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• ExaHyPE: A wave equation solver with explicit time stepping

• Peano: Dynamically adaptive mesh refinement

• Patches of cells constructed through octree-type AMR

• MPI+X paradigm: Many ranks, each hosting several threads

• Each thread offloads Finite Volume patches to the GPU

• Gather multiple patches into batch of update tasks

• Handle tasks in one rush on the GPU via one kernel call

• Realisation by OpenMP’s target constructs

Motivation and Project Overview
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• We do not constrain which core can access a GPU → multiple cores may hit the GPU 

simultaneously

• OpenMP runtime locks access to the GPU to prevent race conditions

• GPU can only read from page-locked host-pinned memory → requires staging

• We identify significant overhead and synchronisation

• Challenges:

• Overlap computation and data transfer

• Avoid data allocations/frees during computations

OpenMP Runtime Overhead with target map
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Overcoming the OpenMP Runtime Overhead
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Realisation with target map
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1 Procedure offload_map(∥𝑃𝐺𝑃𝑈∥, host_patch_data): // Data per patch are stored in one large array of structures (AoS)

2 mapped_pointers ← allocate_host(∥𝑃𝐺𝑃𝑈∥)
3 for i ← 0 to ∥𝑃𝐺𝑃𝑈∥ do                           
4 patch_data ← host_patch_data[i]

5 #pragma omp target enter data map(to:patch_data) // Map each patch‘s data onto the device

6 mapped_pointers[i] ← omp_get_mapped_ptr(patch_data) // Construct the list of pointers on the GPU

7 end

8 #pragma omp target teams distribute map(to:mapped_pointers)
9 for i ← 0 to ∥𝑃𝐺𝑃𝑈∥ do
10 // Do computations on Finite Volumes

11 end

12 for i ← 0 to ∥𝑃𝐺𝑃𝑈∥ do
13 patch_data ← host_patch_data[i]

14 #pragma omp target exit data map(from:patch_data) // Copy back the GPU outcomes to the host

15 end
16 mapped_pointers ← free_host()
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• Each rank holds one instance of a thread-safe GPU memory manager

• Reserves memory on the GPU on demand

• Hands out pre-reserved memory to threads and reuses the memory

• Memory ownership resides on host

• Synchronisation and coordination of memory can be handled on the host

• Avoid locking by the OpenMP runtime

• Allocation routine returns a device pointer

• Free routine releases the device memory

• Share pre-allocated data between threads

Our Proposal: A GPU Memory Manager
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Realisation with our GPU Memory Manager
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1 Procedure offload_managed(∥𝑃𝐺𝑃𝑈∥, host_patch_data):
2 patch_data ← GPUMemoryManager→allocate_device(∥𝑃𝐺𝑃𝑈∥) // Allocate GPU data and store the

memory address

3 patch_data ← omp_target_memcpy(host_patch_data, ∥𝑃𝐺𝑃𝑈∥)

4 #pragma omp target teams distribute is_device_ptr(patch_data)

5 for i ← 0 to ∥𝑃𝐺𝑃𝑈∥ do
6 // Do computations on Finite Volumes

7 end

8 host_patch_data ← omp_target_memcpy(patch_data, ∥𝑃𝐺𝑃𝑈∥)
9 patch_data ← GPUMemoryManager→free() // Release memory handle for possible reuse



Loop Collapsing and Reordering
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1 Procedure collapse(offset, N):
2 #pragma omp target teams distribute parallel for simd collapse(3)
5 for i ← 0 to N do
6    for j ← 0 to N do

7 for k ← -offset to N+offset do

8 volume_index ← get_volume_index(i, j, k)

9 end

10 end

11 end



Loop Collapsing and Reordering
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1 Procedure collapse(offset, N):
2 #pragma omp target teams distribute parallel for simd collapse(3)
5 for i ← 0 to N do
6    for j ← 0 to N do

7 for k ← 0 to N+2∙offset do

8 volume_index ← get_volume_index(i, j, k-offset)

9 end

10 end

11 end



Two Flavours of Equations
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Euler Equations Conformal and Covariant Z4 (CCZ4) 

Equations

• Describes the evolution of density, 

energy and velocity

• System of N = d + 2 non-linear partial 

differential equations

• d = 2 or 3

• Low arithmetic intensity

• Describes the evolution of space-time 

curvature

• Models gravitational waves

• System of N = 59 equations

• d = 3 only

• High arithmetic intensity

Solution via Finite Volumes with a generic Rusanov Riemann solver



Benchmark Systems
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Alex cluster: Erlangen National High 

Performance Computing Center 

(NHR@FAU)

JURECA DC Evaluation Platform: Jülich

Supercomputing Centre (JSC)

• AlmaLinux 8.7 (Stone Smilodon)

• 2 × AMD EPYC 7713 Milan CPUs (64 

cores per chip)

• 8 × NVIDIA A100 GPUs (80 GB 

memory)

• NVIDIA HPC SDK (v23.1)

• CUDA (v12.0)

• Rocky Linux 8.7 (GreenObsidian)

• 2 × AMD EPYC 7443 Milan CPUs (24 

cores per chip and SMT-2)

• 4 × AMD Instinct MI250 GPUs (128 GB 

memory, MCM)

• ROCm AOMP (v17.0-0)



Performance Results – Euler Equations (NVIDIA)
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Performance Results – CCZ4 Equations (NVIDIA)
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Performance Results – Euler Equations (AMD)
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Performance Results – CCZ4 Equations (AMD)
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• GPU Memory Manager withdraws memory management from the accelerator and assigns 

it to the host

• Host-centric realisation leads to a speedup of some calculations by an order of magnitude

• Increases robustness of concurrent offloading of patches

• No need for a static offloading pattern of patches or huge patches

• Presented a worst-case scenario motivated by a real-world science case

Conclusion
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• Source code webpage: www.peano-framework.org
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