1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Compatibility nor-
mal to second axis

Figure 3.14: Construction of two-dimensional trunk space initial tensor-product masks.
From Kopp, Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.



3.5. Trunk space 57

0 0 0 0 0
1 0 0 0 0 0

1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1

0 0 0 0 0
1 1 0 0 0 0

1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1

0 0 0 0 0
1 1 0 0 0 0

1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 1
1 1 1 1 1

0 0 0 0 0
1 1 0 0 0 0

1 1 0 0 0 0 0
1 1 1 0 0 1 0
1 1 1 1 1 1
1 1 1 1 1

Initial mask for
p = (4, 2, 3)

Compatibility nor-
mal to first axis

Compatibility nor-
mal to second axis

Compatibility nor-
mal to third axis

Figure 3.15: Construction of three-dimensional trunk space initial tensor-product masks.
From Kopp, Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.

the limit for p → ∞ yields d! times fewer unknowns per element (assuming uniform p in all
directions). This limit derives from considering an n-simplex in d-dimensional space with one
vertex at the origin and one vertex on each coordinate axis with distance 1. The volume of
this simplex is 1/d!, while the volume of the corresponding unit-n-cube is 1.



58

Chapter 4

The multi-level hp-finite element
method1,2

(a) Refine by replacement (b) Refine by superposition

Figure 4.1: Comparison of hp-refinement strategies. From Kopp, Calo, et al. (2022), used
under Creative Commons CC BY 4.0 license.

Refining the finite element discretization by only increasing the polynomial degree is often
not the best strategy, as the element size must also be reduced to recover exponential conver-
gence for solutions with reduced regularity. Even for smooth solutions, starting with several
levels of h-refinement until the solution becomes smooth enough on each element is often more
efficient, as p-refinement is more expensive per degree of freedom than h-refinement. However,
replacing coarse finite elements with a set of finer ones introduces hanging nodes — element
interfaces that are subdivided on one side but not on the other. The presence of hanging nodes
greatly complicates the construction of continuous basis functions, as the shape functions of
finer elements cannot be directly combined with shape functions on the coarser element. In-
stead, combinations of shape functions must be constrained and connected. The complexity
of this process increases strongly with more spatial dimensions as well as mesh irregularity
(Demkowicz et al., 1989; Demkowicz, 2006; Zander et al., 2016).
The multi-level hp-method circumvents the challenge of treating hanging nodes by keeping



59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18
19

20
21

22
23

24
25

26
27

external boundary
internal boundary

(a) Full cell numbering

0
1

2

3

4

5 6 7

8

9

10
11

12
13

14
15

16
17

18
19

20
21

(b) Leaf cell (element) numbering

Cell nl nr nb nt P R L

0 -1 2 -1 1 -1 0 0
1 -1 3 0 -1 -1 0 0
2 0 -1 -1 3 -1 0 1
3 1 -1 2 -1 -1 0 0
4 -1 6 -1 5 0 1 1
5 -1 7 4 8 0 1 1
6 4 2 -1 7 0 1 1
7 5 2 6 10 0 1 0
8 -1 10 5 9 1 1 1
9 -1 11 8 -1 1 1 1
10 8 12 7 11 1 1 0
11 9 13 10 -1 1 1 1
12 10 14 2 13 3 1 0
13 11 15 12 -1 3 1 1
14 12 -1 2 15 3 1 1
15 13 -1 14 -1 3 1 1
16 5 18 6 17 7 2 1
17 5 19 16 20 7 2 1
18 16 2 6 19 7 2 1
19 17 2 18 22 7 2 1
20 8 22 17 21 10 2 1
21 8 23 20 11 10 2 1
22 20 24 19 23 10 2 1
23 21 25 22 11 10 2 1
24 22 26 2 25 12 2 1
25 23 27 24 13 12 2 1
26 24 14 2 27 12 2 1
27 25 14 26 13 12 2 1

(c) Data structure

Figure 4.2: Essential topological data: left, right, bottom and top neighbors nl, nr, nb, nt,
parent index P , refinement level R, and a flag L marking the leaf cells. From Kopp, Rank,
et al. (2022), used under Creative Commons CC BY 4.0 license.

coarse elements during the refinement. Allowing these coarse elements to support shape func-
tions in them naturally resolves cases where neighboring elements have a different refinement
level. Instead of trying to connect the coarse shape functions to the finer ones, the functions
on the original coarse neighbor (that is now overlayed with finer elements) are activated. The
shape functions from neighboring elements are combined using this idea, essentially reducing
the problem of constructing an hp-basis to creating multiple levels of p-finite element meshes.
Figure 4.1 compares the replacement and overlay strategies and demonstrates how coarse
shape functions are completed on the coarse parent of the finer neighbors.



4.1. Hierarchical refinement and data structure 60

4.1 Hierarchical refinement and data structure1

The refinement process starts with a base mesh, where cells marked for refinement are overlayed
by 2d subcells from bisecting the original cell in each coordinate direction. Performing this
process recursively on overlay cells yields a 2d-ary refinement tree. The choice to refine can
use an error indicator or a priori knowledge of the solution. All cells within the refinement
tree can support basis functions, although finite elements are chosen only as leaf cells.
A central aspect of the presented framework is to identify a lightweight data structure that

can store all essential information for constructing an hp-basis. The algorithms introduced in
this chapter require for each cell the index of its parent cell, its refinement level, the indices
of its neighbors on the same or a lower refinement level, and the information whether it is a
leaf. The neighbor indices are stored in a (ncell, d, 2) sized array (denoted as N), and for the
other relations, simple one-dimensional arrays with one entry per cell are used. The roots of
the refinement tree can be identified by choosing the parent cell index −1 for cells without a
parent. An entry in the neighbor array can correspond to an internal interface (neighbor exists
and has same refinement level), internal boundary (neighbor exists and has lower refinement
level), and external boundary (neighbor does not exist, face is part of the domain boundary).
External boundaries are assigned the no-cell value, and internal boundaries are assigned the
index of the coarser leaf cell. Figure 4.2 sketches a simple example mesh with two refinement
levels.
The multi-level hp-method introduces two main challenges: linear independence must be

preserved and the overlay functions must be zero on internal boundaries to guarantee con-
tinuity in the hierarchical sum of all shape functions. The following section addresses these
challenges and shows how to automatically resolve them with little implementation effort.

Remark 4.1.1
The internal boundaries are the multi-level hp equivalent of the hanging nodes from classical hp-
finite elements. The treatment of hanging nodes introduces constraints to the shape functions
on both sides. In contrast, the multi-level hp-method simply imposes homogeneous Dirichlet
conditions on internal boundaries (by removing active shape functions on them).

Remark 4.1.2
One can exploit the redundancy in the data structure to reduce the amount of storage that
is needed for the meshes. For example, the refinement levels and leaf flags can be trivially
constructed from the parent indices on the fly. However, additional information, like the
geometric mapping function of each cell, may also be needed.

4.2 Tensor-product masks1

This section constructs the tensor-product masks for all cells (leaves and non-leaves) in the
refinement tree introduced in the previous section (with an arbitrary refinement depth). The
tensor-product masks again activate the right shape functions on each cell, such that they can
combine into globally continuous, linearly independent hp-basis functions that are complete
up to the selected polynomial degrees inside each element. These polynomial degrees are only
assigned to the leaves (the finite elements), and they can again vary in the local directions.



4.2. Tensor-product masks 61

3, 3

1, 1

2, 1

1, 2

1, 2

1, 1 2, 1 2, 1

1, 2

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Figure 4.3: Polynomial degrees for each finite element (Figure 4.2b) and coordinate direction.
From Kopp, Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.

Figure 4.3 shows the polynomial degrees chosen for the example mesh introduced in Figure 4.2.
The following algorithm extends the ideas of Section 3.3 to construct the multi-level hp tensor-
product masks in four steps (see Figures 4.4 - 4.8 and Algorithm 3).
1. Initialize leaf masks according to their polynomial degree and non-leaf masks
empty. Activating the complete tensor-product or trunk space only on the leaves naturally
yields shape functions that are linearly independent over the hierarchy, as none of the parents
contribute any shape functions. Choosing the trunk space masks derived in Section 3.5 instead
of activating the full tensor-product does not require any changes in the remaining parts of the
algorithm. Figure 4.4 shows the initial tensor-product masks with the corresponding shape
functions using the full tensor-product space according to the degrees specified by Figure 4.3.
In the current state, the shape functions cannot be combined into continuous basis functions
yet as they are not compatible along the cell interfaces (red color). Moreover, the shape
functions on the internal boundaries on the first and second overlay meshes are still active, as
no Dirichlet conditions were imposed yet (violet color).
2. Restore interface compatibility using logical or operations in d iterations. In a
loop over the internal interfaces, a tensor-product mask entry is activated if the corresponding
entry in the neighbor is active. Internal interfaces bound two cells of the same refinement level,
which makes this step equivalent to treating the cells of each refinement level as separate p-
finite element meshes and applying the algorithm of Section 3.3 to them independently. This
serves two purposes: first, it resolves incompatible polynomial degrees by the maximum degree
strategy, and second, it activates the interface shape functions on the parent elements of finer
neighbors. Figures 4.5 - 4.6 demonstrate the two necessary iterations in the current step of the
tensor-product mask creation for the two-dimensional example introduced earlier. The shape
functions on the bottom right cell of level zero can now be completed on the neighboring cells
of the same level, although these cells have been refined and now also support up to two levels
of finer overlay cells. Two iterations of this algorithm activate all four linear shape functions
that together form the central hat basis function on level zero. The second iteration activates,
in this example, the single bilinear shape function in cell 1 (top left) on level zero.



4.2. Tensor-product masks 62
Le

ve
l0

Le
ve

l1
Le

ve
l2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1
1 1

1 1
1 1
1 1

1 1 1
1 1 1

1 1
1 1
1 1

1 1
1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1
1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

Figure 4.4: Initial tensor-product masks corresponding to degrees in Figure 4.3. From Kopp,
Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.



4.2. Tensor-product masks 63
Le

ve
l0

Le
ve

l1
Le

ve
l2

0 11
0 11
0 11
0 11

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1
1 1

1 1
1 1
1 1

1 1 1
1 1 1

11 0
11 0
11 0

1 1
1 1
1 1

1 1
1 1

11 0
11 0
11 0

1 1 1
1 1 1

0 11
0 11
0 11

1 1 1
1 1 1

1 1
1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

Figure 4.5: Restore continuity after initial activation: Slices normal to x-axis. From Kopp,
Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.



4.2. Tensor-product masks 64
Le

ve
l0

Le
ve

l1
Le

ve
l2

0 0
0 11

0 1
0 1
0 1
0 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

0 0 0 0
11 11 11 11

1 1
1 1

1 1
1 1
1 1

1 1 1
1 1 1

1 0 0
1 0 0
11 11 11

1 1
1 1
1 1

1 1
1 1

1 0 0
1 11 11
1 0 0

1 1 1
1 1 1

0 1 0
11 11 11
0 1 0

1 1 1
1 1 1

1 1
1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

Figure 4.6: Restore continuity after initial activation: Slices normal to y-axis. From Kopp,
Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.



4.2. Tensor-product masks 65
Le

ve
l0

Le
ve

l1
Le

ve
l2

0 1
0 1
0 1
0 1

0 0
0 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

0 0 0 0
1 1 1 1

1 1
1 1

1 1
1 1
1 1

1 00 1
1 00 1

1 0 0
1 0 0
1 00 1

1 1
1 1
1 1

1 1
1 1

1 0 0
1 1 1
1 0 0

1 1 1
1 1 1

0 1 0
1 1 1
0 00 0

1 1 1
1 1 1

1 1
1 1
00 00

1 1
1 1

00 1
00 00

00 1
00 1

1 00
00 00

1 00
1 00

00 1
00 1

00 00
00 1

1 1
1 1

00 00
1 1

1 1
00 00

00 00
1 1

1 00
00 00

00 00
1 00

Figure 4.7: Deactivate internal boundaries (step 3). From Kopp, Rank, et al. (2022), used
under Creative Commons CC BY 4.0 license.



4.2. Tensor-product masks 66
Le

ve
l0

Le
ve

l1
Le

ve
l2

0 1
0 1
0 1
0 1

0 0
0 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

0 0 0 0
1 1 1 1

1 1
1 1

1 1
1 1
1 1

1 0 1
1 0 1

1 0 0
1 0 0
1 0 1

1 1
1 1
1 1

1 1
1 1

1 0 0
1 1 1
1 0 0

1 1 1
1 1 1

0 1 0
1 1 1
0 0 0

1 1 1
1 1 1

1 1
1 1
0 0

1 1
1 1

0 1
0 0

0 1
0 1

1 0
0 0

1 0
1 0

0 1
0 1

0 0
0 1

1 1
1 00

0 0
1 1

1 1
0 0

0 0
1 1

1 0
0 0

0 0
1 0

Figure 4.8: Communicate zero Dirichlet conditions to neighbors (step 4). From Kopp, Rank,
et al. (2022), used under Creative Commons CC BY 4.0 license.



4.2. Tensor-product masks 67

Algorithm 3 Construct multi-level hp tensor-product masks.
1 // Replaces p-fem version ; requires neighbor to exist with same level
2 void operateOnInterfaces ( NdArrayList <Type >& A, Neighbors N , Levels L, Op op)
3 {
4 for(int a from 0 to d - 1) // For d coordinate axes
5 for(int i from 0 to size(A) - 1) // For all cells
6 if(int Na = N (i, a, 1); Na 6= −1 and L(i) == L(Na))
7 operateOnInterface (A(i), A(Na), a, op);
8 }
9 // Deactivate first (f == 0) or second (f == 1) array slice normal to axis n

10 void deactivateSlice (Mask& Mi, int n, int f )
11 {
12 Vector sn = removeEntry (sizes(Mi), n);
13
14 for( Vector in in productIndices (sn))
15 Mi( insertEntry (in, n, f )) = false;
16 }
17 // Deactivates face functions if neighbor exists with different level
18 void deactivateOnInternalBoundaries ( MaskList & M , Neighbors N , Levels L)
19 {
20 for(int a from 0 to d - 1) // For d coordinate axes
21 for(int f from 0 to 1) // For two faces
22 for(int i from 0 to size(M )) // For all cells
23 if(int Na = N (i, a, 1); Na 6= −1 and L(i) != L(Na))
24 deactivateSlice (M (i), a, f );
25 }
26
27 MaskList createMlhpMasks ( Neighbors N , Levels L, Isleaf E, Degrees p)
28 {
29 MaskList M ; int l = 0;
30
31 // Step 1: Initialize leaf masks (could use trunk space here instead )
32 for(bool i from 0 to size(E) - 1)
33 M . append (Mask(p(l++) + 1, true) if E(i) else Mask (0));
34
35 // Step 2: Restore compatibility by activating on neighbors
36 for(int it from 0 to d - 1)
37 operateOnInterfaces (M , N , L, logicalOr );
38
39 // Step 3: Impose Dirichlet on internal boundaries
40 deactivateOnInternalBoundaries (M , N , L);
41
42 // Step 4: Restore compatibility by deactivating on neighbors
43 for(int it from 0 to d - 2)
44 operateOnInterfaces (M , N , L, logicalAnd );
45
46 return M ;
47 }
48
49 void createMlhpLocationMatrices ( MaskList M , Neighbors N , Levels L)
50 {
51 LocationMatrixList G, int nids = initializeGlobalIndices (M );
52
53 for(int it from 0 to d - 1)
54 operateOnInterfaces (G, N , L, maximum );
55
56 removeUnassignedIndices (G, nids);
57
58 return G;
59 }



4.2. Tensor-product masks 68

Algorithm 4 Evaluate multi-level hp-basis functions.
1 // Evaluate multi -level hp basis at local coordinates r of cell i, differentiated
2 // k(a) times in direction a. For example , k = (1, 0) evaluates ∂Nj/∂r0 in 2D and
3 // k = (0, 1, 1) evaluates ∂2Nj /(∂y ∂r2) in 3D. Note that this function only maps
4 // the derivatives into the leaf coordinate system , not yet into global space.
5 Vector evaluate (Mesh mesh , MaskList M , int il, Coords r, Diff k)
6 {
7 Vector N = [ ]; // shape functions
8 double nL = 0; // number of levels
9

10 // Loop from leaf to root: start with full index of leaf and update to
11 // parent in each new iteration until current cell has no parent (-1)
12 for(int i = il; i 6= -1; i = mesh. parent (i))
13 {
14 Mask Mi = M (i);
15 Vector s = sizes(Mi);
16
17 if( product (s) 6= 0)
18 {
19 // Evaluate integrated Legendre polynomials
20 VectorList I;
21
22 for(int a from 0 to d - 1)
23 I. append ( integratedLegendre (r(a), s(a) - 1, k(a)));
24
25 // Append active entries in tensor - product to N
26 for( Vector α in productIndices (s))
27 {
28 if(Mi(α))
29 {
30 // Map derivatives to leaf
31 double Nα = power(1/2, nL * sum(k));
32
33 // Multiply in directions j with polynomial at index α(j),
34 // differentiated k(j) times , evaluated at r(j)
35 for(int j from 0 to d - 1)
36 Nα = Nα * I(j)(α(j))
37
38 N . append (Nα);
39 }
40 }
41 }
42
43 // Map coordinate to parent
44 for(int a from 0 to d - 1)
45 {
46 int Na = mesh. neighbor (i, a, 0);
47
48 double c = -1 if Na == -1 or mesh. parent (Na) != mesh. parent (i) else 1
49
50 r(a) = (r(a) + c) / 2;
51 }
52
53 nL = nL + 1;
54 }
55
56 return N ;
57 }



4.2. Tensor-product masks 69

3. Deactivate shape functions on internal boundaries. The final step of constructing
a multi-level hp-basis is to filter basis functions that are non-zero on the internal boundaries
of the overlays (i.e., homogeneous Dirichlet conditions must be imposed). Thus, entries in
the tensor-product masks are deactivated for shape functions that are non-zero on faces with
a coarser neighbor. As Figure 4.7 shows, this step deactivates the shape functions on levels
one and two that are active on the internal boundary to the bottom right cell of level zero.
Note that the shape functions deactivated here are already active on a parent cell due to the
preceding compatibility recovery in the second step. Moreover, external boundaries are not
modified as there are no hanging nodes, and the finest resolution is desirable there (as already
initialized in step 1).
4. Restore interface compatibility using logical and operations in d− 1 iterations.
The basis functions on internal interfaces often receive contributions from additional elements.
For example, on level two of Figure 4.7, the basis function associated with the node in the
central corner is built from three linear shape functions supported on the three surrounding
elements (cells 19, 22, and 24), but only two of them are deactivated (on cells 19 and 24, as
only they are directly connected to the internal boundary). Such remaining contributions are
deactivated by repeating the second step of the algorithm, but with one less repetition and
with logical and operations. This deactivates interface shape functions if they are inactive in
the neighbor, which only affects the changes from step 3, as all other interfaces are compatible
after step 2. Figure 4.8 shows the final step of this algorithm for creating compatible multi-level
hp tensor-product masks.
The tensor-product masks allow an evaluation of the basis functions in each finite element by
first evaluating the integrated Legendre polynomials in each direction and then computing the
active entries within the tensor-product according to the corresponding mask. The derivatives
are mapped into the global coordinate system (physical space) if needed. The evaluation starts
on the leaves and is repeated for each parent cell in the hierarchy towards the root cell. With
each new level, the evaluation coordinates must be mapped accordingly. Algorithm 4 shows
the basis function evaluation for a multi-level hp-element.

-1 3
-1 2
-1 1
-1 0

-1 -1
-1 4

8 12 16 20
7 11 15 19
6 10 14 18
5 9 13 17

-1 -1 -1 -1
21 22 23 24

26 28
25 27

31 34
30 33
29 32

36 -1 38
35 -1 37

41 -1 -1
40 -1 -1
39 -1 42

45 48
44 47
43 46

50 52
49 51

55 -1 -1
54 56 57
53 -1 -1

59 61 63
58 60 62

-1 66 -1
64 65 67
-1 -1 -1

69 71 73
68 70 72

75 77
74 76
-1 -1

79 81
78 80

-1 82
-1 -1

-1 84
-1 83

85 -1
-1 -1

87 -1
86 -1

-1 89
-1 88

-1 -1
-1 90

92 93
91 -1

-1 -1
94 95

96 97
-1 -1

-1 -1
98 99

100 -1
-1 -1

-1 -1
101 -1

Level 0 Level 1 Level 2

Figure 4.9: Initialize global ids independently. From Kopp, Rank, et al. (2022), used under
Creative Commons CC BY 4.0 license.



4.3. Location matrices 70

4.3 Location matrices1

Connect horizontally

-1 3
-1 2
-1 1
-1 0

-1 -1
-1 4

3 12 16 20
2 11 15 19
1 10 14 18
0 9 13 17

-1 -1 -1 -1
4 22 23 24

26 28
25 27

31 34
30 33
29 32

28 -1 38
27 -1 37

34 -1 -1
33 -1 -1
32 -1 42

45 48
44 47
43 46

50 52
49 51

48 -1 -1
47 56 57
46 -1 -1

52 61 63
51 60 62

-1 66 -1
56 65 67
-1 -1 -1

61 71 73
60 70 72

66 77
65 76
-1 -1

71 81
70 80

-1 82
-1 -1

-1 84
-1 83

82 -1
-1 -1

84 -1
83 -1

-1 89
-1 88

-1 -1
-1 90

89 93
88 -1

-1 -1
90 95

93 97
-1 -1

-1 -1
95 99

97 -1
-1 -1

-1 -1
99 -1

Connect vertically

-1 3
-1 2
-1 1
-1 0

-1 -1
-1 1

3 12 16 20
2 11 15 19
1 10 14 18
0 9 13 17

-1 -1 -1 -1
1 10 14 18

26 28
25 27

31 34
30 33
26 28

28 -1 38
27 -1 37

34 -1 -1
33 -1 -1
28 -1 38

45 48
44 47
30 33

50 52
44 47

48 -1 -1
47 56 57
33 -1 -1

52 61 63
47 56 57

-1 66 -1
56 65 67
-1 -1 -1

61 71 73
56 65 67

66 77
65 76
-1 -1

71 81
65 76

-1 82
-1 -1

-1 84
-1 82

82 -1
-1 -1

84 -1
82 -1

-1 89
-1 84

-1 -1
-1 89

89 93
84 -1

-1 -1
89 93

93 97
-1 -1

-1 -1
93 97

97 -1
-1 -1

-1 -1
97 -1

Level 0 Level 1 Level 2

Figure 4.10: Connect global ids over cell interfaces. From Kopp, Rank, et al. (2022), used
under Creative Commons CC BY 4.0 license.

In this section, the active shape functions on the cells of the hierarchical refinement tree from
the previous section are connected to global multi-level hp-basis functions by using the ideas
of Section 3.3. Each refinement level is again treated like a separate p-finite element mesh
to construct the location matrices using the same steps as in Section 3.3. In other words:
the shape functions are connected only across internal interface and not across interfaces to
coarser neighbors. In contrast to the multi-level hp tensor-product masks, the construction of
the location matrices does not need to be further adapted to account for the mesh hierarchy and
the different types of cell faces. Figure 4.9 shows the initial location matrices corresponding
to the tensor-product masks from Figure 4.8, where each shape function is assigned a unique
index. These are then connected in both coordinate directions in Figure 4.10, and the resulting
gaps in the global numbering are eliminated in Figure 4.11 by applying an index map like in
Figure 3.11d. The complete set of multi-level hp basis functions is shown in Figures 4.12 - 4.13.



4.4. Simulation workflow 71

-1 3
-1 2
-1 1
-1 0

-1 -1
-1 1

3 7 11 15
2 6 10 14
1 5 9 13
0 4 8 12

-1 -1 -1 -1
1 5 9 13

17 19
16 18

21 23
20 22
17 19

19 -1 25
18 -1 24

23 -1 -1
22 -1 -1
19 -1 25

27 29
26 28
20 22

30 31
26 28

29 -1 -1
28 32 33
22 -1 -1

31 34 35
28 32 33

-1 37 -1
32 36 38
-1 -1 -1

34 39 40
32 36 38

37 42
36 41
-1 -1

39 43
36 41

-1 44
-1 -1

-1 45
-1 44

44 -1
-1 -1

45 -1
44 -1

-1 46
-1 45

-1 -1
-1 46

46 47
45 -1

-1 -1
46 47

47 48
-1 -1

-1 -1
47 48

48 -1
-1 -1

-1 -1
48 -1

Level 0 Level 1 Level 2

Figure 4.11: Eliminate unassigned global basis function indices. From Kopp, Rank, et al.
(2022), used under Creative Commons CC BY 4.0 license.

The last function of Algorithm 3 constructs the location matrices for a multi-level hp-basis.

Remark 4.3.1
The example features only two levels of refinement. The algorithms, however, apply to arbitrary
nested spacetree partitions. They only distinguish between leaf- and non-leaf cells and between
different types of cell faces.

Remark 4.3.2
In practice, one might encapsulate the topological and geometric data from Section 4.1 into a
mesh data type and the results of Sections 4.2 - 4.3 into an hp-basis data type.

4.4 Simulation workflow1

In a computation with multi-level hp-finite elements, the algorithms from Sections 4.2 and 4.3
directly follow the mesh creation to prepare the tensor-product masks and location matrices.
Both are defined on all cells of the refinement tree. Theoretically, one could consider each cell a
finite element and assemble their contributions separately. However, the volumetric coupling of
the basis functions through the hierarchy renders this approach impractical, as the interactions
between all the cells in the tree must be integrated. Moreover, the concept of overlapping
finite elements is not very transparent for someone concerned with practical applications who
may not be familiar with the details of the method. Instead, only the leaves are considered
finite elements. When evaluating the shape functions, the contributions of all parent elements
are simply appended while traversing the hierarchy and mapping the evaluation coordinates
accordingly. Therefore, from ”outside”, the multi-level hp-basis consists of the non-overlapping
leaves, where some of them evaluate more shape functions than others (e.g., in transition
zones with many hanging nodes). Hiding the hierarchical nature of the basis (which still
exists internally) allows treating the multi-level hp-basis like any other finite element method
and applying standard algorithms. Equivalent to gathering the shape function over the full



4.4. Simulation workflow 72

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

Figure 4.12: Multi-level hp basis functions 0 to 27 according to Figure 4.11.



4.4. Simulation workflow 73

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20

Figure 4.13: Multi-level hp basis functions 28 to 48 according to Figure 4.11.



4.4. Simulation workflow 74

element 0 : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, element 11 : [ 44, 45, 19, 22, 23, 25, 0, 1, 2, 3 ]
12, 13, 14, 15 ] element 12 : [ 44, 19, 22, 23, 25, 0, 1, 2, 3 ]

element 1 : [ 16, 17, 18, 19, 0, 1, 2, 3 ] element 13 : [ 44, 45, 19, 22, 23, 25, 0, 1, 2, 3 ]
element 2 : [ 17, 20, 21, 19, 22, 23, 0, 1, 2, 3 ] element 14 : [ 45, 46, 22, 28, 29, 32, 33, 1 ]
element 3 : [ 18, 19, 24, 25, 0, 1, 2, 3 ] element 15 : [ 46, 22, 28, 29, 32, 33, 1 ]
element 4 : [ 20, 26, 27, 22, 28, 29, 1 ] element 16 : [ 45, 46, 47, 22, 28, 29, 32, 33, 1 ]
element 5 : [ 26, 30, 28, 31, 1 ] element 17 : [ 46, 47, 22, 28, 29, 32, 33, 1 ]
element 6 : [ 28, 31, 32, 34, 33, 35, 1 ] element 18 : [ 47, 48, 32, 36, 37, 38, 1, 5, 9, 13 ]
element 7 : [ 32, 34, 36, 39, 38, 40, 1, 5, 9, 13 ] element 19 : [ 47, 48, 32, 36, 37, 38, 1, 5, 9, 13 ]
element 8 : [ 36, 37, 41, 42, 1, 5, 9, 13 ] element 20 : [ 48, 32, 36, 37, 38, 1, 5, 9, 13 ]
element 9 : [ 36, 39, 41, 43, 1, 5, 9, 13 ] element 21 : [ 48, 32, 36, 37, 38, 1, 5, 9, 13 ]
element 10 : [ 44, 19, 22, 23, 25, 0, 1, 2, 3 ]

Figure 4.14: Element location maps including parent cells (colors represent parent levels).
From Kopp, Rank, et al. (2022), used under Creative Commons CC BY 4.0 license.

hierarchy, the global basis function indices in all location matrices are concatenated into a
single location map for each finite element. Figure 4.14 shows these location maps for the
hierarchical example of this chapter. As many finite elements share the same parent shape
functions, some indices appear quite often. This redundancy is eliminated by storing the
location maps for each cell and only combine them on the fly for individual leaves when
necessary.
After the mesh and basis construction, the location maps of the multi-level hp-basis are

used to allocate a sparse matrix in a compressed-sparse-row (CSR) format and a dense load
vector. This ensures that the subsequent assembly loop over all elements can add the element
matrices to the global matrix without allocating new non-zero entries. For each element, the
corresponding location map is used to allocate a dense element matrix and an element load
vector according to the length of the location map. The number of Gauss-Legendre points
per direction is determined by querying the basis for the maximum polynomial degrees of the
element, which are obtained from the sizes of the tensor-product masks of the element and its
parents. For each integration point (usually p+1 per direction), the shape functions and their
derivatives are evaluated, and the finite element integrals are added to the element system.
Finally, the element matrix and element load vector are assembled into the global system using
the current location map.
The resulting global linear system is then solved using either a diagonally preconditioned

conjugate gradient method (time-stepping) or the Pardiso sparse direct solver (space-time
slab). Both perform well for any number of refinement levels on the examples shown in this
thesis. The multi-level hp-method has been combined with Additive-Schwarz (Jomo et al.,
2018) and multigrid preconditioners (Jomo et al., 2021) (exploiting the hierarchical nature)
or with sparse direct solvers (Elhaddad et al., 2017). After the linear solution, quantities
of interest, like the solution field, are written to the hard drive using the VTU file format
for visualization in Paraview. The high-order nature of the approximation is captured by



4.5. Refinement strategy based on laser path 75

evaluating the solution field inside an element on a finer sample grid whose resolution is
chosen in relation to the polynomial degree.

4.5 Refinement strategy based on laser path2

0 ms 25 ms 50 ms 75 ms 100 ms
0
1
2
3
4
5

de
pt

h
[−

]

0
200
400
600
800

1,000

sig
m

a
[µ

m
]

delay [ms] depth [−] sigma [µm]

0.0 5.4 180
1.2 3.5 240
6.0 2.5 400
30.0 1.5 900
100.0 1.0 1100

Figure 4.15: Parameters for refinement based on laser history inside the refinement window
[t−τmax, t]. From Kopp, Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

It is crucial to find strategies for automatic mesh refinement, mesh coarsening, and polyno-
mial degree selection to use the flexibility offered by an hp framework to its full potential.
General approaches use error estimators combined with some smoothness estimators to choose
whether to refine in h or p. While these require little problem setup information, they are of-
ten expensive and complex to implement. However, in applications such as PBF-LB/M, the a

x

x
p 0,

tp 0
=

2.
5m

s

xp1, tp1 = 8.75 ms

x
p 2,

tp 2
=

20
m

s

xp3, tp3 = t = 25 ms t0 = 0 ms

‖x
−

x
p 1‖

=
4m

m

‖x− xp2‖ = 5 mm

‖x−
x
p

3‖
≈ 3.6

mm

‖x− xp0‖ = 1 mm

= dτ (22.5 ms) · exp
(
− (1 mm)2

2σ2
τ (22.5 ms)

)

= dτ (16.25 ms) · exp
(
− (4 mm)2

2σ2
τ (16.25 ms)

)

= dτ (5 ms) · exp
(
− (5 mm)2

2σ2
τ (5 ms)

)

= dτ (0 ms) · exp
(
− (3.6 mm)2

2σ2
τ (0 ms)

)

d0

d1

d2

d3

≈ 1.81 · exp (−0.5 · 12 · 0.744−2) ≈ 0.73

≈ 2.07 · exp (−0.5 · 42 · 0.613−2) ≈ 0

≈ 2.71 · exp (−0.5 · 52 · 0.367−2) ≈ 0

≈ 5.4 · exp (−0.5 · 3.62 · 0.180−2) ≈ 0

= max {d0, d1, d2, d3} = 0.73→ 1d

Figure 4.16: Evaluation of the depth function d(x, t) at x = (4 mm, 1 mm), t = 25 ms by
finding the closest point on each laser path segment (a square contour with 6 mm side length).



4.5. Refinement strategy based on laser path 76

(a) Computed temperature (b) Refinement depth function (c) Finite element mesh

Figure 4.17: The depth function in the middle defines the target number of multi-level hp
refinements. It evaluates (4.1) using the path shown in Figure 4.16 and the parameters from
Figure 4.15. The resulting mesh to the right captures the temperature on the left side well.
From Kopp, Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

priori knowledge about the laser path can be used to tailor mesh refinement strategies. In this
thesis, the mesh is refined by considering recent laser positions, called the refinement window
(e.g., from 100 ms in the past until the present time), for constructing a function conceptually
similar to a mesh density function that defines the target refinement depth. This function
is constructed starting with a Gauss bell shape at the current position of the laser with a
maximum refinement depth at the center that decreases while moving further away from the
laser. Then, this function is transported in space along the previous laser path, decreasing
the maximum refinement level and increasing the refinement width. This transport yields a
spatial function for a given point in time with values indicating the target refinement level.
The decision to refine an element is made by evaluating the refinement depth function on a
grid of points within the element (e.g., 5 to 7 per direction) and comparing the maximum
target refinement depth to the refinement level of the element. Figure 4.15 shows the maxi-
mum refinement depth dτ and width στ defined over the refinement window (the recent laser
history) as used later in the examples.
The refinement depth function d(x, t) is evaluated by considering the laser path in the time

interval [t−τmax, t]; the regions before and after do not influence the refinement. The function
evaluation first computes the closest point xpi on each laser path segment i and determines the
time tpi at which the laser was at xpi . Then, using the time delay ∆ti = t− tpi , the maximum
refinement depth and width are extracted from the functions dτ (∆t) and στ (∆t), respectively;
see Figure 4.15. These allow computing d(x, t) by evaluating a Gaussian function for each
segment and taking the maximum value:

d(x, t) = max
i
di(x, t) = max

i

(
dτ
(
t− tpi

)
exp

(
− ‖x− x

p
i ‖2

2σ2
τ (t− tpi )

))
, (4.1)

rounding the result to the closest integer. Figure 4.16 exemplifies this process for a square
contour path with four segments. The right segment dictates a maximum of one level of re-
finement after rounding due to its proximity to the evaluation point. All other segments are
too far away in relation to the width of the Gauss function, interpolated from Figure 4.15.



4.6. Slab compatibility 77

Figure 4.17 shows the evaluation of d(x, t) on the entire two-dimensional domain, the resulting
mesh, and the computed temperature field. In this example, the refinement window in Fig-
ure 4.15 acts inside the interval [t−100 ms, t]. Hence, all four segments must be considered, as
the total printing time does not exceed 100 ms. However, for longer laser paths (or differently
defined refinements), the segments whose time interval does not intersect the window of active
refinement ([t− τmax, t]) may be discarded for a given time t.
As the presented multi-level hp-refinement is isotropic, the same refinement depth applies

to all directions, including time. For simplicity, the same polynomial degree is chosen for
elements with equal refinement levels, which is not a restriction of the method. Finding better
selection criteria for the polynomial degrees of individual elements will improve the simulation
performance; future work will focus on this.

4.6 Slab compatibility2

x

t

(a) First slab

x

t

(b) Second slab

x

t

(c) Third and last slab

Figure 4.18: Ghost slabs in time with one space dimension. From Kopp, Calo, et al. (2022),
used under Creative Commons CC BY 4.0 license.

Another challenge in separating the solution into time slabs is that hanging nodes are not
constrained when meshing each slab separately. Meshing the entire space-time domain at once
is certainly not desirable. Still, the refinement for the next and previous slabs must be known
to construct compatible bases at slab interfaces. Figure 4.18 shows how a one-dimensional
solution is advanced in time by meshing the second slab together with the first one. This
allows the basis of the first slab to ”know” the hanging nodes on the time interfaces to the
second slab. Then, before creating the basis for the second slab, the third one is meshed, and
only when computing the solution on the third slab is the first mesh discarded. This meshing
procedure is possible as the refinement does not depend on the solution and is defined in
advance. In other cases (e.g., when using an adaptive algorithm), one can either refine the
next slab conformingly or use a DG formulation in time to enforce continuity across slab
interfaces weakly (see, e.g., Hofer et al., 2018; Schmich & Vexler, 2008).



78

Chapter 5

Results1,2

5.1 Singular benchmark1

(a) L-shaped domain (b) Fichera corner

0

0.5

1

1.3
Solution

Figure 5.1: Singular benchmark solutions. From Kopp, Rank, et al. (2022), used under
Creative Commons CC BY 4.0 license.

In this first example, the presented multi-level hp-algorithms and their implementation are
verified using a linear Poisson problem

∇ · (κ∇u) = f on Ω
u = g on ΓD (5.1)

κ∇u · n = h on ΓN ,

where ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. The weak form of (5.1) reads as follows: Find
u ∈ ug +H1

0 (Ω), such that
∫

Ω
∇w · κ∇u dΩ =

∫

Ω
wf dΩ +

∫

ΓN
wh dΓN ∀w ∈ H1

0 (Ω).



5.1. Singular benchmark 79

0 0.5 1 1.3

Solution

(a) Finite element solution

1 2 3 4 5

Polynomial degree

(b) Graded polynomial degrees for r = 1 to r = 4

Figure 5.2: Singular benchmark on one octant with four refinement levels. From Kopp, Rank,
et al. (2022), used under Creative Commons CC BY 4.0 license.

The manufactured solution is defined as follows:

u =
√
r with r =

√√√√
d−1∑

i=0
x2
i (5.2)

on Ω = [0, 1]d with d ≥ 2, see Figure 5.2a. Substituting (5.2) into (5.1) and using κ = 1 yields

f = 3− 2d
4 r−3/2.

Homogeneous Neumann boundary conditions are imposed on the boundaries intersecting the
coordinate planes: the left and bottom edges in two dimensions and the left, bottom, and front
faces in three dimensions. Dirichlet boundary conditions are imposed on the remaining faces
according to (5.2). The finite element discretization of (5.1) results in a linear equation system
Kû = F . In two dimensions, this benchmark is equivalent to computing one quadrant of an
L-shaped domain and exploiting the symmetry of the solution (Figure 5.1a). Similarly, the
three-dimensional analog is computing one octant of a Fichera cube with a corner singularity
(Figure 5.1b).
To obtain exponential convergence, the finite element mesh must be refined locally towards

the point singularity while elevating the polynomial degree elsewhere to approximate the
smooth solution appropriately. The domain Ω = [0, 1]d is discretized using a base mesh
with two elements in each direction. Two refinement studies are performed, where each new
computation adds another refinement level towards the singularity at the origin. The first



5.1. Singular benchmark 80

0 10 20 30 4010−4

10−3

10−2

10−1

100

101

102

3
√

N

||u
−

u
h
|| E

/
||u
|| E
·1

00
%

uniform tensor
graded trunk

(a) 2D

0 5 10 15 2010−5

10−4

10−3

10−2

10−1

100

101

4
√

N

||u
−

u
h
|| E

/
||u
|| E
·1

00
%

uniform tensor
graded trunk

(b) 3D

2 4 6 8 10 12 14

10−4

10−3

10−2

10−1

100

101

5
√

N

||u
−

u
h
|| E

/
||u
|| E
·1

00
%

uniform tensor
graded trunk

(c) 4D

2 4 6 8

10−3

10−2

10−1

100

101

6
√

N

||u
−

u
h
|| E

/
||u
|| E
·1

00
%

uniform tensor
graded trunk

(d) 5D

Figure 5.3: Convergence of the error in the energy norm. From Kopp, Rank, et al. (2022),
used under Creative Commons CC BY 4.0 license.

strategy uses a full tensor-product space with a uniform polynomial degree p equal to r +
1, where r is the maximum refinement level. The second strategy employs a trunk space
with a linear grading from p = r + 1 on the base elements to p = 1 on the elements with
refinement level r. Figure 5.2b shows the graded polynomial degree distribution with one to
four refinement levels and the numerical solution using a uniform tensor-product space with
p = 5 and r = 4. Figure 5.3 shows the convergence results for different spatial dimensions.
While the convergence of the discretization error versus the number of unknowns is necessary

to gain insight into the method’s approximation quality, the method’s success ultimately
depends almost exclusively on runtime performance and memory consumption. The following



5.1. Singular benchmark 81

1 10

101

102

103

104

1
1

2
1

3
1

1
4

p = r + 1

nu
m

be
r

of
cg

ite
ra

tio
ns

2D
3D
4D
5D

1 10
101

103

105

107

109

1011

5
1

7
1

9
1

1
11

p = r + 1

nu
m

be
r

of
no

nz
er

os

2D
3D
4D
5D

1 1010−6

10−4

10−2

100

102

104

106

7
1

10
1

13
1

1
16

p = r + 1

as
se

m
bl

y
ru

nt
im

e
[s

]

2D
3D
4D
5D

1 10
10−4

10−2

100

101

104

106

6
1

9
1

12
1

1
15

p = r + 1

to
ta

lr
un

tim
e

[s
]

2D
3D
4D
5D

Figure 5.4: Number of CG iterations, number of non-zeros in the sparse matrix, and serial
runtime comparison for the uniformly graded tensor spaces. The total runtime excludes the
error computation. From Kopp, Rank, et al. (2022), used under Creative Commons CC BY
4.0 license.

analysis shows that the method achieves exponential convergence in terms of these crucial
quantities. The finite element linear systems are solved using a diagonally preconditioned
conjugate gradient (CG) method. Therefore, the number of non-zeros in the matrix dominates
the memory consumption. The two most significant contributions to the runtime are the
assembly and the solution of the linear system.
The asymptotic behavior of these quantities is analyzed in terms of the refinement study

index r to allow comparisons with runtime measurements. For brevity, only the full tensor-
product space using a uniform polynomial degree elevation is considered. Each new refinement
level adds 2d cells that overlay the cell in the origin of the parent level. Therefore, the number
of elements (leaf cells) can be computed as r(2d − 1) + 1 = O

(
r
)
.



5.1. Singular benchmark 82

Each leaf cell contributes to at most (p + 1)d ∼ pd basis functions defined on the same
refinement level, but it also receives contributions from all coarser levels. The key to obtaining
good scaling is that parent cells only contribute basis functions active on their faces. This
results in (p+ 1)d− (p−1)d ∼ pd−1 functions per (coarser) level at most. Because r ∼ p, these
contributions scale with

O
(
rpd−1

)
−→
r∼ p O

(
pd
)

and hence are of the same order as the (p− 1)d = O
(
pd
)
internal functions coming from the

classical p-version of the finite element method.
The number of non-zeros in the assembled matrix can be bounded to some value between

the sum of all element matrix sizes (upper bound) and the sum of all internal contributions
(lower bound). Using O

(
rpd−1 + pd

)
as an upper bound for the number of element unknowns

and multiplying with O(r) number of elements yields

O
(
r
)
O
(
rpd−1 + pd

)2 −→
r∼ p O

(
p2d+1

)

as an estimate of the complexity for the number of non-zeros in the assembled sparse matrix.
The same result is obtained when considering only internal contributions.
Similarly, the assembly effort is estimated by summing up the number of operations needed to

integrate each element matrix numerically. Assuming a standard Gauss-Legendre quadrature,
one needs (p + 1)d = O

(
pd
)
integration points, on which an outer product of O

(
rpd−1 + pd

)

shape functions is evaluated, resulting in the following estimate:

O
(
r
)
O
(
pd
)
O
(
rpd−1 + pd

)2 −→
r∼ p O

(
p3d+1

)
.

Figure 5.4 verifies that the number of non-zeros in the sparse matrix scales as derived
above, while the number of CG iterations increases roughly with pd−1; the analysis of this
empirical observation depends on the condition number of the sparse matrix that exceeds
the scope of this work. The iterative solver terminates when

√
R ·D(R) < 10−10, where

D(R) = diag(K)−1R is the diagonal preconditioner applied to the residual R = Kû − F .
Moreover, the symmetry of the sparse matrix is not utilized, which significantly simplifies
the parallel implementation of the sparse matrix-vector product. By combining the results
for the number of non-zeros with the number of iterations, the runtime complexity for the
iterative solver is estimated as O(p3d). Figure 5.4 shows that the performance measurements
verify these theoretical estimates. Although the assembly of the linear system scales with the
highest order, it only starts significantly contributing to the total runtime towards the end of
the curves. Moreover, direct solvers with a linear complexity with respect to the number of
unknowns exist for such types of meshes (Paszynski et al., 2012).
The measurements change significantly when considering the trunk space with the graded

polynomial degree distribution. While the overall scaling is the same, the absolute effort per
degree of freedom is higher, and the relative runtime of the assembly increases compared to
the linear solution. There are two main reasons for these differences. First, although the
fine levels were assigned a lower polynomial degree, they still receive contributions from the
higher-order base elements. Due to these, even the finest level with p = 1 requires r + 2



5.2. AMB2018-02 benchmark 83

Gauss-Legendre points per direction to integrate the parent contributions accurately. Second,
removing internal modes increases the connectivity in the trunk space, resulting in higher
runtime and increased memory consumption per unknown. When considering two interacting
shape functions, Ni and Nj, the effort for assembling this interaction is proportional to the
number of elements Ni and Nj overlap. Internal functions overlap only on one element but
functions active on the faces overlap at least two elements, making internal functions cheaper
to assemble. After the assembly, however, this interaction results in a single entry in the sparse
matrix regardless of the number of elements the supports overlap.

5.2 AMB2018-02 benchmark2

Laser parameters
Speed (v) 0.8 m s−1

Power (P ) 179.2 W
Absorptivity (ν) 0.32
Spot size (D4σ) 170 µm
Depth (σz) 0.28 ·D4σ/4

Phase change parameters
Latent heat (L) 2.8× 105 J kg−1

Solid temperature (us) 1290 °C
Liquid temperature (ul) 1350 °C
Initial temperature (u0) 25 °C
Regularization (S) 1, 2, 4

Table 5.1: Model parameters (see Sections 2.1 and 2.2). From Kopp, Calo, et al. (2022), used
under Creative Commons CC BY 4.0 license.

Fine discretization Coarse discretization
Base mesh 64× 64× 9× 32 slabs 12× 12× 3× 8 slabs
Refinement τ [ms] dτ στ [µm] z-factor τ [ms] dτ στ [µm] z-factor

0 6 100 0.5 0 5.4 180 0.5
0.082 5.3 120 0.5 1.2 3.5 240 0.5
0.47 4.5 150 0.5 6 2.5 400 0.8
1.2 3.5 160 0.8 30 1.5 900 1
4 2.5 200 1 100 1 1100 1
16 0.5 240 1

Polynomial de- 2 (uniform) 2, 2, 4, 4, 3 and 3 (for levels 0
grees in space to 5, respectively)

Table 5.2: Fine and coarse discretization parameters. From Kopp, Calo, et al. (2022), used
under Creative Commons CC BY 4.0 license.

The AMB2018-02 benchmark (National Institute of Standards and Technology, 2018) is
commonly used to initially assess the performance of new simulation methods for PBF-LB/M
processes. The setup features various laser configurations in single strokes on a block of IN625
alloy (24.08 mm×24.82 mm×3.18 mm). The length of each stroke is 14 mm with a duration of
17.5 ms, but the melt pool usually reaches a steady state after at most 2 mm of travel distance.



5.2. AMB2018-02 benchmark 84

−400 −200 0 200 400 600 800 1,000
0

500

1,000

1,500

2,000

2,500

1290 °C

359 µm

Distance to laser spot center [µm]

Te
m

pe
ra

tu
re

[°C
]

L = 0
S = 1
S = 2
S = 4
Tl + 200

Figure 5.5: Temperature in laser travel direction for different phase change parameters.
From Kopp, Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

Experimental data from Lane et al. (2020) shows the melt pool width and depth for each track
as measured from the cross-section area within which the microstructure changed. The melt
pool length and cooling rates are estimated using high refresh rate thermal imaging. This
section focuses on test case B on the additive manufacturing metrology testbed (AMMT) and
the measurements from Lane et al. (2020, Table 3) for track number 3. Table 5.1 summarizes
the simulation model parameters. The thermal properties of IN625 are

cs(u) =
(

405 + 247 · u
1000 °C

) [ J
kg °C

]
u ≤ us

k(u) =
(

9.5 + 15 · u
1000 °C

) [ W
m °C

]
u ≤ us

for temperatures below the melting point and are assumed constant for higher temperatures.
All simulations use a constant mass density ρ = 8440 kg m−3.
In the first numerical experiments, the model is calibrated to reproduce the experimental

data as closely as possible. The melt pool dimensions are estimated from the simulation results
by extracting a contour surface at u = us and measuring its bounding box’s length, width,
and depth. The first calibration step identifies suitable values for the absorptivity ν and the
penetration depth σz of the heat source in (2.2) and (2.3) such that the width and depth
match those of the experiment. Then, the phase change regularization is adjusted for the
melt pool length to match the experiments. This strategy uses the property that increasing
the smoothness of the phase change mainly affects the melt pool length while having a minor
effect on its width and depth. By using a well-resolved discretization, as seen in Table 5.2,
the discretization influence is minimized. All computations use linear polynomials in time
combined with a trunk space for the spatial discretization. The additional z-factor in Table 5.2
multiplies the refinement width στ in the z-direction to prevent unnecessary refinement in the
region below the melt pool.



5.2. AMB2018-02 benchmark 85

(a) Top view

(b) Side view

−2.5 · 106 0 · 106 2.5 · 106 5 · 106

Time derivative of temperature [°C s−1]

Figure 5.6: Time derivative of the temperature field using the fine discretization. From Kopp,
Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

Result Length [µm] Width [µm] Depth [µm]
Measurements 359 (σ = 20) 132 (σ = 2) 36 (σ = 0.9)
No latent heat 301 138 39.4
S = 1 396 129 34.8
S = 2 381 129 34.8
S = 4 356 129 34.8
S = 8 328 130 34.8
ul + 200 354 131 35.4
ul + 200 (coarse) 353 132 35.3

Table 5.3: Melt pool dimensions for different model parameters in comparison to experimental
data. From Kopp, Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

Table 5.3 shows the results for different phase change regularizations, where ν = 0.32 and
σz = 0.28 ·D4σ/4. The dimensions for S = 4 (equivalent to us = 1170 °C and ul = 1470 °C)
and with only increasing ul to 1550 °C are very similar. However, Figure 5.5 shows that the
regularization of the phase transition below 1290 °C significantly changes the cooling rate after
the solidification. This influence may interfere with a prediction of the microstructure forma-



5.3. Hatched square 86

tion, for which a regularization towards higher temperatures may be preferable. Figure 5.6
shows the time derivative of the temperature field obtained directly from the space-time finite
element discretization. The cooling rates of around 2× 106 °C s−1 deviate significantly from
the measured 1.08× 106 °C s−1, given by Lane et al. (2020, Table 3). However, in Lane et al.
(2020), the authors advise against using the cooling rate measurements due to motion blur
and a limited calibration range. Therefore, the validation of cooling rates for this thermal
model remains an open task. Next, the discretization is coarsened as much as possible while

0

500

1,000

1,400
Temperature [°C]

Side view Front view
Figure 5.7: Solution and contour surface at us = 1290 °C for coarse discretization with ul =
1550 °C. From Kopp, Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

still obtaining good estimates to showcase the benefits of the presented approach. Figure 5.7
shows the melt pool geometry and the temperature in the vicinity for the coarse discretization;
see Table 5.2. A simulation time of 17.5 ms and eight time slabs results in a duration of about
2.2 ms for one slab. The melt pool dimensions (last row of Table 5.3) are almost identical
to the ones of the well-resolved discretization. For simplicity, all elements are over-integrated
with p+2 quadrature points in space and p+1 quadrature points in time to capture the phase
change accurately. The linear systems are solved with Intel’s Pardiso sparse direct solver.

5.3 Hatched square2

This section uses the setup of the previous section for the AMB2018-02 benchmark to hatch
a square area with a 10 mm side length. As Figure 5.8 shows, the laser path first follows the
contour line and then fills the interior with a hatch distance of 100 µm, resulting in a path
length of about 102 cm. The entire process takes about 1.28 s, which is extended to a total
simulation time of 3 s. During this cooldown period, the discretization is automatically coars-
ened in space and time as a result of the formulation and the way the meshes are constructed,



5.4. Performance comparison to time-stepping 87

End

Start

Figure 5.8: Laser path (left) and example discretization (center and right) at t = 1.2168 s for
a hatched square with 10 mm side length and 100 µm hatch width. From Kopp, Calo, et al.
(2022), used under Creative Commons CC BY 4.0 license.

as Section 4.5 discusses. Each time slab contains one base element in time with a duration of
2.4 ms, which is slightly longer than in the previous example. The number of unknowns per
slab initially averages around 50 thousand and drops to around 2400 for slabs in the cooldown
period.
Figure 5.9 shows the solution and the melt pool dimensions for two time slices; on the left

side, the laser approaches the top left corner, and on the right side, it has just reached it.
Significant heating of the plate appears, leading to more than a 50% predicted increase in
melt pool width and depth for the second case. Hence, this spot is identified as a potential
source of defects.
The simulation runs on a single Intel Xeon Gold 6230 CPU with 20 cores running at 2.1 GHz

in about 7 hours. Compared to the single-threaded execution, the parallel version is about
eight times faster, a good result considering that the CPU’s turbo boost frequency is 3.9 GHz,
which, from experience, results in a maximum speedup of 11 to 12 times. While this speedup
is reached in the assembly of the linear systems, the Pardiso sparse direct solver does not scale
optimally in the examples. Moreover, the assembly again over-integrates with p+ 2 points in
space and p+ 1 points in time. This performance penalty can be improved by identifying the
elements around the laser source and increasing the number of quadrature points there only.

5.4 Performance comparison to time-stepping
This section compares the locally refined space-time discretization in four dimensions to a
more conventional three-dimensional locally refined hp-approach. The computational domain
in space is initially chosen as [−8 mm, 8 mm]3 and is discretized with a base mesh of two
elements per direction. The initial domain and discretization are then gradually extended
to [−43.2 cm, 43.2 cm]3 and a base mesh of 108 elements per direction. Both discretization
types are refined seven levels towards the laser spot using the same level function to enable
a meaningful comparison. The time interval is in all cases [0 ms, 8.75 ms]. Figure 5.10 shows
the increasingly large spatial meshes at t = 8.75 ms. The time-stepping reference uses 128



5.4. Performance comparison to time-stepping 88

141 µm

435 µm

40.3 µm
262 µm

364 µm

55.3 µm 0

500

1,000

1,400
Temperature [°C]

Figure 5.9: Temperature and melt pool geometry for t = 1.2168 s (left) and t = 1.2786 s
(right). From Kopp, Calo, et al. (2022), used under Creative Commons CC BY 4.0 license.

Crank-Nicolson steps (θ = 1/2), while the space-time discretization reduces the element du-
rations automatically by refining locally in four dimensions. On the finest elements, the time
interval is identical; however, the space-time mesh also coarsens in time, away from the laser.
Both discretizations use the trunk space with polynomial degree 3 in space. The space-time
discretization uses a linear interpolation in time.
In Figure 5.11, the number of unknowns for the space-time mesh is initially much larger than

for a single time step mesh. There are only slightly fewer degrees of freedom in the time slab
mesh than in the meshes of all time steps together. However, as the domain is extended and
more elements are added, the peripheral part of the domain starts to dominate the number of
unknowns until, eventually, a single time step is as expensive as a single time slab.
The relative reduction of the residual norm during the nonlinear iterations of each time step

reaches the threshold value of 10−10 in about ten iterations (further iterations stagnate at 10−13

to 10−11). The nonlinear iterations of the single time slab systems of the space-time discretiza-
tion converge to a relative residual norm reduction threshold of 10−14 in about seven iterations
(stagnating at around 10−16). The linear systems of the space-time discretization are solved
using the Intel Pardiso sparse direct solver. From now on, this approach is called ST-Pardiso.



5.4. Performance comparison to time-stepping 89

(a) Smallest domain with 1.6 cm width (b) Extension to 4.8 cm width

(c) Extension to 9.6 cm width (d) Extension to 25.6 cm width (e) Extension to 86.4 cm width

Figure 5.10: Benchmark with a small laser stroke in the center and an increasing peripheral
cost resulting from adding root elements on the left, right, front, back, and bottom sides. Each
mesh is refined seven times. The solution shown is evaluated at t = 8.75 ms.

The linear systems of the time-stepping discretizations are solved using two methods: first,
also using Intel’s Pardiso solver (TS-Pardiso) to compare to ST-Pardiso directly, and second,
using a diagonally preconditioned CG method combined with the sparse matrix-vector mul-
tiplication of the Intel MKL library (TS-CG). All three approaches (ST-Pardiso, TS-Pardiso,
TS-CG) are computed in serial and also using shared-memory (Open-MP) parallelism with 20
cores/threads (again on a single Intel Xeon Gold 6230 CPU). The TS-CG approach uses the
standard (unsymmetric) compressed sparse row (CSR) format to store sparse matrices. Al-
though the symmetric version of the CSR format that stores only half of the matrix performs
better in the serial case, it is not further investigated in this section to simplify the compar-
isons. Similarly, TS-Pardiso uses the same setup as ST-Pardiso, where an unsymmetric CSR
matrix is given to the Pardiso solver without ”mentioning” the symmetry of the time-stepping
formulation. Potentially faster versions based on either symmetric CSR matrices or unsym-



5.4. Performance comparison to time-stepping 90

1.6 cm 4.3 cm 12 cm 32 cm 84 cm103

104

105

106

107

108

109

1010

Domain size

N
um

be
r

of
un

kn
ow

ns

Space-time
Sum of all time steps
Average per time step

Figure 5.11: Comparison between single space-time slab and 128 time steps.

metric CSR matrices with a consistent linearization (2.12) of (2.11) (leading to fewer nonlinear
iterations) are excluded from the following comparison. The inconsistent linearization used
by TS-Pardiso and TS-CG does not affect the initial iterations, but it slows the convergence
afterwards and requires more iterations to reach machine precision. Hence, choosing a higher
threshold value can reduce the difference in the number of nonlinear iterations between ST-
Pardiso and TS-Pardiso/CG. Moreover, the space-time finite element integrals are integrated
with four quadrature points per spatial direction (p + 1) and one quadrature point in time
(p). In contrast, the previous sections used one additional quadrature point per direction to
improve the accuracy of the results. While these choices may slightly skew the results in favor
of the space-time discretization, they do not change the general characteristics discussed in
the following.
Figure 5.12 compares the serial and parallel runtime for ST-Pardiso, TS-Pardiso, and TS-

CG approaches. The serial runtime of the space-time discretization is initially about twice
as long as TS-Pardiso and TS-CG. Although the number of unknowns of the single slab is
lower than the sum of all time steps, the solution of a single large equation system is more
expensive than solving many smaller systems. Moreover, the overlap of basis functions in four
dimensions is higher than in three, further increasing the runtime and memory consumption.
When expanding the domain, the peripheral computational cost dominates much later for
the space-time discretization, leading to a similar runtime (compared to the initial mesh) for
much longer than the time-stepping. While this holds for TS-Pardiso and TS-CG, the iterative
solver in TS-CG scales better than the direct solver for ST-Pardiso and TS-Pardiso. When
extending the domain, the number of CG iterations does not increase much (i.e., less than five
percent). While this example uses constant initial data, the same holds for spatially varying
initial temperature fields, where the time step lengths are still so small that the peripheral
temperature increments are almost zero. As a result, the runtime of TS-CG eventually catches
up to ST-Pardiso once the linear systems become very large. The same results can be observed
in the OMP-parallel execution but with two differences. First, on the large initial mesh, all
three approaches require roughly the same amount of time. Figure 5.13 shows that the parallel



5.4. Performance comparison to time-stepping 91

1.6 cm 28 cm 56 cm 84 cm

101

102

103

104

Domain size

ru
nt

im
e

[m
in

]

Serial execution time

1.6 cm 28 cm 56 cm 84 cm
1/2

1

10

100

Domain size
sp

ee
du

p
[−

]

Serial speedup over time-stepping

1.6 cm 28 cm 56 cm 84 cm
100

101

102

103

Domain size

ru
nt

im
e

[m
in

]

Parallel execution time

1.6 cm 28 cm 56 cm 84 cm
1/2

1

10

100

Domain size

sp
ee

du
p

[−
]

Parallel speedup over time-stepping

ST-Pardiso
TS-Pardiso
TS-CG

Figure 5.12: Comparison between single space-time slab and 128 time steps.

efficiency of ST-Pardiso is initially much better than TS-CG and, in particular, TS-Pardiso.
The second difference to the serial execution is the improved parallel scaling of the TS-CG
method for bigger meshes, as the Intel MKL’s sparse matrix-vector multiplication scales better
than their sparse direct solver. An interesting characteristic of TS-CG is that later Newton-
Raphson iterations with an almost converged solution require fewer CG iterations in the
solution of the linear system, as Figure 5.14 shows.
These results show that the space-time discretization has the potential to capture the multi-



5.4. Performance comparison to time-stepping 92

1.6 cm 22 cm 43 cm 63 cm 84 cm0

2

4

6

8

10

12

14

Domain size

Sp
ee

du
p

[-]

ST-Pardiso
TS-Pardiso
TS-CG

Figure 5.13: Speedup of parallel vs. serial execution.

0 2 4 6 8 10 120

50

100

150

200

250

300

Newton-Raphson iteration

Av
er

ag
e

nu
m

be
r

of
C

G
ite

ra
tio

ns TS-CG, 25.6 cm width

Figure 5.14: Average number of CG iterations per Newton-Raphson iteration for TS-CG.

scale nature of the thermal evolution of PBF-LB/M processes better than conventional time-
stepping methods. The advantage of local refinement in four dimensions grows with an in-
creased peripheral computational cost. While in this example, more elements were added on
the boundary of the base mesh, more realistic simulations can cause an increased peripheral
cost in other ways. For instance, resolving complex geometries based on a very heterogeneous
material history using immersed methods can be computationally expensive.



93

Chapter 6

Conclusion

This thesis presents a space-time multi-level hp-method to approximate the nonlinear heat
equation for simulating the temperature evolution in PBF-LB/M processes. Local refinements
in four dimensions are possible by using a multi-level hp-framework to construct data-oriented
algorithms and data structures that extend to any number of dimensions. The introduc-
tion of tensor-product masks and location matrices with corresponding pair-wise operations
on their array slices provides the foundation for efficient implementations. In particular, a
small memory management overhead and favorable memory access patterns distinguish this
approach from the original object-oriented formulation already in one, two, and three dimen-
sions. While the simplicity of the presented alternative reduces the effort to construct and
maintain the hp-finite element data structures, modifying the mesh topology invalidates basis
data that was computed on the previous mesh state. However, applications with evolving
meshes often benefit from creating an entirely new mesh and basis rather than modifying the
existing ones, which results in cleaner implementations and can simplify applications that re-
quire both the new and the old discretization, such as certain time-stepping schemes or error
estimators.
The combination of this multi-level hp extension with a continuous Galerkin-Petrov formu-

lation of the nonlinear heat equation leads to a finite element method that discretizes space
and time together in a four-dimensional setting. Testing with the time derivative of the trial
functions results in optimal convergence and allows splitting the solution into consecutive time
slabs, which is crucial for maintaining manageable problem sizes. By meshing one time slab
ahead, the multi-level hp-basis functions are compatible across the slab interface in time by
construction. The refinement of the time slab meshes starts at the current position of the
laser with the maximum refinement depth. It gradually reduces towards positions further in
the past while simultaneously increasing the refinement width. The thermal model uses a
volumetric source that extends the two-dimensional laser intensity profile into the material by
a Gaussian function in the z-direction. The length of this extension allows tuning the width
and depth of the resulting melt pool shape to the experiments. Moreover, the latent heat of
fusion is modeled as a spike in the heat capacity. Different regularization shapes of the phase
transition primarily influence the cooling rates and the length of the simulated melt pool.
In the first preliminary verification benchmark, the convergence of the multi-level hp exten-

sion is analyzed using a manufactured solution to Poisson’s equation with a point singularity.
When increasing the refinement depth and the polynomial degree, the energy error reduces
exponentially while maintaining a polynomial runtime and memory scaling. These results
agree with the theoretical estimates and are essential for obtaining good performance in real-
world applications. Then, the space-time formulation is validated against the experimental



94

results published for the AMB2018-02 benchmark. The dimensions of the simulated melt pool
shape coincide with the measurements after tuning the absorptivity, the depth extension of
the laser source, and the shape of the phase change regularization. Shifting the latent heat
capacity spike towards higher temperatures reduces the influence on the temperatures after
the solidification. A significant difference in the cooling rates after solidification may result
from measurement inaccuracies and requires further investigation. The potential for comput-
ing longer and more complicated paths is demonstrated using the setup of the AMB2018-02
benchmark to hatch an area of one square centimeter with diagonal strokes. The ad hoc re-
finement captures the solution characteristic well, and the resulting temperature field provides
insight into problematic regions with larger than intended melt pools. Finally, the runtime
of the space-time approach is compared to an equivalent second-order time-stepping method.
This study starts with a small domain that is gradually extended by adding base elements on
the boundary. This increase in peripheral cost impacts the space-time approach less because
the base mesh of one time slab uses only a single element in time for a relatively long dura-
tion. The speedup over the equivalent time-stepping can reach factors of ten or even over one
hundred when using a direct solver for both approaches. A major current limitation of the
presented space-time method is the unsymmetric linear system and the need to use a direct
solver.
This thesis shows that finite element discretizations with local refinement in space-time can

bridge the scales present in the simulation of PBF-LB/M processes. Such proof of concept is
a crucial first step, but several challenges must be addressed before the presented approach
can be used in practice. Longer simulations require including boundary conditions that ac-
count for the heat loss due to radiation and convection. The simulation of an actual powder
bed must also consider the reduced conductivity of metal powder compared to melted and
solidified metal. This history dependency may pose additional challenges in combination with
a space-time discretization. Then, the speedup compared to time-stepping methods may be
significant in some situations, but it is insufficient to enable part-scale simulations. Massively
parallel implementations are necessary to efficiently use enough HPC resources and reduce the
computational time to a practical amount. The extensions of the multi-level hp data structures
and the development of a scalable iterative solver are crucial for the success of the method.
Alternative to investigating linear solvers for the presented Petrov-Galerkin method, exploring
different space-time methods that are more suitable for parallel extensions may be necessary.
A potential application for such an efficient and scalable thermal solver for PBF-LB/M pro-
cesses may be optimizing the laser power along a given laser path. Automatically creating
a time-discrete laser power that minimizes constraints like a constant melt pool volume with
minimal deviations from the CAD model may help improve and automate the 3D printing
workflow. Finally, automatic adaptive methods can capture complicated solution character-
istics of real applications more efficiently and robustly than the presented ad hoc refinement
based on the laser path history.



BIBLIOGRAPHY 95

Bibliography

Akrivis, G., Makridakis, C., & Nochetto, R. (2011). Galerkin and Runge–Kutta methods: Uni-
fied formulation, a posteriori error estimates and nodal superconvergence. Numerische
Mathematik, 118, 429–456. https://doi.org/10.1007/s00211-011-0363-6

Aziz, A., & Monk, P. (1989). Continuous finite elements in space and time for the heat equa-
tion. Mathematics of Computation, 52, 255–274. https://doi.org/10.1090/S0025-5718-
1989-0983310-2

Babuska, I., Szabo, B. A., & Katz, I. N. (1981). The p-version of the finite element method.
SIAM Journal on Numerical Analysis, 18 (3), 515–545. https : / /doi . org /10 . 1137/
0718033

Bayat, M., Dong, W., Thorborg, J., To, A., & Hattel, J. (2021). A review of multi-scale
and multi-physics simulations of metal additive manufacturing processes with focus on
modeling strategies. Additive Manufacturing, 47, 102278. https://doi.org/10.1016/j.
addma.2021.102278

Bayat, M., Thanki, A., Mohanty, S., Witvrouw, A., Yang, S., Thorborg, J., Tiedje, N. S.,
& Hattel, J. H. (2019). Keyhole-induced porosities in laser-based powder bed fusion
(L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Additive
Manufacturing, 30, 100835. Licensed under CC BY-NC-ND 4.0. https://doi.org/10.
1016/j.addma.2019.100835

Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto,
F., & Du Plessis, A. (2021). Metal additive manufacturing in aerospace: A review.
Materials & Design, 209, 110008. https://doi.org/10.1016/j.matdes.2021.110008

Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods,
research, applications, opportunities and challenges. Engineering Structures, 180, 332–
348. https://doi.org/10.1016/j.engstruct.2018.11.045

Celentano, D., Oñate, E., & Oller, S. (1994). A temperature-based formulation for finite el-
ement analysis of generalized phase-change problems. International Journal for Nu-
merical Methods in Engineering, 37 (20), 3441–3465. https://doi.org/10.1002/nme.
1620372004

Cheng, L., & Wagner, G. J. (2021). An optimally-coupled multi-time stepping method for
transient heat conduction simulation for additive manufacturing. Computer Methods
in Applied Mechanics and Engineering, 381, 113825. https://doi.org/10.1016/j.cma.
2021.113825

Demkowicz, L. (2006). Computing with hp-adaptive finite elements, vol. 1: One and two di-
mensional elliptic and Maxwell problems. Chapman & Hall/CRC Applied Mathematics
& Nonlinear Science.

Demkowicz, L., Oden, J., Rachowicz, W., & Hardy, O. (1989). Toward a universal h-p adaptive
finite element strategy, part 1. constrained approximation and data structure. Computer

https://doi.org/10.1007/s00211-011-0363-6
https://doi.org/10.1090/S0025-5718-1989-0983310-2
https://doi.org/10.1090/S0025-5718-1989-0983310-2
https://doi.org/10.1137/0718033
https://doi.org/10.1137/0718033
https://doi.org/10.1016/j.addma.2021.102278
https://doi.org/10.1016/j.addma.2021.102278
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.addma.2019.100835
https://doi.org/10.1016/j.addma.2019.100835
https://doi.org/10.1016/j.matdes.2021.110008
https://doi.org/10.1016/j.engstruct.2018.11.045
https://doi.org/10.1002/nme.1620372004
https://doi.org/10.1002/nme.1620372004
https://doi.org/10.1016/j.cma.2021.113825
https://doi.org/10.1016/j.cma.2021.113825


BIBLIOGRAPHY 96

Methods in Applied Mechanics and Engineering, 77 (1), 79–112. https://doi.org/10.
1016/0045-7825(89)90129-1

Devaud, D., & Schwab, C. (2018). Space–time hp-approximation of parabolic equations. Cal-
colo, 55. https://doi.org/10.1007/s10092-018-0275-2

Di Stolfo, P., Schröder, A., Zander, N., & Kollmannsberger, S. (2016). An easy treatment
of hanging nodes in hp-finite elements. Finite Elements in Analysis and Design, 121,
101–117. https://doi.org/10.1016/j.finel.2016.07.001

Egorov, S., Khmyrov, R., Korotkov, A., & Gusarov, A. (2020). Experimental study and mod-
eling of melt pool in laser powder-bed fusion of thin walls. Procedia CIRP, 94, 372–377.
https://doi.org/10.1016/j.procir.2020.09.148

Elhaddad, M., Zander, N., Bog, T., Kudela, L., Kollmannsberger, S., Kirschke, J., Baum, T.,
Ruess, M., & Rank, E. (2017). Multi-level hp-finite cell method for embedded inter-
face problems with application in biomechanics. International Journal for Numerical
Methods in Biomedical Engineering, 34. https://doi.org/10.1002/cnm.2951

Eriksson, K., Johnson, C., & Thomée, V. (1985). Time discretization of parabolic problems
by the discontinuous Galerkin method. Journal of Multivariate Analysis - MA, 19.
https://doi.org/10.1051/m2an/1985190406111

Ern, A., & Guermond, J.-L. (2004). Theory and practice of finite elements. New York, NY,
Springer New York. https://doi.org/10.1007/978-1-4757-4355-5

Führer, T., & Karkulik, M. (2021). Space–time least-squares finite elements for parabolic
equations. Computers & Mathematics with Applications, 92, 27–36. https://doi.org/
10.1016/j.camwa.2021.03.004

Gordon, J. V., Narra, S. P., Cunningham, R. W., Liu, H., Chen, H., Suter, R. M., Beuth,
J. L., & Rollett, A. D. (2020). Defect structure process maps for laser powder bed
fusion additive manufacturing. Additive Manufacturing, 36, 101552. Licensed under
CC BY-NC-ND 4.0. https://doi.org/10.1016/j.addma.2020.101552

Grünewald, J., Gehringer, F., Schmoeller, M., & Wudy, K. (2021). Influence of ring-shaped
beam profiles on process stability and productivity in laser-based powder bed fusion of
AISI 316L. Metals, 11, 1989. https://doi.org/10.3390/met11121989

Gu, D., Shi, Q., Lin, K., & Xi, L. (2018). Microstructure and performance evolution and
underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting.
Additive Manufacturing, 22. https://doi.org/10.1016/j.addma.2018.05.019

Gusarov, A., Yadroitsev, I., Bertrand, P., & Smurov, I. (2009). Model of radiation and heat
transfer in laser-powder interaction zone at selective laser melting. Journal of Heat
Transfer, 131, 072101. https://doi.org/10.1115/1.3109245

Harkin, R., Wu, H., Nikam, S., Yin, S., Lupoi, R., McKay, W., Walls, P., Quinn, J., & McFad-
den, S. (2022). Powder reuse in laser-based powder bed fusion of Ti6Al4V—changes
in mechanical properties during a powder top-up regime. Materials, 15 (6). Licensed
under CC BY 4.0. https://doi.org/10.3390/ma15062238

Hodge, N. (2021). Towards improved speed and accuracy of laser powder bed fusion simula-
tions via representation of multiple time scales. Additive Manufacturing, 37, 101600.
https://doi.org/10.1016/j.addma.2020.101600

Hofer, C., Langer, U., Neumüller, M., & Toulopoulos, I. (2018). Time-multipatch discontinuous
Galerkin space-time isogeometric analysis of parabolic evolution problems. ETNA -
Electronic Transactions on Numerical Analysis, 49, 126–150. https://doi.org/10.1553/
etna_vol49s126

https://doi.org/10.1016/0045-7825(89)90129-1
https://doi.org/10.1016/0045-7825(89)90129-1
https://doi.org/10.1007/s10092-018-0275-2
https://doi.org/10.1016/j.finel.2016.07.001
https://doi.org/10.1016/j.procir.2020.09.148
https://doi.org/10.1002/cnm.2951
https://doi.org/10.1051/m2an/1985190406111
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1016/j.camwa.2021.03.004
https://doi.org/10.1016/j.camwa.2021.03.004
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.addma.2020.101552
https://doi.org/10.3390/met11121989
https://doi.org/10.1016/j.addma.2018.05.019
https://doi.org/10.1115/1.3109245
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma15062238
https://doi.org/10.1016/j.addma.2020.101600
https://doi.org/10.1553/etna_vol49s126
https://doi.org/10.1553/etna_vol49s126


BIBLIOGRAPHY 97

Hughes, T. (2000). The finite element method: Linear static and dynamic finite element anal-
ysis. Dover Publications.

Hussain, S., Schieweck, F., & Turek, S. (2011). Higher order Galerkin time discretizations and
fast multigrid solvers for the heat equation. Journal of Numerical Mathematics, 19.
https://doi.org/10.1515/JNUM.2011.003

Imani Shahabad, S., Zhang, Z., Keshavarzkermani, A., Ali, U., Mahmoodkhani, Y., Es-
maeilizadeh, R., Bonakdar, A., & Toyserkani, E. (2020). Heat source model calibration
for thermal analysis of laser powder-bed fusion. The International Journal of Advanced
Manufacturing Technology, 106, 1–13. https://doi.org/10.1007/s00170-019-04908-3

ISO 17296-2:2015(E). (2015). Additive manufacturing – general principles – overview of process
categories and feedstock (Standard). International Organization for Standardization.
Geneva, CH.

Jamet, P. (1978). Galerkin-type approximations which are discontinuous in time for parabolic
equations in a variable domain. SIAM Journal on Numerical Analysis, 15, 912–928.
https://doi.org/10.1137/0715059

Jomo, J., de Prenter, F., Elhaddad, M., D’Angella, D., Verhoosel, C., Kollmannsberger, S.,
Kirschke, J., Nübel, V., Van Brummelen, H., & Rank, E. (2018). Robust and paral-
lel scalable iterative solutions for large-scale finite cell analyses. Finite Elements in
Analysis and Design, 163. https://doi.org/10.1016/j.finel.2019.01.009

Jomo, J., Oztoprak, O., de Prenter, F., Zander, N., Kollmannsberger, S., & Rank, E. (2021).
Hierarchical multigrid approaches for the finite cell method on uniform and multi-
level hp-refined grids. Computer Methods in Applied Mechanics and Engineering, 386,
114075. https://doi.org/10.1016/j.cma.2021.114075

Khairallah, S. A., Anderson, A. T., Rubenchik, A., & King, W. E. (2016). Laser powder-bed
fusion additive manufacturing: Physics of complex melt flow and formation mechanisms
of pores, spatter, and denudation zones. Acta Materialia, 108, 36–45. https://doi.org/
10.1016/j.actamat.2016.02.014

Kollmannsberger, S., Carraturo, M., Reali, A., & Auricchio, F. (2019). Accurate prediction of
melt pool shapes in laser powder bed fusion by the non-linear temperature equation
including phase changes—isotropic versus anisotropic conductivity. Integrating Mate-
rials and Manufacturing Innovation, 8, 167–177. https://doi.org/10.1007/s40192-019-
00132-9

Kollmannsberger, S., & Kopp, P. (2021). On accurate time integration for temperature evo-
lutions in additive manufacturing. GAMM-Mitteilungen, 44. https://doi.org/10.1002/
gamm.202100019

Kollmannsberger, S., Özcan, A., Carraturo, M., Zander, N., & Rank, E. (2017). A hierarchical
computational model for moving thermal loads and phase changes with applications to
selective laser melting. Computers & Mathematics with Applications, 75. https://doi.
org/10.1016/j.camwa.2017.11.014

Kopp, P., Calo, V., Rank, E., & Kollmannsberger, S. (2022). Space-time hp-finite elements
for heat evolution in laser powder bed fusion additive manufacturing. Engineering with
Computers. Licensed under CC BY 4.0. https://doi.org/10.1007/s00366-022-01719-1

Kopp, P., Rank, E., Calo, V., & Kollmannsberger, S. (2022). Efficient multi-level hp-finite
elements in arbitrary dimensions. Computer Methods in Applied Mechanics and Engi-
neering, 401, 115575. Licensed under CC BY 4.0. https://doi.org/10.1016/j.cma.2022.
115575

https://doi.org/10.1515/JNUM.2011.003
https://doi.org/10.1007/s00170-019-04908-3
https://doi.org/10.1137/0715059
https://doi.org/10.1016/j.finel.2019.01.009
https://doi.org/10.1016/j.cma.2021.114075
https://doi.org/10.1016/j.actamat.2016.02.014
https://doi.org/10.1016/j.actamat.2016.02.014
https://doi.org/10.1007/s40192-019-00132-9
https://doi.org/10.1007/s40192-019-00132-9
https://doi.org/10.1002/gamm.202100019
https://doi.org/10.1002/gamm.202100019
https://doi.org/10.1016/j.camwa.2017.11.014
https://doi.org/10.1016/j.camwa.2017.11.014
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00366-022-01719-1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cma.2022.115575
https://doi.org/10.1016/j.cma.2022.115575


BIBLIOGRAPHY 98

Lane, B., Heigel, J., Ricker, R., Zhirnov, I., Khromschenko, V., Weaver, J., Phan, T., Stoudt,
M., Mekhontsev, S., & Levine, L. (2020). Measurements of melt pool geometry and
cooling rates of individual laser traces on IN625 bare plates. Integrating Materials and
Manufacturing Innovation, 9. https://doi.org/10.1007/s40192-020-00169-1

Langer, U., Matculevich, S., & Repin, S. (2019). 5. Adaptive space-time isogeometric analysis
for parabolic evolution problems. De Gruyter. https://doi.org/10.1515/9783110548488-
005

Langer, U., & Yang, H. (2020). BDDC preconditioners for a space-time finite element dis-
cretization of parabolic problems. International Conference on Domain Decomposition
Methods. https://doi.org/10.1007/978-3-030-56750-7_42

Letenneur, M., Brailovski, V., Kreitcberg, A., Paserin, V., & Bailon-Poujol, I. (2017). Laser
powder bed fusion of water-atomized iron-based powders: Process optimization. Journal
of Manufacturing and Materials Processing, 1 (2). Licensed under CC BY 4.0. https:
//doi.org/10.3390/jmmp1020023

Loli, G., Sangalli, G., & Tesini, P. (2022). High-order spline upwind for space-time isogeometric
analysis. arXiv. https://doi.org/10.48550/ARXIV.2211.02692

Meidner, D., & Vexler, B. (2007). Adaptive space-time finite element methods for parabolic
optimization problems. SIAM Journal on Control and Optimization, 46 (1), 116–142.
https://doi.org/10.1137/060648994

National Institute of Standards and Technology. (2018). AMB2018-02 description. Retrieved
November 4, 2021, from https://www.nist.gov/ambench/amb2018-02-description

Nitzler, J., Meier, C., Müller, K., Wall, W., & Hodge, N. (2021). A novel physics-based and
data-supported microstructure model for part-scale simulation of laser powder bed
fusion of Ti-6Al-4V. Advanced Modeling and Simulation in Engineering Sciences, 8.
https://doi.org/10.1186/s40323-021-00201-9

Paszynski, M., Calo, V., & Pardo, D. (2012). A direct solver with reutilization of LU fac-
torizations for h-adaptive finite element grids with point singularities. Computers &
Mathematics with Applications, 65. https://doi.org/10.1016/j.camwa.2013.02.006

Paulson, N., Gould, B., Wolff, S., Stan, M., & Greco, A. (2020). Correlations between thermal
history and keyhole porosity in laser powder bed fusion. Additive Manufacturing, 34,
101213. https://doi.org/10.1016/j.addma.2020.101213

Ranjan, R., Ayas, C., Langelaar, M., & van Keulen, F. (2020). Fast detection of heat accumu-
lation in powder bed fusion using computationally efficient thermal models. Materials,
13 (20). https://doi.org/10.3390/ma13204576

Rausch, A. M., Küng, V. E., Pobel, C., Markl, M., & Körner, C. (2017). Predictive simulation
of process windows for powder bed fusion additive manufacturing: Influence of the
powder bulk density. Materials, 10 (10). Licensed under CC BY 4.0. https://doi.org/
10.3390/ma10101117

Rongzeng, Y., Luo, D., Huang, H., Li, R., Yu, N., Liu, C., Hu, M., & Rong, Q. (2018). Elec-
tron beam melting in the fabrication of three-dimensional mesh titanium mandibular
prosthesis scaffold. Scientific Reports, 8. Licensed under CC BY 4.0. https://doi.org/
10.1038/s41598-017-15564-6

Schieweck, F. (2010). A-stable discontinuous Galerkin–Petrov time discretization of higher
order. Journal of Numerical Mathematics, 18, 25–57. https://doi.org/10.1515/JNUM.
2010.002

https://doi.org/10.1007/s40192-020-00169-1
https://doi.org/10.1515/9783110548488-005
https://doi.org/10.1515/9783110548488-005
https://doi.org/10.1007/978-3-030-56750-7_42
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmmp1020023
https://doi.org/10.3390/jmmp1020023
https://doi.org/10.48550/ARXIV.2211.02692
https://doi.org/10.1137/060648994
https://www.nist.gov/ambench/amb2018-02-description
https://doi.org/10.1186/s40323-021-00201-9
https://doi.org/10.1016/j.camwa.2013.02.006
https://doi.org/10.1016/j.addma.2020.101213
https://doi.org/10.3390/ma13204576
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma10101117
https://doi.org/10.3390/ma10101117
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41598-017-15564-6
https://doi.org/10.1038/s41598-017-15564-6
https://doi.org/10.1515/JNUM.2010.002
https://doi.org/10.1515/JNUM.2010.002


BIBLIOGRAPHY 99

Schmich, M., & Vexler, B. (2008). Adaptivity with dynamic meshes for space-time finite el-
ement discretizations of parabolic equations. SIAM Journal on Scientific Computing,
30 (1), 369–393. https://doi.org/10.1137/060670468

Schwab, C., & Stevenson, R. (2009). Space–time adaptive wavelet methods for parabolic evo-
lution problems. Math. Comput., 78, 1293–1318. https://doi.org/10.1090/S0025-5718-
08-02205-9

Soldner, D., & Mergheim, J. (2019). Thermal modelling of selective beam melting processes us-
ing heterogeneous time step sizes. Computers & Mathematics with Applications, 78 (7),
2183–2196. https://doi.org/10.1016/j.camwa.2018.04.036

Steinbach, O. (2015). Space-time finite element methods for parabolic problems. Computa-
tional Methods in Applied Mathematics, 15. https://doi.org/10.1515/cmam-2015-0026

Steinbach, O., & Yang, H. (2019). 7. Space-time finite element methods for parabolic evolution
equations: Discretization, a posteriori error estimation, adaptivity and solution. In U.
Langer & O. Steinbach (Eds.), Applications to partial differential equations (pp. 207–
248). Berlin, Boston, De Gruyter. https://doi.org/doi:10.1515/9783110548488-007

Szabo, B. A., & Mehta, A. K. (1978). P-convergent finite element approximations in fracture
mechanics. International Journal for Numerical Methods in Engineering, 12 (3), 551–
560. https://doi.org/10.1002/nme.1620120313

Trapp, J., Rubenchik, A., Guss, G., & Matthews, M. (2017). In situ absorptivity measurements
of metallic powders during laser powder-bed fusion additive manufacturing. Applied
Materials Today, 9, 341–349. https://doi.org/10.1016/j.apmt.2017.08.006

Viguerie, A., Carraturo, M., Reali, A., & Auricchio, F. (2022). A spatiotemporal two-level
method for high-fidelity thermal analysis of laser powder bed fusion. Finite Elements
in Analysis and Design, 210, 103815. https://doi.org/10.1016/j.finel.2022.103815

Xie, X., Bennett, J., Saha, S., Lu, Y., Cao, J., Liu, W., & Gan, Z. (2021). Mechanistic data-
driven prediction of as-built mechanical properties in metal additive manufacturing.
npj Computational Materials, 7, 86. https://doi.org/10.1038/s41524-021-00555-z

Yadroitsev, I., Yadroitsava, I., Du Plessis, A., & Macdonald, E. (2021). Fundamentals of laser
powder bed fusion of metals. Elsevier. https://doi.org/10.1016/B978-0-12-824090-
8.00004-4

Zander, N., Bériot, H., Hoff, C., Kodl, P., & Demkowicz, L. (2022). Anisotropic multi-level
hp-refinement for quadrilateral and triangular meshes. Finite Elements in Analysis and
Design, 203, 103700. https://doi.org/10.1016/j.finel.2021.103700

Zander, N., Bog, T., Elhaddad, M., Frischmann, F., Kollmannsberger, S., & Rank, E. (2016).
The multi-level hp-method for three-dimensional problems: Dynamically changing high-
order mesh refinement with arbitrary hanging nodes. Computer Methods in Applied
Mechanics and Engineering, 310, 252–277. https://doi.org/10.1016/j.cma.2016.07.007

Zander, N., Bog, T., Kollmannsberger, S., Schillinger, D., & Rank, E. (2015). Multi-level hp-
adaptivity: High-order mesh adaptivity without the difficulties of constraining hanging
nodes. Computational Mechanics, 55 (3), 499–517. https://doi.org/10.1007/s00466-
014-1118-x

Zhang, Z., Huang, Y., Rani Kasinathan, A., Imani Shahabad, S., Ali, U., Mahmoodkhani, Y.,
& Toyserkani, E. (2018). 3-Dimensional heat transfer modeling for laser powder-bed
fusion additive manufacturing with volumetric heat sources based on varied thermal
conductivity and absorptivity. Optics & Laser Technology, 109, 297–312. https://doi.
org/10.1016/j.optlastec.2018.08.012

https://doi.org/10.1137/060670468
https://doi.org/10.1090/S0025-5718-08-02205-9
https://doi.org/10.1090/S0025-5718-08-02205-9
https://doi.org/10.1016/j.camwa.2018.04.036
https://doi.org/10.1515/cmam-2015-0026
https://doi.org/doi:10.1515/9783110548488-007
https://doi.org/10.1002/nme.1620120313
https://doi.org/10.1016/j.apmt.2017.08.006
https://doi.org/10.1016/j.finel.2022.103815
https://doi.org/10.1038/s41524-021-00555-z
https://doi.org/10.1016/B978-0-12-824090-8.00004-4
https://doi.org/10.1016/B978-0-12-824090-8.00004-4
https://doi.org/10.1016/j.finel.2021.103700
https://doi.org/10.1016/j.cma.2016.07.007
https://doi.org/10.1007/s00466-014-1118-x
https://doi.org/10.1007/s00466-014-1118-x
https://doi.org/10.1016/j.optlastec.2018.08.012
https://doi.org/10.1016/j.optlastec.2018.08.012

	1 Introduction
	1.1 Laser powder bed fusion of metals
	1.2 The problem of scales in LPBF simulations
	1.3 Space-time hp-finite element discretizations
	1.4 Outline

	2 Formulation
	2.1 Laser model
	2.2 Phase change model
	2.3 Time-stepping finite element formulation
	2.4 Continuous space-time weak formulation
	2.5 Space-time finite element discretization
	2.6 Solution of the nonlinear equation system

	3 The p-finite element method
	3.1 Mesh and data structure
	3.2 High-order shape functions
	3.3 Tensor-product masks
	3.4 Location matrices
	3.5 Trunk space

	4 The multi-level hp-finite element method
	4.1 Hierarchical refinement and data structure
	4.2 Tensor-product masks
	4.3 Location matrices
	4.4 Simulation workflow
	4.5 Refinement strategy based on laser path
	4.6 Slab compatibility

	5 Results
	5.1 Singular benchmark
	5.2 AMB2018-02 benchmark
	5.3 Hatched square
	5.4 Performance comparison to time-stepping

	6 Conclusion

