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A R T I C L E  I N F O   

Original content: 10.5281/zenodo.8386387  

Keywords: 
All-solid-state lithium-ion battery 
Electro-chemo-mechanics 
Nonlinear mechanics 
Three-dimensional resolved microstructure 
Coupled finite element approach 

A B S T R A C T   

In this paper we present an all-solid-state lithium-ion battery (ASSB) model that considers elec
trochemistry and solid mechanics in a fully coupled manner. The model spatially resolves the 
three-dimensional microstructure of an ASSB cell and is based on non-linear continuum me
chanics. The coupling of electrochemistry and solid mechanics is incorporated via lithiation- 
dependent volumetric changes of the active materials and the consistent formulation of the 
electrochemical governing equations on deformed geometries resulting in changed percolation 
paths. As the volumetric changes due to (de-)lithiation are reported to be large for several active 
materials, we introduce this effect using a multiplicative split of the deformation gradient. To also 
allow for large deformations in the mass conservation equation, an Arbitrary Lagrangian–Eulerian 
formulation is employed. Furthermore, we show the central steps to deduce the finite element 
formulation of our model as well as the adopted monolithic solution procedure to solve this 
strongly coupled non-linear problem. The linear solver used for large problem setups is adjusted 
from the advanced, physics-oriented preconditioning technique published in our previous work. 
In the numerical examples, we investigate three different geometries with up to about 1.3 million 
degrees of freedom and thereby prove that our approach is applicable to geometrically large and 
complex scenarios. Moreover, we show that our approach consistently introduces the mass and 
charge conservation on deformed meshes. Furthermore, the numerical examples demonstrate the 
high relevance to incorporate current collectors into the ASSB cell simulations. Finally, we show 
that solid mechanics and the coupling effects have indeed a large impact on the ASSB cell per
formance and their incorporation is therefore vital for precise results and predictions.   

1. Introduction 

In many applications, such as stationary energy storage systems, as well as electric or hybrid vehicles lithium-ion batteries (LIB) 
play a key role. However, both the energy density and fast charging capability of conventional LIB is limited and will soon reach its 
physical limits [1,2]. Currently, all-solid-state lithium-ion batteries (ASSB) are promising an essential step forward as they are expected 
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to feature high power and energy density while also meeting crucial safety standards. Though, there are also several challenges 
associated with the ASSB technology being targeted by current research. Since all components of the battery are solid bodies, and the 
active materials are subject to volume changes during (de-)lithiation, the interaction of electrochemistry and solid mechanics has 
substantial influence on the performance [3–5]. This highlights that single-field investigations, i.e. isolated investigations of elec
trochemical or solid mechanical properties, are not sufficient to generate a detailed understanding of the system. Moreover, the energy 
density compared to conventional LIB can only be increased by up to 70% if the lithium metal anode can be enabled by the usage of 
solid electrolytes [6]. 

A multitude of ex situ, in situ as well as in operando experimental studies investigating the interaction of electrochemistry and solid 
mechanics in ASSB have been published in recent years. As most of the quantities or effects of interest are not easily accessible to 
experimental investigations, often a multitude of different analysis tools are applied. Those include but are not restricted to differential 
electrochemical mass spectrometry (DEMS) [7], digital image correlation (DIC) [8,9], electrochemical impedance spectroscopy (EIS) 
[7,10–12], neutron imaging [13], pressure monitoring [5,7], scanning electron microscopy (SEM) [7,10,12], time-of-flight secondary 
ion mass spectrometry (ToF-SIMS) [7], x-ray computed tomography (CT) [14], and x-ray photoelectron spectroscopy (XPS) 
[7,11,12,15]. Usually, such complex machinery is expensive, time-consuming, or not even available to most of the research com
munity. Even with all those tools some important open questions remain. Thus, numerical simulations in combination with theoretical 
findings gain more and more attention as they enable valuable insights for reasonable effort [16]. 

Yet, due to the high complexity of physical effects that are relevant in ASSB also most of the existing simulation approaches base on 
various simplifications, either concerning the considered physical phenomena, or the geometry they can be applied to. Therefore, those 
simulation models do not necessarily enable reliable predictions, nor profound analysis of the occurring phenomena. Recently, 
elaborate microstructure resolved models describing electrochemical processes but neglecting solid mechanics [17,18] have been 
proposed. Furthermore, a multitude of simulation methods considering electrochemistry and solid mechanics are published. Some of 
those methods rely on linear mechanics [19–27] that assume small deformations and strains. For materials whose volume change can 
be up to some hundred percent upon full (de-)lithiation [28,29] this simplification is not justified anymore. Others present very so
phisticated modeling approaches but only apply them to simple geometries [30–34], one-dimensional problems [35], two-dimensional 
geometries [36,37], or single particles [38–40]. Hence, the underlying geometric complexity is simplified and thereby local phe
nomena like inhomogeneous current density distributions, concentration distributions, or mechanical stresses, all of which can have a 
significant impact on the system performance, are neglected. Another common approach is to rely on spatial homogenization, e.g. 
when Newman-type pseudo 2D models are their basis [41–43]. Again, while useful for certain investigations, such models are 
consequently not capable to capture local effects in ASSB. 

This work introduces a novel computational framework for an analysis of electrochemistry, solid mechanics and their coupling 
effects in ASSB. In particular, we present a three-dimensional nonlinear continuum model discretized by the finite element method. It 
resolves the porous microstructure and local physical phenomena without spatial homogenization. The formulation of the solid 
mechanics is derived from nonlinear continuum mechanics and thus capable of capturing large deformations. As the solid mechanics 
and the electrochemistry are coupled, the ability to account for large deformations in the solid mechanics field needs to be considered 
in the electrochemistry as well to assure a consistent formulation. Therefore, mass and charge conservation are formulated using an 
Arbitrary Lagrangian–Eulerian (ALE) approach to enable the solution on moving meshes due to deformations as provided by the solid 
mechanics field. All equations are treated in a monolithic fashion to maximize computational robustness and efficiency of the solution 
algorithm. To this end, we also extend the advanced, physics-oriented block preconditioning and solution techniques from our pre
vious work [44] to the resulting linear systems of equations. Combined with the full MPI parallelization of our implementation, our 
model thus opens up new possibilities for large-scale, high-performance computations in settings with strict demands on accuracy. 
Thereby, we bridge the existing gap in literature by enabling the solution of the presented complex coupled nonlinear model on 
realistic microstructure resolved setups of ASSB. 

The remainder of this paper is structured as follows: In Section 2 we describe the continuous mathematical model including all 
governing equations as well as the coupling of electrochemistry and solid mechanics. Furthermore, the interface, boundary, and initial 
conditions are presented. Section 3 focuses on numerical aspects concerning the employed finite element formulation and the 
nonlinear solution procedure of the discretized monolithic system. Moreover, in Section 4 we outline the setup of the presented nu
merical examples including information on the geometries, materials, and operating conditions used to run the simulations. We verify 
that our model conserves mass and charge on deforming meshes, discuss the relevance of current collectors in ASSB modeling, and 
apply our model to a realistic geometry of an ASSB cell to compare the electrochemical results to published data from [18], and thereby 
show the applicability of the approach to geometrically large problems. Furthermore, we present that the consideration of the coupled 
problem influences the system and is thus vital to obtain precise results. Additionally, the influence of the mechanical setup on the 
performance of ASSB cells is analyzed, and local mechanical effects are shown. Lastly, Section 5 summarizes the presented work and 
the deduced insights before ideas for future research based on this work are discussed. 

2. Problem definition 

The interdependence of the solid mechanics and the electrochemical fields are of particular importance within ASSB as already 
motivated in the introduction. In the following we will formulate the conservation of angular and linear momentum for solid me
chanics, as well as the conservation of charge and mass for electrochemistry. In addition, we will specify the coupling between fields 
and interfacial phenomena between domains. We start with characterizing the domains, interfaces and boundaries of interest of an 
ASSB cell. 
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2.1. Definition of domains, interfaces and boundaries of an ASSB cell 

For many investigations it is possible to assume the cell to be symmetric in lateral direction, meaning that we are only considering a 
statistically representative extract of the real cell geometry which obviously reduces computational costs. For ease of presentation, a 
simplified 2D scheme of an ASSB cell is depicted in Fig. 1 to show its geometric properties. 

The anode phase Ωa and the cathode phase Ωc constitute the active material phase of the electrodes Ωed = Ωa ∪ Ωc, whereas the 
electrolyte phase is split into a part depicting the “Solid Electrolyte Separator” Ωel,SES, and a part representing the electrolyte within the 
“Composite Cathode” Ωel,CC. Furthermore, the current collectors at the anode side and at the cathode side are depicted by Ωcc,a and 
Ωcc,c, respectively. Additionally, we define the whole computational domain using Ω = Ωcc,a ∪ Ωa ∪ Ωel,SES ∪ Ωel,CC ∪ Ωc ∪ Ωcc,c. The 
interface of the anode and the electrolyte is given by Γa,el, while between the cathode and the electrolyte it is depicted by Γc,el. Besides, 
the interface between the solid electrolyte separator and the electrolyte of the composite cathode is represented by Γel,SES-CC, and the 
contact surface between the anode and the anode side current collector Γcc,a is presented. Moreover, the interface of the composite 
cathode and the cathode side current collector is split into two disjoint parts. Herein, Γcc,c denotes the contact surface between the 
cathode phase and the cathode side current collector, whereas Γcc,el symbolizes the interface between the electrolyte and the current 
collector. On top of that, we introduce the outer boundary of the current collectors using Γcc,a-o and Γcc,c-o as well as the boundary due 
to the symmetric cut Γcut = ∂Ω \

(
Γcc,a-o ∪ Γcc,c-o

)
of the real ASSB cell. To limit the complexity of the investigation we do not consider 

additional phases like the binder, or carbon black in this study. Even though the modeling approach does easily allow for different 
electrolytes in different parts of the ASSB as depicted in Fig. 1, for the moment we restrict ourselves to only one electrolyte phase here 
(Ωel = Ωel,SES ∪ Ωel,CC) to not unnecessarily increase the complexity of the notation with limited additional insight. However, it is 
straightforward to account for more than one electrolyte materials in order to e.g. analyze hybrid cell concepts. The time interval of 
interest is represented by t ∈ [0, tend]. 

2.2. Conservation equations 

In this subsection we begin with presenting the modeling equations for the solid mechanics field. To retain validity of our proposed 
model also for large deformations, we base it on the principles of nonlinear continuum mechanics. Finally, we elaborate on the 
equations describing the electrochemical field, that are solved on deforming geometries to enable a consistent solution of the coupled 
problem. 

2.2.1. Solid mechanics: conservation of linear and angular momentum 
For the mathematical description of the solid mechanics problem a bijective mapping φt : X ↦ x that assigns every point X in the 

material configuration for a given time t to the corresponding point x in the current configuration has to be introduced. Now we 
describe the deformation of the body by the deformation gradient F = ∂x

∂X and apply the conservation of linear momentum resulting in 
the equation of nonlinear elasto-dynamics (see e.g. [45] for details):  

∇X ·(F ·S) + b0 = ρ0üdef inΩ0 ×
[
0, tend], (1)  

where ∇X · denotes the material divergence operator, S the second Piola–Kirchhoff stress tensor, b0 a body force per unit volume in the 
reference configuration, ρ0 the mass density in the reference configuration, and udef(X, t) = x(X, t) − X the displacements due to a 
deformation of the body. 

As reported by several publications, the volume of the active materials changes depending on their lithiation state (e.g. [5,46,47]). 
Since this change in volume can be up to some hundred percent upon full (de-)lithiation [28,29] a nonlinear treatment is required to 
correctly model this behavior. Therefore, we multiplicatively split the deformation into a part considering pure elasticity Fel and a part 
accounting for inelastic, stress-free volume changes Fin:  

F = Fel ·Fin. (2) 

Fig. 1. Schematic sketch of the computational domain.  
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By considering a hyperelastic material law and the common assumption that only elastic strains result in stresses, we obtain the second 
Piola–Kirchhoff stress tensor S as the partial derivative of the elastic strain energy function Ψel w.r.t. the elastic right Cauchy–Green 
tensor Cel = FT

el ·Fel as follows [48]:  

S = 2 detFinF− 1
in ·

∂Ψ el

∂Cel
·F− T

in inΩ0 ×
[
0, tend]. (3)  

Finally, the Cauchy stress tensor σ is obtained by the subsequent mapping of the second Piola–Kirchhoff stress tensor:  

σ = (detF)− 1F ·S ·FT inΩ ×
[
0, tend]. (4)  

Both, the Cauchy stress tensor and the second Piola–Kirchhoff stress tensor are symmetric σ = σT; S = ST, resulting from the 
conservation of angular momentum [49]. Therefore, the balance of angular momentum is already implicitly ensured by the symmetry 
of those tensors and must not be considered separately. For further information on that topic we refer to [45,49]. 

2.2.2. Electrochemistry: conservation of charge 
We start with the formulation of the charge conservation in a generic form based on the balance at an infinitesimal volume element: 

∂ρ
∂t

+∇ · i = 0 inΩ ×
[
0, tend], (5)  

with the charge density ρ, and the current density i. The electroneutrality condition states that no free charges accumulate at any point 
in space or time and is formulated as follows:  

∑

i
zici = 0 inΩ ×

[
0, tend], (6)  

with the charge number zi and the concentration ci of the corresponding species i. It is known to be satisfied besides a thin space charge 
layer of some nanometers near the interfaces of the active materials [50,51]. As we are not considering the effect of space charge layers 
in this work, the electroneutrality conditions holds true within the whole ASSB cell. Consequently, there is no accumulation of free 
charges, resulting in the following form of the charge conservation equation:  

∇· i = 0 inΩ ×
[
0, tend]. (7)  

As electrons are the only mobile charge carriers within the electrodes and the current collectors, we use Ohm’s law to relate the current 
density to the electric field:  

i = − σ∇Φ inΩ \ Ωel ×
[
0, tend], (8)  

with the electronic conductivity σ, and the electric potential Φ resulting in the modeling equation for charge conservation within the 
electrodes and the current collectors:  

∇·( − σ∇Φ) = 0 inΩ \ Ωel ×
[
0, tend]. (9)  

Inside the electrolyte the current density arises only due to the motion of ions. Faraday’s law connects the mass flow of ions with the 
corresponding flux of charges:  

i = F
∑

i
ziNi, (10)  

with the Faraday constant F, and the flux Ni of species i. The flux is modeled to obey a Nernst–Planck equation describing the flux of 
charged species and incorporating the effects of convection, diffusion, and migration:  

Ni = ciu̇ − Di∇ci −
ziFDi

RT
ci∇Φ, (11)  

with the velocity u̇, the diffusion coefficient Di of species i, the universal gas constant R, and the temperature T. This results in the 
following generic form of the current density within the electrolyte:  

i = F

(

u̇
∑

i
zici −

∑

i
ziDi∇ci −

∑

i

z2
i FDi

RT
ci∇Φ

)

. (12)  

Due to the electroneutrality condition presented in Eq. (6) the first sum of Eq. (12) vanishes. Moreover, several publications show that 
most solid electrolytes feature a lithium-ion transference number close to unity, meaning that lithium-ions are the only mobile ions 
within the solid electrolyte [52–54]. Again, in combination with the electroneutrality condition this means that no gradients in 
concentration emerge. Thus, also the second sum in Eq. (12) cancels out, resulting in the following formulation for the electrolyte 
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current density:  

i = − κ∇Φ inΩel ×
[
0, tend], (13)  

where the ionic conductivity is denoted by κ =
∑

i
z2

i FDi
RT ci. Inserting this into the general charge conservation Eq. (7), we end up with the 

charge conservation within the solid electrolyte:  

∇·( − κ∇Φ) = 0 inΩel ×
[
0, tend]. (14)  

2.2.3. Electrochemistry: conservation of mass 
The mass conservation of lithium is enforced within the computational domain of the ASSB. As the current collectors are modeled to 

be impermeable to lithium or lithium-ions, they are not taking part in the exchange of lithium and are therefore not considered in this 
subsection. Again, we begin with presenting a generic version of the mass conservation equation based on the balance at an infini
tesimal volume element:  

∂c
∂t

+∇ ·N = 0 inΩed ∪ Ωel ×
[
0, tend], (15)  

where c denotes the concentration of lithium or lithium-ions and N the corresponding flux, modeled as already shown in Eq. (11). 
Without loss of generality, we split the velocity u̇ into its contributions as follows:  

u̇ = u̇def + u̇conv, (16)  

where u̇def and u̇conv denote the velocity due to a deformation of the bodies and the velocity due to convection, respectively. As all parts 
of the ASSB are solids, we demand the convective velocity to vanish:  

u̇conv = 0. (17)  

To also account for deformations caused by large volumetric changes, we reformulate the mass conservation equation to an ALE 
formulation. Therefore, we introduce an intermediate configuration – the so called ALE-configuration – moving with the deformation 
of the bodies. The partial time derivative from Eq. (15) is consequently rewritten to incorporate the total time derivative ∂*

∂t

⃒
⃒
X as follows: 

∂c
∂t

=
∂c
∂t

⃒
⃒
⃒
⃒

X
− u̇def · ∇c. (18)  

By substituting the flux formulation as presented in Eq. (11), applying the product rule on the convective part of the divergence term 
from Eq. (15), as well as considering the mapping of the time derivative (see Eq. (18)) into Eq. (15), we arrive at the generic mass 
conservation in ALE formulation:  

∂c
∂t

⃒
⃒
⃒
⃒

X
+ c∇· u̇def − ∇ ·(D∇c) − ∇ ·

(
zFD
RT

c∇Φ
)

= 0 inΩed ∪ Ωel ×
[
0, tend]. (19)  

Now we start tailoring this equation to the electrode and electrolyte domain as shown in Fig. 1. In the electrodes we solve for the mass 
conservation of lithium. Hence, the charge number equals zero (z = 0) and we do not have to take migration effects into account. The 
mass conservation thus reads:  

∂c
∂t

⃒
⃒
⃒
⃒

X
+ c∇· u̇def − ∇ ·(D∇c) = 0 inΩed ×

[
0, tend]. (20)  

Finally, we derive the mass conservation of lithium-ions within the solid electrolyte based on Eq. (19). We already know from the 
derivation of the charge conservation within the solid electrolyte that no gradients in concentration of lithium-ions arise. Thus, the 
third term of Eq. (19) equals zero. Furthermore, after applying the divergence to the fourth term it also vanishes (see Appendix A for 
details) resulting in the following form of the mass conservation equation:  

∂c
∂t

⃒
⃒
⃒
⃒

X
+ c∇· u̇def = 0 inΩel ×

[
0, tend]. (21)  

2.3. Coupling of the solid mechanics and electrochemical fields 

One considered coupling effect is already described in the previous section by the solution of the electrochemical conservation 
equations of charge and mass on deforming geometries represented by Eq. (9), (14), (20) and (21). 

Another considered coupling effect is the lithiation state dependent volume change of the active materials. These volume changes 
can be divided into two main groups, one that features an isotropic, and one that is represented by an anisotropic change in volume. 
Therefore, we formulated isotropic and anisotropic volume change models that can be flexibly applied to all domains. However, in the 
following we only elucidate the approaches that are relevant for the upcoming parts of the paper. Throughout this work, the cathode 
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side active material consists of secondary particles of NMC materials. Since the primary particles constituting the secondary particles 
can be assumed to be randomly distributed [55], we model the volume change of the cathode active material to be isotropic. 
Furthermore, we found that the following ansatz is capable of accurately representing published data as e.g. presented in [5] (cf. 
Fig. 2):  

Fin =

(
f (χ) + 1
f (χ0) + 1

)1/3

I inΩc ×
[
0, tend], (22)  

where f(χ) = ΔV
Vref

=
V(χ)− V(χref )

V(χref )
is a fit to published data of the volume change over lithiation state χ = c

cmax
χmaxdetF. Herein, cmax is the 

maximum concentration of lithium inside the electrode and χmax the corresponding lithiation state. Besides, Vref and χref describe the 
volume and lithiation state at the reference point for the measurement, respectively. Additionally, the lithiation state in the reference 
configuration, i.e. at the beginning of the simulation is denoted by χ0. 

For the current study we assume that no dendrites form at the anode side, as e.g. experimentally investigated by [56]. Instead, we 
assume that lithium is homogeneously deposited and dissolved at the anode electrolyte interface. The volume change of the anode is 
thus modeled to be anisotropic as follows:  

Fin = I +
[

gdetF
(
ned − n0

ed

)

V

]

g ⊗ g inΩa ×
[
0, tend], (23)  

with the amount of substance of lithium ned =
∫

Ωed
ced dV and the associated amount of substance of lithium at the beginning of the 

simulation n0
ed. Additionally, the vector g that identifies the spatial direction of the volume change and the current volume V are 

required. By a meaningful parameterization of the growth factor g = MLi
ρLi 

the cycling related volume change of the lithium metal anode 
is modeled. Hereby the molar mass of lithium is symbolized by MLi and its mass density by ρLi. 

2.4. Interface conditions 

In this section we focus on the mathematical formulation of the electrode-electrolyte interface Γed,el = Γa,el ∪ Γc,el, as well as on the 
interfaces between the (composite) electrodes and their adjacent current collectors Γcc,ed = Γcc,a ∪ Γcc,c ∪ Γcc,el as depicted in Fig. 1. 

For the mechanical problem we assume within this work that the different domains of the battery cannot separate or move relative 
to each other. Certainly, this is a simplification of reality as a separation of active material and solid electrolyte phases has been re
ported e.g. in [4]. Although with the present approach such effects are not spatially resolved, the battery cell can already be examined 
for areas where delamination could occur, since the mechanical stress state is available inside the whole computational domain. In the 
following we denote the interface where two or three bodies are in contact with Γc = Γed,el ∪ Γcc,ed. The applied kinematic constraint 
when two bodies Ω(1) and Ω(2) are in contact then reads:  

u(1)
def = u(2)

def onΓc ×
[
0, tend], (24)  

meaning that the displacements udef of both bodies have to match at their common interface. An extension to more than two sub

Fig. 2. Approximation of measured data as published in [5] (symbols) by a polynomial fit of order seven (solid lines).  
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domains is straightforward and mostly technical, even if so-called cross-points, where more than two bodies meet, appear. 
For the electrochemical field, the conservation of lithium mass and charge has to be fulfilled at the electrode-electrolyte interface 

Γed,el. To do so, we enforce the following constraints:  

jed · ned,el =
1
F

ied ·ned,el =
1
F

i =
1
F

iel ·ned,el = jel ·ned,el onΓed,el ×
[
0, tend], (25)  

with the lithium mass flux density and the electric current density in the electrodes being denoted by jed = − D∇c and ied (see Eq. (8)), 
respectively. At the electrolyte side, the lithium-ion mass flux density is represented by jel = tel

F iel, where again the lithium-ion 
transference number tel can be assumed to be close to unity [52,53] within the solid electrolytes investigated in this work. Further
more, the corresponding electric current density inside the electrolyte is denoted by iel (refer to Eq. (13)), and ned,el depicts the normal 
pointing from the electrode to the electrolyte domain. Moreover, i represents the current density at the interface, that is modeled using 
a Butler–Volmer formulation, as e.g. thermodynamically consistently derived in [57]:  

i = i0

[

exp
(

αaFη
RT

)

− exp
(

−
(1 − αa)Fη

RT

)]

, (26)  

with a so-called exchange current density i0 and the anodic symmetry coefficient αa. In contrast to the formulation in [57] we neglect 
the concentration dependence of the exchange current density in this paper. However, it should be noted that an incorporation of the 
thermodynamically consistently derived exchange current density is straightforward but not shown here for brevity. The overpotential 
η represents the driving force of the (de-)intercalation reaction at the interface of the active material and the solid electrolyte. It is 
modeled as follows:  

η = Φed − Φel − Φ0, (27)  

with the electric potential at the electrode and electrolyte side Φed and Φel, respectively as well as the half cell open circuit potential 
(OCP) measured against pure lithium Φ0. There are several approaches to model the OCP in literature, but we are not discussing this in 
detail here and are instead referring to [58]. At the anode side interface the OCP is set to zero 

(
Φ0 = 0onΓa,el

)
, as the OCP of the lithium 

metal anode is referenced against lithium. 
Lastly, we need to describe the electrochemical interface conditions between the (composite) electrodes and their current col

lectors. The current collectors are modeled to be impermeable to lithium(-ions) resulting in the constraint that the mass flux across this 
interface has to vanish:  

jed · ned,cc = 0 = jel ·nel,cc onΓcc,ed ×
[
0, tend], (28)  

where ned,cc and nel,cc denote the normal pointing form the electrodes to the adjacent current collector and the normal pointing from 
the electrolyte to the corresponding current collector, respectively. As the electrolyte is an electrical insulator, meaning there is no flux 
of electrons across the electrolyte current collector interface, and there is no flux of ions across this interface either (cf. Eq. (28)), we 
can state that:  

iel ·nel,cc = 0 onΓcc,el ×
[
0, tend]. (29)  

Finally, we model the flux of electrons across the interface between the electrode and their current collector by applying an additional 
contact resistance Rcontact. The interface equation thus reads:  

ied · ned,cc =
Φed − Φcc

Rcontact
onΓcc,ed ×

[
0, tend], (30)  

with Φcc symbolizing the electric potential at the current collector side of the interface. 

2.5. Boundary and initial conditions 

Suitable boundary and initial conditions have to be applied to both fields of interest. As already mentioned before, we only consider 
a representative section in lateral direction from the real cell and therefore have to apply symmetry conditions to the corresponding 
surfaces. For the electrochemistry field this results in neither mass nor charge flux across these boundaries:  

j · n = 0 onΓcut ×
[
0, tend], (31)  

i · n = 0onΓcut ×
[
0, tend]. (32)  

In addition, as the current collectors are impermeable to lithium or lithium-ions (cf. Eq. (28)), there is also no mass flux across the outer 
boundaries of the current collectors:  

j · n = 0 on
(
Γcc,a-o ∪ Γcc,c-o

)
×
[
0, tend]. (33) 
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Moreover, the electric potential is set to a reference value at the outer boundary of the anode side current collector:  

Φ = 0 onΓcc,a-o ×
[
0, tend]. (34)  

To enable galvanostatic charging of the cell, we impose an electric current density ̂i normal to the outer boundary of the cathode side 
current collector:  

− i · n = î onΓcc,c-o ×
[
0, tend]. (35)  

At the beginning, the electrochemical state of the cell is assumed to be in static equilibrium:  

c = c0
ed inΩed × {0}, (36)  

c = c0
elinΩel × {0}, (37)  

with a prescribed value of the initial lithium(-ion) concentration within the electrodes c0
ed and the electrolyte c0

el. Initial conditions for 
the electric potential fields Φed and Φel are not required, as Eqs. (9) and (14) for the conservation of charge are stationary. 

For the solid mechanics field we also need to impose proper initial and boundary conditions as follows:  

udef = û onΓu ×
[
0, tend], (38)  

(F ·S) ·N = t̂onΓσ ×
[
0, tend], (39)  

udef = u0inΩ × {0}, (40)  

u̇def = u̇0inΩ × {0}, (41)  

with the fixed values û and ̂t for the Dirichlet and Neumann boundary conditions, respectively. Moreover, the initial values for the 
displacements u0, and the velocities u̇0 are given. In order to be in line with the aforementioned boundary conditions for the elec
trochemical field, we also have to apply symmetry conditions in lateral direction, meaning that the normal displacement at the lateral 
sides is set to zero using a Dirichlet boundary condition. In addition, the derivative of the displacements in normal direction has to 
vanish at those surfaces to ensure symmetry. 

3. Aspects of the numerical model 

The continuous modeling equations as presented in Section 2 are solved using the finite element method whose main steps are 
shown below exemplarily. Finally, we will also discuss the basics of the monolithic solution approach chosen to solve this highly non- 
linear coupled problem. 

3.1. Finite element formulation 

The finite element method is based on the weak form of the modeling equations. Thus, the weak form of the equations has to be 
derived and discretized in time and space. For time integration, we apply the well-known one-step-theta method. 

3.1.1. Weak form 
In the following we base our formulation on the principle of virtual work. The virtual energy of the coupled problem calculates as 

follows:  

δW = δWelch + δWmech + δWconstr = 0, (42)  

with δWelch and δWmech denoting the contributions of the electrochemical and solid mechanics fields, respectively. Moreover, δWconstr 
represents the energy contribution due to interface constraints. As solution and test function spaces we apply:  

S c =
{

c ∈ H1(Ω)
}
T c =

{
δg ∈ H1(Ω)

}
, (43)  

S Φ =
{

Φ ∈ H1(Ω)
}
T Φ =

{
δΦ ∈ H1(Ω)

⃒
⃒ δΦ = 0 on Γcc,a-o

}
, (44)  

S udef =
{

udef ∈ H1(Ω)
}

T udef =
{

δudef ∈ H1(Ω)
⃒
⃒ δudef = 0 on Γu

}
, (45)  

with the usual Sobolev spaces H1(Ω) of square-integrable functions with weak first derivative defined on the respective domains as 
presented in Fig. 1. 

Since the procedure from continuous strong form to fully discretized weak form is conceptually identical for most of the presented 
modeling equations, it is only shown for two exemplary equations in the following. Namely, the mass conservation Eq. (20) within the 
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electrode and the treatment of the interface constraint, the so-called mesh tying, including the condensation of Lagrange multipliers. 
By multiplication with an arbitrary test function δg from the admissible test function space T c and an integration over the relevant 

domain, the virtual work contribution of the mass conservation Eq. (20) in the electrode is obtained. Integration by parts, and the 
exploitation of the homogeneous Neumann boundary conditions from Eqs. (28) and (31) result in the corresponding weak form:  

δWelch,c,ed =

∫

Ωed

δg
∂c
∂t

⃒
⃒
⃒
⃒

X
dΩ +

∫

Ωed

δg c∇· u̇def dΩ +

∫

Ωed

∇δg ·D∇c dΩ +

∫

Γed,el

δg jed · n dΓ = 0, (46)  

where we additionally substituted jed = − D∇c into the last term. By an interpretation of δg as a virtual molar free energy flux this 
expression represents the virtual work within the electrodes δWelch,c,ed, being one component of δWelch in Eq. (42). 

The interface constraint between the electrodes and the electrolyte for the electrochemical field as formulated in Eq. (25) is taken 
into account in the last term of Eq. (46). In our previous work in the context of conventional lithium-ion batteries [59], we showed that 
such a constraint can be introduced by either direct insertion into the weak form, or by constraint enforcement using Lagrangian 
multipliers with no difference in accuracy or robustness. In this work we decided to directly insert the interface constraint. An 
equivalent procedure is performed for the weak form of the mass conservation of the electrolyte as well as for the weak form of the 
charge conservation inside the electrodes and the electrolytes. 

To introduce the mechanical interface constraint into the system, we first generalize Eq. (24) to n contacting bodies at the interface 
Γc. Therefore, we arbitrarily choose one of those bodies to be the so-called master body and the remaining n − 1 bodies to be slave 
bodies indicated by the indices “m” and “s”, respectively. The reformulation into the weak form leads to the following expression of the 
work contribution due to mechanical interface constraints:  

Wconstr =
∑n− 1

j=1

∫

Γc

(
λjT
(

udef,m − uj
def,s

))
dΓ. (47)  

The test functions λj can be interpreted as forces that have to be applied to the bodies required to fulfill the interface constraint. 
Variation of this equation returns the contribution to the virtual work as follows:  

δWconstr =
∑n− 1

j=1

[ ∫

Γc

(

δλjT
(

udef,m − uj
def,s

)
+
(

δudef,m − δuj
def,s

)T
λj
)

dΓ
]

. (48)  

3.1.2. Discretization in time 
For the discretization in time, the time interval of interest is split into coherent, non-overlapping, and not necessarily uniform time 

intervals Δt. The nth time interval is then defined to start at time tn and to end at time tn+1, where the semi-discrete values of the 
primary variables at time tj are denoted by the superscript *j. By applying the one-step-theta method to Eq. (46) we obtain:  

∫

Ωed

δg
cn+1 − cn

Δt
dΩ +

∫

Ωed

δg cn+θ ∇ · u̇n+θ dΩ +

∫

Ωed

∇δg ·D∇cn+θ dΩ +

∫

Γed,el

δg jn+θ
ed ·nn+θ dΓ = 0, (49)  

where θ ∈ [0;1] is the one-step-theta parameter, and for an arbitrary scalar- or vector-valued quantity * the following relation holds: 

*n+θ
= θ*n+1

+ (1 − θ)*n
. (50)  

Since Eq. (48) is stationary the time integration procedure is trivial and therefore not shown here. 
Throughout this paper we set θ = 0.5 resulting in the Crank–Nicolson method which is second-order accurate in time. 

3.1.3. Discretization in space 
Finally, the system is discretized in space by subdividing the whole computational domain Ω into non-overlapping finite elements 

building up its discrete counterpart indicated by *h. The integration over the complete domain is consequently split up into a sum over 
all finite elements and an integration over the respective elements. For Eq. (49) this procedure is exemplary shown below:  

∑nele,ed

i=1

( ∫

Ωh,i
ed

δg
cn+1 − cn

Δt
dΩ +

∫

Ωh,i
ed

δg cn+θ ∇ · u̇n+θ dΩ +

∫

Ωh,i
ed

∇δg ·D∇cn+θ dΩ +

∫

Γh,i
ed,el

δg jn+θ
ed ·nn+θ dΓ

)

= 0, (51)  

with jn+θ
ed = fn

(
cn+θ,ϕn+θ), and nele,ed denoting the number of finite elements the discretized electrode domain consists of. Please note, 

that in the presented work the electrochemical and solid mechanics fields are identically discretized in space, even though their 
discretizations could also be independent of each other. Furthermore, the solution and test function spaces are restricted to the cor
responding finite-dimensional sub spaces consisting of Lagrange polynomials with an isoparametric interpolation. The finite element 
approximation of a generic quantity ζ at time tn+1 can thus be written as:  

ζh,n+1 =
∑nnodes

i=1
Nh

ζ,iζ
n+1
i = Nh

ζζn+1
, (52) 
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with nnodes denoting the number of nodes of the finite element discretization, the Lagrange polynomial Nh
ζ,i taken from the corre

sponding discrete solution S h
ζ or test function space T h

ζ associated with node i, and the discrete nodal values depicted as ζi. 
Applying this procedure to all presented modeling equations results in a discrete system of non-linear equations of the following 

form:  
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Rn+1
udef

(
un+1

def , λ
n+1

, cn+1,Φn+1
)

Rn+1
λ

(
un+1

def , λ
n+1

, cn+1,Φn+1
)

Rn+1
c

(
un+1

def , λ
n+1

, cn+1,Φn+1
)

Rn+1
Φ

(
un+1

def , λ
n+1

, cn+1,Φn+1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠, (53)  

where Rn+1
udef

, Rn+1
λ , Rn+1

c , Rn+1
Φ are the discrete residual vectors representing the solid mechanics, mechanical interface constraint, mass 

conservation, and charge conservation equations, respectively. The residual vectors depend on the discrete solution vectors un+1
def , λn+1, 

cn+1, Φn+1 at the most recent time tn+1. 

3.2. Linearization of the non-linear system of equations and monolithic solution approach 

Our long experience in dealing with coupled multi-field problems has often shown superior robustness and frequently also 
enhanced efficiency of monolithic compared to partitioned schemes, like for example in the context of fluid–structure interaction [60], 
thermo-structure interaction [61], electro-chemo-thermal problems [44], or general n-field coupled problems [62]. Thus, we decided 
to treat the system at hand in a monolithic fashion. To linearize the highly non-linear system of discrete equations we apply the 
Newton–Raphson method and solve for the nodal unknowns in an iterative manner. In every Newton–Raphson iteration step j the 
following sparse linear system of equations arises:  

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Rn+1
udef

∂un+1
def

∂Rn+1
udef

∂λ
n+1

∂Rn+1
udef

∂cn+1
∂Rn+1

udef

∂Φ
n+1

∂Rn+1
λ

∂un+1
def

∂Rn+1
λ

∂λ
n+1

∂Rn+1
λ

∂cn+1
∂Rn+1

λ

∂Φ
n+1

∂Rn+1
c

∂un+1
def

∂Rn+1
c

∂λ
n+1

∂Rn+1
c

∂cn+1
∂Rn+1

c

∂Φ
n+1

∂Rn+1
Φ

∂un+1
def

∂Rn+1
Φ

∂λ
n+1

∂Rn+1
Φ

∂cn+1
∂Rn+1

Φ

∂Φ
n+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δun+1
def

Δλn+1

Δcn+1

ΔΦn+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j+1

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Rn+1
udef

Rn+1
λ

Rn+1
c

Rn+1
Φ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

, (54)  

where the increment vector is used to iteratively update the nodal unknowns from Newton–Raphson iteration step j to j+ 1 until the 
L2-norm of the residual is smaller than a predefined value as follows:  

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

un+1
def

λn+1

cn+1

Φn+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j+1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δun+1
def

Δλn+1

Δcn+1

ΔΦn+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j+1

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

un+1
def

λn+1

cn+1

Φn+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

. (55)  

The next step is to condense the Lagrange multipliers and the displacements on the surface of the slave body from the linear system 

shown above. Therefore, we subdivide the complete displacement vector un+1
def = un+1

def,i,m,s =
[
un+1

def,i, un+1
def,m,u

n+1
def,s

]T 
into degrees of 

freedom from the interior of the bodies, the surface of the master body, and the surfaces of the slave bodies denoted by the indices “i”, 
“m”, and “s”, respectively. Details on the condensation procedure can be found in Appendix D. The linear system resulting from this 
procedure is the final system to be solved featuring the following 3x3 block structure:  
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Rn+1
udef,i,m

∂un+1
def,i,m

∂Rn+1
udef,i,m

∂cn+1

∂Rn+1
udef,i,m

∂Φ
n+1

∂Rn+1
c

∂un+1
def,i,m

∂Rn+1
c

∂cn+1
∂Rn+1

c

∂Φ
n+1

∂Rn+1
Φ

∂un+1
def,i,m

∂Rn+1
Φ

∂cn+1
∂Rn+1

Φ

∂Φ
n+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

·

⎛

⎜
⎜
⎝

Δun+1
def,i,m

Δcn+1

ΔΦn+1

⎞

⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j+1

= −

⎛

⎜
⎜
⎜
⎝

Rn+1
udef,i,m

Rn+1
c

Rn+1
Φ

⎞

⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

. (56)  

Especially for realistic problem scenarios those linear systems consist of up to some millions of degrees of freedom rendering direct 
solvers unfavorable due to their larger memory consumption and arithmetic complexity compared to iterative solvers. However, since 
different physical fields are covered, and coupling matrices are introduced as off-diagonal blocks of the matrix due to the monolithic 
solution approach, the resulting system matrix is usually ill-conditioned. Thus, also an application of standard iterative solvers is not 
possible. To circumvent this issue we extend the physics-based preconditioning approach developed for conventional lithium-ion 
batteries in [44] to be applicable to the presented modeling approach. It combines a block Gauss–Seidel method with an algebraic 
multi-grid approach to enable flexible preconditioning based on both physical and geometric information. This approach allows the 
nonlinear complex ASSB model presented in this paper to be applied to realistic problem scenarios as exemplary depicted in Fig. 3. 

4. Numerical examples 

The proposed numerical ASSB model is now applied to different scenarios to both verify the model and derive insights into this 
coupled problem that go beyond those from experimental studies. All simulations are carried out using our in-house multi-physics 
research code BACI [63] in which we implemented the presented ASSB model. To visualize the geometries and physical fields we 
employ Kitware ParaView 5.5.2 [64]. Moreover, MATLAB R2020b [65] is used to generate the plots. 

4.1. Setup of the numerical examples 

In the following the three different computational domains used to compute the results are described. Furthermore, the applied 
material setup as well as the initial and boundary conditions to represent the investigated operating scenarios are detailed on. 

4.1.1. Definition of different computational domains 
Within this publication three different computational domains are investigated. The first one (cf. Fig. 3) is based on geometric data 

of a real ASSB cell as described in [18] and therefore hereinafter called “realistic geometry”. From left to right, it consists of the anode 
side current collector (orange), a lithium metal anode (gray), a solid electrolyte (green), the cathode active material particles 
(anthracite), and the cathode side current collector (light gray). The overall dimensions of this setup are listed in Table B.5 in the 
appendix. Coreform Cubit 2021.3 [66] is used to generate this computational domain and perform the meshing procedure. The 
resulting finite element mesh consists of 276,533 nodes defining 1, 343,275 tetrahedral elements with linear shape functions and 
resulting in about 1.3 million degrees of freedom. This finite element mesh is used to show the applicability of the proposed model to 
real-world scenarios, and to benchmark against results presented in the aforementioned publication [18]. A geometric analysis of the 
conductively connected parts of the composite cathode active material shows that the total volume is divided into six non- 
interconnected parts whose volume shares in the total volume vary between 96.7% and 0.08%. 

Computational domain two and three are geometrically reduced versions of the previously described configuration and are shown 
in Fig. 4. Subsequently, they are referred to as “simplified geometry”. Based on those domains the verification of the presented model is 
carried out. Moreover, the importance to include the current collectors in ASSB simulations is discussed. Therefore, the left compu
tational domain represents an ASSB cell including current collectors, whereas the right is the exact same cell but without current 
collectors. One main feature of those simplified geometries is the setup of the active material particles within the composite cathode. 
Based on the finding that the whole active material volume can be separated into different clusters for the realistic geometry described 
above, this is also reflected in the setup of the active material particles for the simplified geometries by a separation into two parts. In 

Fig. 3. Realistic geometry of an ASSB battery cell based on geometric data from [18].  
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Table B.5 the dimensions of the setups are given. Again, the displayed finite element meshes are created using Coreform Cubit 2021.3 
[66]. The spatial discretizations are based on tetrahedral elements with linear shape functions and consist of 3,138 nodes, and 2,430 
nodes for the mesh with current collectors, and the mesh without current collectors, respectively.  

Remark. In the absence of current collectors, also some equations presented in Section 2 have to be adapted accordingly. All 
equations that are defined on the current collector domains Ωcc,a and Ωcc,c are neglected. Moreover, the interface Eq. (24) is only 
defined on Γed,el and the interface Eq. (28)–(30) are replaced by the boundary Eq. (33)–(35), respectively. 

4.1.2. Materials of the ASSB cells 
Throughout this paper one material setup of the ASSB cells is used for all simulations. If current collectors are considered, they 

consist of copper at the anode side and of aluminum at the cathode side. The cathode active material is LiχNi0.6Mn0.2Co0.2O2 
(NMC622). Finally, the setup is completed by a β − Li3PS4 (β − LPS) solid electrolyte separator and a lithium metal anode. All material 
parameters can be found in the appendix. The mechanical as well as electrochemical material parameters are listed in Tables B.2 and 
B.3, respectively. The parameterization of the inelastic deformation laws in Eqs. (22) and (23) is presented in Table B.1. 

4.1.3. Initial and operating conditions 
All simulations carried out in this work are started at a fully charged state. The initial conditions concerning the electrochemistry 

field are shown in Table B.4. For the solid mechanics field we assume that in the initial state we have both, vanishing displacements 
u0 = 0, and vanishing deformation velocities u̇0 = 0. Moreover, the ASSB cells are discharged at different constant currents, repre
senting C-rates of 0.1 or 0.5. A C-rate of x means that the battery is fully charged, or discharged within 1x hours. Finally, the constant 
current discharge process is usually stopped at a lower cutoff voltage of 2.6 V. If not explicitly stated differently, the normal directions 
of all outer surfaces are constrained, i.e. they cannot move in normal direction as already described in Section 2.5. 

4.2. Validation of the presented ASSB model 

The validation of the presented ASSB model is performed in three steps. First we check the conservation of mass and charge on 
deforming meshes to validate that the model has been formulated and implemented consistently. Then we discuss the importance to 
include current collectors in ASSB simulations in order to deduce the recommended choice of the computational domains for the 
upcoming numerical investigations. Finally, the results of our ASSB model are compared to published electrochemical results from 
[18] to validate that our model is capable to reproduce those results. 

4.2.1. Validation of the conservation of mass and charge 
As the coupling of solid mechanics and electrochemistry is the main aspect of this paper we focus on the verification of the con

servation of mass and charge on deforming meshes in this section. Since both conservation laws are not independent, it is sufficient to 
monitor the amount of substance of lithium within the anode and cathode, as well as the amount of substance of lithium-ions in the 
solid electrolyte. A constant current discharge at a C-rate of 0.5 until 2.6 V is applied to the simplified geometry including current 
collectors as already shown in Fig. 4. The resulting amount of substances in the different domains are visualized over time in Fig. 5. As 
expected for this operating scenario a linear decline in the amount of substance of lithium within the anode and a linear increase in the 
amount of substance of lithium within the cathode with the same absolute slope is obtained. Moreover, due to the conservation of 
charge, a constant amount of lithium-ions within the solid electrolyte throughout the discharge process is expected. This is displayed 
by the constant progression of the red graph. Consequently, the total amount of lithium and lithium-ions remains constant during the 
operation, as indicated by the black curve. The simulation shows that the conservation of mass is only violated by a very small relative 
deviation in the order of 10− 5 %. 

The slight error in the mass conservation equation originates from the highly non-linear nature of the respective Eq. (20) and (21). 
Due to the non-linearity, the discrete solution does not exactly fulfill the mass conservation as expected. However, we still need to 
prove that the formulation is consistent, i.e. that the error is decreasing for a refinement of the time step size. Therefore, we perform a 
temporal convergence study on the same problem setup as above, but varying the time step size from 5 s to 300 s. Furthermore, we 
modify the cutoff voltage to 3.65 V since the steep gradient in the open circuit potential (see Fig. B.1) for lower cutoff voltages cannot 
be resolved using such large time steps. As a guide to the eye we introduce the slopes for linear and quadratic convergence using dashed 
lines in Fig. 6. 

Fig. 4. Simplified geometries to evaluate the properties of our proposed model. Left: ASSB geometry including current collectors. Right: ASSB 
geometry without current collectors. 
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Since we employ the Crank–Nicolson method we expect the solution to be second-order accurate in time. The plot shows, that for 
very large time steps the convergence rate is slightly diminished. Whereas for smaller time steps even faster convergence than expected 
is obtained. For the investigated time interval the averaged convergence rate is a bit faster than the expected quadratic convergence. 
Thus, we were able to successfully show the consistent implementation of our model. To sum up, it is verified that both mass and 
charge conservation are indeed fulfilled by our proposed model. 

4.2.2. Validation of the setup of the computational domain 
A correct setup of the computational domain is also important to obtain physically reasonable results. To investigate this, we 

discuss the necessity to explicitly consider the current collectors in ASSB simulations. Therefore, the two simplified geometries as 
already shown in Fig. 4 are discharged using a constant current at a C-rate of 0.5. Fig. 7 shows the cell voltage progression over time 
during the discharge process. For the cell setup without current collectors, the cell potential almost immediately drops to the pre
scribed cutoff voltage of 2.6 V. It is already reached after only approximately 150 seconds of discharging. Opposed to this, the cell 
voltage curve for the ASSB cell explicitly including the current collectors exhibits a rather flat course, until at about 6,500 s a steep 
decline to the cutoff voltage of 2.6 V is visible. As expected, the curve shows a similar course as the open circuit potential reported by 
[67] (cf. Fig. B.1). 

The origin of this observation can be revealed by comparing the state of charge (SoC) inside the separated volumes over time for the 
different cell setups (see Fig. 8 for a visualization of the volumes). For the setup without current collectors, we see an extreme dif
ference in the SoC of the two different volumes in Fig. 8. When the cutoff voltage is reached, i.e. at the end of the simulation time, the 
small volume is already discharged until about 8% SoC, whereas the large volume still features more than 99% SoC. In combination 
with local concentration gradients inside the volumes due to the discharge process, the surface of the small volume is already 

Fig. 5. Amount of substance of lithium and lithium-ions during constant current discharging at 0.5 C until 2.6 V is reached.  

Fig. 6. Relative error in conservation of mass at the end of the simulation over time step size of the simulation.  
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completely lithiated. Consequently, this volume has already reached the cutoff voltage and thereby dominates the charge–discharge 
behavior of the system. In contrast, for the setup including current collectors we see a less pronounced disbalance in SoC for the 
different volumes. The described phenomenon originates from the geometric setup of the composite cathodes in combination with its 
boundary conditions. When no current collectors are considered a uniform current density is applied to the surface Γcc,c of all cathode 
particle clusters (see Fig. 1), such that particle clusters with small volume discharge faster than particle clusters with large volume. 
Opposed to that, in the simulation setup including current collectors the different SoC in the particle clusters results in varying po
tentials between the particle clusters due to the lithiation dependent open circuit potential. Different potentials within the active 
materials then lead to changed potential differences w.r.t. the potential of the current collector and thereby to an adapted flux between 
the current collector and the independent clusters of active materials. Finally, we can state that the incorporation of current collectors 
couples the volumes with intersection to the current collector and thereby enables a physical balancing of local fluxes between those 
volumes. 

Furthermore, a kink in the cell voltage progression of the simulation including current collectors is apparent at around 2,900 s in 
Fig. 7. This can again be explained using Fig. 8 by exhibiting that the small volume is nearly completely discharged at around 2,900 s. 
After that it shows an almost horizontal progression until the end of the simulation, meaning that it does not take part in the discharge 
process anymore. The cell voltage curve in Fig. 7 reflects this behavior in the aforementioned kink. It originates from the fact that the 
open circuit potential has a very steep progression towards full lithiation (cf. Fig. B.1) and the smaller volume is already exhibiting 
those lithiation states. 

Remark. We want to briefly discuss two further possibilities to tackle the described problem. Since clusters of connected particles can 
only occur on the composite electrode side, the first option would be to move the definition of the potential as shown in Eq. (34) to the 

Fig. 7. Comparison of the cell potential differences over time during discharge for an ASSB cell with and without incorporation of current col
lectors (cc). 

Fig. 8. Left: Comparison of the state of charge over time during discharge in the different cathode volumes (small/large) for an ASSB cell with and 
without incorporation of current collectors (cc). Right: Detail views based on the geometries as depicted in Fig. 4 showing the large volume on top 
and the small volume at the bottom. 
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composite cathode side, and the (dis-)charge boundary condition presented in Eq. (35) to the anode side. However, this approach is 
only possible if merely one composite electrode is part of the cell setup and thereby limits the flexibility of the application of the model. 
The second possibility would be to replace Eq. (35) by an a priori unknown time dependent potential, being adapted in a way, that the 
desired constant current is retained. A similar approach, where the time dependent potential was set on the complete particle surface, 
has already been applied in [36]. Yet, this approach leads to another constraint that has to be fulfilled and solved for during the non- 
linear solution process. An additional drawback of this approach can be that it is very complicated to obtain the linearization of this 
constraint with respect to the primary variables. Thus, convergence of this constraint inside the nonlinear solution procedure can be 
deteriorated. Besides the already stated individual drawbacks of those two alternative solution procedures, both additionally have the 
disadvantage that the mechanical influence of the current collectors is neglected, and that further effects like a contact resistance (see 
e.g. Eq. (30)) cannot be applied easily. Therefore, we suggest to explicitly model the current collectors in ASSB cell simulations. 

4.2.3. Validation of the physical model 
Below we conduct a brief comparison of the cell potential progression of our model to the one published in [18]. To allow for a fair 

comparison of the models, the computational domain as already discussed in Section 4.1.1 and visualized in Fig. 3, is tailored to match 
their setup as close as possible. This means that the dimensions, statistical distribution of the active material radii, and the volume 
shares within the composite cathode are selected equal. In the following we investigate two different scenarios. Since in [18] me
chanical effects are not incorporated, we also do not consider the lithiation dependent volume changes in the first case called “no 
volume change” hereinafter. The second variation named “volume change” is taking the volume changes due to lithiation into account 
to also enable the quantification of the mechanical effect for the realistic geometry to gain additional insights compared to [18]. 
Moreover, the ASSB cell is discharged using a constant current at a C-rate of 0.1 until 2.8 V. For this investigation we changed the 
choice of the cutoff voltage from 2.6 V to 2.8 V as the reference solution of [18] is displayed until this value. In Fig. 9 the progression of 
the cell voltage curve from [18] and ours from the “no volume change” scenario shows a very good agreement during discharge. Both 
simulations result in approximately the same discharge capacity of 155 mAh/g with a relative deviation of only about 1%. The ge
ometry used in these simulations is one sample of an underlying stochastic process that is constructed such that global geometric 
quantities of the cell, e.g. the particle size distribution of the NMC active material, match the ones as provided in [18]. Consequently, 
the computational domain differs from [18] as both are only realizations of an inherent random process. Nevertheless, considering this 
discrepancy the results are in very good agreement. 

The comparison of the “no volume change” and “volume change” scenario reveals that the consideration of mechanical effects also 
has an influence on the electrochemical performance of the system. Namely, that the model including the volume expansion allows for 
larger discharge times and therefore a bigger discharge capacity. Here, the achieved discharge capacity increases by approximately 
4%. This is already one argument that the incorporation of mechanical effects is important for a precise analysis of ASSB cells 
motivating the subsequent section for further investigations in this regard. Of course, there are more reasons for this incorporation as it 
also allows investigating local stress states and their influence on electrochemical transport properties, the investigation of the effect of 
different casings (see Section 4.3) or external pressure states, or detrimental scenarios like local contact losses to name just some. 

Fig. 9. Comparison of cell potential difference over discharge capacity for the realistic geometry.  

C.P. Schmidt et al.                                                                                                                                                                                                     



Computer Methods in Applied Mechanics and Engineering 417 (2023) 116468

16

4.3. Investigation of the influence of the mechanical setup on ASSB cells 

In this section we first perform a detailed investigation of the influence of the mechanical setup on the electrochemical performance 
based on the simplified geometry. Then we investigate the influence of the mechanical setup on the mechanical state based on the 
realistic geometry. 

4.3.1. Influence of the mechanical setup on the electrochemical performance based on a simplified ASSB cell geometry 
In the following we investigate the influence of the mechanical setup on the performance of the battery cell including current 

collectors as shown in Fig. 4. The cell is again discharged at a constant current of 0.5 C until 2.6 V is reached. In order to examine the 
influence of the solid mechanics on the system performance we conduct two variations of the original problem setup. Subsequently, we 
refer to the original setup with the term “clamping”. As a first variant we replace the infinitely stiff external support at the anode side 
current collector by an infinitely soft external support. This scenario is named “no clamping” in the ensuing paragraph and is modeled 
by replacing the Dirichlet boundary condition in normal direction by a homogeneous Neumann boundary condition. Those cases 
represent the extreme cases concerning mechanical boundary conditions, since in reality nothing is infinitely stiff or soft. For the 
second variation we disable the volume change due to lithiation what we hereinafter call “no volume change”.  

Fig. 10 shows the progression of the cell potential difference over discharge time for the three described scenarios. Due to the fact 
that the initialization is identical all curves feature a very similar progression in the beginning. However, over time the influence of the 
altered mechanical setups on the discharge behavior is increasing. The plot shows that the longest discharge times are achieved in the 
“clamping” case, whereas the “no volume change” setup features the shortest discharge time. The “no clamping” scenario, where the 
battery can freely decrease its thickness lies between the other cases. Since here we do not yet consider the potentially important 
influence of mechanical deformation or stresses on transport properties or interface kinetics explicitly, this difference has to originate 
from the change of the domains due to mechanical deformations. To verify this statement we plot the thicknesses of the battery cell 
components over time for the different mechanical setups. For the “no volume change” case (cf. graphs with ∘ symbols in Fig. 11) we do 
not see a change in the thickness of the battery components. This is the expected behavior since the lithiation dependent volume 
expansion is the origin of mechanical deformations, meaning that without volume expansion no deformations are anticipated. In the 
“no clamping” scenario (see graphs with ＋ symbols in Fig. 11) the anode side current collector can move freely. Thus, no significant 
axial stresses arise in the battery cell leading to only negligible elastic deformations of all battery components. However, the thickness 
of the anode is significantly decreasing as lithium is stripped during discharging. Finally, in the last scenario we observe the effect of 
the assumptions that on the one hand the total volume of the battery cell remains constant due to the infinitely stiff support and on the 
other hand the different battery components cannot separate. This means that in a real setting the adhesive forces between the battery 
components would need to be strong enough that no spatial separation occurs. Consequently, the decrease in thickness of the anode 
due to stripping of lithium during discharging has to be compensated by an elastic deformation of all components leading to an in
crease in their thicknesses (see Fig. 11). From the fact that the thickness of the anode is always larger compared to the “no clamping” 
scenario, even though more lithium is stripped due to the longer discharge time, we can conclude that also the lithium metal anode is 
elastically deformed towards larger thicknesses. 

However, the observed changes in thickness are counterintuitive to the larger charging times. A thicker solid electrolyte leads to 
more internal resistance of the cell and thus to more potential drop within the electrolyte. In theory this should result in shorter 
discharge times leading to the conclusion that there has to be another effect that overcompensates this. Fig. 12 shows that the me
chanical setup indeed has an influence on the concentration distribution at about 10% SoC, i.e. close to the end of the discharge 
process. Especially the concentration at the surface is affected, which in turn influences the lithiation state dependent equilibrium 

Fig. 10. Comparison of cell voltage progressions over discharge time for different mechanical setups.  
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potential (cf. Fig. B.1). As the equilibrium potential at the cathode side is a major contribution to the overall cell potential difference 
also the cell voltage is influenced. By analyzing Fig. 12 we see that this actually has to be the dominant effect. The simulation with the 
shortest discharge time, i.e. the “no volume change” scenario, shows the largest degree of lithiation at the interface (vid Fig. 12 c). In 
contrast, the simulation with the longest discharge time depicts the smallest lithiation state at the interface (cf. Fig. 12 a) and the third 
scenario lies in between those two cases. 

To conclude, we again found that the mechanical setup has an effect on the discharge time, which varied by about 5% in this case. A 
similar result was already shown for the realistic geometry in Section 4.2.3. So the influence of the mechanical setup on the elec
trochemical performance of the ASSB cell is revealed for both investigated computational domains, highlighting the importance to 
consider mechanical effects to enable a precise analysis of ASSB cells even when potentially important features like stress dependent 
electrochemical transport properties, or local contact loss between two phases are not yet taken into account. 

4.3.2. Influence of the mechanical setup on the mechanical state based on a realistic ASSB cell geometry 
Now we investigate the influence of the mechanical boundary conditions on the mechanical response of the ASSB cell in more 

detail. Therefore, we employ the realistic geometry (see Fig. 3) and discharge the cell at a constant current of 0.1 C until 2.6 V is 
reached. Again, we compare the results of a simulation using an ideally stiff external mechanical support in axial direction of the 
battery named “clamping” to those with an ideally soft axial external boundary condition. Subsequently, the latter scenario is referred 
to using “no clamping”. First we analyze the surface share of the cathode active material surface that experiences tensile stresses during 
the discharge process. Tensile stresses prevail if the normal projection of the Cauchy stress tensor is positive (t = n · σ ·n > 0). We think 
that this is a highly relevant mechanical quantity because all interfacial areas under tensile stresses are possible places for loss of 

Fig. 11. Comparison of thicknesses of components for different mechanical setups over discharge time. The solid line depicts the “clamping” setting, 
whereas the symbols ＋ and ∘ denote the scenarios “no clamping” and “no volume change”, respectively. 

Fig. 12. Comparison of the influence of the mechanical setup on the lithiation state distribution at about 10% SoC during discharging. Subfigure (a) 
shows the “clamping” case, subfigure (b) the “no clamping” scenario, and subfigure (c) the “no volume change” variation. 
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contact if e.g. adhesive forces are negligible or exceeded. Once a delamination of active material and solid electrolyte has taken place 
locally, those surfaces cannot participate in the charge transfer reaction anymore. Consequently, this largely effects the electro
chemical field by e.g. increasing the internal resistance of the battery. Due to the mechanical boundary conditions in the “no clamping” 
case we do not have significant tensile stresses emerging within the battery cell. Thus, the cathode side surface share experiencing 
tensile stresses constantly remains at a small value of approximately 2.5% during the discharge time. In the “clamping” scenario this is 
completely different due to the combination of the mechanical boundary and interface conditions as well as the operating condition of 
the battery cell. Since we are discharging the ASSB cell the thickness of the lithium metal anode significantly reduces. Furthermore, as 
the mechanical boundary and interface conditions enforce the volume of the ASSB cell to be constant, elastic tensile stresses need to 
arise to compensate for the decrease of thickness due to lithium metal stripping from the anode. Hence, the tensile stresses within the 
battery constantly increase during discharging, resulting in a non-linearly increasing surface share under tensile stress (cf. Fig. 13). 

Remark. The presented results do not yet include the influence of local mechanical tensile stresses at the interfaces on the charge 
transfer. However, as already mentioned above local delamination inhibits local charge transfer reactions. This would result in 
elongated paths for charge and mass transfer and therefore in a potentially severe deterioration of the cell performance. Yet, such 
effects are beyond the scope of this work and will be addressed in upcoming research activities. 

Please note that the results presented in Fig. 13 are only showing the surface share exhibiting tensile stresses at the cathode active 
material surface. It does not include the anode side, which in both cases would feature an (almost) complete delamination using these 
mechanical boundary conditions. Consequently, a simulation including the aforementioned influence of the mechanical tensile stresses 
at the interfacial charge transfer would nearly terminate immediately. Instead, it rather points out the well-known fact that such 
systems have to be operated under significant pre-stress to overcompensate at least the main part of the presented tensile interface 
stresses. Moreover, it indicates that the mechanical boundary conditions, e.g. the measuring device in an experiment, can have a 
significant influence on local mechanical quantities and thereby on the cell performance. Finally, it shows that the proposed model can 
be used to quantify the necessary mechanical pre-stress to prevent the occurrence of tensile stresses at the interface during cycling. 

Lastly we show that the mechanical stress distribution is inhomogeneous and anisotropic within the cathode active material 
particles. To do so, we use the already described “clamping” case. As the simulation domain is too large to be able to depict this 
comprehensively, we use a small cut from the composite cathode particles to do the visualization. The position of the cut within the 
composite cathode is shown in Fig. 14 in green color. To ease orientation within the plot, the cathode side current collector and the 
cathode particles are shown transparent. Super-quadratic tensor glyphs are then used to depict the evolution of the mechanical stress 
state within the cathode particles. They base on a singular value decomposition of the stress tensor, i.e. its eigenvalues and eigen
vectors. The glyphs are then created such that the orientation is based on the eigenvectors and their scaling on the corresponding 
eigenvalues. A spherical shape of the glyph represents an isotropic stress state, whereas a needle- or plate-like shape indicates sig
nificant anisotropy and its preferential direction. Fig. 15 shows a detail view of the small cluster of active material particles that are 
highlighted non-transparently in Fig. 14. Specifically for the middle particle, it can be seen that in different regions of the particle the 
preferential directions point in different directions. On the one hand, this indicates an anisotropic stress state as preferential directions 
are clearly visible. On the other hand, it also depicts an inhomogeneous mechanical state since the anisotropy is spatially varying. The 
preferential direction always points towards the surrounding cathode active material particles. This is reasonable as the cathode active 
material particles are the mechanically stiffest component within the composite cathode. Hence, they also transfer the main share of 
the mechanical load. Furthermore, it is observable that the magnitude of the mechanical stresses generally increase towards regions 
where particles are in contact. As those are the regions in which the geometry of the particles tapers off, the mechanical notch effect 

Fig. 13. Influence of mechanical boundary conditions on the cathode active material surface share that shows tensile stresses.  
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leads to larger local mechanical stresses there as expected. 
The proposed model thus also enables to investigate the three-dimensional stress state within an ASSB during operation. This 

information can be utilized in multiple ways, e.g. to evaluate whether mechanical failure mechanisms are likely to occur or to add 
further coupling effects like deformation dependent electrochemical transport properties as deduced from detailed atomistic simu
lations in [68]. 

5. Conclusion 

Within this work a novel electro-chemo-mechanically coupled finite element formulation for microstructure resolved ASSB is 
introduced. The proposed model takes into account the solid mechanics by considering the conservation of linear and angular mo
mentum and the electrochemical field by incorporating mass and charge conservation. It couples both fields by lithiation dependent 
volume changes of the active materials and the consideration of mechanical deformations in the equations describing conservation of 
mass and charge. The model is derived from non-linear continuum mechanics and thus capable to account for large deformations 
including a multiplicative split of the deformation gradient to consider large lithiation dependent volume changes as e.g. reported in 
[28,29]. To also enable large deformations for the conservation of mass we apply an ALE formulation. We then discuss the central steps 
to deduce the equations for the employed finite element method as well as the monolithic solution procedure to solve the resulting 
nonlinear system of equations. In the numerical examples we first show that our model is indeed capable to conserve mass and charge 
on deformed meshes before we point out that the explicit incorporation of current collectors in ASSB simulations is necessary to obtain 
reliable results. On top of that we showed that the results of our model match the results of [18] reasonably well if we also do not 

Fig. 14. Position of the cut volume within the composite cathode particles in green color used to visualize the mechanical stresses. (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Super-quadratic tensor glyphs applied to the absolute of the Cauchy stress tensor to visualize the mechanical stress state within the cut of 
the cathode particles at the end of the discharge process. 
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consider mechanical effects in our formulation. Moreover, it is presented that the incorporation of mechanical effects has an influence 
on the discharge behavior of an ASSB cell even though coupling effects like delamination of the active material and solid electrolyte are 
not yet considered in the model. However, such effects are not only reported in literature [4], but also indicated by our mechanical 
analysis of the simulation results. To sum up we could show that it is vital to incorporate electrochemical and mechanical effects as well 
as their coupling to ensure precise results of ASSB simulations. 

For future research we propose to further increase the coupling of electrochemistry and solid mechanics by adding other relevant 
effects of electro-chemo-mechanics. The most obvious effect in this regard is the delamination of active materials and solid electrolyte. 
But also the dependence of the electrochemical transport kinetics on the mechanical deformation state as proposed by [68] will be an 
important step to enable the quantification of this effect deduced on an atomistic scale on the electrochemical performance on the cell 
level. Moreover, we believe that the incorporation of inhomogeneous lithium deposition and stripping at the lithium metal anode, and 
grain boundary transport mechanisms on resolved solid electrolyte grains are other effects of particular importance. 
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Appendix A. Details on the derivation of the mass conservation equation in the solid electrolyte 

From Eq. (19) to Eq. (21) the fourth term vanishes within the electrolyte domain. This is due to the application of the divergence to 
a product of a scalar field Θ and a vector field v reading:  

∇·(Θv) = Θ∇· v + v · ∇Θ . (A.1) 

Application of Eq. (A.1) to the fourth term of Eq. (19) leads to:  

− ∇ ·

(
zFD
RT

c∇Φ
)

= −
zFD
RT

c∇ ·∇Φ −
zFD
RT

∇Φ · ∇c . (A.2) 

The first term of the right-hand side is zero, due to the charge conservation Eq. (14), whereas the second term equals zero since no 
gradients in concentration emerge within the solid electrolyte. Consequently, this term vanishes, as described in Section 2.2.3. 

Appendix B. Model parameters 

In this section all values of the material, geometric, or initial parameters that are necessary to perform the simulations are pre
sented. We start with listing the material parameters and initial conditions of the electrochemical field. Finally, the geometric di
mensions of the different computational domains are given. 

Table B.1 
Parameters of the inelastic deformation used in the simulations.  

parameter value unit 

Cathode: NMC622 

a0 0.000444577043098 – 
a1 − 1.24116361022373 – 
a2 9.30461909734883 – 
a3 − 29.44977325195 – 
a4 49.1126838772603 – 
a5 − 45.1097641074935 – 
a6 21.5994362668471 – 
a7 − 4.21656846170118 – 

Anode: lithium 

g 1.2998 · 10− 5 m3

mol  
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B.1. Material parameters and initial conditions 

The volume changes modeled using inelastic deformations as described in Eq. (22) and Eq. (23) have to be parameterized. Hereby, 
f(χ) is a polynomial fit of the following form:  

f (χ) =
∑7

n=0
aiχi (B.3)  

to the data from [5] as shown in Fig. 2. The parameter g = MLi
ρLi 

from Eq. (23) as well as the coefficients ai are listed in the Table B.1. 
Moreover, Table B.2 provides the necessary parameters to define the solid mechanics problem of the ASSB. As the density of 

NMC622 is not provided in [18] it is calculated to obtain a consistent parameter set as follows:  

ρ =
cmaxMmax

χmax
. (B.4) 

Table B.3 lists all required data needed for the electrochemistry problem. As usual, the SoC is defined based on the limiting 
electrode which is the cathode in this case. We assume that the SoC of the battery at the initial state is 100% resulting in χ100% =

c0/cmax. Moreover, we define that the fully discharged state corresponds to the fully lithiated state χ0% = χmax. For completeness, we 
repeat the lithiation dependent electronic conductivity of NMC622 from [18]:  

σ(x) = 100 exp
(
− 202.90 x4 + 322.38 x3 − 178.23 x2 + 50.06 x − 13.47

)
, (B.5)  

with x = 1 − χ, and the lithiation dependent diffusion coefficient of NMC622 from [18]:  

D(χ) = 1
1000

exp
(

9.3764575854 · 105 · χ9 − 5.4262087319 · 106 · χ8

+ 1.3688556703 · 107 · χ7 − 1.9734363260 · 107 · χ6 + 1.7897244160 · 107 · χ5

− 1.0576735297 · 107 · χ4 + 4.0688465295 · 106 · χ3 − 9.8167452940 · 105 · χ2

+ 1.3468923578 · 105 · χ − 8.0270847914 · 103
)

.

(B.6) 

Fig. B.1 shows the lithiation dependent open circuit potential Φ0 of the cathode material NMC622 against lithium, based on [67]. It 
is given by:  

Φ0(χ) = 13.4905 − 10.96038 χ + 8.203617 χ1.358699 − 3.10758 · 10− 6exp(127.1216 χ − 114.2593) − 7.033556 χ− 0.03362749. (B.7) 

Finally, the initial conditions of the electrochemical field are provided in Table B.4. The initial concentration of the lithium metal 

Table B.2 
Mechanical material parameters used for the simulations.  

parameter value unit description source 

Cathode side current collector: aluminum 

E 7.00 ·1010 Pa Young’s modulus [69] 
ν 0.35 – Poisson’s ratio [69] 
ρ 2.70 ·103 kg

m3 
density [70] 

Cathode: NMC622 

E 1.75 ·1011 Pa Young’s modulus [71] 
ν 0.3 – Poisson’s ratio [72–74] 
ρ 5.03 ·103 kg

m3 
density Eq. (B.4) 

Electrolyte: β-LPS 

E 2.89 ·1010 Pa Young’s modulus [75] 
ν 0.27 – Poisson’s ratio [75] 
ρ 1.88 ·103 kg

m3 
density [76] 

Anode: lithium 

E 4.90 ·109 Pa Young’s modulus [77] based on [78] 
ν 0.42 – Poisson’s ratio [77] based on [78] 
ρ 5.34 ·102 kg

m3 
density [79] 

Anode side current collector: copper 

E 1.30 ·1011 Pa Young’s modulus [69] 
ν 0.34 – Poisson’s ratio [69] 
ρ 8.96 ·103 kg

m3 
density [79]  
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anode is calculated based on the assumption of a pure substance from:  

c =
ρ
M

. (B.8)  

B.2. Geometric parameters 

Now we present the geometric properties of the different computational domains as presented in Section 4.1.1. Table B.5 shows the 
dimensions of both the simplified and the realistic geometries. Lastly, the properties of the composite cathode are given in Table B.6. 

Table B.3 
Electrochemical material parameters used for the simulations.  

parameter value unit description source 

Cathode side current collector: aluminum 

σ 3.77 · 107 S
m 

electronic conductivity [70] 
Rcontact 2.0 ·10− 3 Ω m2 contact resistance assumed 

Cathode: NMC622 

σ Eq. (B.5) S
m 

electronic conductivity [18] 
D Eq. (B.6) m2

s 
diffusion coefficient [18] 

Φ0 Fig. B.1 V open circuit potential [67] 
i0 4.98 A

m2 
exchange current density factor adapted from [18] 

αa 0.5 – anodic symmetry coefficient [18] 
cmax 5.19 · 104 mol

m3 
maximum concentration [18] 

χmax 1.0 – maximum lithiation state [18] 
χ0% 1.0 – lithiation state at 0% SoC assumed 
χ100% 4.04 · 10− 1 – lithiation state at 100% SoC assumed 

Electrolyte: β-LPS 

κ 1.20 · 10− 2 S
m 

ionic conductivity [18] 
tel 1.0 – lithium-ion transference number [18] 

Anode: lithium 

σ 1.00 · 105 S
m 

electronic conductivity [18] 
Φ0 0.0 V open circuit potential [18] 
i0 8.87 A

m2 
exchange current density factor [18] 

αa 0.5 – anodic symmetry coefficient [18] 

Anode side current collector: copper 

σ 5.81 · 107 S
m 

electronic conductivity [70] 
Rcontact 2.0 ·10− 3 Ω m2 contact resistance assumed  

Fig. B.1. Open circuit potential of NMC622 as a function of the lithiation state based on [67].  
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According to [18] the active material secondary particles are spherical and exhibit a diameter of around 10 μm. For the realistic 
geometry, the diameter distribution is therefore approximated by a log-normal distribution:  

f (d|μ, σ) = 1
dσ

̅̅̅̅̅
2π

√ exp

(
− (logd − μ)2

2σ2

)

ford > 0 , (B.9)  

with the mean μ and standard deviation σ of the normally distributed logarithm of the variable. As the log-normal distribution is unit- 
less, the unit of the diameter d is retained by d = d/1 μm.  

Appendix C. Linearization of the multiplicative split based material formulation 

To ensure quadratic convergence of the non-linear solution algorithm we need the linearization of the second Piola–Kirchhoff 
stresses w.r.t. the right Cauchy–Green tensor:  

ℂ = 2
∂S
∂C

. (C.10) 

The definition of the second Piola–Kirchhoff stresses (see Eq. (3)) is the starting point of the derivation of the linearization:  

S = 2 detFinF− 1
in ·

∂Ψ el

∂Cel
·F− T

in .

Rewriting the formulation by making use of factors γi as defined in [45] we get:  

S = detFin
(
γ1C− 1

in + γ2C− 1
in ·C ·C− 1

in + γ3C− 1) . (C.11) 

By using the factors δi and the tensor product ⊙ from [45] the linearization reads:  

ℂ = detFin
[
δ1
(
C− 1

in ⊗ C− 1
in

)
+ δ2

(
C− 1

in ⊗ C− 1
in ·C ·C− 1

in + C− 1
in ·C ·C− 1

in ⊗ C− 1
in

)

+δ3
(
C− 1

in ⊗ C− 1 + C− 1 ⊗ C− 1
in

)
+ δ4

(
C− 1

in ·C ·C− 1
in ⊗ C− 1

in ·C ·C− 1
in

)

+δ5
(
C− 1

in ·C ·C− 1
in ⊗ C− 1 + C− 1 ⊗ C− 1

in ·C ·C− 1
in

)
+ δ6

(
C− 1 ⊗ C− 1)+ δ7

(
C− 1 ⊙ C− 1)

+δ8
(
C− 1

in ⊙ C− 1
in

)]
.

(C.12)  

Table B.4 
Electrochemical initial conditions used for the simulations.  

domain initial concentration c0 unit source 

cathode 2.10 ·104 mol
m3 

[18] 

electrolyte 1.03 ·104 mol
m3 

[18] 

anode 7.69 ·104 mol
m3 

Eq. (B.8)  

Table B.5 
Geometric dimensions used for the simulations.  

quantity unit simplified geometry realistic geometry 

lateral dimensions μm – 75.0 
thickness cathode side current collector μm 2.0 10.0 
thickness composite cathode μm 19.5 40.0 
thickness solid electrolyte separator μm 10.0 425.0 
thickness anode μm 5.0 120.0 
thickness anode side current collector μm 2.0 10.0  

Table B.6 
Geometric properties of the composite cathode.  

quantity unit simplified geometry realistic geometry 

volumetric ratio active material to electrolyte – 42 : 58 47 : 53 
μ of log-normal distribution – – 2.3 
σ of log-normal distribution – – 0.05 
active material particle diameter μm 10.0 –  
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Appendix D. Condensation procedure of the Lagrangian multipliers 

We start by recalling the virtual energy contribution originating from the constraint enforcement as already stated in Eq. (48):  

δWconstr =
∑n− 1

j=1

[ ∫

Γc

(

δλjT
(

udef,m − uj
def,s

)
+
(

δudef,m − δuj
def,s

)T
λj
)

dΓ
]

. (D.13) 

To obtain the discretized form, the continuous domain is subdivided into finite elements and the Lagrange multipliers and dis
placements are approximated as presented in Eq. (52):  

δWconstr =
∑n− 1

j=1

[∫

Γh
c

(
δλjT

NT
λ

(
Nuum − Nuuj

s

)
+
(
Nuδum − Nuδuj

s

)TNλλj
)

dΓ

]

, (D.14)  

where the integral 
∫

Γh
c 

symbolizes the sum of the element integrals. To simplify the notation we introduce the following terms:  

Rj
constr,m =

∫

Γh
c

NT
u NλλjdΓ = Mj

cλ
j
, j = 1…n − 1 , (D.15)  

Rj
λ =

∫

Γh
c

NT
λ

(
Nuum − Nuuj

s

)
dΓ = Mj

c
Tum − Mj

c
Tuj

s , j = 1…n − 1 , (D.16)  

Rj
constr,s =

∫

Γh
c

− NT
u NλλjdΓ = − Mj

cλj
, j = 1…n − 1 . (D.17) 

Further we introduce the standard solid mechanics residuals without mesh tying constraints separated into the different geometric 
regions, the interior of the body “i”, the surface of the master body “m”, and the surface of the slave body “s”, each representing a subset 

of the already presented solid mechanics residual as follows RT
udef

=
[
RT

std,i RT
std,m RT

std,s

]
. On top of that, the residual of the electro

chemistry problem “elch” is set up as RT
elch =

[
RT

c RT
Φ

]
. Summing all contributions and reordering all terms w.r.t. their virtual coun

terpart leads to the following expression of the virtual work:  

δW = δΨ T
elchRelch + δuT

i Rstd,i +
∑n− 1

j=1

[
δuT

m

(
Rstd,m + Rj

constr,m

)
+ δuj

s
T
(

Rj
std,s + Rj

constr,s

)
+ δλjT

Rj
λ

]
= 0 . (D.18) 

Requesting arbitrary virtual perturbations results in the following nonlinear system of equations:  
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Rstd,i

Rstd,m +
∑n− 1

j=1
Rj

constr,m

R1
std,s + R1

constr,s

⋮

Rn− 1
std,s + Rn− 1

constr,s

Relch

R1
λ

⋮

Rn− 1
λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
⋮
0
0
0
⋮
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (D.19) 

The additional contributions to the residuals affect the corresponding linearized system. To allow a concise presentation of the 
linearized system of equations we introduce the following abbreviations:  

∂Rj
constr,m

∂λj = Mj
c ,

∂Rj
constr,s

∂λj = − Mj
c ,

Rj
λ

∂um
= Mj

c ,
Rj

λ

∂uj
s
= − Mj

c ,
∂Ri

∂ui
= Kii ,

∂Relch

∂ui
= KΨi ,

∂Ri

∂Ψ
= KiΨ ,

which are introduced into the stiffness matrix:  
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Kii Kim K1
is … Kn− 1

is KiΨ 0 … 0
Kmi Kmm 0 … 0 KmΨ M1

c … Mn− 1
c

K1
si 0 K11

ss … 0 K1
sΨ − M1

c … 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

Kn
si 0 0 … Kn− 1

ss Kn− 1
sΨ 0 … − Mn− 1

c

KΨ i KΨm K1
Ψs … Kn− 1

Ψs KΨΨ 0 … 0
0 M1

c − M1
c … 0 0 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮ 0 0 … 0
0 Mn− 1
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⎥
⎥
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. (D.20) 

The next step is to condense out the displacements at the slave side of the interface. Therefore, we solve for the j − th slave side 
displacement increment:  

Δuj
s = − Kj

ss
− 1
(

Kj
siΔui + Kj

sΨ ΔΨ − Mj
cΔλj + Rj

std,s + Rj
constr,s

)
, j = 1..n − 1 . (D.21) 

By introducing these n − 1 equations into the system (see Eq. (D.20)) the slave side displacements vanish. Applying the same 
strategy to the Lagrange multipliers leads to the final system of linear equations:  

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎣

Kii Kim +
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⎥
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⎥
⎥
⎥
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⎥
⎥
⎥
⎦

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

⎡

⎣
Δui
Δum
ΔΨ

⎤

⎦

⃒
⃒
⃒
⃒
⃒
⃒

j+1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− Rstd,i

− Rstd,m −
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− Relch

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

j

. (D.22)  

References 

[1] P. Adelhelm, J. Janek, Zukunftstechnologien, in: R. Korthauer (Ed.), Handbuch Lithium-Ionen-Batterien, Springer Berlin Heidelberg, 2013, pp. 199–217 
(Chapter 16). 

[2] K.G. Gallagher, S.E. Trask, C. Bauer, T. Woehrle, S.F. Lux, M. Tschech, P. Lamp, B.J. Polzin, S. Ha, B. Long, Q. Wu, W. Lu, D.W. Dees, A.N. Jansen, Optimizing 
areal capacities through understanding the limitations of lithium-ion electrodes, J. Electrochem. Soc. 163 (2) (2015) A138–A149. 

[3] S.P. Culver, R. Koerver, T. Krauskopf, W.G. Zeier, Designing ionic conductors: The interplay between structural phenomena and interfaces in thiophosphate- 
based solid-state batteries, Chem. Mater. 30 (13) (2018) 4179–4192. 

[4] R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, J. Janek, Capacity fade in solid-state batteries: Interphase 
formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater. 29 (13) (2017) 
5574–5582. 

[5] R. Koerver, W. Zhang, L. de Biasi, S. Schweidler, A.O. Kondrakov, S. Kolling, T. Brezesinski, P. Hartmann, W.G. Zeier, J. Janek, Chemo-mechanical expansion of 
lithium electrode materials – on the route to mechanically optimized all-solid-state batteries, Energy Environ. Sci. 11 (8) (2018) 2142–2158. 

[6] J. Janek, W.G. Zeier, A solid future for battery development, Nature Energy 1 (9) (2016). 
[7] J.H. Teo, F. Strauss, F. Walther, Y. Ma, S. Payandeh, T. Scherer, M. Bianchini, J. Janek, T. Brezesinski, The interplay between (electro)chemical and (chemo) 

mechanical effects in the cycling performance of thiophosphate-based solid-state batteries, Mater. Futures 1 (1) (2022), 015102. 
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