
Technische Universität München
TUM School of Computation, Information and Technology

Computational Complexity of Verifying Parameterized Systems

Balasubramanian Ayikudi Ramachandrakumar

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung des akademischen Grades eines

 Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Tobias Nipkow

Prüfende der Dissertation:

1. Prof. Dr. Francisco Javier Esparza Estaun

2. Prof. Ahmed Bouajjani

3. Prof. Parosh Aziz Abdulla

Die Dissertation wurde am 10.07.2023 bei der Technischen Universität München

eingereicht und durch die TUM School of Computation, Information and Technology am

26.03.2024 angenommen.

ii

Abstract

Parameterized systems are distributed systems with an arbitrary number of
participating agents. The verification of such systems amounts to proving that
some property holds for any population of agents. Its dual problem is to find
the existence of some population of agents which violates a given property.
Almost all verification problems are undecidable for parameterized systems in
which the agents are allowed to have identities. Even in the case of systems
with anonymous agents, the state space is infinite, which makes the automated
verification of such systems a challenging task. Various general techniques have
been discovered to obtain decidability results for parameterized systems with
anonymous agents; two such techniques are the theory of well-quasi-orders and
decision procedures for linear arithmetic theories. In this thesis, we focus on
the computational complexity of verifying parameterized systems by refining
and applying these two families of techniques.

In the first part of the thesis, we focus on transition systems with an un-
derlying compatible well-quasi-order on their configuration space, called Well-
Structured Transition Systems (WSTS). Many safety properties for WSTS can
be reduced to the so-called coverability problem. The complexity of the cov-
erability problem primarily depends upon the maximum length of certain se-
quences over the underlying well-quasi-order called controlled bad sequences.
As our first contribution, we provide upper bounds on the length of controlled
bad sequences for various families of well-quasi-orders. We then apply these re-
sults to obtain upper bounds on the complexity of the coverability problem for
some parameterized systems. In addition to these upper bounds, we also provide
complexity lower bounds for the coverability problem for some parameterized
systems.

In the second part of the thesis, we focus on the application of decision pro-
cedures for linear arithmetic theories to parameterized verification. We combine
results from linear arithmetic theories over the natural numbers, integers and
rationals to provide efficient algorithms for verifying properties about two dif-
ferent classes of parameterized systems. Our algorithms can be used to analyze
fault-tolerant distributed protocols from the literature. Empirical evaluations
indicate that they perform well in practice.

iii

Zusammenfassung

Parametrisierte Systeme sind verteilte Systeme mit einer beliebigen Anzahl von
teilnehmenden Agenten. Die Verifikation solcher Systeme läuft darauf hinaus,
zu beweisen, dass eine bestimmte Eigenschaft für eine beliebige Population von
Agenten gilt. Das duale Problem besteht darin, die Existenz einer Population
von Agenten zu finden, die eine bestimmte Eigenschaft verletzt. Fast alle Ve-
rifikationsprobleme sind unentscheidbar für parametrisierte Systeme, in denen
die Agenten Identitäten haben dürfen. Selbst im Fall von Systemen mit anony-
men Agenten ist der Zustandsraum unendlich, was die automatische Verifikation
solcher Systeme zu einer schwierigen Aufgabe macht. Es wurden verschiedene
allgemeine Techniken entdeckt, um Ergebnisse zur Entscheidbarkeit von para-
metrisierten Systemen mit anonymen Agenten zu erhalten; zwei dieser Techni-
ken sind die Theorie der Wohl-Quasi-Ordnungen und Entscheidungsverfahren
für lineare arithmetische Theorien. In dieser Arbeit konzentrieren wir uns auf
die Komplexität der Verifikation parametrisierter Systeme durch Verfeinerung
und Anwendung dieser beiden Familien von Techniken.

Im ersten Teil der Arbeit konzentrieren wir uns auf Übergangssysteme mit
einer zugrundeliegenden kompatiblen Wohl-Quasi-Ordnung auf ihrem Konfigu-
rationsraum, genannt Well-Structured Transition Systems (WSTS). Viele Si-
cherheitseigenschaften für WSTS lassen sich auf das sogenannte Überdeckbar-
keitsproblem reduzieren. Die Komplexität des Überdeckbarkeitsproblems hängt
in erster Linie von der maximalen Länge bestimmter Sequenzen über der zu-
grundeliegenden Wohl-Quasi-Ordnung ab, die als kontrollierte schlechte Sequen-
zen bezeichnet werden. Als ersten Beitrag liefern wir obere Schranken für die
Länge von kontrollierten schlechten Sequenzen für verschiedene Familien von
Wohl-Quasi-Ordnungen. Anschließend wenden wir diese Ergebnisse an, um obe-
re Schranken für die Komplexität des Überdeckbarkeitsproblems für einige pa-
rametrisierte Systeme zu erhalten. Zusätzlich zu diesen oberen Schranken liefern
wir auch untere Schranken für die Komplexität des Überdeckbarkeitsproblems
für einige parametrisierte Systeme.

Im zweiten Teil der Arbeit konzentrieren wir uns auf die Anwendung von
Entscheidungsverfahren für lineare arithmetische Theorien auf parametrisierte
Verifikation. Wir kombinieren Ergebnisse aus linearen arithmetischen Theorien
über die natürlichen Zahlen, ganzen Zahlen und rationalen Zahlen, um effizi-
ente Algorithmen für die Verifikation von Eigenschaften über zwei verschiedene
Klassen parametrisierter Systeme zu entwickeln. Unsere Algorithmen können

iv

für die Analyse von fehlertoleranten verteilten Protokollen aus der Literatur
verwendet werden. Empirische Auswertungen zeigen, dass sie in der Praxis gut
funktionieren.

v

Acknowledgments

First, I would like to thank my advisor Javier Esparza, for accepting me as a
doctoral student and giving me the freedom to pursue my research. He has been
a wonderful guide and a great person to collaborate with. I have learned a lot
from him, both academically and otherwise. I will forever be grateful for his
mentorship.

I want to thank Igor Walukiewicz, for his mentorship during my Master’s
education and Ahmed Bouajjani, for agreeing to review this thesis. I would
also like to thank Nathalie Bertrand, Nicolas Markey, Sylvain Schmitz, Philippe
Schnoebelen, Rupak Majumdar and Georg Zetzsche, whose guidance has been
integral to my research.

I am indebted to all the professors at Chennai Mathematical Institute who
have taught me everything about computer science. Without their teaching and
counsel, this thesis would not have been possible.

I would like to thank all my (other) co-authors: Marijana Lazić, Mikhail
Raskin, Timo Lang, Revantha Ramanayake, Chana Weil-Kennedy, K. S. The-
jaswini and Lucie Guillou. I am glad that I was able to publish a paper with
them.

I am grateful to all my colleagues at the Informatics Chair 7 at TUM who
made it fun to be there. Special thanks to Chana, who was always a great
person to talk to about anything, and Christoph and Muqsit, who were amazing
companions, both to work with and hang out with. I am also grateful to my
colleagues and friends at MPI-SWS - especially Ram, Ashwani and Satya - for
a fantastic time during my brief visit there.

My gratitude to my friends from CMI - particularly Ahad, Thejaswini, Siva
Tej and Bishal is immeasurable. They have been with me during some of the
lowest points of my life so far and have always been kind to me and supported me
despite all my mistakes. They are an integral part of my life, and my memories
with them are something that I will cherish forever.

I want to thank my family for being a constant pillar of support throughout
my life. My parents, my aunt and my brother ensured that I had a fabulous
childhood. I am particularly grateful to my cousin, Rajesh, for instilling in me
a love for science and math. It was because of his constant encouragement and
support that I was able to attend CMI and pursue a degree in computer science.
I dedicate this thesis to him.

Finally, I would like to thank my wife, Soundarya, who is one of the most

vi

amazing women that I know. Her mere presence in my life has made it infinitely
more beautiful, and I am grateful for each and every day that I spend with her.

vii

Contents

Abstract iii

Zusammenfassung iv

Acknowledgments vi

1 Introduction 1
1.1 Well-structured transition systems 2

1.1.1 Contribution I: Upper bounds for coverability 3
1.1.2 Contribution II: Lower bounds for coverability 4

1.2 Linear arithmetic theories . 5
1.2.1 Contribution III: The cut-off problem 5
1.2.2 Contribution IV: Verification of threshold automata . . . 6

1.3 Outline and Publications . 6

2 Preliminaries 10
2.1 Basic notations . 10
2.2 Well-quasi-orders . 12
2.3 Complexity classes . 13

I Well-Structured Transition Systems 17

3 Introduction and Background 18
3.1 Well-structured transition systems 18
3.2 The coverability problem . 19
3.3 Complexity of coverability . 21

4 Upper bounds for the coverability problem 25
4.1 The majoring ordering . 26
4.2 The minoring ordering . 28
4.3 The induced subgraph ordering 29
4.4 Applications to parameterized systems 30

4.4.1 Parameterized phaser programs 30
4.4.2 Bounded-path broadcast networks 31

viii

4.4.3 Depth-bounded π-calculus processes 32
4.4.4 Other applications . 33

4.5 Related work . 33
4.6 Conclusion . 34

5 Lower bounds for the coverability problem 35
5.1 Nested counter systems . 36
5.2 Lower bound for bounded-path broadcast networks 37
5.3 Lower bound for depth-bounded π-calculus processes 40
5.4 Related work . 44
5.5 Conclusion . 44

II Linear Arithmetic Theories 46

6 Introduction and Background 47

7 The cut-off problem for rendez-vous protocols 49
7.1 Rendez-vous protocols . 50
7.2 Petri Nets . 52
7.3 The cut-off problem is in P . 54
7.4 Related work . 57
7.5 Conclusion . 57

8 The complexity of verification of threshold automata 59
8.1 Threshold automata . 60
8.2 Parameterized reachability and coverability 62
8.3 Parameterized safety and liveness 63
8.4 Experiments . 65
8.5 Related work . 65
8.6 Conclusion . 66

9 The parameterized complexity of safety of threshold automata 67
9.1 Preliminaries . 68
9.2 Hardness of coverability . 69
9.3 Multiplicative threshold automata with constantly many fall guards 69
9.4 Experiments . 70
9.5 Related work . 70
9.6 Conclusion . 71

10 Summary and Outlook 72

Bibliography 73

A Complexity of Controlled Bad Sequences over Finite Sets of Nd

(LICS 2020) 89

ix

B Complexity of Coverability in Bounded Path Broadcast Net-
works (FSTTCS 2021) 102

C Complexity of Coverability in Depth-Bounded Processes (CON-
CUR 2022) 120

D Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy
(FoSSaCS 2021) 141

E Complexity of Verification and Synthesis of Threshold Automata
(ATVA 2020) 163

F Parameterized Complexity of Safety of Threshold Automata
(FSTTCS 2020) 182

x

Chapter 1

Introduction

Distributed systems, in the most general sense, comprise a collection of agents
or processes performing some actions and interacting with each other by some
communication mechanism. Parameterized systems are distributed systems in
which the number of participating agents is not fixed a priori. Such systems
are designed to work for any population of agents. They form a particularly
relevant class of distributed systems, as in many applications, it might be in-
feasible or impossible to know the amount of participating agents. Common
examples include mobile networks, robotic swarms, web services, blockchains
and molecular systems. The ubiquity of such systems then justifies the need
for studying and developing techniques to analyze them and verify their cor-
rectness for any number of agents, often called the parameterized verification
problem. For example, one possible property that we would like to prove in a
safety-critical parameterized system is to show that in any population, no agent
ever enters a faulty state during the course of a computation.

Since parameterized systems can be extremely complex, it would be desirable
to have algorithmic techniques which can be deployed to automatically verify
their correctness. Unfortunately, it is known that this is impossible, even for
simple systems in which the agents are allowed to have unique identities [11].
Consequently, much of the bulk of research on automatic verification of pa-
rameterized systems has concentrated on systems with anonymous agents, i.e.,
systems without identities [35]. Such systems also prove to be extremely impor-
tant from a modeling perspective. For example, molecular systems, both natural
and computational, might simply just be molecules in a solution with no iden-
tifiers. Further, in various fault-tolerant distributed algorithms, processes only
care about how many other processes have sent a message, rather than which
processes have sent a message. In such cases, it becomes extremely useful to
abstract away the identities and only reason about the number of different types
of participating processes.

Even in the absence of identities, reasoning about parameterized systems re-
quire us to deal with an unbounded number of processes, thereby giving rise to
infinite-state systems which makes the underlying verification problem a chal-

1

lenging task. Further, depending on the precise communication mechanism,
computational power of the agents and the underlying property that needs to
be verified, we obtain a massive number of models. Each such model might be
better suited to model some particular application and can either offer more
expressive power or be more efficient with respect to some measure when com-
pared with other systems. For this reason, there exists a plethora of well-studied
parameterized models in the literature.

Various general techniques have been proposed in the literature for analyzing
and verifying these different classes of parameterized systems [35]. Among this
array of techniques, two are well-known: the first is the theory of well-quasi-
orders and well-structured transition systems, and the second is the collection of
efficient decision procedures for linear arithmetic theories. In this thesis, we re-
fine, enhance and apply these techniques from a complexity-theoretic perspective
to various parameterized systems to obtain new, and in some cases, surprising
results.

In the next two subsections, we give a “big picture” outline of this thesis in
the framework of above mentioned two techniques. In each of these subsections,
we present our contributions using a high-level overview. We go into more depth
on each of these contributions in the main chapters of our thesis.

1.1 Well-structured transition systems
Well-structured transition systems (WSTS) are transition systems equipped
with a well-quasi-order (wqo) over its space of configurations. Intuitively, a
well-quasi-order ⪯ over a set S is an order on the elements of S such that it
is impossible to have an “infinite descent” in the set S with respect to ⪯. For
example, the set of natural numbers with the usual ordering is a well-quasi-order
because if we start a sequence at some element i, then we can only go at most
i − 1 more steps before we encounter something which is at least i. On the
other hand, the set of integers with the usual ordering is not a well-quasi-order
because

−1,−2,−3,−4, . . .

is an example of infinite descent.
A well-structured transition system is a system whose configuration space

comes with an underlying well-quasi-order ⪯. Further, the transitions of the
system respect this order, in the sense that, if a smaller configuration can execute
some transition, then so can any larger configuration. This means that if a
configuration c can move in one step to c′ and c ⪯ d, then d can move in one
step to d′ where c′ ⪯ d′. Hence, any transition from a smaller configuration can
be “simulated” by a transition from a larger configuration, leading to similar
results. This property is called the compatibility property. Any system that
satisfies the compatibility property is a WSTS. It turns out that for WSTS,
some verification problems become decidable under certain assumptions.

The main problem that is of interest to us regarding WSTS is the coverability
problem described as follows: Given a WSTS (S,→) over a wqo ⪯ and two

2

configurations s and t, is there a run of the system starting from s which reaches
some t′ with t ⪯ t′. Intuitively, in this case, the set of configurations that are
bigger than or equal to t is a set of error configurations and we want to check
that such configurations are never reached from the starting configuration s. In
the context of parameterized systems, this problem is particularly interesting
because it can be used to phrase the question of whether some agent of the given
parameterized system can ever reach an error state.

Under some assumptions on the underlying class of WSTS, it turns out that
the coverability problem is decidable [1, 73]. The algorithm for the coverability
problem essentially starts with the set U0 := {t′ : t ⪯ t′} and then iteratively
constructs a sequence of sets U0, U1, . . . , such that Ui+1 := Ui ∪ pre(Ui), where
pre(Ui) is the set of all configurations which can reach some configuration in Ui

in one step. Using the compatibility property, one can show that this compu-
tation will reach a fix-point Um. Once that happens, it is sufficient to check if
s ∈ Um in order to answer the coverability problem.

The framework of WSTS has proved to be a powerful tool for proving de-
cidability results [73, 1]. Consequently, it is an important tool in the toolkit of
techniques for verifying parameterized systems (Chapter 3 of [35]). The analysis
of parameterized systems from the lens of WSTS has utilized a wide range of
wqos. For instance, existing decidability results in the literature on parame-
terized verification using the theory of WSTS employ wqos over vectors [63],
sets [4], multisets [3], trees [94] and even graphs [54].

In the first part of this dissertation, we use the framework of well-structured
transition systems to derive results on the safety verification of some classes of
parameterized systems. Our contributions in this part can be categorized into
two sub-parts, which we now briefly explain in the next two subsections.

1.1.1 Contribution I: Upper bounds for coverability
While the argument given in the previous part proves that the algorithm for de-
ciding coverability always terminates, it does not give a bound on the running
time of the coverability algorithm. For many classes of WSTS, the “predecessor”
computations and deciding the underlying well-quasi-order relation can be done
rather efficiently. Hence, the running time of the algorithm is primarily bounded
by the number of steps taken until a fix-point is achieved. Under some assump-
tions, a bound on the running time taken to achieve saturation can be given
in terms of the maximum length of controlled bad sequences of the underlying
wqo.

The central idea behind controlled bad sequences is that we first assign a
measure to each element of the wqo, formalized by a norm function | · |. Then, a
controlled bad sequence of a wqo is a sequence s0, s1, . . . such that for each i, si
is not bigger than sj for any j > i and the norm of si grows with respect to i, g
and n for some function g called the control function and some number n called
the initial norm. For many classes of WSTS, we can bound the number of steps
until the coverability algorithm reaches a fix-point by the length of the longest
controlled bad sequence for some control function g and some initial norm based

3

on the input. Hence, if we define the length function of a wqo (A,⪯) with norm
| · | and a control function g as

LA,g(n) is the length of a longest (g, n)-controlled bad sequence over (A,⪯, | · |)

then upper bounds on LA,g translate to upper bounds on the running time of
the coverability algorithm. This motivates the study of the following class of
so-called length function questions.

Given a wqo (A,⪯), a norm | · | and a function g, provide upper bounds for
the length function LA,g.

As mentioned in the previous part, the analysis of parameterized systems
requires a variety of wqos. Any upper bounds on the length function proved
for any one of these wqos can then be translated to any parameterized system
which uses that wqo.

With this motivation, in Chapter 4, we consider three different families of
wqos and prove upper bounds for length functions over them. The first two fam-
ilies of wqos are orders over finite subsets of Nd, respectively called the majoring
and the minoring ordering. The last family is about the induced subgraph or-
dering over graphs. We also use these results on the length functions to provide
upper bounds on the coverability problem for some classes of parameterized
systems, thereby illustrating the applicability of our results in the context of
parameterized verification.

1.1.2 Contribution II: Lower bounds for coverability
As a next natural question, we can ask if the upper bounds obtained for the
models considered in Chapter 4 are optimal, that is

Are there lower bounds for these models that match the upper bounds
obtained from the length functions?

In Chapter 5, we answer this question in the affirmative for two classes of
models. We do this by giving polynomial-time reductions from known hard
problems to the coverability problem for both these classes. Our lower bounds
complement the upper bounds provided in Chapter 5, thereby leading to com-
pleteness results for both these classes.

In summary, the results in Chapters 4 and 5 provide complexity-theoretic
upper bounds and completeness results for safety verification of classes of pa-
rameterized systems by utilizing the tools and framework of well-structured
transition systems.

4

1.2 Linear arithmetic theories
A linear arithmetic theory is any logical theory about number systems equipped
with an order relation < and an addition function +. Common examples in-
clude the theory of addition over natural numbers N (also called Presburger
arithmetic), the integers Z and the rational numbers Q. Linear arithmetic the-
ories are important in the context of verification of parameterized systems. For
instance, results from the linear arithmetic theory of the rationals are used for
deriving algorithms for verifying specifications of rendez-vous protocols [76] and
also timed networks [8]. Further, in some cases, linear arithmetic theories can
serve as over-approximations of the reachability relation of the given parame-
terized system. Given a parameterized system, one can abstract away certain
features of the system and keep track of only the number of agents satisfying a
certain property. Then we can apply linear arithmetic theories to reason about
the counter system and derive sufficient conditions for the safety of the original
system. This approach is mentioned in Chapter 9 of [35]. Linear arithmetic
theories can also be used to derive incomplete algorithms for parameterized
verification [113, 36].

In the second part of this thesis, we apply various results about linear arith-
metic theories to derive complete and efficient algorithms for parameterized
systems. Our contributions in this part can once again be categorized into two
sub-parts, which we now briefly explain in the next two subsections.

1.2.1 Contribution III: The cut-off problem
For our first contribution using linear arithmetic theories, we consider the model
of rendez-vous protocols. These are systems in which communication between
agents happens by means of a rendez-vous. At any point in time, two agents
meet, exchange messages and update their states according to a specified tran-
sition relation.

Various papers on parameterized verification for rendez-vous protocols have
established the decidability and complexity landscape for many specifications,
i.e., checking whether every initial configuration satisfies a given property (for
e.g., see [76]). A natural relaxation of this type of question is asking if infinitely
many initial configurations satisfy a given property or if all but finitely many
initial configurations satisfy a given property. Affirmative answers to questions
of the second type imply the existence of cut-offs in the underlying protocol;
cut-offs state the existence of an initial configuration such that a property holds
for all larger initial configurations.

In this line of work, Horn and Sangnier studied the cut-off problem for
rendez-vous protocols [81]. The cut-off problem takes as input a rendez-vous
protocol, and asks if there exists a number B such that for all n ≥ B, the initial
configuration of the protocol with n agents in an initial state can reach the final
configuration with all of the n agents in a final state. Such a number B is called
a cut-off for the system. Horn and Sangnier showed that the problem is in
EXPSPACE, but did not provide any lower bound for the problem. This leads

5

to the following question.

What is the precise complexity of the cut-off problem for rendez-vous
protocols?

Our contribution to the theory of rendez-vous protocols is to show that this
problem is actually P-complete, which significantly improves upon the existing
bound of EXPSPACE. We also show better bounds for some other special cases
considered in [81]. All of our results are obtained by using techniques from
various linear arithmetic theories.

1.2.2 Contribution IV: Verification of threshold automata
For our second contribution using linear arithmetic theories, we consider another
class of parameterized systems called threshold automata [89]. These systems
can be used to analyze fault-tolerant distributed algorithms, i.e., distributed
algorithms which must work even in the presence of some faulty agents [88].
Extensions of thresold automata have also been used to model and verify ran-
domized distributed algorithms and blockchain protocols [33, 32].

Despite the interest that this formalism and its extensions have received,
results on the computational complexity of the main verification problems for
threshold automata have been missing from the literature. This leads to the
following question concerning the analysis of threshold automata.

What is the complexity of verifying threshold automata?

We address this question and analyze the complexity of verifying thresh-
old automata. By using results from Presburger arithmetic, we prove NP-
completeness results for some verification problems concerning threshold au-
tomata. Moreover, we also analyze some of these problems from the perspective
of parameterized complexity, which allows for a more fine-grained analysis of the
computational complexity of problems by studying them in terms of the various
parameters of the given input. Finally, we also present an implementation of our
algorithms and test it against a set of standard benchmarks from the literature.

In summary, we have used a variety of results on linear arithmetic theories to
provide sound, complete, efficient and complexity-theoretic optimal algorithms
for classes of parameterized systems.

1.3 Outline and Publications
This thesis is divided into two parts; the first part is focused on well-structured
transition systems and the second part is focused on linear arithmetic theories.

6

Both these parts begin with a chapter that introduces the necessary background
and recalls the essential results and techniques for our purposes. Every other
chapter in each of these parts describes one of our four main contributions.
Each chapter begins with a short introduction giving a short motivation for the
problems that we consider, and ends with a section on related work and a short
summary. In between these sections, we present the models that we consider
along with our contributions. The proofs of all our results are only presented at
a high level, focusing only on intuition. For formal details, we refer the reader
to the papers attached in the appendix.

Outline.
Chapter 2 introduces basic notations and definitions that we will use in this
thesis. After that, the thesis is divided into two parts.

• Part I contains the following chapters.

– Chapter 3 introduces Part I on well-structured transition systems
and sets up the basic definitions regarding controlled bad sequences
and their relation to the coverability problem.

– Chapter 4 covers Contribution I (Subsection 1.1.1) and describes our
results on upper bounds for length functions and their applications to
parameterized systems. The results of this chapter are based on [13,
15, 18].

– Chapter 5 covers Contribution II (Subsection 1.1.2) and describes
our results on lower bounds for the coverability problem for param-
eterized systems. The results of this chapter are based on [15, 18].

• Part II contains the following chapters.

– Chapter 6 introduces Part II on linear arithmetic theories and recalls
the results that we will use.

– Chapter 7 covers Contribution III (Subsection 1.2.1) and describes
our results on the cut-off problem for rendez-vous protocols. The
results of this chapter are based on [21].

– Chapter 8 covers the first part of Contribution IV (Subsection 1.2.2)
and describes our results on the complexity of verification of threshold
automata. The results of this chapter are based on [20].

– Chapter 9 covers the second part of Contribution IV and describes
our results on the parameterized complexity of threshold automata.
The results of this chapter are based on [14].

• Chapter 10 concludes with a summary of the thesis.

Publications.
The following is the list of my entire publications during my Ph.D. studies at
TUM.

7

Core publications included in the thesis. The following is the list of core
publications included in the thesis. All of these papers are included in the
Appendix.

• Complexity of Coverability in Bounded Path Broadcast Networks. A. R.
Balasubramanian. In conference proceedings of FSTTCS 2021 [15]. This
paper is reprinted in Appendix B.

• Complexity of Coverability in Depth-Bounded Processes. A. R. Balasub-
ramanian. In conference proceedings of CONCUR 2022 [18]. This paper
is reprinted in Appendix C.

• Complexity of Verification and Synthesis of Threshold Automata. A. R.
Balasubramanian, J. Esparza, M. Lazić. In conference proceedings of
ATVA 2020 [20]. This paper is reprinted in Appendix E.

• Parameterized Complexity of Safety of Threshold Automata. A. R. Bala-
subramanian. In conference proceedings of FSTTCS 2020 [14]. This paper
is reprinted in Appendix F.

Non-core publications included in the thesis. The following is the list
of non-core publications included in the thesis. All of these papers are included
in the Appendix.

• Complexity of Controlled Bad Sequences over Finite Sets of Nd. A. R.
Balasubramanian. In conference proceedings of LICS 2020 [13]. This
paper is reprinted in Appendix A.

• Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy. A. R.
Balasubramanian, J. Esparza, M. Raskin. In conference proceedings of
FoSSaCS 2021. [21]. This paper is reprinted in Appendix D.

A part of the work of the paper [13] was done before I became a Ph.D.
student at TUM. However, I continued to work on the results of this paper,
refining it, submitting it to the LICS 2020 conference and publishing it after I
became a Ph.D. student at TUM. For this reason, the paper [13] is listed as a
non-core publication.

Other publications. The following is a list of my other publications during
my Ph.D. studies at TUM. These papers are not included in the thesis and they
are listed here for the sake of completeness.

• Characterizing Consensus in the Heard-Of Model. A. R. Balasubrama-
nian, I. Walukiewicz. In conference proceedings of CONCUR 2020 [25].

• Decidability and Complexity in Weakening and Contraction Hypersequent
Substructural Logics. A. R. Balasubramanian, T. Lang, R. Ramanayake.
In conference proceedings of LICS 2021 [23].

8

• Adaptive Synchronisation of Pushdown Automata. A. R. Balasubrama-
nian, K. S. Thejaswini. In conference proceedings of CONCUR 2021 [24].

• Reconfigurable Broadcast Networks and Asynchronous Shared-Memory Sys-
tems are Equivalent. A. R. Balasubramanian, C. Weil-Kennedy. In con-
ference proceedings of GandALF 2021 [26].

• Parameterized Verification of Coverability in Infinite State Broadcast Net-
works. A. R. Balasubramanian. In Information and Computation journal,
2021 [16].

• Parameterized Analysis of Reconfigurable Broadcast Networks. A. R. Bal-
asubramanian, L. Guillou, C. Weil-Kennedy. In conference proceedings of
FoSSaCS 2022 [22].

• Coefficient Synthesis for Threshold Automata. A. R. Balasubramanian.
In conference proceedings of RP 2022 [17].

9

Chapter 2

Preliminaries

In this chapter, we recall and set up basic definitions, notations and results
that we will use throughout the thesis. This includes topics such as multisets,
well-quasi-orders, and fast-growing hierarchies.

2.1 Basic notations

Graphs, ordinals, numbers, functions and sequences
We assume basic familiarity with graphs and ordinals. Usually, we will work
with labeled graphs, which are graphs along with a labeling function that maps
each vertex to some element in a given set. If the image of the labeling function
is a set A, then the graph is called an A-labeled graph. To denote ordinals, we
will always use Greek letters α, β,

Throughout the dissertation, we shall use N,N>0,Z,Q≥0 and Q to denote
the set of non-negative integers, positive integers, integers, non-negative rational
numbers and rational numbers, respectively. Unless specified otherwise, we
will use +,−, · to denote the usual addition, subtraction and multiplication
operations and ≤ to denote the usual order relation on rational numbers.

A function g : N → N is increasing (resp. strictly increasing) if whenever
x < y we have g(x) ≤ g(y) (resp. g(x) < g(y)). It is inflationary if g(x) ≥ x.

Transition systems
A transition system is a tuple (S,→) where S is the set of configurations and
→⊆ S × S is the transition relation. If A is some set, an A-labeled transition
system (or simply labeled transition system) is a tuple (S,→, L) such that (S,→)
is a transition system and L : S → A is the labeling function.

If → is some relation over a set S, we will often use ∗−→ to denote its reflexive
and transitive closure. Often, we will employ the notation s→ s′ (resp. s ∗−→ s′)
to mean that (s, s′) ∈→ (resp. (s, s′) ∈ ∗−→); we will extensively use this notation

10

for transition relations of a transition system. If the underlying relation → is
unambiguous, we will often say that s can reach t if s ∗−→ t.

Vectors, multisets and matrices
Let E and S be some sets. A vector from E to S is a function v : E → S.
The set of all vectors from E to S will be denoted by SE . If v ∈ SE , then v is
referred to as a vector over S. When S = N, then each element of SE will be
alternately referred to as a discrete multiset of E (or just a multiset).

Suppose S ∈ {N,Z,Q} and E is some set. Given a vector v ∈ SE and an
element α ∈ S, we let α · v (or αv) be the vector given by (α · v)(e) = α · v(e)
for all e ∈ E. The support of a vector v is the set JvK := {e : v(e) ̸= 0}. We
sometimes use the notation x ∈ v to denote that x ∈ JvK.

Given two vectors v, v′ ∈ SE (where S ∈ {N,Z,Q}) we say that v ≤ v′ if
v(e) ≤ v′(e) for all e ∈ E and we let v + v′ be the vector given by (v + v′)(e) =
v(e) + v′(e) for all e ∈ E. Further, if S ∈ {Z,Q}, then we define v − v′ as
the vector given by (v − v′)(e) = v(e) − v′(e) for all e. On the other hand, if
v and v′ are multisets (i.e., vectors over N) such that v′ ≤ v, then we define
(v − v′)(e) = v(e)− v′(e) for all e.

The vector which maps every element of E to 0 (resp. 1) is denoted by 0
(resp. 1). A finite multiset is a multiset v : E → N such that JvK is finite. We
use Mf(E) to denote the set of all finite multisets of E. We sometimes denote
multisets using a set-like notation, e.g. Ha, 2 · b, cI denotes the multiset given by
M(a) = 1,M(b) = 2,M(c) = 1 and M(e) = 0 for all e /∈ {a, b, c}.

A matrix is a function F : A×B → S for some sets A, B and S. We use the
notation F [a, b] to denote the value of F at (a, b). If F : A×B → S is a matrix,
then we say that F is a matrix over S whose rows are indexed by A and columns
are indexed by B. If F : A × B → Q and G : A × B → Q are matrices, then
F + G and F − G are matrices defined by pointwise addition and subtraction,
i.e., (F +G)[a, b] = F [a, b]+G[a, b] and (F −G)[a, b] = F [a, b]−G[a, b] for every
a ∈ A and b ∈ B. Further, if F : A × B → Q is a matrix and v : B → Q is a
vector, then the product vector of F and v, denoted by F · v or Fv, is defined
as the vector (Fv)(a) =

∑
b∈B F [a, b] · v(b) for every a ∈ A.

Sequences
A sequence of a set A is a function f : S → A for some subset S which is either
empty or is of the form {1, 2, . . . , k} for some k. If S is empty, then f is called the
empty sequence, and its length is set to 0. On the other hand, if S = {1, . . . , k},
then the length of f is set to k. If f is a non-empty sequence, then we often
denote f as a1, a2, . . . , ak where k is the length of f and each ai = f(i). We
let A∗ denote the set of all sequences of A. Concatenation of sequences by the
operator · is defined as usual, i.e., ϵ · f = f · ϵ = f for any sequence f and
f · g for any two non-empty sequences f = a1, . . . , ak and g = a′1, . . . , a

′
m, is

the sequence given by a1, . . . , ak, a′1, . . . , a′m. Sometimes we use the notation fg

11

to denote the concatenation of the sequences f and g. For a sequence f and a
number n, we let fn denote the concatenation of f with itself n times.

2.2 Well-quasi-orders
We now introduce the necessary definitions and notations for well-quasi-orders.
Most of the presentation in this section and the next one is taken from [107,
106, 13].

A quasi ordering (qo) over a set A is a relation ≤A such that ≤A is reflexive
and transitive. We write x <A y if x ≤A y and y ≰A x. An element x ∈ A is
said to be minimal if there is no y such that y ≤A x.

Definition 1. A well-quasi-ordering (wqo) over a set A is a qo ≤A such that
for every infinite sequence x0, x1, x2, . . . , there exists i < j such that xi ≤A xj .

As is standard, whenever we have a wqo ≤A over a set A, we shall often
abuse notation and call the pair (A,≤A) a well-quasi-order. If there is no scope
for confusion, we often drop the A subscript from ≤A. If (A,≤) is a wqo and
S ⊆ A, then the wqo induced by S is the wqo (S,≤S) where ≤S is the restriction
of ≤ to the set S.

Example 2. (Some basic wqos). The set of natural numbers N with the usual
ordering ≤, i.e., (N,≤) is a wqo. Throughout the dissertation, if we do not
explicitly specify the underlying order for N, then it is to be assumed that it is
the usual ordering. Another wqo is any finite set A := {a0, a1, . . . , ak−1} such
that distinct elements are unordered, i.e., ai ≤A aj if and only if ai = aj . We
shall denote this wqo by (A,=).

Having seen basic examples of wqos, we shall now provide constructions to
produce “complex” wqos from simpler ones.

Definition 3. (Sums and products). Let (A1,≤A1) and (A2,≤A2) be two wqos.
The disjoint sum (or simply the sum) of (A1,≤A1) and (A2,≤A2) is the wqo
(A1 +A2,≤A1+A2

) where

A1 +A2 := {(i, x) : i ∈ {1, 2} and x ∈ Ai}

(i, x) ≤A1+A2 (j, y) ⇔ i = j and x ≤Ai y

The cartesian product (or simply the product) of (A1,≤A1) and (A2,≤A2)
is the wqo (A1 ×A2,≤A1×A2) where

A1 ×A2 := {(x1, x2) : x1 ∈ A1, x2 ∈ A2}
(x1, x2) ≤A1×A2

(y1, y2) ⇔ x1 ≤A1
y1 and x2 ≤A2

y2

It can be easily verified that both (A1+A2,≤A1+A2
) and (A1×A2,≤A1×A2

)
are wqos, when (A1,≤A1

) and (A2,≤A2
) are. When the product operation is

applied to a wqo (A,≤A) with itself repeatedly for some d number of times, we
denote the resulting wqo by (Ad,≤Ad).

12

Remark 4. The product (Nd,≤Nd) obtained from (N,≤) will be of special
interest to us. From now on, whenever we refer to the underlying order of Nd,
we will always mean this cartesian product ordering.

Basis, good and bad sequences
Let (A,≤A) be some wqo. The definition of a wqo naturally lends itself to some
definitions which we shall routinely use throughout this dissertation. We recall
a few such notions here, beginning with the notion of an upward closed set.

Definition 5. For any subset S ⊆ A, we denote by ↑ S the set {y : ∃x ∈
S, x ≤A y}. A set S is said to be upward closed if S =↑ S.

Intuitively, ↑ S is the set of all elements that are “bigger” than or equal to
elements in S. S is upward closed if whenever an element x is present in S, so
are all the elements “bigger” than x.

Upward-closed sets enjoy certain nice properties; in particular, it is possible
to finitely represent them by means of a basis, which we now define.

Definition 6. Let S be some upward closed set of A. A set U is a basis for S
if ↑ U = S.

By definition of a wqo, we can immediately deduce that every upward closed
set admits a finite basis. This particular property of upward closed sets is very
useful, as it will allow us to effectively store and compare even infinite upward
closed sets.

Another important notion concerning wqos is the notion of bad sequences.
We define it along with its counterpart, the good sequences.

Definition 7. A sequence x0, x1, . . . is called good if there exists i < j such
that xi ≤A xj . A sequence that is not good is called bad.

By definition, every bad sequence of a wqo is necessarily finite. Bad se-
quences will prove to be useful in the analysis of algorithms in the first part of
our thesis.

2.3 Complexity classes
We assume basic familiarity with Turing machines. For a function f : N → N,
we let DTIME(f) denote the class of decision problems which can be solved by
a deterministic Turing machine whose running time is upper bounded by the
function f . We assume that the reader is familiar with the usual complexity
classes like P, NP, EXP, NEXP and NC [100]. A somewhat esoteric complexity
class is ELEMENTARY which is defined as

ELEMENTARY =
⋃

k≥1

DTIME(expk(n))

13

where exp1(n) = 2n and expk+1(n) = 2exp
k(n). Intuitively, ELEMENTARY

contains the set of all problems which can be solved by a deterministic Turing
machine running in time which is a fixed tower of exponentials of the input size.

A substantial part of this thesis deals with complexity classes that are even
beyond ELEMENTARY and are not very standard. For this reason, we introduce
here a hierarchy of complexity classes, the so-called fast-growing hierarchy of
complexity classes. We present here only the basic definitions and details behind
these classes. The reader is referred to [106, 79] for more details on these
complexity classes.

Ordinals
To introduce the fast-growing hierarchy, we first need to define basic operations
on ordinals (see [105, 79]). For the purposes of this dissertation, we will mostly
only deal with ordinals that can be syntactically denoted as terms in Cantor
Normal Form (CNF) as follows: α = ωβ1 + ωβ2 + · · · + ωβm where β1, . . . , βm
are ordinals such that α > β1 ≥ β2 ≥ · · · ≥ βm. Note that if βm = 0, then α is
of the form α = α′ +1 for some ordinal α′; in such cases, α is called a successor
ordinal. On the other hand, if βm ̸= 0, then α is called a limit ordinal. We will
usually use λ to denote limit ordinals.

For c ∈ N, let ωβ · c denote

c times︷ ︸︸ ︷
ωβ + · · ·+ ωβ . We sometimes write ordinals in a

strict form as α = ωβ1 · c1 + ωβ2 · c2 + · · ·+ ωβm · cm where β1 > β2 > · · · > βm
and each ci is strictly bigger than 0.

A fundamental sequence for a limit ordinal λ is a sequence (λ(x))x<ω with
supremum λ, which we fix to be,

(γ + ωβ+1)(x) := γ + ωβ · (x+ 1), (γ + ωλ)(x) := γ + ωλ(x)

Along with the set of terms in CNF, we will also sometimes consider the
ordinal ϵ0, which is the supremum of all the ordinals which can be denoted by
terms in CNF. In particular, α < ϵ0 for any α which is expressible in CNF. ϵ0 will
be treated as a limit ordinal with fundamental sequence defined by ϵ0(0) = ω
and ϵ0(x+ 1) = wϵ0(x), i.e., ϵ0(x+ 1) is a tower of ω’s of height x+ 1.

Subrecursive hierarchies
Given an increasing, inflationary function h, we now define three different hi-
erarchies of functions based on h. These hierarchies will be useful later on to
define fast-growing complexity classes.

Definition 8. Let h : N → N be an increasing, inflationary function. The
Hardy hierarchy for the function h is given by (hα)α where

h0(x) := x, hα+1(x) := hα(h(x)) hλ(x) := hλ(x)(x)

The Cichoń hierarchy (hα)α for the function h is defined as

h0(x) := 0, hα+1(x) := 1 + hα(h(x)) hλ(x) := hλ(x)(x)

14

Finally, we have the fast-growing hierarchy, which is defined as follows:

fh,0(x) = h(x), fh,α+1(x) = fx+1
h,α (x) fh,λ(x) = fh,λ(x)(x)

Here f ih,α denotes the i-fold composition of fh,α with itself.

Example 9. Let S : N → N be the successor function S(x) = x + 1. Notice
that Si(x) = x+ i and Si(x) = i for any i ∈ N. Moreover, Sω(x) = Sω(x)(x) =
Sx+1(x) = 2x+ 1 and Sω(x) = Sx+1(x) = x+ 1.

Further, notice that fS,0(x) = x + 1, fS,1(x) = fx+1
S,0 (x) = 2x + 1, fS,2(x) =

fx+1
S,1 (x) = 2x+1x + 2x+1 − 1. Also, fS,3(x) = fx+1

S,2 (x) grows faster than the
expk function for any fixed k and hence an algorithm with running time fS,3(x)
does not have elementary running time complexity.

Fast-growing complexity classes
Let S : N → N be the standard successor function. Let {Sα}, {Sα} and {Fα}
denote respectively the Hardy, Cichoń and fast-growing hierarchies for the suc-
cessor function. Using these hierarchies, we define the extended Grzegorczyk
hierarchy of fast-growing function classes {Fα}α<ϵ0 as follows:

Fα :=
⋃

c<ω

FDTIME(F c
α(n))

Here FDTIME(F c
α(n)) denotes the set of all functions f : Nd → N for some d

that can be computed by a deterministic Turing machine in time F c
α(n) where F c

α

denotes the c-fold composition of Fα with itself. Note that these are complexity
classes for functions. We now define a similar hierarchy called the fast-growing
complexity classes {Fα}α for decision problems.

For any ordinal α, let F<α :=
⋃

β<α Fβ . We now define Fα as

Fα :=
⋃

p∈F<α

DTIME(Fα(p(n)))

Note that in contrast to Fα, the definition of Fα allows for only one appli-
cation of the function Fα (composed with a “lower” function p). One milestone
along this hierarchy is the class F3 := TOWER, which already contains non-
elementary problems.

The collection
⋃

k<ω Fk and
⋃

k<ω Fk will be referred to as the class of
primitive recursive functions and primitive recursive problems, respectively.

Relativized fast-growing hierarchies
Let h : N → N be a strictly increasing, inflationary function. We can define a
relativized hierarchy of fast-growing complexity classes {Fh,α}α with respect to
the function h as follows

15

Fh,α :=
⋃

p∈F<α

DTIME(fh,α(p(n)))

Note that if h is the successor function, then we get the usual fast-growing
complexity classes. For most of our applications, it will be convenient to work
with this relativized hierarchy rather than the original hierarchy. However, as
the following theorem indicates, for almost all practical purposes, these two
hierarchies coincide.

Theorem 10. ([106, Theorem 4.2, Corollary 4.3]). If h is a strictly increasing,
inflationary, primitive recursive function and α ≥ ω, then Fh,α = Fα.

16

Part I

Well-Structured Transition
Systems

17

Chapter 3

Introduction and Background

The first part of this thesis is regarding the applications of the theory of well-
structured transition systems (WSTS) to parameterized verification. We show
that by means of the theory of well-quasi-orders and WSTS, we can obtain
complexity results for verification problems concerning parameterized systems.

We use this chapter to set up the necessary notations and definitions and
provide a background of the existing results regarding WSTS. In the next two
chapters, we explain our contributions to parameterized verification using the
framework of WSTS.

3.1 Well-structured transition systems
A WSTS is a transition system whose configurations are equipped with a wqo
⪯. Further, the transitions of a WSTS respect the underlying wqo, in the sense
that, if a transition is enabled at some configuration s, then it is also enabled at
any configuration s′ such that s ⪯ s′. We now proceed to define this formally
by roughly following the notions from [107].

Definition 11. A well-structured transition system (WSTS) is a tuple S =
(S,→,⪯) where S is a set of configurations, →⊆ S × S is a set of transitions
and ⪯ is a well-quasi-order on the set S satisfying the following compatibility
property

∀s1, s2, t1 ∈ S, If s1 −→ s2 and s1 ⪯ t1, then ∃t2 ∈ S such that t1 −→ t2 and s2 ⪯ t2

Intuitively, the compatibility property states that if s1 can reach s2 by a
transition and t1 is any configuration bigger than s1 (with respect to ⪯) then,
t1 can, in a step, reach a configuration t2 which is bigger than s2.

It is known that a variety of systems fall under the scope of WSTS [73, 1].
As an example, here we consider lossy counter machines, whose presentation
and associated results are taken from [107].

18

Example 12. (Lossy counter machines). A d-lossy counter machine (d-LCM
or LCM) is a tuple M = (Q, δ) where Q is a finite set of states and δ ⊆
Q× {1, . . . , d} × {= 0?, ++, --} ×Q is a finite set of rules.

Intuitively, a d-LCM has access to d counters, each of which can hold a
non-negative integer. The rules of an LCM allow it to move from one state
to another and also allow it to increment, decrement or zero-test the value of
a counter. Further, at any given point in time, the values of the counters can
non-deterministically decrease, hence giving it the name lossy counter machines.
We now formalize these notions.

A configuration of an LCM is an element of Q×Nd, denoted as tuples (q,v)
with q ∈ Q and v ∈ Nd. For a rule r = (q, i, t, q′) ∈ δ and configurations
C = (q,v) and C ′ = (q′,v′) we say that C can reach C ′ by firing r (denoted by
C

r−→ C ′) if v′(j) = v(j) for all j ̸= i and the following conditions are satisfied.

• If t = ++, then v′(i) = v(i) + 1.

• If t = --, then v(i) > 0 and v′(i) = v(i)− 1.

• If t = = 0?, then v′(i) = v(i) = 0.

We say that C −→ C ′ if C r−→ C ′ for some rule r. Note that the transition
relation −→ does not allow for “lossy” behaviors of the counters. To take care
of this, we define a new transition relation −→ℓ as (q,v) −→ℓ (q′,v′) if and only
if there exists w ≤Nd v and v′ ≤Nd w′ such that (q,w) −→ (q′,w′). Intuitively,
we first allow the counter values to go down from v to w, then we fire some
rule to reach the counter value w′, and then we again allow the counter values
to go down from w′ to v′. It can now be verified that −→ℓ is compatible with
the product ordering obtained from (Q,=Q) and (Nd,≤Nd) and so lossy counter
machines are well-structured.

3.2 The coverability problem
Despite its broad definition and scope, there are interesting problems that are
solvable for WSTS under certain assumptions on the underlying configuration
space and wqo. In this thesis, we will be concerned with the coverability problem
for WSTS, which we define as follows.

Definition 13. The coverability problem for WSTS is defined as the following
decision problem:

Input: A WSTS S = (S,→,⪯) and two configurations s, t

Decide: If t can be covered from s in S, i.e., if there is a configuration t′

such that t ⪯ t′ and s ∗−→ t′

The coverability problem intuitively corresponds to verifying a safety prop-
erty for the underlying WSTS. Indeed, if any configuration that is bigger than

19

or equal to t is an error configuration of S, then the coverability problem asks
if we can reach some error configuration starting from s.

It is known that the coverability problem is decidable when certain assump-
tions are met by the underlying order and WSTS. To state these assumptions
formally, we first set up some basic notation. Let S = (S,→,⪯) be a WSTS.
For any subset of configurations U , define pre(U) := {t ∈ S : ∃s ∈ U, t → s}.
Intuitively, pre(U) is the set of configurations that can reach some configuration
in U by a single transition. Note that by the compatibility property of S, if
U is an upward-closed set, then pre(U) is also an upward-closed set and hence
always has a finite basis.

Having set up this notation, we assume that the following properties are true
regarding the WSTS S = (S,→,⪯), in order to prove the decidability of the
coverability problem. Namely, we assume that

• The set S and the order ⪯ are decidable and

• There is an algorithm that takes as input some configuration s ∈ S and
outputs a finite basis for the set pre(↑ s).

These assumptions will henceforth be collectively referred to as the effective
computation assumptions. From [73, 1], it is known that

Theorem 14. The coverability problem is decidable for well-structured tran-
sition systems which satisfy the effective computation assumptions.

Example 15. (Coverability for lossy counter machines). Let us consider the
class of WSTS given by lossy counter machines. Let M = (Q, δ) be a d-LCM.
Note that the configuration space of M and its underlying order are decidable.
Further, given a configuration C = (q,v), we can compute a finite basis for
pre(↑ C) as follows. Let δC ∈ δ be the set of rules such that r = (q, i, t, q′) for
some i, t and q′ and v(i) = 0 if t = = 0?. We can take the basis for pre(↑ C) to
be the minimal configurations of the set {Cr : r ∈ δC} where

• If r = (q, i, t, q′) with t = ++, then Cr = (q′,v′) where v′(j) = v(j) for all
j ̸= i and v′(i) = max(0,v(i)− 1).

• If r = (q, i, t, q′) with t = --, then Cr = (q′,v′) where v′(j) = v(j) for all
j ̸= i and v′(i) = v(i) + 1.

• If r = (q, i, t, q′) with t = = 0?, then Cr = (q′,v′) where v′(j) = v(j) for
all j ̸= i and v′(i) = 0.

By Theorem 14, it then follows that the coverability problem is decidable for
LCMs.

The coverability algorithm
Let us now prove Theorem 14 by giving an algorithm for coverability. Let S =
(S,→,⪯) be a WSTS satisfying the effective computation assumptions and let

20

s, t be two configurations. Suppose we want to decide if s can cover t. Consider
the sequence of subsets U0 ⊆ U1 ⊆ U2 . . . defined as U0 := ↑ {t}, Ui+1 :=
min(Ui ∪ pre(Ui)), where min(Ui ∪ pre(Ui)) is the set of minimal elements of
Ui ∪ pre(Ui). By the compatibility property of S, it follows that each Ui is
an upward-closed set. We claim that this sequence eventually stabilizes, i.e.,
there exists an index m such that

⋃
i∈N Ui = Um. For the sake of contradiction,

suppose for every i, there exists ti ∈ Ui \ Ui−1. Then, by definition of well-
quasi-orders, there must be two indices i < j such that ti ⪯ tj . Since each Ui

is upward-closed, this means that tj ∈ Ui, which is a contradiction. It follows
that the sequence eventually stabilizes to some Um, and so t can be covered
from s if and only if there exists s′ ∈ Um such that s′ ⪯ s. Hence, if we can
effectively store each set Ui, we can decide if s can cover t. The former can be
accomplished by storing a finite basis for each Ui. Note that a basis for U0 is
simply {t} and if we know a finite basis for Ui, then we can compute a finite
basis for Ui+1, thanks to the effective computation assumptions. Hence, we have
a decision procedure for coverability.

Note that from the sequence of sets U0 ⊆ U1 ⊆ · · · ⊆ Um, we can derive
a sequence of elements t0, t1, . . . , tm as follows: We let t0 be t and for any
1 ≤ i ≤ m, we let ti be any minimal element in the set Ui \ Ui−1. Any
such sequence will be called a pseudo-witness for the coverability algorithm on
the instance (S, s, t). Note that by construction, any pseudo-witness is a bad
sequence (Definition 7). The notion of a pseudo-witness will be useful for us
in the next section, which will talk about the complexity of the coverability
algorithm.

3.3 Complexity of coverability
While the coverability algorithm allows us to prove the decidability of safety
properties for WSTS, the arguments behind its proof do not immediately lend
themselves to complexity-theoretic upper bounds. In this section, we shall show
that under some assumptions on the underlying wqo and WSTS, we can prove
upper bounds on the running time for the coverability algorithm. To this end,
we define the notion of a normed wqo.

Normed wqos
A normed qo (or nqo) is a tuple (A,⪯, | · |) where (A,⪯) is a qo and | · | : A→ N
is a function called the norm that satisfies the property that for every n, the
set {a : |a| = n} is finite. The norm function can be thought of as assigning
a measure to every element of A, with the constraint that only finitely many
elements are assigned the same measure. We let A≤n denote the set of elements
of A whose norm is at most n, i.e., A≤n := {a : |a| ≤ n}. A normed wqo is a
normed qo (A,⪯, | · |) such that (A,⪯) is also a wqo.

Example 16. We can equip the wqo (N,≤) with the identity function id as
the norm to obtain a nwqo (N,≤, id). As another example, for any finite set A,

21

we have a nwqo (A,=,0) where 0 is the zero function that maps any element
to 0.

Similar to sums and products of wqos (Definition 3), we can construct sums
and products of nwqos, as illustrated in the following definition.

Definition 17. Suppose (A1,≤A1 , | · |A1) and (A2,≤A2 , | · |A2) are two nwqos.
Their sum is the nwqo (A1 + A2,≤A1+A2 , | · |A1+A2) where (A1 + A2,≤A1+A2)
is the usual sum and |(i, x)|A1+A2

= |x|Ai
.

Similarly the product of (A1,≤A1
, | · |A1

) and (A2,≤A2
, | · |A2

) is the nwqo
(A1×A2,≤A1×A2

, | · |A1×A2
) where (A1×A2,≤A1×A2

) is the usual product and
|(x1, x2)|A1×A2 = max(|x1|A1 , |x2|A2).

Remark 18. We note that by the above definition, the norm for the product
nwqo (Nd,≤Nd , | · |Nd) is simply the function that maps a vector v to the highest
value in {v(1),v(2), . . . ,v(d)}. We shall call this norm the max norm. When
there is no scope for confusion, we will often drop the Nd subscript in the
notation for this nwqo.

The introduction of the norm function to wqos allows us to introduce a new
type of sequence, different from the good and bad sequences as follows.

Definition 19. Let n ∈ N and let g be an increasing, inflationary function. A
sequence of elements x0, x1, . . . from an nwqo (A,⪯, | · |) is said to be (g, n)-
controlled if for every i, |xi| ≤ gi(n), where gi is the i-fold composition of g with
itself. The function g is called the control function, and the number n is called
the initial norm.

It is known that for every control function g and every number n, there is
always a longest (g, n)-controlled bad sequence (Section 3.1.3 of [107]). Hence,
for every nwqo (A,⪯, | · |) and every control function g, we can define a length
function LA,g(n) as

LA,g(n) := Length of a longest (g, n)-controlled bad sequence in (A,⪯, | · |)
We will now use this notion of length functions to bound the running time

of the coverability algorithm for certain classes of WSTS.

Normed WSTS
A normed WSTS is simply a WSTS (S,→,⪯) equipped with a norm function
| · | on the wqo (S,⪯). For an increasing, inflationary function g : N → N, we say
that the normed WSTS (S,→,⪯, | · |) is g-controlled if it satisfies the property
that for any s ∈ S, the norm of the minimal elements in the set pre(↑ s) is
bounded by g(|s|).
Example 20. Let us consider our running example, namely lossy counter ma-
chines. Let M = (Q, δ) be a d-LCM. From the construction given in Example 15,
it follows that if C ′ is any minimal configuration of pre(↑ C) for some configu-
ration C, then |C ′| ≤ |C| + 1. Hence, lossy counter machines are g-controlled
where g(n) = n+ 1.

22

Let us now assume that we have a class C of normed g-controlled WSTS sat-
isfying all the effective computation assumptions where g is some increasing, in-
flationary, primitive recursive function. Assume that each instance I = (S, s, t)
of the coverability problem in the class C of WSTS is encoded by some string
inputI whose length is lenI . Suppose there are strictly increasing, inflationary,
primitive recursive functions h and N satisfying the following criteria, called
the running time assumptions: For every input instance I = (S, s, t),

• Given a minimal basis B for an upward closed set U , we can compute a
minimal basis for the set pre(U) ∪ U and check for membership in U in
time h(lenI , lenB) where lenB is the size of the input representation of
B.

• Given a number n, there are at most N(lenI , n) elements of S whose norm
is at most n.

Let t0, t1, . . . , tm be any pseudo-witness of the coverability algorithm on the
instance I. As mentioned in Subsection 3.2, t0, . . . , tm is a bad sequence. More-
over, since S is g-controlled, it follows that t0, . . . , tm is also a (g, |t|)-controlled
sequence. Hence m ≤ LA,g(|t|).

Now notice that the running time of the coverability algorithm is at most
m·h(lenI , N(lenI , g

m(|t|))). This expression is a primitive recursive function in
m and lenI ([48, Definition 9], [106, Section 5.3.1]). Now, suppose LA,g(|t|) ≤
fp,α(q(lenI)) for some primitive recursive functions p, q and some ordinal α ≥
ω. Then, by using existing results regarding the fast-growing hierarchy ([106,
Lemma 4.6]) we can show that the running time of the algorithm is dominated
by some function of the form ft,α(w(lenI)) where t is some primitive recursive
function and w is some function in F<α. By Theorem 10, it then follows that
the coverability problem for this class C of WSTS is in the complexity class Fα.

Hence, if we find a way to bound the length functions of the underlying
nwqo of a class of normed WSTS satisfying the running time assumptions, we
can translate those to get running time bounds for the coverability algorithm.
This strand of research has been quite successful and has resulted in a plethora
of results for various classes of nwqos, such as the product ordering over Nd,
the subword ordering over words of a finite alphabet, the priority ordering over
words of a finite priority alphabet, the multiset ordering over finite multisets of
Nd and the linear ordering over ordinals, to name a few. (See [106, 105]).

Example 21. Note that the class of lossy counter machines satisfies the running
time assumptions. By using length functions for the product ordering over
tuples of natural numbers, it is possible to derive an Fω upper bound for the
coverability problem for lossy counter machines [106, Section 6.1.2].

Our contributions
Having covered the necessary results that we shall use, we make a small remark
on our contributions in the first part of the thesis.

23

The next two chapters cover our contributions I and II that were mentioned
in Subsections 1.1.1 and 1.1.2, respectively. Chapter 4 contains results pertain-
ing to upper bounds on length functions and their applications to parameterized
systems. Chapter 5 contains lower bound results for some classes of parameter-
ized systems, complementing the upper bounds obtained in Chapter 4. These
results are discussed in depth in the respective chapters.

24

Chapter 4

Upper bounds for the
coverability problem

We saw in the previous chapter that upper bounds on length functions for
a normed wqo can be translated to upper bounds on the running time of the
coverability algorithm for any WSTS over that normed wqo which satisfies some
basic assumptions. As mentioned in Section 1.1, various parameterized systems
can be analyzed under the lens of WSTS using a variety of nwqos. This diverse
collection of nwqos suggests the need to compute bounds on length functions for
different families of nwqos. Note that once such a bound has been computed for
a family, it can be applied to any parameterized system which uses that family
for its set of configurations.

With this motivation, in this chapter, we prove upper bounds on the length
functions for three different families of nwqos. The first two are over finite sets of
Nd for some d and the third family is over graphs. We also present applications
of these results by providing upper bounds for the coverability problem for some
classes of parameterized systems.

The rest of this chapter is structured as follows. In the first three sections,
we introduce a nwqo in each section, state our main results regarding that nwqo
and briefly sketch the idea behind our results. In the fourth section, we describe
applications of our results to parameterized systems. Finally, we discuss related
work and conclude with a short summary of our results.

The results of this chapter are taken from the papers [13, 15] and [18], except
for Subsection 4.4.1, which is a new application of the results from [13]. These
papers [13, 15] and [18] are reprinted in Appendices A, B and C, respectively.

We fix an increasing, inflationary and primitive recursive function g : N → N
for the rest of this chapter.

25

4.1 The majoring ordering
The first nwqo that we will consider is the majoring ordering, which is a nwqo
over finite subsets of tuples of natural numbers. We begin by formally defining
the majoring ordering.

For any d, let us consider the nwqo (Nd,≤, | · |) where ≤ is the product
ordering and | · | is the max norm as stated in Definition 17 and Remark 18.
Let Pf(Nd) denote the set of all finite subsets of Nd. We can now define the
majoring ordering as follows.

Definition 22. The majoring nwqo over Pf(Nd) is given by the tuple (Pf(Nd),⊑maj

, | · |Pf(Nd)) where

X ⊑maj Y ⇔ ∀x ∈ X, ∃y ∈ Y such that x ≤ y

|X|Pf(Nd) := max({|x| : x ∈ X} ∪ {card(X)})

Here max is the maximum function, and card(X) is the cardinality of X.

By Higman’s lemma [80], it is known that the majoring ordering is indeed a
nwqo. This nwqo has been used in the analysis of some WSTS in the literature;
for instance, it has been used to prove decidability results for incrementing tree
counter automata in [82].

Example 23. Let X = {(0, 1), (7, 3)} and let Y = {(7, 5), (10, 0)}. Since
(0, 1) ≤ (7, 5) and (7, 3) ≤ (7, 5), we have that X ⊑maj Y . We see that the
norm of X is 7, and the norm of Y is 10.

On the other hand, if we let Z = {(6, 5), (10, 1)} then X ̸⊑maj Z, since there
is no element in Z which is at least as big as (7, 3).

Our contribution
Since the majoring ordering is a nwqo, length functions for it are well-defined.
Our main result for the majoring nwqo is to give upper bounds for its length
functions. We present this result in a general fashion so that it becomes appli-
cable later on for parameterized systems.

Let d, k ∈ N. By (Pf(Nd)k,⊑maj, | · |Pf(Nd)k) we mean the nwqo obtained by
taking the product of (Pf(Nd),⊑maj, | · |Pf(Nd)) with itself k times. Recall that
for a function h and an ordinal α ≤ ϵ0, the functions hα, hα and fh,α are the
functions at the αth level of the Hardy, Cichoń and fast-growing hierarchies for
the function h, respectively (See Definition 8). We now state our upper bounds
for length functions over the majoring ordering.

Theorem 24. (Majoring upper bounds). Let A := (Pf(Nd)k,⊑maj, | · |Pf(Nd)k)

and let α = ωωd−1·k. For n > 0, the length function LA,g satisfies

LA,g(n) ≤ hα(4dkn)

where h(x) = 4x · g(x).

26

By using this theorem and exploiting relationships between the three hier-
archies, we can show that

Corollary 25. Let A := (Pf(Nd)k,⊑maj, | · |Pf(Nd)k). For n > 0, we have

LA,g(n) ≤ fh,ωd−1·k(p(d, k, n))

where h and p are some primitive recursive functions over d, k and n.

Main ideas: Reflections, Descent equation and Derivatives

We now sketch the main ideas behind obtaining the upper bounds for the major-
ing nwqo. The concrete details can be found in Section 4 of [13]. The first main
idea is the notion of reflections, which is a major tool to prove upper bounds
for length functions.

Definition 26. Let (A,≤A, | · |A) be a nqo and (B,≤B , | · |B) be a nwqo. A
polynomial reflection is a mapping r : A→ B such that there exists a polynomial
q : N → N satisfying

∀x, y ∈ A : r(x) ≤B r(y) implies x ≤A y

∀x ∈ A : |r(x)|B ≤ q(|x|A)
In such a case, we say that r is a polynomial reflection with polynomial q and
denote it by r : A

q
↪−→ B.

The most important result about polynomial reflections is that once we have
established a reflection from A to B, we can use existing upper bounds for B to
prove upper bounds for A.

Theorem 27. (Transfer theorem). Let r : A
p
↪−→ B be a polynomial reflection.

Then there is a polynomial q such that

LA,g(n) ≤ LB,(q◦g)(q(n))

Apart from polynomial reflections, we need a few more tools to obtain the
required upper bounds, which we now briefly explain, starting with the notion
of residuals.

Definition 28. Let (A,≤A, | · |A) be a nwqo and let x ∈ A. Let A/x = {y :
x ̸≤A y}. The residual of x with respect to A is the nwqo induced by the subset
A/x.

Residuals give rise to the following notion of descent equation, which equates
the length function for a nwqo in terms of the length function of its residuals.

Theorem 29. (Descent equation). Let (A,≤A, | · |A) be a nwqo. We have

LA,g(n) = max
x∈A≤n

{1 + LA/x,g(g(n))}

27

Hence, a natural way to obtain bounds on the length function for the ma-
joring ordering is to first obtain bounds on the length function of its residuals
and then use the descent equation. The former can be obtained by once again
taking residuals and then again applying the descent equation and so on and so
forth till we reach “simple” nwqos, like N for which the length functions become
trivial. The problem with this approach is that the residuals can become ex-
tremely complex as we unravel the descent equation. To overcome this, we use
the framework established by Schmitz, Schnoebelen and others (For instance,
see [71, 108]). The high-level idea behind this framework is that to each resid-
ual, we first associate an ordinal (called its order type) and then we also define a
“derivative” operator for each order type. Then, by constructing reflections and
using the Transfer theorem, we show that the residuals can be replaced with
derivative operators of the corresponding order types in the descent equation.
This allows us to use existing results regarding ordinals to derive the required
upper bounds, which then lets us prove Theorem 24.

4.2 The minoring ordering
The second nwqo that is of interest to us is the minoring ordering, which is also
defined over finite subsets of tuples of natural numbers. Intuitively, the minoring
ordering is obtained by flipping the order of the sets X and Y in the definition
of the majoring ordering. The formal definition of the minoring ordering is as
follows.

Definition 30. The minoring nwqo over Pf(Nd) is given by the tuple (Pf(Nd),⊑min

, |·|Pf(Nd)) where |·|Pf(Nd) is the same as for the majoring nwqo and ⊑min is defined
as

X ⊑min Y ⇔ ∀y ∈ Y, ∃x ∈ X such that x ≤ y

It is known that the minoring ordering is indeed a nwqo [5, Theorems IV.3,
IV.4]. The minoring ordering is useful in the analysis of some classes of automata
with registers [72].

Example 31. Similar to Example 23, let us once again considerX = {(0, 1), (7, 3)},
Y = {(7, 5), (10, 0)} and Z = {(6, 5), (10, 1)}. Note that there is no element in
X which is smaller than or equal to (10, 0) and so X ̸⊑min Y . On the other
hand, since (0, 1) ≤ (6, 5) and (0, 1) ≤ (10, 1), we have that X ⊑min Z. Hence,
this example illustrates the difference between the majoring and the minoring
ordering.

Our contribution
Similar to the majoring ordering, we now present the results for the minoring
ordering in a general fashion. Let d, k ∈ N. By (Pf(Nd)k,⊑min, | · |Pf(Nd)k) we
mean the nwqo obtained by taking the product of (Pf(Nd),⊑min, | · |Pf(Nd)) with
itself k times. The following theorem provides upper bounds for this nwqo.

28

Theorem 32. (Minoring upper bounds). Let A := (Pf(Nd)k,⊑min, | · |Pf(Nd)k)

and let α = ωωd−1·(2dk). If we set c = 4dk22d then for all n ≥ dk2d,

LA,g(n) ≤ hα(c · g(n)2d)

where h(x) = 4kx · (g(x) + 1)d.

The main idea behind this theorem is to give a polynomial reflection from the
minoring ordering to a product of different majoring nwqos, for which we have
already shown upper bounds. More details behind the proof of this theorem can
be found in Section 6 of [13]. Similar to the majoring ordering, we can convert
the bounds given in Theorem 32 in terms of the fast-growing hierarchy to obtain
the following result.

Corollary 33. Let A := (Pf(Nd)k,⊑min, | · |Pf(Nd)k). For n > 0, we have

LA,g(n) ≤ fh,ωd−1·(2dk)(p(d, k, n))

where h and p are some primitive recursive functions over d, k and n.

4.3 The induced subgraph ordering
The final nwqo that is of interest to us is the induced subgraph ordering, which,
as the title indicates, is over (labeled) graphs.

For any graph G, let its vertex norm be the number of vertices of G. Over
this norm, we define the induced subgraph ordering as follows.

Definition 34. Let G1 = (V1, E1, L1) and G2 = (V2, E2, L2) be two S-labeled
graphs for some finite set S. We say that G1 is an induced subgraph of G2,
denoted by G1 ⪯in G2, if there is an injection h : V1 → V2 such that

• For every vertex v ∈ V1, L1(v) = L2(h(v)).

• For every pair (u, v) ∈ V1×V1, (u, v) ∈ E1 if and only if (h(u), h(v)) ∈ E2.

Intuitively, if G1 ⪯in G2 then G2 contains a “copy” of G1 as a subgraph. We
stress that the induced subgraph ordering is not a wqo when the domain is the
set of all graphs. However, there is an interesting class of graphs for which ⪯in

turns out to be a wqo, which we now define.

Definition 35. Let G be a labeled graph. The depth of G is defined to be the
length of the longest simple path in G. We say that G is k-path bounded or
k-depth bounded if the depth of G is at most k.

For any k ∈ N, it turns out that if we restrict ourselves to k-path bounded
graphs, then the induced subgraph ordering over the vertex norm is a nwqo.

Theorem 36. ([58, Theorem 2.2]). Let k ∈ N, S be some finite set and let Gk

be the set of all S-labeled k-path bounded graphs. Then the induced subgraph
ordering over Gk with the vertex norm is a nwqo.

29

Our contribution
Our contribution to the induced subgraph nwqo is to present upper bounds for
its length functions in terms of the Hardy hierarchy (See Definition 8).

Theorem 37. (Induced subgraph upper bounds). Let k ∈ N and let S be some
finite set whose size is d. Let A be the induced subgraph nwqo among all
S-labeled k-path bounded graphs. Then, for all n > 0, we have

LA,g(n) ≤ hϵ0(p(k, d, n))

where h and p are some primitive recursive functions over k, d and n.

The main idea behind this result is to provide a polynomial reflection from
this nwqo to another well-studied nwqo called generalized priority alphabets,
for which upper bounds are already known [79, Proposition 4.1, Corollary 4.2].
The desired polynomial reflection roughly follows a similar mapping given in [79,
Section 8.1.2] for bounded-depth trees. More details behind the proof of this
theorem can be found in [15, Sections 6 and A.1].

4.4 Applications to parameterized systems
We now apply the results from the previous sections to obtain upper bounds
on the time complexity of deciding safety properties for three classes of param-
eterized systems. The result for the first system is new and is not mentioned in
any of the papers in the appendix. The results for the other two models can be
found in [15, Section 6] and [18, Section 5].

4.4.1 Parameterized phaser programs
A (non-atomic) parameterized phaser program is a model of distributed com-
putation in which synchronization between agents happens primarily by means
of phasers. Intuitively, in this model, we have an arbitrary but finite number
of agents, a set of shared Boolean variables and some number of phasers. Each
agent is registered to a subset of phasers, and for each phaser that it is regis-
tered to, it has a signal value and a wait value. Apart from updating the global
Boolean variables, agents are allowed to de-register from phasers, spawn more
agents and issue signal and wait commands. A signal command allows an agent
t to increment its signal value corresponding to some phaser p that it is regis-
tered to. Intuitively, this means that the agent has moved on to the next phase
of its computation. On the other hand, a wait command to a phaser p allows
an agent t to make a move provided that for every agent that is registered to p,
the signal value of that agent with respect to p is strictly larger than the wait
value of t with respect to p. Once an agent makes a wait transition, the wait
value of t with respect to p is incremented by one. Intuitively, a wait transition
for a phaser p acts as a synchronization barrier to the subset of agents that are

30

registered to p and allows an agent t to pass only when all other agents are
ahead of the phase dictated by the wait value of t.

The paper [75] mentions some possible applications of phasers, which we
briefly outline here. Phasers have been implemented in variants of the Java
programming language (See [75, Section 1]) and might be useful in applications
that need dynamic load balancing. Further, it is also mentioned that phasers
can implement many different synchronization barriers and so the generality of
this construct makes it interesting from a theoretical perspective.

The authors of [75] prove that the coverability problem for phaser programs
is decidable under some restrictions, among which one of them is that the model
has only a fixed finite number of phasers. This result is proved by reducing
this problem to a problem regarding constraints over the configurations of the
phaser program, which is then solved by using tools from the theory of WSTS.
To describe the underlying wqo that they use, we need some notation.

Given two multisets X,Y ∈ Mf(Nd) for some d, we let X ⊑ Y if there is a
surjection h from Y to X such that h(y) ≤ y for every y ∈ Y . Further, given
X ∈ Mf(Nd), we let |X|M := {|x| : x ∈ Nd} ∪ {card(X)}. The underlying
well-quasi order that the paper [75] uses for proving the decidability of the
coverability problem can be reflected into a number of products of the wqo ⊑
with norm | · |M over the domain Mf(Ni)j where i depends on the number of
phasers and j depends on the input. Hence, it suffices to compute upper bounds
for length functions over this nwqo.

To that end, consider two multisets X,Y ∈ Mf(Nd) for some d. Notice that
X ⊑ Y if and only if there is an injection f from X to Y such that x ≤ f(x) and
JXK ⊑min JY K. The former condition is essentially the multiset ordering over
Nd for which upper bounds are already known ([104, Theorem 1]). Further,
we had already mentioned that the upper bounds for the minoring nwqo were
obtained by giving a polynomial reflection from the minoring nwqo to a product
of majoring nwqos. Since the majoring ordering can be easily reflected into the
multiset ordering by the identity function, by using results about reflections ([13,
Proposition 2.13]), we can show that the minoring ordering can be polynomially
reflected into the multiset ordering. This then allows us to use results about
the multiset ordering ([104, Theorem 1]) to prove that

Theorem 38. The coverability problem for phaser programs with a fixed num-
ber of phasers is in Fωω .

4.4.2 Bounded-path broadcast networks
The second class of parameterized systems that we consider is the formalism
of broadcast networks. Intuitively, a broadcast network consists of a collection
of finite-state, anonymous agents situated on the nodes of some graph called
the communication topology. All of these agents execute the same underlying
protocol. Initially, all of the agents start in one of the initial states of the given
protocol. A transition of the protocol allows an agent to broadcast a message
(from a finite alphabet) which is then received by all of its neighbors on the

31

graph. The communication topology remains fixed throughout, i.e., the set of
neighbors of an agent cannot change during an execution of the network.

The coverability problem for broadcast networks is to decide, given a protocol
and a state q of the protocol, whether there is an execution of the network from
some initial communication topology that results in some agent reaching the
state q. Note that this is a parameterized verification problem, since we are
parameterizing over the space of all graphs and therefore, also over the number
of agents. It is known that this problem is undecidable ([54, Theorem 1]).
However, when we only parameterize over the set of all k-path bounded graphs
(for some constant k), then the broadcast network (comprising only labeled k-
path bounded graphs) becomes a WSTS under the induced subgraph ordering.
We call such networks bounded-path broadcast networks. A minor modification
of the coverability algorithm (to work with infinitely many initial configurations)
lets us show that the coverability problem for bounded-path broadcast networks
is decidable. Once again, the running time of the algorithm depends primarily
on length functions for the induced subgraph ordering. Hence, by using our
result for bounded-depth graphs (Theorem 37) and some properties of the fast-
growing hierarchy, we can show that

Theorem 39. The coverability problem for bounded-path broadcast networks
is in Fϵ0 .

In the next chapter, we will show that this bound is tight for bounded-depth
broadcast networks.

4.4.3 Depth-bounded π-calculus processes
The π-calculus [95, 96] is a well-known formalism for describing concurrent
message-passing systems that admit unbounded process creation and mobility of
agents. Intuitively speaking, a configuration of such a system is a graph in which
each vertex is a process labeled by its current state, and there is an edge between
two processes if they share a channel. Due to its immense expressive power, all
interesting problems quickly become undecidable for π-calculus processes.

Consequently, research on π-calculus has been focused on finding fragments
for which certain problems are decidable. The most expressive fragment of
π-calculus for which some verification problems still remain decidable is the
class of depth-bounded processes [94]. Intuitively, depth-bounded processes are
those in which the length of simple paths in the set of reachable configurations is
bounded by a constant. It is known that depth-bounded processes can be viewed
as WSTS [94]. This implies that the coverability problem for such systems is
decidable [94, 114]. The underlying WSTS uses the induced subgraph ordering
over the set of all K-path bounded trees for some suitable K depending on the
depth of the (reachable) configuration space. Hence, we can use Theorem 37 to
obtain upper bounds on the running time of the coverability problem. However,
we note that upper bounds on length functions for K-path bounded trees were
already known prior to our contribution (See [79, Section 8.1.2]), and so the
following upper bound follows immediately from those results.

32

Theorem 40. The coverability problem for depth-bounded processes is in Fϵ0 .

Hence, in this particular case, the results were already there in some sense;
however, we are not aware of any published paper (apart from our own contri-
bution [18]) which mentions this result. Furthermore, in the next chapter, we
will prove that this upper bound is tight for depth-bounded processes, and so
we have mainly included this result here for the sake of completeness.

4.4.4 Other applications
We briefly mention a few more applications of our results beyond the realm
of parameterized verification. The results for the majoring and the minoring
ordering have been used to show upper bounds for other classes of WSTS, such
as tree counter automata with incrementing errors and two different models of
register automata [13, Section 8]. Further, it has also been used in the context
of hypersequent logics [23, Section 5] to provide upper bounds for substructural
logics.

4.5 Related work
As mentioned in Section 3.3, a lot of work has been invested in computing upper
bounds for length functions for different families of nwqos [71, 108, 105, 104, 79,
106]. Our work contributes to this line of research.

The majoring ordering is also sometimes known as the Hoare ordering in
the powerdomain literature and has been considered for the analysis of some
classes of WSTS [82]. To the best of our knowledge, the paper which explicitly
considered computing upper bounds for the majoring ordering was [6] and then
later the journal version [7]. Over Pf(Nd), the bound given in [7] is fh,ωd(p(d, n))
for some primitive recursive functions h and p. Our result improves upon that
upper bound by reducing the exponent in the ω term by 1.

The minoring ordering is also sometimes known as the Smyth ordering in the
powerdomain literature and has been used in the analysis of data automata with
registers [72]. The paper [5] proves some facts regarding the minoring ordering,
but it ends with an open problem about the length of controlled bad sequences
for the minoring ordering. Our upper bounds are the first bounds for length
functions over the minoring ordering.

To the best of our knowledge, the paper [58] was the first paper that proved
that bounded-depth graphs are well-quasi ordered under the induced subgraph
ordering. Regarding upper bounds on length functions, as mentioned before,
they were already known for the class of bounded-depth trees [79], which are a
special class of bounded-depth graphs.

33

4.6 Conclusion
We have provided upper bounds for the length of controlled bad sequences over
three different classes of nwqos. We have also used these results to bound the
running time of the coverability algorithm for various classes of parameterized
systems.

In this chapter, we have only provided upper bounds for length functions
over classes of nwqos. One can also study the dual question and ask for lower
bounds on length functions. Note that if we were to obtain a lower bound f for a
length function over some nwqo A, then this means that the naive analysis of the
running time of coverability for a WSTS S over A cannot be made shorter than
the function f ; (This however does not imply that the coverability problem for S
cannot have an algorithm faster than the function f). We have some results on
the lower bounds for length functions for the majoring and the minoring ordering
in the paper [13]. For the majoring ordering, this bound is tight. However, we
do not yet have a tight lower bound for the minoring ordering, which might be
an interesting problem for future work.

34

Chapter 5

Lower bounds for the
coverability problem

In the previous chapter, we provided upper bounds on the coverability problem
for three classes of parameterized systems. The bounds that we had obtained
grew faster than even primitive recursive functions. This leads to a natural
question for these models: Are these bounds really the best that we can do?

In this chapter, we will show that this is indeed the case for two of the models
considered in the previous chapter, namely bounded-path broadcast networks
and depth-bounded (π-calculus) processes. For both these models, we will pro-
vide lower bounds for the coverability problem, which will match the upper
bounds (Fϵ0) that we obtained in the previous chapter. The results that we
obtain from these lower bounds solve open problems mentioned in [79, 114].

While the obtained lower bounds are negative from a tractability perspec-
tive, understanding the precise complexity of a particular problem is important
because it may allow us to solve it in practice by reducing it to various other
well-studied problems for which tools and heuristics have been developed. Our
results also contribute to the program of Schmitz and Schnoebelen [109], whose
focus is on populating the classes of the fast-growing hierarchy with more and
more complete problems. The addition of these new complete problems allow fu-
ture hardness results for WSTS to use these problems as intermediate problems
rather than beginning from Turing machines or counter machines.

The rest of this chapter is structured as follows. We begin by introducing
a known Fϵ0 -hard problem, called the coverability problem for nested counter
systems, from which we shall give reductions to both the coverability problem
for bounded-path broadcast networks and the coverability problem for depth-
bounded processes. Then, in the next two sections, we formally define both
these models, state our results and give a sketch of the proofs. Then we discuss
some related work and conclude with possible avenues for future work.

The results of this chapter are taken from the papers [15] and [18], which
are reprinted in Appendices B and C, respectively.

35

5.1 Nested counter systems
Intuitively, a k-nested counter system (k-NCS) is a generalization of a usual
counter system with higher order counters. A 1-dimensional counter is a normal
counter which holds a natural number and which we can either increment or
decrement by 1. A 2-dimensional counter is a counter which can add or subtract
1-dimensional counters, and a 3-dimensional counter can add or subtract 2-
dimensional counters and so on. A k-NCS has access to a certain amount of
k-dimensional counters, and it also has rules which allow it to manipulate these
counters in a specific way. We now define this model in a formal manner, with
slight alterations from the definition given in [51].

A k-nested counter system (k-NCS or simply NCS) is a tuple N = (Q, δ)
where Q is a finite set of states and δ ⊆ ⋃

1≤i,j≤k+1(Q
i ×Qj) is a set of rules.

The set CN of configurations of N is defined to be the set of all labeled rooted
trees of height at most k, with labels from the set Q. When the underlying NCS
is clear from context, we drop the N subscript in the notation for configurations.

The operational semantics of N is defined in terms of the following transition
relation →⊆ C×C on configurations: Let r := ((q0, . . . , qi), (q

′
0, . . . , q

′
j)) ∈ δ be a

rule with i ≤ j ≤ k. We say that a configuration C can move to the configuration
C ′ using the rule r (denoted by C

r−→ C ′), if there is a path v0, v1 . . . , vi in C
starting at the root such that for every 0 ≤ l ≤ i, the label of vl is ql and, C ′ is
obtained from C by 1) for every 0 ≤ l ≤ i, changing the label of each vl to q′l
and 2) for every i+1 ≤ l ≤ j, creating a new vertex vl with label q′l and adding
it as a child to vl−1.

Similarly, suppose r := ((q0, . . . , qi), (q
′
0, . . . , q

′
j)) ∈ δ is a rule with j < i ≤ k.

Then C r−→ C ′ if there is a path v0, v1, . . . , vi in C starting at the root such that
for every 0 ≤ l ≤ i, the label of vl is ql and C ′ is obtained from C by 1) for
every 0 ≤ l ≤ j, changing the label of each vl to q′l and 2) removing the subtree
rooted at the vertex vj+1.

We use C −→ C ′ to denote that there is some rule r for which C r−→ C ′ and we
use ∗−→ to denote the resulting reachability relation between two configurations.

Example 41. Let us consider the NCS N given by the states Q = {pi, p′i, qi, q′i :
0 ≤ i ≤ 4} and consisting of the following rules: r1 = ((q0, q1), (q

′
0, q

′
1, q

′
2)), r2 =

((q′0, q3, q2), (p0)), r3 = ((p0), (p
′
0)). In Figure 5.1, we illustrate the application

of these rules to a configuration of N .

Let N = (Q, δ) be some k-NCS and let init ,fin ∈ Q. We say that the state
init can cover the state fin if the (unique) configuration consisting of the single
root vertex labeled by init (also called the initial configuration of N) can reach
some configuration where the root is labeled by fin. This notion of coverability
leads to the following decision problem.

Definition 42. The coverability problem for NCS is defined as the following
problem:

36

q0

q1 q3

q2

q4

q2

r1

q′0

q′1

q′2

q3

q2

q4

q2

r2

p0

q′1

q′2

r3

p′0

q′1

q′2

Figure 5.1: Application of the rules r1, r2 and r3 to a configuration of the NCS
N described in Example 41.

Input: An NCS N = (Q, δ) and two states init and fin

Decide: If init can cover fin

By an already existing result from the literature ([51, Theorem 7]), we know
that

Theorem 43. The coverability problem for NCS is Fϵ0-hard.

By Theorem 43, it follows that if we give polynomial-time reductions from
the coverability problem for NCS to the coverability problems for bounded-path
broadcast networks and depth-bounded π-calculus processes, then the latter two
problems are Fϵ0 -hard. In the next two sections, we will present the main ideas
behind both these polynomial-time reductions.

Remark 44. We can also show that NCS are well-structured transition sys-
tems under a suitably chosen well-quasi-ordering. It follows then that the usual
coverability problem for WSTS can also be defined for NCS. The coverability
problem for NCS as defined in Definition 42 will then be a special case of this
general coverability problem. However, for our purposes, it is sufficient to work
with the special case defined in Definition 42.

5.2 Lower bound for bounded-path broadcast net-
works

Our first result in this chapter is regarding the model of broadcast networks. The
intuitive idea behind the notion of a broadcast network was already discussed
in Subsection 4.4.2. Hence, here we begin our discussion on broadcast networks
by formally presenting its syntax and semantics. The definitions here are taken
from the ones given in [28].

37

Definition and semantics
Each agent in a broadcast network executes a given finite-state protocol. Before
we state the formal semantics of a broadcast network, we formalize the notion
of a protocol.

Definition 45. A broadcast protocol is a tuple P = (Q, I,Σ,∆) where Q is a
finite set of states, I ⊆ Q is the set of initial states, Σ is a finite set of messages
and ∆ ⊆ Q× {!a, ?a, : a ∈ Σ} ×Q is the transition relation.

We write q !a−→ q′ (resp. q ?a−→ q′) for (q, !a, q′) ∈ ∆ (resp. (q, ?a, q′) ∈ ∆). A
transition q !a−→ q′ (resp. q ?a−→ q′) intuitively corresponds to broadcasting (resp.
receiving) the message a.

Each agent of a broadcast network is labeled by some state of the protocol
and is situated on a node of a graph called the communication topology. To
formalize this, given a broadcast protocol P = (Q, I,Σ,∆), a configuration of P
is a labeled graph γ = (N,E, L) where N is a finite set of nodes, E ⊆ N× N is a
finite set of (undirected) edges specifying for every pair of nodes whether or not
there is a communication link between them and L : N → Q is a labeling function
that specifies the current state of each agent at each node. A configuration is
initial if the state of each agent in the configuration belongs to I. Further, for
any k, we let Tk(P) denote the set of all k-path bounded configurations of the
network.

The semantics of the broadcast network of a protocol P is given by means
of transitions between its configurations. There is a step from the configura-
tion γ = (N,E, L) to the configuration γ′ = (N′,E′, L′) (denoted by γ −→ γ′)
if N′ = N, E′ = E and there exists a node n and a message a ∈ Σ such
that (L(n), !a, L′(n)) ∈ ∆, and for every other node n′, if (n, n′) ∈ E, then
(L(n), ?a, L′(n′)) ∈ ∆; otherwise L(n′) = L′(n′). Intuitively, a step consists of a
node n broadcasting some message a, which is then received by all of its neigh-
bors; all the other nodes do nothing. This step relation naturally induces a
notion of reachability between configurations of a broadcast network.

Given a state f and a configuration γ0, we say that γ0 can cover f if there is a
run from γ0 to some configuration γ such that f ∈ L(γ). Intuitively, this means
that starting from γ0 we can reach a configuration in which some agent is in the
state f . The coverability problem for broadcast networks is to decide, given a
broadcast protocol P and a state f , whether there is some initial configuration
that can cover f .

Example 46. We consider the broadcast protocol given in Figure 5.2. Fig-
ure 5.3 shows an execution in this protocol covering the state (e, 0).

Our contribution
It is known that the coverability problem for broadcast networks is undecid-
able ([54, Theorem 1]). To overcome this undecidability result, we look at the
coverability problem for bounded-path broadcast networks, which is defined as
follows.

38

(a, 1) (b, 1) (c, 1) (d, 1) (e, 1)
?ht0 !ht1 !ht1 ?ht0

(a, 0) (c, 0)

?ht1, ?ht1

(e, 0)
!ht0 !ht0

Figure 5.2: Example of a broadcast protocol where we set I = {(a, 0), (a, 1)} and
Σ = {hti, hti : 0 ≤ i ≤ 1}. If for a state (f, i), we have not depicted what happens
when message m is received at (f, i), we assume that (f, i)

?m−−→ (⊥, i). Here
(⊥, 0) and (⊥, 1) are new sink states, i.e., states with no outgoing transition.

Definition 47. The coverability problem for bounded-path broadcast networks
is defined as the following problem:

Input: A protocol P = (Q, I,Σ,∆), a state f ∈ Q and a number k

Decide: If there is some initial configuration in Tk(P) which can cover f

Note that in this problem, we are only interested in configurations of depth
at most k. As discussed in the previous chapter, this problem is in Fϵ0 . We
complement this upper bound by means of the following lower bound.

Theorem 48. The coverability problem for bounded-path broadcast networks
is Fϵ0 -hard.

Together with the upper bound, this establishes the Fϵ0-completeness of the
coverability problem for bounded-path broadcast networks. We now give an
overview of the proof of Theorem 48. Formal details behind the proof can be
found in [15, Sections 4 and 5].

The lower bound is achieved by giving a polynomial-time reduction from
the coverability problem for NCS to the coverability problem for bounded-path
broadcast networks. Roughly speaking, there are three main ideas behind this
reduction. Let N = (Q, δ) be a k-NCS. The first idea is that we can interpret
each configuration C of N as a network whose communication topology is given
by the graph of C. Intuitively, we have an agent situated at each node of C,
whose state is the current state of that node in C, along with its distance from
the root. The second idea is that, once we adopt this lens of viewing config-
urations as topologies, a step in the NCS N from C is essentially a sequence
of communication exchanges between some i agents where i ≤ k, starting at
the root and going down the tree. We then show that these communication
exchanges can be simulated by gadgets of a broadcast protocol, called the simu-
lator protocol. This essentially allows us to show that starting from large enough

39

(a, 0) (a, 1)

(a, 1) (a, 1)

!ht0
(c, 0) (b, 1)

(b, 1) (b, 1)

!ht13×

(c, 0) (c, 1)

(c, 1) (c, 1)

!ht1
3×

(c, 0) (d, 1)

(d, 1) (d, 1)

!ht0
(e, 0) (e, 1)

(e, 1) (e, 1)

Figure 5.3: Example of an execution covering (e, 0) in the broadcast protocol
given in Figure 5.2. The nodes marked in green make the broadcasts, i.e., first
the node on the topmost left broadcasts ht0, then all the other nodes broadcast
ht1 in some order, and then ht1 in some order, and then the node on the topmost
left broadcasts ht0.

initial configurations which resemble a “tree”-like structure in our broadcast net-
work, we can simulate runs of the NCS N . The third and final idea is that we
can come up with a gadget called the seeker protocol, which starting from any
topology, searches for a tree-like sub-structure in that topology. Hence, first
deploying the seeker protocol and then attaching it with the simulator protocol
allows us to simulate computations of the NCS N , thereby giving the desired
hardness result.

5.3 Lower bound for depth-bounded π-calculus
processes

We now move on to the formalism of π-calculus. We have given an informal de-
scription of π-calculus processes in Subsection 4.4.3. Here, we focus on formally
defining π-calculus and presenting its semantics.

Definition and semantics
We begin by presenting the syntax and the semantics of the version of π-calculus
that we will use. The definitions here are taken from the ones given in [114].

40

We assume that there is a countable collection of names (denoted by x, y, . . .)
and a countable collection of process identifiers (denoted by A,B, . . .). Each
name and identifier has an associated arity in N. We use boldface letters like
x,y to denote (possibly empty) vectors over names and denote substitution of
names by [x/y], i.e., if x = x1, . . . , xn and y = y1, . . . , yn, then [x/y] denotes
a mapping in which each yi is mapped to xi, and every other name is mapped
to itself. Intuitively, the current state of an agent or a thread is given by its
process identifier and channels are described by names.

A process term (or simply a term) P is either the unit process 0, or a parame-
terized process identifier A(x), or any term obtained by the standard operations
of parallel composition P1 | P2, external choice π1 ·P1+π2 ·P2 and name restric-
tion (νx)P1. Here P1 and P2 are themselves terms, and π1 and π2 are prefixes
which can either be an input prefix x(y) or an output prefix x̄(y) or the empty
string. A thread is a term of the form A(x). We use Π and Σ to denote (in-
dexed) parallel composition and external choice. We further use (νx) to denote
(νx1)(νx2) . . . (νxn) where x = x1, . . . , xn. The application of a substitution of
names σ to a term P , denoted by σ(P), is defined in the usual way.

An occurrence of a name x in a term P is called free if it is not below a
(νx) or an input prefix y(x). We let fn(P) denote the set of free names of P .
A bound name of P is a name of P which is not free. We say that P is closed if
fn(P) = ∅. We use the usual structural congruence relation P ≡ Q on process
terms, i.e., P ≡ Q if P is syntactically equal to Q upto renaming and reordering
of bound names, associativity and commutativity of parallel composition and
external choice, elimination of units ((P | 0) ≡ P, (νx)0 ≡ 0) and scope extrusion
((νx)(P | Q) ≡ (νx)P | Q if x /∈ fn(Q)).

A configuration is a closed term of the form (νx) (Πi∈IAi(xi)). A process P
is a pair (I, E) where I is an initial configuration and E is a set of parametric
equations of the form A(x) = P where A is an identifier and P is a term such
that 1) every identifier in P is defined by exactly one equation in E and 2) if
A(x) = P is an equation, then fn(P) ⊆ {x}. We assume that all the equations
are given in the following form:

A(x) =
∑

i∈I

πi.(νxi)


∏

j∈Ji

Aj(xj)




Operational semantics. Let P = (I, E) be a process. We define a transi-
tion relation on the set of configurations using E as follows. Let P and Q be
configurations. Then P −→ Q if and only if the following conditions are satisfied:

• P ≡ (νu)(A(v) | B(w) | P ′),

• The defining equation ofA in E is of the formA(x) = x(x′).(νx′′)(M)+M ′,

• The defining equation of B in E is of the form B(y) = ȳ(y′).(νy′′)(N)+N ′,

• σ = [v/x,w/y,w′/x′, zA/x′′, zB/y′′] where zA, zB are fresh names and
w′ is the set of names assigned to y′ under the mapping [w/y].

41

• σ(x) = σ(y) and

• Q ≡ (νu, zA, zB)(σ(M) | σ(N) | P ′)

We denote such a step by P −→ Q. The intuitive idea behind this relation
is that there is a channel σ(y) through which a thread with identifier B sends
the names corresponding to w′, and these names are received by a thread with
identifier A along the same channel σ(x) = σ(y). Once that happens, the thread
A creates new channels zA and then works according to the description of the
term M . Similarly, the thread B creates new channels zB and then works
according to the description of the term N . We say that a configuration P is
coverable in P if P ≡ (νx)P ′ and there exists Q ≡ (νx)(P ′ | R) such that
I

∗−→ Q.

Depth-bounded processes. We now define the class of depth-bounded pro-
cesses. The nesting of restrictions nest of a term P is defined inductively as
follows: nest(0) = nest(A(x)) = nest(π1 · P1 + π2 · P2) = 0, nest((νx)P) =
1+nest(P) and nest(P1 | P2) = max{nest(P1), nest(P2)}. The depth of a term
P is the minimal nesting of restrictions of terms in the congruence class of P :

depth(P) := min{nest(Q) : Q ≡ P}

Definition 49. A set of configurations C is called k-depth-bounded if the depth
of all configurations in C is at most k. C is called depth-bounded if there is some
k such that it is k-depth-bounded. A process P is called (k) depth-bounded
if the set of reachable configurations from the initial configuration of P is (k)
depth-bounded.

Example 50. The following example intuitively demonstrates a system in
which there is one “Level0” thread which can spawn “Level1” threads by using
a “New1” thread. The intuition is that once a New1 thread receives a message
from a Level0 thread by some channel (corresponding to the name x in the equa-
tions of Level0 and New1), it creates a fresh name (corresponding to the name
y in the equation of New1), creates two new threads with identifiers Level1 and
New2, gives Level1 the access to the channels corresponding to x and y and
gives New1 the access to the channel corresponding to y. Then, each Level1
thread can itself spawn “Level2” threads by using their own “New2” threads.

Level0(x) = x̄().Level0(x)

New1(x) = x().((νy)(New1(x) | Level1(x, y) | New2(y)))
Level1(x, y) = ȳ().Level1(x, y)

New2(y) = y().((νz)(New2(y) | Level2(y, z) | New3(z)))
Level2(y, z) = z̄().Level2(y, z)

New3(z) = z().New3(z)

42

Suppose we set I = (νx)(Level0(x) | New1(x)). Then the following is a valid
run:

I −→ (νx)(Level0(x) | New1(x) | (νy)(Level1(x, y) | New2(y)))
−→ (νx)(Level0(x) | New1(x) | (νy)(Level1(x, y) | New2(y) |

(νz)(Level2(y, z) | New3(z))))

We note that the depth of the last configuration in this run is 3. Indeed, we
can show that the depth of any reachable configuration from I is at most 3.

Our contribution
The main problem that we consider regarding depth-bounded π-calculus pro-
cesses is the coverability problem, which is defined as follows:

Definition 51. The coverability problem for depth-bounded π-calculus pro-
cesses is defined as the following problem:

Input: A k-depth-bounded process P = (I, E) and a configuration P

Decide: If P is coverable in P

We have already seen in the previous chapter that this problem is in Fϵ0 .
We complement this upper bound by means of the following result.

Theorem 52. The coverability problem for depth-bounded processes is Fϵ0-
hard.

Here, we assume that the input consists of a process P and a number k
such that P is k-depth-bounded. Together with the upper bound given in the
previous chapter, this proves that the coverability problem is Fϵ0 -complete.

We now sketch the main details behind the proof of the lower bound. The
formal details behind the proof can be found in [18, Sections 3 and 4]. The lower
bound is obtained in two stages. First, we introduce a model called k-nested
counter system with levels (k-NCSL or simply NCSL). Intuitively, an NCSL is
the same as an NCS, except that steps between configurations involve changes
to at most 2 nodes in the configuration, a parent node and a child node. In
some sense, NCS can do “global” steps by means of changing an entire path
from the root; in contrast, NCSL can only do “local” steps. We show that given
an NCSL N , it is possible to simulate each step of N by means of a depth-
bounded π-calculus process. The intuition behind this simulation is that each
step in an NCSL corresponds to a communication between two nodes, and this
communication can be captured by a π-calculus process. Having proven this
simulation, we then show that the coverability problem for NCSL is Fϵ0-hard
by giving a reduction from the coverability problem for NCS. The intuitive idea
behind this reduction is that we can simulate one step of a given k-NCS by a

43

series of ck steps of an NCSL for some constant c. The simulation first picks
some rule of the given NCS to work with and then simulates this rule “locally”
along a path of a configuration, starting from the root node.

Putting these two simulations together, we then get the required Fϵ0-hardness
result for depth-bounded π-calculus processes.

5.4 Related work
There has been a great deal of work in proving lower bounds for different WSTS
models. We refer the interested reader to [106] for a catalog of upper and lower
bounds for various well-structured transition systems.

The coverability problem for broadcast networks was first considered in [54],
where it was shown that it is undecidable for the general case. The same paper
also showed that the problem becomes decidable when restricted to bounded-
path graphs by using the framework of WSTS. However, the precise complex-
ity of the problem has been open since then, and we settle it by our results.
Ever since [54] was published, there has been a flurry of papers related to the
verification of broadcast networks and its extensions with probabilities, regis-
ters and clocks [57, 55, 56, 31, 30, 29, 52, 2, 16]. A particularly interesting
variant of broadcast networks is the model where messages are allowed to be
lost; this has also been studied under the name of reconfigurable broadcast
networks [19, 53, 28, 47]. For this variant, coverability is decidable and in poly-
nomial time. Further, some parameterized verification problems beyond cover-
ability, such as synchronization and repeated coverability, are also decidable in
polynomial time.

π-calculus is an expressive formalism of distributed computation first consid-
ered in the papers [95, 96]. Due to its immense power, all interesting problems
regarding it become undecidable. The depth-bounded fragment is the most ex-
pressive fragment known till now, for which some problems are decidable. The
decidability of coverability for this fragment was shown in [94] by using the the-
ory of WSTS. The paper [114] proposes another algorithm for the coverability
problem, which works even when the bound on the depth of the process is not
known a priori. However, the precise complexity of the problem was open prior
to the publication of our result.

5.5 Conclusion
We have shown that the coverability problems for bounded-path broadcast net-
works and depth-bounded π-calculus processes are Fϵ0-hard. Combined with
the upper bounds from the previous chapter, this proves that both these prob-
lems are Fϵ0 -complete. These two lower bound results solve open problems
from [79, 114].

The common thread between these two models is the notion of bounded depth.
This intuitive notion of bounded depth has also been explored in other contexts

44

(For instance, see the models in [42, Section 8.3]). Depth-bounded systems have
been mentioned as having the ability to model a wide variety of distributed
systems [27]. It is possible that the central idea behind our reductions can also
be used to prove hardness results for other bounded depth models mentioned
in [42, Section 8.3].

Finally, our results for both these models do not give tight complexity bounds
when the underlying bound on the depth is a fixed constant. Resolving these
two problems in such a case is an intriguing direction of research for future
work. We believe that the models of NCS and NCSL will also be useful for such
questions.

45

Part II

Linear Arithmetic Theories

46

Chapter 6

Introduction and Background

The second part of this thesis deals with the applications of linear arithmetic
theories to provide efficient algorithms for the verification of parameterized sys-
tems. A linear arithmetic theory is a logical theory where the variables are
allowed to take values from some underlying number system equipped with an
addition operation and an order relation. We show that by combining linear
arithmetic theories over various domains, we can obtain simple, complete and
efficient algorithms for analyzing interesting classes of parameterized systems.

We use this chapter to set up the necessary definitions and results that we
shall use in this part of the thesis. In the next three chapters, we explain our
contributions to parameterized verification using results from linear arithmetic
theories.

In the following, we will mostly use the notations from [101, 17] to describe
the linear arithmetic theories that are of interest to us. For a domain A ∈
{N,Q,Q≥0,Z}, its underlying linear arithmetic theory is the first-order theory
over the structure ⟨A, 0, 1,+, <⟩ where + and < are the standard addition and
order operations over A. In a straightforward manner, we can extend our syntax
with the abbreviations: ≤,=,≥, > and ax =

∑
1≤i≤a x where a ∈ N and x is

a variable. A linear polynomial of such a first-order theory is a term of the
form

∑
1≤i≤n ai · xi + b where each xi is a variable, each ai ∈ N and b ∈ A.

An atomic formula of the underlying theory is a term of the form p(x) ▷◁
q(x) where p and q are linear polynomials over the variables x and ▷◁ ∈ {<
,≤,=,≥, >}. Formulas of the theory are built from atomic formulas by the
standard negation ¬, conjunction ∧, disjunction ∨, existential quantification ∃x
and universal quantification ∀x operations. A sentence is a formula where each
variable is under the scope of some quantifier.

Of particular interest to us are the existential fragments of these theories,
which consist only of existential formulas, i.e., formulas where no variable is
universally quantified. Another special class is the class of linear equations,
which are formulas constructed by taking conjunction of atomic formulas of the
form p(x) = q(x) for some linear polynomials p and q.

Having defined the theories of interest to us, we now state the results that

47

we shall use regarding these theories. The first one is regarding the existential
fragment of the theory of natural numbers, also called existential Presburger
arithmetic.

Theorem 53. (Section 5.1 of [78]). Deciding the truth of sentences in existen-
tial Presburger arithmetic is in NP.

The second one is about finding solutions to linear equations over various
domains (See [83, 84]).

Theorem 54. Solving linear equations over Q≥0 and Z is in P.

Our contributions
Having covered the necessary results that we shall use, we make a small remark
on our contributions in the second part of the thesis.

The next three chapters cover contributions III and IV, which were men-
tioned in Subsections 1.2.1 and 1.2.2, respectively. Chapter 7 contains results
on the cut-off problem for rendez-vous protocols. Chapter 8 covers our results
on the complexity of verification of threshold automata, and Chapter 9 contains
our main results regarding the parameterized complexity of the safety verifica-
tion problem for threshold automata. These results are discussed in depth in
the respective chapters.

48

Chapter 7

The cut-off problem for
rendez-vous protocols

A rendez-vous protocol is a parameterized system in which agents communi-
cate in pairs. At any point in time, two agents meet, exchange a message and
then update their states according to some transition relation. The simplicity of
this model has lent itself to many papers dedicated to understanding the decid-
ability and complexity of the main verification problems of this model and its
variants [76, 62, 63]. However, almost all of the existing works in the literature
have concentrated only on questions that ask if every initial configuration satis-
fies a given property (or the dual question of whether some initial configuration
violates a given property). While this is a powerful framework for asking inter-
esting questions, in some cases, it might happen that some properties hold only
beyond a certain population size in a protocol. (We will present an example of
this phenomenon in Section 7.1). The usual universal quantification framework
cannot be used to identify such cases.

Motivated by this, the authors of [81] considered questions that go beyond
the usual existential/universal quantification framework and looked at deter-
mining the existence of cut-offs in the system, i.e., a bound on the number
of agents such that a given property holds for all population sizes beyond this
bound. Concretely they studied the following problem called the cut-off prob-
lem: Given a rendez-vous protocol with an initial state and a final state, does
there exists a number B such that for all n ≥ B, the initial configuration with n
agents in the initial state can reach the final configuration with n agents in the
final state. Essentially, the cut-off problem asks if some reachability property
is satisfied by the protocol asymptotically in the limit, i.e., for all but finitely
many population sizes. The authors prove that the problem is in EXPSPACE,
but leave open the precise complexity of the problem.

Our main contribution is to improve upon this bound and prove that the
problem is actually P-complete. More specifically, we show that by leveraging re-
sults about linear arithmetic theories, it is possible to obtain efficient algorithms

49

for the cut-off problem. Using the framework of linear arithmetic theories, we
also manage to improve upon some of the other algorithms given in [81] for
special cases of the cut-off problem.

Horn and Sangnier also considered a more general version of rendez-vous
protocols in which one distinguished agent, called a leader, is allowed to execute
its own protocol. They proved that the cut-off problem for this general version
is decidable and Fω-hard. We will not consider that version of the problem in
this chapter, i.e., the model of rendez-vous protocols that we will consider in
this chapter are leaderless.

The results of this chapter are taken from [21], which is reprinted in Ap-
pendix D. That paper also has results pertaining to some special cases of rendez-
vous protocols (with a leader). However, since the focus here is on presenting
the main results of [21] with intuitive ideas, we have not considered those special
cases in this chapter. For more details on our results on these special cases, we
refer the reader to Sections 6 and 7 of [21].

We note that our polynomial-time algorithm for the cut-off problem for
(leaderless) rendez-vous protocols is in some sense surprising, as the addition of a
single leader makes the problem non-primitive recursive. This demonstrates the
power of a leader in the context of rendez-vous protocols and also the usefulness
of linear arithmetic theories in identifying and isolating tractable islands of
problems concerning parameterized systems.

The rest of this chapter is structured as follows. We begin by formally
defining rendez-vous protocols and stating our main result. We then reformulate
the notion of a rendez-vous protocol as a Petri net, which allows us to use results
from the theory of Petri nets in order to solve the cut-off problem. Then, we
discuss a polynomial-time algorithm for the cut-off problem and conclude with
a section on related work and a short summary.

7.1 Rendez-vous protocols
Having discussed the intuitive notion of a rendez-vous protocol at the beginning
of this chapter, we proceed to formally define the model and state its semantics.
The definitions given here are slight modifications of the ones given in [81].

Definition and semantics
We begin by formalizing the notion of a protocol that all agents in our system
will execute.

Definition 55. A rendez-vous protocol P is a tuple (Q,Σ, init ,fin, R) where Q
is a finite set of states, Σ is the communication alphabet consisting of a finite
set of messages, init ,fin ∈ Q are the initial and final states respectively and
R ⊆ Q× {!a, ?a : a ∈ Σ} ×Q is the set of rules.

A configuration C of P is a multiset of states, where C(q) should be inter-
preted as the number of agents in state q. An initial (resp. final) configuration

50

C is a configuration such that C(q) = 0 if q ̸= init (resp. C(q) = 0 if q ̸= fin).
We use Cn

init (Cn
fin) to denote the initial (resp. final) configuration such that

Cn
init(init) = n (resp. Cn

fin(fin) = n).
The operational semantics of a rendez-vous protocol P is given by means

of a transition system between the configurations of P. We say that there is a
transition between C and C ′, denoted by C ⇒ C ′, if there exists a message a in
Σ and rules (p, !a, p′), (q, ?a, q′) in R such that C ≥ Hp, qI and C ′ = C − Hp, qI+
Hp′, q′I. Intuitively, the configuration C has agents at states p and q, and the
agent at state p sends the message a and moves to p′, and the agent at state q
receives this message and moves to q′. As usual, ∗

=⇒ denotes the reflexive and
transitive closure of ⇒.

Example 56. Let us consider the rendez-vous protocol in Figure 7.1, which is
taken from a slightly modified version of the family of protocols described in
Figure 5 of [81]. The protocol has five rules, two from init to q1 labeled by !a
and ?a respectively, two from init and q1 to fin labeled by ?b and !b respectively
and finally, a self-loop at fin labeled by !b.

init q1 fin
!a !b

!b

?a

?b

Figure 7.1: An example of a rendez-vous protocol

The cut-off problem. The main focus of this chapter is the cut-off problem
which is defined as follows.

Definition 57. The cut-off problem for rendez-vous protocols is defined as the
following decision problem:

Input: A rendez-vous protocol P

Decide: If there is B ∈ N such that Cn
init

∗
=⇒ Cn

fin for every n ≥ B

If such a B exists, then we say that P admits a cut-off and that B is a
cut-off for P. The intuitive idea behind a cut-off is that it ensures that all
but finitely many initial configurations satisfy the property that they can reach
a final configuration. As we shall see in the next example, it might be the
case that protocols sometimes need a minimum number of agents in order to

51

satisfy a property, and such instances cannot be identified with the usual type
of questions which quantifies over every initial configuration.

Example 58. Consider the protocol given in Figure 7.1. We can show that 4
is a cut-off for this protocol. Indeed, if n ≥ 4, then we have the run Cn

init ⇒
H(n− 2) · init + 2 · q1I ⇒ H(n− 3) · init + q1 + 2 · finI ⇒ H(n− 4) · init + 4 · finI.
The first transition involves sending and receiving the message a from the state
init , and the other two involve sending the message b from q1 and receiving it
from init . Once we reach H(n−4) · init+4 ·finI, we can reach Cn

fin by repeatedly
using the rules (fin, !b,fin) and (init , ?b,fin).

Further, we can show that no number strictly less than 4 can be a cut-off for
this protocol. Indeed, suppose Cn

init
∗
=⇒ Cn

fin . Since we need at least two agents
for a transition to occur, it follows that n ≥ 2. By construction of the protocol,
the first transition along this run must be Cn

init ⇒ H(n − 2) · init + 2 · q1I. If
n = 2, then the run gets stuck at this configuration because no agent is at a
state capable of receiving a message. If n = 3, then the only transition that is
possible is Hinit+2 · q1I ⇒ Hq1+2 ·finI, at which point we reach a configuration
where no agent is capable of receiving a message. This implies that n ≥ 4 and
so no number strictly less than 4 can be a cut-off for this protocol.

Our contribution
Our main contribution to the theory of rendez-vous protocols is the following
result.

Theorem 59. The cut-off problem for rendez-vous protocols is P-complete.

In particular, our result improves upon the previously known upper bound
of EXPSPACE [81, Theorem 27]. The polynomial-time algorithm for the cut-off
problem is obtained by actually considering a generalized model of rendez-vous
protocols called Petri nets and then proving that the cut-off problem for Petri
nets is in P. We now proceed to formally define Petri nets.

7.2 Petri Nets
We now show that rendez-vous protocols can be cast in terms of one of the most
well-studied concurrency models, namely Petri nets [103, 68, 61]. The advantage
of doing this is that we can now leverage results from Petri net theory to solve
problems for rendez-vous protocols.

Definition 60. A Petri net is a tuple N = (P, T,Pre,Post) where P is a finite
set of places, T is a finite set of transitions, Pre and Post are matrices over N
whose rows and columns are indexed by P and T respectively. The incidence
matrix A of N is defined as A = Post − Pre.

A marking of N is a multiset M ∈ NP , which intuitively denotes the number
of tokens that are present in every place of the net. The transitions of a Petri

52

net are responsible for creating, destroying and moving around the tokens in
the places of the Petri net.

For t ∈ T and markings M and M ′, we say that M ′ is reached from M

by firing t, denoted by M
t−→ M ′, if for every place p, M(p) ≥ Pre[p, t] and

M ′(p) = M(p) + A[p, t]. Intuitively, when t is fired, it first removes Pre[p, t]
tokens from each place p and then puts Post[p, t] tokens in each place p. We
use M −→ M ′ to mean that M t−→ M ′ for some t and we use ∗−→ to mean the
reflexive and transitive closure of −→.

A firing sequence is any sequence of transitions σ ∈ T ∗. The support of σ,
denoted by JσK, is the set of all transitions which appear in σ. Given a firing
sequence σ = t1, t2, . . . , tk, we let M σ−→ M ′ denote that there are markings
M1, . . . ,Mk−1 such that M t1−→M1

t2−→M2 . . .Mk−1
tk−→M ′.

Marking equation of a Petri net system. A Petri net system is a triple
(N ,M,M ′) where N is a Petri net and M and M ′ are markings. The marking
equation for (N ,M,M ′) is the equation

M ′ =M +Av

over the variables v. It is well known that M σ−→ M ′ implies M ′ = M + A−→σ ,
where −→σ ∈ NT is the the Parikh image of σ, defined as the vector whose
component −→σ [t] for a transition t is equal to the number of times t appears
in σ. Therefore, if M σ−→ M ′, then −→σ is a nonnegative integer solution of the
marking equation [99, Section V. B]. The converse does not hold.

From rendez-vous protocols to Petri nets.
Rendez-vous protocols can be seen as a special class of Petri nets in which no to-
kens are created or destroyed during a run. Indeed suppose P = (Q,Σ, init ,fin, R)
is a rendez-vous protocol. Then we can construct a Petri net NP whose set of
places is Q and whose set of transitions is obtained as follows: For every a ∈ Σ
and every pair of rules r = (q, !a, s) and r′ = (q′, ?a, s′) in R, we have a transi-
tion tr,r′ in NP which removes tokens according to the multiset Hq, q′I and puts
tokens according to the multiset Hs, s′I. We demonstrate this construction by
means of an example.

Example 61. Let us consider the rendez-vous protocol P from Figure 7.1. Its
associated Petri net NP is given in Figure 7.2. The three places of the Petri net
correspond to the three states of the protocol P. We also have three transitions:
t1 corresponds to the pair (init , !a, q1), (init , ?a, q1), t2 corresponds to the pair
(q1, !b,fin), (init , ?b,fin) and t3 corresponds to the pair (fin, !b,fin), (init , ?b,fin).

Our construction of NP ensures that any marking of NP is also a configu-
ration of P and vice versa. Moreover, it preserves the reachability relation of
the protocol P. Hence, if we define and efficiently solve a version of the cut-
off problem for Petri nets that conservatively extends the cut-off problem for

53

2 2 2

2

init

q1

fin

t1 t2

t3

Figure 7.2: Petri net corresponding to the protocol from Figure 7.1

rendez-vous protocols, then we can also efficiently solve the latter. This is what
we do now by defining the cut-off problem for Petri nets in the following way.

Definition 62. The cut-off problem for Petri nets is defined as the following
problem.

Input: A Petri net system (N ,M,M ′)

Decide: If there is B ∈ N such that nM ∗−→ nM ′ for every n ≥ B

If such a B exists, then we say that (N ,M,M ′) admits a cut-off and that B
is a cut-off for N . Since reachability is preserved by moving from a protocol P
to its net NP and vice versa, it follows that B is a cut-off for P if and only if B
is a cut-off for the Petri net system (NP , HinitI, HfinI).
Example 63. Let us consider the Petri net NP given in Figure 7.2. By the
argument given in Example 58, we can show that Cn

init can reach Cn
fin in the

Petri net NP if and only if n ≥ 4. Hence, 4 is a cut-off for (NP , HinitI, HfinI)
and no number less than 4 can be a cut-off.

Our main result regarding the cut-off problem is the following theorem.

Theorem 64. The cut-off problem for Petri nets is in P.

Note that this theorem proves that the cut-off problem for rendez-vous pro-
tocols is in P. We now proceed to give a sketch of the proof of Theorem 64.

7.3 The cut-off problem is in P

We now sketch the main ideas behind the proof of Theorem 64. More details
regarding the proof can be found in [21, Sections 3, 4 and 5].

The proof of Theorem 64 is achieved by giving a characterization of all net
systems which admit a cut-off. Moreover, this characterization can be efficiently

54

checked in polynomial time, thanks to results from linear arithmetic theories.
To state this characterization, we first need to recall the notion of a continuous
Petri net.

Continuous Petri nets. Let N = (P, T,Pre,Post) be a Petri net. In ad-
dition to the usual semantics, we can equip N with an alternative semantics
called the continuous semantics, in which markings are continuous multisets,
i.e., a marking is now a function M : P → Q≥0, which assigns a non-negative
rational number to each place. Such markings are called continuous markings.
The intuitive idea behind continuous semantics is that we are now allowed to
split tokens and fire transitions fractionally by whichever non-zero fraction we
want. More precisely, a continuous marking M enables a transition t with factor
λ ∈ (0, 1] if M(p) ≥ λ ·Pre[p, t] for every place p; we also say that M enables λt.
IfM enables λt, then λt can be fired fromM , leading to a new markingM ′ given
by M ′(p) = M(p) + λ · A[p, t] for every p ∈ P . We denote this by M λt−→Q M ′,
and say that M ′ is reached from M by firing λt. A continuous firing sequence
is any sequence of the form σ = λ1t1, λ2t2, . . . , λktk ∈ ((0, 1] × T)∗. Similar to
the usual semantics, we can define the notions of M σ−→Q M ′,M −→Q M ′ and
M

∗−→Q M ′.
From the definition of the continuous semantics, it follows that there exists

a number n ≥ 1 such that nM ∗−→ nM ′ if and only if M ∗−→Q M ′. Indeed, if
M

σ−→Q M ′ for some continuous firing sequence σ = λ1t1, λ2t2, . . . , λktk, then we
can scale σ to a sequence nM nσ−−→ nM ′ where n is least common multiple of the
denominators of all the λi and nσ = tnλ1

1 tnλ2
2 tnλk

k , with each tnλi
i representing

the sequence ti, ti, . . . , ti︸ ︷︷ ︸
nλi times

. For the other direction if nM σ−→ nM ′ holds for

some n ≥ 1 and some σ = t1, . . . , tk, then M
σ/n−−−→Q M ′ is true where σ/n is

the continuous firing sequence obtained by scaling down σ by n, i.e., σ/n =
t1/n, t2/n, . . . , tk/n.

Example 65. Let us consider the Petri net from Figure 7.2 and equip it with
the continuous semantics. We saw in Example 63, that it is not possible for the
marking HinitI to reach the marking HfinI under the usual semantics. However,
we have H4·initI t1−→ H2·init , 2·q1I t2,t2−−−→ H4·finI. This run can be scaled down to

get a continuous run of the form HinitI 1/4 t1−−−−→Q H1/2 · init , 1/2 · q1I
1/4 t2, 1/4 t2−−−−−−−−−→Q

HfinI. By scaling this down even further by the fraction 1/8, we have HinitI ∗−→Q
H1/2 · init , 1/2 ·finI from which we can fire 1/2 t3 to reach HfinI. Hence, we have
a continuous run from HinitI to HfinI, which uses all the transitions.

Unlike the case of reachability over the usual semantics, which is known to
be Fω-complete for Petri nets [50, 93, 92], it is known that reachability over the
continuous semantics can be solved in P (Proposition 27 of [74], Theorems 3.3
and 3.6 of [39]). A crucial ingredient in the polynomial time algorithm behind

55

reachability for continuous Petri nets is the existence of a polynomial time algo-
rithm for linear programming, i.e., solving linear equations over Q≥0 (Theorem
54). Further, it is also known that there are polynomial-time fragments of the
existential linear arithmetic theory of non-negative rationals in which the reach-
ability relation of a Petri net over the continuous semantics can be defined [39,
Theorem 3.6]. Hence, linear arithmetic theories play an important role in decid-
ing the reachability relation over the continuous semantics, which in turn, plays
an important role in deciding the cut-off problem for Petri nets, as we shall see
now.

With the notion of a continuous Petri net defined, we are now ready to give
a characterization of net systems that admit a cut-off.

Theorem 66. A Petri net system (N ,M,M ′) admits a cut-off if and only if
there is a continuous firing sequence σ such that M σ−→Q M ′ and the marking
equation has a solution y over the integers with the property that JyK ⊆ JσK.

The main ideas behind the proof of this characterization are the following.

• First, if the system admits a cut-off, then we can show that there is a
number n and firing sequences τ, ζ such that nM τ−→ nM ′, (n + 1)M

ζ−→
(n+ 1)M ′ and JζK ⊆ JτK. We can then take y to be −→τ −−→

ζ and σ to be
the continuous firing sequence obtained by scaling down τ by n.

• For the other direction, first note that if M σ−→Q M ′, then we can scale σ
by some number n to get a firing sequence nσ such that nM nσ−−→ nM ′.
This implies that knM ∗−→ knM ′ for every natural number k ≥ 1.

• Then, we prove a lemma which, when given a run M1
τ−→ M2 and an

integral solution x to the marking equation for markings L1, L2 such that
JxK ⊆ JτK, allows us to derive a run µM1 + L1

∗−→ µM2 + L2, for some
number µ. We call this the Insertion Lemma.

• By applying the Insertion lemma to our context, we get a run of the form
(µn+ 1)M

∗−→ (µn+ 1)M ′. This, combined with the second step, gives us
a number µ such that µnM ∗−→ µnM ′ and (µn+ 1)M

∗−→ (µn+ 1)M ′. Let
λ = µn.

• Since every number bigger than λ2 can be written as a linear combination
of λ and λ + 1, by using the previous step, we can derive a run between
kM and kM ′ for any k ≥ λ2. Hence λ2 is a cut-off, which completes the
proof.

Example 67. Let us consider the Petri net system from Figure 7.2 where the
initial and final markings are M := HinitI and M ′ := HfinI respectively. We
have already seen in Example 65 that there is a continuous run from M and
M ′ which uses all the transitions of the net. Also, notice that the vector which
assigns the values 0, 0 and 1 to the transitions t1, t2 and t3, respectively, is a
solution to the marking equation. By Theorem 66, this system admits a cut-off.

56

The characterization offered by Theorem 66 almost immediately leads to a
polynomial-time algorithm, obtained by invoking polynomial-time algorithms
for solving the reachability relation over the continuous semantics (Proposition
27 of [74], Theorems 3.3 and 3.6 of [39]) and linear equations over the integers
(Theorem 54). Hence, we can show that the cut-off problem is in P. By giving
a logarithmic-space reduction from the circuit-value problem [91], we can prove
that the cut-off problem is P-hard for rendez-vous protocols (and hence also
for net systems). This then proves that the cut-off problems for Petri nets and
rendez-vous protocols are both P-complete.

7.4 Related work
Parameterized verification of rendez-vous protocols was first considered in [76],
where the authors showed a variety of results both in the case of protocols
with and without a leader. By casting this model in terms of Petri nets (or
alternatively vector addition system with states), the authors of [76] provide
decision procedures for checking if all the executions of a process satisfy a given
specification in a logic called PTL. They also show that decidability is retained
even when fairness constraints are added to the model. Finally, they also present
more efficient algorithms for some scenarios in the case without a leader. Since
the publication of [76], this model and its extensions have been studied by other
papers. (See Chapter 5 of [35] for references regarding the main results for this
model and its extensions).

Population protocols [9, 10] are a model of distributed computation that is
closely related to rendez-vous protocols. Intuitively, population protocols are
like rendez-vous protocols, except that they also assume the existence of a fair
scheduler to schedule runs of the system. This model has been analyzed using
tools from formal methods and Petri nets [64, 65, 66, 67, 69, 37, 38].

7.5 Conclusion
We have shown that the cut-off problem for Petri nets is P-complete. This
proves that the cut-off problem for rendez-vous protocols is in P and improves
upon the previous bound of EXPSPACE. Our algorithm for the cut-off problem
relied heavily on efficiently solving linear equations over Q≥0 and Z.

As mentioned before, problems that were traditionally studied for rendez-
vous protocols were usually concerned either about the existence of some pop-
ulation which satisfies some property or whether every population satisfies a
given property. The cut-off problem is one of the few problems which ask if a
given property is satisfied by all populations in the limit, i.e., whether or not
the property is satisfied for all large enough populations.

It is possible to generalize the cut-off problem to deal with specifications
that go beyond reachability and such “generalized” cut-off problems can be worth
studying as part of future work. It would be interesting to see if linear arithmetic

57

theories play an important role in solving such generalized cut-off problems as
well.

58

Chapter 8

The complexity of verification
of threshold automata

Threshold automata are a formalism of distributed computation that can be
used to model fault-tolerant distributed algorithms. In the setting of such al-
gorithms, we have a collection of agents executing some given protocol. Agents
are allowed to be faulty; for instance, agents can either crash, or they can also
behave antagonistically. However, only a specified fraction of the total number
of agents is allowed to be faulty. Further, transitions between states of such
protocols are labeled by threshold guards, which allow an agent to only make
a move when it has received enough messages from some specified fraction of
the total number of participating agents. For instance, a guard of the form
x ≥ n/3− t (where x counts the number of messages of a certain type, n is the
total number of participating agents and t is the maximum number of faulty
agents), specifies that the number of messages received should be bigger than
n/3− t in order for an agent to proceed.

We note that in many distributed models, whether or not a step is enabled
at a configuration depends only on a fixed number of processes. For instance,
given two rules in a rendez-vous protocol, which respectively send and receive
a message a, whether or not this pair of rules can be fired at a configuration,
depends only on the existence of two processes. However, threshold guards sep-
arate threshold automata from this type of protocols because a guard might
dictate that an agent can proceed only when it has received a message from a
strict majority of the total number of agents. In essence, the notion of a thresh-
old guard allows transitions to impose a global constraint on the configuration
of the system, as opposed to other models, which impose only a local constraint.

This ability to impose global constraints makes threshold automata a pop-
ular formalism, and many papers [89, 88, 86, 87] have been dedicated to devel-
oping algorithms and implementations for its analysis. However, none of these
papers have fully explored the complexity of verifying threshold automata. We
fill in this gap and contribute to the study of the complexity of the main ver-

59

ification problems for threshold automata. We show that threshold automata
are well-behaved in the sense that their reachability relation can be defined in
existential Presburger arithmetic. This allows us to prove NP upper bounds for
the primary verification problems related to threshold automata. Further, we
also provide an implementation of our algorithms by using an SMT solver.

The rest of this chapter is structured as follows. We begin by formally
defining threshold automata. Then in the next two sections, we state our main
contributions regarding model-checking various classes of properties for thresh-
old automata. Then we briefly comment on an experimental evaluation of our
algorithms, discuss related work and finally conclude with a short summary.

The results of this chapter are taken from [20], which is reprinted in Ap-
pendix E.

8.1 Threshold automata
We now formally define threshold automata, mostly following the notations used
in [14]. Along the way, we also illustrate the definitions on an example from [88],
which is presented in Figure 8.2. This example automaton is a model of the
Byzantine agreement protocol given in Figure 8.1.

Environments

Threshold automata are defined relative to an environment Env = (Π,RC , N),
where Π is a set of environment variables or parameter variables ranging over N,
RC ⊆ NΠ is a resilience condition over the environment variables, expressible
as a linear formula, and N : RC → N is a linear function called the number
function. Intuitively, a valuation of Π determines the number of processes of
different kinds (e.g., faulty) executing the protocol, and RC describes the admis-
sible combinations of values of the environment variables. Finally, N associates
to each admissible combination, the number of processes explicitly modeled. In
a Byzantine setting, faulty processes behave arbitrarily, so we do not model
them explicitly; in this case, the system consists of one copy of the automaton
for every correct process. In the crash fault model, processes behave correctly
until they crash and they must be modeled explicitly.

Example 68. In the threshold automaton of Figure 8.2, the environment vari-
ables are n, f , and t, describing the number of processes, the number of (Byzan-
tine) faulty processes, and the maximum possible number of faulty processes,
respectively. The resilience condition is the constraint n/3 > t ≥ f . The func-
tion N is given by N(n, t, f) = n− f , which is the number of correct processes.

Threshold automata

A threshold automaton over an environment Env is a tuple TA = (L, I,Γ,R),
where L is a finite set of local states (or locations), I ⊆ L is the set of initial

60

1 va r myvali ∈ {0, 1}
2 va r accepti ∈ {false, true} ← false
3
4 wh i l e t r u e do (in one atomic

step)
5 i f myvali = 1
6 and not s en t ECHO be f o r e
7 then send ECHO to a l l
8
9 i f received ECHO from at l e a s t

10 t + 1 d i s t i n c t p r o c e s s e s
11 and not s en t ECHO be f o r e
12 then send ECHO to a l l
13
14 i f received ECHO from at l e a s t
15 n − t d i s t i n c t p r o c e s s e s
16 then accepti ← true
17 od

Figure 8.1: Pseudocode of a reliable
broadcast protocol from [111] for a
correct process i, where n and t de-
note the number of processes, and an
upper bound on the number of faulty
processes. If t < n/3, the protocol
satisfies its specification (if myval i =
0 for every correct process i, then no
correct process sets its accept variable
to true).

ℓ0

ℓ1

ℓ2 ℓ3

r2 : γ1 7→ x++

r1 : ⊤
7→ x++ r3 : γ2

sl1 : ⊤

sl2:⊤ sl3:⊤

Figure 8.2: Threshold automaton
from [88] modeling the body of the
loop in the protocol from Fig. 8.1.
Symbols γ1, γ2 stand for the thresh-
old guards x ≥ (t + 1) − f and x ≥
(n − t) − f , where n and t are as in
Fig. 8.1, and f is the actual number of
faulty processes. The shared variable
x models the number of ECHO mes-
sages sent by correct processes. Pro-
cesses with myval i = b (line 1) start
in location ℓb (in green). Rules r1 and
r2 model sending ECHO at lines 7 and
12. The self-loop rules sl1, . . . , sl3 are
stuttering steps.

locations, Γ is a set of shared variables ranging over N, and R is a set of rules,
formally described below.

A rule is a tuple r = (from, to, φ, u⃗), where from and to are the source
and target locations, φ ⊆ NΠ∪Γ is a conjunction of threshold guards (described
below), and u⃗ : Γ → {0, 1} is an update. Intuitively, r states that a process can
move from from to to if the current values of Π and Γ satisfy φ, and when
it moves, it updates the current valuation g⃗ of Γ by performing the update
g⃗ := g⃗ + u⃗. Since all components of u⃗ are nonnegative, the values of shared
variables never decrease. A threshold guard φ is a term of the following form:
b ·x ▷◁ a0+a1 ·p1+ . . .+a|Π| ·p|Π| where ▷◁ ∈ {≥, <}, x ∈ Γ is a shared variable,
p1, . . . , p|Π| ∈ Π are the environment variables, b ∈ N>0 and a0, a1, . . . , a|Π| ∈ Z
are integer coefficients. If b = 1, then the guard is called a simple guard.
Additionally, if ▷◁ = ≥, then the guard is called a rise guard, and otherwise, the
guard is called a fall guard.

Example 69. The rule r2 of Figure 8.2 has ℓ0 and ℓ2 as source and target

61

locations, x ≥ (t + 1) − f as guard, and increments the value of the shared
variable x by 1.

Configurations and transition relation

A configuration of TA is a triple σ = (κ⃗, g⃗,p) where κ⃗ : L → N describes the
number of processes at each location, and g⃗ ∈ NΓ and p ∈ RC are valuations of
the shared variables and the environment variables. In particular,

∑
ℓ∈L κ⃗(ℓ) =

N(p) always holds. A configuration is initial if κ⃗(ℓ) = 0 for every ℓ /∈ I, and
g⃗ = 0⃗. We often let σ.κ⃗, σ.⃗g, σ.p denote the components of σ.

A configuration σ = (κ⃗, g⃗,p) enables a rule r = (from, to, φ, u⃗) if κ⃗(from) >
0, and (g⃗,p) satisfies the guard φ. If σ enables r, then TA can move from σ to
the configuration r(σ) = (κ⃗′, g⃗′,p′) defined as follows: (i) p′ = p, (ii) g⃗′ = g⃗+ u⃗,
and (iii) κ⃗′ = κ⃗+ v⃗r, where v⃗r = 0⃗ if from = to and otherwise, v⃗r(from) = −1,
v⃗r(to) = +1, and v⃗r(ℓ) = 0 for all other locations ℓ. As usual, we use ∗−→ to
denote the reachability relation between configurations.

8.2 Parameterized reachability and coverability
Having stated the main definitions concerning threshold automata in the pre-
vious section, we now proceed to state our contributions to the complexity of
verifying threshold automata. One of our first results in this regard is concerned
with the parameterized reachability problem for threshold automata, defined as
follows.

Definition 70. The parameterized reachability problem for threshold automata
is defined as the following decision problem.

Input: An environment Env , a threshold automaton TA and two sets of
locations L>0,L=0

Decide: If there is a configuration σ such that σ is reachable from some
initial configuration and σ(ℓ) > 0 for every ℓ ∈ L>0 and σ(ℓ) = 0
for every ℓ ∈ L=0

A special case of the parameterized reachability problem is the parameterized
coverability problem, where L>0 is a singleton and L=0 is empty. By a reduction
from the 3-SAT problem, we show that the parameterized coverability problem
is NP-hard, even under various restrictions ([20, Theorem 1]). Hence, it is highly
unlikely that the parameterized reachability problem admits a polynomial-time
algorithm. However, we complement the hardness result by giving a tight upper
bound, which enables us to prove the following theorem.

Theorem 71. Parameterized reachability is NP-complete.

62

This theorem is obtained by means of our following main result concerning
threshold automata.

Theorem 72. Given a threshold automaton TA, there is an existential Pres-
burger formula ϕreach such that ϕreach(σ, σ′) holds if and only if σ ∗−→ σ′.

We now present the main ideas behind this theorem. More details can be
found in [20, Section 4].

As a first step to proving this theorem, we show that there is an existential
Presburger formula which can capture the steady reachability relation of a given
threshold automaton, which is defined as follows. We say that there is a steady
run between two configurations σ and σ′ if there is a run between σ and σ′ such
that along any configuration in this run, the set of rise guards that evaluate to
true and the set of fall guards that evaluate to false remain the same.

The formula ϕsteady(σ, σ′) capturing the steady reachability relation is con-
structed as follows. For every rule r ∈ R, we let xr be an existential variable
ranging over N. Intuitively, the value of xr will represent the number of times r
is fired during the (supposed) steady run from σ to σ′. ϕsteady then expresses
a certain number of conditions that must be necessarily satisfied in order for
there to be a steady run between σ and σ′. For example, one of the conditions
expressed by ϕsteady is that the values of σ and σ′ are consistent with the net
effect of firing each rule r exactly xr many times. This condition is, in some
sense, similar to the marking equation for Petri nets.

We show that all the conditions expressed by ϕsteady are necessary and suf-
ficient for the existence of a steady run between two configurations. Having
proved this, we use an existing result of the theory of threshold automata to
construct a formula for the general reachability relation. More specifically, it is
known that a run of a threshold automaton can always be decomposed into a
polynomial number of single steps and steady runs. This result, combined with
the formula for the steady reachability relation, allows us to derive a formula
for the general reachability relation.

8.3 Parameterized safety and liveness
We now use the result that the reachability relation of threshold automata is
definable in existential Presburger arithmetic to provide algorithms for model-
checking certain safety and liveness properties for threshold automata. To this
end, we recall the definition of Fault-Tolerant Temporal Logic (ELTLFT), which
is the fragment of LTL used in [88] to specify and verify properties of a large
number of fault-tolerant distributed algorithms. Given a threshold automaton
TA = (L, I,Γ,R) whose set of guards is Φ, formulas of ELTLFT over TA have the
following syntax, where S ⊆ L is a set of locations and guard ∈ Φ is a guard:

ψ ::= pf | Gψ | Fψ | ψ ∧ ψ cf ::= S = 0 | ¬(S = 0) | cf ∧ cf

pf ::= cf | gf ⇒ cf gf ::= guard | gf ∧ gf | gf ∨ gf

63

A configuration σ satisfies S = 0, if no agent in σ is present in any of the
locations in S and it satisfies guard , if the values of the shared and environment
variables of σ satisfy guard . The rest of the semantics is standard. The negations
of specifications of the benchmarks [43, 111, 40, 97, 102, 77, 59, 41, 110] can be
expressed in ELTLFT, as we are interested in finding possible violations.

We note that ELTLFT can be thought of as a fragment of LTL with F and G
operators and limited negation and disjunction; for example, it cannot express
the property “It is always the case that either there is no agent at ℓ1 or there
is no agent at ℓ2”. Nevertheless, it is a useful fragment which can express some
interesting properties.

Example 73. One specification of the algorithm from Figure 8.1 is that if
myval i = 1 for every correct process i, then eventually acceptj = true for some
correct process j. In the words of the automaton from Figure 8.2, a violation of
this property would mean that initially, all correct processes are in location ℓ1,
but no correct process ever reaches location ℓ3. In ELTLFT we write this as

{ℓ0, ℓ2, ℓ3} = 0 ∧ G ({ℓ3} = 0)

This has to hold under the following fairness constraint, which ensures that if
an outgoing rule for a process from some location is enabled infinitely often,
then that process fires that rule at some point and moves out of that location.

GF
(
(x ≥ t+ 1 ⇒ {ℓ0}=0) ∧ {ℓ1}=0 ∧ (x ≥ n− t⇒ {ℓ2}=0)

)

It is known that model-checking LTL with F and G operators for threshold
automata is undecidable [88]. Hence, it makes sense to study the model-checking
problem of threshold automata against ELTLFT specifications, formalized as the
following problem.

Definition 74. The model-checking problem for threshold automata against
ELTLFT specifications is defined as the following decision problem.

Input: An environment Env , a threshold automaton TA and a formula
φ in ELTLFT

Decide: If there is an initial configuration σ0 and an infinite path τ from
σ0 which satisfies φ

Note that since the model-checking problem encompasses the parameter-
ized coverability problem, it is NP-hard. We show that for threshold automata
with multplicative environments, the model-checking problem is in NP. We now
proceed to define the notion of a multiplicative environment.

Definition 75. An environment Env = (Π,RC , N) is multiplicative for a
threshold automaton TA if every fall guard is simple and for every µ ∈ N>0 (i) for

64

every rational valuation p ∈ RC we have µ · p ∈ RC and N(µ · p) = µ ·N(p),
and (ii) for every guard φ := b · x ▷◁ a0 + a1p1 + a2p2 + . . . akpk in TA, if
(y, q1, q2, . . . , qk) is a rational solution to φ then (µ · y, µ · q1, . . . , µ · qk) is also a
solution to φ.

Example 76. In Figure 8.2, if the resilience condition t < n/3 holds for a pair
(n, t), then it also holds for (µ ·n, µ · t); similarly, the function N(n, t, f) = n−f
also satisfies N(µ · n, µ · t, µ · f) = µ · n − µ · f = µ · N(n, t, f). Moreover, if
x ≥ t + 1 − f holds in σ, then we also have µ · x ≥ µ · t + 1 − µ · f in µ · σ. A
similar claim also holds for the other guard x ≥ n− t− f .

The multiplicative property allows us to reason about multiplied paths in
large systems. Namely, condition (ii) from Definition 75 yields that if a rule is
enabled in σ = (κ⃗, g⃗,p), it is also enabled in µ ·σ = (µ · κ⃗, µ · g⃗, µ ·p). We exploit
this property to show that if a counterexample exists in a small system, then a
counterexample also exists in a large system. This enables us to prove that

Theorem 77. Model-checking ELTLFT specifications is in NP for threshold
automata over multiplicative environments.

8.4 Experiments
We implemented the techniques presented in this chapter to verify a number
of fault-tolerant distributed algorithms modeled as threshold automata. Our
benchmarks include automata derived from various distributed algorithms in
the literature [111, 43, 40, 102, 77, 97, 59, 41, 110]. We used Z3 as a back-end
SMT solver for solving constraints given in existential Presburger arithmetic. A
practical evaluation of our algorithm and its comparison with an existing tool
can be found in [20, Section 7].

8.5 Related work
As mentioned at the start of this chapter, various algorithms have been de-
veloped for analyzing and verifying threshold automata [89, 88, 86, 87]. The
papers [89, 86] developed algorithms for solving the reachability problem us-
ing bounded model-checking and SAT/SMT solvers. These papers show that
bounded model-checking is complete for reachability properties and also provide
some experimental results. An algorithm for model-checking against ELTLFT
specifications was proposed in [88], along with experiments on a set of bench-
marks. The paper [87] discusses the ByMC tool for model-checking threshold
automata. We refer the interested reader to [85] for a survey of the main results
concerning threshold automata.

There are some extensions and variants of threshold automata that have
been proposed in the literature. The paper [90] extends threshold automata
in various ways (for instance, by allowing non-linear guards) and proves decid-
ability and undecidability results for different extensions. Threshold automata

65

extended with probabilities have been used to study randomized distributed al-
gorithms [33, 34]. Synchronous threshold automata are considered in [113, 112]
to model synchronous distributed algorithms.

Finally, as an explicit application, threshold automata have also been used
to model blockchains [32], where the authors verified a blockchain consensus
algorithm using tools developed for threshold automata.

8.6 Conclusion
We have studied the complexity of the fundamental verification problems for
threshold automata. Our results have established upper bounds for some prob-
lems pertaining to this model. A crucial tool for our results is the fact that the
reachability relation for threshold automata is definable in existential Presburger
arithmetic.

One of the results that we have shown is that the model-checking problem
for ELTLFT specifications against multiplicative threshold automata is in NP.
As part of future work, it might be interesting to extend this result to the entire
class of threshold automata.

66

Chapter 9

The parameterized
complexity of safety of
threshold automata

Complexity theory is primarily concerned with studying some measure of com-
plexity of a problem which depends solely on the input size n. In some cases,
this can be too restrictive, as it does not consider other measures of the input.
Parameterized complexity is a field of complexity theory that attempts to study
decision problems that come along with a parameter [49]. In parameterized
complexity, apart from the size of the input n, one considers further parameters
k that capture the structure of the input and one looks for algorithms that run
in time f(k) · nO(1), where f is some function dependent on k alone. The hope
is to find parameters that are quite small in practice and to base the dominant
running time of the algorithm on this parameter alone. Problems solvable in
such a manner are called fixed-parameter tractable (FPT).

In this chapter, we focus on studying the safety verification problem for
threshold automata, or dually the reachability problem for threshold automata,
from the lens of parameterized complexity. In Section 8.2 of the previous chap-
ter, we showed that this problem is NP-complete. Here, we refine this result by
considering the same problem with parameters that are usually small in prac-
tice. Our contributions include both hardness and tractability results, as well
as an implementation of our techniques.

The results of this chapter are taken from [14], which is reprinted in Ap-
pendix F. That paper also has results on a special case of threshold automata
called acyclic threshold automata. Since the focus here is on presenting the
main results of [14], we have not considered that special case here. For more
details on this special case, we refer the reader to Section 4 of [14].

The rest of this chapter is structured as follows. We begin by formally
defining the concepts of parameterized complexity that we shall use. Then,
in the next two sections, we state our main results and give a sketch of our

67

ideas. Finally, we briefly comment on some experiments, discuss related work
and conclude with a short summary.

9.1 Preliminaries

Parameterized complexity
We now formally define the notion of fixed-parameter tractable algorithms. We
refer the reader to [49] for more information on parameterized complexity and
only give the necessary definitions here. A parameterized problem L is a subset
of Σ∗ ×N for some alphabet Σ. A parameterized problem L is said to be fixed-
parameter tractable (FPT) if there exists an algorithm A such that (x, k) ∈ L
if and only if A(x, k) is true and A runs in time f(k) · nO(1) where n = |x|
is the length of x and f is some computable function, depending only on the
parameter k. FPT is roughly the analog of P in parameterized complexity.

Given parameterized problems L,L′ ⊆ Σ∗ ×N we say that L is reducible to
L′ if there is an algorithm that, given an input (x, k), produces another input
(x′, k′) in time f(k)·|x|O(1) such that (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′ and k′ ≤ g(k)
for some functions f and g depending only on k.

The parameterized clique problem is the set of all pairs (G, k) such that the
graph G has a clique of size k, i.e., there is a subset S of vertices of G of size
k such that there is an edge between every two vertices in S. A parameterized
problem L is said to be W[1]-hard if there is a parameterized reduction from
the parameterized clique problem to L. If L is W[1]-hard and there is a param-
eterized reduction from L to L′ then L′ is W[1]-hard as well. W[1]-hardness is
roughly the analog of NP-hardness in parameterized complexity, and if a prob-
lem is W[1]-hard, it is usually taken to be evidence that the problem does not
have an FPT algorithm.

Coverability and reachability
In this chapter, we shall concern ourselves with the parameterized coverability
and parameterized reachability problems for threshold automata, which we shall
refer to as the coverability and the reachability problems here, in order to avoid
confusion with the different notion of parameterized complexity. We study both
these problems with some combinations of parameters.

Let TA = (L, I,Γ,R) be a threshold automaton over an environment Env =
(Π,RC , N) and let L>0 and L=0 be two sets of locations. In the sequel, we let
Lspec denote the set L>0∪L=0. Recall that the reachability problem is to decide
if there is a configuration σ reachable from some initial configuration such that
σ(ℓ) > 0 for every ℓ ∈ L>0 and σ(ℓ) = 0 for every ℓ ∈ L=0. The coverability
problem is the special case of the reachability problem where L>0 is a singleton
set and L=0 is empty. The next two sections describe our main contributions
to these two problems from the perspective of parameterized complexity.

68

9.2 Hardness of coverability
Our first result regarding the parameterized complexity of verifying threshold
automata is a hardness result, which states that the coverability and reachabil-
ity problems are hard even when parameterized by parameters that are usually
small in practice. More specifically, we consider the coverability problem pa-
rameterized by the following parameters: |Φ| (the number of distinct guards),
|Lspec| (the size of the specification), |RC | (the number of constraints in the re-
silience condition) and C (the maximum constant appearing in any of the guards
of TA). In practice, all these values are quite small, roughly in the range of 10
to 25. Hence it would be desirable to obtain an FPT algorithm for coverability
or reachability when parameterized by |Φ| + |Lspec| + |RC | + C. However, we
prove the following hardness result regarding the coverability problem (See [14,
Theorem 1]).

Theorem 78. Coverability (and hence reachability) for threshold automata
parameterized by |Φ| + |Lspec| + |RC | + C is W [1]-hard, even when |Φfall| is a
constant.

This hardness result shows that even basic verification problems for threshold
automata are hard in the parameterized complexity landscape. However, as we
explain in the next section, it turns out that with some restrictions on the
underlying automaton, we can obtain a tractability result.

9.3 Multiplicative threshold automata with con-
stantly many fall guards

For our main tractability result, we consider threshold automata in which the
number of fall guards is a constant. It turns out that for many of the automata
occurring in practice, the number of fall guards is at most one. Notice that our
hardness result already applies to automata with constantly many fall guards.
Hence, to get tractable results, we need to constrain this class further. To
this end, we consider multiplicative threshold automata (See Definition 75) with
constantly many fall guards. Our main result regarding this class is the following
theorem.

Theorem 79. The reachability problem for multiplicative threshold automata
with constantly many fall guards is fixed-parameter tractable when parameter-
ized by the total number of guards |Φ|.

We now provide a sketch of the proof of this theorem. More details behind
the proof can be found in [14, Section 5].

The proof of this theorem is established in four stages. In the first stage,
we decompose every run of a threshold automaton into a concatenation of at
most |Φ| + 1 steady runs and single steps. We have already used a similar
decomposition in Section 8.2 to establish the NP upper bound for reachability

69

of threshold automata, but we modify it slightly here to work with sets of rules
instead of sets of guards. In the second and most important stage, we forge
a connection between multiplicative threshold automata and continuous Petri
nets. Namely, we construct a (continuous) Petri net that correctly simulates the
firing of every rule, but it does not check that the guards are true. We remedy
this situation by only considering executions in the Petri net corresponding to
steady runs of the automaton. We show that if there is a steady run between σ
and σ′ in the automaton, then it also has a corresponding run in the continuous
Petri net. Conversely, if there is a run between two continuous markings M and
M ′ of the Petri net which satisfies a few constraints, then this run can be lifted
to a steady run between configurations µM and µM ′ in the automaton where
µ is some natural number such that µM and µM ′ are integral.

In the third stage, we use the fact that there is a logic characterizing reach-
ability in continuous Petri nets, which can be tested for satisfiability in polyno-
mial time [39, Theorems 3 and 6] to show that for steady runs and single steps,
we can efficiently decide reachability between configurations of a multiplicative
threshold automaton. In the final stage, we use the fact that the number of pos-
sible decompositions of a path into steady runs and single steps in a threshold
automaton with constantly many fall guards is of the form f(|Φ|) ·nO(1), where
n is the size of the input. Hence, once we have guessed such a decomposition, we
can efficiently decide reachability, thanks to the third stage. This then proves
the desired result.

9.4 Experiments
We have implemented the algorithms given in this chapter on threshold au-
tomata derived from various distributed algorithms in the literature. Similar to
the results in the previous chapter, we once again used Z3 to solve constraints.
An experimental evaluation of our algorithm can be found in [14, Section 7].

9.5 Related work
There has been a lot of work on studying the parameterized complexity of graph
problems, which has resulted in a wide array of techniques for proving both
algorithmic as well as hardness results. We refer the interested reader to [49]
for more details on this subject.

Over the years, the analysis of the parameterized complexity of problems in
verification has gathered some attention [46, 45, 60, 70, 44]. To the best of our
knowledge, no results on the parameterized complexity of threshold automata
was known before our work. Our results contribute to a step in this direction.

70

9.6 Conclusion
We have studied the parameterized complexity of reachability for threshold au-
tomata and established both hardness and tractability results. One of the main
ingredients that we used for our tractability results is the notion of a continu-
ous Petri net, whose reachability problem is efficiently decidable, thanks to its
reliance on linear programming over the rationals.

In this work, we have only concentrated on some of the parameters of a
threshold automaton which are usually small in practice. A more systematic
classification of hardness and tractability results based on different combinations
of parameters might be an interesting avenue for future work and might help to
pinpoint the precise factors responsible for the hardness of verifying threshold
automata.

71

Chapter 10

Summary and Outlook

The first half of our thesis covered two of our contributions to the theory of
parameterized systems. These contributions were focused on using the frame-
work of well-structured transition systems to prove results for parameterized
verification. As part of our first contribution, we provided new tools for proving
upper bounds for the coverability algorithm for well-structured systems, and we
showed their applicability on some classes of parameterized systems. As part of
our second contribution, we proved that some problems related to parameterized
verification are complete for classes in the fast-growing hierarchy.

We believe that the techniques presented for proving upper bounds can be
potentially applied to areas beyond the ones considered in this thesis. We justi-
fied this claim by already mentioning applications of our results in logic and au-
tomata theory. We also hope that the techniques used for proving lower bounds
can be transferred to other well-structured systems which have an underlying
notion of bounded depth.

The second half of our thesis covered our remaining two contributions. These
contributions were focused on using the framework of linear arithmetic theories
to prove results for parameterized verification. Our results in this part firmly
establish that linear arithmetic theories can prove to be a useful tool to obtain
both complete and efficient algorithms for the analysis of parameterized systems.

An important ingredient that we used to provide tractable algorithms in the
second part is the continuous semantics for Petri nets. It is possible to define
an appropriate notion of this semantics for any class of counter systems working
over the natural numbers. Similar to the case of Petri nets, it can happen
that this semantics becomes a tractable overapproximation for many classes of
counter systems. We believe that the continuous semantics will prove to be a
useful tool in the analysis of parameterized systems.

In summary, we have used two tools, namely well-structured transition sys-
tems and linear arithmetic theories, to answer complexity-theoretic questions
for a variety of parameterized systems. We hope that some of the techniques
from this thesis will help provide better algorithms in the future for analyzing
parameterized systems.

72

Bibliography

[1] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay.
General decidability theorems for infinite-state systems. In Proceed-
ings, 11th Annual IEEE Symposium on Logic in Computer Science, New
Brunswick, New Jersey, USA, July 27-30, 1996, pages 313–321. IEEE
Computer Society, 1996. doi:10.1109/LICS.1996.561359.

[2] Parosh Aziz Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sang-
nier, and Riccardo Traverso. On the verification of timed ad hoc net-
works. In Uli Fahrenberg and Stavros Tripakis, editors, Formal Modeling
and Analysis of Timed Systems - 9th International Conference, FOR-
MATS 2011, Aalborg, Denmark, September 21-23, 2011. Proceedings, vol-
ume 6919 of Lecture Notes in Computer Science, pages 256–270. Springer,
2011. doi:10.1007/978-3-642-24310-3_18.

[3] Parosh Aziz Abdulla and Bengt Jonsson. Model checking of systems with
many identical timed processes. Theor. Comput. Sci., 290(1):241–264,
2003. doi:10.1016/S0304-3975(01)00330-9.

[4] Parosh Aziz Abdulla and Aletta Nylén. Timed Petri nets and BQOs.
In José Manuel Colom and Maciej Koutny, editors, Application and The-
ory of Petri Nets 2001, 22nd International Conference, ICATPN 2001,
Newcastle upon Tyne, UK, June 25-29, 2001, Proceedings, volume 2075
of Lecture Notes in Computer Science, pages 53–70. Springer, 2001.
doi:10.1007/3-540-45740-2_5.

[5] Sergio Abriola and Santiago Figueira. A note on the order type of minor-
ing orderings and some algebraic properties of ω2-well quasi-orderings.
In XL Latin American Computing Conference, CLEI 2014, Montev-
ideo, Uruguay, September 15-19, 2014, pages 1–9. IEEE, 2014. doi:
10.1109/CLEI.2014.6965188.

[6] Sergio Abriola, Santiago Figueira, and Gabriel Senno. Linearizing bad
sequences: Upper bounds for the product and majoring well quasi-orders.
In C.-H. Luke Ong and Ruy J. G. B. de Queiroz, editors, Logic, Language,
Information and Computation - 19th International Workshop, WoLLIC
2012, Buenos Aires, Argentina, September 3-6, 2012. Proceedings, volume

73

https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1007/978-3-642-24310-3_18
https://doi.org/10.1016/S0304-3975(01)00330-9
https://doi.org/10.1007/3-540-45740-2_5
https://doi.org/10.1109/CLEI.2014.6965188
https://doi.org/10.1109/CLEI.2014.6965188

7456 of Lecture Notes in Computer Science, pages 110–126. Springer, 2012.
doi:10.1007/978-3-642-32621-9_9.

[7] Sergio Abriola, Santiago Figueira, and Gabriel Senno. Linearizing well
quasi-orders and bounding the length of bad sequences. Theor. Comput.
Sci., 603:3–22, 2015. doi:10.1016/j.tcs.2015.07.012.

[8] Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni.
Liveness of parameterized timed networks. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Au-
tomata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, vol-
ume 9135 of Lecture Notes in Computer Science, pages 375–387. Springer,
2015. doi:10.1007/978-3-662-47666-6_30.

[9] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René
Peralta. Computation in networks of passively mobile finite-state sensors.
Distributed Comput., 18(4):235–253, 2006. doi:10.1007/s00446-005-0
138-3.

[10] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The
computational power of population protocols. Distributed Comput.,
20(4):279–304, 2007. doi:10.1007/s00446-007-0040-2.

[11] Krzysztof R. Apt and Dexter Kozen. Limits for automatic verification of
finite-state concurrent systems. Inf. Process. Lett., 22(6):307–309, 1986.
doi:10.1016/0020-0190(86)90071-2.

[12] A. R. Balasubramanian. Parameterized verification of coverability in well-
structured broadcast networks. In Andrea Orlandini and Martin Zimmer-
mann, editors, Proceedings Ninth International Symposium on Games,
Automata, Logics, and Formal Verification, GandALF 2018, Saarbrücken,
Germany, 26-28th September 2018, volume 277 of EPTCS, pages 133–146,
2018. doi:10.4204/EPTCS.277.10.

[13] A. R. Balasubramanian. Complexity of controlled bad sequences over
finite sets of Nd. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi,
and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020,
pages 130–140. ACM, 2020. doi:10.1145/3373718.3394753.

[14] A. R. Balasubramanian. Parameterized complexity of safety of threshold
automata. In Nitin Saxena and Sunil Simon, editors, 40th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani,
K K Birla Goa Campus, Goa, India (Virtual Conference), volume 182 of
LIPIcs, pages 37:1–37:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020. doi:10.4230/LIPIcs.FSTTCS.2020.37.

74

https://doi.org/10.1007/978-3-642-32621-9_9
https://doi.org/10.1016/j.tcs.2015.07.012
https://doi.org/10.1007/978-3-662-47666-6_30
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.4204/EPTCS.277.10
https://doi.org/10.1145/3373718.3394753
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.37

[15] A. R. Balasubramanian. Complexity of coverability in bounded path
broadcast networks. In Mikolaj Bojanczyk and Chandra Chekuri, edi-
tors, 41st IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, FSTTCS 2021, December 15-17,
2021, Virtual Conference, volume 213 of LIPIcs, pages 35:1–35:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs
.FSTTCS.2021.35.

[16] A. R. Balasubramanian. Parameterized verification of coverability in in-
finite state broadcast networks. Inf. Comput., 278:104592, 2021. doi:
10.1016/j.ic.2020.104592.

[17] A. R. Balasubramanian. Coefficient synthesis for threshold automata. In
Anthony W. Lin, Georg Zetzsche, and Igor Potapov, editors, Reachability
Problems - 16th International Conference, RP 2022, Kaiserslautern, Ger-
many, October 17-21, 2022, Proceedings, volume 13608 of Lecture Notes
in Computer Science, pages 125–139. Springer, 2022. doi:10.1007/97
8-3-031-19135-0_9.

[18] A. R. Balasubramanian. Complexity of coverability in depth-bounded
processes. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors,
33rd International Conference on Concurrency Theory, CONCUR 2022,
September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages
17:1–17:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.CONCUR.2022.17.

[19] A. R. Balasubramanian, Nathalie Bertrand, and Nicolas Markey. Pa-
rameterized verification of synchronization in constrained reconfigurable
broadcast networks. In Dirk Beyer and Marieke Huisman, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, volume
10806 of Lecture Notes in Computer Science, pages 38–54. Springer, 2018.
doi:10.1007/978-3-319-89963-3_3.

[20] A. R. Balasubramanian, Javier Esparza, and Marijana Lazić. Complexity
of verification and synthesis of threshold automata. In Dang Van Hung
and Oleg Sokolsky, editors, Automated Technology for Verification and
Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam,
October 19-23, 2020, Proceedings, volume 12302 of Lecture Notes in Com-
puter Science, pages 144–160. Springer, 2020. doi:10.1007/978-3-030
-59152-6_8.

[21] A. R. Balasubramanian, Javier Esparza, and Mikhail A. Raskin. Finding
cut-offs in leaderless rendez-vous protocols is easy. In Stefan Kiefer and
Christine Tasson, editors, Foundations of Software Science and Computa-
tion Structures - 24th International Conference, FOSSACS 2021, Held as

75

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.35
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.35
https://doi.org/10.1016/j.ic.2020.104592
https://doi.org/10.1016/j.ic.2020.104592
https://doi.org/10.1007/978-3-031-19135-0_9
https://doi.org/10.1007/978-3-031-19135-0_9
https://doi.org/10.4230/LIPIcs.CONCUR.2022.17
https://doi.org/10.4230/LIPIcs.CONCUR.2022.17
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-030-59152-6_8
https://doi.org/10.1007/978-3-030-59152-6_8

Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1,
2021, Proceedings, volume 12650 of Lecture Notes in Computer Science,
pages 42–61. Springer, 2021. doi:10.1007/978-3-030-71995-1_3.

[22] A. R. Balasubramanian, Lucie Guillou, and Chana Weil-Kennedy. Pa-
rameterized analysis of reconfigurable broadcast networks. In Patricia
Bouyer and Lutz Schröder, editors, Foundations of Software Science and
Computation Structures - 25th International Conference, FOSSACS 2022,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceed-
ings, volume 13242 of Lecture Notes in Computer Science, pages 61–80.
Springer, 2022. doi:10.1007/978-3-030-99253-8_4.

[23] A. R. Balasubramanian, Timo Lang, and Revantha Ramanayake. Decid-
ability and complexity in weakening and contraction hypersequent sub-
structural logics. In 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages
1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470733.

[24] A. R. Balasubramanian and K. S. Thejaswini. Adaptive synchronisation
of pushdown automata. In Serge Haddad and Daniele Varacca, editors,
32nd International Conference on Concurrency Theory, CONCUR 2021,
August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages
17:1–17:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.CONCUR.2021.17.

[25] A. R. Balasubramanian and Igor Walukiewicz. Characterizing consen-
sus in the Heard-Of model. In Igor Konnov and Laura Kovács, editors,
31st International Conference on Concurrency Theory, CONCUR 2020,
September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171
of LIPIcs, pages 9:1–9:18. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.9.

[26] A. R. Balasubramanian and Chana Weil-Kennedy. Reconfigurable broad-
cast networks and asynchronous shared-memory systems are equivalent. In
Pierre Ganty and Davide Bresolin, editors, Proceedings 12th International
Symposium on Games, Automata, Logics, and Formal Verification, Gan-
dALF 2021, Padua, Italy, 20-22 September 2021, volume 346 of EPTCS,
pages 18–34, 2021. doi:10.4204/EPTCS.346.2.

[27] Kshitij Bansal, Eric Koskinen, Thomas Wies, and Damien Zufferey. Struc-
tural counter abstraction. In Nir Piterman and Scott A. Smolka, ed-
itors, Tools and Algorithms for the Construction and Analysis of Sys-
tems - 19th International Conference, TACAS 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume

76

https://doi.org/10.1007/978-3-030-71995-1_3
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1109/LICS52264.2021.9470733
https://doi.org/10.4230/LIPIcs.CONCUR.2021.17
https://doi.org/10.4230/LIPIcs.CONCUR.2021.17
https://doi.org/10.4230/LIPIcs.CONCUR.2020.9
https://doi.org/10.4204/EPTCS.346.2

7795 of Lecture Notes in Computer Science, pages 62–77. Springer, 2013.
doi:10.1007/978-3-642-36742-7_5.

[28] Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Reconfig-
uration and message losses in parameterized broadcast networks. Log.
Methods Comput. Sci., 17(1), 2021. URL: https://lmcs.episciences
.org/7280.

[29] Nathalie Bertrand and Paulin Fournier. Parameterized verification of
many identical probabilistic timed processes. In Anil Seth and Nisheeth K.
Vishnoi, editors, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2013, Decem-
ber 12-14, 2013, Guwahati, India, volume 24 of LIPIcs, pages 501–
513. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. doi:
10.4230/LIPIcs.FSTTCS.2013.501.

[30] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with
probabilities in reconfigurable broadcast networks. In Anca Muscholl,
editor, Foundations of Software Science and Computation Structures -
17th International Conference, FOSSACS 2014, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8412
of Lecture Notes in Computer Science, pages 134–148. Springer, 2014.
doi:10.1007/978-3-642-54830-7_9.

[31] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed lo-
cal strategies in broadcast networks. In Luca Aceto and David de Frutos-
Escrig, editors, 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of
LIPIcs, pages 44–57. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015. doi:10.4230/LIPIcs.CONCUR.2015.44.

[32] Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre
Tholoniat, and Josef Widder. Holistic verification of blockchain consen-
sus. In Christian Scheideler, editor, 36th International Symposium on Dis-
tributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia,
USA, volume 246 of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.DISC.2022.10.

[33] Nathalie Bertrand, Igor Konnov, Marijana Lazic, and Josef Widder.
Verification of randomized consensus algorithms under round-rigid ad-
versaries. Int. J. Softw. Tools Technol. Transf., 23(5):797–821, 2021.
doi:10.1007/s10009-020-00603-x.

[34] Nathalie Bertrand, Marijana Lazic, and Josef Widder. A reduction the-
orem for randomized distributed algorithms under weak adversaries. In
Fritz Henglein, Sharon Shoham, and Yakir Vizel, editors, Verification,

77

https://doi.org/10.1007/978-3-642-36742-7_5
https://lmcs.episciences.org/7280
https://lmcs.episciences.org/7280
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.501
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.501
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.4230/LIPIcs.CONCUR.2015.44
https://doi.org/10.4230/LIPIcs.DISC.2022.10
https://doi.org/10.1007/s10009-020-00603-x

Model Checking, and Abstract Interpretation - 22nd International Confer-
ence, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Pro-
ceedings, volume 12597 of Lecture Notes in Computer Science, pages 219–
239. Springer, 2021. doi:10.1007/978-3-030-67067-2_11.

[35] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Ru-
bin, Helmut Veith, and Josef Widder. Decidability of Parameterized Veri-
fication. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2015. doi:10.2200/S00658ED1V01Y201508DCT013.

[36] Michael Blondin, Javier Esparza, Martin Helfrich, Antonín Kucera, and
Philipp J. Meyer. Checking qualitative liveness properties of replicated
systems with stochastic scheduling. In Shuvendu K. Lahiri and Chao
Wang, editors, Computer Aided Verification - 32nd International Confer-
ence, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings,
Part II, volume 12225 of Lecture Notes in Computer Science, pages 372–
397. Springer, 2020. doi:10.1007/978-3-030-53291-8_20.

[37] Michael Blondin, Javier Esparza, Stefan Jaax, and Antonín Kucera. Black
ninjas in the dark: Formal analysis of population protocols. In Anuj Dawar
and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, pages 1–10. ACM, 2018. doi:10.1145/3209108.3209110.

[38] Michael Blondin, Javier Esparza, Stefan Jaax, and Philipp J. Meyer. To-
wards efficient verification of population protocols. Formal Methods Syst.
Des., 57(3):305–342, 2021. doi:10.1007/s10703-021-00367-3.

[39] Michael Blondin and Christoph Haase. Logics for continuous reachabil-
ity in Petri nets and vector addition systems with states. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reyk-
javik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society,
2017. doi:10.1109/LICS.2017.8005068.

[40] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast
protocols. J. ACM, 32(4):824–840, 1985. doi:10.1145/4221.214134.

[41] Francisco Vilar Brasileiro, Fabíola Greve, Achour Mostéfaoui, and Michel
Raynal. Consensus in one communication step. In Victor E. Malyshkin,
editor, Parallel Computing Technologies, 6th International Conference,
PaCT 2001, Novosibirsk, Russia, September 3-7, 2001, Proceedings, vol-
ume 2127 of Lecture Notes in Computer Science, pages 42–50. Springer,
2001. doi:10.1007/3-540-44743-1_4.

[42] Pierre Chambart and Philippe Schnoebelen. The ordinal recursive com-
plexity of lossy channel systems. In Proceedings of the Twenty-Third An-
nual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27
June 2008, Pittsburgh, PA, USA, pages 205–216. IEEE Computer Society,
2008. doi:10.1109/LICS.2008.47.

78

https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.1007/978-3-030-53291-8_20
https://doi.org/10.1145/3209108.3209110
https://doi.org/10.1007/s10703-021-00367-3
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.1145/4221.214134
https://doi.org/10.1007/3-540-44743-1_4
https://doi.org/10.1109/LICS.2008.47

[43] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43(2):225–267, 1996. doi:
10.1145/226643.226647.

[44] Peter Chini, Jonathan Kolberg, Andreas Krebs, Roland Meyer, and
Prakash Saivasan. On the complexity of bounded context switching. In
Kirk Pruhs and Christian Sohler, editors, 25th Annual European Sym-
posium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Aus-
tria, volume 87 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.27.

[45] Peter Chini, Roland Meyer, and Prakash Saivasan. Complexity of live-
ness in parameterized systems. In Arkadev Chattopadhyay and Paul
Gastin, editors, 39th IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2019, De-
cember 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 37:1–
37:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.FSTTCS.2019.37.

[46] Peter Chini, Roland Meyer, and Prakash Saivasan. Fine-grained com-
plexity of safety verification. J. Autom. Reason., 64(7):1419–1444, 2020.
doi:10.1007/s10817-020-09572-x.

[47] Peter Chini, Roland Meyer, and Prakash Saivasan. Liveness in broadcast
networks. Computing, 104(10):2203–2223, 2022. doi:10.1007/s00607-0
21-00986-y.

[48] Peter Clote. Computational models and function algebras. In Daniel
Leivant, editor, Logical and Computational Complexity. Selected Papers.
Logic and Computational Complexity, International Workshop LCC ’94,
Indianapolis, Indiana, USA, 13-16 October 1994, volume 960 of Lecture
Notes in Computer Science, pages 98–130. Springer, 1994. doi:10.1007/
3-540-60178-3_81.

[49] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-2
1275-3.

[50] Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector ad-
dition systems is Ackermann-complete. In FOCS 2021, pages 1229–1240.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00120.

[51] Normann Decker and Daniel Thoma. On freeze LTL with ordered at-
tributes. In Bart Jacobs and Christof Löding, editors, Foundations of
Software Science and Computation Structures - 19th International Con-
ference, FOSSACS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, volume 9634 of Lecture Notes in Computer Science, pages
269–284. Springer, 2016. doi:10.1007/978-3-662-49630-5_16.

79

https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.4230/LIPIcs.ESA.2017.27
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.37
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.37
https://doi.org/10.1007/s10817-020-09572-x
https://doi.org/10.1007/s00607-021-00986-y
https://doi.org/10.1007/s00607-021-00986-y
https://doi.org/10.1007/3-540-60178-3_81
https://doi.org/10.1007/3-540-60178-3_81
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-662-49630-5_16

[52] Giorgio Delzanno, Arnaud Sangnier, and Riccardo Traverso. Param-
eterized verification of broadcast networks of register automata. In
Parosh Aziz Abdulla and Igor Potapov, editors, Reachability Problems
- 7th International Workshop, RP 2013, Uppsala, Sweden, September 24-
26, 2013 Proceedings, volume 8169 of Lecture Notes in Computer Science,
pages 109–121. Springer, 2013. doi:10.1007/978-3-642-41036-9_11.

[53] Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi
Zavattaro. On the complexity of parameterized reachability in reconfig-
urable broadcast networks. In Deepak D’Souza, Telikepalli Kavitha, and
Jaikumar Radhakrishnan, editors, IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS
2012, December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs,
pages 289–300. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPIcs.FSTTCS.2012.289.

[54] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Param-
eterized verification of ad hoc networks. In Paul Gastin and François
Laroussinie, editors, CONCUR 2010 - Concurrency Theory, 21th Interna-
tional Conference, CONCUR 2010, Paris, France, August 31-September
3, 2010. Proceedings, volume 6269 of Lecture Notes in Computer Science,
pages 313–327. Springer, 2010. doi:10.1007/978-3-642-15375-4_22.

[55] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. On the
power of cliques in the parameterized verification of ad hoc networks. In
Martin Hofmann, editor, Foundations of Software Science and Computa-
tional Structures - 14th International Conference, FOSSACS 2011, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings, volume 6604 of Lecture Notes in Computer Science, pages
441–455. Springer, 2011. doi:10.1007/978-3-642-19805-2_30.

[56] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Verification
of ad hoc networks with node and communication failures. In Holger Giese
and Grigore Rosu, editors, Formal Techniques for Distributed Systems -
Joint 14th IFIP WG 6.1 International Conference, FMOODS 2012 and
32nd IFIP WG 6.1 International Conference, FORTE 2012, Stockholm,
Sweden, June 13-16, 2012. Proceedings, volume 7273 of Lecture Notes in
Computer Science, pages 235–250. Springer, 2012. doi:10.1007/978-3
-642-30793-5_15.

[57] Giorgio Delzanno and Riccardo Traverso. Decidability and complexity
results for verification of asynchronous broadcast networks. In Adrian-
Horia Dediu, Carlos Martín-Vide, and Bianca Truthe, editors, Language
and Automata Theory and Applications - 7th International Conference,
LATA 2013, Bilbao, Spain, April 2-5, 2013. Proceedings, volume 7810
of Lecture Notes in Computer Science, pages 238–249. Springer, 2013.
doi:10.1007/978-3-642-37064-9_22.

80

https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-19805-2_30
https://doi.org/10.1007/978-3-642-30793-5_15
https://doi.org/10.1007/978-3-642-30793-5_15
https://doi.org/10.1007/978-3-642-37064-9_22

[58] Guoli Ding. Subgraphs and well-quasi-ordering. J. Graph Theory,
16(5):489–502, 1992. doi:10.1002/jgt.3190160509.

[59] Dan Dobre and Neeraj Suri. One-step consensus with zero-degradation.
In 2006 International Conference on Dependable Systems and Networks
(DSN 2006), 25-28 June 2006, Philadelphia, Pennsylvania, USA, Pro-
ceedings, pages 137–146. IEEE Computer Society, 2006. doi:10.1109/DS
N.2006.55.

[60] Constantin Enea and Azadeh Farzan. On atomicity in presence of non-
atomic writes. In Marsha Chechik and Jean-François Raskin, editors,
Tools and Algorithms for the Construction and Analysis of Systems -
22nd International Conference, TACAS 2016, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume
9636 of Lecture Notes in Computer Science, pages 497–514. Springer, 2016.
doi:10.1007/978-3-662-49674-9_29.

[61] Javier Esparza. Decidability and complexity of Petri net problems - an in-
troduction. In Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures
on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are
based on the Advanced Course on Petri Nets, held in Dagstuhl, September
1996, volume 1491 of Lecture Notes in Computer Science, pages 374–428.
Springer, 1996. doi:10.1007/3-540-65306-6_20.

[62] Javier Esparza. Keeping a crowd safe: On the complexity of parameterized
verification (Invited talk). In Ernst W. Mayr and Natacha Portier, editors,
31st International Symposium on Theoretical Aspects of Computer Science
(STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France, volume 25
of LIPIcs, pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2014. doi:10.4230/LIPIcs.STACS.2014.1.

[63] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of
broadcast protocols. In 14th Annual IEEE Symposium on Logic in Com-
puter Science, Trento, Italy, July 2-5, 1999, pages 352–359. IEEE Com-
puter Society, 1999. doi:10.1109/LICS.1999.782630.

[64] Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar.
Model checking population protocols. In Akash Lal, S. Akshay, Saket
Saurabh, and Sandeep Sen, editors, 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2016, December 13-15, 2016, Chennai, India, volume 65 of
LIPIcs, pages 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2016. doi:10.4230/LIPIcs.FSTTCS.2016.27.

[65] Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Ver-
ification of population protocols. Acta Informatica, 54(2):191–215, 2017.
doi:10.1007/s00236-016-0272-3.

81

https://doi.org/10.1002/jgt.3190160509
https://doi.org/10.1109/DSN.2006.55
https://doi.org/10.1109/DSN.2006.55
https://doi.org/10.1007/978-3-662-49674-9_29
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.4230/LIPIcs.STACS.2014.1
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.27
https://doi.org/10.1007/s00236-016-0272-3

[66] Javier Esparza, Martin Helfrich, Stefan Jaax, and Philipp J. Meyer. Pere-
grine 2.0: Explaining correctness of population protocols through stage
graphs. In Dang Van Hung and Oleg Sokolsky, editors, Automated Tech-
nology for Verification and Analysis - 18th International Symposium,
ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings, volume
12302 of Lecture Notes in Computer Science, pages 550–556. Springer,
2020. doi:10.1007/978-3-030-59152-6_32.

[67] Javier Esparza, Stefan Jaax, Mikhail A. Raskin, and Chana Weil-Kennedy.
The complexity of verifying population protocols. Distributed Comput.,
34(2):133–177, 2021. doi:10.1007/s00446-021-00390-x.

[68] Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets - a
survey. Bull. EATCS, 52:244–262, 1994.

[69] Javier Esparza, Mikhail A. Raskin, and Chana Weil-Kennedy. Param-
eterized analysis of immediate observation Petri nets. In Susanna Do-
natelli and Stefan Haar, editors, Application and Theory of Petri Nets
and Concurrency - 40th International Conference, PETRI NETS 2019,
Aachen, Germany, June 23-28, 2019, Proceedings, volume 11522 of Lec-
ture Notes in Computer Science, pages 365–385. Springer, 2019. doi:
10.1007/978-3-030-21571-2_20.

[70] Azadeh Farzan and P. Madhusudan. The complexity of predicting atom-
icity violations. In Stefan Kowalewski and Anna Philippou, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 15th Inter-
national Conference, TACAS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, volume 5505 of Lecture Notes in Com-
puter Science, pages 155–169. Springer, 2009. doi:10.1007/978-3-642
-00768-2_14.

[71] Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Sch-
noebelen. Ackermannian and primitive-recursive bounds with Dickson’s
lemma. In Proceedings of the 26th Annual IEEE Symposium on Logic
in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario,
Canada, pages 269–278. IEEE Computer Society, 2011. doi:10.1109/LI
CS.2011.39.

[72] Diego Figueira and Luc Segoufin. Bottom-up automata on data trees
and vertical XPath. In Thomas Schwentick and Christoph Dürr, editors,
28th International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2011, March 10-12, 2011, Dortmund, Germany, volume 9
of LIPIcs, pages 93–104. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2011. doi:10.4230/LIPIcs.STACS.2011.93.

[73] Alain Finkel and Philippe Schnoebelen. Well-structured transition sys-
tems everywhere! Theor. Comput. Sci., 256(1-2):63–92, 2001. doi:
10.1016/S0304-3975(00)00102-X.

82

https://doi.org/10.1007/978-3-030-59152-6_32
https://doi.org/10.1007/s00446-021-00390-x
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-642-00768-2_14
https://doi.org/10.1007/978-3-642-00768-2_14
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.4230/LIPIcs.STACS.2011.93
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X

[74] Estíbaliz Fraca and Serge Haddad. Complexity analysis of continuous
Petri nets. Fundam. Informaticae, 137(1):1–28, 2015. doi:10.3233/FI-2
015-1168.

[75] Zeinab Ganjei, Ahmed Rezine, Ludovic Henrio, Petru Eles, and Zebo
Peng. On reachability in parameterized phaser programs. In Tomás Voj-
nar and Lijun Zhang, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 25th International Conference, TACAS 2019,
Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part I, volume 11427 of Lecture Notes in Computer Science,
pages 299–315. Springer, 2019. doi:10.1007/978-3-030-17462-0_17.

[76] Steven M. German and A. Prasad Sistla. Reasoning about systems with
many processes. J. ACM, 39(3):675–735, 1992. doi:10.1145/146637.1
46681.

[77] Rachid Guerraoui. Non-blocking atomic commit in asynchronous dis-
tributed systems with failure detectors. Distributed Comput., 15(1):17–25,
2002. doi:10.1007/s446-002-8027-4.

[78] Christoph Haase. A survival guide to Presburger arithmetic. ACM
SIGLOG News, 5(3):67–82, 2018. doi:10.1145/3242953.3242964.

[79] Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The power
of priority channel systems. Log. Methods Comput. Sci., 10(4), 2014.
doi:10.2168/LMCS-10(4:4)2014.

[80] Graham Higman. Ordering by divisibility in abstract algebras. Proceedings
of the London Mathematical Society, s3-2(1):326–336, 1952. URL: https:
//londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s
3-2.1.326, arXiv:https://londmathsoc.onlinelibrary.wiley.com/
doi/pdf/10.1112/plms/s3-2.1.326, doi:https://doi.org/10.1112/
plms/s3-2.1.326.

[81] Florian Horn and Arnaud Sangnier. Deciding the existence of cut-off in
parameterized rendez-vous networks. In Igor Konnov and Laura Kovács,
editors, 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume
171 of LIPIcs, pages 46:1–46:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.46.

[82] Marcin Jurdzinski and Ranko Lazic. Alternating automata on data trees
and XPath satisfiability. ACM Trans. Comput. Log., 12(3):19:1–19:21,
2011. doi:10.1145/1929954.1929956.

[83] Ravindran Kannan and Achim Bachem. Polynomial algorithms for com-
puting the Smith and Hermite normal forms of an integer matrix. SIAM
J. Comput., 8(4):499–507, 1979. doi:10.1137/0208040.

83

https://doi.org/10.3233/FI-2015-1168
https://doi.org/10.3233/FI-2015-1168
https://doi.org/10.1007/978-3-030-17462-0_17
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1007/s446-002-8027-4
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.2168/LMCS-10(4:4)2014
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s3-2.1.326
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s3-2.1.326
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s3-2.1.326
http://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s3-2.1.326
http://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s3-2.1.326
https://doi.org/https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.4230/LIPIcs.CONCUR.2020.46
https://doi.org/10.1145/1929954.1929956
https://doi.org/10.1137/0208040

[84] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. In Richard A. DeMillo, editor, Proceedings of the 16th Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1984, Wash-
ington, DC, USA, pages 302–311. ACM, 1984. doi:10.1145/800057.8
08695.

[85] Igor Konnov, Marijana Lazic, Ilina Stoilkovska, and Josef Widder. Survey
on parameterized verification with threshold automata and the Byzantine
model checker. Log. Methods Comput. Sci., 19(1), 2023. doi:10.46298
/lmcs-19(1:5)2023.

[86] Igor Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. Para2:
parameterized path reduction, acceleration, and SMT for reachability in
threshold-guarded distributed algorithms. Formal Methods Syst. Des.,
51(2):270–307, 2017. doi:10.1007/s10703-017-0297-4.

[87] Igor Konnov and Josef Widder. ByMC: Byzantine Model Checker. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation. Distributed Systems - 8th
International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9,
2018, Proceedings, Part III, volume 11246 of Lecture Notes in Computer
Science, pages 327–342. Springer, 2018. doi:10.1007/978-3-030-03424
-5_22.

[88] Igor V. Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. A
short counterexample property for safety and liveness verification of fault-
tolerant distributed algorithms. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, Jan-
uary 18-20, 2017, pages 719–734. ACM, 2017. doi:10.1145/3009837.30
09860.

[89] Igor V. Konnov, Helmut Veith, and Josef Widder. On the completeness
of bounded model checking for threshold-based distributed algorithms:
Reachability. Inf. Comput., 252:95–109, 2017. doi:10.1016/j.ic.2016.
03.006.

[90] Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in parame-
terized systems: All flavors of threshold automata. In Sven Schewe and
Lijun Zhang, editors, 29th International Conference on Concurrency The-
ory, CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of
LIPIcs, pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.19.

[91] Richard E. Ladner. The circuit value problem is log space complete for
P. SIGACT News, 7(1):18–20, 1975. doi:10.1145/990518.990519.

84

https://doi.org/10.1145/800057.808695
https://doi.org/10.1145/800057.808695
https://doi.org/10.46298/lmcs-19(1:5)2023
https://doi.org/10.46298/lmcs-19(1:5)2023
https://doi.org/10.1007/s10703-017-0297-4
https://doi.org/10.1007/978-3-030-03424-5_22
https://doi.org/10.1007/978-3-030-03424-5_22
https://doi.org/10.1145/3009837.3009860
https://doi.org/10.1145/3009837.3009860
https://doi.org/10.1016/j.ic.2016.03.006
https://doi.org/10.1016/j.ic.2016.03.006
https://doi.org/10.4230/LIPIcs.CONCUR.2018.19
https://doi.org/10.1145/990518.990519

[92] Slawomir Lasota. Improved Ackermannian lower bound for the Petri nets
reachability problem. In Petra Berenbrink and Benjamin Monmege, ed-
itors, 39th International Symposium on Theoretical Aspects of Computer
Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual
Conference), volume 219 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2
022.46.

[93] Jérôme Leroux. The reachability problem for Petri nets is not primitive
recursive. In 62nd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

[94] Roland Meyer. On boundedness in depth in the π-calculus. In Gior-
gio Ausiello, Juhani Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong,
editors, Fifth IFIP International Conference On Theoretical Computer
Science - TCS 2008, IFIP 20th World Computer Congress, TC 1, Foun-
dations of Computer Science, September 7-10, 2008, Milano, Italy, volume
273 of IFIP, pages 477–489. Springer, 2008. doi:10.1007/978-0-387-0
9680-3_32.

[95] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I. Inf. Comput., 100(1):1–40, 1992. doi:10.1016/0890-540
1(92)90008-4.

[96] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, II. Inf. Comput., 100(1):41–77, 1992. doi:10.1016/0890-540
1(92)90009-5.

[97] Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel
Raynal. Evaluating the condition-based approach to solve consensus.
In 2003 International Conference on Dependable Systems and Networks
(DSN 2003), 22-25 June 2003, San Francisco, CA, USA, Proceedings,
pages 541–550. IEEE Computer Society, 2003. doi:10.1109/DSN.2003
.1209964.

[98] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a
matrix over an arbitrary field. Comb., 7(1):101–104, 1987. doi:10.1007/
BF02579205.

[99] Tadao Murata. Petri nets: Properties, analysis and applications. Proc.
IEEE, 77(4):541–580, 1989. doi:10.1109/5.24143.

[100] Christos H. Papadimitriou. Computational complexity. Academic Internet
Publ., 2007.

[101] Guillermo A. Pérez and Ritam Raha. Revisiting parameter synthesis for
one-counter automata. In Florin Manea and Alex Simpson, editors, 30th

85

https://doi.org/10.4230/LIPIcs.STACS.2022.46
https://doi.org/10.4230/LIPIcs.STACS.2022.46
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1007/978-0-387-09680-3_32
https://doi.org/10.1007/978-0-387-09680-3_32
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1109/DSN.2003.1209964
https://doi.org/10.1109/DSN.2003.1209964
https://doi.org/10.1007/BF02579205
https://doi.org/10.1007/BF02579205
https://doi.org/10.1109/5.24143

EACSL Annual Conference on Computer Science Logic, CSL 2022, Febru-
ary 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216
of LIPIcs, pages 33:1–33:18. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2022. doi:10.4230/LIPIcs.CSL.2022.33.

[102] Michel Raynal. A case study of agreement problems in distributed sys-
tems: Non-blocking atomic commitment. In 2nd High-Assurance Sys-
tems Engineering Workshop (HASE ’97), August 11-12, 1997, Washing-
ton, DC, USA, Proceedings, pages 209–214. IEEE Computer Society, 1997.
doi:10.1109/HASE.1997.648067.

[103] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS
Monographs on Theoretical Computer Science. Springer, 1985. doi:
10.1007/978-3-642-69968-9.

[104] Fernando Rosa-Velardo. Ordinal recursive complexity of unordered data
nets. Inf. Comput., 254:41–58, 2017. doi:10.1016/j.ic.2017.02.002.

[105] Sylvain Schmitz. Complexity bounds for ordinal-based termination -
(Invited talk). In Joël Ouaknine, Igor Potapov, and James Worrell,
editors, Reachability Problems - 8th International Workshop, RP 2014,
Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lec-
ture Notes in Computer Science, pages 1–19. Springer, 2014. doi:
10.1007/978-3-319-11439-2_1.

[106] Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans.
Comput. Theory, 8(1):3:1–3:36, 2016. doi:10.1145/2858784.

[107] Sylvain Schmitz. Algorithmic Complexity of Well-Quasi-Orders. (Com-
plexité algorithmique des beaux pré-ordres). 2017. URL: https://tel.ar
chives-ouvertes.fr/tel-01663266.

[108] Sylvain Schmitz and Philippe Schnoebelen. Multiply-recursive upper
bounds with Higman’s lemma. In Luca Aceto, Monika Henzinger, and
Jirí Sgall, editors, Automata, Languages and Programming - 38th Inter-
national Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011,
Proceedings, Part II, volume 6756 of Lecture Notes in Computer Science,
pages 441–452. Springer, 2011. doi:10.1007/978-3-642-22012-8_35.

[109] Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured
systems. In Pedro R. D’Argenio and Hernán C. Melgratti, editors, CON-
CUR 2013 - Concurrency Theory - 24th International Conference, CON-
CUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings,
volume 8052 of Lecture Notes in Computer Science, pages 5–24. Springer,
2013. doi:10.1007/978-3-642-40184-8_2.

[110] Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asyn-
chronous consensus. In Gadi Taubenfeld, editor, Distributed Computing,

86

https://doi.org/10.4230/LIPIcs.CSL.2022.33
https://doi.org/10.1109/HASE.1997.648067
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1016/j.ic.2017.02.002
https://doi.org/10.1007/978-3-319-11439-2_1
https://doi.org/10.1007/978-3-319-11439-2_1
https://doi.org/10.1145/2858784
https://tel.archives-ouvertes.fr/tel-01663266
https://tel.archives-ouvertes.fr/tel-01663266
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-40184-8_2

22nd International Symposium, DISC 2008, Arcachon, France, Septem-
ber 22-24, 2008. Proceedings, volume 5218 of Lecture Notes in Computer
Science, pages 438–450. Springer, 2008. doi:10.1007/978-3-540-87779
-0_30.

[111] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms. Distributed Comput., 2(2):80–94,
1987. doi:10.1007/BF01667080.

[112] Ilina Stoilkovska, Igor Konnov, Josef Widder, and Florian Zuleger. Elimi-
nating message counters in synchronous threshold automata. In Fritz Hen-
glein, Sharon Shoham, and Yakir Vizel, editors, Verification, Model Check-
ing, and Abstract Interpretation - 22nd International Conference, VMCAI
2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings, volume
12597 of Lecture Notes in Computer Science, pages 196–218. Springer,
2021. doi:10.1007/978-3-030-67067-2_10.

[113] Ilina Stoilkovska, Igor Konnov, Josef Widder, and Florian Zuleger. Ver-
ifying safety of synchronous fault-tolerant algorithms by bounded model
checking. Int. J. Softw. Tools Technol. Transf., 24(1):33–48, 2022. doi:
10.1007/s10009-021-00637-9.

[114] Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. Forward
analysis of depth-bounded processes. In C.-H. Luke Ong, editor, Foun-
dations of Software Science and Computational Structures, 13th Inter-
national Conference, FOSSACS 2010, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2010,
Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6014 of Lec-
ture Notes in Computer Science, pages 94–108. Springer, 2010. doi:
10.1007/978-3-642-12032-9_8.

87

https://doi.org/10.1007/978-3-540-87779-0_30
https://doi.org/10.1007/978-3-540-87779-0_30
https://doi.org/10.1007/BF01667080
https://doi.org/10.1007/978-3-030-67067-2_10
https://doi.org/10.1007/s10009-021-00637-9
https://doi.org/10.1007/s10009-021-00637-9
https://doi.org/10.1007/978-3-642-12032-9_8
https://doi.org/10.1007/978-3-642-12032-9_8

Appendix

88

Appendix A

Complexity of Controlled Bad
Sequences over Finite Sets of
Nd (LICS 2020)

This section contains a reprinting of the following paper, which has been pub-
lished as a peer-reviewed conference paper.

A. R. Balasubramanian. Complexity of controlled bad sequences over
finite sets of Nd. In conference proceedings of LICS 2020. ACM,
2020. Pages - 130-140. doi: 10.1145/3373718.3394753

According to the author rights of the Association for Computing Machinery
(ACM), the author of this thesis is permitted to include the above paper in this
thesis. The relevant excerpt is the following:

Authors can include partial or complete papers of their own (and
no fee is expected) in a dissertation as long as citations and DOI
pointers to the Versions of Record in the ACM Digital Library are
included.

For more information, please see https://authors.acm.org/author-res
ources/author-rights, in particular, the section on Reuse.

Summary
We provide upper and lower bounds for the length of controlled bad sequences
over the majoring and the minoring orderings of finite sets of Nd. The results
are obtained by bounding the length of such sequences by functions from the
Cichoń hierarchy. This allows us to translate these results to bounds over the
fast-growing complexity classes.

89

10.1145/3373718.3394753
https://authors.acm.org/author-resources/author-rights
https://authors.acm.org/author-resources/author-rights

The obtained bounds are proven to be tight for the majoring ordering. Fi-
nally, we use the results on controlled bad sequences to prove upper bounds for
the emptiness problem of some classes of automata.

Contributions of the author of this thesis
I am the sole author of this paper.

90

Complexity of controlled bad sequences over finite
sets of Nd

A. R. Balasubramanian∗
Technical University of Munich

Munich, Germany
bala.ayikudi@tum.de

Abstract
We provide upper and lower bounds for the length of con-
trolled bad sequences over the majoring and the minoring
orderings of finite sets of Nd . The results are obtained by
bounding the length of such sequences by functions from the
Cichon hierarchy. This allows us to translate these results to
bounds over the fast-growing complexity classes.

The obtained bounds are proven to be tight for the major-
ing ordering, which solves a problem left open by Abriola,
Figueira and Senno (Theor. Comp. Sci, Vol. 603). Finally, we
use the results on controlled bad sequences to prove up-
per bounds for the emptiness problem of some classes of
automata.

CCSConcepts: •Theory of computation→Complexity
classes; Program verification.

Keywords: well-quasi orders, controlled bad sequences, ma-
joring and minoring ordering
ACM Reference Format:
A. R. Balasubramanian. 2020. Complexity of controlled bad se-
quences over finite sets of Nd . In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’20),
July 8–11, 2020, Saarbrücken, Germany. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3373718.3394753

1 Introduction
Awell-quasi order (wqo) over a setA is a reflexive and transi-
tive relation ≤A such that every infinite sequencex0,x1,x2, . . .
over A has an increasing pair xi ≤A x j with i < j . A normed
wqo (nwqo) is a wqo (A, ≤A) which has a norm function
| · | : A→ N such that the pre-image of n under | · | is finite
for every n. A sequence over a wqo is called a bad sequence
∗Work done when the author was an intern at LSV, ENS-Saclay Paris

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00
https://doi.org/10.1145/3373718.3394753

if it contains no increasing pair. Hence, all bad sequences
over a well-quasi order are necessarily finite.
Well-quasi orders are an important tool in logic, combi-

natorics and computer science as evidenced by their appli-
cations in term-rewriting systems [8], algorithms [9, 16]
and verification of infinite state systems [1, 2, 12]. Indeed,
well-quasi orders form the backbone for the ubiquitous well-
structured transition systems (wsts) [1, 12], whose coverability
problem is shown to be decidable thanks to well-quasi orders.

In recent years, significant effort has been put in to under-
stand the complexity of the coverability procedure for vari-
ous well-structured transition systems (See [4, 6, 11, 17, 20]
and also [19] for a catalogue of many problems). The key idea
behind proving upper bounds for the coverability algorithm
is the following: For a given class of wsts, the running time
of the coverability procedure for that class can be bounded
by the length of controlled bad sequences of the underlying
normed well-quasi order (See definition 2.4 for a formal defi-
nition of controlled bad sequences). Intuitively, for a func-
tion д and a number n, a sequence x0,x1,x2, . . . ,xl is called a
(д,n)-controlled bad sequence if |x0 | ≤ n, |x1 | ≤ д(n), |x2 | ≤
д(д(n)) and so on. A simple application of Konig’s lemma can
be used to show that for every n, there is a (д,n)-controlled
bad sequence of maximum length. Hence, for every function
д we can define a length function which maps a number n to
the length of the longest (д,n)-controlled bad sequence.
The main observation made in [4, 6, 11, 17, 19, 20] is

that, for various classes of well-structured systems, an upper
bound on the running time of the coverability procedure
could be obtained by bounding the length function of some
specific д over the underlying wqo of that class. Motivated
by this, upper bounds on the length of controlled bad se-
quences have been obtained for various well-quasi orders:
The product ordering over Nd ([11]), the lexicographic or-
dering over Nd ([4]), the multiset ordering over multisets
of Nd ([4]), the subword ordering over words [20] and the
linear ordering over ordinals [18], to name a few. Using these
results, time bounds have been established for the following
problems (See [19] for a more detailed overview): coverabil-
ity of lossy counter machines, coverability and termination
of lossy channel systems, coverability of unordered data nets,
emptiness of alternating 1-register and 1-clock automata, the

LICS ’20, July 8–11, 2020, Saarbrücken, Germany A. R. Balasubramanian

regular Post embedding problem, conjunctive relevant im-
plication and 1-dimensional VASS universality. The present
work is a contribution in this field of inquiry.

Our contributions: In this paper, we prove lower and
upper bounds on the length of controlled bad sequences for
the majoring and minoring ordering (See definition 2.9) over
the collection of all finite sets of Nd (hereafter denoted by
Pf (N

d)). Both orderings have been used to prove the decid-
ability of the emptiness problem for some classes of automata
in [14] and [10]. Our main results are the following:

• We show that if the function д is primitive recursive,
then the length function of д for the majoring ordering
over Pf (Nd) is bounded by a function in the complexity
class Fωd−1 (For a definition of Fωd−1 , see section 7).
We also show that the length function of д for the mi-
noring ordering over Pf (Nd) is bounded by a function
in Fωd−1 ·2d
• To complement the upper bounds, we also provide
lower bounds on the length functions. We prove the
existence of a primitive recursive (in fact, polynomial)
function д such that the length function of д over the
majoring ordering is bounded from below by a func-
tion in Fωd−1 . A similar result is also obtained for the
minoring ordering.
• We use the upper bounds on the length functions to
provide upper bounds on the running time for the
emptiness problem of some classes of automata oper-
ating on trees.

Related work: Length functions for the majoring order-
ing over Pf (Nd) was considered in [4], where the authors
proved an upper bound of Fωd . However no lower bound
was provided and the authors left open the question of the
tightness of their bound. Our results (theorems 7.1, 7.2) show
that their bound is not optimal and gives tight upper and
lower bounds. Some results concerning the minoring or-
dering were presented in [3], but no bounds on the length
function were proven. To the best of our knowledge, we
provide the first upper bounds for length functions of the
minoring ordering over Pf (Nd).

Our techniques: Various results regarding length func-
tions have been proven using the notion of a reflection from
one normed wqo to another (See definition 3.3 of [20] or
definition 2.12). A reflection is a map from one nwqo A to
another nwqo B, which satisfies some properties on the or-
der and norm. If a reflection exists from A to B it can be
easily proven that the length function of д overA is less than
the length function of д over B. However, it turns out that
reflections are not sufficient for our purposes. To this end,
we define a generalization of reflections called polynomial
reflections (See definition 2.12). We show that if a polynomial
reflection exists fromA to B, then bounds on the length func-
tion for д over A can be easily transferred to bounds on the

length function for h over B, where h is a function obtained
by composing a polynomial with д.
We then show that there exists a polynomial reflection

from the set of ordinals less than ωωd−1 (with the usual ordi-
nal ordering) to Pf (Nd) with the majoring ordering (Lemma
3.1). This enables us to establish a lower bound for the ma-
joring ordering in terms of lower bounds for the order on
ordinals, which are already known ([18]).
The upper bound for the majoring ordering is proved by

following the framework established by Schmitz and Sch-
noebelen in a series of papers ([11, 18, 20]), which we briefly
describe here. It is well known that using the descent equa-
tion, the length function for a nwqo can be expressed induc-
tively by length functions over its “residuals”. However, the
residuals of a nwqo can become extremely complex to derive
any useful bounds for the length function. To overcome this,
we associate an ordinal to each residual (called the order
type) and a non-trivial “derivative” operator for each ordinal.
We then show that in the descent equation, we can replace
the residuals of a nwqo with the derivative operator of the
order type of that nwqo, which are much more amenable to
analysis. Once this is carried out, we exploit some properties
of the derivative operator along with some facts about the
Cichon hierarchy and ordinal ordering to establish bounds
on the length function.

The lower bound for the minoring ordering is established
by giving a simple polynomial reflection from the majoring
ordering to the minoring ordering (Lemma 5.1). By using
the lower bounds proved for the majoring ordering, we can
infer lower bounds for the minoring ordering. Finally, the
upper bound for the minoring ordering is established by
giving a non-trivial polynomial reflection from the minoring
ordering to a cartesian product of various majoring orderings
(Lemma 6.2). The intuition behind the reflection is discussed
in detail in section 6.
Outline of the paper: We recall basic notions of wqos, or-

dinals and sub-recursive hierarchies in section 2. In sections
3 and 4 we prove lower and upper bounds for the majoring
ordering in terms of functions from the Cichon hierarchy.
Similar results are proved in sections 5 and 6 for the minor-
ing ordering. We give a classification of these bounds in the
fast-growing hierarchy in section 7. Finally, we conclude
with providing some applications of our results in 8.

Due to lack of space, some of the proofs can be found in
the full version of this paper, which is available at: https:
//arxiv.org/abs/1909.01667

2 Preliminaries
We recall some basic facts about well-quasi orders (see [5]).
A quasi ordering (qo) over a set A is a relation ≤ such that
≤ is reflexive and transitive. We write x < y if x ≤ y and
y ≰ x . We also say x ≡ y if x ≤ y and y ≤ x . A well-quasi
ordering (wqo) over a set A is a qo ≤ such that for every

Complexity of controlled bad sequences over finite sets of Nd LICS ’20, July 8–11, 2020, Saarbrücken, Germany

infinite sequence x0,x1,x2, . . . , there exists i < j such that
xi ≤ x j . A norm function over a setA is a function | · | : A→ N
such that for every n ∈ N, the set {x ∈ A : |x | < n} is finite.
Definition 2.1. A normedwqo is awqo (A, ≤A, |·|A) equipped
with a norm function | · |A.

The set A will be called as the domain of the nwqo. If
(A, ≤A, | · |A) is a nwqo and S ⊆ A, then the nwqo induced
by S is the nwqo (S, ≤S , | · |S) where ≤S and | · |S are the
restrictions of ≤A and | · |A on S respectively. We use the
notation A≤n to define the set {x ∈ A : |x | ≤ n}. Whenever
the order ≤A or the norm | · |A is clear from the context, we
will drop those and just refer to the nwqo by the domain A.

Example 2.2. (Some basic nwqos) : The set of natural num-
bers with the usual ordering and the identity norm (N, ≤, id)
is clearly seen to be a nwqo. Another nwqo is any finite set
{a0,a1, . . . ,ak−1} such that distinct letters are unordered and
|ai | = 0 for every i . We will denote this nwqo by Γk . Notice
that Γ0 is the empty nwqo.

Given two nwqos A and B we write A ≡ B when A and B
are isomorphic structures. In particular the norm functions
must be preserved by the isomorphism.

Good, bad and controlled sequences
Definition 2.3. A sequence x0,x1, . . . over a qo (A, ≤A)
is called good if there exists i < j such that xi ≤A x j . A
sequence which is not good is called bad. Notice that every
bad sequence in a wqo is necessarily finite.

Definition 2.4. A control function is a mapping д : N→ N.
For an n ∈ N, a sequence x0,x1, . . . over a nwqo A is (д,n)-
controlled if

∀i ∈ N, |xi |A ≤ дi (n) =

i times︷ ︸︸ ︷
д(д(. . . (д(n))))

By a straightforward application of Konig’s lemma, we
have the following proposition: (See proposition 2.5 of [20])

Proposition 2.5. Let A be a nwqo and let д be a control
function. For every n ∈ N, there exists a finite maximum
length L ∈ N for (д,n)-controlled bad sequences over A.

Therefore the above proposition lets us define a function
LA,д : N→ N which for every n ∈ N, assigns the maximum
length of a (д,n)-controlled bad sequence over A. We will
call this the length function of A and д. From now on, we
assume that д is a strictly increasing inflationary function
(Here inflationary means that д(n) ≥ n for all n ∈ N).
Descent equation
We can express the length function by induction over nwqos.
To do this we need the notion of residuals.

Definition 2.6. LetA be a nwqo and x ∈ A. The residualA/x
is the nwqo induced by the subset A/x := {y ∈ A : x ≰A y}

We have the following proposition: (See proposition 2.8
of [20])

Proposition 2.7.
LA,д (n) = max

x ∈A≤n
{1 + LA/x,д (д(n))}

This equation is called the descent equation. The descent
equation implies that unraveling the length function in-
ductively gives us a way of computing it. If A ⊋ A/x0 ⊋
A/x0/x1 ⊋ . . . , it follows that x0,x1, . . . is a bad sequence
and so the inductive unraveling of proposition 2.7 is well
founded.

2.1 Constructing Normed Wqo’s
In this section, wewill see how to construct “complex” nwqos
in terms of more simpler nwqos. The constructions we use
in this paper are disjoint sums, cartesian products and finite
powersets.

Definition 2.8. (Disjoint sum and cartesian product) LetA1
and A2 be two nwqos. The disjoint sum A1 +A2 is the nwqo
given by

A1 +A2 := {(i,x) : i ∈ {1, 2} and x ∈ Ai }
(i,x) ≤A1+A2 (j,y) ⇔ i = j and x ≤Ai y

|(i,x) |A1+A2 := |x |Ai
The cartesian product A1 ×A2 is the nwqo given by

A1 ×A2 := {(x1,x2) : x1 ∈ A1,x2 ∈ A2}
(x1,x2) ≤A1×A2 (y1,y2) ⇔ x1 ≤A1 y1 and x2 ≤A2 y2

|(x1,x2) |A1×A2 := max(|x1 |A1 , |x2 |A2)

It is well known that both A1 +A2 and A1 ×A2 are nwqos
when A1 and A2 are. Of special interest to us is the cartesian
product (Nd , ≤Nd , | · |Nd) which is obtained by taking carte-
sian product of (N, ≤, id) with itself d times. From now on,
whenever we refer to the underlying order of Nd , we will
always mean this cartesian product ordering.

Definition 2.9. (Majoring and minoring orderings) Let A
be a nwqo. We construct two nwqos whose domain will be
the set of all finite subsets of A, which we denote by Pf (A).
The first is called the majoring ordering and is defined as

Pf (A) := {X : X ⊆ A and X is finite}
X ⊑maj

Pf (A)
Y ⇔ ∀x ∈ X ,∃y ∈ Y such that x ≤A y

|X |Pf (A) := max({|x |A : x ∈ X }, card(X))

Here card(X) denotes the cardinality of the set X .
The second is called the minoring ordering and it has the

same domain and the norm as that of the majoring ordering.
The difference lies in the ordering, which is given by

X ⊑minPf (A) Y ⇔ ∀y ∈ Y ,∃x ∈ X such that x ≤A y

The fact that (Pf (A),⊑majPf (A), | · |Pf (A)) is a nwqo easily fol-
lows from Higman’s lemma ([13]). However (Pf (A),⊑minPf (A)

LICS ’20, July 8–11, 2020, Saarbrücken, Germany A. R. Balasubramanian

, | · |Pf (A)) is not necessarily a nwqo whenever A is ([3]). But,
it is known that (Pf (Nd),⊑minPf (Nd), | · |Pf (Nd)) is a nwqo for ev-
ery d (See [3]). Whenever there is no confusion, we drop the
Pf (A) as a subscript and refer to the majoring (resp. minoring
) nwqo as (Pf (A),⊑maj) (resp. (Pf (A),⊑min)).
The results that we prove in this paper will only con-

cern the nwqos (Pf (N
d),⊑maj, | · |Pf (Nd)) and (Pf (N

d),⊑min
, | · |Pf (Nd)). However, for the purposes of our proofs, we also
need the following wqos which can be seen as extensions of
the majoring and minoring ordering to the set of all subsets
of a wqo.

Definition 2.10. (Arbitrary subsets) Let (A, ≤A) be a wqo
and let P(A) denote the set of all subsets (finite and infinite)
of A. Let X ,Y ∈ P(A). We define,

X ⊑maj Y ⇐⇒ ∀x ∈ X ,∃y ∈ Y such that x ≤A y

X ⊑min Y ⇐⇒ ∀y ∈ Y ,∃x ∈ X such that x ≤A y

Further given X ∈ P(A) define,
• min(X) := {x ∈ X : ∀x ′ ∈ X , [x ′ ≤A x =⇒ x ≡ x ′]}
• ↑ X = {a : ∃x ∈ X ,x ≤A a}
• ↓ X = {a : ∃x ∈ X ,a ≤A x }

Notice that if ≤A is also guaranteed to be antisymmetric,
then min(X) is always a finite set, irrespective of whether X
is finite or infinite. Also, observe that we do not endow P(A)
with a norm.

Proposition 2.11. Let X ,Y ∈ P(Nd). The following facts
are known about (P(Nd),⊑maj) and (P(Nd),⊑min) (see [3]):

1. The ordering (P(Nd),⊑maj) is a wqo
2. The ordering (P(Nd),⊑min) is a wqo
3. X ⊑maj Y ⇐⇒ ↓ X ⊑maj↓ Y
4. X ⊑min Y ⇐⇒ ↑ X ⊑min↑ Y
5. X ⊑maj Y ⇐⇒ Nd\ ↓ X ⊑min Nd\ ↓ Y
6. X ⊑min Y ⇐⇒ Nd\ ↑ X ⊑maj Nd\ ↑ Y
7. X ⊑min Y ⇐⇒ min(X) ⊑min min(Y)

Reflections
A major tool to prove lower and upper bounds on the length
of controlled bad sequences is the notion of a normed reflec-
tion (See definition 3.3 of [20]). However, for our purposes
we require the following notion of a polynomial normed re-
flection.

Definition 2.12. A polynomial nwqo reflection is a mapping
r : A → B such that there exists a polynomial q : N → N
and

∀x ,y ∈ A : r (x) ≤B r (y) implies x ≤A y

∀x ∈ A : |r (x) |B ≤ q(|x |A)
If these conditions are satisfied then we say that r is a poly-
nomial nwqo reflection with polynomial q and denote it by
r : A

q
↪−→ B. If the polynomial q is the identity function, we

call it a nwqo reflection and denote it by r : A ↪→ B.

It is easy to see that if r : A
q
↪−→ B and r ′ : B

q′
↪−→ C are

polynomial nwqo reflections, then r ′ ◦ r : A q′◦q
↪−−−→ C is also

a polynomial nwqo reflection. Further, reflections are also
a precongruence with respect to disjoint sums and cartesian
products, i.e.,

Proposition 2.13. Suppose r : A
q
↪−→ B and r ′ : A′

q′
↪−→ B′ are

polynomial nwqo reflections. Then there exists functions s

and p such that s : A + A′
q+q′
↪−−−→ B + B and p : A × A′ q+q′

↪−−−→
B × B′.

We have the following important result regarding polyno-
mial nwqo reflections.

Proposition 2.14. Let r : A
p
↪−→ B be a polynomial nwqo re-

flection. Then LA,д (n) ≤ LB, (q◦д) (q(n)) for some polynomial
q. Further if p is increasing and inflationary, then it suffices
to take q = p.

2.2 Ordinals and subrecursive hierarchies
Since all our results will be phrased in terms of functions
in the Cichon hierarchy, we recall basic facts about ordinals
and subrecursive hierarchies in this section.

Ordinal terms
For basic notions about ordinals and its ordering, we refer the
reader to [18]. We will use Greek letters α , β , . . . to denote
ordinals and ≤ to denote the ordering on ordinals. We will
always use λ to denote limit ordinals.

An ordinal α has the general form (also called the Cantor
Normal Form) α = ωβ1 + ωβ2 + · · · + ωβm where β1, . . . , βm
are ordinals such that β1 ≥ β2 ≥ · · · ≥ βm . For an ordinal
α , we let CNF(α) denote the set of all ordinals strictly less
than α . For the purposes of this paper, we will restrict our-
selves to ordinals in CNF(ϵ0) (where ϵ0 is the supremum of
ω,ωω ,ωωω

, · · ·)

For c ∈ N, let ωβ · c denote

c times︷ ︸︸ ︷
ωβ + · · · + ωβ . We some-

times write ordinals in a strict form as α = ωβ1 · c1 +
ωβ2 · c2 + · · · + ωβm · cm where β1 > β2 > · · · > βm and
the coefficients ci must be strictly bigger than 0. Using the
strict form, we define a norm N on CNF(ϵ0) as follows: if
α = ωβ1 · c1 +ωβ2 · c2 + · · ·+ωβm · cm in the strict form then
Nα = max{c1, . . . , cm ,Nβ1, . . . ,Nβm }. It is not very hard to
notice that for every α < ϵ0, the set CNF(α)≤n is always
finite for any n. Hence for every α < ϵ0, we have a nwqo
(CNF(α), ≤,N).
We finish this sub-section with the definitions of natural

sum (⊕) and natural product (⊗) for ordinals in CNF(ϵ0):
m∑

i=1
ωβi ⊕

n∑

j=1
ωβ ′j :=

m+n∑

k=1
ωγk

Complexity of controlled bad sequences over finite sets of Nd LICS ’20, July 8–11, 2020, Saarbrücken, Germany

m∑

i=1
ωβi ⊗

n∑

j=1
ωβ ′j :=

m⊕

i=1

n⊕

j=1
ωβi ⊕β ′j

where γ1 ≥ γ2 · · · ≥ γm+n is a rearrangement of β1, . . . , βm ,
β ′1, . . . , β

′
n .

As mentioned before, all our results will be obtained by
providing reflections to and from the ordinal ordering. Hence,
it is important to understand how “fast” the length of con-
trolled bad sequences in the ordinal ordering can grow. For
this purpose, we introduce sub-recursive hierarchies.

Sub-recursive hierarchies
For the purposes of describing the length of controlled bad
sequences over the ordinal ordering, the hierarchies of Hardy
and Cichon are sufficient [7]. However, before we introduce
them we need some preliminary definitions.

A fundamental sequence for a limit ordinal λ is a sequence
(λ(x))x<ω with supremum λ, which we fix to be,
(γ +ωβ+1) (x) := γ +ωβ · (x+1), (γ +ωλ) (x) := γ +ωλ (x)

The predecessor Px of an ordinal α > 0 at x ∈ N is given
by

Px (α + 1) := α , Px (λ) := Px (λ(x))

Let h : N→ N be a function. The Hardy hierarchy for the
function h is given by (hα)α<ϵ0 where

h0 (x) := x , hα (x) := hPx (α) (h(x))
and the Cichon hierarchy (hα)α<ϵ0 is defined as

h0 (x) := 0, hα (x) := 1 + hPx (α) (h(x))
We also define another hierarchy called the fast growing

hierarchy as follows:
fh,0 (x) = h(x), fh,α+1 (x) = f x+1h,α (x), fh,λ (x) = fh,λx (x)

Here f ih,α denotes i-fold composition of fh,α with itself.

Let Lα,д (n) denote the the length of the longest (д,n)-
controlled bad sequence in CNF(α). The following theorem
states that, for large enough n, the length function Lα,д and
the function дα in the Cichon hierarchy coincide.
Theorem 2.15. (Theorem 3.3 of [18]) Let α < ϵ0 and n ≥
Nα . Then Lα,д (n) = дα (n).

3 Lower bound for majoring ordering
In this section we prove a lower bound for length functions
over (Pf (Nd),⊑maj, | · |Pf (Nd)). The lower bound is presented
in terms of functions over the Cichon hierarchy.

The following lemma follows an unpublished idea of Abri-
ola, Schmitz and Schnoebelen, which has been adapted to
controlled bad sequences here.
Lemma 3.1. There exists a poly. nwqo reflection

R : (CNF(ωωd−1
), ≤,N)

φ
↪−→ (Pf (N

d),⊑maj, | · |Pf (Nd))
where φ (x) = x (x + 1)d .

Proof. We decompose the proof into three parts. As a first
step, we define the map R from CNF(ωωd−1

) to Pf (Nd). In
the second step, we show that R (γ) ⊑maj R (ζ) =⇒ γ ≤ ζ .
In the third step, we show that |R (γ) |Pf (Nd) ≤ φ (Nγ) where
N is the norm defined on ordinals in section 2.2.

First step. Letγ ∈ CNF(ωωd−1
) such that the Cantor normal

form of γ is ωβ1 + ωβ2 + · · · + ωβl . Notice that each βi ∈
CNF(ωd−1) and hence can be written as βi = ωd−2 ·c (i,d−2) +
ωd−3 · c (i,d−3) + · · · +ω0 · c (i,0) where the coefficients ci, j can
be 0. The map R is then defined on γ as

R (γ) := {(i, c (i,0), c (i,1), . . . , c (i,d−2)) : 1 ≤ i ≤ l }
Second step. We now show that if R (γ) ⊑maj R (ζ) then
γ ≤ ζ . Instead of proving this we prove the contrapositive,
namely: If γ > ζ then R (γ) @maj R (ζ).

Let γ ∈ CNF(ωωd−1
) such that γ := ωβ1 + ωβ2 + · · · + ωβp

and β1 ≥ β2 ≥ · · · ≥ βp . Further let each βi := ωd−2 ·c (i,d−2)+
ωd−3 ·c (i,d−3) + · · ·+ω0 ·c (i,0) . Let ζ ∈ CNF(ωωd−1

) such that
ζ := ωη1 + ωη2 + · · · + ωηq and η1 ≥ η2 ≥ · · · ≥ ηq . Further
let each ηi := ωd−2 · e (i,d−2) +ωd−3 · e (i,d−3) + · · · +ω0 · e (i,0) .
Suppose γ > ζ . Hence, there exists i ∈ {1, . . . ,p} such that
• Either βi > ηi (or) i > q and
• ∀j such that 0 ≤ j < min(i,q), βj = ηj

Let x := (i, c (i,0), c (i,1), . . . , c (i,d−2)). By construction of the
map R we have that x ∈ R (γ). For every j ∈ {1, . . . ,q}, let
yj := (j, e (j,0), e (j,1), . . . , e (j,d−2)). By construction of the map
R we have that R (ζ) = {y1, . . . ,yq }. We will now show that
x ≰Nd yj for each j. We consider two cases:
• Case 1: j < i . Therefore ηj = βj . Hence yj := (j, c (j,0),
. . . , c (j,d−2)). Since j < i , we have that x ≰Nd yj .
• Case 2: j ≥ i . Therefore βi > ηi ≥ ηj . Suppose x ≤Nd
yj . Hence (i, c (i,0), . . . , c (i,d−2)) ≤ (j, e (j,0), . . . , e (j,d−2))
and so (c (i,0), . . . , c (i,d−2)) ≤ (e (j,0), . . . , e (j,d−2)). But
this means that βi ≤ ηj which leads to a contradiction.
Hence we have that x ≰Nd yj .

Therefore x ≰Nd yj for every j and so we have R (γ) @maj
R (ζ).
Third step. We now show that |R (γ) |Pf (Nd) ≤ φ (Nγ). Let
γ ∈ CNF(ωωd−1

) such that the Cantor normal form of γ is
ωβ1 + ωβ2 + . . .ωβl . Further let each βi := ωd−2 · c (i,d−2) +
ωd−3 · c (i,d−3) + · · · + ω0 · c (i,0) . It is clear that

|R (γ) |Pf (Nd) = max(l , {c (i, j) }1≤i≤l0≤j≤d−2) (1)

Supposeγ in the strict form looks like:ωγ1 ·e1+ωγ2 ·e2+. . .
+ωγm ·em where γ1 > γ2 > · · · > γm and each ei > 0. Notice
that l = ∑m

i=1 ei . Further it is also easy to observe that for all
i ∈ {1, . . . ,m}, there exists j ∈ {1, . . . , l } such that γi = βj .
With this observation, just unraveling the definition of the
norm function N implies that

Nγ = max(d − 2, {ei }1≤i≤m , {ci, j }1≤i≤l0≤j≤d−2) (2)

LICS ’20, July 8–11, 2020, Saarbrücken, Germany A. R. Balasubramanian

Since each γi ∈ CNF(ωd−1), we can write each γi as ωd−2 ·
c ′
(i,d−2) + ω

d−3 · c ′
(i,d−3) + · · · + ω0 · c ′

(i,0) where each c
′
(i, j) ≤

Nγi ≤ Nγ . Notice that each γi is uniquely determined by its
coefficients (c ′

(i,0), . . . , c
′
(i,d−2)), i.e., if γi , γj then (c ′

(i,0), . . . ,

c ′
(i,d−2)) , (c ′

(j,0), . . . , c
′
(j,d−2)). Therefore we have an injec-

tive map from {γi : 1 ≤ i ≤ m} to the set {x : x ∈
Nd−1, |x |Nd−1 ≤ Nγ }. It then follows that m ≤ (Nγ + 1)d .
Hence

l =
m∑

i=1
ei ≤

m∑

i=1
Nγ ≤

(Nγ+1)d∑

i=1
Nγ = φ (Nγ)

By equations (1) and (2) this implies that |R (γ) |Pf (Nd) ≤
φ (Nγ). □

Therefore by applying proposition 2.14 and theorem 2.15
we have,

Theorem 3.2. Let α = ωωd−1 , φ (x) = x (x + 1)d and let
n ≥ N (ωωd−1

). Then
дα (n) = Lα,д (n) ≤ L (Pf (Nd),⊑maj), (φ◦д) (φ (n))

4 Upper bound for majoring ordering
In this section we will prove upper bounds on the length
of controlled bad sequences for the majoring ordering over
Pf (N

d). The upper bounds are proven by following the frame-
work established by Schmitz and Schnoebelen in a series
of papers([20],[11],[18]) to prove upper bounds for various
well-quasi orders.

We consider the family of nwqos obtained from
{(Pf (Nd),⊑maj)}d>0 and {Γd }d ∈{0,1} by taking disjoint sums
and cartesian products. We call this family of nwqos the
majoring powerset nwqos. From now on, we will denote ma-
joring powerset nwqos as a triple (A, ≤majA , | · |A) where A is
the domain of the nwqo, ≤majA is the underlying order and
| · |A is the norm.
Similar to the proof of upper bounds for the subword or-

dering in [20], we introduce an ordinal notation for each
majoring powerset nwqo, called the type of that nwqo. The
type of a nwqo will turn out to be useful in bounding the cor-
responding length function using subrecursive hierarchies.

Notice that if α ∈ CNF(ωωω
) then α can always be decom-

posed as α =
⊕m

i=1
⊗ji

j=1ω
ωdi, j . (Here the empty product

is taken to be 1 and the empty sum is taken to be 0). We
now map each majoring powerset nwqo to an ordinal in
CNF(ωωω

) as follows:

o(Γ0) = 0, o(Γ1) = 1, o(Pf (N
d)) = ωωd−1

o(A + B) = o(A) ⊕ o(B), o(A × B) = o(A) ⊗ o(B)
Also with each ordinal α ∈ CNF(ωωω

) we can associate a
canonical majoring powerset nwqo, which we will denote
by C (α).

C (0) = Γ0, C (1) = Γ1, C (ωωd
) = Pf (N

d+1)

C (α ⊕ β) = C (α) +C (β), C (α ⊗ β) = C (α) ×C (β)
It can be easily seen that the operators o andC are bijective

inverses of each other (modulo isomorphism of nwqos).

Derivatives
The next step is to define a derivative operator for ordinals.
To this end, for each n ∈ N, we define a Dn operator as
follows:
Dn (k) = k−1, Dn (ω) = n+1, Dn (ω

ωd
) = ωωd−1 ·(d+1)n

Dn (ω
ωp1+ωp2+· · ·+ωpk) =

k⊕

i=1

*.,Dn (ω
ωpi

) ⊗
⊗

j,i

ωωpj +/-
Using this operator, we define a ∂n operator as follows:

∂n *,
m∑

i=1
ωβi +- =

Dn (ω
βi) ⊕

⊕

j,i

ωβj | i = 1, . . . ,m


Notice that if α = ωβ then ∂n (α) = {Dn (α)}.
Proposition 4.1. If β ∈ ∂n (α) then β < α

The following theorem lets us forget the actual underlying
nwqo and remember only its type.

Theorem 4.2. Let A be a majoring powerset nwqo and let
α = o(A). If X ∈ A≤n , then there exists α ′ ∈ ∂n (α) such that
there exists a nwqo reflection r : A/X ↪→ C (α ′).

Since o andC are inverses of each other, by combining the
descent equation and theorem 4.2 we get,

Lemma 4.3.
LC (α),д (n) ≤ max

α ′∈∂n (α)
{1 + LC (α ′),д (д(n))}

Upper bound using subrecursive hierarchies
Given α ∈ CNF(ωωω

) define
Mα,д (n) = max

α ′∈∂n (α)
{1 +Mα ′,д (д(n))}

From the definition of Mα (n) and lemma 4.3, it is clear
that LC (α),д (n) ≤ Mα,д (n) or in other words, LA,д (n) ≤
Mo (A),д (n) for any majoring powerset nwqo A. Therefore, in
what follows, we will concentrate on proving upper bounds
forMα,д (n).

Let α ∈ CNF(ωωω
). We will say that α is k-lean if Nα ≤ k .

Let h(x) = 4x ·д(x) where д is the control function. We have
the following important theorem:

Theorem 4.4. If α is k-lean and n > 0 then Mα,д (n) ≤
hα (4kn)

Using theorem 4.4 and the fact that LA,д (n) ≤ Mo (A),д (n),
we have the following:

Theorem 4.5. Let A be any majoring powerset nwqo such
that o(A) is k-lean. Then for n > 0, we have LA,д (n) ≤
Mo (A),д (n) ≤ ho (A) (4kn) where h(x) = 4x · д(x).

Complexity of controlled bad sequences over finite sets of Nd LICS ’20, July 8–11, 2020, Saarbrücken, Germany

In particular,

Corollary 4.6. Let α = ωωd−1 and let n > 0. Then

L (Pf (Nd),⊑maj),д (n) ≤ hα (4dn)

where h(x) = 4x · д(x).

5 Lower bound for minoring ordering
We give a lower bound on the length of controlled bad se-
quences for the nwqo (Pf (N

d),⊑min, | · |Pf (Nd)) by giving a
polynomial nwqo reflection from (Pf (N

d),⊑maj, | · |Pf (Nd)) to
(Pf (N

d),⊑min, | · |Pf (Nd)).
Lemma 5.1. There exists a poly. nwqo reflection

R : (Pf (Nd),⊑maj, | · |Pf (Nd))
p
↪−→ (Pf (N

d),⊑min, | · |Pf (Nd))
where p (x) = d (x + 1).

Proof. Similar to lemma 3.1, we split the proof into three
parts. In the first part, we define the reflection R. In the
second part we show that R (X) ⊑min R (Y) =⇒ X ⊑maj Y .
Finally, we prove that |R (X) |Pf (Nd) ≤ p (|X |Pf (Nd)).
First part. The reflection R is defined as the following sim-
ple map: Given a set X ∈ Pf (Nd), let R (X) := min(Nd\ ↓ X).

Second part. Suppose R (X) ⊑min R (Y). By definition this
means that min(Nd\ ↓ X) ⊑min min(Nd\ ↓ Y). By the last
point of proposition 2.11we have thatNd\ ↓ X ⊑min Nd\ ↓ Y .
By the fifth point of proposition 2.11 it follows thatX ⊑maj Y .
Third part. First, we set up some notation. Let 0d denote the
zero vector inNd . Given an x = (x1,x2, . . . ,xd) ∈ Nd and i ∈
{1, . . . ,d }, define x+i := (x1,x2, . . . ,xi−1,xi + 1,xi+1, . . . ,xd).
Further, ifxi > 0 definex−i := (x1,x2, . . . ,xi−1,xi−1,xi+1, . . . ,xd).
We further split this part into two subparts. In the first

subpart we prove something about theR mapping. In the sec-
ond part, we use the proposition proven in the first subpart
to show that |R (X) |Pf (Nd) ≤ p (|X |Pf (Nd)).

First subpart: Let X ∈ Pf (Nd). We first claim that

If y ∈ R (X) then y = x+i for some x ∈ X and some i (3)

Let y ∈ R (X) = min(Nd\ ↓ X). Therefore, y ≰Nd x for
any x ∈ X . In particular y , 0d and so there exists i such
that yi , 0. Suppose y−i ∈ Nd\ ↓ X . Since y−i ≤Nd y, it
then follows that y < min(Nd\ ↓ X) = R (X), leading to a
contradiction.
Hence, if y ∈ R (X) then there exists i such that yi > 0

and y−i < Nd\ ↓ X . Therefore ∃x ∈ X such that y−i ≤Nd x .
Since y ∈ R (X) = min(Nd\ ↓ X) it follows that y ≰Nd x .
The only way in which we can have y−i ≤Nd x but y ≰Nd x
is when y = x+i , which proves that (3) is true.

Second subpart: Let X+ := {x+i : x ∈ X , 1 ≤ i ≤ d }. By
(3) it is clear that R (X) ⊆ X+ and so

|R (X) |Pf (Nd) ≤ |X+ |Pf (Nd) (4)

We proceed to bound |X+ |Pf (Nd) . To do so, we only need
to bound the norm of each element in X+ and the cardinality
of X+. By construction, it is easy to see that if y ∈ X+, then
|y |Nd ≤ |X |Pf (Nd) + 1. Further, by definition of X+, we have
card(X+) ≤ d (card(X)) ≤ d (|X |Pf (Nd)). It then follows that

|X+ |Pf (Nd) ≤ d (|X |Pf (Nd) + 1) (5)
By equations 4 and 5 it follows that |R (X) |Pf (Nd) ≤ p (|X |Pf (Nd))

which proves the lemma. □

Let φ (x) = x (x + 1)d and let дφ = φ ◦ д. Since R is a
polynomial nwqo reflection, by proposition 2.14 and theorem
3.2 we have

Theorem 5.2. Let α = ωωd−1 and let n ≥ N (ωωd−1
). Then

дα (n) ≤ L (Pf (Nd),⊑maj),дφ (φ (n)) ≤ L (Pf (Nd),⊑min), (p◦дφ) (p (φ (n)))

6 Upper bound for minoring ordering
For the rest of this section, we assume that d ≥ 1 is fixed.
For any i ≤ d , let (Pi , ≤majPi

, | · |Pi) be the majoring powerset
nwqo obtained by taking cartesian product of (Pf (Ni),⊑maj
, | · |Pf (Ni)) with itself

(
d
i

)
times, i.e., Pi = Pf (Ni) (

d
i) .

Let (Ad , ≤majAd
, | · |Ad) be themajoring powerset nwqo formed

by taking cartesian product of P1, P2, . . . , Pd , i.e., Ad =

P1 × P2 × · · · × Pd =∏d
i=1 Pf (N

i) (
d
i) . Since Ad is a majoring

powerset nwqo, it has an associated order type o(Ad) which
can be easily seen to be

⊗d
i=1ω

(ω i−1) ·(di) . Further it is easy
to notice that o(Ad) is d2d -lean.
Having introduced Ad , we prove upper bounds on the

length of controlled bad sequences for the minoring order-
ing on Pf (Nd) by providing a polynomial nwqo reflection
to Ad . The reflection that we provide will be a map from
(Pf (N

d) \ ∅,⊑min) to Ad . However, this can be easily con-
verted to an upper bound for (Pf (Nd),⊑min), thanks to the
following proposition:

Proposition 6.1.
L (Pf (Nd),⊑min),д (n) = 1 + L (Pf (Nd)\∅,⊑min),д (д(n))

≤ L (Pf (Nd)\∅,⊑min),д (д(n) + 1)

Proof. Notice that for any subset X ∈ Pf (Nd),X ⊑min ∅ and
so Pf (Nd)/X ⊆ Pf (Nd)/∅. Since X ⊑min ∅ for any subset X ,
it follows that Pf (Nd)/∅ = Pf (Nd) \ ∅. Combining these two
and applying the descent equation we get,
L (Pf (Nd),⊑min),д (n) = max

|X |
Pf (Nd)

≤n
{1 + L (Pf (Nd)/X ,⊑min),д (д(n))}

= 1 + L (Pf (Nd)\∅,⊑min),д (д(n))

This proves the first equality.
The second inequality is true for the following reason:

Let X0,X1, . . . ,Xl be a (д,д(n)) controlled bad sequence in
Pf (N

d) \ ∅. By the last point of proposition 2.11, we can as-
sume thatXi = min(Xi) for each i . Let x := (a1,a2, . . . ,ad) ∈
X0. Construct x ′ := (a1 + 1,a2, . . . ,ad) and let X ′0 := (X0 \

LICS ’20, July 8–11, 2020, Saarbrücken, Germany A. R. Balasubramanian

{x }) ∪ {x ′}. It can be easily verified that X ′0,X0,X1, . . . ,Xl is
a (д,д(n) + 1) controlled bad sequence. □

Therefore, in what follows, it suffices to focus on (Pf (N
d) \

∅,⊑min). We have the following lemma:

Lemma 6.2. There exists a poly. nwqo reflection

R : (Pf (Nd) \ ∅,⊑min, | · |Pf (Nd))
q
↪−→ (Ad , ≤majAd

, | · |Ad)
where q(x) = (x + 1)d .

Proof sketch. We present the proof for the case when d = 2
and then sketch how the proof can be generalised to higher
dimensions.

Let us consider (Pf (N2) \ ∅,⊑min) and let X ,Y ∈ Pf (N2) \ ∅.
By proposition 2.11 X ⊑min Y iff N2\ ↑ X ⊑maj N2\ ↑ Y . Let
comp(X) := N2\ ↑ X and comp(Y) := N2\ ↑ Y . Notice that
since X , ∅ and Y , ∅, it follows that ↓ comp(X) , N2 and
↓ comp(Y) , N2. Therefore there exists nX and nY such that
(nX ,nX) <↓ comp(X) and (nY ,nY) <↓ comp(Y).
Unfortunately comp(X) and comp(Y) might be infinite and

so we cannot use the results proved in section 4. However,
we will see that we can “compress” the sets comp(X) and
comp(Y) such that the compressed finite sets preserve the
order between comp(X) and comp(Y).
Suppose, for some x ∈ N, there are infinitely many ele-

ments of the form (x ,n1), (x ,n2), (x ,n3), . . . in the set comp(X).
We need not store all these elements, but rather only store
that there are infinitely many elements in comp(X) such that
their first co-ordinate is x . In accordance with this intuition,
we define SX1 := {x : there exists infinitely many n such that
(x ,n) ∈ comp(X)}. Notice that SX1 is a subset of N. Similarly,
we define SX2 := {x ′ : there exists infinitely many n such that
(n,x ′) ∈ comp(X)}. To complement these two sets, we now
define SX3 := {(x ,x ′) ∈ comp(X) : x < SX1 and x ′ < SX2 }. We
then consider the tuple (SX1 , SX2 , SX3). Notice that if (x ,x ′) ∈
comp(X) then either x ∈ SX1 or x ′ ∈ SX2 or (x ,x ′) ∈ SX3 . It
is then quite easy to see that if SX1 ⊑majPf (N) S

Y
1 and SX2 ⊑majPf (N)

SY2 and SX3 ⊑majPf (N2)
SY3 then comp(X) ⊑maj comp(Y) and so

X ⊑min Y .
However it is not clear that each of the sets SX1 , SX2 and SX3

are indeed finite. To prove this, first recall that there exists
nX ∈ N such that (nX ,nX) <↓ comp(X).

Suppose SX1 is infinite. By definition this means that there
are infinitely many numbers x1,x2, . . . such that for each xi
there are infinitely many elements in comp(X) with first co-
ordinate xi . Pick an xi such that xi ≥ nX . Now, by definition
of SX1 we can pick a ni ≥ nX such that (xi ,ni) ∈ comp(X).
However this means that (nX ,nX) ∈↓ comp(X) which leads
to a contradiction. Similar arguments also show that SX2 is
infinite.
Suppose SX3 is infinite. Since (nX ,nX) <↓ comp(X) it fol-

lows that (nX ,nX) <↓ SX3 as well. Hence for every element
(x ,y) ∈ SX3 either x < nX or y < nX . This indicates that if

there are infinitely many elements in SX3 , then there exists
x ∈ N such that either there are infinitely many elements
in SX3 with their first co-ordinate as x or there are infinitely
many elements with their second co-ordinate as x . In either
case, by definition of SX3 we will reach a contradiction.
Finally, we also have to show that |(SX1 , SX2 , SX3) |A2 ≤

(|X |Pf (N2) + 1)2. First we show that if an element belongs
to SX1 or SX2 or SX3 then its norm is bounded by |X |Pf (N2) .

Suppose x ∈ SX1 and x > |X |Pf (N2) . Since x ∈ SX1 it follows
that there exists n ≥ nX such that (x ,n) ∈ comp(X). Since
(x ,n) ∈ comp(X) = N2\ ↑ X it follows that for all (y,m) ∈ X
it is the case that (y,m) ≰N2 (x ,n). Since x > |X |Pf (N2) ≥
y it follows that m > n. Hence (y,m) ≰N2 (x + n + 1,n)
as well. Since this is true for every (y,m) ∈ X it follows
that (x + n + 1,n) <↑ X and so (x + n + 1,n) ∈ comp(X).
Since (x + n + 1,n) ≥N2 (nX ,nX) it follows that (nX ,nX) ∈↓
comp(X) which leads to a contradiction. Hence if x ∈ SX1
then x ≤ |X |Pf (N2) . A similar argument holds for SX2 as well.
Suppose (x ,y) ∈ SX3 and x > |X |Pf (N2) . Since (x ,y) ∈ SX3

there are only finitely many elements in comp(X) with y as
their second co-ordinate. Hence we can find a ny such that
if n ≥ ny then (n,y) < comp(X). Now similar to the case of
SX1 we can now show that (x + ny + 1,y) ∈ comp(X), thus
leading to a contradiction. A similar argument is employed
when y > |X |Pf (N2) .

Since the norms of the elements of SX1 , SX2 and SX3 are
bounded by |X |Pf (N2) , it follows that their cardinalities are
bounded by (|X |Pf (N2) + 1)2. Hence the norms of SX1 , SX2 and
SX3 are each bounded by (|X |Pf (N2) + 1)2, which proves our
claim.
We now sketch the construction for the general case of

higher dimensions, i.e, when the dimension d ≥ 2. Notice
that the set SX1 , as defined for the case of d = 2, can be stated
in the following manner as well: It is the set of all x such
that if we fix the first co-ordinate to be x and then project
comp(X) to the second axis, the downward closure of the
projection is N. Hence if we want to prove the lemma for
d = 3, one way to define SX1 would be: The set of all x such
that if we fix the first co-ordinate to be x and then project
comp(X) on the other two axes, the downward closure of the
projection isN2. In a similar fashion, we can fill in SX2 and SX3
by fixing the second co-ordinate and the third co-ordinate.
For SX4 we fix the first and the second co-ordinates and check
if the downward closure of the resulting projection is N and
so on. Then we define the reflection to be (SX1 , . . . , SX7). The
reflection for the general case also follows a similar pattern.

Using lemma 6.2, we can now state upper bounds for
the minoring ordering. Let (Pf (Nd)k , ≤minPf (Nd)k) be the nwqo
obtained by taking the cartesian product of (Pf (Nd),⊑min)
with itself k times. Let (Ak

d , ≤majAkd
) be the majoring powerset

nwqo obtained by taking cartesian product of (Ad , ≤majAd
)

Complexity of controlled bad sequences over finite sets of Nd LICS ’20, July 8–11, 2020, Saarbrücken, Germany

with itself k times. The following theorem is stated in a way
such that it is useful for our applications.

Theorem 6.3. Let α = ωωd−1 ·(2d ·k) and let n be sufficiently
large. There exists a constant c (depending only on d and k)
such that

L (Pf (Nd)k , ≤min
Pf (Nd)k

),д (n) ≤ tα (c · д(n)2d)

where t (x) = 4kx · q(д(x)) and q(x) = (x + 1)d .

Proof. Let t (x) := 4kx · q(д(x)). Notice that if д is a strictly
increasing inflationary function, then the same is true for t .

Let ∅k denote the tuple (
k times︷ ︸︸ ︷
∅, . . . , ∅). The proof of proposition

6.1 can be easily modified to prove that

L (Pf (Nd)k , ≤min
Pf (Nd)k

),д (n) ≤ L (Pf (Nd)k \∅k , ≤min
Pf (Nd)k

),д (д(n) + 1)

By proposition 2.13 and lemma 6.2 we have a reflection
(Pf (N

d)k\∅, ≤min
Pf (Nd)k

)
k ·q
↪−−→ (Ak

d , ≤majAkd
). Using proposition 2.14

and noticing that for large enough n, we have q(д(n) + 1) ≤
д(n)2d , we get,

L (Pf (Nd)k \∅k , ≤min
Pf (Nd)k

),д (д(n)+1) ≤ L (Akd ,≤
maj

Akd
), ((k ·q)◦д) (k ·д(n)2d)

Notice that o(Ak
d) =

⊗k
j=1

(⊗d
i=1ω

ω i−1 ·(di)
)
is dk2d -lean.

Hence by theorem 4.5 we have

L (Akd ,≤
maj

Akd
), ((k ·q)◦д) (k · д(n)2d) ≤ to (Ad) (4dk

22dд(n)2d)

Now o(Ad) < ωωd−1 ·(2d ·k) . It is known that, if α < α ′ then
hα (n) ≤ hα ′ (n) for sufficiently large n (See Lemma C.9 of
[20]). Hence for sufficiently large n,

to (Ad) (4dk
22dд(n)2d) ≤ tωωd−1 ·(2d ·k) (4dk22dд(n)2d)

Hence letting c := 4dk22d and α := ωωd−1 ·(2d ·k) and com-
bining all the equations, we have,

L (Pf (Nd)k ,≤min
Pf (Nd)k

),д (n) ≤ tα (c · д(n)2d)
□

7 Complexity classification
In this section, we will use the results proved in the previ-
ous sections to classify length functions for the majoring
and minoring ordering based on fast-growing complexity
classes. Let S : N → N denote the successor function. Let
{Sα }, {Sα }, {Fα } denote the Hardy, Cichon and fast-growing
hierarchies for the successor function respectively. Notice
that Sα (x) = Sα (x) + x for all x and for all α < ϵ0.
Using these hierarchies, we define fast growing function

classes (Fα)α (See [15], [19]).

Fα :=
⋃

c<ω

FD(F cα (n))

Here FD(F cα (n)) denotes the set of all functions that can be
computed by a deterministic Turing machine in time F cα (n)
where F cα denotes the function that results when Fα is applied
to itself c times.We remark in passing that⋃α<ω Fα already
constitutes the set of all primitive recursive functions (See
section 2.2.4 of [19]).

For the rest of this section, let д be a fixed strictly increas-
ing and inflationary control function such that д(x) ≥ S (x).

Majoring ordering
Fix a d > 1 and let φ (x) = x (x + 1)d . Our lower bound
for the majoring ordering can be readily translated into a
complexity lower bound as follows:

Theorem 7.1. For sufficiently large n,
Fωd−1 (n) − n ≤ L (Pf (Nd),⊑maj),φ◦д (φ (n))

Also L (Pf (Nd),⊑maj),φ◦д < Fα for any α < ωd−1.

For upper bounds, we state a general result which will be
useful for our applications.

Theorem 7.2. Let д be a primitive recursive function and
let A = Pf (Nd)k for some numbers d and k . Then L (A,≤majA),д
is eventually bounded by a function in F(ωd−1) ·k

Minoring ordering
Let p (x) = d (x + 1). The following is a lower bound for the
minoring ordering.

Theorem 7.3. For sufficiently large n,
Fωd−1 (n) − n ≤ L (Pf (Nd),⊑min),p◦φ◦д (p (φ (n)))

Also L (Pf (Nd),⊑min),p◦φ◦д < Fα for any α < ωd−1.

We also have the following upper bound.

Theorem 7.4. Let д be primitive recursive and let A =
Pf (N

d)k for some numbers d and k . Then L (A,≤minA),д is even-
tually bounded by a function in Fωd−1 ·(2d ·k)

8 Applications
We use the bounds proven in this paper to provide upper
bounds for some problems in automata theory. As a first
application, we consider the emptiness problem of incre-
menting tree counter automata (ITCA) over finite labelled
trees [14]. We only provide an informal sketch of the model
here. (The reader is referred to [14] for the technical details).
Incrementing tree counter automata are finite state automata
which operate over trees and have access to counters which it
can increment, decrement or test for zero. To avoid undecid-
ability, the counters are also allowed to have incrementation
errors, i.e., the values of the counters can increase erroneously
at any time. Based on the theory of well-structured transition
systems, the paper [14] gives a decision procedure for the
emptiness problem for ITCA from a given initial configura-
tion. In [4], the authors argue that if the number of states q

LICS ’20, July 8–11, 2020, Saarbrücken, Germany A. R. Balasubramanian

and the number of counters k of the given ITCA are fixed
and the running time is measured as a function of the inital
configuration v0 of the ITCA, then the running time of this
decision procedure could be upper bounded by a function
from F(ωk) ·q . Since the paper [4] uses a different notion of
controlled bad sequences compared to ours (and a different
well-quasi order than the one constructed in this paper), we
first revisit and adapt their analysis to our setting. Then we
apply our results to obtain better bounds for the running
time.
Let q,k be fixed natural numbers. Recall that Γq is the

well-quasi order where the domain has q elements such
that distinct elements are unordered and the norm of ev-
ery element is 0. By taking cartesian product of Γq with Nk
and then taking the majoring ordering of this resulting con-
struction we get a well-quasi order which we will denote
by (A, ≤A, | · |A) where A = Pf (Γq × Nk). Notice that there
is a reflection from (A, ≤A, | · |A) to the majoring powerset
nwqo (Pf (N

k)q , ≤maj
Pf (Nk)q

, | · |Pf (Nk)q). Indeed suppose S ∈ A.
For every a ∈ Γq , let Sa := {v : (a,v) ∈ S }. It is then clear that
the mapping S → (Sa)a∈Γq is an reflection from (A, ≤A, | · |A)
to (Pf (N

k)q , ≤maj
Pf (Nk)q

, | · |Pf (Nk)q). We will use this fact later
on.
We now analyse the algorithm given in [14] for testing

the emptiness of an ITCA. Let q and k be the number of
states and the number of counters of the ITCA respectively.
Let v0 ∈ Γq × Nk be the given initial configuration. Let
(A, ≤A, | · |A) be the nwqo on the domain A = Pf (Γq ×Nk) as
described above. The algorithm proceeds by constructing a
sequence of finite sets K0,K1, . . . where each Ki ⊆ A, K0 is
the initial configuration {v0} andKi+1 = Ki∪Succ (Ki) where
Succ is the successor function between sets of configurations
as described in [14]. The algorithm then finds the firstm such
that ↑ Km =↑ Km+1 and checks if there is an accepting config-
uration in ↑ Km . The complexity of the algorithm is mainly
dominated by the length of the sequence K0,K1, . . . ,Km .
Sincem is the first index such that ↑ Km =↑ Km+1, we can
find a minimal element xi ∈↑ Ki+1\ ↑ Ki for each i < m.
Consider the sequence x0, . . . ,xm−1 over A. Noticing that
x j ≱A xi if j > i , we can conclude that x0, . . . ,xm−1 is a
bad sequence over A. Further by a careful inspection of the
Succ relation (as described in [14]) one can easily establish
that x0, . . . ,xm−1 is a (д, |v0 |A)-controlled sequence where
д is some primitive recursive function depending on q and
k . Now since the nwqo (A, ≤A, | · |A) has a reflection into
(Pf (N

k)q , ≤maj
Pf (Nk)q

, | · |Pf (Nk)q), we can apply Theorem 7.2 and
Proposition 2.14 to get,

Proposition 8.1. The time complexity of the emptiness
problem for an ITCA with q states and k counters is bounded
by a function in F(ωk−1) ·q

As noticed in [4], the authors of [14] also prove the decid-
ability of emptiness for a class of tree automata operating

on finite data trees called the alternating top-down tree one
register automata (ATRA), by providing a PSPACE-reduction
to the emptiness problem for ITCA. If the original ATRA had
q states, then the constructed ITCA has k (q) = 2q − 1 + 24q
many counters and f (q) ∈ O (2q) many states. Hence, we
have

Proposition 8.2. The time complexity of the emptiness
problem for an ATRA with q states is bounded by a function
in F(ωk (q)−1) ·f (q)

As a second application, we consider the emptiness prob-
lem for another class of finite data tree automata called the
bottom-up alternating one register data tree automata (BUDA)
(See [10] for a complete description of the model). Apart from
having a finite number of statesQ , the transitions of a BUDA
are also defined by a specified finite semigroup S . In [10], the
authors prove the decidability of the emptiness problem for
BUDA using the theory of well-structured transition systems.
Let q and s be the number of states and the size of the finite
semigroup of the given BUDA respectively. Let k = 2q+s and
l = 2q2s2 + 1. The authors construct a wsts corresponding to
the given BUDA whose set of configurations can be taken to
be (Pf (Nk)f (k) (where f (k) is some function in O (2k)) with
the underlying order being ≤min

Pf (Nk)f (k)
.

A careful analysis of the decision procedure they describe
over this wsts reveals that the algorithm constructs a se-
quence of finite setsK0,K1, . . . ,where eachKi ⊆ (Pf (N

k)f (k) ,
K0 is the initial configuration v0 and Ki+1 = Ki ∪ Succ (Ki)
where Succ is the successor function between sets of con-
figurations as described by the wsts. The algorithm then
finds the first m such that ↑ Km =↑ Km+l and checks if
there is an accepting configuration in ↑ Km . The complexity
of the algorithm is mainly dominated by the length of the
sequence K0, . . . ,Km , . . . ,Km+l . Since m is the first index
such that ↑ Km =↑ Km+l , we can find a minimal element
xi ∈↑ Ki+l \ ↑ Ki for each i < m. Let p be the largest number
such thatpl ≤ m+l . Similar to the analysis performed for the
ITCA model, we can conclude that x0,xl ,x2l , . . . ,x (p−1)l is a
(д, |v0 |Pf (Nk)f (k))-controlled sequence where д is a primitive
recursive function depending on k . Applying theorem 7.4
we then get,

Proposition 8.3. The time complexity of the emptiness
problem for a BUDA with q states and s elements in the
semigroup, is bounded by a function in Fωk−1 ·(2k ·f (k)) where
k = 2q+s .

9 Conclusion
In this paper, we have proved lower and upper bounds for
the length of controlled bad sequences for the majoring and
minoring ordering over finite sets of Nk . The results were
obtained by giving the bounds in terms of functions from
Cichon hierarchy and using known complexity results, were
translated into bounds over the fast-growing hierarchy. To

Complexity of controlled bad sequences over finite sets of Nd LICS ’20, July 8–11, 2020, Saarbrücken, Germany

the best of our knowledge, this is the first upper bound
result for length functions over the minoring ordering of
Pf (N

d). As an application, we used the results to establish
upper bounds for the emptiness problems of three types of
automata working on trees.
The bounds on the length function for the majoring or-

dering on Pf (Nk) is easily seen to be tight, which solves a
problem left open in [4]. However this is not the case with the
bounds for minoring ordering and it might be an interesting
question in the future to bridge this gap.

Acknowledgments
The author is extremely grateful to Prof. Philippe Schnoebe-
len and Prof. Sylvain Schmitz of LSV, ENS-Saclay Paris for
their mentorship and useful discussions regarding the paper.
This work was done when the author was an intern at LSV,
ENS-Saclay Paris.

This material is based upon work supported by the French
National Research Agency (ANR) grant BRAVAS under grant
number ANR-17-CE40-0028 and also by the Indo-French
research unit UMI Relax. The author also acknowledges the
support provided by the ERC advanced grant PaVeS under
grant number 787367.

References
[1] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay.

1996. General Decidability Theorems for Infinite-State Systems. In
Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science.
313–321. https://doi.org/10.1109/LICS.1996.561359

[2] Parosh Aziz Abdulla and Bengt Jonsson. 2001. Ensuring completeness
of symbolic verification methods for infinite-state systems. Theor.
Comput. Sci. 256, 1-2 (2001), 145–167. https://doi.org/10.1016/S0304-
3975(00)00105-5

[3] Sergio Abriola and Santiago Figueira. 2014. A note on the order type
of minoring orderings and some algebraic properties of ω2-well quasi-
orderings. In XL Latin American Computing Conference, CLEI 2014. 1–9.
https://doi.org/10.1109/CLEI.2014.6965188

[4] Sergio Abriola, Santiago Figueira, and Gabriel Senno. 2015. Linearizing
well quasi-orders and bounding the length of bad sequences. Theor.
Comput. Sci. 603 (2015), 3–22. https://doi.org/10.1016/j.tcs.2015.07.012

[5] Joseph B Kruskal. 1972. The Theory of Well-Quasi-Ordering: A Fre-
quently Discovered Concept. Journal of Combinatorial Theory, Series
A 13 (11 1972), 297–305. https://doi.org/10.1016/0097-3165(72)90063-5

[6] Pierre Chambart and Philippe Schnoebelen. 2008. The Ordinal Re-
cursive Complexity of Lossy Channel Systems. In Proceedings of the
Twenty-Third Annual IEEE Symposium on Logic in Computer Science,
LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA. 205–216. https:
//doi.org/10.1109/LICS.2008.47

[7] E.A. Cichon and E.Tahhan Bittar. 1998. Ordinal recursive bounds for
Higman’s theorem. Theoretical Computer Science 201, 1 (1998), 63 – 84.
https://doi.org/10.1016/S0304-3975(97)00009-1

[8] Nachum Dershowitz and Zohar Manna. 1979. Proving Termination
with Multiset Orderings. Commun. ACM 22, 8 (1979), 465–476. https:
//doi.org/10.1145/359138.359142

[9] Michael R. Fellows and Michael A. Langston. 1988. Nonconstructive
tools for proving polynomial-time decidability. J. ACM 35, 3 (1988),
727–739. https://doi.org/10.1145/44483.44491

[10] Diego Figueira. 2010. Reasoning on words and trees with data. Ph.D.
Dissertation. École normale supérieure de Cachan, France. https:

//tel.archives-ouvertes.fr/tel-00718605
[11] Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Sch-

noebelen. 2011. Ackermannian and Primitive-Recursive Bounds with
Dickson’s Lemma. In Proceedings of the 26th Annual IEEE Symposium
on Logic in Computer Science. 269–278. https://doi.org/10.1109/LICS.
2011.39

[12] Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transi-
tion systems everywhere! Theor. Comput. Sci. 256, 1-2 (2001), 63–92.
https://doi.org/10.1016/S0304-3975(00)00102-X

[13] Graham Higman. 1952. Ordering by Divisibility in Abstract Algebras.
Proceedings of the London Mathematical Society s3-2, 1 (1952), 326–336.
https://doi.org/10.1112/plms/s3-2.1.326

[14] Marcin Jurdzinski and Ranko Lazic. 2011. Alternating automata on
data trees and XPath satisfiability. ACM Trans. Comput. Log. 12, 3
(2011), 19:1–19:21. https://doi.org/10.1145/1929954.1929956

[15] M. H. Löb and S. S. Wainer. 1970. Hierarchies of number-theoretic
functions. I. Archiv für mathematische Logik und Grundlagenforschung
13, 1 (Mar 1970), 39–51. https://doi.org/10.1007/BF01967649

[16] Bojan Mohar. 1996. Embedding Graphs in an Arbitrary Surface in Lin-
ear Time. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing. 392–397. https://doi.org/10.1145/237814.
237986

[17] Fernando Rosa-Velardo. 2017. Ordinal recursive complexity of Un-
ordered Data Nets. Information and Computation 254 (2017), 41 – 58.
https://doi.org/10.1016/j.ic.2017.02.002

[18] Sylvain Schmitz. 2014. Complexity Bounds for Ordinal-Based Ter-
mination - (Invited Talk). In Reachability Problems - 8th International
Workshop, RP 2014. 1–19. https://doi.org/10.1007/978-3-319-11439-2_1

[19] Sylvain Schmitz. 2016. Complexity Hierarchies beyond Elementary.
TOCT 8, 1 (2016), 3:1–3:36. https://doi.org/10.1145/2858784

[20] Sylvain Schmitz and Philippe Schnoebelen. 2011. Multiply-Recursive
Upper Bounds with Higman’s Lemma. In Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011. 441–452.
https://doi.org/10.1007/978-3-642-22012-8_35

Appendix B

Complexity of Coverability in
Bounded Path Broadcast
Networks (FSTTCS 2021)

This section contains a reprinting of the following paper, which has been pub-
lished as a peer-reviewed conference paper.

A. R. Balasubramanian. Complexity of Coverability in Bounded
Path Broadcast Networks. In conference proceedings of FSTTCS
2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Vol.
213 of LIPIcs, Pages - 35:1-35:16. doi: 10.4230/LIPIcs.FSTTCS.20
21.35

According to the Open Access Policy of LIPIcs (Leibniz International Pro-
ceedings in Informatics) by Schloss Dagstuhl Leibniz-Zentrum für Informatik,
the author of this thesis is permitted to include the above paper in this thesis.
The relevant excerpt is the following:

LIPIcs volumes are peer-reviewed and published according to the
principle of OpenAccess, i.e., they are available online and free of
charge. The authors retain their copyright.

For more information, please see https://www.dagstuhl.de/en/publish
ing/series/details/LIPIcs, in particular, the section on Open Access Policy.

Summary
Broadcast networks are a formalism of distributed computation that allows one
to model networks of identical nodes communicating through message broad-
casts over a communication topology that does not change over the course of
executions. The parameterized verification problem for these networks amounts

102

10.4230/LIPIcs.FSTTCS.2021.35
10.4230/LIPIcs.FSTTCS.2021.35
https://www.dagstuhl.de/en/publishing/series/details/LIPIcs
https://www.dagstuhl.de/en/publishing/series/details/LIPIcs

to proving the correctness of a property for any number of nodes and on all
executions. Dually speaking, this problem asks for the existence of an execution
of the broadcast network that violates a given property. One specific instance of
parameterized verification is the coverability problem which asks whether there
is an execution of the network in which some node reaches a given state of the
broadcast protocol. This problem is known to be undecidable. Further, if we
additionally assume that the underlying communication topology has a bound
on the longest path, then the coverability problem is known to be decidable. In
this work, we precisely characterize the complexity of the coverability problem
for bounded-path topologies and prove that it is Fϵ0 -complete, where Fϵ0 is a
class in the fast-growing hierarchy of complexity classes.

Contributions of the author of this thesis
I am the sole author of this paper.

103

Complexity of Coverability in Bounded Path
Broadcast Networks
A. R. Balasubramanian #Ñ

Technische Universität München, Germany

Abstract
Broadcast networks are a formalism of distributed computation that allow one to model networks of
identical nodes communicating through message broadcasts over a communication topology that does
not change over the course of executions. The parameterized verification problem for these networks
amounts to proving correctness of a property for any number of nodes, and on all executions. Dually
speaking, this problem asks for the existence of an execution of the broadcast network that violates
a given property. One specific instance of parameterized verification is the coverability problem
which asks whether there is an execution of the network in which some node reaches a given state
of the broadcast protocol. This problem was proven to be undecidable by Delzanno, Sangnier and
Zavattaro (CONCUR 2010). In the same paper, the authors also prove that, if we additionally
assume that the underlying communication topology has a bound on the longest path, then the
coverability problem becomes decidable.

In this paper, we provide complexity results for the above problem and prove that the coverability
problem for bounded-path topologies is Fϵ0 -complete, where Fϵ0 is a class in the fast-growing
hierarchy of complexity classes. This solves an open problem of Hasse, Schmitz and Schnoebelen
(LMCS, Vol 10, Issue 4).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Distributed computing models

Keywords and phrases Parameterized verification, Bounded path networks, Fast-growing complexity
classes

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.35

Funding A. R. Balasubramanian: Supported by funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

1 Introduction

In recent years, significant effort has been put into understanding the precise computational
complexity of problems which are non-elementary, i.e., problems whose running times cannot
be upper bounded by any fixed tower of exponentials of the input size [13, 6, 20, 19, 1, 18, 8].
A well-known such problem is the satisfiability problem of the weak monadic theory of one
successor (WS1S) [17]. A more recent addition to this collection is the reachability problem
for Petri nets [7]. We refer the reader to the excellent survey by Schmitz [19] for a collection
of various non-elementary problems from logic, automata theory and verification which have
been proven to be complete for appropriate complexity classes in the fast-growing hierarchy.
This hierarchy allows for a finer classification of problems lying beyond the elementary regime.

From a tractability perspective, these results are of course negative. However, there are
non-elementary problems for which tools have been developed, for e.g. MONA for WS1S [11];
and considerable effort has been put into the development of fast heuristics to solve some
non-elementary problems on realistic inputs, for e.g., there is a huge wealth of heuristics and
special cases which have been studied for the Petri net reachability problem [3, 12, 14, 4, 5, 15].
Hence, understanding the precise complexity of a non-elementary problem can help us to
solve it in practice by reducing it to various other well-studied non-elementary problems.

© A. R. Balasubramanian;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

35:2 Coverability in Bounded Path Broadcast Networks

The fast-growing hierarchy mentioned above can help us in this goal of understanding
the computational complexity of non-elementary problems. Proving a problem to be hard
for one of these classes implies that that problem cannot have an efficient encoding into any
of the non-elementary problems which lie strictly below this class. In their invited paper for
CONCUR 2013 [21], Schmitz and Schnoebelen explicity state the program of populating the
catalog of hard problems for classes in the fast-growing hierarchy, so that hardness proofs do
not have to begin from Turing machines, but can instead rely on simpler reductions.

In this paper, we contribute to this program by considering a problem from the paramet-
erized verification of broadcast networks and proving that it is Fϵ0 -complete, where Fϵ0 is a
complexity class in the fast-growing hierarchy. We now offer a brief overview of broadcast
networks [9, 2]. Broadcast networks are a formalism of distributed computation that allow
one to model networks of identical nodes communicating through message broadcasts. Each
node runs the same protocol and an underlying communication topology specifies for each
node, the set of neighbors that it can broadcast messages to. This topology remains invariant
over the course of executions of the network. At any point, a node can broadcast a message
which is received by all of its neighbors.

The parameterized verification problem for these networks amounts to proving correctness
of a property for any number of nodes and over any communication topology. Dually, we ask
for the existence of an execution of the network that violates a given property. One specific
instance of parameterized verification is the coverability problem which asks whether there
is an execution of the network in which some node reaches a given state of the broadcast
protocol. This problem was proven to be undecidable by Delzanno, Sangnier and Zavattaro
(Theorem 1 of [9]). In the same paper, the authors also prove that, if we additionally assume
that the underlying communication topology has a bound on the longest path (bounded-
path topologies), then the coverability problem becomes decidable (Theorem 5 of [9]). Our
main result in this paper is that the coverability problem for bounded-path topologies is
Fϵ0 -complete, where Fϵ0 is a class in the aforementioned fast-growing hierarchy of complexity
classes.

Our result settles a conjecture raised by Hasse, Schmitz and Schnoebelen (Section 8.3
of [16]) and also settles the complexity of the last remaining question from the original paper
that initiated the study of parameterized verification problems for broadcast networks [9].
Moreover, we provide a new and rather natural problem to the list of Fϵ0 -complete problems,
which when compared to the list of Fω-complete and Fωω -complete problems, is rather small
currently (Section 6.4 of [19]). (Both Fω and Fωω are classes in the fast-growing hierarchy
which are much smaller than Fϵ0). Hence, in this sense, we contribute to the above-mentioned
program of finding hard problems for classes in the fast-growing hierarchy. Further, we hope
that the present work might prove to be useful in settling the complexity of other problems
conjectured to be Fϵ0 -complete (Section 8.3 of [16]), since all the problems mentioned there
are concerned with infinite-state systems regarding bounded-path trees and graphs, and so
those problems are in some sense “close” to the problem that we consider here.

2 Preliminaries

In this section, we recall the model of broadcast networks as defined in [2]. Intuitively, a
broadcast network consists of several nodes, each executing the same finite-state broadcast
protocol. A communication topology assigns to each node, a finite set of neighbors, to which
it can communicate. At any point, some node can broadcast a message which is received by
all of its neighbors. We now proceed to formalize this intuition.

A. R. Balasubramanian 35:3

Broadcast networks
▶ Definition 1. A broadcast protocol is a tuple P = (Q, I, Σ, ∆) where Q is a finite set of states,
I ⊆ Q is the set of initial states, Σ is a finite set of messages and ∆ ⊆ Q×{!a, ?a, : a ∈ Σ}×Q

is the transition relation.

For ease of notation, we will write q
!a−→ q′ (resp. q

?a−→ q′) for (q, !a, q′) ∈ ∆ (resp.
(q, ?a, q′) ∈ ∆). A transition q

!a−→ q′ (resp. q
?a−→ q′) intuitively corresponds to broadcasting

(resp. receiving) the message a. We will assume that broadcast protocols are complete, i.e.
for every state q and every message a there exists q′ such that q

?a−→ q′.
As mentioned before, a broadcast network consists of several identical nodes running a

broadcast protocol and each node has a finite set of neighbors. To formalize this, given a
broadcast protocol P = (Q, I, Σ, ∆), a configuration of P is a labelled graph γ = (N, E, L)
where N is a finite set of nodes, E ⊆ N × N is a finite set of (undirected) edges specifying
for every pair of nodes whether or not there is a communication link between them and
L : N → Q is a labelling function that specifies the current state of each node. We let
L(γ) = {L(n) : n ∈ N} be the set of labels appearing in the nodes of γ. We say that γ is
initial if L(γ) ⊆ I.

The semantics of the broadcast network of a protocol P is given by means of an infinite-
state transition system T (P) which consists of all the configurations of the protocol P . There
is a step from the configuration γ = (N, E, L) to the configuration γ′ = (N′, E′, L′) if N′ = N,
E′ = E and there exists a node n and a message a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and
for every other node n′, if (n, n′) ∈ E, then (L(n), ?a, L′(n′)) ∈ ∆; otherwise L(n′) = L′(n′).
In this case, we write γ

n,a−−→ γ′ or simply γ −→ γ′. Intuitively, a step consists of a node n
broadcasting some message a which is then received by all of its neighbors; all the other
nodes do nothing. Notice that between steps, the set of nodes and edges do not change.

A run from the configuration γ to the configuation γ′ is a sequence of steps γ −→ γ1 −→
γ2 −→ . . . γk−1 −→ γ′. If a run exists between configurations γ and γ′ we denote it by γ

∗−→ γ′.
An execution is a run starting from an initial configuration.

Given a state f and a configuration γ we say that γ covers f if f ∈ L(γ), i.e., if the
state of some node in γ is f . We say that an execution γ0

∗−→ γ covers f , if γ covers f . The
coverability problem for broadcast protocols is to decide, given a broadcast protocol P and a
state f , whether there is an execution from some initial configuration that covers f . It is
known that the coverability problem is undecidable (Theorem 1 of [9]).

(a, 1) (b, 1) (c, 1) (d, 1) (e, 1)?ht0 !ht1 !ht1 ?ht0

(a, 0) (c, 0)

?ht1, ?ht1

(e, 0)!ht0 !ht0

Figure 1 Example of a broadcast protocol where we set I = {(a, 0), (a, 1)} and Σ = {hti, hti :
0 ≤ i ≤ 1}. If for a state (f, i), we have not depicted what happens when message m is received at
(f, i), we assume that (f, i) ?m−−→ (⊥, i). Here (⊥, 0) and (⊥, 1) are new sink states, i.e., states with
no outgoing transition.

▶ Example 2. We consider the broadcast protocol given in Figure 1. Figure 2 shows an
execution in this protocol covering the state (e, 0). Moreover, let γ = (N, E, L) be any initial
configuration and γ′ = (N′, E′, L′) be any configuration covering (e, 0) such that γ

∗−→ γ′.

FSTTCS 2021

35:4 Coverability in Bounded Path Broadcast Networks

(a, 0) (a, 1)

(a, 1) (a, 1)

!ht0

(c, 0) (b, 1)

(b, 1) (b, 1)

!ht1

3×

(c, 0) (c, 1)

(c, 1) (c, 1)

!ht1

3×

(c, 0) (d, 1)

(d, 1) (d, 1)

!ht0

(e, 0) (e, 1)

(e, 1) (e, 1)

Figure 2 Example of an execution covering (e, 0) in the broadcast protocol given in Figure 1.
The nodes marked in green make the broadcasts, i.e., first the node on the topmost left broadcasts
ht0, then all the other nodes broadcast ht1 in some order, and then ht1 in some order, and then the
node on the topmost left broadcasts ht0.

Hence, there is a node n such that L′(n) = (e, 0). Note that L(n) must be (a, 0). Hence n
must have broadcasted both ht0 and ht0 to move into the states (c, 0) and (e, 0) at different
points during the run. This means that all of the neighbors of n received ht0 at some point,
and so the labels of all of its neighbors in γ′ must be either (e, 1) or (⊥, 0) or (⊥, 1).

Suppose n′ is a neighbor of n such that L′(n′) = (e, 1). Notice that if there is a neighbor
n′′ ̸= n of n′ which was at (c, 0) during some point in the run, then n′′ must have broadcasted
ht0 during the run. However, then n′ would have received two ht0 messages, which would
have caused it to move into either (⊥, 0) or (⊥, 1). Hence, there is exactly one neighbor of n′

which was labelled by (c, 0) at some point during the run.
This protocol along with the above discussion will prove useful later on for the lower

bound reductions in section 5.

Bounded-path broadcast networks

Motivated by the undecidability of the coverability problem, the authors of [9] also study a
different variant of the problem, which we now describe.

Let P be a broadcast protocol and let k ≥ 1 be some number. Let γ be a configuration
of P. We say that γ is k-path bounded if the length of the longest simple path in γ is at
most k. Now, let Tk(P) be the restriction of the transition system T (P) to only k-path
bounded configurations. Notice that since the set of nodes and edges do not change during
a run, Tk(P) is closed under the step relation. The path bounded coverability problem
(Bounded-Path-Cover) is then defined as follows:

Given: A broadcast protocol P = (Q, I, Σ, ∆), a state f ∈ Q and a number k.
Decide: If there is an execution in Tk(P) which covers f .

The authors of [9] prove that this problem is decidable (Theorem 5 of [9]). The main
result that we prove in this paper is that

▶ Theorem 3. Bounded-Path-Cover is Fϵ0-complete.

Here Fϵ0 is a member of the fast-growing complexity class hierarchy. We refer the reader
to Section 2.3 of [19] for a description of the fast-growing hierarchy and the class Fϵ0 . To
prove the upper bound for our problem, we will consider the algorithm given in [9] and
analyze its running time by means of controlled-bad sequences of a suitable well-quasi order,
whose upper bounds will allow us to place Bounded-Path-Cover in the complexity class
Fϵ0 . The lower bound is proved by giving a logspace reduction from a known Fϵ0-hard
problem, which we now proceed to describe.

A. R. Balasubramanian 35:5

3 Nested counter systems (NCS)

A nested counter system is a generalisation of a usual counter system with higher-order
counters, i.e., counters which can themselves contain other (lower-order) counters. Intuitively,
an one-dimensional counter is a usual counter, which can either add or subtract 1. A
two-dimensional counter can either add or remove an one-dimensional counter, a three-
dimensional counter can either add or remove a two-dimensional counter and so on. Here,
we slightly alter the definition of nested counter systems as given in [8] so that it better
suits our purposes. It can be easily verified that our altered definition does not affect the
semantics of the system as given in [8].

A k-nested counter system (k-NCS) is a tuple N = (Q, δ) where Q is a finite set of states
and δ ⊆ ⋃

1≤i,j≤k+1(Qi × Qj) is a set of rules. The set CN of configurations of N is defined
to be the set of all labelled rooted trees of height atmost k, with labels from the set Q.

The operational semantics of N is defined in terms of the following transition relation
→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ be a rule with

i ≤ j ≤ k. We say that a configuration C can move to the configuration C ′ using the rule r

(denoted by C
r−→ C ′), if there is a path v0, v1 . . . , vi in C starting at the root such that for

every 0 ≤ l ≤ i, the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ i,
changing the label of each vl to q′

l and 2) for every i + 1 ≤ l ≤ j, creating a new vertex vl

with label q′
l and adding it as a child to vl−1.

Similarly, suppose r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ is a rule with j < i ≤ k. Then
C

r−→ C ′ if there is a path v0, v1, . . . , vi in C starting at the root such that for every 0 ≤ l ≤ i,
the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ j, changing the label
of each vl to q′

l and 2) removing the subtree rooted at the node vj+1.

▶ Example 4. Let us consider the NCS N given by the states Q = {pi, p′
i, qi, q′

i : 0 ≤ i ≤ 4}
and consisting of the following rules: r1 = ((q0, q1), (q′

0, q′
1, q′

2)), r2 = ((q′
0, q3, q2), (p0)), r3 =

((p0), (p′
0)). In Figure 3, we illustrate the application of these rules to a configuration of N .

q0

q1 q3

q2

q4

q2

r1

q′
0

q′
1

q′
2

q3

q2

q4

q2

r2

p0

q′
1

q′
2

r3

p′
0

q′
1

q′
2

Figure 3 Application of the rules r1, r2 and r3 to a configuration of N , which is described in
Example 4.

We say that C −→ C ′ if C
r−→ C ′ for some rule r. We let ∗−→ denote the reflexive and

transitive closure of → and we say that a configuration C reaches C ′ if C
∗−→ C ′. Given two

states qin, qf ∈ Q, we say that qin can cover qf if the (unique) configuration consisting of the
single root vertex labelled with qin can reach some configuration where the root is labelled
by qf . The coverability problem for an NCS is then the following: Given an NCS N and
two states qin, qf , can qin cover qf ? It is known that the coverability problem is Fϵ0-hard
(Theorem 7 of [8]).

FSTTCS 2021

35:6 Coverability in Bounded Path Broadcast Networks

Lossy semantics. In addition to the “usual” semantics of an NCS that we have described in
the previous section, we also need a lossy semantics which we now define here. Let N = (Q, δ)
be a k-NCS and let qin, qf ∈ Q. We say that there is a lossy step between configurations C

and C ′, if C ′ can be obtained from C by deleting the subtree rooted at some vertex v in C.
We let C 99K C ′ if either there is a lossy step between C and C ′ or C

r−→ C ′ for some rule r.
As usual, we let ∗99K denote the reflexive and transitive closure of 99K and we say that C

can reach C ′ in a lossy manner if C
∗99K C ′. We can then define the notion of the state qin

covering the state qf in a straightforward manner.
For configurations C, C ′, we say that C ≥ C ′ iff C ′ can be obtained from C by a sequence

of lossy steps. Since NCS do not have any zero tests, from the definition of the transition
relation, we can easily infer the following proposition.

▶ Proposition 5. If C1 ≥ C ′
1 and C ′

1
∗99K C ′

2 then there exists C2 ≥ C ′
2 such that C1

∗−→ C2.

Hence, we get the following corollary.

▶ Corollary 6. qf can be covered from qin in a lossy manner iff qf can be covered from qin

under the usual semantics.

This corollary will be useful later on in order to prove our hardness result.

4 A simulator protocol Psim

Throughout this section, let N = (Q, δ) be a fixed k-NCS with two fixed states qin and qf .
In this section, we will construct a broadcast protocol Psim = (Qsim, Isim, Σsim, δsim), a state
p of Psim, and define a notion of good initial configurations of Psim such that the following
property is satisfied: qf can be covered from qin in the NCS N iff p can be covered in
T2k(Psim) by some execution starting at a good initial configuration. Intuitively, the protocol
Psim will simulate the NCS N , provided that the initial configuration that it begins with is a
good initial configuration.

States, alphabet and good configurations. For each 0 ≤ i ≤ k, Psim will have
two states (start, i), (finish, i). For each 0 ≤ i ≤ k and each r ∈ δ, we will have
five states (req-rec[r], i), (req-fwd[r], i), (wait[r], i), (ack-rec[r], i), (ack-fwd[r], i). Fi-
nally, for each 0 ≤ i ≤ k and each q ∈ Q, Psim will have a state (q, i). No-
tice that each state of Psim is of the form (a, b) where a ∈ Q ∪ {start, finish} ∪
{req-rec[r], req-fwd[r], wait[r], ack-rec[r], ack-fwd[r]} and 0 ≤ b ≤ k. The first part
“a” will be called the base of the state and the second part “b” will be called the grade. Some-
times we will abuse notation and refer to the base (resp. grade) of a node in a configuration
to mean the base (resp. grade) of the label of that node.

The initial set of states Isim will be the set {(qin, 0)} ∪ {(start, i) : 1 ≤ i ≤ k}. (The
asymmetry in the initial set of states between the case of 0 and others will be discussed in the
following paragraphs). The alphabet Σsim will be the set {beginr

i , endr
i : r ∈ δ, 0 ≤ i ≤ k}.

A configuration γ of Psim is called good if γ is a tree of height at most k such that 1) the
base of the label of every node is in the set Q ∪ {start, finish}, 2) there is exactly one node n
labelled by a state of grade 0, which will be called the root of γ and, 3) every node at distance
i from n is labelled by a state of grade i. Notice that if γ is a good initial configuration then
γ ∈ T2k(P). Further, notice that in a good initial configuration, the root must be labelled by
(qin, 0) and every node at distance i from the root is labelled by (start, i).

A. R. Balasubramanian 35:7

Intuition behind good configurations of Psim. Before we describe the transition relation
of Psim, we describe some intuition behind the notion of a good configuration.

Let γ be a good configuration of Psim. Notice that there is a way to map γ to a
configuration of N : First, forget all the grades from the labels of each node in γ and just
keep the bases. Next, remove all nodes whose label is either start or finish and from the
resulting forest, pick the tree T containing the root. In this way, to every good configuration
γ of Psim we can define a configuration E(γ) of N . Hence, we can use good configurations of
Psim to encode configurations of N and this is the reason behind defining good configurations
of Psim. An example of this mapping is given in Figure 4.

Further, notice that if γ is any good initial configuration, then E(γ) is the initial config-
uration of N . This is the reason behind the asymmetry in the definition of the initial set of
states between the case of 0 and others.

(q0, 0)

(q1, 1)

(finish, 2)

(start, 1)

(q2, 2)

(q3, 1)

(q2, 2)

(q4, 3)

(start, 2)

(q4, 3)

q0

q1 q3

q2

q4

Figure 4 An example of the map E between good configurations of P and configurations of N .
On the left is a good configuration γ of P and on the right is its corresponding mapped configuration
E(γ) of N .

4.1 Transitions involving the letters beginr
i and endr

i

For the rest of this section, let us fix a rule r = ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ where i, j ≤ k

and let w = max(i, j). For the sake of uniformity, if i < j, then let ql = start for every
i < l ≤ j. If i > j, then let q′

l = finish for every j < l ≤ i.
Intuitively, the gadget that we will demonstrate will use the messages beginr

i and endr
i

to find a path n0, . . . , nw labelled by (q0, 0), (q1, 1), . . . , (qw, w) and then change the labels
along this path to (q′

0, 0), (q′
1, 1), . . . , (q′

w, w). Notice that if i ≤ j, this means that a path
of the form (q0, 0), . . . , (qi, i), (start, i + 1), . . . , (start, j) becomes (q′

0, 0), . . . , (q′
i, i), (q′

i+1, i +
1), . . . , (q′

j , j). Similarly, if i > j then a path of the form (q0, 0), . . . , (qj , j), . . . (qi, i) becomes
(q′

0, 0), . . . , (q′
j , j), (finish, j + 1), . . . , (finish, i). This would then allow us to simulate the rule

r on good configurations of Psim.
Formally, we now describe the transitions involving the letters {beginr

i , endr
i : 0 ≤ i ≤ k}.

First, we make a small remark:

▶ Remark 7. In the following, if we do not specify what happens upon receiving a message
m from a state with base a and grade b, then it is to be assumed that (a, b) ?m−−→ (finish, b).

The “gadget” for “simulating” the rule r. We now present the main transitions involving
the messages beginr

i and endr
i .

FSTTCS 2021

35:8 Coverability in Bounded Path Broadcast Networks

First, we have four transitions

(q0, 0) !beginr
0−−−−→ (req-fwd[r], 0) ?beginr

1−−−−−→ (wait[r], 0) ?endr
1−−−−→ (ack-rec[r], 0) !endr

0−−−→ (q′
0, 0)

Then, for every 1 ≤ l ≤ w − 1, we have

(ql, l)
?beginr

l−1−−−−−−→ (req-rec[r], l)
!beginr

l−−−−→ (req-fwd[r], l)
?beginr

l+1−−−−−−→ (wait[r], l)

(ack-rec[r], l)
!endr

l−−−→ (ack-fwd[r], l)
?endr

l−1−−−−−→ (q′
l, l)

?endr
l+1

Finally, we have four transitions

(qw, w)
?beginr

w−1−−−−−−→ (req-rec[r], w)
!beginr

w−−−−→ (wait[r], w)
!endr

w−−−−→ (ack-fwd[r], w)
?endr

w−1−−−−−−→ (q′
w, w)

Self-loops. While the previous gadget comprised the main transitions involving beginr
i

and endr
i , for technical reasons we need the following self-loop transitions as well: For

every state with base a ∈ Q ∪ {start, finish} and grade 1 ≤ i ≤ k, there are two transitions
(a, i)

?beginr
i−1−−−−−−→ (a, i) and (a, i)

?endr
i−1−−−−−→ (a, i).

This finishes our description of the transition relation of Psim.

Intuition behind the transitions. We now give a brief intuition behind the gadget in the
case of w = 2. Notice that only the root n0 in a good configuration can be labelled by (q0, 0).
Hence if n0 broadcasts beginr

0, it is forwarding its request of wanting to simulate the rule
r to its children. The children have two choices: either stay where they are by means of
the self-loops or receive the request and move to (req-rec[r], 1). Atleast one child n1 has
to receive the request and move, otherwise the configuration enters into a deadlock. From
(req-rec[r], 1) n1 can forward this request to its children by broadcasting beginr

1 (and also
let n0 know that is has received its request, whereby it enters a waiting mode). Notice that
if two children of n0 forward the request, then n0 will enter (finish, 0) and the simulation of
the rule r cannot happen. Similarly, some child n2 of n1 must receive the request of n1, move
to (req-rec[r], 2), then broadcast beginr

2. At this point, the base of each ni is wait[r].
Now n2 can broadcast endr

2, forwarding an acknowledgment to the request made by n1.
n1 can receive this acknowledgment and broadcast endr

1, forwarding an acknowledgment to
n0 which can broadcast endr

0 and move to (q′
0, 0). At this point, the labels of n0, n1 and n2

are (q′
0, 0), (q′

1, 1) and (q′
2, 2) respectively, which means that we have changed the labels along

a path from (q0, 0), (q1, 1) and (q2, 2) to (q′
0, 0), (q′

1, 1) and (q′
2, 2).

4.2 Proof of correctness
The following lemma tells us that we can use good configurations of Psim along with the
gadget for the rule r described in the previous section to simulate steps of N .

▶ Lemma 8 (Psim simulates N). Suppose C
r−→ C ′ is a step in the NCS N . Suppose γ is

a good configuration such that 1) E(γ) = C and, 2) there is a path n0, . . . , nw in γ where
the label of each nl is (ql, l). Then there is a good configuration γ′ with γ

∗−→ γ′ such that 1)
E(γ′) = C ′ and, 2) γ′ is the same as γ except the label of each nl is (q′

l, l).

A. R. Balasubramanian 35:9

Proof sketch. For ease of presentation, we provide the proof in the case of w = 2. This
proof can be generalized to any w in a straightforward manner.

The proof for w = 2 is essentially the same argument that is given in the intuition
paragraph. Throughout the run that we are going to describe, if a node n /∈ {n0, n1, n2}
receives a message, then it will always take the self-loop transitions that we have constructed
in the gadget for the rule r.

From γ, n0 broadcasts beginr
0 and moves to (req-fwd[r], 0) and n1 receives it and moves

to (req-rec[r], 1). Then, n1 broadcasts beginr
1 and moves to (req-fwd[r], 1) and n0 and n2

receive it and move to (wait[r], 0) and (req-rec[r], 2) respectively. Then, n2 broadcasts
beginr

2 and moves to (wait[r], 2) and n1 receives it and moves to (wait[r], 1). Notice that at
this point, the base of each ni is wait[r] and the labels of all the other nodes are unchanged,
i.e., the same as the labels in γ.

Now, we proceed in the reverse direction. n2 broadcasts endr
2 and moves to (ack-fwd[r], 2)

and n1 receives it and moves to (ack-rec[r], 1). Then, n1 broadcasts endr
1 and moves to

(ack-fwd[r], 1) and n0 and n2 receive it and move to (ack-rec[r], 0) and (q′
2, 2) respectively.

Then, n0 broadcasts endr
0 and moves to (q′

0, 0) and n1 receives it and moves to (q′
1, 1). It is

clear that the configuration reached at the end of this run satisfies the required properties. ◀

We now show a partial converse to the above lemma. It says that if there is a run of good
configurations which uses only the transitions given in the gadget for the rule r and begins
and ends with the root being in (q0, 0) and (q′

0, 0), then it is possible to “lift” that run back
to the corresponding configurations in the NCS N .

▶ Lemma 9 (N simulates Psim). Suppose γ
∗−→ γ′ where 1) γ is a good configuration, 2) the

labels of the root in γ and γ′ are (q0, 0) and (q′
0, 0) and 3) in all the configurations between γ

and γ′, the base of the root is in the set {req-fwd[r], wait[r], ack-rec[r]}. Then, 1) γ′ is a
good configuration and, 2) E(γ) ∗99K E(γ′).

Proof sketch. Let the run γ
∗−→ γ′ be of the form γ = γ0 −→ γ1 −→ . . . γm−1 −→ γm = γ′. By

means of induction and some extensive case analysis on the gadget that we have constructed,
we can first prove that there exists a path n0, n1, . . . , nw in γ with the following properties:

For each 0 ≤ l ≤ w, the label of nl is (ql, l) in γ and (q′
l, l) in γ′.

For each 0 ≤ l ≤ w, nl broadcasts exactly two messages: beginr
l and endr

l .
For each 0 ≤ l < w, the only child of nl that broadcasts a message in the run is nl+1.

We then let Ch(nl) denote the set of children of nl. Notice that the only node which could
broadcast a message in γ0 is n0 and so it must be the case that γ0

n0,beginr
0−−−−−−→ γ1. Now, suppose,

for some 0 ≤ l < w, we have shown that it must be the case that γ0
n0,beginr

0−−−−−−→ γ1 . . . γl
nl,beginr

l−−−−−→
γl+1. Then, notice that the only nodes whose labels in γl+1 could have an outgoing broadcast
transition are the nodes in

⋃
0≤l′<l(Ch(nl′)\{nl′+1})∪Ch(nl). By our claim, among these only

nl+1 broadcasts a message and so we must have that γl+1
nl+1,beginr

l+1−−−−−−−−→ γl+2. Hence, in this way
we get that γ0

n0,beginr
0−−−−−−→ . . . γw

nw,beginr
w−−−−−−→ γw+1. In exactly the same way, we can show that it

must be the case that γw+1
nw,endr

w−−−−−→ γw+2
nw−1,endr

w−1−−−−−−−−−→ γw+3 . . . γ2w+1
n0,endr

0−−−−−→ γ2w+2 = γm.
Let S be the set of all nodes whose base in γ belonged to Q∪{start} and whose base in γ′

is finish. (Notice that S ⊆ ⋃
0≤l<w Ch(nl) and S ∪ {n0, . . . , nw} are exactly the set of nodes

whose labels have changed during the run). It is then easy to see that, by firing the rule r

from E(γ) and then deleting all the subtrees whose roots are in S, we get E(γ) ∗99K E(γ′). ◀

With these two “simulation” lemmas, we have the following main result.

▶ Theorem 10. The state qin can cover the state qf in the NCS N iff (qf , 0) can be covered
by some execution in P starting at a good initial configuration.

FSTTCS 2021

35:10 Coverability in Bounded Path Broadcast Networks

5 A seeker protocol Pseek

In the previous section, we have shown that given a k-NCS N = (Q, δ) along with two states
qin, qf ∈ Q, we can construct a simulator protocol Psim, such that qin can cover qf in N iff
(qf , 0) can be covered in Psim by an execution starting at a good initial configuration. In
this section, we will construct a seeker protocol Pseek and “attach” it to Psim which will let
us get rid of the goodness assumption. The seeker protocol Pseek will begin at an arbitrary
initial communication topology and seek for a subgraph to act as a good initial configuration
for Psim. Hence, once we have deployed Pseek to find such a subgraph, we can then use Psim
to simulate the k-NCS N on this subgraph.

Formally, the seeker protocol Pseek = (Qseek, Iseek, Σseek, δseek) will be a generalization of
the protocol given in Figure 1 (with the exception that the (e, i) and (⊥, i) states will be
replaced by (start, i) and (finish, i) respectively).

States and alphabet. For each 0 ≤ i ≤ k, Pseek will have six states of the form
(a, i), (b, i), (c, i), (d, i), (start, i) and (finish, i). Notice that (start, i) and (finish, i) are also
present in Psim. Pseek will also have the state (qin, 0), which is a part of Psim as well. Similar
to Psim, we can define base and grade of a state.

The initial set of states will be {(a, i) : 0 ≤ i ≤ k}. For each 0 ≤ i ≤ k, Σseek will have
two letters: hti and hti. Σseek will also have another additional letter: transfer.

Transitions. Before we define the set of transitions, we make the same convention for Pseek
that we had made in Remark 7 for Psim. Having stated this, we now describe the transitions:

For the case of i = 0, we have the following transitions:

(a, 0) (c, 0)

?ht1, ?ht1

(start, 0) (qin, 0)!ht0 !ht0 !transfer

For the case of 1 ≤ i ≤ k, we have the following transitions: (The self-loops over the state
(c, i) are not included when i = k).

(a, i) (b, i) (c, i) (d, i) (start, i)
?hti−1 !hti

?hti+1, ?hti+1

!hti ?hti−1

?transfer

Intuition behind the transitions. Let us give a brief intuition behind the transitions in
the case of k = 2. A node n0 which is at (a, 0) aims to become the root of the good initial
configuration that the seeker protocol should find, and so broadcasts ht0, letting its neighbors
know that it wants to be the root of the good subgraph. If any neighbor of n0 is not in (a, 1)
then it immediately moves to a state with base finish. Otherwise, the set of all neighbors in
(a, 1) move to (b, 1). From here, all of these nodes can broadcast ht1, letting their neighbors
know that they now want to become a child of the root. All these messages will also be
received n0 which will use the self-loop at (c, 0) to ignore these messages. All the nodes
which receive a ht1 message can either move to a state with base finish or move to (b, 2),
from where they can broadcast ht2 and thereby move to (c, 2). At this point, we must have
a tree subgraph in which n0 is labelled by (c, 0), its children are labelled by (c, 1) and its
children are labelled by (c, 2).

A. R. Balasubramanian 35:11

Now the nodes labelled by (c, 2) can all broadcast ht2, then the nodes labelled by (c, 1)
can all broadcast ht1 and then the node n0 can broadcast ht0. This leads to a tree subgraph
where n0 is labelled by (start, 0), its children are labelled by (start, 1) and its children are
labelled by (start, 2). Now, n0 can broadcast the letter “transfer” and move into (qin, 0),
thereby transferring the control over to the simulator protocol Psim. In this manner, Pseek
has found a good initial subgraph in which to run Psim.

Proof of correctness. Let P = (Qseek ∪Qsim, Iseek, Σseek ∪Σsim, δseek ∪ δsim) be the protocol
obtained by taking the union of the seeker and the simulator protocols, such that the initial
set of states is the initial set of states of the seeker protocol. Similar to the intuition given
above, the protocol P first runs the seeker protocol till a node with label (qin, 0) is reached,
at which point it runs the simulator protocol. The following lemma tells us that if a node
gets labelled by (qin, 0) while running P, then with that node as the root, there is a good
initial configuration for the simulator protocol Psim. This then allows us the protocol P to
run the simulator protocol on this good initial configuration.

▶ Lemma 11. Suppose γ
∗−→ γ′ n,transfer−−−−−−→ η is an execution of P. After removing all nodes

whose label’s base is finish in η, the connected component containing the node n is a good
initial configuration for the simulator protocol Psim.

Proof sketch. First, let us focus on the execution γ
∗−→ γ′. By definition of an execution, γ

is an initial configuration for the protocol Pseek and so all the nodes in γ have their labels in
the set {ai : 0 ≤ i ≤ k}.

Let T be the connected component containing the node n in γ′ after removing all nodes
whose base is finish. Let F := {(start, i) : 0 ≤ i ≤ k}. First, we show that all nodes in T

must have labels from the set F . Suppose there is a node n′ in T whose label is not in F .
Pick such an n′ which is at the shortest distance from n and let n = n0, n1, n2, . . . , nl, n′ be a
shortest path from n to n′.

By a generalization of the argument given in Example 2, we can prove by induction that
for each 1 ≤ i ≤ l, the label of each ni in T is (start, i) and the only neighbor of ni which
was labelled by (c, i − 1) at some point during the run is ni−1. Using this, we can then show
that n′ must have moved to (start, l + 1) at some point during the run.

By assumption, the label of n′ is not (start, l + 1) in T , and so it must moved out of
(start, l +1) to some state of the simulator protocol. By analysing the constructed protocol P ,
we can then prove that n′ must have received two htl messages. But any node that receives
two htl messages must necessarily move to a state with base finish, contradicting the fact
that n′ ∈ T .

Having proved that every node in T has its label in F , we can then show by examining the
structure of the transitions, that T must be a tree of height atmost k such that n0 is labelled
by (start, 0) and all nodes at distance i from n0 are labelled by (start, i). This then implies
that after removing all nodes with base finish in η, the connected component containing the
node n is a good initial configuration for the simulator protocol. ◀

▶ Theorem 12. The state qin can cover qf in the NCS N iff the state (qf , 0) can be covered
from any initial configuration in T2k(P).

Proof sketch. Due to lack of space, we focus only on the right to left implication. Suppose
γ

∗−→ γ′ is an execution of P such that some node n in γ′ is labelled by (qf , 0). Let γ0 be
the configuration along this run when the node n first got the label (qin, 0). (Notice that

FSTTCS 2021

35:12 Coverability in Bounded Path Broadcast Networks

such a configuration must exist because of the construction of P). By Lemma 11, in γ0,
if we remove all nodes whose base is finish, then we get a good initial configuration T for
Psim with n as the root. Notice that no node with base finish can ever broadcast a message.
Hence, in the run γ0

∗−→ γ′, none of the nodes in T ever receive a message from any node
outside of T . It follows that we can restrict the run γ0

∗−→ γ′ to only the subtree T , to get a
run of Psim starting at a good initial configuration and covering (qf , 0). By Theorem 10, we
get that qf can be covered from qin in N . ◀

Hence, we get,

▶ Corollary 13. Bounded-Path-Cover is Fϵ0-hard.

6 Upper bound for Bounded-Path-Cover

In this section, we give a sketch of the proof that Bounded-Path-Cover is in Fϵ0 . Let
P = (Q, I, Σ, ∆) be a fixed protocol.

▶ Definition 14. Let γ1 = (N1, E1, L1) and γ2 = (N2, E2, L2) be two configurations of P. We
say that γ1 is an induced subgraph of γ2 (denoted by γ1 ⪯is γ2) if there is a label preserving
injection h from N1 to N2 such that (n, n′) ∈ E1 if and only if (h(n), h(n′)) ∈ E2.

It is known that, for any k ≥ 1, the set of all k-path bounded configurations of P is a
well-quasi ordering under the induced subgraph relation ⪯is (Theorem 2.2 of [10]). Using this
fact, the authors of [9] show that for every k, the transition system Tk(P) is a well-structured
transition system (WSTS) and then apply the generic backward exploration algorithm for
WSTS (See [20, 13]) to prove that Bounded-Path-Cover is decidable. By using the
standard and generic complexity arguments for WSTS (See [20, 13, 21]), an upper bound on
the running time of their procedure simply boils down to estimating the length of controlled
bad sequences of k-path bounded configurations under the induced subgraph relation.

Let H : N → N be the successor function and let n ∈ N. For each i ∈ N, let Hi denote
the i-fold application of H to itself i times, with H0 being the identity function.

▶ Definition 15. A sequence γ0, γ1, . . . , of k-path bounded configurations is (H, n)-controlled
bad if the number of nodes in each γi is at most Hi(n) and γi ̸⪯is γj for any i < j.

Our main result is an upper bound on the length of (H, n)-controlled bad sequences
of k-path bounded configurations, by embedding these configurations into the well-quasi
ordering of generalized priority alphabets (See [16]). This encoding is inspired by a similar
encoding given for bounded depth trees in Section 8.1 of [16]. This result then allows us to
prove that

▶ Theorem 16. Bounded-Path-Cover is in Fϵ0 and hence Fϵ0-complete.

References
1 Sergio Abriola, Santiago Figueira, and Gabriel Senno. Linearizing well quasi-orders and

bounding the length of bad sequences. Theor. Comput. Sci., 603:3–22, 2015. doi:10.1016/j.
tcs.2015.07.012.

2 Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Reconfiguration and message
losses in parameterized broadcast networks. Log. Methods Comput. Sci., 17(1), 2021. URL:
https://lmcs.episciences.org/7280.

3 Michael Blondin. The abcs of petri net reachability relaxations. ACM SIGLOG News,
7(3):29–43, 2020. doi:10.1145/3436980.3436984.

A. R. Balasubramanian 35:13

4 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. The logical view on
continuous petri nets. ACM Trans. Comput. Log., 18(3):24:1–24:28, 2017. doi:10.1145/
3105908.

5 Michael Blondin and Christoph Haase. Logics for continuous reachability in petri nets and
vector addition systems with states. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005068.

6 Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity of lossy channel
systems. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer
Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 205–216, 2008. doi:
10.1109/LICS.2008.47.

7 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for petri nets is not elementary. In Moses Charikar and Edith
Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 24–33. ACM, 2019.
doi:10.1145/3313276.3316369.

8 Normann Decker and Daniel Thoma. On freeze LTL with ordered attributes. In Bart Jacobs
and Christof Löding, editors, Foundations of Software Science and Computation Structures -
19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 269–284. Springer,
2016. doi:10.1007/978-3-662-49630-5_16.

9 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verification of
ad hoc networks. In CONCUR 2010 - Concurrency Theory, 21th International Conference,,
pages 313–327, 2010. doi:10.1007/978-3-642-15375-4_22.

10 Guoli Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489–502,
1992. doi:10.1002/jgt.3190160509.

11 Jacob Elgaard, Nils Klarlund, and Anders Møller. Mona 1.x: New techniques for ws1s and
ws2s. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification, pages 516–520,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

12 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip
Niksic. An smt-based approach to coverability analysis. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer,
2014. doi:10.1007/978-3-319-08867-9_40.

13 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and primitive-recursive bounds with dickson’s lemma. In Proceedings of the 26th Annual IEEE
Symposium on Logic in Computer Science, pages 269–278, 2011. doi:10.1109/LICS.2011.39.

14 Estíbaliz Fraca and Serge Haddad. Complexity analysis of continuous petri nets. Fundam.
Informaticae, 137(1):1–28, 2015. doi:10.3233/FI-2015-1168.

15 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture
Notes in Computer Science, pages 112–124. Springer, 2014. doi:10.1007/978-3-319-11439-2_
9.

16 Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The power of priority channel
systems. Log. Methods Comput. Sci., 10(4), 2014. doi:10.2168/LMCS-10(4:4)2014.

17 Albert R. Meyer. Weak monadic second order theory of succesor is not elementary-recursive.
In Rohit Parikh, editor, Logic Colloquium, pages 132–154, Berlin, Heidelberg, 1975. Springer
Berlin Heidelberg.

FSTTCS 2021

35:14 Coverability in Bounded Path Broadcast Networks

18 Sylvain Schmitz. Complexity bounds for ordinal-based termination - (invited talk). In
Reachability Problems - 8th International Workshop, RP 2014, pages 1–19, 2014. doi:10.
1007/978-3-319-11439-2_1.

19 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1–3:36, 2016. doi:10.1145/2858784.

20 Sylvain Schmitz and Philippe Schnoebelen. Multiply-recursive upper bounds with higman’s
lemma. In Automata, Languages and Programming - 38th International Colloquium, ICALP
2011, pages 441–452, 2011. doi:10.1007/978-3-642-22012-8_35.

21 Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In Pedro R.
D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013 - Concurrency Theory - 24th
International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings, volume 8052 of Lecture Notes in Computer Science, pages 5–24. Springer, 2013.
doi:10.1007/978-3-642-40184-8_2.

A Appendix

A.1 Proofs for Section 6
First, let us describe the backward exploration algorithm for solving Bounded-Path-Cover
that is given in Section 5 of [9]. Given a protocol P = (Q, I, Σ, δ), a state f and a number k, we
consider the set of all configurations in Tk(P) with the induced subgraph ordering ⪯is. Given a
set S of Tk(P) we let ↑ S := {γ′ : ∃γ ∈ S, γ ⪯is γ′}. A set S is called upward-closed if S =↑ S.

In Section 5 of [9], the following results are proved about Tk(P):
If S is upward-closed, then there exists a finite set B such that ↑ B = S. Such a B will
be called the basis of S.
If S is upward-closed and if Pre(S) is the set of all configurations γ′ ∈ Tk(P) such that
there is a configuration γ ∈ S with γ′ −→ γ, then S ∪ Pre(S) is upward-closed. Moreover,
given a basis B of S, we can compute a basis B′ of S ∪ Pre(S) such that the number
of nodes of each configuration in B′ is at most one more than the maximum number of
nodes in any configuration of B.

In Theorem 5 of [9] it is shown that the following algorithm terminates and is correct
for Bounded-Path-Cover : Construct a sequence of finite sets B0, B1, . . . , such that
each Bi ⊆ Tk(P), B0 is the single node configuration labelled by f and Bi+1 is a basis for
↑ Bi ∪ Pre(↑ Bi). The algorithm then finds the first m such that ↑ Bm =↑ Bm+1 and checks
if there is an initial configuration in ↑ Bm.

The running time complexity of the algorithm is mainly dominated by the length of the
sequence B0, B1, . . . , Bm. Since m is the first index such that ↑ Bm =↑ Bm+1, we can find a
minimal element γi ∈↑ Bi+1\ ↑ Bi for each i < m.

Consider the sequence γ0, . . . , γm−1. Notice that γi ̸⪯is γj for any j > i and further the
number of nodes in each γi is at most Hi(1), where H is the successor function. It follows
that γ0, . . . , γm−1 is a controlled bad sequence. Our main result is that

▶ Lemma 17. The length of (H, n)-controlled bad sequences over k-path bounded configur-
ations of P is upper bounded by the function Fϵ0(p(|Q|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some fixed primitive recursive
function. For our purposes, we do not need the actual definition of Fϵ0 , but we only need to
know that Fϵ0 contains the set of problems whose running time is upper bounded by the
function Fϵ0 composed with any primitive recursive function (See [19]). By the lemma above
and the fact that the running time complexity of the algorithm for Bounded-Path-Cover
is primarily dominated by the length of (H, 1)-controlled bad sequences we get,

A. R. Balasubramanian 35:15

▶ Theorem 18. Bounded-Path-Cover is in Fϵ0 .

All that suffices is to prove Lemma 17. To do so, we will reduce the problem of estimating
the length of controlled bad sequences over k-path bounded configurations to the problem of
estimating the length of controlled bad sequences over another well-quasi order for which we
already know upper bounds. We now proceed to recall this well-quasi order as it is defined
in [16].

Generalized priority alphabets

Given a number k ∈ N called the priority level and a finite set Γ, a generalised priority
alphabet is the set ΣΓ,k := {(a, i) : a ∈ Γ, 0 ≤ i ≤ k}. Given m = (a, i) ∈ ΣΓ,k, we say that i is
the priority of m. Then for x, y ∈ Σ∗

Γ,k, we say that x ⊑Γ,k y if x = (a1, i1), (a2, i2), . . . , (al, il)
where each (aj , ij) ∈ ΣΓ,k and y = y1(a1, i1)y2(a2, i2)y3 . . . yl(al, il) such that ∀1 ≤ j ≤ l, we
have yj ∈ Σ∗

Γ,ij
, i.e., x can be obtained from y by removing subwords in such a manner so that

the priority of each removed subword is not bigger than the first preserved letter to its right.
It is known that for every k and Γ, the ordering ⊑Γ,k is a well-quasi ordering. (Theorem
3.6 of [16]). Now, similar to controlled bad sequences for k-path bounded configurations, we
can define (a slightly different notion of) controlled bad sequences for words over ΣΓ,k. Let
Sq : N → N be the squaring function and let Sqi denote the squaring function composed
with itself i times.

▶ Definition 19. A sequence w0, w1, . . . , of words over ΣΓ,k is (Sq, n)-controlled bad if the
length of each wi is at most Sqi(n) and wi ̸⊑Γ,k wj for any i < j.

Encoding k-path bounded graphs using generalized priority alphabets

A labelled k-path bounded graph is any graph G = (N, E, L) such that there is a labelling
function L : N → A for some some finite set A. (Notice that the set of k-path bounded
configurations of a protocol is a labelled k-path bounded graph where A is the set of states
of the protocol). We have the following theorem regarding labelled k-path bounded graphs.

▶ Theorem 20 (Lemma 2.1 of [10]). Suppose G is a labelled k-path bounded graph for
k ≥ 1. Then there is a node n such that every connected component of G \ {n} is a labelled
(k − 1)-path bounded graph.

This theorem suggests the following inductive encoding of labelled k-path bounded graphs
as strings over a priority alphabet: Let G = (N, E, L) be any labelled graph with labelling
function L : N → A where A is some finite set. Let e, ē be two symbols not in the finite set
A and let Ak := ∪0≤i≤kA × {e, ē}i. Notice that A0 := A. By induction on k, we will now
define a string ⟨G⟩ ∈ ΣAk,k.

Base case: If G is a 0-path bounded configuration, then G is a single node n and can be
encoded as (L(n), 0) ∈ Σ∗

A0,0.
Induction step: Suppose G is a k-path bounded configuration for some k ≥ 1 such that

G is not (k − 1)-path bounded. Let n be a vertex such that all the connected components
C1, . . . , Cl of G \ {n} are (k − 1)-path bounded configurations. (Such a node exists by
Theorem 20). For every node n′ in every Ci, first change its label from L(n′) to (L(n′), e) if
n′ is a neighbor of n in G and otherwise change its label to (L(n′), ē). Call these new labelled
graphs as Cn

1 , . . . , Cn
l .

By induction hypothesis, for each Cn
i , we have a string ⟨Cn

i ⟩ ∈ Σ∗
((A×{e,ē})k−1,k−1) ⊆

Σ∗
Ak,k−1. We now let ⟨G⟩ := ⟨Cn

1⟩(L(n), k)⟨Cn
2⟩(L(n), k) . . . ⟨Cn

l ⟩(L(n), k).

FSTTCS 2021

35:16 Coverability in Bounded Path Broadcast Networks

Notice that if G is a labelled k-path bounded graph which is not (k − 1)-path bounded,
then ⟨G⟩ is of the form ⟨Cn

1⟩(a, k)⟨Cn
2⟩(a, k) . . . ⟨Cn

l ⟩(a, k) where 1) a is the label of some node
n in G, 2) C1, . . . , Cl are connected components of G \ {n} which are labelled (k − 1)-path
bounded subgraphs of G. This will be called the decomposition of ⟨G⟩ and the node n will
be called its crown.

We then have the following lemma:

▶ Lemma 21. If G and H are such that ⟨G⟩ ⊑Ak,k ⟨H⟩ then G ⪯is H.

Proof. Notice that if ⟨G⟩ ⊑Ak,k ⟨H⟩, then the highest priority appearing in ⟨G⟩ and ⟨H⟩
must be the same, which, without loss of generality, we can assume to be k.

We prove the lemma by induction on k. The base case of 0 is clear.
For the induction step, let ⟨Cn

1⟩(a, k)⟨Cn
2⟩(a, k) . . . ⟨Cn

m⟩(a, k) be the decomposition of
⟨G⟩ with crown n and let ⟨Dn′

1 ⟩(a′, k)⟨Dn′
2 ⟩(a′, k) . . . ⟨Dn′

n ⟩(a′, k) be the decomposition of ⟨H⟩
with crown n′. Since ⟨G⟩ ⊑Ak,k ⟨H⟩, it must be the case that a = a′.

By definition of the ⊑Ak,k relation, it must be the case that for every Cn
j , there exists

ij such that ⟨Cn
j ⟩ ⊑Ak,k−1 ⟨Dn′

ij
⟩. Notice that the priority has reduced and we can apply

the induction hypothesis to conclude that for each j, Cn
j ⪯is Dn′

ij
and so there exists a label

preserving injection hj from the nodes of Cn
j to the nodes of Dn′

ij
such that (u, v) is an edge

in Cn
j iff (hj(u), hj(v)) is an edge in Dn′

ij
.

Now, consider the following label preserving injection h from G to H: Map the crown n
to the other crown n′ and if n′′ is any other node in any one of the connected components
Cj , then map n′′ to hj(n′′). Notice that if u and v are nodes in G which belong to the same
connected component of G \ {n} then (u, v) is an edge in G iff (h(u), h(v)) is an edge in
H. Similarly, if u and v are nodes in G which belong to different connected components of
G \ {n} then h(u) and h(v) also belong to different connected components of H \ {n′} and so
the statement “(u, v) is an edge in G iff (h(u), h(v)) is an edge in H” is vacously true.

Finally suppose u = n and v is some other node of G. Notice that the last field in the
label of v is e if (u, v) is an edge in G and ē otherwise. By definition of h we have that
h(u) = n′ and also that the label of h(v) is the same as v. But by definition of decomposition
of ⟨H⟩, the last field in the label of h(v) is e if (n′, h(v)) is an edge in H and ē otherwise.
Hence, in this case as well, we have shown that (u, v) is an edge in G iff (h(u), h(v)) is an
edge in H. This concludes the proof. ◀

Upper bound on the length of controlled bad sequences for k-path bounded
configurations

Fix a protocol P with states Q and a number k and consider the set of configurations in
Tk(P). By the previous lemma, we can infer that the length of the longest (H, n)-controlled
bad sequence over the set of configurations of Tk(P) is at most the length of the longest
(Sq, n)-controlled bad sequence over the generalized priority alphabet ΣQk,k, which we know
is at most Fϵ0(p(|Q|, k, n)) where p is some primitive recursive function (Proposition 4.1 and
Sections 4.1.1 and 4.1.2 of [16]). This then implies Lemma 17, which is what we wanted to
prove.

Appendix C

Complexity of Coverability in
Depth-Bounded Processes
(CONCUR 2022)

This section contains a reprinting of the following paper, which has been pub-
lished as a peer-reviewed conference paper.

A. R. Balasubramanian. Complexity of Coverability in Depth-Bounded
Processes. In conference proceedings of CONCUR 2022. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Vol. 243 of LIPIcs,
Pages - 17:1-17:19. doi: 10.4230/LIPIcs.CONCUR.2022.17

According to the Open Access Policy of LIPIcs (Leibniz International Pro-
ceedings in Informatics) by Schloss Dagstuhl Leibniz-Zentrum für Informatik,
the author of this thesis is permitted to include the above paper in this thesis.
The relevant excerpt is the following:

LIPIcs volumes are peer-reviewed and published according to the
principle of OpenAccess, i.e., they are available online and free of
charge. The authors retain their copyright.

For more information, please see https://www.dagstuhl.de/en/publish
ing/series/details/LIPIcs, in particular, the section on Open Access Policy.

Summary
We consider the class of depth-bounded processes in π-calculus. These processes
are the most expressive fragment of π-calculus, for which verification problems
are known to be decidable. The decidability of the coverability problem for
this class has been achieved by means of well-quasi-orders. In this work, we
characterize the complexity of coverability for depth-bounded processes and

120

10.4230/LIPIcs.CONCUR.2022.17
https://www.dagstuhl.de/en/publishing/series/details/LIPIcs
https://www.dagstuhl.de/en/publishing/series/details/LIPIcs

prove that it is Fϵ0-complete, where Fϵ0 is a class in the fast-growing hierarchy
of complexity classes.

Contributions of the author of this thesis
I am the sole author of this paper.

121

Complexity of Coverability in Depth-Bounded
Processes
A. R. Balasubramanian #Ñ

Technische Universität München, Germany

Abstract
We consider the class of depth-bounded processes in π-calculus. These processes are the most
expressive fragment of π-calculus, for which verification problems are known to be decidable. The
decidability of the coverability problem for this class has been achieved by means of well-quasi
orders. (Meyer, IFIP TCS 2008; Wies, Zufferey and Henzinger, FoSSaCS 2010). However, the precise
complexity of this problem has not been known so far, with only a known EXPSPACE-lower bound.

In this paper, we prove that coverability for depth-bounded processes is Fϵ0 -complete, where Fϵ0

is a class in the fast-growing hierarchy of complexity classes. This solves an open problem mentioned
by Haase, Schmitz, and Schnoebelen (LMCS, Vol 10, Issue 4) and also addresses a question raised
by Wies, Zufferey and Henzinger (FoSSaCS 2010).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Distributed computing models

Keywords and phrases π-calculus, Depth-bounded processes, Fast-growing complexity classes

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.17

Funding A. R. Balasubramanian: Supported by funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

Acknowledgements I am grateful to the reviewers and Prof. Javier Esparza for their useful comments
and suggestions.

1 Introduction

The π-calculus [21, 22] is a well-known formalism for describing concurrent message-passing
systems admitting unbounded process creation and mobility of agents. Intuitively speaking,
a configuration of such a system is a graph in which each vertex is a process labelled by
its current state and there is an edge between two processes if they share a channel using
which they can pass messages. The flexibility of π-calculus lies in the fact that processes
can transmit the names of channels using channels themselves, allowing reconfiguration of
channels using process definitions itself. Due to its immense expressive power, all interesting
verification problems quickly become undecidable for π-calculus processes.

Consequently, research on π-calculus has been focused on finding fragments for which
certain problems are decidable. The most expressive fragment of π-calculus for which some
verification problems still remain decidable is the class of depth-bounded processes [20].
Intuitively, depth-bounded processes are those in which the length of simple paths in the
set of reachable configurations is bounded by a constant. It is known that depth-bounded
processes can be viewed as well-structured transition systems (WSTS) [20]. This implies
that the coverability problem for such systems is decidable [20, 27]. Intuitively, coverability
consists of deciding if a given system can reach a configuration where some process is in an
error state.

However, despite the positive decidability results known regarding this problem, the
exact complexity of this problem has remained open so far. To the best of our knowledge,
only an EXPSPACE-hardness result is known for this problem [27]. In this paper, we

© A. R. Balasubramanian;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 17; pp. 17:1–17:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

17:2 Complexity of Coverability in Depth-Bounded Processes

provide complexity-theoretic completeness results for this problem. More specifically, we
prove that the coverability problem for depth-bounded processes is Fϵ0-complete, where
Fϵ0 is a complexity class in the fast-growing hierarchy of complexity classes [24]. This is a
hierarchy of complexity classes which allows for a finer classification of problems that do not
admit any elementary-time algorithms, i.e., problems which do not have algorithms whose
running times can be upper bounded by a fixed tower of exponentials in the input size. In
particular, our result proves that the coverability problem for depth-bounded processes is not
primitive-recursive and indeed is harder than even problems complete for the Ackermann
complexity class.

The complexity-theoretic classification of problems which are non-elementary has attracted
a lot of attention in the recent years, with various techniques developed for proving both
lower and upper bounds [13, 6, 25, 24, 1, 23, 8, 19, 7, 18]. While these results are obviously
negative from a tractability perspective, understanding the precise complexity of a problem
may help us to solve it in practice by reducing it to other well-studied problems for which
tools and heuristics have been developed, like the satisfiability problem for weak S1S or
the Petri net reachability problem [3, 12, 15, 4, 5, 16, 10]. The fast-growing hierarchy is of
great assistance in this task. Adding new complete problems for classes in this hierarchy can
help us prove hardness results for other problems in the future, without having to resort to
coming up with reductions from scratch, i.e., from Turing machines or counter machines.

Our result significantly improves upon the existing lower bound of EXPSPACE-hardness,
which is inherited from the coverability problem for Petri nets. Further, it settles a conjecture
raised by Hasse, Schmitz and Schnoebelen (Section 8.3 of [17]) and also addresses a question
raised by Wies, Zufferey and Henzinger (Section 5 of [27]).1 To prove the lower bound, we
introduce a new model of computation called nested counter systems with levels, which (in a
manner) simplifies the already existing model of nested counter systems [8], while preserving
the hardness of that model.

The techniques used in this paper are similar to the ones presented in [2], in order to prove
Fϵ0 -completeness for parameterized coverability of bounded-depth broadcast networks. While
some of the ideas between these two papers are similar, there are some differences between
the models considered in these two papers. First, as the name suggests, broadcast networks
allow for a process to broadcast to its set of neighbors, whereas processes in π-calculus
interact in a manner akin to rendez-vous communication. One might expect that there is a
drop in complexity when the communication mechanism goes from broadcast to rendez-vous.
For instance, as mentioned in [11], coverability for networks with (unrestricted) broadcast
communication is Ackermann-complete, while the same problem for rendez-vous networks
is (only) EXPSPACE-complete. Our result suggests that this drop in complexity need
not always be the case. Further, in broadcast networks, there is no process creation nor
dynamic reconfiguration of channels, whereas π-calculus has both. Finally, for the lower
bound construction in this paper, we also need to prove depth-boundedness of any reachable
configuration in the process constructed for the reduction, whereas no such property needs
to be proven for the lower bound construction for broadcast networks. We also believe that
the newly introduced model of nested counter systems with levels (whose hardness we prove
by using ideas from [2]), makes the proof of the lower bound for π-calculus cleaner when
compared with giving a direct reduction from nested counter systems as was done in [2].

1 The version of the problem that the authors of [27] consider does not assume that a bound on the depth
of the process is given as part of the input, whereas in our setting we take this to be the case, in order
to prove the upper bound. However, our lower bound result does not require this assumption.

A. R. Balasubramanian 17:3

2 Preliminaries

We first present the syntax and the semantics of the version of π-calculus that we will use .
The definitions here are taken from the ones given in [27].

2.1 The π-calculus
We assume that there is a countable collection of names (denoted by x, y, . . .) and a countable
collection of process identifiers (denoted by A, B, . . .). Each name and identifier has an
associated arity in N. We use boldface letters like x, y to denote (possibly empty) vectors over
names and denote substitution of names by [x/y], i.e., if x = x1, . . . , xn and y = y1, . . . , yn,
then [x/y] denotes a mapping in which each yi is mapped to xi and every other name is
mapped to itself.

A process term (or simply a term) P is either the unit process 0, or a parameterized process
identifier A(x), or any term obtained by the standard operations of parallel composition
P1 | P2, external choice π1 · P1 + π2 · P2 and name restriction (νx)P1. Here P1 and P2 are
themselves terms and π1 and π2 are prefixes which can either be an input prefix x(y) or an
output prefix x̄(y) or the empty string. All parameter vectors occuring in a parameterized
process identifier or a prefix must respect the arity of the names and identifiers. A thread
is a term of the form A(x). We use Π and Σ to denote (indexed) parallel composition and
external choice. We further use (νx) to denote (νx1)(νx2) . . . (νxn) where x = x1, . . . , xn.
The application of a substitution of names σ to a term P , denoted by σ(P), is defined in the
usual way.

An occurrence of a name x in a term P is called free if it is not below a (νx) or an input
prefix y(x). We let fn(P) denote the set of free names of P . A bound name of P is a name
of P which is not free. We say that P is closed if fn(P) = ∅. We use the usual structural
congruence relation P ≡ Q on process terms, i.e., P ≡ Q if P is syntactically equal to Q

upto renaming and reordering of bound names, associativity and commutativity of parallel
composition and external choice, elimination of units ((P | 0) ≡ P, (νx)0 ≡ 0) and scope
extrusion ((νx)(P | Q) ≡ (νx)P | Q if x /∈ fn(Q)).

A configuration is a closed term of the form (νx) (Πi∈IAi(xi)). A process P is a pair
(I, E) where I is an initial configuration and E is a set of parametric equations of the form
A(x) = P where A is an identifier and P is a term such that 1) every identifier in P is
defined by exactly one equation in E and 2) if A(x) = P is an equation, then fn(P) ⊆ {x}.
We assume that all the equations are given in the following form:

A(x) =
∑

i∈I

πi.(νxi)


∏

j∈Ji

Aj(xj)




Operational semantics

Let P = (I, E) be a process. We define a transition relation on the set of configurations using
E as follows. Let P and Q be configurations. Then P −→ Q iff the following conditions are
satisfied:

P ≡ (νu)(A(v) | B(w) | P ′),
The defining equation of A in E is of the form A(x) = x(x′).(νx′′)(M) + M ′,
The defining equation of B in E is of the form B(y) = ȳ(y′).(νy′′)(N) + N ′,
σ = [v/x, w/y, w′/x′, zA/x′′, zB/y′′] where zA, zB are fresh names and w′ is the set of
names assigned to y′ under the mapping [w/y].
σ(x) = σ(y) and
Q ≡ (νu, zA, zB)(σ(M) | σ(N) | P ′)

CONCUR 2022

17:4 Complexity of Coverability in Depth-Bounded Processes

We denote such a step by P
A(v),σ(x),B(w)−−−−−−−−−−→ Q or simply by P −→ Q. We can then define

the reachability relation ∗−→ as the reflexive and transitive closure of −→. We say that a
configuration P is reachable in P iff I

∗−→ P . We further say that P is coverable if P ≡ (νx)P ′

and there exists Q ≡ (νx)(P ′ | R) such that I
∗−→ Q. The coverability problem is to decide if

a given configuration P is coverable in a given process P.

Depth-bounded processes

We now define the class of depth-bounded processes. The nesting of restrictions nest of a
term P is defined inductively as follows: nest(0) = nest(A(x)) = nest(π1 · P1 + π2 · P2) = 0,
nest((νx)P) = 1 + nest(P) and nest(P1 | P2) = max{nest(P1), nest(P2)}. The depth of a
term P is the minimal nesting of restrictions of terms in the congruence class of P :

depth(P) := min{nest(Q) : Q ≡ P}

▶ Definition 1. A set of configurations C is called k-depth-bounded if the depth of all
configurations in C is at most k. C is called depth-bounded if there is some k such that it is
k-depth-bounded. A process P is called (k-)depth-bounded if its set of reachable configurations
is (k-)depth-bounded.

▶ Example 2. The following example intuitively demonstrates a system in which there is
one “level 0” thread which can spawn “level 1” threads by using a “New1” thread. Then,
each level 1 thread can itself spawn “level 2” threads by using their own “New2” threads.

Level0(x) = x̄().Level0(x) New1(x) = x().((νy)(New1(x) | Level1(x, y) | New2(y)))

Level1(x, y) = ȳ().Level1(x, y) New2(y) = y().((νz)(New2(y) | Level2(y, z) | New3(z)))

Level2(y, z) = z̄().Level2(y, z) New3(z) = z().New3(z)

Suppose we set I = (νx)(Level0(x) | New1(x)). Then the following is a valid run:

I −→ (νx)(Level0(x) | New1(x) | (νy)(Level1(x, y) | New2(y)))
−→ (νx)(Level0(x) | New1(x) | (νy)(Level1(x, y) | New2(y) | (νz)(Level2(y, z) | New3(z))))

We note that the depth of the last configuration in this run is 3. Indeed, we can show
that the depth of any reachable configuration from I is at most 3. Later on, we will see that
some of the ideas behind this example are relevant to our lower bound construction.

Our main theorem of the paper is that,

▶ Theorem 3. The coverability problem for depth-bounded processes is Fϵ0-complete.

Here, we assume that the input consists of a process P and a number k such that P
is k-depth-bounded. Further, Fϵ0 is a complexity class in the fast-growing hierarchy of
complexity classes [24]. Due to lack of space, we do not define it here. The lower bound
behind this theorem is accomplished by giving a log-space reduction from a Fϵ0 -hard problem.
The upper bound is obtained by using results on the length of controlled bad sequences over
a suitable well-quasi ordering.

We first explain the proof of the lower bound. To do this, we first introduce a model
called nested counter systems with levels (NCSL) and show that the coverability problem
for this model is Fϵ0-hard. We then give a reduction from this problem to the coverability
problem for depth-bounded processes, thereby proving the lower bound of Theorem 3.

A. R. Balasubramanian 17:5

3 Nested counter systems with levels (NCSL)

We now introduce a new model of computation called nested counter systems with levels
(NCSL) and prove Fϵ0-hardness of coverability for this model. NCSL are closely related to
the so-called nested counter systems (NCS) [8]. Indeed, in Section 4, we will recall NCS and
prove the hardness result for NCSL by giving a reduction from the coverability problem for
NCS.

Before describing NCSL in a formal manner, we give some intuition. A k-NCSL is
a generalisation of a usual counter system with higher-order counters. Intuitively, a 1-
dimensional counter is a usual counter which can add or subtract 1. A 2-dimensional counter
can add or subtract 1-dimensional counters, a 3-dimensional counter can add or subtract
2-dimensional counters and so on. A k-NCSL can produce up to k-dimensional counters
and then manipulate these counters using “local” rules, i.e., rules which update at most 2
counters at a time. Later on, we will consider the NCS model [8], which allows to update
mutliple counters in a single step.

Formally, a k-nested counter system with levels (k-NCSL) is a tuple N =
(Q, δ0, . . . , δk−1, δk) where Q is a finite set of states and each δl is a set of level-l rules
such that δl ⊆ ⋃1≤i≤j≤2(Qi × Qj). We further enforce that if l = k then δl ⊆ Q × Q. The
set CN of configurations of N is defined to be the set of all labelled rooted trees of height at
most k, with labels from the set Q.

The operational semantics of N is defined in terms of the following transition relation
→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δl be a level-l rule with

l ≤ k and 0 ≤ i ≤ j ≤ 1. We say that a configuration C can move to the configuration C ′

using the rule r (denoted by C
r−→ C ′) if there is a node v0 at depth l in C with label q0 and

the following holds.
Creation. Suppose r = ((q0), (q′

0, q′
1)). Then C ′ is obtained from C by changing the

label of v0 to q′
0, creating a new vertex v1 with label q′

1 and adding it as child to v0.
1-Preservation. Suppose r = ((q0), (q′

0)). Then C ′ is obtained from C by changing
the label of v0 to q′

0.
2-Preservation. Suppose r = ((q0, q1), (q′

0, q′
1)). Then there is a child v1 of v0 in C

with label q1 and C ′ is obtained from C by changing the labels of v0 and v1 to q′
0 and q′

1
respectively.

▶ Example 4. Let us consider the 2-NCSL N given by the states Q = {pi, p′
i, qi, q′

i : 0 ≤ i ≤ 4}
and consisting of the rules r0 ∈ δ0, r1 ∈ δ1, r2 ∈ δ2 where r0 = ((q0, q1), (q′

0, q′
1)), r1 =

((p1), (p′
1, p2)), r2 = ((p2), (p′

2)). In Figure 1, we illustrate the application of these rules to a
configuration of N .

q0

q1 p1

r0

q′
0

q′
1 p1

r1

q′
0

q′
1 p′

1

p2

r2

q′
0

q′
1 p′

1

p′
2

Figure 1 Application of the rules r0, r1 and r2 to a configuration of N , which is described in
Example 4.

CONCUR 2022

17:6 Complexity of Coverability in Depth-Bounded Processes

We say that C −→ C ′ if C
r−→ C ′ for some rule r. We can then define the reachability

relation ∗−→ in a standard manner. Given two states qin, qf ∈ Q, we say that qin can cover qf

if the (unique) configuration consisting of the single root vertex labelled with qin (also called
the initial configuration of N) can reach some configuration where the root is labelled by qf .
The coverability problem for an NCSL is then the following: Given an NCSL N and two
states qin, qf , can qin cover qf ? We prove that

▶ Theorem 5. The coverability problem for NCSL is Fϵ0-hard, even when restricted to NCSL
which only have creation and 2-preservation rules.

The proof of Theorem 5 is deferred to Section 4. We shall assume this theorem and first
prove the main result of this paper (Theorem 3), i.e., that coverability for depth-bounded
π-calculus processes is Fϵ0 -hard.

3.1 Hardness of coverability for depth-bounded π-calculus processes
Throughout this subsection, we let N = (Q, δ0, . . . , δk−1, δk) be a fixed k-NCSL which only
has creation and 2-preservation rules. Note that since there are no 1-preservation rules, by
definition of a k-NCSL, δk is empty and so we will ignore δk everywhere in this section. Let
qin and qf be two fixed states of N . We will now construct a depth-bounded process P and
a configuration C of P such that C can be covered in P iff qf can be covered from qin in N .

Process identifiers, names and the initial configuration
To construct P, we have to define an initial configuration and a set of parametric equations.
We begin by specifying the set of names and the process identifiers that we shall use in
the equations. Based on these names and identifiers, we define the initial configuration
and also introduce an injective mapping B from the set of configurations of N to the set of
configurations of P. This map will be useful to prove the correctness of our reduction.

Process identifiers and names. For each 1 ≤ i ≤ k, we will have a process identifier start[i].
For each 0 ≤ i ≤ k and each state q of N , we will have an identifier q[i]. Notice that each
process identifier is of the form a[b] where a ∈ Q ∪ {start} and 0 ≤ b ≤ k. The first part “a”
will be called the base of the identifier and the second part “b” will be called the grade of the
identifier. The arities of the identifiers are as follows: The arity of each start[i] will be |δi−1|.
For every state q of N , the arity of q[0] will be |δ0|, the arity of q[k] will be |δk−1| and the
arity of every other q[i] will be |δi−1| + |δi|.

The set of names that we will be using in the equations will be the set of rules of N ,
i.e., δ0 ∪ δ1 ∪ · · · ∪ δk−1. For each δi, we let ni denote some fixed vector comprising all the
names from δi. We also assume that there is another countably infinite set of names needed
to describe the configurations of P. We note that this latter set is not part of the input.

A mapping. We now introduce an injective map from the set of configurations of N to
the set of configurations of P. Let C be a configuration of the NCSL N . To C, we assign
a unique configuration of P (denoted by B(C)) as follows: Let the set of vertices of C be
V and let the set of internal vertices of C (the root and the other non-leaf vertices) be IV .
B(C) is then defined as the configuration

(νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv))

where {z} = ∪v∈V {xv, yv} and for each v,

A. R. Balasubramanian 17:7

{xv} ∩ {yv} = ∅,
If the label of v in C is q and v is at depth l, then Av = q[l] and Bv = start[l + 1],
If v is the root, then xv is the empty vector. If v is a leaf, then yv is the empty vector.
Otherwise, if v is at depth l, then xv is of size |δl−1| and yv is of size |δl|.
For any v′, if v′ is a child of v, then xv′ = yv and {yv′} ∩ {xv} = ∅; if v′ is a sibiling of v,
then xv′ = xv and {yv′} ∩ {yv} = ∅; otherwise, {xv, yv} ∩ {xv′ , yv′} = ∅.
To give an intuition behind this mapping, let us look at B(C) from the perspective of

graphs. We construct a graph where there is a vertex for each Av(xv, yv) and each Bv(yv)
and we connect two such vertices by an edge if they share at least one free name and the
corresponding identifiers have different grades. By the requirements given above, this would
imply that the graph that we get is a tree which has a “copy” of C as a subgraph, along
with a new leaf vertex added to every internal vertex of C. Ignoring the new leaf vertices for
now, this means that B(C) can be thought of as a “representation” of C in the process P.
The parametric equations that we shall construct will make sure that if B(C) can move to a
new configuration P , then P will be a representation of C ′ for some C ′ such that C −→ C ′ in
the NCSL N .

We now have the following lemma which proves depth-boundedness of any configuration
of the form B(C). The intuition behind this lemma is that the “graph” of B(C) contains a
copy of C as a subgraph along with some other additional leaf vertices. Hence, since the
depth of C is bounded by k, we can expect that the depth of B(C) is also bounded.
▶ Lemma 6 (Depth-boundedness). For any configuration C, the depth of B(C) is at most∑k−1

l=0 |δl|.
Proof. Let V and IV be the set of vertices and internal vertices of C respectively. For any
vertex n, let Cn be the (labelled) subtree of C rooted at n and let Vn and IVn be the set of
vertices and internal vertices of Cn respectively.

We know that B(C) is of the form (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)). Let B(Cn)
be the sub-process term of B(C) given by Πv∈VnAv(xv, yv) | Πv∈IVnBv(yv) and let {zn} =
∪v∈Vn{xv, yv}.

By induction on the height h of the vertex n in the tree C, we will now show that the
depth of (νzn) B(Cn) is at most

∑k−1
l=max{k−1−h,0} |δl|. For the base case, when n is a leaf

and Cn is a tree with a single node, we have that (νzn) B(Cn) ≡ (νxn) q[k](xn) for some q

and some vector xn of size |δk−1|. This shows that the claim is true for the base case.
For the induction step, let Ch(n) be the children of n. By the requirements

imposed upon B(C), we can use the scope extrusion rule to write (νzn) B(Cn) as
(νxn, yn) (An(xn, yn) | Bn(yn) |
Πv∈Ch(n)(ν(zv \ yn)) B(Cv)). By induction hypothesis, we have that the depth
of each (νzv) B(Cv)) is

∑k−1
l=k−h |δl|. This then implies that the depth of

(νxn, yn) (An(xn, yn) | Bn(yn) |
Πv∈Ch(n)(ν(zv \ yn)) B(Cv)) is at most

∑k−1
l=k−1−h |δl| if n is not the root. If n is the root,

then the depth becomes at most
∑k−1

l=0 |δl| because xn = ∅. Hence, the induction step is
complete.

Since B(C) ≡ (νzn) B(Cn) where n is the root, it follows that the depth of B(C) is at
most

∑k−1
l=0 |δl|. ◀

Initial configuration. Recall that for each i ∈ {0, . . . , k − 1}, we let ni denote some fixed
vector comprising all the names from δi. We then take the initial configuration of P to be
(νn0)(qin[0](n0) | start[1](n0)). Note that the initial configuration of P is the image of the
initial configuration of N under the B mapping.

CONCUR 2022

17:8 Complexity of Coverability in Depth-Bounded Processes

Parametric equations
Before we describe the parametric equations, we set up some notation. Let r =
((q0, . . . , qi), (q′

0,

. . . , q′
j)) be a rule of the NCSL N . By definition of creation and 2-preservation rules, it has

to be the case that i ≤ 1 and j = 1. In the sequel, for the sake of uniformity across all rules,
we adopt the following nomenclature: If i = 0, we let q1 = start. In this way, we can always
associate a (unique) tuple ((q0, q1), (q′

0, q′
1)) with any rule r.

Let r = ((p, q), (p′, q′)) be a rule of N . We say that the tuple (p, q) (resp. (p′, q′)) is the
precondition (resp. postcondition) of r and we let prer

fi := p, prer
se := q, postr

fi := p′ and
postr

se := q′.
We will set up the parametric equations in such a way so that C −→ C ′ is a step in N iff

B(C) −→ B(C ′). Intuitively this is accomplished by ensuring that if r = ((p, q), (p′, q′)) ∈ δl is
a rule of N , then a thread with identifier p[l] can output along a name and go to p′[l] and a
thread with identifier q[l + 1] can receive along the same name and go to q′[l + 1].

Equations for identifiers of grade 0. For any q ∈ Q, the equation for q[0] is,

q[0](n0) :=
∑

r∈δ0, prer
fi=q

r(). postr
fi[0](n0)

Intuitively, this equation corresponds to a thread with identifier q[0] trying to execute
some rule r ∈ δ0 for which q = prer

fi and then becoming postr
fi[0].

Equations for identifiers of grade 1 ≤ i ≤ k − 1. Recall that the arity of any such
identifier is |δi−1| + |δi|, except for identifiers with base start, for which it is |δi−1|.

For any q ∈ Q, we have

q[i](ni−1, ni) :=
∑

r∈δi, prer
fi=q

r(). postr
fi[i](ni−1, ni) +

∑

r∈δi−1, prer
se=q

r(). postr
se[i](ni−1, ni)

Intuitively, the first summand of the equation corresponds to to a thread with identifier
q[i] trying to execute some rule r ∈ δi for which q = prer

fi and then becoming postr
fi[i].

The second summand corresponds to a thread with identifier q[i] trying to execute some
rule r ∈ δi−1 for which q = prer

se and then becoming postr
se[i].

For the start base, we have

start[i](ni−1) :=
∑

r∈δi−1, prer
se=start

r().

(
(νni) start[i](ni−1) | postr

se[i](ni−1, ni) | start[i+1](ni)

)

Intuitively, this equation is responsible for spawning new threads of grade i with base
in Q, when an appropriate output action is taken by some thread of grade i − 1 with
base in Q. First, if a thread with identifier start[i] receives a message along some channel
corresponding to some rule r ∈ δi−1 with prer

se = start, then a fresh set of names (denoted
by ni) are created. After that, the thread retains its identifier and two new threads are
spawned, postr

se[i](ni−1, ni) and start[i + 1](ni). We note that these equations have a
similar flavor to that of the equations for New1 and New2 given in Example 2.

A. R. Balasubramanian 17:9

Equations for identifiers of grade k. Recall that the arity of any identifier with grade k is
|δk−1|.

For any q ∈ Q, we have

q[k](nk−1) :=
∑

r∈δk−1, prer
se=q

r(). postr
se[k](nk−1)

For the start base, we have

start[k](nk−1) :=
∑

r∈δk−1, prer
se=start

r(). (postr
se[k](nk−1) | start[k](nk−1))

The intuitions behind these equations are the same as the one for the previous case.

3.2 Proof of correctness
We now formally show the proof of correctness of our reduction. We begin with a lemma
which shows that the constructed process P can simulate the NCSL N .

▶ Lemma 7 (P simulates N). Suppose C −→ C ′ is a step in N . Then B(C) −→ B(C ′).

Proof. Let r = ((p, q), (p′, q′)) ∈ δl for some 0 ≤ l ≤ k − 1 such that C
r−→ C ′. Let V be the

set of vertices of C and let IV be the set of internal vertices of C. This means that there is
a vertex n in C at depth l such that the label of n in C is p.

Let B(C) ≡ (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)). By definition of the map B, it has to
be the case that An = p[l]. We have two cases:

Suppose q ̸= start. Then there has to be a child n′ of n in C such that its label in C is q.
Hence, An′ = q[l + 1]. Further, yn = xn′ . By construction of the parametric equations,
this means that B(C) can reach P where

P ≡ (νz) (Πv∈V \{n,n′}Av(xv, yv) | p′[l](xn, yn) | q′[l + 1](xn′ , yn′) | Πv∈IV Bv(yv))

It is then easy to see that P ≡ B(C ′).
Suppose q = start. Then Bn(yn) = start[l + 1](yn). By construction of the parametric
equations, this means that B(C) can reach P given by

P ≡ (νz, z′) (Πv∈V \{n}Av(xv, yv) | p′[l](xn, yn) | Πv∈IV Bv(yv) | q′[l+1](yn, z′) | start[l+2](z′))

where the last term start[l + 2](z′) is not present if l = k − 1. It is then easy to see that
P ≡ B(C ′). ◀

Next we show that N can also simulate P.

▶ Lemma 8 (N simulates P). Suppose B(C) −→ P . Then there exists a configuration C ′ of
N such that C −→ C ′ and P ≡ B(C ′).

Proof. Let V be the vertices of C and let IV be the set of internal vertices of C. Let
B(C) ≡ (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)) and let B(C) Tv(wv),c,Tv′ (wv′)−−−−−−−−−−−−→ P .

By construction of the parametric equations, it must be the case that Tv(wv) = An(xn, yn)
for some node n and c must belong to {yn}. Let An = p[l]. Since c ∈ {yn}, by definition
of B(C), c can only be shared among the free names of the threads in {An′(xn′ , yn′) :
n′ is a child of n} ∪ {Bn(yn)}. We now consider two cases:

CONCUR 2022

17:10 Complexity of Coverability in Depth-Bounded Processes

Suppose Tv′(wv′) = An′(xn′ , yn′) for some n′ which is a child of n. Let An′ = q[l + 1].
Since we have B(C) Tv(wv),c,Tv′ (wv′)−−−−−−−−−−−−→ P , by construction of the equations it has to be the
case that there is a rule r ∈ δl of N such that prer

fi = p, prer
se = q and

P ≡ (νz) (Πv∈V \{n,n′}Av(xv, yv) | p′[l](xn, yn) | q′[l + 1](xn′ , yn′) | Πv∈IV Bv(yv))

where p′ = postr
fi and q′ = postr

se respectively. Since An = p[l] and An′ = q[l + 1], it
must be the case that the depth of n in C is l and the labels of n and n′ in C are p and q

respectively. It follows that there exists C ′ such that C
r−→ C ′. It is then easy to verify

that B(C ′) ≡ P .
Suppose Tv′(wv′) = Bn(yn). We know that Bn = start[l + 1]. Since it is the case that
B(C) Tv(wv),c,Tv′ (wv′)−−−−−−−−−−−−→ P , by construction of the parametric equations it must be that
there is a rule r ∈ δl of N such that prer

fi = p, prer
se = start and

P ≡ (νz, z′) (Πv∈V \{n}Av(xv, yv) | p′[l](xn, yn) | Πv∈IV Bv(yv) | q′[l+1](yn, z′) | start[l+2](z′))

where the last term start[l + 2](z′) is not present if l = k − 1 and p′ = postr
fi, q′ = postr

se
respectively. Since An = p[l], it must be the case that the depth of n in C is l and the
label of n in C is p. It follows then that there exists C ′ such that C

r−→ C ′. It is then easy
to verify that B(C ′) ≡ P . ◀

Note that the initial configuration I of P is simply the image of the initial configuration
of N under the map B. Hence, using Lemmas 6 and 8, we can conclude that

▶ Corollary 9. The process P is K-depth-bounded where K =
∑k−1

l=0 |δl|.

We then get the following theorem, whose proof follows in a straightforward manner by
combining Lemmas 7 and 8.

▶ Theorem 10. C
∗−→ C ′ is a run in N iff B(C) ∗−→ B(C ′) is a run in the process P.

Consequently qin can cover qf in N iff (νn0) (qf [0](n0)) can be covered from the initial
configuration I of P.

Hence, we have

▶ Corollary 11. Coverability of depth-bounded processes is Fϵ0-hard.

4 Nested counter systems (NCS)

We now prove Theorem 5, by giving a reduction from the coverability problem for nested
counter systems (NCS) which is known to be Fϵ0 -hard. We first recall the definition of NCS,
which we present in a way that is akin to [2].

A k-nested counter system (k-NCS) is a tuple N = (Q, δ) where Q is a finite set of states
and δ ⊆ ⋃1≤i,j≤k+1(Qi × Qj) is a set of rules. The set CN of configurations of N is defined
to be the set of all labelled rooted trees of height atmost k, with labels from the set Q.

The operational semantics of N is defined in terms of the following transition relation
→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ be a rule with

i ≤ j ≤ k. We say that a configuration C can move to the configuration C ′ using the rule r

(denoted by C
r−→ C ′), if there is a path v0, v1 . . . , vi in C starting at the root such that for

every 0 ≤ l ≤ i, the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ i,
changing the label of each vl to q′

l and 2) for every i + 1 ≤ l ≤ j, creating a new vertex vl

with label q′
l and adding it as a child to vl−1.

A. R. Balasubramanian 17:11

Similarly, suppose r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ is a rule with j < i ≤ k. Then
C

r−→ C ′ if there is a path v0, v1, . . . , vi in C starting at the root such that for every 0 ≤ l ≤ i,
the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ j, changing the label
of each vl to q′

l and 2) removing the subtree rooted at the node vj+1.

▶ Example 12 (Example from [2]). Let us consider the NCS N given by the states Q =
{pi, p′

i, qi, q′
i : 0 ≤ i ≤ 4} and consisting of the following rules: r0 = ((q0, q1), (q′

0, q′
1, q′

2)), r1 =
((q′

0, q3, q2), (p0)), r2 = ((p0), (p′
0)). In Figure 2, we illustrate the application of these rules to

a configuration of N .

q0

q1 q3

q2

q4

q2

r0

q′
0

q′
1

q′
2

q3

q2

q4

q2

r1

p0

q′
1

q′
2

r2

p′
0

q′
1

q′
2

Figure 2 Application of the rules r0, r1 and r2 to a configuration of N , which is described in
Example 12.

Similar to NCSL, we can define the notions of C −→ C ′, C
∗−→ C ′ and a state qin covering

another state qf . It is known that the coverability problem for NCS is Fϵ0 -hard (Theorem 7
of [8]).

We note that the rules of an NCS act “globally”, in the sense that it allows to update
the value of (potentially) k many counters in one step. This is in contrast to NCSL, where
we can update the value of at most two counters at a time. While it is not particularly
surprising that this “global” update can be replaced by a series of “local” updates (hence
giving a reduction from NCS to NCSL), the construction is not entirely trivial and requires
some intricate arguments in order to prove its correctness.

A special case of NCS

We make a small remark which will help us simplify our reduction later on. Let N = (Q, δ)
be a k-NCS and let qin, qf ∈ Q. From N , we construct a new k-NCS N ′ as follows: First we
add a new state end. Then, if r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ with j < i ≤ k, we replace

r with the rule r′ := ((q0, . . . , qi), (q′
0, . . . , q′

j , end, . . . , end︸ ︷︷ ︸
i−j times

)). Intuitively, we are replacing

all rules which destroy some counters with corresponding rules that simply convert those
counters to the state end. It can be easily verified that coverability of qf from qin is preserved
while doing this operation. Hence, from here on, we assume that whenever N = (Q, δ) is a
k-NCS and r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ then i ≤ j.

4.1 Hardness of coverability for NCSL
We shall prove Theorem 5 by giving a reduction from the coverability problem for NCS. Let
k ≥ 1 and let N = (Q, δ) be a k-NCS with two fixed states qin and qf . By the argument
given in the previous paragraph, we can assume that if r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ

CONCUR 2022

17:12 Complexity of Coverability in Depth-Bounded Processes

then i ≤ j. We shall now construct a k-NCSL N ′ = (Q′, δ′
0, . . . , δ′

k−1) and two states q′
in

and q′
f of N ′ such that q′

in can cover q′
f in N ′ iff qin can cover qf in N . This will then prove

Theorem 5. We begin by describing the states of N ′.

States of N ′. For every state q of N , we will have two states q[⊤] and q[⊥]. Further, for
every rule r of N , we will have four states recr[⊤], recr[⊥], fwdr[⊤] and fwdr[⊥]. Notice
that each state of N ′ is of the form a[b] where a ∈ Q ∪ {recr, fwdr : r ∈ δ} and b ∈ {⊤, ⊥}.
If a node v in a configuration C has as its label a[b], then ‘a’ will be called its base. Further,
if b = ⊤ (resp. b = ⊥), then v will be called as a leader node (resp. follower node).

Good configurations of N ′. A configuration C is called good if the root of C is a leader,
all other nodes are followers and the base of all the nodes of C belong to Q. Notice that
there is a straightforward bijection between the set of all configurations of N and the set of
all good configurations of N ′. This bijection will be denoted by M.

Rules of N ′. Before we describe the rules of N ′, we will state two invariants that will always
be maintained by our construction. The first one is that, in any configuration reachable from
a good configuration, exactly one node will be a leader. The second invariant is that, every
rule of N ′ will have a leader state in its precondition. Combined with the first invariant,
this will intuitively ensure that the rules that can be fired from reachable configurations are
limited and will help us simplify the proof of correctness of our reduction.

We now describe the rules of N ′. Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)) be a rule of N .
Corresponding to rule r, we will have the following set of rules in N ′. (In the following, we
adopt the convention that if the name of a rule has a subscript 0 ≤ l ≤ j, then that rule
belongs to δ′

l).

startr
0 := ((q0[⊤]), (recr[⊤])).

For every 0 ≤ l ≤ i − 1, we have a rule beginr
l := ((recr[⊤], ql+1[⊥]), (fwdr[⊥], recr[⊤])).

For every i ≤ l ≤ j − 1, we have a rule beginr
l := ((recr[⊤]), (fwdr[⊥], recr[⊤])).

middler
j := ((recr[⊤]), (fwdr[⊤])).

For every 0 ≤ l ≤ j − 1, we have a rule endr
l := ((fwdr[⊥], fwdr[⊤]), (fwdr[⊤], q′

l+1[⊥])).
finishr

0 := ((fwdr[⊤]), q′
0[⊤]).

4.2 Proof of correctness
The intuitive idea behind the above gadget is given by the run demonstrated in the following
lemma.

▶ Lemma 13 (N ′ simulates N). Suppose C
r−→ C ′ is a step in the NCS N . Then, there is a

run M(C) ∗−→ M(C ′) in the NCSL N ′.

Proof. Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)). Since C
r−→ C ′ is a step in N , it follows that there

is a path starting at the root of C labelled by q0, . . . , qi. It follows that in M(C) there is
a path P starting at the root labelled by q0[⊤], q1[⊥], q2[⊥], . . . , qi[⊥]. We now execute a
sequence of rules according to the gadget for r as follows:

First, using startr
0, we change the label of the root from q0[⊤] to recr[⊤].

Next, by firing beginr
0, . . . , beginr

i−1 in this order, we change the labels of the nodes in the
path P to fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

i times

, recr[⊤].

A. R. Balasubramanian 17:13

Then, by firing beginr
i , . . . , beginr

j−1 in this order, we add j − i new nodes to the path P

and get a new path P ′ of length j + 1 whose labels are fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸
j times

, recr[⊤].

We use middler
j to change the label of the last node in P ′ from recr[⊤] to fwdr[⊤].

Then, by firing endr
j−1, . . . , endr

0 in this order, we change the labels of the nodes in the
path P ′ to fwdr[⊤], q′

1[⊥], . . . , q′
j [⊥].

Finally, we use finishr
0 to change the label of the root from fwdr[⊤] to q′

0[⊤].
It can be easily verified that the resulting configuration D is such that D = M(C ′). ◀

We now present a converse to the above lemma which shows that a simulation in the
other direction is also possible.

▶ Lemma 14 (N simulates N ′). Suppose C
∗−→ C ′ is a path of non-zero length in N ′ such

that 1) C is a good configuration and 2) in all the configurations between C and C ′, the base
of the root is not in Q. Then, C ′ is a good configuration and there is a rule r such that
M−1(C) r−→ M−1(C ′).

Proof sketch. Let P := C −→ γ0 −→ γ1 . . . −→ C ′. The essential idea behind this lemma is
that since C is a good configuration, the root node is a leader node and by the construction
of the rules it must be the case that the first step must be of the form C

startr
0−−−−→ γ0 for some

rule r. Then, by using the invariant that exactly one node is leader at all times and by using
the construction of the rules, we can essentially show that P must be a path of the same
form as the one given in the proof of Lemma 13. Having proved that, we can then show that
in the NCS N , M−1(C) r−→ M−1(C ′). ◀

Because of these two “simulation” lemmas, we then get

▶ Theorem 15. qin can cover qf in N iff qin[⊤] can cover qf [⊤] in N ′.

4.3 Wrapping up
The previous theorem implies that coverability for NCSL is Fϵ0 -hard. To prove Theorem 5,
we need to show the same for NCSL with only creation and 2-preservation rules. We now show
that 1-preservation rules can be replaced with creation rules in an NCSL while maintaining
coverability.

Given a k-NCSL N with two states qin, qf , we can remove all 1-preservation rules whilst
preserving coverability as follows: We first add a new state end. Then if r = ((q0), (q′

0)) is a
1-preservation rule in N , we replace r with r = ((q0), (q′

0, end)). It can be easily seen that
doing this procedure gives us a (k + 1)-NCSL N ′ such that qin can cover qf in N ′ iff qin can
cover qf in N . Hence Theorem 5 follows.

5 Upper bound for coverability of depth-bounded processes

We now prove the upper bound claim made in Theorem 3. Let P = (I, E) be a fixed
k-depth-bounded process. By introducing new identifiers and equations if necessary, we can
assume that at most one name or thread is created during a step between two configurations
of P . Let us consider the following order on the set of configurations: P ⪯ Q iff P ≡ (νx)P ′

and Q ≡ (νx)(P ′ | R) for some term R. It is known that this is a well-quasi order (wqo)
for the set of all k-depth-bounded configurations [20, 27]. Using this fact, we can show that
the set of k-depth-bounded configurations of P, forms a well-structured transition system
(WSTS) under the ⪯ ordering and then apply the generic backward exploration algorithm for

CONCUR 2022

17:14 Complexity of Coverability in Depth-Bounded Processes

WSTS [13, 25]. Using the standard and generic complexity arguments for WSTS [26, 13, 25],
an upper bound on the the running time of this procedure simply boils down to estimating
the length of controlled bad sequences of k-depth-bounded configurations under the ⪯ order.

Let the size of a configuration C be the number of names and threads that appear in C.
Let H : N → N be the successor function and let n ∈ N. For each i ∈ N, we let Hi denote
the i-fold application of H to itself i times, with H0 being the identity function.

▶ Definition 16. A sequence C0, C1, . . . , of configurations is called (H, n)-controlled bad if
the size of each Ci is at most Hi(n) and Ci ⪯̸ Cj for any i < j.

To estimate an upper bound on the length of controlled bad sequences of configurations,
we first recall the induced subgraph ordering on bounded-depth trees.

▶ Definition 17. Let T1 = (V1, E1, L1) and T2 = (V2, E2, L2) be two labelled trees with
labelling functions L1 : V1 → A and L2 : V2 → A for some finite set A. We say that T1 is
an induced subgraph of T2, if there is a label preserving injection h from V1 to V2 such that
(v, v′) ∈ E1 ⇐⇒ (h(v), h(v′)) ∈ E2.

It is known that for any K ≥ 1 and for any finite set A, the set of all labelled trees of
depth at most K is well-quasi ordered under the induced subgraph relation (Theorem 2.2
of [9]). Similar to configurations, we can also define controlled bad sequences of labelled
bounded-depth trees.

By the arguments given in [20], it follows that the length of controlled bad sequences
of k-depth-bounded configurations of P under the ⪯ order can be upper bounded by the
length of controlled bad sequences of K-bounded-depth trees with labels from a set A, for
some A and K whose sizes are primitive recursive in the size of P . By the known bounds for
controlled bad sequences for labelled bounded-depth trees [2, 17], it follows that

▶ Theorem 18. The length of (H, n)-controlled bad sequences for k-depth-bounded configura-
tions of P is upper bounded by the function Fϵ0(p(|P|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some primitive recursive function.
For our purposes, we do not need the actual definition of Fϵ0 , but we only need to know that
Fϵ0 consists of problems whose running time is upper bounded by the function Fϵ0 composed
with any primitive recursive function (See [24]). It follows that,

▶ Theorem 19. The coverability problem for depth-bounded processes is in Fϵ0and hence
Fϵ0-complete.

6 Conclusion

We have shown that the coverability problem for depth-bounded processes in π-calculus
is Fϵ0-complete. This settles the complexity of the problem and solves an open problem
raised in [17] and also in [27]. However, our proof does not give any results regarding the
parameterized complexity of this problem when the depth k is taken as a parameter, which
we plan to investigate as part of future work.

References
1 Sergio Abriola, Santiago Figueira, and Gabriel Senno. Linearizing well quasi-orders and

bounding the length of bad sequences. Theor. Comput. Sci., 603:3–22, 2015. doi:10.1016/j.
tcs.2015.07.012.

A. R. Balasubramanian 17:15

2 A. R. Balasubramanian. Complexity of coverability in bounded path broadcast networks. In
Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS 2021, December
15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages 35:1–35:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.35.

3 Michael Blondin. The ABCs of petri net reachability relaxations. ACM SIGLOG News,
7(3):29–43, 2020. doi:10.1145/3436980.3436984.

4 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. The logical view on
continuous Petri nets. ACM Trans. Comput. Log., 18(3):24:1–24:28, 2017. doi:10.1145/
3105908.

5 Michael Blondin and Christoph Haase. Logics for continuous reachability in Petri nets and
vector addition systems with states. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005068.

6 Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity of lossy channel
systems. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer
Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 205–216, 2008. doi:
10.1109/LICS.2008.47.

7 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00120.

8 Normann Decker and Daniel Thoma. On freeze LTL with ordered attributes. In Bart Jacobs
and Christof Löding, editors, Foundations of Software Science and Computation Structures -
19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 269–284. Springer,
2016. doi:10.1007/978-3-662-49630-5_16.

9 Guoli Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489–502,
1992. doi:10.1002/jgt.3190160509.

10 Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: New techniques for WS1S
and WS2S. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification, pages
516–520, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

11 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited
talk). In Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon,
France, volume 25 of LIPIcs, pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2014. doi:10.4230/LIPIcs.STACS.2014.1.

12 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip
Niksic. An SMT-based approach to coverability analysis. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer,
2014. doi:10.1007/978-3-319-08867-9_40.

13 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and primitive-recursive bounds with Dickson’s lemma. In Proceedings of the 26th Annual IEEE
Symposium on Logic in Computer Science, pages 269–278, 2011. doi:10.1109/LICS.2011.39.

14 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

15 Estíbaliz Fraca and Serge Haddad. Complexity analysis of continuous Petri nets. Fundam.
Informaticae, 137(1):1–28, 2015. doi:10.3233/FI-2015-1168.

CONCUR 2022

17:16 Complexity of Coverability in Depth-Bounded Processes

16 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture
Notes in Computer Science, pages 112–124. Springer, 2014. doi:10.1007/978-3-319-11439-2_
9.

17 Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The power of priority channel
systems. Log. Methods Comput. Sci., 10(4), 2014. doi:10.2168/LMCS-10(4:4)2014.

18 Slawomir Lasota. Improved Ackermannian lower bound for the petri nets reachability problem.
In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on
Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France
(Virtual Conference), volume 219 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.46.

19 Jérôme Leroux. The reachability problem for petri nets is not primitive recursive. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

20 Roland Meyer. On boundedness in depth in the pi-calculus. In Giorgio Ausiello, Juhani
Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong, editors, Fifth IFIP International Conference
On Theoretical Computer Science – TCS 2008, IFIP 20th World Computer Congress, TC 1,
Foundations of Computer Science, September 7-10, 2008, Milano, Italy, volume 273 of IFIP,
pages 477–489. Springer, 2008. doi:10.1007/978-0-387-09680-3_32.

21 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

22 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II. Inf.
Comput., 100(1):41–77, 1992. doi:10.1016/0890-5401(92)90009-5.

23 Sylvain Schmitz. Complexity bounds for ordinal-based termination - (invited talk). In
Reachability Problems – 8th International Workshop, RP 2014, pages 1–19, 2014. doi:
10.1007/978-3-319-11439-2_1.

24 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1–3:36, 2016. doi:10.1145/2858784.

25 Sylvain Schmitz and Philippe Schnoebelen. Multiply-recursive upper bounds with Higman’s
lemma. In Automata, Languages and Programming – 38th International Colloquium, ICALP
2011, pages 441–452, 2011. doi:10.1007/978-3-642-22012-8_35.

26 Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In Pedro R.
D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013 – Concurrency Theory – 24th
International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings, volume 8052 of Lecture Notes in Computer Science, pages 5–24. Springer, 2013.
doi:10.1007/978-3-642-40184-8_2.

27 Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. Forward analysis of depth-bounded
processes. In C.-H. Luke Ong, editor, Foundations of Software Science and Computational
Structures, 13th International Conference, FOSSACS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6014 of Lecture Notes in Computer Science, pages 94–108. Springer,
2010. doi:10.1007/978-3-642-12032-9_8.

A Appendix

A.1 Proofs for subsection 4.2
▶ Lemma 14 (N simulates N ′). Suppose C

∗−→ C ′ is a path of non-zero length in N ′ such
that 1) C is a good configuration and 2) in all the configurations between C and C ′, the base
of the root is not in Q. Then, C ′ is a good configuration and there is a rule r such that
M−1(C) r−→ M−1(C ′).

A. R. Balasubramanian 17:17

Proof. Let P := C −→ γ0 −→ γ1 . . . −→ γm −→ C ′ be a path in N ′. We split the proof into
various steps.

Step 1. Since C is a good configuration, the only node which is a leader is the root, whose
base must belong to Q. By construction of the rules of N ′, this implies that the step C −→ γ0

must be of the form C
startr

0−−−−→ γ0 for some rule r of N . Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)).
This implies that the label of the root in C is q0[⊤] and its label in γ0 is recr[⊤].

Step 2. Now, for each 0 ≤ l ≤ i, we state two claims:
Claim Al: There is a path Pl := v0

l , . . . , vl
l starting at the root in C with labels

q0[⊤], q1[⊥], . . . , ql[⊥] such that γl is the same as C, except now the labels along Pl

are fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸
l times

, recr[⊤].

Claim Bl: If l ̸= 0, then γl−1
beginr

l−1−−−−−→ γl.

We have already shown that claim A0 is true in step 1. Now, for each 0 ≤ l ≤ i − 1,
assuming claim Al is true, we shall prove that claims Al+1 and Bl+1 are true.

Because of claim Al and because C is a good configuration, it follows that the only node
which is a leader in γl is vl

l . Further, the base of vl
l is recr. By construction of the rules

in N ′, this implies that the only rule that can be fired from γl is beginr
l . Hence, it must be

the case that γl
beginr

l−−−−→ γl+1, proving claim Bl+1. Further, since vl
l is the only node which is

a leader, firing this rule transforms the state of vl
l to fwdr[⊥] and transforms the state of

a child of vl
l (say v′) from ql+1[⊥] to recr[⊤]. Taking Pl+1 to be v0

l , . . . , vl
l , v′ proves claim

Al+1.
In particular claim Ai implies that there is a path path := v0, . . . , vi starting at the root

such that γi is the same as C, except that the labels of path in C and γi are q0[⊤], . . . , qi[⊥]
and fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

i times

, recr[⊤] respectively.

Step 3. For each i ≤ l ≤ j, we state two claims:
Claim Al: γl is the same as γi, except that path is extended to include l − i new nodes
and the labels along this extended path in γl is fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

l times

, recr[⊤].

Claim Bl: If i ̸= l, then γl−1
beginr

l−1−−−−−→ γl.

We have already shown that claim Ai is true in step 2. Similar to the arguments given in
step 2, we can prove that these new claims are also true.

Step 4. By claim Aj it follows that there is a path ext-path := n0, . . . , nj starting at the
root in γj such that the labels along ext-path is fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

j times

, recr[⊤]. Further, nj

is the only node which is a leader in γj . Hence, the only rule which can be fired from γj

is middler
j and so we have γj

middler
j−−−−−→ γj+1. Notice that the only change that has occurred

because of this step is that the label of nj has been changed to fwdr[⊤].

CONCUR 2022

17:18 Complexity of Coverability in Depth-Bounded Processes

Step 5. For each 1 ≤ l ≤ j, we state two claims:
Claim A′

l: γj+l is the same as γj , except that the labels along ext-path in γj+l is
fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

j−l+1 times

, fwdr[⊤], q′
j−l+2[⊥], . . . , q′

j [⊥].

Claim B′
l: γj+l

endr
j−l−−−−→ γj+l+1.

The proof of this is accomplished by similar arguments as given in step 2.

Step 6. By claim A′
j , it follows that γ2j is the same as γj , except that the labels along

ext-path is now fwdr[⊤], q′
1[⊥], . . . , q′

j [⊥]. It follows that the only rule which can be fired

from γ2j is finishr
0, and so it follows that γ2j

finishr
0−−−−→ γ2j+1, where the only difference between

γ2j+1 and γ2j is that the label of the root in γ2j+1 is q′
0[⊤]. Hence, by assumption of the

run P , it follows that γ2j+1 = C ′.
By combining the arguments given above, it follows then that γ2j+1 is a good configuration

and also that M−1(C) r−→ M−1(C ′). ◀

▶ Theorem 15. qin can cover qf in N iff qin[⊤] can cover qf [⊤] in N ′.

Proof. Suppose qin can cover qf in N . Let C0 −→ C1 −→ . . . −→ Cm be a run in N where
C0 is the initial configuration and the root of Cm is qf . By Lemma 13, it follows that
M(C0) ∗−→ M(C1) ∗−→ . . .

∗−→ M(Cm) and so qin[⊤] can cover qf [⊤] in N ′.
Suppose C

∗−→ C ′ is a run in N ′ such that C is the (unique good) configuration consisting
of the single root vertex labelled by qin[⊤] and C ′ is some configuration where the root is
labelled by qf [⊤]. We split the run into parts of the form C = C0

∗−→ C1
∗−→ C2 . . .

∗−→ Cm = C ′

such that for each 1 ≤ l ≤ m, Cl is the first configuration after Cl−1 where the base of the
root is in Q. By Lemma 14, it follows that each Cl is a good configuration and also that
M−1(C0) −→ M−1(C1) −→ . . . −→ M−1(Cm). Hence, it follows that qin can cover qf in N . ◀

A.2 Proofs for Section 5
We now give a proof of Theorem 19. We recall the backward exploration algorithm for
well-structured transition systems (WSTS) here, adapted to the coverability problem for
depth-bounded processes. Let P = (I, E) be a k-depth-bounded process and let P be some
k-depth-bounded configuration, which we want to check is coverable in P. Without loss of
generality, we can assume that at most one name or thread is created during a step between
two configurations of P. Let Ck be the set of all k-depth-bounded configurations.

Given a set S of Ck we let ↑ S := {γ′ : ∃γ ∈ S, γ ⪯ γ′}. A set S is called upward-closed if
S =↑ S. Because ⪯ is a wqo and because of the definition of the operational semantics of P ,
we have that:

If S is upward-closed, then there exists a finite set B such that ↑ B = S. Such a B will
be called the basis of S.
If S is upward-closed and if Pre(S) is the set of all configurations γ′ ∈ Ck such that
there is a configuration γ ∈ S with γ′ −→ γ, then S ∪ Pre(S) is upward-closed. Moreover,
given a basis B of S, we can compute a basis B′ of S ∪ Pre(S) such that the size of each
configuration in B′ is at most one more than the maximum size of any configuration of B.

Hence, by the generic backward exploration algorithm for WSTS [14], we get that the
following algorithm terminates and decides coverability: Construct a sequence of finite sets
B0, B1, . . . , such that each Bi ⊆ Ck, B0 is simply {P} and Bi+1 is a basis for ↑ Bi ∪Pre(↑ Bi).

A. R. Balasubramanian 17:19

Then find the first m such that ↑ Bm =↑ Bm+1 and check if there is an initial configuration
in ↑ Bm. If it is true, then P is coverable; otherwise P is not coverable.

The running time complexity of the algorithm is mainly dominated by the length of the
sequence B0, B1, . . . , Bm. Since m is the first index such that ↑ Bm =↑ Bm+1, we can find a
minimal element γi ∈↑ Bi+1\ ↑ Bi for each i < m.

Consider the sequence γ0, . . . , γm−1. Notice that γi ̸⪯ γj for any j > i and further the
size of each γi is at most Hi(n), where H is the successor function and n is the size of P .
It follows that γ0, . . . , γm−1 is a (H, n)-controlled bad sequence. By the arguments given
in [20], it follows that the length of controlled bad sequences of Ck under the ⪯ order can be
upper bounded by the length of controlled bad sequences of K-bounded-depth trees with
labels from a set A, for some A and K whose sizes are primitive recursive in the size of P.
By the known bounds for controlled bad sequences for labelled bounded-depth trees [2, 17],
it follows that

▶ Theorem 18. The length of (H, n)-controlled bad sequences for k-depth-bounded configura-
tions of P is upper bounded by the function Fϵ0(p(|P|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some primitive recursive function.
For our purposes, we do not need the actual definition of Fϵ0 , but we only need to know that
Fϵ0 consists of problems whose running time is upper bounded by the function Fϵ0 composed
with any primitive recursive function (See [24]). Theorem 19 then follows.

CONCUR 2022

Appendix D

Finding Cut-Offs in
Leaderless Rendez-Vous
Protocols is Easy (FoSSaCS
2021)

This section contains a reprinting of the following paper, which has been pub-
lished as a peer-reviewed conference paper.

A. R. Balasubramanian and Javier Esparza and Mikhail A. Raskin.
Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy. In
conference proceedings of FoSSaCS 2021. Springer, 2021. Vol. 12650
of Lecture Notes in Computer Science, Pages - 42-61. doi: 10.100
7/978-3-030-71995-1_3

According to the Open Access policy of Lecture Notes in Computer Science
of Springer, the author of this thesis is permitted to include the above paper in
this thesis. The relevant excerpt is the following:

This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommon
s.org/licenses/by/4.0/), which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate
if changes were made. The images or other third party material in
this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material
is not included in the chapter’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the

141

10.1007/978-3-030-71995-1_3
10.1007/978-3-030-71995-1_3
http://creativecommons.org/licenses/by/4. 0/
http://creativecommons.org/licenses/by/4. 0/

permitted use, you will need to obtain permission directly from the
copyright holder.

Summary
In rendez-vous protocols, an arbitrarily large number of indistinguishable finite-
state agents interact in pairs. The cut-off problem asks if a number B exists so
that all initial configurations of the protocol with at least B agents in a given
initial state can reach a final configuration with all agents in a given final state.
Previous work has shown that in the presence of a leader, the cut-off problem
is decidable and at least as hard as the Petri net reachability problem, which is
non-primitive recursive. In the absence of a leader, it is known that the cut-off
problem is in EXPSPACE. Further, for the special class of symmetric rendez-vous
protocols, the cut-off problem is in PSPACE when a leader is present and is in NP
otherwise. In this work, we improve upon some of these upper bounds and show
that the cut-off problem is P-complete for leaderless protocols, NP-complete for
symmetric protocols with a leader, and in NC for leaderless symmetric protocols.

Contributions of the author of this thesis

Contribution of Balasubramanian Ayikudi Ramachandrakumar

Scientific findings 30%

Development and conceptual design of the research project 80%

Discussion and development of ideas 70%

Drafting of the manuscript 60%

142

Finding Cut-Offs in Leaderless Rendez-Vous
Protocols is Easy ?

A. R. Balasubramanian(B)1 , Javier Esparza1 , Mikhail Raskin1

Technische Universität München, Munich, Germany
bala.ayikudi@tum.de, esparza@in.tum.de, raskin@in.tum.de

Abstract. In rendez-vous protocols an arbitrarily large number of indis-
tinguishable finite-state agents interact in pairs. The cut-off problem asks
if there exists a number B such that all initial configurations of the proto-
col with at least B agents in a given initial state can reach a final config-
uration with all agents in a given final state. In a recent paper [17], Horn
and Sangnier prove that the cut-off problem is equivalent to the Petri net
reachability problem for protocols with a leader, and in EXPSPACE for
leaderless protocols. Further, for the special class of symmetric protocols
they reduce these bounds to PSPACE and NP, respectively. The problem
of lowering these upper bounds or finding matching lower bounds is left
open. We show that the cut-off problem is P-complete for leaderless pro-
tocols, NP-complete for symmetric protocols with a leader, and in NC
for leaderless symmetric protocols, thereby solving all the problems left
open in [17].

Keywords: rendez-vous protocols · cut-off problem · Petri nets

1 Introduction

Distributed systems are often designed for an unbounded number of participant
agents. Therefore, they are not just one system, but an infinite family of systems,
one for each number of agents. Parameterized verification addresses the problem
of checking that all systems in the family satisfy a given specification.

In many application areas, agents are indistinguishable. This is the case in
computational biology, where cells or molecules have no identities; in some se-
curity applications, where the agents’ identities should stay private; or in ap-
plications where the identities can be abstracted away, like certain classes of
multithreaded programs [15,2,31,3,18,25]. Following [3,18], we use the term repli-
cated systems for distributed systems with indistinguishable agents. Replicated
systems include population protocols, broadcast protocols, threshold automata,
and many other models [15,2,11,7,16]. They also arise after applying a counter
abstraction [28,3]. In finite-state replicated systems the global state of the sys-
tem is determined by the function (usually called a configuration) that assigns

? This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

c© The Author(s) 2021
S. Kiefer and C. Tasson (Eds.): FOSSACS 2021, LNCS 12650, pp. 42–61, 2021.
https://doi.org/10.1007/978-3-030-71995-1 3

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 43

to each state the number of agents that currently occupy it. This feature makes
many verification problems decidable [4,10].

Surprisingly, there is no a priori relation between the complexity of a param-
eterized verification question (i.e., whether a given property holds for all initial
configurations, or, equivalently, whether its negation holds for some configura-
tion), and the complexity of its corresponding single-instance question (whether
the property holds for a fixed initial configuration). Consider replicated systems
where agents interact in pairs [15,17,2]. The complexity of single-instance ques-
tions is very robust. Indeed, checking most properties, including all properties
expressible in LTL and CTL, is PSPACE-complete [9]. On the contrary, the com-
plexity of parameterized questions is very fragile, as exemplified by the following
example. While the existence of a reachable configuration that populates a given
state with at least one agent is in P, and so well below PSPACE, the existence
of a reachable configuration that populates a given state with exactly one agent
is as hard as the reachability problem for Petri nets, and so non-elementary [6].
This fragility makes the analysis of parameterized questions very interesting, but
also much harder.

Work on parameterized verification has concentrated on whether every ini-
tial configuration satisfies a given property (see e.g. [15,11,3,18,7]). However,
applications often lead to questions of the form “do all initial configurations
in a given set satisfy the property?”, “do infinitely many initial configurations
satisfy the property?”, or “do all but finitely many initial configurations satisfy
the property?”. An example of the first kind is proving correctness of popula-
tion protocols, where the specification requires that for a given partition I0, I1
of the set of initial configurations, and a partition Q0, Q1 of the set of states,
runs starting from I0 eventually trap all agents within Q0, and similarly for I1
and Q1 [12]. An example of the third kind is the existence of cut-offs ; cut-off
properties state the existence of an initial configuration such that for all larger
initial configurations some given property holds [8,4]. A systematic study of the
complexity of these questions is still out of reach, but first results are appearing.
In particular, Horn and Sangnier have recently studied the complexity of the
cut-off problem for parameterized rendez-vous networks [17]. The problem takes
as input a network with one single initial state init and one single final state fin,
and asks whether there exists a cut-off B such that for every number of agents
n ≥ B, the final configuration in which all agents are in state fin is reachable
from the initial configuration in which all agents are in state init .

Horn and Sangnier study two versions of the cut-off problem, for leaderless
networks and networks with a leader. Intuitively, a leader is a distinguished agent
with its own set of states. They show that in the presence of a leader the cut-off
problem and the reachability problem for Petri nets problems are inter-reducible,
which shows that the cut-off problem is in the Ackermannian complexity class
Fω [22], and non-elementary [6]. For the leaderless case, they show that the prob-
lem is in EXPSPACE. Further, they also consider the special case of symmetric
networks, for which they obtain better upper bounds: PSPACE for the case of a

44 A. R. Balasubramanian et al.

Horn and Sangnier Asymmetric rendez-vous Symmetric rendez-vous
Presence of a leader Decidable, non-elementary PSPACE
Absence of a leader EXPSPACE NP

This paper Asymmetric rendez-vous Symmetric rendez-vous
Presence of a leader Decidable, non-elementary NP-complete
Absence of a leader P-complete NC

Table 1. Summary of the results by Horn and Sangnier and the results of this paper.

leader, and NP in the leaderless case. These results are summarized at the top
of Table 1.

In [17] the question of improving the upper bounds or finding matching lower
bounds is left open. In this paper we close it with a surprising answer: All
elementary upper bounds of [17] can be dramatically improved. In particular,
our main result shows that the EXPSPACE bound for the leaderless case can be
brought down to P. Further, the PSPACE and NP bounds of the symmetric case
can be lowered to NP and NC, respectively, as shown at the bottom of Table 1.
We also obtain matching lower bounds. Finally, we provide almost tight upper
bounds for the size of the cut-off B; more precisely, we show that if B exists,

then B ∈ 2n
O(1)

for a protocol of size n.

Our results follow from two lemmas, called the Scaling and Insertion Lemmas,
that connect the continuous semantics for Petri nets to their standard semantics.
In the continuous semantics of Petri nets transition firings can be scaled by a
positive rational factor; for example, a transition can fire with factor 1/3, taking
“1/3 of a token” from its input places. The continuous semantics is a relaxation
of the standard one, and its associated reachability problem is much simpler
(polynomial instead of non-elementary [14,6,5]). The Scaling Lemma1 states that
given two markings M,M ′ of a Petri net, if M ′ is reachable from M in the
continuous semantics, then nM ′ is reachable from nM in the standard semantics

for some n ∈ 2m
O(1)

, where m is the total size of the net and the markings. The
Insertion Lemma states that, given four markings M,M ′, L, L′, if M ′ is reachable
from M in the continuous semantics and the marking equation L′ = L+Ax has
a solution x ∈ ZT (observe that x can have negative components), then nM ′+L′

is reachable from nM + L in the standard semantics for some n ∈ 2m
O(1)

. We
think that these lemmas can be of independent interest.

The paper is organized as follows. Section 2 contains preliminaries; in par-
ticular, it defines the cut-off problem for rendez-vous networks and reduces it to
the cut-off problem for Petri nets. Section 3 gives a polynomial time algorithm
for the leaderless cut-off problem for acyclic Petri nets. Section 4 introduces
the Scaling and Insertion Lemmas, and Section 5 presents the novel polynomial

1 Heavily based on previous results by Fraca and Haddad [14].

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 45

time algorithm for the cut-off problem. Sections 6 and 7 present the results for
symmetric networks, for the cases with and without leaders, respectively.

Due to lack of space, full proofs of some of the lemmas can be found in the
appendix.

2 Preliminaries

Multisets Let E be a finite set. For a semi-ring S, a vector from E to S is a
function v : E → S. The set of all vectors from E to S will be denoted by SE . In
this paper, the semi-rings we will be concerned with are the natural numbers N,
the integers Z and the non-negative rationals Q≥0 (under the usual addition and
multiplication operators). The support of a vector v is the set JvK := {e : v(e) 6=
0} and its size is the number ‖v‖ =

∑
e∈JvK abs(v(e)) where abs(x) denotes the

absolute value of x. Vectors from E to N are also called discrete multisets (or
just multisets) and vectors from E to Q≥0 are called continuous multisets.

Given a multiset M and a number α we let α ·M be the multiset given by
(α ·M)(e) = M(e) · α for all e ∈ E. Given two multisets M and M ′ we say that
M ≤ M ′ if M(e) ≤ M ′(e) for all e ∈ E and we let M + M ′ be the multiset
given by (M + M ′)(e) = M(e) + M ′(e) and if M ′ ≤ M , we let M −M ′ be the
multiset given by (M −M ′)(e) = M(e)−M ′(e). The empty multiset is denoted
by 0. We sometimes denote multisets using a set-like notation, e.g. Ha, 2 · b, cI
denotes the multiset given by M(a) = 1,M(b) = 2,M(c) = 1 and M(e) = 0 for
all e /∈ {a, b, c}.

Given an I × J matrix A with I and J sets of indices, I ′ ⊆ I and J ′ ⊆ J ,
we let AI′×J′ denote the restriction of M to rows indexed by I ′ and columns
indexed by J ′.

Rendez-vous protocols and the cut-off problem. Let Σ be a fixed finite
set which we will call the communication alphabet and we let RV (Σ) = {!a, ?a :
a ∈ Σ}. The symbol !a denotes that the message a is sent and ?a denotes that
the message a is received.

Definition 1. A rendez-vous protocol P is a tuple (Q,Σ, init ,fin, R) where Q
is a finite set of states, Σ is the communication alphabet, init ,fin ∈ Q are the
initial and final states respectively and R ⊆ Q×RV (Σ)×Q is the set of rules.

The size |P| of a protocol is defined as the number of bits needed to encode
P in {0, 1}∗ using some standard encoding. A configuration C of P is a multiset
of states, where C(q) should be interpreted as the number of agents in state
q. We use C(P) to denote the set of all configurations of P. An initial (final)
configuration C is a configuration such that C(q) = 0 if q 6= init (resp. C(q) = 0
if q 6= fin). We use Cninit (Cnfin) to denote the initial (resp. final) configuration
such that Cninit (init) = n (resp. Cnfin(fin) = n).

The operational semantics of a rendez-vous protocol P is given by means
of a transition system between the configurations of P. We say that there is

46 A. R. Balasubramanian et al.

a transition between C and C ′, denoted by C ⇒ C ′ iff there exists a ∈ Σ,
p, q, p′, q′ ∈ Q such that (p, !a, p′), (q, ?a, q′) ∈ R, C ≥ Hp, qI and C ′ = C −
Hp, qI + Hp′, q′I. As usual,

∗
=⇒ denotes the reflexive and transitive closure of ⇒.

The cut-off problem for rendez-vous protocols, as defined in [17], is:

Given: A rendez-vous protocol P
Decide: Is there B ∈ N such that Cninit

∗
=⇒ Cnfin for every n ≥ B ?

If such a B exists then we say that P admits a cut-off and that B is a cut-off
for P.

Petri nets. Rendez-vous protocols can be seen as a special class of Petri nets.

Definition 2. A Petri net is a tuple N = (P, T,Pre,Post) where P is a finite
set of places, T is a finite set of transitions, Pre and Post are matrices whose
rows and columns are indexed by P and T respectively and whose entries belong
to N. The incidence matrix A of N is defined to be the P × T matrix given by
A = Post −Pre. Further by the weight of N , we mean the largest absolute value
appearing in the matrices Pre and Post.

The size |N | of N is defined as the number of bits needed to encode N in
{0, 1}∗ using some suitable encoding. For a transition t ∈ T we let

•
t = {p :

Pre[p, t] > 0} and t
•

= {p : Post [p, t] > 0}. We extend this notation to set of
transitions in the obvious way. Given a Petri net N , we can associate with it a
graph where the vertices are P ∪ T and the edges are {(p, t) : p ∈ •t} ∪ {(t, p) :
p ∈ t•}. A Petri net N is called acyclic if its associated graph is acyclic.

A marking of a Petri net is a multiset M ∈ NP , which intuitively denotes
the number of tokens that are present in every place of the net. For t ∈ T and
markings M and M ′, we say that M ′ is reached from M by firing t, denoted

M
t−→M ′, if for every place p, M(p) ≥ Pre[p, t] and M ′(p) = M(p) +A[p, t].
A firing sequence is any sequence of transitions σ = t1, t2, . . . , tk ∈ T ∗. The

support of σ, denoted by JσK, is the set of all transitions which appear in σ. We
let σσ′ denote the concatenation of two sequences σ, σ′.

Given a firing sequence σ = t1, t2, . . . , tk ∈ T ∗, we let M
σ−→ M ′ denote that

there exist M1, . . . ,Mk−1 such that M
t1−→M1

t2−→M2 . . .Mk−1
tk−→M ′. Further,

M → M ′ denotes that there exists t ∈ T such that M
t−→ M ′, and M

∗−→ M ′

denotes that there exists σ ∈ T ∗ such that M
σ−→M ′.

Marking equation of a Petri net system. In the following, a Petri net system is
a triple (N ,M,M ′) where N is a Petri net and M 6= M ′ are markings. The
marking equation for (N ,M,M ′) is the equation

M ′ = M +Av

over the variables v. It is well known that M
σ−→ M ′ implies M ′ = M + A−→σ ,

where −→σ ∈ NT is the the Parikh image of σ, defined as the vector whose com-
ponent −→σ [t] for transition t is equal to the number of times t appears in σ.

Therefore, if M
σ−→M ′ then −→σ is a nonnegative integer solution of the marking

equation. The converse does not hold.

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 47

From rendez-vous protocols to Petri nets. Let P = (Q,Σ, init ,fin, R) be
a rendez-vous protocol. Create a Petri net NP = (P, T,Pre,Post) as follows.
The set of places is Q. For each letter a ∈ Σ and for each pair of rules r =
(q, !a, s), r′ = (q′, ?a, s′) ∈ R, add a transition tr,r′ to NP and set

– Pre[p, t] = 0 for every p /∈ {q, q′}, Post [p, t] = 0 for every p /∈ {s, s′}
– If q = q′ then Pre[q, t] = −2, otherwise Pre[q, t] = Pre[q′, t] = −1
– If s = s′ then Post [s, t] = 2, otherwise Post [s, t] = Post [s′, t] = 1.

It is clear that any configuration of a protocol P is also a marking of NP ,
and vice versa. Further, the following proposition is obvious.

Proposition 1. For any two configurations C and C ′ we have that C
∗

=⇒ C ′

over the protocol P iff C
∗−→ C ′ over the Petri net NP .

Consequently, the cut-off problem for Petri nets, defined by

Given : A Petri net system (N ,M,M ′)
Decide: Is there B ∈ N such that n ·M ∗−→ n ·M ′ for every n ≥ B ?

generalizes the problem for rendez-vous protocols.

3 The cut-off problem for acyclic Petri nets

We show that the cut-off problem for acyclic Petri nets can be solved in polyno-
mial time. The reason for considering this special case first is that it illustrates
one of the main ideas of the general case in a very pure form.

Let us fix a Petri net system (N ,M,M ′) for the rest of this section, where
N = (P, T, Pre, Post) is acyclic and A is its incidence matrix. It is well-known
that in acyclic Petri nets the reachability relation is characterized by the marking
equation (see e.g. [24]):

Proposition 2 ([24]). Let (N ,M,M ′) be an acyclic Petri net system. For

every sequence σ ∈ T ∗, we have M
σ−→ M ′ iff −→σ is a solution of the marking

equation. Consequently, M
∗−→ M ′ iff the marking equation has a nonnegative

integer solution.

This proposition shows that the reachability problem for acyclic Petri nets
reduces to the feasibilty problem (i.e., existence of solutions) of systems of linear
diophantine equations over the nonnegative integers. So the reachability problem
for acyclic Petri nets is in NP, and in fact both the reachability and the feasibility
problems are NP-complete [13].

There are two ways to relax the conditions on the solution so as to make the
feasibility problem polynomial. Feasibility over the nonnegative rationals and
feasibility over all integers are both in P. The first is due to the polynomiality
of linear programming. For the second, feasibility can be decided in polynomial
time after computing the Smith or Hermite normal forms (see e.g. [29]), which
can themselves be computed in polynomial time [19]. We show that the cut-off
problem can be reduced to these two relaxed problems.

48 A. R. Balasubramanian et al.

3.1 Characterizing acyclic systems with cut-offs

Horn and Sangnier proved in [17] a very useful charaterization of the rendez-
vous protocols with a cut-off: A rendez-vous protocol P admits a cut-off iff there
exists n ∈ N such that Cninit

∗
=⇒ Cnfin and Cn+1

init
∗

=⇒ Cn+1
fin . The proof immediately

generalizes to the case of Petri nets:

Lemma 1 ([17]). A Petri net system (N ,M,M ′) (acyclic or not) admits a cut-

off iff there exists n ∈ N such that n ·M ∗−→ n ·M ′ and (n+1) ·M ∗−→ (n+1) ·M ′.
Moreover if n ·M ∗−→ n ·M ′ and (n+ 1) ·M ∗−→ (n+ 1) ·M ′, then n2 is a cut-off
for the system.

Using this lemma, we characterize those acyclic Petri net systems which
admit a cut-off.

Theorem 1. An acyclic Petri net system (N ,M,M ′) admits a cut-off iff the
marking equation has solutions x ∈ QT

≥0 and y ∈ ZT such that JyK ⊆ JxK.

Proof. (⇒): Suppose (N ,M,M ′) admits a cut-off. Hence there exists b ∈ N
such that for all n ≥ b we have nM

∗−→ nM ′. Let bM
σ′−→ bM ′ and (b+ 1)M

τ ′−→
(b+1)M ′. Then, notice that (2b+1)M

σ′τ ′−−−→ (2b+1)M ′ and (2b+2)M
τ ′τ ′−−→ (2b+

2)M ′. Hence, if we let n = 2b+ 1, σ = σ′τ ′ and τ = τ ′τ ′ we have, nM
σ−→ nM ′,

(n+ 1)M
τ−→ (n+ 1)M ′ and JτK ⊆ JσK. By Proposition 2, there exist x′,y′ ∈ NT

such that Jy′K ⊆ Jx′K, nM ′ = nM + Ax′ and (n + 1)M ′ = (n + 1)M + Ay′.
Letting x = x′/n and y = y′ − x′, we get our required vectors.

(⇐): Suppose x ∈ QT
≥0 and y ∈ ZT are solutions of the marking equation such

that JyK ⊆ JxK. Let µ be the least common multiple of the denominators of
the components of x, and let α be the largest absolute value of the numbers in
the vector y. By definition of µ we have α(µx) ∈ NT . Also, since JyK ⊆ JxK it
follows by definition of α that α(µx) + y ≥ 0 and hence α(µx) + y ∈ NT . Since
M ′ = M +Ax and M ′ = M +Ay we get

αµM ′ = αµM +A(αµx) and (αµ+ 1)M ′ = (αµ+ 1)M +A(αµx + y)

Taking αµ = n, by Proposition 2 we get that nM
∗−→ nM ′ and (n + 1)M

∗−→
(n+ 1)M ′. By Lemma 1, (N ,M,M ′) admits a cut-off.

Intuitively, the existence of the rational solution x ∈ QT
≥0 guarantees nM

∗−→
nM ′ for infinitely many n, and the existence of the integer solution y ∈ ZT
guarantees that for one of those n we have (n+ 1)M

∗−→ (n+ 1)M ′ as well.

Example 1. The net system given by the net on Figure 1 along with the markings
M = HiI and M ′ = HfI admits a cut-off. The conditions of the theorem are
satisfied by x = (1

5 ,
1
5 ,

1
5 ,

1
5) and y = (−1, 1, 1, 1).

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 49

t2

t1

t3 t4

i f

2 2

2 2

Fig. 1. A net with cut-off 2.

3.2 Polynomial time algorithm

We derive a polynomial time algorithm for the cut-off problem from the char-
acterization of Theorem 1. The first step is the following lemma. A very similar
lemma is proved in [14], but since the proof is short we give it for the sake of
completeness:

Lemma 2. If the marking equation is feasible over Q≥0, then it has a solution
with maximum support. Moreover, such a solution can be found in polynomial
time.

Proof. If y, z ∈ QT
≥0 are solutions of the marking equation, then we have M ′ =

M + A((y + z)/2) and JyK ∪ JzK ⊆ J(y + z)/2K. Hence if the marking equation
if feasible over Q≥0, then it has a solution with maximum support.

To find such a solution in polynomial time we proceed as follows. For every
transition t we solve the linear program M ′ = M +Av,v ≥ 0,v(t) > 0. (Recall
that solving linear programs over the rationals can be done in polynomial time).
Let {t1, . . . , tn} be the set of transitions whose associated linear programs are
feasible over QT

≥0, and let {u1, . . . ,un} be solutions to these programs. Then

1/n ·∑n
i=1 ui is a solution of the marking equation with maximum support.

We now have all the ingredients to give a polynomial time algorithm.

Theorem 2. The cut-off problem for acyclic net systems can be solved in poly-
nomial time.

Proof. First, we check that the marking equation has a solution over the non-
negative rationals. If such a solution does not exist, by Theorem 1 the given net
system does not admit a cut-off.

Suppose such a solution exists. By Lemma 2 we can find a non-negative
rational solution x with maximum support in polynomial time. Let U contain
all the transitions t such that xt = 0. We now check in polynomial time if the
marking equation has a solution y over ZT such that yt = 0 for every t ∈ U . By
Theorem 1 such a solution exists iff the net system admits a cut-off.

50 A. R. Balasubramanian et al.

The rendez-vous protocol given in Figure 2, which was stated in [17], is an
example of a protocol where the smallest cut-off is exponential in the size of
the protocol. In the next sections, we will actually prove that if a net system N
(acyclic or not) admits a cut-off, then there is one with a polynomial number of
bits in |N |.

init q1 q2 q3 . . . qn fin
!1 !2 !3 !n !a

!a

?1

?2

?3

?n
?a

Fig. 2. Example of a protocol with an exponential cut-off

4 The Scaling and Insertion lemmas

Similar to the case of acyclic net systems, we would like to provide a character-
ization of net systems admitting a cut-off and then use this characterization to
derive a polynomial time algorithm. Unfortunately, in general net systems there
is no characterization of reachability akin to Proposition 2 for acyclic systems.
To this end, we prove two intermediate lemmas to help us come up with a char-
acterization for cut-off admissible net systems in the general case. We believe
that these two lemmas could be of independent interest in their own right. Fur-
ther, the proofs of both lemmas are provided so that it will enable us later on
to derive a bound on the cut-off for net systems.

4.1 The Scaling Lemma

The Scaling Lemma shows that, given a Petri net system (N ,M,M ′), whether

nM
∗−→ nM ′ holds for some n ≥ 1 can be decided in polynomial time; more-

over, if nM
∗−→ nM ′ holds for some n, then it holds for some n with at most

(|N |(log ‖M‖ + log ‖M ′‖))O(1) bits. The name of the lemma is due to the fact
that the firing sequence leading from nM to nM ′ is obtained by scaling up a
continuous firing sequence from M to M ′; the existence of such a continuous
sequence can be decided in polynomial time [14].

In the rest of the section we first recall continuous Petri nets and the chara-
terization of [14], and then present the Scaling Lemma2.

2 The lemma is implicitly proved in [14], but the bound on the size of n is hidden in
the details of the proof, and we make it explicit.

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 51

Reachability in continuous Petri nets. Petri nets can be given a continuous
semantics (see e.g. [1,30,14]), in which markings are continuous multisets; we call
them continuous markings. A continuous marking M enables a transition t with
factor λ ∈ Q≥0 if M(p) ≥ λ · Pre[p, t] for every place p; we also say that M
enables λt. If M enables λt, then λt can fire or occur, leading to a new marking
M ′ given by M ′(p) = M(p) + λ · A[p, t] for every p ∈ P . We denote this by

M
λt−→Q M ′, and say that M ′ is reached from M by firing λt. A continuous firing

sequence is any sequence of transitions σ = λ1t1, λ2t2, . . . , λktk ∈ (Q≥0 × T)∗.
We let M

σ−→Q M ′ denote that there exist continuous markings M1, . . . ,Mk−1

such that M
λ1t1−−−→Q M1

λ2t2−−−→Q M2 · · ·Mk−1
λktk−−−→Q M ′. Further, M

∗−→Q M ′ denotes

that M
σ−→Q M ′ holds for some continuous firing sequence σ.

The Parikh image of σ = λ1t1, λ2t2, . . . , λktk ∈ (Q≥0 × T)∗ is the vector
−→σ ∈ QT

≥0 where −→σ [t] =
∑k
i=1 δi,tλi, where δi,t = 1 if ti = t and 0 otherwise.

The support of σ is the support of its Parikh image −→σ . If M
σ−→Q M ′ then

−→σ is a solution of the marking equation over QT
≥0, but the converse does not

hold. In [14], Fraca and Haddad strengthen this necessary condition to make
it also sufficient, and use the resulting characterization to derive a polynomial
algorithm.

Theorem 3 ([14]). Let (N ,M,M ′) be a Petri net system.

– M
σ−→Q M ′ iff −→σ is a solution of the marking equation over QT

≥0, and there
exist continuous firing sequences τ , τ ′ and continuous markings L and L′

such that JτK = JσK = Jτ ′K, M
τ−→Q L, and L′

τ ′−→Q M ′.

– It can be decided in polynomial time if M
∗−→Q M ′ holds.

Scaling. It follows easily from the definitions that nM
∗−→ nM ′ holds for some

n ≥ 1 iff M
∗−→Q M ′. Indeed, if M

σ−→Q M ′ for some σ = λ1t1, λ2t2, . . . , λktk ∈
(Q≥0 × T)∗, then we can scale this continuous firing sequence to a discrete se-

quence nM
nσ−−→Q nM ′ where n is the smallest number such that nλ1, . . . , nλk ∈ N,

and nσ = tnλ1
1 tnλ2

2 . . . tnλk

k . So Theorem 3 immediately implies that the existence

of n ≥ 1 such that nM
∗−→ nM ′ can be decided in polynomial time. The following

lemma also gives a bound on n.

Lemma 3. Let (N ,M,M ′) be a Petri net system with weight w such that M
σ−→Q

M ′ for some continuous firing sequence σ ∈ (Q≥0×T)∗. Let m be the number of
transitions in JσK and let ` be ‖−→σ ‖. Let k be the smallest natural number such
that k−→σ ∈ NT . Then, there exists a firing sequence τ ∈ T ∗ such that JτK = JσK
and (

16w(w + 1)2mk` ·M
) τ−→

(
16w(w + 1)2mk` ·M ′

)

Lemma 4. (Scaling Lemma). Let (N ,M,M ′) be a Petri net system such

that M
σ−→Q M ′. There exists a number n with a polynomial number of bits in

|N |(log ‖M‖+ log ‖M ′‖) such that nM
τ−→ nM ′ for some τ with JτK = JσK.

52 A. R. Balasubramanian et al.

4.2 The Insertion Lemma

In the acyclic case, the existence of a cut-off is characterized by the existence of
solutions to the marking equation QT

≥0 and ZT . Intuitively, in the general case

we replace the existence of solutions over QT
≥0 by the conditions of the Scaling

Lemma, and the existence of solutions over ZT by the Insertion Lemma:

Lemma 5 (Insertion Lemma). Let M,M ′, L, L′ be markings of N satisfying

M
σ−→ M ′ for some σ ∈ T ∗ and L′ = L + Ay for some y ∈ ZT such that

JyK ⊆ JσK. Then µM + L
∗−→ µM ′ + L′ for µ = ‖y‖(‖−→σ ‖nw + nw + 1) , where

w is the weight of N , and n is the number of places in
•JσK.

The idea of the proof is a follows: In a first stage, we asynchronously execute
multiple “copies” of the firing sequence σ from multiple “copies” of the marking
M , until we reach a marking at which all places of

•JσK contain a sufficiently
large number of tokens. At this point we temporarily interrupt the executions
of the copies of σ to insert a firing sequence with Parikh mapping ‖y‖−→σ + y.
The net effect of this sequence is to transfer some copies of M to M ′, leaving
the other copies untouched, and exactly one copy of L to L′. In the third stage,
we resume the interrupted executions of the copies of σ, which completes the
transfer of the remaining copies of M to M ′ .

Proof. Let x be the Parikh image of σ, i.e., x = −→σ . Since M
σ−→ M ′, by the

marking equation we have M ′ = M +Ax

First stage: Let λx = ‖x‖, λy = ‖y‖ and µ = λy(λxnw + nw + 1). Let σ :=

r1, r2, . . . , rk and let M =: M0
r1−→ M1

r2−→ M2 . . .Mk−1
rk−→ Mk := M . Notice

that for each place p ∈ •JσK, there exists a marking Mip ∈ {M0, . . . ,Mk−1} such
that Mip(p) > 0.

Since each of the markings in {Mip}p∈•JσK can be obtained from M by firing
a (suitable) prefix of σ, it is easy to see that from the marking µM + L =
λyM +L+ (λxλynw +λynw)M we can reach the marking First := λyM +L+∑
p∈•JσK(λxλyw + λyw)Mip . This completes our first stage.

Second stage - Insert: Since JyK ⊆ JσK, if y(t) 6= 0 then x(t) 6= 0. Since
x(t) ≥ 0 for every transition, it now follows that (λyx + y)(t) ≥ 0 for every
transition t and (λyx + y)(t) > 0 precisely for those transitions in JσK.

Let ξ be any firing sequence such that
−→
ξ = λyx + y. Notice that for every

place p ∈ •JσK, First(p) ≥ λxλyw +λyw ≥ ‖(λyx+y)‖·w . By an easy induction

on ‖ξ‖, it follows that that First
ξ−→ Second for some marking Second. By the

marking equation, it follows that Second = λyM
′ + L′ +

∑
p∈•JσK(λxλyw +

λyw)Mip . This completes our second stage.

Third stage: Notice that for each place p ∈ •JσK, by construction of Mip , there
is a firing sequence which takes the marking Mip to the marking M ′. It then
follows that there is a firing sequence which takes the marking Second to the
marking λyM

′ + L′ +
∑
p∈•JσK(λxλyw + λyw)M ′ = µM ′ + L′. This completes

our third stage and also completes the desired firing sequence from µM + L to
µM ′ + L′.

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 53

5 Polynomial time algorithm for the general case

Let (N ,M,M ′) be a net system with N = (P, T, Pre, Post), such that A is its
incidence matrix. As in Section 3, we first characterize the Petri net systems
that admit a cut-off, and then provide a polynomial time algorithm.

5.1 Characterizing systems with cut-offs

We generalize the characterization of Theorem 1 for acyclic Petri net systems to
general systems.

Theorem 4. A Petri net system (N ,M,M ′) admits a cut-off iff there exists

some rational firing sequence σ such that M
σ−→Q M ′ and the marking equation

has a solution y ∈ ZT such that JyK ⊆ JσK.

Proof. (⇒): Assume (N ,M,M ′) admits a cut-off. Hence there exists B ∈ N such

that for all n ≥ B we have nM
∗−→ nM ′. Similar to the proof of theorem 1, we

can show that there exist n ∈ N and firing sequences τ, τ ′ such that nM
τ−→ nM ′,

(n+ 1)M
τ ′−→ (n+ 1)M ′ and Jτ ′K ⊆ JτK.

Let τ = t1t2 · · · tk. Construct the rational firing sequence σ := t1/n t2/n · · ·
tk/n. From the fact that nM

τ−→ nM ′, we can easily conclude by induction on k

that M
σ−→Q M ′. Further, by the marking equation we have nM ′ = nM+A−→τ and

(n+1)M ′ = (n+1)M +A−→τ ′ . Let y =
−→
τ ′ −−→τ . Then y ∈ ZT and M ′ = M +Ay.

Further, since Jτ ′K ⊆ JτK = JσK, we have JyK ⊆ JσK.
(⇐): Assume there exists a rational firing sequence σ and a vector y ∈ ZT such

that JyK ⊆ JσK, M σ−→Q M ′ and M ′ = M+Ay. Let s = |N |(log ‖M‖+log ‖M ′‖).
It is well known that if a system of linear equations over the integers is feasible,
then there is a solution which can be described using a number of bits which is
polynomial in the size of the input (see e.g. [20]). Hence, we can assume that
‖y‖ can be described using sO(1) bits.

By Lemma 4 there exists n (which can be described using sO(1) bits) and a

firing sequence τ with JτK = JσK such that nM
τ−→ nM ′. Hence knM

∗−→ knM ′ is
also possible for any k ∈ N. By Lemma 5, there exists µ (which can once again

be described using sO(1) bits) such that µnM + M
∗−→ µnM ′ + M ′ is possible.

By Lemma 1 the system (N ,M,M ′) admits a cut-off with a polynomial number
of bits in s.

Notice that we have actually proved that if a net system admits a cut-off
then it admits a cut-off with a polynomial number of bits in its size. Since the
cut-off problem for a rendez-vous protocol P can be reduced to a cut-off problem
for the Petri net system (NP , HinitI, HfinI), it follows that,

Corollary 1. If the system (N ,M,M ′) admits a cut-off then it admits a cut-
off with a polynomial number of bits in |N |(log ‖M‖ + log ‖M ′‖). Hence, if a
rendez-vous protocol P admits a cut-off then it admits a cut-off with a polynomial
number of bits in |P|.

54 A. R. Balasubramanian et al.

5.2 Polynomial time algorithm

We use the characterization given in the previous section to provide a polynomial
time algorithm for the cut-off problem. The following lemma, which was proved
in [14] and whose proof is given in the appendix, enables us to find a firing
sequence between two markings with maximum support.

Lemma 6. [14] Among all the rational firing sequences σ such that M
σ−→Q

M ′, there is one with maximum support. Moreover, the support of such a firing
sequence can be found in polynomial time.

We now have all the ingredients to prove the existence of a polynomial time
algorithm.

Theorem 5. The cut-off problem for net systems can be solved in polynomial
time.

Proof. First, we check that there is a rational firing sequence σ with M
σ−→Q

M ′, which can be done in polynomial time by ([14], Proposition 27). If such a
sequence does not exist, by Theorem 4 the given net system does not admit a
cut-off.

Suppose such a sequence exists. By Lemma 6 we can find in polynomial time,
the maximum support S of all the firing sequences τ such that M

τ−→Q M ′. We

now check in polynomial time if the marking equation has a solution y over ZT
such that y(t) = 0 for every t /∈ S. By Theorem 4 such a solution exists iff the
net system admits a cut-off.

This immediately proves that the cut-off problem for rendez-vous protocols
is also in polynomial time. By an easy logspace reduction from the Circuit Value
Problem [21], we prove that

Lemma 7. The cut-off problem for rendez-vous protocols is P-hard.

Clearly, this also proves that the cut-off problem for Petri nets is P-hard.

6 Symmetric rendez-vous protocols

In [17] Horn and Sangnier introduce symmetric rendez-vous protocols, where
sending and receiving a message at each state has the same effect, and show
that the cut-off problem is in NP. We improve on their result and shown that it
is in NC.

Recall that NC is the set of problems in P that can be solved in polyloga-
rithmic parallel time, i.e., problems which can be solved by a uniform family of
circuits with polylogarithmic depth and polynomial number of gates. Two well-
known problems which lie in NC are graph reachability and feasibility of linear
equations over the finite field F2 of size 2 [27,23]. We proceed to formally define
symmetric protocols and state our results.

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 55

Definition 3. A rendez-vous protocol P = (Q,Σ, init ,fin, R) is symmetric, iff
its set of rules is symmetric under swapping !a and ?a for each a ∈ Σ, i.e., for
each a ∈ Σ, we have (q, !a, q′) ∈ R iff (q, ?a, q′) ∈ R.

Horn and Sangnier show that, because of their symmetric nature, there is a
very easy characterization for cut-off admitting symmetric protocols.

Proposition 3. ([17], Lemma 18) A symmetric protocol P admits a cut-off iff

there exists an even number e and an odd number o such that Ceinit
∗−→ Cefin and

Coinit
∗−→ Cofin .

From a symmetric protocol P, we can derive a graph G(P) where the vertices
are the states and there is an edge between q and q′ iff there exists a ∈ Σ such
that (q, a, q′) ∈ R. The following proposition is immediate from the definition of
symmetric protocols:

Proposition 4. Let P be a symmetric protocol. There exists an even number
e such that Ceinit

∗−→ Cefin iff there is a path from init to fin in the graph G(P).

Proof. The left to right implication is obvious. For the other side, suppose there
is a path init , q1, q2, . . . , qm−1,fin in the graph G(P). Then notice that H2·initI→
H2 · q1I→ H2 · q2I · · · → H2 · qm−1I→ H2 · qfI is a valid run of the protocol.

Since graph reachability is in NC , this takes care of the “even” case from
Proposition 3. Hence, we only need to take care of the “odd” case from Propo-
sition 3.

Fix a symmetric protocol P for the rest of the section. As a first step, for
each state q ∈ Q, we compute if there is a path from init to q and if there is
a path from q to fin in the graph G(P). Since graph reachability is in NC this
computation can be carried out in NC by parallely running graph reachability
for each q ∈ Q. If such paths exist for a state q then we call q a good state,
and otherwise a bad state. The following proposition easily follows from the
symmetric nature of P:

Proposition 5. If q ∈ Q is a good state, then H2 · initI ∗−→ H2 · qI and H2 · qI ∗−→
H2 · finI.

Similar to the general case of rendez-vous protocols, given a symmetric pro-
tocol P we can construct a Petri net NP whose places are the states of P and
which faithfully represents the reachability relation of configurations of P. Ob-
serve that this construction can be carried out in parallel over all the states in
Q and over all pairs of rules in R. Let N = (P, T, Pre, Post) be the Petri net
that we construct out of the symmetric protocol P and let A be its incidence
matrix. We now write the marking equation for N as follows: We introduce a
variable v[t] for each transition t ∈ T and we construct an equation system Eq
enforcing the following three conditions:

– v[t] = 0 for every t ∈ T such that
•
t ∪ t• contains a bad state.

By definition of a bad state, such transitions will never be fired on any run
from an initial to a final configuration and so our requirement is safe.

56 A. R. Balasubramanian et al.

–
∑
t∈T A[q, t] · v[t] = 0 for each q /∈ {init ,fin}.

Notice that the net-effect of any run from an initial to a final configuration
on any state not in {init ,fin} is 0 and hence this condition is valid as well.

–
∑
t∈T A[init , t] · v[t] = −1 and

∑
t∈T A[fin, t] · v[t] = 1.

It is clear that the construction of Eq can be carried out in parallel over each
q ∈ Q and each t ∈ T . Finally, we solve Eq over arithmetic modulo 2, i.e., we
solve Eq over the field F2 which as mentioned before can be done in NC. We
have:

Lemma 8. There exists an odd number o such that Coinit
∗−→ Cofin iff the equation

system Eq has a solution over F2.

Proof. (Sketch.) The left to right implication is true because of taking modulo 2
on both sides of the marking equation. For the other side, we use an idea similar
to Lemma 5. Let x be a solution to Eq over F2. Using Proposition 5 we first
populate all the good states of Q with enough processes such that all the good
states except init have an even number of processes. Then, we fire exactly once,
all the transitions t such that x[t] = 1. Since x satisfies Eq, we can now argue
that in the resulting configuration, the number of processes at each bad state is
0 and the number of processes in each good state except fin is even. Hence, we
can once again use Proposition 5 to conclude that we can move all the processes
which are not at fin to the final state fin.

Theorem 6. The problem of deciding whether a symmetric protocol admits a
cut-off is in NC.

Proof. By Proposition 3 it suffices to find an even number e and an odd number
o such that Ceinit

∗−→ Cefin and Coinit
∗−→ Cofin . By Proposition 4 the former can be

done in NC. By Lemma 8 and by the fact that the equation system Eq can be
constructed and solved in NC, it follows that the latter can also be done in NC.

7 Symmetric protocols with leaders

In this section, we extend symmetric rendez-vous protocols by adding a special
process called leader. We state the cut-off problem for such protocols and prove
that it is NP-complete.

Definition 4. A symmetric leader protocol is a pair of symmetric protocols P =
(PL,PF) where PL = (QL, Σ, initL,finL, RL) is the leader protocol and PF =
(QF , Σ, initF ,finF , RF) is the follower protocol where QL ∩QF = ∅.

A configuration of a symmetric leader protocol P is a multiset over QL ∪QF
such that

∑
q∈QL C(q) = 1. This corresponds to the intuition that exactly one

process can execute the leader protocol. For each n ∈ N, let Cninit (resp. Cnfin)

denote the initial (resp. final) configuration of P given by Cninit (initL) = 1 (resp.
Cnfin(finL) = 1) and Cninit (initF) = n (resp. Cnfin(finF) = n). We say that C =⇒ C ′

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 57

if there exists (p, !a, p′), (q, ?a, q′) ∈ RL ∪ RF , C ≥ Hp, qI and C ′ = C − Hp, qI +
Hp′, q′I. Since we allow at most one process to execute the leader protocol, given
a configuration C, we can let lead(C) denote the unique state q ∈ QL such that
C(q) > 0.

Definition 5. The cut-off problem for symmetric leader protocols is the follow-
ing.

Input: A symmetric leader protocol P = (PL,PF).

Output: Is there B ∈ N such that for all n ≥ B, Cninit
∗

=⇒ Cnfin .

We know the following fact regarding symmetric leader protocols.

Proposition 6. ([17], Lemma 18) A symmetric leader protocol admits a cut-off

iff there exists an even number e and an odd number o such that Ceinit
∗

=⇒ Cefin

and Coinit
∗

=⇒ Cofin .

The main theorem of this section is

Theorem 7. The cut-off problem for symmetric leader protocols is NP-complete

7.1 A non-deterministic polynomial time algorithm

Let P = (PL,PF) be a symmetric leader protocol with PL = (QL, Σ, initL,finL,
RL) and PF = (QF , Σ, initF ,finF , RF). Similar to the previous section, from
PF we can construct a graph G(PF) where the vertices are given by the states
QF and the edges are given by the rules in RF . In G(PF), we can clearly remove
all vertices which are not reachable from the state initF and which do not have
a path to finF . In the sequel, we will assume that such vertices do not exist in
G(PF).

Similar to the general case, we will construct a Petri net NP from the given
symmetric leader protocol P. However, the construction is made slightly com-
plicated due to the presence of a leader.

From P = (PL,PF), we construct a Petri net N = (P, T, Pre, Post) as
follows: Let P be QL ∪ QF . For each a ∈ Σ and r = (q, !a, s), r′ = (q′, ?a, s′) ∈
RL∪RF such that at most one of r and r′ belongs to RL, we will have a transition
tr,r′ ∈ T in N such that

– Pre[p, t] = 0 for every p /∈ {q, q′}, Post[p, t] = 0 for every p /∈ {s, s′}
– If q = q′ then Pre[q, t] = −2, otherwise Pre[q, t] = Pre[q′, t] = −1
– If s = s′ then Post[s, t] = 2, otherwise Post[s, t] = Post[s′, t] = 1.

Transitions tr,r′ in which exactly one of r, r′ is in RL will be called leader
transitions and transitions in which both of r, r′ are in RF will be called follower-
only transitions. Notice that if t is a leader transition, then there is a unique place
p ∈ •t ∩ QL and a unique place p ∈ t• ∩ QL. These places will be denoted by
t.from and t.to respectively.

As usual, we let A denote the incidence matrix of the constructed net N .
The following proposition is obvious from the construction of the net N

58 A. R. Balasubramanian et al.

Proposition 7. For two configurations C and C ′, we have that C
∗

=⇒ C ′ in the
protocol P iff C

∗−→ C in the net N .

Because P is symmetric we have the following fact, which is easy to verify.

Proposition 8. If q ∈ QF , then H2 · initF I ∗−→ H2 · qI ∗−→ H2 · finF I

For any vector x ∈ NT , we define lead(x) to be the set of all leader transitions
such that x[t] > 0. The graph of the vector x, denoted by G(x) is defined as
follows: The set of vertices is the set {t.from : t ∈ lead(x)}∪{t.to : t ∈ lead(x)}.
The set of edges is the set {(t.from, t.to) : t ∈ lead(x)}. Further, for any two
vectors x,y ∈ NT and a transition t ∈ T , we say that x = y[t--] iff x[t] = y[t]−1
and x[t′] = y[t′] for all t′ 6= t.

Definition 6. Let C be a configuration and let x ∈ NT . We say that the pair
(C,x) is compatible if C + Ax ≥ 0 and every vertex in G(x) is reachable from
lead(C).

The following lemma states that as long as there are enough followers in
every state, it is possible for the leader to come up with a firing sequence from
a compatible pair.

Lemma 9. Suppose (C,x) is a compatible pair such that C(q) ≥ 2‖x‖ for
every q ∈ QF . Then there is a configuration D and a firing sequence ξ such that

C
ξ−→ D and

−→
ξ = x.

Proof. (Sketch.) We prove by induction on ‖x‖. If x[t] > 0 for some follower-only

transition, then it is easy to verify that if we let C ′ be such that C
t−→ C ′ and x′

be x[t--], then (C ′,x′) is compatible and C(q) ≥ 2‖x′‖ for every q ∈ QF .

Suppose x[t] > 0 for some leader transition. Let p = lead(C). If p belongs
to some cycle S = p, r1, p1, r2, p2, . . . , pk, rk+1, p in the graph G(x), then we let

C
r1−→ C ′ and x′ = x[t--]. It is easy to verify that C ′ +Ax′ ≥ 0, C ′(q) ≥ 2‖x′‖

for every q ∈ QF and lead(C ′) = p1. Any path P in G(x) from p to some vertex
s either goes through p1 or we can use the cycle S to traverse from p1 to p first
and then use P to reach s. This gives a path from p1 to every vertex s in G(x′).

If p does not belong to any cycle in G(x), then using the fact that C+Ax ≥ 0,
we can show that there is exactly one out-going edge t from p in G(x). We then

let C
t−→ C ′ and x′ = x[t--]. Since any path in G(x) from p has to necessarily

use this edge t, it follows that in G(x′) there is a path from t.to = lead(C ′) to
every vertex.

Lemma 10. Let par ∈ {0, 1}. There exists k ∈ N such that Ckinit
∗−→ Ckfin and

k ≡ par (mod 2) iff there exists n ∈ N, x ∈ NT such that n ≡ par (mod 2),
(Cninit ,x) is compatible and Cnfin = Cninit +Ax.

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 59

Proof. (Sketch.) The left to right implication is easy and follows from the mark-
ing equation along with induction on the number of leader transitions in the
run. For the other side, we use an idea similar to Lemma 5. Let (Cninit ,x) be the
given compatible pair. We first use Proposition 8 to populate all the states of
QF with enough processes such that all the states of QF except initF have an
even number of processes. Then we use Lemma 9 to construct a firing sequence

ξ which can be fired from Cninit and such that
−→
ξ = x. By means of the marking

equation, we then argue that in the resulting configuration, the leader is in the
final state, n followers are in the state finF and every other follower state has
an even number of followers. Once again, using Proposition 8 we can now move
all the processes which are not at finF to the final state finF .

Lemma 11. Given a symmetric leader protocol, checking whether a cut-off ex-
ists can be done in NP.

Proof. By Proposition 6 it suffices to find an even number e and an odd number
o such that Ceinit

∗−→ Cefin and Coinit
∗−→ Cofin . Suppose we want to check that there

exists 2k ∈ N such that C2k
init

∗−→ C2k
fin . We first non-deterministically guess a set

of leader transitions S = {t1, . . . , tk} and check that for each t ∈ S, we can reach
t.from and t.to from initL using only the transitions in S.

Once we have guessed all this, we write a polynomially sized integer linear
program as follows: We let v denote |T | variables, one for each transition in T
and we let n be another variable, with all these variables ranging over N. We then
enforce the following conditions: C2n

fin = C2n
init + Av and v[t] = 0 ⇐⇒ t /∈ S

and solve the resulting linear program, which we can do in non-deterministic
polynomial time [26]. If there exists a solution, then we accept. Otherwise, we
reject.

By Lemma 10 and by the definition of compatibility, it follows that at least
one of our guesses gets accepted iff there exists 2k ∈ N such that C2k

init
∗−→ C2k

fin .

Similarly we can check if exists 2l + 1 ∈ N such that C2l+1
init

∗−→ C2l+1
fin .

By a reduction from 3-SAT, we prove that

Lemma 12. The cut-off problem for symmetric leader protocols is NP-hard.

References

1. Alla, H., David, R.: Continuous and hybrid Petri nets. J. Circuits Syst. Comput.
8(1), 159–188 (1998)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006). https://doi.org/10.1007/s00446-005-0138-3

3. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction
for concurrent software. In: Bouajjani, A., Maler, O. (eds.) 21st International Con-
ference on Computer Aided Verification, CAV 2009, Grenoble, France, June 26
- July 2, 2009, Proceedings. Lecture Notes in Computer Science, vol. 5643, pp.
64–78. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4 9

60 A. R. Balasubramanian et al.

4. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H.,
Widder, J.: Decidability of Parameterized Verification. Synthesis Lectures
on Distributed Computing Theory, Morgan & Claypool Publishers (2015).
https://doi.org/10.2200/S00658ED1V01Y201508DCT013

5. Blondin, M.: The abc of Petri net reachability relaxations. ACM SIGLOG News
7(3) (2020)

6. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reach-
ability problem for Petri nets is not elementary. In: Charikar, M., Cohen, E.
(eds.) 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, Proceedings. pp. 24–33. ACM (2019).
https://doi.org/10.1145/3313276.3316369

7. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in reconfigurable broadcast networks. In: FSTTCS.
LIPIcs, vol. 18, pp. 289–300. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2012)

8. Emerson, E.A., Kahlon, V.: Model checking large-scale and parameterized resource
allocation systems. In: TACAS. Lecture Notes in Computer Science, vol. 2280, pp.
251–265. Springer (2002)

9. Esparza, J.: Decidability and complexity of Petri net problems - an introduction.
In: Petri Nets. Lecture Notes in Computer Science, vol. 1491, pp. 374–428. Springer
(1996)

10. Esparza, J.: Parameterized verification of crowds of anonymous processes. In: De-
pendable Software Systems Engineering, NATO Science for Peace and Security
Series - D: Information and Communication Security, vol. 45, pp. 59–71. IOS Press
(2016)

11. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS. pp. 352–359. IEEE Computer Society (1999)

12. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. Acta Informatica 54(2), 191–215 (2017). https://doi.org/10.1007/s00236-
016-0272-3

13. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. J. Inf. Process.
Cybern. 30(3), 143–160 (1994)

14. Fraca, E., Haddad, S.: Complexity analysis of continuous Petri nets. Fundam.
Informaticae 137(1), 1–28 (2015)

15. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39(3), 675–735 (1992). https://doi.org/10.1145/146637.146681

16. Gmeiner, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Tutorial on parame-
terized model checking of fault-tolerant distributed algorithms. In: SFM. Lecture
Notes in Computer Science, vol. 8483, pp. 122–171. Springer (2014)

17. Horn, F., Sangnier, A.: Deciding the existence of cut-off in parameterized rendez-
vous networks. In: CONCUR. LIPIcs, vol. 171, pp. 46:1–46:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2020)

18. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P.B. (eds.) 22nd Interna-
tional Conference on Computer Aided Verification, CAV 2010, Edinburgh, UK,
July 15-19, 2010, Proceedings. Lecture Notes in Computer Science, vol. 6174, pp.
645–659. Springer (2010). https://doi.org/10.1007/978-3-642-14295-6 55

19. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)

Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 61

20. Kannan, R., Monma, C.L.: On the computational complexity of integer program-
ming problems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Opera-
tions Research. pp. 161–172. Springer Berlin Heidelberg, Berlin, Heidelberg (1978)

21. Ladner, R.E.: The circuit value problem is Log Space complete for P. SIGACT
News 7(1), 18–20 (1975)

22. Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: LICS. pp. 1–13. IEEE (2019)

23. Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. Comb. 7(1), 101–104 (1987). https://doi.org/10.1007/BF02579205

24. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

25. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological
and computational systems. Communications of the ACM 58(1), 94–102 (2015).
https://doi.org/10.1145/2678280

26. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981). https://doi.org/10.1145/322276.322287

27. Papadimitriou, C.H.: Computational complexity. Academic Internet Publ. (2007)
28. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, infty)-counter abstraction. In:

CAV. Lecture Notes in Computer Science, vol. 2404, pp. 107–122. Springer (2002)
29. Pohst, M.E., Zassenhaus, H.: Algorithmic algebraic number theory, Encyclopedia

of mathematics and its applications, vol. 30. Cambridge University Press (1989)
30. Recalde, L., Haddad, S., Suárez, M.S.: Continuous Petri nets: Expressive power

and decidability issues. Int. J. Found. Comput. Sci. 21(2), 235–256 (2010)
31. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-

tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Appendix E

Complexity of Verification
and Synthesis of Threshold
Automata (ATVA 2020)

This section contains a reprinting of the following paper, which has been pub-
lished as a peer-reviewed conference paper.

A. R. Balasubramanian and Javier Esparza and Marijana Lazić.
Complexity of Verification and Synthesis of Threshold Automata. In
conference proceedings of ATVA 2020. Edited by Dang Van Hung
and Oleg Sokolsky. Springer Nature Switzerland AG 2020, Springer
Nature. Vol. 12302 of Lecture Notes in Computer Science, Pages -
144-160. doi: 10.1007/978-3-030-59152-6_8

According to the Consent to Publish in Lecture Notes in Computer Science
with Springer, the author of this thesis is allowed to include this paper in this
thesis. The relevant excerpt from the Consent to Publish document for this
paper is the following:

Author retains the right to use his/her Contribution for his/her fur-
ther scientific career by including the final published paper in his/her
dissertation or doctoral thesis provided acknowledgment is given to
the original source of publication.

Further, the following is found in the Permissions page of Springer.

Authors have the right to reuse their article’s Version of Record, in
whole or in part, in their own thesis. Additionally, they may re-
produce and make available their thesis, including Springer Nature
content, as required by their awarding academic institution. Authors
must properly cite the published article in their thesis according to

163

10.1007/978-3-030-59152-6_8

current citation standards.

For more information, please see https://www.springer.com/gp/rights
-permissions/obtaining-permissions/882, in particular, the section on
Author reuse.

Also, the following is present on the Rights, Permissions and Third Party
Distribution page (https://www.springernature.com/gp/partners/right
s-permissions-third-party-distribution) of Springer Nature.

Springer Nature Book and Journal Authors have the right to reuse
the Version of Record, in whole or in part, in their own thesis. Addi-
tionally, they may reproduce and make available their thesis, includ-
ing Springer Nature content, as required by their awarding academic
institution. Authors must properly cite the published work in their
thesis according to current citation standards and include the follow-
ing acknowledgement: ‘Reproduced with permission from Springer
Nature’.

Accordingly, we include the following acknowledgment here: The article in
this section is reproduced with permission from Springer Nature.

Finally, a license has also been obtained from Springer Nature to include
this article in the thesis. The license number is 5585250613477.

Summary
Threshold automata are a formalism for modeling and analyzing fault-tolerant
distributed algorithms, describing protocols executed by a fixed but arbitrary
number of processes. We conduct the first systematic study of the complexity of
verification and synthesis problems for threshold automata. We prove that the
coverability, reachability, safety, and liveness problems are NP-complete and
that the bounded synthesis problem is Σ2

p complete. A key to our results is
a novel characterization of the reachability relation of a threshold automaton
as an existential Presburger formula. The characterization also leads to novel
verification and synthesis algorithms. We report on an implementation and
provide experimental results.

Contributions of the author of this thesis

Contribution of Balasubramanian Ayikudi Ramachandrakumar

Scientific findings 60%

Development and conceptual design of the research project 50%

Discussion and development of ideas 50%

Experimental evaluation 100%

Drafting of the manuscript 50%

164

https://www.springer.com/gp/rights-permissions/obtaining-permissions/882
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882
https://www.springernature.com/gp/partners/rights-permissions-third-party-distribution
https://www.springernature.com/gp/partners/rights-permissions-third-party-distribution

Complexity of Verification and Synthesis
of Threshold Automata

A. R. Balasubramanian(B) , Javier Esparza , and Marijana Lazić

Technische Universität München, Munich, Germany
bala.ayikudi@tum.de, {esparza,lazic}@in.tum.de

Abstract. Threshold automata are a formalism for modeling and ana-
lyzing fault-tolerant distributed algorithms, recently introduced by Kon-
nov, Veith, and Widder, describing protocols executed by a fixed but
arbitrary number of processes. We conduct the first systematic study
of the complexity of verification and synthesis problems for threshold
automata. We prove that the coverability, reachability, safety, and live-
ness problems are NP-complete, and that the bounded synthesis prob-
lem is Σ2

p complete. A key to our results is a novel characterization
of the reachability relation of a threshold automaton as an existential
Presburger formula. The characterization also leads to novel verification
and synthesis algorithms. We report on an implementation, and provide
experimental results.

Keywords: Threshold automata · Distributed algorithms ·
Parameterized verification

1 Introduction

Many concurrent and distributed systems consist of an arbitrary number of
communicating processes. Parameterized verification investigates how to prove
them correct for any number of processes [1].

Parameterized systems whose processes are indistinguishable and finite state
are often called replicated systems. A global state of a replicated system is com-
pletely determined by the number of processes in each state. Models of repli-
cated systems differ in the communication mechanism between processes. Vector
Addition Systems (VAS) and their extensions [2,7,9,11] can model rendez-vous,
multiway synchronization, global resets and broadcasts, and other mechanisms.
The decidability and complexity of their verification problems is well understood
[1,2,8,10,24].

Transition guards of VAS-based replicated systems are local : Whether a tran-
sition is enabled or not depends only on the current states of a fixed num-
ber of processes, independent of the total number of processes. Konnov et al.

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 787367 (PaVeS).

c© Springer Nature Switzerland AG 2020
D. V. Hung and O. Sokolsky (Eds.): ATVA 2020, LNCS 12302, pp. 144–160, 2020.
https://doi.org/10.1007/978-3-030-59152-6_8

Complexity of Verification and Synthesis of Threshold Automata 145

observed in [15] that local guards cannot model fault-tolerant distributed algo-
rithms. Indeed, in such algorithms often a process can only make a step if it
has received a message from a majority or some fraction of the processes. To
remedy this, they introduced threshold automata, a model of replicated systems
with shared-variable communication and threshold guards, in which the value of
a global variable is compared to an affine combination of the total numbers of
processes of different types. In a number of papers, Konnov et al. have devel-
oped and implemented verification algorithms for safety and liveness of threshold
automata [14–18]. Further, Kukovec et al. have obtained decidability and unde-
cidability results [19] for different variants of the model. However, contrary to
the VAS case, the computational complexity of the main verification problems
has not yet been studied.

We conduct the first systematic complexity analysis of threshold automata.1

In the first part of the paper we show that the parameterized coverability and
reachability problems are NP-complete. Parameterized coverability asks if some
configuration reachable from some initial configuration puts at least one pro-
cess in a given state, and parameterized reachability asks if it puts processes in
exactly a given set of states, leaving all other states unpopulated. The NP upper
bound is a consequence of our main result, showing that the reachability rela-
tion of threshold automata is expressible in existential Presburger arithmetic.
In the second part of the paper we apply this expressibility result to prove that
the model checking problem of Fault-Tolerant Temporal Logic (ELTLFT) [18] is
NP-complete, and that the problem of synthesizing the guards of a given automa-
ton, studied in [21], is Σ2

p complete. The last part of the paper reports on an
implementation of our novel approach to the parameterized (safety and liveness)
verification problems. We show that it compares favorably to ByMC, the tool
developed in [17].

2 Threshold Automata

We introduce threshold automata, illustrating the definitions on the example of
Fig. 2, a model of the Byzantine agreement protocol of Fig. 1.

Environments. Threshold automata are defined relative to an environment
Env = (Π,RC , N), where Π is a set of parameters ranging over N0, RC ⊆ NΠ

0 is
a resilience condition expressible as an integer linear formula, and N : RC → N0

is a linear function. Intuitively, a valuation of Π determines the number of pro-
cesses of different kinds (e.g., faulty) executing the protocol, and RC describes
the admissible combinations of parameter values. Finally, N associates to a each
admissible combination, the number of copies of the automaton that are going to
run in parallel, or, equivalently, the number of processes explicitly modeled. In
a Byzantine setting, faulty processes behave arbitrarily, and so we do not model

1 A full version of this paper containing additional details and proofs can be found at
https://arxiv.org/abs/2007.06248.

146 A. R. Balasubramanian et al.

1 va r myvali ∈ {0, 1}
2 va r accepti ∈ {false, true} ← false
3
4 whi le t r u e do (in one atomic step)
5 i f myvali = 1
6 and not s en t ECHO be f o r e
7 then send ECHO to a l l
8
9 i f received ECHO from at l e a s t

10 t + 1 d i s t i n c t p r o c e s s e s
11 and not s en t ECHO be f o r e
12 then send ECHO to a l l
13
14 i f received ECHO from at l e a s t
15 n − t d i s t i n c t p r o c e s s e s
16 then accepti ← true
17 od

Fig. 1. Pseudocode of a reliable broadcast
protocol from [26] for a correct process i,
where n and t denote the number of pro-
cesses, and an upper bound on the num-
ber of faulty processes. The protocol sat-
isfies its specification (if myval i = 1 for
every correct process i, then eventually
acceptj = true for some correct process
j) if t < n/3.

�0

�1

�2 �3

r2 : γ1 �→ x++

r1 :
→�� x++ r3 : γ2

sl1 : �

sl2:� sl3:�

Fig. 2. Threshold automaton modeling
the body of the loop in the protocol
from Fig. 1. Symbols γ1, γ2 stand for
the threshold guards x ≥ (t + 1) − f
and x ≥ (n − t) − f , where n and t are
as in Fig. 1, and f is the actual number
of faulty processes. The shared variable
x models the number of ECHO mes-
sages sent by correct processes. Pro-
cesses with myval i = b (line 1) start
in location �b (in green). Rules r1 and
r2 model sending ECHO at lines 7 and
12. The self-loop rules sl1, . . . , sl3 are
stuttering steps. (Color figure online)

them explicitly; in this case, the system consists of one copy of the automaton
for every correct process. In the crash fault model, processes behave correctly
until they crash, they must be modeled explicitly, and the system has a copy of
the automaton for each process, faulty or not.

Example 1. In the threshold automaton of Fig. 2, the parameters are n, f , and
t, describing the number of processes, the number of faulty processes, and the
maximum possible number of faulty processes, respectively. The resilience con-
dition is the set of triples (in, if , it) such that in/3 > it ≥ if ; abusing language,
we identify it with the constraint n/3 > t ≥ f . The function N is given by
N(n, t, f) = n − f , which is the number of correct processes.

Threshold Automata. A threshold automaton over an environment Env is
a tuple TA = (L, I, Γ,R), where L is a nonempty, finite set of local states (or
locations), I ⊆ L is a nonempty subset of initial locations, Γ is a set of global
variables ranging over N0, and R is a set of transition rules (or just rules),
formally described below.

Complexity of Verification and Synthesis of Threshold Automata 147

A transition rule (or just a rule) is a tuple r = (from, to, ϕ,u), where from
and to are the source and target locations, ϕ : Π ∪ Γ → {true, false} is a con-
junction of threshold guards, and u : Γ → {0, 1} is an update. We often let
r.from, r.to, r.ϕ, r.u denote the components of r. Intuitively, r states that a pro-
cess can move from from to to if the current values of Π and Γ satisfy ϕ, and
when it moves it updates the current valuation g of Γ by performing the update
g := g +u. Since all components of u are nonnegative, the values of global vari-
ables never decrease. A threshold guard ϕ has one of the following two forms:

– x ≥ a0 + a1 · p1 + . . . + a|Π| · p|Π|, called a rise guard, or
– x < a0 + a1 · p1 + . . . + a|Π| · p|Π|, called a fall guard,

where x ∈ Γ is a shared variable, p1, . . . , p|Π| ∈ Π are the parameters, and
a0, a1, . . . , a|Π| ∈ Q are rational coefficients. Since global variables are initialized
to 0, and they never decrease, once a rise (fall) guard becomes true (false) it
stays true (false). We call this property monotonicity of guards. We let Φrise,
Φfall, and Φ denote the sets of rise guards, fall guards, and all guards of TA.

Example 2. The rule r2 of Fig. 2 has �0 and �2 as source and target locations,
x ≥ (t + 1) − f as guard, and the number 1 as update (there is only one shared
variable, which is increased by one).

Configurations and Transition Relation. A configuration of TA is a triple
σ = (κ, g,p) where κ : L → N0 describes the number of processes at each

location, and g ∈ N|Γ |
0 and p ∈ RC are valuations of the global variables and

the parameters. In particular,
∑

�∈L κ(�) = N(p) always holds. A configuration
is initial if κ(�) = 0 for every � /∈ I, and g = 0. We often let σ.κ, σ.g, σ.p denote
the components of σ.

A configuration σ = (κ, g,p) enables a rule r = (from, to, ϕ,u) if κ(from) >
0, and (g,p) satisfies the guard ϕ, i.e., substituting g(x) for x and p(pi) for pi in
ϕ yields a true expression, denoted by σ |= ϕ. If σ enables r, then TA can move
from σ to the configuration r(σ) = (κ′, g′,p′) defined as follows: (i) p′ = p, (ii)
g′ = g + u, and (iii) κ′ = κ + vr, where vr(from) = −1, vr(to) = +1, and
vr = 0 otherwise. We let σ → r(σ) denote that TA can move from σ to r(σ).

Schedules and Paths. A schedule is a (finite or infinite) sequence of rules. A
schedule τ = r1, . . . , rm is applicable to configuration σ0 if there is a sequence of
configurations σ1, . . . , σm such that σi = ri(σi−1) for 1 ≤ i ≤ m, and we define

τ(σ0) := σm. We let σ
∗−→ σ′ denote that τ(σ) = σ′ for some schedule τ , and say

that σ′ is reachable from σ. Further we let τ · τ ′ denote the concatenation of two
schedules τ and τ ′, and, given μ ≥ 0, let μ · τ the concatenation of τ with itself
μ times.

148 A. R. Balasubramanian et al.

A path or run is a finite or infinite sequence σ0, r1, σ1, . . . , σk−1, rk, σk, . . . of
alternating configurations and rules such that σi = ri(σi−1) for every ri in the
sequence. If τ = r1, . . . , r|τ | is applicable to σ0, then we let path(σ0, τ) denote
the path σ0, r1, σ1, . . . , r|τ |, σ|τ | with σi = ri(σi−1), for 1 ≤ i ≤ |τ |. Similarly, if
τ is an infinite schedule. Given a path path(σ, τ), the set of all configurations in
the path is denoted by Cfgs(σ, τ).

3 Coverability and Parameterized Coverability

We say that configuration σ covers location � if σ.κ(�) > 0. We consider the
following two coverability questions in threshold automata:

Definition 1 ((Parameterized) coverability). The coverability problem
consists of deciding, given a threshold automaton TA, a location � and an initial
configuration σ0, if some configuration reachable from σ0 covers �. The param-
eterized coverability problem consists of deciding, given TA and �, if there is an
initial configuration σ0 and a configuration reachable from σ0 that covers �.

Sometimes we also speak of the non-parameterized coverability problem,
instead of the coverability problem, to avoid confusion. We show that both prob-
lems are NP-hard, even when the underlying threshold automaton is acyclic. In
the next section, we show that the reachability and parameterized reachability
problems (which subsume the corresponding coverability problems) are both in
NP.

Theorem 1. Parameterized coverability in threshold automata is NP-hard, even
for acyclic threshold automata with only constant guards (i.e., guards of the form
x ≥ a0 and x < a0).

Proof. (Sketch.) We prove NP-hardness of parameterized coverability by a reduc-
tion from 3-SAT. The reduction is as follows: (See Fig. 3 for an illustrative exam-
ple). Let ϕ be a 3-CNF formula with variables x1, . . . , xn. For every variable xi we
will have two shared variables yi and ȳi. For every clause Cj , we will have a shared
variable cj . Intuitively, each process begins at some state �i and then moves to
either �i or ⊥i by firing either (�i,�i, ȳi < 1, yi++) or (�i,⊥i, yi < 1, ȳi++) respec-
tively. Moving to �i (⊥i resp.) means that the process has guessed the value
of the variable xi to be true (false resp). Once it has chosen a truth value, it
then increments the variables corresponding to all the clauses which it satisfies
and moves to a location �mid. If it happens that all the guesses were correct,
a final rule gets unlocked and processes can move from �mid to �F . The key
property we need to show is that if some process moves to �i then no other
process can move to ⊥i (and vice versa). This is indeed the case because if a
process moves to �i from �i, it would have fired the rule (�i,�i, ȳi < 1, yi++)
which increments the shared variable yi, and so falsifies the guard of the corre-
sponding rule (�i,⊥i, yi < 1, ȳi++), and therefore no process can fire it. Similarly,
if (�i,⊥i, yi < 1, ȳi++) is fired, no process can fire (�i,�i, ȳi < 1, yi++).

Complexity of Verification and Synthesis of Threshold Automata 149

�1

�1

⊥1

�2

�2

⊥2

�3

�3

⊥3

ȳ1 < 1 �→ y1++

y1 < 1 �→ ȳ1++

ȳ2 < 1 �→ y2++

y2 < 1 �→ ȳ3++

ȳ3 < 1 �→ y3++

y3 < 1 �→ ȳ3++

�mid

c1++

c2++

c1++ ∧ c2++

c1++

c2+
+

�F
c1 ≥ 1 ∧ c2 ≥ 1

Fig. 3. Threshold automaton TAϕ corresponding to the formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧
(¬x1 ∨ ¬x2 ∨ ¬x3). Note that setting x1 to true and x2 and x3 to false satisfies ϕ. Let
σ0 be the initial configuration obtained by having 1 process in each initial location �i,
1 ≤ i ≤ 3, and 0 in every other location. From �1 we increment y1 and from �2 and
�3 we increment ȳ2 and ȳ3 respectively, thereby making the processes go to �1, ⊥2, ⊥3

respectively. From there we can move all the processes to �mid, at which point the last
transition gets unlocked and we can cover �F .

A modification of the same construction proves

Theorem 2. The coverability problem is NP-hard even for acyclic threshold
automata with only constant rise guards (i.e., guards of the form x ≥ a0).

Constant Rise Guards. Theorem 2 puts strong constraints to the class of TAs
for which parameterized coverability can be polynomial, assuming P
= NP. We
identify an interesting polynomial case.

Definition 2. An environment Env = (Π,RC , N) is multiplicative for a TA
if for every μ ∈ N>0 (i) for every valuation p ∈ RC we have μ · p ∈ RC and
N(μ ·p) = μ ·N(p), and (ii) for every guard ϕ := x � a0 +a1p1 +a2p2 + . . . akpk

in TA (where � ∈ {≥, <}), if (y, q1, q2, . . . , qk) is a (rational) solution to ϕ then
(μ · y, μ · q1, . . . , μ · qk) is also a solution to ϕ.

Multiplicativity is a very mild condition. To the best of our knowledge, all
algorithms discussed in the literature, and all benchmarks of [18], have multi-
plicative environments. For example, in Fig. 2, if the resilience condition t < n/3
holds for a pair (n, t), then it also holds for (μ · n, μ · t); similarly, the function
N(n, t, f) = n − f also satisfies N(μ · n, μ · t, μ · f) = μ · n − μ · f = μ · N(n, t, f).
Moreover, if x ≥ t + 1 − f holds in σ, then we also have μ · x ≥ μ · t + 1 − μ · f
in μ · σ. Similarly for the other guard x ≥ n − t − f .

This property allows us to reason about multiplied paths in large systems.
Namely, condition (ii) from Definition 2 yields that if a rule is enabled in σ, it is
also enabled in μ · σ. This plays a crucial role in Sect. 5 where we need the fact
that a counterexample in a small system implies a counterexample in a large
system.

150 A. R. Balasubramanian et al.

Theorem 3. Parameterized coverability of threshold automata over multiplica-
tive environments with only constant rise guards is P-complete.

Proof. (Sketch.) P-hardness is proved by giving a logspace-reduction from the
Circuit Value problem ([20]) which is well known to be P-hard. In the following,
we sketch the proof of inclusion in P.

Let TA = (L, I, Γ,R) be a threshold automaton over a multiplicative envi-
ronment Env = (Π,RC , N) such that the guard of each transition in R is a

constant rise guard. We construct the set L̂ of locations that can be reached by
at least one process, and the set of transitions R̂ that can occur, from at least
one initial configuration. We initialize two variables XL and XR by XL := I and
XR := ∅, and repeatedly update them until a fixed point is reached, as follows:

– If there exists a rule r = (�, �′, true,u) ∈ R \ XR such that � ∈ XL, then set
XL := XL ∪ {�′} and XR := XR ∪ {r}.

– If there exists a rule r = (�, �′, (∧1≤i≤q xi ≥ ci),u) ∈ R\XR such that � ∈ XL,
and there exists rules r1, r2, . . . , rq such that each ri = (�i, �

′
i, ϕi,ui) ∈ XR

and ui[xi] > 0, then set XL := XL ∪ {�′} and XR := XR ∪ {r}.

In the full version of the paper, we prove that after termination XL = L̂ holds.
Intuitively, multiplicativity ensures that if a reachable configuration enables a
rule, there are reachable configurations from which the rule can occur arbitrarily
many times. This shows that any path of rules constructed by the algorithm is
executable.

4 Reachability

We now consider reachability problems for threshold automata. Formally, we
consider the following two versions of the reachability problem:

Definition 3 ((Parameterized) reachability). The reachability problem
consists of deciding, given a threshold automaton TA, two sets L=0,L>0 of loca-
tions, and an initial configuration σ0, if some configuration σ reachable from σ0

satisfies σ.κ(�) = 0 for every � ∈ L=0 and σ.κ(�) > 0 for every � ∈ L>0. The
parameterized reachability problem consists of deciding, given TA and L=0,L>0,
if there is an initial configuration σ0 such that some σ reachable from σ0 satisfies
σ.κ(�) = 0 for every � ∈ L=0 and σ.κ(�) > 0 for every � ∈ L>0.

Notice that the reachability problem clearly subsumes the coverability prob-
lem and hence, in the sequel, we will only be concerned with proving that both
problems are in NP. This will be a consequence of our main result, showing
that the reachability relation of threshold automata can be characterized as an
existential formula of Presburger arithmetic. This result has several other con-
sequences. In Sect. 5 we use it to give a new model checking algorithm for the
fault-tolerant logic of [18]. In Sect. 7 we report on an implementation whose
runtime compares favorably with previous tools.

Complexity of Verification and Synthesis of Threshold Automata 151

Reachability Relation as an Existential Presburger Formula. Fix a
threshold automaton TA = (L, I, Γ,R) over an environment Env . We construct
an existential Presburger arithmetic formula φreach with (2|L|+2|Γ |+2|Π|) free
variables such that φreach(σ, σ′) is true iff σ′ is reachable from σ.

Let the context of a configuration σ, denoted by ω(σ), be the set of all rise
guards that evaluate to true and all fall guards that evaluate to false in σ. Given
a schedule τ , we say that the path path(σ, τ) is steady if all the configurations
it visits have the same context. By the monotonicity of the guards of threshold
automata, path(σ, τ) is steady iff its endpoints have the same context, i.e., iff
ω(σ) = ω(τ(σ)). We have the following proposition:

Proposition 1. Every path of a threshold automaton with k guards is the con-
catenation of at most k +1 steady paths.

Using this proposition, we first construct a formula φsteady such that
φsteady(σ, σ′) holds iff there is a steady path path(σ, τ) such that τ(σ) = σ′.

The Formula φsteady . For every rule r ∈ R, let xr be a variable ranging over
non-negative integers. Intuitively, the value of xr will represent the number of
times r is fired during the (supposed) path from σ to σ′. Let X = {xr}r∈R. We
construct φsteady step by step, specifying necessary conditions for σ, σ′ and X
to satisfy the existence of the steady path, which in particular implies that σ′ is
reachable from σ.

Step 1. σ and σ′ must have the same values of the parameters, which must satisfy
the resilience condition, the same number of processes, and the same context:

φbase(σ, σ′) ≡ σ.p = σ′.p ∧ RC (σ.p) ∧ N(σ.p) = N(σ′.p) ∧ ω(σ) = ω(σ′).

Step 2. For a location � ∈ L, let out�1, . . . , out�a�
be all outgoing rules from � and

let in�
1, . . . , in

�
b�

be all incoming rules to �. The number of processes in � after the
execution of the path is the initial number, plus the incoming processes, minus
the outgoing processes. Since xr models the number of times the rule r is fired,
we have

φL(σ, σ′,X) ≡
∧

�∈L

⎛
⎝

a�∑

i=1

xin�
i
−

b�∑

j=1

xout�
j

= σ′.κ(�) − σ.κ(�)

⎞
⎠

Step 3. Similarly, for the shared variables we must have:

φΓ (σ, σ′,X) ≡
∧

z∈Γ

(∑

r∈R
(xr · r.u[z]) = σ′.g[z] − σ.g[z]

)

Step 4. Since path(σ, τ) must be steady, if a rule is fired along path(σ, τ) then
its guard must be true in σ and so

φR(σ,X) ≡
∧

r∈R
xr > 0 ⇒ (σ |= r.ϕ)

152 A. R. Balasubramanian et al.

Step 5. Finally, for every rule r that occurs in path(σ, τ), the path must contain
a “fireable” chain leading to r, i.e., a set of rules S = {r1, . . . , rs} ⊆ R such that
all rules of S are executed in path(σ, τ), there is a process in σ at r1.from, and
the rules r1, . . . , rs form a chain leading from r1.from to r.from. We capture this
by the constraint

φappl(σ,X) ≡
∧

r∈R

⎛
⎝xr > 0 ⇒

∨

S={r1,r2,...,rs}⊆R
φr
chain(S, σ,X)

⎞
⎠

where

φr
chain (S, σ, X) ≡

∧

r∈S

xr > 0 ∧ σ.κ(r1.from) > 0 ∧
∧

1<i≤s

ri−1.to = ri.from ∧ rs = r

Combining the Steps. Define φsteady(σ, σ′) as follows:

φsteady(σ, σ′) ≡ φbase(σ, σ′) ∧
∃X ≥ 0. φL(σ, σ′,X) ∧ φΓ (σ, σ′,X) ∧ φR(σ,X) ∧ φappl(σ,X) .

where ∃X ≥ 0 abbreviates ∃xr1
≥ 0, . . . ,∃xr|R| ≥ 0. By our discussion, it is

clear that if there is a steady path leading from σ to σ′, then φsteady(σ, σ′) is
satisfiable. The following theorem proves the converse.

Theorem 4. Let TA be a threshold automaton and let σ, σ′ ∈ Σ be two con-
figurations. Formula φsteady(σ, σ′) is satisfiable if and only if there is a steady
schedule τ with τ(σ) = σ′.

Observe that, while φsteady has exponential length in TA when constructed
näıvely (because of the exponentially many disjunctions in φappl), its satisfiability
is in NP. Indeed, we first non-deterministically guess one of the disjunctions for
each conjunction of φappl and then check in nondeterministic polynomial time
that the (polynomial sized) formula with only these disjuncts is satisfiable. This
is possible because existential Presburger arithmetic is known to be in NP [13].

The Formula φreach . By Proposition 1, every path from σ to σ′ in a threshold
automaton with a set Φ of guards can be written in the form

σ = σ0
∗−→ σ′

0 → σ1
∗−→ σ′

1 → σ2 . . . σK
∗−→ σ′

K = σ′

where K = |Φ| + 1, and σi
∗−→ σ′

i is a steady path for each 0 ≤ i ≤ K. It is easy
to see from the definition of the transition relation between configurations that
we can construct a polynomial sized existential Presburger formula φstep such
that φstep(σ, σ′) is true iff σ′ can be reached from σ by firing at most one rule.
Thus, we define φreach(σ, σ′) to be

∃σ0, σ′
0, . . . , σK , σ′

K

⎛
⎝σ0 = σ ∧ σ′

K = σ′ ∧
∧

0≤i≤K

φsteady (σi, σ
′
i) ∧

∧

0≤i≤K−1

φstep(σ′
i, σi+1)

⎞
⎠

Complexity of Verification and Synthesis of Threshold Automata 153

Theorem 5. Given a threshold automaton TA, there is an existential Presburger
formula φreach such that φreach(σ, σ′) holds iff σ

∗−→ σ′.

As deciding the truth of existential Presburger formulas is in NP, we obtain:

Corollary 1. The reachability and parameterized reachability problems are in
NP.

Remark 1. In [14] an algorithm was given for parameterized reachability of
threshold automata in which the updates of all rules contained in loops are
equal to 0. Our algorithm does not need this restriction.

5 Safety and Liveness

We recall the definition of Fault-Tolerant Temporal Logic (ELTLFT), the fragment
of LTL used in [18] to specify and verify properties of a large number of fault-
tolerant algorithms. ELTLFT has the following syntax, where S ⊆ L is a set of
locations and guard ∈ Φ is a guard:

ψ ::= pf | Gψ | Fψ | ψ ∧ ψ cf ::= S = 0 | ¬(S = 0) | cf ∧ cf

pf ::= cf | gf ⇒ cf gf ::= guard | gf ∧ gf | gf ∨ gf

An infinite path path(σ, τ) starting at σ = (κ, g,p), satisfies S = 0 if κ(�) = 0
for every � ∈ S, and guard if (g,p) satisfies guard . The rest of the semantics is
standard. The negations of specifications of the benchmarks [3–6,12,22,23,25,26]
can be expressed in ELTLFT, as we are interested in finding possible violations.

Example 3. One specification of the algorithm from Fig. 1 is that if myval i = 1
for every correct process i, then eventually acceptj = true for some correct
process j. In the words of the automaton from Fig. 2, a violation of this property
would mean that initially all correct processes are in location �1, but no correct
process ever reaches location �3. In ELTLFT we write this as

{�0, �2, �3} = 0 ∧ G ({�3} = 0) .

This has to hold under the fairness constraint

GF

(
((x ≥ t + 1 ∨ x ≥ n − t) ⇒ {�0}=0) ∧ {�1}=0 ∧ (x ≥ n − t ⇒ {�2}=0)

)
.

As we have self-loops at locations �0 and �2, a process could stay forever in one
of these two states, even if it has collected enough messages, i.e., if x ≥ t + 1
or x ≥ n − t. This is the behavior that we want to prevent with such a fairness
constraint. Enough sent messages should force each process to progress, so the
location eventually becomes empty. Similarly, as the rule leading from �1 has a
trivial guard, we want to make sure that all processes starting in �1 eventually
(send a message and) leave �1 empty, as required by the algorithm.

154 A. R. Balasubramanian et al.

a

F b

F c loopst

GF e

loopend
d

a b c e

Fig. 4. The cut graph of a formula F (a ∧ F b ∧ F c ∧ G d ∧ GF e) (left) and one lasso
shape for a chosen topological ordering a ≤ F b ≤ F c ≤ loopst ≤ GF e ≤ loopend (right).

In this section we study the following problem:

Definition 4 (Parameterized safety and liveness). Given a threshold
automaton TA and a formula ϕ in ELTLFT, check whether there is an ini-
tial configuration σ0 and an infinite schedule τ applicable to σ0 such that
path(σ0, τ) |= ϕ.

Since parameterized coverability is NP-hard, it follows that parameterized
safety and liveness is also NP-hard. We prove that for automata with multi-
plicative environments (see Definition 2) parameterized safety and liveness is in
NP.

Theorem 6. Parameterized safety and liveness of threshold automata with mul-
tiplicative environments is in NP.

The proof, which can be found in the full version, is very technical, and we
only give a rough sketch here. The proof relies on two notions introduced in [18].
First, it is shown in [18] that every ELTLFT formula is equivalent to a formula in
normal form of shape φ0 ∧Fφ1 ∧ · · · ∧Fφk ∧Gφk+1, where φ0 is a propositional
formula and φ1, . . . , φk+1 are themselves in normal form. Further, formulas can
be put in normal form in polynomial time. The second notion introduced in [18]
is the cut graph Gr(ϕ) of a formula in normal form. For our sketch it suffices to
know that Gr(ϕ) is a directed acyclic graph with two special nodes loopst and
loopend , and every other node is a subformula of ϕ in normal form (see Fig. 4).

For a formula ϕ ≡ φ0 ∧ Fφ1 ∧ . . . ∧ Fφk ∧ Gφk+1, we will say that its local
proposition is φ0 and its global proposition is the local proposition of φk+1. It is
shown in [18] that, given ϕ = φ0∧Fφ1∧· · ·∧Fφk∧Gφk+1, some infinite path sat-
isfies ϕ iff there exists a topological ordering v0, v1, . . . , vc = loopst, vc+1, . . . , vl =
loopend of the cut graph and a path σ0, τ0, σ1, . . . , σc, τc, . . . , σl−1, τl−1, σl such
that, roughly speaking, (among other technical conditions) every configuration
σi satisfies the local proposition of vi and every configuration in Cfgs(σi, τi)
satisfies the global proposition of every vj where j ≤ i.

Using multiplicativity and our main result that reachability is definable in
existential Presburger arithmetic, we show that for every proposition p, we can
construct an existential formula φp(σ, σ′) such that: If there is a path between σ
and σ′, all of whose configurations satisfy p, then φp(σ, σ′) is satisfiable. Further,
if φp(σ, σ′) is satisfiable, then there is a path between 2 ·σ and 2 ·σ′ all of whose
configurations satisfy p. (Here 2 · σ = ((2 · σ.κ), (2 · σ.g), (2 · σ.p))). Then, once
we have fixed a topological ordering V = v0, . . . , vl, (among other conditions),

Complexity of Verification and Synthesis of Threshold Automata 155

we check if there are configurations σ0, . . . , σl such that for every i, σi satisfies
the local proposition of vi and for every j ≤ i, φpj

(σi, σi+1) is satisfiable where
pj is the global proposition of vj . Using multiplicativity, we then show that this
procedure is sufficient to check if the given specification ϕ is satisfied.

Our algorithm consists therefore of the following steps: (1) bring ϕ in nor-
mal form; (2) construct the cut graph Gr(ϕ); (3) guess a topological ordering
of the nodes of Gr(ϕ); (4) for the guessed ordering, check in nondeterministic
polynomial time if the required sequence σ0, . . . , σl exists.

Remark 2. From an algorithm given in [18] one can infer that parameterized
safety and liveness is in NP for threshold automata with multiplicative environ-
ments, where all cycles are simple, and rules in cycles have update 0. (The NP
bound was not explicitly given in [18].) Our algorithm only requires multiplica-
tivity.

6 Synthesis of Threshold Guards

We study the bounded synthesis problem for constructing parameterized thresh-
old guards in threshold automata satisfying a given specification.

Sketch Threshold Automata. Let an indeterminate be a variable that can take
values over rational numbers. We consider threshold automata whose guards can
contain indeterminates. More precisely, a sketch threshold automaton is a tuple
TA = (L, I, Γ,R), just as before, except for the following change. Recall that
in a threshold automaton, a guard is an inequality of one of the following two
forms:

x ≥ a0 + a1 · p1 + . . . + a|Π| · p|Π| or x < a0 + a1 · p1 + . . . + a|Π| · p|Π|

where a0, a1, . . . , a|Π| are rational numbers. In a sketch threshold automaton,
some of the a0, a1, . . . , a|Π| can be indeterminates. Moreover, indeterminates
can be shared between two or more guards.

Given a sketch threshold automaton TA and an assignment μ to the indeter-
minates, we let TA[μ] denote the threshold automaton obtained by substituting
the indeterminates by their values in μ. We define the bounded synthesis problem:

Given: An environment Env, a sketch threshold automaton TA with inde-
terminates v1, . . . , vm, a formula ϕ of ELTLFT, and a polynomial p.
Decide: Is there an assignment μ to v1, . . . , vm of size O(p(|TA| + |ϕ|))
(i.e., the vector (μ(v1), . . . , μ(vm)) of rational numbers can be encoded in
binary using O(p(|TA| + |ϕ|)) bits) such that TA[μ] satisfies ¬ϕ (i.e., such
that for every initial configuration σ0 in TA[μ], every infinite run starting
from σ0 satisfies ¬ϕ)?

156 A. R. Balasubramanian et al.

We say that an assignment μ to the indeterminates makes the environment
multiplicative if the conditions of Definition 2 are satisfied after plugging in the
assignment μ in the automaton. In the following, we will only be concerned with
assignments which make the environment multiplicative.

Since we can guess an assignment in polynomial time, by Theorem 6 it follows

Theorem 7. Bounded synthesis is in Σp
2 .

By a reduction from the Σ2-SAT problem, we also provide a matching lower
bound.

Theorem 8. Bounded synthesis is Σp
2 -complete.

The synthesis problem is defined as the bounded synthesis problem, but
lifting the constraint on the size of μ. While we do not know the exact complexity
of the synthesis problem, we can show that, for a large and practically motivated
class of threshold automata introduced in [21], the synthesis problem reduces to
the bounded synthesis problem. We proceed to describe and motivate the class.

The parameter variables of fault-tolerant distributed algorithms usually con-
sist of a variable n denoting the number of processes running the algorithm
and various “failure” variables for the number of processes exhibiting different
kinds of failures (for example, a variable t1 might be used to specify the number
of Byzantine failures, a variable t2 for crash failures, etc.). The following three
observations are made in [21]:

(1) The resilience condition of these algorithms is usually of the form n >∑k
i=1 δiti where ti are parameter variables and δi are natural numbers.

(2) Threshold guards typically serve one of two purposes: to check if at least
a certain fraction of the processes sends a message (for example, x > n/2
ensures that a strict majority of processes has sent a message), or to bound
the number of processes that crash.

(3) The coefficients of the guards are rational numbers with small denominators
(typically at most 3).

By (2), the structure of the algorithm guarantees that the value of a variable
x never goes beyond n, the number of processes. Therefore, given a threshold
guard template x �� u ·π+v, where u is a vector of indeterminates, π is a vector
of parameter variables, v is an indeterminate, and �� is either ≥ or <, we are only
interested in assignments μ of u and v which satisfy 0 ≤ μ(u)·ν(π)+μ(v) ≤ n for
every valuation ν(π) of π respecting the resilience condition. Guards obtained
by instantiating guard templates with such a valuation μ are called sane guards
[21].

The following result is proved in [21]: Given a resilience condition n >∑k
i=1 δiti, and an upper bound D on the denominator of the entries of μ (see

(1) and (3) above), the numerators of the entries of μ are necessarily of polyno-
mial size in k, δ1, . . . , δk. Therefore, the synthesis problem for sane guards and
bounded denominator, as introduced in [21], reduces to the bounded synthesis

Complexity of Verification and Synthesis of Threshold Automata 157

problem, and so it can be solved in Σp
2 time. Moreover, the reduction used in

Theorem 8 to prove Σp
2 -hardness yields sketch threshold automata with sane

guards, and so the the synthesis problem for sane guards and bounded denomi-
nator is also Σp

2 -complete.

7 Experimental Evaluation

Following the techniques presented in this paper, we have verified a number of
threshold-based fault-tolerant distributed algorithms.

Table 1. The experiments were run on a machine with Intel® CoreTM i5-7200U CPU
with 7.7 GiB memory. The time limit was set to be 5 h and the memory limit was set
to be 7 GiB. TLE (MLE) means that the time limit (memory limit) exceeded for the
particular benchmark.

Input Case (if more than one) Threshold automaton Time, seconds

|L| |R| Our tool ByMC

nbacg 24 64 11.84 10.29

nbacr 77 1031 490.79 1081.07

aba Case 1 37 202 251.71 751.89

aba Case 2 61 425 2856.63 TLE

cbc Case 1 164 2064 MLE MLE

cbc Case 2 73 470 2521.12 36.57

cbc Case 3 304 6928 MLE MLE

cbc Case 4 161 2105 MLE MLE

cf1s Case 1 41 280 50.5 55.87

cf1s Case 2 41 280 55.88 281.69

cf1s Case 3 68 696 266.56 7939.07

cf1s hand-coded TA 9 26 7.17 2737.53

c1cs Case 1 101 1285 1428.51 TLE

c1cs Case 2 70 650 1709.4 11169.24

c1cs Case 3 101 1333 TLE MLE

c1cs hand-coded TA 9 30 37.72 TLE

bosco Case 1 28 152 58.11 89.64

bosco Case 2 40 242 157.61 942.87

bosco Case 3 32 188 59 104.03

bosco hand-coded TA 8 20 20.95 510.32

158 A. R. Balasubramanian et al.

Benchmarks. Consistent broadcast (strb) [26] is given in Fig. 1 and its thresh-
old automaton is depicted in Fig. 2. The algorithm is correct if in any execution
either all correct processes or none set accept to true; moreover, if all correct
processes start with value 0 then none of them accept, and if all correct processes
start with value 1 then they all accept. The algorithm is designed to tolerate
Byzantine failures of less than one third of processes, that is, if n > 3t. Folklore
Reliable Broadcast (frb) [5] that tolerates crash faults and Asynchronous Byzan-
tine agreement (aba) [3] satisfy the same specifications as consistent broadcast,
under the same resilience condition.

Non-blocking atomic commit (nbacr) [23] and (nbacg) [12] deal with faults
using failure detectors. We model this by introducing a special location such that
a process is in it if and only if it suspects that there is a failure of the system.

Condition-based consensus (cbc) [22] reaches consensus under the condition
that the difference between the numbers of processes initialized with 0 and 1
differ by at least t, an upper bound on the number of faults. We also check
algorithms that allow consensus to be achieved in one communication step, such
as cfcs [6], c1cs [4], as well as Byzantine One Step Consensus bosco [25].

Evaluation. Table 1 summarizes our results and compares them with the results
obtained using the ByMC tool [17]. Due to lack of space, we have omitted those
experiments for which both ByMC and our tool took less than 10 s.

We implemented our algorithms in Python and used Z3 as a back-end SMT
solver for solving the constraints over existential Presburger arithmetic. Our
implementation takes as input a threshold automaton and a specification in
ELTLFT and checks if a counterexample exists. We apply to the latest version of
the benchmarks of [17]. Each benchmark yields two threshold automata, a hand-
coded one and one obtained by a data abstraction of the algorithm written in
Parametric Promela. For automata of the latter kind, due to data abstraction, we
have to consider different cases for the same algorithm. We test each automaton
against all specifications for that automaton.

Our tool outperforms ByMC in all automata with more than 30 states, with
the exception of the second case of cbc. It performs worse in most small cases,
however in these cases, both ByMC and our tool take less than 10 s. ByMC works
by enumerating all so-called schemas of a threshold automaton, and solving a
SMT problem for each of them; the number of schemas can grow exponentially
in the number of guards. Our tool avoids the enumeration. Since the number of
schemas for the second case of cbc is just 2, while the second case of aba and
third case of cf1s have more than 3000, avoiding the enumeration seems to be
key to our better performance.

Complexity of Verification and Synthesis of Threshold Automata 159

References

1. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

2. Blondin, M., Haase, C., Mazowiecki, F.: Affine extensions of integer vector addi-
tion systems with states. In: CONCUR. LIPIcs, vol. 118, pp. 14:1–14:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

3. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

4. Brasileiro, F., Greve, F., Mostefaoui, A., Raynal, M.: Consensus in one commu-
nication step. In: Malyshkin, V. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 42–50.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44743-1 4

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

6. Dobre, D., Suri, N.: One-step consensus with zero-degradation. In: DSN, pp. 137–
146 (2006)

7. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and
undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055044

8. Esparza, J.: Decidability and complexity of Petri net problems—An introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

9. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS, pp. 352–359. IEEE Computer Society (1999)

10. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bull. EATCS
52, 244–262 (1994)

11. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

12. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distrib. Comput. 15(1), 17–25 (2002). https://doi.org/10.
1007/s446-002-8027-4

13. Haase, C.: A survival guide to Presburger arithmetic. ACM SIGLOG News 5(3),
67–82 (2018)

14. Konnov, I., Lazic, M., Veith, H., Widder, J.: Para2: parameterized path reduc-
tion, acceleration, and SMT for reachability in threshold-guarded distributed algo-
rithms. Formal Methods Syst. Des. 51(2), 270–307 (2017)

15. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. In: Baldan, P., Gorla, D.
(eds.) CONCUR 2014. LNCS, vol. 8704, pp. 125–140. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44584-6 10

16. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. Inf. Comput. 252, 95–109
(2017)

17. Konnov, I., Widder, J.: ByMC: Byzantine model checker. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 327–342. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5 22

18. Konnov, I.V., Lazic, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: POPL
2017, pp. 719–734 (2017)

160 A. R. Balasubramanian et al.

19. Kukovec, J., Konnov, I., Widder, J.: Reachability in parameterized systems: all
flavors of threshold automata. In: CONCUR, pp. 19:1–19:17 (2018)

20. Ladner, R.E.: The circuit value problem is log space complete for p. SIGACT News
7(1), 18–20 (1975)

21. Lazić, M., Konnov, I., Widder, J., Bloem, R.: Synthesis of distributed algorithms
with parameterized threshold guards. In: OPODIS. LIPIcs, vol. 95, pp. 32:1–32:20
(2017)

22. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-
based approach to solve consensus. In: DSN, pp. 541–550 (2003)

23. Raynal, M.: A case study of agreement problems in distributed systems: non-
blocking atomic commitment. In: HASE, pp. 209–214 (1997)

24. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. CoRR
abs/1402.2908 (2014)

25. Song, Y.J., van Renesse, R.: Bosco: one-step Byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-87779-0 30

26. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distrib. Comput. 2, 80–94 (1987). https://doi.org/10.1007/
BF01667080

Appendix F

Parameterized Complexity of
Safety of Threshold
Automata (FSTTCS 2020)

This section contains a reprinting of the following paper, which has been pub-
lished as a peer-reviewed conference paper.

A. R. Balasubramanian. Parameterized Complexity of Safety of
Threshold Automata. In conference proceedings of FSTTCS 2020.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Vol. 182 of
LIPIcs, Pages - 37:1-37:15. doi: 10.4230/LIPIcs.FSTTCS.2020.37

According to the Open Access Policy of LIPIcs (Leibniz International Pro-
ceedings in Informatics) by Schloss Dagstuhl Leibniz-Zentrum für Informatik,
the author of this thesis is permitted to include the above paper in this thesis.
The relevant excerpt is the following:

LIPIcs volumes are peer-reviewed and published according to the
principle of OpenAccess, i.e., they are available online and free of
charge. The authors retain their copyright.

For more information, please see https://www.dagstuhl.de/en/publish
ing/series/details/LIPIcs, in particular, the section on Open Access Policy.

Summary
Threshold automata are a formalism for modeling fault-tolerant distributed al-
gorithms. We study the parameterized complexity of reachability of threshold
automata. As a first result, we show that the problem becomes W[1]-hard even
when parameterized by parameters that are quite small in practice. We then
consider two restricted cases which arise in practice and provide fixed-parameter

182

10.4230/LIPIcs.FSTTCS.2020.37
https://www.dagstuhl.de/en/publishing/series/details/LIPIcs
https://www.dagstuhl.de/en/publishing/series/details/LIPIcs

tractable algorithms for both these cases. Finally, we report on experimental
results conducted on some protocols taken from the literature.

Contributions of the author of this thesis
I am the sole author of this paper.

183

Parameterized Complexity of Safety of Threshold
Automata
A. R. Balasubramanian
Technische Universität München, Germany
bala.ayikudi@tum.de

Abstract
Threshold automata are a formalism for modeling fault-tolerant distributed algorithms. In this
paper, we study the parameterized complexity of reachability of threshold automata. As a first
result, we show that the problem becomes W[1]-hard even when parameterized by parameters which
are quite small in practice. We then consider two restricted cases which arise in practice and provide
fixed-parameter tractable algorithms for both these cases. Finally, we report on experimental results
conducted on some protocols taken from the literature.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Theory
of computation → Logic and verification

Keywords and phrases Threshold automata, distributed algorithms, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.37

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant agreement No
787367 (PaVeS).

Acknowledgements I would like to thank Prof. Javier Esparza for useful discussions regarding the
paper and Christoph Welzel and Margarete Richter for their encouragement and support. I would
also like to thank the anonymous reviewers whose comments greatly improved the presentation of
the paper.

1 Introduction

Threshold automata [21] are a formalism for modeling and analyzing fault-tolerant distributed
algorithms. In this setup, an arbitrary but fixed number of processes execute a given protocol
as specified by a threshold automaton. Verification of these systems aims to prove these
protocols correct for any number of processes [4].

One of the main differences between threshold automata and other formalisms for modeling
distributed protocols (like replicated systems and population protocols [1, 16, 18]) is the
notion of a threshold guard. Roughly speaking, a threshold guard specifies certain constraints
that should hold between the number of messages received and the number of participating
processes, in order for a transition to be enabled. For example, a guard of the form x ≥ n/2−t,
(where x counts the number of messages of some specified type, n is the number of processes
and t is the maximum number of faulty processes), specifies that the number of messages
received should be bigger than n/2 − t, in order for the process to proceed. This feature
is important in modeling fault-tolerant distributed algorithms where, often a process can
make a move only if it has received a message from a majority or two-thirds of the number of
processes. In a collection of papers [26, 3, 25, 24, 23], many algorithms have been developed
for verifying various properties for threshold automata. These algorithms have then been
used to verify a number of protocols from the distributed computing literature [24]. It is
known that the reachability problem for threshold automata is NP-complete [2].

© A.R. Balasubramanian;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

37:2 Parameterized Complexity of Safety of Threshold Automata

Parameterized complexity [13] attempts to study decision problems that come along with
a parameter. In parameterized complexity, apart from the size of the input n, one considers
further parameters k that capture the structure of the input and one looks for algorithms
that run in time f(k) · nO(1), where f is some function dependent on k alone. The hope is to
find parameters which are quite small in practice and to base the dominant running time
of the algorithm on this parameter alone. Problems solvable in such a manner are called
fixed-parameter tractable (FPT).

In recent years, increasing effort has been devoted to studying the parameterized complex-
ity of problems in verification for different models [10, 11, 15, 17, 9]. Motivated by this and
by the hard theoretical complexity (NP-completeness) of reachability of threshold automata,
we study the parameterized complexity of the same problem, parameterized by (among
other parameters) the number of threshold guards and the given safety specification. Our
first result is a parameterized equivalent of NP-hardness, which shows that reachability of
threshold automata is W[1]-hard. However, motivated by practical concerns, we then study
two restricted cases for which we provide fixed-parameter tractable algorithms. In the first
case, we restrict ourselves to threshold automata whose underlying control structure is acyclic
and provide a simple algorithm which reduces the size of the automaton to a function of the
considered parameters. In the second case we consider multiplicative threshold automata
where the number of fall guards is a constant. (For a definition of fall guards, see Section 2.1.)
Roughly speaking, multiplicativity means that any run over a smaller population of processes
can be “lifted” to a run over a bigger population as well. For this case, we use results from
Petri net theory to provide an FPT algorithm. Finally, the usefulness of these cases is shown
by a preliminary implementation of our algorithms on various protocols from the benchmark
in [24]. Our implementation compares favorably with ByMC, the tool developed in [24] and
also with the algorithm given in [2].

2 Preliminaries

We denote the set of non-negative integers by N0, the set of positive integers by N>0 and the
set of all non-negative rational numbers by Q≥0.

2.1 Threshold Automata
We introduce threshold automata, mostly following the definition and notations used

in [2]. Along the way, we also illustrate the definitions on the example of Figure 2 from [25],
which is a model of the Byzantine agreement protocol of Figure 1.

Environments
Threshold automata are defined relative to an environment Env = (Π,RC ,Num), where Π
is a set of environment variables ranging over N0, RC ⊆ NΠ

0 is a resilience condition over
the environment variables, expressible as a linear formula, and Num : RC → N0 is a linear
function called the number function. Intuitively, a valuation of Π determines the number
of processes of different kinds (e.g. faulty) executing the protocol, and RC describes the
admissible combinations of values of environment variables. Finally, Num associates to a
each admissible combination, the number of copies of the automaton that are going to run in
parallel, or, equivalently, the number of processes explicitly modeled. In a Byzantine setting,
faulty processes behave arbitrarily, and so we do not model them explicitly; in this case, the
system consists of one copy of the automaton for every correct process. In the crash fault
model, processes behave correctly until they crash and they must be modeled explicitly.

A. Balasubramanian 37:3

1 va r myvali ∈ {0, 1}
2 va r accepti ∈ {false, true} ← false
3
4 whi le t r u e do (in one atomic step)
5 i f myvali = 1
6 and not s e n t ECHO b e f o r e
7 then send ECHO to a l l
8
9 i f received ECHO from at l e a s t

10 t + 1 d i s t i n c t p r o c e s s e s
11 and not s e n t ECHO b e f o r e
12 then send ECHO to a l l
13
14 i f received ECHO from at l e a s t
15 n − t d i s t i n c t p r o c e s s e s
16 then accepti ← true
17 od

Figure 1 Pseudocode of a reliable broadcast
protocol from [28] for a correct process i, where
n and t denote the number of processes, and
an upper bound on the number of faulty pro-
cesses. The protocol satisfies its specification (if
myvali = 0 for every correct process i, then no
correct process sets its accept variable to true)
if t < n/3.

`0

`1

`2 `3

r2 : γ1 7→ x++

r1 : > 7→
x++ r3 : γ2

sl1 : >

sl2:> sl3:>

Figure 2 Threshold automaton from [25]
modeling the body of the loop in the pro-
tocol from Fig. 1. Symbols γ1, γ2 stand for
the threshold guards x ≥ (t + 1) − f and
x ≥ (n−t)−f , where n and t are as in Fig. 1, and
f is the actual number of faulty processes. The
shared variable x models the number of ECHO
messages sent by correct processes. Processes
with myvali = b (line 1) start in location `b (in
green). Rules r1 and r2 model sending ECHO
at lines 7 and 12. The self-loop rules sl1, . . . , sl3
are stuttering steps.

I Example 1. In the threshold automaton of Figure 2, the environment variables are n, f ,
and t, describing the number of processes, the number of (Byzantine) faulty processes, and
the maximum possible number of faulty processes, respectively. The resilience condition is
the constraint n/3 > t ≥ f . The function Num is given by Num(n, t, f) = n− f , which is
the number of correct processes.

Threshold automata
A threshold automaton over an environment Env is a tuple TA = (L, I,Γ,R), where L is a
finite set of local states (or locations), I ⊆ L is a nonempty subset of initial locations, Γ is
a set of shared variables ranging over N0, and R is a set of transition rules (or just rules),
formally described below.

A transition rule (or just a rule) is a tuple r = (from, to, ϕ, ~u), where from and to are the
source and target locations, ϕ ⊆ NΠ∪Γ

0 is a conjunction of threshold guards (described below),
and ~u : Γ→ {0, 1} is an update. We often let r.from, r.to, r.ϕ, r.~u denote the components of r.
Intuitively, r states that a process can move from from to to if the current values of Π and Γ
satisfy ϕ, and when it moves, it updates the current valuation ~g of Γ by performing the update
~g := ~g + ~u. Since all components of ~u are nonnegative, the values of shared variables never
decrease. A threshold guard ϕ has one of the following forms: b·x ./ a0+a1 ·p1+. . .+a|Π| ·p|Π|
where ./ ∈ {≥, <}, x ∈ Γ is a shared variable, p1, . . . , p|Π| ∈ Π are the environment variables,
b ∈ N>0 and a0, a1, . . . , a|Π| ∈ Z are integer coefficients. If b = 1, then the guard is called a
simple guard. Additionally, if ./ = ≥, then the guard is called a rise guard and otherwise
the guard is called a fall guard. We sometimes use b · x = a0 + a1 · p1 + . . .+ a|Π| · p|Π| as a
shorthand for b ·x ≥ a0 +a1 ·p1 + . . .+a|Π| ·p|Π|∧b ·x < (a0 +1)+a1 ·p1 + . . .+a|Π| ·p|Π|. Since

FSTTCS 2020

37:4 Parameterized Complexity of Safety of Threshold Automata

shared variables are initialized to 0 and they never decrease, once a rise (resp. fall) guard
becomes true (resp. false) it stays true (resp. false). We call this property monotonicity of
guards. We let Φrise, Φfall, and Φ denote the sets of rise guards, fall guards, and all guards of
TA. Finally, the graph of TA is the graph where the vertices are the locations and there is an
edge between ` and `′ if there is a rule r in TA with r.from = ` and r.to = `′. We say that
TA is acyclic if its graph is acyclic.

I Example 2. The rule r2 of Figure 2 has `0 and `2 as source and target locations, x ≥
(t+ 1)− f as guard, and increments the value of the shared variable x by 1.

Configurations and transition relation
A configuration of TA is a triple σ = (~κ, ~g, ~p) where ~κ : L → N0 describes the number
of processes at each location, and ~g ∈ N|Γ|0 and ~p ∈ RC are valuations of the shared
variables and the environment variables. In particular,

∑
`∈L ~κ(`) = Num(~p) always holds.

A configuration is initial if ~κ(`) = 0 for every ` /∈ I, and ~g = ~0. We often let σ.~κ, σ.~g, σ.~p
denote the components of σ.

A configuration σ = (~κ, ~g, ~p) enables a rule r = (from, to, ϕ, ~u) if ~κ(from) > 0, and
(~g, ~p) satisfies the guard ϕ, i.e., substituting ~g(x) for x and ~p(pi) for pi in ϕ yields a true
expression, denoted by σ |= ϕ. If σ enables r, then TA can move from σ to the configuration
r(σ) = (~κ′, ~g′, ~p′) defined as follows: (i) ~p′ = ~p, (ii) ~g′ = ~g + ~u, and (iii) ~κ′ = ~κ+ ~vr, where
~vr = ~0 if from = to and otherwise, ~vr(from) = −1, ~vr(to) = +1, and ~vr(`) = 0 for all other
locations `. We let σ → r(σ) denote that TA can move from σ to r(σ).

Schedules and paths
A schedule is a (finite or infinite) sequence of rules. A schedule τ = r1, . . . , rm is applicable
to configuration σ0 if there is a sequence of configurations σ1, . . . , σm such that σi = ri(σi−1)
for 1 ≤ i ≤ m, and we define τ(σ0) := σm. We let σ ∗−→ σ′ denote that τ(σ) = σ′ for some
schedule τ , and say that σ′ is reachable from σ. Further we let τ · τ ′ denote the concatenation
of two schedules τ and τ ′, and, given µ ≥ 0, let µ · τ the concatenation of τ with itself µ
times.

A path or run is a finite or infinite sequence σ0, r1, σ1, . . . , σk−1, rk, σk, . . . of alternating
configurations and rules such that σi = ri(σi−1) for every ri in the sequence. If τ = r1, . . . , r|τ |
is applicable to σ0, then we let path(σ0, τ) denote the path σ0, r1, σ1, . . . , r|τ |, σ|τ | with
σi = ri(σi−1), for 1 ≤ i ≤ |τ |. Similarly, if τ is an infinite schedule. Given a path path(σ, τ),
the set of all configurations in the path is denoted by Cfgs(σ, τ).

The main focus of this paper will be the reachability problem and is defined as: Given
TA and a set of locations Lspec = L=0 ∪ L>0 (called the specification), decide if there is a
run of TA satisfying Lspec, i.e., decide if there is an initial configuration σ0 such that some σ
reachable from σ0 satisfies σ.~κ(`) = 0 for every ` ∈ L=0 and σ.~κ(`) > 0 for every ` ∈ L>0.
The coverability problem is the special case of the reachability problem where L=0 = ∅.

2.2 Fixed-parameter tractability
We refer the reader to [13] for more information on parameterized complexity and only
give the necessary definitions here. A parameterized problem L is a subset of Σ∗ × N0 for
some alphabet Σ. A parameterized problem L is said to be fixed-parameter tractable (FPT)
if there exists an algorithm A such that (x, k) ∈ L iff A(x, k) is true and A runs in time
f(k) · |x|O(1) for some computable function f , depending only on the parameter k. Given

A. Balasubramanian 37:5

parameterized problems L,L′ ⊆ Σ∗ × N0 we say that L is reducible to L′ if there is an
algorithm that, given an input (x, k), produces another input (x′, k′) in time f(k) · |x|O(1)

such that (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′ and k′ ≤ g(k) for some functions f and g depending
only on k.

The parameterized clique problem is the set of all pairs (G, k) such that the graph G
has a clique of size k. A parameterized problem L is said to be W[1]-hard if there is a
parameterized reduction from L to the parameterized clique problem. If L is W[1]-hard and
there is a parameterized reduction from L to L′ then L′ is W[1]-hard as well. W[1]-hardness
is usually taken to be evidence that the problem does not have an FPT algorithm.

3 W[1]-hardness

We consider the reachability problem parameterized by the following parameters: |Φ| (the
number of distinct guards), |Lspec| (the size of the specification), |RC | (the number of
constraints in the resilience condition) and C (the maximum constant appearing in any of the
guards of TA). (We note that if x ∈ Γ ∪Π such that x does not appear in any of the guards
in Φ or in any of the constraints in RC , then x can be removed from the input. Hence, we
will always assume that |Γ|+ |Π| ≤ |Φ|+ |RC | and for this reason, we do not consider |Γ|
and |Π| explicitly as parameters.) In practice, all these values are quite small, roughly in the
range of 10 to 25. Unfortunately, we prove the following negative result:

I Theorem 3. Coverability (and hence reachability) for threshold automata parameterized by
|Φ|+ |Lspec|+ |RC |+ C is W [1]-hard, even for acyclic automata where |Φfall| is a constant.

Proof. We give a parameterized reduction from the Unary Bin Packing problem which is
known to be W [1]-hard (See Theorem 2 of [20]) and is defined as follows:

Given: A finite set of items I = {0, 1, 2, . . . , w}, a size size(i) ∈ N0 for each i ∈ I,
two positive integers B and k. (The integers size(i) and B are encoded in unary)
Parameter: k

Decide: If there exists a partition of I into bins I1, . . . , Ik such that the sum of the
sizes of the items in each bin Ij is less than or equal to B

Let size =
∑
i∈I size(i). Our parameterized reduction works as follows: We will have

k + 1 environment variables c1, c2, . . . , ck, n. Intuitively ci will denote the sum of the sizes of
the items in the ith bin. The environment variable n will denote the number of processes
modeled.

Further, we will have k + 5 shared variables x1, . . . , xk, access1, access2, access3 and
count1, count2. The variable xi will denote the sum of the sizes of items which do not
belong to the ith bin. The role of count1 and count2 will be to set up two counters whose
value will be exactly size and B respectively. Our construction will have three gadgets and
the role of access1, access2 and access3 is to ensure that exactly one process can enter the
first, second and third gadgets respectively.

We will have exactly one initial location start and three rules of the form r1 : (start,
access1 < 1, access1++, p0), r2 : (start, access2 < 1, access2++, q0) and r3 : (start, access3 <

1, access3++, `0). This means that once a process fires r1, it increments access1 and hence
no other process can fire r1 in the future. Similarly for the rules r2 and r3. Hence these
three rules ensure that at most one process can enter p0, q0 and `0 respectively. For the
specification, we set L=0 = ∅ and L>0 = {pcorr, qcorr, `w+1}, whose locations we will now
explain.

FSTTCS 2020

37:6 Parameterized Complexity of Safety of Threshold Automata

p0 p1 p2 · · · · · · · · · psize−1 psize pcorr
count1++ count1++ count1++

∑
1≤i≤k ci = count1

Figure 3 First gadget, which sets up the value of count1 to be exactly size.

q0 q1 q2 · · · · · · · · · qB−1 qB qcorr
count2++ count2++ count2++

∧
1≤i≤k count2 ≥ ci

Figure 4 Second gadget, which sets up the value of count2 to be exactly B.

`i `ji,0 `ji,1 `ji,2 · · · · · · · · · `ji,size(i)−1 `ji,size(i) `i+1
condj updj updj updj condj

Figure 5 Third gadget, which guesses the partition. Here condj is the condition xj ≥
∑

l 6=j
cl

and updj is the update ∧l 6=j xl++.

The first gadget is given by Figure 3 and starts from the location p0. It increments the
shared variable count1 to the value size. This gadget then ensures that we can reach pcorr
only if the sum of the values of the environment variables c1, c2, . . . , ck is exactly size. Notice
that this gadget can be constructed in polynomial time, since each size(i) is given in unary.

The second gadget is given by Figure 4 and starts from the location q0. It increments
the shared variable count2 to the value B. This gadget then ensures that we can reach qcorr
only if the values of the environment variables c1, c2, . . . , ck are all at most B. Notice that
this gadget can be constructed in polynomial time, since B is given in unary.

The third gadget is comprised of locations {`i}0≤i≤w+1 and {`ji,q}1≤j≤k0≤i≤w,0≤q≤size(i) and
is comprised of various mini-gadgets. For every 0 ≤ i ≤ w and 1 ≤ j ≤ k, the third gadget
has a mini-gadget as given by Figure 5.

Recall that the shared variable xj denotes the the sum of the sizes of items which do
not belong to the jth bin. Intuitively, if a process moves from `i to `i+1 by going through
`ji,0, . . . , `

j
i,size(i), this corresponds to putting the ith item in the jth bin and hence the

mini-gadget increments the variables {xl}l 6=j by the value size(i). To ensure that we do not
overshoot the bin size of the jth bin, we have the guards xj ≥

∑
l 6=j cl at the beginning and

the end of the mini-gadget. Recall that the first gadget ensures that
∑

1≤l≤k cl = size and
since xj denotes the sum of sizes of items not in the jth bin, the condition xj ≥

∑
l 6=j cl

ensures that the sum of the sizes of the items in the jth bin is at most cj . Since the second
gadget forces cj ≤ B, it follows that the test xj ≥

∑
l 6=j cl ensures that the sum of the

sizes in the jth bin is at most B. Notice that, once again this gadget can be constructed in
polynomial time, since each size(i) is given in unary.

Let RC be n > 1 and let Num(c1, . . . , ck, n) = n. From the given construction it is clear
that a configuration satisfying Lspec is reachable iff we can partition I into k bins such that
the sum of sizes of items in each bin does not exceed B.

It is clear that the reduction can be accomplished in polynomial time. Notice that the
automaton is acyclic, L=0 = ∅, |Φ| = O(k), |Φfall| = 4, |RC | = 1, C = 1 and |Lspec| = 3.
Hence it is clear that |Φ|+ |RC |+C + |Lspec| = O(k) and so the above reduction is indeed a
parameterized reduction from the unary bin packing problem to the coverability problem. J

A. Balasubramanian 37:7

We now identify two special cases for which we give an FPT algorithm and discuss how
these special cases arise in practice for a variety of distributed algorithms.

4 Acyclic threshold automata

The first case we consider is that of acyclic threshold automata, i.e., threshold automata
whose underlying graph is acyclic. Except for one protocol, all the others in the benchmark
of [24] are acyclic.1 As the reduction of Theorem 3 produces acyclic threshold automata,
we cannot hope for an FPT algorithm parameterized by {|Φ|, |Lspec|, |RC |, C}. However, we
show that

I Theorem 4. Reachability of acyclic threshold automata parameterized by |Φ|+ |Lspec|+
|RC | + C + D is in FPT, where D is the length of the longest path in the graph of the
threshold automaton.

Proof. Let TA be the given acyclic threshold automaton. First, we show that it is possible
to incrementally “contract” the locations of TA in a bottom-up manner, while preserving
the reachability property, such that, in the resulting automaton after contraction, the
number of locations and rules is a function of |Φ| + |Lspec| + |RC | + C + D. This then
immediately implies our theorem, since the size of the whole automaton is now just a function
of |Φ|+ |Lspec|+ |RC |+ C +D.

More formally, let the contraction of a subset S = {`1, . . . , `q} of locations of TA be the
following operation: We remove the locations `1, . . . , `q from TA, introduce a new location `S
and we replace all occurrences of `1, . . . , `q in every rule of TA with `S . We say that a set S
in TA is good if for every two locations `, `′ ∈ S, if (`, `′′, φ, ~u) is a rule in TA then (`′, `′′, φ, ~u)
is also a rule in TA. Intuitively, this means that, for every rule that we can fire from `, there
is another rule we can fire from `′ which will have the exact same effect. Since TA is assumed
to be acyclic, contracting a good set cannot introduce cycles. Let Tar = {` : ` ∈ Lspec}. The
following is a very simple fact to verify:

Claim: Suppose S is a good set such that S ∩ Tar = ∅ and let TA′ be the threshold
automaton obtained by contracting S in TA. Then TA satisfies Lspec iff TA′ does.

Given a threshold automaton TA such that D is the length of the longest path in its
graph, the “layers” of TA is a partition of the locations into subsets LTA

0 , LTA
1 , . . . , LTA

D

such that ` ∈ LTA
i iff the longest path ending at ` in the graph of TA is of length i.

The subset LTA
i will be called the ith layer of TA. We will now construct a sequence of

threshold automata TAD,TAD−1, . . . ,TA0 such that for each i, |LTAi
i |+ |LTAi

i+1|+ · · ·+ |LTAi

D | ≤
gi(|Φ|, |RC |, |Lspec|, D) for some function gi and such that TAi satisfies Lspec iff TAi+1 does.

For the base case of TAD, we take the threshold automaton TA and consider the set
SD := LTA

D \ Tar. We now contract SD in TA to get a threshold automaton TAD. Notice
that SD is a good set and by the above claim, TAD satisfies Lspec iff TA does.

For the induction step, suppose we have already constructed TAi+1. For a location
` ∈ LTAi+1

i , define its color to be the set {(`′, φ, ~u) : (`, `′, φ, ~u) is a rule in TAi+1}. Observe
that if ` ∈ LTAi+1

i and (`, `′, φ, ~u) is a rule in TAi+1 then `′ ∈ LTAi+1
i+1 ∪ LTAi+1

i+2 ∪ · · · ∪ LTAi+1
D .

By induction hypothesis, |LTAi+1
i+1 ∪ LTAi+1

i+2 ∪ · · · ∪ LTAi+1
D | ≤ gi+1(|Φ|, |RC |, |Lspec|, D) for

1 Some of the examples have self-loops on some locations, but since these self-loops do not update any of
the shared variables, we can remove them without affecting the reachability relation.

FSTTCS 2020

37:8 Parameterized Complexity of Safety of Threshold Automata

some function gi+1. It then follows that the number of possible colors is at most 2|Φ| ·
2|Γ| · gi+1(|Φ|, |Lspec|, D). Hence as long as the number of locations in LTAi+1

i is bigger than
2|Φ| · 2|Γ| · gi+1(|Φ|, |Lspec|, D) + |Tar| there will be two locations in LTAi+1

i \ Tar which have
the same color and can hence be contracted while maintaining the answer for Lspec. It then
follows that by repeated contraction, we can finally end up at a threshold automaton TAi
such that |LTAi

i |+ · · ·+ |LTAi

D | ≤ O(2|Φ| ·2|Φ|+|RC| ·gi+1(|Φ|, |RC |, |Lspec|, D) + |Tar|). Taking
this bound to be the function gi, we get our required TAi.2

Notice that the number of locations (and also rules) in TA0 is only dependent on
|Φ|, |RC |, |Lspec| and D. Since the reachability problem is decidable, it immediately follows
that we have a parameterized algorithm for acyclic threshold automata running in time
f(|Φ|+ |RC |+ |Lspec|+ C +D) · nO(1) J

5 Threshold automata with constantly many fall guards

As a second case, we consider threshold automata in which the number of fall guards is a
constant. In almost all of the benchmarks of [24], the number of fall guards is at most one.
We provide some intuitive reason behind this phenomenon. In threshold automata, shared
variables are usually used for two things: To record that some process has sent a message or
to keep track of the number of processes which have crashed so far. If a shared variable v is
used for the first purpose, then all guards containing v are typically rise guards, since we
only want to check that enough messages have been received to proceed. On the other hand,
if v is used to keep track of the number of crashed processes, then we will have a fall guard
which allows a process to crash only if the value of v is less than the maximum number of
processes allowed to crash. However, since we will only need one fall guard for this purpose,
it follows that in practice we can hope to have very few fall guards in a threshold automaton.

Since the reduction of Theorem 3 produces threshold automata with constantly many
fall guards, we need another restriction on this class as well, which we now describe.

I Definition 5. A threshold automaton TA over an environment Env = (Π,RC ,Num) is
called multiplicative if every fall guard is simple and for every µ ∈ N>0, (i) for every rational
vector p ∈ Q|Π|≥0, if RC (p) is true then RC (µ · p) is true and Num(µ · p) = µ · Num(p)
and (ii) for every guard g := b · x ./ a0 + a1p1 + · · · + alpl in TA where ./ ∈ {≥, <}, if
(y, q1, . . . , ql) is a rational solution to g then (µ · y, µ · q1, . . . , µ · ql) is also a solution to g.

To the best of our knowledge, many algorithms discussed in the literature (For example,
see [8, 28, 6, 27, 19, 14, 7]), and more than two-thirds of all of the benchmarks of [24] satisfy
multiplicativity. The main result of this section is

I Theorem 6. Given a multiplicative threshold automaton TA with a constant number of
fall guards and a specification Lspec, it can be decided in time f(|Φ|) · nO(1) whether there is
a run of TA satisfying Lspec.

The rest of this section is devoted to proving this result, which we do so in four parts.
Let us fix a threshold automaton TA = (L, I,Γ,R), an environment Env = (Π,RC ,Num)
and a specification Lspec for the rest of this section. Let Φ denote the set of all guards which
appear in TA.

2 Though the function gi as given here gives very huge bounds, we show in the experimental section that
repeated contractions can sometimes reduce the number of locations by 50%. Intuitively, this is because
the number of colors of a location in the benchmarks is much smaller than the worst-case analysis
performed here.

A. Balasubramanian 37:9

First part: Decomposing paths into steady paths
First, similar to the paper [22], we show that the job of finding a path satisfying Lspec can be
reduced to that of finding a bounded number of concatenated “steady” paths. However, the
result needs to be stated in a different manner than [22], so that later on, we could leverage
the fact that the threshold automaton TA contains only constantly many fall guards.

A context ω is any subset of the guards of TA, i.e., ω ⊆ Φ. A rule r is said to be activated
by a context ω if all the rise guards of r are present in ω and all the fall guards of r are not
present in ω. The set of all rules activated by a context ω is denoted by Rω.

The context of a configuration σ, denoted by ω(σ), is the set of all rise guards that
evaluate to true and the set of all fall guards that evaluate to false in σ. Since the values of
the shared variables can only increase along a path, it easily follows that for any configuration
σ and any schedule τ applicable to σ, ω(σ) ⊆ ω(τ(σ)).

We say that path(σ, τ) is ω-steady if all the rules in the schedule τ are from Rω and
for every configuration σ′ ∈ Cfgs(σ, τ), we have Rω ⊆ Rω(σ′). Intuitively, if path(σ, τ) is
ω-steady then the path only uses rules from Rω. We have the following lemma.

I Lemma 7. The specification Lspec can be satisfied by a path of TA iff there exists K ≤ |Φ|,
configurations σ0, σ

′
0, . . . , σK , σ

′
K and contexts ω0 (ω1 (· · · (ωK such that

σ0 is an initial configuration and σ′K satisfies Lspec
For every i ≤ K, there is a ωi-steady path σi

∗−→ σ′i
For every i < K, if Rωi ⊆ Rωi+1 then there is a ωi-steady path σ′i

∗−→ σi+1, otherwise
σ′i → σi+1

Proof. (Sketch.) Clearly if there exists such configurations and contexts then then there exists
a path of TA which satisfies Lspec. To prove the other direction, suppose path(σ0, τ) is a path
of TA which satisfies Lspec. Using the fact that ω(σ′) ⊆ ω(τ ′(σ′)) for any configuration σ′ and
any schedule τ ′, we can decompose path(σ0, τ) into σ0, τ0, σ

′
0, t0, σ1, τ1, σ

′
1, t1, . . . , σK , τK , σ

′
K

such that for every i, ω(σi) = ω(σ′i), ω(σ′i) (ω(σi+1) and ti is a rule of TA. We can then
prove that the configurations σ0, σ

′
0, . . . , σK , σ

′
K and the contexts ω(σ0), . . . , ω(σK) satisfy

the required conditions. J

Second part: Establishing a connection between continuous Petri nets
and steady paths
Let us fix a context ω of the threshold automaton TA for the rest of this subsection. We say
that a configuration σ is Rω-applicable if (σ.~g, σ.~p) satisfies every guard of every rule in Rω.

Continuous Petri nets

To define continuous Petri nets, we will mostly reuse the same notations from [5]. A continuous
Petri net N is a tuple (P, T, F) where P is a finite set of places, T is a finite set of transitions
and F ⊆ P × T ∪ T × P is the flow relation. For a transition t, let •t = {p : (p, t) ∈ F}
and t

• = {p : (t, p) ∈ F}. A marking M of N is a function M : P → Q≥0. Intuitively a
marking M assigns M(p) many tokens to each place p ∈ P . A marking is called integral if
M(p) ∈ N0 for every place p. Given a marking M and a k ∈ N>0 let kM denote the marking
kM(p) = k ·M(p). The transition relation between two markings M and M ′ is defined as
follows: For α ∈ (0, 1] and t ∈ T , we say that M αt−→M ′ if for every p ∈ •t, M(p) ≥ α and
M ′(p) = M(p)−α if p ∈ •t\ t•, M ′(p) = M(p) +α if p ∈ t• \ •t and M ′(p) = M(p) otherwise.
We say that M →M ′ if M αt−→M ′ for some α and t. Finally we say that M ∗−→M ′ if there
exists M1, . . . ,Mk−1 such that M →M1 → . . .Mk−1 →M ′.

FSTTCS 2020

37:10 Parameterized Complexity of Safety of Threshold Automata

Constructing continuous Petri nets from contexts

We now construct a continuous Petri net Nω for the context ω as follows: For every location
` of TA, we will have a place p`. Similarly for every variable x ∈ Γ ∪ Π, we will have a place
px. If r = (`, `′, φ, ~u) is a rule in Rω, we will have a transition tr where •tr = {p`} and
t
•
r = {p`′} ∪ {px : ~u[x] = 1}.

We note that Nω tries to simulate exactly the rules of Rω, but it does not check whether
the corresponding guard of a rule is true before firing it. To ensure that a proper simulation
is carried out by Nω, we will restrict ourselves to only runs of Nω over compatible markings
which are defined as follows.

A marking M of Nω is called a compatible marking if
∑
`∈LM(p`) = Num({M(px) : x ∈

Π}) and if for every x ∈ Γ ∪Π, the assignment x 7→M(px) satisfies the resilience condition
RC and all the guards of all the rules in Rω. Notice that to every Rω-applicable configuration
σ of TA we can bijectively assign a canonical compatible integral marking B(σ) of Nω where
(B(σ))(px) = σ[x].

I Proposition 8. The following are true:
Suppose σ ∗−→ σ′ is an ω-steady run of TA. Then B(σ) ∗−→ B(σ′) in Nω.
Suppose M and M ′ are compatible markings of Nω such that M ∗−→M ′. Then there exists
µ ∈ N>0 such that for all k ∈ N>0, µkM and µkM ′ are compatible integral markings and
B−1(µkM) ∗−→ B−1(µkM ′) is an ω-steady run of TA.

Proof. (Sketch.) The first point is obvious from the definition. For the second point, if
M := M0

α1tr1−−−→ M1
α2tr2−−−→ M2 . . .Ml−1

αltrl−−−→ Ml := M ′ is a run, then by multiplying the
markings by the least common multiple of the denominators of {αi}i≤l∪{Mi(px) : i ≤ l, x ∈
L ∪ Γ ∪ Π} (which we take to be µ), we can get an integral run between µkM and µkM ′.
Using multiplicativity of TA, we can translate this back to a run of TA. J

Third part: Characterizing steady paths

It was shown in ([5], Theorems 3.6 and 3.3) that there is a logic (which the authors of [5]
call convex semi-linear Horn formulas) characterizing reachability in continuous Petri nets,
whose satisfiability can be tested in polynomial time. Using this result, proposition 8 and
multiplicativity, we show that

I Lemma 9. Given a context ω, in polynomial time we can construct a convex semi-linear
Horn formula φω(x,y) with 2(|L|+ |Γ|+ |Π|) free variables such that

If σ ∗−→ σ′ is an ω-steady path of TA then φω(σ, σ′) is true
Suppose φω(M,M ′) is true. Then there exists µ ∈ N such that for all k ∈ N, µkM,µkM ′

are configurations of TA such that µkM ∗−→ µkM ′ is an ω-steady path in TA.

I Lemma 10. Given a rule r of TA, in polynomial time we can construct a convex semi-linear
Horn formula φr(x,y) with 2(|L|+ |Γ|+ |Π|) free variables such that

If σ and σ′ are configurations of TA such that σ′ = r(σ), then φr(σ, σ′) is true.
Suppose φr(M,M ′) is true. Then there exists µ ∈ N such that for all k ∈ N, µkM,µkM ′

are configurations of TA such that µkM ′ = (µk · r)(µkM), i.e., µkM ′ can be obtained by
applying the rule r to µkM , repeatedly for µk many steps.

A. Balasubramanian 37:11

Fourth part: Bringing it all together
I Theorem 11. Given a multiplicative threshold automaton TA with constant number of fall
guards and a specification Lspec, it can be decided in time f(|Φ|) · nO(1) whether there is a
run of TA satisfying Lspec.

Proof. (Sketch.) One can easily show that if we have a monotonically increasing context
sequence ω0 (ω1 (· · · (ωK , the size of the set {j : Rωj

* Rωj+1} is at most |Φfall|. Using
this observation, we proceed as follows. We iterate over all K ≤ |Φ| and over all possible
monotonically increasing context sequences ω0 (ω1 (· · · (ωK of length K + 1 and all
possible rule sequences r1, . . . , rc of length c = #{j : Rωj * Rωj+1}. Note that the number
of such iterations is at most O(|Φ| · |Φfall| · |Φ|! · 2|Φ| · |R||Φfall|). Since |Φfall| is assumed to be
a constant, the exponential dependence only lies upon |Φ|.

A position 0 ≤ l ≤ K is called bad if Rωl
* Rωl+1 . Let j1, . . . , jc be the set of all bad

positions. Using lemmas 9 and 10 we can write down the following convex semi-linear Horn
formula in polynomial time:

ξ0(x0,y0,x1) ∧ ξ1(x1,y1,x2) ∧ · · · ∧ ξK−1(xK−1,yK−1,xK) ∧ ξK(xK ,yK) (1)

where ξK(xK ,yK) = φωK
(xK ,yK) and ξi for i < K is defined as follows: If i is a bad

position, i.e., if i = jl for some 1 ≤ l ≤ c, then ξi(xi,yi,xi+1) = φωi
(xi,yi) ∧ φrl

(yi,xi+1).
It i not a bad position, then ξi(xi,yi,xi+1) = φωi

(xi,yi) ∧ φωi
(yi,xi+1)

To equation (1), we also add a constraint stating that x0 is an initial configuration and
yK satisfies Lspec. By proposition 8 we can then easily show that, there is a run of TA
satisfying Lspec iff in at least one iteration, the constructed formula (1) is satisfiable. J

6 NP-hardness of multiplicative threshold automata

A natural question arises from the results of the previous section. Can we do better than
fixed-parameter tractability and instead solve the reachability problem for multiplicative
threshold automata in polynomial time? We remark that the proof of NP-hardness of
reachability for threshold automata given in [2] does not produce multiplicative threshold
automata and hence does not answer this question. Nevertheless, we show that it is unlikely
for reachability of multiplicative threshold automata to be in polynomial time.

I Theorem 12. Coverability (and hence reachability) for multiplicative threshold automata
is NP-hard even when there are no fall guards.

Proof. We give an easy reduction from 3-SAT. Let ϕ be a propositional formula with variables
x1, . . . , xk and clauses C1, . . . , Cm. We will have 2k shared variables y1, . . . , yk, ȳ1, . . . , ȳk
and one environment variable n, denoting the number of processes. Incrementing yi
(ȳi resp.) corresponds to setting xi to true (false resp). We will have 2k + 1 locations
`0, `

′
0, `1, `

′
1, . . . , `

′
k−1, `k. Between `i and `′i we will have two rules which increment yi and

ȳi respectively. To ensure that all the processes increment the same variable, we have two
rules from `′i to `i+1 which test that yi ≥ n and ȳi ≥ n respectively. Hence if one process
increments yi and another increments ȳi, then all the processes get stuck at `′i.

Let var(xi) = yi and let var(x̄i) = ȳi. We will then have m locations `k+1, `k+2, . . . , `k+m
and the following rules between `k+i−1 and `k+i for every 1 ≤ i ≤ m: If the clause Ci is
of the form a ∨ b ∨ c then there are three rules between `k+i−1 and `k+i, each checking if
var(a) ≥ 1, var(b) ≥ 1 and var(c) ≥ 1 respectively. Hence if either one of var(a) or var(b)
or var(c) was incremented, the processes could move from `k+i−1 to `k+i, otherwise all the

FSTTCS 2020

37:12 Parameterized Complexity of Safety of Threshold Automata

processes get stuck at `k+i−1. Finally we set the initial location to be `0 and the specification
to be L=0 = ∅ and L>0 = {`k+m}. It is then easy to see that ϕ is satisfied iff there is a run
which satisfies Lspec. J

7 Experiments

We implemented the contraction procedure for the acyclic threshold automata as presented
in section 4 and then used the algorithm for multiplicative threshold automata presented in
section 5. To leverage the solid engineering work that has been put into modern SMT solvers,
we used the Z3 solver to solve the convex semi-linear Horn formulas as well as to choose
a context (and rule) sequence. We applied our implementations to all the multiplicative
protocols in the latest version of the benchmark of [24], which contains various algorithms
taken from the distributed computing literature. For more information on the protocols, we
refer the reader to the benchmark of [24].

Table 1 The experiments were run on a machine with Intel® CoreTM i5-7200U CPU with 7.7
GiB memory. The time limit was set to be 2 hours and the memory limit was set to be 7 GiB. TLE
(MLE) means that the time limit (memory limit) exceeded for the particular benchmark.

Input Case Time, seconds
(if more than one) This paper Algo from [2] ByMC

frb 0.38 0.32 0.07
frb hand-coded TA 0.29 0.31 0.16

strb 0.44 0.43 0.14
strb hand-coded TA 0.32 0.30 0.10

nbacg 2.92 8.43 9.71
aba Case 1 4.49 10.26 25.6
aba Case 2 18.29 41.92 704.9
cbc Case 1 3579.24 MLE MLE
cbc Case 2 183.61 2035.5 26.37
cbc Case 3 MLE MLE MLE
cbc Case 4 MLE MLE MLE
cbc hand-coded TA 3.27 0.91 0.26
cf1s Case 1 13.81 13.53 37.09
cf1s Case 2 12.47 16.14 186.5
cf1s Case 3 84.95 86.98 7875
cf1s hand-coded TA 1.75 1.31 2737.53
c1cs Case 1 179.39 598.2 TLE
c1cs Case 2 70.77 747.86 7119.71
c1cs Case 3 604.91 1575.21 MLE
c1cs hand-coded TA 4.87 6.63 TLE

Evaluation: Table 1 summarizes our results and compares them with the results obtained
using ByMC, the tool presented in [24] and the algorithm from [2].

For some safety specifications, our contraction procedure was able to reduce the number
of locations by more than 50% for the cbc protocol(s). This helped us save some memory,
as we also noticed that running just the algorithm for multiplicative threshold automata

A. Balasubramanian 37:13

took much more memory and the algorithm was not able to complete its execution. Our
implementation compares favorably with both ByMC and the algorithm from [2] in some
cases, but also performs worse in some of the hand-coded examples, the second case of cbc
and the frb and strb protocols.

8 Conclusion

In this paper, we have investigated the parameterized complexity of safety in threshold
automata. Though we have proved hardness results even in very restricted settings, we have
also identified tractable special cases which arise in practice. A preliminary implementation
of our algorithms suggest that these methods might be useful in practice as well.

For the sake of simplicity, we have only restricted to verifying safety properties in this
paper. A special type of logic called ELTLFT [12] has been proposed for threshold automata
which can express various safety and liveness properties. Since model checking this logic
decomposes to a finite number of safety specifications (modulo some technical constraints),
we believe that our algorithm for multiplicative threshold automata can be adapted to give
an algorithm for model checking this logic as well.

References
1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
doi:10.1007/s00446-005-0138-3.

2 A. R. Balasubramanian, Javier Esparza, and Marijana Lazić. Complexity of verification and
synthesis of threshold automata. In Accepted at ATVA 2020, 2020. URL: https://arxiv.
org/abs/2007.06248.

3 Nathalie Bertrand, Igor Konnov, Marijana Lazić, and Josef Widder. Verification of randomized
consensus algorithms under round-rigid adversaries. In CONCUR, volume 140 of LIPIcs, pages
33:1–33:15, 2019.

4 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and
Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2015.

5 Michael Blondin and Christoph Haase. Logics for continuous reachability in petri nets and
vector addition systems with states. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005068.

6 Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4):824–840, 1985.

7 Francisco Vilar Brasileiro, Fabíola Greve, Achour Mostéfaoui, and Michel Raynal. Consensus
in one communication step. In PaCT, volume 2127 of LNCS, pages 42–50, 2001.

8 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

9 Peter Chini, Jonathan Kolberg, Andreas Krebs, Roland Meyer, and Prakash Saivasan. On the
complexity of bounded context switching. In Kirk Pruhs and Christian Sohler, editors, 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
volume 87 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ESA.2017.27.

10 Peter Chini, Roland Meyer, and Prakash Saivasan. Fine-grained complexity of safety verifica-
tion. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,

FSTTCS 2020

37:14 Parameterized Complexity of Safety of Threshold Automata

Greece, April 14-20, 2018, Proceedings, Part II, volume 10806 of Lecture Notes in Computer
Science, pages 20–37. Springer, 2018. doi:10.1007/978-3-319-89963-3_2.

11 Peter Chini, Roland Meyer, and Prakash Saivasan. Complexity of liveness in parameterized
systems. In Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019,
December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 37:1–37:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.37.

12 Peter Chini, Roland Meyer, and Prakash Saivasan. Liveness in broadcast networks. In NETYS
2019, Revised Selected Papers, pages 52–66, 2019.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 Dan Dobre and Neeraj Suri. One-step consensus with zero-degradation. In DSN, pages
137–146, 2006.

15 Constantin Enea and Azadeh Farzan. On atomicity in presence of non-atomic writes. In
Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer
Science, pages 497–514. Springer, 2016. doi:10.1007/978-3-662-49674-9_29.

16 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In LICS, pages 352–359. IEEE Computer Society, 1999.

17 Azadeh Farzan and P. Madhusudan. The complexity of predicting atomicity violations. In
Stefan Kowalewski and Anna Philippou, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, volume 5505 of Lecture Notes in Computer Science, pages
155–169. Springer, 2009. doi:10.1007/978-3-642-00768-2_14.

18 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.

19 Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed systems with
failure detectors. Distributed Computing, 15(1):17–25, 2002.

20 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.
doi:10.1016/j.jcss.2012.04.004.

21 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model
checking for threshold-based distributed algorithms: Reachability. In CONCUR, volume 8704
of LNCS, pages 125–140, 2014.

22 Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR beat counter abstrac-
tion: Parameterized model checking of threshold-based distributed algorithms. In Daniel
Kroening and Corina S. Pasareanu, editors, Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I, volume 9206 of Lecture Notes in Computer Science, pages 85–102. Springer, 2015.
doi:10.1007/978-3-319-21690-4_6.

23 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model checking
for threshold-based distributed algorithms: Reachability. Information and Computation, 252:95–
109, 2017.

24 Igor Konnov and Josef Widder. Bymc: Byzantine model checker. In ISoLA (3), volume 11246
of LNCS, pages 327–342. Springer, 2018.

25 Igor V. Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. A short counterexample
property for safety and liveness verification of fault-tolerant distributed algorithms. In POPL
2017, pages 719–734, 2017.

A. Balasubramanian 37:15

26 Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in parameterized systems: All
flavors of threshold automata. In CONCUR, pages 19:1–19:17, 2018.

27 Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel Raynal. Evaluating
the condition-based approach to solve consensus. In DSN, pages 541–550, 2003.

28 T.K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp., 2:80–94, 1987.

FSTTCS 2020

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Well-structured transition systems
	Contribution I: Upper bounds for coverability
	Contribution II: Lower bounds for coverability

	Linear arithmetic theories
	Contribution III: The cut-off problem
	Contribution IV: Verification of threshold automata

	Outline and Publications

	Preliminaries
	Basic notations
	Well-quasi-orders
	Complexity classes

	I Well-Structured Transition Systems
	Introduction and Background
	Well-structured transition systems
	The coverability problem
	Complexity of coverability

	Upper bounds for the coverability problem
	The majoring ordering
	The minoring ordering
	The induced subgraph ordering
	Applications to parameterized systems
	Parameterized phaser programs
	Bounded-path broadcast networks
	Depth-bounded -calculus processes
	Other applications

	Related work
	Conclusion

	Lower bounds for the coverability problem
	Nested counter systems
	Lower bound for bounded-path broadcast networks
	Lower bound for depth-bounded -calculus processes
	Related work
	Conclusion

	II Linear Arithmetic Theories
	Introduction and Background
	The cut-off problem for rendez-vous protocols
	Rendez-vous protocols
	Petri Nets
	The cut-off problem is in ¶
	Related work
	Conclusion

	The complexity of verification of threshold automata
	Threshold automata
	Parameterized reachability and coverability
	Parameterized safety and liveness
	Experiments
	Related work
	Conclusion

	The parameterized complexity of safety of threshold automata
	Preliminaries
	Hardness of coverability
	Multiplicative threshold automata with constantly many fall guards
	Experiments
	Related work
	Conclusion

	Summary and Outlook
	Bibliography
	Complexity of Controlled Bad Sequences over Finite Sets of Nd (LICS 2020)
	Complexity of Coverability in Bounded Path Broadcast Networks (FSTTCS 2021)
	Complexity of Coverability in Depth-Bounded Processes (CONCUR 2022)
	Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy (FoSSaCS 2021)
	Complexity of Verification and Synthesis of Threshold Automata (ATVA 2020)
	Parameterized Complexity of Safety of Threshold Automata (FSTTCS 2020)

