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Abstract— As a prerequisite of high vehicle autonomy, lane
segmentation is a significant perception task for advanced
autonomous driving. In recent years, spiking neural networks
(SNNs) have garnered the attention of researchers due to
their appealing power efficiency, which provides the potential
to improve energy consumption for the perception system
on power-constrained autonomous vehicles. In this paper, we
propose a spiking neural network targeted for LiDAR sensors
to solve the lane segmentation problem. By encoding the LiDAR
point cloud into spikes, the proposed SNN constructed in an
end-to-end fully convolutional network structure is capable of
processing the LiDAR input through the network to segment
the lane area effectively. Experiments conducted on the KITTI
dataset for urban scenes and the power consumption evaluation
demonstrate the high performance and energy efficiency of the
proposed SNN for LiDAR-based lane segmentation.

I. INTRODUCTION

Autonomous driving, at the forefront of advanced interdis-
ciplinary technology in the transportation industry, is reliant
upon precise and reliable perception. Perception for auto-
nomous vehicles encompasses the ability to accurately sense
and interpret the surrounding environment from the sensor
input. It is through the perception system that autonomous
vehicles are empowered to make informed decisions in order
to navigate complicated real-world scenarios.

In the field of autonomous navigation technology, sig-
nificant advancements have been made in developing a
multitude of sensors for effective perception. Various types
of sensors have been successfully deployed on autonomous
vehicles and integrated into the perception system. One of
the most commonly used sensors is LiDAR (Light Detection
and Ranging), which utilizes laser beams to generate high-
resolution 3D point clouds of the surrounding environment.
In comparison with cameras, LiDARs provide accurate in-
formation on the distance, exhibiting higher reliability, pre-
cision, and robustness in various environments. Therefore,
LiDAR has been extensively utilized in state-of-the-art al-
gorithms to solve perception tasks, including mapping [1],
object detection [2], and semantic segmentation [3].

Among the perception tasks for autonomous driving,
lane segmentation is an integral component and a pivotal
role in autonomous driving. Lane segmentation performs
semantic segmentation from the sensor input to identify
the drivable area in the environment. It is paramount for
ensuring the safety, precision, and reliability of advanced
autonomous navigation in urban scenes. The significance of
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lane segmentation is embodied in its multifaceted implica-
tions. By segmenting the lanes, autonomous vehicles can
effectively establish a structural understanding of the road
layout and simultaneously acquire contextual information on
their lateral position and orientation within the driving path.
Accurate lane segmentation enables the vehicle to maintain a
proper trajectory within its designated lane, ensuring safe and
reliable navigation and minimizing the risk of collisions with
other objects on the road. In addition, lane segmentation, as a
fundamental input for higher-level decision-making modules,
plays a crucial role in facilitating the path-planning processes
of the autonomous driving system.

State-of-the-art algorithms for lane segmentation often
leverage deep learning techniques, such as fully convo-
lutional neural networks, which incorporate the encoder-
decoder network structure [4], to effectively extract lane
features from sensor input and infer the segmentation result
as pixel-wise predictions, which have shown impressive
capabilities and performance [5]. However, large-scale deep
neural networks for lane segmentation are still computa-
tionally expensive and power inefficient for autonomous
vehicles. Lane segmentation networks often comprise plenty
of convolutional layers and up to millions of parameters [4],
requiring substantial computational resources for inference,
which poses significant challenges for deployment on auto-
nomous vehicles, especially battery electric vehicles, which
are more power constrained. As autonomous driving tech-
nology continues to evolve, the energy limitations in such
vehicles necessitate power efficiency as a crucial factor for
its large-scale applications on vehicles.

In recent years, spiking neural networks (SNNs), referred
to as the third generation of neural networks, have garnered
increasing attention due to their potential for high power effi-
ciency. Compared with traditional deep neural networks that
rely on continuous-valued activations, SNNs more closely
mimic the spiking behavior of neurons found in natural neu-
ral networks, enabling more energy-efficient computations.
The event-driven nature behind SNNs is the representation
of the information through discrete and sparse spikes in
the process of the forward pass. Instead of forward passing
continuous values through the network, neurons of SNNs are
activated by temporal spikes, resembling the communication
in natural neural networks. This fundamental spike-driven
principle and the inherent sparsity provide advantages with
regard to computation consumption and power efficiency on
neuromorphic hardware [6], reducing the overall computa-
tional overhead for deep learning.

There have been many studies that focus on solving
perception problems using SNNs [7], including object detec-
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Fig. 1. Fully convolutional architecture of the lane segmentation spiking neural network, which consists of the front convolutional layers as the encoder
module, dilated convolutional layers as the context module, and the up-sampling and convolutional layers as the decoder. The network processes LiDAR
input and performs semantic segmentation for lane area.

tion [8] and semantic segmentation [9], based on dynamic
vision sensors and RGB cameras. However, rare existing
studies investigate the utilization of LiDAR sensors for lane
segmentation based on SNN. In this paper, we for the first
time propose a spiking neural network targeted for LiDAR
sensors in order to solve lane segmentation for autonomous
driving. The main process and contributions are summarized
as follows:

• Spike encoding for LiDAR data and a lightweight SNN
is proposed. The SNN is in an end-to-end fully con-
volutional network structure composed of the encoder,
convolutional context module, and decoder.

• With a two-stage training approach, we incorporate an
equivalent conventional neural network in the training
process to facilitate the SNN training and further min-
imize the performance loss.

• Experiments on the KITTI dataset [10] are conducted
for evaluation. The results demonstrate the high perfor-
mance and efficiency of the proposed SNN for LiDAR-
based lane segmentation.

II. RELATED WORK

There is an increasing amount of research in the literature
regarding SNN solutions for perception problems [7]–[9],
[11]. However, there are a very limited number of SNN
studies related to semantic segmentation that only emerge in
recent years [9], [12], [13]. Kucik et al. in [13] proposed an
SNN model to perform space-scene classification for land
cover and land use based on satellite images. With regard
to autonomous driving, dynamic vision sensors (DVS) and
cameras are mainly used in methods detailed in [9], [12].
In TABLE I, the employed sensors and performances of
different SNN methods for semantic segmentation are listed
for reference. Kim et al. introduced two SNN models in
[9] solving the general multi-class semantic segmentation
problem based on RGB and DVS image datasets. The models
are only camera-centric. In publication [12] by Viale et al.,
SNN models named LaneSNNs are proposed and tested to

TABLE I
INTERSECTION OVER UNION (IOU) PERFORMANCES OF SEMANTIC

SEGMENTATION SNNS USING DIFFERENT SENSORS

Method Dataset Mean IoU (%)

RGB Camera
DeepLab [9] PASCAL VOC2012 [14] 22.3

FCN [9] PASCAL VOC2012 [14] 9.9

DVS

DeepLab [9] DDD17 [15] 33.7

FCN [9] DDD17 [15] 34.2

LaneSNNs [12] DET [16] 62.3

detect lane markers in the road based on DVS. However, the
method is only capable of detecting lane markers. Since the
drivable area can commonly be affected by obstacles and
other road users, lane segmentation including drivable area
classification is more significant for the advanced autonomy
of autonomous vehicles. To our best knowledge, rare studies
exist regarding the SNN-based solution for the lane segmen-
tation problem especially using LiDAR sensors, which we
focus on for the first time in this work.

III. METHODOLOGY

In this work, we solve the lane segmentation problem
by performing semantic segmentation on the LiDAR point
cloud input, which provides a pixel-wise classification for
the lane area. As shown in Fig. 1, the proposed spiking
neural network (SNN) for lane segmentation has an end-to-
end basis as a fully convolutional network. We implement
and adapt a lightweight fully convolutional network based
on the spiking rectified linear unit with a post-synaptic filter.
In the training process, a two-stage training approach is
employed to facilitate the training and further improve the
network performance by refinement.

A. LiDAR Input Encoding

Since the proposed SNN expects spike trains as input of
the network, proper data encoding is needed and crucial for
high performance. In this work, we implement the rate-based



TABLE II
SPIKE-DRIVEN FULLY CONVOLUTIONAL NETWORK LAYERS

Layer Filters Size,
Strides Input Output

Input - - 400×200×1 400×200×1
TimeDistributedConv2D 32 3×3, 2 400×200×1 200×100×32

Spiking ReLU - - 200×100×32 200×100×32
TimeDistributedConv2D 32 3×3, 2 200×100×32 100×50×32

Spiking ReLU - - 100×50×32 100×50×32

TimeDistributedDilatedConv2D 64 3×3, 1 100×50×32 100×50×64
Spiking ReLU - - 100×50×64 100×50×64

TimeDistributedDilatedConv2D 64 3×3, 1 100×50×64 100×50×64
Spiking ReLU - - 100×50×64 100×50×64

TimeDistributedDilatedConv2D 64 3×3, 1 100×50×64 100×50×64
Spiking ReLU - - 100×50×64 100×50×64

TimeDistributedDilatedConv2D 64 3×3, 1 100×50×64 100×50×64
Spiking ReLU - - 100×50×64 100×50×64

TimeDistributedDilatedConv2D 64 3×3, 1 100×50×64 100×50×64
Spiking ReLU - - 100×50×64 100×50×64

TimeDistributedDilatedConv2D 64 3×3, 1 100×50×64 100×50×64
Spiking ReLU - - 100×50×64 100×50×64

TimeDistributedConv2D 32 1×1, 1 100×50×64 100×50×32

TimeDistributedUpSampling2D - 2× 100×50×32 200×100×32
TimeDistributedConv2D 32 3×3, 1 200×100×32 200×100×32

Spiking ReLU - - 200×100×32 200×100×32
TimeDistributedUpSampling2D - 2× 200×100×32 400×200×32

TimeDistributedConv2D 2 3×3, 1 400×200×32 400×200×2
Spiking ReLU - - 400×200×2 400×200×2

Softmax Output - - 400×200×2 400×200×2

LiDAR input encoding to encode the LiDAR point cloud
into spike trains. In order to first reduce the complexity
of the unstructured LiDAR point cloud data, a data pre-
processing is carried out for the LiDAR input. The point
cloud from the LiDAR is cropped based on the dataset in
advance to extract points that are located in the specified
region of interest (ROI) with valid labels. In the subsequent
encoding process, spike generating in a 2D grid is utilized to
produce the bird-view spatial representation in the form of
spike trains for the LiDAR input, with a size of 400×200.
The filtered point cloud is discretized into grids of the
same size. Each grid is assigned to a respective spike train
which encodes the LiDAR point feature within the grid to
fire spikes. In the spiking process, a temporal dimension in
spike trains is introduced. The frequency of the generated
spikes for each grid is proportional to the height feature of
the point cloud. The encoded LiDAR input in the form of
spatiotemporal spike trains is subsequently fed into the SNN
for lane segmentation.

B. Fully Convolutional Network

In this paper, a lightweight fully convolutional network
(FCN) [4] in the SNN fashion is proposed and implemented
to perform the lane segmentation. As illustrated in TABLE II,
the FCN employs two convolutional layers with a stride
of two as the encoder module, six dilated convolutional
layers with a dilation rate of two as the context module,
and two upsampling layers with two convolutional layers as
the decoder module. To further improve the performance, two

residual connections are introduced in the context module for
every two dilated convolutional layers, as shown in Fig. 1. In
the proposed spike-driven network design especially targeted
for spike input, adaptations are made in comparison to
common FCNs. To deal with the 3D input spike trains,
time-distributed layers are introduced in order to apply
convolutional and upsampling operations to every spike train
through the temporal dimension of the input. Biases in layer
connections are removed to avoid constant spikes injected
into neurons. In addition, convolutional layers with a stride
of two is preferable to max pooling for downsampling due to
its simplicity and linearity. Connection bias and max pooling
are achievable for SNNs with proper additional components.
However, this can entail the system with higher complexity
and latency. Therefore in order to reduce system complexity
and improve the spike sparsity of the network, they are
not applied to the lightweight network design in this work.
In the last Spiking ReLU layer, the spikes are aggregated
to compute the spiking rate for each neuron in order to
output the lane segmentation probabilities with the Softmax
function.

C. Spiking Neuron Model

In order to implement a deep neural network with close
performance and characteristics, the spiking neuron model
of the rectified linear unit (ReLU) activation function is em-
ployed. Moreover, the ReLU function captures one important
functional characteristic of Integrate-And-Fire neurons: given
the linearity when x > 0, the output is equal to the proposed
fire rate mechanism in the IF-neuron model. This makes
the conversion from ReLU to spiking activation functions
more biologically plausible. The membrane potential vm of
a spiking neuron of the ReLU unit is given as follows for a
given time t:

vm(t) = vm(t− 1) + ∆t ·
∑
k

ϕ
(
xk(t)

)
· wk, (1)

where vm(t − 1) is the accumulated membrane potential
of the neuron; ∆t is the length of a simulation time step;
xk(t) is the k-th input to the neuron via the connected
synapses; ϕ

(
x
)

is the ReLU activation function, and wk is
the corresponding synapse weight. The membrane potential
update reflects the linearity of the potential accumulation
process. If the membrane potential exceeds the threshold,
the spiking neuron fires a spike to its subsequently connected
synapses to propagate the spikes forward.

Due to the linearity characteristic, the spiking rate xt of
the rectified linear neuron at the firing time t is proportional
to the accumulated input, which is defined as follows:

xt =
∑
t

x(t) =
⌊vm⌋
∆t

. (2)

After firing, the membrane potential will be reset below the
threshold:

vm(t+ 1) = vm(t)− x(t) ·∆t. (3)



(a) LiDAR Input (b) ∆t = 0.001 (c) ∆t = 0.01 (d) ∆t = 0.1 (e) Ground Truth

(f) LiDAR Input (g) ∆t = 0.001 (h) ∆t = 0.01 (i) ∆t = 0.1 (j) Ground Truth

Fig. 2. Inference instances with different ∆t. In each row, the LiDAR input data, inference outputs for different ∆t, and the ground truth are listed. The
closer to the ground truth, the better.

To further leverage the temporal information in the time
dimension, a post-synaptic filter is introduced to aggregate
and pool spikes through the output spike train. The filter
provides a biologically-plausible smoothing and delay effect
that corresponds to the biological post-synaptic filter, which
constitutes the neuron dynamics for synaptic plasticity [17].
The post-synaptic filter is defined as a low-pass filter as
follows:

y(t) = (1− e−∆t/τ ) · x(t) + e−∆t/τ · y(t− 1) (4)

in which y(t) is the filter output, and τ is the trainable time
constant to control the level of smoothing.

By replacing the ReLU neurons with the spiking neuron
model combined with the post-synaptic filters, the fully con-
volutional network is converted to a spiking neural network
operating based on spikes.

D. Training Mechanism

Since the spiking activation neural model is not differen-
tiable due to the discrete spikes, conventional training based
on backpropagation for SNNs is not directly feasible. In this
work, the proposed SNN is trained in a two-stage training
fashion. In the first stage, coarse training with the equivalent
non-spiking DNN is performed. To facilitate the training,

the equivalent DNN based on the non-spiking ReLU units is
first trained with backpropagation. The binary cross-entropy
loss is utilized for loss computation in the training. Due to
the linear characteristic of the spiking rate of the spiking
ReLU neurons, the connection weights are transferred from
the equivalent trained DNN model to the SNN, as a starting
point for further improvement.

In the second refinement stage, the spike-aware train-
ing [18] derived from the quantization-aware training tech-
nique [19] is exploited in this work. During the forward pass,
the proposed SNN is simulated for the loss computation. In
the subsequent backpropagation phase, the equivalent DNN
is incorporated for gradient calculation and weight updating.
The updated weights are then applied to the SNN for model
refinement. With the two-stage training method, the SNN is
trained efficiently and effectively.

IV. EXPERIMENTS

To evaluate the effectiveness and performance of the
proposed method, experiments with different settings are
carried out based on a public dataset for autonomous driv-
ing scenes. In this section, we present the implementation
settings and discuss the experimental results to demonstrate
the applicability and performance of the lane segmentation
SNN.



(a) Original LiDAR Input (b) ∆t = 0.001 (c) ∆t = 0.01 (d) ∆t = 0.1

Fig. 3. Visualization of spiking activity in the encoder module of the SNN for different ∆t values, with the original LiDAR input at the left for reference.

TABLE III
PERFORMANCES OVER TIME STEP LENGTHS

Model Pixel Accuracy (%) IoU (%) Energy (J/Inf)

Non-spiking FCN 94.90 88.04 CPU: 1.13×101

GPU: 3.93×10-1

SNN
∆t = 0.01 88.45 76.68 7.39×10-4

∆t = 0.1 94.39 86.42 4.71×10-3

∆t = 1 94.88 87.43 4.44×10-2

A. Experimental Setup

We implement and train the SNN on TensorFlow [20]
and KerasSpiking [18], with the spiking ReLU units and
the post-synaptic filters involved for better performance.
To improve the generalizability of the proposed SNN in
different autonomous scenes, the public KITTI dataset [10]
is utilized for training and evaluation. The point cloud data
captured with a 64-channel 3D Velodyne LiDAR and the
semantic segmentation labels from the dataset are extracted
and calibrated for training. The extracted samples are split
into a training (80%), validation (10%), and testing (10%)
set. The model is trained with an Adam optimizer and the
learning rate is set to 0.0005. A batch size of 4 is used
for training iterations. Besides, in order to investigate the
influence of the time step length ∆t hyperparameter, different
values of ∆t: 0.001, 0.01, 0.1, and 1 second(s) are examined
in the experiments for training and testing.

To evaluate and analyze the performance of the SNN, two
main evaluation metrics, pixel accuracy and Intersection over
Union (IoU) are used in the result analysis, which are the
most common metrics for lane segmentation and general
semantic segmentation tasks. In addition, we evaluate the
energy consumption of the SNN based on TensorFlow and
KerasSpiking on different devices including CPU, GPU, and
dedicated neuromorphic hardware.

B. Experimental Results

We first present the qualitative results for two testing
samples in Fig. 2, and explore the influence of different time
step lengths. The tested samples listed in two rows show
the inference results for different time step lengths ∆t, with

the original LiDAR and the ground truth for reference. As
shown in the figure, in the case of ∆t = 0.001, the SNN
is not capable of effectively segmenting the drivable lane
area, generating false-positive areas for each input sample.
As ∆t increases to 0.01 and 0.1, the SNN yields better lane
segmentation results with the ground truths as reference. In
the case of ∆t = 0.01, the trained model is able to segment
the close-range lane area with some irregular false-positive
areas at different distances. It is also capable of detecting the
vehicle in close range which blocks the drivable area behind,
as shown in Fig. 2c. However, as shown in Fig. 2h, the
model fails to detect the vehicle in mid-range. The inference
results with ∆t = 0.1 are better compared to the cases of
∆t = 0.001 and ∆t = 0.01, with fewer false predictions. As
shown in Fig. 2d and Fig. 2i, blocking vehicles in close and
mid-range are successfully detected. The qualitative results
of ∆t = 1 are close to the case of ∆t = 0.1, therefore they
are not listed in Fig. 2.

To investigate the significance of the time step length
∆t, further quantitative studies for different values of ∆t
are conducted. In Fig. 3 we visualize the output spikes of
the first ReLU activation layer to inspect the underlying
spiking activity in the encoder module of the SNN during the
second stage of training. Given a spiking rate, the number
of generated spikes is proportional to the period of time.
Therefore, an inappropriate ∆t value can cause the SNN
model to generate either over-sparse spikes which are not
abundant enough to perform inference, or over-dense spikes
which lead to additional energy consumption. As shown in
Fig. 3b, in the case of ∆t = 0.001, rare spikes are generated
to represent the LiDAR input, which corresponds to the poor
inference performance shown in the second column of Fig. 2.
In the case of ∆t = 0.01, the spike activity shown in Fig. 3c
is sparse and sub-optimal to fully reconstruct the LiDAR
input. As ∆t increases to 0.1, the spikes are dense enough
to produce a close representation for the LiDAR point cloud
input and yield a good performance of inference as shown
in Fig. 2.

In TABLE III, we report the quantitative results of the



proposed SNN’s performance. The mean results of pixel
accuracy, intersection over union (IoU), and the estimated
energy consumption per inference on Intel Loihi are listed
for the SNN models with different ∆t values, respectively.
The results of the equivalent non-spiking FCN with its energy
consumption on CPU and GPU are also estimated and listed
in the table as the baseline [21]. As shown in the table,
the increase of ∆t corresponds to a tendency of increasing
performances as well as energy consumption. In the case
of ∆t = 1, the SNN has subtle improvements in the pixel
accuracy and the IoU result. However, the time length ∆t =
1 can introduce a long undesired latency to the perception
system for real-time application. In comparison, the results
for ∆t = 0.1 exhibit that the SNN has a performance close
to the equivalent non-spiking CNN, showing a very small
performance loss at only 0.51% for pixel accuracy and 1.62%
for IoU. At the same time, the SNN model with ∆t = 0.1
embodies a large advantage in energy consumption compared
to the non-spiking FCN, consuming only 0.042% and 1.2%
of energy on CPU and GPU per inference, respectively.

Taking the reported performances of SNN methods based
on different sensors that we illustrate in TABLE I into
consideration, we can see the comparison of the proposed
method with the other methods. Since there are rare state-of-
art SNN models solving the lane area segmentation problem,
only methods reported in [9], [12] in the segmentation
purpose targeted for driving scenes are considered in com-
parison with our method, in which dynamic vision sensors
(DVS) are used. Models proposed in [9] perform semantic
segmentation on the DDD17 dataset [15] achieve 33.7% and
34.2% IoU. The LaneSNNs model introduced in [12] which
only detects lane markers in the road achieves higher IoU
performance at 62.3%, tested on the DET dataset [16]. Based
on LiDAR, the proposed SNN in this work shows 24.1%-
52.7% improvements with regard to IoU, which showcases
the advantage in segmentation effectiveness of the LiDAR-
based SNN.

The experimental results demonstrate the high applica-
bility and high performance of the proposed SNN on lane
segmentation based on LiDAR. The results also exhibit
tremendous potential regarding power efficiency for the lane
segmentation application on power-constrained vehicles.

V. CONCLUSION

This paper proposes a spiking neural network (SNN)
designed specifically for LiDAR sensors, with the objective
of addressing lane segmentation in autonomous driving.
The proposed SNN is constructed in an end-to-end fully
convolutional structure, incorporating spike trains input gen-
erated from the LiDAR point cloud. To facilitate the training
process and minimize performance loss, a two-stage train-
ing approach is employed with an equivalent conventional
artificial neural network. Experiments are conducted on the
KITTI dataset to evaluate the effectiveness and performance
of the proposed method. The results and power consumption
evaluation demonstrate the high performance and efficiency
of the proposed SNN for LiDAR-based lane segmentation.
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