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Abstract. The entire research area of (business) process management
has experienced a tremendous push with the advent of process mining,
robotic process automation, and predictive process monitoring. While
this development is highly appreciated, the current process-agnostic
pipelines for process mining, robotic process automation, and predictive
process monitoring have several limitations. Taking a system perspective,
this keynote elaborates the limitations of process-agnostic automation.
Then, it shows how a shift towards process-aware automation and pre-
dictive compliance monitoring can be achieved and how process-aware
pipelines contribute to overcome the limitations of process-agnostic
automation. Finally, research implications with a focus on Petri nets
are derived.
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1 Introduction

Process mining and robotic process automation are two mega trends. “The global
process mining software market is projected to grow from $933.1 million in 2022
to $15,546.4 million by 2029, at a CAGR of 49.5% in the forecast period.”1.
The combination of both technologies is expected to even increase their market
penetration [6].

Process mining comprises a set of techniques for the discovery and analysis
of process models and their executions based on process event logs [1] and the
expectations in practice are high [35]. Robotic process automation refers to the
automation of single process tasks by replacing human-task interaction with a
software bot [2]. The currently applied mine and automate pipeline (e.g., [14])
is depicted in Fig. 1a). Process mining is applied to discover process models, and
within these models tasks with the potential for automation are detected. As
an intermediate step between process mining and the automation of tasks, [14]

1 https://www.fortunebusinessinsights.com/process-mining-software-market-104792.
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advocate to standardize the process models by removing variations in the pro-
cess that might result due to, e.g., product variants. Once tasks are automated,
process mining can be used to continuously monitor their performance.

Process Mining

Robo�c Process
Automa�on

Iden�fica�on of tasks Con�nuous
monitoring

a) Mine and automate

Process Automa�on

Process Mining

Collec�on of
contextualized data

Con�nuous monitoring
and analysis

b) Automate and mine

Fig. 1. Pipelines: a) Mine and automate; b) Automate and mine

However, the mine and automate pipeline as depicted in Fig. 1a) has several
limitations:

1. Task-oriented automation: Robot process automation aims at the automa-
tion of single, often simple and repetitive interactions of humans with soft-
ware. However, a process is a task-overarching, orchestrating concept. Real
performance gains and analysis insights can only be achieved by taking an
orchestration point of view for process automation.

2. Data acquisition and preparation: Process mining relies on process event logs
emitted or extracted from information systems, e.g., ERP systems. If the
underlying system is not process-aware or a black box (e.g., legacy systems),
mechanisms for extraction and preparation of data are to be defined and
employed. Moreover, if the data is spread over multiple and possibly hetero-
geneous information systems [18,27], mechanisms for integrating the data are
to be defined and employed. Existing commercial systems support a range of
adaptors to different systems and data sources, e.g., data connections as sup-
ported in Celonis2. Using an object-centric approach offers the opportunity
to capture objects and their life cycles in the process event logs [8] and can
be used even if no case id is available or can be extracted form the underlying
data. However, data connections are not robust towards changes in the data
structures, i.e., data structure changes possibly require the adaptation of one,
several, or all of the established data connections.

3. Ex-post point of view: Most of the process mining analysis tasks are conducted
in an ex-post manner, i.e., based on process event logs that reflect already
finished process executions. This holds true for all three pillars of process min-
ing, i.e., process discovery, conformance checking, and process enhancement.
However, the monitoring and analysis of process executions during runtime
(online) based on process event streams provides current insights into the

2 https://docs.celonis.com/en/data-connections.html.
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process, e.g., detecting exceptions when they are actually happening, and
hence enabling a quicker reaction to potential problems such as compliance
violations [9,19,36]. Moreover, in practice, many analysis questions refer to
the monitoring of the process perspectives time, resources, and data, e.g., a
temperature sensor exceeding a certain threshold or temporal deviations that
“are mostly caused by humans, e.g., someone stepping into the safety area
of a machine causing a delay, and hint to problems with work organization”
[34]. Even predictive process monitoring, though suggesting to be applied
in an online manner due to the term “monitoring”, is mostly applied in an
ex-post way. More precisely, a process event log is split into training and
test data. One or several prediction models are learned based on the training
data. These prediction models are then applied to the test data, i.e., prefixes
from the test data are used to reflect a process event stream. Prediction goals
comprise, for example, the remaining time of cases, the next activity, and the
outcome of a process [13].

4. Dealing with uncertainty and concept drift: Ex-post mining allows to obtain
a picture of the past. However, an ever changing process environment and
uncertainties force processes to adapt constantly [5,9]. In the manufacturing
domain, for example, if new processes are set up, several adaptation cycles
are necessary until a process runs in a robust way. In health care, due to
unforeseen situations, ad-hoc changes of process instances can be frequently
required, e.g., the blood pressure exceeds a threshold such that the surgery has
to be delayed. “This uncertainty often manifests itself in significant changes
in the executed processes” [5]. Process changes, in turn, manifest as concept
drifts in process event logs [5] and as unseen behavior in process event streams
[23]. A selection of use cases for process changes from different domains can
be found in [17].

Limitations 1. and 2. refer to the system and data perspective and Limita-
tions 3. and 4. to the mining and analysis perspective of a process. In order to
address Limitations 1. and 2., we advocate an inversion of the mine and auto-
mate pipeline into an automate and mine pipeline as depicted in Fig. 1b). The
automate and mine pipeline starts with automated and orchestrated processes,
driven and managed by process engines or process-aware information systems.
These systems can be exploited to collect data in an integrated, orchestrated,
and contextualized manner at arbitrary granularity which, in turn, offers novel
process mining insights [29], for example, the combined analysis process event
logs/streams and sensors streams [11,37].

Limitations 3. and 4. emphasize the need to move towards approaches applied
during runtime when mining and monitoring processes. Most promising here are
approaches for online process mining such as [9] and predictive process monitor-
ing (cf., e.g., survey in [13]). One of the most crucial (business) goals of predictive
process monitoring is the prediction of possible compliance violations [26]. For
this, in existing approaches, the compliance constraint of interest, for example,
service level agreement “90% of the orders must be processed within 2 h”, is



6 S. Rinderle-Ma et al.

encoded as prediction goal in a prediction model (referred to as predicate pre-
diction [21]). Predicate prediction is illustrated through the comply and predict
pipeline depicted in Fig. 2a): compliance constraints are encoded as prediction
goals (comply) into a prediction model each, based on which violations of the
constraint are predicted (predict). The comply and predict pipeline for predicate
prediction comes with the following limitations (ctd.):

a) Predicate predic�on b) Predic�ve compliance monitoring

Comply

Predict

Predicate encoding

Predict

Comply

Mapping of predic�on goals
to compliance constraints

Con�nuous monitoring
and analysis

Fig. 2. Pipelines: a) Predicate prediction; b) Predictive compliance monitoring

5. Performance: In literature, predicate prediction, is mostly applied in the con-
text of simple scenarios. Simple here refers to i) compliance constraints of
limited complexity such as service level agreements and ii) a limited number
of predicates. The reason is that the encoding of i) is more manageable for
simple compliance constraints and ii) keeps the number of prediction models
limited that are necessary for predicate prediction (recall that for n compli-
ance constraints, n prediction models are to be created). However, real-world
scenarios can look very different [32]: contrary to i), compliance constraints
that stem from regulatory documents such as the GDPR are complex and
refer to multiple process perspectives. Contrary to ii) there might be several
hundred compliance constraints that are imposed on one process [28]. Sup-
porting predicate prediction for full-blown real-world scenarios would possibly
lead to a large number of complex prediction models, resulting in performance
issues.

6. Transparency: Predicate prediction yields a binary answer, i.e., either “the
predicate is violated” (possibly with a counterexample) or ”the predicate is
not violated”. Though this constitutes an essential information, in particular
in the case of violations, often some sort of reaction is required. At least, it
should become transparent why a violation occurred and for which instance(s)
(root cause). Without this information, it is difficult for users to decide on
remedy actions.

7. Maintainability: In predicate and compliance prediction in general, two
sources of change might occur. First of all, changes of the process and its
instances might become necessary, reflected by concept drift in the pro-
cess event log. Secondly, changes in the set of compliance constraints might
be performed by adding, deleting, and updating compliance constraints.
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Compliance constraint changes can occur frequently, e.g.: “Bank regulations
change about every 12min”3. For predicate prediction, a compliance con-
straint change requires the adaptation of the associated prediction model,
i.e., m compliance constraint changes result in the adaptation of m predic-
tion models.

In order to tackle Limitations 5.– 7., again, we advocate an inversion of the
comply and predict pipeline shown in Fig. 2a). Instead of encoding compliance
constraints and predicting their violations afterwards, we suggest the predict and
comply pipeline denoted as predictive compliance monitoring [32], depicted in
Fig. 2b): at first, predicting takes places through process monitoring approaches
with different prediction goals such as next activity, remaining time, outcome,
and other key performance indicators are applied (predict), followed by a map-
ping to the set of compliance constraints (comply).

In the following, we will contrast the different pipelines and approaches. For
this, we take the perspective of a holistic system and generalize the pipelines into
process-agnostic and process-aware automation (cf. Sect. 2). Finally, research
implications with a focus on Petri nets will be provided in Sect. 3.

2 Process-Agnostic and Process-Aware Automation

In the introduction, pipelines for process automation and mining as well as
prediction and compliance are shown, i.e., the current mine and automate and
the inverted automate and mine pipeline as well as the current comply and
predict and the inverted predict and comply pipeline. From a system perspective,
the two pipelines are not separated from each other, i.e., a holistic system can
support both. Figure 3 shows the system perspective realizing the mine and
automate and comply and predict pipelines on the left side and the system
perspective realizing the automate and mine and predict and comply pipelines on
the right side. Due to the fact, that the system perspective on the right side takes
an explicit process-aware point of view by employing a process engine or process-
aware information system, we refer to it as PAWA: process-aware automation.
Symmetrically, we refer to the system on the left side, where automation is
restricted to single tasks, as PAGA: process-agnostic automation.

In current PAGA systems, the event and data stream is extracted by ETL
pipelines from logs of the machine, ERP systems, and further systems as depicted
in Fig. 3. A multi-perspective process model is mined through process discovery,
conformance checking, and enriching the process model with additional perspec-
tives using further mining methods, e.g., decision and organizational mining [12].
The machine, ERP systems and further systems are then enhanced through pro-
cess analysts, domain experts, and/or developers as a result of insights gained
from analysing the multi-perspective process model. Enhancing refines robotic
process automation as shown for the mine and automate pipeline depicted in
3 https://thefinanser.com/2017/01/bank-regulations-change-every-12-minutes (last
accessed 2023-04-03).

https://thefinanser.com/2017/01/bank-regulations-change-every-12-minutes
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Fig. 1 by additionally optimizing existing automatic activities in the process
model, ad-hoc activities to mitigate possible problems that conformance check-
ing has unveiled, or circumventing bottlenecks by assigning further resources to
an activity.

The current state is dominated by the relational perspective of ERP sys-
tems that comes with major drawbacks. First, directly connecting to ERP and
further relational information systems necessitates sophisticated ETL pipelines
that emphasize ex-post over ex-ante views. Second, the lack of the process per-
spective in relational systems nudges the analysis to choose the traditional mine
and automate line of action (cf. Sect. 1 and Fig. 1) such that the corresponding
disadvantages apply.

Fig. 3. System View Comparison

PAWA systems serve as an orchestration and automation environment that
integrates the machine, ERP, and the system views (cf. Fig. 3). This enables
the implementation and execution of arbitrary processes (→ Limitation 1). To
illustrate this, in [29], we provide a classification of process automation scenarios
in manufacturing along the two dimensions of “human involvement” and “green
field – brown field”. This results in four automation classes that we have found
and realized across 16 real-world process scenarios. More precisely, the process
scenarios were modeled, implemented, and hence automated using the cloud pro-
cess execution engine cpee.org [25]. The scenarios comprise i) a robotic process
automation scenario (low human involvement, brown field), ii) fully automated
process orchestration (low human involvement, green field), iii) process-oriented
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user support (high human involvement, brown field), and iv) interactive process
automation (high human involvement, green field). i) was chosen to automate
a task due to a black box application system to be invoked. ii) orchestrates the
tasks of a robot, a machine, and measurement equipment. A video of the execu-
tion of the process orchestration can be found here4. iii) includes the automat-
ically generated instructions to be shown at work stations for staff in a process
with more than 20.000 variants. iv) features the on the fly creation and rout-
ing in process models based on interactions between human users and physical
devices such as machines [22] or other utilities, e.g., in the care domain [33]. Such
process scenarios are not only prevalent for the manufacturing domain, but also
for other domains such as health care and logistics which integrate “physical”
aspects (machines, vehicles) and human work. The variety of scenarios underpins
that robotic process automation can be supported by a PAWA system, but is
only one piece. PAWA systems are able to support any process orchestration and
integrate different systems, human work, and physical devices along the process
logic.

Moreover, PAWA systems can be employed to collect data in a systematic,
integrated, and contextualized manner (→ Limitation 2), i.e., they log every
event emitted during process execution and on top of that, PAWA systems can
collect and log process context data, e.g., IoT data in domains such as produc-
tion, health care, and logistics. The combined collection of process and IoT data
has gained interest lately, resulting in an extension of the process event log stan-
dard eXtensible event stream (XES)5, i.e., the XES Sensor Stream extension
[24]. This way, process engines and process-aware information systems serve as
systems for the process-oriented and contextualized collection of process data at
an arbitrary granularity (as defined in the process models) and a trusted, high
quality level (****(*) star level according to the L∗ data quality model for pro-
cess mining [3]) [30]. Using, for example, cpee.org as process collection system,
we collected and published three real-world process event logs with additional
context data6. Two data sets comprise data from public transport, augmented
with context data on weather, traffic, etc. and one data set stems from the
production domain on producing a chess piece.

In addition, PAWA systems collect and log data at an time, i.e., in an ex-post
manner as process event logs and during runtime as process event streams (→
Limitation 3). This also includes the runtime collection of context data such as
sensor streams. In particular, the online collection of event streams facilitates
the early detection of concept drifts [35] (→ Limitation 4).

Up to this point, we discussed how PAGA and PAWA systems realize the
mine and automate and automate and mine pipelines shown in Fig. 1. PAGA
and PAWA systems can also realize the comply and predict and predict and

4 https://lehre.bpm.in.tum.de/∼mangler/.Slides/media/media1.mp4, last accessed
2023-04-04.

5 www.xes-standard.org.
6 https://zenodo.org/communities/processmining.

https://lehre.bpm.in.tum.de/~mangler/.Slides/media/media1.mp4
www.xes-standard.org
https://zenodo.org/communities/processmining
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comply pipelines shown in Fig. 2, i.e., on the PAGA side by predicate prediction
and on the PAWA side as predictive compliance monitoring components.

We conducted a comprehensive literature review covering the research areas
of predictive process monitoring and compliance monitoring (see, e.g., [20]) with
respect to functionalities required for building a predictive compliance moni-
toring system [31]. A system that supports predictive compliance monitoring
employs the predict and comply pipeline (cf. Fig. 2b) to predict the future
progress of the monitored system and to monitor compliance on top of the
predictions and interprets them from a systems perspective. An abstract view
on how to integrate predictive compliance monitoring into a PAWA system is
depicted in Fig. 3, contrasted by the current state of how predicate prediction is
conceptualized and implemented in a PAGA system.

In PAGA systems, due to the current lack of the process perspective in the
monitored system and in the prediction models, the results of predicting com-
pliance violations have to be manually transformed into actions that can be
executed on an ERP system by notifying the respective employee (enhance).

In PAWA systems, the goal of predictive compliance monitoring centers
around the process perspective (cf. Fig. 3). By automating existing ERP sys-
tems or substituting existing systems through a PAWA system, ETL pipelines
are replaced by a simple connection to the logging service of PAWA system. The
optional mine and the compulsory predict separately consume the event and
data stream from the logging services. While mine is concerned with discovering
process models, analysing structural and behavioral properties of process models
and checking conformance, predict focuses on a single prediction model trained
to predict the future event and data stream of the overall process, i.e., the pre-
diction goal is a stream prediction (→ Limitations 3. and 4.). The prediction
model can additionally take the mined process model as input such that the
prediction of the event and data stream is based on the respective execution
states of running instances in the process model. Overall, the prediction goal
consists of future events and, in particular, data attributes. If required for very
important compliance constraints, the inverted, specialized comply and predict
pipeline (predicate prediction) can be added to the predictive compliance mon-
itoring system such that an independent prediction model for the very impor-
tant compliance constraint is trained. Stream predictions of the process are the
input to comply, while predicted violations of independent prediction models
can directly trigger mitigation actions in the monitored system. Given a stream
prediction, comply checks compliance of the compliance constraints resulting in
various compliance states. Due to the process perspective inherent in PAWA sys-
tems, predicted compliance states can automatically trigger mitigation actions,
e.g., by adding ad-hoc activities to an ongoing process instance.

Note that predictive compliance monitoring could also be integrated into the
PAGA system, inheriting its limitations due to enhance and the data collec-
tion. More importantly, note that the distinction into predicate prediction and
predictive compliance monitoring does not only apply to the domain of process
mining and automation, but also to the more general area of event prediction [7].
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At this point, we have to say that there is no solution for predictive compliance
monitoring yet and the “sweet spot” between predicate prediction and predic-
tive compliance monitoring w.r.t. prediction quality and limitations has to be
investigated [32].

Due to its process centricity, the PAWA system comes with the following
advantages regarding predictive compliance monitoring:

– Performance and maintainability of the prediction model (→ Limitations 5.
and 7.): If the set of compliance constraints is updated, no retraining of the
prediction model is necessary due to the clear separation of the prediction
model and the compliance checking. Furthermore, no new prediction models
have to be trained for new or updated constraints.

– Transparency and explainability of the predictve process monitoring system
(→ Limitation 6.): As the prediction model predicts the future event and data
streams, violations of compliance states can be pinpointed to their respective
events or data attributes in the stream. Hence, the predicted violation is
transparent and explainable.

– Actionable mitigations: Due to the process centricity of the PAGA system,
compliance states can directly trigger actions in the process engine, e.g.,
through adding ad-hoc activities, or spawning instances of specialized miti-
gation processes.

3 Implications on Research

In the introduction, we raise seven limitations with current mine and automate as
well as comply and predict pipelines which are integrated and analyzed through
the systems perspective (PAGA vs. PAWA in Fig. 3). In the following, we will
derive research implications with a focus on Petri net based research.

Soundness Verification for Automatic Changes to Automation. The
system view comparison in Fig. 3 shows the two extreme sides of a continu-
ous automation scale supported by process mining. A company on the move
to process-aware automation can exhibit both automation systems, i.e., PAGA
and PAWA, at the same time, as not all parts of the company are yet shifted
to PAWA. During the transition, companies can benefit from support on how to
shift from the manual enhance to the machine-enactable automate (cf. Fig. 3).

Petri Nets for Process-Aware Automation. Although Petri nets have been
proposed and applied for process execution in the past (cmp. FUNSOFT Nets
[10] in 1998), it remains not fully clear which Petri net class is sufficient to be
used as execution model in PAWA. Recent candidates include object-centric Petri
nets [4], Petri nets with identifiers [38], and colored Petri nets [16]. The main
question is to keep the balance between expressive power to model all process
perspectives and preventing problems such as checking soundness from becoming
undecidable. Hence, research on Petri nets classes such as object-centric Petri
nets or Petri nets with identifiers is ongoing.
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Conformance Checking on Petri Net Process Models of Collaborative
Systems. Conformance checking techniques for object-centric Petri nets and
Petri nets with identifiers comparable to alignment-based conformance checking
for sound workflow nets are missing. Also, replay-based techniques are yet miss-
ing, as the only existing object-centric Petri net implementation in PM4PY7

does not feature replay.

Rescheduling Processes Execution - Checking and Balancing Resource
Utilization. Whenever automatic changes are made, resource utilization may
be affected. As multiple processes may share the same resources, optimization
regarding resource utilization leads to better throughput. Scheduling of resource
allocation with timed Petri nets (cmp. [15]) based on process models, can allow
for simple, automatic and explainable solutions.

Instance and Process Spanning Constraints. Research on predicting and
checking compliance has focused on intra-instance constraints so far. Predicting
compliance states for instance and process spanning constraints remains an open
research problem [31].

Provision of Mitigation Actions. Automatically providing mitigation actions
for compliance violations, in particular at different granularity levels, and ana-
lyzing and visualizing their effects is relevant for both, predicate prediction and
predictive process monitoring, but yet to be solved [31].

Visualization and explanation of predictions and violations. Visual-
ization approaches for prediction results and future compliance violations are
mostly missing. Moreover, root cause analysis has to be extended in order to
deal with predicting violations of real-world compliance constraints [31].

Online Predictive Process Monitoring and Updating Compliance
States. Since predictive process monitoring predicts future event and data
streams given current event and data streams, prediction methods such as deep
learning cannot be applied for cases with frequent process adaptations. It is not
clear for which process environments existing prediction methods are capable
of updating the prediction model after each incoming event with data or which
batching methods are required such that existing prediction methods exhibit
a sufficient performance. Continuous update of prediction models and predic-
tions also results in continuous update of compliance states. It is open which
granularity levels for compliance states, i.e., event-level, instance-level, process-
level, multi-process-level, and multi-organisation-level, are supporting the users
in understanding the current system state. Moreover, it is unclear how compli-
ance states can be transformed between different granularity levels [31].

7 https://pm4py.fit.fraunhofer.de/.

https://pm4py.fit.fraunhofer.de/
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Data Properties and Quality. Exploiting data properties and quality is an
emerging research topic. Considering data quality, data values of low quality may
point to a compliance violation, e.g., redundant sensors fail quickly after each
other. The relation of data quality with compliance violation that goes beyond
merely removing low quality data points or imputating data values may reveal
further insights.
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