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Abstract

The last two decades saw significant technical advancements in multiple domains, including the
transport and communication sectors. The emergence of smartphones and the widespread availability
of high-speed internet have revolutionized the world. This allowed the advent of widely-popular
mobility on-demand (MoD) platforms where the users can request rides from origin to destination
via online platforms. The MoD service then assigns a vehicle with a driver to the requested ride, and
both the driver and the customer receive the option to accept or reject the ride offer. The ride could
be distinguished into two types: ride-hailing (RH), where a single customer request is served at a
time, or ride-sharing (RS), where multiple customers are dynamically grouped into a single ride from
origins to destinations. However, encouraging people to share rides has met with limited success,
and RH remains the most popular mode in MoD platforms.
With the developments in autonomous vehicle (AV) technology, the appearance of autonomous

mobility on-demand (AMoD) services is also on the horizon, with some companies already in their
pilot phase. The AMoD services are expected to cause another paradigm shift in the transport
sector. Looking at the potential of AMoD services, there has been a drastic increase in the scientific
literature to test and improve the efficiency of AMoD services even before their actual arrival into the
market. A major difference between the MoD and AMoD operator is the absence of a human driver,
meaning that the central fleet controller (FC) run by the AMoD operator makes all the decisions for
the AMoD fleet. The two essential functions of an FC are the assignment of customer requests to
AMoD fleet and the scheduling of the maintenance tasks. The latter generally consists of several
types, like refueling, cleaning, and repositioning idle vehicles. Among these types, repositioning is
the primary maintenance task to improve fleet utilization and AMoD profit.
Given the importance of AMoD services, the current dissertation fundamentally focuses on im-

proving the performance of AMoD services. The present dissertation only assumes RH offers as they
dominate the current MoD market. Since the FC plays the primary role in the AMoD operation, the
dissertation mainly focuses on developing innovative FC methods. The dissertation provides three
key contributions for this purpose, as described below.

• The first contribution is building a consistent relationship between the AMoD supply and
demand. The supply-demand balance plays a significant role in the AMoD operation. For a
high AMoD performance, the FC must ascertain a good distribution of AMoD vehicles such
that AMoD customers are picked up within reasonable waiting times. Therefore, the FC needs
a metric to measure the local supply-demand imbalance in different parts of the operation area.
Traditionally, this is done by dividing the operation area into a disjoint set of regions. Usually,
the fundamental assumption is that the regions are independent, i.e., a vehicle located in a
region can only serve the customers in that specific region. However, the regions used are often
small and contiguous, invalidating the above assumption. Therefore, the dissertation develops
an innovative spatiotemporal relationship, referred to as supply-demand imbalance density (ID),
based on the concept of reachability functions (RFs). A RF defines the outreach of a vehicle
from the center point similar to the kernel functions used in kernel density estimation (KDE).
KDE is often used in statistics as a non-parametric way of estimating the underlying probability
density function. The ID formulation deals directly with the geographical coordinates and does
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not depend on the definition of individual regions. Using ID, the offered service quality can
also be plotted as a heat map.

• The second contribution builds on the ID function and uses it to develop three reachability
function based repositioning (RFR) methods. Due to the computational challenges involved
and the unavailability of individual coordinates for customer forecasts, the dissertation uses
a region-based estimation of the ID in the RFR formulations. However, in contrast to the
traditional methods based on the assumption of independent regions, RFR methods inherently
consider the impact of repositioning decisions on the neighboring regions.

• The third contribution further uses the previous two contributions to improve the performance
of the AMoD services. It develops a novel proactive assignment strategy that maintains the
AMoD supply-demand balance while assigning AMoD vehicles to customers. This reduces
the requirement for explicit repositioning of idle vehicles to demand-intensive regions and,
consequently, significantly reduces the additional mileage required. The formulation uses the
region-based estimation of the ID. Furthermore, it combines the novel RFR methods and the
proactive assignment approach in a single AMoD operation.

To confirm the effectiveness of the above methods, the dissertation builds an agent-based simula-
tion in the Manhattan area using the open-source New York City (NYC) taxi data. The dissertation
also develops a spatiotemporal travel time scaling method to reproduce realistic network travel times
from past trip data. The simulation results indicate a strong positive relationship between the ID
function and the AMoD service quality offered in the operation area. Similarly, the RFR methods, the
proactive assignment, and the combination of the two approaches significantly improve the AMoD
performance compared to the benchmark methods used in the dissertation. This provides an essential
milestone in the AMoD research and opens the door to further investigations into the topic.
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Chapter 1.

Introduction

The last two decades have seen a rise in internet-based sharing platforms. This led to a steady
growth in the removal of the traditional “middlemen” for the exchange of goods and services or
in some cases replaced them with an equivalent online intermediary platform. The phenomenon
that initially started with platforms for simple peer-to-peer sharing of files and trading of goods
during the 1990s, has grown so immensely that it introduced its own terms like sharing-economy
into dictionaries [Avital et al., 2014]. The shift towards a peer-to-peer collaborative economy
was first noted by Gansky [2010] and further developed by Botsman and Rogers [2010]. They
noticed a shift into collaborative consumption or sharing economy that is less dependent on traditional
hierarchies. They believed that this would not only open the door for new market efficiencies but also
reframe many established services. As the number and the outreach of companies sharing the new
ecosystem grew, the definitions of various terms used also became clearer. Thus, sharing economy is
defined as “an economic system based on sharing underused assets or services, for free or for a fee,
directly from individuals” [Botsman, 2015]. Some examples of shared economy-based businesses
and companies include sharing of underutilized accommodation, e.g. Airbnb, and sharing of empty
seats in a vehicle for inter-city rides, e.g. BlaBlaCar. Similarly, on-demand services are defined
as “platforms that directly match customer needs with providers to immediately deliver goods and
services” [Botsman, 2015]. Examples of companies providing on-demand services for goods include
Foodpanda, Lieferando and Deskbeers.

Perhaps, the biggest area where the sharing economy has significantly “reframed” the traditional
outlook is the transport sector. With the introduction of mobility on-demand (MoD) platforms, it is
among the leading sectors of sharing economy revolution. MoD is based on the idea that the mobility
of people and goods can be offered as an on-demand service. With a myriad of MoD modes like
bike sharing, e-scooter sharing, car-sharing, ride-hailing and others, the transport sector has brought
seamless transportation of people with the touch of a button [Tirachini, 2019]. Among these
MoD modes, ride-hailing services have caused the biggest disruption in the transport sector. The
ride-hailing smartphone apps match a traveler or customer to a driver who is willing to drive the
traveler to his destination in a privately owned vehicle (POV). This is usually provided by a private-
sector mobility service provider (MSP), also known as transportation network company (TNC), that
maintains the online platforms (including the smartphone apps). The competitive prices, ease of
transport and seamless steps from requesting a ride to the final payment have caused widespread
acceptance and large-scale usage of MSPs for regular trips. Especially in areas with bad public
transport (PT) system, these services represent a viable alternative to POVs [Stocker and S.
Shaheen, 2019].
The widespread popularity and success of MSPs are also indicated by the sheer number of customers

and covered cities over the years. According to one ranking, three (Uber, Lyft, and DiDi Chuxing)
out of the top five most market disrupter companies in 2018 were MSPs [CNBC, 2018]. Uber,
launched in 2010, was operating in 400 cities by April 2016 [Z. Li et al., 2016], and increased to
more than 900 cities in 2020 [Uber, 2020]. Similarly, DiDi Chuxing, launched in 2012 as a local
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ride-hailing service inside China, by 2019 had more than 550 million users and more than 31 million
drivers [CNBC, 2019]. It even bought Uber’s operation in China in 2016. DiDi, labeling itself as the
world’s leading mobile transportation platform, even expanded its operation to Mexico, Australia,
and Japan [CNBC, 2019].
In addition to MoD services, the autonomous vehicle (AV) technology also got significant momen-

tum in the last decade. The AVs are expected to produce the next paradigm shift in the transport
sector. Without the requirement of a driver and more intensive vehicle utilization through central
controllers, the autonomous mobility on-demand (AMoD) services are imagined to be cheaper, more
efficient, and more environment-friendly [Litman, 2023; Pavone, 2015; Dandl, 2022]. Some
companies like Waymoo and Cruise are already in their pilot phase in multiple cities and other com-
panies like Zoox and Moia are also expected to follow in coming years. In anticipation of these
developments, several researchers in the last decade have tried to evaluate the benefits and impacts
of introducing AMoD in different parts of the world, and potentially develop control approaches that
would enhance their advantages. The current dissertation is also a step forward in the same direction.

1.1. Impacts and Variants of Ride-Hailing Services

The usage of POVs and modern communication technologies make the modern MoD services un-
precedentedly different from the traditional road-side taxi-hailing services. They provide users with a
reliable service, shorter waiting times, and access to larger areas than the PT in many cities — all at
a lower price [Rodier and Michaels, 2019]. Several studies have reported that major contributing
factors for preferring MoD services, especially ride-hailing services, over other modes of transfer are
the ease of payment, shorter waiting times, and the fastest way to reach destination [Rayle et al.,
2016; Rodier and Michaels, 2019]. This provided the low-income households, who are not able
to own or lease a POV, an opportunity to afford regular trips in comfortable MoD vehicles. The
same group of people also disproportionately represents the high-frequency users of MSPs [Lazarus
et al., 2021].
Overall MoD services have revolutionized the transport sector, bringing comfortable and affordable

transport options to many in society. However, the realization of the ideal imagining of smart mobility
— where everyone is visioned to have access to personalized MoD service with clean, efficient, and
flexible transport on the tip of their finger [Wockatz and Schartau, 2015] — is highly dependent
on how the state and government policies maneuver the transition into new transportation models
to make them beneficial to both society and the environment [Docherty et al., 2018; Tirachini,
2019].
Thus, the topic of sustainability and the impacts of MoD services, more specifically ride-hailing, on

travel behavior is still under research [Rodier and Michaels, 2019; Tirachini, 2019]. Usually, one
of the most important parameters used to measure this impact is the increase in vehicle kilometers
travelled (VKT), which can cause an increase in congestion, crashes, noise, and gas emissions.
Multiple researches have concluded a likely increase in the overall VKT due to ride-hailing services
[Tirachini, 2019]. For example, Henao [2017] reports an 85% increase in VKT due to MSPs in
the Denver area. Schaller [2018a] and Schaller [2018b] reports an additional 976 million miles
of driving added to New York City (NYC) streets between 2013 to 2017 due to MSPs. He estimates
that MSPs have added almost 5.7 billion miles in nine major cities of the United States1.
A number of approaches are usually suggested to mitigate the negative impacts of increased VKT,

ranging from shifts in governmental policies to improving the technologies and methods underlying

1Boston, Chicago, Los Angeles, Miami, New York, Philadelphia, San Francisco, Seattle, and Washington DC
metro areas
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the actual services. The sustainability of MSP is dependent on the question of whether the MSP
are complimenting or substituting the traditional transportation networks, especially PT [Tirachini,
2019]. Policies encouraging the complementary application of MSPs can improve the overall situation.
There are already examples of such agreements with varying degrees of success in North America
[Transit, 2019]. These projects offer special discounts for going to specific regions or riding
to or from train stations and bus stops. The most successful of these projects are those for the
workforce and students, providing the trip’s first and last mile. This increases the overall accessibility
and availability of transport services for the people. J. Iacobucci et al. [2017] suggests that the
seamless payment technology for all the involved partners is one of the primary reasons for the success
of these partnerships.

Besides the changes in the overall policy, improving the methods and techniques used by MSPs
can also enhance the overall efficiency. One of these techniques combines the spatially and tempo-
rally overlapping customers into single trips, i.e., ride-sharing (RS) (also known as ride splitting).
The widespread usage of global positioning system (GPS) equipped cellphones makes it possible
to dynamically combine multiple customers into a single ride to increase overall vehicle utilization.
Several studies have suggested that RS can cause a significant reduction of required vehicles and
VKTs [Alonso-Mora, Samaranayake, et al., 2017; Sun and L. Zhang, 2018; Narayanan,
Chaniotakis, et al., 2020].

Despite the optimistic simulation results of RS services, in reality, the number of people willing to
share rides in current MoD services are limited due to multiple socioeconomic factors [Lazarus et
al., 2021; Alonso-González et al., 2021]. Additionally, with RS services, the differences between
a PT and a service offered by private sector MSPs gets even more blurred. The potential worry of
RS is that a significant number of customers may shift from PT to RS [Tirachini, 2019]. Lewis
and MacKenzie [2017] studied the short-lived UberHop service in Seattle that combined up to 5
passengers into a ride. They reported that almost 45% of the customers were replacing bus trips, and
79% of the trips were made by a single passenger. Similarly, one study observed that for MSPs (like
Uber and Lyft) providing service options of both with- and without shared-ride, the shared rides do not
contribute a significant percentage to the total number of served requests [Henao and Marshall,
2019]. Thus, great research potential is available on improving the RS services and incorporating
them with the PT to complement each other and enhance the whole system. The future AMoD
services can also solve some of the above issues, as discussed in the next section. Nevertheless, so
far, the most popular MoD service model among users is serving only a single customer at a time
which is also the primary focus of the dissertation. For consistency, the dissertation reserves the term
ride-sharing (RS) for the former and ride-hailing (RH) for the latter MoD mode.

1.2. Autonomous Mobility-on-Demand (AMoD) Services

The convergence of electric drive, AV technology, and shared mobility in AMoD services has the
potential to transform the transport sector [S. A. Shaheen et al., 2020]. Without the requirement
of a human driver, the AMoD services are expected to be cheaper than the current MoD and Taxi
services due to lower maintenance costs [Chen et al., 2016; Bauer et al., 2018; Narayanan,
Chaniotakis, et al., 2020; Litman, 2023]. Additionally, the ability to control the entire fleet
using a central fleet controller (FC) could significantly improve performance as well as chances
of pooling rides [S. A. Shaheen et al., 2020; S. A. Shaheen et al., 2020; Alonso-Mora,
Samaranayake, et al., 2017; Alonso-Mora, Wallar, et al., 2017]. AMoD services are also
expected to have smaller land use primarily due to higher AMoD fleet utilization and reduced private
vehicle ownership [W. Zhang and Guhathakurta, 2017; Kondor et al., 2019].

3



1. Introduction

Real Time

Simulation
(Past Data)

Fleet Controller

Optimization:
Solve Assignment

Problem

Customers Mobility Service
Provider (MSP)

Autonomous
Vehicles Fleet

Accumulate
New Customers

for 
New

Requests

Update
Vehicle
Routes

Fleet
Information

Figure 1.1.: The operation of AMoD services.

Considering the above benefits, AMoD services have a significant potential to solve some of the
issues that current MoD services face. A major advantage of AMoD system is that the MSP can
fully control AV fleet via central FC. Compared to current MoD systems, the FC can be designed in a
way that minimizes the adverse effects by lowering the deadheading (empty VKT without on-board
customers) and increasing the vehicle utilization. Alternatively, since there is still some time till
AMoD services are widely available, the positive influence of AMoD services on the transport sector
can be proactively enhanced via governmental policies and regulations. Similar to the current MoD
services, they also have the potential to increase VKT and cause shifting away of the travelers from
PT towards AMoD service. This can cause additional congestion in certain parts of the city, especially
where short trips are replaced by AMoD trips [Moavenzadeh and S. Lang, 2018]. These can
be avoided by adopting suitable strategies for their wide-scale adoption [J. Iacobucci et al., 2017;
Stocker and S. Shaheen, 2019].

In view of the above, there is an active requirement to optimize the performance of AMoD services.
The current dissertation is also an attempt in this direction — improve the efficiency of the AMoD
services so that more customers could be served with a smaller fleet and lower VKT. Instead of
finding optimal prices and governmental policies, the dissertation focuses on innovative procedures
for a better assignment of vehicles to customers and the maintenance of the AMoD fleet. The
dissertation focuses mainly on improving RH based AMoD services. The following section briefly
presents the overall handling of customers and the fleet in the AMoD services, based on which the
dissertation will look deeper into the areas of potential improvements.

Operation of Autonomous Fleet Ride-Hailing Service

The AMoD services in the dissertation consist of shared autonomous vehicles (SAVs) that are entirely
controlled by a central FC located at the MSP. The major difference between the current MoD and
AMoD services is the assignment of customers to vehicles. The MoD services include human drivers
that can accept or reject the assigned customers. On the contrary, the central FC fully controls the
customer assignment decisions in an AMoD service. Similarly, since the drivers in the current MoD
services are mostly individuals with POVs who earn variable salaries depending on the number of
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customers served and the distance traveled with customers on board, the MSPs have to take care
that the customers and maintenance tasks are fairly assigned. Contrarily, the whole fleet of AVs is
assumed to be managed by MSPs; thus, the performance is evaluated for the whole system, even if
a group of AVs generates small revenue or completely go into loss.

The rest of the operation of an AMoD service is quite similar to the current MoD services as shown
in Figure 1.1. The customer requests a ride using a smartphone app that the MSP needs to serve.
Inside the MSP, the new requests are handled by a central FC that solves the vehicle assignment
problem and sends the updated paths to the fleet. The FC is also responsible for keeping track of
all operations and vehicle states and recording relevant data.

The optimization problem of assigning vehicles to dynamic customer requests comes under the cat-
egory of stochastic and dynamic vehicle routing problem (SDVRP). These problems are dynamic —
the new customer requests or locations to be visited are added to the system over time — and stochas-
tic — a part of the unknown data or future users are only known in terms of statistical information
such as regional forecasts or probability distribution [Toth and Vigo, 2014, Chapter 11][Agatz
et al., 2012]. Commonly, researchers use a batching strategy to deal with the dynamic aspect of the
SDVRP problem; the dynamic customer requests are periodically grouped together before solving an
optimization problem for assigning vehicles to customers. The dissertation refers to this optimization
problem as vehicle control optimization (VCO). The overall goal of the batching method is to reach
a better solution to the whole dynamic problem by optimizing small batches of customers. Some
MoD services also claim to use a similar batching technique [Uber, 2022].

The dissertation improves the overall AMoD performance by developing and incorporating novel
FC methods in its operation. The next section discusses the core areas of focus in more detail.

1.3. Research Context and Objectives

The development of solution methods for SDVRPs is a vast research area in traffic engineering and
operations research, with a myriad of challenges and requirements for each variant of SDVRP. The
studied variant of SDVRP — AMoD with RH — is no exception. Improving all potential aspects
of AMoD services, i.e., governmental policies, dynamic pricing, vehicle assignments, and others, is
beyond the scope of a single dissertation. Therefore, this section presents the core improvement
areas focused on in the dissertation.

The overall operation of an AMoD service can be described as a Markov decision process (MDP),
where a decision taken at any stage can lead to a totally different outcome. Thus, short-sighted
decisions can lead to an overall worse performance. Figure 1.2 shows the primary operational loop
of the studied AMoD system. The VCO assigns vehicles to customers in a batch. Usually, the
customer origin and destination pattern differs throughout the day, especially when people go and
return from work [Dandl, M. Hyland, et al., 2020]. Thus, short-sighted assignment decisions
without considering the long-term impacts on the system lead to a supply-demand imbalance in
different parts of the operation area. This means that many vehicles can end up in regions where
they will remain idle for a long time without customers.

In literature, the above problem is solved by incorporating statistical information into the AMoD
system, which mainly comprises a forecast of system state and customer locations [Pavone et al.,
2012; Dandl, M. Hyland, et al., 2019; Dandl, M. Hyland, et al., 2020]. This information is
then used in a repositioning strategy, where idle vehicles are regularly repositioned to high demand
areas. The dissertation focuses on similar techniques for improving the AMoD services as shown in
Figure 1.3. The objective does not include devising an accurate or improved statistical model for
predicting potential users; instead, the focus is on its incorporation into the operation of AMoD
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Figure 1.2.: The primary operational loop of AMoD services

system.
Thus, the overarching objective of the dissertation is to answer the following main question:

• MRQ: How to improve the overall AMoD performance using novel FC methods?

To answer the above question, the dissertation aims to investigate the following aspects and research
questions:

1. Vehicle Distribution Model:

For various maintenance reasons, the AMoD literature often divides the operation area into
regions. Most operational algorithms that use regional dissection of the operational area
assume individual regions to be independent: the vehicles within a single region can only serve
customers within that specific region. However, this is only valid when the assumed regions
are relatively big, and the city network and customer demand are such that many trips start
and end in the individual regions. Nonetheless, from the perspective of developing operational
algorithms, the region sizes (within a city) cannot be increased indefinitely. Large regions would
impede the full potential of any algorithm, as vehicles within a region would not be able to
pick up customers from all locations while maintaining a short pickup duration.

As a result, the defined regions are often small and contiguous where the neighboring regions
are no longer independent. Therefore, there is a strong requirement for a vehicle distribution
model that is loosely bound to regional shapes and could coherently take into account the
state of the neighboring regions and the whole operation area.

Therefore, the thesis studies the following questions:

• RQ 1.1: How can a vehicle distribution model be defined that is independent or at least
loosely bound to regional shapes?

• RQ 1.2: Does the above distribution model has a strong and consistent relationship
between states of individual regions and the overall AMoD system? How can it be
measured?

2. Repositioning problem:

The most common type of fleet maintenance algorithm that utilizes the operational regions
is repositioning idle vehicles to demand-intensive regions. It uses statistical information to
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periodically reposition idle vehicles to demand-intensive regions. This resolves the supply-
demand imbalance accumulated over time. The thesis aims to improve the repositioning
algorithms for the AMoD services. The aim is to find a consistent procedure that considers
the imbalances of the overall operation area in a continuous 2D domain instead of dealing with
individual regions separately. In this regard, the vehicle distribution model developed above is
utilized. Thus, the thesis addresses the following question:

• RQ 2.1: How can the newly developed vehicle distribution model be incorporated into
the repositioning problem?

3. Vehicle assignment problem: As the AMoD operational problem is basically an MDP process,
the solution of the VCO determines not only which customers are served next but also where
the vehicles will end up in the long run. Most of the current VCO methods only consider
the short-term profit of the current batch. However, the statistical information can also be
incorporated into the VCO to consider the long-term impacts of VCO decisions on supply-
demand imbalances. The intuition is to implicitly reduce supply-demand imbalance in small
temporal steps inside the VCO such that the need for an explicit repositioning at a later stage
is minimized. This would also guarantee that the positive effects of the repositioning decisions
remain valid for extended periods, increasing the overall AMoD performance. This represents an
anticipatory or proactive approach to reduce the long-term supply-demand imbalance. Thus,
the dissertation addresses the following questions:

• RQ 3.1: How to incorporate the statistical information inside a VCO?

• RQ 3.2: How to utilize the vehicle distribution model developed in RQ 1.1 into the
proactive VCO?

1.4. Research Methodology and Thesis Structure

Figure 1.3 summarizes the main areas of AMoD operations focused in the dissertation. First, to
address RQ 1, the dissertation requires an environment where AMoD performance could be reliably
measured. However, the AMoD systems are still in the pilot phase, with several companies like
Waymo LLC [Roth, 2022] and Cruise LLC [Hawkins, 2021] operating within a limited service
area. Without an actual AMoD service or even a fully autonomous vehicle, the dissertation evaluates
any AMoD performance improvement in computer simulations. To produce consistent and reliable
results, the simulations must be as detailed as possible. Before any improvement for AMoD services
is devised, developing a detailed AMoD simulation is crucial. Therefore, chapter 3 builds an agent-
based simulation framework where customers, vehicles, and AMoD operator are modeled as agents.
Instead of a simplistic 2D environment, these agents interact with each other on an actual city map
derived from OpenStreetMaps (OSM) [OpenStreetMap, 2017]. Typically, the OSM map only
contains free-flow network travel times based on the speed limits of individual roads. The free-flow
speeds may produce unreliable AMoD performance as the simulated AVs can travel much faster on
the map than in reality. Thus, chapter 3 also investigates how to scale the travel times of each road
link such that the overall network speed is as close as possible to reality. For this purpose, chapter 3
introduces a novel spatiotemporal scaling method for the city network. The second most important
requirement for a successful AMoD simulation is the generation of realistic customer demands. Thus,
instead of randomly generating customer requests, the dissertation uses the open-source NYC taxi
data set [TLC Trip Record Data - TLC 2023]. This guarantees that the customers represent actual
travel demand in the city, and any improvement observed for AMoD system is not due to unrealistic
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travel demands. The simulation framework built in chapter 3 is used throughout the dissertation to
measure the efficiency of the introduced FC methods.

Chapter 4 later focuses on RQs 1.1 and 1.2. The chapter primarily aims to develop a spatial
relationship that directly deals with individual coordinates while simultaneously taking into account
their surrounding locations. This removes the requirement of defining regions for the aggregation
of geographical locations. The chapter measures the effectiveness of the developed spatial relations
by investigating how well these relations correlate with AMoD service quality offered to customers.
If the service quality provided at a customer pickup location could be distinguished based on these
spatial relations, then the developed spatial relations provide an effective alternative to aggregation
over regions. This would also entail that any FC method that actively uses these relations for AMoD
fleet management will also improve the overall AMoD performance.

Afterwards, chapter 5 builds on top of chapter 4 to answer RQ 2.1; it actively uses the above
mentioned spatial relations to incorporate forecast information into the repositioning step. It develops
a novel repositioning method that uses these spatial relations inside the repositioning formulation.
Since the spatial relations consider the surrounding area in its formulation, the newly developed
repositioning formulation inherently considers the impacts of multiple regions in the repositioning
decisions. This is in contrast to the traditional repositioning strategies that assume independent
regions without considering the effects of repositioning decisions on the surrounding areas.

Later, chapter 6 focuses on RQ 3.1 and 3.2. It first uses the spatial relations developed in
chapter 4 to study why VCO causes supply-demand imbalances in different parts of the AMoD
operation area. Then it investigates how this can be avoided by making better decisions in the VCO.
It develops a proactive VCO formulation where each vehicle assignment decision is made keeping in
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view the long-term impacts on vehicle supply-demand imbalances. Primarily, it assigns the vehicles
to customers in two steps. The first step solves the usual VCO and calculates the optimal value of
the objective function. The second step compromises a percentage of the optimal objective function
value of the first step to achieve a VCO solution that potentially minimizes the supply-demand
imbalance in the long run. It uses the spatial relations built in chapter 4 to measure the long-term
impacts. Additionally, it further explores the performance of proactive VCO when combined with the
repositioning method developed in chapter 5.
Finally, the dissertation discusses the overall outcome of the research in the last chapter. The

chapter also summarizes the assumptions followed throughout the dissertation and the potential
limitations due to these suppositions. It additionally discusses the possible areas of improvement of
the current work.
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Chapter 2.

Background and Literature Review

This chapter presents the necessary background knowledge required to understand operational prob-
lems in AMoD services and discusses the AMoD studies found in the literature. It first starts with
describing the information flow in the AMoD operation. This helps the reader to identify the un-
derlying basic theory and methods used when modeling an AMoD service. Then, the later sections
briefly describe the background knowledge and mathematics involved in these models; these include
mathematical optimization and its types (section 2.2), integer programming problem (IP) and its
commonly used solution methods (section 2.3), and graph theory along with some problems related
to AMoD operation (section 2.4). After presenting the necessary background knowledge, section 2.5
reviews the AMoD service types and modeling techniques found in the literature.

2.1. AMoD Services Operation

Before reviewing the AMoD studies available in the literature, it is important to briefly understand
the methods and techniques used by the dissertation to model the AMoD operations. This will
help the reader to clearly place the AMoD modeling procedure used in the dissertation among the
myriad of modeling possibilities found in the literature. Additionally, this section describes the primary
technique underlying each of the AMoD components, mainly consisting of mathematical optimization,
graph theory, and some typical problems over graphs. Even though this section mentions these
underlying techniques from the dissertation perspective, they are the method of choice for modeling
many AMoD components in literature.

The dissertation uses an agent-based simulation framework to evaluate the AMoD services. The
main agents in the simulation are customers, AVs, and the AMoD operator. These agents interact
with each other in an environment mainly consisting of the underlying city network. In the previous
chapter, Figure 1.2 already described the main time loop of the AMoD operation. In contrast,
Figure 2.1 describes the flow of information and the underlying technique used to model the whole
AMoD operation. It should be noted that Figure 2.1 describes the AMoD operation as it is modeled
in the dissertation; the AMoD studies in literature can model them with slight differences, as will be
discussed in the literature review (section 2.5.4).

The underlying city network is modeled as a graph with nodes representing the intersections and
edges representing the roads connecting those intersections. Besides the travel distance and travel
time, each network edge also contains an additional attribute for the exact geometry of the road.
The customers and AVs are located on the nodes of the city network. Additionally, an AV traverses
the edges of the city network for moving from one location to another. In each simulation step,
the AV and customer states are updated and sent to the AMoD operator. After performing the
internal AMoD fleet management tasks, the AMoD operator sends AMoD offers and updated paths
to customers and AVs, respectively.

The dissertation considers two main tasks inside the AMoD operator: VCO and repositioning. VCO
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Figure 2.1.: The main elements of AMoD operation. The underlying techniques used to model
them are marked with blue color.

assigns AVs to customers while repositioning sends idle AVs to areas of higher customer demand.
However, both operations mainly consist of similar steps. After updating the customer and AV states,
all the necessary information is gathered for forming an optimization problem. In this regard, the
first thing required is the distance and travel time matrices for all the combinations of locations.
This is provided by the router, which solves the shortest-path problem over the city network graph.
Second, a bipartite graph is formed. For VCO, the bipartite graph is between AVs and customers1,
while the bipartite graph is between idle vehicles and destination locations for repositioning. Third,
an optimization problem is formed to solve the bipartite matching problem; the solution provides
the destinations in the path of each AV. Depending on the formulation, the optimization problem
can belong to any of the subcategories of mathematical optimization (section 2.2.2 provides relevant
classifications). At this stage, the AMoD asks for the exact routes for each origin-destination pair
of the modified AV paths. The exact routes consist of detailed information on nodes and edges
between each origin-destination pair. These updated paths are sent to AVs. Similarly, the customers
are informed of the assignment decisions.

2.2. Mathematical Optimization

Mathematical Optimization is a widely used sub-field of mathematics. It is often also called Mathe-
matical Programming, Numerical Optimization, or simply Optimization. Generally, it is the science
of finding the best solutions to mathematically defined problems that may arise in any quantitative
discipline [Snyman and Wilke, 2018; Nocedal and Wright, 2006]. The formulated problems
may model a physical reality or a management system. The former generally relate to Science and
Engineering, where minimum energy configurations are often required for general structures, ranging
from molecules and electrical circuits to suspension bridges and aircraft dynamics. The latter gener-
ally relate to societal and industrial applications where commercial and financial decisions need to be

1some studies in literature form a bipartite graph between AVs and trips. A trip can consist of multiple
customer and repositioning locations
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taken that maximize or minimize certain parameters like profit or cost, respectively. The dissertation
topic also falls into this category where the goal is to maximize the MSP profit while maintaining a
certain service quality.

This section briefly overviews the optimization problems and common solution methodologies. The
following descriptions are based on the standard books on the topic [Snyman and Wilke, 2018;
Matousek and Gärtner, 2007; Nocedal and Wright, 2006; Korte and Vygen, 2018].

2.2.1. Mathematical Formulation

In mathematical terms, optimization is themaximization orminimization of a function while satisfying
constraints on its variables. As such, it consists of the following:

• A vector x ∈ Rn of design or decision variables

• An objective function f : x 7→ R to be maximized or minimized

• Set of functions g : x 7→ R and h : x 7→ R that define the equation and inequality constraints
that the variables in x must satisfy, respectively.

With the above notations, an optimization problem is written as:

min
x

f(x) (2.1a)

subject to g(x) = 0 (2.1b)

h(x) ≥ 0 (2.1c)

Eq. 2.1 describes a minimization problem; alternately, the problem would be a maximization problem
if the objective was to maximize f(x). The constraints bound the space into areas of possible
solutions or set of points satisfying all constraints, which are called as feasible set or feasible region.
Any point in this set represents a feasible solution. Figure 2.2 shows an example of a feasible region.
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Figure 2.3.: Classification of optimization problems.

2.2.2. Classification of Optimization Problems

After the general mathematical formulation of an optimization problem, this section introduces their
classification. Since the dissertation uses some specific types of optimization problems, it is important
to understand their differences briefly. There are multiple ways in which an optimization problem can
be classified. The following only presents a basic classification based on the nature of the objective
function, used constraints, and the design variables.

Discrete and Continuous Optimization Problems

Eq. 2.1 presented the general optimization problem with continuous variables, i.e., x ∈ Rn. However,
a lot of times, the variables can only take integer values. For example, if a company wants to optimize
the number of products produced for a specific season or the number of different plant types required
to fulfill the customer demand in a region. In that case, fractional values of design variables do not
make sense. In such cases, for some of the variables, the mathematical formulation has integrality
constraints, i.e., xi ∈ Z, or binary constraints, i.e., xi ∈ {0, 1}. The latter is used for decisions
involving only Yes or No answers. If all variables are integer or binary, the optimization problem
is known as IP problem. In contrast, if only some of the variables are integer or binary, then the
problem is called a mixed integer programming problem (MIP) problem. In the last few decades, the
terms IP and MIP are also being used interchangeably.

IP problems belong to a bigger class of optimization problems known as discrete optimization
problems which are not limited to only integer and binary variables, but they can contain more
abstract variables like permutations of an ordered set. The distinguishing feature of these problems
is that the variables are drawn from a finite set. In contrast, the feasible set of continuous problems
consists of the infinite set as the variables are real numbers, and the smoothness of the objective
function allows us to derive the potential behavior of the objective function and constraints in the
neighborhood of a point. Contrarily, the behavior of a discrete problem can change significantly in
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the neighborhood of a point, making discrete problems much more difficult to solve than continuous
ones. In mathematical terms, the discrete problems show an extreme form of non-convex feasible
sets.

Constrained and Unconstrained Optimization Problem

If the optimization problem has no constraints on the solution space, it is called an unconstrained
optimization problem; otherwise, it is called constrained. These constraints arise due to some external
limitation, for example, the available budget for producing goods or, in the case of this dissertation,
the maximum waiting time an MSP customer is allowed to wait.

The constraints can comprise of linear or non-linear relationship among design variables. If both
constants and the objective functions are linear, the problem is called linear programming problem.
Linear problems are the most commonly modeled and solved optimization problems. In contrast, if
some of the variables or the objective function are non-linear, the problem is known as non-linear
programming problem, which is more challenging to solve than a linear problem.

Stochastic and Deterministic Problems

Sometimes an optimization problem cannot be fully specified at the time of formulation. The
optimal system behavior might depend on a future quantity that is unknown at the time of solving
the problem. Such characteristics can appear in economic or financial planning models; for example,
the exact demand for a new product might not be known during production. Another example is
the greedy, short-sighted assignments of vehicles to customers that might lead to long-term system
imbalances. In these cases, the modeler prefers to incorporate additional knowledge instead of
making decisions based on the information already present. For example, a statistical model of the
most probable scenarios under which specific demand might arise. Such optimization problems are
referred to as stochastic optimization problems. Alternatively, the problem is called a deterministic
optimization problem if such considerations are not taken into account.

Single and Multi-Objective Optimization

If the optimization problem consists of multiple objective functions instead of a single objective, then
the problem is known as multi-objective optimization problem. Ideally, these problems try to minimize
(or maximize) all objectives. But, most such problems consist of conflicting objective functions, i.e.,
if one objective is minimized, then the other objective increases and vice versa. Therefore, multiple
non-dominated Pareto optimal solutions are usually sought where none of the objectives can be
improved without degrading other objective functions. Note that the classifications described in the
previous sections also apply to multi-objective problems.

2.3. Integer Programming Problems

The previous section introduced mathematical optimization and its different problem types. Since the
dissertation mainly formulates the AMoD operation as an IP problem, this section briefly describes
IP problems and their solution methods in more detail.

As described in the previous section, IP problems consist of optimization problems in which all the
decision variables are integers. The objective function and constraints in these problems could be
either linear or non-linear functions.
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Mathematical Formulation

The linear and quadratic IP can be described in the following matrix form without loss of generality:

min
x

1

2
xTQx+ cTx (2.2a)

subject to Ax ≥ b (2.2b)

x ∈ Zn (2.2c)

where Q ∈ Rn×n is a symmetric matrix and A ∈ Rm×n is the matrix for m constraints, and c ∈ Rn

is the cost vector. Eq. 2.2 describes an integer quadratic programming problem (IQP). If the matrix
Q is a null matrix, the problem becomes an integer linear programming problem (ILP). Similarly, if
the integer constraints in Eq. 2.2c are removed, then the problem becomes a continuous quadratic
programming problem (QP) or linear programming problem (LP) (with null Q).

Solution Methodologies

Generally, IP belong to a class of problems that are computationally difficult to solve, known as
NP-hard problems [Korte and Vygen, 2018; Conforti et al., 2014]. Solving ILP and IQP is
considered an NP-hard problem, making them difficult to solve for large constraints and variable
sizes. Practically, it means that if a solution is provided, it takes polynomial time to verify its
feasibility. However, the time required to find the optimal solution, by exploring the whole solution
space, increases exponentially. It should be noted that the ILP and IQP are NP-hard as a group of
problems, meaning that some particular problems in this group could still be solvable in polynomial
time. For example, the assignment problem is a polynomial time solvable ILP using the Hungarian
method with complexity O(n3). In contrast to ILP and IQP, all problems in the group LP are solvable
in polynomial time using the simplex method.
There are multiple exact methods available for solving the IP. Exact methods try to find the

optimal solutions along with mathematical surety that the found solution is optimal. However, for
larger instances, sometimes the solution space becomes intractable and the computation time required
by the exact methods becomes impractical. Therefore, the literature also mentions several heuristics
and meta-heuristics that try to find a good sub-optimal solution within practical computation time.
Meta-heuristics is also a form of heuristic that groups together several heuristics inside a single
procedure. They try to avoid getting stuck at local minima (or maxima) in search of better solutions,
for which they sometimes accept worse than the current solution.

For the IPs, a commonly used solution approach is to relax certain constraints that are easy to solve
and provide a good estimate of the original problem. The relaxations and the associated problems
are solved multiple times till an optimal solution to the original problem is found. The most common
among these relaxations is the linear relaxation. In this method, the integer constraints of the IP are
relaxed, and the obtained LPs is solved multiple times. The following briefly describes the method
to solve these relaxed LPs.
These LPs are typically solved using the well-known simplex method. In the simplest terms, the

simplex method moves from one endpoint of the feasible solution space — basic feasible solution—
to another till the optimal solution is found. The reader is referred to [Matousek and Gärtner,
2007] for more details on the mathematics involved in the simplex method. The simplex method is
used within another method known as branch-and-bound (B&B) method for solving an IP. B&B is a
systematic search method to find the optimal solution to discrete optimization problems. In its core
functionality, it splits up the search space into smaller spaces and keeps track of the best and current
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solutions to narrow down the search space further. It solves a series of LPs obtained by relaxing the
integrality constraints and limiting the search space with additional constraints.
In the B&B method, determining an efficient pruning of the search tree plays a significant role.

For an efficient pruning of the search space, the problem is formulated in a way that the gap between
the optimum value of the ILP and the solution of LP is reduced — referred to as tightening the
formulation. A tighter bound of the objective function provides earlier pruning of the branches of
B&B tree. A popular way of doing that is using cutting plane method. Similar to B&B, this method
solves an LP obtained by relaxing the integrality constraint of the ILP. However, instead of branching
over variables, new linear inequality constraints are recursively added till the optimal integer solution
is found. The added constraint separates the current solution of LP from the actual feasible set, and
thus, referred to as cut. An even more popular approach for solving IPs is the branch-and-cut (B&C)
method which combines B&B and the cutting plane method. It was first introduced by Padberg and
Rinaldi in 1987 [Padberg and Rinaldi, 1987], and since then, it remained the most successful
method for solving IP. Most of the commercial MIP solvers are also based on B&C method.
The dissertation uses the commercial solver named Gurobi for the above mentioned methods. It

uses multiple algorithms, among which simplex method is one of the two major algorithms used.
Gurobi provides a possibility to model several optimization models, including both ILP and IQP, and
has interfaces to multiple programming languages.

2.4. Graph Theory and Relevant Graph Problems

Graphs provide a fundamental structure used for various optimization problems. They provide a
systemic procedure to describe relationships among various finite sets. They are extensively used in
the dissertation to model the optimization problems in AMoD services. Therefore, the following briefly
presents the fundamentals of graph theory followed by graph problems related to the dissertation.
In the most general sense of the term, a graph G consists of a finite set of nodes or vertices V

with some (or all) pairs of nodes connected to each other via a finite set of connections known as
edges E. The two main categories of graphs are undirected and directed graphs.

Definition 1 An undirected graph G consists of an ordered pair G = (V,E) where V is a finite
set of nodes and E ⊆ {{v, w} | v, w ∈ V, v ̸= w} is an unordered pairs of nodes representing the
graph edges.

Definition 2 A directed graph or digraph G consists of an ordered pair G = (V,E) where V is a
finite set of nodes and E ⊆ {{v, w} | v, w ∈ V ×V, v ̸= w} is an ordered pairs of nodes representing
the graph edges. The edges of a directed graph are sometimes called directed edges or arcs.

The above definitions only allow edges between two distinct nodes. Such edges are said to be
simple edges. In contrast, if multiple edges connect the same pair of nodes, then the edges are said
to be parallel. For the dissertation, only the simple graphs are relevant which by definition do not
have any parallel edges.
Many times all edges in the graph are not equally important for a particular purpose. For example,

while finding the shortest path through a city network, each edge may represent different path lengths.
In such cases, weighted graphs are used.

Definition 3 A weighted graph has a number or weight assigned to each edge. The weight can
represent different variables depending on the problem modeled, for example, cost, capacity, distance,
length, or time.
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Bipartite graphs and their matching play an important role in the dissertation. They are especially
relevant when two clearly distinct groups of nodes exist in the graph. In the later chapters, the
dissertation will use bipartite graphs for the assignment and repositioning of idle vehicles.

Definition 4 A bipartition of an undirected graph means that the nodes in a graph G = (V,E)
can be split into two disjoint sets A and B such that (1) V = A ∪ B and (2) all edges have one
endpoint in A and the other endpoint in B. Such a graph is known as bipartite graph.

Definition 5 A set of pairwise disjoint edges Ê ⊆ E (i.e. edges without any common endpoints) in
an undirected graph G = (V,E) is called as matching. A node is considered matched if it is an
endpoint of one of the edges in Ê.

Definition 6 A matching containing the largest possible number of edges is known as maximum
matching.

Definition 7 A matching containing the largest possible number of edges is known as maximum
matching.

After presenting the graph theory fundamentals, the following briefly presents the most important
graph theory problems related to the dissertation.

Assignment Problem

In a weighted graph, matching with the largest (smallest) possible sum of the weight edges is
called maximum (minimum ) weight matching. In a weighted bipartite graph, the maximum (or
minimum) weight matching problem is also referred to as the assignment problem. The assignment
problem is a fundamental combinatorial optimization problem. Figure 2.4a shows an example of the
assignment problem. It is a commonly used problem in AMoD literature. The dissertation also uses
it to solve the operational problems in AMoD services.
The assignment problem can be optimally solved using the Hungarian method [Kuhn, 1955].

Alternatively, due to the unimodular constraint matrix, the integrality constraint can be relaxed and
the problem can be solved using linear programming. The dissertation uses the latter approach.

Shortest Path Problem

The shortest path problem is one of the most widely used graph optimization problems. Given a
weighted digraph G = (V,E) and nodes s, t ∈ V , it consists of finding the shortest path P between
s and t that has the least possible sum of edge weights. If no such path exists, then the problem
decides that t is unreachable from s. It is widely used in real-world applications such as smartphones
and navigation devices to find the best route. Figure 2.4b shows an example of the shortest path
problem.
There are several variants of the shortest path problem depending on whether the given graph is

directed, has edges with negative weights, or the shortest path is sought for all ordered pairs of nodes.
Several algorithms exist in the literature for each of these variants, for example, Dijkstra’s algorithm
(for single source and non-negative edge weights) [Dijkstra, 1959], Bellman-Ford algorithm (for
single source and general edge weights) [Bellman, 1958; Ford, 1956], Floyd–Warshall algorithm
(for all pairs of nodes) [Floyd, 1962; Warshall, 1962].
Dijkstra’s algorithm has multiple variants which are often used by routing engines for road networks.

The shortest path problem on the road networks plays an important role in the operation of the
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Figure 2.4.: Main graph problems related to the dissertation.

AMoD services. It provides the route followed by AMoD vehicle between two geographical locations.
Additionally, for efficiently assigning customers to vehicles, any algorithm requires the expected travel
times and distances between customer and vehicle locations. Since the dissertation does not primarily
concerns with improving the shortest path algorithm, it simply uses Dijkstra’s algorithm as explained
in later chapters.

The Travelling Salesman Problem

The travelling salesman problem (TSP) is a well-known NP-Hard problem. It consists of a traveling
salesman that must visit n cities with the minimum traveling cost and return to the city of origin.
It is usually modeled as a weighted graph with n nodes. The graph can be directed (for asymmetric
TSP) or undirected (for symmetric TSP). Each edge weight represents the traveling cost between
the two cities. The solution must visit each node of the graph exactly once such that the sum of
total edge weights is minimum. Figure 2.4c shows an example of TSP.

The Family of Vehicle Routing Problems

The vehicle routing problem (VRP) is a generalization of TSP where a fleet of vehicles must serve
a set of customers with the minimum traveling costs. There are multiple variants of VRP, known
as the family of VRPs. In generic terms, the family of VRPs consists of a fleet of vehicles and a set
of transportation requests. These problems build a set of vehicle paths or routes that serve all or
part of the transportation requests at the minimum possible cost while fulfilling all constraints. The
solution consists of the information on which vehicles will serve which requests and in which order
[Toth and Vigo, 2014]. Figure 2.4d shows an example of the classical VRP.

In the VRP, transportation requests are associated with geographical points, i.e., locations where
the transportation service needs to be provided. VRPs are often modeled as graph problems with the
transportation requests as vertices. In a VRP, the edges usually represent the shortest or cheapest
path between the nodes with each edge resulting from multiple street segments. The traveling time
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or distances in a VRP can be calculated using the routing element of a geographical information
system (GIS) [K.-T. Chang, 2006], the modern examples of which are Google Maps2 and OSM3.
The routing element in a GIS solves the shortest path problem (section 2.4) using constant or real-
time information. The basic AMoD fleet management problem is a type of VRP as will be discussed
in section 2.5.4

2.5. Literature Review

Society of Automotive Engineers (SAE) International defines the degree of vehicle automation on six
levels from level 0 (no automation) to level 5 (full automation) [Automation Levels-SAE International
2021]. An AMoD provides a MoD service consisting of a fleet of level 4 or 5 AVs, with level 4 AVs
requiring geofencing and specific conditions for operation. In mainstream media, AMoD vehicles
are alternatively referred to as robotaxi [SF Officials Describe Street Chaos From Cruise, Waymo
Robotaxis 2023], self-driving taxi [Wedia, 2021] or driverless taxi [Hawkins, 2022].

With the widespread usage of MoD services and AVs on the horizon, the topic of AMoD gained
significant momentum in the last two decades. An AMoD is typically seen as an amalgamation
of multiple technologies that were in development for decades; a convergence of advancements
in technologies like communication (e.g. smartphones, wireless data), navigation (e.g. real-time
traffic updates, eco-routing), shared mobility, modern payment systems (e.g. mobile payments),
electrification and vehicle automation [Stocker and S. Shaheen, 2017]. Since most of the AMoD
services only recently started their pilot phase, most of the research focused on simulations, surveys,
or theoretical analyses of existing MoD and PT systems to study the potential impacts of AMoD
services. The current section reviews the literature available for AMoD services. The section first
discusses the history and current status of AMoD services (section 2.5.1), followed by a detailed
analysis of AMoD service types (section 2.5.2) and modeling techniques (section 2.5.3) found in the
literature. Since the dissertation focuses on improving AMoD fleet management and control, fleet
management-related models are discussed separately in detail in section 2.5.4. The section mainly
focuses on categorizing the services and techniques used in the AMoD literature. The overview of
the literature reviewed using these categories is presented in Table A1 in Appendix A.
The section uses a similar taxonomy as adopted by [Narayanan, Chaniotakis, et al., 2020;

Golpayegani et al., 2022]. For the literature review of fleet management, some of the taxonomy
is additionally taken from [M. F. Hyland and Mahmassani, 2017; Agatz et al., 2012]. Fur-
thermore, the main focus is put on AMoD system modeling and operation, and thus, the long-term
impacts of AMoD services on society in terms of factors like environment, travel behavior, land-use,
are only discussed briefly wherever required. For a detailed discussion on these topics, the reader is
referred to [Narayanan, Chaniotakis, et al., 2020].

2.5.1. A Brief History and Current State of AMoD Services

The concept of AV has been around for a long time. In 1925, New York City residents were amazed by
the sight of a vehicle driving through the streets of Manhattan without anyone at the steering wheel.
A trailing vehicle controlled the vehicle via a transmitting antenna [Stocker and S. Shaheen, 2017;
History of Self-Driving Cars Milestones 2020]. In 1939, the concept received wider public exposure
at General Motors’ Futurama exhibit at New York World’s Fair. There were further developments in
AV technology in 1977 in Japan, which subsequently included Germany, Italy, the European Union,

2https://www.google.de/maps
3https://www.openstreetmap.org
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and the U.S. [Stocker and S. Shaheen, 2017]. However, the current interest in AVs concept
could be traced back to the prized competitions by DARPA (from 2004 to 2007) [The DARPA
Grand Challenge: Ten Years Later 2014]. In the 2004 challenge, the prize went unclaimed as none
of the teams could finish the 142-mile course; nevertheless, during the second challenge in 2005,
five vehicles out of 195 teams were able to complete a course of 132 miles. According to Stocker
and S. Shaheen [2017], Carnegie Mellon University, Environmental Research Institute of Michigan,
and SRI International further strengthened the foundations of current AV developments. By 2013,
several car manufacturers, including General Motors, Ford, Mercedes-Benz, and BMW, were working
on their version of AVs. Google was already working secretly on AVs since 2009. Interestingly, many
team members of Google also participated in the DARPA challenge of 2005 [Chafkin and Bergen,
2017]. By 2016, over 30 companies worldwide were working on AV technology [Stocker and S.
Shaheen, 2017].
Besides the AV technology, the second most crucial element for the realization of AMoD services is

the advancements in platforms for sharing vehicles. The earliest one among these is the car-sharing
(CS) services. CS is a service model in shared mobility where the customer gets the benefits of a
private car or light truck for a period of time without actual ownership and maintenance requirements
of the vehicle. The vehicles are booked via a smartphone app [S. Shaheen, Chan, et al., 2015].
Like AV, the traces of CS could be found much earlier than the modern developments. In 1948,
the Sefage program was established in Zurich without much success due to easy access to private
motorization [H. Becker et al., 2017]. With developments in information and communication
technologies (ICT) and mobile services, increase in fuel prices, and ever-increasing congestion on
road networks, the CS systems started to get greater attention in the early 1990s and saw high
growth in the early 2000s, especially from 2012 to 2014 when it witnessed a 55% percent growth in
market share [S. Shaheen, Cohen, and Jaffee, 2018].
To the best of the author’s knowledge, the concept of combining AVs and CS4 was first initialized in

early 1990s in Europe, at the time named as Cybernetics Transportation System (CTS). It consisted
of a network of purpose-specific AVs called cybercars that were limited in speed and area of operation.
However, the researchers at the time remarked that the future of cybercars lies in its integration into
regular cars [Michel Parent and de La Fortelle, 2005; M. Parent and Daviet, 1993].
The first instance of such a system was installed at Schiphol airport (Amsterdam) in 1997 for long-
term parking to improve the service quality to airline passengers [Jeannette, 2020]. The system
consisted of four electric ParkShuttles with three vehicles operating at a time while the fourth one
remained charging and only called if there were additional transit requests. Later, in two decades,
as the capability of AVs progressed to drive in the urban environment, so did the interest in AMoD
services. As of January 2023, several big companies via their subsidiaries are competing to provide safe
and sustainable AMoD services though they are still in the pilot phase and only operate in selected
parts of the city. For example, Waymo LLC (a subsidiary of Alphabet Inc.; the parent company
of Google) [Roth, 2022] is currently offering AMoD services in Phoenix and San Francisco, USA.
Similarly, Cruise LLC (a subsidiary of General Motors) [Hawkins, 2021] operate in San Francisco
and recently launched its services in Austin and Phoenix [Bellan, 2022]. Zoox, Inc. (a subsidiary of
Amazon) [Marasco, 2023] is developing its own purpose-built robotaxis. Currently, their vehicles
are being tested in San Francisco, Las Vegas, and Seattle.
Though the above pilot studies seem promising, there still appears to be a long way ahead till

4This combination describes AMoD services because, similar to CS services, the AVs are shared among
customers, however, since the involved vehicles are AVs, the customers do not have to walk to the vehicle location;
the AV can come to the customer. AMoD services can be equivalently described as a combination of AVs and
current RH or RS services.

21



2. Background and Literature Review
Sh

ar
in

g 
Sy

st
em Ride-Hailing

Ride-Sharing

Mixed

B
o

o
ki

n
g 

Ty
p

e Announcement

On-demand

Reservation based

Mixed

Serving Flexibility

All binding

Immediate 
Rejection

Rejected after a 
time period

El
ec

tr
if

ic
at

io
n

Charging 
Infrastructure (CI)

Allowed to charge 
at public CI

Specific CI 

Charging strategy

Fl
ee

t 
C

o
m

p
o

si
ti

o
n

Homogenous

Non-homogenous

In
te

gr
at

io
n

 T
yp

e

Integrated

First and last mile

Full network 
integration

Independent

Pa
ym

en
t 

M
et

h
o

d
s

Via the app

Inside the AV

P
ri

ci
n

g

Price structure

Base Fare

Distance based

Time based

Split for Ride-
Sharing

Dynamism

Static

Dynamic

Surge pricing

Congestion pricing

Detour based

Figure 2.5.: AMoD service types.

wider acceptance of AMoD services due to safety requirements. For example, in one recent event
on January 22, 2023, and AMoD vehicle from Cruise started to encroach into an area of emergency
where firefighters were battling a major house fire. Two firefighters stood in front of the AV to
prevent the vehicle from driving over hoses, and finally, they had to smash the front window of the
AV to stop its movement. It is reported that there were 92 such unique incidents between May 29
and December 31 2022 [SF Officials Describe Street Chaos From Cruise, Waymo Robotaxis 2023].

2.5.2. AMoD Service Types

An AMoD service type defines the range of mobility features offered to the customers. These are
used for advertising a specific AMoD service and building a brand name for the MSP. The more
attractive these features and service quality are, the more popular the MSP gets, acquiring a higher
market share. Since a large-scale AMoD is still non-existent, the literature gets inspiration from
existing service models to study the impacts of potential AMoD service features. The exact features
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offered by an AMoD could vary significantly due to its combining of years of developments in multiple
domains, like electrification, payment schemes, shared mobility, and others. Over the years, each
domain has developed its own service variants. The literature often brings a combination of these
features together into a single system to study the impact of developed AMoD service type. Figure 2.5
summarizes the main categories for specifying an AMoD service type. The following explains these
categories in more detail.

Type of Sharing System

An AMoD service could be classified into ride-hailing (RH), ride-sharing (RS) or a mixed system
where the user can choose between an RH or RS offer. In the RH case, a single customer request
is served at a time while in RS, a vehicle may pool multiple customer requests before dropping the
ones already onboard. In terms of AMoD service, RH is also referred to as car-sharing (CS) for AVs
[Narayanan, Chaniotakis, et al., 2020]. RS will most likely be necessary for AMoD services to
increase vehicle occupancy and reduce negative effects on the road networks and the environment
[Greenblatt and S. Shaheen, 2015]. Even though RS rides constitute a small share of current
MoD rides [M. Hyland and Mahmassani, 2020; Henao and Marshall, 2019; S. Shaheen
and Cohen, 2019; Lazarus et al., 2021], the willingness of the customers to share rides in an
AMoD system can only be known with certainty in future. However, similar to the current MoD
system, the time-cost trade-offs would be most probably a significant factor for willingness to share
rides in AMoD systems [M. Hyland and Mahmassani, 2020; Alonso-González et al., 2021;
Lazarus et al., 2021]. Thus, optimizing the operation of RS services for time-cost trade-off will
still play a major role in AMoD services. Several researchers have studied and tried to improve the
efficiency of AMoD services with RS option and varying vehicle capacities, for example, two [M.
Hyland and Mahmassani, 2020], four [Engelhardt, Dandl, Bilali, et al., 2019; Jung,
Jayakrishnan, et al., 2016], six [Alazzawi et al., 2018; Zwick and Axhausen, 2020] and
upto ten [Alonso-Mora, Samaranayake, et al., 2017]. However, the operation of RS services
remains a complex problem with significant potential for further improvements.

Type of AMoD booking

An AMoD booking type defines the nature of the ride request made by a customer and the response
received from the AMoD operator. In a way, they define the type of service the MSP promises its
customers, and if not fulfilled efficiently, can lead to a negative popularity of the MSP. Narayanan,
Chaniotakis, et al. [2020] distinguishes different types of booking based on booking time frame:
on-demand (real-time booking of trips), reservation based, or mixed. Most of the AMoD literature
only considered on-demand requests [Alonso-Mora, Samaranayake, et al., 2017; Alonso-
Mora, Wallar, et al., 2017; M. Hyland and Mahmassani, 2018; Engelhardt, Dandl,
Bilali, et al., 2019; Fagnant and Kockelman, 2018; Fagnant, Kockelman, and Bansal,
2016] and only a limited number of studies considered a pure reservation based system [Ma et al.,
2017; Lamotte et al., 2017; Levin, 2017]. A reason for a higher focus on on-demand requests
could be that the current MoD services mostly use on-demand requests only. Secondly, a pure
reservation based AMoD system would be identical to a static Dial-a-Ride problem (DARP) if all
customer requests are already known in advance. Interestingly, in recent years the interest in static
and dynamic DARP has also increased significantly [Ho et al., 2018]. Nevertheless, if a certain
level of dynamism is maintained with reservation requests (i.e., the reservation can only be within a
specific time horizon), the system could provide an upper bound to the purely on-demand requests
based AMoD [Ma et al., 2017], enabling better planning of routes and schedules, and lowering the
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required fleet size [H. Wang et al., 2014]. Thus, recently, there has been a growing interest in a
hybrid system where the user can choose between an immediate ride request or reserving a ride in the
future [Abkarian et al., 2022; Duan et al., 2020; Engelhardt, Dandl, and Bogenberger,
2022].
Besides the time horizon, a further distinction in the nature of booking can be made based on

the flexibility of the ride request by the customer or the operator. Currently, in MoD systems, after
assigning a vehicle to the customer, the drivers can accept or reject the ride request [How Uber
Works 2023; How to Give a Lyft Ride 2023]. In contrast, this step will be mostly absent in AMoD
services as there are no drivers unless the AMoD services incorporate private AVs and the AV owner
is given a choice to accept or reject the ride request. Hence, accepting or rejecting a ride request
will mainly depend on the central AMoD FC. Similarly, the customer may choose to accept or reject
the provided offer. Regardless of what is implemented in actual AMoD, the studies in literature
adopt one of these possibilities depending on the overall research objective. For example, some
studies assume all customer requests to be binding and must be served regardless of waiting. This
helps to compare different algorithms and evaluate the level of service offered by a given fleet size
[M. Hyland and Mahmassani, 2018; Fagnant, Kockelman, and Bansal, 2016; Pavone
et al., 2012]. Similarly, some studies assumed that the customer leaves the system if not served
within certain period [Lokhandwala and Cai, 2018; Spieser et al., 2016]. Others assumed that
the operator could immediately reject a customer if certain service quality criteria (mostly maximum
customer waiting time to pickup) could not be met [Alonso-Mora, Samaranayake, et al., 2017;
Alonso-Mora, Wallar, et al., 2017]. Yet others also modeled the option of rejection by the
customer [Al-Kanj et al., 2020; Dandl, Bogenberger, and Mahmassani, 2019].

Electrification, Fleet Composition and Environment

Electrification, fleet composition and a concern for the environment will play an essential role in the
wide-spread acceptance of AMoD services by the general population and the policymakers [Green-
blatt and S. Shaheen, 2015; Greenblatt and Saxena, 2015; Fulton and Ogden, 2021].
A general outcome usually found in literature is that emission reduction highly depends on efficient
application of electric vehicles (EVs) in AMoD [Narayanan, Chaniotakis, et al., 2020]. For ex-
ample, Fulton and Ogden [2021] explored different scenarios and concluded that electrification of
the fleet is vital for decreasing overall energy consumption, without which, any efficiencies achieved
via automation are compensated by the increased VKT caused by AMoD. Jones and Leibowicz
[2019] developed an optimization model for an energy system that integrates electricity and transport
sectors. They note that AMoD fleet are more attractive for electrification due to their high utilization
rate, making the vehicles with high capital costs and low variable costs more favorable. Furthermore,
they conclude that the environmental and economic benefits are even more significant if charging of
AVs is optimally scheduled.
In light of the above, several studies have considered AMoD system with electric AVs fleet, referred

to as electric AMOD (eAMoD) in the dissertation. Two important aspects of the eAMoD services
are (1) charging infrastructure (CI) and (2) the strategy used to monitor and schedule the charging
of vehicles. The following discusses the charging infrastructure used in literature, while the charging
strategies are discussed in later sections under AMoD fleet management.
To provide a consistent eAMoD service, the EV fleet would require sufficient CI. The most basic

approach for the eAMoD studies for the CI is to use publicly available CI data for both the locations,
number, and power charging units [Dandl and Bogenberger, 2019; Y. Zhang et al., 2022;
Fehn, Noack, et al., 2019; L. Li, T. Pantelidis, et al., 2021]. In this regard, with the increasing
electrification of POVs, the question arises if the AMoD should be allowed to charge at the public
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charging stations, especially when the charging events of POVs are often combined with parking of
POVs [Wolbertus et al., 2021] and have to compete with other vehicles to find empty charging
spots with least additional VKT [A. A. Syed, Fischer, et al., 2022; Basmadjian et al., 2019].
Y. Zhang et al. [2022] compared the efficiency of a depot based eAMoD CI to the system where
eAMoD fleet was allowed to charge at the public CI. The charging event of POV was derived from
real data. The study indicates a decrease in empty VKT when public CI is used without additional
investment costs for owning multiple depots for charging. However, in the absence of data or if CI is
not yet available in the area of interest, models are used that determine the required infrastructure
to sustain eAMoD operation [Chen et al., 2016; Vosooghi et al., 2020]. These studies generally
also include sensitivity analysis for different vehicle ranges, charging unit power, and their impact on
the performance of eAMoD system.
Besides the CI, the fleet composition, model type, battery size, and vehicle capacities also play

an essential role in AMoD and eAMoD services. Greenblatt and Saxena [2015] estimated that,
besides the electrification, by deploying appropriate vehicle types according to the passenger occu-
pancy (i.e., small vehicles for requests with one or two passengers and larger for higher occupancy),
the emissions could be reduced by a factor of two. If privately owned AVs are allowed in the AMoD
system, that would already lead to a non-homogeneous fleet, similar to current MoD services. Ata-
soy et al. [2015] presented preliminary results of a similar concept in Tokyo; however, the fleet was
homogeneous that adopted its capacity according to the chosen use-case by the passenger. One of
these use cases included acting as a mini-bus with fixed pickup and drop-off locations. Additionally,
in mixed fleets, a preference by customers for one vehicle type over another can also play a crucial
role in the overall performance. Dandl and Bogenberger [2018] simulated two different vehicle
models and showed that a customer preferring one over the other increases VKT. In summary, the
topic of the mixed fleet in AMoD is complex as there are a significant number of possible choices.
Further complexity in models is required to understand their impacts fully.

Integration Type

The integration type of the AMoD system plays a vital role in distinguishing the AMoD literature.
Narayanan, Chaniotakis, et al. [2020] defines two major integration types based on the de-
pendence of AMoD on other transport modes: (1) independent and (2) integrated with PT. An
independent system exists parallel to existing transport modes and does not necessarily interact with
or consider them in their operation. The majority of AMoD studies found in literature fall under this
category, for example: [Pavone et al., 2012; Fagnant, Kockelman, and Bansal, 2016; Fag-
nant and Kockelman, 2018; Alonso-Mora, Samaranayake, et al., 2017; Alonso-Mora,
Wallar, et al., 2017; Engelhardt, Dandl, Bilali, et al., 2019; Bischoff and Maciejew-
ski, 2016]. However, several studies have shown that the introduction of current MoD services have
shifted the traveling behavior of people away from the PT to MoD, causing an increased load on
the road networks [Qiao and Gar-On Yeh, 2023; Kong et al., 2020]. Usually, the accessibility
to the PT network plays a major role in people not choosing PT over POV, which is often referred
to as the first and last mile problem [Murray, 2003]. Therefore, the studies with PT integration
have attempted to complement the existing PT network by using AMoD for the first and last mile
and potentially provide improved mobility options in areas of low PT coverage [Pinto et al., 2020;
Moorthy et al., 2017; Shen et al., 2018; Wen et al., 2018]. Some works have tried to integrate
AMoD and PT for the entire network and not just for first and last mile [Salazar et al., 2018]
In addition to the above, an AMoD could also be integrated into a larger platform known as

mobility as a service (MaaS) apps, where the customer simultaneously has access to multiple mobility
options, including bike-sharing, CS, AMoD, e-scooter and PT [Liimatainen and Mladenović,
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2021; Kayikci and Kabadurmus, 2022]. However, a knowledge of modal split is usually required
to evaluate the benefits of MaaS. A modal split deals with questions like how users select the
transport mode, how it varies over time, and how it affects overall urban mobility. Therefore, there
is a growing need for literature dealing with combined mode choice models of multiple transport
modes [Narayanan and Antoniou, 2023].

Payment Methods and Pricing

Regarding payment methods, the AMoD system is expected to follow the same digital payment
strategies as current MoD systems. Regardless of the booking platform used (MaaS or individual
AMoD app), the users would pay via the same app as used for calling the rides. Due to growing
concerns about data privacy and new technological developments in e-commerce, possibly the current
payment methods would be replaced by more secure block-chain based methods, such as MOBI
Wallet5, or Mobility Coin[Blum et al., 2022]. So far, the literature assumes that all the AMoD
users will use the app accompanied by the payment method for calling a ride. However, the data has
shown that despite the prevalence of MoD services, the traditional taxis with street hailing option are
not disappearing and still have a significant market share [Lyu et al., 2021; D. Wang et al., 2021].
In the long run, AMoD system may also incorporate gesture-based street hailing option using new
technological developments. The biggest challenge in this regard would be to judge the intent of the
customer gesture accurately. If such functionality is implemented in AMoD system, there could be a
possibility to directly pay inside the vehicle using debit or credit cards without downloading an app.
The price structure plays a vital role in attracting more customers and keeping the whole AMoD

system profitable and sustainable. The two main components of the price structure would be variable
fare, paid per distance traveled or time spent inside the vehicle and the base fare. The base fare
is usually required to make the AMoD system profitable by compensating for the empty driven trip
to pick up the passenger [A. A. Syed, Dandl, Kaltenhäuser, et al., 2021] or to discourage
short trips that could be made simply by walking or biking [Wilkes et al., 2021; Wen et al., 2018].
For the RS use-case, it is also possible to split the costs with other passengers or get discounts on
agreeing to share rides [S. Shaheen, Chan, et al., 2015; Kucharski and Cats, 2020]. The exact
values of these fares heavily depend on the cost of operating AMoD system, which is still a debated
topic in the absence of an actual wide-scale for-profit AMoD service. The most commonly predicted
values in the literature range from $0.19/km to $0.30/km [Narayanan, Chaniotakis, et al.,
2020]. A similar hardware cost estimate of $0.18/km (without service and maintenance costs) was
mentioned by Waymo’s former CEO in an interview [Moreno, 2021]. Some researchers suggest
that these estimates are still optimistic and often overlook some important aspects; for example,
Litman [2023] proposes that the misbehavior of some AMoD passengers cannot be eliminated
entirely, which might require cleaning every 5-15 trips and occasional repairs. He proposes this may
incur an additional $0.33-$2 per trip, excluding the value of time and driving costs to the cleaning
station. Bösch et al. [2018] also conclude that the success of AMoD business model also requires
finding solutions to the problem of customer misbehavior while onboard.
The price structure could also be dynamic with individual price components dependent on multiple

variables — flexible or dynamic pricing [M. F. Hyland and Mahmassani, 2017; Narayanan,
Chaniotakis, et al., 2020]. A detour-based price in RS system is an example of flexible pricing
[Kucharski and Cats, 2020]. Similar to current MoD fleet6, charging a higher price at the time of
high fleet utilization would increase profit and make sure that people who really need a ride and ready

5https://dlt.mobi/
6https://www.uber.com/de/en/drive/driver-app/how-surge-works/
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to pay more, rather than waiting for prices to go down, are able to get a ride [Al-Kanj et al., 2020;
Turan et al., 2020]. This temporal increase of prices is also referred to as surge pricing [Turan
et al., 2020]. Similar to user-based relocations in CS systems [Weikl and Bogenberger, 2013;
Weikl and Bogenberger, 2015], the prices in AMoD services can also vary spatially to incentivize
people going to low-demand regions for better balancing of vehicle supply and demand [Al-Kanj
et al., 2020]. Similarly, in order to avoid traffic congestion in certain areas, the regulators could
impose congestion pricing (road pricing for using certain network links at certain hours of the day)
which would also increase the prices paid by customers for some itineraries [Salazar et al., 2018;
Gurumurthy, Kockelman, and Simoni, 2019].

2.5.3. AMoD Modeling and Evaluation

Several methodologies are used in literature to study the impact of AMoD services. Some of the
AMoD aspects could be studied in surveys, which helps to model those AMoD aspects in later
studies, for example, factors affecting user acceptability [Nordhoff et al., 2018; F. Becker and
Axhausen, 2017], perceived benefits and drawbacks of AMoD [D. Li et al., 2022], understanding
the mode choice preferences and reasons for pooling [Lazarus et al., 2021]. Another approach is to
use mathematical and analytical models to get a quick estimate of the AMoD systems. For example,
Bilali, Dandl, et al. [2019] developed an analytical model to study the influence of reservation,
detour, and maximum waiting time on the probability of finding shareable rides. Later on, they
used macroscopic fundamental diagram (MFD) to further extend the model for enabling the ability
to estimate traffic impacts when an AMoD service is introduced in a city [Bilali, Fastenrath,
et al., 2022]. Similarly, Santi et al. [2014] used a shareability network to quantify the benefits of
introducing RS in Manhattan. The shareability network creates a graph of trips that could be pooled
and uses a maximum matching algorithm to study the percentage of shareable trips. While these
analytical models provide a good opportunity for the MSPs to quickly quantify various aspects of
an AMoD system, they often use simplistic assumptions to make the overall problem solvable within
limited computation time. They also lack the flexibility to study the impacts of crucial elements like
user interaction, vehicle charging, fleet assignments, etc. Therefore, as described in the following, an
agent-based simulation is usually the method of choice for studying the impacts of AMoD services.
The AMoD system consists of a series of complex components that ultimately models the inter-

action between humans, AVs, and the environment (including the road network) [Jing et al., 2020;
Narayanan, Chaniotakis, et al., 2020; M. F. Hyland and Mahmassani, 2017]. In addition
to each one of these actors having a complex system in itself, further complexity is brought by the
stochastic and dynamic nature of the whole system; a decision made at any point in time by one
of the actors can have a significant impact on the performance of the entire system. Therefore, the
most common method found in literature is to use multi-agent models to study AMoD services [Jing
et al., 2020; Narayanan, Chaniotakis, et al., 2020]. An agent is a closed system capable of
taking autonomous actions in the surrounding environment to achieve desired goals [Wooldridge,
1997]. These agents interact with each other in an agent-based simulation. Realistic modeling of
all the actors and their interaction simultaneously is generally difficult. Thus, the studies in litera-
ture usually model some of the components in greater detail than others depending on the overall
objective of the study, which consequently also defines the assumptions made in the corresponding
research.
This section presents the most important components of an AMoD system and the commonly used

modeling techniques. The main focus of the section is on the agent-based AMoD simulation, and
the analytical models are only briefly mentioned if necessary. The taxonomy adopted in the section
is mainly inspired by [Narayanan, Chaniotakis, et al., 2020] and [Jing et al., 2020].
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Customer, Vehicle and AMoD operator models

Multi-agent AMoD models consist of three main types of agents: customers, vehicles, and the AMoD
operator. Usually, a large number of agents are computationally more expensive to simulate. In the
simplest case, the customers are modeled as having some announcement or request time, at which
point their presence is known to the system and must be served at some later point by AMoD provider
[Pavone et al., 2012; M. Hyland and Mahmassani, 2018] or walk-away if they are not served
till certain time limit [Spieser et al., 2016; Wen et al., 2018]. More complex customer models
also include the ability to reject an offer and leave the system immediately if the offer does meet
certain service quality criteria such as maximum detour time [Alonso-Mora, Samaranayake,
et al., 2017; Alonso-Mora, Wallar, et al., 2017], probabilistic rejection after some waiting time
threshold [Engelhardt, Dandl, Bilali, et al., 2019], or in case of RH a maximum waiting time
[Dandl and Bogenberger, 2019; A. A. Syed, Kaltenhaeuser, et al., 2019]. It is also possible
to add additional details to customer models that could impact the overall system, for example, the
time spent for boarding and disembarking of the customers [Engelhardt, Dandl, Bilali, et al.,
2019].

In AMoD simulations, in simplest terms, the vehicles are modeled as independent points traversing
the edges of the city network [Erdmann et al., 2021; Alonso-Mora, Samaranayake, et al.,
2017; Alonso-Mora, Wallar, et al., 2017]. The vehicles are supposed to be fully autonomous
and completely follow all the instructions of the FC. Usually, a fixed number of vehicles with limited
maximum capacity (according to the AMoD service being studied) are initialized at the beginning
of the simulation, which remain the same throughout the simulation [Engelhardt and Bogen-
berger, 2021; Engelhardt, Dandl, Bilali, et al., 2019]. To determine the initial number
of vehicles, some studies add new vehicles in warm-up simulation whenever the maximum waiting
time threshold is not met [Fagnant, Kockelman, and Bansal, 2016]. In more complex stud-
ies, especially the ones using traffic simulators, vehicles do not simply traverse edges; instead, the
car-following model is used that can replicate more realistic movements; the vehicles interact with
one another, which allows taking into account the traffic congestion [Dandl, Bracher, et al.,
2017]. Typically, this is the maximum level of detail found in AMoD studies for vehicle models.
The detailed modeling of the internal functioning of AVs would only cost more computational effort
without bringing additional insight into the overall AMoD system.

The AMoD operator model serve as the main component in the AMoD simulations since all the
movements of the AVs are controlled by the operator. The main component of the operator model
is the central FC that takes care of the whole fleet management, including assigning vehicles to
customers. The internal functioning of the AMoD is usually modeled in detail along with different
methods to improve the efficiency of the whole system. The important components and methods
used for AMoD operator model will be discussed separately in later sections.

Demand Modeling

The demand modeling estimates customer demand in the study area, which generates the mode
share for the AMoD services. As the AMoD are still in the pilot phase with limited service area,
no direct AMoD operator data is available to model the demand. Therefore, many studies use
trip data of existing services like taxis or MoD to model customer demand in the simulation. For
example, using NYC taxi dataset [Alonso-Mora, Samaranayake, et al., 2017; Alonso-Mora,
Wallar, et al., 2017; A. A. Syed, Kaltenhaeuser, et al., 2019; Erdmann et al., 2021;
Dandl, M. Hyland, et al., 2019] or using Chicago taxi dataset [M. Hyland and Mahmassani,
2018; Dandl, M. Hyland, et al., 2020; Liu et al., 2020]. The taxi dataset usually only has
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the trip’s start time, not when the trip is requested. Thus, the studies directly use the trip start
time as the time when customers order AMoD ride. Furthermore, these datasets usually use spatial
and temporal aggregation due to data privacy, which requires disaggregating the data before they
could be used in the studies. An additional advantage of using these datasets is that they allow
the researchers to directly compare the efficiency of a centrally controlled AMoD system against a
decentralized human driver-based taxi system. A major assumption for using the taxi data is that
it represents the spatial and temporal demand for mobility, which is also assumed to represent the
future AMoD demand — an assumption which may not be necessarily true as AMoD mode share is
a complex and continuously evolving topic. As pointed out by Hardt and Bogenberger [2020],
a major disadvantage of using these datasets is that they underestimate customer demand in an
operation area. Usually, the datasets only contain information on trips where a vehicle successfully
serves a vehicle; however, a significant portion of customer demand remains unreported as their ride
requests could not be assigned due to a lack of vehicle supply. Hardt and Bogenberger [2020]
also suggested an approach to model this additional demand for CS services using the expectation-
maximization algorithm. Nonetheless, this additional demand is usually not taken into account in the
AMoD literature; often, the AMoD works focus on comparing different fleet control strategies, for
which using consistent customer data for all algorithms is more important than accurate modeling
of future demand. Consequently, directly using these datasets without combining them with any
demand modeling algorithm is widely common in AMoD literature.
While the taxi and MoD data provide a good source for potential AMoD demand, unfortunately,

it is not available for most of the study areas. Therefore, the stated preference (SP) surveys are also
commonly used in AMoD studies for demand and mode share modeling [Martinez and Viegas,
2017; Dia and Javanshour, 2017; Javanshour et al., 2019]. SP surveys helps to quantify
how people would react under a new situation by asking them questions related to new policies,
product, or services [Alonso-González et al., 2021; Lazarus et al., 2021; D. Li et al., 2022;
Nordhoff et al., 2018]. Other data sources can also be used for this purpose, including smart
transit cards data, land use data (locations and characteristics of residential, commercial, and school
areas), mobile phone data, and others [Narayanan, Chaniotakis, et al., 2020].
Using the above data sources (including taxi and MoD data), the AMoD demand could be either a

constant factor of all trips [Chen et al., 2016; Fagnant and Kockelman, 2014; Engelhardt,
Dandl, Bilali, et al., 2019; A. A. Syed, Kaltenhaeuser, et al., 2019] or based on demand
models [Narayanan and Antoniou, 2023]. Some simulators like SimMobility [Azevedo et al.,
2016] and MatSim [Sebastian Hörl et al., 2018] have integrated mode choices directly into the
AMoD simulation using multiple simulation layers. Some studies also consider dynamic adjustments
to mode choices in the AMoD simulations, such as on a day-to-day basis [Sebastian Hörl et al.,
2019] or on real-time information [Wilkes et al., 2021; Atasoy et al., 2015].

Transport Network and Traffic Model

The transport network forms the main world or the environment where the customers and vehicles
exist and interact with each other. The traffic model specifies the route flow and travel times between
origins and destinations — the interaction with the transport network [Narayanan, Chaniotakis,
et al., 2020]. Both can have a significant impact on the accuracy of the simulation.
The AMoD literature mainly consists of three types of transport networks: 2D continuous plane,

grid network, and node-link network. As the name suggests, in a 2D continuous plane, the transport
network is defined on a continuous plan within a certain boundary. All of the positions within the
boundaries are available for vehicle and customer positions. As for the traffic model, the vehicles can
move on straight lines using Euclidean distances [Burns et al., 2012], or on Manhattan geometry
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for replicating the vehicles of an urban area [M. Hyland and Mahmassani, 2018; Dandl, M.
Hyland, et al., 2019]. The vehicle speed is usually assumed to be constant [Dandl, M. Hyland,
et al., 2019] or can vary for peak hours [Burns et al., 2012].
In contrast, the grid network discretizes the 2D space within a boundary. Thus, the network consists

of a regular grid where grid points or centroids of each grid cell serve as nodes and their connection
(represented by straight lines) with the neighboring grid points or centroids as edges of the network
graph [Fagnant and Kockelman, 2014; Chen et al., 2016; W. Zhang, Guhathakurta, et al.,
2015]. Unlike a 2D continuous plane, the customers or vehicles can only exist on a node or the edge
of the network graph. Regarding the traffic model, the vehicle routes and distances can be calculated
using the Manhattan metric. A Manhattan metric (or distance) between two points is calculated
by the sum of absolute differences of their Cartesian coordinates, representing a movement over city
blocks. Overall, the grid network represents a city on a grid with multiple areas representing different
parts of the city, such as downtown, urban, or suburban areas. The network speed is predefined and
can vary according to peak and off-peak hours or according to the area modeled [Fagnant and
Kockelman, 2014; Chen et al., 2016].

In a node-link network, the nodes are not equally distanced over a grid; instead, they can be
located at unequal distances. The node-link model can be further divided into coarse and road-level
networks. Examples of a coarse network include studies where the transport network only consists
of inter-connected stations (or hubs) [Pavone et al., 2012; Spieser et al., 2016; LIU et al., 2018]
or inter-connected regional centers [Heilig et al., 2017]. In coarse networks, the traffic models are
usually represented by straight lines between graph nodes. The travel distances or travel times are
calculated using Euclidean distance [Pavone et al., 2012; LIU et al., 2018], however, more realistic
travel times could also be incorporated using external sources like macro-simulation [Heilig et al.,
2017].
The road-level transport network produces a more realistic simulation. They are based on high-

fidelity maps, with each network edge having an actual road geometry, length, and travel time
(or speed). In the raw map data, the travel time of the edges is typically based on free-flow
speed. With the wide-spread availability of open-source projects like OpenStreetMaps7, the usage
of road-level transport networks became very common in literature, for example, [Alonso-Mora,
Samaranayake, et al., 2017; Engelhardt, Dandl, Bilali, et al., 2019; Urban Mobility Sys-
tem Upgrade 2015; Boesch et al., 2016; Engelhardt, Dandl, A.-A. Syed, et al., 2022;
Alonso-Mora, Wallar, et al., 2017; Dandl, Bogenberger, and Mahmassani, 2019]. For
the traffic model, in the simplest case, the free-flow speed can be directly used [A. A. Syed,
Kaltenhaeuser, et al., 2019]. While this approach can help to compare the efficiency of different
fleet management methods, the replacement rate and the benefits of introducing AMoD services
could be highly overestimated. Therefore, the studies use multiplication factors (either constant or
time- and link-dependent) based on various sources to model congestion. Some of these sources
include, for example, historic data [Jäger et al., 2018], an independent traffic simulation [Fag-
nant, Kockelman, and Bansal, 2016], occupancy per link [Urban Mobility System Upgrade
2015], Google Maps data [Bauer et al., 2018] or data provided by the concerned city authorities
[Kondor et al., 2019]. The route between the source and destination is found by solving the
shortest-path problem (section2.4). Instead of dynamically solving the shortest-path problem inside
the simulation, some studies preprocess the entire travel time and distance table (of either the fastest
or the shortest route) for all combinations of nodes and reuse them throughout the simulation. This
significantly reduces the simulation time [Engelhardt, Dandl, A.-A. Syed, et al., 2022; A. A.
Syed, Dandl, and Bogenberger, 2021].

7https://www.openstreetmap.org
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In most of the above studies with road-level transport networks, the vehicles are simulated as dy-
namic points traversing the network edges with the given speed; the vehicles are typically unaware of
other vehicles traversing the same edge. However, the road-level networks can have even greater de-
tails when combined with microscopic traffic simulators, such as SimMobility [Azevedo et al., 2016;
Basu et al., 2018], Aimsun [Dandl, Bracher, et al., 2017], Vissim [Alam and Habib, 2018]
and others. The combination allows having multiple lanes on each link with a realistic simulation
of individual vehicles and the overall traffic. This also helps to simulate effects like congestion with
higher accuracy. The congestion effects can also be studied by combining AMoD simulations with
mesoscopic traffic flow simulators like MATSim [Maciejewski and Bischoff, 2018]; MATSim
uses a queue-based traffic flow model that is capable of running large-scale simulations.

Integrating other Transport Modes

Depending on the integration type of the AMoD system, the transport network must incorporate
a model for other transport modes. With an increased number of transport modes, the number of
possible routes between an origin-destination pair can increase drastically for each customer, making
the overall problem significantly more difficult to solve. The problem becomes even more complex
when additional AMoD fleet operations, such as repositioning, are also taken into account. Since
integrating other transport modes is not the main topic of the dissertation, the section only briefly
presents the methods found in the literature.

Among the transport modes, the most important is the PT network. The PT network is often
line-based with fixed schedules, which makes it quite different from the transport network discussed
in the previous section. The literature consists of multiple ways of combining the two networks. A
common approach found in literature is to consider the PT network to function almost independently
and to only interact with the rest of the AMoD network at fixed locations (mostly PT stops) with
some predefined time for mode transfer. For example, Shen et al. [2018] study the integration of
AMoD with the bus network for the first and last mile in Singapore. The buses are assumed to move
with fixed speeds on corresponding bus lines and the AMoD vehicles can only pick up customers from
bus stops. Salazar et al. [2018] study the integration of AMoD service with the subway network in
Manhattan. They maintain separate graphs for walking, the AMoD service, and the subway network.
Every node in the subway network is connected to the closest node in the walking graph. They
assume a fixed period of one minute to transfer to the subway. A similar modeling approach is
used by Salazar et al. [2018] and Zgraggen et al. [2019] for the subway system in Manhattan,
where walking is additionally used as a transport mode. Their approach also includes repositioning
of AMoD vehicles without a limitation of using AMoD service only for first and last miles.

In addition to the above, a more realistic integration of multiple transport modes could be achieved
in combination with traffic simulators. Many microsimulators inherently support numerous transport
modes, which could be used alongside AMoD simulations to study the impacts on combined system
[Chouaki and Puchinger, 2021; Nguyen-Phuoc et al., 2023; Basu et al., 2018]. Since the PT
network is simulated more realistically — especially the buses as they travel alongside other traffic
vehicles —, this approach provides better integration of different transport modes.

The integration of multiple means of transport with AMoD is a complex topic with growing interest
in various areas of research; for example, one study introduced the method for joint redesigning of
the transit network and the determination of required AMoD fleet [Pinto et al., 2020]. There is
also a requirement for further research on how to guarantee a higher level of service and on-time
arrival of AMoD vehicle when multiple transport modes are combined.

31



2. Background and Literature Review

A
M

o
D

M
o

d
el

lin
g

Agent Models

Customer

Simple (Only 
Request Time)

Wait-time based 
system leaving

Accept / Reject

Vehicle

Independent 
points

Interactive with 
other vehicles

AMoD Operator
AMoD Fleet 

Management

Demand Modelling

Taxi or MoD Data

Demand Models

Transport Network

2D continuous 
plane

Grid network

Node-link network

Coarse

Road-level

Traffic Model

Manhattan / 
Euclidean Metric

Scaled Free-flow

Traffic Simulation

Integration

Line-based

Traffic Simulation

(a) Overall AMoD system

A
M

o
D

Fl
ee

t 
M

an
ag

em
en

t

Vehicle Assignment

Dynamism

Immediate 
Response

Batching

Mix

Solution Method

Heuristic

Optimization

Considered 
Vehicles

Only Idle

Idle and Enroute

Reassignment

Re-optimization 

Repositioning

Short-term

Explicit 
Repositioning

Predictive Routing

Mid-term

Mix

Charging

Heuristic

Optimization

Model Predictive 
Control (MPC)

Dynamic 
Programming

Other Formulations

(b) Fleet management tasks

Figure 2.6.: Modeling of AMoD system.

2.5.4. AMoD Fleet Management

Unlike the current MoD services — where the human driver plays a crucial role and, in many cases,
can make independent decisions —, the AMoD fleet is fully controlled by the MSP. The exact details
of the fundamental driving tasks (speeding, braking, sensing, localization, and others) are still taken
care of by the onboard software; however, the information of when and to where a vehicle should
drive or which customer it should serve, must be communicated by the MSP. These functionalities
come under the window of AMoD fleet management. The central fleet controller (FC) is generally
responsible for fleet management at MSP. From the perspective of AMoD studies, the definition of
AMoD fleet management also comes under AMoD modeling (section 2.5.3). Nevertheless, since the
dissertation primarily concerns the AMoD fleet operation, the current section discusses it separately.

This section mainly reviews the three main AMoD fleet management tasks found in the literature:
vehicle assignment, repositioning, and charging. Other control tasks could include dynamic pricing,
dynamic fleet sizing or even controlling an AMoD based city logistic system [Fehn, Engelhardt,
et al., 2021]. However, the literature is already limited on these topics from the perspective of FC
and many of these studies have already been covered in the previous section.

In general, the overall fleet management of AMoD comes under the umbrella of VRPs (section 2.4).
The history of VRPs goes back almost 70 years, during which hundreds of studies have tried to

32



2.5. Literature Review

formulate and solve different types of VRP. Looking at the long history of VRPs, M. F. Hyland
and Mahmassani [2017] developed a taxonomy of the typical characteristics of the existing VRPs
and the AMoD fleet management problem. Therefore, the following first discusses some of these
characteristics before discussing the AMoD literature under each category of fleet management tasks.

VRP Characteristics and AMoD

The following only presents the major VRP characteristics relevant to AMoD fleet management tasks.
The list is not exhaustive; the reader is referred to [M. F. Hyland and Mahmassani, 2017] for
a complete list of characteristics. Some of these characteristics were also mentioned in previous
sections. Nonetheless, the purpose of mentioning them here is to review how they are manifested in
the mathematical formulations in FC.

• Time-windows: Depending on the AMoD booking type (section 2.5.2), FC may introduce
certain time-window restrictions on fleet management tasks. If these restrictions are strict
(explicit time-window) such that a customer must be picked up within that time-window, then
the time-window is modeled as a hard constraint. This can happen if, for example, AMoD
model allows reservations or has a certain upper limit on the maximum allowed pickup delay.
Alternatively, if time-window is not strict (implicit time-window), then time-window constraints
are added to the objective function, i.e., soft constraints. In this case, the time constraint is
also called quality of service term.

• Coupling and Precedence: This occurs when a single request consists of multiple locations
which must be served in a specific order; for example, a single shipment request might require
collection from various points before delivery to the destination. The AMoD models generally
consist of only two coupled points, i.e., pickup and drop-off points. In this case, it is called
pairing instead of coupling. A higher number of coupled points could be imagined if the AMoD
service allows picking up (dropping off) of the individual passengers in each AMoD request from
(to) multiple locations. They are generally modeled as hard constraints. In VRP literature,
these types of problems come under the category of pickup-and-delivery problem (PDP). If PDP
involves the transportation of people, then it is generally referred to as Dial-a-Ride problem
(DARP).

• Vehicle Capacity: A VRP may be constrained by the capacity in terms of weights, volume,
number of places, etc. In AMoD, the capacity constraint occurs due to the maximum number
of people allowed to sit in a vehicle simultaneously. Generally, the capacity concerns the RS
case in AMoD, where the FC needs to keep track of current capacity while pooling multiple
customers. It can also be relevant to RH case if the AMoD consists of a heterogeneous fleet
with various sizes; the FC would need to make sure that a right size vehicle is assigned to the
customer request. The capacity constraints also form a hard constraint in the problem. These
problems come under the category of Capacitated Vehicle Routing problem (CVRP).

• Information: The information consists of any data required for solving the VRP. The type
of available information plays a critical role in characterizing the problem. Some important
aspects include:

– Quality of information: The accuracy of the provided information can vary across problem
formulations. Often part of the information is not known at the time of solving the
problem. If part of the information is undetermined or described in statistical terms, then
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the problem is stochastic; otherwise, if the information is known with certainty, then it is
deterministic [Ho et al., 2018][Toth and Vigo, 2014, Chapter 11].

– Evolution of information: Many times, part or all relevant information is not known at
the time of solving the problem, and the new information reveals over time. Thus, If the
operator is allowed to modify or update the routing plan after the start of its execution,
then the problem is called dynamic. In contrast, the problem is called static if all the
related information is known beforehand. There can be multiple sources of dynamic
information, for example, the addition of new requests into the system, availability of
new vehicles, updated travel times, dynamic pricing, etc. A dynamic problem is also
referred to as online or real-time problem.

The class of VRPs that has both of the above characteristics is termed as stochastic and
dynamic vehicle routing problems (SDVRPs).

• Objectives: The objective function represents the goal that the FC tries to achieve. Some of
the important aspects related to objective functions are:

– Single objective: The objective function can consist of a single objective. The typical
objectives include minimizing the number of vehicles, total travel cost, and total travel
time or maximizing profit.

– Multiple objectives: The problem can consist of a combination of objectives. The tech-
nique used for multiple objectives forms the basic classification, i.e., weighted sum ap-
proach, hierarchical optimization, or finding the multi-objective Pareto front.

– Selective visits: If the fleet size is insufficient to serve all the requests, then only a subset
of requests are served. Often problems with selective visits try to optimize multiple
objectives either in the form of combined profit terms or via multi-objective optimization.

The fleet management in AMoD can have one or more of the above characteristics depending on
the AMoD service model. However, some of the characteristics are inherent to AMoD fleet operations
and are commonly found in the models in AMoD literature. First, from the perspective of the available
information in AMoD system, the FC problems are inherently dynamic since none of the customer
requests are known beforehand (unless AMoD model allows reservations). Additionally, the majority
of AMoD literature includes some stochastic information into the FC, for example, via repositioning
[Dandl, M. Hyland, et al., 2020; Pavone et al., 2012; Alonso-Mora, Samaranayake, et
al., 2017], predictive charging using dynamic programming [Al-Kanj et al., 2020; Dandl, Fehn,
et al., 2020], dynamic pricing [Turan et al., 2020; Al-Kanj et al., 2020] and others. Thus, the
AMoD operational problem is a type of SDVRP problem. Second, from the perspective of coupling, it
is a type of DARP. In DARPs, the users dial the operator for a ride from pickup to drop-off locations
with the possibility of pooling the customers. More specifically, the AMoD could be termed as
stochastic and dynamic DARP (SD-DARP). Ho et al. [2018] has reviewed the recent developments
in DARPs which can also help to develop new ideas for the AMoD operations. Some of the research
like [A. A. Syed, Kaltenhaeuser, et al., 2019; Santos and Xavier, 2015] already tried to
utilize some of the DARP concepts to AMoD systems. Some noteworthy differences are still found
in AMoD and DARP literature as described below.
The first difference is in the nature of the problem itself. Classically, the SD-DARP research

deals with small-sized problems with large time-windows to accept or reject customers [Ho et al.,
2018]. This exponentially increases the number of possible vehicle-customer combinations, making
the problem significantly difficult to solve. Contrarily, the AMoD operation deals with a large number
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of nodes in the city network characterized by a highly dynamic environment, where the FC has a
very short time-window to accept or reject the customers. Furthermore, the customers in AMoD
do not accept a very long waiting time [Lazarus et al., 2021]. Combining these factors with
realistic travel times reduces the number of possible vehicle-customer combinations, making the
overall problem easier to solve than traditional SD-DARP. The second significant difference is in the
evaluation method used for solution approaches. Theoretically, any new dynamic method for SD-
DARP (or general SDVRP) should measure its performance against the optimal solution of the static
counterpart of the same problem instance, known as competitiveness ratio or competitive analysis
[Ho et al., 2018; Bektas et al., 2014]. If the optimal solution is unknown, it is compared against
the best-known solution. However, AMoD studies typically work with thousands of customers and
vehicles simulated over a longer period, making it difficult to compare against the optimal solution
of the static problem. They also use a variety of AMoD service models and data sources, making
it difficult to reproduce the same simulation environment as other studies or compare against the
best-known solutions.

Vehicle Assignment

The assignment of AMoD vehicles to customers is the fundamental task of an FC without which it
cannot exist. Since the overall problem is an SDVRP, the first question raised is how to deal with the
dynamic information. The FC operator has to make decisions based on the updated information. The
typical approach found in AMoD literature is to accumulate customer requests for a fixed amount of
time before solving a vehicle assignment problem — also referred to as batching of customer requests
[Alonso-Mora, Samaranayake, et al., 2017]. The primary assumption for using batches is that
by solving the overall problem in small optimization batches, the solution quality of the overall
problem could be improved [Agatz et al., 2012]. In SDVRP and DARP literature, this method is
also known as rolling-horizon approach [Bektas et al., 2014].

Alternatively, immediate responses are also possible where a vehicle is immediately assigned to
the customer request or sent a preliminary confirmation without revealing the exact information of
the assigned vehicle. However, the amount of literature available for immediate response is limited.
Most of them use nearest-neighbor policy for this purpose [S. Wang et al., 2022; Erdmann et
al., 2021; Liu et al., 2020]. Some studies also tried to combine immediate responses provided by
the nearest-neighbor policy with batch optimization; however, the overall benefits of the combined
approach over pure batch optimization have been limited [Erdmann et al., 2021; Erdmann et al.,
2019]. A major limiting factor is that if the search space is pruned using a simple heuristic procedure
(i.e., the customer is included or excluded from the optimization based on the immediate response
by the heuristic), then the overall solution quality is decreased. On the bright side, this almost halves
the response time to the customer due to immediate response.
In view of the above, the method of choice in the AMoD literature is to use various solution

approaches along with batch optimization. The main question in this regard is which customer-vehicle
pairs should be considered inside the batch optimization as many vehicles might already be serving
customers when new customers are added to the system. M. Hyland and Mahmassani [2018]
evaluated the impact of various possibilities (in total six policies) for the RH case in AMoD: two first
come first serve (FCFS) based and four optimization-based policies. The latter involved a variation
over if the customer-vehicle is fixed after first optimization or the customer could be reassigned to
another vehicle (the vehicle enroute pickup would be reassigned to another customer). Additionally,
the policy variation depended on if only the idle vehicles are included in the batch optimization or if
vehicles enroute to drop-off are also considered. They concluded that reassignments and including
enroute drop-off vehicles improve overall performance. It is also possible to use heuristics for batch
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optimization, such as tabu search [Erdmann et al., 2019], large neighborhood search [A. A. Syed,
Kaltenhaeuser, et al., 2019], only consider vehicle within a certain radius for optimization [Dandl
and Bogenberger, 2019] and others.

The problem complexity of AMoD service with RS is significantly higher than RH. Therefore, many
researchers often use simpler insertion heuristics to build vehicle paths [HÖrl, 2017; Fagnant and
Kockelman, 2018; Gurumurthy and Kockelman, 2018; Shen et al., 2018]. Alonso-Mora,
Samaranayake, et al. [2017] presented the current state-of-the-art approach for large-scale ride-
sharing scenario inside Manhattan using NYC taxi data. They first created a graph for the feasible
pooling trips and then solved a set cover problem for assigning trips to vehicles. They assumed a
hard-time constraint over maximum waiting time to create the feasibility graph inspired from [Santi
et al., 2014]. Others tried to use a similar method in other cities or improved the method further
[Engelhardt, Dandl, Bilali, et al., 2019; Engelhardt, Dandl, and Bogenberger, 2020].
M. Hyland and Mahmassani [2020] also presented an interesting approach where they showed
that the simple assignment formulation could be used for RS problem if the vehicle is constrained to
pooling only two requests at a time. Additionally, the method used can also change depending on
the service model; for example, Fielbaum et al. [2021] modified the method of Alonso-Mora,
Samaranayake, et al. [2017] to include a system where the RS customers are asked to walk to
specific pickup locations.

Generally, for the SDVRPs problem, it is known that the incorporation of stochastic information
into proactive approaches generally provides better performance than a myopic, reactionary approach
[Bektas et al., 2014]. Such stochastic information can have multiple sources like stochastic travel
times, blockage of some road links, future customers, and others. The AMoD literature generally
uses customer-related information like arrival times, geographical locations, or overall demand pat-
terns. Accordingly, several AMoD methods have tried to develop non-myopic vehicle assignment
methods. Alonso-Mora, Wallar, et al. [2017] extended the method presented in [Alonso-
Mora, Samaranayake, et al., 2017] to manoeuvre AV paths to areas where they expect pooling
more customers. Dandl, M. Hyland, et al. [2019] tried to combine vehicle repositioning along-
side vehicle assignments in batch optimization for RH. Al-Kanj et al. [2020] developed a dynamic
programming based method that combines multiple FC tasks with vehicle assignment problem. Addi-
tionally, machine learning (ML) based approaches, though comparatively new to the field and limited
to static problems, are still interesting for further research. Some studies like [Nazari et al., 2018;
Hamzehi et al., 2019] tried to solve vehicle assignment problem using reinforcement learning (RL)
while others [A. A. Syed, Akhnoukh, et al., 2019; Hottung and Tierney, 2020; Song et
al., 2020] improve DARP heuristics using ML for AMoD. Additionally, Y. Wang et al. [2019] take
another interesting direction of using an adaptive batching framework using RL to decide when an
optimization should be called. Most of these ML approaches still need to be either modified or tested
in a realistic dynamic AMoD simulation.

Repositioning

As discussed at the end of the previous section, using stochastic information inside SDVRPs can
significantly improve performance [Bektas et al., 2014]. The benefits of using future demand and
anticipatory algorithms have been long known. Powell et al. [1988] first utilized demand forecasts
to develop an anticipatory approach for improving the performance of long-haul truckload trucking
problem. They minimize the current and expected costs of future periods, showing a significant
improvement compared to the pure reactionary method. Similarly, Van Hemert and La Poutré
[2004] apply evolutionary algorithms in a rolling horizon fashion to solve the VRP with dynamic
pickup loads. They model the advanced knowledge of the pickup loads in the form of regions. The
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objective includes maximizing the number of transported loads while respecting the capacity and
time constraints. They allow advance moves towards fruitful regions, even before the actual request
is sent to the system. In general, the repositioning approaches have been important for system
improvement. It reduces the preparatory or travel time required to reach the request point after
it arrives in the system. They are essential for the ambulance services to cover large areas readily
[Michel Gendreau et al., 2001; M. Gendreau et al., 2006].

In regards to the AMoD works, since it is computationally and statistically not feasible to deal with
the exact geographical locations for customer forecasts, the general practice in the AMoD literature
is to aggregate the customer locations into regions [Dandl, M. Hyland, et al., 2019; Dandl,
M. Hyland, et al., 2020; Pavone et al., 2012]. Some researchers use self-defined zones for this
purpose, while others use the zones defined by the authorities. The practice is similar to the one used
for other VRP variants [Michel Gendreau et al., 2001; M. Gendreau et al., 2006; Bektas
et al., 2014]. There can be multiple combinations of how this information is used in the AMoD
operation cycle.

First, it can be used alongside the batch optimization — short-term utilization — either as a
combined optimization problem [Dandl, M. Hyland, et al., 2019; Alonso-Mora, Wallar, et
al., 2017] (as the previous section discussed) or right after solving the batch optimization [Alonso-
Mora, Samaranayake, et al., 2017]. The anticipatory information can be either an actual forecast
from past data [Dandl, M. Hyland, et al., 2019; Alonso-Mora, Wallar, et al., 2017] or
derived information from not-served requests of the batch [Alonso-Mora, Samaranayake, et
al., 2017]. The short-term utilization could be in the form of explicit repositioning to high-demand
areas or maneuvering of the vehicles with onboard customers through demand-intensive regions (also
called predictive routing) [Alonso-Mora, Wallar, et al., 2017]. Predictive routing is useful for
RS case and is done by inserting hypothetical requests into the batch optimization.

A more common approach is to use repositioning completely separately from batch optimization.
Usually, this is done periodically to rebalance different zones in the operation area. It is also sometimes
referred to as mid-term repositioning [Dandl, M. Hyland, et al., 2019; Dandl, M. Hyland,
et al., 2020]. While the above short-term utilization of statistical information can be considered a
proactive approach to reduce the system imbalances in smaller steps, the mid-term utilization can be
seen as a corrective measure for the accumulated imbalances. It can only be used with idle vehicles as
modifying the paths of non-idle vehicles outside the batch optimization may unnecessarily disrupt the
system. The problem aims at moving idle vehicles from areas where no demand is expected to areas
where vehicles are likely to be needed. The idea is the same as relocation in CS systems [Weikl
and Bogenberger, 2013; Weikl and Bogenberger, 2015], but does not require staff and is
therefore much cheaper and frequent.

The mid-term repositioning strategy determines the number of idle vehicles that need to be
repositioned from one region to another [Pavone et al., 2012; Dandl, M. Hyland, et al., 2020;
Fagnant, Kockelman, and Bansal, 2016]. Usually, the objectives include either serving more
customers or increasing the overall profit with the least possible increase in VKT. Nevertheless, most
of the researchers apply their own procedures for its solution. For example, a common approach is to
model the problem as fluid and try to redistribute the excess vehicles equally [Pavone et al., 2012;
R. Zhang and Pavone, 2016; Ruch et al., 2018; S. Hörl et al., 2019]. Though the original
approach [Pavone et al., 2012] used it with a station-based system, the later researchers generalized
it using zone centroids instead of stations. Some studies utilize a block-balance defined by the
difference between the share of available vehicles and expected demand for this purpose [Fagnant
and Kockelman, 2014; Fagnant, Kockelman, and Bansal, 2016]. In this approach, the
vehicles are repositioned to neighboring zones if the block balance is above a certain threshold.
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Simpler heuristics like sending the vehicle to the closest zone or station are also found [Shen et
al., 2018; Winter et al., 2021]. Predictive routing can also be used with mid-term repositioning.
However, no work could be found where it is used. The main reason could be that maneuvering
occupied vehicles is only beneficial in RS case and when done with higher frequency.

It should also be noted that the short-term and mid-term utilization of statistical information can
also be combined. For example, in the short-term repositioning model of [Dandl, M. Hyland, et
al., 2019], they use a hard constraint on the maximum distance a vehicle can travel for repositioning.
They notice that their short-term approach does not allow the vehicles to go to far-off regions, which
causes many areas to remain imbalanced. Later, they combined the short- and mid-term repositioning
in a dual horizon strategy to rectify the above problem [Dandl, M. Hyland, et al., 2020]. Some
researchers use more advanced models to look at the MoD imbalances from a holistic perspective.
For example, Albert et al. [2019] use a stochastic differential model to define system imbalances
as a difference of stochastic processes of request arrival and vehicle arrival. They use a distributed
feedback control policy to average the system-wide imbalance.

It is also noteworthy that effective usage of the above strategies depends on accurately predicting
customer demand. The above AMoD works utilized historic MSP data for predicting the customer
demand; most of them use aggregated data of the not-yet-realized customer requests from the
following time period — perfect forecast. However, the data of future requests are not available in
actual operations. Discrete spatial information of users can help to improve these methods further.
Works like [Alipour et al., 2019] try to combine additional information like the location data of
laptops and cellphones to predict exact user mobility. A growing concern for tracking user mobility
without his consent and leakage of private data is leading to the development of safer alternatives.
For example, [Tonetto et al., 2019] presents an initial step towards calculating crowd density
estimations via the strength of the WiFi signal. However, these forecast methods should still be
modified for AMoD usage.

Charging

Section 2.5.2 only described the approaches found in the literature for forming the charging infras-
tructure (CI) without describing the control strategies used by the eAMoD operator. These strategies
help the FC to monitor the battery levels of the eAMoD fleet and determine when and where the
AVs should be charged. Due to longer charge times, the overall eAMoD is more complex than a
simple gas-based AMoD service. Consequently, the charging eAMoD fleet remains unavailable until
a sufficient battery level is achieved, requiring the eAMoD operator to plan well for efficient perfor-
mance. Due to the complexity of the problem, the vast majority of the available eAMoD literature
used simpler heuristics for large-scale simulations. These heuristics often send vehicles to the nearest
charging station available. For example, Chen et al. [2016] uses FCFS principle to search for avail-
able AV within a travel time radius of 5 minutes (same as the simulation time step size) from the
customer location. Before assigning the AV, if the AV range is not enough to serve the customer, the
AV is sent to the closest charging station. The charging vehicle cannot be assigned to any customer.
Later, they extended the approach to RS case [Farhan and Chen, 2018]. The downside of the
method is that even a single customer request can initiate the charging process for a large number
of vehicles in an instance, making the area suddenly under-supplied of vehicles. The extension of the
method by [Loeb et al., 2018] can potentially solve this problem. First, finer monitoring of battery
level is achieved by a smaller time step of 1 second. Second, any AV with a range below 5% or idle
time of 30 minutes will be additionally sent for charging to the nearest station. Second, at the time
of assigning customers, the policy makes sure that the AV additionally has enough range to reach the
closest charging station after serving the request. The latter modification also allows the policy to
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assign currently charging AVs to customers if all non-charging AVs are occupied. Some studies sent
the AVs to charging if the charging level fell below a certain threshold [Dandl and Bogenberger,
2019; Jung, Chow, et al., 2014]. Some have also allowed charging enroute to rebalancing locations
[L. Li, Lin, et al., 2019; T. P. Pantelidis et al., 2022]. Using heuristics, making extended plans
for the charging stations is also possible. Y. Zhang et al. [2022] combines the threshold-based
charging method with a booking scheme for the CI. The eAMoD operator estimates the battery
level after completing each vehicle’s currently assigned route plan. If it is expected to fall below the
threshold, eAMoD operator makes a booking at a charging station. Since each charging station also
has other vehicles scheduled for charging, the eAMoD operator books the charging place with the
earliest ending time for the full charge.

Even though the heuristic approaches provide a working solution for large-scale eAMoD services,
their reactive nature lacks the foresight required for optimal charging performance. Therefore, an
optimization-based charging procedure that incorporates the predictions of the future state is ex-
pected to perform significantly better. For example, a model predictive control (MPC) or dynamic
programming (DP) based charging policies can be quite helpful. Some works like [R. Zhang, Rossi,
et al., 2016; R. Iacobucci et al., 2019; Al-Kanj et al., 2020; Dandl, Fehn, et al., 2020] already
applied these approaches to the problem; however, these methods still require further simplification
to be scalable to a city-wide eAMoD service with hundreds of vehicles. Other optimization-based
approaches are also possible. For example, L. Li, T. Pantelidis, et al. [2021] model the dispatch-
ing problem as a stochastic queuing problem and use minimum drift plus penalty (MDPP) approach
to solve the customer assignment and the charging of vehicles in a single optimization problem. The
method is also scalable to larger eAMoD services. A significant downside of the approach is that
it breaks the first come, first serve principle; a customer coming into the system later might be
served significantly earlier depending on the charging requirement of the overall trip. Nevertheless,
the method shows the benefits of using an optimization-based charging strategy over heuristics.

In addition to the above, it is also possible to take into account the energy prices either in rule-
based [Fehn, Noack, et al., 2019] or optimization-based approach [Dandl, Fehn, et al., 2020].
The literature on the charging policies of eAMoD is continuously increasing. With further adoption
of wide-scale eAMoD services, the corresponding research is expected to grow even faster with new
topics.

2.6. Conclusion

The AMoD services are expected to produce the next paradigm shift in the transport sector when fully
implemented. Looking at its potential, the AMoD research has been very active in the last decade.
In addition to already existing service models, new service types and use-cases are continuously being
added. In view of the impacts of current MoD services on the transport sector, on the one hand,
the studies try to extract the maximum benefits from the new technology, on the other hand, the
studies suggest being conscious of the negative impacts it can have if not commenced with foresight.
Further studies are required on regulatory measures that could provide a smooth transition into
AMoD future while mitigating potential negative impacts. More research is required on the impacts
of AMoD as part of a multi-modal transport system. Additionally, due to environmental concerns, it
is also essential to combine AMoD with electric vehicle technology. For eAMoD, in addition to the
requirement of improving CI, further research is needed on the eAMoD charging strategies. It is also
necessary to further investigate if CI can be shared between eAMoD fleet and POVs.

In addition to the charging strategies, there is also scope for further research on other fleet manage-
ment topics. Even though there are a significant number of research available for RS use-cases, there
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is a significant potential to further improve the RS performance, especially when combined with other
transport modes and charging strategies. In terms of the studies that divide the operation area into
a disjoint set of operational regions, there is a need for developing a consistent vehicle distribution
model that does not depend on the assumption of independent regions. Such a distribution model
can provide the opportunity to further improve fleet management tasks. The current dissertation is
an attempt to fill this gap for RH use-case of AMoD system. The same vehicle distribution is then
used in the dissertation to develop repositioning and assignment methods.
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Chapter 3.

Basic Problem and Experimental Setup

This chapter presents the base AMoD service model and vehicle assignment problem focused on
in the dissertation. First, section 3.1 introduces the basic AMoD service assumptions and the core
optimization approach used for assigning vehicles to customers—vehicle control optimization (VCO).
This fleet control optimization is used in the rest of the chapters for vehicle assignment. Later,
section 3.2 presents the agent-based simulation framework used for AMoD performance evaluation.
It also introduces the NYC taxi data set and the city network used for this purpose. Finally, section 3.3
introduces and evaluates a spatiotemporal scaling method that produces realistic travel times on the
city network.

3.1. AMoD Service Type and Model

This section presents the formal description of the AMoD service type and associated assumptions
used in the dissertation.

3.1.1. Studied AMoD service definition

The studied AMoD service has following characteristics:

• The assumed AMoD is strictly based on RH concept. This means that only a single customer
request can be served by a vehicle at a time.

• Each simulation run of the AMoD scenario consists of a set R of customer requests.

• Each customer r ∈ R is revealed at time tr to the AMoD operator along with its pickup (pr)
and drop-off (dr) locations. This is equivalent to r requesting a ride at time tr via an app.
The studied service model does not consider advance booking of a ride for r. Thus, the AMoD
operator can only assign a vehicle to r after tr.

• A customer pickup delay or waiting time is defined as the difference between the actual arrival
time of the vehicle at pr and tr.

• A customer can only be picked up within the maximum waiting time, ∆Tmax, starting from
tr. It is to be noted that the condition of ∆Tmax is only checked at the time of assigning a
vehicle to the customer. Since the dissertation uses dynamic travel times in the city network,
it is possible that after the assignment of a vehicle, some requests are picked up with a delay
of more than ∆Tmax due to changing travel times. In such cases, the customer is assumed
not to cancel the ride.

• Any customer that cannot be picked up before ∆Tmax + tr at the time of assigning vehicles
will probably not be assigned a vehicle in the future. Thus, they are immediately rejected
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and removed from the requests pool. This assumption is also theoretically proven in [Dandl,
Engelhardt, et al., 2021] for RH services.

• The fleet V consists of homogeneous AVs that do not need recharging or refueling during the
operation cycle. Thus, the dissertation does not consider the case of eAMoD.

• The assignment of vehicles to customers is controlled by a central FC.

• The size of V remains constant throughout a single simulation, i.e., dynamic fleet sizing is not
used.

The dissertation uses the default value of 6 minutes for ∆Tmax unless explicitly stated otherwise
in the following chapters.

3.1.2. Service Quality Measurement

Since the assignment of vehicles to customers is an SDVRP, the overall performance or service quality
of a fleet control algorithm can only be evaluated after all the customer requests have been simulated.
The dissertation quantifies the service quality in terms of monetary profit, which is used to compare
various algorithms at the end of the simulation.
As described in section 2.5.4, when the fleet size is limited and it is not possible to serve all the

customers, then only a limited subset of the customers is served that maximizes the profit — selective
visits. Several AMoD works adopted the same strategy to maximize the profit and maintain certain
service quality in terms of the maximum allowed delay for picking up a customer (section 2.5.2).
As far as the monetary profit is concerned, it mainly consists of the overall revenue and variable

and fixed costs. In reality, setting up an AMoD service would include several fixed and variable
costs, such as maintenance costs for cleaning, refueling, or software infrastructure costs. However,
for the purpose of the dissertation, i.e., comparing and improving the vehicle assignment strategies,
many of these costs do not directly influence the used assignment method. Thus, the dissertation
only considers the most relevant contributors to the monetary profit. First, each served customer
r must pay a base fare of ζ and a variable fare of fD per kilometer for the distance dpdr between
pickup location pr to drop off location dr. The system considers a variable maintenance cost of cD

per kilometer and a fixed cost of cF (total value for the whole simulation period, for example, for
insurance and leasing) for each vehicle in the fleet.
With the above definitions, for a set of served customer requests Rs ⊆ R and vehicle fleet V , the

overall profit of the AMoD service is given as:∑
r∈Rs

(ζ + fD · dpdr )−
∑
v∈V

(cD · dv + cF ) (3.1)

where dv is the total distance traveled by vehicle v.

3.1.3. Vehicle Control Optimization

The dissertation batches or accumulates the new requests for a fixed period ∆Tbatch before assigning
them to vehicles. The FC solves an optimization problem to assign vehicles to each batch of requests,
referred to as vehicle control optimization (VCO). Since the AMoD is a dynamic problem and the
VCO only consists of a small portion of customers compared to all customer requests, the objective
function inside the VCO can be different from the overall profit in Eq. 3.1 with additional terms for
statistical information. While choosing an objective function for the VCO, the fundamental aim is
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Figure 3.1.: The VCO types used in the dissertation. VCOidle only considers idle vehicles for
customer pickups. In contrast, VCOenroute additionally considers the enroute vehi-
cles based on their availability. The figure also shows the bipartite graph for each
VCO type.

usually to improve the overall performance, which is measured according to a consistent metric —
the monetary profit in the dissertation. However, for simplicity, the dissertation keeps the objective
function in the VCO similar to the total profit in Eq. 3.1. Thus, the VCO for assigning vehicles to
customer batches is described as follows.

Consider a set Rt
b representing a single VCO batch of customer requests at time t. Each customer

r ∈ Rt
b has an associated pickup location pr, a drop-off location dr, and the time tr when the

customer requested a ride. The time tr also represents the earliest possible pickup time of r. Let the
set V t ⊆ V represent a homogeneous vehicle fleet from which the VCO assigns vehicles to Rt

b. Each
vehicle v ∈ V t can start a journey at time tv from location ov. Since at time t, some vehicles might
still be moving, the literature consists of multiple approaches to determine which vehicles should be
included in v ∈ V t. For example, M. Hyland and Mahmassani [2018] mention four variants to
select V t depending on if the vehicle enroute pickup or drop-off of customers is included and if the
reassignment of customers to other vehicles is allowed. To focus mainly on utilizing spatiotemporal
relations for performance improvement, the dissertation only uses two approaches to determine V t,
as shown in Figure 3.1. The first approach only uses idle vehicles at time t, referred to as VCOidle.
The second approach additionally includes currently enroute vehicles, referred to as VCOenroute. In
VCOenroute, instead of the current time and position of the enroute vehicles, tv and ov of the enroute
vehicles are set to the estimated time of arrival and location of the last point in the already assigned
path, respectively. For the remaining vehicles without any assigned path, tv and ov are set to the
current time t and vehicle locations, respectively. The dissertation also excludes reassigning already
assigned customers to new vehicles for simplicity. Thus, a vehicle plan remains fixed after solving
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VCO. For VCOenroute, this means that the new vehicle plan could only be appended at the end of
the already assigned vehicle plan .

To solve the assignment problem, the dissertation uses bipartite matching as described in sec-
tion 2.4. First, a graph G with edges E for feasible vehicle-customer combinations is built. G
consists of two distinct sets of nodes representing vehicles V t and customer nodes Rt

b, respectively.
There exists an edge evr ∈ E between each vehicle node v and customer node r, if v can pick up r
within a time-window of [tr, tr +∆Tmax], i.e. if the following condition is true:

tv +∆T(ov ,pr) − tr︸ ︷︷ ︸
=waitrv

≤ ∆Tmax (3.2)

where ∆T(ov ,pr) is the travelling time from ov to pr and waitrv represents the expected waiting time
of r if picked up by v. Figure 3.1 shows an example of G for both VCO types, where the red dotted
lines represent the edges of the associated G. In Figure 3.1, V3 does not have any edge with C1
because the condition in Eq. 3.2 is not fulfilled. Similarly, for VCOenroute in Figure 3.1a, even though
the V1 is currently closer to the pickup location of C2, it has an edge with C1 because the condition
in Eq. 3.2 is only applied from the estimated time and position where V1 will be available.

Let RG ⊆ Rt
b and VG ⊆ V t represent the sets of customers and vehicles with at least a single

edge in E, respectively. Then the VCO problem, with binary decision variable uvr for each of the
edge evr in E, is given as:

max
u

∑
v∈VG

∑
r∈RG

(ζ + (fD − cD)dpdr − cDdopvr)uvr (3.3a)

s.t.
∑
v∈VG

uvr ≤ 1 ∀r ∈ RG (3.3b)

∑
r∈RG

uvr ≤ 1 ∀v ∈ VG (3.3c)

where dpdr represent the distance from pickup to drop-off of r and dopvr the distance from availability
point of v to the pickup location of r. The VCO objective in Eq. 3.3a is derived from the overall
profit in Eq. 3.1 and maximizes the batch profit.

Some researches in literature also include a monetary cost for the value of time cV OT , measured
in monetary value per unit of time. This penalizes longer waiting times for pickups. However, the
dissertation does not consider it in the VCO. First, cV OT is an implicit cost whose actual monetary
value cannot be clearly calculated. Its value is often adapted from surveys on how much people
consider the worth of their time, which does not provide a concrete number and differ significantly
from city to city [Frei et al., 2017]. Thus, the dissertation does not consider it in the overall
MSP profit in Eq. 3.1. Even if the MSP profit does not use cV OT , including in VCO might still
be meaningful, especially for VCOenroute. Without a penalty term for waiting time, the VCOenroute

could, under certain circumstances, assign enroute vehicles to customers purely based on pickup
distances from the availability point while an idle vehicle may have a slightly higher pickup distance
but shorter customer waiting time. But as a penalty term in VCO, the cV OT would require significant
adjustments by the AMoD operator to meet the desired performance, in which case, the cV OT would
already loose its original meaning of being a monetary value for the time of customers wasted in
waiting. It should be noted that even though the dissertation does not use a term for cV OT , the
waiting time of customers is still used as a hard constraint using ∆Tmax.
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The dissertation assumes that a request not matched with a vehicle in the current batch will
most likely not be matched in future batches. For simplicity, all unassigned requests are immediately
rejected and removed from future batches.

3.1.4. Key Performance Indicators

In addition to the key performance indicator (KPI) of monetary profit in Eq. 3.1, the dissertation
uses several other metrics to compare the performances of different algorithms. These KPIs are also
evaluated at the end of a simulation run.

1. Customers served: Generally, serving as many customers as possible is one of the main goals
of vehicle assignment problems in AMoD services. The current MoD and Taxi services charge a
significantly high base fare ζ than the variable fare fD to make the overall business profitable,
which may remain the same in AMoD services either for the same reason or to discourage short
trips that could be covered via other means like walking [Wilkes et al., 2021]. This also makes
the VCO prefer serving more customers. For comparing the performances of different VCO
methods, it is also important to compare the total number of served customers in addition to
the monetary profit. For this purpose, the dissertation uses the percentage of total customer
requests served (S%) by the AMoD service as one of the KPIs.

S% = 100× |R
s|
|R| (3.4)

2. Waiting time: The waiting time till pick up provides an important metric to measure the
offered service quality. Even though the dissertation uses the hard constraint of maximum
waiting time ∆Tmax, it is still an important KPI to compare the performance. A lower waiting
time would indicate that the AMoD system could position the available fleet closer to the
potential customers and reduce their waiting times. Thus, the dissertation uses the mean
waiting time of all the customers (Wmean) as a KPI for a single simulation run, given as:

Wmean =
1

|Rs|
∑
r∈Rs

(tpickr − tr) (3.5)

where tpickr is the actual pickup time of r by a vehicle.

3. Empty distance: For an overall efficient AMoD system, the fleet should be occupied by
customers as much as possible. Any empty VKT traveled without an onboard customer causes
an increased maintenance cost to the AMoD operator. In the studied AMoD system, there are
two contributors to the empty distances traveled by the fleet: pickup distances and repositioning
distances. Thus, the total empty distance is given as:

Dempty
total =

∑
v∈V

(drepov + dpickv ) (3.6)

where dpickv and drepov are the sum of distances travelled by v to pick up assigned customers
and reposition, respectively. Dempty

mean (= Dempty
total /|V |) is used for its mean value. Additionally,

if Dtotal is the total VKT covered by the fleet, then the dissertation uses the notation Dempty
%

for the percentage of empty VKT out of Dtotal.
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4. Pickup distance: Similar to Wmean, a lower pickup distance indicates that the AMoD system
can position the AMoD fleet closer to the pickup points of the customers. However, since
the variable cost is measured per unit distance in Eq. 3.1, the pickup distances provide an
important KPI for performance comparison. This is especially important for VCOenroute, where
the enroute vehicles are considered starting from the availability point and the waiting time
depends on the finishing time of the last task in the vehicle’s route. Thus, the dissertation
uses the sum of the pickup distances of all requests from the respective availability point of
assigned vehicles, given as:

Dpick
total =

∑
r∈Rs

dopvr (3.7)

where v corresponds to the vehicle that served r. The notation Dpick
mean is used for its mean

value and Dpick
% as the percentage of Dpick

total out of Dtotal.

5. Repositioning distance: The repositioning VKT contributes to the empty distance the fleet
covers to relocate to demand-intensive regions. This provides an important measure to compare
the performances of various repositioning methods. The dissertation uses the notation Drepo

total

for the total reposition distance of whole fleet and Drepo
% for the percentage of Drepo

total out of
Dtotal.

6. Fleet utilization: For comparing the performance of the whole AMoD system, measuring how
much the fleet capabilities were utilized is important. A lower fleet utilization would mean that
the AMoD fleet was idle for a greater period. The dissertation defines fleet utilization in terms
of the percentage of simulation time the fleet was busy. For a period of time ∆t, it is defined
as follows:

U% = 100× 1

|V |∆t

∑
v∈V

∆tbusyv (3.8)

where ∆tbusyv is the total amount of time v was busy (non-idle) during the period ∆t. By
default, the dissertation calculates the U% for the whole simulation period (i.e., ∆t is the
difference between the simulation end and start times) unless the U% is plotted on temporal axis
in which case, the corresponding section mentions the ∆t used. U% can also be calculated for
specific tasks like picking up customers or repositioning. The corresponding section mentions
for which specific task it is calculated.

3.2. Experimental Setup

This section presents the experimental setup used throughout the dissertation. It first introduces the
agent-based simulation framework used along with all necessary components. Then it discusses the
method used to form the city network, followed by customer demand modeling using NYC taxi data
set. Finally, it defines the division into operational regions used in the dissertation.

3.2.1. Agent-based Simulation Environment

The dissertation uses an agent-based simulation environment for testing the developed algorithms.
The simulation consists of three main agents: customers, a fleet of AVs, customers, and AMoD
operator. The simulation does not model competition among AMoD operators, and therefore, only
single AMoD agent is used. The AV fleet is controlled by a FC located at AMoD operator. All
simulations are done in the open-source AMoD simulator FleetPy[Engelhardt, Dandl, A.-A.
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Figure 3.2.: Basic flow of agent-based synchronous MoD simulation

Syed, et al., 2022]. Figure 3.2 shows the basic flow of the simulation. The following summarizes
some of its important aspects:

• Time increments: There could be two types of time increment schemes in a simulation
environment for AMoD services: synchronous and asynchronous. In a synchronous scheme,
all the simulation steps are done in series, including CPU-intensive operations like solving an
optimization problem. In contrast, in an asynchronous scheme, the CPU-intensive tasks are
kept in a separate CPU process or thread not to delay the operation of the rest of the simulation
environment.

For an AMoD simulation, the asynchronous scheme would mean that the VCO is solved in
a separate CPU process while the rest of the simulation keeps running with smaller time
increments [A. A. Syed, Kaltenhaeuser, et al., 2019; Dandl, Bogenberger, and
Mahmassani, 2019]. This closely replicates the real AMoD scenario where the vehicles keep
moving even when the VCO is being solved. In an asynchronous simulation, the FC puts a
strict time limit for solving the VCO, which may not return an optimal solution within a limited
time. This may also cause inconsistent evaluation of the control algorithms as the strict time
limit on the VCO may change the assignment solution (if an optimal solution is not reached
within the time limit), leading to very different results in each simulation run. Thus, this
scheme only suits very fast online heuristics like the assignment of the nearest vehicle. It is
also suitable when the simulation aims to evaluate the performances in an actual real-time
environment whose simulated clock is intended to be close to the real clock. Such simulation
studies would be interesting for actual MSPs, who want to see the performance improvement
in the simulations closest to reality.

In contrast to the above, in a synchronous scheme, the time increments in each iteration do
not necessarily represent the actual clock. Some operations might take more time than the
chosen time step size. This especially concerns the fleet movement and the solving of the
VCO; the simulation time, and hence vehicle movements, is stopped while solving VCO. On
first look, this might seem far from reality; however, if the simulation aims to evaluate some
specific control algorithm for VCO, then it is essential to give more time to the VCO so that the
full benefits of a control algorithm could be evaluated. The performance of a specific control
algorithm can be improved separately.

Additionally, if the batching of customer requests is used in a synchronous simulation and the
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only dynamic event in the simulation is the arrival of new customers, then the time step size
could equal the batching period∆Tbatch. This is a commonly used approach in AMoD literature
[Fagnant and Kockelman, 2018; Dandl, M. Hyland, et al., 2019; M. Hyland and
Mahmassani, 2018; Farhan and Chen, 2018]. Additionally, if the VCO takes less time
than ∆Tbatch, the synchronous environment can significantly speed up the overall simulation.

The possible differences between the overall results of synchronous and asynchronous frame-
works could be minimized if the following are observed for each vehicle v at a simulation time
t in a synchronous simulation:

– If v is idle or becomes idle after serving the last point in its assigned path and has no
further route plan, then the vehicle availability time tv is set to t.

– If v reached a point pi at some time tarrivalv between t−∆Tbatch and still has remaining
points to visit in its assigned route plan, then the serving of the next point pi+1 starts at
time tarrivalv and not at t.

Since the dissertation focuses on comparing various control approaches, it uses the synchronous
environment with the above mentioned corrections to get as close as possible to reality.

• Requests generator: In an actual AMoD service, the customers request rides dynamically via
a smartphone app. The dynamic customers are simulated inside the simulation environment
via a requests generator. Like many AMoD studies described in section 2.5.3, the requests
generator uses historical trip data for modeling customer demand. It dynamically generates
the customer requests for the current simulation time t. The historical data consists of customer
pickup times and pickup and drop-off locations from past trips. The requests generator goes
through this data and generates a batch Rt

b of customers for the period [t−∆Tbatch, t].

• Vehicle Emulator: The vehicle emulator (VE) consists of the simulated vehicles that are
moved according to the time increments. The VE is not concerned with the long-term vehicle
paths; it simply moves the vehicle to the following location provided by the FC. The long-term
paths of each vehicle are kept in the FC. The router provides the geographical paths between
two points on an actual city network to the VE.

• Router: The simulation environment uses an actual city network, i.e., a road-level transport
network according to the taxonomy of section 2.6. However, access to the city network is only
possible via a router, which forms the geographical information system (GIS) (section 2.4) for
the simulation environment. The router provides the travel time and distance matrices between
the geographical locations, which the simulation uses while solving the VCO. These matrices
are calculated for the shortest distance paths between each location — not the quickest. This
interface is used by each vehicle for traversing between two geographical locations.

The router loads the distance matrix at the beginning and uses it throughout the simulation.
To replicate accurate travel times, the dissertation scales the edges’ travel times to match
the historical travel times from past data, as described later in section 3.3. This is done by
grouping the historical trips into periods of ∆Tscale (30 minutes in this work) and calculating
the scaled time matrix for each period. This leads to multiple travel time matrices. The router
loads the respective time matrix for each ∆Tscale period.

• Programming language and City Network: The whole simulation environment is pro-
grammed in Python 3.7. The drivable city (or street) network for the router is obtained
from OpenStreetMaps (OSM) data via a Python library called OSMNx [Boeing, 2017]. The
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Figure 3.3.: The city network used for the Manhattan area. The excluded nodes cannot be used
as a customer pickup or drop-off location or as an initial location of a vehicle.

library provides the city network in the form of a directed graph. To reduce the computational
effort, the network is simplified using the built-in method of OSMNx. Since the vehicles can
only traverse the edges between nodes, the dissertation makes sure that no vehicle ends up at
a node without connecting edges. Thus, any node with an in- or out-degree of zero is excluded
from the network. Similarly, some nodes may form an unreachable group from most other
nodes even though they don’t have non-zero in- and outdegrees. Thus, the dissertation also
excludes any node that cannot reach (or cannot be reached from) more than 1000 nodes. The
excluded nodes cannot be set as the initial location of a vehicle or a pickup or drop-off location
of a customer.

With the above description, the dissertation first downloads the OSM map of the Manhattan
area in NYC and preprocesses the network for the simulation. For the network edges with
multiple lanes, the speed of the fastest lane is adopted. Additionally, some of the edges do
not have speed information. The maximum speed of other edges with the same road type is
used for these edges. If the network does not contain other edges with speed information and
the same road type, then the speed of 25 mph (almost 42.3 km/h) is used. Figure 3.3 shows
the city network used along with the excluded nodes. In total, the network consists of 4508
nodes, of which 72 nodes are excluded, and 9737 edges, out of which 128 are excluded as
they are connected to an excluded node. Most of excluded nodes and edges are the ones that
connected the roads going outside the Manhattan area.
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Figure 3.4.: The aggregated NYC yellow cab taxi data for 6th and 7th June, 2016. The data is
aggregated over NYC taxi zones for display purposes only. The dissertation works
with the direct coordinates provided in the data.

3.2.2. Demand Modeling

The dissertation aims to investigate various performance improvements for AMoD fleet management
methods, which can also be achieved by generating random data. Random data is often used in
operation research to evaluate the performances of multiple algorithms. However, since the disser-
tation focuses on performance improvement via the integration of statistical information, generating
random data would have to follow patterns that at least match a realistic AMoD customer demand.
Secondly, random data would not guarantee a similar performance improvement in an actual AMoD
scenario. Therefore, a common practice found in AMoD literature is to use real user data from
past trips of existing alternatives to AMoD services like taxis or MoD services for evaluations (sec-
tion 2.5.3). The dissertation follows the same practice and uses the open-source NYC taxi data [TLC
Trip Record Data - TLC 2023]. The data comes for two taxi types: yellow and green. The yellow
cabs can pick up passengers from all the five boroughs1 of NYC. In contrast, the green cabs are only
allowed to pick up passengers from outer boroughs2 (excluding the airports) and upper Manhattan.
The dissertation uses the yellow cab taxi data, referred to as NYC data. For simplicity, the nearest
nodes in the city network replace the trip origins and destinations. It should also be noted that
even though the NYC dataset may underestimate the actual AMoD demand similar to other MoD
datasets [Hardt and Bogenberger, 2020], the dissertation does not use any method to include
those additional demands. Since the main aim of the dissertation is to develop efficient fleet control
strategies, it is sufficient that the same data source is used for comparing different fleet control
algorithms. This is also a common practice in AMoD literature (section 2.5.3).

1The Bronx, Brooklyn, Manhattan, Queens, and Staten Island
2The Bronx, Brooklyn, Queens, and Staten Island
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Figure 3.5.: The NYC data from May and June, 2016.

The NYC data consists of billions of taxi trips which are updated regularly. The data till the
middle of 2016 contained exact coordinates of trip origins and destinations. The later data sets
aggregated the exact locations into areas of different sizes — called NYC taxi zones (Figure 3.4)—
due to data privacy. The dissertation uses the NYC data from 2016 due to the availability of exact
pickup and drop-off locations which benefits the evaluation of the statistical approaches used. The
exact coordinates also allow replicating realistic network travel times as described in the next section.
It should also be noted that even though the data used is almost seven years old, it does not affect
the results as long as the same data is used for comparing all FC methods.

The data includes trip start and end times, origin and destination locations, and trip distances.
The dissertation first removes the probable false trips that have a speed of less than 1 mph (almost
1.61 km/h) or more than 55 mph (nearly 88.5 km/h). Figure 3.5 shows the number of trips for
May and June 2016 after removing false trips from NYC data. First, as shown in Figure 3.5a, the
hourly pattern of workdays and weekends differs. The workdays are usually marked by two peaks:
one in the morning when people go to work and one in the evening when people return from work.
In contrast, the increase in the number of trips in the morning is rather smoother on the weekends.
This corroborates the general behavior that people usually wake up late on the weekends and go out
for leisure activities near midday. Additionally, the number of trips follows some pattern for each day
of the week. On Mondays, the number of trips is usually smaller than other workdays, as shown in
Figure 3.5b. However, there could be anomalies in this pattern due to various reasons. For example,
as shown in Figure 3.5c, the pattern has an anomaly on Monday in the 22nd week due to a federal
holiday on the 30 May.

Since the dissertation aims to test the studied methods in the most common cases, it avoids
the days with anomalies. Thus, two days from week 23 are chosen; Monday and Tuesday (i.e.,
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Figure 3.6.: NYC data from 6 to 7th June, 2016.
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6 and 7 June 2016). The specific choice of week 23 is rather arbitrary and any other week would
be equally applicable. Additionally, the reason for choosing two days instead of just one day is to
produce as realistic a simulation environment as possible; a single day of simulation may spend a
significant amount of simulation time to make sure that vehicles are naturally distributed. This forms
the warm-up phase of the simulation which may last a couple of hours. This is especially important
since the pattern of trip origins and destinations differ significantly throughout the day and night.
Longer simulation time guarantees that any improvement observed for an FC method is least affected
by the initial positions of the fleet. On the other hand, a very long simulation time, for example,
a week, would only increase simulation time without providing any significant improvement. Thus,
the two days of simulation provide a good middle ground. The impacts of an FC method at rush
hours or during the night could be observed on the second day when the simulation has already run
for 24 hours. This makes sure that an FC would behave the same way if allowed to run for longer
simulation hours.

In terms of regions, the NYC consists of five boroughs. The distribution of trip origins and
destinations as well as the general features of trips vary among boroughs. Figure 3.6 describes the
NYC data from 6 to 7 June 2016 based on boroughs. As shown in Figure 3.6a, almost 91.9% of
the overall trips originate in Manhattan, and 92% (85% of the overall trips) of them have their
destinations inside Manhattan as well. This serves as one of the main reasons why Manhattan was
chosen as the study area in section 3.2.1.

The second highest trips, almost 6.78% originate in Queens, out of which almost 4.1% have
destinations in Manhattan. Queens has two major airports of NYC: John F. Kennedy International
Airport in the south and LaGuardia Airport in the north. This also explains why the majority of
trip origins and destinations outside of Manhattan are concentrated at these two locations, as also
illustrated in Figure 3.4. The trips starting from Manhattan also have the second highest destinations
(3.7%) in Queens, as shown in Figure 3.6a.

Besides, the number of trips in each borough, the features of trips are also quite different among
boroughs due to their sizes and inter-borough distances. As shown in Figure 3.6b, the mean trip
distance and travel time for trips originating and ending in Manhattan are just 3 km and 13 minutes,
respectively. While the trips that have either origin or destination in Manhattan (forming the second
largest type of trips in the data set) have much higher trip distances and travel times: 17 km and
35 minutes for trips from Manhattan to Queens, and 21 km and 43 minutes for trips from Queens
to Manhattan.

3.2.3. Division of the City Network into Regions

As mentioned in section 3.2.2, the NYC taxi data uses NYC taxi zones (Figure 3.4) to provide spatially
aggregated information regarding trip origins and destinations. However, the NYC taxi zones would
hinder tapping the full potential of spatial relations based methods studied in the dissertation. Thus,
in addition to using the older NYC data that provides the exact coordinates, the dissertation divides
the city network into regions using a regular grid with cell size ∆scell instead of using NYC zones.
The axis of the regular grid is not parallel to the used coordinate axes; rather, the minimum rotated
rectangle function of the shapely library of Python is used to generate a rotated grid. This function
returns the smallest possible rectangle that envelops the entire geometry without any restriction on
being parallel to the coordinate axes. As Figure 3.7 shows, this ensures that each cell contains as
much area as possible of the network with a regular grid.

The Python library can also mark the cells that do not contain any network node. These cells are
excluded from the simulation.
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Figure 3.7.: An example of regular grid based regions with cell size ∆scell of 1 km. The cells
without color do not contain any node of the city network.

3.3. Scaling of Network Travel Times

Since the dissertation models the simulation vehicles as independent points traversing the network
edges (refer to section 2.5.3), effects like congestion or realistic travel times are not inherently present
in the vehicle model used. Therefore, the dissertation develops a method to scale individual network
edges based on historical trip data to replicate a realistic simulation. The technique uses each historic
trip to estimate the network state at different times of the day. It compares its efficiency with other
commonly used scaling techniques found in AMoD literature.

The raw OSM network consists of free-flow travel time between edges of the network, which
generally corresponds to the speed limits on road links. Many AMoD studies use some scaling
technique to replicate a more realistic travel time. Section 2.5.3 mentioned some of the data sources
used in literature for this purpose. Since the demand data set in the dissertation already contains
exact coordinates, distance, and travel times, the dissertation uses this information to replicate the
actual travel times in the data set. This section describes the methods that can be used for this
purpose.

3.3.1. Mean Factor Method

This method divides historical trip data into periods of ∆Tscale. The division is made based on the
recorded trip start time. Then, for a single temporal group, the mean factor method (MFM) scales
all of the edges by a scaling factor [Dandl, M. Hyland, et al., 2020; A. A. Syed, Dandl,
Kaltenhäuser, et al., 2021]. It first calculates the sum of the travel times of all historical trips,
represented by toddata, within a single ∆Tscale period. Then the sum of the travel times for all trips is
calculated using the free-flow speeds of the OSM network, represented by todosm. The travel times of
all the edges of the OSM are then multiplied by the mean travel time factor:

factmean =
toddata
todosm

(3.9)
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MFM has the advantage that a single travel time matrix can be used for the entire simulation; the
matrix is loaded at the beginning of the simulation and multiplied by the corresponding factmean for
the current simulation time. However, since it uses the total travel times for scaling, the operational
regions with the highest number of trips can weigh significantly higher than those in other regions.
Thus, it represents the actual travel times in high-demand areas much better than lower demand
areas. This is especially problematic for the NYC data set, as many historical trips are concentrated
in specific regions of the city.

3.3.2. Spatiotemporal Scaling Method

In contrast to MFM method, which only uses the temporal information to scale travel times, the
spatiotemporal scaling method also uses spatial information for this purpose. Solving an optimiza-
tion problem for each ∆Tscale allows a more accurate network link or edge-specific scaling. It is
fundamentally based on the concept that each historic trip provides a snapshot of the network state
at that particular time of the day. If multiple trips are grouped using temporal information, i.e., a
period of ∆Tscale, they can potentially provide numerous observations of the overlapping edges on
their paths from origin to destination, as shown in Figure 3.8. However, the method makes certain
assumptions regarding the data set, which may limit its applicability, as described below.

First, it assumes that the data set also provides the exact paths taken by the historic trip. However,
most of the data sets do not contain such information. The section solves this problem by assuming
that the historic trip took the shortest-distance path between origin and destination. This can be
easily calculated using the OSM network used in the dissertation. The assumption of the shortest-
distance route could be quite realistic since many drivers in the trip data sets are usually experienced
drivers and are well aware of the shortest paths. Many of them might have unintentionally taken the
shortest-distance route, which would make the developed paths close to reality.

Second, since the routes are manually generated using shortest-distance routes of OSM network,
it is not known when each edge might have been crossed within the period ∆Tscale. The method
assumes that all trips within a group (formed using ∆Tscale) crossed the overlapping network edges
within that specific ∆Tscale period. This is a strong assumption and may not be accurate for each
group. Thus, a single network edge can have multiple values with significantly varying travel times.
The errors caused by this assumption could be reduced using smaller ∆Tscale, as the network state
will likely remain similar for shorter periods. Nevertheless, using a very small ∆Tscale would increase
errors due to fewer observations for each edge.

Due to the above limitations, it becomes necessary to solve an optimization problem for finding
scaling factors for the network edges that best fit the observation of network edges. The main goal
is to scale the individual network edges such that the travel time difference between recorded travel
times and the travel times obtained from the scaled network is minimized for most trips. The section
develops two variants of the scaling method based on the objective function used for optimization.

The first method is referred to as the squared scaling method (SSM). It divides the whole opera-
tional area into regions Z using a regular grid of cell size ∆scell (section 3.2.3). Let Enet represent

the edges of the network used for AMoD simulation, tflowe represent the free-flow travel time of an
edge e ∈ Enet and Ez ⊆ E represent the edges that are entirely within region z ∈ Z. Some of the
edges may be located in multiple regions, denoted by Em ⊆ Enet. For each of these edges eẑ ∈ Em,
the set ẑ ⊆ Z represents the regions the edge belongs to. Afterward, it calculates the shortest paths
for each of the trips within the period ∆Tscale. Let the set Cdata represent all the trips within the
period ∆Tscale, then the shortest path of a trip c ∈ Cdata consists of a sequence of network edges,
represented by Ec ⊆ Enet. The main purpose of the method is to scale the free-flow travel time

55



3. Basic Problem and Experimental Setup
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𝑇3

𝑇4

Spatial Aggregation using ∆𝑠𝑐𝑒𝑙𝑙

Network Nodes

Network Links

Network links included
in the path of trip 𝑇1. 
Other colors represent 
other trips

∆𝑇𝑠𝑐𝑎𝑙𝑒

Figure 3.8.: An example of spatiotemporal grouping of customer data for scaling the city net-
work. For simpler visualization, the directional edges between the nodes are reduced
to a single edge.

of each edge in Ec for all c ∈ Cdata such that the travel times comes as close as possible to the
historical travel time tcod for c ∈ Cdata. If two or more trips in c ∈ Cdata have the same origins and
destinations, then the mean of the travel times of these trips are used.
Let Eu ⊆ Enet represent the union of all edges in the shortest paths of Cdata, i.e., the union of

Ec for all c ∈ Cdata. Then, as the first step, the method only scales the edges in Eu by solving the
following optimization problem.

min
x

∑
c∈Cdata

(
tcod −

∑
e∈Ec

xet
flow
e︸ ︷︷ ︸

scaled travel time

)2

(3.10a)

s.t. xet
flow
e ≤ tmax

e ∀e ∈ Eu (3.10b)

xe ≥ 1 ∀e ∈ Eu (3.10c)

x ∈ R|Eu|

where x is a vector of linear variables used for scaling each edge within Eu and tmax
e is the maximum

allowed travel time on the edge. tmax
e is calculated using the edge length (de) and a parameter for

the minimum travel speed allowed on the edge (Smin
e ), i.e., tmax

e = de/S
min
e .

After calculating the scaling factors for the edges in Eu, the squared scaling method (SSM) scales
the rest of the edges in Enet. These additional edges are divided into two categories. First, the
ones belonging to a single region (i.e., belonging to Ez) are scaled using the mean of the scaling
factors already calculated in the first step for that region, i.e., they are scaled by the mean of all
xe ∈ Eu ∩ Ez. Second, the edges that fall within multiple regions are scaled using the mean of the
scaling factors for all edges within those zones, i.e., for an edge eẑ ∈ Em it is scaled by the mean of
all xe ∈ ∪z∈ẑ(Eu ∩Ez). The main assumption is that the scaling factor should be on a similar scale
in the immediate surrounding of the scaled edges Eu. If any edge is still not scaled using these two
approaches, they are scaled using the mean of x.
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3.3. Scaling of Network Travel Times

The second spatiotemporal scaling method uses the same approach as SSM; however, instead of
using squared error for the objective function, it uses absolute error. Thus, the method is referred to
as absolute scaling method (ASM) and given as:

min
x

∑
c∈Cdata

∣∣∣∣tcod − ∑
e∈Ec

xet
flow
e

∣∣∣∣ (3.11a)

s.t. xet
flow
e ≤ tmax

e ∀e ∈ Eu (3.11b)

xe ≥ 1 ∀e ∈ Eu (3.11c)

x ∈ R|Eu|

To solve the problem in optimization software, the following reformulates the problem to remove the
absolute function.

min
x

∑
c∈Cdata

uc + vc (3.12a)

s.t. xet
flow
e ≤ tmax

e ∀e ∈ Eu (3.12b)

xe ≥ 1 ∀e ∈ Eu (3.12c)

uc − vc = todc −
∑
e∈Ec

xet
flow
e ∀c ∈ Cdata (3.12d)

x ∈ R|Eu|

u,v ∈ R|Cdata|
+

where the vectors u and v represent the positive and negative error between the historical and scaled
OSM travel times, respectively.

3.3.3. Analysis of Data used for Scaling Travel Times

The NYC data does not include the actual routes taken by trips. Therefore, both SSM and ASM
estimate the original routes (required for scaling individual network edges) using the shortest distance
paths of the OSM network. To have a rough estimate of the accuracy of the calculated routes,
Figure 3.9 shows the difference between the recorded travel distances obtained from the data and
the distances of the shortest paths calculated using OSM network, referred to as offset distance. The
shortest path distances are calculated using the Universal Transverse Mercator (UTM) projection of
the network. It is assumed that if the original trip took a similar route as the shortest path, then
the offset distance must be small. However, as mentioned in section 3.2.1, the network is simplified
to reduce its size, and the distances are measured using the nearest network nodes to origins and
destinations — not exact trip coordinates which could also be in between two network edges. This
can also contribute to an increased offset distance.
With the above considerations, 73% of trips have an offset distance of less than 250 m, and almost

92.4% of the trips have a difference of less than 1 km, which confirms our initial assumption that
the historic trips routes can be estimated using shortest-distance routes. The proportion of trips
having higher offset distances is significantly lower. The trips with higher offset distances could
have either taken a different route or visited multiple stops at different locations on their way to
the destination. The negative offset distance could mean that the actual geographical locations for
origins and destinations could be somewhere on the network edge with a smaller travel distance
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Figure 3.9.: The difference between the trip distances as available from the data and calculated
from the OSM network used (the shortest path distances are calculated using trip
origins and destinations). The speed on the y-axis shows the speed calculated using
the shortest path distance from the network and the recorded travel duration from
the data. The data refers to Manhattan trips from 6 to 7 June 2016.

than the distance calculated using the nearest network nodes. Interestingly, most of the trips have
negative offset distances of less than 250 m, and all are below 1 km, indicating that using the closest
network node did not induce a large error in calculations.

Besides the offset distances, it is also essential to consider if the travel duration is feasible according
to OSM routes. As mentioned in section 3.2.2, the dissertation filters the possible false trips by only
considering trips that have speeds between 1 mph (1.61 km/h) and 55 mph (88.5 km/h). If shortest-
distance routes are valid for historical trips, then travel times should also be practical according to the
distances of the shortest route. This is especially important for trips with negative offset distance; the
reduction in travel distance could make some trips have impractically large speeds. Thus, Figure 3.9
also shows the speeds calculated using the distance from the network and travel time from the data.
Some trips with negative offset distance have speeds much higher than the threshold of 88.5 km/h.
However, such trips constitute an extremely small proportion of the overall data: only 64 out of
920465. These trips are also removed from the data set before solving the travel time scaling
problem.
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Figure 3.10.: The difference between the travel time from data and the scaled OSM network
(error) for the small network (trips with origin and destination in Manhattan)
using ∆Tscale of 30 minutes and NYC data from 6 to 7 June 2016.

The above discussion shows that the shortest routes of the network can provide the potential route
used by historical trips. These paths contain the list of network edges that the dissertation uses in
conjunction with the historical travel times to scale the network periodically. If the scaling method
can scale the edges such that the travel times of the network are similar to the historical travel times,
it ensures that the results of any AMoD algorithm tested on the network are also reliable.

3.3.4. Comparison of Scaling Errors

This section analyses the scaling errors for the Manhattan network. Figure 3.10 compares the scaling
error of the three methods using ∆Tscale of 30 minutes and data from 6 to 7 June 2016. For the sake
of conciseness, it combines the temporal scaling error from two days into one figure by first calculating
the percentiles of the error for each ∆Tscale period, and then plotting them together. Thus, the
shadow in the plotted lines represents the 95% confidence interval for each of the percentiles.

Figure 3.10 shows that both SSM and ASM provide more accurate travel time estimation than
MFM method. Since MFM multiplies all the OSM edges by a mean factor, it produces symmetric
positive and negative errors, leading to a mean error close to zero. However, in terms of individual
trips, the MFM leads to higher scaling error: more than 50% of the trips have an absolute error of
2.74 minutes or more (50% percentile of 2.74 minutes), while 25% of the trips have an absolute
error of more than 5.26 minutes (indicated from 75% percentile of 5.26 minutes), reaching to almost
12 minutes or more for 5% of the trips (indicated by 95% percentile of 12 minutes). In contrast,
50% of the trips in both SSM and ASM have an absolute error of less than 1.23 and 0.76 minutes,
respectively. Even higher percentiles of the absolute error for SSM and ASM are almost half of the
MFM: a 75% percentile of 2.47 and 2.16 minutes (in contrast to 5.26 minutes for MFM), and a
95% percentile of 5.86 and 6.45 minutes for SSM and ASM (in contrast to 11.99 minutes for MFM),
respectively. Table 3.1 shows the percentile and maximum values of the absolute error.

Figure 3.11 shows the percentages of total trips within various ranges of the absolute error. First,
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Percentile
Scaling Method 5% 25% 50% 75% 95% Maximum

Mean Factor Method (MFM) 0.23 1.22 2.74 5.26 11.99 71.14

Squared Scaling Method (SSM) 0.04 0.49 1.23 2.47 5.86 59.66

Absolute Scaling Method (ASM) 0 0.03 0.76 2.16 6.45 69.66

Table 3.1.: Mean of absolute errors for data from 6 to 7 June 2016 and smaller Manhattan
network and ∆Tscale of 30 minutes. The values are in minutes.
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Figure 3.11.: Percentages of trips in different ranges of absolute error. An absolute error of less
than 1 second is marked a 0.

MFM does not produce a significant proportion of trips with exact accuracy (an absolute error of
less than 1 second). On the other hand, due to the edge-based scaling in SSM and ASM, they
can reproduce exact travel times for a higher proportion of trips. Figure 3.11 also demonstrates
a major difference between SSM and ASM; because the SSM uses the square of the scaling error
as the objective function, it prioritizes the minimization of high magnitude errors. Thus, SSM has
a lower 95% percentile and maximum absolute error than ASM, as shown in Table 3.1. Similarly,
it has a lower proportion of trips with an absolute error of more than 10 minutes compared to
ASM. Conversely, the ASM uses the absolute value of the scaling error as the objective function.
Thus, it prioritizes the minimization of scaling error for a higher number of trips. Figure 3.11 also
demonstrates this behavior; it has a much higher proportion of trips in lower ranges of absolute error.
Almost 33.7% of the trips have no scaling errors with ASM compared to 10.2% for SSM and only
0.42% for MFM.

Lastly, it is also important to note that the comparisons in this section concerned only the edges
Eu that were part of the shortest distance routes obtained from the network. Both SSM and ASM
also have a second step where the scaling factors are applied to the rest of the edges. While the
scaling of Eu is essential for direct journeys from origin to destination of historical trips, scaling
other edges is important for trips not explicitly present in the historical data, such as journeys to pick
up customers and reposition idle vehicles. Nonetheless, an accurate scaling and detailed analysis of
these edges are difficult due to the unavailability of traffic data. Thus, the basic assumption of both
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Figure 3.12.: An example of scaling factors and speeds obtained using a regular grid with cell
size ∆scell of 1 km and ASM method. The data used is from 9 am to 9:30 am on
6 June 2016.
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SSM and ASM is that the travel times should scale on a similar level in the surroundings of already
scaled edges Eu, as described in section 3.3.2.
Fig. 3.12 illustrates an example of the ASM scaling for the rush hour (9 am to 9:30 am) of Monday

morning. First, as shown in Fig. 3.12c, the scaling factor varies for different regions and links in the
network. Second, as shown in Fig. 3.12b, the shortest-path routes do not necessarily include all of
the network edges; rather, the areas with the highest number of origins or destinations (e.g., central
Manhattan for the rush hour) provide the highest level of information for the scaling method. This
is because the scaling is done in intervals of ∆Tscale (30 minutes) and only the trips within ∆Tscale

are used for scaling, and thus, some regions may contain very few edges from Eu while others may
not have any edge from Eu at all (refer to the cells in the north in Fig. 3.12b). Therefore, the
scaling accuracy of a region also depends on the number of historical trips and shortest path edge
samples available for a particular region. This is apparent by comparing the regions in Fig. 3.12b
that have a small number of edge samples to the edges in Fig. 3.12c and the resulting scaled speed
in Fig. 3.12d. However, this also depends on the time of the day as the pattern of trip origins and
destinations change from morning to evening and during night hours. Nevertheless, both ASM and
SSM methods compensate for the absence of the data by assigning the average scaling factor of a
cell to the links without a travel time sample. This assumes that the traffic situation within a small
cell should be similar for all the links in that specific cell.

3.3.5. Selection of Scaling Method

The above comparisons show that both SSM and ASM replicate historical travel times significantly
better than MFM. SSM suits better to minimize the higher scaling errors due to the squared objective
function; it has lower percentages of trips with scaling error in the higher range (10 minutes or more)
than ASM. On the other hand, due to the absolute value function in the objective, ASM does not
prioritize minimizing the scaling errors of higher magnitudes instead it tries to minimize the scaling
error for a higher number of trips. Thus, the proportion of trips without any scaling error is much
higher for ASM than SSM. Nevertheless, the difference in trip percentages of SSM and ASM for
higher ranges of scaling errors are insignificant. On the other hand, ASM provides accurate travel
times for a much higher percentage of trips than SSM. Therefore, the dissertation uses ASM for
simulations with grid cell size ∆scell of 1 km and scaling period ∆Tscale of 30 minutes.

3.4. Conclusion

The chapter presented the AMoD service types modeled in the dissertation along with the basic
AMoD fleet management problem. The operation of AMoD fleet is controlled by the central FC
located at AMoD operator. Two different VCO methods were presented in the chapter. The agent-
based simulation framework that will be used in the rest of the dissertation was also presented. The
chapter also presented the NYC taxi data and the city network used. To produce realistic travel
times and reliable simulation results, the chapter also presented a travel time scaling method using
historical trip data. Out of the discussed methods, ASM scaling method will be used for network
scaling in the rest of the dissertation.
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Chapter 4.

A Spatiotemporal Metric for AMoD Service
Quality

The operation area of an AMoD service is often divided into regions for various reasons. On the
one hand, these reasons could be purely analytical without directly impacting the AMoD operation,
for example, to observe the patterns of origins and destinations in historical data or to spatially
aggregate locations for privacy reasons before publication. On the other hand, many times, the
AMoD operator would do such a division to improve or maintain a seamless service, for example,
to estimate new depots that would suffice local demand or to regularly reposition AMoD fleet to
meet the local demand. The dissertation concerns the latter category, i.e., the division into regions
for maintenance purposes. In this regard, the primary assumption found in literature is that the
individual regions are independent such that an AMoD vehicle can only serve the customers within
that region. In contrast, this chapter presents spatial metric inspired by kernel density estimation
(KDE) that links the whole AMoD operation area in the form of a heat map. The chapter shows
that such a spatial metric can describe the AMoD service quality offered at individual points in the
operation area. This spatial metric is used in the later chapters to improve the AMoD operation.

The chapter is organized as follows. Section 4.1 first describes the usual approach found in the
literature for dividing the operation area into regions. Section 4.2 then describes the general KDE.
It also describes the challenges faced when using it as a spatial metric for AMoD service quality and
the changes required to adapt it for AMoD services. Finally, section 4.3 studies the effectiveness
of the introduced spatial metric to describe the service quality offered to each customer. For this
purpose, it uses the agent-based simulation and the NYC data introduced in the previous chapter.

4.1. Independent Operational Regions

Several researchers divide the AMoD operation area into a disjoint set of smaller regions [Dandl,
M. Hyland, et al., 2019; Dandl, M. Hyland, et al., 2020; S. Hörl et al., 2019; Ruch et al.,
2018]. From the perspective of AMoD service, the main application of such a division is the periodic
repositioning of idle vehicles to areas of higher demand. This requires selecting a group of idle
vehicles and relocating them to various locations. Ideally, such a rebalancing would perform best if
applied on individual coordinates rather than the regional level. However, first, such a granularity
level makes the solution space intractable. Second, the forecast of future supply and demand is not
available on such a fine level. Therefore, the division into regions has been the preferred method of
choice in literature [Dandl, M. Hyland, et al., 2020; Fagnant and Kockelman, 2014].

Multiple researchers have used the regional division with various repositioning methods. However,
a major drawback in most of these works has been developing a consistent relationship among regions.
Many works fundamentally assume that only the locations within a single region can interact with
each other, i.e., a vehicle within a single region can only serve the customers with pickup points within
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that region. This assumption reduces the complexity and easily solves any operational problem. The
dissertation refers to this approach as independent regions.
The above assumption is generally valid and helpful when analyzing past data for studying various

trends or developing strategies for geographically distant regions. Most of the time, the concerned
AMoD operation area is within a city and the individual regions are in close proximity such that
the decisions taken for one region also impact others, i.e., depending on the proximity of individual
regions, customers within one region can be served by the vehicles in other regions. There is a strong
requirement for a spatial relationship that links multiple regions into a single formulation based on
the proximity of individual regions and, consequently, can describe the overall AMoD service quality
coherently. The following section introduces such a formulation which will be used throughout the
dissertation.

4.2. Reachability Density based Relations for AMoD services

The independent regions approach divides the AMoD operational area into regions assuming that the
vehicles within a region would only pick up customers within that region. Some works like [Al-Kanj
et al., 2020; Fagnant and Kockelman, 2014] have used methods based on hierarchical regions
that provide an alternative approach to independent regions. However, a major drawback of these
approaches is that the inter-regional relations are strictly defined by the geometries of the regions,
i.e., the vehicle is assumed to be available for all or none of the geographical locations of the nearby
regions. Some methods address this problem using a time-based partial availability of the vehicles
in the nearby regions [Fagnant and Kockelman, 2014]. Nevertheless, a coherent formulation is
lacking where inter-regional relations could be flexibly defined independent of the regional shapes.
Given the above requirement, this section introduces a reachability density (RD) based distribution

model for AMoD fleet. The formulation is inspired by kernel density estimation (KDE) which is a
widely used technique in statistics. Fundamentally, instead of using the definition of regions to group
the vehicles and customers spatially, the RD based formulation uses the reachable distances from a
point to describe the fleet distribution. This leads to the following features of the introduced RD
based formulation:

• Independent of regional shapes: The defined RD based spatial relations do not require
defining a disjoint set of regions; rather, it naturally links the points in the operation area into
a consistent spatial formulation.

• Geographical heat map: The formulation provides the probability that a new customer can
be served by the AMoD fleet within the given time constraints. This allows the MSPs to map
the offered service quality in the operational area as a geographical heat map.

• Active usage in AMoD operation: The formulation helps to measure the service quality
offered at the current time, and thus, it can be used to actively improve the AMoD operation
by incorporating it into operational decisions.

Due to the above characteristics, the RD based relations introduced in this section serve as an
important spatial metric for measuring the AMoD service quality. The following sections describe the
RD based relations in detail. The sections are structured as follows: section 4.2.1 first introduces the
general KDE method used in statistics, section 4.2.2 describes how KDE can be adopted for AMoD
service quality measurements, section 4.2.3 describes the RD formulations, and finally, section 4.2.4
introduces the methods used in the dissertation to calculate the maximum reachable distances from
each node of the city network.
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4.2.1. Kernel Density Estimation

The KDE is a well-known non-parametric probability density function (pdf) estimator first introduced
by Parzen [1962]. KDE tries to automatically adapt itself to the shape of the underlying density
function. Let x1, x2, ..., xN ∈ Rd be a set of independent data points drawn from a probability
density function p(x), then a KDE is calculated as

p̂(x) =
1

NV
(k)
d hd

N∑
i=1

k(x, xi, h) (4.1)

k(x, xi, h) = K

(
x− xi

h

)
(4.2)

where K : Rd 7→ R is a smooth kernel function, h > 0 is the bandwidth for smoothness and xi
is a data point. V k

d is a kernel- and dimension-dependent normalization factor so that the integral∫
p̂(x)dx = 1 [X. Wang, 2005].
Many smooth kernels are generally used in KDE, e.g., triangular, Gaussian, triweights etc. However,

as described in the following section, the most relevant kernel for the AMoD services is the simple
triangular function, given as:

K(x) =

{
1− ∥x∥s , if ∥x∥s ≤ 1

0, otherwise
(4.3)

The dissertation uses the Euclidean norm in the above equation, i.e. s = 2, for which V
(k)
d is π

3
[X. Wang, 2005].

The fundamental usage of a KDE is to estimate the underlying probability density function (pdf)
of a data set. The advantage of KDE is that it does not require making any assumption on the
specific parametric family that the pdf might belong to; instead, it adapts the shape of estimated pdf
directly from the data, making it a very useful tool for data drawn from complicated distributions.
The most important parameter of a KDE, i.e., the bandwidth h, is usually calculated using various
methods to minimize the asymptotic mean integrated square error (AMISE). The data centers and
the overall spread of the estimated pdf are heavily dependent on the choice of bandwidth h (the
spread of a single data point) [Grodzevich and Romanko, 2006].

4.2.2. Adopting Kernel Density Estimation for AMoD services

A KDE seamlessly combines the impacts of multiple data points through kernels. Therefore, a KDE-
inspired spatial relation can potentially integrate the overall impact of the AMoD operation area
into a single function. However, as described in the following, KDE requires certain modifications
to achieve this objective. The modifications described in this section deal directly with individual
coordinates, and thus, do not require defining operational regions. However, certain FC operations
like repositioning would require using it together with operational regions which would require further
adaption of the approach as described in the next chapter.
The most significant modification is in interpreting what a kernel bandwidth h represents. While

in KDE it simply describes the spread of the kernel function, for the purpose of AMoD services, it is
understood as an approximation of the maximum reachable (or servable) distance of a single vehicle
(or customer request) within the maximum allowed customer waiting time ∆Tmax. Thus, the kernel
function is called the reachability function (RF) of a vehicle or customer request. An RF provides
the probability of a vehicle serving a customer in its surrounding. On the one hand, this naturally
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eliminates the fundamental limitation of the independent region-based approaches that treat each
region separately without due regard to the proximity of other regions. On the other hand, unlike
hierarchical relationship [Al-Kanj et al., 2020; Fagnant and Kockelman, 2014], the partial
impacts and reachable points in the neighboring regions are not directly dependent on shapes of
regions; instead, they depend on the bandwidth h.

The above interpretation causes some major inconsistencies if the traditional definition of KDE is
used for AMoD services as described below:

1. The primary focus of the bandwidth selection algorithms in KDE is to find an h that would
improve the estimate of the underlying pdf. In the case of geographical locations of customers
and vehicles, it would only calculate an h that provides a good estimate of the underlying
probability densities of the customer and vehicle locations. Such a value of h would not
correspond with the above interpretation of kernel functions as RFs, i.e. the h would not
correspond with the maximum reachable distance from a vehicle or customer location.

2. The customer and vehicle data in an AMoD scenario are dynamic, and thus, the underlying
density of their location is expected to change throughout the day and week. Therefore, the
value of h derived from bandwidth estimation algorithms can vary significantly depending on
the time of the day. Any operational decision made on the basis of such a density function
may lead to inconsistent long-term results.

3. Even for a static problem instance that aims to make an operational decision for all vehicles and
customers simultaneously, the bandwidth h obtained using traditional KDE approaches might
be significantly different for the customer and vehicle distributions. For example, consider a
repositioning problem instance that balances the vehicle supply with customer demand. Even if
the supply-demand balancing problem tries to close the gap between the separately calculated
customer and vehicle KDEs, the vehicles still may not serve the intended customer because
of different bandwidths. For example, consider the case when customer and vehicle KDE has
a bandwidth of 500 m and 2 km, respectively. The algorithm will falsely balance very few
vehicles assuming that the vehicles have a reachability of 2 km, which may not be applicable
due to the average speed in the area of operation.

4. Since the KDE is normalized with the number of available data points (Eq. 4.1) to make the
integral unity, the scales of customers and vehicles KDE might be significantly different. For
example, consider the case with 100 expected customers and 300 idle vehicles with KDEs calcu-
lated using Eq. 4.1. For the use-case of repositioning, the algorithm would try to unnecessarily
send a high number of vehicles near the expected customers as the customer KDE would be
on a similar scale as idle vehicles KDE due to normalization.

To resolve issues 1 and 2, for each location xi, the dissertation selects the bandwidth hi according
to the current network state (reachable distances considering current network state) and maximum
waiting time ∆Tmax. For issue 3, it is noticed that a major problem is caused by normalization of
the KDE on the same scale such that

∫
p̂dx = 1 irrespective of the number points, which is usually

required because KDE is estimating a pdf. However, for this dissertation, estimating a pdf is not as
important as using a consistent scale for customers and vehicles. Thus Eq. 4.1 is modified as:

p̄(x) =
3

π

N∑
i=1

k(x, xi, hi)

h2i
(4.4)
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where k is the triangular kernel or RF given in Eq.4.3. Even though any kernel function (guassian,
triweights etc) can be used as a RF, the dissertation uses triangular function due to its simpler
interpretation: for a vehicle located at the center of an RF, the probability of serving a customer
is highest when the customer is located at the center of the RF and it linearly decreases as the
euclidean distance from the center increases. Similarly, from the perspective of a customer located
at the center of an RF, the probability of being served by a vehicle is the highest when the vehicle
is located at the center and it linearly decreases as the euclidean distance from the center increases.
Due to the above modification, Eq. 4.4 does not represent a pdf, however, it has following useful

properties:

• The usage of RFs causes the impact of single data points to spread to their surroundings based
on the incorporation of information from three important sources: 1) underlying network 2)
geography of the operation area and 3) the AMoD service model. First, the underlying network
is incorporated by calculating the maximum reachable distance hi for a data point located at
xi using the city network and its current state. Second, the geography of the operation area
plays a part in determining the impact of a data point as the distance from its center increases.
In this regard, the dissertation uses 2D triangular function. However, the formulation can also
use a more complex geometrical function. Third, the AMoD service model is incorporated by
using δTmax as a criterion to calculate the maximum reachable distance hi. This is especially
relevant for the AMoD service model studied in the dissertation, i.e. AMoD without pooling of
customer requests; the pooling of customers makes it more complicated to calculate the hi as
the reachability and the ability to serve new customers additionally depends on the remaining
capacity in the vehicle and the detour time of the onboard customers.

• The integral of Eq. 4.4 over the AMoD operation area is equal to the number of data points,
i.e.

∫
p̄(x)dx = N . This indicates that the formulation not only spreads the influences of a

single data point using the RF but also coherently combines the spatial influences of all RFs
such that the integral represents the total number of data points.

• The above property further leads to two useful properties of the formulation. The first one is in
terms of it being a spatial metric for reachability from data points: a higher value of p̄(x) for
any geographical location x means that x is under the influence of a higher number data points,
and therefore, there is a higher reachability to (or from) the nearby data points. It should also
be noted that while multiple data points influence x, the influence of the closest data point
will be the highest due to triangular RF. Thus, Eq. 4.4 coherently combines the influence of
single and multiple data points. The second useful property is in terms of consistency across
problems with different data sizes; even if two separate problems have different numbers of
total data points, the values of p̄(x) for a location x can still be compared to measure the
reachability. For example, if problem 1 has 100 data points located at certain locations and
problem 2 has 500 data points located at exactly the same locations as problem 1 (overlapping
data points), then the value of p̄(x) for a location x will be simply higher (or at least equal)
for problem 2 than problem 1 due to the access to a higher number of nearby data points.
This property is especially useful for AMoD services since the number of available vehicles and
customers can be compared consistently across multiple VCO batches.

Because of the characteristics, the dissertation terms Eq. 4.4 as reachability density (RD)— reach-
ability because the values of p̄(x) do not represent probability density like in KDE, rather it represents
the likelihood of reaching to (from) the nearby data points from (to) a location x. If it is calculated
for available vehicles, then it represents the reachability density of supply, i.e. the ability of vehicles
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Figure 4.1.: Flow chart for calculating imbalance density (ID)

to reach a certain point within ∆Tmax; the higher value of p̄(x) for a geographical location x, the
higher the chances are that the nearby vehicles can reach this point within ∆Tmax. Similarly, if it is
calculated for customer pickup locations, then it represents the reachability density of demand, i.e.
the potential to reach nearby customers from a point x; the higher value p̄(x) is for a location x,
the higher the chances are that a vehicle located at x will be able to serve a customer.

4.2.3. Reachability Density based Metric for Supply-Demand imbalance

The RD based spatial relation presented in the previous section built a relationship between a dis-
persed set of locations, either the locations of vehicles (supply) or customer pickup locations (de-
mand). However, from the perspective of AMoD operations, a more useful parameter is to measure
the supply-demand imbalance in the operational area than individual RD of supply or demand. As
described in the previous section, one of the characteristics of RD is the consistency for problems of
different data sizes. Because of this property, the supply and demand densities could be subtracted
from each other to get a RD function for supply-demand imbalance, termed as imbalance density
(ID) in the dissertation. The following describes the calculation procedure for ID.

Let V + be the set of current locations of available vehicles and R− be the set of customer pickup
locations. Then, using Eq. 4.4 the 2D density function for ID can be obtained by subtracting the
supply density from the demand density, given as:
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ρimb(x) =
3

π

(∑
v∈V

k(x, xv, hv)

h2v︸ ︷︷ ︸
supply density

−
∑
r∈R−

k(x, xr, hr)

h2r︸ ︷︷ ︸
demand density

)
(4.5)

where xv represents the location of the vehicle v and hv the maximum reachable distance from
xv. Similarly, xr represents the requested pickup location of the customer r and hr the maximum
reachable distance from xr. The values of hv and hr depend on the city network and its current
state as described in the previous section.

The dissertation proposes that the function ρimb(x) indicates two important observations. First,
since it is the difference of supply and demand density, a positive value of ρimb(x) would imply a
surplus of vehicles and a higher probability that the customers around the location x would be served
by the AMoD service. Second, because Eq. 4.5 uses triangular kernels with bandwidths dependent on
reachable distances, a higher positive value of ρimb(x) would mean a lower limit on possible pickup
delay. However, both of the above observations depend on a couple of factors. First, it depends
on how accurately hv and hr represent the actual reachable distances within ∆Tmax. Second, the
dissertation uses euclidean norm with the triangular function as RF (Eq. 4.3), which means that
the RF assumes a strict circular boundary for the maximum reachable distances. However, the real
networks of a city are complex and the real maximum reachable distances may not have such a
symmetrical limit on reachable distances in all directions.

Third, the actual assignment of vehicles to customers is done inside the VCO, which may not
necessarily correspond to the primary assumptions of the triangular RF uses, i.e., an AMoD vehicle
prefers the customers located near its location and the preference decreases as the euclidean distance
from the location of the vehicle increases. Nonetheless, this assumes that VCO tries to assign
vehicles to customers such that the pickup distances are also minimized. This could be due to a
direct minimization of the pickup distance [M. Hyland and Mahmassani, 2018] or as a result
of an indirect minimization of a secondary goal with a similar outcome such as the minimization
of pickup travel time [Alonso-Mora, Samaranayake, et al., 2017; Alonso-Mora, Wallar,
et al., 2017] or traveling cost for the pickup journey [Dandl, M. Hyland, et al., 2020].

4.2.4. Calculation of Reachability Function Bandwidth

In contrast to [A. A. Syed, Dandl, Kaltenhäuser, et al., 2021], where a fixed reachability band-
width is used for all kernels, the dissertation calculates the bandwidths according to the current state
of the dynamic network. Let the city network be represented by the directed graph Gnet(Nnet, Enet).
The dissertation uses only the locations of nodes Nnet for the calculation of bandwidths; the inter-
mediary points on the network edges are not taken into account for maximum reachable distance.
In reality, an estimation that includes network edges can provide a better estimation of the reach-
able distances within ∆Tmax, however, for the purposes of the dissertation, restricting to network
nodes suffices since the customer locations are also explicitly mapped to the nearest city nodes (sec-
tion 3.2.1). So a vehicle journey could only start or finish at one of these network nodes. The
following describes the method used for calculating the reachability bandwidths.

The method depends on two main components: 1) the nodes reachable within a travel time of
∆Tmax and 2) the euclidean distances of nodes. For each source node ns ∈ Nnet (representing the
center of the RF), all the nodes that are reachable within the traveling time ∆Tmax are first filtered,
represented by the set Ns ⊂ Nnet. Second, the euclidean distances from ns to the nodes in Ns are
calculated, which are used to derive the RF bandwidths.
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(a) ∆Tmax = 6 minutes (b) ∆Tmax = 4 minutes (c) ∆Tmax = 2 minutes

Figure 4.2.: An example of RF bandwidths using free-flow network speeds. The radius of Pi

corresponds to the radius that makes ith percentile of nodes around the origin node
to be reachable within travel time of ∆Tmax

When selecting the RF bandwidths, a problem is faced; the city network is usually non-homogeneous
in different directions, and thus, the euclidean distances of the farthest reachable node might signif-
icantly vary in different directions, as shown in Figure 4.2a. Moreover, in some cases, there could
even be a group of non-reachable nodes intervening with a group of reachable nodes; Figure 4.2a
shows such an intervening group in the north of Manhattan due to the unavailability of direct access
to the intervening group and a highway (Harlem River Dr) in the north-east part making the farther
north part of Manhattan reachable within ∆Tmax.

In contrast, the triangular RF assumes a symmetric reachability boundary around the source node
ns. Thus, the question arises as to which directional distance should be chosen for approximating
the RF bandwidth or (equivalently for the dissertation) which node within Ns should be selected
for approximating the reachable distance around ns. If the euclidean distance of the farthest node
in Ns is selected, the RF will wrongfully assume that all the nodes within that radius are reachable
within ∆Tmax — a significant concern for the nodes in other directions. Figure 4.2a also highlights
this situation whereby using euclidean distance of the farthest node, many unreachable nodes in the
center of Manhattan wrongfully appear reachable to the RF. To resolve this issue, the dissertation
suggests two methods: 1) the fixed percentile (FP) method and 2) the adaptive percentile (AP)
method.

First, instead of directly dealing with the distances of Ns to determine the bandwidth, the FP uses
percentiles of the distances of Ns to guarantee that a certain percentage of Ns are within the selected
radius, represented by Pi for ith percentile. For example, for a node ns, a bandwidth of h = P75

would guarantee that the 75% of the nodes in Ns are within the RF. Figure 4.2 shows examples of
multiple Pi for different values of ∆Tmax. When calculating Pi, if the desired Pi falls between two
euclidean distances, Pi takes the lower value instead of interpolating the distance. FP uses the same
percentile i while calculating the bandwidths of all the nodes as indicated by the method’s name.
Algorithm 1 summarizes the FP method.

In the FP method, the right choice of Pi plays a vital role in excluding the unreachable nodes inside
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Algorithm 1 The FP method for calculating RF bandwidths.

Input: The city network graph Gnet(Nnet, Enet)
The required percentile i

Output: A dictionary M of maximum distances

1: M ← empty dictionary
2: for source node ns in Nnet do
3: Ns ← Calculate the nodes in Nnet \ {ns} that have travel time less than ∆Tmax from ns

4: D ← Calculate array of Euclidean distances from ns to nodes in Ns

5: d ← Calculate the ith percentile of D and take the lower value if ith percentile fall
between two values of D

6: M(ns)← d
7: end for

Algorithm 2 The AP algorithm for calculating RF bandwidths.

Input: The city network graph Gnet(Nnet, Enet)
The minimum percentage of reachable nodes q
The minimum percentiles imin

Output: A dictionary M of maximum distances

1: M ← empty dictionary
2: for source node ns in Nnet do
3: Ns ← Calculate the set of nodes in Nnet \ {ns} that have travel time less than or equal

to ∆Tmax from ns

4: D ← Calculate array of Euclidean distances from ns to nodes in Ns

5: i← 100
6: while i > imin do
7: d ← Calculate the ith percentile of D and take the lower value if ith percentile fall

between two values of D
8: Nd ← Calculate the set of nodes within the radius d of ns

9: Nreach ← Calculate the set of nodes in Nd \ {ns} that have travel time less than or
equal to ∆Tmax from ns

10: ratio← 100×Nreach/Nd

11: M [ns]← d i← i− 1
12: if ratio ≥ q then
13: break
14: end if
15: end while
16: end for
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the RF; for example, for the node marked in the south of Manhattan in Figure 4.2a, the majority of
unreachable nodes are excluded from the RF using P90. However, the usage of the same Pi for all
the nodes may cause problems, especially for the anomalous nodes; for example, for the node marked
in the north of Manhattan in Figure 4.2a, a large number of unreachable nodes are included in the
RF using P90 in contrast to the node in the south.

While the FP method selects the bandwidth based on how many Ns nodes are covered by the RF,
the Pi used still requires manual adjustments. Secondly, as mentioned above, the same Pi may not
work for different parts of the city due to a discontinuous group of reachable nodes.

Therefore, the AP method further modifies the FP method to include the number of unreachable
nodes and individually adjust the used Pi for each ns. It starts with P100 and iteratively reduces
the used percentile i till the percentage of the reachable nodes within Pi is greater than or equal
to q or a minimum percentile limit Imin is reached. The dissertation uses the convention that a
particular instance of AP with a specific value for q and imin is represented as AP(q,imin). As shown
in Figure 4.2, the AP uses different percentiles for each node of ns and automatically adjusts the
used percentiles to avoid including too many unreachable nodes irrespective of the used ∆Tmax. The
method is described in Algorithm 2. The dissertation uses AP method to calculate RF bandwidths.

4.3. Case Study for Spatiotemporal Relations

This section uses the simulation setup described in chapter 3 to evaluate the effectiveness of ID based
spatial relations. Since the main objective of the dissertation is to use these relations in order to
improve the AMoD operation, the section uses the agent-based simulation to study two fundamental
hypotheses: (1) the AMoD vehicles are not strictly bound within a certain region for serving the
customers when the regions are small and contiguous and (2) an RD based relation for vehicle supply
and demand (i.e. ID) better explains the service quality offered to individual customers than the
assumption of independent regions. The section uses the customer waiting time and the probability
of being served as the main criteria for measuring service quality.

Since the dissertation uses variable travel times (section 3.3.5) which can significantly affect the
reachable distances — and the used RF bandwidths for enroute vehicles after each ∆Tscale —, the
section additionally uses constant travel times based on free-flow (FF) speed for detailed analysis of
the above assumptions, i.e. FF and 2×FF travel times.

The ID is calculated for each of the VCO batches as follows. The simulation stores the locations
of all available vehicles and customers considered in each VCO batch. These are later utilized in a
post-processing stage where for each VCO batch, the locations of the considered vehicles and the
customers are used to calculate the ID using Eq. 4.5. The goal here is to analyze if the ID provides
a good spatial metric to measure the offered AMoD service quality; the section does not focus on
improving the AMoD operations using the ID function which is studied in the following chapters.

The section uses an AMoD fleet of 3000 vehicles and ∆Tmax of 6 minutes. For the VCO the
parameters in Eq. 3.3 are kept fixed, given as (ζ, fD, cD, cF )=(2.5$/served customer, 0.5$/km,
0.25$/km, 25$/vehicle per day). Table 4.1 lists the default values of the parameters used in the
current chapter.

4.3.1. Comparison Vehicle Control Optimization Methods

The section first compares the performances of the two VCO methods. As shown by the percentage
of customers served (S%) in Figure 4.3, the AMoD service can serve almost all of the customers
with a fleet of 3000 vehicles and free-flow speed even when only idle vehicles are considered for
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Parameter / Method Symbol Default Value / Strategy

Base fare ζ $2.5 per customer
Distance based variable fare fD $0.5 per km
Distance based cost cD $0.25 per km
Fixed maintenance cost of vehicle cF $25 per vehicle per day
Maximum allowed waiting time
of customers

∆Tmax 6 minutes

The time period used for
city network scaling

∆Tscale 30 minutes

Travel time scaling method used — ASM (section 3.3)
RF bandwidth calculation method — AP90,90 (section 4.2.4)
Fleet size — 3000 AVs

Vehicle assignment method VCO
The current chapter compares
VCOidle and VCOenroute

Batching period ∆Tbatch 30 seconds

Table 4.1.: The default simulation configuration used in chapter 4.

assignment (VCOidle). The main reason for this is that with free-flow travel times, the vehicles can
reach larger areas within ∆Tmax and serve the assigned customers faster. As the city network gets
slower, the S% of VCOidle drastically decreases from a value of 98.1% to just 22.9% for the realistic
travel times using ASM method, causing a decrease in overall profit. Additionally, with increased
travel times, the mean waiting time Wmean and mean pickup distance Dpick

mean are also increased for
VCOidle method.

In regards to the consideration of the enroute vehicles for assignment, two general traits of the
VCOenroute could be observed: lower Dpick

mean and higher Wmean. Including enroute vehicles increases
the number of vehicles that could be assigned to customers. Since the VCO only considers the
distance-dependent cost in the objective function (cD in Eq. 3.3a), any vehicle that is closer to
the pickup location of the customers (idle or enroute) is assigned to the customer regardless of
the waiting time. For the free-flow speed, this causes a degraded performance of VCOenroute over
VCOidle; there is enough supply of idle vehicles within the travel time range of ∆Tmax due to large
vehicle outreach, but the VCOenroute preferred assigning enroute vehicles to customers due to shorter
pickup distance from the last point in their paths. As the network travel times become more realistic,
the inclusion of enroute vehicles in the VCOenroute produces significantly higher profit than VCOidle:
the S% increased from 22.5% to 35.1% and the profit increased from 0.31 million to 0.52 million
USD for ASM, however, Wmean also increased from 3.0 minutes to 4.8 minutes.

Figure 4.4 shows the performance on the temporal axis. The first thing to notice is the performance
degradation with the passage of simulation time; without repositioning of idle vehicles, the AMoD
fleet starts to accumulate in different parts of the city, causing regional supply-demand imbalances.
Depending on the city network characteristics and the pattern of customer origins and destinations,
this supply-demand imbalance can worsen over time, leading to degraded performance. Since the
free-flow speed allows the AMoD fleet to have a significantly large outreach, the effects of supply-
demand imbalances are least noticeable for free-flow speed. On the contrary, since the customers can
be served quickly with the free-flow speed, the fleet utilization (U%) remains relatively low during the
morning and evening peak hours even though S% remains high. This indicates that with free-flow
speed the AMoD fleet had the capacity to serve an even higher number of customers.

The impact of fleet accumulation is most noticeable for the ASM method. At the beginning of
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Figure 4.3.: The comparison of VCOidle and VCOenroute using a fleet of 3000 vehicles.
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Figure 4.4.: The temporal performance with 3000 vehicles and ∆Tmax of 6 minutes. The values
are calculated using an aggregation period of 30 minutes.
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Figure 4.5.: Percentages of total served customers assigned to vehicles from the same zone as
the customer pickup location

the simulation, with a better distribution of AMoD fleet and lower customer demand (0 to 6h of the
first simulation day), both VCO methods can serve most of the customers with ASM travel times.
However, during the day time when the network is slower and the customer demand is high, AMoD
service is only able to serve less than 40% for VCOidle and 60% for VCOenroute of customer demand.
On the second day of the simulation, most of the AMoD fleet remains accumulated in different parts
of the city, forcing the AMoD service to have even lower S% and U% on the second day of simulation.
Dandl, M. Hyland, et al. [2020] also observed the same phenomenon, where, in a whole week
of simulation, the U% consistently dropped with each simulation day. The effects of accumulation
are slightly lower for 2×free-flow speed than ASM method. This leads to the conclusion that the
accumulation of AMoD fleet and its impact on performance increases with the stress on the city
network. The accumulation of vehicles and the requirement of repositioning will be discussed in
more detail in section 5.1.

Next, the section analyses how strictly the vehicles were bound to regions while serving the cus-
tomers. It uses the regular grids with cell size ∆scell defined in section 3.2.3. Since the VCO does
not bound the assigned vehicles to be in the same region as the customer pickup location, the pur-
pose here is to observe how often the vehicles crossover and serve the customers in other regions.
Figure 4.5 shows the percentage of customers out of the total number of customers served that were
assigned to vehicles in the same region as the customer pickup locations (Sregion

% ). In general, for
smaller regions, the vehicles are very loosely bound to serving customers from the same region; for
∆scell of 500m and ASM travel times, Sregion

% is only 24.7% for VCOidle and raises to 54.8% for
VCOenroute. With an increase in the size of regions ∆scell, more customers are served from the
same region. However, even for a ∆scell of 2km, Sregion

% is only 67.8% for VCOidle and 86.4% for
VCOenroute. For VCOenroute, it should be noted that the availability location of vehicles is used for
Sregion
% and not their current locations. In reality, the AMoD operator might use clustering algorithms

on past data to define regions that may better restrict the vehicles to specific regions. Nevertheless,
the region sizes cannot be grown indefinitely, as it would raise additional challenges for FC methods
since it will have to additionally decide where to position the vehicle within each region.

Figure 4.6 shows Sregion
% for dynamic travel times and different values of ∆Tmax. A lower ∆Tmax

prunes the solution space strictly such that the far-off vehicles have a lower probability of picking
up the customers within the given ∆Tmax. This leads to more vehicles being assigned to customers
within the same region. The differences in Sregion

% for varying ∆Tmax is even higher for VCOidle:
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Figure 4.6.: Percentages of customers served by vehicles from the same zone as the customer
pickup location. The figures show simulations with ASM travel times.

for ∆scell of 500m, Sregion
% increases from 24.7% for ∆Tmax of 6 minutes to 53.9% for ∆Tmax of

2 minutes, and for ∆scell of 2km it increases from 67.8% for ∆Tmax of 6 minutes to 87.7% for
∆Tmax of 2 minutes. For VCOenroute, the Sregion

% is found to be generally high and not heavily
affected by the value of ∆Tmax. A major reason for this behavior is that the vehicle is assigned from
its availability point and the VCO mainly assigns vehicles based on smaller pickup costs.

With the above simulation results, the section derives the following main observations:

• As the network travel time increases, more customers are served from within the same region as
the customer pickup location. This number rises further as the region size increases. However,
a significant proportion of customers are still served from other regions.

• A lower ∆Tmax causes a higher number of customers to be served within the same region.
The effect is more apparent for VCOidle.

In view of the above observations, the section concludes that the strong assumption of independent
regions may hinder the full potential of any FC method used for positioning the AMoD vehicles,
especially when the regions are small and contiguous. Such an assumption would also misrepresent
the supply-demand imbalance used by any spatial metric, as the supply-demand imbalance is not
only dependent on individual regions rather on the neighboring regions as well. Thus, in contrast
to the independent regions, the next section analysis the effectiveness of ID method for defining the
service quality.

4.3.2. Analysis of Imbalance Density

The previous section showed that the simulated vehicle assignments using VCOidle and VCOenroute

are not strictly bound to individual regions. As such, spatial metrics for measuring service quality
should also consider the imbalance of the neighboring areas. The ID based spatial formulation resolves
this problem. Thus, this section studies how well the ID function describes the AMoD service quality
for the Manhattan case study.

As described before, the locations of the customers and the vehicle availability points in each
VCO batch are saved during the simulation. This is later used to calculate the ID function for each
VCO batch. Let ρbimb(x) represent the ID function calculated for a particular VCO batch b. The
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(a) Free-flow (b) 2×Free-flow (c) Dynamic (ASM)

Figure 4.7.: The pickup waiting times of the served customers against the values of ρimb(x) for
VCOidle, 3000 vehicles, ∆Tmax of 6 minutes. For clear visualization, the dotted
black line marks the place where x-axis is zero.

section aims to study if these ID functions could serve as a good spatial metric to measure AMoD
service quality offered to each customer in b. This is done by evaluating the values of ρbimb(x) at the
customer pickup locations in b. These ID values at the pickup locations are then used to see if they
could describe or differentiate the service quality offered to the customers located at those points; if
it does, then it shows that ID could be used as an effective spatial metric to measure service quality
in AMoD services, and thus, the associated heat-map formed by the ID relation provides a measure
of the actual service quality offered in the area of operation. The section mainly focuses on two
important service quality indicators: waiting time to pick up and the probability of being served by
an AMoD vehicle.

Relation with Customer Waiting Time

Following the above mentioned procedure, Figure 4.7 shows the scatter plot of the customer waiting
times against the corresponding values of ρimb at the pickup locations. Note that Figure 4.7 only
shows the values for served customers as the unserved customers do not have a waiting time. The
first thing to note is the decreasing range of customer waiting times with the increasing values of
ρimb; the customer locations having high ρimb have shorter pickup distances from available vehicles,
and thus, have a lower range of possible waiting times. This also shows that ρimb accurately combines
the effects of individual triangular RFs (the highest reaching probability and lowest waiting time at
the center and a linear decrease based on euclidean distance) into a single formulation and still
distinguishes the waiting time range of individual customers. This observation is more pronounced
for the simulations with constant travel times, i.e., Figure 4.7a and Figure 4.7b. In contrast, the ASM
method shows anomalies in the relation of ρimb and the customer waiting times. The main reason
is that the ASM method updates the travel times every 30 minutes without canceling the original
vehicle assignments even if this causes a delay to the original plan. Therefore, some customers can
have a different pickup time than the one calculated while solving VCO. Since ρimb is computed
using the network state at the time of solving VCO, the waiting times of these specific customers
show anomalous behavior of having large waiting times.
To study the above relationship further, Figure 4.8 shows the mean and 90th percentile of ρimb

when aggregated using bins of size 5 × 10−6. The mean and 90th percentile show a decrease in
customer waiting times with the increase in ρimb. The anomalous behavior of ASM method due to
period travel time updates can also be observed in Figure 4.8. Nevertheless, the relation of ρimb and
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Figure 4.8.: The aggregated values of ρimb(x) using bins of size 5 × 10−6 against the pickup
waiting times of the served customers. The simulations used VCOidle, 3000 vehicles
and 6 minutes for ∆Tmax.

waiting times can still be observed for the ASM method: the higher the values of ρimb the lower
the customer waiting times.

Another important observation is that some served customers have a negative ρimb. This is not
counter-intuitive to the used method; a negative value of ρimb does not imply that the customer
will not be served by any vehicle; rather, it only indicates a deficiency of vehicle supply compared
to vehicle demand. Consequently, for the customers within areas of negative ρimb, the underlying
VCO must choose which customers should be assigned to vehicles — all of them cannot be assigned
simultaneously due to lack of vehicle supply. It is also possible for some of these customers to be
located very close to an idle vehicle and still have a negative ρimb. This is because ρimb considers
the impact of multiple customers and vehicles within reachable distances from the location. Thus,
the waiting time of customers with negative ρimb can range from zero to ∆Tmax depending on the
decisions of VCO.

In contrast, as shown in Figure 4.8b, a sharp reduction in the waiting time is observed as soon as the
ρimb of the served customers shifts from a negative to positive value — a shift from customers located
in the areas of vehicle undersupply to areas where vehicles are in abundance. This means that the
VCO can assign the nearest vehicle to these customers without competition with other customers due
to vehicle oversupply, resulting in a sharp decrease in waiting times. A higher magnitude of positive
ρimb would imply that the associated customers have access to an even higher number of available
vehicles closer to the customer locations. This means that the VCO will have multiple options of
vehicles to assign to a single customer, out of which it will assign the nearest vehicle. This further
reduces the customer waiting time for higher ρimb.

Figure 4.8 also shows that the maximum and minimum value of the overall ρimb is dependent
on network travel times. A slower city network will have many locations with smaller outreach
(smaller RF bandwidths hi). Thus, the regions with these locations will have a concentrated or
denser “reachability” due to smaller hi — the magnitude of ρimb will be higher, but it will spread
on a smaller area. This is also visible from Figure 4.8, as the network speed becomes slower, the
maximum and minimum possible values of ρimb increase.
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Finally, the relationship of ρimb and waiting times also heavily depends on if the considered AMoD
vehicles in the ρimb are idle or not. The main reason is that ρimb depends heavily on the RF
bandwidths used while calculating the supply density (Eq. 4.5), which assumes that the vehicles
can immediately leave from its current location to serve the customers. However, for the enroute
vehicles, even though they will become idle at the availability point before the end of ∆Tmax, they
will not be available for the full duration of ∆Tmax. Their reachable distances will differ from
currently idle vehicles (i.e., based on complete ∆Tmax). Therefore, for the enroute vehicle, ρimb will
wrongfully assume larger reachable distances based on ∆Tmax while the vehicle will be only partially
available within this period. Secondly, the RF used in the dissertation (2D linear kernel) assigns the
highest serving probability value at the center of the RF. This assumption directly correlates with the
customer waiting times for idle vehicles, as they can immediately serve any customer located at their
availability point. But for the enroute vehicles, this is not the case; they can only serve a customer
at their availability point after they have completed their assigned journey. Thus, the waiting times
only strongly correlate with the idle vehicles for VCOenroute. Since VCOenroute assigns a big portion
of customers to such enroute vehicles, the relationship described in this section between ρimb and
the customer waiting time does not apply to VCOenroute. On the contrary, as all the considered
vehicles in VCOidle are idle, the relationship strongly applies to VCOidle.

Relation with Probability of being Served by AMoD service

Besides the customer waiting times, it is also important to study how well ρimb could describe which
customers are served by an AMoD service. Figure 4.9 shows the distribution of ρimb value for the
served and unserved customers along with the percentage of served customers (Sρ

%) within different
value ranges of ρimb. As explained in the previous section, a negative value of ρimb would imply a
deficiency in the supply of vehicles in the neighborhood of the customers. In these cases, the VCO
must choose which customers are assigned to vehicles due to a lack of sufficient supply of vehicles
to serve the customers within ∆Tmax. This phenomenon is also visible in Figure 4.9: the Sρ

% is
significantly small for the negative value of Sρ

%. Interestingly, even though the VCOidle serves most
of the customers (98.1%) for the free-flow travel time, the ρimb is still able to delineate this small
percentage of unserved customers into a negative range of ρimb.

As the value of ρimb increases, the S
ρ
% also increases. A sharp increase in Sρ

% happens as the value
of ρimb shifts from negative to positive value. Thus, most unserved customers lie in the negative
ranges of ρimb. This phenomenon is even more visible for the VCOidle as it accurately captures the
reachable distances due to consideration of idle vehicles only, as discussed in the previous section.
A similar drastic increase in Sρ

% is also visible for VCOenroute to a lesser extent than VCOidle; the
VCOenroute takes into account the enroute vehicles in ρimb which may not have the same reachable
distances as assumed by RFs. Therefore, some of the unserved customers also lie in the positive value
ranges of ρimb for VCOenroute, which ρimb marked as having access to a higher number of available
vehicles, but in reality, the enroute vehicles were only available for a portion of ∆Tmax. Nevertheless,
the results show that ρimb is still able to demarcate the unserved customers for VCOenroute, whom
it places at lower magnitudes of ρimb.

The relationship of ρimb with the probability of being served by the AMoD service for VCOenroute

is in complete contrast to its relation with the waiting time for VCOenroute; the customers with
higher values of ρimb does not exhibit any relationship to the customer waiting times for VCOenroute.
This is because even if the enroute vehicles are not immediately available in VCOenroute, they can
still reach the destination before the end of ∆Tmax and be part of VCO. Since VCO tries to assign
as many customers as possible, it will still assign customers to enroute vehicles according to their
availability time and ∆Tmax. Thus, a higher value of ρimb still indicates an increased number of
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Figure 4.9.: The distribution of imbalance density values at the pickup locations of customers
for all VCO batches. The values were first normalized using the maximum value of
each VCO batch to cover the whole range of the distribution.
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vehicles that could be assigned to a customer; however, not necessarily with shorter waiting times.

Imbalance Density (ρimb) as a Spacial Metric

The previous two sections showed that an ID based relation (ρimb) can accurately describe the AMoD
service quality. It shows a strong relationship with the VCO decisions that which customers are served
by AMoD vehicles. In this regard, the VCOidle showed a drastic increase in the percentage of served
customers as the value of ρimb changes from negative to positive. This increase was slightly less
drastic for VCOenroute. In general, the results showed that the higher value of ρimb is for a group
of customers, the higher the chances are that they will be assigned to AMoD vehicles. Additionally,
VCOidle showed a similar relation of ρimb with the customer waiting time.

The above outcomes allow the ρimb to be used as an important metric to measure and visualize
the service quality offered by an AMoD service as a heat map. Figure 4.10 shows examples of such
a heat map for VCO batches at different times of the day along with the traditional approach of
visualizing the supply-demand imbalance in the form of aggregated values.

The first observation is that the aggregated values of supply-demand imbalance over regions help
understand the situations in different parts of the operation area. Still, they do not link other regions
together in terms of their reachability. In contrast, the ρimb is not bound by regions to describe
the service quality. It exactly demarcates the areas of potential vehicle undersupply without defining
explicit regions. Since the shift from negative to positive values of ρimb marks a drastic increase
in the percentage of served customers, a boundary could be drawn to visualize areas of potential
undersupply and oversupply of vehicles. Furthermore, a higher negative value of ρimb can help to
identify regions of severe undersupply, as shown for the 12 pm and 6 pm cases in Figure 4.10, where
a concentration of unassigned customers can be found near the center.

It is also important to note that since ρimb represents reachability density and not the absolute value
of the supply-demand imbalance. Therefore, besides the magnitude of ρimb, it is also important to
consider how big of an area the undersupply of vehicles is spread. For example, for the 6 am scenario
in Figure 4.10, even though the customers were located in the negative ρimb area, all of them could
be assigned to vehicles. The main reason is that both the magnitude and the spread of the negative
ρimb were insignificant, and the VCO could assign vehicles to all of them. This also shows the benefit
of using ρimb over aggregated values of supply-demand; most of these customers were located in
regions with undersupply of vehicles and, therefore, according to the assumption of independent
regions, should not have been assigned vehicles. However, the vehicles from the neighboring areas
could serve all the customers.

The usage of ρimb also shows its benefits over other regional approaches that assume that the
vehicles can always serve the customers from the nearby regions without taking into account the
inter-regional travel times, like the hierarchical approach [Fagnant and Kockelman, 2014]. For
example, for the 12 pm and 6 pm scenarios in Figure 4.10, multiple vehicles were available in
the southeast of Manhattan. Yet, some customers remained unassigned in the nearby cells. The
hierarchical approach would assume that the vehicles from nearby regions would serve these. However,
ρimb shows that these customers are in the negative part of ρimb; even though the vehicles may appear
geographically closer to these customers, the consideration of actual travel times in ρimb highlighted
that these vehicles may not be able to serve these customers. Another similar example can be
observed for the extreme south end of Manhattan for the 6 pm case, where a tiny area of vehicle
undersupply is formed, and only one customer remained unassigned in the area.
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Figure 4.10.: The ID function as spatial metric to visualize the AMoD service quality in the
form of a heat map. The color bar indicates the supply-demand imbalance with
pink and green marking the vehicle undersupply and oversupply, respectively. The
simulations in the figure are with VCOidle, 3000 AVs, and ASM travel times.
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4.4. Conclusion

The AMoD service area is often divided into a disjoint set of regions for analytical, operational, or
privacy reasons. This dissection is usually based on the assumption that these regions are indepen-
dent, which means that an AMoD vehicle located in a specific region only serves the customers in
that region. However, depending on the region sizes and the network state, an AMoD vehicle is
not bounded by such restrictions. Therefore, this chapter introduced a density-based spatial metric,
called ID, that describes the AMoD service quality offered in the operation area without relying on
the definition of regions. It links the individual locations of customers and vehicles with the overall
AMoD service quality in the form of a heat map. It uses 2D linear functions as RFs to model the
reachable distances and the probability of reaching the surrounding area from the centers of RFs.
The chapter studied the effectiveness of the ID relations to describe the service quality when VCOidle

and VCOenroute are used for assigning vehicles to customers.
The ID showed strong relation to the assignment decisions of VCOidle and VCOenroute. It describes

the customers who are probably assigned an AMoD vehicle. The ID also showed a strong relationship
with the customer waiting times for VCOidle. From these observations, the chapter concludes that ID
provides an important metric for measuring the AMoD service quality offered in the operation area.
The chapter did not focus on using ID relations for actively improving the AMoD service quality;
instead, the main focus was on proving its effectiveness as an essential spatial metric. The following
chapters study how ID could be used to improve the AMoD service quality.
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Chapter 5.

Reachability Functions based Repositioning
Strategies

The previous chapter introduced a novel spatial metric, the imbalance density (ID), to measure the
service quality in AMoD services. It was based on the concept of reachability function (RF) which
consistently takes into account the proximity of neighboring locations. This helps to describe the
AMoD service quality offered to individual customers in the form of a heat map. This chapter further
extends the concept of ID relations to improve the AMoD service quality actively. In this regard,
the main focus is on repositioning the AMoD fleet to minimize the supply-demand imbalance caused
by the disparity between customer origin and destination locations. Thus, the chapter presents a
repositioning approach that utilizes the ID relations to reposition idle vehicles.

The chapter is structured as follows. Section 5.1 introduces the primary motivation for developing a
new repositioning method. Then section 5.2 discusses the problem formulation used for repositioning
along with the forecast method used in the dissertation for estimating the future AMoD system state.
Section 5.3 develops a min-distance repositioning method that is not based on ID but can still achieve
a significant improvement over the benchmark method used in the dissertation. Then section 5.4
describes the optimization formulation used for ID based repositioning methods and two methods
used in the dissertation for its solution. To understand the overall working of these newly developed
repositioning strategies, section 5.5 conducts tests on static repositioning instances to analyze the
behavior of these methods. Finally, section 5.6 performs a detailed sensitivity analysis of the developed
method in the agent-based simulation to evaluate the overall performance improvements.

5.1. Motivation

In the current MoD and Taxi services, the overall number of customers and the locations of their
origins and destinations change significantly across and within days. These temporal changes in
the pattern of customer requests are expected to be similar in the future for an AMoD service. As
mentioned in section 3.2.2, the pattern usually differs significantly between a business day and a
weekend. On weekends, leisure activities significantly impact the destination and origin of trips.
Contrarily, during a workday, many trips are regular trips from home to work (morning trips) and
back home (evening trips). Therefore, depending on the time of the day, there could be an imbalance
in the number of trips going to a region and starting from it. A similar phenomenon is observed
in the NYC data set. As shown in Figure 5.1a, the imbalance between trip origins and destinations
differs significantly for different hours of the day. In the morning, the regional imbalance is shifted
towards the center; more people go from residential to commercial areas at the center than the other
way around. This is indicated by the concentration of highly positive values around the center at 5
and 8 am in Figure 5.1a. Contrarily, during the evening and night hours, the imbalance shifts towards
the residential areas in Manhattan’s north, northeast, and northwest.
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(a) The hourly differences between the number of trips arriving into the regions (destinations) and the
number of trips leaving the region (origins) in the original data.
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(b) Regional imbalances in the simulated AMoD service without repositioning of idle vehicles
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(c) Regional imbalances in the simulated AMoD service with Pavone’s method for repositioning of idle
vehicles. The simulation used 30 minutes as repositioning and forecast period.

Figure 5.1.: Impacts of repositioning approach for AMoD services simulated using data 6 and 7
June 2016. The time represents the second day of the simulation. The simulations
used ∆Tmax of 6 minutes, 3000 vehicles, VCOenroute, ASM travel times and ∆scell
of 1 km. Figures (b) and (c) take into account all the available vehicle locations
(idle and the enroute vehicles about to finish the trip). The regional imbalance
is calculated by subtracting the number of forecast trip origins (within 1 minute
period) from vehicle locations.
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Due to the above imbalances, a Taxi or an AMoD vehicle dropping off a customer at night may
end up in a region where the waiting time for getting the next customer is significantly high. In
this case, a human taxi driver would relocate to higher-demand areas based on past experiences. In
contrast, a centrally controlled fleet of AVs would require an explicit relocation command from the
central FC. Without such a relocation, many AMoD vehicles may remain idle for a long time while
a large number of customers in other parts of the city would simultaneously remain unserved. This
leads to a significant under-utilization of the fleet.
The above phenomenon is also shown in Figure 5.1b for a simulation with VCOenroute and a fleet of

3000 AVs (the rest of the parameters are the same as in Table 4.1). Since the dissertation simulates
two days (6 and 7 June 2016), the figures compare the values on the second day of simulation for a fair
demonstration of the phenomenon. This ensures that the observation is least affected by the initial
locations of the vehicles at the beginning of the simulation. Figure 5.1b shows an instance of the
supply-demand imbalance using the availability locations of vehicles and customer origins aggregated
over one minute. The imbalances of destinations and origins lead to the accumulation of vehicles
near residential areas at night. Many of these vehicles do not find enough trips to return to the
demand-intensive regions, making some of these residential regions have a vehicle oversupply while
others have a significant vehicle undersupply. This is visible from the high supply-demand imbalance
values in Figure 5.1b. Additionally, since a purely profit-oriented VCO prefers longer trips to earn
higher distance-based fare, even during the daytime, customers going away from demand-intensive
regions in the center to the far-off areas are preferred, which further maintains an oversupply of
vehicles in the far-off regions. This is also indicated by a constant, highly positive supply-demand
imbalance in the north of Manhattan. As shown in Figure 4.4 for the ASM travel times, this leads
to lower fleet utilization with time.
The commonly used approach to resolve the above supply-demand imbalance is to periodically

reposition idle vehicles to demand-intensive regions, referred to as mid-term repositioning (sec-
tion 2.5.4). This approach solves an optimization problem to determine the repositioning of idle
vehicles using the demand forecasts of each region. Many studies based their mid-term repositioning
approaches on the method of Pavone et al. [2012] where the excess vehicles are equally distributed
among regions while minimizing the total VKT [R. Zhang and Pavone, 2016; Ruch et al., 2018;
S. Hörl et al., 2019]. Therefore, the current chapter uses the method of Pavone et al. [2012] as
the benchmark. The dissertation also tested other methods mentioned in the literature, however,
the method of Pavone et al. [2012] outperformed other approaches in the simulation framework. A
detailed description of Pavone’s method and other benchmark methods is included in the appendix.
Figure 5.1c shows the impact of using Pavone’s method. The method leads to a better distribution

of fleet with a significant reduction in the accumulation effect of the AMoD vehicles. Pavone’s method
can also be integrated inside VCO, referred to as short-term repositioning [Dandl, M. Hyland,
et al., 2020; Dandl, M. Hyland, et al., 2019]. However, the chapter focuses on the improvement
of mid-term repositioning as this gives explicit control over the frequency of repositioning and is
more practical for actual AMoD services than a frequent repositioning in each VCO batch.
Regardless if the repositioning is done inside VCO or in a separate mid-term optimization, most

repositioning formulations do not consider the size and proximity of other regions to determine the
system imbalance. This leads to two major issues:

• Region-based repositioning algorithms try to balance as many regions as possible with minimum
extra VKT while ignoring the fact that vehicles from the neighboring regions can also be
assigned to the customers. Thus, even though Pavone’s method distributes the excess vehicles
equally among regions, in reality, many of these repositioned or already available vehicles would
be assigned to customers from other regions. Thus, the repositioning decisions taken may not

87



5. Reachability Functions based Repositioning Strategies

reflect the VCO decisions. This would cause some regions to remain imbalanced while others to
have a high number of excess vehicles. Figure 5.1c shows this phenomenon; the supply-demand
imbalance is significantly lower than Figure 5.1b (without repositioning), still many regions have
severe undersupply while some regions have a significant excess vehicle. This is because the
method equally distributes the excess vehicles, which does not send enough vehicles to certain
regions to fulfill the local requirements. For example, the equal distribution of excess vehicles
sent fewer vehicles to the center which did not fully meet the local demand. This caused a
vehicle undersupply in the center. Furthermore, since the vehicles from the neighboring regions
can also be assigned to the customers, eventually it led to an even greater area having a vehicle
undersupply. On the contrary, the method sent more vehicles than required to the low-demand
areas (mainly the north part of Manhattan), which mostly remained underutilized.

• Since the majority of repositioning approaches prioritize the minimization of repositioning VKT,
short repositioning trips are prioritized. This can lead to larger areas remaining highly imbal-
anced although idle vehicles could have been repositioned thereby making longer repositioning
trips, such as Upper West Side, Upper East Side, and mid-town in Figure 5.1c.

The current chapter focuses on resolving the above issues by introducing RFs based repositioning
methods. Ultimately, the goal is to position the idle vehicles in such a way that the pickup points
of the potential customers remain in the areas of positive ID in each VCO batch. If the values of ID
are increasingly positive at the customer pickup locations, the chances of AMoD fleet successfully
serving these customers are equivalently higher.

5.2. Problem Formulation

This section formulates the repositioning problem for the AMoD services. It first describes a general
repositioning problem that considers all coordinates inside the operational area. Then it describes
the region-based repositioning problem that deals with AMoD supply and demand aggregated over
regions.

5.2.1. General Repositioning Problem

In an AMoD scenario, the spatiotemporal distributions of customer requests and vehicle availability
play a major role in the overall service quality. As described in section 5.1, after dropping customers
to their destinations vehicles might take a long time before getting the next customers, despite the
fact that many customers remain unserved in other parts of the city. Therefore, a repositioning
algorithm should be able to route idle vehicles to areas of higher demand to minimize the supply-
demand imbalance. Ideally, such an algorithm should consider all possible coordinates within the city
for this purpose. However, an accurate supply and demand forecast is usually not available on such
a granular scale. Additionally, developing a repositioning algorithm for such a fine scale drastically
increases the computational complexity. Therefore, the dissertation uses a region-based repositioning
strategy as discussed in the following section.

5.2.2. System Forecast and Region-Based Repositioning Problem

Typically, regions are introduced to aggregate supply and demand forecasts and to limit the possible
repositioning destinations in the optimization formulation. Let Z denote a disjoint set of zones in the
AMoD operation area. Let t represent the simulation time at which the repositioning decisions are
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made. Then the vehicle supply and demand forecasts of each zone are made for a temporal period
[t, t+∆Th] where ∆Th describes the forecast horizon. A repositioning problem is solved periodically
after every ∆Tr with weights ωz ∈ WZ representing the imbalance of supply and demand for each
zone z ∈ Z. The repositioning problem aims to redistribute the idle vehicles among regions in a
way that minimizes the regional supply-demand imbalances ωz. The dissertation breaks the ωz into
two parts: the regional estimate of vehicle supply ωsup

z and the regional estimate of vehicle demand
ωdem
z such that ωz = ωsup

z − ωdem
z .

For the efficient performance of any repositioning method, the accuracy of the forecast information
is extremely important. It requires a forecast of future AMoD system state, mainly consisting of the
future vehicle availability and expected customer demand. Even if the customer demand is known
accurately, predicting the future vehicle supply is not always straightforward; it heavily depends on the
VCO decisions. For example, after the repositioning decisions are made, the VCO may unexpectedly
assign a high number of vehicles to customers going in the same direction as the repositioning
vehicles, leading to a different system state than expected at time t. Ideally, the used forecast
method should also consider the possible long-term VCO decisions. However, investigating such an
accurate forecast method is complex and beyond the scope of the current dissertation. Therefore,
the dissertation uses a simpler approach to estimate the future zone imbalances WZ as described
below.
Fundamentally, the dissertation counts the number of vehicles that will be available after dropping

off a customer inside a region z as positive and subtract the number of trips starting from z. The
dissertation uses the sets R+

z and R−
z representing the forecast of customer drop-off and pickup

locations for zone z, respectively. It should be noted that R+
z and R−

z can only be roughly estimated
since the exact number of vehicles that will end up in z after dropping off customers within [t, t+∆Th]
is not known at time t. Therefore, the dissertation calculates them using the customer data used:
the customer destinations and origins within time horizon [t, t + ∆Th] are summed up to calculate
R+

z and R−
z regardless if they are actually served by AMoD service or not.

Following the above strategy, two types of demand forecasts are possible depending on the value
of ∆Th used. If ∆Th is a positive value, the dissertation uses the information of the future customers
who are not yet revealed to the system, referred to as perfect forecast. In reality, such an accuracy
is not available to the operator. Therefore, the dissertation also tests forecasts with lower accuracy
by using a negative value for ∆Th. In this case, the dissertation aggregates the information of
recent customers within the last ∆Th period, referred to as imperfect forecast. To estimate the WZ ,
the dissertation additionally uses the values V +

z representing the idle vehicles in zone z, and V r
z

representing the vehicles currently enroute to zone z for repositioning from the previous cycle. Since
the dissertation uses regular grids with cell size ∆scell for dividing the operation area into regions,
the accuracy of the forecast also depends on ∆scell; the spatial accuracy of the forecast is inversely
proportional to the cell size value ∆scell.
Using the above notations, the dissertation uses the R−

z as the demand side estimate ωdem
z . For

the supply side estimate ωsup
z , the dissertation uses two variants. The first variant includes the

estimated vehicle arrivals using customer data |R+
z |. This assumes that the customer destination

points may provide an estimate of vehicle supply as the AMoD vehicles assigned to these customers
will end up in the corresponding destination zone. Thus, the formulation is given as:

ωsup(c)
z = |V +

z |+ |V r
z |+ |R+

z | (5.1)

where the superscript (c) indicates that the customer data is used in the estimation of vehicle supply.
However, since R+

z may not necessarily represent the vehicle availability as many of the customers
may not be served (the vehicle may not drive with the customer to z), the dissertation also examines
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5.3. Min-distance Repositioning Strategy

the formulation where it is removed from supply forecast, given as:

ωsup(v)
z = |V +

z |+ |V r
z | (5.2)

where the superscript (v) indicates that only current vehicle data is used in the estimation of supply. In
the following section, wherever the dissertation uses ωsup

z it means that either of the above equations
can be used to calculate ωsup

z . Figure 5.2 summarizes the calculation of the regional weights for the
supply-demand imbalance.

Let surplus zones Z+ ⊆ Z and deficiency zones Z− ⊆ Z represent the zones with positive and
negative weights ωz, respectively. Then the repositioning algorithm called at time t returns a flow
matrix u(t) ∈ I |Z+|×|Z−| that represents the number vehicles that need to be repositioned from
vehicle surplus to vehicle deficiency zones. Note that the repositioning algorithms are allowed to
only reposition idle vehicles V +

z from zone z. Typically, the repositioning problem also considers a

cost for each repositioning decision in u(t), given by the cost matrix C(t) := (c
(t)
ij ) ∈ R|Z+|×|Z−|

≥0 . It
can be provided in terms of traveling cost, traveling time, or the marginal profit expected by serving
additional customers after repositioning. The dissertation uses the C(t) in terms of inter-regional
travel distances.

It should also be noted that ωz represents the expected vehicle imbalance in zone z within the time
horizon ∆Th in case the operator does not reposition. Most region-based repositioning algorithms
assume that a single repositioning vehicle changes the imbalance weight by one, and thus, the post
state of the region after repositioning is estimated as:

ωz +
∑
i∈Z

uiz −
∑
j∈Z

uzj (5.3)

This is a simplification as the repositioning vehicle will only be available for a part of the time horizon
∆Th in the destination zone. In fact, if the distance between regions i and z is too large to be reached
within ∆Th, it is even possible that the repositioning vehicle is not present at all during ∆Th.

The explicit repositioning decisions, i.e., send vehicle v to position x, have to be derived from the
region-based flow matrix u(t). There are several ways to do that. The dissertation first creates the
set of all trips originating from zone z. Then, a greedy algorithm randomly picks the next destination
zone and sends the idle vehicle in z that has the shortest distance to the centroid of the destination
zone. This process is repeated till all vehicles are assigned to repositioning points. All vehicles are
repositioned to the node closest to the centroid of the destination zone.

Henceforth, the superscript in flow matrix u(t) and C(t) are dropped since it is clearly understood
that a particular instance of the repositioning problem at time t is solved in the following sections.

5.3. Min-distance Repositioning Strategy

The first approach tested in the dissertation is referred to as the min-distance approach where the
aim is to minimize the overall supply-demand imbalance with minimum VKT. In order to achieve this,
it tries to reposition as many idle vehicles as possible from the surplus regions to deficiency regions
with hard constraints on the number of required vehicles in the destination zone. The method is
formulated as:

91



5. Reachability Functions based Repositioning Strategies

min
u

∑
i∈Z+

∑
j∈Z−

cijuij −M
∑
i∈Z+

∑
j∈Z−

uij (5.4a)

s.t.
∑
j∈Z−

uij ≤ min(ωi, |V +
i |) ∀i ∈ Z+ (5.4b)

∑
i∈Z+

uij ≤ −ωi ∀j ∈ Z− (5.4c)

Z+ = {z|z ∈ Z, ωz > 0}
Z− = {z|z ∈ Z, ωz < 0}
u ∈ Z|Z+|×|Z−|

≥0

where M in Eq. 5.4a is a big number to maximize the number of repositioned vehicles while the
first term minimizes the traveled VKT. Note that without the second term in the objective function,
there will be no repositioning. Eq. 5.4b adds the constraint that the number of repositioned vehicles
originating from zone i must be less than the expected excess vehicles in zone i. This ensures that the
repositioning method does not reposition excessive vehicles out of a surplus zone i and that enough
vehicles are left in the zone to fulfill the local demand. Similarly, Eq. 5.4c says that the number of
repositioned vehicles arriving at a zone must be less than or equal to the expected deficiency in the
destination zone. This ensures that the destination zones do not receive excess vehicles.
The main difference between Pavone’s method and the min-distance method is that while Pavone’s

method tries to equally distribute the excess vehicles among all regions, min-distance tries to send
just enough vehicles to destination zones to fulfill the demand. Thus, unlike Pavone’s method, the
number of repositioning vehicles received by each zone also depends on the demand in the destination
zones.

5.4. Reachability Function based Repositioning Strategy

This section introduces the reachability function based repositioning (RFR) methods. The RFR
methods fundamentally try to close the gap between supply and demand densities via the repositioning
of idle vehicles. First, a general formulation of the RFR method is introduced in section 5.4.1 where
it is assumed that the AMoD operator has the exact knowledge of future customers and vehicle
supply. Then, section 5.4.2 and section 5.4.3 present region-based approaches for minimizing the
expected ID via repositioning. Finally, section 5.4.4 discusses the two optimization approaches used
in the dissertation for solving the new repositioning formulations.

5.4.1. Repositioning using Exact Coordinates

This section presents the general version of RFR method where it is assumed that the MSP has
exact knowledge of the origins and destinations of the future customer requests within the forecast
time horizon, represented by sets R− and R+, respectively. It uses the exact customer and vehicle
locations for calculating reachability density (RD) values. Furthermore, the section discusses the
involved computational challenges for such formulation and the procedures that can be adopted to
reduce computational complexity.
Let p̄R− and p̄R+ be the densities calculated using Eq. 4.4 for pickup and drop-off locations,

respectively. It is assumed that p̄R− and p̄R+ are calculated using appropriate bandwidths for each
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location according to the current state of the city network. The pickup and drop-off locations describe
demand and supply because vehicles are required at the pickup locations and become available at
drop-off locations1. Thus, p̄R− and p̄R+ indicate the expected demand and supply of vehicles,
respectively. Let xidle1 , xidle2 , ..., xidlenidle

∈ R2 be the positions of idle vehicles and xr1, x
r
2, ..., x

r
nr
∈ R2

be the points in the operating area where idle vehicles could be repositioned and become part of
the vehicle supply. Note that multiple vehicles can be repositioned to the same point, assuming
that the repositioned vehicle will park itself to the nearest free geographical position after reaching
the destination. The formulated repositioning problem has multiple conflicting objectives and forms
a multi-objective optimization problem (section 2.2.2): the FC aims to reduce the overall supply-
demand imbalance which would require additional VKT for repositioning while the excessive VKT
must be simultaneously minimized to reduce additional traveling cost. Thus, the multi-objective
repositioning problem is given as:

min
u

f(u), g(u) (5.5a)

s.t.

nr∑
j=1

uij ≤ 1 ∀i ∈ {1, ..., nidle} (5.5b)

g(u) =
∑
i,j

c̄ijuij (5.5c)

f(u) = F
(
m(x,u) + p̄R+︸ ︷︷ ︸

supply density

, p̄R−︸︷︷︸
demand density

)
(5.5d)

m(x,u) =
3

π

nr∑
i=1

[k(x, xri , hi)
h2i

nidle∑
j=1

uji

]
︸ ︷︷ ︸
density of the repositioned vehicles

+
3

π

nidle∑
i=1

[k(x, xidlei , hi)

h2i

nr∑
j=1

(1− uij)
]

︸ ︷︷ ︸
density of the vehicles at original positions

(5.5e)

where u := (uij) ∈ {0, 1}nidle×nr is a binary variables matrix for flow of idle vehicles from origins
to repositioning points and C̄ := (c̄ij) ∈ Rnidle×nr

≥0 is the matrix of traveling costs. The function

F : R2 7→ R is a metric for measuring the deviation between the two densities. Thus, Eq. 5.5d is the
objective function for minimizing the difference between the customer demand and vehicle supply by
reshaping the idle vehicle density via repositioning. The constraint in Eq. 5.5b forces a maximum of
only one destination point to be assigned to each idle vehicle.

The formulation is a multi-objective optimization problem with nidle · nr quadratic decision vari-
ables and nidle constraints. This problem could be a large and difficult problem to solve depending
on the number of idle vehicles and repositioning points inside the city. Furthermore, the optimiza-
tion algorithm will have to repeatedly evaluate Eq. 5.5d which is a computationally expensive task
depending on nidle and the coordinate resolution used for calculating the RFs (i.e. the function k).
The values p̄R+ and p̄R− could be calculated before the optimization process, but Eq. 5.5e must be
evaluated in each iteration of the solution process. Assume that the RFs in Eq. 5.5e are evaluated
and saved for keval equidistant points in the first iteration (that still consumes a lot of memory), the
evaluation time of Eq. 5.5e will be still of O(nrkevalnidle). Additionally, for a considerable accuracy,
keval has to be a large number, for example, for Manhattan with a distance of 50 m between each
points the keval must be in the order of 105, and increases to 106 for a distance of 10m. Such a
running time for the repositioning problem is not practical, especially for a dynamic AMoD scenario
where it must be solved periodically.

1This assumption is only valid for the AMoD use-case without pooling of requests
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Therefore, even if an ideal forecast method provides exact locations of future customers, using
exact geographical points for a RFR optimization approach would still not be feasible. Even if only
the Manhattan network nodes (similar to section 4.3.2) are used, the problem complexity would still
be infeasible. There could be two approaches to reduce the required computational effort:

1. Incrementally calculate the new densities in each iteration of the optimization. This can be
done by subtracting the kernel contributions of only those kernels whose associated decision
variables are changed, i.e., the inner loop of both terms in Eq. 5.5e. However, this is only
beneficial for metaheuristic algorithms that have complete control over evaluating objective
functions. For MIP solvers, it would be not easy to use such a method.

2. A more suitable and scalable approach is to use the binning technique that is also used for
calculating KDE using fast Fourier transform (FFT) method for large data sets [Silverman,
1982]. The following section discusses this technique in detail.

5.4.2. Reachability Function Based Repositioning with Regions

As the previous section showed, using raw coordinates for the RFR method poses a significant
computational challenge. Second, as described in section 5.2.2, the customer forecast is also not
available with such accuracy. Therefore, instead of directly using the ID, the dissertation uses its
approximation over regions for the purpose of repositioning.

The formulation is motivated by the binning technique used for KDEs in which the data points
are sorted and distributed into bins with a weight assigned to each bin. After binning, the KDE
is calculated either by using weighted KDE formulation or using Fourier transform. In the latter
case, the KDE is calculated by multiplying the Fourier transform of the binned data by the Fourier
transform of the kernel and then calculating the inverse Fourier transform [Silverman, 1982].
However, for the Fourier transform approach, all kernel bandwidths are required to be the same.
Since the RFs in the dissertation have different bandwidths according to the current network state,
the Fourier transform approach can not be used for the purpose of repositioning. Therefore, the
dissertation uses weights assigned to the centroids of each zone to estimate the RD of vehicles and
customers; for a zone z ∈ Z, the number of individual customers or vehicles in each region is used
as the aggregated regional weights w ∈ R|Z| and the regional centroids as the data points. Thus, a
region-based approximation to the RD is given as:

p̄Z(x) =
3

π

∑
z∈Z

wz
k(x, xZz , hz)

h2z
(5.6)

with
∫
p̄Z(x)dx =

∑
z∈Z wz. The points {xZ1 , xZ2 , ..., xZ|Z|} are the zone centroids for zones Z.

Given the above region-based approximation of RD, Figure 5.3 shows the overall flow of the RFR
with regions (RFRR) method. It adopts the formulation of p̄Z(x) in Eq. 5.6 for the purpose of
repositioning. However, instead of using the aggregated weights for vehicle locations and customer
origins, it uses the forecast of regional weights introduced in section 5.2.2. Thus, instead of calculating
the densities for customers and idle vehicles separately, the imbalances for each zone ωz are first
calculated using ωdem

z and ωsup
z . Then a combined imbalance density (ID) using weighted RD

function (Eq. 5.6) is considered.
The formed optimization method has multiple objectives: first, for the expected supply-demand

imbalance, and second, for the repositioning VKT. It should be noted that even though the disserta-
tion uses a regular grid to define regions, the repositioning method is also valid for arbitrary regions;
the only major requirement of the RFRR approach is that the kernel locations are predefined and
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fixed. In the case of arbitrary regions, the centroids of the arbitrary regions could be used for this
purpose. Additionally, this section introduces a general version of the formulation that purely aims
at minimizing the supply-demand imbalance density with minimum repositioning VKT without any
restriction on regions: contrary to the traditional restriction of sending vehicles only from surplus to
deficiency regions, the idle vehicles can reposition to and from any region. Because of the ability
to send vehicles to or from any region, the formulation in the current section is referred to as RFR
with regions and full flow (RFRRf). The next section will introduce formulations with constraints on
origin and destination regions.
With the above description, the multi-objective optimization problem for the RFRRf technique is

given as:

min
δω,û

f̂(δω), ĝ(û) (5.7a)

s.t.
∑
i∈Z

δω+
i −

∑
i∈Z

δω−
i = 0 (5.7b)∑

j∈Z
ûij = δω−

i ∀i ∈ Z (5.7c)

∑
i∈Z

ûij = δω+
j ∀j ∈ Z (5.7d)

δω−
i ≤ |V +

i | ∀i ∈ Z (5.7e)

δω+
i ≤

∑
j∈Z
|V +

j | ∀i ∈ Z (5.7f)

δω+
i · δω−

i ≥ 0 ∀i ∈ Z (5.7g)

δω := δω+ − δω−

δω+, δω− ∈ Z|Z|
≥0

û ∈ Z|Z|×|Z|
≥0

ĝ(û) =
∑
i,j

cij ûij (5.7h)

f̂(δω) = F

(
3

π

nz∑
i=1

(
ωsup
i + δωi

)k(x, xZi , hi)
h2i

,
3

π

nz∑
i=1

ωdem
i

k(x, xZi , hi)

h2i

)
(5.7i)

where û is a flow matrix with each element ûij representing the number of idle vehicles repositioned
from zone i to zone j and δω is a vector representing the overall change in the weight of a zone. The
changes in the zone weights δω are broken into positive δω+ and negative δω− contributions to
the zone weights; thus, Eq. 5.7g makes sure that either of them are not simultaneously non-zero for

each zone. C := (cij) ∈ R|Z|×|Z|
≥0 is the matrix of travelling costs between zone centroids. Eq. 5.7c

and 5.7d guarantee that the total numbers of vehicles leaving a zone and entering other zones are in
accordance with positive and negative changes to zone weights, respectively. Eq. 5.7e ensures that
the negative changes to a zone weight (number of vehicles leaving the zone) are restricted by the
number of idle vehicles available in the zone. On the contrary, the main purpose of the constraint
on δω+ in Eq. 5.7f is to prune the search space as the total increase in a zone weight cannot be
more than the total number of idle vehicles in the entire operating area.
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5.4. Reachability Function based Repositioning Strategy

For calculating the difference between supply and demand densities in Eq. 5.7i, the integral of
squared deviation is used as it puts more importance on regions with high imbalance values than other
metrics e.g. the integral of absolute deviation. Additionally, it significantly reduces the computational
effort as described below:

f̂(δω) = a2
∫ [∑

i∈Z

(
ωsup
i − ωdem

i︸ ︷︷ ︸
=ωi

+δωi

)k(x, xZi , h)
h2i

]2
dΩ (5.8)

=
∑
i∈Z

∑
j∈Z

(ωi + δωi)(ωj + δωj)︸ ︷︷ ︸
constant for integration

∫
k(x, xZi , h)

h2i

k(x, xZj , h)

h2j
dΩ (5.9)

where a = 3
π . With the definition of matrix A ∈ R|Z|×|Z|

≥0 : (A)ij =
1

h2
i h

2
j

∫
k(x, xZi , h)k(x, x

Z
j , h)dΩ,

the above equation can be written as:

f̂(δω) = a2(ω + δω)TA(ω + δω)

= a2
(
ωTAω + (2ωT + δωT )Aδω

)
= a2(2ωT + δωT )Aδω + Const (5.10)

The constant term Const = a2ωTAω can be ignored for the optimization problem. The major
advantage of the formulation arises from the matrix A as it can be easily preprocessed for fixed
zones (or fixed centers of RFs) using different numerical methods. The dissertation uses the mid-
point rule for this purpose. Thus, A is given as:

A =


1
h4
1

∑
l,m k̂2(xZ1 , h1) ... 1

h2
1h

2
nz

∑
l,m k̂(xZ1 , h1)k̂(x

Z
nz
, hnz)

... ... ...
1

h2
1h

2
nz

∑
l,m k̂(xZnz

, h)k̂(xZ1 , h) ... 1
h4
nz

∑
l,m k̂2(xZnz

, h)

∆x ∆y (5.11)

where k̂(xZi , h) is the evaluation of the RF k(x, xZi , h) on a discretized two dimensional grid with step
sizes ∆x and ∆y. It also should be noted that A is a symmetric matrix. Thus, A can be calculated
faster by only calculating the upper or lower triangular elements of the matrix and calculating the full
matrix from it. Secondly, an element of A could only be a non-zero value when there is an overlap
between the two RFs. For the RF used in the dissertation, i.e. triangular function with euclidean
norm (Eq. 4.3), this could be quickly tested using the following condition:

hi + hj > d(xZi , x
Z
j ) (5.12)

where d(xZi , x
Z
j ) is the euclidean distance between the two RF centers. Thus, the condition in

Eq. 5.12 could be tested beforehand to ensure that the concerned element of A is non-zero. Eq. 5.12
also shows that if the kernels have high bandwidths within a small area (an example is the Manhattan
area with free-flow speed as shown in Figure 4.2a), there will be a lot of overlap between kernels and
the sparsity of A will decrease. This will cause an increase in the number of quadratic terms in the
objective function (Eq. 5.10), increasing the overall problem complexity.

It should also be noted that as the bandwidths of all regions approach zero (no overlap of the
kernel functions), A becomes the unity matrix and Eq. 5.10 reduces to:

f̂(δω) = a2
nz∑
i=1

(ωi + δωi)
2 (5.13)
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In this form, the regions are assumed to be independent of each other. However, it is still quite
different from other repositioning formulations that use the balancing of regions as constraints while
minimizing the repositioning VKT [Pavone et al., 2012; Alonso-Mora, Samaranayake, et
al., 2017]. Because of the multi-objective formulation in Eq. 5.7 and the square of zone weights in
Eq. 5.13, the obtained repositioning problem will prefer balancing the regions with higher imbalances.
This also allows the repositioning of vehicles to far-off regions, in contrast to the traditional limits
of repositioning only to the closest regions as described in section 5.1.

5.4.3. Repositioning Formulations with Zone Restrictions

Since the vehicle supply and demand density terms are more general than surplus and deficiency
of vehicles in individual regions, the flow of vehicles in the RFRRf formulation was kept general
without any regional restrictions. This means that the idle vehicles could be repositioned to and
from any region irrespective of local imbalances which allows the minimization of overall density as
much as possible. However, since the dissertation uses integral squared deviation to simplify and
reduce the computational effort (Eq. 5.10), even small differences in the density objective could be
overemphasized during the optimization process. This can lead to excessive repositioning of vehicles.
Secondly, the regional demands vary significantly during night and day hours. For certain times of
the day, the majority of regions may not be imbalanced. However, the RFRRf formulation would still
try to distribute the surplus of available vehicles throughout the city to decrease the overall ID and
increase the areas reachable by vehicles. Both of these reasons can lead to increased repositioning of
vehicles without a significant increase in overall performance. Thus, this section presents formulations
that restrict the flow of vehicles from certain regions based on their local imbalance to lower down
the above effects. These restrictions are put in two steps:

1. In the first modification of RFRRf, Eq. 5.7e is replaced by the following condition:

δω−
i ≤ min(max(0, ωi), |V +

i |) ∀i ∈ Z (5.14)

This constraint restricts the negative changes in a zone (the outflow of vehicles) to be zero
if the original zone weight is negative (i.e. deficient zone). Since this formulation only allows
the outflow of vehicles from surplus zones (zones with positive weights), the formulation is
referred to as RFR with regions and positive zones flow (RFRRp).

2. The RFRRp restricts the outflow of vehicles from the deficiency to surplus zones, but there
may still be excessive repositioning. The repositioning can happen from surplus to surplus
zones to reduce the imbalance density. On the one hand, it may be beneficial to bring a higher
number of vehicles to a zone than the demand expected if demand and supply forecasts contain
uncertainties; on the other hand, this may cause unnecessary repositioning, especially when
the majority of zones are not balanced. Therefore, the following approach restricts the overall
formulation further by restricting the flow of vehicles to only from surplus to deficiency zones.
This would also simplify the formulation as the number of variables and the required matrix
sizes in the formulation would decrease as given below:
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min
δω,û

f̂(δω), ĝ(û) (5.15a)

s.t.
∑
i∈Z

δωi = 0 (5.15b)∑
j∈Z−

ûij = −δωi ∀i ∈ Z+ (5.15c)

∑
i∈Z+

ûij = δωj ∀j ∈ Z− (5.15d)

0 ≥ δωi ≥ −min(ωi, |V +
i |) ∀i ∈ Z+ (5.15e)

0 ≤ δωi ≤ −ωi ∀i ∈ Z− (5.15f)

δω ∈ Z|Z|

û ∈ Z|Z+|×|Z−|
≥0

Notice the decrease in the size of flow variables matrix û and travelling costs matrix Ĉ from
Z|Z|×|Z| in RFRRf (and RFRRp) to Z|Z+|×|Z−|. The requirement for breaking the δω into
positive and negative parts are also removed since the changes in zone weights of deficiency
and surplus zones could be only positive (Eq. 5.15f) and negative (Eq. 5.15e), respectively.
Thus, conditions Eq. 5.15c and 5.15d directly use δω to ensure that the changes in zone
weights are consistent with the number of idle vehicles. This further prunes the solution space
according to current weights. Condition 5.15b guarantees the conservation of changes in zone
weights.

Since this formulation is closer to the traditional understanding of repositioning — the vehicles
only flow from surplus to deficiency regions — this approach will be referred to as RFRR.

In the rest of the dissertation, all the three variants of ID based repositioning (RFRR, RFRRp and
RFRRf) are generally referred to as RFR methods. If any specific method out of the three variants
is meant, the dissertation will use the name of the corresponding variant.

5.4.4. Implemented Optimization Approaches

The presented RFR methods (Eq. 5.7) are multi-objective optimization problems, which can be solved
in multiple ways. This section first presents the solution approach where the highest priority is given
to the density objective. Next, it presents a weighted sum approach that finds the Pareto front of
the problem.

Lexicographic Method

In a multi-objective optimization problem, if the priority of the objective functions is known before-
hand then the lexicographic method can be used for efficiently solving the problem [K. Chang,
2015]. One major advantage of the method is that it gives Pareto optimal solutions without the
need of scaling the individual objectives. In a lexicographic method, the problem is solved separately
for each objective function. First, it is solved for the highest priority objective. Then, the already
solved objective with the optimal value is put as a constraint while solving the problem for the next
objective. Since separate variables δω and û are used for the density and VKT objectives, respec-
tively, first the optimization problem for f̂(δω) can be solved for optimal δω and then these optimal
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values can be put as constraints on δω when solving for ĝ(û). The dissertation calls this approach
prioritized balanced density (PBD).

Normalized Weighted Sum

The weighted sum method is a well-known solution method for multi-objective problems. In this
method, the objective functions are multiplied by constant weights for the relative importance of
individual objectives. The assigned weights help to move over Pareto front solutions. However, as
the units and the magnitude of the individual objectives may vary for different problem instances,
it requires a meaningful scaling of the individual objectives. The dissertation uses the well-known
approach of scaling the objectives using nadir and utopian values [Grodzevich and Romanko,
2006]. Thus, the multi-objective function in Eq. 5.15a can rewritten as:

min
δω,û

γ
f̂(δω)− f̂utopia

f̂nadir − f̂utopia
+ (1− γ)

ĝ(û)− ĝutopia
ĝnadir − ĝutopia

(5.16)

where γ ∈ [0, 1) is a constant weight for the relative importance of density and distance objectives.
The value of γ cannot be perfectly 1 as this makes the repositioning formulation only have the
density as the objective, leading to multiple optimal solutions with random distance objective and
flow variables. γ = 0, on the other hand, always has the unique solution of no repositioning. The
MSP can choose between different values of γ according to the willingness to invest in the extra
VKT for repositioning.
The utopian and nadir points are obtained from the Pareto optimal set of solutions. This set

is usually obtained by optimizing the individual objectives with the original constraints. The lower
bound from the set of optimal solutions forms the utopian point and the upper bound forms the
nadir point. The lower bound is called utopian because generally such a point for an objective is not
achievable while considering multiple objectives.
In the current problem formulation, it is sufficient to consider two extreme Pareto solutions for

finding utopian and nadir points. The distance objective ĝ(û) is minimum when there is no movement
of vehicles, i.e. no repositioning: ĝutopia = 0. This solution results in the worst density objective

along the Pareto front and is equal to the initial value i.e. f̂nadir = f̂initial. Similarly, the other
extreme Pareto optimal solution with minimum density objective is produced when the PBD is used.
If f̂pbd and ĝpbd denote the objective values of density and distance objective after solving with PBD
approach, then Eq. 5.16 is given as:

min
δω,û

γ
f̂(δω)− f̂pbd

f̂initial − f̂pbd
+ (1− γ)

ĝ(û)

ĝpbd
(5.17)

Thus, for solving the RFR methods using the weighted sum approach, the first step is always to
solve the problem using PBD approach. In the second step, Eq. 5.17 is used as the objective function
in the RFR method and solved using MIP solver.

5.5. Experiments on Static Problem Instances

Before evaluating the suggested methods in a dynamic simulation, it is crucial to understand the
basic principles and differences on static instances. This helps in analyzing the long-term dynamic
simulation results. Therefore, this section presents the numerical experiments on static problem
instances derived from NYC data.
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5.5.1. Static Problem Instances

The static problem instances are derived from the same user data as described in section 3.2.2. The
current section aggregates the data using cell sizes ∆scell of 1000 m As discussed in section 5.1, the
geographical distribution of customer origin and destination differ significantly between morning and
evening hours. For a detailed analysis of the repositioning methods, it is necessary to study their
outputs for different scenarios. Therefore, the static problem instances are generated by taking the
NYC data trips from two time periods: 9 to 9:30 am and 6 to 6:30 pm on 6 June 2016. The positions
of idle cars are generated by randomly taking the customer destinations from half an hour before 9
am and 6 pm, respectively. The RF bandwidths are calculated using the AP(90,90) as described in
section 4.2.4.

5.5.2. Integral KPIs for Repositioning Decisions

For a detailed analysis of the repositioning methods on static problem instances, the section also
uses some additional KPIs to study the potential impact of repositioning decisions. The KPIs uses
the integral of the region-based ID function to represent the spread of positive and negative regions
as single numbers. Since the p̄Z (Eq. 5.6) estimates the expected reachability density using regions,
the integrals of positive and negative regions of p̄Z can quantify the area expected to be with surplus
and deficiency of vehicles, respectively. These integrals are described as:

K≥0(ϕ) =

∫
Ω+

p̄Z(x;ϕ)dΩ Ω+ = {x ∈ Ω : p̄Z(x;ϕ) ≥ 0} (5.18)

K≤0(ϕ) =

∫
Ω−

p̄Z(x;ϕ)dΩ Ω− = {x ∈ Ω : p̄Z(x;ϕ) ≤ 0} (5.19)

p̄Z(x;ϕ) =
3

π

nz∑
i=1

ϕi

h2i
k(x, xZi , hi) (Spatial density of imbalance) (5.20)

where ϕi ∈ {ωi, ωi + δωi} can be the pre- or post-repositioning weight for zone i ∈ Z. These KPIs
quantifies the spread and the intensity of the positive and negative values in the ID function. In
principle, for a high AMoD performance, it is important that K≤0 is close to zero since it would
mean that most of the customers have access to a sufficient number of AMoD vehicles and could be
assigned an AMoD vehicle. Contrarily, a highly negative value of K≤0 would mean that either a big
portion of the operation area has a deficiency of vehicles or there are smaller areas with high vehicle
deficiency (a concentration of customers and not enough vehicles). Nevertheless, this would imply
that these areas require more vehicles. Similarly, a high K≥0 would mean that customers in large
parts of the operation area can access multiple AMoD vehicles or a high concentration of vehicles in
some areas. A repositioning method would relocate the vehicles from these excess vehicle areas to
areas with a deficiency of vehicles, causing both K≥0 and K≤0 to decrease in magnitude. Note that
it is possible — even desirable — that K≤0 is close to zero while K≥0 is a highly positive number.
In this case, the repositioning method should not reposition vehicles since most customers already
have access to AMoD vehicles, and a high K≥0 means that the VCO has a large number of vehicles
that it can assign to customers.

Due to the above reasons, the section uses the difference of the above integrals to compare the
efficiency of the repositioning decisions, given as:

∆Kabs = |K≥0(ωi + δωi)|+ |K≤0(ωi + δωi)| −
(
|K≥0(ωi)|+ |K≤0(ωi)|

)
(5.21)
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Eq. 5.21 estimates the overall improvements in the supply-demand imbalance by the repositioning
decisions. It quantifies the expected decrements in both positive and negative areas of the ID. It
does not indicate whether the increment is due to a decrement in the surplus or deficiency areas of
AMoD services. Nevertheless, it provides an improvement KPI to compare repositioning decisions.
It should also be noted that the above KPIs assumes that a single repositioning vehicle increases

(or decreases) the zone by one as described in section 5.2.2. However, in reality, the repositioning
vehicle takes some time to reach its destination zone.

5.5.3. Results

As mentioned in section 5.2.2, the repositioning problem is solved periodically, and only idle vehicles
can be repositioned. These idle vehicles are only a fraction of the overall fleet, and their numbers
keep changing. The rest of the (non-idle) fleet contributes to the regional weights of supply-demand
imbalance. The section first analyses the repositioning behavior with a fixed number of idle vehicles,
i.e., 1000 vehicles, and later studies their behavior as the number of idle vehicles changes.

General behavior with a fixed number of idle vehicles

The dissertation first compares the Pareto fronts of the repositioning methods. They are generated
using increasing values of γ in Eq. 5.17. As shown in Figure 5.4, the repositioning problem has
conflicting objectives which are apparent from the distance versus density plots. With varying values
of γ, the solutions build Pareto fronts. As described in section 5.4.4, the PBD solutions form
the endpoints of the Pareto front for each method. It also shows that Pavone’s and min-distance
methods are not on the Pareto fronts for the imbalance density objectives. RFRRf provides the best
compromise between the two objectives. At first glance, all of the RFR methods provide a better
compromise of the vehicle supply-demand imbalance and the repositioning distance.
Figure 5.4 also shows that the decrease in the imbalance density objective is not linearly related

to the distance objective; initially, there is a drastic decrease in the imbalance objective with the
increase in repositioning distance, and later on, it flats out for higher repositioning distances. This
indicates that with lower values of γ the RFR methods preferred balancing the areas with the highest
deficiency of vehicles. The main reason for this is the usage of integral squared deviation in Eq. 5.9.
As the value of γ increases, the rate of decrease in supply-demand imbalance reduces, leading to
a relative flattening of the Pareto fronts. In this area of the Pareto front, the RFR methods can
lead to excessive repositioning without much improvement in the AMoD supply-demand imbalance.
This is especially relevant for the RFRRf method that does not restrict the repositioning of vehicles
based on local supply-demand imbalance and leads to the highest repositioning VKT. However, this
phenomenon also depends on the specific repositioning problem instance, as the flattening of the
Pareto front differs for 9 am and 6 pm cases. It is also important to note that in terms of the
imbalance density objective, the min-distance method reduces the supply-demand imbalance more
than Pavone’s approach. It also causes lower repositioning VKT than Pavone’s method. The main
reason for this is that, unlike Pavone’s method, the min-distance caters to the demands of individual
regions, which lowers the imbalance objective more than Pavone’s method.

Figure 5.5 shows the increase in repositioning VKT and the number of vehicles repositioned against
γ. With γ = 0 no vehicles are repositioned as it causes the objective function to only focus on the
distance objective. With an increasing value of γ, all the RFR methods try to minimize the objective
for supply-demand imbalance while giving relative importance to the total repositioning distance. As
the γ approaches 1, the RFR methods converge to their PBD solutions. Generally, the computation
time for RFRR method is observed to be better than the other RFR variants since the RFRR only
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Figure 5.4.: Comparison of the Pareto fronts for the studied static cases with 1000 idle vehicles.
The Pareto front is calculated using the increasing value of γ from 0 to 0.99 in
Eq. 5.17.

.

sends vehicles from surplus to deficiency regions (smaller search space). As γ approaches one, the
problem becomes difficult to solve due to a drastic increase in search space. However, even for such
a high value of γ, there is not much difference in the solution qualities of the weighted sum and PBD
solutions. It should also be noted that as described in section 5.4.4, the PBD has to be calculated
first for the normalized weighted sum approach. Thus, the consistently low computational time of
PBD is also beneficial for the weighted sum approach.

Figure 5.5 also shows that both RFRRp and RFRRf solutions result in a smaller imbalance objective
than the RFRR method for all values of γ. Removing the constraint of only sending idle vehicles from
surplus to deficiency regions enables the RFRRp and RFRRf to distribute the idle vehicles better.
Compared to Pavone and min-distance, Figure 5.5 also shows that all RFR methods produce lower
imbalance objective.

To investigate the methods further, Figure 5.6 and Figure 5.7 visualize static problems and their
solutions on the map for 9 am and 6 pm cases, respectively. First, the regional supply-demand
imbalances of the two cases are almost opposite due to different travel patterns of morning and
evening hours (section 5.1). Second, both Pavone’s and min-distance methods leave certain regions
to be highly imbalanced; Pavone’s method equally distributes the excess vehicles, which results in not
repositioning enough vehicles to fulfill the demand of vehicle deficit regions, while the min-distance
method prefers the neighboring regions of the idle vehicles to reduce the overall imbalance. This is
apparent by comparing the pre-and post-repositioning weights of the regions for Pavone’s and min-
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Figure 5.5.: Impact of the increasing values of γ. The computation time excludes the time
required to set up the optimization problem. Additionally, for the RFR methods,
it also excludes the time required for the PBD step, which is plotted separately in
the figure.
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5.5. Experiments on Static Problem Instances

distance methods for 9 am and 6 pm scenarios. This behavior also leaves bigger areas (considering the
reachability) to remain imbalanced, as visible from the ID values of both Pavone’s and min-distance
methods.
Compared to the above, RFR methods focus on minimizing the imbalances in bigger areas, and

thus, send more vehicles in a way that covers bigger regions. Mathematically, this is due to the
integral of the squared deviation in Eq. 5.9 and the inclusion of ID in the repositioning formulation;
the former helps to prefer areas with higher imbalances for repositioning and the latter allows to
consider bigger areas via RFs. Since RFRRf does not use any regional constraints, it reduces the
imbalance of the biggest areas possible, followed by RFRRp and RFRR methods. This is verified by
comparing the magnitudes and the covered areas of the three methods for 9 am and 6 pm cases in
Figure 5.6 and Figure 5.7, respectively. The figures also show the regional weights produced by the
repositioning methods, which confirms the above assertion — instead of leaving multiple contiguous
regions imbalanced, the RFR methods repositioned vehicles in a way that better covered various
regions.

Impact of increasing idle vehicles

In the dynamic simulation setting, the number of idle vehicles in each call to repositioning keeps
changing according to customer demands and VCO decisions. Therefore, Figure 5.8 and Figure 5.9
analyze the repositioning decisions with a growing number of idle vehicles. The new vehicles are
generated using the same procedure as described in section 5.5.1. For consistency, the new vehicles
are incrementally added to the problem instead of generating all vehicles from scratch. The most
important observations are as follows:

• Looking at the imbalance objective in Figure 5.8, it is observed that for Pavone’s, min-distance
and RFRR methods, there is a critical number of vehicles at which the density objective is
the least and the possible benefit from the applied repositioning method is maximum. This
point will be referred to as vehicle saturation point (VSP). However, since RFRRp and RFRRf
methods do not have strict regional constraints like RFRR, they continue to reposition a higher
number of vehicles to improve the supply-demand balance among all areas, even if it marginally
changes the density objective.

• In Figure 5.9, it is also observed that the RFR methods can change the absolute value of
imbalance density ∆Kabs much more than Pavone’s and min-distance methods, especially for
smaller fleet sizes. This shows that the repositioned vehicles can cover bigger areas with the
same fleet size. Interestingly, for min-distance and RFRR method, the fleet size with the largest
absolute change ∆Kabs approximately coincides with the VSP, where these methods provide
the highest benefits (measured via ∆Kabs) to the deficiency zones. Pavone’s method causes
the least decrease in ∆Kabs indicating the least improvement in AMoD service coverage among
all the methods; rather, for the 6 pm case, the equal distribution of excess vehicles among all
regions do not lead to a significant improvement in ∆Kabs even though a higher number of
vehicles are repositioned as visible from Figure 5.8. For the RFRRp and RFRRf methods, the
further decrease in ∆Kabs beyond VSP is due to additional balancing of the surplus areas (as
discussed in the following points) which may lead to excess repositioning VKT and does not
necessarily benefit the AMoD performance in a dynamic environment.

• For fleet sizes larger than the VSP, the imbalance objective in Figure 5.8 increases as the
additional vehicles start to fulfill the regional demand and the need for additional repositioning
decreases. This is also evident by comparing the values of total surplus K≥0 and deficiency
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Figure 5.8.: Impact of the increasing number of idle vehicles.

K≤0 for the original problem and the repositioning methods in Figure 5.9. Near VSP, K≤0

gets close to zero, and the rate of decrease in deficiency K≤0 is less than the rate of increase
in surplus K≥0.

• Compared to min-distance and Pavone’s methods, the RFR methods perform much better
for balancing the deficiency value K≤0, but at the cost of comparatively higher VKT. The
advantage of RFR methods is higher for fewer idle vehicles.

• Since integral square deviation is used for the density objective in Eq. 5.9, all RFR methods are
equally sensitive to both surplus and deficiency, not just for deficiency. Therefore, it is observed
that RFRRp and RFRRf keep repositioning more vehicles to balance the surplus density for the
added vehicles even when K≤0 has reached zero. The strategy of RFRRp and RFRRf might
be beneficial when the accurate prediction of future requests is unavailable and the number
of idle vehicles is small. However, if there are a lot of idle vehicles, this may lead to keeping
many idle vehicles busy due to repositioning with overall non-profitable VKT.

• The RFRR method provides a good middle ground among all repositioning methods studied.
Similar to mid-distance (and unlike RFRRp and RFRRf methods), the number of repositioned
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Figure 5.9.: Impact of the increasing number of idle vehicles on integral KPIs.

vehicles and the VKT decrease as the deficiency of regions (K≤0) reaches zero. Secondly, for
higher idle vehicles, the number of repositioning vehicles in RFRR is less than or equal to the
min-distance and Pavone’s methods, meaning fewer vehicles are busy with repositioning tasks.
This would benefit the dynamic AMoD scenarios.

5.6. Experiments and Sensitivity Analysis in Agent-Based Simulation

The previous section showed the principle working of the introduced repositioning methods on static
instances. However, the performance improvements of a repositioning algorithm can significantly
differ from a static to a dynamic problem instance. The main reason is that in contrast to the
assumption used while solving the static instances, the repositioning vehicles do not become imme-
diately available in the destination zones; it takes some time for the repositioning vehicles to reach
their destinations. Therefore, this section performs the sensitivity analysis of the most important
parameters in the dynamic environment. Since the simulation setup and the introduced methods
consist of many parameters, the section does the sensitivity analysis of the most important parame-
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5. Reachability Functions based Repositioning Strategies

Parameter / Method Symbol
Section for
Sensitivity
Analysis

Default Value / Strategy

Base fare ζ 5.6.6 $2.5 per customer
Distance-based variable fare fD — $0.5 per km
Distance-based cost cD — $0.25 per km
Fixed maintenance cost of vehicle cF — $25 per vehicle per day
Maximum allowed waiting time
of customers

∆Tmax 5.6.3 6 minutes

The time period used for
scaling the travel times

∆Tscale — 30 minutes

Travel time scaling method — — ASM (section 3.3)
Fleet size — 5.6.6 3000 AVs

Vehicle assignment method VCO
5.6.1, 5.6.3,
5.6.6

VCOenroute (section 3.1.3)

Batching period ∆Tbatch — 30 seconds

RF bandwidth calculation method — 5.6.5 AP90,90 (section 4.2.4)
The repositioning period ∆Tr 5.6.4 30 minutes
The forecast horizon for
repositioning

∆Th 5.6.2
+30 minutes
(Perfect forecast)

Grid cell size of regions
in the operation area

∆scell 5.6.2 1000 m

The method used for
vehicle supply estimate

ωsup
z

5.6.2, 5.6.4,
5.6.6

ω
sup(c)
z

Table 5.1.: The simulation configuration used in chapter 5.

ters. Table 5.1 summarizes the default simulation configuration used in the chapter along with the
detail of the specific section where a certain parameter is varied. The base parameters remain the
same as described in section 4.3 for consistency.

5.6.1. Relative Importance of Imbalance Objective and Repositioning Distance

Figure 5.5 in section 5.5.3 showed that an increase in the values of γ causes an increase in the
repositioning vehicles and a decrease in the density objective. Ideally, this should lead to an improved
AMoD performance for higher values of γ. However, the outcome can vary significantly in an
agent-based simulation due to its dynamic nature. As mentioned in section 5.2.2, the repositioning
problem assumes that a single repositioning vehicle changes the imbalance weight by one. In reality,
a repositioned vehicle is not immediately available in the destination zone. Thus, a repositioning
method’s decrease in the supply-demand imbalance on static cases does not guarantee performance
improvement in a dynamic setting. Therefore, the section first compares the impact of γ on the
overall performance in the agent-based simulation.

As shown in Figure 5.10 and Figure 5.11, as γ increases, the performance of RFR methods tend
to converge to the PBD solutions in a similar way as the static examples in Figure 5.5. For the
RFRR method, the increase in γ also leads to a higher percentage of served customers S% and
monetary profit and a lower mean waiting time Wmean. The PBD solutions provide the best results
for RFRR method. However, the absence of regional constraints in RFRRp and RFRRf methods
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Figure 5.10.: The effect of increasing γ in the simulation environment with VCOidle.

cause a significant increase in repositioning VKT (and cost), indicated by the total covered distance
Dtotal and percentage of repositioning distance Drepo

% . This keeps the idle vehicles busier with the
repositioning tasks and can only serve a smaller number of customers than RFRR method. This
is also evident from the high mean utilization rate U% of RFRRp and RFRRf. Thus, even though
RFRRp and RFRRf have higher S% than Pavone’s method, they produce a smaller monetary profit.
Additionally, unlike RFRR method, RFRRp and RFRRf methods have their highest performance near
γ of 0.7, after which the repositioning costs take over the benefits, and the monetary profit starts
to decrease. The introduced min-distance method also produces a high AMoD performance, almost
similar to the RFRR method. This shows that a major hindrance in tapping the full performance using
Pavone’s methods is the equal division of excess vehicles among regions which does not reposition
enough vehicles to demand-intensive regions. In contrast, the min-distance minimizes the sum of
the overall imbalance, which leads to a significant performance improvement over Pavone’s method.
The above performance improvement pattern is identical for both VCO types.

To further investigate the AMoD performances, Figure 5.12 shows the temporal graphs of the
repositioning methods. The first observation is that repositioning idle vehicles resolves the perfor-
mance degradation over time observed without repositioning in section 4.3.1. Another important
observation is that the excessive repositioning of idle vehicles in RFRRf method mainly happens
during the hours of low customer demand (i.e., during the night and the early morning). This is
visible from the percentage of time AMoD fleet was busy performing repositioning tasks i.e., the
U% for repositioning. A major reason for this is that the PBD solution of RFRRf tries to distribute
idle vehicles as much as possible to minimize the ID. During the low demand hours, there are a
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Figure 5.11.: The effect of increasing γ in the simulation environment with VCOenroute.

lot of idle vehicles, which makes the RFRRf method reposition an excessive number of idle vehicles
even if it fractionally reduces the ID. The same behavior was observed on static problem instances in
Figure 5.8 for RFRRp and RFRRf methods: with a high number of idle vehicles, these two methods
kept repositioning more vehicles for a marginal reduction in the density objective. Consequently, by
using an appropriate value of γ, this excessive repositioning is reduced, increasing the RFRRf profit.
During the daytime, the RFR and min-distance methods perform pretty similar to each other; how-
ever, RFRR and RFRRf methods sometimes have higher S% than min-distance. Pavone’s method
shows the least S%, especially during the daytime.

While Figure 5.12 showed the temporal performances, Figure 5.13 and Figure 5.14 do further
analysis using the ID based spatial metric (ρimb(x)) for the served and unserved requests, respectively.
Unlike RFR methods where the future ID is estimated using aggregated values over regions, here the
actual coordinates of customer and vehicle locations (the x in ρimb(x)) is used to calculate the ID of
each VCO batch following the same procedure as in section 4.3.2. The first general observation is that
the repositioning methods significantly moved the ρimb(x) of the customer pickup points towards the
positive side of ρimb(x) compared to the scenario without repositioning. This means that due to the
repositioning of idle vehicles, the customer pickup locations were close to availability points of AMoD
vehicles, increasing the S% for all time periods. The cause of the steady performance degradation
without repositioning can also be observed in Figure 5.14; the values of ρimb(x) steadily shift towards
negative as the simulation progresses. This means that increasing customer pickup locations are not
within the reachable distances of AMoD vehicles without repositioning. In contrast, the repositioning
methods distribute idle vehicles throughout the city, increasing customers’ access to the AMoD fleet
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Figure 5.12.: The temporal performance of repositioning methods with 3000 vehicles and
VCOenroute

and helping to maintain high service quality.

It is also worthwhile to note that Figure 5.13 and Figure 5.14 used VCOenroute which, as described
as in section 4.3.2 has a somewhat softer increase in S% as the ρimb(x) becomes positive. A similar
outcome is seen in Figure 5.14 for the repositioning methods: some unserved customers also have
positive ρimb(x) though in lower value ranges than the served customers in Figure 5.13. Nonetheless,
the repositioning methods have shifted the values of ρimb(x) for almost all of the customers to the
positive side, which would mean that the customers are within the range ∆Tmax from the vehicle
availability points. This increases the chances of vehicle assignments and leads to a higher S% as
evident from the temporal AMoD performances for the corresponding periods in Figure 5.12.

Figure 5.13 and Figure 5.14 also help to distinguish the performance of each repositioning method.
The customers in Pavone’s method have comparatively lower ρimb(x) than other repositioning meth-
ods. The customers in the RFRR method have the highest values of ρimb(x), which also lead to the
highest S% for all periods.

The effect of excessive repositioning in the RFRRf method during the night hours can also be
observed in Figure 5.13; many vehicles remain busy with repositioning tasks causing the ρimb(x) to
be closer to zero than other repositioning methods, and thus, have the least S%. During the daytime,
the performance of RFRRf and min-distance keeps changing with one method having higher ρimb(x)
and S% than the other during different times of the day. This also shows that even though the
min-distance method does not consider ID for repositioning, the goal of just sending enough vehicles
to fulfill local demands with minimum VKT still leads to a high ρimb(x) for the customers.
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Figure 5.13.: The distribution of imbalance density values ρimb(x) for the served customers. The simulations used VCOenroute and

vehicle supply estimates using ω
sup(c)
z for repositioning.
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Figure 5.14.: The distribution of imbalance density values ρimb(x) for the unserved customers. The simulations used VCOenroute and

vehicle supply estimates using ω
sup(c)
z for repositioning.
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5.6.2. Forecast Types and Accuracy

The previous section showed that even in the dynamic environment, the weighted sum solutions
converge to PBD solutions as the value of γ reaches one. This section studies the impact of forecast
accuracy and types on the performance of the repositioning methods.
The accuracy of the forecast is of utmost importance for any repositioning algorithm. The per-

formance of a repositioning method under different forecast accuracy shows the robustness of the
method. As described in section 5.2.2, the forecast accuracy depends on two types of information:
spatial and temporal. A high spatial accuracy would estimate the customer pickup location on smaller
regions, which in the dissertation corresponds to smaller ∆scell). Similarly, the temporal accuracy of
the forecast depends on the value of ∆Th used. Furthermore, in the dissertation, a positive (perfect
forecast) and smaller value of ∆Th would mean that the forecast is temporally accurate and the
customer requests will certainly be received within a short time interval. In contrast, a negative
(imperfect forecast) and smaller value of ∆Th would mean that it is not certain that a customer
request will occur in the expected region, but if it occurs, it must be received within a short time
interval. A larger ∆Th adds a further challenge to the repositioning problem for both perfect and
imperfect forecasts. On the one hand, it is beneficial to reposition more vehicles to increase fleet
coverage, and on the other hand, it is not sure when exactly the vehicles will be needed due to large
∆Th; sending more vehicles may keep the AMoD fleet busy with the repositioning tasks and might
even decrease the performance.
Because of the above, the section focuses on evaluating the impacts of spatial and temporal

accuracy of forecasts on the performance of repositioning methods. It does so in the following
three steps. It first studies the effects of spatial accuracy ∆scell, then the perfect and imperfect
forecast’s impact, and finally, the temporal resolution ∆scell. For simplicity, the section only uses
the PBD solutions for this purpose due to lower computational times. Additionally, since the overall
AMoD service is an SDVRP, the forecast of the future state of vehicles also plays a significant role
in the performance of repositioning methods (section 5.2.1). Therefore, in addition to the spatial
and temporal accuracy, the section also focuses on the performance differences when various vehicle

supply forecasts (i.e., ω
sup(c)
z and ω

sup(v)
z ) are used.

Spatial Accuracy ∆scell and Perfect Forecast

The dissertation divides the operational area into regions using grids of cell size ∆scell. A lower ∆scell
represents a higher spatial accuracy for the forecast. This section studies the impact of varying ∆scell
while keeping the ∆Th fixed at +30 minutes. It only uses VCOenroute for this purpose as the objective
is to understand the general behavior of the introduced methods when the spatial accuracy is varied.

Figure 5.15 shows the impact of ∆scell with vehicle supply estimates using ω
sup(c)
z and ω

sup(v)
z .

First, all methods are significantly affected by varying values of ∆scell. In general, the vehicle supply

estimate using ω
sup(c)
z produces a higher monetary profit and serves more customers than ω

sup(v)
z .

This shows that considering the long-term supply of vehicles in the regional weights improves the

performance of repositioning methods even though ω
sup(c)
z only estimated it via customer destinations

in the data.
As for the impact of spatial accuracy, Pavone’s method tends to perform the worst when the regions

are small; a smaller ∆scell results in a high number of regions and the equal distribution of excess
vehicles in Pavone’s method causes the high deficit regions not to receive sufficient repositioning
vehicles. As ∆scell increases, the total number of regions decreases, causing Pavone’s method to
send more vehicles to individual regions. This improves its performance as the deficit regions can now
receive more vehicles. The best performance of Pavone’s method is achieved at ∆scell of 1000 m.
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(a) Vehicle supply estimate via ω
sup(c)
z .
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(b) Vehicle supply estimate via ω
sup(v)
z .

Figure 5.15.: The impact of spatial accuracy and supply estimations on the repositioning meth-
ods, ∆Th of +30 minutes (perfect forecast) and VCOenroute. A higher ∆scell rep-
resents bigger regions and lower spatial accuracy.

As the regions grow even larger than 1000 m, the performance of Pavone’s method decreases. A
major reason for this is that the regions become so big that all customers within a region could not
be reached within ∆Tmax of 6 minutes from regional centers — the location where the vehicles are
sent during repositioning. This is also indicated by the increasing mean waiting time (Wmean) with
increasing ∆scell. This degrades the overall performance of Pavone’s method for larger regions.

As shown by Figure 5.15a, among all methods, RFRR provides the best performance with ∆scell
of 250 m and vehicle supply estimate using ω

sup(c)
z , followed by min-distance method. Interestingly,

the RFRR method performs significantly better than the min-distance method for ∆scell of 250 m.
The main reason is that small ∆scell significantly increases the number of regions. The min-distance
method prefers to balance the neighboring regions while trying to reposition as many excess vehicles
as possible. For ∆scell of 250 m, this leads to a high repositioning of idle vehicles due to a higher
number of regions, as evident by Drepo

% in Figure 5.15. On the contrary, the usage of RDs makes the
RFRR method aware of the regional sizes and proximity, causing it not to get affected by many regions
and better distribute the repositioning vehicles. In fact, RFRR provides the best performance with
∆scell of 250 m as a smaller grid offers a better estimate of the potential ID function (Eq. 5.6). For
regions larger than 250 m, the min-distance and RFRR method provide almost similar performance.

Similar section 5.6.1, the RFRRp and RFRRf lead to excess repositioning VKT with ω
sup(c)
z as shown

in Figure 5.15a, causing a decrease in the overall performance.

Figure 5.15b shows that the performance of RFRR method is less susceptible to supply-side es-
timation than min-distance and Pavone’s method, with RFRR providing the best performance for
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Figure 5.16.: The comparison of RFRRp and RFRRf methods with γ of 0.7 and vehicle supply

estimate using ω
sup(v)
z .

ω
sup(v)
z . The main reason for the low susceptibility of the min-distance method is the assumption

of independent regions (section 4.1); since each region is considered to be independent, the method
heavily depends on the provision of a long-term vehicle supply estimate for better repositioning of
idle vehicles. Otherwise, the method may wrongly estimate that some of the close-by regions have
vehicle deficits and require repositioning, while in reality, some of these estimated vehicle deficits
would be fulfilled by the vehicles dropping off customers in the region. Pavone’s method would
behave similarly by assuming fewer excess vehicles due to the absence of long-term vehicle supply
estimates. Thus, it will reposition a smaller number of idle vehicles. In contrast to this, the RFRR

has a significantly low drop in performance when ω
sup(v)
z is used for the vehicle supply estimate.

Without a long-term vehicle supply estimate, the RFRR method would reposition the vehicles in
a way that covers the most customer pickup locations due to the usage of RD. Thus, the RFRR

method performs significantly better than Pavone’s and min-distance methods with ω
sup(v)
z .

Interestingly, with ω
sup(v)
z , the performances of RFRRp and RFRRf are significantly improved:

RFRRf serves the highest proportion of customers (S%) among all methods, followed by RFRR
and RFRRp. This shows that without the long-term vehicle supply estimation, the RFRRf method
distributed the AMoD vehicles in a way that increased the accessibility of more customers.However,
the excessive repositioning in RFRRf method caused the overall profit of the RFRRf method to be

still lower than RFRR method. A major reason for this performance gain of RFRRf with ω
sup(v)
z

is the accuracy of vehicle supply estimate; since RFRRf tries to fully minimize the region-based ID
without any restriction on surplus or deficit regions, the accuracy of the vehicle supply estimation
is of crucial importance. The RFRRf method already tends to cause a high Drepo

% in an attempt

to minimize the expected ID fully. Thus, an error-prone supply estimate in ω
sup(c)
z will cause it to

reposition more vehicles (even if the reduction in ID is only marginal) with the wrong assumption

that certain regions are already covered by AMoD vehicles. In contrast, even though ω
sup(v)
z does

not have any term for the long-term forecast of vehicle supply, the short-term supply information is
still highly accurate. The RFRRf tries its best to distribute AMoD fleet in a way that minimizes ID
and, in turn, provides higher AMoD accessibility to a larger number of customer pickup points.

It should also be noted that this section only considered PBD based solutions. The excess repo-
sitioning could be reduced using the weighted sum approach with a lower value of γ for RFRRp

and RFRRf methods. This way, the RFRRf method can further improve performance for ω
sup(v)
z .

Figure 5.16 shows such an improvement using γ of 0.7. The RFRRf significantly improves over
all other methods for larger ∆scell. It is also noteworthy that the performance of RFRRf method
is least affected by the increasing value of ∆scell. This also shows the benefits of minimizing the
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Figure 5.17.: The temporal performance with VCOenroute, ∆scell of 1000 m and vehicle supply

estimates using ω
sup(v)
z .

region-based ID for the purpose of repositioning. Figure 5.17 shows the temporal performance with

ω
sup(v)
z . The general behavior of the RFRRf method is the same as described in section 5.6.1; the

excessive repositioning in RFRRf during the hours of low demand is reduced by using a lower value

for γ. However, with ω
sup(v)
z the RFRRf consistently provides better performance than other meth-

ods. The weighted sum approach with γ of 0.7 mainly performs better than PBD solution due to
lower excessive repositioning during the hours of low customer demand. Otherwise, both solution
approaches perform quite similarly during the daytime.

Figure 5.18 shows the exact percentage improvements of the RFRRf method with varying values

of γ and ∆scell for vehicle supply estimation using ω
sup(v)
z . With a value of 0.7 for γ and 500 m for

∆scell, the RFRRf serves 5.3% more customers and produces 3.3% percent more profit than min-
distance. The performance improvement is even higher for larger regions; with ∆scell of 1500m the
RFRRf serves 6.7% more customers with a profit improvement of 4.8% over min-distance. RFRRf
even outperforms RFRR method with γ of 0.7 and ∆scell of 1500m; it serves 4.5% more customers
and generates 2.5% more profit.

Overall the above results show that the RFR methods provide the most consistent AMoD perfor-
mance gains even when the spatial accuracy of the forecast varies. This shows the importance of
considering the ID function inside repositioning methods.

Perfect versus Imperfect Forecast

Besides the spatial accuracy of the forecast, it is also important to analyze the performance of
the repositioning methods when the temporal aspect of the forecast information has errors. Any
advanced forecast method used to estimate future customers should be at least better than directly
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Figure 5.18.: The performance of RFRRf method with supply-side estimate using ω
sup(v)
z and

∆Th of +30 minutes. By adjusting the values of γ, RFRRf outperforms other
methods, especially for larger regions.

using the information from the immediate past. Therefore, this section uses the regional weights
generated using the customer information of the last 30 minutes (imperfect forecast) to set a lower
bound of the AMoD performance using the least accurate forecast method possible.
As shown in Figure 5.19, the general behavior of the repositioning methods observed in previous

sections remains the same with a slight decrease in performances when the imperfect forecast is used.
Figure 5.20 shows the relative performance differences. As Figure 5.20a shows, the combination of

ω
sup(c)
z and the imperfect forecast shows a consistent performance drop for all methods especially

for larger ∆scell. A major reason for this is that ω
sup(c)
z uses customer destination locations as an

estimate of long-term vehicle supply. The imperfect forecast causes inaccuracies in predicting the
aggregated customer origins and destinations, which causes errors in not only demand forecast but
also in the estimations of long-term vehicle supply. Since the min-distance and Pavone’s method
are more sensitive to vehicle supply estimations than RFR methods, the additional errors in vehicle
supply estimation cause the most performance drop for these methods. For the min-distance and
RFRR method, there is a decrease in performance with the increase of ∆scell: with large ∆scell, the
repositioning vehicles can be distributed to a smaller number of points (due to smaller number of
regions) from where they additionally have limited access to all points in the region within ∆Tmax.
The performance drop of RFRR is smaller than min-distance as it already tries to cover bigger areas
due to the usage of RFs.
In contrast to the above, the performance drop of Pavone’s method decreases with the increase of

∆scell up to 1000 m, suggesting that equal distribution of excess vehicles makes it less susceptible to
errors in the imperfect forecast for bigger regions. After 1000 m, the performance drop of Pavone’s
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(a) Vehicle supply estimate using ω
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z
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Figure 5.19.: The impact of spatial accuracy and supply estimations on the repositioning meth-
ods. The perfect and imperfect forecasts have ∆Th of +30 and -30 minutes, re-
spectively.

method again increases due to repositioning vehicles not being able to be distributed well. Similar
to Pavone’s method, the performance drop of RFRRf method also decreases with increasing ∆scell.
A major reason for this is that the RFRRf methods try to balance the supply-demand ID of the
operation area as much as possible without any regional constraints. A large ∆scell already causes
the repositioning problem to have a smaller number of repositioning points; the estimation errors of
imperfect forecast in some of these regions would have little impact on RFRRf method as it tries to
balance multiple regions using supply-demand ID.

Contrarily to the above, the combination of ω
sup(v)
z and the imperfect forecast does not show a

specific pattern for performance drop with increasing ∆scell; some of the methods instead perform
slightly better with the imperfect forecast. However, these performance gains could be due to the
dynamic nature of the AMoD simulation and not necessarily due to the repositioning method itself.
One reason for such behavior could be that the imperfect forecast only affects the estimate of

customer demand in ω
sup(v)
z , while the supply-side estimate remains the same for the perfect and

imperfect forecast. This error in demand estimates may introduce some randomness to the simulation
and cause the overall AMoD performance to provide different results.

Overall, the results in this section show that the performance differences are relatively low when
an imperfect forecast is used with the repositioning methods. This indicates that even temporally
less accurate forecast methods can significantly improve AMoD services by employing repositioning
methods.
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Figure 5.20.: Relative difference of using imperfect forecast relative to perfect forecast.

Forecast Horizon ∆Th

The previous sections assumed a constant forecast horizon∆Th of 30 minutes. However, many times,
due to various statistical reasons, the forecast algorithms provide higher accuracy when predicting for
larger time windows. Therefore, this section studies the impacts of varying ∆Th on the performance
of repositioning methods. As shown in Figure 5.21, a fundamental characteristic to note is that the
impact of ∆Th on the performance of each repositioning method heavily depends on the forecast
information used for vehicle supply estimation.

As shown in Figure 5.21a, the impact of increasing ∆Th on min-distance, RFRR and Pavone’s

method is comparatively small with vehicle supply estimate using ω
sup(c)
z . This shows that a rough

estimation of vehicle supply using customer destination locations is sufficient for gaining AMoD
performance using these algorithms. Interestingly, a short-term forecast (∆Th = 15 minutes) de-
teriorates the performance of the min-distance method. A major reason for this is that even after
repositioning decisions are made, idle vehicles take some time to reach the destination locations.
This may cause the repositioned vehicles to be unable to pick up some expected customers within
∆Tmax. With higher ∆Th, the regional weights are applicable for extended periods, and the repo-
sitioned vehicles can serve a higher percentage of expected customers. This is also indicated by a
lower value of Wmean for higher ∆Th; it shows that a higher number of vehicles were able to pick
up the customers near the repositioning points, causing a lower Wmean. However, if the ∆Th is
too high, the repositioned vehicle might have to wait a lot for the next customer as the customer
may appear at any time in the large window ∆Th, leading to a deteriorated performance. It is also
noted that RFRR method performs better than min-distance for ∆Th of 15 minutes; the usage of
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Figure 5.21.: Impact of forecast horizon ∆Th on repositioning method with VCOenroute and
∆scell of 1000 m.

RFs makes the RFRR to cover multiple regions with each repositioning decision, and thus, even if
the repositioning vehicles take some time to reach the destination, they still have a higher chance to
serve customers from multiple regions.

Interestingly, in stark contrast to the above, the performance of RFRRf and RFRRp methods
improve as ∆Th increases. Since the RFRRf is quite sensitive to the accuracy of vehicle supply-

demand estimate, the ω
sup(c)
z for larger ∆Th can more accurately estimate supply-demand imbalance

that is applicable for more extended periods. As a result, repositioning decisions of RFRRf remain
valid for longer periods, and since RFRRf already tries to minimize the ID as much as possible (due
to no regional constraints for repositioning), the AMoD fleet can cover a large area for longer period.
This decreases the necessity for frequent repositioning. Overall, this leads to a higher performance
of RFRRf for larger values of ∆Th.

Figure 5.21b shows the variation of ∆Th when ω
sup(v)
z is used for vehicle supply estimate. In

contrast to Figure 5.21a, here all methods except RFRRf show a significant drop in performance as
the value of ∆Th increases. A major reason for this is the strict regional constraints for repositioning
idle vehicles; idle vehicles can only be repositioned out of the regions of vehicle oversupply. As ∆Th

increases, the magnitude of regional demand also increases (due to a larger number of customers

being aggregated), and since ω
sup(v)
z only uses the current status of vehicles to calculate the vehicle

supply, a higher number of regions appear undersupplied to the repositioning methods. This leads
to fewer vehicles being repositioned and a deteriorated overall performance for these methods. In
contrast, since RFRRf does not have regional constraints for repositioning vehicles, the apparent
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Figure 5.22.: The Impact of maximum waiting time ∆Tmax on the performance of repositioning
methods.

regional under-supply due to large ∆Th does not affect its repositioning decisions. On the contrary,
using the information of only current vehicle supply accompanied with long-term customer demand
(as explained in the previous paragraph) improves the overall performance of RFRRf method with
larger ∆Th. In fact, it outperforms all other methods for ∆Th greater than 15 minutes. This makes
RFRRf especially important when the forecast method used has a high temporal resolution and can
only forecast the pickup locations of the customers.

5.6.3. Maximum Waiting Time

The maximum waiting time allowed for picking up a customer ∆Tmax plays a significant role in the
service quality of the AMoD services. This section studies the performance of repositioning methods
when the value of ∆Tmax is changed, as shown in Figure 5.22. Since VCO uses ∆Tmax as a hard
constraint during the assignment process, a larger value of ∆Tmax would mean that the vehicles
could be assigned to customers located at larger pickup distances. For the RFR methods, this would
imply that RFs have larger bandwidths. Contrarily, a smaller ∆Tmax would mean that the RFs have
smaller bandwidths, and thus, the individual regions will be comparatively independent of neighboring
regions.
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As shown in Figure 5.22a, for the VCOidle, ∆Tmax needs to be within a certain range to get the
most performance gain from repositioning methods. Since the VCOidle only assigns idle vehicles to
customers, a small ∆Tmax limits the possible customers that can be picked up in the vicinity of the
available vehicles. These limited customers may not necessarily produce the highest profit; due to
smaller ∆Tmax, the VCO has a smaller choice of customers to be assigned to vehicles which may
force VCO to assign vehicles to any customer available even if they produce very small variable fare.
In comparison, with a large ∆Tmax, the VCO would have a large choice of vehicles for customer
assignments, from which it would assign customers that produce the highest AMoD profit. This
can be observed by the slight increase in the profit of RFRR and min-distance methods as ∆Tmax

is increased from 2 minutes to 4 minutes, even though the 2 minutes variant has higher S% than
4 minutes. Interestingly, with ∆Tmax higher than 4 minutes, the S% and the profit is decreased
for VCOidle; since the current chapter uses a myopic VCO that only considers batch optimization
without re-optimization of assigned customers, a larger ∆Tmax would mean that the VCO would be
forced to also assign vehicles to customers in the current batch that have higher pickup distances.
This means that the vehicles will remain busier and will not be available for repositioning or to serve
some other customers in the immediate future with shorter pickup distances. Thus, for VCOidle,
choosing the right ∆Tmax is essential for getting the best system performance.

In contrast to the above, the performance of VCOenroute increases with the value of ∆Tmax.
Following the same argument as above, a larger ∆Tmax allows the AMoD service to assign customers
from larger pickup distances. However, contrary to the VCOidle, the VCOenroute batches have more
vehicles available due to consideration of enroute vehicles. This increases profit and S%. However,
as described in section 4.3.1, this put more customers into the schedule of individual vehicles, leading
to a significantly higher Wmean for VCOenroute than VCOidle. With a higher ∆Tmax, the number
of possible vehicles assigned to individual customers is also higher due to the larger pickup distance
allowed from vehicle availability locations. Thus, the VCOenroute can pack an even higher number
of customers into AMoD fleet schedules, leading to a higher S% and profit.
Here it should also be noted that even though VCOenroute leads to higherWmean, nevertheless, this

higher Wmean can be adjusted by using a smaller ∆Tmax. Ultimately, the individual AMoD operator
will have to decide if the increase in S% and the profit is worth the decrease in the service quality
(Wmean) for VCOenroute. Additionally, VCOenroute comes with the additional risk of unplanned
delays caused by the dropping off of the last customer and the changing traffic conditions. In these
cases, the AMoD operator may consider compensating the customer monetarily for any additional
delays caused by assigning an enroute vehicle.

5.6.4. Repositioning Frequency

The repositioning period ∆Tr can significantly impact the overall AMoD performance. A lower ∆Tr

would mean that the idle vehicles are repositioned more frequently and vice versa for higher ∆Tr.
Even after the repositioning methods are applied, the supply-demand imbalance can keep reemerging
due to the differences in the pattern of customer origins and destinations. Therefore, the FC must
regularly reposition the idle vehicles to avoid AMoD performance drop. This phenomenon is observed
in Figure 5.23, where the performance of almost all repositioning methods decreases by increasing
∆Tr. Interestingly, the RFRR, Pavone’s, and the min-distance method do not show a significant
drop in repositioning VKT even with increased ∆Tr; however, the S% is significantly dropped. This
shows that the frequent repositioning of idle vehicles is really important for maintaining a high AMoD
performance with the repositioning methods.
The RFRRp and RFRRf show a slightly different behavior than other repositioning methods.

Since the RFRRp and RFRRf are prone to excessive repositioning, the increased ∆Tr significantly
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(b) Vehicle supply estimate via ω
sup(v)
z .

Figure 5.23.: The impact of repositioning period ∆Tr. The simulations used VCOenroute and
∆Th of 30 minutes.

reduces the repositioning VKT. Similar to other methods, this also decreases S%. However, since
the repositioning costs also reduced due to lower VKT, the overall impact on the AMoD profit is
comparatively lower than other repositioning methods.

5.6.5. Reachability Frequency Bandwidth

While all the previous sections used AP(90,90) for the RF bandwidths, this section studies the influence
of using other RF bandwidths. For simplicity, the section mainly focuses on the RFRR and RFRRf
methods as shown in Figure 5.24. Since RFRR and RFRRf works the best with vehicle estimates

using ω
sup(c)
z and ω

sup(v)
z , respectively, Figure 5.24 only shows AMoD performance with with these

combinations. The RF bandwidths are varied by changing the parameters of the adaptive percentile
(AP) method, described in section 4.2.4. Additionally, Figure 5.24 also shows changes in performance
when instead of ID based relation matrix, a unity matrix is used for the A matrix in Eq. 5.10.
With the unity matrix, the RFR methods consider the individual regional weights for repositioning
independently.

First, for the RFRR method, there is not a significant performance difference between an AP
bandwidths and the unity matrix as shown in Figure 5.24a. A major reason is that the RFRR only
repositions idle vehicles from surplus to deficient regions, which hinders utilizing the full potential of
ID based repositioning. Additionally, due to the realistic network travel times, sending more vehicles
directly to the regions of higher demand (due to the squared objective function and unity matrix in
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(a) RFRR (PBD solution) and vehicle estimate using ω
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(b) RFRRf (with γ of 0.7) and vehicle estimate using ω
sup(v)
z

Figure 5.24.: Impact of various RF bandwidths on repositioning methods with VCOenroute and
∆Th of +30 minutes.

Eq. 5.13) makes the AMoD vehicles to be more accessible to customers.

In contrast to the above, the RFRRf method shows a quite different behavior than RFRR method
as shown in Figure 5.24b. First, the combination of only using current vehicle locations for the vehicle

supply estimate (ω
sup(v)
z ) and minimizing the expected ID provided the best performance with the

RFRRf method. However, the benefits of using ID are even more visible for the smaller ∆scell in
Figure 5.24b: 1) Since the repositioning methods use the region-based estimation of ID, smaller
∆scell provides better inter-regional relationships due to higher spatial resolution. 2) The smaller
∆scell provides better distribution of vehicles as the vehicles have a higher number of locations (the
regional centers) where they can be relocated. Thus, for the ∆scell of 250 m, the RFRRf has higher
S% and AMoD profit than the unity matrix. However, the unity matrix performs better for the higher
∆scell due to the higher inaccuracy in ID estimation and a limited number of vehicle repositioning
points.

5.6.6. Fleet Sizing and Pricing Structure

Figure 5.25 shows the AMoD performance with increasing fleet sizes. For all fleet sizes, the first
observation is that all repositioning methods have significantly higher S% and profit than the scenario
without repositioning. Additionally, the mean waiting time Wmean is decreased due to the higher
availability of AMoD vehicles. An increase in the fleet size also causes an increase in the repositioning
VKT for all methods; however, the mean repositioning VKT per vehicle remains almost similar for
RFRR, min-distance, and Pavone’s method. This means the repositioning VKT is scaled almost
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Figure 5.25.: The of impact fleet sizing on the repositioning methods using VCOenroute and

ω
sup(c)
z .

linearly with the additional fleet. In contrast, the RFRRp and RFRRf show an increase in the
repositioning VKT per vehicle with increasing fleet size. This is also in line with the behavior
observed in Figure 5.8 for the static instances; a high number of vehicles makes the RFRRp and
RFRRf reposition a significantly higher number of vehicles for marginal increment in ID objective.
For the RFRR method, similar to its behavior on static instances, a very high number of vehicles
causes a decrease in the repositioning VKT as observed for a fleet size of 6000 and 7500.

Figure 5.26 compares the performance of VCO types and the vehicle supply estimates. Even with a
high repositioning VKT of RFRRf method, the performance of RFRRf is significantly improved for all

fleet sizes when ω
sup(v)
z used; it even outperforms RFRR method up to a fleet of size 4500. Another

important observation is that after a certain fleet size, both VCO types produce similar AMoD profit
with repositioning; however, the VCOidle produces significantly lower Wmean than the VCOenroute

for a similar AMoD profit.

In addition to the above, it is also observed that an increase in the AMoD fleet only produces
additional profit up to a certain limit. Most customers can already be served at this point, and
the additional fleet only increases the maintenance cost causing a decrease in the overall profit.
Furthermore, the increase in AMoD profit is not linearly related to the AMoD fleet size; rather, the
marginal increase in profit decreases after certain AMoD fleet sizes: the increase in profit from 4500
to 6000 vehicles is significantly smaller than when increasing the vehicles from 3000 to 4500. A
major reason is that the additional fleet cannot serve an equivalently higher customer demand and
remain underutilized, as indicated by U% in Figure 5.27. This could be either due to insufficient
customer demand or the stochastic nature of the overall simulation.
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Figure 5.26.: The comparison of VCO types for different fleet sizes and vehicle supply estimates.

Figure 5.28 shows the exact AMoD performance improvement values for each repositioning method.
The most important observations are as follows:

• The RFRR method provides the best AMoD performance in combination with ω
sup(c)
z and

VCOenroute. Compared to the scenario without repositioning, on average, it serves 32.5%
more customers with a relative increase of around 92.4% in AMoD profit. It serves almost 3%
more customers and produces 4.8% more profit relative to Pavone’s method. Even though an
increase in AMoD profit over Pavone’s method may appear small, in reality, it is significantly
high; for example, for the two days of simulation and a fleet of 4500 vehicles, the RFRR method
produces a profit of almost $90 thousand USD more than Pavone’s method, which would mean
a yearly saving of almost $16.4 million.

• Although the repositioning methods produce the highest AMoD profit with VCOenroute, the
AMoD providers in future may still prefer using the VCOidle for several reasons. First, the
VCOenroute causes a significantly higher customer waiting time which is easily visible by com-
paring the Wmean of VCOidle and VCOenroute in Figure 5.28. Second, it assigns a high
proportion of customers to enroute vehicles, which, depending on the traffic state, has a high
potential of causing additional pickup delays. The RFRR method also provides a significant
improvement for VCOidle; on average, in comparison to VCOidle scenario without reposition-
ing, it serves 34.3% more customers with a relative profit increment of 142.2%. In comparison
to Pavone’s method, it serves 1.54% more customers with a relative profit increment of 3.6%.

• As showed before in Figure 5.26, the performance gaps between the VCOidle and VCOenroute

are more prominent for small fleet sizes. Numerically, with RFRR method and a fleet of
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Figure 5.27.: The temporal fleet utilization of RFRR method using VCOenroute, ω
sup(c)
z and

varying fleet sizes.
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Figure 5.28.: The table of performance improvement values for different VCO types and fleet

sizes. Since RFRRp and RFRRp perform the best with ω
sup(v)
z , the table shows

their values with ω
sup(v)
z . The rest of the methods used ω

sup(c)
z for vehicle supply

estimation.

130



5.6. Experiments and Sensitivity Analysis in Agent-Based Simulation

1500 3000 4500 6000 7500
Fleet Size

0
2
4
6
8

10

T
ot

al
C

om
pu

ta
ti

on
T

im
e

[h
ou

rs
]

0.
6 1.

6 2.
9

5.
7

8.
3

0.
8 2.

0 3.
1

5.
9

10
.0

0.
7 1.

8 3.
1

7.
1

11
.5

0.
6 1.

5 2.
7 5.

0

7.
6

0.
5 1.

5 2.
6

5.
5

8.
4

0.
7

1.
1 1.
7 2.
4 3.

3

Method Type

RFRR (PBD)

RFRRp (ω
sup(v)
z , γ = 0.7)

RFRRf (ω
sup(v)
z , γ = 0.7)

Pavone

min-distance

Without repositioning

(a) Whole Simulation.

1500 3000 4500 6000 7500
Fleet Size

0

1

2

3

4

5

6

S
ol

ut
io

n
T

im
e

[s
]

(b) Solution time of individual repositioning problem instances, including the time taken to prepare the
problem. The error bars show 95% confidence interval.

Figure 5.29.: The computation time taken for two days of AMoD simulation using VCOenroute.

1500 vehicles, the VCOenroute serves 11.1% more customers (40% profit increment) than
VCOidle which decreases to 6.1% more customers (8.4% profit increment) with a fleet of 4500
vehicles. With an even higher fleet size, the performance gain reverses and VCOidle serves
more customers and generates more AMoD profit than VCOenroute along with a significantly
reduced Wmean.

Figure 5.29 compares the computation time taken for the two days of AMoD simulation. As shown
in Figure 5.29a, the simulation of a large fleet takes significantly more time than a smaller fleet.
However, the increase in computation time is due to the movement of additional vehicles and the
associated processing required for simulation — not due to the time taken to solve the repositioning
problem. On average, all the methods take a significantly small time to solve the repositioning, as
shown in Figure 5.29b. For some problem instances, the RFRRp and RFRRf take significantly high
solution time, so a time limit of 30 seconds is used with these two methods. However, this time
limit is only occasionally reached by both methods. Nevertheless, the computation time for all the
methods is within a practical range for all fleet sizes.

Finally, Figure 5.30 shows the changes in the AMoD profit when a different price structure is used.
Since the fixed base fare charged per customer forms a major part of the price structure, the section
only varies the base fare to see its impact on the AMoD profit. Figure 5.30a shows that without
repositioning, the AMoD service would face loss if a base fare is not charged. A larger fleet serves
more customers, which increases revenue from variable fares; however, the increased maintenance
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Figure 5.30.: The AMoD profit components for VCOenroute and different values of the base fare.
The annotated numbers show the overall AMoD profit.

cost leads to an overall loss without the base fare. Even with RFRR repositioning, the AMoD service
would hardly make any profit without charging a base fare as shown in Figure 5.30b. Furthermore,
the repositioning and the pickup journeys contribute a comparatively small proportion to the overall
costs. Here it should also be noted that this analysis does not include penalty cost for unserved
customers by the AMoD service; a smaller fleet leads to smaller S% and the customers that are
rejected by the AMoD service may cause negative popularity. Thus, many studies also include a
penalty term for the lost opportunity cost for unserved customers.

5.7. Conclusion

The varying pattern of the origin and destination locations of customers leads to an accumulation of
AMoD fleet. It causes vehicle supply-demand imbalance in different regions of the operation area.
Without human drivers, the central FC must regularly reposition the idle vehicle to demand-intensive
regions to reduce this imbalance and increase the system’s efficiency. This chapter introduced four
new methods for this purpose. The chapter introduced several repositioning methods. The first
method, called the min-distance method, tries to reposition as many vehicles as possible with min-
imum repositioning distance while aiming to fulfill regional demands. The other three methods
(RFRR, RFRRp and RFRRf — grouped under RFR methods) utilize a region-based approximation
to ID to reposition idle vehicles in a way that minimizes the long-term ID. In contrast to the previous
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chapter, where ID was only used as a spatial metric to describe service quality in the form of a heat
map, this chapter actively used ID to improve the performance of AMoD services.
The newly developed methods were tested on static problem instances and in an agent-based

AMoD simulation. The developed methods showed a significant improvement over the benchmark
method. The chapter also performed the sensitivity analysis of the most important parameters.
Overall, the RFRR method produced the best performance, followed by the min-distance method.
The current chapter also showed that the repositioning frequency needs to be high to gain the

best performance out of the repositioning methods. The next chapter will focus on how the vehicle
supply-demand imbalance could be actively reduced inside VCO such that the need for the regular
repositioning of idle vehicles is minimized.
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Chapter 6.

Proactive Assignment Strategy

The previous chapter introduced reachability function based repositioning (RFR) methods for the
AMoD services. The main goal of the presented methods was to reposition idle vehicles to demand-
intensive regions such that a higher proportion of customers remain on the positive side of imbalance
density (ID) metric introduced in chapter 4. This would mean that a higher number of customers
are within reachable range of the AMoD vehicle, ultimately leading to improved AMoD performance.

The current chapter targets the same objective from another perspective; instead of regularly
repositioning idle vehicles to demand-intensive regions, it modifies the VCO to minimize the long-
term supply-demand imbalance. Thus, it introduces a proactive assignment method where a portion
of the short-term monetary profit is compromised to reduce the long-term supply-demand imbalance.
The chapter combines the presented proactive assignment approach with the RFR repositioning,
specifically the RFRR method. Together with the efficient repositioning of RFRR method and
the reduced repositioning requirement of the proactive assignment, they provide the best AMoD
performance.

The chapter is structured as follows. Section 6.1 discusses the primary motivation behind devel-
oping a new VCO approach. Section 6.2 presents the mathematical formulation and the solution
approach followed for the proactive assignment. The performance of the proactive assignment is eval-
uated in two steps. First, section 6.3 presents the simulation results when the proactive assignment is
used alone without explicit repositioning of idle vehicles. This section also compares the performance
against the RFRR performances of the previous chapter where non-proactive VCO is used. Later,
section6.4 shows the performance improvement when the RFRR method is used together with the
proactive approach. Section 6.3 and section6.4 also offer the sensitivity analysis of the most relevant
simulation parameters. Finally, section 6.5 concludes the chapter.

6.1. Motivation

The previous chapter showed a significant AMoD performance improvement using RFR and min-
distance methods. In general, repositioning idle vehicles keeps the AMoD fleet within reachable
distances of customers and improves the overall performance. As shown in Figure 6.1, the repo-
sitioning frequency plays a major role in getting the most out of any repositioning method. For
example, by changing the ∆Tr from 15 minutes to 60 minutes, the percentage of served customers
(S%) of RFRR method drops from 67.9% to 65.6% and the AMoD profit drops from $1.11 million
to $1.07 million — the drop is even higher for other repositioning methods. While the previous
chapter showed that the AMoD performance could be significantly improved by taking better reposi-
tioning decisions, the requirement of high repositioning frequency shows that the positive impacts of
repositioning decisions do not last long; the FC must frequently reposition idle vehicles to maintain
a balance between AMoD supply and demand. This also contributes towards the empty VKT of
AMoD fleet to perform repositioning tasks; for example, the repositioning constitutes almost 9%
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Figure 6.1.: The impact of repositioning period ∆Tr.

of the total VKT traveled using RFRR method with ∆Tr of 15 minutes. Besides the chances of
getting stuck in congestion during repositioning, these additional VKT may also contribute to the
congestion, especially in urban areas. Therefore, the current chapter asks how the requirement of
explicit repositioning of idle vehicles — and consequently the repositioning VKT — can be minimized
without significantly compromising the AMoD performance.

Fundamentally, the need for repositioning occurs because of supply-demand imbalance arising due
to the pattern of customer origins and destinations, as described in section 5.1. Hence, the above
question could be answered on two levels: first, on the city level, the authorities could design the
cities in a way that minimizes the disparity of customer origin and destination patterns, and second,
the AMoD operator optimizes its operation in a way that reduces the requirement of repositioning.
Since most cities where the AMoD services will most probably be launched are well developed,
manipulating the customer origins and destinations is complex and beyond the scope of the current
dissertation. Instead, the present chapter focuses on the second approach.

Besides the repositioning of idle vehicles, the primary location in the AMoD operation cycle where
the supply-demand imbalance could be considered is the VCO. Figure 6.2 shows the core concept
followed in the chapter. Typically, a simple profit-oriented VCO leads to regional imbalances between
AMoD supply and demand. The repositioning of idle vehicles periodically rectifies this imbalance;
however, the imbalances reemerge after some time. In contrast, the chapter argues that the oc-
currence of supply-demand imbalance can be reduced by considering the long-term supply-demand
imbalance in the VCO decisions (proactive assignment). This, in turn, also reduces the requirement
of repositioning, improving the AMoD performance.
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Figure 6.2.: A rough comparison of the supply-demand imbalance occurring from simple and
proactive assignment strategies.

6.2. Methodology

The section presents the methodology followed to develop the proactive assignment method. Sec-
tion 6.2.1 first presents a general version of the proactive assignment. The formulation assumes an
already existing VCO, and thus, could be used with any VCO method. Similar to the repositioning
methods, proactive assignment also requires a forecast of future AMoD system state. Therefore,
section 6.2.2 presents the methods used for this purpose. Additionally, it describes a formulation to
link the decision variables of VCO with the long-term supply-demand imbalance using ID function.
Finally, section 6.2.3 formulates the proactive assignment approach for the VCO methods used in
the dissertation.

6.2.1. General Proactive Assignment Method

This section formulates a general proactive assignment method for the VCO. The main advantage of
the formulation is that it complements the already existing VCO and can be combined with any VCO
method — not just the ones used in this dissertation. The general functioning of the FC remains the
same as described in section 3.1.3: the dynamic aspect of the AMoD services is solved by grouping
the customers into VCO batches, followed by forming and solving a bipartite matching problem
for assigning vehicles to customers. The section uses the same terminologies used in section 3.1.3
to describe the proactive assignment method. Additionally, the dissertation refers to the proactive
assignment approach as proactive VCO to distinguish it from simple VCO of chapter 3.

Let set Rt
b represent the customer requests in a single VCO batch at time t. Each customer r ∈ Rt

b

has an associated pickup location (pr), drop-off location (dr), and the time tr when the customer
requests a ride. tr also represents the earliest possible time a vehicle could pick the customer up.
The VCO assigns vehicles to customers out of a set of vehicles V t ⊆ V . Each v ∈ V t can start its
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journey to pick up the customer at time tv from location ov. Let yvr ∈ {0, 1}|V t|×|Rt
b| represent the

binary decision variable for the assignment of v ∈ V t to r ∈ Rt
b and fvco(y) represent the objective

function of the chosen VCO method. With the given VCO method, the dissertation modifies it into
a multi-objective formulation with fib(y) as a function to estimate the long-term impacts of y on
supply-demand imbalance. Thus, the formulation is given as follows:

max
y

fvco(y),−fib(y) (6.1a)

s.t.
∑
v∈V t

yvr ≤ 1 ∀r ∈ Rt
b (6.1b)

∑
r∈Rt

b

yvr ≤ 1 ∀v ∈ V t (6.1c)

gi(y) ≤ 1 ∀i ∈ {1, 2, ...,m} (6.1d)

where gi(y) are any additional constraints used by the VCO method. Eq. 6.1b and Eq. 6.1c ensure
that only one vehicle is assigned to a request. Some VCO methods, instead of directly assigning a
vehicle to a customer request, make possible vehicle plans for each vehicle, and then assign plans
to each vehicle to maximize the objective function. The above proactive assignment method would
still be valid for such VCO by simply changing the binary variable to map from V t to vehicle plans
instead of Rt

b.
The aim of the multi-objective optimization in Eq. 6.1 is that by consistently considering the system

imbalance while assigning the vehicles to customers, the overall vehicle supply-demand balance could
be maintained or improved in small steps. A possible downside of such an approach could be the
unequal treatment of customer requests; some customers with destinations in demand-intensive
regions of the operational area may be implicitly preferred over other customers. This may also lead
to a high number of vehicles only serving in the demand-intensive regions, contributing to additional
traffic in the region. On the bright side, such an approach would improve the system efficiency of
a smaller fleet to serve many customers. Nevertheless, the suggested proactive assignment should
be combined with a dynamic pricing scheme that ensures that the overall AMoD system remains
equitable and provides enough incentives to the customers depending on VCO decisions. However,
the frequency and magnitude of destination-based customer preference heavily depends on how the
multi-objective problem in Eq. 6.1 is solved and how much the solution differs from the original
optimal solution of the chosen VCO.
Since the dissertation focuses on the algorithmic aspect of the vehicle assignment process that

maximizes the monetary profit of the MSP, developing a dynamic pricing scheme for system equity
is beyond the scope of the dissertation. Instead, the dissertation shows the potential improvement in
system efficiency and MSP profit when a proactive assignment method is used. This can serve as a
foundation to incorporate the technique in an overall scheme that also considers the equal treatment
of the customers.

6.2.2. Estimating the Long-Term System Imbalance using Imbalance Density
function

The previous section introduced a general scheme for incorporating proactive assignment in a VCO
method. The estimator function fib(y) is Eq. 6.1a can be implemented in multiple ways. The
dissertation proposes an estimator motivated by the region-based forecast in section 5.2.2 and RFR
methods.
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Let t be the simulation time the VCO is solved. The method first estimates the differences of supply
and demand for all regions in Z, given by the vector η ∈ Z |Z|. Similar to section 5.2.2, the current
regional imbalance ηz for z ∈ Z consists of parts for vehicle supply and demand: ηz = ηsupz − ηdemz ,
where ηsupz and ηdemz are the weights for regional supply and demand, respectively.

Let R+
z and R−

z be the forecast of customer destination and origins, respectively, calculated using
the perfect or imperfect forecast procedure (section 5.2.2) for time-window [t, t + ∆Tph]. ∆Tph is
the forecast period used for proactive assignment. The demand weights ηdemz are simply set to the
corresponding forecast of customer origins ηdemz = |R−

z |. As for the vehicle supply weights ηsupz , two
formulations are used as described below.
The first formulation uses the current vehicles available in each zone: let Vz ⊆ V t represent all

vehicles that have their availability point ov in z and availability time tv within the time-window
[t, t+∆Tmax], then the vehicle supply estimate is given as:

ηsup(v)z = |Vz| (6.2)

The second formulation also includes estimating vehicles that may end up in z by serving a customer
during the forecast window [t, t + ∆Tph]. Similar to section 5.2.2, these future vehicle supply are
estimated using customer destinations R+

z , and thus, the vehicle supply is given as:

ηsup(c)z = |Vz|+ |R+
z | (6.3)

With the above given, the changes in the regional weights can be calculated by counting the
number of vehicles entering and leaving zones with each VCO decision. Let Rz ⊆ Rt

b represent all
customers with their destinations in z and Rz− = Rt

b−Rz represent all customers with destinations
in the rest of the zones. Then an estimate of long-term change in the regional weights is described
by a vector of integer variables δη ∈ R|Z|, given as:

δηz(y) = δηsupz (y)− δηdemz (y) ∀z ∈ Z

=
∑
r∈Rz

∑
v∈V t

yvr︸ ︷︷ ︸
No. of vehicles
entering zone

−
∑
v∈Vz

∑
r∈Rz−

yvr︸ ︷︷ ︸
No. of vehicles
leaving zone

∀z ∈ Z (6.4)

For simplicity, the function δηz(y) will be henceforth written as δηz. Note that any vehicle that
starts and ends in the same region will have zero contribution to δηz. Next, an RF based formulation
for the fib(y) can be defined following a similar procedure as in section 5.4.2, given as:

fib(y) = fib(δη)

= F

(
3

π

∑
z∈Z

(
ηsupz + δηsupz

)k(x, xz, hz)
h2z

,
3

π

∑
z∈Z

(ηdemz − δηdemz )
k(x, xz, hz)

h2z

)
(6.5)

where the first term and second term in Eq. 6.5 represent the long-term impact on supply and demand
density with each VCO decision. The function F is a parameter function to measure the difference
between the two densities. The dissertation uses the integral of squared deviations for this purpose.
Thus, following the same steps as described for RFR methods (refer to section 5.4.2 for detailed
steps), Eq. 6.5 can be written as:

fib(δη) = a2(2ηT + δηT )Aδη + C (6.6)
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where a = 3
π and C = a2ηTAη . A is calculated using the mid-point rule, as described in

section 5.4.2. Since C is a constant, it can be ignored for VCO. The formulation in Eq. 6.6 uses an
RD based relation for fib(δη).
It should also be noted that as the bandwidth of all regions approaches zero (i.e. the influence of

neighboring regions is not taken into account), A becomes a unity matrix and Eq. 6.6 reduces to:

fib(δη) = a2
∑
z∈Z

(ηz + δηz)
2 (6.7)

In this formulation, the proactive VCO treats each region as independent of other regions and prefers
assigning vehicles to customers going in the destination zone of the highest supply-demand imbalance.

6.2.3. Proactive Assignment for the Vehicle Control Optimization

The previous sections described the general proactive assignment method and how the long-term
supply-demand imbalance can be estimated based on the decisions of a general VCO. This section
modifies the formulation to be explicitly applied to the VCO used in the dissertation. The term
”proactive” is added in front of the name of specific VCO to indicate that the proactive assignment
method is used in combination with the VCO, i.e., proactive VCOenroute or proactive VCOidle. The
section also describes the method used for solving the multi-objective optimization problem of the
proactive VCO.
First, the VCO used in the dissertation uses constraint on the maximum pickup time ∆Tmax.

However, instead of using the hard time constraint directly Eq. 6.1d inside VCO, the dissertation
first creates a bipartite graph for the possible combination of vehicles and customers as described
in section 3.1.3. Thus, the primary change required is to adapt Eq. 6.4 for the decision variables
defined over the bipartite graph.
Consider RG ⊆ Rt

b and VG ⊆ V t represent the customers and vehicles with at least a single edge
in the bipartite graph, respectively. Let Rz ⊆ RG be the customers with their destinations in z ∈ Z
and Vz ⊆ VG be the vehicles with their availability points ov in z. Additionally, let V(r) ∈ VG be
the set of all vehicles connected to the request r ∈ RG in the bipartite graph, and vice versa for all
requests R(v) ∈ RG connected to v. Let uvr be the binary decision variable for each of the edges in
the bipartite graph, then Eq. 6.4 is modified as:

δηz(u) = δηsupz (u)− δηdemz (u) ∀z ∈ Z

=
∑
r∈Rz

∑
v∈V(r)

uvr −
∑
v∈Vz

∑
r∈R(v)

uvr ∀z ∈ Z (6.8)

Thus, the proactive assignment method for the VCO used in the dissertation is given as:

max
u

fvco(u), fib(δη) (6.9a)

s.t.
∑

v∈V(r)

uvr ≤ 1 ∀r ∈ RG (6.9b)

∑
r∈R(v)

uvr ≤ 1 ∀v ∈ VG (6.9c)

fvco(u) =
∑
v∈VG

∑
r∈R(v)

(ζ + (fD − cD)dpdr − cDdopvr)uvr (6.9d)

fib(δη) = a2(2ηT + δηT )Aδη (6.9e)
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Figure 6.3.: An example of proactive assignment method. The regional colors represent the
magnitude of demand forecast vector η. The dotted lines denote feasible assignments
while bold lines show the assignment solution.

Many times the two objectives in Eq. 6.9a could be contradictory to each other; an assignment
that reduces the long-term supply-demand imbalance might lower the immediate profit of the VCO
batch. Additionally, since the original purpose for using batches with VCO is to increase the overall
profit fvco(u) of the dynamic problem, too much focus on improving the long-term supply-demand
imbalance might also lead to an overall degraded performance. Thus, the dissertation proposes a
lexicographic two-step approach for solving Eq. 6.9 as follows.

First, the profit objective fvco(u) is maximized as a single objective, providing the optimum profit
f̄ . In the second step, the long-term imbalance objective fib(δη) is minimized while adding the
following lower bound on the profit term:

fvco(u) ≥ (1− θ

100
) · f̄ (6.10)

where θ is the percentage of short-term profit an MSP is ready to compromise to minimize the long-
term supply-demand imbalance. The value of θ could be either constant or dynamically controlled,
e.g. as a function of recent vehicle utilization and expired requests. However, the dissertation only
demonstrates the benefits of the introduced assignment concept with a constant θ. Unlike step one,
the second step does not have a unimodular constraint matrix due to the additional constraint, and
thus, the integer constraint u ∈ {0, 1}|E| cannot be relaxed for the second step.
Fig. 6.3 illustrates an example scenario in lower and midtown Manhattan areas to portray the con-

cept. The optimal profit solution disproportionately sends vehicles to low-demand areas to maximize
the profit of the current batch, i.e., vehicles 2,3, and 4 are assigned to have short pickup distances
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Parameter / Method Symbol
Section for
Sensitivity
Analysis

Default Value / Strategy

Base fare ζ — $2.5 per customer
Distance based variable fare fD — $0.5 per km
Distance based cost cD — $0.25 per km
Fixed maintenance cost of vehicle cF — $25 per vehicle per day
Maximum allowed waiting time
of customers

∆Tmax 6.4.2 6 minutes

The time period used for
travel time scaling

∆Tscale — 30 minutes

Travel time scaling method used — — ASM (section 3.3)
Fleet size — 6.3.1, 6.4.3 3000 AVs
Vehicle assignment method VCO 6.3.1, 6.4.3 VCOenroute (section 3.1.3)
Batching period ∆Tbatch — 30 seconds

RF bandwidth calculation method — 6.3.2 AP90,90 (section 4.2.4)
The repositioning method 6.4.3 RFRR
The repositioning period ∆Tr 6.4.1 30 minutes
The forecast horizon for
repositioning

∆Th —
+30 minutes
(Perfect forecast)

The forecast horizon for
proactive VCO

∆Tph 6.3.2
+15 minutes
(Perfect forecast)

Grid cell size of regions
in the operation area

∆scell 6.3.2 1000 m

The vehicle-supply estimate
method for repositioning

ωsup
z — ω

sup(c)
z

The vehicle-supply estimate method
for proactive VCO

ηsupz 6.3.2 η
sup(v)
z

Table 6.1.: The simulation configuration used in chapter 6.

and long distances with customers on board. However, the second step partially compromises the
profit in order to assign vehicles 3 and 4 to customers going to high-demand regions, i.e., to cus-
tomers 1 and 3, respectively. Similarly, it assigns alternative vehicles to some customers to leave the
originally assigned vehicles in high demand regions, i.e., it assigns vehicle 5 to customer 6 instead
of vehicle 2. Additionally, some assignments may remain unaltered in the second step depending on
the value of θ, e.g., the assignment of vehicle 1.

6.3. Experiments and Sensitivity Analysis for Proactive Assignment
Method

This section performs the sensitivity analysis for the proactive VCO method. It uses the same
agent-based simulation environment as used in previous chapters. The evaluation is divided into two
sections. This section studies the scenario where the proactive VCO is used without repositioning.
Though a comparison is made with the best-performing repositioning method in the previous chapter,
i.e., RFRR; however, the repositioning configuration in this section does not use the proactive VCO
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Figure 6.4.: The AMoD performance using proactive VCOenroute and η
sup(v)
z . The θ of zero

corresponds to the VCOenroute without proactive assignment. The dotted lines
represent the values of PBD solution of RFRR method under equivalent settings
but without proactive assignment.

together with the RFRR method in the same simulation. The purpose is to study the impact of
proactive assignments in isolation from repositioning methods. The following section will study their
performances when combined in a single simulation. Both sections also present the sensitivity analysis
of the most critical parameters.

Table 6.1 summarizes the default simulation configuration used in the chapter along with the detail
of the specific section where a particular parameter is varied. For consistency, the base parameters
remain the same as described in section 4.3. Since RFRR provided the best performance in the
previous chapter, this chapter uses it as the default repositioning method.

6.3.1. The Percentage Compromise and varying Fleet Sizes

Figure 6.4 and Figure 6.5 show the performance improvement achieved by varying the θ for multiple
fleet sizes. The percentage of served customers (S%) and the AMoD profit increases significantly
as the value of θ increases. A particular value of θ, generally between 5 to 30%, provides the best
performance for each fleet size. The method can provide significant improvements even with a slight
compromise in the short-term batch profit, leading to better vehicle distribution and overall improved
performance. However, a very high value of θ degrades the performance quality again, which can
be explained by the higher percentage of empty distances; for higher values of θ, the proactive
assignment aggressively balances the regions favoring the trips with destinations in demand-intensive
areas irrespective of the empty distances traveled for picking up customers. These long trips keep the
vehicles busy for longer periods with decreasing probability that the next customers could be served
within the ∆Tmax — these potential customers were the main reason for assigning customers with
large pickup distances in the current VCO batch. With decreasing probability of serving these future
customers, the overall performance degrades.

The above effect can also be observed in Figure 6.6 for the temporal performance; the overall
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utilization U% fluctuates for the higher values of θ. This shows that not all the enroute AMoD
vehicles could find the next customer immediately; otherwise, there would be less variation in U%

1.
Compounding this with the fact that the system already made a higher compromise in the batch
profit leads to declined performance for higher θ. This effect is more dominant for large fleet sizes.
For a small fleet of 1500 vehicles, the customers are comparatively in abundance, and the vehicle
is most likely able to find the next customer near the destination, reducing the negative impact of
longer pickup distances. Thus, as Figure 6.5 shows, the optimal θ corresponding to the highest
incremental profit shifts to lower value ranges of θ as the fleet size increases.

Figure 6.4 also shows the performance of RFRR method without proactive VCO. Using proactive
VCOenroute, the AMoD performance reaches very close to the RFRR under similar AMoD settings. As
the fleet size increases, the RFRR method performs significantly better than a proactive VCOenroute.
This follows a similar reasoning as discussed for the RFRRf method (section 5.6.1) in addition to
the reasons mentioned at the beginning of this section; the region-based ID used in the proactive
assignment approach does not put any regional restriction on the assignment procedure based on the
regional weights of the forecast. This causes the proactive method to generate a significantly high
empty VKT for larger fleets when very high values of θ are used. Another major difference observed

1This fluctuation in U% is different from the ones due to varying customer demand. The latter would also be
visible in other high performing AMoD configurations like RFRR.
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Figure 6.7.: The computation time taken by proactive VCOenroute.

between RFRR and the proactive method is that the former does not have a particular preference on
which kind of customers are served — it purely depends on the VCO objective — while the latter
prefer trips that would lead to lower supply-demand imbalance, which in case of Manhattan leads to
preferring shorter customer trips for high values of θ. In terms of temporal performance, Figure 6.6
shows that while the explicit repositioning consistently produces high S% for all simulation times, the
performance of proactive VCO could depend on the time of the day; for a fleet of 3000 vehicles, a
θ of 20% produces the highest S% during the daytime and a θ of 5% produces the highest S% from
12 to 6 am (though during the night time, number of customers is comparatively low). Overall, the
RFRR method performs only marginally better than the proactive method with θ of 20% and a fleet
of 3000 vehicles: the RFRR method increases the AMoD profit by 109.6% and proactive VCO by
105.6% relative to simple VCOenroute.

Figure 6.7 shows the computation of proactive VCO. The computation time of proactive VCO
is significantly higher than simple VCO (i.e. when θ is zero). A major contributing factor is the
simulation of increased vehicle routes due to larger fleet size and higher utilization. However, the
time required for solving VCO also plays a major role in increased computation time, especially
the second step of the proactive VCO, as shown in Figure 6.7b. With increased values of θ, the
VCO allows higher compromise of the optimal AMoD profit, leading to an increased search space
and computation time. Additionally, the formulation of proactive VCO does not have a unimodular
constraint matrix due to which the integer constraint cannot be relaxed, unlike simple VCO (the first
step of proactive VCO). This also generally makes the second step take longer to find the solution. It
is also found that similar to the RFRRp and RFRRf methods, sometimes the second step of proactive
VCO takes a significantly long time to find the optimal solution. Therefore, the dissertation uses a
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Figure 6.9.: A comparison of the temporal accuracy and type of forecast on the performance of
proactive VCOenroute.

time limit of 30 seconds for the second step; nevertheless, as visible from Figure 6.7b, the solution
time is mostly well below this time limit.
Finally, Figure 6.8 compares the performance of different VCO types when used together with the

proactive assignment. The proactive assignment method compliments the original VCO method and
increases the method’s overall performance. However, the general characteristics of the original VCO
method remain similar: the VCOenroute produces higher S% and AMoD profit while VCOidle produces
lower customer waiting times (Wmean). Interestingly, with moderate fleet sizes, the proactive VCOidle

performs even better than the combination of RFRR repositioning and VCOidle. The RFRR method
still performs better for larger fleet sizes than proactive VCOidle.

6.3.2. Forecast Types and Reachability Function Bandwidth

Figure 6.9 compares the impact of forecast horizon ∆Tph and the vehicle-supply estimate on the
performance of the proactive assignment method. First, the usage of perfect or imperfect forecast
information (section 6.2.2) does not have a significant impact on the performance of the proactive
VCO. The perfect forecast produces slightly higher S% and profit due to the usage of actual customers
in the future in contrast to the imperfect forecast where the customer data of the last ∆Tph period
is used.
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Figure 6.10.: A comparison of AMoD performance for different spatial accuracies of the forecast.

Second, as the value of ∆Tph increases, the AMoD performance decreases. A major reason for
this is that the proactive VCO improves the supply-demand imbalance in steps by compromising a
small profit in VCO batch, which often results in longer pickup trips as shown in Figure 6.4. As larger
∆Tph forecast longer periods with a smaller probability that the next customer will be immediately
found at the destination of enroute vehicle. Thus, longer ∆Tph leads to degraded performance.

Third, the proactive VCO works significantly better when η
sup(v)
z is used for the supply-side es-

timate, i.e., when only the customer origins (and not the destinations) are used for calculating the
forecast weights. This behavior is quite similar to the behavior of RFRRf method in section 5.6.2;
since both methods try to balance the supply-demand ID as much as possible (with the additional
constraint of θ in the proactive assignment), the accurate information of the vehicle is important for

their performance. The errors in the supply-side estimates in η
sup(c)
z can significantly degrade the

performance. With the usage of η
sup(v)
z , the proactive assignment can distribute the AMoD vehicles

more accurately to serve potential customers, improving the overall performance.

Next, the section studies the impact of the spatial accuracy (∆scell) and the importance of using
supply-demand ID in the proactive assignment method. First, as shown in Figure 6.10, a higher
spatial accuracy (smaller ∆scell) leads to a significantly higher AMoD performance. With smaller
∆scell, the proactive assignment method can calculate the supply-demand ID with higher accuracy
for each VCO batch (Eq. 6.9e) which leads to a better distribution of AMoD vehicles.

To compare the importance of using RFs and ID, the section also considers the AMoD performance
when a unit matrix is used in the proactive assignment. Using a unit matrix in Eq. 6.7 makes the
formulation independent of neighboring regions; thus, the proactive assignment tries to balance indi-
vidual regions separately. Figure 6.10 shows that the ID based formulation significantly outperforms
the unit matrix-based formulation. The difference is obvious for smaller ∆scell. A smaller ∆scell re-
sults in a higher number of regions which the unit matrix-based formulation cannot balance well due
to a limited AMoD fleet. By considering the neighboring regions via supply-demand ID, the proactive
assignment can position vehicles in a way that leads to better vehicle distribution. However, with
the increase in ∆scell, the accuracy of the region-based approximation of ID decreases; since the
region-based approximation of ID uses the regional centers for RFs, the bigger regions are not able to
correctly represent the reachability of vehicles, leading to a decrease in AMoD performance. Thus,
for very high ∆scell, the unit matrix-based formulation performs better than ID based formulation.

Figure 6.10 also shows the performance of RFRR repositioning method (without proactive assign-
ment). Even though with smaller ∆scell the proactive assignment has similar S% to RFRR method,
most of the served trips are of shorter trip lengths. This still makes the RFRR method perform bet-
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ter than a proactive assignment method. However, this also shows that even though the proactive
method significantly improves the AMoD performance, an explicit repositioning of vehicles is still
essential to improve the performance further.

6.4. Experiments and Sensitivity Analysis for Proactive Assignment
Method combined with Repositioning

The previous section showed the performance of the proactive VCO without using it in combination
with any of the repositioning methods. When compared against simple VCO (with and without
repositioning), it showed significant improvements in AMoD performances, which were already close
to the explicit repositioning in chapter 5. However, the previous section showed that there are still
chances for further improvements. Therefore, this section studies the AMoD performances when
the proactive VCO methods are used together with the explicit repositioning. This section uses the
same default simulation configuration as described in Table 6.1. Since chapter 5 already showed that
the RFRR method provides the best performance, this section mainly focuses on using the RFRR
method together with the proactive VCO. It also compares the performance against the benchmark
simulation setup used in the dissertation, i.e., Pavone’s repositioning method without the proactive
VCO.

6.4.1. Repositioning Frequency

Since the primary purpose of the proactive VCO is to improve the vehicle supply-demand imbalance
in small steps via better assignment decisions, it is essential to study if the requirement of the explicit
repositioning could be lowered down with proactive VCO. Therefore, Figure 6.11 shows the impact
of the varying repositioning period (∆Tr) on the AMoD performance of proactive VCO.
The first and the most important observation is that a combination of proactive VCO and the

repositioning method performance significantly better than using either a proactive VCO (the values
with ∆Tr zero in Figure 6.11) or the repositioning separately (the simple VCOenroute with non-
zero ∆Tr in Figure 6.11). For example, for ∆Tr of 30 minutes (the default ∆Tr used throughout
the dissertation), a combination of proactive VCOenroute and RFRR method serves almost 3% more
customers and shows a relative increment of 2.64% compared to the RFRR method without proactive
VCOenroute. This performance gain is achieved with only 4% repositioning VKT (Drepo

% ) compared to
9% of without proactive VCO. This shows that the proactive VCO significantly lowers the requirement
of explicit repositioning while providing better performance.
Second, the proactive VCO is significantly less affected by higher ∆Tr (lower repositioning fre-

quency) than a simple VCO. For example, in Figure 6.11, when the ∆Tr is increased from 15 minutes
to 3 hours, S% and the AMoD profit of the simple VCOenroute decreases by 11.2% and 11.4%, respec-
tively. In contrast, for the proactive VCOenroute it decreases by just 0.72% and 0.18%, respectively.
This shows that even with a very high repositioning period of 3 hours, the proactive VCOenroute can
maintain a very high AMoD performance with Drepo

% of just 1.2%.
Third, since the simple VCO only uses the repositioning method for improving the supply-demand

imbalance, a lower ∆Tr generally provides the best AMoD performance — 15 minutes in Figure 6.11.
In contrast, a lower value of ∆Tr does not necessarily provide the best performance for the proactive
VCO; a very small∆Tr keeps the vehicles unnecessarily busy with repositioning while a very large∆Tr

does not use the repositioning to its full potential. A moderate ∆Tr provides the best performance
for proactive VCO, which in Figure 6.11 corresponds to ∆Tr of 1 hour. However, the proactive VCO
is significantly less susceptible to ∆Tr, and other values of ∆Tr still perform very well.
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Figure 6.11.: The impact of repositioning frequency (∆Tr) on the performance of proactive as-
signment combined with RFRR method.

6.4.2. Maximum Waiting Time

Since the maximum waiting time allowed for picking up a customer (∆Tmax) plays a major role in
the VCO, the section studies its impact on the proactive VCO. As shown in Figure 6.12, using a
tighter time constraint ∆Tmax can significantly affect the overall performance.

It is observed that for a very small ∆Tmax the proactive VCO (without repositioning) shows smaller
improvement over simple VCO: for ∆Tmax of 2 minutes, it has a difference of 15.4% in S% and a
74.3% increment in AMoD profit compared to a difference of 29.4% in S% and an increment of
115.7% in profit for ∆Tmax of 4 minutes. With smaller ∆Tmax, the AMoD vehicles have a smaller
time window to serve the next potential customers, which can lead to comparatively smaller service
quality improvement using proactive VCO. Additionally, a ∆scell of 1 km is used for the experiments
in Figure 6.12. With realistic travel times and ∆Tmax of 2 minutes, the AMoD vehicles cannot reach
all the nodes in a region. Thus, the region-based supply-demand ID estimate will have higher errors
with such a combination of parameters. With larger ∆Tmax, the proactive method can calculate
the supply-demand ID estimate more accurately and better distribute the AMoD vehicles. When
the proactive VCO is combined with the repositioning method for ∆Tmax of 2 minutes, the AMoD
performance is significantly improved. However, the performance is similar to or worse than the
combination of simple VCO and the RFRR method for small ∆Tmax.

In contrast to the above, for a moderate value of ∆Tmax, combining the proactive VCO and the
RFRR repositioning method provides the best performance. The performance could be improved
even further by tuning the other parameters of the combination, such as ∆Tr, ∆scell, and θ. It also
shows a significant improvement over the benchmark (Pavone’s method without proactive VCO).
Compared to a pure explicit repositioning (both Pavone’s and RFRR method), the combination of
proactive VCO and RFRR also reduces the repositioning VKT for all values of ∆Tmax.
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Figure 6.12.: The impact of maximum waiting time allowed (∆Tmax) on the combination of
proactive assignment and repositioning methods.

6.4.3. Fleet Sizing

This section compares the performances of proactive VCO when combined with explicit repositioning
methods and varying fleet sizes. Figure 6.13 compares the AMoD performance of proactive VCO
combined with RFRR for mid- and large-sized fleets. Figure 6.14 compares the different proactive
VCO types when combined with RFRR for the same fleet sizes. Finally, Figure 6.15 shows the AMoD
performance of proactive VCO when combined with min-distance and Pavone’s method and a wider
range of fleet sizes. The following summarizes the most important observations:

• Overall, the explicit repositioning further improves the performance of proactive VCO for all
fleet sizes. Additionally, the improvement is generally higher for small and mid-size fleets. For
larger fleet with a very high S%, the benefits of combining proactive VCO and repositioning
decreases as observed for the fleet of above 4500 vehicles in Figure 6.13; rather, the proactive
VCO performs worse than simple VCO for a fleet of 6000 and 7500 vehicles. However, it should
also be noted that this section uses specific values for parameters; the AMoD performance of
a larger fleet can be improved by further tuning θ and ∆Tr. Since large fleets can serve most
of the customers when combined with repositioning, the proactive VCO should compromise
less on the batch profit (smaller value of θ) and increase the repositioning period ∆Tr (this
section uses 30 minutes for ∆Tr).

• The proactive VCO reduces the repositioning distances for all fleet sizes. However, the proac-
tive VCO has slightly higher Wmean than simple VCO when combined with the repositioning
methods. This is due to the general characteristic of the proactive VCO that increases the
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Figure 6.13.: The AMoD performance of varying fleet size using proactive assignment combined
with repositioning. The fleet sizes of 4500 and 6000 use θ of 5% while others 20%.

pickup distances and waiting times due to compromising the batch profit, as discussed in
section 6.3.1.

• As shown in Figure 6.14 and Figure 6.15, compared to proactive VCOenroute, the proactive
VCOidle shows greater performance improvement over simple VCOidle when combined with the
repositioning method. On average, the combination of proactive VCOidle and RFRR method,
serves 3.1% more customers and increases the AMoD profit by 6.24% relative to simple VCOidle

combined with RFRR method. In comparison, the combination of proactive VCOenroute and
RFRR method serves 0.97% more customers and increases the profit by 0.94% relative to
simple VCOenroute combined with RFRR method. The rest of the observations are the same
as above for the proactive VCOidle compared to simple VCOidle.

• In regards to the performance of other repositioning methods with the proactive VCO, the
min-distance provides slightly better performance than RFRR for small fleets (1500 vehicles)
as shown in Figure 6.15. However, for mid- and large-sized fleets, the RFRR method provides
the best performance.

• Compared to the benchmark method used in the dissertation, i.e. simple VCO with Pavone’s
repositioning, the combination of proactive VCO and RFRR repositioning significantly improves
the AMoD performance. For the VCOidle, on average for all fleet sizes, it serves 4.65%
more customers (a relative increase of 12.6%) with a 9.95% relative increase in profit. The
improvement is higher for smaller fleets; for a fleet of 1500 vehicles, there is a relative increment
of 29% in AMoD profit while 8.1% and -1.1% for a fleet of 4500 and 6000 vehicles, respectively.
Similarly, on average, the combination of proactive VCOenroute and RFRR serves 3.95% more
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Figure 6.14.: The comparison proactive assignment combined with repositioning for different
VCO types. The fleet sizes of 4500 and 6000 use θ of 5% while others 20%.

customers (a relative increase of 6.6%) with a relative profit increment of 5.9%. The fleet of
1500 vehicles has a relative profit increment of 11.24% which reduces to 8.2% and 2.48% for
a fleet of 4500 and 6000 vehicles, respectively.

• Even without repositioning, the proactive VCO outperforms the combination of explicit reposi-
tioning with non-proactive VCO for small and mid-sized fleets (up to a fleet of 3000 vehicles),
especially compared to Pavone’s method; for example, the proactive VCOenroute with 3000
vehicles produces a profit of $1.07 million compared $1.04 million using Pavone’s method and
non-proactive VCOenroute. This shows the effectiveness of using the proactive assignment
approach.

In summary, the results show the potential benefits of using the proactive VCO method. A sig-
nificant performance improvement is observed even if the proactive VCO is used without explicitly
repositioning idle vehicles. However, combining the proactive VCO with the repositioning method
shows further AMoD performance improvement. It even outperforms the AMoD performances ob-
served in chapter 5, which could be further improved by tuning the parameters of the methods used.
The improvements are also found to be consistent for multiple fleet sizes.
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Figure 6.15.: The AMoD performance of combination of proactive VCO with multiple reposi-
tioning methods. The fleet sizes of 4500 and 6000 use θ of 5% while others 20%.

The RFRRp and RFRRf use ω
sup(v)
z for vehicle supply estimate and γ of 0.7.

6.5. Conclusion

This chapter presented a proactive assignment method for the AMoD services. The method com-
pliments VCO and can be used with any VCO method. Primarily, it compromises a percentage of
the original objective function of VCO to achieve long-term supply-demand balance in small steps.
The chapter formulated for both VCO types used in the dissertation. Even though the proactive
assignment method can be used without ID, the results indicated that using region-based estimation
to ID in the proactive assignment method provides higher performance, especially when the operation
area is divided into smaller regions. The results show that the proactive VCO significantly improves
the AMoD performance without the need for explicit repositioning of idle vehicles — in some cases,
it even outperforms repositioning methods with non-proactive VCO. The performance of proactive
VCO increases further when used together with repositioning methods. This additionally allows a
higher repositioning period as the proactive VCO already reduces the need to reposition idle vehicles
explicitly.
This chapter concludes the main contributions of the dissertation. The next chapter provides the

overall summary and conclusion of the dissertation.
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Chapter 7.

Conclusion

This chapter summarizes the overall findings of the dissertation by answering the research questions
raised in section 1.3. It also discusses the limitations of the dissertation that must be observed
when using the results. Finally, it describes the potential areas for future extensions of the methods
developed in the dissertation.

7.1. Summary of the Research

To improve the efficiency and performance of AMoD services, the dissertation is divided into three
main contributions: (1) the development of a novel spatiotemporal relation to describe AMoD
supply-demand imbalance (chapter 4), (2) the development of novel repositioning algorithms based
on the newly developed spatiotemporal relation (chapter 5) and (3) the development of a novel
VCO technique that uses the spatiotemporal relation for proactively minimizing the supply-demand
imbalance (chapter 6). Each chapter answered the research questions of section 1.3. The following
discusses their main findings and how they answered the related questions.

7.1.1. Novel Spatiotemporal Relationship

The first significant research gap focused on in the dissertation is the lack of a consistent spatiotem-
poral relationship between the AMoD supply and demand. Often, the literature divides the operation
area into a disjoint set of regions to measure the supply-demand imbalance in each region. This
presupposes that the individual regions are independent such that an AMoD vehicle from one region
only serves the customers in that region. Some researchers tried to solve this problem using hier-
archical regions. Nevertheless, there is still a lack of a consistent relationship that could describe
a spatiotemporal relationship between supply and demand. Therefore, chapter 4 focused on the
following two questions:

• RQ 1.1: How can a vehicle distribution model be defined that is independent or at least loosely
bound to regional shapes?

• RQ 1.2: Does the above distribution model has a strong and consistent relationship between
states of individual regions and the overall AMoD system? How can it be measured?

To answer RQ 1.1, chapter 4 took inspiration from KDE to build a novel spatiotemporal metric
for the AMoD services. KDE is a commonly used non-parametric statistical tool that uses kernel
functions at each data point to estimate the underlying pdf. To make the relationship independent
of regions, chapter 4 modified the kernel functions to reachability functions (RFs). An RF uses the
maximum allowed customer waiting time to calculate the reachable distance (bandwidth) of an RF, in
contrast to a KDE where all kernels use the same bandwidths. This helped to define supply-demand
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imbalance in the form of a imbalance density (ID) function. An ID directly uses the vehicle and
customer pickup locations independent of operational regions.
To answer RQ 1.2, chapter 4 used agent-based simulation in the Manhattan area using NYC data.

It first simulated the AMoD scenario with different VCO methods and calculated how well a disjoint
set of independent regions and ID describe the VCO decisions. The simulation data of each VCO
batch was used separately to observe which relationship better describes the AMoD operation. The
chapter followed the procedure that simulation data is only passively used in the analysis, guaranteeing
any relationship observed between AMoD supply and demand is not due to the manipulation of the
VCO decisions by the underlying assumption being observed. The following summarizes the main
findings:

• Regarding the assumption of independent regions, the simulation results showed that many
vehicles serve customers from the neighboring regions, especially when the regions are small
and contiguous. This confirmed the primary hypothesis of the research, i.e., the assumption
of independent regions does not accurately describe the AMoD operation.

• The ID relation accurately describes the VCO decisions in terms of customer waiting times and
probability of being served by an AMoD vehicle. However, the strength of the relationship in
describing the service quality at each geographical location also depends on the VCO method
used. The VCOidle method that only uses the idle vehicle for the assignment showed a strong
relationship between customer waiting times and the probability of being served by an AMoD
vehicle. In contrast, the VCOenroute only showed a strong relationship with the probability of
being served.

• The ID also provides a novel way of plotting the offered AMoD service quality in the form
of a heat map. The heat map helps identify service quality provided in different parts of the
operation area; the parts with negative ID marks the areas with a deficiency of vehicles, while
the parts with positive ID marks the areas with surplus vehicles. The magnitude of ID also
indicates the level of deficiency or surplus. Thus, the ID serves as an essential spatiotemporal
metric for the AMoD service quality. The chapter asserts that any method that actively
minimizes the supply-demand ID will improve the AMoD service quality.

7.1.2. Repositioning Method

The assumption of independent regions is mostly used with other AMoD algorithms to improve
service quality. Among these, the most famous are the algorithms that periodically reposition idle
vehicles to higher-demand regions. This resolves the supply-demand imbalance accumulated over
time. The dissertation suggested that the assumption of independent regions limits tapping the full
potential of repositioning algorithms. Thus, chapter 5 aimed to answer the following question:

• RQ 2.1: How can the newly developed vehicle distribution model be incorporated into the
repositioning problem?

To answer the above question, chapter 5 developed novel repositioning methods that incorporate
the ID in its formulation. For this purpose, it first developed a general repositioning formulation
that directly used ID based on raw coordinates of vehicle supply and demand. However, such a
repositioning formulation leads to impractical computational complexity. Additionally, vehicle and
customer forecasts are usually unavailable on such a granularity. Usually, the forecasts are available
on a regional level. Thus, instead of using the ID based on raw coordinates, chapter 5 used its

156



7.1. Summary of the Research

region-based estimation. Accordingly, three reachability function based repositioning (RFR) methods
were developed depending on the regional restrictions on the origins and destinations of repositioning
vehicles: RFRR, RFRRp and RFRRf. The RFRR only allowed repositioning from surplus to deficiency
regions, RFRRp additionally allowed repositioning from surplus to all regions, and RFRRf did not
have any regional restriction. Thus, RFRRf optimized the ID as much as possible, followed by RFRRp
and RFRR, respectively.
Chapter 5 tested the performances of RFR methods against Pavone’s method [Pavone et al.,

2012]. Although Pavone’s method is old, the method is often used in the AMoD literature. Addi-
tionally, it provided the best performance among other methods tested in the dissertation1. Pavone’s
method uses the assumption of independent regions and tries to distribute the excess vehicles equally
among regions. Additionally, chapter 5 also developed a separate independent regions based formu-
lation called the min-distance method that sent just enough vehicles to each region that satisfies the
regional demand. Although the RFR methods also used region-based formulation, the key difference
between RFR and independent regions based methods is that the RFR considered the impact of
neighboring regions in repositioning decisions. The following summarizes the key findings:

• The consideration of ID density in repositioning decisions significantly improves AMoD perfor-
mance.

• Despite the performance improvement by using ID, the unrestricted minimization of estimated
ID can lead to a deteriorated performance. Thus, RFRRp and RFRRf are observed to perform
worse than RFRR method. The estimation of long-term vehicle supply plays a significant role
in this behavior. Since the RFRRp and RFRRf have a higher emphasis on optimizing the ID,
the consequences of wrong repositioning decisions are more severe in comparison to RFRR
method, which mitigates the adverse effects by using regional restrictions. This is especially
problematic during the night hours when there is a significant increase in idle vehicles and the
RFRRp and RFRRf methods lead to a high repositioning VKT to balance the ID. This also
makes the RFRRp and RFRRf perform better when the customer destination points are not
used for estimating the long-term supply of vehicles.

• In a ID-based analysis of VCO batches (similar to the one performed in chapter 4), it is found
that even though the min-distance method does not directly optimize the long-term ID, it still
leads many customers to be on the positive side of ID metric. This makes the min-distance
method provide the second best AMoD performance after RFRR method. This also shows that
even the methods that do not necessarily consider ID in their formulation can still lead to a
good distribution of ID values measured for individual VCO batches. The main reason for this is
that unlike the ID measured for individual VCO batches, the repositioning formulation deal with
long-term forecast values and estimation of future ID, which is not necessarily equivalent to
the actual ID values of each VCO batch. This behavior is further affected by the repositioning
of vehicles taking some time to reach their destinations.

7.1.3. Proactive Vehicle Assignment Method

While chapter 5 mainly focused on improving the AMoD services by efficient repositioning of idle
vehicles, chapter 6 focused on proactively mitigating the emergence of supply-demand imbalance.
This means that the vehicles are assigned to customers in a way that improves the long-term supply-
demand imbalance. This would also reduce the need for frequent repositioning of idle vehicles. Thus,
the chapter focused on two main questions:

1Appendix B presents the formulations used for the benchmark methods.
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• RQ 3.1: How to incorporate the statistical information inside a VCO?

• RQ 3.2: How to utilize the vehicle distribution model developed in RQ 1.1 into the proactive
VCO?

To answer RQ 3.1, chapter 6 built a proactive assignment method that complements other VCO
methods. The fundamental concept of the approach is to compromise a percentage of the VCO
objective (i.e., monetary profit in the dissertation) to get an assignment of vehicles that mitigates
the supply-demand imbalance. This raised a secondary question of how to measure the impact of
each VCO decision on the supply-demand imbalance. To answer this question, chapter 6 used the
VCO decision variables in supply-demand imbalance measurement. Then, to address RQ 3.2, it
incorporated the region-based ID in the newly developed formulation. The following summarizes the
main findings:

• The proactive VCO schemes significantly improves the AMoD performance. Even a small
compromise of the batch profit ranging from 5 to 20% —depending on the fleet size— can
improve the AMoD profit by 60 to 100%.

• The proactive VCO was tested with both types of VCO methods used in the dissertation, i.e.
VCOidle and VCOenroute. It improves the AMoD performance in both cases, indicating the
complementary nature of the method.

• To measure the benefits of using ID in the formulation, the proactive VCO was also tested
using a formulation based on the assumption of independent regions. The incorporation of ID
into the formulation significantly improves the AMoD performance, especially when the region
sizes are small. This is due to a higher accuracy of ID estimation for smaller regions.

• The proactive VCO provides significantly better performance when the vehicle supply forecast
does not utilize the future customers’ destinations. This behavior is similar to the RFRRf
method. Since both approaches try to distribute the vehicles in a way that reduces the ID as
much as possible, any error in the vehicle-supply estimate deteriorates the performance.

• The proactive VCO reduces the supply-demand imbalance while serving customer requests.
Some idle vehicles would still require explicit repositioning for even higher performance. Thus,
the dissertation found that the combination of proactive VCO and the repositioning meth-
ods (especially the RFRR method) provides the best AMoD performance. It was also found
that with proactive VCO, even a very low-frequency repositioning frequency does not signif-
icantly affect performance. This shows that with proactive VCO, the requirement of explicit
repositioning is reduced considerably.

7.1.4. Overall AMoD improvement

As described in section 1.3, the main question researched in the dissertation is the following:

• MRQ: How to improve the overall AMoD performance using novel FC methods?

By developing the novel FC methods based on spatiotemporal relation, the dissertation answered
the MRQ. Combining the proactive VCO and the RFRR repositioning method significantly improves
over the benchmark method, i.e., Pavone’s repositioning method without proactive assignment. Ta-
ble 7.1 summarizes the overall performance gain achieved using the techniques developed in the
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3000 vehicles
Average for all

fleet sizes

Compared to Method
Customers

Served
Porfit

Customers

Served
Porfit

Proactive Assignment

(Without Repositioning)
89.6% 105.6% 67.3% 81%

RFRR Repositioning 91.1% 109.8% 75.9% 92.7%Without repositioning

and proactive assignment Proactive Assignment and

RFRR repositioning
99.6% 116.3% 80.5% 95%

Proactive Assignment

(Without Repositioning)
3.4% 2.7% -1.0% -1.4%

RFRR Repositioning 4.2% 4.8% 4.1% 4.9%
Pavone’s repositioning

method without

proactive assignment
Proactive Assignment

and RFRR repositioning
8.9% 8% 6.6% 5.9%

Table 7.1.: Summary of the overall AMoD performance gain. The values show percent-
age improvement over the simulation configuration given in the left column using
VCOenroute. The improvement for the default configuration used (i.e., a fleet of 3000
vehicles) is shown separately.

dissertation. Compared to a simple AMoD scenario without repositioning, on average, for all fleet
sizes, the proactive assignment serves 67.3% more customers with an 81% increase in the AMoD
profit. This improvement is crucial for the AMoD services, especially when no explicit repositioning
of idle vehicles is required to achieve it. For mid-sized fleets (for example, 3000 vehicles), the per-
formance of the proactive assignment is even better than the explicit repositioning of the benchmark
method — 3.4% increase in customers served and 2.7% increment in AMoD profit. However, the
proactive assignment alone cannot keep up with the benchmark method for larger fleets and performs
worse on average for all fleet sizes than the benchmark method.

The introduced repositioning method RFRR also performs significantly better than the benchmark
method, serving 4.2% more customers and producing 4.8% more profit for a fleet of 3000 vehicles.
On average, it serves 4.1% more customers for all fleets with a profit gain of 4.9%. The most
important outcome of the dissertation is produced when the proactive assignment is combined with
the repositioning method RFRR. It doubles the performance gain of RFRR over the benchmark
method for mid-sized fleets, serving 8.9% more customers and producing 8% more profit. On
average, for all fleets, this combination serves 6.6% more customers with an improvement in AMoD
profit of 5.9%. Such performance improvement may appear small at first sight, but it must be noted
that these improvements are just for two days of simulation. When projected for a whole year, this
produces a significant monetary gain. For example, for a fleet of 3000 vehicles, this means a daily
gain of 42 thousand dollars and a yearly gain of almost 15.3 million dollars.

This concludes the summary of the main findings of the dissertation. The following section
discusses the main limitations and potential of future research.

7.2. Limitations and Future Research

While the dissertation attempted to use a realistic AMoD simulation for testing the methods, some
underlying assumptions may limit their application and must be considered when interpreting the
results. The following provides the list of the most important limitations and the main areas of
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improvement for future research:

• The methods were developed and tested for AMoD service without pooling customers; thus,
pooling of customers can significantly affect the performance and may require modifications of
the methods. Therefore, future research should focus on extending the RFs based spatiotem-
poral metric to the pooling of customers in AMoD services. Accordingly, future research should
develop the RFR and the proactive assignment methods to pool customers.

• The dissertation used a simplistic customer model where each AMoD offer is accepted by the
customer. In reality, the decision to accept or reject the AMoD offer is a complicated process
depending on multiple factors. Some methods introduced, especially proactive VCO, may
perform differently when tested with a more realistic customer model. Thus, in the future, the
methods should be tested with more advanced customer models. This is especially important
for the proactive assignment approach, where some customers may have a higher waiting time
or do not even get an AMoD offer based on their destination location. It is essential to include
these factors in the customer’s decision to accept or reject the offers or even in deciding whether
to use the AMoD service in the future. On the AMoD side, the performance can be affected
by late-arrival, no-shows, or cancellation of the requested ride, which should be investigated in
the future.

• Even though the proactive assignment method leads to significant improvement in AMoD
performance, the strategy does not consider the equal treatment of all customer requests
regardless of their destination locations. This may hinder its use in an actual AMoD service.
Therefore, future research can focus on a dynamic pricing strategy that compensates the
customers via monetary gains or coupons. In this regard, interesting research would be to
combine proactive VCO with block-chain based currency like Mobility Coin[Blum et al., 2022],
which would allow the customers to utilize the compensation points in other modes of transport.

• The simulation framework used in the dissertation only considered a single AMoD service.
In reality, similar to current MoD services, the future AMoD services will also have AMoD
competitors operating in the same area. This limits the application of some of the FC methods
used in the dissertation. Thus, in the future, the methods must be tested in a simulation
environment where the customers can select among multiple AMoD operators.

• The dissertation used AMoD simulation in Manhattan area using NYC data. Compared to
other cities, the Manhattan area is small, with a very high concentration of trips. Usually, the
performance of an FC method depends on the overall vehicle supply and demand ratio in the
data used. The FC methods introduced may perform differently when tested on other data
sources and cities. Thus, future research can apply the introduced methods to other data sets
and cities.

• The dissertation used two specific VCO methods to assign vehicles to customers. However, the
literature contains multiple VCO methods, including the ones based on the reoptimization of
already assigned customers. These VCO methods can also significantly impact the performance
and can be investigated in the future.

• For the calculation of RF bandwidths, the dissertation developed and used AP algorithm.
However, a different approach for their calculation may significantly affect performance. Addi-
tionally, the travel times only changed every 30 minutes in the simulation environment, allowing
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the preprocessing of the RF bandwidths for each period. Future research can focus on devel-
oping a method that can calculate RF bandwidth in real-time using more accurate network
data. This would allow the usage of the RF based methods in real AMoD services.

• The dissertation used NYC data to derive realistic travel times that change every 30 minutes.
The effects of congestion were implicitly included by scaling each network edge. Nevertheless,
the simulation did not use a microscopic traffic simulation with realistic congestion effects,
which may be focused on in future research.

• The simulations also did not consider additional maintenance tasks like cleaning and refueling
vehicles, which can also affect performance. These can also be investigated in the future.

In summary, the AMoD services are still in the pilot phase, and the above assumption had to
be made to focus on the research questions. Overall, the methods introduced improved the AMoD
performance significantly, which is expected to perform even better with the above suggestions for
future research.
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Mathematical Notations

The following table summarizes the mathematical notations used throughout the dissertation. For
clarity, any symbol used only in one section is not included in the list; thus, those symbols are only
explained in the respective section. Additionally, some notations, like the decision variables for an
optimization problem, are reused in multiple sections and hence, not included in the following list.
If a notation represents a parameter requiring a numerical value, the following table lists its default
value used in the dissertation. The table also includes the section where the notation is mainly
defined. For a detailed description of the notation, refer to the related section.

Symbol Description Default Value Section

cD The distance-based cost of an AMoD vehicle. $0.25 per km 3.1.2
cF The fixed daily cost of an AMoD vehicle. $25 per vehicle 3.1.2
cV OT The monetary cost for the value of time of customers

(not used in the dissertation).
3.1.3

dr The drop-off location of a customer r ∈ R. 3.1

dpdr The distance from pickup location pr to drop-off
location dr of a customer r ∈ R

3.1.2

Dempty
total The total empty distance driven by AMoD fleet in a

single simulation run.
3.1.4

Dempty
% The percentage of empty distance out of total dis-

tance driven by the AMoD fleet.
3.1.4

Dpick
% The percentage of the total distance driven by

AMoD fleet for picking up customers.
3.1.4

Dpick
mean The mean pickup distance driven by AMoD fleet for

picking up customers.
3.1.4

Dpick
total The total distance driven by AMoD fleet for picking

up customers.
3.1.4

Drepo
% The percentage of the total distance driven by

AMoD fleet for repositioning of idle vehicles to
demand-intensive regions.

3.1.4

E The edges of the bipartite graph G connecting ve-
hicles and customer requests. An edge only exists
if the vehicle can pick up the customer within the
time-window [tr, tr +∆Tmax].

3.1.3

Enet The edges of the graph Gnet. 4.2.4
fD The distance-based variable fare charged from the

customer.
$0.5 per km 3.1.2

G The bipartite graph of feasible assignments between
vehicles and customer requests used for vehicle con-
trol optimization problem.

3.1.3
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Symbol Description Default Value Section

Gnet The graph of the city network used. 4.2.4
h The bandwidth of the kernel function used in KDE.

The dissertation uses it to measure reachable dis-
tances from a point in reachability functions.

4.2.1,
4.2.2

K(x) A smooth kernel function usually used in KDE. The
dissertation uses it as a reachability function.

2D triangular func-
tion

4.2.1,
4.2.2

k(x, xi, h) A kernel function K(x) with an offset. The notation
means that a kernel function K(x) is centered at the
point xi having a bandwidth h.

4.2.1

K≥0 Integral of p̄Z(x) over the domain with positive val-
ues of p̄Z(x).

5.5.2

K≤0 Integral of p̄Z(x) over the domain with negative val-
ues of p̄Z(x).

5.5.2

Nnet The nodes of the city network graph Gnet. 4.2.4
p̄(x) The reachability density function that inter-connects

individual geographical points using reachability
functions.

4.2.2

p̄Z(x) Region-based approximation to reachability density
function p̄(x) using regions Z. The centroids of the
regions in Z are used as data points.

5.4.2

pr The pickup location of a customer r ∈ R. 3.1
R The set of all customer requests. 3.1
S% The percentage of the customers served. 3.1.4
tr The time at which a single customer r ∈ R requests

a ride.
3.1

U% The fleet utilization is defined as the percentage of
time the AMoD fleet was busy. It can also be defined
for specific tasks like customer pickups or reposition-
ing, represented by the specific task mentioned after
U%.

3.1.4

V The fleet of AMoD vehicles. 3000 vehicles 3.1
Wmean The mean waiting time of picking up customers. 3.1.4
WZ The set of all forecast weights ωz for the regions Z. 5.2.2
x A single data point used in the kernel or reachabil-

ity function. In the dissertation, it represents a 2D
coordinate on the map.

4.2.1,
4.2.2

Z The set of all the regions in the area of operation.
In the dissertation, this refers to the set of regions
obtained using a regular grid.

3.3.2,
5.2.2

γ The relative importance of the supply-demand im-
balance objective to the travel distance objective
for reachability functions based repositioning (RFR)
methods.

5.4.4

∆Kabs The change in the absolute values of K≥0 and K≤0

caused by repositioning.
5.5.2
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Symbol Description Default Value Section

∆scell The size of a single cell in the regular grid. It spec-
ifies the regular grid used for generating the AMoD
operational regions. ∆scell is also used spatio-
temporal scaling of the travel times of the network.

1 km 3.2.3

∆Tbatch The batching period used for accumulating customer
requests before solving a vehicle control optimization
problem.

30 seconds 3.1.3

∆Th The time horizon of AMoD supply and demand fore-
cast used for repositioning of idle vehicles.

30 minutes 5.2.2

∆Tmax The maximum waiting time starting from tr allowed
to pick up a single customer

6 minutes 3.1

∆Tph The time horizon of AMoD supply and demand fore-
cast used for proactive vehicle control optimization
method.

15 minutes 6.2.2

∆Tr The time period used for repositioning of idle vehi-
cles.

30 minutes 5.2.2

∆Tscale The period used for grouping the historical trips for
scaling the travel times of the network.

30 minutes 3.3

ζ The base fare charged per served customer. $2.5 per customer 3.1.2
η The set of all forecast weights ηz for the regions

Z used for proactive vehicle control optimization
method.

6.2.2

ηz The forecast weight of zone z ∈ Z used for proactive
vehicle control optimization method, given as ηz =
ηsupz − ηdemz .

6.2.2

ηdemz The weight for customer demand forecast in zone
z ∈ Z used for proactive vehicle control optimization
method.

6.2.2

ηsupz The weight for vehicle supply forecast in zone z ∈
Z used for proactive vehicle control optimization
method.

6.2.2

η
sup(c)
z A type of vehicle supply forecast (ηsupz ) where cus-

tomer destination points are also included in the re-
gional weights.

6.2.2

η
sup(v)
z A type of vehicle supply forecast (ηsupz ) where only

the current information of vehicle routes is used for
regional weights.

6.2.2

ρimb(x) An imbalance density function for linking the supply-
demand imbalance using raw coordinates and reach-
ability functions.

4.2.3

ωz The forecast weight of zone z ∈ Z used for reposi-
tioning, given as ωz = ωsup

z − ωdem
z .

5.2.2

ωdem
z The forecast weight for customer demand in zone

z ∈ Z used for repositioning.
5.2.2
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Symbol Description Default Value Section

ωsup
z The forecast weight for vehicle supply in zone z ∈ Z

used for repositioning.
5.2.2

ω
sup(c)
z A type of vehicle supply forecast (ωsup

z ) where cus-
tomer destination points are also included in the re-
gional weights.

5.2.2

ω
sup(v)
z A type of vehicle supply forecast (ωsup

z ) where only
the current information of vehicle routes is used for
regional weights.

5.2.2
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Oh; Ravi Seshadri; Diem-Trinh Le (Mar. 2023). “Examining the Effects of Automated
Mobility-on-Demand Services on Public Transport Systems Using an Agent-Based Simula-
tion Approach”. In: Transportation Research Part A: Policy and Practice 169, p. 103583.
issn: 0965-8564. DOI: 10.1016/j.tra.2023.103583.

Nocedal, Jorge; Stephen Wright (2006). Numerical optimization. Springer Science & Busi-
ness Media.

Nordhoff, Sina; Joost de Winter; Miltos Kyriakidis; Bart van Arem; Riender
Happee (Apr. 2018). “Acceptance of Driverless Vehicles: Results from a Large Cross-
National Questionnaire Study”. In: Journal of Advanced Transportation 2018, e5382192.
issn: 0197-6729. DOI: 10.1155/2018/5382192.

OpenStreetMap (2017). Planet dump retrieved from https://planet.osm.org. https://www.
openstreetmap.org.

Padberg, Manfred; Giovanni Rinaldi (1987). “Optimization of a 532-city symmetric trav-
eling salesman problem by branch and cut”. In: Operations research letters 6.1, pp. 1–7.

Pantelidis, Theodoros P.; Li Li; Tai-Yu Ma; Joseph Y. J. Chow; Saif Eddin G. Jabari
(May 2022). “A Node-Charge Graph-Based Online Carshare Rebalancing Policy with Ca-
pacitated Electric Charging”. In: Transportation Science 56.3, pp. 654–676. issn: 0041-1655.
DOI: 10.1287/trsc.2021.1058.

187

https://doi.org/10.4271/2017-01-1276
https://www.forbes.com/sites/johanmoreno/2021/01/22/waymo-ceo-says-tesla-is-not-a-competitor-gives-estimated-cost-of-autonomous-vehicles/
https://www.forbes.com/sites/johanmoreno/2021/01/22/waymo-ceo-says-tesla-is-not-a-competitor-gives-estimated-cost-of-autonomous-vehicles/
https://doi.org/10.1023/A:1026123329433
https://doi.org/10.1016/j.tra.2023.103581
https://doi.org/10.1016/j.trc.2019.12.008
https://doi.org/10.5555/3327546.3327651
https://doi.org/10.1016/j.tra.2023.103583
https://doi.org/10.1155/2018/5382192
 https://www.openstreetmap.org 
 https://www.openstreetmap.org 
https://doi.org/10.1287/trsc.2021.1058


Bibliography

Parent, M.; P. Daviet (July 1993). “Automatic Driving For Small Public Urban Vehicles”.
In: Proceedings of the Intelligent Vehicles ’93 Symposium, pp. 402–407.
DOI: 10.1109/IVS.1993.697360.

Parent, Michel; Arnaud de La Fortelle (Nov. 2005). “Cybercars : Past, Present and
Future of the Technology”. In.

Parzen, Emanuel (1962). “On Estimation of a Probability Density Function and Mode”.
In: The Annals of Mathematical Statistics 33.3, pp. 1065–1076. issn: 0003-4851. JSTOR:
2237880. (Visited on 06/20/2023).

Pavone, Marco (2015). “Autonomous Mobility-on-Demand Systems for Future Urban Mobil-
ity”. In: Autonomes Fahren. Ed. by Markus Maurer; J. Christian Gerdes; Barbara
Lenz; Hermann Winner. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 399–416.
isbn: 978-3-662-45853-2 978-3-662-45854-9. DOI: 10.1007/978-3-662-45854-9 19.

Pavone, Marco; Stephen L Smith; Emilio Frazzoli; Daniela Rus (June 2012). “Robotic
Load Balancing for Mobility-on-Demand Systems”. In: The International Journal of Robotics
Research 31.7, pp. 839–854. issn: 0278-3649, 1741-3176. DOI: 10.1177/0278364912444766.

Pinto, Helen K. R. F.; Michael F. Hyland; Hani S. Mahmassani; I. Ömer Verbas (Apr.
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Appendix

A. Overview Table for the Literature Reviewed

Section 2.5 discussed the AMoD literature using three main categories: service type (section 2.5.2),
overall System modeling (section 2.6), and fleet management (section 2.5.4). This section overviews
the AMoD literature included in the dissertation using these categories. For a detailed description
of each of the categories, the reader is referred to the corresponding sections mentioned above. For
conciseness, the following abbreviations are adopted for each of the categories. If it is clear that
the reviewed work must have an entry for a particular category but the description in the paper is
unclear, then the dissertation uses the symbol “X” (unknown) for that category. Additionally, to
reduce the number of symbols, instead of a separate category “mix” for a combination of possible
options for a characteristic, the table directly lists the applicable options.

Service Type

• Sharing System: Ride-Hailing (RH), Ride-Sharing (RS)

• Booking Type:

– Announcement: On-demand(O), Reservation based (RB)

– Serving Flexibility: All binding (AB), Immediate Rejection (IR), Rejection after a period
(RT)

• Electrification: Charging Infrastructure (CI):

– Allowed to charge at public CI (PCI)

– Specific CI for the AMoD service (SCI)

• Fleet Composition: Homogeneous (H), Non-homogeneous(NH)

• Integration with other transport modes:

– Integrated: First and last mile (FL), Full network integration (FN)

– Independent (IND)

• Pricing (includes the objective function used for vehicle assignments)

– Price structure: base-fare (BF), distance-based (DB), time-based (TB), price split for
ride sharing (SRS)

– Dynamism: Surge Pricing (SP), Congestion Pricing (CP), Detour-based (DeB)

AMoD System Model

• Agent Models:
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– Customer (C): Simple with only request time (SR), Leave system based on waiting time
(W), Accept/Reject (AR)

– Vehicle (V): Independent points (IP), Interactive with other vehicles (ItV)

• Demand Modeling: Taxi or MoD data (Data), Demand Models (Model)

• Transport Network:

– 2D continuous plane (CP)

– Grid Network (GN)

– Node-link network (NL):

∗ Coarse (C)

∗ Road-level (R)

• Traffic Model: Manhattan Metric (MM), Euclidean Metric (EM), Scaled free-flow (SFF),
Traffic Simulation (TS).

• Integration model with other transport modes:

– Line-based (LB)

– Traffic Simulation (TS)

Fleet Management

• Vehicle Assignment:

– Dynamism: Immediate Response (IR), Batching (B)

– Solution Method: Heuristic(H), Optimization (O)

– Vehicles considered in the assignment method: Only idle (I), Idle and enroute (E)

– Reassignment (RA)

– Re-optimization (RE)

• Repositioning:

– Short-term (ST):

∗ Explicit repositioning (E)

∗ Predictive Routing (P)

– Mid-term (MT)

• Charging method: Heuristic (H), Dynamic programming (DP), Model predictive control
(MPC), Rest of the optimization-based formulation (O),
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Alam et al. [2018] Halifax RH O,
RT

H TB C (W),
V (ItV)

Model NL (R) TS VISSIM IR H I

Alazzawi et al. [2018] Milan RH O,
AB

H TB C (SR),
V(ItV)

Model NL (R) TS SUMO IR H I

Al-Kanj et al. [2020] Virtual RH O, IR SCI H DB,
SP

C(W,AR),
V(IP)

Model GN B O I, E DP

Alonso-Mora et al. [2017] Manhattan RS O, IR H TB,
DeB

C(W),
V(IP)

Data NL (R) SFF B O I, E RA,
RE

ST (E)

Alonso-Mora et al. [2017] Manhattan RS O, IR H TB,
DeB

C(W),
V(IP)

Data NL (R) SFF B O I, E RA,
RE

ST (P)

Atasoy et al. [2015] Hino RS O,
RB,
IR

NH BF,TB,
DB

C(W,AR),
V(IP)

Model NL (R) SFF B O I, E

Azevedo et al. [2016] Singapore RH O,
AB

H IND TB,DB C(SR),
V(ItV)

Model NL (R) TS SimMobility TS B H, O I, E MT

Basu et al. [2018] Virtual RS O,
AB

H FL TB,DB C(SR),
V(ItV)

Model NL (R) TS SimMobility TS B O I, E MT

Bauer et al. [2018] Manhattan RH O,
AB

SCI H DB C(SR),
V(IP)

Data NL (R) SFF B H I MT H

Bilali et al. [2022] Munich RS O,
AB

H DB C(SR),
V(ItV)

Data NL (R) TS Aimsun B O I, E

Bischoff et al. [2016] Berlin RH O,
AB

H DB C(SR),
V(ItV)

Model NL (R) TS MATSIM B H I

Boesch et al. [2016] Zurich RH O,
RT

H DB C(W),
V(ItV)

Model NL (R) TS MATSIM IR H I

Chen et al. [2016] Austin RH O,
AB

SCI H DB C(SR),
V(IP)

Model GN MM IR H I ST (E) H

Chouaki et al. [2021] Paris RS O,
AB

SCI H IND TB, DB C(SR),
V(ItV)

Model NL (R) TS SUMO TS IR H I, E H

Dandl et al. [2017] Munich RH O, IR H TB C(W,AR),
V(ItV)

Model NL (R) TS Aimsun IR H I, E

Dandl et al. [2018] Munich RH O, IR H TB C(W),
V(IP)

Model NL (R) SFF IR, B O I, E RA,
RE

Dandl et al. [2019] Munich RH O, IR SCI H TB, DB C(W),
V(ItV)

Data NL (R) SFF B O I, E MT H

Dandl et al. [2019] Manhattan RH O,IR,
RT

H TB, DB C(SR),
V(IP)

Data NL (R) SFF IR, B H, O I, E RA,
RE

Dandl et al. [2019] Manhattan RH O,
AB

H TB, DB,
BF

C(SR),
V(IP)

Data NL (R) SFF B O I, E ST (E)

Dandl et al. [2020] Manhattan,
Chicago

RH O, IR H BF, DB C(W,
AR),
V(IP)

Data NL (R) SFF B O I, E RA,
RE

ST
(E)
MT

Dandl et al. [2020] Munich RH O,
AB

SCI H Data MPC

Dandl et al. [2021] Virtual RH,
RS

O, IR H C(SR,W),
V(IP)

O RA,
RE

Dandl et al. [2022] Munich RH,
RS

O,
RB,
IR

H IND DB,BF C(W),
V(IP)

Model NL (R) SFF FleetPy LB IR, B H, O I, E RA,
RE

MT

Dia et al. [2017] Melbourne RH O,
AB

H C(SR),
V(IP)

Model NL (R) SFF B H I MT

Duan et al. [2020] Manhattan RH O,
RB

H DB C(SR),
V(IP)

Data NL (R) SFF B O I, E RA,
RE

ST (E)

197



B
ib
liog

rap
h
y

Service Type System Model Fleet Management

Citation City S
h
ar
in
g
S
ys
te
m

B
o
o
k
in
g
T
yp

e

E
le
ct
ri
fi
ca

ti
o
n
C
I

F
le
et

C
o
m
p
o
si
ti
o
n

In
te
g
ra
ti
o
n
T
yp

e

P
ri
ci
n
g

A
g
en

t
M
o
d
el
s

D
em

a
n
d
M
o
d
el
in
g

T
ra
n
sp

o
rt

N
et
w
o
rk

T
ra
ffi
c
M
o
d
el

T
S
S
o
ft
w
ar
e

In
te
g
ra
ti
o
n
M
o
d
el

D
yn

a
m
is
m

S
o
lu
ti
o
n
M
et
h
o
d

V
eh

ic
le
s
C
o
n
si
d
er
ed

R
ea

ss
ig
n
,
R
e-
o
p
ti
m
iz
e

R
ep

o
si
ti
o
n
in
g

C
h
ar
g
in
g
M
et
h
o
d

Engelhardt et al. [2019] Munich RS O, IR H DB,
DeB

C(W,AR),
V(IP)

Model NL (R) SFF B O I, E RA,
RE

Engelhardt et al. [2020] Munich RS O, IR H DB,
DeB

C(W),
V(IP)

Model NL (R) SFF B H, O I, E RA,
RE

Engelhardt et al. [2021] Munich RS O, IR H TB, DB C(W),
V(IP)

Model NL (R) SFF B O I, E RA,
RE

ST (P)

Engelhardt et al. [2022] Manhattan RS O,
RB,
IR

H TB, DB C(W),
V(IP)

Data NL (R) SFF B O I, E RA,
RE

ST (E)

Engelhardt et al. [2022] Manhattan RS O, IR H DB C(W),
V(IP)

Data NL (R) SFF IR, B H, O I, E RA,
RE

MT

Erdmann et al. [2019] Manhattan RH O,
AB

H TB C(SR,
AR),
V(IP)

Data GN MM IR, B H, O I RA,
RE

Erdmann et al. [2021] Manhattan RH O, IR H DB C(W,
AR),
V(IP)

Data NL (R) SFF IR, B H, O I, E RA,
RE

MT

Fagnant et al. [2014] Austin RH O,
AB

H TB C(SR),
V(IP)

Model GN EM IR H I MT

Fagnant et al. [2016] Austin RH O,
AB

H TB C(SR),
V(ItV)

Model NL (R) TS MATSIM IR H I, E MT

Fagnant et al. [2018] Austin RS O,
AB

H TB C(SR),
V(ItV)

Model NL (R) TS MATSIM IR H I, E MT

Farhan et al. [2018] Austin RS O,
AB

SCI H DB C(SR),
V(IP)

Model GN MM B H I, E H

Fehn et al. [2019] Munich RH O,
AB

SCI H TB C(SR),
V(IP)

Model NL (R) SFF IR H I H

Fehn et al. [2021] Munich RS O,
AB

H Data NL (R) TS Aimsun

Fielbaum et al. [2021] Manhattan RS O, IR H TB C(W),
V(IP)

Data NL (R) SFF B O I, E RA,
RE

ST

Gurumurthy et al. [2018] Orlando RS O,
AB

H TB C(SR),
V(IP)

Model NL (R) SFF B H I

Gurumurthy et al. [2019] Austin RS O,
AB

H IND BF,TB,
DB,CP

C(SR),
V(ItV)

Model NL (R) TS MATSIM TS IR H I, E

Hamzehi et al. [2019] Virtual RH O, IR H DB C(W),
V(IP)

Model NL (C) EM H, O

Heilig et al. [2017] Stuttgart RH O,
AB

H IND C(W),
V(ItV)

Model NL (C) TS mobiiTop TS IR H I MT

Henao et al. [2019] Denver RH,
RS

O,
AB

H BF, DB

Horl et al. [2017] Virtual RH,
RS

O,
AB

H IND BF, DB C(SR),
V(ItV)

Model NL (R) TS MATSIM TS IR H I, E RA,
RE

Horl et al. [2019] Zurich RH O,
AB

H DB C(SR),
V(ItV)

Model NL (R) TS MATSIM IR H I, E RA,
RE

MT

Horl et al. [2019] Paris RH O,
AB

H IND DB C(SR),
V(ItV)

Model NL (R) TS MATSIM TS IR H I, E

Hoseb et al. [2022] Chicago RH O,
RB

H TB, DB C (SR),
V(IP)

Data CP MM B H, O I, E

Hyland et al. [2018] Chicago RH O,
AB

H DB C(SR),
V(IP)

Model GN MM IR, B H, O I, E RA,
RE

Hyland et al. [2020] Manhattan RH,
RS

O,
AB

H DB, TB,
DeB

C(SR),
V(IP)

Data NL (R) SFF B O I, E RA,
RE

Iacobucci et al. [2019] Tokyo RH O,
AB

SCI H TB C(SR),
V(IP)

Model NL (C) Matlab B O I MPC
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Jaeger et al. [2018] Singapore RH O, IR H TB C(W),
V(IP)

Data NL (R) SFF B O I

Javanshour et al. [2019] Melbourne RH O,
RT

H TB C(W),
V(ItV)

Model NL (R) TS Mobility
Simulation

IR H I ST (E)

Jung et al. [2014] Seoul RH O, IR SCI TB C(W),
V(IP)

Model NL (R) SFF IR, B H, O RE H

Jung et al. [2016] Seoul RS O,
AB

H TB C(SR),
V(IP)

Model NL (R) SFF B H RA,
RE

Kucharski et al. [2020] Amsterdam RS O,
AB

H DB,
DeB

C(SR),
V(IP)

Data NL (R) SFF B O I, E

Li et al. [2019] New York City RH O,
RT

SCI H DB C(W),
V(IP)

Data NL (C) EM IR H I MT H

Li et al. [2021] New York City RH O,
AB

SCI H DB C(SR),
V(IP)

Data NL (R) SFF IR H I MT H,O

Liu et al. [2018] Sioux Falls RS O,
AB

H TB C(SR),
V(IP)

Model NL (C) SFF IR H I, E

Liu et al. [2020] Chicago RH O,
AB

H DB C(W),
V(IP)

Data IR H I

Loeb et al. [2018] Austin RH O,
AB

SCI H DB C(SR),
V(ItV)

Model NL (R) TS MATSIM IR H I H

Lokhandwala et al. [2018] Manhattan RS O,
AB

H TB C(SR),
V(IP)

Data NL (R) SFF IR H I, E

Ma et al. [2017] Manhattan RH O,
AB

NH C(SR),
V(IP)

Model NL (C) EM O I,E

Maciejewski et al. [2018] Berlin RH O,
AB

H DB NL (R) TS MATSIM IR H I

Martinez et al. [2017] Lisbon RS O,
RB

NH IND C(SR,AR),
V(IP)

Model NL (R) SFF LB B H, O I, E

Moavenzadeh et al. [2018] Boston RH,
RS

O,
AB

NH IND V(ItV) Model NL (R) TS TS

Nguyen-phuoc et al. [2023] Singapore RH,
RS

O,
AB

NH IND TB C(SR),
V(ItV)

Model NL (R) TS SimMobility TS IR H I, E

Pantelidis et al. [2022] Brooklyn RH O,
AB

SCI H DB C(SR),
V(IP)

Data NL (C) EM IR H I MT H

Pavone et al. [2012] Virtual RH O,
AB

H TB C(SR),
V(IP)

Model NL (C) EM B O I MT

Pavone et al. [2015] New York City,
Singapore

RH O,
AB

H DB C(SR),
V(IP)

Data,
Model

NL (C) MM IR H I

Pinto et al. [2020] Chicago RS O,
AB

H IND TB, DB,
BF

C(SR),
V(IP)

Model NL (R) SSF LB B O I, E

Ruch et al. [2018] San Francisco RH O,
AB

H DB Data NL (R) SSF AMoDeus
(MATSIM)

B H, O I, E MT

Salazar et al. [2018] Manhattan RH O,
AB

H FN TB, CP C(SR),
V(IP)

Data NL (R) SSF LB B O I, E MT

Santi et al. [2014] Manhattan RS O,
AB

H TB C(SR),
V(IP)

Data NL (R) SSF O I

Santos et al. [2015] São Paulo RH,
RS

O,
AB

H TB, SRS B H I, E

Shen et al. [2018] Singapore RS O,
AB

H FL DB, TB,
DeB

C(SR),
V(IP)

Model NL (R) SSF LB IR H I, E

Syed et al. [2019] Manhattan RH O, IR H TB C(W),
V(IP)

Data NL (R) H I

Syed et al. [2019] Munich RH O, IR H TB C(W),
V(IP)

Data NL (R) H I199
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Syed et al. [2019] Manhattan RH O,
RT

H TB C(W),
V(IP)

Data NL (R) SFF B H I, E RA,
RE

Syed et al. [2021] Manhattan RH O, IR H BF, DB C(W),
V(IP)

Data NL (R) SFF FleetPy B O I, E

Syed et al. [2021] Manhattan RH O, IR H BF, DB C(W),
V(IP)

Data NL (R) SFF FleetPy B O I, E MT

Turan et al. [2020] Manhattan,
San Francisco

RS O,
AB

SCI H TB,
DeB, SP

C(SR),
V(IP)

Data NL (C) AVG B H I

Wang et al. [2014] Singapore RH RB,
AB

H TB X Model NL (R) SFF Quadstone
2009

IR H I, E RA

Wang et al. [2022] The Hague RH O,
AB

H BF, TB, DF C(SR,AR),
V(IP)

Model NL (R) TS IR, B H, O

Wen et al. [2018] A European city RS O,
RB,
IR

H FL BF, TB,
DB, SRS

C(W) Model X X X X B H I, E MT

Wilkes et al. [2021] Eggenstein
Leopoldshafen

RS O, IR H IND BF, DB,
DeB

C(W),
V(IP)

Model NL (R) SFF FleetPy
mobiTopp

LB IR, B H, O I, E RA,
RE

Winter et al. [2021] Amsterdam RH O,
AB

H DB C(SR),
V(IP)

Model NL (R) TS MATSIM IR H I ST (E)

Zgraggen et al. [2019] Manhattan X O,
AB

H FN TB, DB C(SR),
V(IP)

Data NL (R) SFF LB B O I, E MT

Zhang et al. [2015] Virtual RS O,
AB

H TB, DB,
DeB

C(SR),
V(IP)

Model GN MM IR H I, E

Zhang et al. [2016] Manhattan RH O,
AB

H DB C(SR),
V(IP)

Data NL (C) MM B O I MT

Zhang et al. [2016] Manhattan RH O,
AB

SCI H TB, DB C(SR),
V(IP)

Data NL (C) MM B, IR H, O I MT MPC

Zhang et al. [2017] Atlanta RH O,
AB

H BF, TB C(SR),
V(IP)

Model NL (R) SFF B O I

Zhang et al. [2022] Munich RS O, IR SCI,
PCI

H DB C(W),
V(IP)

Data NL (R) SFF FleetPy B O I, E RA,
RE

MT H

Zwick et al. [2020] Hamburg RS O, IR H TB,
DeB

C(W,AR),
V(ItV)

Data NL (R) TS MATSIM IR, B H, O I, E MT

Wallar et al. [2018] Manhattan RS O, IR H TB C(W),
V(IP)

Data NL (R) SFF B O I, E RA,
RE

ST (E)

Table A1.: Overview of the AMoD literature reviewed.
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B. Benchmark Methods

B. Benchmark Methods

The dissertation tested multiple repositioning methods before selecting a benchmark method for
evaluation. The following presents the formulations used for testing.

B.1. Pavone’s Method

Pavone et al. [2012] developed multiple repositioning methods. Out of these, the dissertation
uses the best-performing strategy called adaptive real-time rebalancing policy which is referred to
as Pavone’s method throughout the dissertation. It is used as the benchmark method due to its
powerful yet simple approach. Fundamentally, its balances the surplus vehicles among individual
regions as much as possible while minimizing the repositioning VKT. The dissertation adapted it
according to the definition of the regional imbalances described in section 5.2.2 and uses the same
mathematical notations as in section 5.2.2. First, the number of excess vehicles in each region z ∈ Z
is determined, denoted by vexcessz . Since the dissertation uses two separate ways of calculating vehicle

supply (ω
sup(c)
z and ω

sup(v)
z ), the following describes the procedure followed to calculate vexcessz for

both vehicle supply estimation.
The vexcessz is give as:

vexcessz = max
(
|V +

z |+ sz, 0
)

(1)

where for vehicle supply estimate using ω
sup(c)
z , the sz is calculated as:

min
(
|V r

z |+ |R+
z | − |R−

z |, 0
)

(2)

and for vehicle supply estimate using ω
sup(v)
z , the sz is calculated as:

min
(
|V r

z | − |R−
z |, 0

)
(3)

Compared to Eq. 3, Eq. 2 additionally uses the forecast of customer destinations to calculate the
excess vehicles. Thus, Eq. 2 assumes that vehicles will be available in a region due to dropping
off customers (R+

z ) in addition to the enroute vehicles from the last call to repositioning (V r
z ).

Excess vehicles that can be repositioned are currently idle vehicles. However, in Eq. 2 and Eq. 3, if
the forecast of outgoing vehicles (R−

z ) is larger than the forecast of incoming vehicles, the excess
vehicles should be reduced according to Eq. 1. Contrary to Pavone et al. [2012], a negative value
for the excess vehicles is not considered as shown in Eq. 1.
Given above, Pavone’s method tries to equally balance the excess vehicles among regions while

minimizing the repositioning distance, given as:

min
u

∑
i,j

cijuij (4a)

s.t. vexcessi +
∑
j ̸=i

(uji − uij) ≥ vd ∀i ∈ Z (4b)

vd =

∑
i v

excess
i

|Z| (4c)

where u ∈ Z|Z+|×|Z−|
≥0 is the matrix of flow variables and C is the distance matrix between zone

centroids. Eq. 4b guarantees that the excess vehicles are distributed equally among regions. The
objective function in Eq. 4a minimizes the repositioning distance.
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B.2. Wallar’s Method

The second method is based on the work of Wallar et al. [2018]. Similar to Pavone’s approach,
this method is also based on discrete optimization. It tries to maximize the number of customers
received by a vehicle after it reaches the repositioning destination zone. However, in contrast to
Pavone’s approach, this method utilizes the travel times between the zone centroids.
They first calculate the rate of new customers in each region by dividing the potential number of

customer origins in each region by the forecast horizon. The dissertation adopted this according to
the definition of regional imbalance described in section 5.2.2. The customer rate for zone z ∈ Z is
defined as:

βz = max

(
0,
|R−

z | − |R+
z |

∆Th

)
(5)

where R+
z , R

−
z and ∆Th are as described in section 5.2.2. Then the repositioning method is given

by the following optimization problem:

max
u

(∑
i

∑
j

(∆Tr − ctij) · uij · βj
)

(6a)

s.t.
∑
j

uij ≤ |V +
i | ∀i ∈ Z (6b)

∑
j

[
uij · (∆Tr − ctij)

]
≥ 0 ∀i ∈ Z (6c)

∑
i

[
uij · (∆Tr − ctij)

]
≤ βj · ρ · (∆Tr)

2 ∀j ∈ Z (6d)

where Ct is the travel time matrix between the zone centroids and u ∈ Z|Z|×|Z|
≥0 is the variables

matrix for flow of vehicles. The objective function in Eq. 6a multiplies the time remaining after reach-
ing the destination zone by the rate of customers. Thus, it maximizes the number of customers seen
by the repositioned vehicle in the destination zone. Eq. 6b makes sure that number of repositioned
vehicles is less than the available (idle) vehicles in the zone. Eq. 6c guarantees that the repositioning
vehicles are able to reach the destination zone before the next repositioning call. Eq. 6c limits the
over-saturation of vehicles in the deficiency zone. Wallar et al. [2018] introduced the parameter
ρ in Eq. 6d to control the amount of allowed over-saturation. The dissertation set the value of ρ to
1 in the simulations.

B.3. Fagnant’s Method

Fagnant and Kockelman [2014] introduced multiple iterative heuristics for the repositioning of
idle vehicles. The heuristics dealt with the repositioning problem by dividing the operational area
into two levels of regular grids. They studied combinations of different heuristics and concluded that
that the heuristic scheme (named as R1 by Fagnant and Kockelman [2014]) dealing with the
coarsest level of the grid only performed the best. Thus, the dissertation only evaluated the R1
scheme.
They first calculate the block-balance value for each region. Similar to the above description of

Pavone’s and Wallar’s method, the dissertation adopts the definition of block-balance according to
the quantities used in the definition of imbalance weights. Thus, the block-balance for a region
z ∈ Z is given as:
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Figure B1.: Performance comparison of the benchmark methods.

BlockBalancez = Vtotal ·
( |Vz|+ |R+

z |
Vtotal

− |R−
z |∑

k |R−
k |

)
· (7)

where Vtotal =
∑

k(|Vk|+ |R+
k |).

Since the whole procedure is iterative, involving multiple steps, the description of the whole R1
method is beyond the scope of the dissertation. The only difference in our implementation is the
change mentioned in Eq. 7. For details of the rest of R1 procedure, refer to [Fagnant and Kock-
elman, 2014].

B.4. Performance Comparison

This section compares the performance of the above benchmark methods considered in the dis-
sertation. The simulation results presented here use the default parameters used throughout the
dissertation for repositioning; refer to Table 5.1 for detail. In summary, the simulations used dynamic
travel times with the repositioning period ∆Tr and the forecast horizon ∆Th set to 30 minutes.
The grid cell size ∆scell of 1000 m and the maximum allowed delay ∆Tmax of 6 minutes are used.
VCOenroute is used for vehicle assignment. For Pavone’s method, the vehicle supply is estimated

using ω
sup(c)
z . Wallar’s and Fagnant’s methods presented in previous sections are already adapted in

an equivalent formulation to ω
sup(c)
z .

As shown in Figure B1, all repositioning methods improve the AMoD performance; however,
Pavone’s approach provides the best performance, followed by Wallar’s method. A major reason for
higher performances is the use of optimization in both methods, while Fagnant’s strategy is based
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on a heuristic. For Wallar’s method, maximizing the possible customers received by the reposition-
ing vehicles does not provide the best AMoD performance. A possible reason could be the hard
constraint in Eq 6c that the repositioning vehicles must be able to reach the destination before the
start of the next repositioning call. This significantly limits the repositioning potential since some
vehicles might be stationary in far-off regions (for example, the north part of Manhattan) and cannot
reach the demand-intensive regions within ∆Tr. This is especially relevant to the simulation setup
used in the dissertation due to realistic travel times. However, the supply and demand estimations
can significantly affect the repositioning performance, as observed for other repositioning methods
in the dissertation. Therefore, Wallar’s method may perform better with different supply and de-
mand estimations. Nevertheless, for the simulation environment used in the dissertation, Pavone’s
method served more customers, produced higher AMoD profit, and had lower customer waiting times.
Consequently, it was selected as the benchmark method throughout the dissertation.
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