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Abstract

Software-Defined Networking (SDN) lays the foundation for the operation
of future networking applications. The separation of the control plane from
the programmable data plane increases the flexibility in network operation,
and hence, improves the overall performance. One of the most used lan-
guages for describing the packet behavior in the data plane is P4. It allows
both protocol and hardware independent programming. With the expand-
ing deployment of P4 programmable devices, it is of utmost importance to
understand their achievable performance and limitations in order to design
a network and provide Quality of Service (QoS) guarantees in terms of dif-
ferent metrics of interest to users communicating in the network. One of
the most important figure of merits is the mean sojourn time of a packet in
a P4 device. While previous works already modeled the sojourn time in P4
devices with controller feedback, those models were rather oversimplified and
could not capture the real system behavior for general cases, resulting this
way in a potentially high inaccuracy in performance prediction. To bridge
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this gap, in this paper, we consider the system behavior of P4 devices for the
general case, i.e., under general input parameter distributions. To that end,
we model the system behavior with a queueing network with feedback. First,
we do this for a single data plane, and then we extend the analysis to the case
when there are multiple data planes sending occasional packets to the same
controller. Due to the fact that it is impossible to provide closed-form solu-
tions in the general case, we consider different approximation approaches for
the mean sojourn time and show which one is better for a given scenario. We
validate our results against extensive realistic simulations, capturing different
behaviors in the data and control planes. Results show that the most accu-
rate approximation in most cases is the one in which queueing networks are
decoupled and considered as independent queues despite the fact that there
are considerable dependencies involved. The level of discrepancy with the
best approximating approach in the worst case for a single data plane does
not exceed 18.2% for service times distributions with a coefficient of varia-
tion not greater than 1, whereas when dealing with multiple data planes, the
discrepancy is usually higher, but with the best-approximating approach in
each case rarely exceeds 14%.

Keywords: P4, SDN, Queueing networks with feedback, Diffusion
approximation, M/G/1.

1. Introduction

Emerging applications in the contemporary digitized world, such as telemedicine
or autonomous driving, impose stringent requirements on the underlying
communication networks in terms of latency, throughput, reliability, and
more. In order to satisfy these requirements, Software-Defined Networking
(SDN) [2] emerged as a new networking paradigm which decouples the data
plane from the control plane. This approach allows optimizing the network
management in a holistic way as one controller can define the packet pro-
cessing in several forwarding devices. Furthermore, the introduction of Pro-
grammable Data Planes (PDP) [3] enables controlling the packet processing
with greater granularity. One of the most well-known concepts for data plane
programming is the domain-specific P4 language concept [4], which is used
for defining the packet processing in the forwarding devices in detail.

As P4 devices are becoming more and more popular in networking, it is
of utmost importance to understand their performance behavior and limi-
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tations. Having this information before their deployment enables designing
properly a network with regards to Quality of Service (QoS) guarantees such
as low latency, high throughput, or high reliability. One of the most impor-
tant performance metrics is the mean packet sojourn time, i.e., the mean
time a packets spends in the system. In a first step to model the packet
sojourn time for P4 devices, the authors in [5] measured the mean sojourn
time of packets for the P4-enabled devices Netronome SmartNIC [6], NetF-
PGA [7], and T4P4S [8], based on the complexity of the loaded P4 program.
Those measurements were then further used in [9], where one P4 forwarding
device with controller feedback is modeled as a Jackson network [10]. Their
results allow a first understanding of the behavior and limitations of a P4 de-
vice with controller interaction. However, as service times in [9] are assumed
to be exponentially distributed, both in the data plane and the controller,
it may not reflect the behavior of real devices and therefore the analytical
performance results can vary from the real ones considerably.

Refining the system model with more general and hence, realistic dis-
tributed services times is not a straightforward task though. Relaxing the
assumption of exponentially distributed service times leads to a general sys-
tem where the well-known exact equations for the packet mean sojourn time
in the system do not hold anymore. Moreover, the real behavior can only
be approximated as it is not possible to obtain closed-form exact analytical
expressions. Another problem lies in obtaining measurement results for all
possible combinations of real data planes and controllers to compare with the
analytical results; this is cumbersome. This is even more emphasized when
there are multiple data planes served by a controller in the network. Hence,
finding a way to analyze approximation techniques with results close to real-
ity would significantly improve the understanding related to the performance
of P4 devices.

In particular, several important research questions arise in the context
of the performance of P4 devices, and more specifically, the packet mean
sojourn time in a P4-enabled network:

• How can the packet mean sojourn time in realistic P4 devices be ob-
tained analytically? How well does the model fit to the actual results?
How does the distribution of service times affect the accuracy of the
model?

• What are the limitations of such models? Are they more vulnerable
when considering multiple data planes?
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• How does the interaction with the controller impact the packet mean
sojourn time? Does loading the controller with more requests impact
the accuracy of the model?

These questions are addressed in this paper by modeling a P4 forwarding
device with controller feedback using a queueing theoretic model first. We
assume both low-variance (Erlang), exponential, and high-variance (hyper-
exponential) distributed service times on the data plane and control plane.
Further, we analyze three approximation approaches for the packet mean
sojourn time in such systems and compare the analytical results to those
obtained by simulation in order to cover a broad operation region, by varying
a wide amount of parameters. Then, we extend the analysis to multiple data
planes, i.e., multiple switches that a packet traverses, and a single controller.
For this case as well, we consider different distributions for the time packets
spend in data planes and the controller and provide different approximations
while showing which one is more suitable in a given scenario. We provide
extensive evaluation of the performance, where the results enable to observe
the accuracy of the approximation approaches in terms of the packet mean
sojourn time of P4 devices and therefore to understand the behavior of our
metric of interest as a function of different parameters. The main message of
this work is for most scenarios of interest the most accurate approximation
is the one in which the queues are decoupled and are considered as mutually
independent M/G/1 queues.

Specifically, our main contributions are:

• We analyze different approximation methods for the mean sojourn time
of a packet in a P4 forwarding device with controller feedback and
generally distributed service times.

• We compare the analytical results obtained by the approximation ap-
proaches to those obtained by simulation for widely varied parameters
and operation regions.

• We also consider the scenario in which there are multiple P4 forward-
ing devices and a controller and provide the approximation results for
general service times across all entities.

The remainder of this paper is organized as follows. In Section 2, some
related work is discussed. Then, in Section 3 some background information on
the P4 programming language is provided. Further, in Section 4 the queueing
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model of a P4 forwarding device with controller feedback is presented. This is
followed by a theoretical analysis of approximation techniques for the packet
mean sojourn time of such a system in Section 5. The model and the analysis
for multiple connected P4 forwarding devices are given in Section 6. The
performance for a vast range of scenarios is evaluated in Section 7. Finally,
Section 8 concludes the paper.

2. Related Work

The introduction of SDN enabled splitting the control plane from the data
plane. Since then, many works in the literature targeted modeling the per-
formance of these devices, but most of them making simplifying assumptions
for analytical tractability.

OpenFlow (OF)-based switches were modeled in [11] as a feedback-oriented
queueing system similar to that studied in this paper. However, in [11] each
queueing system at the control and data plane is assumed to have exponen-
tially distributed service times. A follow up work in [12] refactors the model
and presents it as a Jackson network. A model for networks made up of
such subsystems is proposed and analyzed in [13]. Goto et al. [14] improves
on the model presented in [11] for a single node by incorporating processing
priorities for packets going to the switch. Ansell et al. [15] introduce a con-
trol plane application based on queueing theory for monitoring networks and
predicting their behavior.

P4 programmable data planes extended the programmability offered by
the SDN paradigm to the data plane. Similar to the approach presented
in [11], the model in [9] adopts a feedback-oriented queueing system to ab-
stract the behavior of the system. Moreover, it assumes that the processing
delay, and thus the forwarding delay, at the data plane can vary based on
the complexity of the loaded P4 data path. Accordingly, the average service
time of the data plane is modeled using an exponential distribution based on
the P4 pipeline’s complexity. The impact of different P4 atomic operations
on the processing delay of different P4 devices is evaluated in [5], where a
method is proposed to estimate the packet forwarding delay on different P4
devices as a function of the complexity of the loaded P4 program.

Other works in the literature evaluate and model the performance of P4
programmable devices using different approaches. For example, a bench-
marking suite for P4 programmable devices is proposed in [16] for evaluating
the performance of three different P4 devices. The authors in [17] evaluate
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and model the performance of hardware- and software-based P4 devices ac-
cording to different criteria considered relevant to each type of device. They
model the packet rate that could be handled by the T4P4S software switch
when the number of incoming flows increases. On the other hand, the au-
thors in [17] decided to focus on modeling the usage of processing resources,
i.e., the utilization ratio, on TOFINO ASIC switches as they identified this
metric to be more important for this type of devices. In another work, Helm
et al. [18] propose a network calculus-based model for the worst case sojourn
time in the data plane without controller feedback.

Using a stochastic approach based on queueing theory, the authors in [19]
analyze the packet distributions of interesting processes in the general case.
In their work, they consider a P4 switch as data plane with feedback from
the control plane, both represented by their own queues. They use different
distributions and evaluate the packet distributions of important metrics such
as the packet sojourn times. But, no explicit expressions are provided in [19]
neither for the distribution nor for the mean of the sojourn time. Queueing
networks with feedback have also been analyzed by other works in the lit-
erature, such as in [20], [21], [22]. However, common to [20], [21], and [22]
is the fact that in their queueing networks with feedback the packet can go
multiple times through the feedback branch (corresponding to the control
plane in our case). This is different from our setup as we assume that the
packet can go back to the controller at most once. Hence, these models are
not suitable for our scenario.

Our work reconsiders the feedback-oriented queueing network model pro-
posed in [9]. Furthermore, in our work the sojourn time of the system is
re-evaluated accordingly based on different theoretical approximations for
Erlang, exponential, and hyperexponential distributions, mimicking this way
a wide spectrum of service time distributions in terms of variance. In ad-
dition, our work goes one step further and does not only consider one data
plane device, but multiple.

Finally, this work is an extension of [1], where we provide the analysis for
a single data plane and a controller. As a controller can be used for multiple
switches, generalizing the model to multiple data planes, what we do in this
work, is more realistic, hence, captures more reliably the behavior in such a
network.
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3. P4 Background

Network programmability was first introduced with the Software-Defined
Network (SDN) architecture [23]. SDN separates the control plane from the
data plane, introduces a centralized controller entity between the two planes,
enables programmability at the control plane, and defines an interface (such
as the OpenFlow protocol [24]) to push messages to the data plane, instruct-
ing it how to forward packets. This approach to programming networks is
found to be limited since it is bound to the predefined protocols and actions
supported by the OpenFlow architecture and protocol. To address these is-
sues, P4 programmability was introduced to push programmability to the
data plane, where the device’s behavior can be customized independently
from any predefined headers or actions (as in the OpenFlow case).

The latest P4 version, which is P416, separates the syntax of the lan-
guage from the details of the hosting target, which is included in the target’s
architecture description. This P4 architecture describes the programmable
blocks on the target and the interfaces to program them. This makes the P4
language target-independent so that it can be used to program any type of
packet processor with a given architecture description.

The P4 programmability is mainly concerned with defining the packet
processing behavior at the data plane of a device. Although the process-
ing behavior is described based on the match-action abstraction (similarly
to OpenFlow), unlike the OpenFlow case, P4 allows for defining arbitrary
protocols and custom actions. When a packet arrives at a P4 data plane, it
goes through a sequence of processing operations defined in the P4 program.
First, the headers of the packet are extracted in the parser stage, which is
described as a finite-state machine. Next, the ingress and egress processing
stages in the P4 program transform the headers of the packet according to
the defined tables in the program. Each table is defined based on a list of
matching keys, and a list of possible custom actions that can be invoked upon
matching. These actions are customizable and written as functions.

The P4 program defines the pipeline that a packet can go through, espe-
cially in terms of the tables that will be applied. It is the responsibility of
the control plane to populate the tables in this pipeline with the rules that
achieve the intended behavior of the use case application. If a packet arriving
at a P4 data plane does not find a matching rule in the visited tables, it is
forwarded to the control plane, which takes care of processing this packet.
Then, it forwards this packet back to the data plane, and also sends a rule
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Figure 1: Queueing model for a P4 forwarding data plane with controller feedback.

to instruct following packets how to be processed. Accordingly, a packet can
either get processed only at the data plane, or it could be processed at the
data plane followed by the control plane followed by the data plane again.
This life cycle of packets in P4-based systems guides the abstraction of the
behavior of these systems as a feedback-oriented system, which is analyzed in
the remainder of this paper.

4. P4 Performance Model: Single data plane case

In this section, we describe the performance model for P4 devices with
controller feedback, followed by a detailed description of the data plane and
control plane.

4.1. System Description

In SDN, the data plane is separated from the control plane. The former
is responsible for the processing of packets, whereas the latter defines how
they (i.e., packets) are processed. In case of a programmable data plane,
the packet handling can be described with languages such as P4. The SDN
paradigm allows one controller to control several data planes. Therefore, we
consider this scenario as well later in Section 6. As we need the results from
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the single data plane for the scenario with multiple data planes, we develop
first the models for the single data plane case.

Modeling a network consisting of data and control planes before deploy-
ment enables to understand the network behavior and properly dimension
the participating devices. One of the most important performance metrics
in related use cases is the mean packet sojourn time, i.e., the overall time a
packet spends in the system. In a first step, in this work, a network con-
sisting of only one data plane with controller feedback is considered. Fig. 1
shows a model of such a system. The data plane (lower part) and the control
plane (upper part) are both represented by their own queues, each consisting
of a waiting queue (buffer) and a server. We consider a data plane which is
programmable with P4.

The path a packet traverses in the system is as follows. First, it arrives to
the system following a Poisson arrival process with rate λext, i.e., the inter-
arrival time between any two packets arrivals is exponentially distributed.
Then, the packet is first processed in the data plane with a service rate of
µD. As the data plane is P4-enabled, this packet processing is defined by
a P4 program. If an entry of the match-action table matches the packet
information, it leaves the system. On the other hand, we assume that with
a probability of pfeed there is no table entry and in that case the packet is
sent back to the controller, which implies an arrival rate of pfeedλext there.
The control plane processes the packets with rate µC , adds a table rule in
the data plane for that packet and sends the packet back to the data plane.
After being processed by the data plane (for the second time), the packet
leaves the system as now there is a matching table entry. Thus, a packet can
be sent to the controller only once.

4.2. Data Plane Processing

Upon arriving to the data plane, the packet is stored in the buffer. We as-
sume that the buffer size of the data plane is infinite and the service discipline
is First Come First Served (FCFS). There are two types of packets arriving
to the data plane: external packets entering the system at that moment (with
rate λext) and feedback packets entering the data plane from the controller,
i.e., for the second time (with rate pfeedλext). Therefore, the overall arrival
rate at the data plane is

λD = λext + pfeedλext = (1 + pfeed)λext. (1)
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Even though the external arrival process follows a Poisson process, this is
not the case for the overall data plane arrival process. This stems from
the fact that the controller feedback process depends on the external arrival
process, violating the requirement for independent increments, characteristic
to Poisson processes, making the system behavior more involved.

The service times in the data plane follow a general distribution with a
mean of E[SD] (the corresponding service rate is thus µD = 1

E[SD]
) and a

standard deviation of σD. The average total time a packet spends in the
data plane (the sum of the corresponding service time and queueing delay)
is denoted by E[TD].

4.3. Control Plane Processing

The control plane also has an infinite buffer size and follows the FCFS
order of service, like the data plane. The arrival process is a fraction of the
departure process of the data plane and has a rate of

λC = pfeed · λext. (2)

The service times in the control plane follow a general distribution with
a mean of E[SC ] (the corresponding service rate is thus µC = 1

E[SC ]
) and

a standard deviation of σC . The average total time a packet spends in the
control plane (the sum of the corresponding service time and queueing delay)
is denoted by E[TC ].

Both queues together form a network, known as queueing network with
feedback [20].

4.4. Packet Sojourn Time

As already mentioned, the mean packet sojourn time is an important
metric of interest. Therefore, in this paper we look in detail in achievable
system performance in terms of sojourn time.

Packets in the system either directly leave the system after being pro-
cessed in the data plane or experience controller involvement also. Hence,
the mean packet sojourn time E[T ] consists of the time a packet spends at
the data plane E[TD] and the control plane E[TC ]. This is expressed as

E[T ] = E[TD] + pfeed (E[TD] + E[TC ]) , (3)

or equivalently,

E[T ] = (1 + pfeed)E[TD] + pfeedE[Tc]. (4)
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Analyzing queueing networks and obtaining closed-form solutions is pos-
sible only for Jackson networks [25], i.e., when all the processes in the system
are characterized by the memoryless property. Given that we assume non-
exponential service times at the data plane and general distribution at the
controller, the queueing network at hand is not a Jackson network. There-
fore, we cannot exploit the results from there (i.e., from Jackson’s networks)
in our system. The aforementioned assumptions and requirements make
the derivation of exact analytical solutions in closed-form infeasible. Conse-
quently, in this paper, we focus on comparing the prediction accuracy that
three approximation approaches offer (see Section 5).

In order to cover a wide range of possible distributions, we analyze the
approximations for three different distribution types on the data plane and
control plane service times based on their coefficient of variation cV , which
is defined as the ratio of the standard deviation of a random variable and
its mean, and is a measure of how dispersed the samples from the mean of a
random variable are.

The first considered distribution is the Erlang distribution, which rep-
resents a distribution with low variability, for which it holds cV < 1. The
second distribution is the exponential (memoryless) distribution, for which
cV = 1. Finally, the hyper-exponential distribution (for which cV > 1) rep-
resents the scenario with a heavy-tailed service time.

In the next section, we derive the equations for all three approximation
approaches. Then, in Section 7 we use simulations to compare the theoretical
(approximation) results to the actual (simulation) results for the different
approaches, for different distributions of service times. Table 1 contains the
notation used in the remainder of this paper.
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Parameter Description
λext External arrival rate arriving at the data plane
µD Service rate of the data plane
pfeed Forwarding probability to the controller
µC Service rate of the controller

E[SD] Mean data plane service time
σD Data plane service time standard deviation

E[TD] Mean total time in the data plane
λC Overall arrival rate at the controller

E[SC ] Mean control plane service time
σC Control plane service time standard deviation

E[TC ] Mean total time in the controller
E[T ] Mean packet sojourn time in the system
eD Frequency of visits by each packet to the data plane
eC Frequency of visits by each packet to the control plane
ρD Data plane utilization
ρC Control plane utilization
cD,A Coefficient of variation of the data plane arrival process
cC,A Coefficient of variation of the control plane arrival process
cD,S Coefficient of variation of the data plane service process
cC,S Coefficient of variation of the controller service process
E[ND] Mean number of packets at the data plane
E[NC ] Mean number of packets at the control plane

n Number of devices in the data plane
λext,i External arrival rate at the ith data plane device
µD,i Service rate of the ith data plane device
pl,i Probability to leave after service at the ith data plane

pfeed,i Data plane i forwarding probability to the controller
λi Overall arrival rate at the ith data plane device

E[SD,i] Mean service time of the ith data plane device
σD,i Service time standard deviation of the ith data plane
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E[TD,i] Total packet time in the ith data plane
ei Frequency of visits to the ith data plane
p0,i Packet probability to enter externally to the ith device
pj,i Packet probability to be sent from the jth to the ith device
ρi Data plane utilization of the ith device
ci,A Coefficient of variation of the ith data plane arrival process
ci,S Coefficient of variation of the ith data plane service process
E[Ni] Mean number of packets at the ith data plane device

Table 1: Notation

5. Approximation Approaches

In this section, we first present two state-of-the-art approaches to approx-
imate the mean packet sojourn time. These are the Diffusion approximation
and theModified Diffusion approximation. Then, we decouple the two queues
(data plane and control plane), and use the corresponding equations for two
independent M/G/1 queues.

5.1. Diffusion Approximation

The first approximation has been introduced in [26] and [27]. The authors
use the diffusion approximation technique to approximate the number of
packets E[N ] in a queueing system with generally distributed service times.
With this approach, the probability of finding k packets in such a system with
arrival rate λ, service rate µ, utilization ρ = λ

µ
, and coefficients of variation

cA for the arrival and cS for the service process, can be approximated as:

π̂(k) =

{
1− ρ, k = 0

ρ(1− ρ̂)ρ̂k − 1, k > 0
(5)

where

ρ̂ = exp

(
−2(1− ρ)

ρc2A + c2S

)
. (6)

As a stable queue is required, i.e., a queue with utilization ratio ρ < 1,
for the mean number of packets we have

E[N ] =
∞∑
k=1

kπ̂(k) =
ρ

1− ρ̂
. (7)
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These results are now applied to our model (following the steps like in [28])
to find an approximation for the mean sojourn time assuming known mean
and standard deviations of the service times. First, we need to introduce
the parameters eD and eC , which denote the frequency of visits to the data
plane and controller by each packet, respectively. Hence, eD = 1+ pfeed and
eC = pfeed.

The utilization at the data plane is

ρD =
eDλext

µD

, (8)

whereas at the control plane

ρC =
eCλext

µC

. (9)

With the coefficients of variations of the data plane service process cD,S

and cC,S for the controller, the coefficients of variations for the arrival pro-
cesses at the data plane cD,A and the controller cC,A can be obtained from
the following expression [26]:

c2i,A = 1 +
N∑
j=0

(c2j,S − 1) · p2j,i ·
ej
ei
, (10)

where N is set to 2 with i ∈ {D,C} and

j =


j = 0, representing external arrival stream

j = 1, representing the data plane

j = 2, representing the control plane.

(11)

Using the conditions p0,D = p2,D = 1 (every external packet and every
packet from the controller have to go to the data plane), p0,C = p1,D =
p2,C = 0 (external packets cannot go directly to the control plane, a packet
from the data plane cannot re-enter immediately the data plane, and a packet
from the control plane cannot re-enter the control plane again), and p1,C =

pfeedλext

(1+pfeed)λext
=

pfeed
1+pfeed

(the probability that a packet in the data plane is a

feedback packet) as well as exploiting the fact that the coefficient of variation
of the external Poisson arrival process is 1 (c0,S = 1) because of the fact
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the inter-arrival times of packets are exponentially distributed, c2D,A can be
calculated as

c2D,A = 1 + (c2C,S − 1) · eC
eD

. (12)

Similarly, for the control plane we have

c2C,A = 1 + (c2D,S − 1) ·
p2feed

(1 + pfeed)2
· eD
eC

. (13)

Further,

ρ̂D = exp

(
−2(1− ρD)

ρDc2D,A + c2D,S

)
, (14)

and

ρ̂C = exp

(
−2(1− ρC)

ρCc2C,A + c2C,S

)
. (15)

The mean number of packets at the data plane E[ND] and at the control
plane E[NC ] are given by:

E[ND] =
ρD

1− ρ̂D
, (16)

and
E[NC ] =

ρC
1− ρ̂C

. (17)

Using Little’s law [10], Eq.(1) and Eq.(2), the mean sojourn time for the
data plane E[TD] and for the control plane E[TC ] can be calculated as:

E[TD] =
E[ND]

(1 + pfeed)λext

, (18)

and

E[TC ] =
E[NC ]

pfeedλext

. (19)

Substituting Eq.(18) and Eq.(19) into Eq.(4), we obtain the approximated
mean sojourn time using this approach.

The coefficient of variation for exponentially distributed service times is
1. For the special case of Erlang distributed service times with a service rate
of µ with k stages, the squared coefficient of variation reduces to 1

k
[10]. The
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squared coefficient of variation for a hyperexponential distribution with two
branches, i.e., consisting of two parallel exponential distributions each with
probability p and 1− p and rates µ1 and µ2, with mean p

µ1
+ 1−p

µ2
, is [10]

c2v,hyper =
2
(

p
µ2
1
+ 1−p

µ2
2

)
(

p
µ1

+ 1−p
µ2

)2 − 1. (20)

From Eq.(20), it can be shown that cv,hyper > 1, implying that hyper-
exponential distributions are heavy tailed.

For each of these special cases, we can obtain the corresponding mean
sojourn times, by substituting the corresponding coefficients of variation in
Eqs.(12)-(15).

5.2. Modified Diffusion Approximation

The Diffusion approximation presented in Section 5.1 is further modified
in [29] and [30]. In particular, by adjusting the calculation of the mean
number of packets to

E[N ] = ρ

(
1 +

ρc2A + c2S
2(1− ρ)

)
, (21)

the authors claim to achieve more precise results for regions of higher utiliza-
tion. The calculation approach follows the same scheme as in Section 5.1,
but with the average number of packets in the data plane E[ND] and the
average number of packets in the control plane E[TC ] now obtained as:

E[ND] = ρD

(
1 +

ρDc
2
D,A + c2D,S

2(1− ρD)

)
, (22)

and

E[NC ] = ρC

(
1 +

ρCc
2
C,A + c2C,S

2(1− ρC)

)
. (23)

Depending on the distribution of the service time in the data plane and in
the control plane, the actual values for E[ND] and E[NC ] can be obtained
from Eq.(22) and Eq.(23), respectively.

Finally, substituting Eq.(22) and Eq.(23) into Eq.(4), we obtain the ap-
proximate mean sojourn time with this approach.
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5.3. M/G/1 Approximation

This approximation is based on the assumption that both queues are
considered as mutually independent with corresponding Poisson arrival pro-
cesses. Looking at each queue separately, the mean sojourn time E[T ] can
be calculated with the well-known expression for the average sojourn time in
an M/G/1 queue [28]:

E[T ] =
ρ

1− ρ
· E[S]

2
· (c2S + 1) + E[S], (24)

where E[S] represents the mean service time and cS is the coefficient of
variation of the service time. Thus, E[TD] and E[TC ] used for the calculation
of the mean sojourn time of the P4 device system are

E[TD] =
ρD

1− ρD
· E[SD]

2
· (c2D,S + 1) + E[SD], (25)

and

E[TC ] =
ρC

1− ρC
· E[SC ]

2
· (c2C,S + 1) + E[SC ]. (26)

Note that the higher the variance of the service time, the higher the mean
time a packet spends in both data plane and control plane.

Finally, replacing Eq.(25) and Eq.(26) into Eq.(4), we obtain the mean
sojourn time approximation with this approach.

6. Analyses for Multiple Data Planes

In this section, we describe the performance model for an SDN network
consisting of multiple data plane devices and a single controller serving them.
Then, the operation of data plane and the control plane are described in detail
for a packet traversing through the network. This is followed by the analysis
of the packet mean sojourn time in such a system. Further, the theoretical
analysis for the three different approximation approaches is provided.

6.1. System Description

In Section 4, the queueing model for a P4 device with controller feedback
was presented. However, SDN networks may consist of multiple data planes
with controller feedback, which is more realistic. Namely, packets will be
usually traversing through multiple forwarding devices until reaching the
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Figure 2: Queueing model for multiple P4 data plane devices with controller feedback.

destination. Fig. 2 illustrates such a system. Multiple data plane devices
(lower part) are served by one controller (upper part). Again, each part of
the data and control plane is modeled with a waiting queue and a server.
The data plane devices are programmable with P4. There are in total n data
planes.

In this model, the path of a packet is now as following: Packets arrive
at the ith data plane device following a Poisson process with rate λext,i. An
arriving packet to that data plane is stored in the data plane queue. We
assume that the queue sizes are infinite. Then, after waiting for some time
until all the packets in front of it are processed, the aforementioned packet
enters the data plane service. Again, we assume that the service discipline in
all the devices is FCFS. The packet is served by that data plane with service
rate µD,i. After completion (the packet being completely processed), there
are three different paths for that packet. This depends on the table entry
for that packet. On the one hand, if a table rule exists, the packet is either
forwarded to the next data plane device to continue its route, or leaves the
system immediately. The latter happens in case the current data plane is
directly linked to the destination. We assume this happens with probability
pl,i. In the nth queue, i.e., the last data plane in the sequence, the packet
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cannot be forwarded anymore but leaves the system immediately.
On the other hand, if a packet is not matched to a table entry, it is

being forwarded to the control plane for further processing. This occurs with
probability pfeed,i. This packet has to be queued if other packets are being
processed at the controller. The service discipline at the controller is also
FCFS. After the packet reaches the head of the queue and after that enters
service, the controller processes the packet with a service rate of µC . As the
controller has a top-level view of the whole network, it installs all required
rules for the way the packet needs to follow in the corresponding switches.
The packet is then sent back to the ith data plane device, where it is again
processed. As there is a matching table rule now, the packet either leaves the
system immediately or is forwarded to the next data plane device. The former
happens with probability pl,i and the latter with probability 1− pl,i. As the
table entries of the following data plane devices have already been updated to
match the packet, it is not forwarded again to the controller anymore. Thus,
after being processed, it either leaves the system directly or is forwarded
to the next data plane device. At the next data plane device, after being
processed, it either leaves the system immediately with probability pl,i+1 or
goes to the next data plane (with probability 1−pl,i+1). The process continues
until the packet leaves the system. This means that a packet can only go to
the controller at most once and only from the data plane at which it arrived
externally. After a packet goes to the controller, it is forwarded back to the
data plane that sent it to the controller, going on until leaving the system.

6.2. Data Plane Processing
As already mentioned, each data plane device is modeled as an infinite

queue, consisting of a waiting queue and service time. Packets arriving at the
ith queue are either (i) external packets (with a rate of λext,i), i.e., those that
enter the system for the first time; (ii) forwarded packets from the previous
data planes with a rate of (1− pl,i−1)λext,i−1+(1− pl,i−1)(1− pl,i−2)λext,i−2+
. . .+(1−pl,i−1) . . . (1−pl,1)λext,1; or (iii) feedback packets from the controller
(with a rate of pfeed,iλext,i). Thus, the total arriving rate at the ith data
plane device is

λi = λext,i + pfeed,iλext,i +
i−1∑
j=1

λext,j

i−1∏
k=j

(1− pl,k). (27)

The service time of the ith data plane device follows a general distribution
with mean E[SD,i] and standard deviation σD,i. The corresponding service
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rate is thus µD,i =
1

E[SD,i]
. The average time a packet spends in data plane i

is denoted by E[TD,i].

6.3. Control Plane Processing

Similar to the data plane, the control plane also has an infinite buffer and
the packets are served in the FCFS order. The arrival rate at the control
plane is equal to the sum of the arrival rates of feedback packets from each
data plane:

λc =
n−1∑
i=1

(1− pl,i)pfeed,iλext,i + pfeed,nλn. (28)

Two important things should be noted from the previous expression. First,
the probability for the packet to leave the system immediately after the data
plane i is pl,i. Hence, the probability for a packet to be fed back to the
controller is (1 − pl,i)pfeed,i, as that packet belongs to the group of packets
that have not left immediately. Second, the packet after data plane n that
is not sent back to the controller leaves the system (see Fig. 2). Hence, the
probability term corresponding to data plane n in Eq.(28) is pfeed,n.

The service times at the controller undergo a general distribution with
mean E[SC ], leading to a rate of µC = 1

E[SC ]
. The standard deviation of

the service time at the controller is denoted by σC . The average total time
a packet spends in the control plane (the sum of the corresponding service
time and queueing delay) is denoted by E[TC ].

We assume that the data plane queues as well as the controller queue
are all stable, i.e. ρ < 1. We are interested in analyzing the steady-state
behavior of the system.

6.4. Packet Sojourn Time

For the prior introduced network model with nmultiple data plane devices
and a single controller, the mean sojourn time of a packet in the system is
very important. In this paper, we consider the mean sojourn time of a packet
arriving at the first data plane device (following a Poisson process with rate
λext,1) until it leaves the system after the ith queue (as already described,
it can leave after being processed by switch 1, 2, ..., n). Thus, we need to
determine the options of packet traversing the system until leaving and the
corresponding probabilities.
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Path 1. The packet leaves directly after being served in the first data plane
device. The probability for this is pl,1, and the experienced delay
E[TD,1].

Path 2. The packet is sent to the control plane after service completion in
the first data plane device and then leaves the system directly after
going through the data plane again. The probability for this is
(1− pl,1)pfeed,1pl,1 and the corresponding delay is 2E[TD,1] + E[TC ].

Path 3. The packet is forwarded up to the ith data plane device sequentially
without going through the controller, and after service completion
in the i device leaves the system. The probability for this to be
the case is (1 − pl,1)(1 − pfeed,1)(1 − pl,2) . . . (1 − pl,i−1)pl,i, and the
expected delay for that packet is

∑i
j=1 E[TD,j], ∀i ∈ {2, . . . , n− 1}.

Path 4. The packet is forwarded through all data plane devices and leaves
the system without ever visiting the controller. The probability in
this case is (1 − pl,1)(1 − pfeed,1)(1 − pl,2) . . . (1 − pl,n−1), and the
corresponding delay is

∑n
i=1 E[TD,i].

Path 5. The packet is sent to the controller (from data plane 1) and then
leaves the system after service completion in the ith queue. Note
that the packet can go at most once to the controller, implying that
it went through data planes 1 to i − 1 sequentially, after going to
the data plane 1 and the controller first. The probability for this
outcome is (1− pl,1)pfeed,1(1− pl,1) . . . (1− pl,i−1)pl,i. The expected
delay in this case is

∑i
j=1 E[TD,j]+E[TD,1]+E[TC ], ∀i ∈ {2, . . . , n−

1}.
Path 6. The packet goes to the controller from data plane 1 and then is

forwarded all the way out, i.e., goes through all the data planes (1 to
n) before leaving the system. So, it goes twice through data plane 1.
The probability for this path is (1−pl,1)pfeed,1(1−pl,1) . . . (1−pl,n−1),
and the expected delay is

∑n
i=1 E[TD,i] + E[TD,1] + E[TC ].

Combining the probabilities and the average delays for each case in Path
1-Path 6, we obtain:

Result 1. The average sojourn time of a packet in the system with n se-
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quential data planes and a single controller (shown in Fig. 2) is

E[T ] = pl,1E[TD,1] + (1− pl,1)pfeed,1pl,1 (2E[TD,1] + E[TC ]) +
n−1∑
i=2

(
(1− pfeed,1)pl,i

i−1∏
j=1

(1− pl,j)
i∑

j=1

E[TD,j]

)
+

(1− pfeed,1)
n−1∏
i=1

(1− pl,i)
n∑

i=1

E[TD,i]+

n−1∑
i=2

(
(1− pl,1)pfeed,1pl,i

i−1∏
j=1

(1− pl,j)

(
i∑

j=1

E[TD,j] + E[TD,1] + E[TC ]

))
+

pfeed,1(1− pl,1)
n−1∏
i=1

(1− pl,i)

(
n∑

i=1

E[TD,i] + E[TD,1] + E[TC ]

)
.

(29)

Having obtained the average sojourn time in the general form in Result 1,
we need to determine average times the packet spends in each data plane
E[TD,i],∀i ∈ 1, . . . , n and in the controller E[TC ]. We compute these averages
approximately using the three approaches which were also used in the case
of a single data plane: Diffusion approximation, Modified Diffusion approxi-
mation, and Independent M/G/1 queues. We do this in the following three
subsections. Then, the theoretical results of these approaches are compared
with the actual (simulation) results and their prediction accuracy evaluated
in Section 7.

6.5. Diffusion approximation

As we know from the single data plane case, when using the Diffusion
approximation, first, we need to determine the frequency of visits ei for all n
forwarding devices, and eC (nominally denoted here by the index n + 1) for
the controller. These are calculated as in [28] using

ei = p0,i +
n+1∑
j=1

ejpj,i, ∀i ∈ {1, . . . , n+ 1}, (30)

where p0,i is the probability that a packet entering the network from outside
enters at the ith device and pj,i is the probability for a packet to be forwarded
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from the jth device to device i. To simplify the notation and analysis, we
consider the case with two data planes.

For the considered network we need to determine the probabilities from
Eq.(30). First, p0,D1 =

λext,1

λext,1+λext,2
, and p0,D2 =

λext,2

λext,1+λext,2
. Further, p0,C = 0,

as an external packet never goes directly to the controller. The probability
for a packet after leaving data plane 1 to go to the controller is pD1,C =
(1−pl,1)pfeed,1, and for a packet from data plane 2, this probability is pD2,C =
pfeed,2. The probability for a packet leaving data plane 1 to go to data plane
2 is pD1,D2 = (1− pl,1)(1− pfeed,1). The probability for a transition from the
controller to data plane 1 is

pC,D1 =
(1− pl,1)pfeed,1λext,1

(1− pl,1)pfeed,1λext,1 + pfeed,2λext,2

, (31)

and from the controller to data plane 2 is

pC,D2 =
pfeed,2λext,2

(1− pl,1)pfeed,1λext,1 + pfeed,2λext,2

. (32)

The numerator in Eq.(31) is the arrival rate of data plane 1 packets to the
controller, whereas the numerator in Eq.(32) represents the arrival rate of
packets arriving to the controller which externally came to data plane 2.
The denominators in Eq.(31) and Eq.(32) represent the total arrival rate at
the controller.

Substituting the previous probabilities into Eq.(30), for the frequency of
visits to data plane 1 we obtain

eD1 =
λext,1

λext,1 + λext,2

+ ec ·
(1− pl,1)pfeed,1λext,1

(1− pl,1)pfeed,1λext,1 + pfeed,2λext,2

. (33)

Similarly, for the frequency of packet visits to data plane 2, we have

eD2 =
λext,2

λext,1 + λext,2

+eD1(1−pl,1)(1−pfeed,1)+ec·
pfeed,2λext,2

(1− pl,1)pfeed,1λext,1 + pfeed,2λext,2

,

(34)
whereas for the frequency of visits to the controller:

eC = eD1(1− pl,1)pfeed,1 + eD2pfeed,2. (35)

Eqs.(33)-(35) comprise a system of linear equations with three unknowns eD1,
eD2, and eC . Hence, it has a unique solution in eD1, eD2, and eC .
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As a next step, we need to determine the arrival rates to the data planes
and the controller. To that end, we adapt Eq.(27) to our case, and for the
overall arrival rate at the first data plane, we have

λD1 = (1 + (1− pl,1)pfeed,1)λext,1, (36)

whereas for the overall arrival rate to data plane 2, we obtain

λD2 = (1− pl,1)λext,1 + pfeed,2λext,2. (37)

Adapting Eq.(28) to our case, for the arrival rate at the controller, we get

λC = (1− pl,1)pfeed,1λext,1 + pfeed,2λext,2. (38)

In line with Eq.(8), the utilization of the (server of) data plane 1 is

ρD1 =
λD1

µD1

=
(1 + (1− pl,1)pfeed,1)λext,1

µD1

, (39)

and for data plane 2 it is

ρD2 =
λD2

µD2

=
(1− pl,1)λext,1 + pfeed,2λext,2

µD2

. (40)

As far as the utilization at the controller is concerned, in line with Eq.(8),
we have

ρC =
λC

µC

=
(1− pl,1)pfeed,1λext,1 + pfeed,2λext,2

µC

. (41)

With the coefficients of variation of the service times in each device de-
noted by c2D1,S, c

2
D2,S, and c2C,S, the squared coefficients of variation for the

arrival processes for each device, using Eq.(10), are

c2D1,A = 1 +
N∑
j=0

(c2j,S − 1) · p2j,D1 ·
ej
eD1

= 1 + (c2C,S − 1)p2C,D1

eC
eD1

, (42)

c2D2,A = 1 +
N∑
j=0

(c2j,S − 1) · p2j,D2 ·
ej
eD2

=

= 1 + (c2D1,S − 1)p2D1,D2 ·
eD1

eD2

+ (c2C,S − 1)p2C,D2 ·
eC
eD2

,

(43)
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and

c2C,A = 1 +
N∑
j=0

(c2j,S − 1) · p2j,C · ej
eC

=

= 1 + (c2D1,S − 1) · p2D1,C · eD1

eC
+ (c2D2,S − 1) · p2D2,C · eD2

eC
,

(44)

where for the input parameters, we substitute eD1, eD2, ec, Eq.(31), Eq.(32),
and other probabilities from the previous discussion into Eqs.(42)-(44).

Further, using Eq.(6) for the corresponding ρ̂ for data plane 1, data plane
2, and the controller we have

ρ̂D1 = exp

(
−2(1− ρD1)

ρD1c2D1,A + c2D1,S

)
, (45)

ρ̂D2 = exp

(
−2(1− ρD2)

ρD2c2D2,A + c2D2,S

)
, (46)

and

ρ̂C = exp

(
−2(1− ρC)

ρCc2C,A + c2C,S

)
, (47)

where ρD1 is given by Eq.(39), ρD2 by Eq.(40), ρC by Eq.(41), while cD1,A,
cD2,A, and cC,A are obtained from Eqs.(42)-(44). Note that the coefficients of
variation of the service times at each entity cD1,S, cD2,S, and cC,S are known
because we know the corresponding distributions of the service times.

Having obtained ρD1, ρ̂D1, ρD2, ρ̂D2, ρC , and ρ̂C previously, the average
number of jobs at these devices, i.e., E[ND1], E[ND2], and E[NC ], can be
obtained using the adjusted Eq.(7) as:

E[ND1] =
ρD1

1− ρ̂D1

, (48)

E[ND2] =
ρD2

1− ρ̂D2

, (49)

and
E[NC ] =

ρC
1− ρ̂C

. (50)
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The mean sojourn time for a packet in each device can now be calculated
using Little’s law [10], Eq.(36), Eq.(37), and Eq.(38) as

E[TD1] =
E[ND1]

λD1

=
E[ND1]

(1 + (1− pl,1)pfeed,1)λext,1

, (51)

E[TD2] =
E[ND2]

λD2

=
E[ND2]

(1− pl,1)λext,1 + (1 + pfeed,2)λext,2

, (52)

and

E[TC ] =
E[NC ]

λC

=
E[NC ]

(1− pl,1)pfeed,1λext,1 + pfeed,2.λext,2

. (53)

For our case with two data planes and a single controller, Eq.(29) reduces
to

E[T ] = pl,1E[TD1] + (1− pl,1)(1− pfeed,1)(E[TD1] + E[TD2])+

+ (1− pl,1)pfeed,1pl,1(2E[TD1] + E[TC ])+

+ (1− pl,1)pfeed,1(1− pl,1)(2E[TD1] + E[TC ] + E[TD2]).

(54)

Inserting Eq.(51), Eq.(52), and Eq.(53) into Eq.(54), the approximated packet
average sojourn time using this approach can be obtained.

6.6. Modified Diffusion Approximation
The modified diffusion approximation approach is very similar to the

diffusion approximation. The only difference is in the modified computation
of the average number of packets in an entity E[N ]. In particular, for our
considered network, in line with Eq.(21), they are obtained from

E[ND1] = ρD1

(
1 +

ρD1c
2
D1,A + c2D1,S

2(1− ρD1)
,

)
, (55)

E[ND2] = ρD2

(
1 +

ρD2c
2
D2,A + c2D2,S

2(1− ρD2)

)
, (56)

and

E[NC ] = ρC

(
1 +

ρCc
2
C,A + c2C,S

2(1− ρC)

)
. (57)

The mean sojourn time for a packet to pass each device using this ap-
proach can then be calculated by substituting Eq.(55) into Eq.(51) for data
plane 1, Eq.(56) into Eq.(52) for data plane 2, and Eq.(57) into Eq.(53) for
the controller.

Finally, those obtained values for E[TD1], E[TD2], and E[TC ] can be in-
serted into Eq.(54) to calculate the mean packet sojourn time in this network.
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6.7. M/G/1 Approximation

With the third approximation approach that we use in this paper, the
behavior of all the queues at all data planes and at the controller are assumed
to be independent, with Poisson arrival process at each one of them with
corresponding arrival rates. Note that this again is only an approximation
as in reality these queues are dependent and the arrival processes are not
Poisson. However, as will be shown in Section 7, this approach in most of
the scenarios of interest provides the closest match to the actual (simulation)
results for the multiple data plane network as well.

Using Eq.(24), for the average time a packet spends in data plane i, the
approximation is given by

E[TD,i] =
ρD,i

1− ρD,i

· E[SD,i]

2
· (c2D,i,S + 1) + E[SD,i], (58)

where ρD,i =
λi

µD,i
is the utilization of data plane i, with λi obtained from

Eq.(27). The parameter E[SD,i] denotes the mean service time in data plane
i, whereas cD,i,S is its coefficient of variation.

Similarly, for the average time a packet spends in the controller, we have
the approximation

E[TC ] =
ρC

1− ρC
· E[SC ]

2
· (c2C,S + 1) + E[SC ], (59)

with ρC = λC

µC
denoting the utilization ratio of the controller, where λC is

obtained from Eq.(28). The parameter E[SC ] represents the mean of the
service time in the controller, whereas cC,S is its coefficient of variation.

Finally, substituting Eq.(58), ∀i ∈ {1, . . . , n}, and Eq.(59) into Eq.(29),
we obtain the mean packet sojourn time of a packet in this network with the
M/G/1 approximation approach.

7. Evaluation

In this section, the different approximation techniques for the packet mean
sojourn time are evaluated by comparison to simulation results. First, the
simulation setup and varied parameters are described. Then, the results
for the different combinations of data plane and control plane service time
distributions are presented for the single and the multiple data plane devices.
Finally, the analytical results of all approaches are compared in order to find
a good model for the different operation regions.
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7.1. Simulation Setup

In a first step, the setup for our evaluation is described. First, we con-
sider the single data plane device. In a further step, a network consisting of
two data plane devices and a controller is analyzed followed by a network
consisting of three data plane devices with controller feedback.

7.1.1. Single Data Plane Device

In order to evaluate the goodness of the analytical results for different
regions of operations, the P4 device model with feedback is implemented
in a packet-based MATLAB simulation and different parameters are varied.
First, the data plane and control plane service times are either exponen-
tially, Erlang or hyper-exponentially distributed, representing distributions
with lower and higher variance. The mean service time of the data plane
E[SD] = 45.9µs is taken from [9] as the mean forwarding time for T4P4S run-
ning VxLAN. Additionally, the controller mean service times are also taken
from [9]: E[SC ] = 31µs represents a controller which is faster, E[SC ] = 240µs
which is medium, and E[SC ] = 10 ms which is much slower compared to the
data plane, i.e., it is comparable to an ONOS controller [31]. Whenever the
Erlang distribution is used, the shape parameter (number of stages) is arbi-
trarily set to k = 100 in order to ensure a cv,erl = 0.1. The hyperexponential
distribution consists of two exponential distributions with rates µ1 and µ2.
The probability to choose the first exponential distribution is p = 0.9, and
1−p = 0.1 otherwise. In order to ensure a cv,hyper > 1, the following relation
is set:

µ2 = 100µ1. (60)

From Eq.(20) it can be shown that c2v,hyper = 15.85, independently of the
used service time averages.

Another varied parameter is the probability for packets being sent to the
controller, i.e., pfeed ∈ {0, 0.1, 0.5, 1}, showing the impact of the controller
on the overall sojourn time. Each simulation is run for 100, 000 packets. For
each of these cases, the controller’s utilization is increased to a maximum of
ρc = 0.95, always ensuring a stable controller queue. Also, a stable data plane
is always ensured. The results obtained by those simulations are compared
to the approximation results by taking the average error over the increasing
load cases of the controller for one value of pfeed.
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Figure 3: Approximation errors for the three different controller speeds and the combina-
tion Exponential-Exponential.

7.1.2. Two Data Plane Devices

In this case, a network consisting of two data plane devices and a con-
troller is simulated and the results are compared to the analytical results.
Here, the same parameters as for the single data plane device network are
applied. Additionally, we set pfeed,1 = pfeed,2 and vary the probability of
a packet to leave the system after the first data plane device, i.e., pl,1 ∈
{0, 0.1, 0.5}. The service times of both data plane devices are equal, i.e.,
E[SD1] = E[SD2] = 45.9µs.

7.1.3. Three Data Plane Devices

Now, a network with three data plane devices and a controller is con-
sidered and the results are compared to the theoretical approaches. The
parameters are the same as for the single data plane device network. Ad-
ditionally, the probabilities for a packet to visit the controller is the same,
i.e., pfeed,1 = pfeed,2 = pfeed,3. Furthermore, the leaving probabilities of the
data plane devices are the same and varied, i.e., pl,1 = pl,2 ∈ {0, 0.1, 0.5}.
Finally, the mean service times of the data planes are again equal, i.e.,
E[SD1] = E[SD2] = E[SD3] = 45.9µs.

7.2. Single Data Plane Error Evaluation

In the following, the simulation results are compared to those obtained
by the three approximation approaches for all combinations of service times
distributions in the data plane and control plane.

7.2.1. Exponential-Exponential

Fig. 3 shows the errors of the different approximations for all controller
processing speeds and a data plane as well as a control plane with expo-
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Figure 4: Approximation errors for the three different controller speeds and the combina-
tion Exponential-Erlang.

nentially distributed service times, i.e., both distributions have cV = 1. In
the case of the fast controller (see Fig. 3a) and pfeed = 0, i.e., no controller
interaction, the data plane can be modeled as an M/G/1 queue and there-
fore the error of the closed-form equations for the M/G/1 approach is very
small. Additionally, the error results are independent of the controller speed.
This also holds for other data plane distributions besides the exponential
and when pfeed = 0. Hence, this case is not explained in the rest of this
paper again. While the Modified Diffusion approach has high errors, the Dif-
fusion approach is closer to the simulation and the M/G/1 approximation
is the best for all the values of pfeed. This behavior can also be observed
for the medium (see Fig. 3b) and the fast controller (see Fig. 3c). In both
cases, the Modified Diffusion approach approximates the simulation (actual)
results significantly worse than the other two approaches. Note that for the
M/G/1 and the Diffusion approximation the highest error occurs for a low
value of pfeed.

7.2.2. Exponential-Erlang

In the second case, the service times of the data plane are exponential
and those of the control plane are Erlang-distributed. The approximation
errors are shown in Fig. 4. For the fast controller case (see Fig. 4a), the
Modified Diffusion approach has a high error compared to the other two.
However, for higher values of pfeed the error is slightly smaller than with
the Diffusion approach. The M/G/1 approximation leads in all cases to the
lowest errors. For the medium controller (see Fig. 4b), the behavior of the
first two approximations change. While for low and medium values of pfeed
the Diffusion approximation is better than the Modified Diffusion one, this
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Figure 5: Approximation errors for the three different controller speeds and the combina-
tion Exponential-Hyperexponential.

changes for pfeed = 1. In the slow controller case (see Fig. 4c), the Diffusion
approach has a much higher error compared to the other two approximations.
Note that for the case of pfeed = 0.1 the Modified Diffusion is better than
the M/G/1 approach.

7.2.3. Exponential-Hyperexponential

In this case, the data plane service times are exponential and those of the
controller are hyperexponentially distributed, i.e., the control plane shows a
high variance in its service times compared to the data plane. This impacts
the errors of the Diffusion and the Modified Diffusion approach significantly
(see Fig. 5). The errors for the fast (see Fig. 5a), the medium (see Fig. 5b)
and the slow controller (see Fig. 5c) behave similarly. Even though the
Modified Diffusion approach has the highest error for all values of pfeed,
the Diffusion approximation is only slightly better. On the other side, the
M/G/1 approach produces very small errors in comparison to the other two
approaches.

7.2.4. Erlang-Exponential

Fig. 6 shows the approximation errors for a data plane with Erlang and a
controller with exponentially distributed service times. In the fast controller
case (see Fig. 6a), the Diffusion approach error increases for higher values of
pfeed and is the worst approximation. As opposed to most of the other cases,
the M/G/1 approach performs slightly worse than the Modified Diffusion.
All errors increase with higher values of pfeed. The M/G/1 approach is the
best approximation again for all values of pfeed of the medium controller
(see Fig. 6b). While the Diffusion approach performs worst for lower values
of pfeed, the errors for higher values of pfeed are smaller than those of the
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Figure 6: Approximation errors for the three different controller speeds and the combina-
tion Erlang-Exponential.
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Figure 7: Approximation errors for the three different controller speeds and the combina-
tion Erlang-Erlang.

Modified Diffusion approach. For the slow controller (see Fig. 6c) and pfeed >
0, the error for the Diffusion approach increases for higher values of pfeed,
but is still smaller than the error from the Modified Diffusion approach. The
M/G/1 approach performs the best, with decreasing errors for increasing
values of pfeed.

7.2.5. Erlang-Erlang

Fig. 7 presents the approximation errors for the case where the service
times of both data plane and control plane follow the Erlang distribution.
For the fast controller case (see Fig. 7a), all errors increase with higher val-
ues of pfeed. The best performing approximation is the M/G/1 approach;
the worst is the Diffusion approximation. The same holds for the medium
controller (see Fig. 7b). However, as the error of the Diffusion approach is
only slightly changing for higher values of pfeed, that of the M/G/1 approxi-
mation decreases. The slow controller (see Fig. 7c) shows the same behavior
as the fast controller with the exception of decreasing errors for increasing
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Figure 8: Approximation errors for the three different controller speeds and the combina-
tion Erlang-Hyperexponential.

values of pfeed with the M/G/1 approximation.

7.2.6. Erlang-Hyperexponential

In this case, the service times of the data plane are Erlang and those of
the controller are hyperexponentially distributed. The high variance of the
control plane service times have a high impact on the errors of the Diffusion
and the Modified Diffusion approach (see Fig. 8). The cases of the fast (see
Fig. 8a), the medium (see Fig.8b), and the slow controller (see Fig. 8c) show
the same behavior for the approximation errors. All errors are increasing for
higher values of pfeed with all approaches except for M/G/1 and a medium
and slow controller, where the error first decreases for medium values of pfeed
and then increases again. The Modified Diffusion approach performs slightly
worse than the Diffusion approach, but significantly worse than the M/G/1
approximation.

7.2.7. Hyperexponential-Exponential

Fig. 9 shows the approximation errors for a data plane with hyperexpo-
nential and a control plane with exponentially distributed service times. The
high impact of the variance of the data plane service times can be observed
for the fast controller (see Fig. 9). Without controller involvement, i.e.,
pfeed = 0, the errors for the Diffusion and the Modified Diffusion approach
are very high, whereas the M/G/1 approximation is very close to simulation
results. For higher values of pfeed, the errors also increase with the Diffusion
approach, performing slightly better than the Modified Diffusion approxima-
tion. For all values of pfeed, the M/G/1 approximation performs the best.
Note that the controller involvement decreases the error for the Diffusion
and Modified Diffusion approach. A similar behavior can be observed for the
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Figure 9: Approximation errors for the three different controller speeds and the combina-
tion Hyperexponential-Exponential.
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Figure 10: Approximation errors for the three different controller speeds and the combi-
nation Hyperexponential-Erlang.

medium (see Fig. 9b) and slow controller (see Fig. 9c) with the exception
of decreasing errors for the M/G/1 approximation for higher values of pfeed,
almost tending to 0. Additionally, the errors for higher values of pfeed for the
Diffusion and Modified Diffusion approach grow larger than for pfeed = 0.

7.2.8. Hyperexponential-Erlang

In this case, the service times of the data plane are hyperexponential and
those of the control plane are Erlang distributed. The approximation errors
are shown in Fig. 10. The behavior of the errors for the fast (see Fig. 10a),
the medium (see Fig. 10b), and the slow controller (see Fig. 10c) is similar
to the case of a data plane with hyperexponential and a control plane with
exponentially distributed service times, and is described there.

7.2.9. Hyperexponential-Hyperexponential

Fig. 11 shows the approximation errors for the last case, where the ser-
vice times of both the data plane and the controller are hyperexponentially
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Figure 11: Approximation errors for the three different controller speeds and the combi-
nation Hyperexponential-Hyperexponential.
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Figure 12: Approximation errors for the three different controller speeds, Erlang dis-
tributed service times in the data plane, Erlang distributed service times in the controller,
and pl,1 = 0.

distributed. Again, the behavior for the fast (see Fig. 11a), the medium (see
Fig. 11b), and the slow controller (see Fig. 11c) is similar to the Hyperexponential-
Exponential case, and is described there.

7.3. Error Evaluation of Two Data Plane Devices

In the next scenario, one more data plane device is added to the network.
Thus, the network now consists of two data plane devices and one controller.
In the following, the errors of the three approximation approaches compared
to simulation results are shown for four selected cases.

7.3.1. Erlang-Erlang-Erlang

The first case, where the service times of all devices in the network are
Erlang distributed and pl,1 = 0, is shown in Fig. 12 for all three controller
speeds. For the fast controller case in Fig. 12a, the M/G/1 has the small-
est error for all values of pfeed,1. Even though the error for the Modified
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Figure 13: Approximation errors for the three different controller speeds, Erlang dis-
tributed service times in the data plane, Erlang distributed service times in the controller,
and pl,1 = 0.1.

Diffusion is higher than for the M/G/1, it is still better than the Diffusion
approximation in every case. This behavior can also be observed in Fig. 12b
and Fig. 12c. Note that the error values for pfeed,1 = 0 are the same across
all three controller speeds, as for pfeed,1 = 0 no packet is forwarded to the
controller and the network simplifies to two sequential data plane devices.
This holds also for the rest of the cases and is thus not mentioned in the
remainder of the paper anymore.

Increasing the value of pl,1 to 0.1, as in Fig. 13, decreases the error with
the Diffusion and the Modified Diffusion approach for the fast controller
case (see Fig. 13a), but increases it for the M/G/1 approach, except for
pfeed,1 = 0.5. However, theM/G/1 approximation still outperforms the other
two approaches. For the medium and slow controller, shown in Fig. 13b and
Fig. 13c, respectively, the error values with all three approaches are only
slightly different compared to the case with pl,1 = 0.

However, when further increasing pl,1 (as shown in Fig. 14), this behavior
changes. Considering a fast controller (Fig. 14a) with pfeed,1 = 0, the Mod-
ified Diffusion approximation is slightly better than the M/G/1 approach.
With increasing values of pfeed,1, its error increases as well, whereas the error
of the M/G/1 approach only changes slightly. The Diffusion approach also
shows increasing errors for increased values of pfeed,1, but it is significantly
worse than the other two approaches. For the medium (Fig. 14b and the fast
controller (Fig. 14b), the behavior is similar, except for the higher error peak
for the M/G/1 approach when pfeed,1 = 0.1.
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Figure 14: Approximation errors for the three different controller speeds, Erlang dis-
tributed service times in the data plane, Erlang distributed service times in the controller,
and pl,1 = 0.5.
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Figure 15: Approximation errors for the three different controller speeds, Erlang dis-
tributed service times in the data plane, exponentially distributed service times in the
controller, and pl,1 = 0.

7.3.2. Erlang-Erlang-Exponential

Fig. 15 shows the error results for the second case with pl,1 = 0. The data
plane service times are both Erlang distributed, whereas the service time
distribution of the controller follows an exponential distribution. For the fast
controller case (Fig. 15a), theM/G/1 approximation only varies slightly from
the results obtained via simulation. The Diffusion and the Modified Diffusion
are further away from the simulation result, whereas the Modified Diffusion
Approach always outperforms the Diffusion approach. This behavior changes
for the medium controller in Fig. 15b. While the approximation obtained
with the M/G/1 approach is still very close to the simulation results, the
Diffusion approach shows better results than the Modified Diffusion for higher
values of pfeed,1. For the slow controller case (Fig. 15c), a similar behavior
for higher values of pfeed,1 can be observed. However, for pfeed,1 = 0.1 the
Diffusion approximation is slightly better than the M/G/1 approach, which
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Figure 16: Approximation errors for the three different controller speeds, Erlang dis-
tributed service times in the data plane, exponentially distributed service times in the
controller, and pl,1 = 0.1.
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Figure 17: Approximation errors for the three different controller speeds, Erlang dis-
tributed service times in the data plane, exponentially distributed service times in the
controller, and pl,1 = 0.5.

shows a high peak compared to the other controller speeds, and higher values
of pfeed,1. This highest error value of the M/G/1 approach for pl,1 = 0 is
higher compared to the highest error in the previous case, i.e., when all service
times are Erlang distributed. This is due to the higher cv of the exponential
distribution, which leads to increased variation in the service times results.
Except for the case when no controller is involved, the Modified Diffusion
approach performs the worst in the fast controller case.

When the value of pl,1 = 0 is increased to 0.1 (Fig. 16), the behavior and
the errors of the three approximations only slightly change compared to the
previous case with pl,1 = 0 for the fast (Fig. 16a), medium (Fig. 16b), and
slow controller (Fig. 16c).

This changes for the results of pl,1 = 0.5 (see Fig. 17). In the fast con-
troller case, shown in Fig. 17a, the Modified Diffusion approximation shows
slightly better results than the M/G/1. However, its errors are increasing
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Figure 18: Approximation errors for the three different controller speeds, exponentially
distributed service times in the data plane, Erlang distributed service times in the con-
troller, and pl,1 = 0.

faster for higher values of pfeed,1, whereas the errors of the M/G/1 approach
only slightly change and therefore, it is worse. The Diffusion approxima-
tion performs the worst of all approaches. Looking at the medium controller
(Fig. 17b), the M/G/1 approximation is very close to the simulation. The
Modified Diffusion approach is very close to the M/G/1 approximation for
pfeed,1 = 0.1, but the error increases for increased values of pfeed,1. While the
Diffusion approach is significantly worse than the two others for pfeed,1 = 0.1,
the error decreases for increased values of pfeed,1 and is only slightly higher
than the results of the Modified Diffusion approach. When the controller is
slow (Fig. 17c), the behavior of the errors of the three approaches is very
similar to the slow controller case for pl,1 = 0 (Fig. 15c), and is described
there.

7.3.3. Exponential-Exponential-Erlang

In the third case, the service times in the data plane devices are exponen-
tial and in the controller are Erlang distributed. The results for pl,1 = 0 are
shown in Fig. 18. The results for the fast (Fig. 18a) and the medium con-
troller (Fig. 18b) are very similar. While the M/G/1 approximation is very
close to the simulation for all values of pfeed,1, the Diffusion approximation is
also very close for medium values of pfeed,1. For pfeed,1 = 0 and higher values
of pfeed,1, the error increases a bit. The Modified Diffusion approach shows
the worst results in all cases, even though the error approaches the error of
the Diffusion approach for the medium controller and higher values of pfeed,1.
In the slow controller case (Fig. 18c), the error of the Modified Diffusion
and the M/G/1 approximation is very small. Only for pfeed,1 = 0.1 is the
error of the former approach slightly smaller than the error of the latter. If
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Figure 19: Approximation errors for the three different controller speeds, exponentially
distributed service times in the data plane, Erlang distributed service times in the con-
troller, and pl,1 = 0.1.
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Figure 20: Approximation errors for the three different controller speeds, Erlang dis-
tributed service times in the data plane, exponentially distributed service times in the
controller, and pl,1 = 0.5.

the controller is involved in the network, the Diffusion approximation shows
significantly higher errors than the other two approaches.

For pl,1 = 0.1 (Fig. 19), the results for the fast (Fig. 19a), the medium
(Fig. 19b), and the slow controller (Fig. 19) are very similar to the corre-
sponding cases with pl,1 = 0. However, for the M/G/1 approach, with the
fast controller with pfeed,1 = 1 the error is significantly increased compared
to the slower controller with pl,1 = 0.

With pl,1 = 0.5 (as shown in Fig. 20), the results for the medium (Fig. 20b)
and slow controller (Fig. 20c) are behaving similarly to the corresponding
cases with pl,1 = 0 and pl,1 = 0.1. For the fast controller (Fig. 20a), the
M/G/1 approximation still shows the smallest error. It increases for higher
values of pfeed,1 though. The Diffusion approach performs similarly to the
M/G/1 for small and medium values of pfeed,1; for higher values, the error
increases. While the error for the Modified Diffusion Approach is very high
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Figure 21: Approximation errors for the three different controller speeds, hyperexponen-
tially distributed service times in the first and Erlang distributed in the second data plane
device, Erlang distributed service times in the controller and pl,1 = 0.

compared to the error of the other two approaches, it performs almost as
good as the M/G/1 and better than the Diffusion approach for pfeed,1 = 1.

7.3.4. Hyperexponential-Erlang-Erlang

In the last case, the service times of the first data plane device are hy-
perexponentially distributed and those of the second device follow an Erlang
distribution. The service times of the controller are also Erlang distributed.
The results for pl,1 = 0 are shown in Fig. 21. For all three controller speeds,
the fast (Fig. 21a), the medium (Fig. 21b), and the slow (Fig. 21c) one, the
Diffusion and the Modified Diffusion approach are significantly worse than
the M/G/1 approach. For the fast controller case, the errors of the M/G/1
approach are in general larger than for the medium and the slow controller.
This is due to the impact of the slower controller to the latter cases. If
the controller is fast compared to the data plane, the variance of the hyper-
exponentially distributed service times greatly influences the overall mean
sojourn time. However, the slower the controller is, the higher the impact
of the controller processing time, which diminishes the influence of the vari-
ance of the hyperexponential distribution on the overall mean sojourn time.
The same effect can be observed when increasing the values of pfeed,1, start-
ing with pfeed,1 = 0 for the medium and the slow controller. The more the
slower controller involved is, the lower the impact of the hyperexponentially
distributed service times on the first data plane device.

The results of the considered case with pl,1 = 0.1 are shown in Fig. 22.
The errors and their behavior of the three approximation approaches for the
fast (Fig. 22a), the medium (Fig. 22b), and the slow controller (Fig. 22c) are
very similar to the case with pl,1 = 0.
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Figure 22: Approximation errors for the three different controller speeds, hyperexponen-
tially distributed service times in the first and Erlang distributed in the second data plane
device, Erlang distributed service times in the controller, and pl,1 = 0.1.
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Figure 23: Approximation errors for the three different controller speeds, hyper-
exponentially distributed service times in the first and Erlang distributed in the second
data plane device, Erlang distributed service times in the controller, and pl,1 = 0.5.

Finally, increasing pl,1 to 0.5 results in very low errors for the M/G/1
approach in almost all cases (Fig. 23). Only for the fast controller (Fig. 23a),
the error goes up to 26% for higher values of pl,1. The results of the Diffusion
and the Modified Diffusion approach still differ from the simulation signifi-
cantly in all cases. However, the error is greatly reduced in all cases when
the slow controller is involved.

7.4. Error Evaluation for Three Data Plane Devices

Now, one more data plane device is added. The network now consists of
three data plane devices and a controller. In the following, the error results
using the M/G/1 approximation for two selected cases are presented. We
do this since the M/G/1 approach showed the best performance in the vast
majority of the considered scenarios in this paper.

42



7.4.1. Erlang Distributed Data and Control Plane Service Times

pfeed,i = 0 pfeed,i = 0.1 pfeed,i = 0.5 pfeed,i = 1

Slow
Controller

pl,i = 0 6.1% 3.3% 1.8% 1.0%
pl,i = 0.1 5.4% 1.3% 0.6% 0.6%
pl,i = 0.5 1.2% 2.9% 1.1% 0.9%

Medium
Controller

pl,i = 0 6.1% 5.4% 2.1% 1.4%
pl,i = 0.1 5.4% 5.3% 1.4% 0.8%
pl,i = 0.5 1.2% 3.2% 0.4% 0.4%

Fast
Controller

pl,i = 0 6.1% 7.5% 2.2% 1.6%
pl,i = 0.1 5.4% 7.5% 5.2% 3.4%
pl,i = 0.5 1.2% 5.6% 3.6% 4.7%

Table 2: Analytical errors compared to simulation results for three data plane devices and
one controller, each with Erlang distributed service times.

In the first case, the service times of all devices, data plane and control
plane, are Erlang distributed. Table 2 shows the approximation errors of the
M/G/1 approach for all controller speeds in all considered cases. The error is
very low in the slow controller case for all values of pfeed,i and pl,i. Compared
to that, the errors increase slightly for the medium controller and further
for the fast controller. The errors are highest for all three controller speeds
when the controller is not or is only slightly involved, i.e., when pl,i = 0 and
pl,i = 0.1.

7.4.2. Exponentially Distributed Data and Control Plane Service Times

In the last case, the service times of the data plane and control plane
devices are exponentially distributed. Again, the approximation error in
general for all cases is very small, as shown in Table 3. For the slow and
medium controller, the highest errors are caused by increasing the values of
pl,i and when there is little controller involvement. For the fast controller,
the highest error appears for p,i = 0.5 and for increased values of pfeed,i.

7.5. Evaluation and Comparison of the Approaches

Based on the presented results, the three approximation methods are
compared in regards to their approximation precision.
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pfeed,i = 0 pfeed,i = 0.1 pfeed,i = 0.5 pfeed,i = 1

Slow
Controller

pl,i = 0 0.5% 5.4% 2.4% 3.0%
pl,i = 0.1 0.3% 5.1% 1.7% 1.3%
pl,i = 0.5 0.3% 6.9% 2.5% 1.7%

Medium
Controller

pl,i = 0 0.5% 0.7% 2.1% 3.0%
pl,i = 0.1 0.3% 1.1% 1.1% 0.7%
pl,i = 0.5 0.3% 2.4% 1.6% 1.2%

Fast
Controller

pl,i = 0 0.5% 1.5% 0.3% 0.6%
pl,i = 0.1 0.3% 1.7% 7.0% 4.6%
pl,i = 0.5 0.3% 6.2% 6.7% 9.1%

Table 3: Analytical errors compared to simulation results for three data plane devices and
one controller, each with exponentially distributed service times.

7.5.1. Single Data Plane Device

TheM/G/1 approximation approach outperforms the other two approaches
in almost every case significantly. Moreover, the errors for Diffusion and
Modified Diffusion approach increase significantly if a distribution with a co-
efficient of variation cV > 1 is used for the service times in one or both planes.
Using the M/G/1 approximation, the errors for such cases are much smaller
compared to the other approaches. Specifically, the maximum mean error
obtained by the M/G/1 approach for using distributions with coefficients of
variation close to 1 or lower for the service times in the P4 forwarding model
with a medium or slow controller feedback is 13.9%. Considering a fast con-
troller increases the error up to 18.2%. For a data plane with a service times
distribution with coefficient of variation close to 1 and a control plane ser-
vice time distribution with a coefficient of variation higher than 1, the error
goes up to 26.5% for all controller speeds. Considering a data plane whose
service times distribution has a cV > 1, the error for a fast controller with
any service time distribution is 46.2%. For the medium and slow controller,
this error reduces to 18.2%.

7.5.2. Multiple Data Plane Devices

Similar to the single data plane device network, the M/G/1 approach
outperforms the other two approximations significantly in almost all of the
considered cases for an SDN with two data plane devices. Only in rare
cases, e.g., in a network with two data plane devices with Erlang distributed
service times, no controller involvement, and pl,1 = 0.5, other approaches are
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better. Moreover, the approximation error for networks consisting of devices
with hyperexponential service times is significantly reduced when using the
M/G/1 approach in comparison to the other two approaches. In particular,
if all services times in the network follow a distribution with a coefficient of
variation close to 1 or lower, the highest error for all considered cases is not
higher than 11%. In the considered case, where the service times of the first
data plane device follow a distribution with a coefficient of variation higher
than 1, the errors do not exceed 11%. This also holds for our considered case
with one service times distribution with a coefficient of variation larger than
1 except for rare exceptions such as the fast controller scenario. In that case,
the error can go up to 26% for the fast controller scenario.

When considering a network with three data plane devices, where all
service time distributions have a coefficient of variation 1 or smaller, the
error does not exceed 10% in the worst case.

8. Conclusion

In this paper, we analyzed several approximation approaches (Diffusion,
Modified Diffusion, and Independent M/G/1 queues) for the mean sojourn
time of a general P4 forwarding device with controller feedback. We did this
for the case of a single P4 forwarding device, and for multiple data planes.
The data plane and control plane are modeled using queueing theory. We
consider three distributions of service times in the data planes and control
plane: Erlang, exponential, and hyperexponential distributions to capture
both service behaviors with low and high variance. Additionally, the analysis
focuses on different regions of controller utilization. We showed that the best
approximation for the vast majority of the considered cases is the one in
which the queue behavior in the data plane is considered independent from
the queue behavior in the control plane. However, there are cases in which
either the Diffusion approximation or the Modified Diffusion approximation
perform better. This is an advantage of our work as we are able to answer
the question which approximation to use depending on the scenario at hand.

As part of our future work, we plan to find exact expressions for the packet
mean sojourn time of such general P4 forwarding devices with feedback.
Also, analyzing the behavior beyond the first moment and describing it with
explicit equations in terms of the distributions is a further objective.
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