
Focal Network for Image Restoration

Yuning Cui1 Wenqi Ren2* Xiaochun Cao2 Alois Knoll1
1Technical University of Munich 2Shenzhen Campus of Sun Yat-sen University

{yuning.cui,knoll}@in.tum.de {renwq3,caoxiaochun}@mail.sysu.edu.cn

Abstract

Image restoration aims to reconstruct a sharp image
from its degraded counterpart, which plays an important
role in many fields. Recently, Transformer models have
achieved promising performance on various image restora-
tion tasks. However, their quadratic complexity remains an
intractable issue for practical applications. The aim of this
study is to develop an efficient and effective framework for
image restoration. Inspired by the fact that different regions
in a corrupted image always undergo degradations in var-
ious degrees, we propose to focus more on the important
areas for reconstruction. To this end, we introduce a dual-
domain selection mechanism to emphasize crucial informa-
tion for restoration, such as edge signals and hard regions.
In addition, we split high-resolution features to insert multi-
scale receptive fields into the network, which improves both
efficiency and performance. Finally, the proposed network,
dubbed FocalNet, is built by incorporating these designs
into a U-shaped backbone. Extensive experiments demon-
strate that our model achieves state-of-the-art performance
on ten datasets for three tasks, including single-image defo-
cus deblurring, image dehazing, and image desnowing. Our
code is available at https://github.com/c-yn/FocalNet.

1. Introduction

Bad weather or physical limitations of cameras will de-
grade visibility of captured images and further exert a neg-
ative impact on robustness of downstream tasks. In this re-
gard, image restoration is immensely useful to remove those
undesired degradations, e.g., haze, snowflake, and blur, thus
playing an essential role in surveillance, autonomous vehi-
cles, remote sensing, and medical imaging [48]. Due to its
ill-posed property, many conventional methods have been
proposed by resorting to assumptions and hand-crafted fea-
tures to reduce the solution space. However, these methods
are inapplicable to complicated real-world scenarios [66].

The rapid development of convolutional neural networks
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Figure 1. PSNR vs. FLOPs on the SOTS-Indoor [27] dataset.

(CNNs) has alleviated the above issue to some extent by
learning generalizable image priors from large-scale col-
lected datasets [25, 44]. Recently, Transformer models have
injected vitality into image restoration and have achieved
promising performance by providing powerful ability of
modeling long-range pixel interactions, which is useful for
recovering large-scale degradations [7, 32, 61]. Despite
a few remedies, the quadratic complexity of self-attention
still remains a formidable issue for practical applications.

How to effectively capture critical information parsimo-
niously has long been a key problem in the computer vision
and pattern recognition community. Successful examples
include attention mechanism [53], focal loss [34], and the
recent advance of partial AUC optimization [58]. Inspired
by this, in this study, instead of pursuing large receptive
field or exploring modification for the Transformer archi-
tecture, we aim to develop an efficient and effective CNN-
based framework by paying more attention to informative
signals for reconstruction, such as edge information or re-
gions that are difficult to recover. In this direction, exist-
ing approaches can be roughly divided into two categories:
auxiliary training and attention based methods. The former
mainly leverages auxiliary techniques or data, e.g., semantic
segmentation [12], depth estimation [29], and optical flow
estimation [60], to locate degradations or edge information.
Nonetheless, these algorithms always need additional com-
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Blurry Image Target Initial Feature w/ SSM w/ SSM&FSM

Hazy Image Target w/o DSM w/ DSM

Figure 2. Effects of our dual-domain selection mechanism (DSM). From left to right: blurry images obtained from DPDD [1], ground-truth
images, input features of our DSM, results of spatial selection, and results of spatial&frequency selection. SSM helps focus on degradation
regions while FSM emphasizes edge information. Zoom in for the best view.

plicated branch and elaborately devised training strategies
to generate supervisory information. The other line on this
topic is to design attention mechanisms to attend to informa-
tive regions or control information transmission [8, 41, 62].
These approaches mostly lie in the spatial domain while ig-
noring the usage of spectral information, which can also
provide useful information for reconstruction.

To prompt models to focus more on critical regions,
we propose a novel dual-domain selection mechanism
(DSM) by sufficiently leveraging discrepancies between
sharp/degraded image pairs in both spatial and spectral do-
mains. Concretely, our mechanism comprises two compo-
nents: spatial selection module (SSM) and frequency selec-
tion module (FSM). SSM takes features as input and de-
termines general locations of degradations for each channel
by deploying depthwise convolution layers. Then FSM is
used to amplify high-frequency signals or hard regions by
removing low frequency from features. The proposed net-
work, FocalNet, is established by incorporating DSM into a
U-shaped CNN backbone. To save computation overhead,
we only insert DSM into the bottleneck module of our Fo-
calNet, which includes the lowest-resolution features.

Moreover, we split the high-resolution features into two
parts over channel dimension. Half features are down-
sampled to lower resolution, which can not only reduce
complexity but also boost performance by providing multi-
scale receptive fields for degradations of different sizes.

Based on the above designs, our FocalNet exhibits state-
of-the-art performance on three image restoration tasks. For
dehazing, FocalNet outperforms PMNet [59] on both syn-
thetic and real-world benchmark datasets with lower com-
putational complexity, as illustrated in Figure 1. For the
desnowing task, FocalNet is superior to Transformer-based
framework TransWeather [50] on three commonly used
desnowing datasets. Our network also shows potential on
defocus deblurring problem by producing a performance
gain of 0.2 dB PSNR over Restormer [61] on the combined

category of DPDD [1] dataset. Overall, the main contribu-
tions of this study are summarized as follows:

• We propose a novel dual-domain selection mechanism
(DSM) that amplifies the response of important regions
to assist in recovering clean features.

• We develop an efficient and effective focal network
that provides multi-scale representation learning for
image restoration.

• Extensive experiments on ten datasets demonstrate that
the proposed network, FocalNet, performs favorably
against state-of-the-art algorithms on three representa-
tive image restoration tasks.

2. Related Work
Image Restoration Architectures. As a long-standing

task, image restoration aims to remove undesired degrada-
tions in corrupted images, which plays an important role in
many fields, such as robot vision, medical applications, and
surveillance [48, 66]. Recently, CNN-based architectures
have significantly advanced the performance compared to
conventional methods [1, 8, 14, 16]. Among these archi-
tectures, the encoder-decoder paradigm is a popular solu-
tion to learn hierarchical representations [39, 44]. In addi-
tion, a great number of functional units have been devel-
oped or borrowed from other realms, such as dilated convo-
lution [68], skip connections [13], dynamic filter [25], and
various attention mechanisms [41]. More recently, Trans-
former models have been imported into low-level vision
tasks and provided promising performance [7, 32]. There-
after, a few measures have been taken to reduce the compu-
tational complexity of self-attention by restricting the oper-
ation region [32] or switching the operation dimension [61].

Spectral Networks. Apart from spatial representation
learning, numerous deep frameworks have been proposed
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Figure 3. Architecture of the proposed FocalNet with dual-domain selection mechanism (DSM) that consists of two components, i.e., spatial
selection module (SSM) and frequency selection module (FSM). ResBlock contains n residual blocks, comprising two 3× 3 convolution
layers and activation function in between.

to bridge frequency gaps between sharp/degraded image
pairs [15, 39, 68]. The common practice is to decompose
features into different frequency components via transfor-
mation tools such as wavelet transform [10, 68], Fourier
transform [22, 39], pooling technique [15], and conven-
tional filters [35], and then treat each component individ-
ually via convolution layers. In addition, a few researches
have investigated the different roles of phase and amplitude,
and proposed architectures to recover them separately [28].
In our work, we simply remove the lowest-frequency signal
from the resulting features of SSM to provide guidance for
further reconstruction.

Auxiliary Training. In addition to the provided ground-
truth images in training sets of image restoration tasks, a
great number of networks have been proposed to resort
to auxiliary supervision. Semantic priors have been intro-
duced into low-level tasks to provide color, boundary or lo-
cation information [12, 43, 45]. However, global semantic
priors are less effective for degradations caused by large
depth variations. Thus many methods have proposed to
estimate depth map to generate edge and structure signals
for restoration [24, 29]. Moreover, there are many works
that integrate other auxiliary information such as optical
flow [56, 60] and event data [57]. However, the above solu-
tions always require additional data, expensive convolution
branch, and complicated training strategies [45].

3. Method
In this section, we first delineate the overall architecture

of FocalNet. Then we describe our modules: Multi-scale
ResBlock (MResBlock) and Dual-domain Selection Mech-

anism (DSM). Finally, we detail the loss functions.

3.1. Overall Pipeline

As illustrated in Figure 3, the proposed FocalNet adopts
the popular encoder-decoder architecture to learn hierarchi-
cal representations efficiently. Both encoder and decoder
networks consist of three scales. In our paper, we refer to
the first scale as the sub-network that involves the highest-
resolution features. MResBlock constitutes the main part of
the first scale. The other two scales are mainly composed
of ResBlock, which consists of n residual blocks. Given a
degraded image of size H × W × 3, where H × W and
C represent spatial locations and the number of channels
respectively, a 3 × 3 convolution layer is used to extract
shallow features of size H×W ×C. Then, the shallow fea-
tures pass through three-scale symmetric encoder-decoder
and are transformed into restored features, i.e., output fea-
tures of MResBlock in the first scale of decoder. Starting
from the highest-resolution input, the encoder gradually re-
duces spatial size and expands the number of channels. The
decoder does the opposite to restore clean features from the
deepest features. During this process, the decoder features
are concatenated with the encoder features to assist recov-
ery, followed by a 1 × 1 convolution to adjust channel di-
mension. Finally, the predicted clean image is generated
by the last 3× 3 convolution layer and image-level residual
connection. Upsampling (UP) and downsampling (DOWN)
operations are implemented by transposed and strided con-
volutions except for the upsampling layer in MResBlock
that adopts bilinear interpolation. The proposed DSM is
injected into the bottleneck location to select the most im-
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portant regions for reconstruction. In addition, we apply
the multi-input and multi-output strategies to ease training
difficulty following previous methods [13, 15, 39, 49].

3.2. Multi-scale ResBlock (MResBlock)

Recently, pursuing multi-scale receptive fields is a hot
topic in computer vision community [5, 20, 42, 55], es-
pecially for Transformer-based models [33, 42]. Inspired
by [11, 40, 46], we adopt multi-scale mechanism in Res-
Block to form our MResBlock via splitting and downsam-
pling operations, as illustrated in Figure 3. Specifically,
given input features, we first split them equally along chan-
nel dimension into two components. Next, half features are
reduced to a quarter of the original resolution using strided
convolution. The resulting features are fed into ResBlock,
and then up-sampled to the original size. The other half are
directly processed by ResBlock. The final output of MRes-
Block is obtained by concatenating resulting features of two
branches. MResBlock enjoys two main advantages. Firstly,
it improves performance by realizing multi-scale represen-
tation learning for degradations of different sizes and en-
hances spectral learning for different frequencies [40]. Sec-
ondly, it improves efficiency by reducing feature resolution.

3.3. Dual-domain Selection Mechanism (DSM)

The main goal of this study is to develop an efficient net-
work for image restoration by focusing on the more impor-
tant regions. This aim is achieved by the proposed DSM,
which amplifies the response of informative information in
two domains (see Figure 2). As illustrated in the bottom part
of Figure 3, it consists of two components: spatial selec-
tion module (SSM) and frequency selection module (FSM).
Given input features F ∈ RH×W×C , SSM and FSM are
employed successively, which can be expressed as:

F̂ = FSM(SSM(F )). (1)

Next, we introduce these two elements in details.
Spatial Selection Module (SSM). SSM helps the net-

work focus on important regions in the spatial domain, pro-
viding initial locations of severe degradations for subse-
quent FSM. Our SSM has three branches. The main path
is built upon the CBAM [53] to produce the general fea-
ture representation for locations of degradations to focus.
Specifically, given an intermediate feature map F , we first
squeeze F along channel dimension through two types of
pooling techniques, i.e., max pooling and average pooling,
and then generate the general feature map via a convolution
layer, which is formally expressed as:

F ′ = Conv3([AvgPool(F ),MaxPool(F )]), (2)

where [·, ·] indicates concatenation; AvgPool, MaxPool and
Conv3 represent average pooling, max pooling, and con-

volution layer of 3 × 3 kernel size. By doing this, F ′ ∈
RH×W×1 contains degradation locations to focus [53].

Since each channel differs in degradation patterns, we
further generate channel-wise representation by performing
the channel-separated transformation for the input feature
F via depth-wise convolutions, and then modulate resulting
features with F ′. This process is expressed as follows:

Fs = DConvs5,7(F )⊗ T(F ′, C) + DConv3(F ), (3)

where DConvs5,7 denotes cascaded depth-wise convolution
layers of kernel sizes 5 × 5 and 7 × 7; DConv3 represents
depth-wise convolution with 3 × 3 kernel; ⊗ indicates an
element-wise multiplication; and T(F ′, C) is the tile func-
tion that copies F ′ for C times along the channel dimension
to RH×W×C . We then feed the spatially selected features
Fs ∈ RH×W×C to FSM for frequency selection.

Frequency Selection Module (FSM). We can directly
utilize Fs to assist the recovery process. Motivated by
the fact that degraded/sharp image pairs have similar low-
frequency components, while differing at high frequencies,
we further emphasize regions that contain the real differ-
ence between input/sharp image pairs by removing lowest
frequency via the proposed FSM. To this end, we first ap-
ply the mean filter to Fs to generate low-frequency features,
and then obtain the complementary high-frequency features
by subtracting the resulting low-frequency signals from the
input, which is expressed by:

Fh
s = Fs −Mean(Fs). (4)

In our case, the mean filter is implemented by the channel-
wise global average pooling. The final output of FSM/DSM
is generated using the element-wise multiplication between
Fh
s and Fs, and residual connection, which is expressed as:

F̂ = Fh
s ⊗ Fs + Fs. (5)

After DSM, the important regions are emphasized, e.g.,
edge signals in Figure 2 for defocus deblurring.

3.4. Loss Function

To facilitate the selection process in both spatial and fre-
quency domains, we adopt dual-domain l1 loss functions
following [13, 15]. For each output/target image pair with
the same resolution, loss functions are given by:

Ls =
1

P
∥Î −G∥1 (6)

Lf =
1

P
∥F(Î)−F(G)∥1 (7)

L = Ls + λLf (8)

where Î and G denote the output and ground-truth images,
respectively; P indicates total elements for normalization;
F represents fast Fourier transform; and λ is empirically set
to 0.1 for balancing dual-domain training.
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Figure 4. Image dehazing comparisons on the SOTS [27] test sets.

4. Experiments and Analysis
We evaluate FocalNet on 10 datasets for three image

restoration tasks, including image dehazing, image desnow-
ing, and single-image defocus deblurring. We provide ex-
perimental results for image motion deblurring and image
denoising in the supplementary material.

4.1. Datasets and Evaluation Protocol

We measure the Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity index (SSIM) [52] between predicted
results and ground-truth images for all datasets. Mean Ab-
solute Error (MAE) and Learned Perceptual Image Patch
Similarity (LPIPS) [67] are additionally adopted for defo-
cus deblurring. FLOPs are measured on 256 × 256 patch.
In tables, the best performance is marked in bold.

Image Dehazing. We train and evaluate our models
on both synthetic and real-world datasets for image dehaz-
ing. Following [21, 59], we train separate models on the
RESIDE-Indoor and RESIDE-Outdoor datasets [27], and
evaluate the resulting models on the corresponding test sets
of RESIDE, i.e., SOTS-Indoor and SOTS-Outdoor, respec-
tively. In addition, we adopt three real-world datasets, i.e.,
Dense-Haze [2], NH-HAZE [3], and O-HAZE [4], to verify
the robustness of our model in more challenging real-world
scenarios. Apart from the above daytime dehazing datasets,
we also demonstrate the effectiveness of FocalNet on the
nighttime dataset NHR [65].

Image Defocus Deblurring. Consistent with previous
algorithms [25, 44, 61], we use the DPDD [1] dataset that
consists of 350 scenes for training, 74 scenes for valida-

tion, and 76 scenes for testing. Each scene comprises four
images, labeled as center view, left view, right view, and all-
in-focus ground-truth images. FocalNet is trained by taking
the center view image as input and calculating loss values
between the predicted clean image and ground truth.

Image Desnowing. For the desnowing problem, we train
and evaluate our models on three commonly used datasets,
i.e., SRRS [9], CSD [10], and Snow100K [37]. Dataset se-
lection and testing methods are consistent with the recent
algorithm [9] for a fair and convincing comparison.

4.2. Implementation Details

Unless stated otherwise, the following hyper-parameters
are adopted. Depending on the task complexity, we scale
the model by varying the number of residual blocks in
all ResBlock, i.e., 16 for deblurring and 4 for dehaz-
ing/desnowing. In our FocalNet, we only deploy MRes-
Block in the first scale of encoder/decoder. Convolution
parameters are not shared between two branches of MRes-
Block. The models are trained using Adam [23] with ini-
tial learning rate as 8e−4, which is gradually reduced to
1e−6 with cosine annealing [38]. For data augmentation,
we adopt random horizontal flips with a probability of 0.5.
Models are trained on 32 samples of size 256×256 for each
iteration. More details of training configuration for each
specific dataset are provided in the supplementary material.

4.3. Image Dehazing Results

Quantitative Comparisons. We report the quantitative
performance of image dehazing approaches on both syn-
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Figure 5. Image desnowing comparisons on the CSD [10] dataset. Our method is more effective in snow removal than other algorithms.

SOTS-Indoor [27] SOTS-Outdoor [27] Dense-Haze [2] NH-HAZE [3] O-HAZE [4] Params
(M)

FLOPs
(G)Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DehazeNet [6] 19.82 0.821 24.75 0.927 13.84 0.43 16.62 0.52 17.57 0.77 0.009 0.581
AOD-Net [26] 20.51 0.816 24.14 0.920 13.14 0.41 15.40 0.57 15.03 0.54 0.002 0.115
GridDehazeNet [36] 32.16 0.984 30.86 0.982 - - 13.80 0.54 - - 0.956 21.49
MSBDN [17] 33.67 0.985 33.48 0.982 15.37 0.49 19.23 0.71 24.36 0.75 31.35 41.54
FFA-Net [41] 36.39 0.989 33.57 0.984 14.39 0.45 19.87 0.69 22.12 0.77 4.456 287.8
AECR-Net [54] 37.17 0.990 - - 15.80 0.47 19.88 0.72 - - 2.611 52.20
DeHamer [21] 36.63 0.988 35.18 0.986 16.62 0.56 20.66 0.68 - - 132.45 48.93
PMNet[59] 38.41 0.990 34.74 0.985 16.79 0.51 20.42 0.73 24.64 0.83 18.90 81.13

FocalNet (Ours) 40.82 0.996 37.71 0.995 17.07 0.63 20.43 0.79 25.50 0.94 3.74 30.63

Table 1. Image dehazing results on both synthetic dataset [27] and real-world datasets [2, 3, 4].

NDIM GS MRPF MRP OSFD HCD FocalNet
Method [64] [31] [63] [63] [65] [51] Ours

PSNR 14.31 17.32 16.95 19.93 21.32 23.43 25.35
SSIM 0.526 0.629 0.667 0.777 0.804 0.953 0.969

Table 2. Nighttime image dehazing results on NHR [65] dataset.

thetic [27] and real-world [2, 3, 4] datasets in Table 1.
Overall, our method receives better performance on all
datasets than other state-of-the-art algorithms. Specifically,
on the daytime synthetic dataset SOTS-Indoor [27], our
method outperforms PMNet [59] by 2.41 dB PSNR with
only 20% parameters and 38% FLOPs. Furthermore, our
model yields a significant performance gain of 2.53 dB in
terms of PSNR over Transformer model DeHamer [21] on
SOTS-Outdoor [27] with 97% fewer parameters.

In addition, our method is well generalized to the more
challenging real-world scenarios and obtains the best per-
formance on most metrics. Particularly on the O-HAZE [4]
dataset, FocalNet yields considerable gain of 0.86 dB PSNR
and 0.11 SSIM over PMNet [59].

Apart from daytime dehazing datasets, we also evaluate
the effectiveness of our model on the nighttime dehazing
dataset NHR [65]. As shown in Table 2, FocalNet signifi-
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Figure 6. Nighttime dehazing comparisons on NHR [65] dataset.

CSD [10] SRRS [9] Snow100K [37]

Method PSNR SSIM PSNR SSIM PSNR SSIM

DesnowNet [37] 20.13 0.81 20.38 0.84 30.50 0.94
CycleGAN [19] 20.98 0.80 20.21 0.74 26.81 0.89
All in One [30] 26.31 0.87 24.98 0.88 26.07 0.88
JSTASR [9] 27.96 0.88 25.82 0.89 23.12 0.86
HDCW-Net [10] 29.06 0.91 27.78 0.92 31.54 0.95
TransWeather [50] 31.76 0.93 28.29 0.92 31.82 0.93
NAFNet [8] 33.13 0.96 29.72 0.94 32.41 0.95

FocalNet (Ours) 37.18 0.99 31.34 0.98 33.53 0.95

Table 3. Image desnowing results on three widely used datasets.

cantly outperforms the recent HCD [51] by 1.92 dB PSNR.
The results demonstrate the efficacy of our design.

Visual Comparisons. The daytime and nighttime visual
results produced by several dehazing methods are illustrated
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Figure 7. Single-image defocus deblurring results on the DPDD [1] dataset. We display the magnified parts of the produced images
for clarity. From left-top to right-bottom: input blurry images, ground-truth images, and the predicted images obtained by KPAC [47],
IFAN [25], DeepRFT [39], DRBNet [44], Restormer [61], and our FocalNet, respectively.

Indoor Scenes Outdoor Scenes Combined

Method PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓

DPDNet [1] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
KPAC [47] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
DeepRFT [39] - - 25.71 0.801 0.039 0.218
IFAN [25] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
DRBNet [44] - - 25.73 0.791 - 0.183
Restormer [61] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178

FocalNet (Ours) 29.10 0.876 0.024 0.173 23.41 0.743 0.049 0.246 26.18 0.808 0.037 0.210

Table 4. Single-image defocus deblurring results on the DPDD [1] dataset.

in Figure 4 and Figure 6, respectively. Our method is more
effective in removing haze blurs in both daytime (indoor
and outdoor) and nighttime scenes than other algorithms,
such as blurs on the doors in top two images of Figure 4.

4.4. Image Desnowing Results

Quantitative Comparisons. The numerical results on
three desnowing datasets, i.e., SRRS [9], CSD [10], and
Snow100K [37], are reported in Table 3. As can be seen,
our model shows strong ability on snow removal by consis-
tently achieving better or comparable PSNR/SSIM scores
on all metrics. Compared to NAFNet [8], FocalNet obtains
significant performance gains of 1.62 dB and 4.05 dB PSNR
on the SRRS [9] and lately proposed CSD [10] datasets, re-
spectively. In addition, our model yields much higher scores
than TransWeather [50] with 17% parameters.

Visual Comparisons. The visual results are shown in
Figure 5. Images produced by our model are of high quality
without artifacts and visually closer to ground-truth images.

4.5. Image Defocus Deblurring Results

Quantitative Comparisons. The quantitative compar-
isons on the DPDD [1] dataset are provided in Table 4.
Our method performs favorably against state-of-the-art al-
gorithms. Specifically, FocalNet obtains significant gains
over the CNN-based approaches on the combined category,
i.e., 0.45 dB over DRBNet [44] and 0.47 dB over Deep-
RFT [39]. In addition, compared to Transformer model
Restormer [61], our method still obtains a performance im-
provement of 0.2 dB PSNR with only half parameters.

Visual Comparisons. Figure 7 illustrates visual results.
Compared to other approaches, our model recovers more
fine details, such as patterns on pages.

4.6. Ablation Studies

We conduct ablation studies to demonstrate the effective-
ness of our modules by training the tiny model on RESIDE-
Indoor [27] and testing on SOTS-Indoor [27]. The number
of residual block is set to 1 in all ResBlock. The model is
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MResBlock SSM FSM PSNR FLOPs/G Params/M

(a) 31.33 15.44 1.48
(b) ✓ 33.51 15.48 1.49
(c) ✓ 32.44 15.44 1.49
(d) ✓ ✓ 35.56 15.48 1.49
(e) ✓ ✓ 33.71 13.82 1.47
(f) ✓ ✓ 32.60 13.77 1.47
(g) ✓ ✓ ✓ 35.60 13.82 1.47

Table 5. Ablation studies for different components of FocalNet on
the SOTS-Indoor [27] dataset.

Method PSNR FLOPs/G Params/M

(a) Simple Gate [8] 32.23 13.81 1.47
(b) Supervised Attention [62] 32.29 14.98 1.76
(c) CBAM [53] 32.71 13.77 1.46
(d) SSM 33.71 13.82 1.47
(e) CBAM [53]+FSM 33.23 13.77 1.46
(f) SSM+FSM 35.60 13.82 1.47

Table 6. Comparisons with other attention mechanisms.

trained for only 300 epochs with the initial learning rate as
1e−4 and batch size as 4. Other settings are identical with
that of our final dehazing model. The baseline network is
obtained by substituting ResBlock for MResBlock and re-
moving DSM from the tiny model. More ablation studies
are provided in the supplementary material.

Effects of Individual Components. As shown in Ta-
ble 5a, the baseline receives 31.33 dB PSNR. SSM (Ta-
ble 5b) and FSM (Table 5c) yield accuracy gains of 2.18 dB
and 1.11 dB over the baseline, respectively. Equipped with
DSM, the model (Table 5d) receives further performance
boost by 4.23 dB over the baseline. By replacing ResBlock
with MResBlock in the first scale, models consistently re-
ceive higher scores than those without MResBlock. Specif-
ically, our choice (Table 5g) outperforms the counterpart
(Table 5d) by 0.04 dB with lower computation overhead.

In addition, the visual results of our DSM are illustrated
in Figure 2 (defocus debluring) and Figure 8 (dehazing). As
shown in Figure 2, SSM helps the model focus more on the
severe degradation regions, e.g., metal fence. FSM further
highlights the edge signals by removing low-frequency in-
formation. For dehazing, the hard regions that are difficult
to recover are emphasized by our DSM (see Figure 8). More
examples are available in the supplementary material.

Comparisons with Alternatives to SSM. We further
demonstrate superiority of our SSM by replacing it with
three popular attention mechanisms. As represented in Ta-
ble 6, the simple gate [8] and supervised attention [62] lead
to performance degradation from 33.71 to 32.23 dB and
32.29 dB PSNR, respectively. Compared to CBAM [53],
which includes both spatial and channel attention, our SSM

Blurry Image Target Initial Feature w/ SSM w/ SSM&FSM

Hazy Image Target w/o DSM w/ DSM

Figure 8. Visual results of DSM for dehazing. From left to right:
hazy images obtained from SOTS-Indoor [27], ground-truth im-
ages, input and output features of DSM. The complicated regions
worthy of more attention are highlighted by our DSM.

Method PSNR FLOPs/G Params/M

(a) FocalNet w/o MResBlock 40.69 33.96 3.76
(b) FocalNet 40.82 30.63 3.74
(c) FocalNet-S 40.32 17.33 2.27

Table 7. Design choices for MResBlock.

(Table 6d) receives 1 dB performance gain with compara-
ble computation overhead. The similar conclusion can also
be drawn by comparing models of Table 6e and Table 6f,
where FSM is additionally used. It is worth mentioning that
our FSM boosts the performance when cooperating with
CBAM (see Table 6c and Table 6e), demonstrating the effi-
cacy and generalization ability of our design.

Order of FSM and SSM. When we swap the order in
which FSM and SSM are used, the performance drops from
35.60 dB (Table 5g) to 35.17 dB PSNR. This phenomenon
verifies the efficacy of our design, where we first apply SSM
to attend to general degradation regions and then leverage
FSM to emphasize the more important parts, such as edge
signal in Figure 2 and hard regions in Figure 8.

Design Choices for MResBlock. We study the effect
of the multi-scale mechanism in our final dehazing model.
The training settings are identical with FocalNet in Ta-
ble 1. As represented in Table 7, MResBlock leads to
performance gain of 0.13 dB PSNR with high efficiency.
We further explore the potential of MResBlock by using it
in all scales of encoder/decoder to form FocalNet-S (Fig-
ure 7c). This version degrades the performance by 0.5 dB
compared to FocalNet, which is probably because the dis-
advantage of losing spatial information caused by reducing
size of low-resolution features outweighs the advantage of
multi-scale learning. It is worth mentioning that FocalNet-S
still achieves 40.32 dB PSNR with much lower computation
overhead compared to other algorithms (see Figure 1).
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5. Conclusion

In this study, we present a focal network for image
restoration, dubbed FocalNet, which is effective and com-
putationally efficient. The core idea of our work is to focus
on the important regions for reconstruction. To this end,
we propose two modules: SSM and FSM. SSM is built on
spatial attention to detect the degradation regions for sub-
sequent frequency selection. FSM further emphasizes the
edge signals or regions that are difficult to recover. By de-
ploying two modules successively, the network is capable
of paying more attention to regions that really matter to re-
construction. In addition, we insert the multi-scale mech-
anism into the network by reducing resolution of half the
channels of input feature. This design not only improves
performance but also reduces complexity. Experiments on
10 datasets demonstrate that our model achieves state-of-
the-art performance for several image restoration tasks.
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