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PSNet: Towards Efficient Image Restoration
With Self-Attention

Yuning Cui

Abstract—Image restoration aims to recover a clean image from
various degradations, e.g., haze, snow, and blur, playing an impor-
tant role in robot vision, autonomous vehicles, and medical imag-
ing. Recently, the use of Transformer has witnessed a significant
improvement in multifarious image restoration tasks. However,
despite a few remedies to reduce the quadratic complexity of
self-attention, these approaches are still impractical for real-world
applications, which need high efficiency and speed. To ameliorate
this issue, we propose an efficient framework for image restoration
based on self-attention. To this end, we combine the strengths
of patch-based and strip-based self-attention units to improve
efficiency. More specifically, we apply self-attention of different
operation scales to features of different resolutions, i.e., we adopt a
relatively smaller region for self-attention on high-resolution fea-
tures while a larger region for low-restoration features. In addition,
instead of using global self-attention in each partitioned region,
we leverage a strip-based version for low complexity. To further
improve efficiency, we insert our design into a U-shaped CNN
network to establish our framework, dubbed PSNet. Extensive
experiments demonstrate that our network receives state-of-the-art
performance on five representative image restoration tasks with low
computational complexity and high speed, including single-image
defocus deblurring, image dehazing, image motion deblurring,
image desnowing, and image denoising.

Index Terms—Deep learning for visual perception, visual
learning, representation learning.

1. INTRODUCTION

UE to the physical limitation of devices or bad weather,
D the captured images often suffer from various degrada-
tions, e.g., snowflake, haze, and noise. Such degradations often
degrade the visibility of images and affect the performance of
high-level tasks, such as object detection and segmentation. In
this regard, image restoration is immensely conducive by remov-
ing those undesired degradations and reconstructing the latent
clean image. Towards this ill-posed problem, many conventional
algorithms have been proposed by using various hand-crafted
features. However, these methods are not robust enough to apply
to the more complicated real-world scenarios [1], [2].

With the rapid development of convolutional neural networks
(CNNs), a multitude of data-driven CNN-based networks have
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been developed, which have a strong ability to learn general-
izable priors from large-scale collected datasets. Despite the
improved performance, the convolution operator has two main
defects. Firstly, it has a limited receptive field, which is disad-
vantageous to manage large-scale degradation blurs. Secondly,
the fixed kernel values are not flexible enough to remove non-
uniform blurs and adapt to inputs [2].

To ameliorate the above-mentioned issues, Transformer mod-
els have been introduced into low-level tasks and have signif-
icantly advanced the performance of image restoration tasks,
e.g., image dehazing [5], deblurring [6], and desnowing [7].
Despite a few remedies to reduce the inherited quadratic com-
putational complexity, these frameworks still have heavy com-
putation overhead and are not applicable to practical applica-
tions. For example, Restormer [6] takes 1.218 seconds to pro-
cess a 720 x 1280 blurry image.' DehazeFormer-L [1] obtains
40.05 dB PSNR on the dehazing dataset SOTS-Indoor [3] while
having 279.7 G FLOPs, which is about five times more than the
CNN-based AECR-Net” [8].

In this study, we propose an efficient image restoration frame-
work, dubbed PSNet, which is established on patch-based and
strip-based self-attention units. We elaborately design the region
size for self-attention to achieve our goal. Concretely, we apply
the relatively large attention operation region to low-resolution
features while we use a small region for high-resolution features.
To further improve efficiency, instead of performing global
self-attention in each region as window-based self-attention [9],
the two-direction strip-based self-attention is leveraged for in-
formation aggregation.

Incorporating our design into a U-shaped backbone, our
simple convolutional framework achieves state-of-the-art per-
formance on several image restoration tasks. The main contri-
butions of this study can be summarized as follows:

® We propose an efficient image restoration framework,

named PSNet, which enhances representation learning
while remaining efficient by elaborately determining the
operation region size for self-attention.

e The proposed network achieves state-of-the-art perfor-

mance on 13 benchmark datasets among five image restora-
tion tasks, including single-image defocus deblurring, im-
age dehazing, image desnowing, image motion deblurring,
and image denoising.

!Inference time is computed on an NVIDIA Tesla V100 GPU with Intel Xeon
Platinum 8255 C CPU.
2FLOPs are measured on 256 x 256 patches.
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Fig. 1. Comparisons between PSNet and other state-of-the-art algorithms.

Left: PSNR vs. FLOPs on the SOTS-Indoor [3] dataset for image dehazing.
Right: PSNR vs. normalized inference time (by ours) on the GoPro [4] dataset
for image motion deblurring.

II. RELATED WORK

Image restoration aims to recover a clean image from
a degraded observation. Conventional methods are mostly
based on various assumptions and hand-crafted features. Re-
cent CNN-based methods have produced a promising per-
formance for image restoration tasks with advanced designs,
such as encoder-decoder architecture [10] and various atten-
tion units [11], [12]. For instance, Qin et al. [12] proposed
an attention module by combining the channel attention and
pixel attention mechanism for image dehazing. Cho et al. [10]
developed a coarse-to-fine deblurring network based on multi-
input and multi-output techniques. Lee et al. [13] presented
the iterative adaptive convolution to handle spatially vary-
ing defocus blur. However, the convolution operator is inca-
pable of providing large receptive fields and adapting to input
features.

Recently, inspired by their success in high-level vision tasks,
Transformer models have been introduced into image restoration
to model long-range dependencies. To reduce the complexity of
self-attention, a few methods have been proposed. Wang et al. [9]
adopted the window-based self-attention by restricting the re-
gion of self-attention. Zamir et al. [6] switched self-attention
from the spatial dimension to the channel dimension. However,
this operation sacrifices the spatial modeling ability for high
efficiency. Tsai et al. [14] proposed an efficient Transformer
model using strip-based self-attention. In this article, we further
reduce the complexity of strip-type self-attention by introduc-
ing different partition schemes according to the resolution of
features.

III. METHODOLOGY

We first delineate the overall pipeline of PSNet. Next, we in-
troduce the details of our efficient self-attention module. Finally,
the used loss functions are introduced.

A. Overall Pipeline

The schematic of PSNet is illustrated in Fig. 2. As shown
in Fig. 2(a), our network adopts the popular encoder-decoder
solution to learn hierarchical features. The encoder and decoder
sub-networks both contain three scales. Here, the scale refers to
the resolution of features, and the first scale has the highest reso-
Iution. Specifically, given a degraded image of size H x W x 3,
where H x W denotes spatial locations, and 3 represents the
number of channels. PSNet first employs a 3 x 3 convolution to
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extract shallow features of size H x W x C. Then the shallow
features are fed into the ResBlock and IA-S (Small) to obtain
the output of the first scale. ResBlock is comprised of n residual
blocks, which contain two 3 x 3 convolutional layers with a
GELU activation function in between, as illustrated in Fig. 2(b).
Next, the resulting features are down-sampled to the size of
4 % W % 2C by a strided convolution. The deepest features
are yielded after three scales of the encoder network.

To restore the clean image, the deepest features pass through
the decoder network, which has a similar architecture to the
encoder network. During this process, decoder features are con-
catenated with the encoder features, followed by 1 x 1 convolu-
tion to reduce channels by half. The final predicted sharp image
is generated after the image-level skip connection. Up-sampling
operation is implemented by transposed convolution.

Our efficient attention module (EAM) is inserted into a
residual block to establish the information aggregation (IA)
module, as represented in Fig. 2(c). Moreover, to inject more
information about the input image into the network and provide
more supervision signals, we apply the multi-input and multi-
output strategies, following previous algorithms [10], [15], [16].
Specifically, the input of reduced resolution is merged into the
mainstream via a simple convolution block and concatenation,
followed by a convolution to adjust the number of channels. In
addition, the decoder network outputs the low-resolution images
after IA-L (Large) and IA-M (Medium) to assist in training.

B. Efficient Attention Module (EAM)

EAM, which involves our partition schemes and the self-
attention operation, is used to perform information aggregation
and improve representation learning for image restoration. The
two-direction strip-based attention [14] carries out the self-
attention operation while the partition part determines the region
size for the former.

1) Strip-Based Self-Attention: Since the vertical and hori-
zontal strip-based self-attention units share a similar paradigm,
we take the horizontal self-attention (HSA) as an example,
as illustrated in Fig. 2(d). Given any input X" ¢ R WG
we first split X" into non-overlapping horizontal strips as
XPie{1,2,..., H'}. Following previous algorithms [6], [ 14],
we produce query (Qf), key (K/%), and value (V}}) with the
multi-head mechanism as

QY K, vy = (xIwR XPWE XMWY ()

177 177

where WJQ, WJK, and WjV eRT*%,j € {1,2,...,d} denote
projection matrices, and d is the number of heads. Next, the
enhanced features can be obtained via multi-head attention,
expressed as:

: QU (k)T

X = Softmax(—Z—2

! ( VCO/2d

Thus, the output features of HSA can be obtained as Xhe
RHA W< g by concatenating all heads over channel dimension
and folding all horizontal strips among vertical direction. The
whole process of HSA can be concluded as follows:

Xh =HSA(X") 3)

h
WVij

@)
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Architecture of PSNet for image restoration. (a) The overall pipeline of PSNet. (b) ResBlock contains n residual blocks. (c) Information aggregation

(IA) module with different configurations, i.e., EAM-S, EAM-M, and EAM-L. (d) Efficient self-attention module (EAM) mainly contains horizontal self-attention
(HSA), vertical self-attention (VSA), and different Partition variants, i.e., Partition-S (e), Partition-M (f), and Partition-L (g).

Similarly, the output features of the vertical branch (VSA) can
be yielded by:

Xv = VSA(X?) e RW'*H'*5 “

2) Partition: To improve efficiency, we partition features
before passing them through strip attention. On the basis of the
resolution of features, we introduce three Partition variants.

Partition-S (Small): As illustrated in Fig. 2(e), the input fea-
tures have been split into two components of size H x W X %
To reduce the operation region of strip-based attention, the
bottom part is first partitioned into four patches, which are then
concatenated into the size of % X % x 2 C'. This process is not
shown in the figure for simplicity. Next, the width of resulting
patches is further reduced by half, and the size of reshaped
features is H x % x 2 C'. During this process, each pixel can
receive information from the corresponding location of other
patches, which implicitly enlarges the receptive field. Similarly,
the above process can be applied to the other half of features
to obtain features of size % x W x 2 C, which is transposed to
W x & x 2 C before being fed into VSA.

Partition-M (Medium): Since the second scales of both en-
coder and decoder networks have relatively smaller features
than that of the first scale, we enlarge the attention region to

obtain large-scale receptive fields. As illustrated in Fig. 2(f),

Encoder

Decoder

Partition-S Partition-M Partition-L

Fig. 3. Schematic of three Partition methods. The encoder network performs
information aggregation in the order of a small region to a large region. The
decoder network applies the opposite order to recover clean features in a coarse-
to-fine manner.

the height of the top features is reduced by half. The sizes
of input features for VSA and HSA are 2W x % X % and
2H x % X %, respectively. As illustrated in Fig. 3, the recep-
tive fields have been enlarged to the half size of features in two
directions.

Partition-L (Large): Partition-L is utilized in the third scale
of both encoder and decoder networks, which have the smallest
resolution features. For this variant, we do not partition the input
into patches and apply two-direction strip-based self-attention
to the full resolution to obtain the global receptive field, as
illustrated in Fig. 3.
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As represented in Fig. 2(a), different Partition variants are
used in the order of Partition-S, Partition-M, and Partition-L in
the encoder sub-network, and the opposite order is applied to
the decoder. This design has two key advantages. Firstly, we use
small patches on high-resolution furthers and large patches for
low-resolution features, leading to high efficiency. Secondly, in
the encoder, the receptive fields are enlarged gradually, helping
encode information in a local-to-global manner. As a result, the
deepest features have more information about the locations of
degradation blurs. In contrast, in the decoder network, the order
of using Partition versions helps the model restore clean features
in a coarse-to-fine manner, which is consistent with previous
multi-stage frameworks [17].

Complexity analyses: Compared to the strip-based self-
attention, whose complexity is Q(Strip) = HW(H + W)C,
our Partition-S and Partition-M are more efficient with the com-
plexity of 1Q(Strip) and 1Q(Strip), respectively. Partition-L
has the same complexity as the strip attention. Note that we
do not take into consideration linear layers for simplicity when
computing complexity.

3) Overall Pipeline of EAM: With input I € RE*XWx*C e
first utilize a LayerNorm layer followed by a 1 x 1 convolution
to obtain input features for the Partition part. Then the resulting
features are split into two parts among the channel dimension.
The above process can be expressed as:

I, 1V = Split(f1.1 (LN(I))) 5)

where f1,1 and LN denote 1 x 1 convolution layer and layer
normalization, respectively; and I", I € RH¥*W>% represent
input features of Partition part. After being processed by two-
direction attention, the final output of EAM can be obtained by:

I=fra((RUI"),RIV)) +1 (6)

where R means reshaping the resulting features of two-direction
attention to H x W x %, and [-, -] is concatenation.

C. Loss Function

In this study, we leverage [; loss in two domains to train
our PSNet. For same-size input/output images, dual-domain loss
functions [10] are given by:

1 4 1 .
£.=5I0=0l, £;=IFO)-FO): O

where t denotes the number of total elements for normalization;
O and O represent the predicted and ground-truth images, re-
spectively; and F denotes the fast Fourier transform. The overall
loss function is obtained by combining the above two terms:
L= Ls+ ALy, where A is set to 0.1.

IV. EXPERIMENTS

In this part, we first introduce the datasets and implemen-
tation details. Next, we present the experimental results. In the
tables, the best performance is highlighted in bold. Unless stated
otherwise, FLOPs are measured on 256 x 256 patches.
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A. Experimental Setup

1) Datasets: We evaluate PSNet on five restoration tasks:
single-image defocus deblurring, image dehazing, image motion
deblurring, image desnowing, and image denoising.

Image dehazing: We use the RESIDE [3] dataset for daytime
dehazing. It contains two training subsets, i.e., ITS and OTS,
and a testing set, SOTS. Following previous methods [5], [18],
we evaluate the ITS-trained and OTS-trained models on SOTS-
Indoor and SOTS-Outdoor test sets, respectively. In addition to
the daytime dataset, we further evaluate our model on the night-
time dataset, i.e., NHR [19]. Furthermore, we evaluate PSNet on
three real-world datasets: Dense-Haze [20], NH-HAZE [21] and
NH-HAZE?2 [22]. Models are trained for 300 epochs on ITS [3]
and NHR [19], and 30 epochs for OTS [3]. Following [5], the
models are trained for 5000 epochs on real-world datasets.

Motion deblurring: We verify the effectiveness of our model
on GoPro [4] for motion deblurring. GoPro contains 2103 and
1111 clean/degraded image pairs for training and testing, re-
spectively. Moreover, to demonstrate the generalization ability
of our method, we directly apply the GoPro-trained model to
the HIDE [23] dataset, which has 2025 image pairs for testing.
Following previous methods [10], [17], the model is trained for
3000 epochs on GoPro.

Defocus deblurring: DPDD [24] is leveraged to evaluate the
efficacy of PSNet. DPDD contains 500 indoot/outdoor scenes,
each with four images labeled as center view, left view, right
view, and an all-in-focus ground-truth image. Our model is
trained by inputting the center view image. The training strategy
follows the previous method [25].

Image desnowing: We adopt three widely used datasets,
CSD [26], SRRS [27], and Snow 100K [28], for the desnowing
task. We train PSNet for 800 epochs on each dataset.

Image denoising: We train PSNet for 120 epochs using the
same composite dataset as Restormer [6]. We train a separate
model for each noise level.

2) Implementation Details: Adam serves as the optimizer
with the initial learning rate as 1e*, gradually reduced to 1e =%
with cosine annealing. We adopt random horizontal flips for
data augmentation. With the exception of NHR [19]/denoising
and NH-HAZE [21], where the batch size is set to 8 and 2,
respectively, four samples are fed into models for each iteration.
Models are trained on 256 x 256 patches except for real-world
dehazing datasets where the patch size is 600 x 800. The number
of residual blocks in ResBlock, i.e., n in Fig. 2(b), is set to 3
and 15 for dehazing/desnowing and deblurring/denoising. The
number of heads in EAM is set to 4.

B. Experimental Results

1) Image Dehazing: The daytime dehazing results on SOTS-
Indoor and SOTS-Outdoor datasets [3] are shown in Table I. Our
method achieves better performance than other state-of-the-art
algorithms. Specifically, PSNet obtains a significant perfor-
mance gain of 2.42 dB in terms of PSNR over DeHamer [5] on
SOTS-Outdoor with only 3% parameters. In addition, PSNet is
superior to DehazeFormer-L [1] by 0.4 dB on SOTS-Indoor with
86% fewer complexity (Fig. 1). We provide visual comparisons
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TABLE 1
IMAGE DEHAZING RESULTS ON THE SOTS [3] DATASET
Outdoor Indoor Params FLOPs
Methods PSNR SSIM |PSNR SSIM| (M) (G)
GDNet [29] 30.86 0.982|32.16 0.984| 0.956 21.49
FFA-Net [12] 33.57 0.984|36.39 0989 | 4456 287.8
DeHamer [5] 35.18 0.986 | 36.63 0.988 | 132.45 48.93
PMNet [18] 3474 0985|3841 0990| 1890 81.13
DehazeFormer-L [1] - - 40.05 0.996 | 25.44 279.7
PSNet 37.60 0.995 | 40.45 0.996 | 4.07  40.08
TABLE I
IMAGE DEHAZING RESULTS ON THE REAL-WORLD DATASETS
Dense-Haze | NH-HAZE | NH-HAZE2
Method PSNR SSIM [ PSNR SSIM | PSNR SSIM | FLOPs/G
GDNet [29] 13.31 0.368 | 13.80 0.537 | 19.26 0.805| 21.49
FFA-Net [12] | 1439 0.452 | 19.87 0.692 | 20.00 0.823 | 287.8
AECR-Net [8] | 15.80 0.466 | 19.88 0.717 | 20.68 0.828 | 52.20
DeHamer [5] | 16.62 0.560 | 20.66 0.684 - - 48.93
C2ZPNet [30] 16.88 0.573 - - 21.19 0.833| 462.24
PSNet 16.90 0.631 | 20.24 0.796 | 21.51 0.894 | 40.08
TABLE III

NIGHTTIME IMAGE DEHAZING RESULTS ON THE NHR [19] DATASET

GS MRPF MRP OSFD HCD PSNet
Method | [31] [32] [32] [19] [33] Ours
PSNR | 17.32 1695 19.93 2132 2343 2547
SSIM | 0.629 0.667 0.777 0.804 0.953  0.959
TABLE IV

IMAGE DESNOWING RESULTS ON THREE WIDELY USED DATASETS: CSD [26],
SRRS [27], AND SNOW100K [28]

CSD [26] | SRRS [27] |Snow 100K [28]

Method PSNR SSIM|[PSNR SSIM|[PSNR SSIM |FLOPs/G
DesnowNet [28]/20.13 0.81 {20.38 0.84 [30.50 0.94 1.7K
JSTASR [27] 27.96 0.88 |25.82 0.89(23.12 0.86 -
SMGARN [34] [31.93 0.95 (29.14 0.94|31.92 0.93 450.3
TKL [35] 33.89 0.96 |130.82 0.96 |34.37 0.95 41.58
DGUNet [36] |34.74 0.97 |31.28 0.96 |34.21 0.95 199.74
PSNet 37.61 0.99 (31.89 0.98 (33.81 0.96 40.08

on SOTS-Indoor in Fig. 4. As can be seen, our PSNet is more ef-
fective in removing hazy blurs than other methods and produces
more visually-pleasing results. In addition, Table II shows that
our model obtains favorable results on three real-world datasets.
Furthermore, the results on the nighttime dataset NHR [19]
are reported in Table III. Our model outperforms the recent
algorithm HCD [33] by a large margin of 2.04 dB PSNR. Fig. 6
illustrates that the images yielded by our method are visually
closer to the targets.

2) Image Desnowing: The results on three desnowing
datasets are reported in Table IV. The proposed PSNet obtains
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PSNet (Ours) ]

Target

Image dehazing results on the SOTS-Indoor [3] test set. Zoom in for the best view. The quantitative results are computed on full images.

TABLE V
GAUSSIAN GRAYSCALE IMAGE DENOISING RESULTS ON BSD68 [37]

Method o=15 | 0=25 | 0=50 | FLOPs/G
DeamNet [38] | 31.91 | 29.44 | 26.54 146
DAGL [39] 31.93 | 29.46 | 26.51 256
SwinIR [40] 31.97 | 29.50 | 26.58 759
Restormer [6] 31.96 | 29.52 | 26.62 141
PSNet 31.96 | 29.53 | 26.65 127

the best performance in all categories. Specifically, our model
outperforms NAFNet [44] on the CSD [26] dataset by a large
margin of 4.48 dB in terms of PSRN. In addition, our method is
superior to TransWeather [45] on all datasets with only 18.6%
parameters. Fig. 5 illustrates that our model produces a more
high-quality image than other methods.

3) Image Denoising: Table V shows that our method outper-
forms Restormer [6] by 0.03 dB (¢=50) and 0.01 dB (c=25)
on the BSD68 dataset [37] with lower FLOPs. The visual com-
parisons are presented in Fig. 7. The proposed PSNet yields a
sharper image than Restormer [6] for o=50.

4) Single-Image Defocus Deblurring: The results on
DPDD [24] are shown in Table VI. Our PSNet receives
the best performance on most metrics. Particularly in the
indoor scenes category, PSNet significantly outperforms
Restormer [6] by 0.43 dB PSNR. Compared to the CNN-based
method DRBNet [25], our method produces a substantial
gain of 0.63 dB PSNR on the combined scene category.
Fig. 8 illustrates that PSNet is more effective in removing
spatially-varying degradation blur than other algorithms.

5) Image Motion Deblurring: The results on the GoPro [4]
dataset are represented in Table VII. The proposed PSNet obtains
a performance gain of 0.07 dB in terms of PSNR over the strong
Transformer model Restormer [6] with about half parameters,
lower computational complexity, and 3.05x faster speed, as
illustrated in Fig. 1 (Right). The results demonstrate the efficacy
of our method. The visual results are illustrated in Fig. 9. Our
method reconstructs more details from the difficult example than
other methods. Moreover, we verify the generalization ability of
our framework by directly applying the GoPro-trained model to
the HIDE [23] dataset. The results are reported in Table VIII.
Our method receives 0.09 dB PSNR performance gain compared
to the Transformer-based model Uformer [9].

6) Effects on Downstream Tasks: We study the effects of our
method on robotic applications, e.g., detection and segmenta-
tion, using YOLOvV7 [48] and SAM [49], respectively. Fig. 10
and Fig. 11 show that the deblurring results of PSNet are bene-
ficial for detection and segmentation, respectively. Specifically,
the person can be detected in the resulting image of our method.
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JSTASR

HDCW-Net

PSNet (Ours)

Fig.5. Image desnowing results on the CSD [26] dataset. Zoom in for the best view.
TABLE VI
SINGLE-IMAGE DEFOCUS DEBLURRING RESULTS ON THE DPDD [24] DATASET. FLOPS ARE MEASURED ON THE 720 x 1280 PATCH
Indoor Scenes Outdoor Scenes Combined
Method PSNRT SSIMT MAE] LPIPS] | PSNRT SSIMT MAE] LPIPS] | PSNRT SSIMT MAE| LPIPS] | FLOPs/G
DPDNet [24] | 26.54 0.816  0.031 0.239 22.25 0.682  0.056 0.313 24.34 0.747  0.044 0.277 770
AlIFNet [41] - - 24.21 0.742 - 0.309 1747
MDP [42] 28.02 0.841 0.027 - 22.82 0.690  0.052 25.35 0.763 0.040 - 1898
DRBNet[25] - - 25.73 0.791 - 0.183 693
Restormer[6] | 28.87 0.882  0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178 1983
PSNet 29.30 0.880  0.024 0.165 23.57 0.753  0.049 0.239 26.36 0.815  0.037 0.203 1790
Input OSFD PSNet (Ours) TABLE VIII
L

Fig. 6.

Nighttime image dehazing results on the NHR [19] dataset.

IMAGE MOTION DEBLURRING RESULTS ON THE HIDE [23] DATASET

DBGAN Suin ef al. MIMO-UNet+ HINet Uformer PSNet
Method | [43] [46] [10] [47] [9] Ours
PSNR 28.94 29.98 29.99 30.32  30.83  30.92
SSIM 0.915 0.930 0.930 0932 0952 0.939

TABLE IX

ABLATION STUDIES FOR DIFFERENT PARTITION METHODS. S/M/L=IA-S/M/L

Variant

Baseline

1st scale

2rd scale

3rd scale

PSNR

wilo Ly

30.87

Tnput/9.33 dB

Fig. 7.

Restormer/25.49 dB  PSNet/25.56 dB

Target/PSNR

Gaussian grayscale denoising comparisons on BSD68 [37].

31.33
34.89
35.89
35.98
36.20

35.60

TABLE VII
IMAGE MOTION DEBLURRING RESULTS ON THE GOPRO [4] DATASET

= S0l 0 a0 O

SENENENENENENEN

Zrcllvuvnn

ErZ|EEE v

Ll ol Z|lal4dZR N

36.29
35.98

GoPro [4] Overhead
Method Date PSNR SSIM | Params/M FLOPs/G
DBGAN [43] CVPR’20| 31.10 0.942 11.6 759.85
MIMO-UNet+ [10] | ICCV’21 | 32.45 0.957 16.1 154.41
MPRNet [17] CVPR’21 | 32.66 0.959 20.1 777.01
MAXIM [16] CVPR’22| 32.86 0.961 22.2 169.5
Restormer [6] CVPR’22 3292 0.961| 26.13 140.99
PSNet Ours 32.99 0.961 13.37 127.32

Furthermore, Fig. 12 suggests that the produced haze-free image
is also useful for the environment perception in bad weather.

C. Ablation Study

We conduct ablation studies to verify the effectiveness of our
modules and investigate the influences of different numbers of
heads. All experiments are performed on RESIDE-Indoor [3]
withn = 0 (Fig. 2(b)). Other experimental settings remain iden-
tical to that of our final dehazing model (Table I). The baseline is
obtained by removing EAM from the tiny PSNet (when n = 0).

1) Effects of Each Component: We first study the effects
of the proposed Partition methods. The results are shown in

Table IX. As can be seen, the baseline model receives 31.33 dB
PSNR on the SOTS-Indoor [3] dataset. Without using the fre-
quency loss, the performance degrades to 30.87 dB. Since our
main goal of this study is to develop an efficient framework for
image restoration, we first employ IA-S in all scales of both
encoder and decoder networks, which leads to a performance
gain of 3.56 dB PSRN compared to the baseline. By substituting
IA-M for IA-S in the second sale of encoder and decoder
networks, the model (Table IX d) obtains further performance
boost of 1 dB over the variant Table IX c. In addition, the
model (Table IX e) with an additional IA-M used in the third
scale receives 35.98 dB PSNR, demonstrating the effectiveness
of enlarging receptive fields on the deepest features. Our final
model (Table IX f) obtains the best performance among methods
in the top set by introducing IA-L in the third scale.
Furthermore, we invert the order of using IA modules in
Table IX g. The model only receives 35.6 dB, 0.6 dB lower than
our choice. In addition, we adopt IA-L in all scales (Table IX h),
and the model obtains a performance gain of 0.09 over ours while
taking 52% more training time. Deploying IA-M in all scales
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18.17dB PSNR 18.71 dB 19.31dB
Input Target IFAN KPAC

21.84 dB 20.55 dB 22.90dB 24.07 dB
DeepRFT DRBNet Restormer PSNet

Fig. 8.  Single-image defocus deblurring results on the DPDD [24] dataset.

17.70 dB
Inpu

2426 dB 23.75dB 27.21dB
Suin et al. MPRNet Restormer PSNet

Fig. 9. Image motion deblurring results on the GoPro [4] dataset.

TABLE X
ABLATION STUDIES FOR THE NUMBER OF HEADS IN EAM

Heads 2 4 8 16
PSNR | 36.20 36.40 36.38 36.30

(a) Blurry image (b) Our result (Table IX i) receives the same performance as S-M-M (Table IX
e), demonstrating the efficacy of our design of applying a small
receptive field to high-resolution features. This conclusion can
also be drawn by comparing Table IX d and Table IX g, where
applying IA-L to large features leads to inferior performance.
2) Number of Heads in EMA: We further investigate the
influences of different numbers of heads in EMA by varying
d in 2. The results are represented in Table X. The performance
improves when increasing the number of heads from 2 to 4 and
(a) Blurry image (b) Our result saturates at 8 heads, which is probably caused by overfitting.
Thus, we choose 4 heads in our final model.

Fig. 10. Detection comparisons between the blurry input and our result. The
image is obtained from the GoPro [4] dataset.

Fig. 11.  Segmentation comparisons between the blurry input and our result.

V. CONCLUSION

In this study, we propose an efficient framework for image
restoration, dubbed PSNet, which elaborately determines the
operation region size for self-attention. More specifically, we ap-
ply small regions for self-attention on high-resolution features,
which improves efficiency and performance simultaneously.
In contrast, we impose self-attention on the full-size deepest
features, achieving the global receptive field, which is useful to
manage large-scale degradation blurs. Besides, the above design
also helps the decoder network recovers the clean image in a
coarse-to-fine manner. In addition, in each region, we leverage
Fig.12.  Haze-free image yielded by our method is beneficial for segmentation. EMA to perform information integration, which is established
The image is obtained from NH-HAZE2 [22]. on the more efficient strip-based self-attention, rather than the

Hazy image Ours GT
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expensive global self-attention. Comprehensive experiments on
13 benchmark datasets demonstrate that our efficient PSNet
achieves state-of-the-art performance on five image restoration
tasks.
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