

Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume

Solver on Dynamically Adaptive Meshes

Mario Wille1, Tobias Weinzierl2, Gonzalo Brito Gadeshi3, Michael Bader1

1TUM School of Computation, Information and Technology

Technical University of Munich, Garching, Germany

2Department of Computer Science

Institute for Data Science – Large-scale Computing

Durham University, Durham, UK

3NVIDIA, Munich, Germany

ISC High Performance 2023

May 21-25, 2023

Hamburg, Germany

• ExaHyPE: A wave equation solver with explicit time stepping

• Peano: Dynamically adaptive mesh refinement

• Patches of cells constructed through octree-type AMR

• MPI+X paradigm: Many ranks, each hosting several threads

• Each thread offloads Finite Volume patches to the GPU

• Gather multiple patches into batch of update tasks

• Handle tasks in one rush on the GPU via one kernel call

• Realisation by OpenMP’s target constructs

Motivation and Project Overview

3Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

𝜕𝑄

𝜕𝑡
+ ∇ ⋅ 𝐹 𝑄 +෎

𝑖=1

𝑑

𝐵𝑖 𝑄
𝜕𝑄

𝜕𝑥𝑖
= 𝑆 𝑄

• We do not constrain which core can access a GPU → multiple cores may hit the GPU

simultaneously

• OpenMP runtime locks access to the GPU to prevent race conditions

• GPU can only read from page-locked host-pinned memory → requires staging

• We identify significant overhead and synchronisation

• Challenges:

• Overlap computation and data transfer

• Avoid data allocations/frees during computations

OpenMP Runtime Overhead with target map

4Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

Overcoming the OpenMP Runtime Overhead

5Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

Realisation with target map

6

1 Procedure offload_map(∥𝑃𝐺𝑃𝑈∥, host_patch_data): // Data per patch are stored in one large array of structures (AoS)

2 mapped_pointers ← allocate_host(∥𝑃𝐺𝑃𝑈∥)
3 for i ← 0 to ∥𝑃𝐺𝑃𝑈∥ do
4 patch_data ← host_patch_data[i]

5 #pragma omp target enter data map(to:patch_data) // Map each patch‘s data onto the device

6 mapped_pointers[i] ← omp_get_mapped_ptr(patch_data) // Construct the list of pointers on the GPU

7 end

8 #pragma omp target teams distribute map(to:mapped_pointers)
9 for i ← 0 to ∥𝑃𝐺𝑃𝑈∥ do
10 // Do computations on Finite Volumes

11 end

12 for i ← 0 to ∥𝑃𝐺𝑃𝑈∥ do
13 patch_data ← host_patch_data[i]

14 #pragma omp target exit data map(from:patch_data) // Copy back the GPU outcomes to the host

15 end
16 mapped_pointers ← free_host()

Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

• Each rank holds one instance of a thread-safe GPU memory manager

• Reserves memory on the GPU on demand

• Hands out pre-reserved memory to threads and reuses the memory

• Memory ownership resides on host

• Synchronisation and coordination of memory can be handled on the host

• Avoid locking by the OpenMP runtime

• Allocation routine returns a device pointer

• Free routine releases the device memory

• Share pre-allocated data between threads

Our Proposal: A GPU Memory Manager

7Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

Realisation with our GPU Memory Manager

8Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

1 Procedure offload_managed(∥𝑃𝐺𝑃𝑈∥, host_patch_data):
2 patch_data ← GPUMemoryManager→allocate_device(∥𝑃𝐺𝑃𝑈∥) // Allocate GPU data and store the

memory address

3 patch_data ← omp_target_memcpy(host_patch_data, ∥𝑃𝐺𝑃𝑈∥)

4 #pragma omp target teams distribute is_device_ptr(patch_data)

5 for i ← 0 to ∥𝑃𝐺𝑃𝑈∥ do
6 // Do computations on Finite Volumes

7 end

8 host_patch_data ← omp_target_memcpy(patch_data, ∥𝑃𝐺𝑃𝑈∥)
9 patch_data ← GPUMemoryManager→free() // Release memory handle for possible reuse

Loop Collapsing and Reordering

9Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

1 Procedure collapse(offset, N):
2 #pragma omp target teams distribute parallel for simd collapse(3)
5 for i ← 0 to N do
6 for j ← 0 to N do

7 for k ← -offset to N+offset do

8 volume_index ← get_volume_index(i, j, k)

9 end

10 end

11 end

Loop Collapsing and Reordering

10Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

1 Procedure collapse(offset, N):
2 #pragma omp target teams distribute parallel for simd collapse(3)
5 for i ← 0 to N do
6 for j ← 0 to N do

7 for k ← 0 to N+2∙offset do

8 volume_index ← get_volume_index(i, j, k-offset)

9 end

10 end

11 end

Two Flavours of Equations

11Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

Euler Equations Conformal and Covariant Z4 (CCZ4)

Equations

• Describes the evolution of density,

energy and velocity

• System of N = d + 2 non-linear partial

differential equations

• d = 2 or 3

• Low arithmetic intensity

• Describes the evolution of space-time

curvature

• Models gravitational waves

• System of N = 59 equations

• d = 3 only

• High arithmetic intensity

Solution via Finite Volumes with a generic Rusanov Riemann solver

Benchmark Systems

12Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

Alex cluster: Erlangen National High

Performance Computing Center

(NHR@FAU)

JURECA DC Evaluation Platform: Jülich

Supercomputing Centre (JSC)

• AlmaLinux 8.7 (Stone Smilodon)

• 2 × AMD EPYC 7713 Milan CPUs (64

cores per chip)

• 8 × NVIDIA A100 GPUs (80 GB

memory)

• NVIDIA HPC SDK (v23.1)

• CUDA (v12.0)

• Rocky Linux 8.7 (GreenObsidian)

• 2 × AMD EPYC 7443 Milan CPUs (24

cores per chip and SMT-2)

• 4 × AMD Instinct MI250 GPUs (128 GB

memory, MCM)

• ROCm AOMP (v17.0-0)

Performance Results – Euler Equations (NVIDIA)

13Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

Performance Results – CCZ4 Equations (NVIDIA)

14Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

Performance Results – Euler Equations (AMD)

15Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

Performance Results – CCZ4 Equations (AMD)

16Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

• GPU Memory Manager withdraws memory management from the accelerator and assigns

it to the host

• Host-centric realisation leads to a speedup of some calculations by an order of magnitude

• Increases robustness of concurrent offloading of patches

• No need for a static offloading pattern of patches or huge patches

• Presented a worst-case scenario motivated by a real-world science case

Conclusion

17Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

• This research has been supported by EPSRC’s ExCALIBUR programme

(projects EX20-9, PAX–HPC and MGHyPE), by the German Ministry

of Education and Research (BMBF, project targetDART) and by

Intel’s Academic Centre of Excellence.

• Supercomputing resources and support was provided by the ARCHER2 UK National

Supercomputing Service, the Erlangen National High Performance Computing Center,

Jülich Supercomputing Center and CINECA.

• Special thanks goes to Han Zhang und Baojiu Li (https://www.icc.dur.ac.uk/) for providing

us with the CCZ4 science case.

Acknowledgements

18Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

https://www.icc.dur.ac.uk/

• Feel free to contact me via Mail: mario.wille@tum.de

• Event platform Swapcard: Mario Wille

• Source code webpage: www.peano-framework.org

• Source code repository: https://gitlab.lrz.de/hpcsoftware/Peano

• Artifact description: https://doi.org/10.5281/zenodo.7741217

Contact

19Mario Wille | Efficient GPU Offloading with OpenMP | ISC 2023

mailto:mario.wille@tum.de
https://app.swapcard.com/event/isc-high-performance-2023/person/RXZlbnRQZW9wbGVfMjA3MDA5ODQ=
http://www.peano-framework.org/
https://gitlab.lrz.de/hpcsoftware/Peano
https://doi.org/10.5281/zenodo.7741217

	Folie 1
	Folie 2: Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive Meshes
	Folie 3: Motivation and Project Overview
	Folie 4: OpenMP Runtime Overhead with target map
	Folie 5: Overcoming the OpenMP Runtime Overhead
	Folie 6: Realisation with target map
	Folie 7: Our Proposal: A GPU Memory Manager
	Folie 8: Realisation with our GPU Memory Manager
	Folie 9: Loop Collapsing and Reordering
	Folie 10: Loop Collapsing and Reordering
	Folie 11: Two Flavours of Equations
	Folie 12: Benchmark Systems
	Folie 13: Performance Results – Euler Equations (NVIDIA)
	Folie 14: Performance Results – CCZ4 Equations (NVIDIA)
	Folie 15: Performance Results – Euler Equations (AMD)
	Folie 16: Performance Results – CCZ4 Equations (AMD)
	Folie 17: Conclusion
	Folie 18: Acknowledgements
	Folie 19: Contact

