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Abstract

The phase-field method has emerged as a promising computational tool to predict and un-
derstand fracture failures. The finite cell method (FCM) provides an excellent numerical
framework for phase-field analyses. When combined with multi-level hp-refinement, the
FCM allows an accurate prediction of fracture processes by adaptively refining the mesh
in the fracture zone.

To solve large, complex computational problems efficiently, it is common to rely on parallel
computing. However, the implementation of the phase-field method with the FCM in parallel
is not straightforward for three main reasons. First, additional ghost elements are needed
to ensure that preconditioners used to solve the resulting system of equations are correctly
computed. Secondly, refinement based on the phase-field solution cannot be applied directly,
as not all degrees of freedom in a distributed mesh have correct values. Finally, adaptive
refinement unbalances the workload among processes, increasing the execution time.

This thesis presents the algorithms needed to integrate the phase-field method within a
framework for large-scale parallel finite cell computations. It introduces the necessary changes
to the mesh generation procedures to have additional ghost elements, a modified refinement
strategy that is suitable for parallel simulations, and a novel algorithm to rebalance the
workload after refinement. The results show good parallel scalability for several processes
and demonstrate the benefits of the developed load balancing strategy. A practical example
illustrates the potential of the parallel framework to solve problems of engineering relevance.
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Chapter 1

Introduction

The phase-field method is a growing field in computational fracture mechanics that involves
the approximation of a crack with the introduction of a scalar field that serves as an indicator
of damaged material. By avoiding the complex task of tracking the surface of a propagating
crack, the phase-field method simplifies the numerical treatment of fracture problems. Sev-
eral numerical implementations of the method have been developed during the last years.
[Nagaraja et al., 2018] integrated a phase-field model with the Finite Cell Method (FCM)
[Parvizian et al., 2007] and multi-level hp-refinement [Zander et al., 2016], enabling the solu-
tion of problems with high levels of accuracy using non-boundary-conforming meshes. The
potential of this development to solve large, resource-demanding problems is, however, lim-
ited due to the serial nature of its implementation. This thesis aims to integrate the work
developed by [Nagaraja et al., 2018] with the framework for large-scale parallel finite cell
computations presented in [Jomo, 2021] to enable the parallel solution of fracture mechanics
problems with the phase-field method. The present chapter provides the background and
context to introduce the reader to the topics, followed by the challenges posed by the parallel
solution of phase-field problems and the goals of the present work.

1.1 Background

The propagation of cracks in solid materials is a phenomenon that has been studied since the
last century. One of the pioneering works in this field was performed by [Griffith, 1921]. He
formulated a fracture theory based on the first principle of thermodynamics and stated that
a flaw in a solid becomes unstable when the change in strain energy due to an increment in
the flaw size equals the surface energy of the material due to the creation of new fracture
surfaces. It was not until the end of World War II that fracture was extensively studied after
the catastrophic failure of several Liberty ships of the US Navy. [Irwin, 1960] extended the
Griffith approach to metals including the energy dissipated by plasticity. In the Post-War
era and up to the 1980s, several advancements in fracture mechanics enabled its application
in fields such as aerospace, energy, and the nuclear power industry. The significant improve-
ment of computer technology towards the end of the 20th century and beginning of the 21st
century allowed the development of sophisticated models for the computation of fracture me-
chanics problems with the Finite Element Method (FEM), such as the (numerical) J-integral
[Carpenter et al., 1986], the Extended Finite Element Method (XFEM) [Moes et al., 1999],
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and Cohesive Zone Models [Elices et al., 2002], among others. The aforementioned models
can be easily applied to stationary cracks, but they become cumbersome when dealing with
growing cracks, as special meshing strategies and methods to track the crack surfaces must be
applied. During the last decades, the phase-field method has gained significant momentum in
fracture mechanics research. This method approximates the crack surface with a scalar field
that is used to degrade the stiffness of the material in the crack zone, effectively eliminating
the necessity of tracking the crack surface and thus reducing the computational effort.

Even though the FEM has been widely used to carry out phase-field fracture mechanics
analyses, there is an increasing demand for the solution of more sophisticated problems that
has turned the attention to other alternatives such as the FCM. Examples of such problems
are the solution of three-dimensional material interface problems without conforming mesh
generation [Elhaddad et al., 2017], or the characterization of the influence of process-induced
defects on the homogenized behavior of metal lattices [Korshunova et al., 2021]. The FCM
uses a non-boundary-conforming mesh that avoids the difficult and time-consuming process
of mesh generation in intricate geometries. It does so by embedding the physical domain in
a fictitious domain of a simpler shape that can be easily meshed. The original problem is
then recovered by the introduction of an indicator function that modifies the weak form and
defines whether a point belongs to the physical or fictitious domain. When combined with
the multi-level hp-refinement, the FCM provides the high flexibility of immersed methods
with the good approximation qualities of high order finite elements [Zander et al., 2015;
Elhaddad et al., 2017]. Moreover, the refinement by superposition approach of the multi-
level hp-refinement is particularly useful in phase-field analyses, as it facilitates the adaptive
refinement of the mesh to resolve the high gradients present in the phase-field solution of a
growing crack [Nagaraja et al., 2018].

Although the FCM provides many advantages, its extension to allow for efficient, parallel
solutions to large-scale problems comes with difficulties. The FCM suffers from condition-
ing problems related to small cut elements in the finite cell mesh [de Prenter et al., 2017],
that prevent the efficient solution of large linear systems with iterative solvers such as the
Conjugate Gradient (CG) method. In addition, the use of hardware resources in computing
clusters requires well-designed parallel codes for the generation and handling of distributed
meshes, i.e., meshes that are distributed among several processes. It was not until recently
that these difficulties were successfully overcome. In [Jomo, 2021], an approach is presented
where light-weight data structures based on adaptive Cartesian grids are used for parallel
mesh creation and refinement. Furthermore, a novel preconditioning technique tailored for
FCM problems and based on the additive Schwarz lemma is presented, alleviating the prob-
lem of the small cut cells [Jomo et al., 2019]. To allow for good scalability, distributed meshes
used in this approach contain two layers of ghost elements. These are elements in a given
mesh that are duplicated from meshes of neighboring processes and permit the computation
of stiffness and preconditioning matrices without the exchange of data between processes.

The techniques presented in [Jomo, 2021], however, cannot be directly applied for phase-field
analyses. Here, the two layers of ghost elements are not sufficient due to the nonlinearity of
the problem. In this case, the computation of the exact preconditioner requires that the value
of the solution of all degrees of freedom up to the second layer of ghost elements are valid,
which necessitates the presence of a third layer of ghost elements. Moreover, the adaptive
refinement used in a phase-field analysis, which is driven by the value of the phase-field
solution [Nagaraja et al., 2018], cannot be performed on the outer (third) layer of ghost
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elements, as they have an invalid solution. Last but not least, the adaptive refinement in a
parallel setting inherently unbalances the workload among the intervening processes, requiring
the repartitioning of the meshes to recover a well-balanced state and avoid detrimental effects
in the parallel efficiency [Hendrickson and Devine, 2000].

1.2 Aim and Outline

The goal of this thesis is to integrate the work of [Nagaraja et al., 2018] and [Jomo, 2021]
to provide an efficient framework for the parallel solution of phase-field fracture mechanics
problems. The motivation resides not only in the speed-up of computations but also in the
ability to solve larger problems with the use of distributed data structures. To achieve this
goal, the original algorithms and data structures of [Jomo, 2021] are extended to include a
third layer of ghost elements. Furthermore, an adaptive refinement strategy tailored for phase-
field analyses with parallel data structures is developed. To deal with the load imbalance
created by the adaptive refinement, novel algorithms for repartitioning of the meshes are
presented.

This thesis is divided into six chapters: Chapter 2 presents fundamental concepts of fracture
mechanics and provides the necessary background on the phase-field model used in this
work. Chapter 3 delves into the numerical framework for the solution of quasi-static fracture
mechanics problems, covering the basics of the FCM and the Multi-level hp-FEM. Chapter
4 provides a brief introduction to parallel computing and explains the algorithms developed
in this thesis for the parallel solution of phase-field problems with adaptive refinement and
repartitioning. Chapter 5 shows numerical examples that test the implementation, investigate
the performance of the parallel framework, and demonstrate the application in a problem of
practical relevance. Finally, chapter 6 gives the conclusion and an outlook for further work.
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Chapter 2

Fracture Mechanics

The present chapter deals with the definition of the phase-field fracture problem to solve in
parallel, and is organized as follows. First, some fundamental concepts in fracture mechanics
including the classification of fracture phenomena and the modes of fracture are given. It is
followed by a brief introduction to Griffith’s theory of brittle fracture as it is the precursor
for the definition of the phase-field problem, which is given next. Finally, the governing
equations to model numerically are given, with a short mention of a particular treatment of
the stress tensor used in this work.

2.1 Fundamentals

Fracture mechanics studies the phenomena of crack nucleation, growth, and propagation in a
solid. Depending on the nature of the material, the rate of loading, and other factors such as
temperature, fractures can be classified as brittle or ductile. Brittle fracture is a sudden, rapid
cracking of a solid under stress where the material shows little to no plastic deformation before
the crack propagates. In contrast, in ductile fracture, the crack grows slowly with the material
undergoing large plastic deformations. Fracture can be further classified into quasi-static or
dynamic. In quasi-static fracture, the fracture process can be described by a sequence of
static equilibrium states. In dynamic fracture, the fracture process is accompanied by rapid
changes in loading or structure geometry, and inertial effects are considered. In this thesis,
we deal with quasi-static brittle fracture problems.

One of the fundamental concepts in fracture mechanics is that of fracture modes. Depending
on the direction of the loading with respect to the crack surface and crack front, there are
three basic modes of fracture:

• Mode I (opening): occurs when the load is perpendicular to both the crack surface
and the crack front, Figure 2.1a.

• Mode II (sliding): occurs when the load is parallel to the crack surface but perpen-
dicular to the crack front, constituting a shearing load, Figure 2.1b.

• Mode III (tearing): occurs when the load is parallel to both the crack surface and
the crack front, Figure 2.1c.
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(a) Mode I (opening) (b) Mode II (sliding)

Crack front

Crack surface

(c) Mode III (tearing)

Figure 2.1: Modes of fracture.

Fracture modes can be used to model more complex cases with inclined crack fronts, by using
a superposition of the three basic modes and analyzing the effect of the load on each mode
separately.

2.2 The phase-field method for fracture

Griffith’s theory of brittle fracture

Consider an arbitrary domain Ω ⊂ Rd with d ∈ {1, 2, 3} and a set of discrete cracks Γc
as shown in Figure 2.2a. The domain has an external boundary ∂Ω subdivided into non-
overlapping parts ΓD and ΓN where Dirichlet and Neumann boundary conditions are applied,
respectively.

t̄n

ΓN

ΓD

ΓD

Ω

ūn

Γc

(a) Sharp crack

2l0

s

(b) Phase-field

Figure 2.2: Sharp crack topology and phase-field regularized crack surface, adopted from [Hug et al.,
2020].

The displacement of a material point x ∈ Ω is denoted by u(x) ⊂ Rd. Assuming small
deformations, we define the infinitesimal strain tensor ε(u) = 1

2

(
∇u +∇uT

)
as a deformation

measure. Furthermore, we assume isotropic linear elasticity with an elastic strain energy
density given by Ψ(ε) = 1

2λ tr (ε)2 + µ tr
(
ε2
)
, where λ and µ are the Lamé constants.

According to Griffith’s theory of brittle fracture [Griffith, 1921], the energy required to create
a unit area of fracture surface is equal to the critical fracture energy density Gc also referred
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to as fracture toughness. The total potential energy E of the body is the sum of the elastic
energy and the fracture energy

E(ε,Γc) =

∫
Ω

Ψ(ε)dx︸ ︷︷ ︸
Elastic energy

+

∫
Γc

Gcdx︸ ︷︷ ︸
Fracture energy

. (2.1)

Phase-field approximation

The numerical solution of (2.1) is difficult as the evolving crack surface Γc has to be tracked,
often requiring costly computations. To overcome this issue, the phase-field method approx-
imates the crack surface by a scalar field s called phase-field, which varies from 0 in the
crack surface to 1 in intact regions, as shown in Figure 2.2b. Using the phase-field, [Bourdin
et al., 2000] proposed a regularized formulation that approximates the surface integral of the
fracture energy with a volume integral

El0(ε, s) =

∫
Ω

Ψ(ε)dx +

∫
Ω
Gc

[
(1− s)2

4l0
+ 2l0|∇s|2

]
dx, (2.2)

where l0 is a model parameter called regularization length that controls the width of the
smooth approximation of the crack, as shown in Figure 2.2b. In the limit l0 → 0, the phase-
field approximation converges to the discrete fracture surface and El0 → E [Alberti, 2000]. To
model the loss of stiffness in the crack zone, the elastic strain energy density is approximated
by

Ψ(ε) = g(s)Ψ+(ε) + Ψ−(ε), (2.3)

where g(s) is the degradation function and Ψ+(ε) and Ψ−(ε) are the tensile and compressive
parts of the elastic strain energy density, respectively. In this thesis, a quadratic degradation
function with the form

g(s) = (1− η)s2 + η (2.4)

is used, where η ≈ 0 is a small parameter that ensures numerical stability in the case of a fully
degraded material (s = 0). In (2.3), the degradation function is applied only to the tensile
part of the strain energy density [Miehe et al., 2010]. This has the purpose of preventing
crack propagation in compression and other non-physical crack patterns. Considering the
split in the elastic strain energy density, the regularized formulation is finally

El0(ε, s) =

∫
Ω
g(s)Ψ+(ε) + Ψ−(ε)dx +

∫
Ω
Gc

[
(1− s)2

4l0
+ 2l0|∇s|2

]
dx. (2.5)
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Governing equations

The minimization of the functional (2.5) leads to the governing equations in strong form


∇σ + ρb = 0 (2.6a)[
1 +

l0(1− η)

Gc
H
]
s− 2l20∆s = 1, (2.6b)

with boundary conditions


u = ūn on ΓD (2.7a)

σ · n = t̄n on ΓN (2.7b)

∇d · n = 0 on ΓD ∪ ΓN . (2.7c)

In (2.6) and (2.7), b is the body force vector, σ is the stress tensor defined as

σ = g(s)
∂Ψ+(ε)

∂ε
+
∂Ψ−(ε)

∂ε
, (2.8)

and H is the so-called history variable defined as

H(x, t) := max
t∈[0,T ]

Ψ+(ε(u(x), t)). (2.9)

used to enforce the irreversibility condition Γ(t) ⊆ Γ(t+ ∆t) in the strong form equations.

Hybrid model

The tension-compression split in the elastic strain energy density renders the equilibrium
equation (2.6a) nonlinear. As a result, incrementation techniques are employed to arrive
at a numerical solution. To avoid such a computationally expensive approach, the hybrid
model was introduced [Ambati et al., 2015]. This model avoids the nonlinearity in (2.6a) by
degrading the total strain energy to compute the stress tensor

σ = g(s)
∂Ψ(ε)

∂ε
(2.10)

while keeping the tension-compression split only for the phase-field equation (2.6b) through
the history variable. The hybrid model is used for the examples presented in 5, although the
implementation is equally applicable to other models.
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Chapter 3

Numerical Description

The present chapter introduces the numerical framework used in this thesis for the solution of
quasi-static brittle fracture mechanics problems. The framework combines a phase-field model
with the finite cell method used in conjunction with multi-level hp-refinement, allowing to
efficiently resolve the high gradients present in the phase-field solution [Nagaraja et al., 2018],
and to work with complex geometries without the need of boundary-conforming meshes. The
chapter starts with a brief introduction of the FCM, highlighting its differences with the
FEM. Afterward, the multi-level hp-refinement is explained. Finally, the solution approach
for the coupled elasticity and phase-field problems is given.

3.1 The Finite Cell Method

The traditional FEM uses a boundary-conforming mesh for the approximation of the solu-
tion. To ensure adequate numerical accuracy, elements of the boundary-conforming mesh
have to fulfill certain shape requirements. Therefore, the process of mesh generation for com-
plex geometries is involved and time-consuming. To overcome this difficulty, non-boundary-
conforming methods such as the FCM have emerged [Parvizian et al., 2007]. The FCM com-
bines a fictitious or embedded approach with high-order finite element methods, yielding a
simple generation of meshes with high convergence rates [Zander et al., 2015]. In this method,
the physical domain Ωphy is embedded in a fictitious domain Ωfict of simpler shape that can
be trivially meshed with structured or Cartesian grids as shown in Figure 3.1. The elements
of this mesh are called finite cells to differentiate them from their boundary-conforming coun-
terparts. To recover the original initial boundary value problem, an indicator function α(x)
that associates a given point x with the physical or fictitious domain is introduced

α(x) =

{
1 ∀x ∈ Ωphy

αFCM � 1 ∀x ∈ Ωfict,
(3.1)

where αFCM is a small constant greater than zero that ensures numerical stability by avoiding
ill-conditioning of the stiffness matrices due to elements that belong to the fictitious domain.
The weak form of the problem is multiplied by the indicator function to penalize the contri-
butions of the fictitious domain. As a consequence, the effort of a complex mesh generation
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in the FEM is shifted to the integration stage in the FCM. The indicator function introduces
a discontinuity in the weak form at cells that are cut by the boundaries of the physical do-
main. As the standard Gauss-Legendre quadrature shows poor convergence for non-smooth
functions, more suitable methods have been proposed [Düster et al., 2008]. In the present
work, the quadtree and octree approach with recursive subdivision of cut cells up to a fixed
partitioning depth is used for 2D and 3D respectively.

Ωfict

ΓD

Ωphy

ΓN

Ω∪

α = 1α� 1

(a) Physical domain (b) Fictitious domain (c) Structured discretization

t̄n

Figure 3.1: Visualization of the FCM.

3.2 Multi-level hp-FEM

The quality of the approximated solution provided by the FEM depends on the size and
the polynomial degrees of the elements. To improve the approximation, several approaches
have been developed [Babuska and Guo, 1992]. One of them is the h-version of the finite
element method (h-FEM) where the spatial resolution of the mesh is increased while leaving
the polynomial degree unchanged. In contrast, in the p-version of the finite element method
(p-FEM), the spatial resolution of the mesh remains constant while the polynomial degree
is increased. Hierarchic shape functions are particularly useful in this case, as they allow to
elevate the polynomial degree of the basis with the simple addition of new shape functions to
the already existing ones [Szabó and Babuška, 1991], see Figure 3.2a. This is advantageous
compared to the commonly-used Lagrange shape functions where all basis functions have to
be replaced, see Figure 3.2b.

p = 1

p = 2

p = 3

(a) Integrated Legendre basis

p = 1

p = 2

p = 3

(b) Lagrange basis

Figure 3.2: Comparison of the linear, quadratic and cubic one-dimensional integrated Legendre and
Lagrange basis functions, adopted from [Jomo, 2021].
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The combination of both approaches, i.e., a variable spatial resolution with a changing poly-
nomial degree, leads to the (classical) hp-version of the finite element method (hp-FEM).
With this approach, elements are replaced with a set of smaller elements in regions of high
error contributions, while coarse elements with a high polynomial degree are used in re-
gions where the solution has a high regularity. Although this combination yields exponential
convergence [Babuska and Guo, 1992], its applicability is limited due to the high implemen-
tational effort of the refine-by-replacement approach. The difficulty comes from the fact that
shape functions in fine elements do not have a matching counterpart in the coarse, adjacent
elements, rendering the mesh irregular. Therefore, additional steps are required to restore
inter-element continuity so that compatibility of the shape functions and convergence of the
method is ensured.

To overcome this problem, the multi-level hp-version of the finite element method uses a
refinement-by-superposition approach [Zander et al., 2016]. A coarse mesh that captures the
global solution characteristics is superposed by a finer mesh that increases the solution quality
on the regions of interest. As a result, the solution is the sum of a base mesh solution ub and
a fine mesh overlay solution uo, i.e.,

u = ub + uo. (3.2)

In the multi-level hp-approach, fine elements can be refined again up to a depth k, creating
a hierarchy of multiple levels of overlay meshes. In this context, it is essential to ensure two
conditions:

1. Linear independence: coarse shape functions must not be expressible by a linear
combination of fine overlay shape functions. Integrated Legendre shape functions can
be associated directly with topological components such as nodes, edges, faces, and
solids, as they take non-zero values in these components and zero on all others. There-
fore, linear independence can be achieved by deactivating all topological components
with active sub-components. Additionally, all direct successors of base nodes must be
deactivated.

2. Compatibility: for a variational index m, compatibility requires Cm continuity within
elements and Cm−1 continuity across element boundaries. To achieve this, homogeneous
Dirichlet boundary conditions are applied to the boundary of the overlay meshes. Only
in cases where the boundary of the element coincides with the boundary of the physical
domain, the respective components stay active. By doing so, hanging nodes are avoided
by construction as no degrees of freedom are present on the boundary of the refinement
zone.

The hp-refinement concept is depicted in Figure 3.3, where the deactivation of different
topological components to achieve linear independence and compatibility of shape functions
is shown.
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(a) One-dimensional case (b) Two-dimensional case (c) Three-dimensional case

Active node

Inactive node due to
linear independence

Inactive node due to
compatibility

Active edge

Inactive edge due to
linear independence

Inactive edge due to
compatibility

Active face

Inactive face due to
linear independence

Inactive face due to
compatibility

k = 2

k = 1

k = 0

Figure 3.3: Illustration of the multi-level hp-refinement scheme with two refinement levels, k = 2, in
different spatial dimensions, adopted from [Zander et al., 2016]. The deactivation of specific topological
components following a simple rule-set ensures compatibility and linear independence of the basis
functions.

3.3 Solution of the coupled problem

Let V and Ṽ be the space of test functions for the displacements and phase-field solutions
respectively, defined as

V = {v : vi ∈ H1(Ω), vi|ΓD
= ūi} (3.3)

and

Ṽ = {q : qi ∈ H1(Ω)}, (3.4)

where H1 is a Sobolev space of degree one. The weak form of the coupled quasi-static problem
in (2.6) in the context of the FCM reads:

Find u ∈ V and s ∈ Ṽ, such that

(σ,∇w)Ωphy
+ (αFCM σ,∇w)Ωfict

+ (β u,w)ΓD
= (ρb,w)Ωphy

+ (h,w)ΓD

+ (β g,w)ΓD
, ∀w ∈ V

(3.5a)
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([
4 l0
Gc

(1− η)H+ 1

]
s, q

)
Ωphy

+

(
αFCM

[
4 l0
Gc

(1− η)H+ 1

]
s, q

)
Ωfict

+
(
4 l20∇s,∇q

)
Ωphy

+
(
αFCM 4 l20∇s,∇q

)
Ωfict

= (1, q)Ωphy
, ∀ q ∈ Ṽ.

(3.5b)

Here, (·, ·) represents the L2-scalar product and β is the penalty parameter for the weak
imposition of Dirichlet boundary conditions with the penalty method [Nagaraja et al., 2018].
These nonlinear equations are discretized in a finite element framework following the Bubnov-
Galerkin formulation with Integrated Legendre shape functions, to arrive at the equation

Kuu∆d = Fu (3.6)

for displacements, and

Kss∆Φ = Fs (3.7)

for the phase-field. The symbols Kuu and Kss represent the stiffness matrices, Fu and Fs the
force vectors, and d and Φ the nodal values. For a detailed derivation, the reader is referred
to [Nagaraja et al., 2018].

The discretized system of equations is solved using a staggered scheme for each displacement
step. In each step of the staggered scheme, displacements are obtained first using the current
phase-field values, and then the phase-field is obtained assuming fixed displacements. The
staggered steps continue until a maximum number of staggered steps is reached or when the
criterion

max [(∆d,∆d) , (∆Φ,∆Φ)] < εstag (3.8)

is met, where εstag is a predefined tolerance. Due to the nonlinearity of (3.5), the Newton-
Raphson method is used for the incremental solution of each equation within staggered steps.
This requires the consistent linearization of the terms in the weak form. Details about the
nonlinear formulation can be found in [Ambati et al., 2015].

To implement the irreversibility condition with the history variables (2.9), a uniform voxel
grid is used to store data at each integration point. Each voxel has two variables to store
values of the tensile elastic strain energy density Ψ+(ε), one for the previous and the other
for the current displacement step. At the beginning of a new displacement step, the two
variables of each voxel are swapped, leaving the last converged values in the variable of the
previous displacement step.
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Chapter 4

Parallel phase-field computations

This chapter covers the implementational details for the efficient parallel solution of large
phase-field fracture problems in computing clusters. The chapter starts with a brief review
of basic parallel computing concepts: limits of serial computing and how parallel computing
comes to the rescue, different hardware architectures and their related software models, and
measures that allow the quantification of parallel performance. Then, a thorough explanation
of the algorithms needed for efficient parallel mesh handling is given, covering the adaptive
refinement based on the phase-field solution and the repartitioning of the meshes. Finally,
the chapter discusses the selection of the linear solver and preconditioning technique used for
the solution of the distributed linear systems arising from a phase-field analysis.

4.1 Parallel computing fundamentals

4.1.1 Serial vs. parallel computing

In serial computing, a program consists of a series of instructions that are executed on a
single processor one after another, one at a time, to complete a certain task. This computing
paradigm has reached its limits in the past decades for two main reasons:

• To reduce the run time of a serial program, one has to increase the clock frequency
of the processor and perform serial optimizations of the code. However, data on the
evolution of CPU technology shows that the clock frequency has plateaued in the past
decade [Robey and Zamora, 2021]. This is unlikely to be reversed as the processor
speed goes hand-in-hand with power consumption and therefore the generation of heat
that is impossible to dissipate by traditional means.

• To compute larger problems, the amount of computing resources such as main memory
and disk space has to be scaled as well, reaching a limit where it becomes impractical.

In parallel computing, a problem is broken down into smaller parts that are further broken
down into instructions. All parts are executed simultaneously on different processors employ-
ing an overall coordination mechanism, enabling lower execution times. Moreover, exposing
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parallelism in a program allows it to operate on larger compute resources, overcoming the
limit in problem size. In parallel computing, a process is defined as an instance of a program
being executed, created by the operating system. A process consists of the executable pro-
gram, a block of memory, descriptors of its resources, security information, and information
about the state of the process. There are two approaches for the parallelization of programs.
On one hand, there is task parallelism, which is the partition of various tasks to be done
among several processes. On the other hand, there is data parallelism, which is the partition
of the data among several processes, each of them performing similar tasks. In this work,
only data parallelism is used. For the coordination of processes, a parallel program has to
account for the following additional aspects not present on a serial program:

• Communication: sending/receiving data from one process to/from another.

• Load balancing: distribution of the computations such that all processes perform
approximately the same amount of work.

• Synchronization: processes wait for other processes at some part of the program
before continuing the execution.

4.1.2 Hardware and software models for parallel computing

The hardware used for parallel computing applications consists of a set of nodes that are
connected with one or more networks, sometimes called interconnect. Each node contains
many processors, Dynamic Random Access Memory (DRAM) modules, and other compo-
nents to support the processing and transfer of data within the node. There are different
parallel hardware architectures, the most basic ones being:

• Distributed memory architecture: each CPU has its own memory and is connected
to other CPUs in a network. The access of an off-node memory location must be done
explicitly by the programmer. Good scalability is achieved by adding more nodes to
the network.

• Shared memory architecture: each CPU is connected to the same shared memory.
While this simplifies programming, it can produce memory conflicts such as the cor-
rectness of the data and performance issues. The scalability is limited, as the addition
of more CPUs does not increase the amount of available memory.

• Hybrid distributed-shared memory architecture: it is used by today’s largest and
faster computers and consists of several shared memory machines connected to others
in a network, benefiting in that way of the advantages of both shared and distributed
memory architectures.

The software models for parallel computing arise from the underlying hardware architectures.
The most common ones are:

• Process-based parallelization: developed for distributed memory architectures, it
consists of the division of the program into different processes, called ranks, each of
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which has its own memory space and set of instructions. The data is moved (communi-
cated) between processes via messages. A common library that implements this model
is the Message Passing Interface (MPI) [Clarke et al., 1994]. In the present work, the
word processes refers to MPI processes unless stated otherwise.

• Thread-based parallelization: in this model several instruction pointers (threads)
are spawned within the same process, allowing to easily share portions of the memory
between threads without communication. One of the leading threading systems is Open
Multi-Processing (OpenMP) [Dagum and Menon, 1998]. In the present work, the word
thread refers to OpenMP threads unless stated otherwise.

• Hybrid parallelization: it is the combination of process-based and thread-based
parallelization, where threads use on-node local data to perform computationally in-
tensive operations and communication between nodes happens via message passing.
The present work uses this approach with MPI and OpenMP.

4.1.3 Parallel performance

To measure how well the computational resources are utilized in a given program, parallel
performance measures need to be defined. The most important measures are:

• Speedup: is the ratio between serial and parallel run times t of the same program.

• Parallel efficiency: is the ratio between the speedup and the number of processes.

• Scalability: is a measure of the quality of a parallel algorithm and can be distinguished
between strong scaling, which considers the speedup for an increasing number of pro-
cesses with the same problem size, and weak scaling, which considers the speedup when
the problem size is increased proportionally to the number of processes.

In parallel computing, the potential speedup s for strong scaling can be calculated with
Amdahl’s law

S =
tserial

tparallel
=

1

s+ p
N

, (4.1)

where p and s = 1−p are the parallel and serial fractions of the code, respectively, and N is the
number of processes. Figure 4.1 shows the speedup curves for different parallel fractions based
on Amdahl’s law. It is evident that the speedup is limited by the serial fraction of the code,
i.e., there is a point where using more processors does not provide a substantial reduction
in run time. The ideal case, that corresponds to a code that is completely parallelized, is
a line with a slope of 1, meaning that the speedup grows in the same proportion as the
number of processes does. In practice, this cannot be attained, as there is always some
communication overhead, load imbalance, or synchronization of the processes that reduce
the speedup. However, there are cases where superlinear behavior can be observed [Ristov
et al., 2016].
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Figure 4.1: Plot of the speedup according to Amdahl’s law for different serial fractions of the code.

To calculate the speedup in the case of weak scaling, Gustafson-Barsis’s law [Gustafson, 1988]
is used

S = s+ p×N . (4.2)

This law addresses the fact that programmers tend to increase the problem size as more
computational resources become available, which is in contradiction to Amdahl’s fixed-size
problem assumption. Looking at (4.2), it is clear that it is possible to achieve better parallel
performance than is implied by (4.1).

4.2 Parallel mesh handling

4.2.1 Terminology

This section introduces the categories of cells used in this work and their nomenclature. Let
G be a Cartesian grid composed of cells C with indices j on different refinement levels l. In
the initial state, the Cartesian grid is denoted by Ginit, and every cell belonging to it has a
refinement level l = 0. To identify a cell unambiguously, both the index and the refinement
level need to be specified, as cells with the same index can appear in different refinement
levels.

Grid cells of the Cartesian grid can be grouped into different categories, see Figure 4.2:
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• Base and leaf cells: cells that are at the lowest refinement level l = 0 are called base
cells, while cells that have no children are called leaf cells.

• Inside and outside cells: cells that are intersected by the domain boundary or
completely inside of the physical domain are called inside cells and denoted by C in.
On the other hand, cells that lie completely outside of the physical domain are called
outside cells and denoted by Cout, see Figure 4.2a. The set composed of all inside cells
is denoted by Cin, while Cout is used for the set of all outside cells. The union of these
sets conform the complete Cartesian grid Cin ∪ Cout = G.

• Owned and ghost cells: cells of a distributed Cartesian grid are assigned to unique
owning processes. Cells that belong to a particular process are called owned cells of
that process and are denoted by Cown. Cells that are adjacent to owned cells and that
are owned by remote processes are called ghost cells and denoted by Cghost. The mesh
handling algorithms developed in this work require three layers of ghost cells that are
denoted by Cghost,0, Cghost,1, and Cghost,2, see Figure 4.2b. The set composed of all
owned cells is denoted by Cown, while Cghost is used for the set of all ghost cells. It is
important to note that ownership is defined at the base level l = 0, i.e., a cell and all
its children are always owned by the same process.

• Inner boundary cells: owned cells that are adjacent to ghost cells are called inner
boundary cells and denoted by C inner. These cells coexist as ghost cells in remote
processes and therefore three layers of inner boundary cells C inner,0, C inner,1, and C inner,2

are needed, see Figure 4.2c. The set composed of all inner boundary cells is denoted
by Cinner.

• Active and inactive cells: cells that are used for mesh generation in a particular
process are called active cells and are denoted by Cact. Conversely, cells that are not
used for mesh generation in a particular process are called inactive cells and are denoted
by C inact. The set composed of all active cells is formed by Cown ∪ Cghost and denoted
by Cact, while Cinact is used for the set of all inactive cells, see Figure 4.2b.

• Known cells: cells that are used for mesh compatibility enforcement (see 4.2.3) are
called known cells and are denoted by Cknown. The set composed of all known cells is
formed by Cown ∪ Cghost,0 ∪ Cghost,1 and denoted by Cknown, see Figure 4.2b.
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(a) Inside and outside cells. (b) Owned and ghost cells, active and known cell
sets of the bottom right partition.

(c) Inner boundary cells of the bottom right par-
tition.

Cout

C in

Cown

Cghost,0

Cghost,1

Cghost,2

Cact

Cinact

C inner,0

C inner,1

C inner,2

Partition line

Domain boundary

Cknown

Figure 4.2: Definition of different types of cells for a grid G partitioned among three processes, from
the point of view of the bottom right partition.

4.2.2 Mesh generation

In the present framework, a mesh is created from a Cartesian grid G that is structurally
analogous but computationally cheaper than the former in the sense that it requires less
storage capacity and allows for easier and faster refinement operations [Jomo, 2021]. Each of
the processes stores the entire initial Cartesian grid Ginit but only keeps track of the current
state of its active cells Cact. We denote the Cartesian grid stored in a given process by Grank.
With the active cells in Grank, each process generates a high-order mesh Trank at a given
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refinement level lm. The full computational mesh is the union of all owned elements in local
meshes among all processes. In the framework of [Jomo, 2021], meshes can be created at
depths lm > 0. However, the present work focuses on algorithms designed for lm = 0 as
problems commonly solved in fracture mechanics do not require higher mesh creation depths,
avoiding unnecessary parallel overhead. There is always a one-to-one relationship between
active cells and the generated mesh elements at every refinement level. In the context of
a phase-field analysis, both the phase-field and the elastic meshes are constructed from the
same Cartesian grid and the algorithm comprises the following steps, see Figure 4.3:

(a) An initial Cartesian grid Ginit is generated on
each process and the inside cells are partitioned.

(b) Three layers of ghost cells are determined.

(c) Active cells are refined according to pre-
defined strategies.

(d) Two meshes are generated following the re-
fined grid.

Figure 4.3: Distributed mesh generation starting from a Cartesian grid Ginit where inside cells are
partitioned among three processes, as seen from the point of view of the bottom right partition.



22 4. Parallel phase-field computations

1. An initial Cartesian grid Ginit is generated on each process, see Figure 4.3a.

2. The sets Cin and Cout are determined by an inside-outside test and the state of the cells
is set accordingly.

3. Cells in Cin are partitioned among processes using the geometric Zoltan partitioner
[Devine et al., 2002]. The result of this operation is the set of owned cells Cown in the
calling process.

4. Cells in Cown are marked as active and each process registers its corresponding rank.
All other (remote) cells are left with an invalid rank represented by −1.

5. Three levels of ghost cells Cghost,0, Cghost,1, and Cghost,2 are determined, see Figure 4.3b.
For this, the following steps are carried out, see Figure 4.4:

(a) For each cell in Cown, one layer of surrounding cells is determined, see Appendix
A.

(b) For each of the surrounding cells determined in 5a, the owning process’ rank is
compared to that of the current (calling) process. If they are different, then the
surrounding cell belongs to Cghost,0.

(c) Steps 5a and 5b are repeated for each cell in Cghost,0 to get Cghost,1, excluding cells
that are already in Cghost,0.

(d) Steps 5a and 5b are repeated for each cell in Cghost,1 to get Cghost,2, excluding cells
that are already in Cghost,0 and Cghost,1.

0 0 0

0 0

-1 -1 -1

-1

Ccurrent Cown Cghost,0

Surrounding cells and ranks Found ghost cells

Figure 4.4: Scheme of the steps needed to find ghost cells of the first layer Cghost,0.

6. Active cells Cact are refined according to the initial strategy, e.g. refinement towards
the boundary of the domain, see Figure 4.3c.

7. Cells in Cghost are marked as active and the corresponding ranks are registered. At this
point, each process knows who owns each of its active cells, information that is essential
to determine the communication patterns downstream in the simulation pipeline.

8. With the resulting grid collection two meshes are generated, one for the phase-field
problem and another one for the elastic problem, denoted by T PF and T Elastic respec-
tively, see Figure 4.3d.
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9. The consistency of the degrees of freedom (DOFs) numbering across all processes is
enforced, see 4.2.3.

4.2.3 Mesh compatibility

Meshes generated locally by each process as explained in 4.2.2 have to be connected so that
analysis-suitable meshes are obtained. An analysis-suitable mesh, as noted in [Jomo, 2021],
fulfills two conditions:

1. Each DOF has a unique global identifier and owning process,

2. The communication patterns used to update data of ghost elements’ DOFs have been
established.

The mesh connection process is formally known as enforcement of parallel mesh compatibility,
and results in a consistent enumeration of DOFs among all processes. In the following section,
basic aspects of mesh compatibility and some particularities that arise in the context of phase-
field analyses are noted. For implementational details, the reader is referred to [Jomo, 2021].

DOFs terminology

In a distributed mesh, DOFs can be divided into the following categories depending on the
region where the support of the associated basis function lies:

• Valid and invalid DOFs: DOFs associated with basis functions that intersect at
least one basis function which is fully supported on elements corresponding to known
cells Cknown are valid DOFs. All remaining DOFs are regarded as invalid.

• Internal and interface DOFs: valid DOFs associated with basis functions fully
supported on owned elements are internal DOFs. All remaining valid DOFs are interface
DOFs.

• Owned and remote DOFs: DOFs of a distributed mesh are assigned to unique
owning processes. DOFs that belong to a particular process are called owned DOFs,
whereas those that are present in a local mesh but belong to remote processes are called
remote DOFs. After solving the distributed linear system of equations of the problems,
only owned DOFs have correct solution values. Remote DOFs get their values via inter-
process communication. The ownership of internal DOFs is trivially assigned, as their
basis functions exist in only one process. However, ownership of interface DOFs can be
determined with different approaches [Jomo, 2021]. In the present work, ownership of
an interface DOF is assigned to the element with the lowest grid index that contains
the DOF’s topological entity.

These categories can be seen in Figure 4.5 and are essential to understand the algorithms
presented in the following sections.
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Consistency of data in the context of a phase-field analysis

A process is responsible for handling the data of its owned DOFs, but it can also store data
associated with remote DOFs. It is crucial that the data of remote DOFs stored in a process
is the same as the data of the same DOF in the process that owns it. In contrast to [Jomo,
2021], the present work uses three layers of ghost elements. This ensures that all DOFs that
belong to elements up the second ghost layer are valid (see Figure 4.5) and therefore the exact
preconditioner for the linear solver (see 4.3.2) can be constructed without communication.

Invalid dof

Remote dof

Owned dof

Increasing grid index j

In
cr

ea
si

n
g

gr
id

in
d

ex
j

Cown

Cghost,0

Cghost,1

Cghost,2

11

Dof index

Valid

Figure 4.5: Scheme showing the categories of DOFs in a local mesh.

As explained in [Jomo et al., 2019], the first layer of ghost elements is needed for the setup
of the stiffness matrix, while the second layer of ghost elements is needed for the setup of
the preconditioner. For linear analyses, the DOFs interfacing with the third layer of ghost
elements need not be valid, as they do not contribute to the corresponding matrix entries
used for the preconditioner. However, in nonlinear phase-field analysis, the contribution to
these entries depends on the value of the solution at the integration points of the second
layer of ghost elements, which in turn depends on the value of the DOFs interfacing with the
third layer of ghost elements. Consequently, consistency of data has to be enforced including
DOFs up to the second ghost layer of elements.

To illustrate this, take the example of DOF 3 in Figure 4.5. To get the exact contribution
of this DOF to the stiffness matrix, all elements surrounding the associated node have to
be integrated. As the problem is nonlinear, the integration points of those elements must
have the correct solution, and this, in turn, requires that the solution values of remote DOFs
2, 6, 7, and 8 must be correct as well. Additionally, the construction of the preconditioner
requires correct stiffness matrix entries corresponding to DOFs that share support with DOF
3, i.e. DOFs 2, 6, 7, and 8, see 4.3.2. Again, all elements surrounding these DOFs have to
be integrated, and therefore DOFs 1, 5, 10, 11, 12, 13, and 14 must have the correct solution
values.
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4.2.4 Adaptive mesh refinement

The solution of the phase-field around the crack has steep gradients that require a fine
discretization to resolve them accurately, see Figure 2.2. To achieve this goal, the phase-field
and the elastic mesh are refined adaptively depending on the current phase-field solution.
Elements that are close to the crack, i.e. have a phase-field value lower than a predefined
threshold are h−refined after each staggered step.

In a parallel setting, the refinement state of all active cells needs to be correct, so that mesh
compatibility is maintained. However, this presents a major difficulty: the solution computed
on elements that correspond to the third layer of ghost cells Cghost,2 is incorrect, as some of
the DOFs that belong to them are invalid, see Figure 4.6. Consequently, the refinement in
these elements is incorrect and mesh compatibility is violated.

Invalid dof

Valid dof

Element with invalid solution

Figure 4.6: Elements of a local mesh with invalid solution.

To overcome this problem, the solution-based refinement strategy is modified. In a first step,
refinement based on the solution is performed on owned cells. Then, ghost cells replicate the
refinement from neighboring processes by communicating indices of cells to be refined and
their refinement levels.

More precisely, the refinement is done in the following steps, see Figure 4.7:

1. All owned cells in Grank with a phase-field value lower than a threshold, are refined up
to a predefined depth lr, see Figure 4.7b.

2. All processes wait for each other until they all finish the previous step. This is ac-
complished with an MPI Barrier [Clarke et al., 1994] and is needed to ensure that the
correct refinement levels are communicated between the processes.

3. Three levels of inner boundary cells Cinner,0, Cinner,1, and Cinner,2 are determined. To
this end, the following steps are carried out, see Figure 4.8:

(a) For each cell in Cghost,0, one layer of surrounding cells is determined, see Appendix
A.
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Partition line

(a) Grid at displacement step u0.

Cact
0

(b) Owned cells in G0 are refined based on the
phase-field values at displacement step u1.

(c) The refinement of the ghost cells at displace-
ment step u1 is replicated from owned cells of
remote processes. Note that inactive cells do not
change their refinement state.

(d) Global view of the grids after refinement at
displacement step u1.

Figure 4.7: Parallel adaptive refinement based on the phase-field solution for a crack propagating
between displacement steps u0 and u1, as seen from the bottom left partition with rank 0.

(b) For each of the surrounding cells determined in 3a, the owning process’ rank is
compared to that of the calling process. If they are equal, then the surrounding
cell belongs to Cinner,0.

(c) Steps 3a and 3b are repeated for each cell in Cinner,0 to get Cinner,1, excluding cells
that are already in Cinner,0.
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(d) Steps 3a and 3b are repeated for each cell in Cinner,1 to get Cinner,2, excluding cells
that are already in Cinner,0 and Cinner,1.

0

1

-1

1

Ccurrent C inner,0
0

Surrounding cells and rank Found inner

1

-1 -1

-1

-1

boundary cells

Cghost,0Cown
0

Figure 4.8: Scheme of the steps needed to find inner boundary cells of the first layer C inner,0
0 , as seen

from the bottom left partition with rank 0.

4. The refinement data (index j and refinement depth l) that each cell in Cinner needs to
send to remote processes is determined. This is done as follows, see Figure 4.9:

(a) Three layers of surrounding cells are determined, see Appendix A.

(b) For each of the surrounding cells determined in 4a, the owning process’ rank is
compared to that of the current process. If they are different, then the current cell
is a ghost cell in that remote process and therefore needs to send its refinement
data. Figure 4.9 shows the case for a cell Ccurrent owned by rank 1. Three layers
of surrounding cells are determined, and as they are owned by either rank 0, rank
2, or rank 3, the refinement data has to be sent to the corresponding processes.

Surrounding cells and ranks

Partition line

0
0
0
0
0
0

1 1 1 1 1 1
1 1

11 1 1 11 1
1111

1
1 1
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1 1
1
1 1
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1 1 1
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2 2 2 2 2 23

Ccurrent is Cghost

in processes 0, 2, and 3

Ccurrent

Cown
0 Cown

1

Cown
2 Cown

3

Figure 4.9: Scheme showing how to determine the processes to which the refinement data has to be
sent to.

(c) All indices and depths in the hierarchy of the current cell are extracted up to the
second to deepest refinement level l = lmax − 1, see Figure 4.10. The deepest
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refinement level indices need not be communicated, as it is only necessary to know
the indices of their parent cells to perform the refinement and replicate the deepest
level in the remote process.

l = 0

l = 1

l = 2

l = 3

Indices = {0, 2, 3, 12, 13}

Depths = {0, 1, 1, 2, 2}

Deepest level need not be communicated

Refined cell

Cell hierarchy

Figure 4.10: Extraction of indices and depths from a refined cell for communication.

(d) For each of the cells obtained in 4c and each of the ranks determined in 4b, tuples
(j, l, rank) are stored.

(e) Tuples defined in 4d are sorted by rank and then by depth. This is done to ensure
that the cells are always found in the Cartesian grid of the remote process, as
noted in 7.

5. The number of messages each processor needs to receive is determined in three steps,
see Figure 4.11:

(a) An array of zeros with as many entries as the number of processes is allocated in
every process. Each entry of this array represents a process and the corresponding
index is equal to the rank of that process.

(b) Each process sets to 1 the entries corresponding to the processes it needs to send
a message to. This information is taken from the tuples constructed in 4d.

(c) An MPI Allreduce is performed with an MPI SUM operation [Clarke et al., 1994],
giving, as a result, a vector where each entry represents the number of messages
the calling process needs to receive.

Process 2 Process 3Process 1Process 0

Process 2 Process 3Process 1Process 0

MPI Allreduce(MPI SUM)

Rank

Rank

Figure 4.11: Scheme representing the operation to determine the number of messages to receive
when a grid is partitioned among four processes.
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These steps are exemplified in Figure 4.11 for a partition among four processes. Here,
process 0 sends to processes 1 and 3, process 1 sends to process 0, process 2 sends to
processes 0, 1, and 3, and process 3 sends to processes 0 and 1. After the MPI Allreduce

operation, it is determined that processes 0 and 1 receive 3 messages, process 2 receives
no messages and process 3 receives 2 messages.

6. A non-blocking point-to-point communication of the cell indices j and depths l that
were determined in 4d is performed. As a process does not know how many cells were
refined in a remote process and therefore does not know the size of the messages it is
receiving, message sizes are queried via MPI Probes [Clarke et al., 1994].

7. Cells corresponding to received indices and depths are refined as shown in Figure 4.7c,
from the lowest to the highest depths. This refinement order, which is a consequence
of the pre-sorting of tuples in 4e, ensures that all received indices will be found on
the local Cartesian grid Grank. At this point, all processes have refined their grids, see
Figure 4.7d.

8. The phase-field and the elastic meshes are refined by following the refinement of the
Cartesian grid.

4.2.5 Mesh repartitioning

When a crack propagates, the mesh is refined as explained in the previous section. If the
initial partitioning of the meshes remains unchanged, it can lead to an uneven distribution
of the workload among processes due to a higher integration effort on those processes that
have more elements. Therefore, there is a detrimental effect on the parallel efficiency, as the
processes with smaller loads finish the integration earlier and have to wait for the processes
with higher loads to finish. To overcome this issue, a repartitioning of the meshes according
to different strategies is proposed. Repartitioning means assigning new ownership to mesh
elements, and it requires the generation of new meshes, both for the phase-field and the
elastic problems, as well as the transfer of data from old meshes to new meshes, i.e. values of
DOFs and values of the history variables. In the next sections, two proposed repartitioning
strategies will be discussed first and then the algorithms for mesh repartitioning and transfer
of data will be explained thoroughly.

Repartitioning strategies

The first and simplest repartitioning strategy, named step-based repartitioning, consists of
waiting for a number of displacement steps predefined by the user to repartition the meshes.
Though simple, this strategy can lead to the call of the repartitioning algorithm in cases
where it is not needed at all, thus creating unnecessary overhead. Furthermore, the number
of displacement steps to wait needs to be defined a-priori by the user, and thus requires a
trial-and-error process to determine an acceptable value.

The second proposed repartitioning strategy, coined dynamic repartitioning, consists of mea-
suring the load in each process and calling the repartitioning algorithm when the load in one
or more processes deviates more than a predefined tolerance with respect to the ideal load.
Based on the fact that the computational effort is proportional to the number of leaf cells,
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the proposed measure for the load consist of the count of owned leaf cells on a given process,
divided by the total count of leaf cells among all processes. With this definition, the sum of
the loads among all processes equals 1. The algorithm to determine whether meshes need to
be repartitioned consists of the following steps:

1. The set of owned cells Cown is determined.

2. The weight of all owned cells is summed up to get the local load wrank of the calling
process. The weight of each cell is computed with a cellWeightEvaluator. By default,
it counts the number of children, but there is also the possibility to implement user-
defined evaluators with lambda expressions.

3. The total load among all processes is computed by summing up the local load of all
processes

W =

nprocs∑
rank=0

wrank. (4.3)

This is materialized with an MPI Allreduce of the local loads with an MPI SUM opera-
tion.

4. The normalized load defined as the ratio between the load in the calling process and
the total load is computed

w̃rank =
wrank

W
. (4.4)

5. The ideal normalized load defined as the inverse of the number of processes is computed

w̃ideal =
1

nprocs
. (4.5)

6. The relative difference d of the normalized load with respect to the ideal normalized
load is computed

d =
|w̃rank − w̃ideal|

w̃ideal
. (4.6)

7. If the relative difference computed with (4.6) is larger than a predefined tolerance ζ,
then the meshes in the current process need to be repartitioned. Therefore, with ζ = 0
the mesh is repartitioned in each staggered step. On the other hand, with a high enough
ζ the mesh is never repartitioned.

8. To compute the total number of processes that need repartitioning, each process defines
a variable with the value 1 in the case it has to repartition its meshes, and the value
0 otherwise. Then, an MPI Allreduce of this variable with an MPI SUM operation is
performed to get the desired number.

9. The meshes in all processes are repartitioned as soon as any of the intervening processes
need to repartition their meshes, i.e., the result of the reduction of the previous step is
greater than zero.

It is important to note that even though this algorithm requires collective communication
among processes, it saves computational time by avoiding the call of the repartitioning algo-
rithm with all the associated overhead when the load among processes is well balanced.
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Repartitioning algorithm

The repartitioning algorithm can be broken down into two major parts. The first part consists
of the redistribution of cells among processes and the generation of new elastic and phase-
field meshes. The second part comprises the transfer of data from the old meshes to the new
meshes, i.e. values of DOFs and values of the history variables. These two parts will be
explained in detail in the following.

Redistribution of cells and generation of new meshes

1. Active cells Cact of the old partition are refined with the solution as explained in 4.2.4.

2. The set of owned cells of the old partition Cown
old is determined, see Figure 4.12a.

3. Three levels of ghost cells Cghost,0
old , Cghost,1

old , and Cghost,2
old of the old partition are looked

up as explained in 4.2.2.

4. The cells in Cin are repartitioned among the intervening processes using the geometric
Zoltan partitioner. The result of this operation is the set of new owned cells Cown

new of
the calling process, see Figure 4.12b.

5. The cells in Cown
new are marked as active and each process registers its corresponding rank.

6. Three levels of ghost cells Cghost,0
new , Cghost,1

new , and Cghost,2
new are determined, marked as active,

and their rank registered, analogously as in 4.2.2.

7. The set of cells that were owned by the process but are not owned anymore is called
source grids and is determined as Csource = Cown

old \ Cown
new , see Figure 4.12c.

8. The new rank of the source cells is queried.

9. The refinement state of the source cells Csource is sent to the new owning processes.
For this, an algorithm analogous to the one in 4.2.4 is executed but in this case, using
Csource instead of Cinner as “sending” cells. At this point, all new owned cells Cown

new have
the correct refinement state.

10. The refinement of the new ghost cells Cghost
new is performed as explained in 4.2.4.

11. With the resulting grid, two new meshes are generated, one for the phase-field problem
and another one for the elastic problem, denoted by T PF

new and T Elastic
new respectively.

12. The consistency of the DOFs numbering across all processes is enforced, see 4.2.3. At
this stage, the meshes are prepared for the transfer of data.
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(a) Cell distribution before repartitioning. (b) Cell distribution after repartitioning.

(c) Resulting source grids after repartitioning.
These cells send their refinement data to neigh-
boring processes.

Old partition line

Cown
0

Cown
1

Cown
2

Cown
3

New partition line

Csource
0

Csource
1

Csource
2

Figure 4.12: Determination of source cells after repartitioning among four processes.

Transfer of data

1. The history variable values of Cghost,2
old is reset to 0. This step is needed because history

values on the third layer are incorrect due to the existence of elements with invalid
solutions, see Figure 4.6. After repartitioning, one of the grids of Cghost,2

old could fall
inside Cknown

new and therefore lead to an incorrect solution.

2. Old meshes are refined as explained in 4.2.4 to allow for consistent data transfer with
the new meshes.
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3. The set of cells that need to send its data to other processes is denoted by Csend and
determined with the following steps, see Figure 4.13:

(a) For each cell in Cown
old , two layers of surrounding cells are determined, see Appendix

A.

(b) For each of the surrounding cells determined in 3a, the old and new ranks are
queried. The set of old and new ranks for all surrounding cells of the current cell
correspond to the processes that knew the cell before repartitioning and that know
the cell after repartitioning, respectively.

(c) The processes to which a given cell needs to send its data are the processes that
know the cell after repartitioning but did not know about the cell before reparti-
tioning. If there is at least one process to send the data to, then the current cell
is added to Csend, otherwise, it is not.

Old partition line New partition line

1 1

11 1 1 1

111

1

1 1

11

1 1

1

1 1

1

1 1

1

1

0 1

10 1 1 1

111

0

0 1

23

1 1

1

2 2

1

1 1

1

2

Processes that know CcurrentProcesses that knew Ccurrent

Processes to send data from Ccurrent: {0, 1, 2, 3} \ {1} = {0, 2, 3}

before repartitioning:

{1}
after repartitioning:

{0,1,2,3}

Cown
0 Cown

1 Cown
2 Cown

3 Ccurrent

Figure 4.13: Scheme representing the steps to determine to which processes a cell has to send its
associated data to.

Figure 4.13 shows an example of how to determine the processes to which a cell Ccurrent

needs to send its data to, in a partition among four processes. Before repartitioning,
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only process 1 knew Ccurrent, whereas after repartitioning, processes 0, 1, 2, and 3 know
Ccurrent. Therefore, Ccurrent needs to send its data to processes 0, 2, and 3. As there
is more than one process to which Ccurrent needs to send data to, Ccurrent belongs to
Csend.

4. The set of cells that need to receive data from other processes is conformed by cells
that are known by the processes but were not previously known, and is determined as
Crecv = Cknown

new \ Cknown
old , see Figure 4.14c.

(a) Cell distribution before repartitioning. (b) Cell distribution after repartitioning.

(c) Resulting Crecv and C local after repartition-
ing. Receive cells Crecv get data from old meshes
of remote processes, while local cells C local get
data from old meshes of the same process.

Old partition line

Cown
0

Cown
1

Cown
2

Cown
3

New partition line

Crecv
0

C local
0

Cknown
old

Cknown
new

Figure 4.14: Determination of cells that receive data from other processes and cells that update
locally after repartitioning among four processes, as seen from the bottom left partition with rank 0.
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5. The cells that have not changed ownership after repartitioning update their data locally
without communication. This set is determined as Clocal = Cknown

new \ Crecv, see Figure
4.14c.

6. The DOFs values are transferred from the old meshes to the new meshes with the
following procedure:

(a) For each cell in Csend, get the corresponding element in Told and extract the values
of the DOFs without sorting.

(b) Perform non-blocking point-to-point communication of the DOFs values deter-
mined in 6a.

(c) For each cell in Crecv, get the corresponding element in Tnew, extract the DOFs
without sorting, and set their values with the values that were received in 6b.

(d) For each cell in Clocal, get the corresponding new and old elements in Told and Tnew

respectively, extract the values of the DOFs of the old element and set them on
the new element.

7. The history variable values are transferred with the following procedure:

(a) For each cell in Csend get the corresponding element in Told and extract the coor-
dinates of the integration points.

(b) For each of the coordinates determined in 7a, get the value of the history variable
in the current and in the previous displacement step.

(c) Perform non-blocking point-to-point communication of the history variable values
determined in 7b.

(d) For each cell in Crecv, get the corresponding element in Tnew and extract the coor-
dinates of the integration points.

(e) For each of the coordinates determined in 7d, set the value of the history variable
corresponding to the current and the previous displacement steps with the values
received in 7c.

4.3 Efficient parallel solvers

4.3.1 Parallel linear solvers

After setting up the matrices and vectors of the system of equations (3.6) and (3.7), a solution
has to be found for ∆d and ∆Φ. For small-size problems, direct solvers can be applied
to arrive at solutions in reasonable amounts of time. However, this type of solvers does
not scale well due to their high memory requirements, rapidly increasing computational
cost [Hackbusch, 1994], and difficulty to be parallelized [Dongarra et al., 1998; Saad, 2003].
Therefore, for large-size problems, iterative solvers are generally preferred. In this thesis,
the Preconditioned Conjugate Gradient (PCG) method is used. This is a Krylov’s subspace
method that can be used for symmetric positive-definite matrices as the ones arising from a
phase-field analysis.

To achieve good parallel scalability, it is common to utilize highly optimized third-party
implementations rather than relying on an in-house implementation. With this in mind, the
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Trilinos package from the Sandia National Laboratories [Heroux et al., 2005] is utilized in
this work. In particular, Trilinos provides the Epetra and Tpetra packages for distributed
linear algebra objects such as matrices and vectors, and the AztecOO linear solver package
that implements the PCG solver, among others, and at the same time provides an interface
for the application of user-defined preconditioners.

4.3.2 Preconditioning FCM analyses

The convergence of linear solvers depends on the condition number of the system’s matrix,
making it difficult or even impossible to arrive at a solution in the case of badly conditioned
systems. The stiffness matrices arising from the FCM are an example of such ill-conditioning.
This phenomenon was systematically studied in [de Prenter et al., 2017], where it was shown
that the main cause is that basis functions in small cut cells can become arbitrarily small
and also linearly dependent. In phase-field analyses, the problem becomes even worse, as the
condition number of the system matrices steeply increases after the onset of crack propaga-
tion [Badri et al., 2021]. To improve the conditioning of the system and thus the convergence
properties, preconditioning is used. Preconditioning involves the transformation of the origi-
nal system of equations of the form Ax = b to an equivalent one with the same solution but
that is easier to solve. This entails solving

M−1Ax = M−1b, (4.7)

where M is the preconditioning matrix. A good preconditioner renders the condition number
of M−1A smaller than the one of A. Particularly, a perfect preconditioner is obtained when
M−1 = A−1, but it is computationally costly and impractical to construct. In the case of the
FCM, common preconditioners such as Jacobi or Gauss-Seidel are not robust as they only
target partially the root causes of ill-conditioning mentioned before [de Prenter et al., 2017].
For this reason, the Additive Schwarz preconditioning technique for the FCM is used in this
work [Jomo et al., 2019].

Additive Schwarz preconditioning

This section introduces the main aspects of the Additive Schwarz preconditioning that are
important to understand the reason behind the need for a third layer of ghost elements
in nonlinear phase-field analyses’ distributed meshes, as presented in 4.2.3. For a detailed
explanation of the method, the interested reader is referred to [Jomo et al., 2019].

The idea of the Additive Schwarz preconditioning is to construct a preconditioner M−1 by
inversion and summation of sub-matrices extracted from the system matrix A. These sub-
matrices correspond to groups or blocks of certain basis functions with intersecting support,
that are extracted with restriction and prolongation operators P and PT applied to A. The
formula for the preconditioner is then

M−1 =

nblocks∑
i=1

Pi

(
PT
i APi

)−1︸ ︷︷ ︸
A−1

i

PT
i , (4.8)
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where nblocks is the number of blocks of basis functions and i is the index of the ith block
containing m basis functions such that A−1

i ∈ Rm×m and Pi ∈ RnDOFs×m.

Different preconditioners with different properties can be constructed depending on the se-
lection of the additive Schwarz blocks. Two of the available options are:

• Selection of blocks based on base elements: this is a straightforward approach
where all basis functions that are supported on a base element and all its children form
part of an additive Schwarz block, see Figure 4.15b.

• Selection of blocks based on leaf elements: this approach intends to build blocks
containing basis functions that can potentially become almost linearly dependent, which
is the case when an element is cut. As can be seen in Figure 4.15a, more than p+1 basis
functions can be supported on a leaf element. However, only p + 1 unique polynomial
degrees of freedom exist. For efficient preconditioning, it is sufficient to construct
additive Schwarz blocks of elements to span these p+ 1 polynomial degrees of freedom.
The blocks are then built with the p − 1 higher-order basis functions and two linearly
independent basis functions of order p = 1 that can be either both on the highest level
or one on the highest level and another one down in the element hierarchy, as in Figure
4.15c. Important is to note that, for example, the block corresponding to the element
T2 in Figure 4.15a can end up having basis functions of the lowest refinement level, and
therefore all related entries on the stiffness matrix must have correct values to be able
to compute the exact preconditioner.

k = 2

k = 1

k = 0

T1 T2 T3 T4 T5

(a) One dimensional multi-level hp-mesh
with 5 leaf elements.

T3

0

1

(b) Full blocks: All 6 ba-
sis functions on T3 con-
sidered in B3.

T3

0

1

(c) Truncated blocks: se-
lected basis functions on
T3 considered in B3.

Figure 4.15: Block selection for multi-level hp-grids with the full and truncated blocks of element
T3, adopted from [Jomo et al., 2019].

With the above explanation and referring again to Figure 4.5, it is clear that some additive
Schwarz blocks containing the basis function that corresponds to DOF 3 also contain DOFs 2,
6, 7, and 8. Therefore, the stiffness matrix entries associated with DOFs 2, 6, 7, and 8 must be
correct as they are used to compute the preconditioner. In a linear analysis, this is guaranteed
without having all DOFs in the second layer of ghost elements with correct solution values, as
the solution is not used for the computation of the stiffness matrix. However, in a nonlinear
analysis, the solution values of all DOFs of elements in the second ghost layer must be correct
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as they are used for the computation of the stiffness matrix, requiring the existence of the
third layer of ghost elements, see 4.2.3.

In the numerical examples presented in this thesis, the selection of blocks based on base
elements is used, as it yields a good balance between the computational cost of the precon-
ditioning matrix and reduction in solver iterations.
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Chapter 5

Results

In this section, the performance of the proposed framework for parallel phase-field simulations
is investigated. The first three examples were run on the CoolMUC2 Cluster of the Leibniz
Supercomputing Centre (LRZ) in Garching, Germany [Leibniz Supercomputing Centre, 2021;
Wilde et al., 2017]. The cluster is equipped with a total of 812 nodes, each having two Intel
Xeon E5-2697 v3 14-core Haswell CPUs with 64 GB of main memory. The last example was
run on the HTCE Cluster of the LRZ that is equipped with 4 nodes with Intel Xeon Gold
6126 CPUs. The code was compiled with the GNU compiler 7.0 and -O3 optimization flags,
using the following library versions: IntelMPI compiler version 19.0, Trilinos 12.12.1 [Heroux
et al., 2005], Insight Toolkit 4.12 [Ibanez et al., 2005], and Boost version 1.61 [Schäling, 2014].
The time measurements were taken with the cpu timer implementation of the Boost library.

5.1 Square plate in tension with pre-existing crack

Problem setup

The first example consists of a square plate in plane strain with dimensions 1× 1 mm and a
0.5 mm long crack in the middle of the height, as shown in Figure 5.1. The plate is subject to
a vertical displacement v = 7.4× 10−3 mm imposed on the top edge, applied incrementally
in 6 steps of 1× 10−3 mm and 14 steps of 1× 10−4 mm. The bottom edge is fixed in the
vertical direction, while the bottom left corner is fixed in both directions. The material has a
Young’s modulus E = 210 GPa, Poisson’s ratio µ = 0.3, and fracture toughness Gc = 0.0027
kN/mm. The length scale is chosen as l0 = 1

256 mm so that at least one element spans the
half-width of the crack with the coarsest meshes used in the analyses. The pre-existing crack
is defined by setting a history variable with the initial values

H(x, y) =

{
4Gc
l0

∀x ∈ [0, 0.5] ∧ ∀y ∈ [0.5− l0, 0.5 + l0]

0 otherwise
. (5.1)

The maximum number of staggered steps is set to 10 and a tolerance εstag = 1× 10−4 is used
for the stopping criterion (3.8).
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Figure 5.1: Square plate in tension with pre-existing crack. Geometry and boundary conditions.

Validation of the parallel implementation

To validate the parallel implementation presented in 4, the solution of the serial implementa-
tion from [Nagaraja et al., 2018; Hug et al., 2020] is compared to the solution of the parallel
implementation using 64 processes divided among 16 nodes, and 7 threads per process. Carte-
sian meshes of 128 × 128 elements with a polynomial degree p = 2 and a refinement depth
k = 2 were used in both cases. In the parallel case, a dynamic repartitioning strategy with a
tolerance ζ = 1.0 was utilized, see 4.2.5. Figure 5.2 shows the load-displacement curves for
both cases.
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Figure 5.2: Square plate in tension with pre-existing crack. Comparison of the load-displacement
curves of a serial and a parallel solution with 64 processes and ζ = 1.0.



5.1. Square plate in tension with pre-existing crack 41

As it can be seen, both curves match closely as expected, thus validating the parallel im-
plementation. The crack starts to propagate for v = 6× 10−3 mm and the maximum load
is 0.68 kN. In the crack propagation phase (v > 6× 10−3 mm), there are minor differences
between the curves that come from different convergence criteria used for the staggered it-
erations. While the parallel implementation used the absolute solution increments (3.8), the
serial implementation used the relative solution increments [Nagaraja et al., 2018].

Strong scaling

To assess the strong scalability of the implementation, the analysis was run with a number of
processes that varied from 1 to 128 while keeping the problem size fixed. 4 processes per node
were used, except for the cases with 1 and 2 processes, and each process used 7 threads. The
base case for the speedup measure was a serial run (1 process) of the parallel implementation.
The time measurements were taken from the start until the end of the simulation, spanning
all displacement steps.

Strong scaling for different meshes

First, the strong scaling for different meshes is investigated. Three analyses without reparti-
tioning for Cartesian meshes of 64× 64, 128× 128, and 256× 256 elements were run. In all
cases, a polynomial degree p = 2 and a refinement depth k = 2 were used. Figure 5.3 shows
the speedup and the total solution time vs. the number of processes for each of the simula-
tions. The framework shows good scalability for up to 128 processes, reaching speedups of
8.4, 13.9, and 35.2 for the 64× 64, 128× 128, and 256× 256 meshes respectively.
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Figure 5.3: Square plate in tension with pre-existing crack. Strong scaling analysis for different
meshes.

It can be observed that the increase in the speedup resulting from an increase in the number of
processes becomes smaller for a higher number of processes, in agreement with Amdahl’s law,
see 4.1.3. Furthermore, coarser meshes result in smaller speedups, as the curves move farther
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away from the ideal line. This behavior is explained by the fact that increasing the number
of processes or reducing the number of elements increases the ratio between the number of
ghost and owned elements. The consequence is a higher number of redundant operations, e.g.
integration of the elements matrices, that reduces the parallel efficiency. Moreover, a higher
number of ghost elements requires the communication of more values between processes and
therefore additional run time. The case of the 256×256 meshes exhibits a superlinear behavior
with 2 and 4 processes, as the speedup curve is above the ideal line, see Figure 5.3a. Such a
behavior could be caused by cache memory effects and other side effects [Ristov et al., 2016].

Strong scaling for different refinement depths

To assess the effect of different refinement depths on the scalability, three different analyses
without repartitioning for Cartesian meshes of 128× 128 elements, polynomial degree p = 2,
and refinement depths k = {1, 2, 3} were run. It is important to note that the length scale
of the crack l0 was fixed, and therefore the number of leaf elements and DOFs per process
increased with increasing k. Figure 5.4 shows the speedup and the total solution time vs.
the number of processes for different refinement depths. It is observed that an increase in
the refinement depth reduces the speedup, as the curves move farther away from the ideal
line. This effect can be attributed to the existence of a higher number of leaf elements in
the ghost layers, which results in the communication of more values among processes and
a higher number of redundant operations. Furthermore, higher refinement depths result in
higher load imbalance among processes as the adaptive refinement is local to the crack zone,
reducing the parallel efficiency. To counteract this behavior, one could reduce the length
scale of the crack together with the increase in the refinement depth, keeping in mind that
changing the length scale has an impact on the modeled crack response [Zhang et al., 2017].

1

10

100
Ideal

k = 1

k = 2

k = 3

1 4 16 64 1282 8 32

Number of processes

S
p

ee
d

u
p
S

=
t s

e
r
ia

l
t p

a
r
a
ll
e
l

(a) Speedup.

Number of processes

T
o
ta

l
so

lu
ti

o
n

ti
m

e,
s

1 4 16 64 1282 8 32

100

1000

10000

k = 1

k = 2

k = 3

Ideal, k = 1

Ideal, k = 2

Ideal, k = 3

(b) Total solution time.

Figure 5.4: Square plate in tension with pre-existing crack. Strong scaling analysis for different
refinement depths k.
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Strong scaling for different polynomial degrees

The effect of different polynomial degrees on performance is investigated in this section. To
this end, three different analyses without repartitioning for Cartesian meshes of 128 × 128,
refinement depth k = 2, and polynomial degrees p = {1, 2, 3} were run. Figure 5.5 shows
the speedup and the total solution time vs. the number of processes for different polynomial
degrees. It can be observed that increasing the polynomial degree does not have a considerable
effect on the speedup, as the three curves are close to each other, see Figure 5.5a. By
increasing the polynomial degree, all elements of the mesh are affected in a similar manner
and the computational effort is increased in all processes. As a result, there is no noticeable
load imbalance induced by a change in the polynomial degree. This is in contrast with
the case of increasing refinement depth, where only elements in the crack zone are refined,
unbalancing the load.
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Figure 5.5: Square plate in tension with pre-existing crack. Strong scaling analysis for different
polynomial degrees p.

Influence of repartitioning on the speedup

In section 4.2.5, two different strategies for repartitioning were presented. The goal of this
section is to evaluate the improvements that can be achieved with each of them. For this
study, Cartesian meshes of 128×128 elements with a polynomial degree p = 2 and a refinement
depth k = 2 were used. The analysis was run with 4, 16, and 64 processes partitioned among
1, 4, and 16 nodes respectively, and with 7 threads per process. Figure 5.6 shows the evolution
of the maximum relative difference of the normalized load

dmax = max
rank∈[0,nprocs−1]

d(rank) (5.2)

for every staggered step when no repartitioning is done. It is observed that the load imbalance
increases with the number of processes.
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Figure 5.6: Square plate in tension with pre-existing crack. Evolution of the maximum relative
difference of the normalized load dmax without repartitioning vs. the accumulated staggered iterations.

Step-based repartitioning For the step-based repartitioning strategy, the number of displace-
ment steps to wait for repartitioning was varied in the range from 1 to 10, and the ratio
between the speedup with and without repartitioning was measured. Figure 5.7 shows that
only the case with 64 processes improves the speedup up to 9%. For cases with 4 and 16
processes, the reduction in computational effort caused by repartitioning is not enough to
counteract the additional parallel overhead. For analyses with more displacement steps, it is
expected that this behavior improves. However, this needs further investigation.
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Figure 5.7: Square plate in tension with pre-existing crack. Influence of the number of steps to wait
for repartitioning on the speedup.

Dynamic repartitioning

To assess the dynamic repartitioning strategy, several repartitioning tolerances ζ were used
and the ratio between the speedup with and without repartitioning was measured. Figure 5.8
shows that improvements of up to 16% and 27% can be achieved for the partitioning among
16 and 64 processes respectively. For the partition among 4 processes, no improvements are
observed because dmax is reduced as the analysis evolves (see Figure 5.6), and thus the load
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balances without external help. For the partitioning among 16 and 64 processes, however,
dmax increases over the course of the analysis, and repartitioning helps to rebalance the load.
It is clear that the benefits of repartitioning increase with the number of processes. This
behavior is expected as the higher the number of processes is, the smaller is the number of
base elements that each process owns. Therefore, it can happen that in a given process a
great portion of elements is refined, while in other processes there is no refinement at all,
yielding high d values. Figure 5.8 also shows that for small values of ζ repartitioning worsens
the speedup, as it is performed too often and the gain of rebalancing the load is overshadowed
by the additional parallel overhead. Furthermore, it is observed that the range of ζ values
that result in an improvement of the speedup grows with the number of processes.

S
r
e
p
a
r
t
it
io

n
in

g

S
fi
x
e
d

0 0.5 1.0 1.5 2.0 2.5 3.0

ζ

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ideal

4 processes

16 processes

64 processes

1.4

Figure 5.8: Square plate in tension with pre-existing crack. Influence of the repartitioning tolerance
ζ on the speedup.

Figure 5.9 shows the evolution of the maximum relative difference of the normalized load
dmax throught the simulation for a dynamic repartitioning with ζ = 0.2.
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Figure 5.9: Square plate in tension with pre-existing crack. Evolution of the maximum relative
difference of the normalized load dmax with dynamic repartitioning vs. the accumulated staggered
iterations.
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It is evident that repartitioning keeps the load balanced, helping to maintain a good parallel
efficiency throughout the analysis.

Crack path and repartitioning visualization

Figure 5.10 shows the propagation of the crack and the evolution of the domain partitioning.
Processes that own elements in the crack zone span smaller regions, as their elements are
refined and therefore have a higher load density. Therefore, when the crack propagates more
processes concentrate around it. It is worth noting that the geometric Zoltan partitioner
does not give an optimal partitioning of the domain because some meshes are disjoint, i.e.
owned elements form “islands” in the mesh, see 5.10 (bottom). For a given number of owned
elements, disjoint meshes have a higher number of ghost elements than their contiguous
counterparts, resulting in more redundant computations and inter-process communication.
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(a) v = 4× 10−3 mm (b) v = 6.4× 10−3 mm (c) v = 7.4× 10−3 mm

Figure 5.10: Square plate in tension with pre-existing crack. Phase-field (top) and partitioning
(bottom) for different displacement steps.
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5.2 Square plate in tension with rotated elliptical hole

Problem setup

The second example aims to test the FCM implementation in 2D and to provide a case where
the propagating crack unbalances the load also in a partitioning among 4 processes. The
example consists of a square plate in plane strain with dimensions 1 × 1 mm and a rotated
elliptical hole in the center, as shown in Figure 5.11. The plate is subject to a vertical
displacement v = 7.2× 10−3 mm imposed on the top edge, applied incrementally in 6 steps
of 1× 10−3 mm and 6 steps of 2× 10−4 mm. The boundary conditions, material properties,
length scale, and values for the staggered convergence criterion are the same as in 5.1. In
this case, there is no pre-existing crack.
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Figure 5.11: Square plate in tension with rotated elliptical hole. Geometry and boundary conditions.

Strong scaling

To assess the strong scalability of the implementation for the FCM, the analysis was run
with a number of processes that varied from 1 to 128 while keeping the problem size fixed,
analogously as in 5.1. Cartesian meshes of 128 × 128 elements with a polynomial degree
p = 2 and a refinement depth k = 2 were used. Figure 5.12 shows the speedup and the total
solution time vs. the number of processes. The framework shows good scalability for up to
128 processes, reaching a speedup of 13.8.
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Figure 5.12: Square plate in tension with rotated elliptical hole. Strong scaling analysis.

Influence of repartitioning on the speedup

To study the influence of repartitioning on the speedup, the analysis was run with 4, 16,
and 64 processes partitioned among 1, 4, and 16 nodes respectively, and with 7 threads per
process. Only dynamic repartitioning is assessed, as it was shown in Figure 5.7 that no
significant improvement can be achieved with step-based repartitioning in problems with a
small number of displacement steps. Figure 5.13 shows the evolution of the maximum relative
difference of the normalized load dmax throughout the simulation when no repartitioning is
done. It is observed that the load imbalance increases with the number of processes. In
contrast to Figure 5.6, the case with 4 processes increases its imbalance as the analysis
progresses, and thus an improvement with repartitioning is expected in this case.
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Figure 5.13: Square plate in tension with rotated elliptical hole. Evolution of the maximum relative
difference of the normalized load dmax without repartitioning vs. the accumulated staggered iterations.
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Figure 5.14 shows that improvements of up to 5%, 33% and 36% can be achieved for the
partitioning among 4, 16, and 64 processes respectively. Again, for small values of ζ, repar-
titioning worsens the speedup due to the high parallel overhead it creates. The range of ζ
values that result in an improvement of the speedup grows with the number of processes as
in 5.1, see Figure 5.14.
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Figure 5.14: Square plate in tension with rotated elliptical hole. Influence of the repartitioning
tolerance ζ on the speedup.

Figure 5.15 shows the evolution of the maximum relative difference of the normalized load
dmax throught the simulation for a dynamic repartitioning with ζ = 0.2. The same behavior
as in 5.1 is observed, where the load is maintained at low values.
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Figure 5.15: Square plate in tension with rotated elliptical hole. Evolution of the maximum relative
difference of the normalized load dmax with dynamic repartitioning vs. the accumulated staggered
iterations.
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Crack path and repartitioning visualization

Figure 5.16 shows the propagation of the crack and the evolution of the domain partitioning.
As there is no pre-existing crack, all processes span similar areas during the first steps of
the simulation. When the crack propagates, the processes concentrate in regions around the
crack due to the existence of refined elements. In this case, disjoint meshes are also observed.
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(a) v = 4× 10−3 mm (b) v = 6.4× 10−3 mm (c) v = 7.2× 10−3 mm

Figure 5.16: Square plate in tension with rotated elliptical hole. Phase-field (top) and partitioning
(bottom) for different displacement steps.

5.3 Cubic body in tension with spherical inclusions

Problem setup

The goal of the third example is to test the parallel implementation for the FCM in 3D. The
example consist of a cubic body with dimensions 1×1×1 mm with 27 spherical inclusions of
diameter s = 0.2 mm, as shown in Figure 5.17. The cube is subject to a vertical displacement
w = 1.15× 10−2 mm imposed on the top face, applied incrementally in 10 steps of 1× 10−3

mm and 3 steps of 5× 10−4 mm. The bottom face is completely fixed and the length scale
is chosen as l0 = 1

64 mm so that at least one element spans the half-width of the crack. The
material properties and values for the staggered convergence criterion are the same as in 5.1.
In this case, there is no pre-existing crack.
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Figure 5.17: Cubic body in tension with spherical inclusions. Section view of the geometry and
boundary conditions.

Strong scaling

To assess the strong scalability of the implementation for the FCM in 3D, the analysis was
run with a number of processes that varied from 1 to 64 while keeping the problem size fixed.
4 processes per node were used, except for the cases with 1 and 2 processes, and each process
used 7 threads. Cartesian meshes of 32 × 32 × 32 elements with a polynomial degree p = 1
and a refinement depth k = 1 were used. A dynamic repartitioning strategy with ζ = 0.05
was applied. Figure 5.18 shows the speedup and the total solution time vs. the number of
processes.
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Figure 5.18: Cubic body in tension with spherical inclusions. Strong scaling analysis.
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The framework shows good scalability for up to 64 processes, reaching a speedup of 5.2.
For a larger number of processes, the parallel efficiency deteriorates as the ratio of ghost to
owned elements becomes too large. By extrapolating the results from the 2D examples to
3D, it is expected that better speedups can be achieved for larger problems, i.e. finer meshes.
However, this is not further investigated in this thesis due to time constraints.

Crack path and repartitioning visualization

Figure 5.19 shows the propagation of the crack and the evolution of the domain partitioning.
The crack initiates in the central inclusion, propagating outwards in a plane perpendicular
to the tensile load direction. It is clearly seen that as the crack grows, elements in the crack
zone are refined and the meshes are repartitioned to keep the load balanced.

1

0

(a) w = 0.9× 10−2 mm (b) w = 1.05× 10−2 mm (c) w = 1.15× 10−2 mm

Figure 5.19: Cubic body in tension with spherical inclusions. Phase-field (top) and partitioning
(bottom) for different displacement steps. Displacements on the top face are applied in the vertically
upward direction.
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5.4 Compression test of a core sample

Problem setup

The last example aims to provide an application of practical relevance for the parallel frame-
work. The example consists of the compression test of a core sample with a diameter d ≈ 54
mm and a height h = 117.4 mm, as shown in Figure 5.20. The sample is subject to a vertical
displacement v = −0.22 mm imposed on the top face, applied incrementally in 11 steps of
2× 10−2 mm. The bottom face is completely fixed. The material has a Young’s modulus
E = 54.3 GPa, Poisson’s ratio µ = 0.3, and fracture toughness Gc = 6.65× 10−4 kN/mm.
The length scale is chosen as l0 = 1 mm and there is no pre-existing crack. The input ge-
ometry of the model was obtained from a computerized tomography (CT) scan and the top
and bottom surfaces were reconstructed for the application of the boundary conditions. The
analysis was run with 16 processes partitioned among 4 nodes, and 10 threads per process.
Cartesian meshes of 32 × 60 × 32 elements with a polynomial degree p = 2 and a refine-
ment depth k = 1 were used. A dynamic repartitioning strategy with ζ = 0.02 was applied.
Though it was shown that such a small value of ζ is not optimal (see figures 5.8 and 5.14),
it is used here to ensure that repartitioning is performed at several steps of the analysis for
illustration purposes.
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Figure 5.20: Compression test of a core sample. Geometry and boundary conditions.

Crack path repartitioning visualization

Figure 5.19 shows the propagation of the crack and the evolution of the domain partitioning.
The crack nucleates around the hole on the front where stress concentrations are high and
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propagates towards the back of the sample. It is also observed in this case how the elements
in the crack zone are refined and the domain is repartitioned. Comparing figures 5.21c (top)
and 5.22, it is seen that the crack resulting from the phase-field analyses matches the crack
of the real specimen, confirming the validity of the framework to solve complex practical
fracture problems.
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(a) v = −0.12 mm (b) v = −0.16 mm (c) v = −0.22 mm

Figure 5.21: Compression test of a core sample. Phase-field (top) and partitioning (bottom) for
different displacement steps. Displacements on the top face are applied in the vertically downward
direction.
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Figure 5.22: Compression test of a core sample. Photo showing the resulting crack.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

This thesis successfully integrated the phase-field simulation model of [Nagaraja et al., 2018;
Hug et al., 2020] with the parallel framework for large-scale finite cell analyses with hp-
refined grids of [Jomo, 2021]. The new implementation reduces the execution time of phase-
field analyses with iterative solvers and expands the limits in computable problem size by
employing distributed data structures.

The mesh generation algorithms of [Jomo, 2021] were adapted to include a third layer of ghost
elements, allowing the solution of nonlinear phase-field problems with the conjugate gradient
solver and additive Schwarz preconditioners [Jomo et al., 2019]. The adaptive hp-refinement
based on the phase-field solution of [Nagaraja et al., 2018] was modified to enable its use with
distributed meshes. The new algorithms are based on the refinement of owned elements and
the communication of refinement levels of ghost elements, where a solution-based refinement
that ensures mesh compatibility is not possible. To handle the load imbalance created by the
adaptive refinement, an algorithm to repartition the meshes and rebalance the load among
processes was developed. The algorithm comprises the redistribution of cells, the generation
of new meshes, and the transfer of solution and history variable values from the old to the
new meshes.

Validation of the framework has been successfully done by comparing the load-displacement
curves of a benchmark problem resulting from the parallel and the serial implementations.
Performance studies were carried out, showing that good parallel scalability up to a modest
number of processes. Results show that an increase in the mesh size improves the speedup
and achieves good parallel scalability up to a higher number of processes. Furthermore, it
was shown that increasing the refinement depth reduces the speedup, whereas changing the
polynomial degree has virtually no effect on it. This suggests that an acceptable refinement
strategy to use in the parallel framework consists in keeping a low refinement depth, e.g.
k ≤ 3, and increasing the polynomial degree if more accuracy is needed. The effect that the
proposed repartitioning strategies have on speedup has been studied. Results show that a
step-based repartitioning strategy does not yield a significant improvement of the speedup in
the case with a small number of displacement steps. In contrast, a dynamic repartitioning
strategy yields improvements on the speedup of up to 36% in the studied cases. It was
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observed that increasing the number of processes creates a higher imbalance of the load
and thus improves the benefit of repartitioning on the speedup. The applicability of the
parallel framework for problems of practical relevance was demonstrated with the example
of a compression test of a core sample.

6.2 Outlook

Although this thesis clearly illustrates the good scalability achieved with the parallel frame-
work, there is still room for further improvements:

• The algorithms for parallel mesh generation, refinement, and repartitioning constitute
the first step towards a highly efficient parallel framework. Several optimizations could
be done, including but not limited to:

– Adding thread-based parallelism to the layer-finding, the cell refinement, and the
history update subroutines to take full advantage of hybrid distributed-shared
memory architectures.

– Refactoring algorithms to use sets instead of vectors to reduce the computational
complexity.

• In this work, a voxel domain with the size of the global mesh was employed to store the
history variables in each process. Therefore, several voxels are not used throughout the
analysis, increasing the memory footprint unnecessarily. This is especially true when
the number of processes is high and the ratio of local to global number of elements
is small. The framework currently allows the use of a multi-level grid to avoid this
problem. However, the implementation in a parallel setting remains to be validated.

• Additive Schwarz preconditioners [Jomo et al., 2019] have proved to be successful in
helping to achieve convergence of the solution in the studied cases. However, its suit-
ability for larger and more complex phase-field problems needs further investigation.
The hp-multigrid preconditioner presented in [Jomo et al., 2021] could be adapted for
such cases.

• The discussed examples have shown that the geometric Zoltan partitioner [Devine
et al., 2002] sometimes results in disjoint meshes. For a given number of owned elements,
a disjoint mesh has a higher number of ghost elements compared to a contiguous mesh,
and the computations become more expensive. Other partitioners could be integrated
to try to eliminate or reduce this negative effect.
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Appendix A

Determination of surrounding cells

The set of surrounding cells Csurr is essential for the algorithms developed in this thesis, see
4.2.2, 4.2.4, and 4.2.5. To determine this set, the following steps are carried out, see Figure
A.1:
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(a) First layer of surrounding
cells of cell with index j = 27.
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(b) Surrounding cells of cell
with index j = 28.
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(c) Second layer of surround-
ing cells.
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(d) Surrounding cells of cell
with index j = 29.
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(e) Third layer of surrounding
cells.
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Figure A.1: Determination of surrounding cells in a Cartesian grid with a square hole.

1. For a given cell Ccentral, one layer of surrounding cells Csurr,0 is determined, see Figure
A.1a. This is done with a simple shift of cell indices and excluding the outside cells
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Cout. The result of this operation is the set of all surrounding cells of the first layer
Csurr,0.

2. For each cell Ccurrent in Csurr,0, one layer of surrounding cells is determined analogously
as in 1, see Figure A.1b. Surrounding cells that do not belong to Csurr,0 and that are
different than Ccentral are added to the set of surrounding cells of the second layer
Csurr,1.

3. Step 2 is repeated for cells in Csurr,1 excluding all previously found cells to get Csurr,2,
see Figure A.1d.

Although the algorithms presented in this work require up to three layers of surrounding cells,
more layers can be determined by repeating step 3 for each newly found layer of surrounding
cells.

Figure A.1 shows an example of the determination of three layers of surrounding cells of a cell
with index j = 27 in a Cartesian grid with a square hole (outside cells). In Figure A.1a, the
set of surrounding cells of the first layer is determined as Csurr,0 = {18, 19, 20, 26, 28, 34, 35}.
Then, for a cell in Csurr,0, one layer of surrounding cells is determined (Figure A.1b), and the
inside cells not included in Csurr,0∪Ccentral are added to Csurr,1. This is repeated for all cells in
Csurr,0 until the full set Csurr,1 = {9, 10, 11, 12, 13, 17, 21, 25, 29, 33, 41, 42, 43} is determined.
Finally, analogous steps are repeated to get the set of surrounding cells of the third layer
Csurr,2 = {0, 1, 2, 3, 4, 5, 6, 8, 14, 16, 22, 24, 30, 32, 38, 40, 48, 49, 50, 51, 52}, see figures A.1d and
A.1e.
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