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Abstract
The performance of future magnetic confinement fusion power plants depends heavily on
the turbulence-influenced quality of plasma confinement and heat exhaust. The main tools
to study turbulence in fusion devices are high-fidelity gyrokinetic simulations implemented
in massively parallelized, high-performance computer codes. As the geometry in realistic,
diverted tokamak plasmas is complex and challenging to simulate, turbulence in the relevant
edge and scrape-off layer (SOL) regions remains to be understood. The GENE-X code fills this
gap by providing a unique computational tool that can perform global gyrokinetic simulations
in realistic device geometries.

This work presents a physics extension of the GENE-X code, adding collisional effects to the
gyrokinetic model and improving the fidelity of the code. Including collisions is essential in
the edge and SOL due to low temperatures and high collisionality. The implementations
feature a basic Bhatnagar-Gross-Krook (BGK) operator and an improved Fokker-Planck-
like Lenard-Bernstein/Dougherty (LBD) operator. The development of the numerical tools
required to perform collisional gyrokinetic simulations is presented, along with constructing
an efficient, conservative discretization of the collision operator. Further, the numerical
developments are verified in physics-motivated test cases, analyzing collisional conservation
and relaxation properties. The high-performance implementation of the computations shows
excellent scaling in an intra- and inter-node performance benchmark.

The code validation against an experimental scenario in the TCV tokamak (TCV-X21) ap-
plies the newly developed collision models to a suitable test case. Simulations using the
collisionless and the BGK and LBD models assess the possible realism achievable by the
current model. The turbulence observed in this validation case is further analyzed using
newly developed Fourier and trapped particle analysis tools. The obtained results allow the
comparison of the effect of the three different collision models on the underlying physics of
turbulence. As a result, the simulation with the advanced LBD operator shows remarkable
agreement with the experiment in the confined region. In contrast, the other simulations
cannot achieve the same level of agreement. The collisionless simulation predicts too high
electron temperatures, while the BGK simulation suppresses turbulence significantly. The re-
sults show that the presented collisional extension considerably improves the realism of edge
turbulence simulations, with the LBD collision operator posing a minimum requirement.

3



4



Zusammenfassung
Die Leistungsfähigkeit zukünftiger, auf dem Magneteinschlussverfahren basierender, Fusion-
skraftwerke hängt in hohem Maße von der turbulenzbestimmten Qualität des Plasmaein-
schlusses und Wärmeabflusses ab. Computercodes, die in der Modellierung der Turbulenz
hauptsächlich zur Anwendung kommen, basieren auf der höchst akkuraten gyrokinetischen
Plasmatheorie, welche auf massiv parallelisierten Hochleistungsrechnern betrieben werden
müssen. Da die Geometrie der für Fusion relevanten Tokamak Anlagen komplex ist, sind
Turbulenz-Simulationen am Rand und in der sogenannten Abschürfschicht (“scrape-off layer”
- SOL) des Plasmas besonders herausfordernd. Der GENE-X Code wurde speziell für diese
Anwendungszwecke entwickelt und ermöglicht globale gyrokinetische Simulationen von Plas-
maturbulenz in realistischer Geometrie.

Diese Arbeit präsentiert eine Erweiterung des GENE-X Codes, mit dem Ziel die Genauigkeit des
gyrokinetischen Modells durch Berücksichtigung von Stoßprozessen zu erhöhen. Die Abküh-
lung des Plasmas am Rand und im SOL erhöht die Stoßrate erheblich womit der Einbezug von
Stoßeffekten notwendig wird. Die Modellierung der Stoßprozesse erfolgt in mehreren Abstu-
fungen, wobei zuerst ein einfaches Modell von Bhatnagar-Gross-Krook (BGK) und folgend ein
fortgeschrittenes Lenard-Bernstein/Dougherty (LBD) Modell implementiert wird. Dies er-
fordert die Entwicklung von numerischen Methoden, um die stoßerweiterten gyrokinetischen
Simulationen zu ermöglichen. Dazu wird ein Finite-Volumen Schema konstruiert, welches
durch spezielle Korrekturterme die Erhaltung von Einzelspeziesdichten sowie Gesamtimpuls
und -energie sicherstellt. Die Implementierung wird auf die geforderten Erhaltungseigen-
schaften sowie auf die Reproduktion von prognostizierten Relaxationsraten verifiziert. Die
hocheffiziente Einbettung der Algorithmen in den GENE-X Code wird auf die Skalierungseigen-
schaften der Parallelisierung untersucht.

Zur Validierung wird der stoßerweiterte GENE-X Code auf ein Experiment des TCV Tokamaks
(TCV-X21) angewandt. Simulationen mit dem stoßfreien, dem BGK und dem LBD Mod-
ell werden hierbei auf die Fähigkeit untersucht, die physikalische Realität in der Simulation
nachzubilden. Die beobachtete Turbulenz wird mit eigens entwickelten Fourierdiagnostiken
sowie Verfahren zur separaten Betrachtung der Beiträge von gefangenen Teilchen untersucht.
Die Berücksichtigung aller Ergebnisse erlaubt eine allumfassende Analyse der Effekte ver-
schiedener Stoßmodelle auf die Plasmaturbulenz. Das bemerkenswerte Ergebnis ist, dass das
fortgeschrittene LBD Stoßmodell das Experiment in ausgezeichneter Näherung nachbilden
kann. Im Gegensatz dazu, können das stoßfreie und das BGK Modell keine überzeugen-
den Resultate liefern. Ersteres enthält um Größenordnungen zu heiße Elektronen, zweiteres
unterdrückt die Turbulenz zu stark. Der physikalische Realismusgrad in Simulationen von
Rand und SOL Turbulenz kann mit der hier präsentierten Stoßerweiterung durch das LBD
Modell signifikant gesteigert werden.
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Chapter 1

Introduction

Fusion energy is a promising, yet to-be-realized, energy source that may provide a clean and
safe way to humankind’s long-term energy needs1. However, the road towards a viable fusion
power plant is long, and as of today, a European electricity-producing demonstration power
plant is years away from realization2. The heat loss by turbulence is among the main physics
issues yet to be solved3. This research aims to advance the understanding of turbulence in
fusion devices by developing computational tools and performing first-principles turbulence
simulations.

This chapter presents the physics basics of fusion energy using magnetic confinement. The
dependence of the performance of a future power plant on confinement quality and transport
is highlighted, and the role of turbulence in that context is given. At the end of this introduc-
tion, the leading open research problems towards a fusion power plant from the perspective
of turbulence and theory are addressed, and the relevance of this thesis in that context is
discussed.

1.1 Fusion Energy
Nuclear fusion is a process that combines light atomic nuclei into heavier ones, releasing
energy due to the difference in mass of the reaction’s initial and resulting products. One
example is the sun, which primary energy source is the fusion of protons into helium4. Proton-
proton fusion happens in a multi-step fusion process. It is highly inefficient, as a single proton
takes more than a billion years to get involved in such a reaction5. This reaction can sustain
the “operation” of the sun because the sun’s enormous size creates substantial gravitational
forces. This gravitational confinement leads to high proton densities that counter for some
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Chapter 1 – Introduction

part of the low reactivity because the fusion power per volume scales directly with the overall
reaction rate6. The large volume where fusion happens in the sun leads to a generated power
of around7∗ 3.84×1026 W. This is almost a million times more energy per second than Earth’s
total energy consumption of 6.17 × 1020 J in 20198. Unfortunately, this energy cannot be
used directly on Earth, as only a fraction of it arrives through sunlight, and extracting all
sunlight with solar panels is impractical. Thus it is desirable to bring fusion energy to Earth.

On Earth, proton-proton fusion is unfeasible since replicating the sun’s large reaction volumes
and gravitational confinement is impossible. Fortunately, there are other fusion processes
available. The most promising one is deuterium-tritium (DT) fusion6. The reactivity of the
fusion reaction is around 24 to 25 orders of magnitude higher for DT fusion compared to the
sun’s proton-proton fusion9. The reaction is given by

D2 + T3 → He4(3.5 MeV) + n1(14.1 MeV), (1.1)

creating a helium and a neutron. The brackets on the right indicate the kinetic energy of the
reaction products. The total released energy of 17.6 MeV is a million times the order of the
energy released in chemical reactions, such as the combustion of methane (around 9.2 eV)10.
The DT reaction is promising because it has the highest reactivities at low energies, peaking
between 100 million and 1 billion Kelvin (≈10-100 keV)6. The DT gas must be externally
heated to achieve such temperatures, becoming an ionized gas or, in other words, a plasma.

How to Confine a Plasma and Generate Electricity with Fusion
Since charged particles in a plasma respond to electromagnetic fields, building devices that
confine plasmas using magnetic cages is possible. This concept is called magnetic confinement
fusion, and one of the most promising devices to build a reactor from is the tokamak6 (Fig.
1.1). The tokamak has the topology of a torus where the major radial direction is called
toroidal, and the minor radial direction is called poloidal. The tokamak combines a toroidal
magnetic field generated by external coils with a poloidal magnetic field generated by a
toroidal current induced by a central solenoid11. The combination of toroidal and poloidal
fields creates a helical magnetic field, where field lines twist around toroidally shaped closed
nested flux surfaces12. This approach provides a certain amount of confinement of the plasma
within the magnetic field†.

The configuration of interest in this work is the diverted tokamak, where using additional
poloidal field coils, magnetic field lines at the edge are diverted towards target plates (di-

∗Precisely this is the luminosity or power radiated by the sun, used as a lower estimate for the power
generated by fusion.

†To be usable for a fusion reactor, the confined plasma must have a stable equilibrium state. The stability
is typically analyzed with magnetohydrodynamic (MHD) theory and thus often referred to as MHD-stability
of the equilibrium11,12. In this work, all considerations are built on top of an existing and reached MHD-stable
equilibrium state.

16



1.1. Fusion Energy

toroidal direction

B

plasma

central solenoid

helical magnetic field

poloidal 
direction

toroidal
field coil

first wall

Figure 1.1. Schematic representation of a tokamak and its major (not all) components.

vertor)12. Figure 1.2 shows a cross-section of a diverted tokamak. The divertor creates a
poloidal field null point, called the X-point, and the closed nested flux surfaces are separated
to open field lines originating at the divertor plates by the last closed flux surface (separa-
trix)11. The open field line region is called the scrape-off layer (SOL) or the private flux
region, dependent on the location (Fig. 1.2). The divertor reduces impurity build-up12 and
protects the vessel wall by focusing the heat exhaust on a specially designed and durable
target plate13. Preventing the accumulation of impurities in the plasma is essential to reduce
heat loss by radiation and to improve the performance of a fusion device6. The following
section discusses the fusion performance in more detail.

Introducing the concept of magnetic confinement allows the discussion of the role of the two
resulting fusion products of the DT fusion. The helium produced is ionized (alpha particle)
and thus confined by the magnetic field. It contributes to the self-heating of the plasma. The
neutrons are unaffected by the magnetic field and escape the plasma, depositing their energy
to the outer walls, which heat up. The cooling of the walls can be used in a conventional
thermic power plant cycle to generate electricity13.
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first 
wall

Figure 1.2. Schematic representation of a cross-section (poloidal plane) of a diverted tokamak.

How to Make Fusion Viable and Efficient
To achieve a sustainable fusion reaction, it is not necessarily required to operate at the con-
ditions of the highest plasma temperature. Due to the non-ideal confinement properties of
a fusion device, transport leads to losing parts of the energy provided by external heating.
The time characterizing these losses is the energy confinement time τE. External heating
is required to achieve the temperatures needed initially. Re-using parts of the fusion en-
ergy released in the alpha particles provides additional heating during the fusion process13.
Considering the three mechanisms of external heating, energy loss, and alpha particle self-
heating, the question arises if a condition exists where the fusion reaction provides enough
self-heating to balance out the heat losses. This operating point is called ignition. The con-
dition for achieving ignition is if the triple product of density n, temperature T , and energy
confinement time τE exceeds a threshold6

nTτE > 3 × 1021 m−3keVs. (1.2)

This condition is called the Lawson criterion14∗. For analyzing this criterion, the optimum
temperature can be found within 100 and 300 million Kelvin (≈10-30 keV)6. The plasma
density cannot be arbitrarily high in tokamaks due to operational limits15. Thus the energy
confinement time τE is the central quantity that needs increasing to achieve a sustainable
fusion reaction13.

∗The original criterion by Lawson in Ref. [14] considered a purely externally heated plasma and losses
by Bremsstrahlung and is thus slightly different than the one shown here based on Ref. [6].
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The Role of Turbulence in Fusion Devices
Transport is of interest for developing fusion energy since it leads to a degradation of the
energy confinement. In early tokamak research, experimentally observed confinement times
could not be explained by the standard paradigm of collision-induced, so-called neoclassi-
cal16 transport. These findings gave rise to the terminology of anomalous transport, later
connected to turbulence17. Turbulence, as a ubiquitous phenomenon, is also present in fusion
devices. However, its exact nature differs from standard fluid turbulence18. In a plasma, in-
stabilities occurring on the ion or electron gyroradius scale (micro-instabilities) can become
unstable and grow, eventually leading to fine-scale turbulence19. The turbulence-induced
transport across the confining magnetic field is the widely accepted explanation for anoma-
lous transport13.

Anomalous transport will dominate the energy confinement time in future fusion devices3.
Thus the primary approach to reach sufficiently high confinement times is to build gigantic
devices, culminating in the currently being built ITER tokamak20. Complementary to big
machines is a less cost-intensive approach, reducing turbulent transport by optimizing the
operational conditions. Achieving this goal requires a comprehensive understanding of the
nature of plasma micro-turbulence.

A broad range of physical models exists to describe turbulence in a plasma, varying in
the fidelity employed. The hierarchy reaches from simple fluid models commonly known
as Hasegawa-Mima21, Hasegawa-Wakatani22 or drift-reduced Braginskii23, to more advanced
gyro-fluid24 or gyro-moments25 models, up to high fidelity gyrokinetic models (discussed in
detail in section 2). Fluid models can capture essential properties of plasma turbulence,
especially in the edge where the plasma is highly collisional and the theory is most valid.
The details of turbulence cannot be fully described as kinetic effects are important26,27.
Thus, gyrokinetic theory is considered the fundamental tool to simulate and describe micro-
turbulence in a plasma28.

Predicting turbulent transport requires nonlinear gyrokinetic simulations, running until the
growth of the micro-instabilities saturates and the turbulence achieves a quasi-stationary
state. The simulation of turbulence using gyrokinetic codes is costly in terms of compu-
tational time, requiring the massive parallelization of calculations on the world’s leading
supercomputers. These constraints led to the development of many computational tools,
using different numerical techniques to reduce the required computational cost as much as
possible (see section 2.4 for an overview). The last decades have brought enormous progress
in understanding core turbulence (see Ref. [29] for a review). Contrary, the nature of the
plasma edge is yet to be unraveled30, despite critically determining the energy confinement
time. Part of this issue is the inapplicability of the tools used in the plasma core, which
rely on magnetic field-aligned coordinate systems, a choice that does not work with magnetic

19



Chapter 1 – Introduction

X-points (see Fig. 1.2). The development of new tools to simulate turbulence in the complex
magnetic geometry of diverted tokamaks was required31–34. The GENE-X code is among these
tools, and its physics extension for the applicability in the plasma edge is the subject of this
thesis.

1.2 Open Problems in Edge Plasma Physics
Improved Confinement Regimes and the LH-Transition
As fusion approaches more and more reactor-relevant conditions with high-temperature gra-
dients, turbulence becomes a significant issue because it deteriorates the confinement of the
system1. Plasma confinement is essential, as it determines the performance of a future re-
actor. Consequently, the cost of a future power plant is most sensitive to the quality of
confinement35. For this reason, the Eurofusion roadmap for the realization of fusion energy2

states that suitable plasma regimes of operations must minimize the energy losses due to
turbulence. One possible operation regime is the so-called high confinement mode (H-mode)
discovered more than 40 years ago36. The H-mode improves the confinement of the plasma
by a factor of two, decreasing the cost of a potential fusion reactor by 60%37.

The H-mode and the physics of the transition to advanced confinement regimes have yet
to be fully understood. While recent years have shown substantial experimental progress
to advance aspects of the understanding of the LH-transition38–42, a comprehensive theory
is still missing. Current modeling efforts focus on using fluid codes43 or reduced turbulence
models44. Recently, a fluid-like drift-Alfvén model achieved progress in explaining operational
boundaries in the transition from L- to H-mode45. However, for a more profound understand-
ing, first-principles high-fidelity simulations of the LH-transition are required. The complex
geometry and significant changes in the background plasma make traditional gyrokinetic
codes unusable. Only one high-fidelity gyrokinetic study could observe an LH-transition-like
event so far46. Since that work was published more than five years ago, the lack of appropri-
ate numerical tools has hindered achieving substantial progress. Independent verification by
other gyrokinetic codes is necessary.

The Power Exhaust Problem
The dynamics in the closed and open field line regions differ significantly in a fusion device.
The magnetic field lines can be considered an excellent thermal insulator. Little heat can
penetrate across field lines compared to along field lines. This results in a situation where
the heat crossing the last closed flux surface enters the open field line region and is quickly
transported toward the divertor plates, resulting in a narrow region of power deposition.
This so-called power exhaust problem is among the major obstacles for future reactors, as
the estimated power densities exceed the currently supported engineering limits47. While
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parallel transport dominates in the scrape-off layer (SOL), the width of the deposited heat
flux depends on the exact ratio between parallel and cross-field transport. A projection,
based on data from today’s available machines to the currently being-built ITER tokamak,
predicts extremely narrow widths of power deposition, posing a concern for the plasma-facing
components of ITER48. Due to its importance, the Eurofusion roadmap for the realization of
fusion energy2 highlights the power (or heat) exhaust problem as one of the primary obstacles
to realizing a fusion reactor.

To which extent this extrapolation holds is still subject to further studies, as the result of a
gyrokinetic simulation predicts values larger by more than a factor of five46. Similar results
were achieved by simulations with fluid models49, although some studies indicate that kinetic
effects could be relevant in the SOL50. Based on these more favorable results for ITER, a
new scaling has been developed51. The verification of these results by other gyrokinetic codes
remains an open task. The goal is to establish a confident prediction for the width of power
deposition, allowing to design divertors accordingly52.

The challenge for modeling is the involvement of multiple disparate regions in the plasma
that, up to now, were mostly considered independent in gyrokinetic simulations. The dy-
namics in the SOL mainly govern the heat flux to the divertor plates, while the plasma edge
determines the radial heat transport from the core to the SOL30. This complex situation
requires simulations that capture the interplay of core, edge, and SOL turbulence53.

1.3 Scope of this Thesis
The lack of a comprehensive theory of the LH-transition, the power exhaust problem, as
well as the limited understanding of edge and scrape-off layer turbulence have led to the
development of the GENE-X code34. The high-fidelity gyrokinetic model employed in the code
is sufficient to develop turbulence. However, it cannot solely provide the necessary physics
to model the plasma edge accurately. One of the most critical extensions is the inclusion of
collisions because the temperature decreases toward the outside of the plasma, increasing the
collisionality. Zonal flows, turbulence-generated mesoscale shear flows, provide a saturation
mechanism for a large class of micro-instabilities54 and are damped by collisions55. Micro-
instabilities, driven by particles trapped in the low field side of the tokamak, are very sensitive
to collisions56. In the vicinity of considerable density and temperature gradients, such as in
the steep gradient region, which evolves during the LH transition, collisional effects could be
important57.

This work aims at extending the physics capabilities of the GENE-X code to include the effect
of collisions in gyrokinetic simulations. The main research question is if collisions significantly
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affect edge turbulence and what degree of fidelity a collision model must provide. Developing
efficient numerical techniques is a crucial element in enabling collisional simulations. Facing
future simulations of large-scale devices such as ITER, a high-performance code implemen-
tation is a primary objective. Since gyrokinetic codes are costly, finding a balance between
computational complexity and model accuracy may be worthwhile. Quantifying the degree
of trustworthiness of the implemented collision models requires performing a validation study
against a real experiment. This work should provide a stepping stone toward future appli-
cations in exploring LH-transition physics, modeling divertor heat exhaust, and ultimately
realizing fusion energy.

1.4 Content Overview
The content of this thesis is structured as follows. The second chapter chapter briefly in-
troduces gyrokinetic theory, the model used to study turbulence in this work. The basic
concepts of kinetic theory and charged particle dynamics are discussed to motivate the de-
velopment of guiding-center theory. Subsequently, gyrokinetic theory is introduced, and an
overview of existing gyrokinetic codes is given. At the end of that chapter, the GENE-X code
is presented.

The third chapter reviews the basic theory of plasma collisions and discusses the general
properties of collision operators. The Lenard-Bernstein/Dougherty (LBD) collision operator
used in GENE-X is derived from the Fokker-Planck equation. The model parameters are
selected such that collisions conserve the individual particle density, the total momentum,
and the system’s total energy on the continuous level. The relaxation rates reproduce either
the Boltzmann collision operator’s momentum or temperature relaxation rate, depending on
the version chosen.

The fourth chapter contains the numerical developments required in order to make collisional
simulations with GENE-X possible. The numerics include a modification of the quadrature
schemes and the development of the discretized LBD collision operator. A finite difference
version and an advanced, conservative finite volume version are presented. The latter is de-
veloped to achieve the exact numerical conservation of particle density, total momentum, and
total energy up to machine precision. These corrections are necessary to enable simulations
on a long time scale, which are required for gyrokinetic turbulence simulations. Additionally,
details on verifying the discretizations (published in Ref. [58]) are presented. Further, the
stability of the time-stepping scheme, combined with the discretized collision operator, is an-
alyzed. It is shown that the implementation of advanced time-stepping schemes is required
to use the collision operator in a gyrokinetic code. Finally, the LBD operator is implemented
in the high-performance code GENE-X, and an intra- and inter-node performance benchmark
is presented.
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In the fifth chapter, applications of the newly developed collision models are shown. The
code is validated in a realistic experimental scenario of the TCV tokamak, the first-of-its-kind
validation of a global gyrokinetic code. Simulations without collisions, with basic Bhatnagar-
Gross-Krook (BGK) and advanced LBD collisions, are compared, and the underlying tur-
bulence is analyzed using newly developed tools, such as temporal and flux-surface Fourier
diagnostics as well as trapped-particle diagnostics. The validation and turbulence charac-
terization sections provide details of published results in Ref. [59]. Finally, the effect of the
perpendicular velocity space resolution is analyzed by comparing the reference simulation to
a simulation with reduced resolution, for which an improved numerical discretization of the
LBD operator has been developed.

The final chapter contains the summary and conclusion of this thesis, as well as an outlook
on open problems and the next steps required toward developing a comprehensive tool for
the simulation of gyrokinetic turbulence in future fusion reactors.
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Chapter 2

Gyrokinetic Theory and Simulation

Gyrokinetic theory is a physical model suited to simulate plasma turbulence28. The first
nonlinear gyrokinetic equations were derived in the early 1980s in Ref. [60]. A summary of
the theory can be found in the review article in Ref. [61]. The equations implemented in the
gyrokinetic turbulence code GENE-X are given in Ref. [62].

This chapter aims to introduce gyrokinetic theory using a two-step approach. The first step
introduces guiding-center theory, constructing equations with fast gyromotion removed from
the dynamics. The second step introduces the gyrocenter as a perturbed guiding center,
allowing for the inclusion of fluctuating electromagnetic fields in the resulting equations.
The end of the chapter presents an overview of existing gyrokinetic codes, highlighting the
GENE-X code relevant to this thesis.

2.1 The Kinetic Equation
The kinetic theory of plasmas describes the behavior of a distribution of particles fα of
species α in 6D phase space (x,v). Here, x denotes the particle position in real space, while
v denotes the particle’s velocity, or in the kinetic view, its position in velocity space. The
temporal evolution of the distribution function is given by the kinetic equation63,64

dfα
dt = ∂fα

∂t
+ v · ∂fα

∂x
+ Fα

mα

· ∂fα
∂v

= dfα
dt

∣∣∣∣∣
coll
, (2.1)

where Fα denotes forces on the particle, and the right-hand side describes the change due
to collisions. In section 3, collisions will be treated in detail. Here a collisionless plasma
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is assumed temporarily. The relevant force Fα is the Lorentz force, which results in the
collisionless kinetic or Vlasov equation65,

∂fα
∂t

+ v · ∂fα
∂x

+ qα
mα

(
E + 1

c
v × B

)
· ∂fα
∂v

= 0. (2.2)

Here qα and mα denote charge and mass, and c is the speed of light. In this work, Gaussian cgs
units66 are used. The macroscopic∗ electric and magnetic fields E = E(x, t) and B = B(x, t)
are determined by Maxwell’s equations67,

∇ · E = 4πρ, ∇ · B = 0, (2.3)

∇ × B − 1
c

∂E
∂t

= 4π
c

J ∇ × E + 1
c

∂B
∂t

= 0. (2.4)

The Vlasov-Maxwell system is closed by expressions for the charge density ρ and current
density J, which are given by velocity space moments of the distribution function

ρ =
∑
α

qα

∫
fαdv, (2.5)

J =
∑
α

qα

∫
vfαdv. (2.6)

2.2 Guiding-Center Dynamics
Charged particles in magnetic fields will perform a circular periodic gyromotion with the
gyro- (or cyclotron-) frequency Ωc,α = |qα|B/(mαc), where B = |B| is the magnitude of the
magnetic field. The circle of gyration has the size of the Larmor radius ρL,α = v⊥,α/Ωc,α,
where v⊥,α is the velocity of the particle perpendicular to the field. A velocity component
parallel to the magnetic field v||,α results in a superposition of parallel motion and gyration.
The moving charge represents a current Iα = |qα|Ωc,α/(2π) that encloses the area Aα = πρ2

L,α

and creates a magnetic moment µα = IαAα/c = mαv
2
⊥,α/(2B)68. For a magnetic field that is

almost constant within the period of a single gyration, the magnetic moment is a conserved
quantity µα = const. (adiabatic invariant), along the orbit of the particle65.

Due to the periodic nature of the gyromotion, gyrating particles will be sensitive to forces
perpendicular to the magnetic field, i.e., within the plane of gyration. This results in cross-
field drifts64,

vd,α = c
E × B
B2 +

v2
⊥,α

2Ωc,α

b × ∇ lnB +
v2

||,α

Ωc,α

b × κ, (2.7)

∗These are not the microscopic electromagnetic fields created by individual charges.
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where b denotes the magnetic field unit vector. The three individual terms are called E × B
drift, grad-B (∇B) drift, and curvature drift. This expression only holds for weak electric
fields, such that the E × B drift is smaller than a Larmor radius per gyroperiod64∗. An
estimate for the typical time τd it takes a particle to pass a distance of the order or R0 for
all three drifts is τ−1

d ∼ vd,α/R0 ∼ v2
th,α/(Ωc,αR

2
0) ∼ Ωc,α(ρL,α/R0)2. Thus, the drift motion

happens on a much slower time scale than the gyration,

τ−1
d ≪ Ωc,α. (2.8)

2.2.1 Guiding-Center Equations

The kinetic theory presented in section 2.1 includes the effect of all single particle dynamics.
Resolving the fast electron gyromotion while considering the whole six-dimensional phase
space is tremendously expensive for a computational code. Fortunately, the ordering (2.8)
and the adiabatic invariance of the magnetic moment can be exploited. Consequently, it
is not necessary to construct a kinetic theory for individual particles. Instead, a reduced
kinetic theory of the particle guiding centers adequately describes processes on time scales
slower than the gyration. Guiding-center theory aims to derive equations for the motion
of the guiding center instead of the particle itself. As a result, these equations remove the
fast dynamics of the gyromotion and conserve the magnetic moment. The procedure reduces
the potential cost of numerical simulation enormously since, first, the time step does not
need to be as small as the gyroperiod, and second, the equations become independent of the
gyroangle, reducing the system to five dimensions.

The guiding center position is given as xgc ≈ x + ρL,α in lowest order approximation†. Here
ρL,α denotes the gyroradius vector, which contains the information about the displacement of
the particle from its guiding center. Further, the velocity of a particle is written in cylindrical
coordinates as v = (v||, µ, θ), where the magnetic moment is a measure for the magnitude of
the perpendicular velocity µ ∼ v2

⊥ and θ is the gyroangle.

The guiding-center equations of motion are typically derived from a guiding-center La-
grangian, which is obtained by transforming the particle Lagrangian (either by Lie-trans-
formation71 or by gyroaveraging the particle Lagrangian and using a variational principle72).
Moreover, a Vlasov equation for the distribution of guiding centers can be derived using
a guiding-center Poisson bracket with the guiding-center Hamiltonian. The guiding-center

∗For an estimation, the equilibrium electric field69 Er = (∂pα/∂r)/(qαnα) can be considered, where
pα = nαTα denotes the pressure and all other terms in the momentum equation were neglected. It follows
that Er ∼ mαv2

th,α/(2qαR0) which fulfills the above restriction on weak electric fields.
†This is exact for a uniform magnetic field70.
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Poisson bracket can be constructed from the guiding-center Lagrangian. See section 4 of Ref.
[72] for more details.

The following summarizes the first-order guiding-center theory from Ref. [72]. The ordering
concerns a small parameter ϵB = ρL/LB, specifying the ratio between the Larmor radius and
the magnetic field non-uniformity scale length. The guiding center coordinates are (x̄, v̄||, µ̄, θ̄)
which denote the position, parallel velocity, magnetic moment and gyroangle. The guiding
center Lagrangian and Hamiltonian are,

Lgc =
(
qα
c

A +mαv̄||b
)

· ˙̄x + mαc

qα
µ̄ ˙̄θ − Hgc, (2.9)

Hgc = 1
2mαv̄

2
|| + µ̄B + qαϕ, (2.10)

where A denotes the vector potential and ϕ the electrostatic scalar potential. While the
vector potential can be large, since the leading order term generates the background magnetic
field, the electrostatic potential is assumed to be small. In the formulation of Ref. [73], the
modified potential and fields are used

A∗ = A + mαc

qα
v̄||b, (2.11)

B∗ = ∇ × A∗ = B + mαc

qα
v̄||∇ × b, (2.12)

and magnetic and electric fields constant in time† are assumed such that E∗ = E = −∇ϕ.
The guiding-center equations of motion are

˙̄x = 1
B∗

||

(
v̄||B∗ + c

qα
b × (µ̄∇B + qα∇ϕ)

)
, (2.13)

˙̄v|| = − 1
mα

B∗

B∗
||

· (µ̄∇B + qα∇ϕ), (2.14)

˙̄µ = 0, (2.15)
˙̄θ = Ωc,α. (2.16)

First, taking the dot product b · ˙̄x = v̄|| shows that the latter coordinate is the guiding-center
parallel velocity. Second, the perpendicular components of the first equation contain all three
drifts discussed in eq. (2.7), the E × B, the grad-B, and the curvature drift (the latter is
contained within the modified magnetic field). Third, the parallel velocity change contains
the mirror force and acceleration from the electric field. Fourth, the guiding center magnetic

†In the original reference [72], fields are allowed to vary slowly on a drift time scale. The only modification
required is in the modified field E∗. Here, for explanatory purposes, only the simpler case of static fields is
considered.
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moment is a conserved quantity. Fifth, the temporal change of the gyroangle is proportional
to the gyrofrequency. The Jacobian of the guiding-center transformation Jgc is given, up to
a factor of mass, by the parallel component of the modified magnetic field,

B∗
|| = B + mαc

qα
v̄||b · (∇ × b). (2.17)

The guiding center Poisson bracket is constructed as mentioned in section 4 of Ref. [72].
Applied on two functions F,G, it reads

{F,G}gc =
(
∂F

∂θ̄

∂G

∂µ̄
− ∂G

∂θ̄

∂F

∂µ̄

)
+ B∗

B∗
||

·
(

∇F ∂G
∂v̄||

− ∇G∂F
∂v̄||

)
+ b
B∗

||
· (∇F × ∇G) . (2.18)

It can be easily verified that this reproduces the equations of motion (2.13)-(2.16) by evaluat-
ing Hamilton’s equations ˙̄z = {z̄,Hgc}gc for z̄ denoting any of the guiding-center coordinates.

The guiding-center Vlasov equation is now straightforward to derive. The gyroangle indepen-
dent distribution function f̄α =

〈
f̄α
〉

is introduced, where the brackets denote a gyroaverage.
Since the fast dynamics on the scale of the gyromotion are not of interest, this is the quantity
that is considered. The time derivative of this distribution is then given by ˙̄fα = {f̄α,Hgc}gc.
Since the Hamiltonian (2.10) is gyroangle independent, the first contribution in the Poisson
bracket is zero. Thus, evaluating the remaining terms results in

∂f̄α
∂t

+ 1
B∗

||

(
B∗v̄|| + c

qα
b ×

(
µ̄∇B + qα∇ϕ

))
· ∇f̄α − B∗

mαB∗
||

·
(
µ̄∇B + qα∇ϕ

)∂f̄α
∂t

= 0.

(2.19)

This equation is often called the drift-kinetic equation (with collisions included, otherwise
drift-kinetic Vlasov equation). It describes the temporal evolution of the guiding-center
distribution in 4D phase space. The gyroangle dependence has been eliminated, and the
magnetic moment is only a parameter in this equation. The prefactors to the derivatives of
f̄α are the characteristics (2.13) and (2.14). The given formulation is valid up to first-order
in magnetic field non-uniformity ϵB.

While the above equations describe the dynamics of the guiding centers in electromagnetic
fields, the equations for these fields are yet to be given. In the simplest case, one may use
Maxwell’s equations as is. However, the guiding-center charge and current densities

ρ̄ = 2π
∑
α

qα

∫
Jgcf̄αdv̄||dµ̄, (2.20)

J̄ = 2π
∑
α

qα

∫
Jgcv̄||f̄αdv̄||dµ̄, (2.21)
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are not necessarily the same as their particle counterparts (2.5) and (2.6). The difference
between charge and current densities of the guiding centers and particles can be written in
terms of polarization charges and magnetization currents74. It is possible to derive expres-
sions for guiding-center polarization and magnetization using push-forward or variational
approaches75. Alternatively, guiding-center field theory can be used to derive a consistent set
of Vlasov-Maxwell equations76.

This section has shown that equations for the guiding center of a particle and the correspond-
ing evolution of the guiding-center distribution function can be derived. These equations are
beneficial analytically and computationally, as the fast gyromotion has been removed, mak-
ing the equation five-dimensional. However, this version assumed that the electromagnetic
fields are either static or change slowly in time72. The question arises if it is possible to derive
similar equations which allow the electromagnetic fields to fluctuate in time, suitable for the
simulation of turbulence. A naive approach setting ϕ = ϕ(t) in eq. (2.10) immediately intro-
duces a gyroangle dependence to the Vlasov equation since the electrostatic potential would
depend on the gyroangle, and ∂H/∂θ̄ would not be zero. Further, the magnetic moment
would not be conserved, making the theory six-dimensional again. Using this naive approach
would lose all benefits of guiding-center theory, leading to the development of the gyrokinetic
equations.

2.3 Gyrokinetic Equations
In the last paragraph of section 2.2.1, it was sketched that the guiding-center equations are
not suited to include fluctuating electromagnetic fields. Thus, constructing a kinetic theory
for perturbed guiding centers, called gyrocenters, is necessary. The dependence on the fast
gyromotion can be removed in a transformation very similar to the guiding-center trans-
formation itself61. In the process, new gyrocenter coordinates (¯̄x, ¯̄v||, ¯̄µ, ¯̄θ) are constructed,
with dynamics similar to their guiding-center counterparts, i.e., conservation of gyrocenter
magnetic moment ¯̄µ.

The first derivation of gyrokinetic equations was performed in Ref. [60], which used an asymp-
totic expansion regarding the magnitude of the fluctuating fields. While these equations were
valid at second-order, the lack of conservation properties61 and the missing of a systematic
approach led to the development of alternative methods using Lie transformation theory
(see, e.g., Refs [77, 78] for an introduction). Gyrokinetic equations derived using the Lie
transformation approach can be found in Ref. [79] and [80]. As mentioned in section 2.2.1,
the corresponding field equations were initially derived using push-forward methods until
later in the early 2000s gyrokinetic field theory was formulated81–83. The variational meth-
ods allow deriving consistent Vlasov-Maxwell equations following exact conservation laws61.
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The typical approach in Lie transformation theory is applying the guiding-center and the
gyrocenter transformation successively61. Other approaches exist where the guiding-center
transformation can be replaced by using an appropriate translation in velocity, leaving only
the gyrocenter transformation to be performed84.

The following presents a specific version of the gyrokinetic equations that will be used in this
work. This version is based on the parallel-symplectic model in Ref. [61] and generally for-
mulated in Ref. [62]. Here, perpendicular vector potential fluctuations will be neglected, i.e.,
A1,⊥ = 0, while keeping contributions from gyro-averaging the fluctuating potentials. The
notation will be simplified by denoting (extended) gyrocenter coordinates as (x, v||, µ, θ, t, w).
The motion is described on a 7D hypersphere of constant energy w, embedded in 8D extended
phase space. The fields are ϕ1 = ϕ1(x + ρgy,α) and A1,|| = A1,||(x + ρgy,α). The displacement
from the gyrocenter position is given in lowest order by ρgy,α =

√
2µB/(mαΩ2

c,α)ρ+O(ϵB, ϵδ)
where ρ denotes the gyroradius unit vector (see Ref. [61] for more details and higher-order
expressions). Since the gyroradius unit vector essentially follows a particle through its gyra-
tion, the fluctuating potentials acquire a dependence on the gyroangle. Averaging through a
single period of gyration is denoted by ⟨ϕ1⟩ and called gyroaverage. The fluctuating part is
then simply ϕ̃1 = ϕ1 − ⟨ϕ1⟩.

The gyrokinetic theory used assumes the following ordering62. First, magnetic field non-
uniformity is assumed small ϵB ∼ ρth,i/LB ≪ 1, where L−1

B = ∇ lnB and ρth,i is the
thermal Larmor radius of an ion. Second, fluctuation amplitudes ϵδ ∼ k⊥ρth,iqiϕ1/Ti ∼
(vth,i/c)qiA1,||/Ti ≪ 1 are small, where k⊥ denotes the wavelength of the perturbations per-
pendicular to the magnetic field. Third, parallel dynamics are assumed to be much faster
than perpendicular dynamics. Thus their scale must be larger ϵ|| ∼ k||/k⊥ ≪ 1. Fourth, the
time scale of the fluctuations is assumed to be larger than the gyroperiod, ϵω ∼ ω/ΩL,i ≪ 1.
Further, ϵB ∼ ϵ2

δ and ϵδ ∼ ϵ|| ∼ ϵω.

The gyrocenter extended Hamiltonian is given as61,

Hgy = 1
2mαv|| + µB + qα ⟨ϕ1⟩

+ q2
α

2B
∂

∂µ

〈
ϕ̃2

1

〉
− mαc

2

2B∗
||

b ·
〈
∇Φ̃1 × ∇ϕ̃1

〉
+ q2

α

2mαc2

(〈
A2

1,||

〉
−
〈
A1,||

〉2
)

− w, (2.22)

where the first two terms are of order zero, the third term is of order one, and the second row
is the second-order contribution (except the last term). Here ∂Φ̃1/∂θ = ϕ̃1. The gyrokinetic
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Poisson bracket is61∗,

{F,G}gy = qα
mαc

(
∂F

∂θ

∂G

∂µ
− ∂G

∂θ

∂F

∂µ

)
+ B∗

mαB∗
||

·
(

∇∗F
∂G

∂v||
− ∇∗G

∂F

∂v||

)

+ cb
qαB∗

||
· (∇F × ∇G) +

(
∂F

∂w

∂G

∂t
− ∂F

∂t

∂G

∂w

)
, (2.23)

∇∗F = ∇F + q2
α

mαc2

∂
〈
A1,||

〉
∂µ

∂F

∂θ
−
∂
〈
A1,||

〉
∂t

∂F

∂w

 , (2.24)

with the modified magnetic field

B∗ = B + v||∇ × b + ∇ ×
〈
A1,||

〉
b. (2.25)

The parallel component J = B∗
||m

2
α constitutes the gyrocenter Jacobian. The gyrokinetic

equations of motions are61,

ẋ = 1
B∗

||

(
B∗

mα

∂Hgy

∂v||
+ c

qα
b × ∇Hgy

)
, (2.26)

v̇|| = − B∗

mαB∗
||

· ∇Hgy − qα
mαc

∂
〈
A1,||

〉
∂t

, (2.27)

µ̇ = 0, (2.28)
θ̇ = Ωc,α, (2.29)

and the gyrokinetic equation is61

∂fα
∂t

+ ẋ · ∇fα + v̇||
∂fα
∂v||

= 0, (2.30)

where fα = ⟨fα⟩ denotes the gyroaveraged distribution of gyrocenters. This equation achieves
the goal of deriving an equation similar to the drift-kinetic equation (2.19) but is valid in the
presence of fluctuating electromagnetic fields. The derivation removed the fast gyromotion
from the dynamics, and the magnetic moment is a conserved quantity. It is interesting to
compare the equations from this section to their guiding-center counterparts. In the limit
A1,|| = 0 and ϕ̃1 = 0, both versions are the same†. While these equations can readily be used
in gyrokinetic turbulence simulations, further simplifications can still be applied.

∗Here the gyrogauge vector field71 has been neglected.
†This is not the same as the drift-kinetic limit (long wavelength limit) of the gyrokinetic equation.
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2.3. Gyrokinetic Equations

Long Wavelength Approximation
The fluctuating fields are typically approximated by an expansion61,

ϕ1(x + ρgy,α) ≈ eρgy,α·∇ϕ1(x) =
(

1 + ρgy,α · ∇ + 1
2ρgy,αρgy,α : ∇∇ + O(ρ3

gy,α)
)
ϕ1(x).

(2.31)

The long wavelength approximation (LWA) only keeps the leading order terms. Using ρL,α
to denote the leading order term in the gyrocenter displacement, the assumption ρL,α · ∇ ∼
ρL,αk⊥ < 1 leads to85

ϕLWA
1 (x + ρgy,α) ≈ (1 + ρL,α · ∇)ϕ1(x), (2.32)〈

ϕLWA
1 (x + ρgy,α)

〉
= ϕ1(x), (2.33)〈(

ϕLWA
1 (x + ρgy,α)

)2
〉

= ϕ1(x)2 + |ρL,α|2

2 |∇⊥ϕ1(x)|2. (2.34)

In the last identity, the second-order term provides the factor one-half through gyroaveraging
the squared gyroradius unit vector. Since the gyroradius unit vector is perpendicular to the
magnetic field, the gradient is projected to the perpendicular plane by (I − bb) · ∇ ≡ ∇⊥.
This can be inserted into the gyrokinetic Hamiltonian (2.22) to give62,

HLWA
gy = 1

2mαv|| + µB + qα ⟨ϕ1⟩ + mαc
2

2B2 |∇⊥ϕ1|2 − w. (2.35)

The second-order Hamiltonian was approximated by the potential squared term only85.
The Poisson bracket is given by replacing

〈
A1,||

〉
→ A1,|| and dropping the contribution

∂A1,||/∂µ = 0 in ∇∗.

The LWA of the equations of motions reads62,

ẋLWA = 1
B∗

||

(
B∗v|| + c

qα
b × (µ∇B + qα∇ϕ1 + ∇H2)

)
, (2.36)

v̇LWA
|| = − B∗

mαB∗
||

·
(
µ∇B + qα∇ϕ1 + ∇H2

)
− qα
mαc

∂A1,||

∂t
, (2.37)

where the second-order Hamiltonian is

H2 = mαc
2

2B2 |∇⊥ϕ1|2. (2.38)

This term describes ponderomotive effects, i.e., effects on low-frequency dynamics due to
averaged high-frequency dynamics61. The second term in eq. (2.22) involving the electrostatic
potential fluctuations would also provide such effects in a non-simplified Hamiltonian.
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Chapter 2 – Gyrokinetic Theory and Simulation

Field Equations
The equations governing the electromagnetic field fluctuations ϕ1 and A1,|| can be derived
using either push-forward methods to obtain gyrocenter polarization and magnetization75 or
variational methods in gyrokinetic field theory81–83. A detailed derivation is given in Ref. [62].
In the LWA, the resulting quasi-neutrality equation for ϕ1 and Ampère’s law for A1,|| read

−∇ ·
(∑

α

mαc
2nα

B2 ∇⊥ϕ1

)
=
∑
α

qα

∫
fα dV, (2.39)

−∆⊥A1,|| = 4π
∑
α

qα
c

∫
v||fα dV, (2.40)

where the velocity space element is dV = 2πB∗
||/mα dv|| dµ and ∆⊥ = ∇·∇⊥ is the perpendic-

ular Laplacian. In the quasi-neutrality equation, the left-hand side describes the gyrocenter
polarization, while the right-hand side is the gyrocenter charge. This equation results in
a balance in terms of particle charges. The Laplacian term ∆ϕ1 known from the Poisson
equation67 is typically ordered much smaller than the polarization term and thus removed
by construction86,87.

Linearized Quasi-Neutrality Equation
The long wavelength approximation can be further simplified by replacing the density in the
gyrocenter polarization with an equilibrium density nα → n0,α,

−∇ ·
(∑

α

mαc
2n0,α

B2 ∇⊥ϕ1

)
=
∑
α

qα

∫
fα dV, (2.41)

−∆⊥A1,|| = 4π
∑
α

qα
c

∫
v||fα dV. (2.42)

The theory is constructed such that the overall dynamics are energy consistent88. The cor-
responding equations of motion read62,

ẋlqn = 1
B∗

||

(
B∗v|| + c

qα
b ×

(
µ∇B + qα∇ϕ1

))
, (2.43)

v̇lqn
|| = − B∗

mαB∗
||

·
(
µ∇B + qα∇ϕ1

)
− qα
mαc

∂A1,||

∂t
, (2.44)

where “lqn” labels the version that needs to be used with the linearized quasi-neutrality
equation.
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Decoupled Field Equations
The volume element containing B∗

|| implicitly couples the field equations since it depends on
A1,|| via eq. (2.25). The assumption ∇ ×A1,||b ≈ ∇A1,|| × b decouples the field equations by
removing this term from the Jacobian∗. The simplified modified magnetic field reads62,

B∗ ≈ B + mαc

qα
v||∇ × b + ∇A1,|| × b. (2.45)

2.4 Gyrokinetic Codes

The development of gyrokinetic codes can be traced back to the 1980s89 after the first deriva-
tion of the nonlinear gyrokinetic equation60. Since then, a lot of different codes have been
developed, based on either the particle in cell (PIC)90, semi-Lagrangian91 or Eulerian (contin-
uum)92 approaches. While these three methods use different approaches† to solve the Vlasov
equation, the fluctuating electromagnetic fields need to be represented and solved on a grid
in all approaches. Another differentiation can be done between full-f and delta-f codes,
the latter employing a splitting into equilibrium and fluctuating part f = f0 + δf of the
distribution function and only evolving the fluctuating part29.

There are a variety of gyrokinetic codes present. A selection without the claim of complete-
ness is presented in the following. In the confined region of the plasma, codes are field-aligned
to save upon the computational resources and better resolve the flute-like structure of turbu-
lence. The PIC approach is followed by GTC-P93, ORB594, GTS95 or GEM96. Grid-based codes
are GENE97,98, GS292,99,100, (C)GYRO101,102, GKW103, GKV104 and GT5D105. The semi-Lagrangian
approach is used by GYSELA106. Field-alignment can also be used solely in the SOL, which
is simulated by the PIC code PICLS107 or the continuum code GKEYLL108,109. Only a few
codes can simulate a tokamak’s full, complicated magnetic geometry, including the magnetic
X-point. Here, the PIC code XGC31,32 and the continuum codes COGENT33 and GENE-X34 exist.
The extension of the latter is the subject of this thesis.

∗A simplification which cannot be done on the Lagrangian level alone62, which may result in deviations
from the energetic consistency of the model derived88.

†Differences are discussed in Refs. [29, 87]
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Chapter 2 – Gyrokinetic Theory and Simulation

2.5 The GENE-X Code

The GENE-X code was developed62 to combine high-fidelity gyrokinetic simulations with the
capabilities of simulating in highly complex magnetic geometries, including the magnetic
X-point. The code employs an Eulerian approach similar to the GENE code by solving the
gyrokinetic Vlasov equation on a grid. Simulations in X-point geometry are possible with
the so-called flux-coordinate independent (FCI)110 approach pioneered by the drift-reduced
Braginskii turbulence code GRILLIX111. The code features a full-f , nonlinear, global, elec-
tromagnetic112 gyrokinetic model and is extended to include the physics of collisions during
this thesis58,59.

The equations solved by GENE-X were presented in this section: the electromagnetic gyroki-
netic equation (2.30) in the long wavelength approximation with a linearized quasi-neutrality
equation (2.41), (2.43), (2.44) and the approximation on the modified magnetic field (2.45)
are used. Further, the Ampère equation (2.42) is solved, but for the term containing ∂A||/∂t

in (2.44), the same scheme as in Ref. [113] is used. An Ohm’s law is derived for the inde-
pendently treated variable E|| ≡ −∂A||/∂t and solved as a third field equation (see Ref. [62]
for details). The collision models were developed in Refs. [58, 59] and will be presented in
section 3.

Within the FCI approach, coordinates are locally field-aligned, i.e., Cartesian grids are used
within poloidal planes, which are connected by a field-line map34. The Vlasov equation is
discretized using fourth-order centered finite differences as well as an Arakawa114 scheme for
terms that can be represented by Poisson brackets (E × B and ∇B drifts)34,112. The elliptic
field equations are solved within the poloidal planes ∇⊥ ≈ (∂/∂R) eR + (∂/∂Z) eZ , using a
geometric multi-grid algorithm115,116 to precondition a GMRES117 solver. Dirichlet bound-
ary conditions are used for the distribution functions, which are set to Maxwellians, and the
potentials are pinned to zero at the real space domain boundaries. Dirichlet boundary con-
ditions can be used by applying diffusion next to the domain boundaries and in front of the
divertor plates34. Additionally, the option to add fourth-order hyperdiffusion118 in real space
and parallel velocity space is available62. The time-integrator is RK4, and for the quadra-
ture schemes, Simpson in v|| and Gauss-Laguerre in µ are used for collisionless simulations62.
Chapter 4 details the different schemes used with collisions.

This chapter briefly introduced gyrokinetic theory. The long wavelength approximation
and linearization of the quasi-neutrality equation were presented. Gyrokinetic codes were
discussed, focusing on the GENE-X code.
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Chapter 3

Theory of Coulomb Collisions in
Plasmas

This chapter contains the theoretical part of developing collision models for the GENE-X
code. The first part briefly reviews the theory of Coulomb collisions, and the Lenard-
Bernstein/Dougherty (LBD) collision model is derived. The properties of this model are
discussed, and the gyrokinetic formulation is presented. Based on this, model parameters
(“mixing quantities”) are derived so that the operator conserves species density, total momen-
tum, and total energy. Two versions of collision rates are presented such that the model re-
produces the Boltzmann collision operator’s momentum or the temperature relaxation rates.
In the end, a Bhatnagar-Gross-Krook (BGK) model is presented as a reference. The expres-
sions for mixing quantities and relaxation rates for the LBD operator have been published
in Ref. [58].

A fully ionized plasma does not contain neutral particles, and the Coulomb force governs
the interaction between charged particles. Since the Coulomb force describes a long-range
interaction, a particle will experience the forces of many other particles at any time. To
obtain a kinetic theory of the plasma, one may start from the Boltzmann equation that
describes the time evolution of a distribution fα ≡ fα(x,v, t) of particles with species α due
to transport, external fields and collisions63,

∂fα
∂t

+ v · ∂fα
∂x

+ Fα

mα

· ∂fα
∂v

= Cαfα. (3.1)

Here, (x,v) denotes the six dimensional phase space, t is the time and Fα includes the
external forces on species α with mass mα. The right-hand side denotes the temporal change
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Chapter 3 – Theory of Coulomb Collisions in Plasmas

due to collisions. For binary collision events, the collision operator is bi-linear63,

Cαfα =
∑
β

Cαβ(fα, fβ). (3.2)

The total change to the distribution of species α due to collisions is given by all individual
changes due to collisions with species β, including self-collisions. Boltzmann assumed the
number of collisions per second in an infinitesimal volume dvαdvβdΩ to be proportional to
the distributions fα and fβ as well as to the relative velocity u = |vα−vβ| and the differential
cross section dσ/dΩ (“Stoßzahlansatz”)119. The solid angle is denoted as dΩ (see Ref. [120]
for more information on scattering theory). With this assumption, the Boltzmann collision
integral is given by121,

Cα =
∫

dvβu
∫

dΩdσαβ
dΩ

(
f ′
αf

′
β − fαfβ

)
, (3.3)

where the prime denotes quantities after the scattering event. This expression is generally
valid for binary collisions, independent of the interaction forces. For Coulomb interactions,
the collision integral is evaluated for the Rutherford cross-section120

dσαβ
dΩ =

q2
αq

2
β

4u4m2
αβ sin4(θ/2) , (3.4)

where θ is the scattering angle, q denotes the charge and mαβ = mαmβ/(mα + mβ) is the
reduced mass. This integral has been evaluated in Ref. [122] and [123], resulting in the
collision operator being Fokker-Planck-type.

3.1 Fokker-Planck Collision Operator
The evaluation of the Boltzmann collision integral for Coulomb interaction results in a colli-
sion operator of Fokker-Planck form124

Cαβfα = − ∂

∂v
·
(
Kαβfα

)
+ 1

2
∂2

∂v∂v
:
(
Dαβfα

)
, (3.5)

where Kαβ is the friction coefficient (vector) and Dαβ the diffusion coefficient (tensor). The
Fokker-Planck form is because Coulomb collisions lead to small angle scattering, effectively
changing the distribution of particles by a large number of small changes. This fact is
well known from the theory of Brownian motion124. The following sections present the
two different versions of the Fokker-Planck equation for Coulomb collisions and the general
properties of collision operators.
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3.1. Fokker-Planck Collision Operator

3.1.1 Rosenbluth Form

In this formulation, the friction and diffusion coefficients are given by123,125,

Kαβ = Γαβ
∂Hαβ

∂v
, (3.6)

Dαβ = Γαβ
∂2Gαβ

∂v∂v
, (3.7)

with Rosenbluth potentials

Hαβ = mα +mβ

mβ

∫
dv′fβ(v′)|u|−1, (3.8)

Gαβ =
∫

dv′fβ(v′)|u|, (3.9)

and factors

Γαβ =
4πq2

αq
2
β

m2
α

ln Λαβ, (3.10)

where u = v − v′. The quantity ln Λαβ denotes the Coulomb logarithm discussed in sec-
tion 3.1.4. It is important to note that in the Boltzmann equation (3.3), the contribution
after the collision event is present and denoted by a prime, whereas here, this explicit con-
tribution was removed by evaluating the collision integral. For the remainder of this work,
the standard notation from Ref. [123] is adopted, where v′ denotes the velocity space of fβ.

The term “potentials” comes from the fact that there is an analogy to electrostatics, leading
to additional relations (

∂

∂v

)2

Hαβ = −4πmα +mβ

mβ

fβ(v), (3.11)(
∂

∂v

)4

Gαβ = −8πfβ(v), (3.12)

Hαβ = mα +mβ

2mβ

(
∂

∂v

)2

Gαβ, (3.13)

where the operator (∂/∂v)2 denotes the Laplacian.
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3.1.2 Landau Form

The Landau formulation of the Fokker-Planck equation is given by122,

Cαβ (fα, fβ) = −ΓLαβ
∂

∂v
·
[∫

dv′ U ·
(
fα
mβ

∂f ′
β

∂v′ −
f ′
β

mα

∂fα
∂v

)]
, (3.14)

U = u2I − uu
u3 , (3.15)

ΓLαβ =
2πq2

αq
2
β

mα

ln Λαβ. (3.16)

The velocity tensor U can be interpreted as a projection operator onto the plane in velocity
space perpendicular to the relative velocity direction u. The prefactor is related to (3.10) by
ΓLαβ = Γαβmα/2.

From the Landau form, it is immediately clear that the collision operator can alternatively
be written as the divergence of a collisional current,

Cαβ (fα, fβ) = − ∂

∂v
· Jαβ, (3.17)

Jαβ = Kαβfα + Dαβ · ∂

∂v
fα, (3.18)

where the friction and diffusion coefficients take the form,

Kαβ = +Γαβ
mβ

∫
dv′ U · ∂

∂v′f
′
β, (3.19)

Dαβ = −Γαβ
mα

∫
dv′ U f ′

β. (3.20)

The Landau formulation is equivalent to the Rosenbluth formulation125. Typically the Lan-
dau form is used to prove the basic properties (see next section) of the collision operator126

since the symmetric form in fα and f ′
β is convenient in that case. Otherwise, the Rosenbluth

form is often more convenient16, as it avoids handling the velocity tensor, and for certain as-
sumptions (e.g., isotropic velocity distributions), the operator can be simplified considerably.
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3.1. Fokker-Planck Collision Operator

3.1.3 General Properties of Collision Operators

A physically relevant collision operator must satisfy several fundamental properties63. Here,
some of the most important ones will be listed. First, there are local conservation properties,
such as the conservation of single species density, total momentum, and total energy in the
laboratory frame ∫

dvCαβ = 0, (3.21)∫
dvmαvCαβ +

∫
dvmβvCβα = 0, (3.22)∫

dv
1
2mαv

2Cαβ +
∫

dv
1
2mβv

2Cβα = 0. (3.23)

Further, the collision operator should fulfill the H-theorem,

∂H
∂t

≤ 0, (3.24)

where the Boltzmann H-function H = −S is the negative entropy,

H =
∫

dv fα ln(fα). (3.25)

In other words, the H-theorem states that collisions always increase entropy. The temporal
change of H can only be zero if the collision operator is zero. Further, there must be an
equilibrium distribution f0 for which the collision operator is zero. Finally, if the collision
operator is repeatedly applied to any distribution, then f → f0 as t → ∞.

For the Fokker-Planck collision operator, the three conservation properties (3.21)-(3.23) as
well as the H-theorem (3.24) can be proven easily using the Landau form126.

3.1.4 Coulomb Logarithm

The Coulomb logarithm ln Λαβ was introduced in Eqs. (3.10) and (3.16). Its origin con-
nects to the nature of Coulomb collisions that lead to small angle deflections. Ref. [122]
provides a detailed discussion. Essentially, it stems from the fact that in the derivation from
the Boltzmann collision integral, an integration over all possible impact parameters∗ in the
scattering process must be performed. Small impact parameters would lead to head-on colli-
sions of particles in which the small angle assumption for the Coulomb scattering is invalid.
The collision integral diverges logarithmically for large impact parameters due to the infinite

∗The impact parameter is a measure to describe the distance of two particles in a scattering process. In a
moving frame where one particle is static, the impact parameter is the distance perpendicular to the relative
velocity vector. Details can be found in Ref. [120].
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extent of the Coulomb force without shielding. Thus, two cut-offs must be introduced in the
Boltzmann collision integral, which leads to the definition of the Coulomb logarithm

ln
(
bmax

bmin

)
:= ln Λ. (3.26)

The impact parameter is denoted by b, and the species indices are suppressed for simplicity.
Typical expressions are given in, e.g., Refs. [127], [69] and [128]. A natural choice for the
upper cut-off is the Debye length λD =

√
T/(4πne2) since above this distance, the plasma

is quasi-neutral, and the Coulomb force is screened. Here, T and n denote temperature and
density, and e is the elementary charge. For the lower cut-off, either the Landau length
(classical distance of closest approach)65 λL = e2/T or, in the case quantum effects may
become important, the de Broglie wavelength λdB = ℏ/

√
mT , or a combination of both, is

used. In Ref. [129], different versions were developed. In this work, version No. 4 of that
reference is chosen,

ln Λ = 1
2 ln

(
1 + λ2

D
λ2

dB + λ2
L

)
. (3.27)

Due to the weak dependence of the logarithm on the exact form of the argument, the later-on
calculations in this work will not distinguish the Coulomb logarithm for different species and
ln Λ ≡ ln Λαβ will be used interchangeably.

3.1.5 Model Operators

The full Fokker-Planck collision operator (3.5),(3.14) is a complicated integrodifferential op-
erator, and as such it is not straightforward to solve. Thus, various simplifications have been
developed (see, e.g., Refs. [16], [130] and [64] and references therein) typically called “model
operators”, since they model particular aspects of the full operator.

A standard procedure130 is to linearize the collision operator for small deviations f1 around
an equilibrium distribution f0,

Cαβ (fα, fβ) ≈ Cαβ (f0,α, f0,β) + Cαβ (f1,α, f0,β) + Cαβ (f0,α, f1,β) , (3.28)

where the higher order term Cαβ (f1,α, f1,β) has been dropped. The first term is called the
“equilibrium operator”, the second is the “test particle operator”, and the third is the “field
particle operator”. Different model operators will approximate these three terms differently.
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3.2 Lenard-Bernstein/Dougherty (LBD) Collision
Operator

In this section, a simplified model collision operator is derived and discussed. The model was
first introduced by Lenard and Bernstein131 and later, in a more general way, by Dougherty132.
Thus, this operator will be called the Lenard-Bernstein/Dougherty (LBD) collision operator.

3.2.1 Ad-Hoc Derivation

The simplest derivation132 of the LBD collision operator makes assumptions on the form of
the friction and diffusion coefficients. The approximation on the friction assumes a linear
dependence on the difference between the local velocity v and the flow velocity uαβ, weighted
with a parameter ναβ called “collision frequency”,

Kαβ ≈ −ναβ (v − uαβ) . (3.29)

The diffusion is assumed to be isotropic in velocity space and depends on the mean thermal
energy

Dαβ ≈ ναβv
2
th,αβI. (3.30)

In these assumptions, the collision frequency is velocity-independent and the same for friction
and diffusion. The other two free parameters are the flow velocity uαβ and the temperature
Tαβ defined through the thermal energy

vth,αβ =
√

2Tαβ
mα

. (3.31)

The exact choice of these parameters is given in section 3.2.5. The index αβ indicates that
these quantities may depend on both particle species. Using (3.29) and (3.30), Eq. (3.5) can
be rewritten as

Cαβfα = ναβ
∂

∂v
·
(

(v − uαβ) fα + 1
2v

2
th,αβ

∂fα
∂v

)
. (3.32)

This is the three-dimensional Lenard-Bernstein131 or Dougherty132 (LBD) collision opera-
tor. There are two main deficiencies of this model collision operator. First, the velocity-
independent collision frequency does not fall off with increasing velocity, thus incorrectly
describing the collision rate of high energy particles that live in the tail of the distribu-
tion function132. Second, the isotropic diffusion coefficient leads to the same collision rates
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for pitch-angle scattering and energy diffusion, a distinction which would be important for
neoclassical physics130.

3.2.2 Derivation from the Rosenbluth Form

The LBD model can be derived by considering the first two terms of (3.28). In that sense,
it is a model operator for the equilibrium and test particle operators combined,

Cαβ (fα, fβ) ≈ Cαβ (f0,α, f0,β) + Cαβ (f1,α, f0,β) = Cαβ (fα, f0,β) . (3.33)

In other words, the Fokker-Planck collision operator needs to be evaluated for a Maxwellian
distribution of background particles. Simplifications are made at the final step of the deriva-
tion, making the categorization based on test/field particle operators only partially applica-
ble. The following derivation is based on a brief description in Ref. [133].

The equilibrium distribution used in the following is

fβ = f0,β = nβ

(
√
πvth,β)3 exp

(
− v2

v2
th,β

)
, (3.34)

where nβ and vth,β are density and thermal velocity of the background distribution. A mean
flow uβ is not considered for simplicity. Given this background distribution, the test particle
operator is available in the literature (see eq. (3) in Ref. [130]). The derivation here is
different, as further simplifications will be applied first.

First, one can evaluate the Gαβ potential for distribution (3.34). It is convenient to choose
the relative velocity frame u = v − v′ and switch to spherical coordinates (u, θ, ϕ), where
u = |u| is the velocity magnitude, θ the polar angle and ϕ the azimuthal angle. Using the
volume element dv′ = du = u2dud(cos θ)dϕ, the potential is

Gαβ =
∫ ∞

0
du
∫ 1

−1
d(cos θ)

∫ 2π

0
dϕu3 nβ

(
√
πvth,β)3 exp

(
−(u + v)2

v2
th,β

)
,

= nβvth,β

 2√
π

exp
(

− v2

v2
th,β

)
+
(
vth,β

v
+ 2v
vth,β

)
erf

(
v

vth,β

). (3.35)

Using (u + v)2 = u2 + v2 + 2uv cos θ, the integration over the angle variables is trivial, and
the remaining integration over u can be performed with any computer algebra tool. Here the
error function was used,

erf(x) = 2√
π

∫ x

0
exp

(
−t2

)
dt. (3.36)
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The spherical coordinate system is now changed to (v, θ, ϕ). The relevant differential opera-
tors are obtained using formulas from Ref. [66]. For a function g(v) they are given by

∂

∂v
g(v) = v

v

∂

∂v
g(v), (3.37)(

∂

∂v

)2

g(v) = ∂

∂v

(
v2 ∂

∂v
g(v)

)
, (3.38)

∂2

∂v∂v
g(v) = 1

v

∂

∂v
g(v)I + 1

v

∂

∂v

(
1
v

∂

∂v
g(v)

)
vv. (3.39)

Then, the second Rosenbluth potential is calculated using (3.13),

Hαβ = 2nβ(mα +mβ)
mβv

erf
(

v

vth,β

)
. (3.40)

The Fokker-Planck coefficients (3.6) and (3.7) are given by derivatives of the two potentials,
obtained via straightforward computations

Kαβ = 2nβ(mα +mβ)Γαβ
mβ

[
2

vth,β
√
π

1
v2 exp

(
− v2

v2
th,β

)
− 1
v3 erf

(
v

vth,β

)]
v, (3.41)

Dαβ = Γαβnβvth,β


[

2√
πv2 exp

(
− v2

v2
th,β

)
+
(

−vth,β

v3 + 2
vth,βv

)
erf

(
v

vth,β

)]
I

+
[
− 6√

πv4 exp
(

− v2

v2
th,β

)
+
(

3vth,β

v5 − 2
vth,βv3

)
erf

(
v

vth,β

)]
vv

. (3.42)

Next, an expansion in small velocities x ≡ v/vth,β ≪ 1 is applied

erf(x) ≈ 2√
π
x− 2

3
√
π
x3 + O

(
x5
)
, (3.43)

exp
(
−x2

)
≈ 1 − x2 + O

(
x4
)
, (3.44)

resulting in

Kαβ ≈ −8nβ(mα +mβ)Γαβ
3
√
πmβv3

th,β
v, (3.45)

Dαβ ≈ 2Γαβnβ√
π

 4
3vth,β

I − 2
3v3

th,β

(
v2I − vv

) . (3.46)
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Before insertion into the Fokker-Planck equation (3.5), it can be rewritten as

Cαβfα = ∂

∂v
·
[
−Kαβfα + 1

2

(
Dαβ · ∂fα

∂v
+ fα

∂

∂v
· Dαβ

)]
,

= ∂

∂v
·
[
− mα

mα +mβ

Kαβfα + 1
2Dαβ · ∂fα

∂v

]
, (3.47)

where the second equality used (3.13) for the third term in the first line. Now, (3.45) and
(3.46) can be inserted into (3.47) to get

Cαβfα = ν ′
αβ

∂

∂v
·
[
vfα + 1

2

(
v2

th,βI − 1
2
(
v2I − vv

))
· ∂fα
∂v

]
, (3.48)

ν ′
αβ = 8Γαβnβ

3
√
πv3

th,β
=

64
√
πq2

αq
2
βnβ

3m2
αv

3
th,β

ln Λαβ. (3.49)

To arrive at the LBD operator, the anisotropic part (v2I − vv) is dropped, the mean flow of
the background is introduced v → v − uβ and uβ, v2

th,β and ν ′
αβ are replaced by new, free

parameters,

Cαβfα = ναβ
∂

∂v
·
[
(v − uαβ)fα + 1

2v
2
th,αβ

∂fα
∂v

]
. (3.50)

This is the same expression as in eq. (3.32). The parameters introduced give some freedom
to account for the simplifications made in the derivation. Naturally, one can choose them to
maintain the basic properties expected from a collision operator, density, momentum, and
energy conservation. The exact choice will be given in section 3.2.5. It should be noted
that they will depend on moments nβ, uβ and Tβ of the full distribution fβ, re-introducing a
nonlinearity to the operator. This dependence is why categorizing as combined equilibrium
and test particle operator does not apply.

3.2.3 Properties of the LBD Operator

This section discusses the essential properties of the LBD collision operator, such as equi-
librium distribution, conservation properties, entropy production, and steady-state solution,
as well as the relation to the pitch-angle operator and the formulation in cylindrical velocity
space coordinates.
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Equilibrium Distribution
It can be trivially shown that a Maxwellian distribution,

f0,α = nα
(
√
πvth,αβ)3 exp

(
−(v − uαβ)2

v2
th,αβ

)
, (3.51)

is an equilibrium distribution of the LBD operator. Insertion of the derivative

∂f0,α

∂v
= − 2

v2
th,αβ

(v − uαβ)f0,α, (3.52)

into (3.50) cancels the friction term, making the operator zero.

Conservation Properties
Conservation of density (3.21) is automatically fulfilled since the operator can be written
similarly to (3.17), using a collisional flux

∫
V

dvCαβfα = −
∫
V

dv
∂

∂v
· Jαβ = −

∫
∂V

dnv · Jαβ, (3.53)

where the integration was applied on a spherical volume V with radius v → ∞ so that Gauss’
theorem could be applied. Here ∂V denotes the boundary of the sphere, and nv is the normal
vector to its surface. The distribution function is assumed to vanish sufficiently fast at the
velocity space domain boundaries. Thus, the collisional flux and the integral are zero, and
density is conserved. The flux introduced in eq. (3.53) is given by,

Jαβ = (v − uαβ)fα + 1
2v

2
th,αβ

∂fα
∂v

. (3.54)

For momentum conservation (3.22), the following term needs to be considered

mα

∫
V

dv vCαβfα = −mα

∫
V

dv
[
∂

∂v
(
vJαβ

)
− Jαβ

]
,

= mαναβ

∫
V

dv
[
(v − uαβ)fα + 1

2v
2
th,αβ

∂fα
∂v

]
. (3.55)

The first term on the right-hand side of the first line again vanished due to Gauss’ law. In
contrast to density conservation, this is not trivially fulfilled and will depend on the choice of
the parameters in the operator. The same holds for energy conservation. Since the required
computation is tedious, only the gyrokinetic version will be used to choose the parameters
in section 3.2.5.
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H Theorem
The temporal change of the H-function can be written as63

∂Hα

∂t
=
∫

dvCα (1 + ln fα) , (3.56)

where ∂fα/∂t has been replaced by Cα since only entropy production is considered. In
principle, the total temporal change given by the kinetic equation should be included, but
advection does not contribute to entropy production by definition134.

The first term in (3.56) vanishes due to the conservation of density (3.21). In the following,
it is sufficient to analyze the contribution to entropy production by Cαβ only,

∂Hα

∂t
=
∫

dv
[
∂

∂v
· (Jαβ ln fα) − Jαβ · ∂

∂v
ln fα

]
. (3.57)

Due to Gauss’ theorem, the first term vanishes. An explicit expression for the velocity space
derivative of fα can be obtained109

∂fα
∂v

= 2
v2

th,αβ

(
1
ναβ

Jαβ − (v − uαβ)fα
)
. (3.58)

Inserting into (3.57) and expanding the terms leads to

∂Hα

∂t
= − 2

v2
th,αβ

∫
dv

(
1
fα

J2
αβ − (v − uαβ)2fα − 1

2v
2
th,αβ(v − uαβ) · ∂fα

∂v

)
. (3.59)

The last term vanishes upon integration by parts, assuming the distribution function falls
off sufficiently fast at the velocity space domain boundaries. If the operator fulfills the
conservation of energy (3.23), the second term vanishes. Thus, the remaining term is

∂Hα

∂t
= − 2

v2
th,αβ

∫
dv

1
fα

J2
αβ ≤ 0, (3.60)

since the distribution function is always positive fα > 0. Because no assumptions on the
species were used, interchanging the indices α ↔ β leads to the same relation for the second
contribution of the entropy production of Cα. Consequently, this means that if the free
parameters of the LBD operator are chosen to conserve the total energy, the H-theorem is
fulfilled.
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Steady State Solution
Given the H-theorem (3.60), the remaining question is, which distribution function satisfies
the condition H = 0. The entropy production will be zero for a steady state distribution,
given by vanishing collisional flux (3.54),

(v − uαβ)fα + 1
2v

2
th,αβ

∂fα
∂v

= 0. (3.61)

Taking the dot product with v and dividing by fα, using (1/fα)∂fα/∂v = ∂ ln(fα)/∂v =
(v/v)∂ ln(fα)/∂v, this can be integrated over v to write

ln fα = − 2
v2

th,αβ

(1
2v

2 −
(v
v

· uαβ
)
v
)

+ C, (3.62)

where C is a constant of integration. The constant may be rewritten as C = C1 − u2
αβ/v

2
th,αβ

to complete the square. Using the abbreviation 1/Z ≡ exp(C1) the result for fα is

fα = 1
Z

exp
(

−(v − uαβ)2

v2
th,αβ

)
. (3.63)

Here Z plays the role of a normalization, which is obtained by requiring the result of the veloc-
ity space integration to be the density nα. The resulting normalization is Z = nα/(

√
πvth,αβ)3,

making (3.63) the same as (3.51). Consequently, this shows that the Maxwellian distribution
is the distribution for which the collision operator produces zero entropy. To fully show that
this is the steady-state solution, it must be proven that this is the maximum entropy solution.
Such a proof can is given in Ref. [109].

Relation to Pitch-Angle Scattering Operator
Using the Laplacian in spherical velocity space66 (v, θ, ϕ) introduced in section 3.2.2,

∂2f

∂v2 = 1
v2

∂

∂v

(
v2∂f

∂v

)
+ 1
v2 sin θ

∂

∂θ

(
sin θ∂f

∂θ

)
+ 1
v2 sin2 θ

∂2f

∂ϕ2 , (3.64)

the diffusion part in eq. (3.50) can be written as

Cαβfα = 1
2ναβv

2
th,αβ

[
1
v2

∂

∂v

(
v2∂fα
∂v

)
+ 1
v2 sin θ

∂

∂θ

(
sin θ∂fα

∂θ

)
+ 1
v2 sin2 θ

∂2fα
∂ϕ2

]
. (3.65)

The operator now contains two distinct terms: energy diffusion and pitch-angle scattering.
The pitch-angle part is related to the standard pitch-angle or so-called Lorentz collision
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operator64

L = 1
2

[
1

sin θ
∂

∂θ

(
sin θ∂f

∂θ

)
+ 1

sin2 θ

∂2f

∂ϕ2

]
. (3.66)

The prefactors in the Lorentz and LBD operators are not the same due to the various as-
sumptions in the LBD model. The anisotropic diffusion that was dropped in (3.48), is

CA
αβfα = −1

4ναβv
2
th,αβ

∂

∂v
·
[(
v2∂fα
∂v

− vv · ∂fα
∂v

)]
. (3.67)

The second term cancels the v component of the gradient in the first term, leaving only
angular parts. Using the divergence in spherical coordinates66,

∂

∂v
· A = 1

v2
∂

∂v

(
v2Av

)
+ 1
v sin θ

∂

∂θ
(sin θAθ) + 1

v sin θ
∂Aϕ
∂ϕ

, (3.68)

where A ∼ ∂f/∂v, this results in

CA
αβfα = −1

4ναβv
2
th,αβ

[
1

v2 sin θ
∂

∂θ

(
sin θ∂fα

∂θ

)
+ 1
v2 sin2 θ

∂f 2
α

∂ϕ2

]
. (3.69)

From the above considerations, the approximations of the LBD model can be analyzed. First,
the energy diffusion and pitch-angle scattering in (3.65) have the same collision frequencies.
Second, the velocity dependence of the pitch-angle part is different than in the standard case
(3.66). Third, within the approximation of a Maxwellian field particle distribution and the
small velocity expansion, the pitch-angle part is overestimated by a factor of two, as the term
(3.69) was neglected.

Formulation in Cylindrical Velocity Space
Here, the LBD operator is formulated in the cylindrical velocity space aligned to an external
magnetic field B = B b, where B denotes the magnitude of the field. The coordinates are
given by (v⊥, θ, v||), where v|| and v⊥ are the velocity components parallel and perpendicular
to the magnetic field and θ is the gyroangle. The coordinate transformation is standard (see
Ref. [135] §1.5). The components of the collisional current in cylindrical velocity space are
given by,

J⊥ = v⊥fα + 1
2v

2
th,αβ

∂fα
∂v⊥

. (3.70)

Jθ = 0. (3.71)

J|| =
(
v|| − uαβ

)
fα + 1

2v
2
th,αβ

∂fα
∂v||

, (3.72)
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where uαβ is the magnitude of the mean flow uαβ = uαβb. Using the divergence in cylindrical
coordinates (r, ϕ, z)66,

∇ · A = 1
r

∂

∂r
(rAr) + 1

r

∂Aϕ
∂ϕ

+ ∂Az
∂z

, (3.73)

the LBD operator in cylindrical velocity space is given by

Cαβfα = ναβ

[
∂

∂v||

((
v|| − uαβ

)
fα + 1

2v
2
th,αβ

∂fα
∂v||

)
+ 1
v⊥

∂

∂v⊥

(
v2

⊥fα + 1
2v⊥v

2
th,αβ

∂fα
∂v⊥

)]
.

(3.74)

Alternatively it can be written using the magnetic moment µ, which is related to the per-
pendicular kinetic energy by v2

⊥mα/2 = µB,

Cαβfα = ναβ

[
∂

∂v||

((
v|| − uαβ

)
fα + 1

2v
2
th,αβ

∂fα
∂v||

)
+ ∂

∂µ

(
2µfα +

mαv
2
th,αβ

B
µ
∂fα
∂µ

)]
. (3.75)

The following Maxwellian gives the corresponding equilibrium distribution,

Mαβ = nα

(
mα

2πTαβ

)3/2

exp
(

−
1
2mα(v|| − uαβ)2 + µB

Tαβ

)
, (3.76)

which can be obtained using v = v||b+v⊥e⊥ and (3.31), and verified by insertion into (3.75).

3.2.4 Gyrokinetic Version

The general objective is to use the LBD collision operator (3.50) in a gyrokinetic code. Thus a
complete, self-consistent collisional gyrokinetic system needs to be developed. In gyrokinetic
field theory81, the general approach is to formulate the system based on a Lagrangian. One
can derive the desired equations from the transformed Lagrangian in gyrocenter coordinates.
For a collisional, electromagnetic gyrokinetic system, such a formulation has not been found
yet136. Thus, an approximate transformation is used instead. For a brief introduction to
gyrokinetic theory, see section 2.

The collision operator will consider only the leading order terms for simplicity. Investigating
the guiding-center transformation instead of the gyrocenter in this work will suffice. In both
the guiding-center137 and in the gyrocenter formulation (see, e.g., Refs. [138], [139]), the
transformed collision operator is given by a gyroaverage in lowest order. The following section
summarizes the essential aspects developed in Ref. [137] that are required to formulate a
gyrokinetic (guiding-center) version of the LBD operator.
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The basic ordering assumption in the guiding-center transformation of the kinetic equation
(with collisions) is that the ordering parameter ϵν = ν/Ω ≪ 1, i.e., the collision frequency
is small compared to the gyrofrequency. Denoting guiding center variables with “gc”, the
transformed kinetic equation for the gyroaveraged distribution ⟨fgc(zgc, t)⟩ is given by

dgc

dt ⟨fgc⟩ =
〈
Cgc(⟨fgc⟩ + f̃gc)

〉
, (3.77)

where species indices are suppressed for simplicity. The collision operator can have a non-
zero gyroangle-independent contribution if applied on the gyroangle-dependent part of the
distribution f̃gc. Thus this couples to the kinetic equation for f̃gc,

dgc

dt f̃gc = Cgc(fgc) − ⟨Cgc(fgc)⟩ . (3.78)

The kinetic equation for f̃gc is formally solved by a Fourier expansion in the gyroangle θ.
The leading order term up to first order in ϵν can then be inserted into the kinetic equation
for ⟨fgc⟩ to get

dgc

dt ⟨fgc⟩ = ⟨Cgc⟩ − iϵν
∑
l ̸=0

〈
Cgc

(
eilθ

lΩ

〈
e−ilθCgc

(
⟨fgc⟩

)〉)〉
+ O(ϵBϵν , ϵ2

ν). (3.79)

As suggested by Ref. [137], the leading order term is considered sufficient in the follow-
ing. The remaining task is to find an explicit expression for Cgc and apply the gyroaverage
operation.

The procedure is given in Ref. [137], the collision operator can be formulated using a Poisson
bracket

{f, g} = 1
m

∂f

∂x
· ∂g
∂v

− 1
m

∂g

∂x
· ∂f
∂v

+ eB
cm2 · ∂f

∂v
× ∂g

∂v
. (3.80)

It follows that {x, f} = −∂f/∂x and the collision operator (3.50) is

Cαβfα = −ναβ
{

x, (v − uαβ)fα − 1
2v

2
th,αβ{x, fα}

}
, , (3.81)

where in this notation {x,vf} = I · ∂(vf)/∂v = ∂/∂v · (vf).

The general transformation of a Poisson bracket is known (see, e.g., Refs. [61], [74] or [137]),
and the resulting collision operator is

Cgc = − 1
Jgc

∂

∂zγgc
·
[
Jgc

(
Kγ

gc ⟨fgc⟩ −Dγδ
gc
∂ ⟨fgc⟩
∂zδgc

)]
, (3.82)
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with indices γ, δ denoting the summation over phase space variables. The coefficients are
given by projecting the LBD Fokker-Planck coefficients KLBD = ναβ(v − uαβ) and DLBD =
1
2ναβv

2
th,αβI into six dimensional guiding center phase space and applying the gyroaverage140.

The projection involves the guiding-center Poisson bracket74,137. The guiding-center phase
space of relevance is zγ = (xgc, v||,gc, µgc). Projected coefficients for this phase space are given
in Ref. [140]. However, the addition of parallel flow uαβ = uαβb and modification for the
isotropic diffusion is performed in this work. The result for the components of the friction
coefficient is,

Kx
gc = −ν

(
Vgc −

〈
u(xgc + ρgc)

〉)
× b

Ω∗
||

, (3.83)

K ||
gc = −ν

v|| − u(xgc) + ϵB
v||

Ω∗
||
b · ∇ × b

µB

mv||

 , (3.84)

Kµ
gc = −ν

2 − ϵB
v||

Ω∗
||
b · ∇ × b

µ, (3.85)

suppressing the species indices and using the modified gyrofrequency Ω∗
|| = eB∗

||/m. Here the
guiding-center velocity61,137 was used,

Vgc = v||b + ϵB
b

mΩ∗
||

×
(
µ∇B +mv2

||b · ∇b
)
, (3.86)

and ρgc = ρ0 + O(ϵ2
B) denotes the guiding-center displacement. It is given by the gyroradius

vector in leading order, and an explicit expression for the first-order contribution can be
found in the appendix of Ref. [137].

The flow term in the first component of the friction coefficient can be evaluated similarly
to the leading order guiding center polarization75. Using the expansion u(xgc + ρgc) =
u(xgc)+ρgc ·∇u+O(ϵ2

B), ⟨ρ0⟩ = 0 and the gyroangle independence of ∇u, the gyroaveraged
flow term is

〈
u(xgc + ρgc)

〉
≈ u(xgc) + ⟨ρgc⟩ · ∇u ≡ u(xgc) + O(ϵ2

B). (3.87)

Only second-order terms from the guiding-center displacement would survive the gyroaver-
age∗. The flow u(x) is treated as a general space-dependent variable so far.

The components of the diffusion coefficient are given in Ref. [140]. For isotropic diffusion,

∗Compare to eqs. (36) and (37) in Ref. [75].
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they take the form

Dx,x
gc = ν

2v
2
th

I − bb
(mΩ∗

||)2 , (3.88)

Dx,||
gc = ϵB

ν

2v
2
th

v||

(mΩ∗
||)2 b · ∇b, (3.89)

Dx,µ
gc = 0, (3.90)

D||,||
gc = ν

2m2v
2
th, (3.91)

D||,µ
gc = ϵB

ν

2v
2
th
v||

Ω∗
||
b · ∇ × b

µ

v||m2 , (3.92)

Dµ,µ
gc = ν v2

th

1 − ϵB
v||

Ω∗
||
b · ∇ × b

 µ

mB
. (3.93)

From these expressions, it is possible to derive a collision operator in guiding-center space up
to first order in magnetic field non-uniformity. For simplicity, the operator in this work will
only consider the leading order terms in ϵB. The spatial contribution Dx,x

gc results in second-
order spatial derivatives of order (ρLk⊥)2 which are neglected within the long wavelength
approximation (see section 2.3). Given these simplifications, the guiding-center collision
operator is

Cgc = ν

B∗
||

 ∂

∂v||

[
B∗

||

((
v|| − u

)
⟨fgc⟩ + 1

2v
2
th
∂ ⟨fgc⟩
∂v||

)]
+ ∂

∂µ

[
B∗

||

(
2µ ⟨fgc⟩ + mv2

th
B

µ
∂ ⟨fgc⟩
∂µ

)],
(3.94)

where the Jacobian J = mB∗
|| was used. The following term

1
2v

2
th
∂B∗

||

∂v||
= mcv2

th
2q b · ∇ × b = O(ϵB), (3.95)

is a first-order correction. Neglecting this correction, the Jacobian B∗
|| can be pulled into the

v|| derivative of ⟨fgc⟩. Writing f ≡ ⟨fgc⟩ and re-introducing all species indices results in the
final form of the guiding-center LBD operator58,133

Cαβfα = ναβ
B∗

||

 ∂

∂v||

((
v|| − uαβ

)
B∗

||fα + 1
2v

2
th,αβ

∂B∗
||fα

∂v||

)
+ ∂

∂µ

(
2µB∗

||fα +
mαv

2
th,αβ

B
µ
∂B∗

||fα

∂µ

).
(3.96)

The combination of B∗
||fα is very convenient when considering the conservation properties

of the collision operator later. This form of the “gyroaveraged” collision operator (3.96) is
the same as the version in cylindrical velocity space (3.75) up to the factor B∗

|| inserted at
suitable positions.
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3.2.5 Properties of the Gyrokinetic Version

In this section the free parameters uαβ, Tαβ = mαv
2
th,αβ/2 and ναβ will be determined. Density

conservation was shown in section 3.2.3. Momentum and energy conservation were indicated
not to be trivially fulfilled. The free parameters will be determined such that the conservation
laws are fulfilled. Such a procedure was done in Ref. [141] for a Bhatnagar-Gross-Krook
(BGK)142 collision operator. This work applies it to the LBD operator, with results published
in Ref. [58].

The collision operator written in divergence form is,

Cαβfα = ναβ
B∗

||

∂J||

∂v||
+ ∂Jµ

∂µ

, (3.97)

with collisional fluxes

J|| =
(
v|| − uαβ

)
B∗

||fα + Tαβ
mα

∂B∗
||fα

∂v||
, (3.98)

Jµ = 2µB∗
||fα + 2Tαβ

B
µ
∂B∗

||fα

∂µ
. (3.99)

The following moments of the distribution function are defined,

nα = 2π
∫ B∗

||

mα

fαdv||dµ, (3.100)

uα = 2π
nα

∫ B∗
||

mα

fαv||dv||dµ, (3.101)

W||,α = π
∫
B∗

||fαv
2
||dv||dµ, (3.102)

W⊥,α = 2π
∫ B∗

||

mα

fαµBdv||dµ, (3.103)

TLα = 2
3nα

(
W||,α +W⊥,α

)
. (3.104)

Tα = TLα − 1
3mαu

2
α, (3.105)

which are the density, parallel flow, parallel and perpendicular energy, and laboratory and
moving frame temperature, respectively.
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Momentum Conservation
The conservation of momentum is achieved if the following condition is satisfied,∫

B∗
|| (Cαβfα + Cβαfβ) v||dv||dµ != 0.|| (3.106)

Considering the first integral and switching indices in the result is sufficient to account for
both contributions. Using (3.97),

∫
B∗

||Cαβfαv||dv||dµ = ναβ

∫ (
∂J||

∂v||
+ ∂Jµ

∂µ

)
v||dv||dµ ≡ ναβ (I1 + I2) . (3.107)

The first part is evaluated using integration by parts,

I1 = −
∫
J||dv||dµ = −

∫ ((
v|| − uαβ

)
B∗

||fα + Tαβ
mα

∂B∗
||fα

∂v||

)
dv||dµ, (3.108)

where the boundary term vanishes due to the assumption that the distribution function (and
thus the fluxes) fall off sufficiently fast at the velocity space domain boundaries. The first
two terms are trivially integrated using (3.100) and (3.101), and the third term vanishes.
The result is

I1 = nαmα

2π (uαβ − uα) . (3.109)

The second integral is I2 = 0 which leads to

ναβ

(
nαmα

2π (uαβ − uα)
)

+ νβα

(
nβmβ

2π (uβα − uβ)
)

!= 0. (3.110)

Demanding the symmetry relation141,

uαβ = uβα, (3.111)

results in an expression for the mixing flow58

uαβ = uαναβnαmα + uβνβαnβmβ

ναβnαmα + νβαnβmβ

. (3.112)
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Energy Conservation
The conservation of energy is achieved if the following condition is met

∫ [
B∗

||

mα

Cαβfα

(
mα

2 v2
|| + µB

)
+
B∗

||

mβ

Cβαfβ

(
mβ

2 v2
|| + µB

)]
dv||dµ != 0. (3.113)

The first integral is

∫ B∗
||

mα

Cαβfα

(
mα

2 v2
|| + µB

)
dv||dµ = ναβ

∫ (
∂J||

∂v||
+ ∂Jµ

∂µ

)(1
2v

2
|| + 1

mα

µB
)

dv||dµ,

≡ ναβ (J1 + J2 + J3 + J4) . (3.114)

The same procedure used in evaluating moment conservation can be applied. The individual
integrals are given by

J1 = 1
π

(1
2Tαβnα + mα

2 uαβuαnα −W||,α

)
, (3.115)

J2 = 0, (3.116)
J3 = 0, (3.117)

J4 = 1
π

(Tαβnα −W⊥,α) . (3.118)

Thus, energy conservation requires

ναβ
1
π

[3
2nα (Tαβ − Tα) + 1

2nαmαuα (uαβ − uα)
]

+ νβα
1
π

[3
2nβ (Tβα − Tβ) + 1

2nβmβuβ (uβα − uβ)
]

!= 0. (3.119)

Demanding the symmetry relation141,

Tαβ = Tβα, (3.120)

leads after some algebra to58

Tαβ = Tαναβnα + Tβνβαnβ
ναβnα + νβαnβ

+ 1
3
ναβnαmα

(
u2
α − u2

αβ

)
+ νβαnβmβ

(
u2
β − u2

αβ

)
ναβnα + νβαnβ

. (3.121)

Given Eqs. (3.112) and (3.121), the LBD collision operator fulfills momentum and energy
conservation by construction. Since these quantities are given by combinations of the indi-
vidual flow and temperature moments, these are referred to as “mixing quantities” in the
following.
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Relaxation Rates
The free parameter left to determine is the collision frequency ναβ. In the case of a model
collision operator with velocity-independent collision frequency, it is possible to adjust this
parameter to achieve physically reasonable behavior. One possibility is to choose collision
frequencies such that the relaxation rates of the collision operator approximate the relax-
ation rate of the Boltzmann collision operator. Relaxation rates for the Boltzmann collision
operator have been calculated in Ref. [143]. It is not trivial to satisfy both the momentum
and energy relaxation rates simultaneously141. Ref. [144] treated this case by introducing a
free parameter. In contrast, Ref. [141] introduces two different, entropic (E) versions∗, one
to match the momentum relaxation rate exactly (EM) and one to match the temperature
relaxation rate approximately (ET). In each case, the corresponding other relaxation rate is
not matched. These two models have been implemented for the LBD operator in Ref. [58],
and the following section provides details. Ref. [145] compares versions from Refs. [144],
[141] and [58] for the LBD operator.

The change in momentum due to collisions is given by a calculation similar to (3.109),

∂

∂t
(uαnα) = 2π

∫ B∗
||

mα

v||Cαβfαdv||dµ = ναβnα(uαβ − uα). (3.122)

Thus, the momentum relaxation rate is,

∂

∂t
(uβ − uα)

∣∣∣∣∣∣
LBD

= νβαnβ(uβα − uβ) − ναβnα(uαβ − uα). (3.123)

The change in energy due to collisions can be calculated similarly,

∂

∂t

(3
2nαTα

)
= 2π

∫ B∗
||

mα

1
2mα

(
(v|| − uαβ)2 + 2µB

mα

)
Cαβfαdv||dµ,

= ναβ
(
3nα(Tαβ − Tα) −mαnα(uαβ − uα)2

)
. (3.124)

The energy relaxation rate is

∂

∂t
(Tβ − Tα)

∣∣∣∣∣∣
LBD

= 2

νβα
[
(Tβα − Tβ) − mβ

3 (uβα − uβ)2
]

− ναβ

[
(Tαβ − Tα) − mα

3 (uαβ − uα)2
]. (3.125)

∗For both versions, the BGK collision operator satisfies the H-theorem and is thus called entropic.
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The relaxation rates for the Boltzmann collision operator are given in Refs. [143] and [141]
and adapted for a scalar flow parameter,

∂

∂t
(uβ − uα)

∣∣∣∣∣∣
Boltz

= −Aαβ
mαnα +mβnβ
mαnαmβnβ

mα +mβ

2 (uβ − uα) , (3.126)

∂

∂t
(Tβ − Tα)

∣∣∣∣∣∣
Boltz

= −Aαβ
[
nα + nβ
nαnβ

(Tβ − Tα) + 1
3
mβnβ −mαnα

nαnβ
(uβ − uβ)2

]
, (3.127)

with

Aαβ =
8
√

2πnαnβ
√
mαmβ(ZαZβe2)2 ln Λαβ

3(mαTβ +mβTα)3/2 , (3.128)

for Coulomb collisions. Here Z denotes the signed charge number, with Z = −1 for electrons
and Z > 0 for ions.

In the first case, the momentum relaxation rates can be matched

∂

∂t
(uβ − uα)

∣∣∣∣∣∣
LBD

!= ∂

∂t
(uβ − uα)

∣∣∣∣∣∣
Boltz

, (3.129)

which yields the condition

Aαβ
mα +mβ

2 = mαnαmβnβνβαναβ
mαnαναβ +mβnβνβα

. (3.130)

In the second case, matching the temperature relaxation rates

∂

∂t
(Tβ − Tα)

∣∣∣∣∣∣
LBD

!= ∂

∂t
(Tβ − Tα)

∣∣∣∣∣∣
Boltz

, (3.131)

yields,

−Aαβ
2

[
nα + nβ
nαnβ

(Tβ − Tα) + 1
3
mβnβ −mαnα

nαnβ
(uβ − uα)2

]

= −(nα + nβ)ναβνβα
nαναβ + nβνβα

(Tβ − Tα)

−
(nα + nβ)mαmβναβνβα(mαn

2
αν

2
αβ −mβn

2
βν

2
βα)

3(nαναβ + nβνβα)(mαnαναβ +mβnβνβα)2 (uβ − uα)2. (3.132)

Expressions (3.130) and (3.132) correspond to the ones in Ref. [141] except for the factor of
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1/2 in (3.132) which arises from a different temperature relaxation rate of the LBD operator
compared to the BGK.

Momentum Relaxation (EM)
In this version, Eq. (3.130) and the following version of the temperature relaxation are chosen
to be satisfied141

−Aαβ
nα + nβ
nαnβ

(Tβ − Tα) = −(nα + nβ)ναβνβα
nαναβ + nβνβα

(Tβ − Tα). (3.133)

From this, the following relation is obtained,

ναβ = − Aαβnβνβα
nαAαβ − νβαnαnβ

. (3.134)

Insertion into (3.130) yields,

νβα = Aαβ
mα +mβ

mβnβ
, ναβ = Aαβ

mα +mβ

mαnα
. (3.135)

Additionally, the relation ναβmαnα = νβαmβnβ is fulfilled and58

νEM,LBD
αβ =

8
√

2πnβ
√
mαmβ(ZαZβe2)2 ln Λαβ

3(mαTβ +mβTα)3/2
mα +mβ

mα

. (3.136)

In (3.133), the factor of 1/2 was neglected. Otherwise, collision frequencies would be negative.
Given these simplifications, one has to expect an error twice as high in the temperature
relaxation rate compared to the BGK version141. The collision frequency for the EM version
of the LBD operator (3.136) can additionally be found in Ref. [58].

In the EM version, the expressions for the mixing quantities (3.112) and (3.121) simplify
to141

uEM
αβ = 1

2(uα + uβ), (3.137)

TEM
αβ = Tαmβ + Tβmα

mα +mβ

+ 1
6

mαmβ

mα +mβ

(uα − uβ)2 . (3.138)
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Temperature Relaxation (ET)
Constructing this version is not straightforward. In Ref. [141] the approach is to require
nαναβ = nβνβα, which simplifies (3.132) to

−Aαβ
2

[
nα + nβ
nαnβ

(Tβ − Tα) + 1
3
mβnβ −mαnα

nαnβ
(uβ − uα)2

]

= −1
2ναβ

nα + nβ
nβ

(Tβ − Tα) − 1
6ναβ

nα + nβ
nβ

mαmβ(mα −mβ)
(mα +mβ)2 (uβ − uα)2. (3.139)

Matching the temperature terms yields

ναβ = Aαβ
nα

νβα = Aαβ
nβ

, (3.140)

and for the collision frequency58

νET,LBD
αβ =

8
√

2πnβ
√
mαmβ(ZαZβe2)2 ln Λαβ

3(mαTβ +mβTα)3/2 . (3.141)

This expression can be found in Ref. [58]. This version only approximates the temperature
relaxation rate and will not achieve a perfect match in temperature and momentum relaxation
rates.

The simplified expressions for the mixing quantities in the ET version are given by141

uET
αβ = uαmα + uβmβ

mα +mβ

, (3.142)

TET
αβ = Tα + Tβ

2 + 1
6

mαmβ

mα +mβ

(uα − uβ)2 . (3.143)

3.2.6 Normalized Gyrokinetic Version

The version of the LBD operator used in a code such as GENE-X must be normalized. As
such, all quantities have to be written as Tα = T̂αTref , where the hat indicates the normalized
version and the subscript “ref” the reference. These reference quantities are given in Refs. [34]
and [112] and the detailed procedure on how to normalize can be found in Ref. [62].

The basic reference quantities are the reference density nref , temperature Tref , length Lref ,
magnetic field Bref and mass mref . Derived reference quantities used in the following nor-
malization are µref = Tref/Bref , tref = Lref/cref , cref =

√
Tref/mref , ρref = cref/Ωref and Ωref =

eBref/(mrefc). These are the reference magnetic moment, time, speed, gyroradius, and gy-
rofrequency. For the parallel velocity, a species-dependent normalization vref,α =

√
2/m̂αcref

is used, which leads to fref,α = nref/v
3
th,α.
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The normalized moments of the distribution function are given by,

n̂α = π
∫
B̂∗

||f̂αdv̂||dµ̂, (3.144)

ûα = π

n̂α

∫
B̂∗

||f̂αv̂||dv̂||dµ, (3.145)

T̂α = 2π
3n̂α

∫
B̂∗

||f̂α
(
v̂2

|| + µ̂B̂
)

dv̂||dµ̂− 2
3 û

2
α, (3.146)

with

B̂∗
|| = B̂ +

√
2m̂αρref

q̂αLref
v̂||b · (∇ × b). (3.147)

The normalized Maxwellian is,

M̂αβ = n̂α(
πT̂αβ

)3/2 exp

−

(
v̂|| − ûαβ

)2
+ µ̂B̂

T̂αβ

 . (3.148)

The collision frequency is normalized to νref = cref/Lref ,

ν̂LBD
αβ = pν

nrefLref

T 2
ref

8n̂β
√

2πm̂αm̂β (ZαZβe2)2

3
(
m̂αT̂β + m̂βT̂α

)3/2 ln Λαβ, (3.149)

where the prefactor depends on the version

pν =

1, ET,
m̂α+m̂β

m̂α
, EM,

(3.150)

The constants in this expression are combined into a parameter∗

coll_ref = nrefLref

T 2
ref

16
√

2πe4

3 . (3.151)

There is a relative factor of 2 between eqs. (3.149) and (3.151), since the latter was first
defined withe respect to the collision frequency of the BGK operator58,141.

The normalized mixing quantities (3.137)-(3.138) and (3.142)-(3.143) are given by,

ûαβ = pu,αûα + pu,βûβ, (3.152)

T̂αβ = pT,αT̂α + pT,βT̂β + mαmβ

3(mα +mβ)

(
ûβ√
mβ

− ûα√
mα

)2

, (3.153)

∗This is not the same parameter as in the GENE code146,147.
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with

pu,α =


m̂α

m̂α+m̂β
, ET,

1
2 , EM,

pu,β =


√
m̂αm̂β

m̂α+m̂β
, ET,

1
2

√
m̂α

m̂β
, EM.

(3.154)

pT,α =


1
2 , ET,
m̂β

m̂α+m̂β
, EM,

pT,β =


1
2 , ET,
m̂α

m̂α+m̂β
, EM.

(3.155)

Using Cref = νref , the normalized LBD operator (3.96) is given by

Ĉαβ f̂α = ν̂αβ

B̂∗
||

 ∂

∂v̂||

(v̂|| − ûαβ
)
B̂∗

||f̂α + 1
2 T̂αβ

∂B̂∗
||f̂α

∂v̂||

+ ∂

∂µ̂

2µ̂B̂∗
||f̂α + 2T̂αβ

B̂
µ̂
∂B̂∗

||f̂α

∂µ̂

 .
(3.156)

3.3 Bhatnagar-Gross-Krook (BGK) Collision
Operator

The collision operator introduced by Bhatnagar-Gross-Krook (BGK)142 is an ad-hoc collision
operator describing relaxation processes. It is given by

Cαβ = ναβ (Mαβ − fα) . (3.157)

This expression can be used in cylindrical velocity space with Maxwellians in Eq. (3.76).
This collision operator models the relaxation of the distribution fα to the Maxwellian Mαβ.
It completely neglects the velocity space structure of the distribution function (no deriva-
tives), and thus the physics will be different from the Fokker-Planck type LBD operator.
Nevertheless, it is simple in terms of complexity and thus of good use as a reference case.
The exact physical implications are not entirely evident, and in a later section, this collision
operator is compared to the LBD operator in a physics simulation.

The mixing quantities ναβ, uαβ, and Tαβ are yet to be determined and do not necessarily
have to be the same as for the LBD operator. The original reference did not contain mixing
quantities but the moments of the single species distributions instead, which generally leads to
violations in the conservation of density, momentum, and energy142. A version that conserves
density was given in the same reference and later in, e.g., Refs. [144] and [141] improved
versions have been constructed.
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The “gyrokinetic” form that is used in this work is given by an ad-hoc approach

Cαβ = ναβ

 B

B∗
||
Mαβ − fα

 . (3.158)

Since the BGK operator is introduced in an ad-hoc way and the gyrokinetic form of the
Maxwellian is not trivially obtained, an ad-hoc version is used for the gyrokinetic version.
This version makes sense in two ways. First, for B∗

|| = B, it reduces to the standard version.
Second, for example, the calculation of the momentum change can be considered,∫

B∗
||Cαβfαv||dv||dµ = ναβ

(∫
BMαβv||dv||dµ−

∫
B∗

||fαv||dv||dµ
)
,

= ναβ (mαnαuαβ −mαnαuα) . (3.159)

The factor B/B∗
|| cancels the Jacobian B∗

|| in the integration, which allows for the explicit
evaluation of the integrals of the Maxwellian distribution.

The evaluation of the conservation properties is analogous to the LBD operator. Expressions
for the mixing quantities were obtained in Ref. [141]. The mixing flow and temperature are
the same as for the LBD operator,

uET,BGK
αβ = uET,LBD

αβ , TET,BGK
αβ = TET,LBD

αβ , (3.160)
uEM,BGK
αβ = uEM,LBD

αβ , TEM,BGK
αβ = TEM,LBD

αβ . (3.161)

The collision frequencies are almost the same, up to a factor of 2 in the ET version58,

νET,BGK
αβ = 2νET,LBD

αβ , νEM,BGK
αβ = νEM,LBD

αβ . (3.162)

The normalized BGK operator is,

Ĉαβ f̂α = ν̂αβ

 B̂

B̂∗
||
M̂αβ − f̂α

 , (3.163)

with normalized Maxwellian given by eq. (3.148), moments by eqs. (3.144)-(3.146). The
normalization of the LBD collision rate given in (3.149) can be used in (3.162) to obtain
normalized BGK collision rates.

64



3.4. Chapter Summary

3.4 Chapter Summary
This chapter provided the theoretical foundation for the kinetic treatment of Coulomb colli-
sion in a plasma. A literature review of the derivation of the Fokker-Planck collision operator
and general properties was given. Further, the Lenard-Bernstein/Dougherty (LBD) collision
operator was introduced, and a derivation from the Fokker-Planck Rosenbluth form has been
presented. The LBD operator has been transformed to gyrocenter coordinates for use in the
gyrokinetic code GENE-X. Particular choices for the model’s parameters to account for the
exact conservation of momentum and energy have been given. Relaxation rates to repro-
duce the momentum relaxation rate or approximate the temperature relaxation rate of the
Boltzmann collision operator has been developed. Finally, a Bhatnagar-Gross-Krook (BGK)
operator has been presented to be used as a reference to the LBD operator.

The choice of LBD parameters (mixing flow and temperature) and the relaxation rates was
published in Ref. [58].

3.4.1 Relation to Other Work

The LBD collision operator is commonly used in gyrokinetic codes58,104,133,148–150 as it pro-
vides an estimation of collisional effects with low complexity and computational costs. The
full Fokker-Planck collision operator, either based on Rosenbluth potentials or the Landau
formulation, is expensive, and thus only a few gyrokinetic codes implemented the full-f
nonlinear version151,152. Due to the deficiencies of the LBD models that ultimately lead
to a non-appropriate description of neoclassical transport, advanced model collision opera-
tors139,153–156 are commonly considered. The influence of such models on plasma turbulence
strongly depends on the case that is analysed154–159. The commonality of these advanced
models is that they use a linearized collision operator, which neglects interactions between
the perturbed parts of the distribution function. While the LBD model presented in this
chapter initially only contains the equilibrium and test particle part, due to the introduction
of a nonlinearity with the mixing flow and temperature, it can be considered advanced in
that respect.
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Chapter 4

Numerical Methods for Collision
Operators

This chapter considers the numerical algorithms developed to include collisions into the
gyrokinetic code GENE-X. First, the quadrature schemes used to evaluate velocity space mo-
ments of the distribution function are summarized. Second, the LBD collision operator is
discretized with two different discretizations (finite difference and finite volume), which are
compared within a verification study. Further, the time-stepping schemes and stability are
analyzed. Finally, the high-performance implementation’s intra- and inter-node performance
benchmark is given. The finite volume discretization and the verification study have been
published in Ref. [58].

Before considering the detailed numerics of collisions, the way of adding collisions to the
existing algorithm to solve the gyrokinetic Vlasov equation must be examined. The (gyro-)
kinetic equation written in general form is,

df
dt =

(
df
dt

)
Vlasov

+
(

df
dt

)
coll
, (4.1)

where the temporal change due to collisions is given by the collision operator introduced
in the previous chapter. The equation is solved with the method of lines160, which means
first discretizing the time dimension and applying a time integrator of choice, e.g., Runge-
Kutta 4 (RK4)161. Then, the right-hand side is discretized in (phase-) space to evaluate the
stages in the time integrator required to advance the equation in time. The Vlasov part of the
gyrokinetic equation is discretized using a finite difference method34,62. This chapter presents
two different discretizations for the LBD collision operator. First, a finite difference method
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using the same grid as the velocity space discretization of the Vlasov part. Second, a finite
volume method using volume cells with cell centers at these grid points. As an introductory
text into finite difference and finite volume methods, Ref. [162] can be considered.

4.1 Discretized Velocity Space Moments
The evaluation of the BGK and LBD collision operators requires the evaluation of velocity
space moments (3.100)-(3.104) of the distribution function. These require integrating the dis-
tribution function over the two velocity space dimensions. These expressions are discretized
on a regular grid (not necessarily uniform) of dimension (N ×M) in (v||, µ), where (i, j) de-
notes a grid point. Quantities defined on a grid are denoted by f → f(i, j). The discretized
formulas for the integrals (also called quadrature163) is then given by,

M0,α =
N∑
i=1

M∑
j=1

∆W (i, j)fα(i, j)B∗
||(i), (4.2)

M1,α =
N∑
i=1

M∑
j=1

∆W (i, j)v||(i)fα(i, j)B∗
||(i), (4.3)

M2,⊥,α =
N∑
i=1

M∑
j=1

∆W (i, j)µ(j)Bfα(i, j)B∗
||(i), (4.4)

M2,||,α =
N∑
i=1

M∑
j=1

∆W (i, j)v2
||(i)fα(i, j)B∗

||(i), (4.5)

M2,α = 1
mα

M2,⊥,α + 1
2M2,||,α. (4.6)

Here, ∆W (i, j) are integration weights that depend on the quadrature method chosen. In
GENE-X, open (midpoint) and closed (trapezoidal, Simpson) quadrature schemes are used (see
Fig. 4.1) as well as Gauss (-Laguerre) quadrature62. The BGK operator has no restriction
on the quadrature scheme and only requires a discretized representation of the moments
at a grid point. Thus, Simpson Quadrature in v|| and Gauss-Laguerre quadrature in µ are
used. The LBD collision operator requires derivatives in µ, which makes Gauss-Laguerre
quadrature unfavorable in that case. The finite difference version of the LBD operator (see
section 4.2) uses a quadratic spacing in µ with trapezoidal weights and non-uniform spacing
as well as Simpson quadrature in v||. The finite volume version of the LBD operator (see
section 4.3) requires a quadrature scheme that is the same as used in the construction of the
discretization (midpoint). The Simpson and Gauss-Laguerre quadrature schemes are given
in appendix A.
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v||1            2             3               i            i+1          i+2

f(1)

f(2)
f(3)

f(i+2)

f(i)

f(i+1)

µ                                                                           j           j+11            2             3

f(1)
f(2)

f(3)

f(j) f(j+1)

µ=0

f(i) = f(i, j=const)

f(j) = f(i=const, j)

f(v||)

f(µ)

Figure 4.1. Schematic view of quadrature schemes. The top figure shows a closed (trapezoidal)
scheme applied on a symmetric two-sided interval. The bottom figure shows an open (midpoint)
scheme applied on a one-sided interval, additionally highlighting the need to shift the definition of
the grid by half a grid spacing due to the µ = 0 boundary. The wave-like symbol ≈ represents a
cut in the axis. The choice of closed scheme for v|| and open for µ is only exemplary.
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4.1.1 Midpoint Quadrature

The midpoint quadrature method approximates the integral with boxes of width ∆x and
height of the function value in the center of the box164,

∫ x(i)+∆x/2

x(i)−∆x/2
fdx ≈ ∆xf(i). (4.7)

Figure 4.1 (lower part) shows the midpoint quadrature for integrating in µ. Due to the
restriction of the lower domain boundary µ = 0 in this dimension, the grid points have to be
chosen to offset ∆µ/2 with respect to the lower domain boundary. There is no restriction on
the grid points for the v|| dimension.

Extended or composite midpoint formulas are given by applying the method on each grid
point164. For the construction of the finite volume discretization of the LBD operator (sec-
tion 4.3), the following discretizations of the velocity space moments (4.2)-(4.5) are used

Mmidp
0,α = ∆W

N∑
i=1

M∑
j=1

fα(i, j)B∗
||(i), (4.8)

Mmidp
1,α = ∆W

N∑
i=1

M∑
j=1

v||(i)fα(i, j)B∗
||(i), (4.9)

Mmidp
2,⊥,α = ∆W

N∑
i=1

M∑
j=1

µ(j)Bfα(i, j)B∗
||(i), (4.10)

Mmidp
2,||,α = ∆W

N∑
i=1

M∑
j=1

v2
||(i)fα(i, j)B∗

||(i), . (4.11)
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4.1.2 Normalized Discrete Velocity Space Moments

The velocity space moments given in (4.2)-(4.6) are normalized as (see section 3.2.6 for
details),

M0,α = 2πvth,α
Tref

Bref

N∑
i=1

M∑
j=1

∆v̂||(i)∆µ̂(j)nrefBref

v3
th,α

f̂α(i, j)B̂∗
||(i),

= nrefmα

N∑
i=1

M∑
j=1

∆Ŵ (i, j)f̂α(i, j)B̂∗
||(i), (4.12)

M1,α = 2πvth,α
Tref

Bref

N∑
i=1

M∑
j=1

∆v̂||(i)∆µ̂(j)nrefBref

v3
th,α

vth,αf̂α(i, j)B̂∗
||(i)v̂||,

= nref

√
2Trefmα

N∑
i=1

M∑
j=1

∆Ŵ (i, j)f̂α(i, j)B̂∗
||(i), (4.13)

M2,α = 2πvth,α
Tref

Bref

N∑
i=1

M∑
j=1

∆v̂||(i)∆µ̂(j)nrefBref

v3
th,α

f̂α(i, j)B̂∗
||(i)

[ 1
mα

Brefµref µ̂(j)B̂ + 1
2v

2
th,αv̂

2
||(i)

]
,

= nrefTref

N∑
i=1

M∑
j=1

∆Ŵ (i, j)f̂α(i, j)B̂∗
||(i)

(
µ̂(j)B̂ + v̂2

||(i)
)
, (4.14)

where ∆Ŵ (i, j) = π∆v̂||(i)∆µ̂(j). This normalization is independent of the quadrature
scheme used. Summarizing,

M0,α = nrefmαM̂0,α, (4.15)
M1,α = 2nrefTrefv

−1
th,αM̂1,α, (4.16)

M2⊥,α = nrefTrefmαM̂2⊥,α, (4.17)
M2||,α = 2nrefTrefM̂2||,α, (4.18)
M2,α = nrefTrefM̂2,α. (4.19)

4.2 LBD - Finite Difference Discretization
The finite difference method provides the simplest discretization for the LBD collision oper-
ator (3.96). A grid first discretizes the computational domain, and discrete approximations
replace derivatives in the operator. However, it is not entirely trivial because the magnetic
moment is only defined on the positive half-axis µ ∈ [0,∞). This implication will be discussed
later in this section.

First, rewrite the LBD collision operator (3.96) by applying the product rule on the inner
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derivatives,

Cαβfα = ναβ

 1
B∗

||

∂

∂v||

((
v|| − uαβ

)
fαB

∗
|| + 1

2v
2
th,αβB

∗
||
∂fα
∂v||

+ 1
2v

2
th,αβfαβ(B∗

||)′
)

+ ∂

∂µ

(
2µfα +

mαv
2
th,αβ

B
µ
∂fα
∂µ

), (4.20)

where

(B∗
||)′ ≡

∂B∗
||

∂v||
= mαc

qα
b · (∇ × b). (4.21)

Further expanding the parallel terms,

C|| ≡ fα +
(
v|| − uαβ

)∂fα
∂v||

+ 1
2v

2
th,αβ

∂2fα
∂v2

||
+
((
v|| − uαβ

)
fα + v2

th,αβ
∂fα
∂v||

) (B∗
||)′

B∗
||
, (4.22)

and the perpendicular terms,

Cµ ≡ 2fα +
(

2µ+
mαv

2
th,αβ

B

)
∂fα
∂µ

+
mαv

2
th,αβ

B
µ
∂2fα
∂µ2 . (4.23)

Collecting both results in

Cαβfα = ναβ

3fα +
(
v|| − uαβ

)∂fα
∂v||

+ 1
2v

2
th,αβ

∂2fα
∂v2

||
+
((
v|| − uαβ

)
fα + v2

th,αβ
∂fα
∂v||

) (B∗
||)′

B∗
||

+ 2
(
µ+

mαv
2
th,αβ

B

)
∂fα
∂µ

+
mαv

2
th,αβ

B
µ
∂2fα
∂µ2

. (4.24)

This version can now be discretized by replacing the continuous distribution function and its
derivative with discrete approximations.
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4.2.1 Construction of the Finite Difference Scheme

Now the velocity space can be discretized, introducing a regular two-dimensional grid of size
N|| ×Nµ. The spacing is given by

∆v|| = v||,max − v||,min

N||
= 2v||,max

N||
, (4.25)

∆µ = µmax − µmin

Nµ

= µmax

Nµ

, (4.26)

where the grid boundaries are defined symmetric in parallel velocity, i.e., v||,min = −v||,max

and asymmetric in magnetic moment with µmin = 0. Outside the so-called inner grid, a
ghost grid is defined to avoid modifying the stencil of the finite difference scheme on the
boundaries. The ghost grid has Nghost,|| points on both boundaries of the v|| dimension, and
Nghost,µ only on the positive µ dimension. It does not make sense to define negative ghosts
in µ since µ ∼ v2

⊥ is not defined there. Thus, the stencil will be adjusted close to the µ = 0
boundary. Dirichlet boundary conditions with fα = 0 are employed on all ghost points since
the distribution function is supposed to fall off to zero at infinity. One has to be careful
when using the collision operator. The box must be chosen large enough to not introduce
too much error due to large values of fα at the boundaries. A visual representation of the
velocity space grid used in the finite difference implementation is given in Fig. 4.2.

4.2.2 Finite Difference Stencils for the LBD Operator

This section contains two different finite difference stencils, one for a second-order method
and one for a fourth-order method.

Second-Order Scheme
This scheme is based on ordinary second-order central difference stencils for the v|| and µ

derivatives. At the µ = 0 (j = 1) plane, no ghost point exists on the lower µ boundary.
Thus a second-order forward difference stencil is used. This choice in the stencil reflects the
physics that no negative magnetic moment exists since it is the square of the perpendicular
velocity magnitude µ ∼ v2

⊥. The second-order finite difference discretization is given by the
parallel parts

∂fα
∂v||

∣∣∣∣∣∣
i,j

= 1
∆v||

(
−1

2fα(i− 1, j) + 1
2fα(i+ 1, j)

)
, (4.27)

∂2fα
∂v2

||

∣∣∣∣∣∣
i,j

= 1
(∆v||)2 (fα(i− 1, j) − 2fα(i, j) + fα(i+ 1, j)) , (4.28)
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∆μ

∆v║
μ

v║

Nμ
points

N|| points

inner grid

ghost grid

N|| ghosts

Nμ
ghosts

Figure 4.2. Representation of the velocity space grid used for the finite difference implementation.
Only the outer parts of the grid are shown. The inner continuation is indicated by the wave-like
symbol ≈.
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and the perpendicular parts

∂fα
∂µ

∣∣∣∣∣∣
i,j

= 1
∆µ

−3
2fα(i, j) + 2fα(i, j + 1) − 1

2fα(i, j + 2), j = 1,
−1

2fα(i, j − 1) + 1
2fα(i, j + 1), j > 1,

(4.29)

∂2fα
∂µ2

∣∣∣∣∣∣
i,j

= 1
(∆µ)2

2fα(i, j) − 5fα(i, j + 1) + 4fα(i, j + 2) − fα(i, j + 3), j = 1,
fα(i, j − 1) − 2fα(i, j) + fα(i, j + 1), j > 1.

(4.30)

Fourth-Order Scheme
This scheme is based on a central difference stencil as well. Here, the first and second µ

planes (j = 1, 2) need special treatment due to the absence of ghost points. A fourth-order
forward difference scheme is used for the first plane, and a mixed stencil with one previous
and three next points for the second plane. The coefficients are constructed with the method
summarized in appendix B. It is given by,

∂fα
∂v||

∣∣∣∣∣∣
i,j

= 1
∆v||

( 1
12fα(i− 2, j) − 2

3fα(i− 1, j) + 2
3fα(i+ 1, j) − 1

12fα(i+ 2, j)
)
, (4.31)

∂2fα
∂v2

||

∣∣∣∣∣∣
i,j

= 1
(∆v||)2

− 1
12fα(i− 2, j) + 4

3fα(i− 1, j) − 5
2fα(i, j)

+ 4
3fα(i+ 1, j) − 1

12fα(i+ 2, j)
, (4.32)

∂fα
∂µ

∣∣∣∣∣∣
i,j

= 1
∆µ



−25
12fα(i, j) + 4fα(i, j + 1) − 3fα(i, j + 2)

+4
3fα(i, j + 3) − 1

4fα(i, j + 4), j = 1,
−1

4fα(i, j − 1) − 5
6fα(i, j) + 3

2fα(i, j + 1)
−1

2fα(i, j + 2) + 1
12fα(i, j + 3), j = 2,

1
12fα(i, j − 2) − 2

3fα(i, j − 1) + 2
3fα(i, j + 1)

− 1
12fα(i, j + 2), j > 2,

(4.33)

∂2fα
∂µ2

∣∣∣∣∣∣
i,j

= 1
(∆µ)2



+15
4 fα(i, j) − 77

6 fα(i, j + 1) + 107
6 fα(i, j + 2) − 13fα(i, j + 3)

+61
12fα(i, j + 4) − 5

6fα(i, j + 5), j = 1,
+5

6fα(i, j − 1) − 5
4fα(i, j) − 1

3fα(i, j + 1) + 7
6fα(i, j + 2)

−1
2fα(i, j + 3) + 1

12fα(i, j + 4), j = 2,
− 1

12fα(i, j − 2) + 4
3fα(i, j − 1) − 5

2fα(i, j) + 4
3fα(i, j + 1)

− 1
12fα(i, j + 2), j > 2.

(4.34)
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4.2.3 Normalized Discrete Finite Difference Version

The normalized version of the expanded LBD operator is given by,

Ĉαβ f̂α = ν̂αβ

3f̂α + (v̂|| − ûαβ)∂f̂α
∂v̂||

+ 1
2 T̂αβ

∂2f̂α
∂v̂2

||
+
(v̂|| − ûαβ)f̂α + T̂αβ

∂f̂α
∂v̂||

 (B̂∗
||)′

B̂∗
||

+ 2
(
µ̂+ T̂αβ

B̂

)
∂f̂α
∂µ̂

+ 2 T̂αβ
B̂
µ̂
∂2f̂α
∂µ̂2

. (4.35)

with normalized Jacobian given in eq. (3.147) and

(B̂∗
||)′ =

√
2m̂αρref

q̂αLref
b · (∇ × b). (4.36)

Expressions of the finite difference coefficients (4.27)-(4.30) or (4.31)-(4.34) can be readily
used with the normalized distribution function f̂α.

4.3 LBD - Finite Volume Discretization
The idea to create a finite volume version of the LBD operator originated from initial nu-
merical experiments on the conservation properties of the finite difference version. The finite
difference version, while correctly showing a second/fourth order convergence on the con-
servation of density, momentum, and energy, led to significant absolute errors on grid sizes
(N|| × Nµ) ∼ (64 × 64)58. In applying the collision operators over several thousands of time
steps, the simulations experienced a significant loss in density, momentum, and energy, fol-
lowed by numerical instabilities. To not use a higher resolved velocity space (which would
also slow down the Vlasov part in the simulation), the approach was to create a conservative
discretization that can be run with limited velocity space resolution. In this section, the
basic finite volume scheme is constructed. Conservative corrections are developed so that
single species density, total momentum, and energy are conserved up to machine precision.
This section presents a more detailed derivation of the discretization published in Ref. [58].

4.3.1 Construction of the Finite Volume Scheme

Constructing the finite volume scheme is based on considering the integral of the collision
operator over a test volume W in velocity space

∫
W
B∗

||

(
dfα
dt

)
coll

dW =
∫
W
B∗

||
∑
β

CαβfαdW =
∑
β

∫
W
B∗

||
1
B∗

||
∇·Jαβ dW =

∑
β

∮
∂W

Jαβ ·n d∂W,

(4.37)
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where ∂W is the boundary of W and B∗
|| is the Jacobian. Gauss’ theorem was used to rewrite

the volume integral in terms of a surface integral in the last step, where n is the surface
normal of the volume cell enclosing boundary, and the divergence formulation of the collision
operator is given in eq. (3.17).

In restricting the volume W to a rectangular shape, the closed surface integral can be split
into four parts ∂Wk with k = 1...4,

∮
∂W

J · n d∂W =
4∑

k=1

∫
∂Wk

J · nk d∂Wk, (4.38)

= 2π
 ∫ maxW (v||)

minW (v||)
dv||(−Jµ)

∣∣∣∣∣∣
minW (µ)

+
∫ maxW (µ)

minW (µ)
dµJ||

∣∣∣∣∣∣
maxW (v||)

+
∫ minW (v||)

maxW (v||)
dv||Jµ

∣∣∣∣∣∣
maxW (µ)

+
∫ minW (µ)

maxW (µ)
dµ(−J||)

∣∣∣∣∣∣
minW (v||)

. (4.39)

Here Jµ and J|| are the parallel and perpendicular velocity components of J and the functions
minW and maxW yield the minima and maxima of v|| and µ in W , defining the boundaries
of the rectangular test volume. The species indices are suppressed for simplicity. So far, no
discretization has been applied. This expression is exact and relates the volume integral of the
collision operator with the surface integral of its collisional fluxes. The factor 2π originates
from the volume element dW = 2πdv||dµ. The volume integral can be considered a three-
dimensional integral in velocity space, where the gyroangle integration (third coordinate) is
trivial.

In the next step, a discretization in velocity space is introduced. It covers the whole domain
with rectangular cells of finite volume centered around the grid points given by the spatial
discretization of the Vlasov part. The grid is chosen to cover the whole velocity space
without holes, and boundary conditions at the domain boundaries will be given. The points
of the finite difference grid are denoted by (i, j) where i = 1...N is the index of the parallel
coordinate v|| and j = 1...M is the index of the perpendicular coordinate µ. Since the velocity
space cells are centered around these grid points, the cells can also be labeled with the indices
(i, j). The boundaries of the cells lie at (i, j± 1

2) and (i± 1
2 , j) with (i± 1

2 , j± 1
2) denoting the

4 corners. The volume element of each cell is denoted as ∆W = 2π∆v||∆µ, which is constant
for a uniform grid. Fig. 4.3 visually represents the discretization.

Since a relation between the volume-integrated collision operator and the surface integrals of
its’ collisional fluxes has been established on a rectangular grid, this can be directly applied
in the discretized space just introduced. The discretization is constructed by discretizing the
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μ

v║

f(i,j)F(i-½,j)

F(i,j-½)

F(i,j+½)

F(i+½,j)

W

∂W

∆μ

∆v║

f(i+1,j)f(i-1,j)

f(i,j+1)

f(i,j-1)

f(i+1,j+1
)

f(i+1,j-1)f(i-1,j-1)

f(i-1,j+1)

Figure 4.3. Velocity space grid and the definition of fluxes and volumes for the finite volume
discretization of the LBD collision operator. In the center, a particular cell is shown, which is used
to construct the finite volume discretization. Taken from Ref. [58].
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volume and surface integrals of the collision operator above. In second-order the midpoint
rule (see section 4.1.1) can be used,∫

W (i,j)
QdW ≈ Q(i, j)∆W, (4.40)∫ maxW (v||)

minW (v||)
Qdv|| ≈ Q(i, j ± 1

2)∆v||, (4.41)
∫ maxW (µ)

minW (µ)
Qdµ ≈ Q(i± 1

2 , j)∆µ, (4.42)

where Q is a function, and the sign ± depends on which surface is integrated. The boundary
integrals involve knowledge of the function Q at the volume cell boundaries. These points
form a grid themselves, often called the staggered grid. Values of the function Q are generally
known on the actual grid Q(i, j). Thus the values on the staggered grid can be obtained via
interpolation. Since the discretization of the integrals is second-order, it is sufficient to
consider a second-order interpolation given by

Q(i± 1
2 , j) ≈ 1

2
(
Q(i, j) +Q(i± 1, j)

)
, (4.43)

Q(i, j ± 1
2) ≈ 1

2
(
Q(i, j) +Q(i, j ± 1)

)
, (4.44)

∂Q

∂v||

∣∣∣∣∣∣
i,j± 1

2

≈ 1
∆v||

(
±Q(i, j ± 1) ∓Q(i, j)

)
, (4.45)

∂Q

∂µ

∣∣∣∣∣∣
i,j± 1

2

≈ 1
∆µ

(
±Q(i, j ± 1) ∓Q(i, j)

)
. (4.46)

Applying the second-order midpoint rule (4.40) to the left-hand side of the collision operator
(4.37), ∫

W (i,j)
B∗

||CαβfαdW ≈ B∗
||(i)

(
Cαβfα

)
(i, j)∆W, (4.47)

yields an explicit expression of the discretized collision operator evaluated at the cell center
(i.e., the finite difference grid of the spatial discretization of the Vlasov part),

(
Cαβfα

)
(i, j) ≈ 1

∆WB∗
||(i)

∮
∂W (i,j)

Jαβ · n d∂W. (4.48)

On the right-hand side of this expression, the surface integral (4.39) can now be approximated
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using the second-order midpoint rule (4.41)-(4.42),

∮
∂W (i,j)

Jαβ · n d∂W ≈ 2π
− ∆v||Jµ,αβ(i, j − 1

2) + ∆µJ||,αβ(i+ 1
2 , j)

+ ∆v||Jµ,αβ(i, j + 1
2) − ∆µJ||,αβ(i− 1

2 , j)
. (4.49)

Inserting this into (4.48) yields,

(Cαβfα)(i, j) = 1
B∗

||(i)

 1
∆v||

(
J||,αβ(i+ 1

2 , j) − J||,αβ(i− 1
2 , j)

)

+ 1
∆µ

(
Jµ,αβ(i, j + 1

2) − Jµ,αβ(i, j − 1
2)
). (4.50)

The square bracket can be viewed as a direct discretization of the divergence operator, as
obtained in Ref. [152].

The fluxes need to be evaluated at the staggered grid points v||(i ± 1
2) and µ(j ± 1

2). Given
by eqs. (3.98) and (3.99)∗,

J||,αβ(i± 1
2 , j) = ναβ


(
v||(i± 1

2) − uαβ

)
fα(i± 1

2 , j)B
∗
||(i± 1

2) + Tαβ
mα

∂fαB
∗
||

∂v||

∣∣∣∣∣∣
i± 1

2 ,j

 ,
(4.51)

Jµ,αβ(i, j ± 1
2) = ναβ

2µ(j ± 1
2)fα(i, j ± 1

2)B∗
||(i) + 2Tαβ

B
µ(j ± 1

2)
∂fαB

∗
||

∂µ

∣∣∣∣∣∣
i,j± 1

2

 . (4.52)

Eqs. (4.43)-(4.46) give the interpolated distribution function and its derivative,

fα(i± 1
2 , j) = 1

2

(
fα(i, j) + fα(i± 1, j)

)
, (4.53)

fα(i, j ± 1
2) = 1

2

(
fα(i, j) + fα(i, j ± 1)

)
, (4.54)

∂fαB
∗
||

∂v||

∣∣∣∣∣∣
i± 1

2 ,j

= 1
∆v||

(
± fα(i± 1, j)B∗

||(i± 1) ∓ fα(i, j)B∗
||(i)

)
, (4.55)

∂fα
∂µ

∣∣∣∣∣∣
i,j± 1

2

= 1
∆µ

(
± fα(i, j ± 1) ∓ fα(i, j)

)
. (4.56)

∗The collision frequencies ναβ have been shifted into Jαβ in this section.
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To complete the discretization, boundary conditions must be imposed at the velocity space
domain boundaries. A natural choice is zero flux boundary conditions,

J||,αβ(1
2 , j) = J||,αβ(N + 1

2 , j) = Jµ,αβ(i, 1
2) = Jµ,αβ(i,M + 1

2) = 0, (4.57)

since these will automatically ensure the density conservation of the system (see next section).

4.3.2 Conservation Properties of the Finite Volume
Discretization

This section analyzes the conservation properties of the previously developed finite volume
discretization. The discretization errors are analyzed and quantified. The development of
correction terms based on re-formulating the mixing quantities uαβ and Tαβ ensures the exact
conservation of density, momentum, and energy.

Ref. [152] gives an elegant way to consider the discretized collision operator’s conservation
properties. A summary of the following derivation can be found in Appendix A of Ref. [58].
The discretized volume integral of a test function ϕ times the collision operator is

N∑
i=1

M∑
j=1

∆Wϕ(i, j)(∇ · Jαβ)(i, j) =
N∑
i=1

M∑
j=1

∆Wϕ(i, j)
 1

∆µ

(
Jµ,αβ(i, j + 1

2) − Jµ,αβ(i, j − 1
2

)

+ 1
∆v||

(
J||,αβ(i+ 1

2 , j) − J||,αβ(i− 1
2 , j

).
(4.58)

Applying the boundary conditions (4.57) splits the right-hand side of the expression into four
different sums,

∆W

 1
∆µ

N∑
i=1

M−1∑
j=1

ϕ(i, j)Jµ,αβ(i, j + 1
2) + 1

∆v||

N−1∑
i=1

M∑
j=1

ϕ(i, j)J||,αβ(i+ 1
2 , j)

− 1
∆µ

N∑
i=1

M∑
j=2

ϕ(i, j)Jµ,αβ(i, j − 1
2) − 1

∆v||

N∑
i=2

M∑
j=1

ϕ(i, j)J||,αβ(i− 1
2 , j)

. (4.59)

A re-indexing of the last two sums can be performed, i.e., j → j+1 and i → i+1, respectively

N∑
i=1

M∑
j=2

ϕ(i, j)Jµ,αβ(i, j − 1
2) =

N∑
i=1

M−1∑
j=1

ϕ(i, j + 1)Jµ,αβ(i, j + 1
2), (4.60)

N∑
i=2

M∑
j=1

ϕ(i, j)J||,αβ(i− 1
2 , j) =

N−1∑
i=1

M∑
j=1

ϕ(i+ 1, j)J||,αβ(i+ 1
2 , j). (4.61)
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Applying the re-indexing and consolidating the sums over the same ranges yields

∆W


N∑
i=1

M−1∑
j=1

Jµ,αβ(i, j + 1
2)ϕ(i, j) − ϕ(i, j + 1)

∆µ +
N−1∑
i=1

M∑
j=1

J||,αβ(i+ 1
2 , j)

ϕ(i, j) − ϕ(i+ 1, j)
∆v||

.
(4.62)

Using eqs. (4.45)-(4.46) the final result is

N∑
i=1

M∑
j=1

∆Wϕ(i, j)(∇ · Jαβ)(i, j) = −∆W


N∑
i=1

M−1∑
j=1

Jµ,αβ(i, j + 1
2)∂ϕ
∂µ

∣∣∣∣∣∣
i,j+ 1

2

+
N−1∑
i=1

M∑
j=1

J||,αβ(i+ 1
2 , j)

∂ϕ

∂v||

∣∣∣∣∣∣
i+ 1

2 ,j

. (4.63)

In other words, the discretization conserves the properties of integration by parts. This
property is very convenient since calculating the density, momentum, and energy change
of applying the collision operator requires operations given by eq. (4.58), where the test
function is replaced by ϕα = 1, ϕα = mαv|| or ϕα = 1

2mαv
2
|| + µB.

Density Conservation
The conservation of single particle density is trivial for the discretization constructed. Given
eq. (4.63), one has to use ϕα = 1 which derivatives with respect to v|| and µ are both zero.
Thus, the collision operator conserves single-particle density on the discrete level

N∑
i=1

M∑
j=1

∆W (∇ · Jαβ)(i, j) = 0. (4.64)

Momentum Change
To calculate the single species momentum change, ϕα = mαv|| is used, which results in

Pαβ ≡
N∑
i=1

M∑
j=1

∆Wmαv||(i)(∇ · Jαβ)(i, j) = −∆Wmα

N−1∑
i=1

M∑
j=1

J||,αβ(i+ 1
2 , j). (4.65)

Inserting the discretized parallel flux (4.51), yields

P̃αβ ≡ Pαβ
mαναβ

= −∆W
N−1∑
i=1

M∑
j=1

(v||(i+ 1
2) − uαβ

)
fα(i+ 1

2 , j)B
∗
||(i+ 1

2) + Tαβ
mα

∂fαB
∗
||

∂v||

∣∣∣∣∣∣
i+ 1

2 ,j

 .
(4.66)
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Using eqs. (4.43)-(4.45) and v||(i + 1/2) = v||(i) + ∆v||/2, results upon re-ordering of the
terms in

P̃αβ = −∆W
N−1∑
i=1

M∑
j=1

1
2

(
v||(i) + ∆v||

2 − uαβ − 2Tαβ
mα∆v||

)
fα(i, j)B∗

||(i)

+1
2

(
v||(i) + ∆v||

2 − uαβ + 2Tαβ
mα∆v||

)
fα(i+ 1, j)B∗

||(i+ 1)
. (4.67)

The sum in the second term can be re-indexed by i+ 1 → i,

N−1∑
i=1

M∑
j=1

1
2

(
v||(i) + ∆v||

2 − uαβ + 2Tαβ
mα∆v||

)
fα(i+ 1, j)B∗

||(i+ 1)

=
N∑
i=2

M∑
j=1

1
2

(
v||(i− 1) + ∆v||

2 − uαβ + 2Tαβ
mα∆v||

)
fα(i, j)B∗

||(i) (4.68)

Using v||(i − 1) + ∆v||/2 = v||(i) − ∆v||/2 and shifting the lower bound of the sum to i = 1
by adding 1,

N∑
i=2

M∑
j=1

1
2

v||(i− 1)+∆v||

2 − uαβ + 2Tαβ
mα∆v||

fα(i, j)B∗
||(i) =

N∑
i=1

M∑
j=1

1
2

(
v||(i) −

∆v||

2 − uαβ + 2Tαβ
mα∆v||

)
fα(i, j)B∗

||(i)

−
M∑
j=1

1
2

(
v||(1) −

∆v||

2 − uαβ + 2Tαβ
mα∆v||

)
fα(1, j)B∗

||(1). (4.69)

The same is applied to the first term in eq. (4.67), where the missing N term in the sum is
added

N−1∑
i=1

M∑
j=1

1
2

v||(i)+
∆v||

2 − uαβ − 2Tαβ
mα∆v||

fα(i, j)B∗
||(i) =

N∑
i=1

M∑
j=1

1
2

(
v||(i) + ∆v||

2 − uαβ − 2Tαβ
mα∆v||

)
fα(i, j)B∗

||(i)

−
M∑
j=1

1
2

(
v||(N) + ∆v||

2 − uαβ − 2Tαβ
mα∆v||

)
fα(N, j)B∗

||(N). (4.70)

83



Chapter 4 – Numerical Methods for Collision Operators

Re-assembling (4.67) using the eqs. (4.69)-(4.70), cancels all terms involving ∆v|| in the
double sum

P̃αβ = −∆W


N∑
i=1

M∑
j=1

(
v||(i) − uαβ

)
fα(i, j)B∗

||(i)

−1
2

M∑
j=1

(v||(1) −
∆v||

2 − uαβ + 2Tαβ
mα∆v||

)
fα(1, j)B∗

||(1)

+
(
v||(N) + ∆v||

2 − uαβ − 2Tαβ
mα∆v||

)
fα(N, j)B∗

||(N)
. (4.71)

The double sum can be evaluated using the definition of the discretized velocity space mo-
ments (4.8) and (4.9),

P̃αβ = − (M1,α − uαβM0,α − PBC,αβ) , (4.72)

where the last term is called the boundary correction term

PBC,αβ = ∆W
2

M∑
j=1

(v||(1) −
∆v||

2 − uαβ + 2Tαβ
mα∆v||

)
fα(1, j)B∗

||(1)

+
(
v||(N) + ∆v||

2 − uαβ − 2Tαβ
mα∆v||

)
fα(N, j)B∗

||(N)
, (4.73)

since it involves sums over the parallel velocity space domain boundaries and is added to the
standard momentum change expression given by the first two terms. The boundary correction
terms represent discretization errors that arise because the velocity space is truncated at finite
values of the distribution function.

Energy Change
The energy change due to collisions is calculated analogously to the momentum change, but
using ϕα = mαv

2
||/2 + µB

Eαβ ≡
N∑
i=1

M∑
j=1

∆W
(1

2mαv
2
||(i) + µ(j)B

)
(∇ · Jαβ)(i, j)

= −∆W
N∑
i=1

M−1∑
j=1

Jµ,αβ(i, j + 1
2)B

︸ ︷︷ ︸
E⊥

−∆W
N−1∑
i=1

M∑
j=1

J||,αβ(i+ 1
2 , j)mαv||(i)︸ ︷︷ ︸

E||

. (4.74)
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The perpendicular and parallel contributions are

Ẽ⊥ ≡ E⊥

ναβ
= −B∆W

N∑
i=1

M−1∑
j=1

2µ(j + 1
2)fα(i, j + 1

2)B∗
||(i) + 2Tαβ

B
µ(j + 1

2)
∂fαB

∗
||

∂µ

∣∣∣∣∣∣
i,j+ 1

2

,
(4.75)

Ẽ|| ≡
E||

ναβ
= −mα∆W

N−1∑
i=1

M∑
j=1

(v||(i+ 1
2) − uαβ

)
fα(i+ 1

2 , j)B
∗
||(i+ 1

2)

+ Tαβ
mα

∂fαB
∗
||

∂v||

∣∣∣∣∣∣
i+ 1

2 ,j

v||(i+ 1
2). (4.76)

By applying the same procedure as shown in the last section, the perpendicular contribution
becomes,

Ẽ⊥ = −B∆W


N∑
i=1

M∑
j=1

B∗
||(i)

(
µ(j) + ∆µ

2 − 2Tαβ
B∆µ

(
µ(j) + ∆µ

2

))
fα(i, j)

+
N∑
i=1

M∑
j=1

B∗
||(i)

(
µ(j) − ∆µ

2 + 2Tαβ
B∆µ

(
µ(j) − ∆µ

2

))
fα(i, j)

−
N∑
i=1

B∗
||(i)

[(
µ(M) + ∆µ

2

)
fα(i,M) − 2Tαβ

B∆µ

(
µ(M) + ∆µ

2

)
fα(i,M)

]

−
N∑
i=1

B∗
||(i)

[(
µ(1) − ∆µ

2

)
fα(i, 1) + 2Tαβ

B∆µ

(
µ(1) − ∆µ

2

)
fα(i, 1)

], (4.77)

where terms with ∆µ cancel in the double sum. The parallel contribution is similar, but uses
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the property v2
||(i− 1) + v||(i− 1)∆v|| = v2

||(i) − v||(i)∆v|| in the calculation,

Ẽ|| = −mα∆W


N∑
i=1

M∑
j=1

1
2

v2
||(i) + v||(i)∆v|| + (∆v||)2

4

−
(
uαβ + 2Tαβ

mα∆v||

)(
v||(i) + ∆v||

2

)fα(i, j)B∗
||(i)

+
N∑
i=1

M∑
j=1

1
2

v2
||(i) − v||(i)∆v|| + (∆v||)2

4

−
(
uαβ − 2Tαβ

mα∆v||

)(
v||(i) −

∆v||

2

)fα(i, j)B∗
||(i)

−
M∑
j=1

1
2

(v||(N) + ∆v||

2

)2

−
(
uαβ + 2Tαβ

mα∆v||

)(
v||(N) + ∆v||

2

) fα(N, j)B∗
||(N)

−
M∑
j=1

1
2

(v||(1) −
∆v||

2

)2

−
(
uαβ − 2Tαβ

mα∆v||

)(
v||(1) −

∆v||

2

) fα(1, j)B∗
||(1)

.
(4.78)

The terms linear in ∆v|| will cancel in the double sum, but there are also terms in the
boundary sums that cancel. This point can be seen by expanding,(

uαβ + 2Tαβ
mα∆v||

)(
v||(i) + ∆v||

2

)
= uαβv||(i) + ∆v||

2 uαβ + 2Tαβ
mα∆v||

v||(i) + Tαβ
mα

, (4.79)(
uαβ − 2Tαβ

mα∆v||

)(
v||(i) −

∆v||

2

)
= uαβv||(i) −

∆v||

2 uαβ − 2Tαβ
mα∆v||

v||(i) + Tαβ
mα

. (4.80)

The final result is obtained by collecting eqs. (4.77) and (4.78) as well as using the definitions
of the discretized moments (4.8)-(4.11),

Ēαβ ≡
Ẽ⊥ + Ẽ||

mα

= M2,α − uαβ
2 M1,α − 3Tαβ

2mα

M0,α + (∆v||)2

8 M0 − EBC,αβ. (4.81)
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The boundary correction terms are

EBC,αβ = EBC,⊥,αβ + EBC,||,αβ, (4.82)

EBC,⊥,αβ = ∆W
2mα

N∑
i=1

B∗
||(i)

(B + 2Tαβ
∆µ

)(
µ(1) − ∆µ

2

)
fα(i, 1)

+
(
B − 2Tαβ

∆µ

)(
µ(M) + ∆µ

2

)
fα(i,M)

. (4.83)

EBC,||,αβ = ∆W
2


M∑
j=1

1
2

(v||(1) −
∆v||

2

)2

−
(
uαβ − 2Tαβ

mα∆v||

)(
v||(1) −

∆v||

2

)fα(1, j)B∗
||(1)

+
M∑
j=1

1
2

(v||(N) + ∆v||

2

)2

−
(
uαβ + 2Tαβ

mα∆v||

)(
v||(N) + ∆v||

2

)fα(N, j)B∗
||(N)

.
(4.84)

Like the single species momentum change, the energy change in (4.81) contains standard
contributions in the first three terms and the boundary correction terms. The energy change
contains an additional discretization error that depends on (∆v||)2.

The remainder of this section presents the algorithm for correcting the boundary and (∆v||)2

discretization errors. Modifying the definition of uαβ and Tαβ will apply a correction such
that the error terms cancel.

Boundary Correction Terms
The boundary correction terms (4.73), (4.83) and (4.84) can be rewritten into a slightly
handier form,

PBC,αβ = S1,α

(
v−

|| − uαβ + 2Tαβ
mα∆v||

)
+ S2,α

(
v+

|| − uαβ − 2Tαβ
mα∆v||

)
, (4.85)

EBC,αβ = S3,α

(
B

mα

µ− + 2Tαβ
m∆µµ

−
)

+ S4,α

(
B

mα

µ+ − 2Tαβ
mα∆µµ

+
)

+ S1,α

1
2(v−

|| )2 −
(
uαβ − 2Tαβ

mα∆v||

)
v−

||

2

+ S2,α

1
2(v+

|| )2 −
(
uαβ + 2Tαβ

mα∆v||

)
v+

||

2

 .
(4.86)
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using staggered velocities

v−
|| ≡ v||(1) −

∆v||

2 , v+
|| ≡ v||(N) + ∆v||

2 , (4.87)

µ− ≡ µ(1) − ∆µ
2 , µ+ ≡ µ(M) + ∆µ

2 , (4.88)

and velocity space boundary sums

S1,α ≡ ∆W
2

M∑
j=1

fα(1, j)B∗
||(1), S2,α ≡ ∆W

2

M∑
j=1

fα(N, j)B∗
||(N), (4.89)

S3,α ≡ ∆W
2

N∑
i=1

fα(i, 1)B∗
||(i), S4,α ≡ ∆W

2

N∑
i=1

fα(i,M)B∗
||(i). (4.90)

It is useful to collect factors of uαβ and Tαβ,

PBC,αβ = uαβ p1,α + Tαβ p2,α + p3,α, (4.91)
EBC,αβ = uαβ p4,α + Tαβ p5,α + p6,α, (4.92)

with

p1,α ≡ − (S1,α + S2,α) , (4.93)

p2,α ≡ 2
mα∆v||

(S1,α − S2,α) , (4.94)

p3,α ≡ v−
|| S1,α + v+

|| S2,α, (4.95)

p4,α ≡ −1
2
(
v−

|| S1,α + v+
|| S2,α

)
= −1

2p3,α, (4.96)

p5,α ≡ 1
mα∆v||

(
v−

|| S1,α − v+
|| S2,α

)
+ 2
mα∆µ

(
µ−S3,α − µ+S4,α

)
, (4.97)

p6,α ≡ 1
2
(
(v−

|| )2S1,α + (v+
|| )2S2,α

)
+ B

mα

(
µ−S3,α + µ+S4,α

)
. (4.98)

Momentum and Energy Conservation
The first of the conditions imposed on the discretized collision operator is that the total
momentum should be conserved. This condition means that the single species contributions
of (4.72) should add to zero,

mαναβ (M1,α − uαβM0,α − PBC,α) +mβνβα (M1,β − uβαM0,β − PBC,β) != 0. (4.99)
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The second condition is that the total energy should be conserved, i.e

mαναβ

(
M2,α − 1

2uαβM1,α − 3
2mα

TαβM0,α + (∆v||)2

8 M0,α − EBC,α

)

+mβνβα

(
M2,β − 1

2uβαM1,β − 3
2mβ

TβαM0,β + (∆v||)2

8 M0,β − EBC,β

)
!= 0. (4.100)

To account for the ET and EM versions of the LBD at once, eqs. (3.135) and (3.140) are
written as

ναβ = νβα
M0,α

M0,β
καβ, (4.101)

καβ ≡

1, ET,
mα/mβ, EM.

(4.102)

Further, the equations will be normalized for use in a computational code. Since the velocity
normalization will depend on the particle species, the symmetry condition uαβ = uβα does
not hold in normalized units. To avoid re-deriving the equations again in that case, one can
insert a placeholder variable

uβα = uαβη, (4.103)

η ≡

1, physical units,
ηref , normalized units.

(4.104)

Using these definitions in the conditions for momentum and energy conservation and re-
grouping factors of uαβ and Tαβ yields

uαβs1,α + Tαβs2,α = s3,α, (4.105)
uαβs4,α + Tαβs5,α = s6,α, (4.106)
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where

s1,αβ = mα

(
1 + p1,α

M0,α

)
+mβκαβη

(
1 + p1,β

M0,β

)
, (4.107)

s2,αβ = mα
p2,α

M0,α
+mβκαβ

p2,β

M0,β
, (4.108)

s3,αβ = mα

M0,α

(
M1,α − p3,α

)
+ mβκαβ

M0,β

(
M1,β − p3,β

)
, (4.109)

s4,αβ = mα

M0,α

(1
2M1,α + p4,α

)
+ mβκαβη

M0,β

(1
2M1,β + p4,β

)
, (4.110)

s5,αβ = 3
2
(
1 + καβ

)
+mα

p5,α

M0,α
+mβκαβ

p5,β

M0,β
, (4.111)

s6,αβ = mα

M0,α

(
M2,α − p6,α

)
+ mβκαβ

M0,β

(
M2,β − p6,β

)
+ (∆v||)2

8
(
mα +mβκαβ

)
. (4.112)

The system of equations (4.105)-(4.106) is easily solved by,

uαβ = 1
s1,αβ

(
s3,αβ − Tαβs2,αβ

)
, (4.113)

Tαβ = s1,αβs6,αβ − s4,αβs3,αβ

s1,αβs5,αβ − s4,αβs2,αβ
. (4.114)

If the mixing quantities are chosen according to these two equations, the resulting finite
volume scheme will conserve total momentum and energy on the discrete level. The algorithm
to calculate these quantities is lengthy but simple. First calculate the discretized moments
(4.8)-(4.11), second the “p-factors” (4.93)-(4.98), third the “s-factors” (4.107)-(4.112) and
finally the mixing quantities (4.113) and (4.114). The algorithm for applying conservative
corrections to the finite volume discretization has been presented in Ref. [58] (see Appendix B
therein).

4.3.3 Normalized Discrete Finite Volume Version

The collision operator in finite volume discretization (4.50) is given in normalized form as

(Ĉαβ f̂α)(i, j) = 1
B̂∗

||(i)

 1
∆v̂||

(
Ĵ||,αβ(i+ 1

2 , j) − Ĵ||,αβ(i− 1
2 , j)

)

+ 1
∆µ̂

(
Ĵµ,αβ(i, j + 1

2) − Ĵµ,αβ(i, j − 1
2)
), (4.115)

where Cref = νref and the fluxes must be normalized with respect to J||,ref,α = νreffref,αBrefvth,α

and Jµ,ref,α = νreffref,αTref . Normalizing the fluxes (4.51)-(4.52) with these reference values
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yields,

Ĵ||,αβ(i± 1
2 , j) = ν̂αβ


(
v̂||(i± 1

2) − û||,αβ

)
f̂α(i± 1

2 , j) B̂
∗
||(i± 1

2) + T̂αβ
2
∂f̂αB̂

∗
||

∂v̂||

∣∣∣∣∣∣
i± 1

2 ,j

 ,
(4.116)

Ĵµ,αβ(i, j ± 1
2) = ν̂αβ

2µ̂(j ± 1
2)f̂α(i, j ± 1

2) B̂∗
||(i) + 2T̂αβ

B̂
µ̂(j ± 1

2)
∂f̂αB̂

∗
||

∂µ̂

∣∣∣∣∣∣
i,j± 1

2

 , (4.117)

where the interpolations and derivatives of the normalized quantities are obtained from
eqs. (4.53)-(4.56). The mixing quantities are normalized according to

uαβ = vth,αûαβ, (4.118)
Tαβ = Tref T̂αβ, (4.119)

ûβα = v−1
th,βuβα = vth,α

vth,β
ûαβ =

√
mβ

mα

ûαβ, (4.120)

T̂βα = T−1
ref Tαβ = T̂αβ. (4.121)

Comparing with (4.104), it is apparent that ηref =
√
mβ/mα. Next, the boundary sums are

normalized with Si,α = nrefmαŜi,α with i = 1 . . . 4, where

Ŝ1,α ≡ ∆Ŵ
2

M∑
j=1

f̂α(1, j)B̂∗
||(1), Ŝ2,α ≡ ∆Ŵ

2

M∑
j=1

f̂α(N, j)B̂∗
||(N), (4.122)

Ŝ3,α ≡ ∆Ŵ
2

N∑
i=1

f̂α(i, 1)B̂∗
||(i), Ŝ4,α ≡ ∆Ŵ

2

N∑
i=1

f̂α(i,M)B̂∗
||(i). (4.123)

The boundary correction terms are normalized by considering eqs. (4.99) and (4.100), real-
izing that the common dimensional prefactors are mαnrefvth,α and nrefTref respectively. To
achieve dimensionless equations, the reference values for the boundary correction terms have
to be the same, i.e.

PBC,αβ = mαnrefvth,αP̂BC,αβ, (4.124)
EBC,αβ = nrefTrefÊBC,αβ, (4.125)
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resulting in

P̂BC,αβ = p̂1,αûαβ + p̂2,αT̂αβ + p̂3,α, (4.126)
P̂BC,βα = p̂1,βûαβη + p̂2,βT̂αβ + p̂3,β, (4.127)
ÊBC,αβ = p̂4,αûαβ + p̂5,αT̂αβ + p̂6,α, (4.128)
ÊBC,βα = p̂4,βûαβη + p̂5,βT̂αβ + p̂6,β. (4.129)

The normalized “p-factors” are calculated by considering P̂BC,αβPBC,ref = ûαβvthp1,α+T̂αβTrefp2,α+
p3,α and ÊBC,αβEBC,ref = ûαβvthp4,α + T̂αβTrefp5,α + p6,α, and choosing the normalization such
that all terms are dimensionless,

p̂1,α = vthp1,α

PBC,ref
= −(Ŝ1 + Ŝ2)

vthnrefmα

nref

√
1

2mαTref
= −(Ŝ1 + Ŝ2),

p̂2,α = Trefp2,α

PBC,ref
= 2

∆v̂||
(Ŝ1 − Ŝ2)

nref

vth
Tref

1
nref

√
1

2mαTref
= 1

∆v̂||
(Ŝ1 − Ŝ2),

p̂3,α = p3,α

PBC,ref
= vthnrefmα

(
v̂−

|| Ŝ1 + v̂+
|| Ŝ2

) 1
nref

√
1

2mαTref
=
(
v̂−

|| Ŝ1 + v̂+
|| Ŝ2

)
,

p̂4,α = vthp4,α

EBC,ref
= −1

2
2

nrefTref
vth

1
2vthnrefmα

(
v−

|| Ŝ1 + v+
|| Ŝ2

)
= −

(
v−

|| Ŝ1 + v+
|| Ŝ2

)
,

p̂5,α = Trefp5,α

EBC,ref
= Tref

nrefTref

[
nref

∆v̂||

(
v̂−

|| Ŝ1 − v̂+
|| Ŝ2

)
+ 2nref

∆µ̂
(
µ̂−Ŝ3 − µ̂+Ŝ4

)]
,

= 1
∆v̂||

(
v̂−

|| Ŝ1 − v̂+
|| Ŝ2

)
+ 2

∆µ̂
(
µ̂−Ŝ3 − µ̂+Ŝ4

)
,

p̂6,α = p6,α

EBC,ref
= 1
nrefTref

Trefnref
[(

(v̂−
|| )2Ŝ1 + (v̂+

|| )2Ŝ2
)

+ B̂
(
µ̂−Ŝ3 + µ̂+Ŝ4

)]
,

=
(
(v̂−

|| )2Ŝ1 + (v̂+
|| )2Ŝ2

)
+ B̂

(
µ̂−Ŝ3 + µ̂+Ŝ4

)
.

Summarizing,

p̂1,α = −
(
Ŝ1,α + Ŝ2,α

)
, (4.130)

p̂2,α = 1
∆v̂||

(
Ŝ1,α − Ŝ2,α

)
, (4.131)

p̂3,α = Ŝ1,αv̂
−
|| + Ŝ2,αv̂

+
|| , (4.132)

p̂4,α = −
(
Ŝ1,αv̂

−
|| + Ŝ2,αv̂

+
||

)
= −p̂3,α, (4.133)

p̂5,α = 2
∆µ̂

(
Ŝ3,αµ̂

− − Ŝ4,αµ̂
+
)

+ 1
∆v̂||

(
Ŝ1,αv̂

−
|| − Ŝ2,αv̂

+
||

)
, (4.134)

p̂6,α = B̂
(
Ŝ3,αµ̂

− + Ŝ4,αµ̂
+
)

+
(
Ŝ1,α

(
v̂−

||

)2
+ Ŝ2,α

(
v̂+

||

)2
)
. (4.135)
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The conservation of momentum is normalized as,

0 = mα

(
M̂1,α

M̂0,α
vth,α − ûαβvth,α − mαnrefvth,αP̂BC,αβ

M̂0,αnrefmα

)

+mβ

(
M̂1,β

M̂0,β
vth,β − ûαβηvth,β − mβnrefvth,βP̂BC,βα

M̂0,βnrefmβ

)
,

=
√
m̂α

(
M̂1,α

M̂0,α
− ûαβ − P̂BC,αβ

M̂0,α

)
+
√
m̂β

(
M̂1,β

M̂0,β
− ûαβη − P̂BC,βα

M̂0,β

)
. (4.136)

Similar to the conservation of energy,

0 = mα

M̂2,α

M̂0,α

Tref

mα

− 1
2 ûαβ

M̂1,α

M̂0,α
v2

th,α − 3
2mα

T̂αβTref +

(
∆v̂||

)2

8 v2
th,α − nrefTrefÊBC,αβ

M̂0,αnrefmα


+mβ

M̂2,β

M̂0,β

Tref

mβ

− 1
2 ûαβη

M̂1,β

M̂0,β
v2

th,β − 3
2mβ

T̂αβTref +

(
∆v̂||

)2

8 v2
th,β − nrefTrefÊBC,βα

M̂0,βnrefmβ

 ,
= M̂2,α

M̂0,α
+ M̂2,β

M̂0,β
− ûαβ

M̂1,α

M̂0,α
− ûαβη

M̂1,β

M̂0,β
− 3T̂αβ + 1

2
(
∆v̂||

)2
− ÊBC,αβ

M̂0,α
− ÊBC,βα

M̂0,β
. (4.137)

These equations can be written as a linear system of equations,

ûαβ ŝ1,α + T̂αβ ŝ2,α = ŝ3,α, (4.138)
ûαβ ŝ4,α + T̂αβ ŝ5,α = ŝ6,α. (4.139)

The normalized “s-factors” can be easily extracted from eqs. (4.136) and (4.137)

ŝ1,αβ = γ̂α + γ̂β δ̂αβ + γ̂α
p̂1,α

M̂0,α
+ γ̂β δ̂αβ

p̂1,β

M̂0,β
, (4.140)

ŝ2,αβ = γ̂α
p̂2,α

M̂0,α
+ γ̂β

p̂2,β

M̂0,β
, (4.141)

ŝ3,αβ = γ̂α
M̂1,α

M̂0,α
+ γ̂β

M̂1,β

M̂0,β
− γ̂α

p̂3,α

M̂0,α
− γ̂β

p̂3,β

M̂0,β
, (4.142)

ŝ4,αβ = ϵ̂α
M̂1,α

M̂0,α
+ ϵ̂β δ̂αβ

M̂1,β

M̂0,β
− ϵ̂α

p̂4,α

M̂0,α
− ϵ̂β δ̂αβ

p̂4,β

M̂0,β
, (4.143)

ŝ5,αβ = 3
2(ϵ̂α + ϵ̂β) + ϵ̂α

p̂5,α

M̂0,α
+ ϵ̂β

p̂5,β

M̂0,β
, (4.144)

ŝ6,αβ = ϵ̂α
M̂2,α

M̂0,α
+ ϵ̂β

M̂2,β

M̂0,β
+ 1

4
(
∆v̂||

)2
(ϵ̂α + ϵ̂β) − ϵ̂α

p̂6,α

M̂0,α
− ϵ̂β

p̂6,β

M̂0,β
, (4.145)
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with

γ̂α =


1√
m̂α
, EM,

√
m̂α, ET,

(4.146)

ϵ̂α =


1
m̂α
, EM,

1, ET,
(4.147)

δ̂αβ =
√
m̂β

m̂α

≡ η. (4.148)

The normalized eqs. (4.114) and (4.113) then determine the normalized mixing quantities.
The overall formulation presented here is universal for the ET and EM versions of the LBD
collision operator.

4.4 Verification
Two verifications of the implemented discretized collision operators have been performed.
First, the conservation properties are analyzed in a single application of the collision operator.
Second, relaxation rates over several thousands of time steps are measured. This section
summarizes the results published in Ref. [58]. The derivation of the analytical relaxation
rates used in section 4.4.2 is given additionally.

4.4.1 Verification of Numerical Conservation Properties

The conservation of density, momentum, and energy (3.21)-(3.23) belong to the central prop-
erties of a collision operator. Significant efforts have been made to retain these properties
upon discretizing the LBD collision operator. The following verification considers the inves-
tigation of these properties.

Conservation properties are tested with collisions of electrons and ions, where both species
are initialized with distribution functions

f̂α = n̂α

2(πT̂α)3/2

exp
−

(v̂|| − û1,α)2 + µ̂B̂

T̂α

+ exp
−

(v̂|| − û2,α)2 + µ̂B̂

T̂α

 , (4.149)

describing the superposition of two Maxwellians (“double” Maxwellian). Here, the shifts
û1,α and û2,α can be chosen individually for each species. This choice is well suited for the
test under consideration, given at least one flow ̸= 0 since this distribution will not be an
equilibrium. Otherwise, the case Cαfα = 0 would trivially fulfill the conservation properties
if this relation holds for the discretized version.
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The verification of the conservation properties considers the BGK operator (3.163), the
fourth-order finite difference (FD) discretization of the LBD operator (4.31)-(4.34) and the
second-order finite volume (FV) discretization of the LBD operator (4.58). The velocity
space grid is chosen as v||,max = 8 and µmax = 64 for the BGK case and the FD and FV
LBD operators, v||,max = 3, µmax = 9 and v||,max = 4, µmax = 16 respectively. The parallel
velocity space grids are symmetric around 0, and the µ grid has its lower domain bound at
zero. The number of grid points is varied to study convergence. The shifts are û1,α = 0 and
û2,α = −0.87sign(qα) for the BGK case and û1,α = −0.27 and û2,α = 0.54 for both LBD
cases. For the real space discretization, either a slab or toroidal geometry34 is chosen (the
latter is used together with the label “guiding center corrections”), with profiles in density
and temperature detailed in the original reference [58].

Fig. 4.4 contains the results of this conservation study∗, where the average over the real space
is shown (with no outliers present). For the BGK operator, which is only a function evalu-
ation, the conservation properties essentially depend on the precision to which the velocity
space moments can be calculated numerically (Fig. 4.4 (a)). The quadrature schemes pre-
sented in section 4.1 determine the conservation and are confirmed to be second-order for the
trapezoidal method, fourth-order for Simpson, and much faster for Gauss-Laguerre quadra-
ture. The LBD FD operator shows a fourth-order convergence of the conservation properties,
given that the multi-species (ms) corrections discussed in section 3.2.5 for the mean flow and
temperature are used (Fig. 4.4 (c)). As a comparison, the conservation using a v||,max = 3,
µmax = 9 box is shown, which is improved for small grids due to the enhanced resolution, but
starts to become worse at large grids due to the cutoff of the distribution function. For the
BGK and LBD FD operator, the effect of the use of “guiding center corrections” (B∗

|| ̸= B) is
shown in (Fig. 4.4 (b) and (d)). For these two cases, the toroidal geometry mentioned above
is used since b · (∇ × b) ̸= 0 in eq. (3.147) in such a geometry. The conservation properties
of the LBD FV operator are shown in Fig. 4.4 (e). Here, the second-order convergence of the
(∆v̂||)2 term in the corrections (4.81) of an initial version of the operator can be seen (green).
A second version, where only this term has been corrected, shows the remaining errors con-
stant with grid-spacing (orange), which are the boundary correction terms in eqs. (4.72) and
(4.81). Correcting these yields a fully conservative discretization, where density, momentum,
and energy are conserved up to machine precision (purple). Fig. 4.4 (f) shows the difference
between the FD and the FV version.

∗Upon calculating the total momentum, one has to consider the species dependent normalization in the
GENE-X code. The single species momenta are normalized with pref = mαvth,α and thus

p̂tot =
∑

α

p̂α

√
m̂α,

by choosing the total momentum to be normalized to mass m̂ = 1.
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Figure 4.4. Verification of the conservation properties of the BGK, finite difference (FD), and
finite volume (FV) LBD operators. The plots contain convergence curves of the conserved properties
(different symbols and lines) against grid size. The abbreviation “gc” means guiding center, and
“ms” means multi-species. Details on the sub-figures are described in the main text. Taken from
Ref. [58].
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4.4.2 Verification of Relaxation Rates

Another physical property of a collision operator is the relaxation towards an equilibrium
state (section 3.2.3). This test has been initially performed by Hager in Ref. [152]. In the
following, a summary of the analytical estimations of the relaxation curves is given∗. The
distributions of electrons and ions are initialized as shifted bi-Maxwellians,

f̂α = n̂α

π3/2
√
T̂||,αT̂⊥,α

exp
−

(v̂|| − ûα)2

T̂||,α
− µ̂B̂

T̂⊥,α

 . (4.150)

This equation describes an anisotropic distribution function, which means that the tempera-
tures along (T̂||,α) and perpendicular (T̂⊥,α) to the magnetic field are different. Further, these
are chosen differently for electrons and ions. The effect of the collision operator on such a sys-
tem is described by three different stages125,127,128. Since νee ∼

√
mi/meνii ∼ (mi/me)νie64,

first electron-electron intra-species collisions will isotropize the electron distribution to a
Maxwellian. Second, ion-ion intra-species collisions will isotropize the ions. Third, ion-
electron inter-species collisions will thermalize the whole system. These processes can be
modeled by coupled ordinary differential equations (ODEs)66,

dT⊥,α

dt = −1
2

dT||,α

dt = −νT,α(T⊥,α − T||,α), (4.151)
dTα
dt = −νE,αβ(Tα − Tβ), (4.152)

Tα = 2
3T⊥,α + 1

3T||,α, (4.153)

where the index T labels temperature isotropization and E equilibration. For the equilibra-
tion process, it is easy to see that the temperature TE = (Te + Ti)/2 describes the system
equilibrium since the right-hand side in the time evolution equation vanishes for this value.
The above equations can be solved by any computer algebra tool to obtain analytical relax-

∗Thanks to R. Hager for pointing out the necessary steps to obtain analytical estimations for the relaxation
curves.
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ation curves

Tα(t) = TE +
(
Tα(0) − TE

)
e−2νE,eit, (4.154)

T||,α(t) = TE +
(
TE − Tα(0)

) 3νT,α
2νE,ei − 3νT,α

e−2νE,eit

+
(
T||,α(0) − 2νE,eiTE − 3νT,αTα(0)

2νE,ei − 3νT,α

)
e−3νT,αt, (4.155)

T⊥,α(t) = TE +
(
TE − Tα(0)

) 3νT,α
2νE,ei − 3νT,α

e−2νE,eit

+
(
T⊥,α(0) − 2νE,eiTE − 3νT,αTα(0)

2νE,ei − 3νT,α

)
e−3νT,αt. (4.156)

valid for α ∈ {e, i}.

The relaxation rates that are used are given by approximates66,

νT,i = 1.9187 × 10−8
√
mp

mi
Z2nT−3/2 ln Λ, (4.157)

νT,e = 8.22163 × 10−7nT−3/2 ln Λ, (4.158)

νE,ei = 3.16621 × 10−9mp

mi
Z2nT−3/2 ln Λ, (4.159)

where T⊥,α ≈ T||,α, Ti ≈ Te and ni ≈ ne is assumed. The density n must be given in cgs units,
the temperature T in eV, Z is the ion charge state, mi/mp the ion to proton mass ratio, and
ln Λ the Coulomb logarithm evaluated with T and n.

Initializing different parallel flows for electrons and ions in eq. (4.150) will lead to flow
relaxation. An approximation can be obtained by considering the flow relaxation due to the
small mass ratio friction force (parallel component)16

Rei = −Γeenime

∫
dvfe(v) v

v3 + mene

τe
ui, (4.160)

where Γee is given by (3.10) and τe = 3
√
πv3

th,e/(4niΓee) ∼ ν−1
ee is the electron collision time.

For this approximation, the electron distribution is assumed to be a shifted Maxwellian (like
eq. (3.34) but with flow shift ue). Using (v − ue)2 = v2 − 2uev cos θ + u2

e and expanding in
ue/vth,e ≪ 1 yields

fe = ne

π3/2v3
th,e

exp
(

−v2 − 2uev cos θ + u2
e

v2
th,e

)
,

≈ ne

π3/2v3
th,e

exp
(

− v2

v2
th,e

)(
1 + 2uev cos θ

v2
th,e

+ O
(
u2

e
v2

th,e

))
. (4.161)
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Considering the parallel component R||,ei = Rei · b, one can use spherical coordinates (v, θ, ϕ)
in velocity space (as in section 3.2.2) with the toroidally symmetric volume element dv =
2πv2 sin θdvdθ and v|| = v cos θ to write

R||,ei ≈ −2πΓeenimene

π3/2v3
th,e

∫ π

0
dθ sin θ cos θ

∫ ∞

0
dv exp

(
− v2

v2
th,e

)(
1 + 2uev cos θ

v2
th,e

)
+ mene

τe
ui.

(4.162)

The θ integral over the first term is an even integral over an odd function, thus zero. For the
second term, the v integral yields v2

th,e/2 and the θ integral 2/3. Thus,

R||,ei = −meneνe(ue − ui). (4.163)

Since also R||,ei := −d(meneue)/dt, the momentum relaxation rate is the same as the electron
collision rate νe = τ−1

e in this case. Since the total momentum must be conserved, the
equilibrium flow uE can be determined via,

ptot = meue +miui = (me +mi)uE. (4.164)

This relation allows solving the ODE analytically,

ue(t) = uE +
(
ue(0) − uE

)
e−(1+me/mi)νet, (4.165)

ui(t) = uE + me

mi

(
uE − ue(0)

)
e−(1+me/mi)νet. (4.166)

The numerical tests58 use the same plasma parameters as in Ref. [152]. Essentially, an
electron-deuterium (mD = 2mp) system is simulated, where both species have different par-
allel and perpendicular temperatures as well as mean flows. The verification is performed
with the EM (entropic momentum relaxation) and ET (entropic temperature relaxation) ver-
sions given by eqs. (3.135), (3.140) and (3.162). The grids are chosen as v̂||,max = 4, µ̂max = 8
with N = 513 and M = 64 for the BGK operator, v̂||,max = 3, µ̂max = 9 with N = 126
and M = 128 for the LBD FD with ET relaxation and v̂||,max = 4, µ̂max = 8 with N = 126
and M = 128 for the LBD FD with EM relaxation. These values are chosen such that the
simulations are stable over the long simulation period (the energy loss due to insufficient
conservation properties would otherwise lead to an abrupt end). For the LBD FV operator,
a grid with v̂||,max = 2, µ̂max = 4 with N = 63 and M = 64 could be used without issues in
the stability of the simulation.

Fig. 4.5 shows the result of the relaxation test against the analytical approximations (4.154)-
(4.156) and (4.165)-(4.166). As expected, the overall temperature relaxation happens in three
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Figure 4.5. Relaxation of an anisotropic electron-deuterium system used to verify the implemented
BGK and LBD collision operators. The top row shows the entropic momentum (EM) version, and
the bottom row the entropic temperature (ET) version. Taken from Ref. [58].

stages over a temporal scale of five orders of magnitude in terms of the ion collision time66.
The ratio between the equilibration processes is approximately

√
me/mD = 1/60. Analyzing

the numerical relaxation rates obtained by the discretized collision operators, one can observe
the qualitative difference between the EM and ET versions. The EM versions reproduce the
flow relaxation curves exactly while having an error in the temperature relaxation. The ET
versions have an error in the flow relaxation while approximating the temperature relaxation
much better. The relative factor of 2 between the LBD and BGK rates (3.162) can also be
observed. Finally, the LBD FD version fails at the end of the simulation, as seen by a kink
for both the EM and ET versions. This failure happens due to the energy loss caused by the
discretized version’s insufficient conservation properties. In fact, after the last point of the
LBD FD curve, the simulation became unstable and ended abruptly.
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4.4.3 Additional Verifications

Additional verifications have been performed by checking the H-theorem (3.24) for all cases
considered. The H-function (3.25) is calculated as

Hαβ = 2π
∫ B∗

||

mα

ln(fα)Cαβ(fα)dv||dµ. (4.167)

In practice, the logarithm is modified ln(fα) → ln(|fα| + ϵ), where ϵ is the machine-epsilon
(∼ 10−16) since the numerical scheme is not positivity preserving. In all cases considered,
the H-theorem is fulfilled, and no violations have been found so far.

4.5 Time Stepping Schemes and Stability
In this section, the various discretizations of the LBD collision operator are analyzed con-
cerning stability, and advanced time-stepping schemes are introduced. Using the normalized
version of the equations is more appropriate since these are implemented in a code. Further,
the approximation B∗

|| ≈ B will be made for the stability analysis.

Including collisional physics into the gyrokinetic system poses a numerical challenge since,
due to the disparate time scales, collisions are numerically stiff165. Explicit schemes are of-
ten not suited to treat such equations166. This section shows that the diffusive nature of
electron-electron collisions poses the main limitation at high temperatures. Eventually, im-
plicit schemes need to be considered since the time step reduces with increasing collisionality,
also slowing down the Vlasov part of the code. With advanced splitting methods, explicit
schemes can still be used in the cases considered here. For example, the time step of the
LBD simulation in section 5.1 could be chosen a factor of two larger with the splitting scheme
introduced in section 4.5.4.

The simplest way to achieve an optimal time step in a simulation is trial and error. As the
time step depends on the grid spacing, this cannot be performed on a reduced problem, and
the fully resolved problem needs to be chosen to check for numerical stability. This situation
could be improved since many compute nodes on a supercomputer must be occupied for
such tests. Thus, informed time step criteria are a valuable tool to reduce a simulation’s
resource usage and setup phase. In the following, three different time step criteria, differing
in accuracy, are presented.
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4.5.1 Simple Time-Step Criteria

The LBD collision operator (3.156) is essentially an advection-diffusion operator (for the
definition, see Ref. [160]). For an advection operator, a fundamental constraint on the
time step of a finite difference scheme is given by the Courant-Friedrichs-Lewy167 (CFL)
condition160,168, ∆t ≤ Ca∆x/a. Here, Ca is called the Courant number∗ and a > 0 is a
constant advection speed in an equation ∂u/∂t+ a ∂u/∂x = 0. For a pure diffusion equation
∂u/∂t + d ∂2u/∂x2 = 0, there is a similar condition160,168, ∆t ≤ Cd(∆x)2/d, where d > 0
is the diffusion coefficient, and Cd could be called “diffusive Courant number”. The same
considerations hold for the finite volume scheme constructed since the numerical fluxes are
computed using finite differences169. The above criteria hold for constant advection and
diffusion coefficients. Generally, for hyperbolic or parabolic problems, the coefficients are
replaced by the maximum advection/diffusion coefficients in the system169. For the LBD
collision operator (3.156), the CFL conditions can be written as,

v|| adv : ∆t̂ ≤ Ca
∆v̂||

ν̂αβmax(v̂||)
, v|| diff : ∆t̂ ≤ Cd

2(∆v̂||)2

ν̂αβT̂αβ
, (4.168)

µ adv : ∆t̂ ≤ Ca
∆µ̂

2ν̂αβ(max(µ̂) + T̂αβ/B̂)
, µ diff : ∆t̂ ≤ Cd

(∆µ̂)2

2ν̂αβmax(µ̂)T̂αβ/B̂
. (4.169)

It is important to note that first, these expressions are only necessary but not sufficient
conditions, and second, these only consider advection and diffusion as well as parallel and
perpendicular dynamics independently. The Courant numbers for second and fourth-order
centered difference stencils in space, combined with an RK4 scheme in time, are given by160

C2,CD
a = 2.82, C4,CD

a = 2.05, (4.170)
C2,CD
d = 0.69, C4,CD

d = 0.52. (4.171)

The question of advection or diffusion dominating can be analyzed by considering the so-
called Péclet number160,162 Pe = aL/d, where L is a typical length scale. Taking the grid
spacing as the length scale, the local Péclet numbers for the LBD operator are

Pe||(v̂||) = 2v̂||∆v̂||

T̂αβ
, Peµ(µ̂) = (µ̂B̂ + T̂αβ)∆µ̂

T̂αβµ̂
= B̂∆µ̂

T̂αβ
+ ∆µ̂

µ̂
. (4.172)

If Pe ≪ 1, diffusion dominates, whereas advection dominates for Pe ≫ 1. Given this informa-
tion, one can choose the correct CFL criterion (4.168)-(4.169) to approximate the maximal
possible time step. Further, taking the velocity space grid as fixed, it is apparent from (4.172)

∗Typically the symbol ν is used, which is avoided here due to possible ambiguities with the collision
frequency.
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that the Péclet numbers will be dominantly affected by the plasma temperature (since mag-
netic field changes are typically much weaker compared to temperature changes). The varying
temperature means that considering a simulation of a fusion device that spans a domain from
the hot plasma core to the cold SOL, the LBD collision operator will change its behavior
from diffusion dominated in the core to advection dominated in the SOL.

The case where Pe = 1 is more complicated in practice since one cannot easily deduce
if advection or diffusion will dominate the CFL restrictions on the time step. The same
holds for the case if parallel or perpendicular dynamics are dominating. However, conditions
(4.168)-(4.169) are still useful expressions to get an approximate idea about the maximum
∆t. The following section presents improved criteria.

4.5.2 Eigenvalue Analysis

As already mentioned, the discretization of the gyrokinetic equation in GENE-X is based on
the method of lines160,168. First, the (phase-) space dimensions are discretized, followed by
applying a time integrator such as, e.g., RK4. For the case of collisions, the dimension
of interest is the velocity space. In the following, the action of the collision operator on
the distribution function Cαβ(fα) is considered. Within a finite difference or finite volume
discretization, this can be viewed as the action of a collision matrix LC on the distribution
function vector f . For example in 1D, one can write f = (f(1), f(2), f(3), . . . f(N))T and the
collision matrix,

LC =



α(1) γ(1) ι(1) 0 0 0 0

β(2) α(2) γ(2) ι(2) 0 0 0

κ(3) . . . . . . . . . . . . 0 0

0 . . . . . . . . . . . . . . . 0

0 0 . . . . . . . . . . . . ι(N − 2)

0 0 0 κ(N − 1) β(N − 1) α(N − 1) γ(N − 1)

0 0 0 0 κ(N) β(N) α(N)



, (4.173)

where this form of LC allows for up to fourth-order symmetric stencils. For a second-
order scheme ι(i) = κ(i) = 0. The change due to collisions is then df/dt|coll = LC · f .
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One can call this a semi-discrete formulation168. The full discretized equation depends on
the time-stepping scheme. For the simplest scheme, explicit Euler, it can be written as
f(t+ ∆t) = f(t) + ∆tLC · f(t).

The standard criterion for the stability of the method of lines is given in Ref. [160]. Here a
summary is given. Assuming the matrix LC is normal, the method is based on the stability
region of the explicit time stepping scheme S = {z ∈ C : |R(z)| ≤ 1}, defined by all points
enclosed by the contour where the stability function R(z) equals one. The scheme is stable
if the set of eigenvalues of the matrix scaled by the time-step lies within this stability region,
∆tλk ∈ S, ∀k, where λk are the eigenvalues of LC . The case of non-normal matrices is treated
in section 4.5.3.

Construction of the Total Collision Matrix
The stability of the full LBD operator must be analyzed by combining the parallel and
perpendicular parts. It is illustrative to consider, as an example, a grid with two points in
each v|| and µ. For each µ, the parallel operator would act on f2×2,|| = (f(1, j), f(2, j))T

and for each v|| the perpendicular operator on f2×2,µ = (f(i, 1), f(i, 2))T. This results in the
individual matrices (for the second-order finite difference discretization),

LN=2
2,|| =


1 − d||

d||
2 + a||(1)

d||
2 − a||(2) 1 − d||

 , LM=2
2,µ =


2 − 2dµ(1) dµ(1) + aµ(1)

dµ(2) − aµ(2) 2 − 2dµ(2)

 ,
(4.174)

where a and d denote the operator’s grid-dependent, parallel, and perpendicular advection
and diffusion coefficients (details do not matter at this point). The distribution function
vector can be written as f2×2 = (f(1, 1), f(1, 2), f(2, 1), f(2, 2))T. Neighboring points in v||

are now separated by points in µ, whereas neighboring points in µ are still neighbors. It can
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be easily figured out that the parallel and perpendicular collision matrices change to

L2×2
2,|| =



1 − d|| 0 d||
2 + a||(1) 0

0 d||
2 − a||(2) 0 1 − d||

1 − d|| 0 d||
2 + a||(1) 0

0 d||
2 − a||(2) 0 1 − d||


, (4.175)

L2×2
2,µ =



2 − 2dµ(1) dµ(1) + aµ(1) 0 0

dµ(2) − aµ(2) 2 − 2dµ(2) 0 0

0 0 2 − 2dµ(1) dµ(1) + aµ(1)

0 0 dµ(2) − aµ(2) 2 − 2dµ(2)


. (4.176)

Further, it can be seen that the matrices are related to the original ones by L2×2
2,|| = LN=2

2,|| ⊗
IM=2 and L2×2

2,µ = IN=2 ⊗LM=2
2,µ , where ⊗ denotes the Kronecker product and I the unit matrix

with dimensionality given by N , the number of v|| points or M , the number of µ points. The
sum of the two matrices gives the total action of the collision operator. In terms of the
original matrices, this can be written as a Kronecker sum170,

LC = L|| ⊗ IM + IN ⊗ Lµ. (4.177)

The above expression also holds for a more generalized grid since the assumption of a 2×2 grid
is arbitrary and only used for visualization purposes. Equation (4.177) is very convenient
since it allows individually constructing the parallel and perpendicular collision matrices,
combining the result afterward.

LBD Collision Matrices
Next, the collision matrices for the different discretizations of the LBD collision operator
are given as components of the general form of the collision matrix (4.173). For a simpler
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presentation, the following abbreviations will be used

E(i) ≡
v̂||(i) − ûαβ

∆v̂||
, F ≡ T̂αβ

(∆v̂||)2 , (4.178)

G(j) ≡ µ̂(j) + T̂αβ/B̂

∆µ̂ , H(j) ≡ T̂αβµ̂(j)
B̂(∆µ̂)2

. (4.179)

The parallel part in second-order finite difference discretization is given by

α2,||(i) = ν̂αβ
(
1 − F

)
, β2,||(i) = ν̂αβ

(
−E(i)

2 + F

2

)
, γ2,||(i) = ν̂αβ

(
E(i)

2 + F

2

)
. (4.180)

The corresponding perpendicular part is

α2,µ(j) = ν̂αβ
(
2 − 4H(j)

)
, j > 1, (4.181)

β2,µ(j) = ν̂αβ
(

−G(j) + 2H(j)
)
, (4.182)

γ2,µ(j) = ν̂αβ
(
G(j) + 2H(j)

)
, j > 1. (4.183)

The first row is different due to the change in the stencil. It reads,

L2,µ(1, 1) = ν̂αβ
(
2 − 3G(1) + 4H(1)

)
, L2,µ(1, 2) = ν̂αβ

(
4G(1) − 10H(1)

)
, (4.184)

L2,µ(1, 3) = ν̂αβ
(
G(1) + 8H(1)

)
, L2,µ(1, 4) = −2ν̂αβH(1), (4.185)

L2,µ(1, j) = 0, j > 4. (4.186)

The parallel part of the fourth-order finite difference discretization is,

α4,||(i) = ν̂αβ

(
1 − 5

4F
)
, β4,||(i) = ν̂αβ

(
−2

3E(i) + 2
3F

)
, (4.187)

γ4,||(i) = ν̂αβ

(2
3E(i) + 2

3F
)
, κ4,||(i) = ν̂αβ

(
− 1

12E(i) − 1
24F

)
, (4.188)

ι4,||(i) = ν̂αβ

( 1
12E(i) − 1

24F
)
, (4.189)
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and the corresponding perpendicular part

α4,µ(j) = ν̂αβ (2 − 5H(j)) , j > 2, (4.190)

β4,µ(j) = ν̂αβ

(
−4

3G(j) + 8
3H(j)

)
, j > 2, (4.191)

γ4,µ(j) = ν̂αβ

(4
3G(j) + 8

3H(j)
)
, j > 2, (4.192)

κ4,µ(j) = ν̂αβ

(
−1

6G(j) − 1
6H(j)

)
, (4.193)

ι4,µ(j) = ν̂αβ

(1
6G(j) − 1

6H(j)
)
, j > 2. (4.194)

The first row is modified due to the different stencils,

L4,µ(1, 1) = ν̂αβ

(
2 − 25

6 G(1) + 15
2 H(1)

)
, L4,µ(1, 2) = ν̂αβ

(
8G(1) − 77

3 H(1)
)
, (4.195)

L4,µ(1, 3) = ν̂αβ

(
−6G(1) + 107

3 H(1)
)
, L4,µ(1, 4) = ν̂αβ

(8
3G(1) − 26H(1)

)
, (4.196)

L4,µ(1, 5) = ν̂αβ

(
−1

2G(1) + 61
6 H(1)

)
, L4,µ(1, 6) = ν̂αβ

(
−5

3H(1)
)
, (4.197)

L4,µ(1, j) = 0, j > 6, (4.198)

as well as the second row,

L4,µ(2, 1) = ν̂αβ

(
−1

2G(2) + 5
3H(2)

)
, L4,µ(2, 2) = ν̂αβ

(
2 − 5

3G(2) − 5
2H(2)

)
, (4.199)

L4,µ(2, 3) = ν̂αβ

(
3G(2) − 2

3H(2)
)
, L4,µ(2, 4) = ν̂αβ

(
−G(2) − 7

3H(2)
)
, (4.200)

L4,µ(2, 5) = ν̂αβ

(1
6G(2) −H(2)

)
, L4,µ(2, 6) = ν̂αβ

(
−1

6H(2)
)
, (4.201)

L4,µ(2, j) = 0, j > 6. (4.202)

For the finite volume discretization, the parallel part is

αV,||(i) = ν̂αβ

(1
2 − F

)
, 1 <i < N, (4.203)

βV,||(i) = ν̂αβ

(
−
E(i− 1

2)
2 + F

2

)
, i < (N − 1), (4.204)

γV,||(i) = ν̂αβ

(
E(i+ 1

2)
2 + F

2

)
, i > 1, (4.205)
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with boundary conditions realized as modifications to the first and last row,

LV,||(1, 1) = ν̂αβ

(1
2E(1

2) − 1
2F

)
, LV,||(N,N − 1) = ν̂αβ

(
−1

2E(N − 1
2) + 1

2F
)
, (4.206)

LV,||(1, 2) = ν̂αβ

(1
2E(1

2) + 1
2F

)
, LV,||(N,N) = ν̂αβ

(
−1

2E(N − 1
2) − 1

2F
)
, (4.207)

LV,||(1, i) = 0, i > 2, LV,||(N, i) = 0, i < (N − 1), (4.208)

and the perpendicular part,

αV,µ(j) = ν̂αβ

(
1 − 2

(
H(j + 1

2) +H(j − 1
2)
))

, 1 <j < M, (4.209)

βV,µ(j) = ν̂αβ

(
−G̃(i− 1

2) + 2H(j − 1
2)
)
, j < (M − 1), (4.210)

γV,µ(j) = ν̂αβ

(
G̃(i+ 1

2) + 2H(j + 1
2)
)
, j > 1, (4.211)

with G̃(j) = µ̂(j)/∆µ̂ and boundary conditions,

LV,µ(1, 1) = ν̂αβ

(
G̃(1

2) − 2H(1
2)
)
, LV,µ(M,M − 1) = ν̂αβ

(
−G̃(M − 1

2) + 2H(M − 1
2)
)
,

(4.212)

LV,µ(1, 2) = ν̂αβ

(
G̃(1

2) + 2H(1
2)
)
, LV,µ(M,M) = ν̂αβ

(
−G̃(M − 1

2) − 2H(M − 1
2)
)
,

(4.213)
LV,µ(1, j) = 0, j > 2, LV,µ(M, j) = 0, j < (M − 1). (4.214)

The eigenvalues of these matrices are exemplarily shown in Fig. 4.6 for a 40 × 20 grid with
normalized parameters for density, temperature, and magnetic field set to one (see the cap-
tion for the full set of parameters)∗. The Péclet numbers for a typical velocity of v̂|| = 3 and
µ̂ = 9 are Pe|| ≈ 2.46 and Peµ ≈ 3.55, indicating a mixed advective-diffusive character. This
behavior is confirmed by comparing the magnitudes of the real and imaginary parts of the
eigenvalues. Both second-order schemes have similar but not identical eigenvalues, whereas
the fourth-order scheme shows larger eigenvalues, as expected. Comparing the parallel and
perpendicular agianst the total eigenvalues, one can observe that the parallel and perpen-
dicular eigenvalues “combine” in a peculiar way. One could obtain the total eigenvalues by
repeating the structure of the parallel eigenvalues centered at each perpendicular eigenvalue.
As a result, the total operator has larger maximal eigenvalues than the individual ones.

A diffusion-dominated case is shown in Fig. 4.7. Here, only the temperature has been
increased to T̂ = 30. This result confirms that the temperature plays a key role in determining

∗For simplicity, the mixing quantities have been replaced by constant temperatures T̂ and zero flow û = 0.

108



4.5. Time Stepping Schemes and Stability

the advective or diffusive character of the collision operator. In this case the Péclet numbers
are Pe|| ≈ 0.08 and Peµ ≈ 0.46 (for v̂|| = 3 and µ̂ = 9).

Stability of the Discretized LBD Operator with RK4 Time-Integration
The standard time-integration scheme in the GENE-X code is the RK4 scheme62. The stability
polynomial that defines the stability region is given by166

RRK4(z) = 1 + z + 1
2z

2 + 1
6z

3 + 1
24z

4. (4.215)

The R(z) = 1 contour of the RK4 stability region has a typical “bean” shape. In Figs. 4.8
and 4.9, the eigenvalues of the total collision matrices for the different discretizations of
the LBD operator have been plotted against the stability region of the RK4 scheme. The
time steps have been approximately maximized for the given parameters. The fourth-order
scheme has a stricter requirement, with a ratio close to the ones given by the Courant
numbers in the simple criterion (4.171). In the T̂ = 30 case, the strictest CFL criterion is
the perpendicular diffusion, suggesting time steps of ∆t̂ ≈ 4.24 × 10−3 for the second-order
schemes and ∆t̂ ≈ 3.19 × 10−3 fourth-order schemes to be stable. Such time steps would
be unstable according to the eigenvalue analysis. For the T̂ = 1 case, the CFL criterion
on the fourth-order scheme would be stable, whereas, for the second-order schemes, a single
eigenvalue would cross the stability region.

This example shows that the eigenvalue analysis yields a more accurate analysis than the
simple CFL criteria in section 4.5.1. However, one condition for the analysis to apply is a
normal collision matrix. The following section will analyze the effect of non-normality.

4.5.3 Advanced Stability Analysis

In the last section, the eigenvalues of the LBD collision matrices have been analyzed. While
this method is simple and intuitive, it is only a necessary condition for the stability of the
scheme. For the eigenvalue criterion to be sufficient, the matrix under consideration must be
normal, which is not the case, as will be shown in the following. For non-normal matrices,
the pseudo-eigenvalues of the matrix should be analyzed instead168. In this section, such an
advanced stability analysis is performed.
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Figure 4.6. Eigenvalues of the parallel, perpendicular, and total collision matrix for the second and
fourth-order finite difference (FD2 and FD4) and the second-order finite volume (FV) discretization.
The grid chosen is 40 × 20 in v̂|| × µ̂ with extent v||,max = 8 and µmax = 64 and parameters n̂ = 1,
B̂ = 1, T̂ = 1 and û = 0 for electron-electron collisions. The normalization used nref = 1019 m−3,
Tref = 0.02 keV, Bref = 0.929 T and Lref = 0.906 m with mass normalized to the mass of a proton.
The eigenvalues are scaled by ∆t̂ = 10−4.

0.04

0.02

0.00

0.02

0.04

Im
(z

)

FD2
parallel

FD4
parallel

FV
parallel

0.04

0.02

0.00

0.02

0.04

Im
(z

)

perpendicular perpendicular perpendicular

0.05 0.00
Re(z)

0.04

0.02

0.00

0.02

0.04

Im
(z

)

total

0.05 0.00
Re(z)

total

0.05 0.00
Re(z)

total

Figure 4.7. Same as Fig. 4.6 but for T̂ = 30.
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Figure 4.8. Eigenvalues of the total collision matrix for the second and fourth-order finite difference
(FD2 and FD4) and the second-order finite volume (FV) discretization against the stability region
of the RK4 scheme (enclosed by the purple line). Time-steps chosen are listed in the box. The
other parameters are the same as in the case in Fig. 4.6, the normalized temperature is T̂ = 1.
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Figure 4.9. Same as Fig. 4.8 but for T̂ = 30.
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Table 4.1. Degree of non-normality Qn given by eq. (4.217) evaluated for the two cases given by
Figs. 4.6 and 4.7.

Case T̂ = 1:
parallel perpendicular total

FD2 0.07 0.17 0.43
FD4 0.09 0.23 0.58
FV 0.10 0.19 0.47

Case T̂ = 30:
parallel perpendicular total

FD2 0.003 0.008 0.020
FD4 0.004 0.013 0.033
FV 0.003 0.008 0.020

Non-Normality of the Discretized LBD Operator
Considering the stability of the method of lines requires a normal matrix. To be normal,
the defining condition on a real matrix A is171 AAT = ATA. The continuous advection-
diffusion operator is non-normal172 due to boundary conditions or non-constant advection
and or diffusion coefficients173. This property suggests analyzing the non-normality of the
matrices approximating these operators. For example, the parallel part of the second-order
finite difference discretization on a 2 × 2 grid is

L2×2
2,||

(
L2×2

2,||

)T
−
(
L2×2

2,||

)T
L2×2

2,||

=


(

1
2B + A(0)

)2
−
(

1
2B − A(1)

)2
0

0 −
(

1
2B + A(0)

)2
+
(

1
2B − A(1)

)2

 .
(4.216)

While under certain special parameter choices, the matrix L2×2
2,|| can be normal, it is certainly

not the case in general. There are several different quantifications of the non-normality of
matrices174. One of the most basic ones measures the violation of the defining condition,

Qn(A) = ||AAT − ATA||1/2
F , (4.217)

where ||A||F = (∑ij |Aij|2)1/2 is the Frobenius norm. For example, Table 4.1 shows these
numbers for the two cases considered in Figs. 4.6 and 4.7. In these cases, the total colli-
sion matrices have a higher degree of non-normality than the individual parallel and per-
pendicular ones. Further, one can observe that the degree of non-normality is lower for
the diffusion-dominated case, consistent with the behavior expected from the continuous
advection-diffusion operator173.

The dependence on the velocity space grid can be seen in Figs. 4.10 and 4.11. First, the ex-
pected growth of non-normality with the number of grid points can be observed, in agreement
with the literature172. Second, in the range considered, the non-normality seems dominated
mainly by the perpendicular contributions. The scaling for the total collision matrix flattens
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for a small number of parallel grid points. Further, a kink in the parallel contributions for the
finite difference schemes is observed at N = 12 due to the matrix coefficients having numbers
such that approximately LFD,|| ≈ D + S, where D is diagonal and S is skew-symmetric. This
outlier is an example of a “lucky shot” where the matrix became almost normal (however,
only for the parallel part of the finite difference schemes for a single temperature value and
grid spacing).

The measure of non-normality (4.217) used above is helpful to check if a matrix is non-
normal (which is the case for the discretized LBD operator). Further, the dependence of
non-normality with different parameters can be analyzed. However, a scalar measure of
non-normality is not sufficient, and one must check separately for each matrix if there are
consequences for the numerical stability173.

Pseudospectra of the Discretized LBD Operator
The theory of using pseudospectra for the stability of the method of lines can be found in
Ref. [175]. Here a summary is given. A number z ∈ C is called an ϵ-pseudo-eigenvalue of
a matrix A if z is an eigenvalue of A + E, where E is a perturbation matrix with L2-norm
||E||2 ≤ ϵ. For normal matrices, the pseudo-eigenvalues will form balls of radius ϵ around
the eigenvalues, whereas, for non-normal matrices, the pseudo-eigenvalues can form much
larger regions. Even if an eigenvalue lies inside the region of stability of the time integrator,
the discretization may become unstable if the matrix is highly non-normal. Standard cases
that experience this behavior are, e.g., the first order upwind scheme as well as spectral
discretization methods173,175∗.

In the previous section, it has been shown that the discretized LBD operator is non-normal.
In the following, the pseudo-eigenvalues will be analyzed. For brevity, only the finite volume
collision matrix is considered. The small parameter ϵ can represent errors in calculating
temperature and mean flow, as these determine the entries in the collision matrix. As such,
it is of interest if the stability of the discretization is affected by these discretization errors.

The full-discretization is written as fn+1 = G(∆tL(∆t))fn := A(∆t)fn, where n labels the
discretized time, L is the collision matrix and G(w) is a function that characterizes the time
integration175. For example, for the RK4 scheme173,

GRK4(∆tL) = IL + ∆tL + 1
2(∆t)2L2 + 1

6(∆t)3L3 + 1
24(∆t)4L4, (4.218)

where IL is the unit matrix with the same size as L. Since A(∆t) is applied repeatedly on
the distribution function vector to advance it in time, the total time evolution can be seen

∗In the standard cases the upwind scheme is typically combined with explicit Euler and the spectral
methods with third order Adams-Bashforth time integrators.
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Figure 4.10. Dependence of the degree of non-normality Qn on the number of grid points for the
parallel, perpendicular, and total collision matrix for the second and fourth-order finite difference
(FD2 and FD4) and the second-order finite volume (FV) discretization. The left plot shows a
scaling in the parallel dimension (for fixed M = 10), the center one in the perpendicular dimension
(for fixed N = 10), and the right scaling for both dimensions simultaneously. The parameters are
the same as in the case in Fig. 4.6, the normalized temperature is T̂ = 1.
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Figure 4.11. Same as Fig. 4.10 but for T̂ = 30.
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as applying the Nt-th power of A(∆t) on f , where Nt is the total amount of time steps. This
fact is only the case if the coefficients are constant. Otherwise, A(∆t) must be re-evaluated at
each time step. In the following, the former case is assumed. The discretization is defined as
Lax-stable if the powers of this matrix are bounded ||A(∆t)n|| ≤ C for all n and sufficiently
small ∆t, such that 0 ≤ n∆t ≤ Tmax for t ∈ [0, Tmax] where C is a constant176. This criterion
is necessary and sufficient for stability∗.

The theorem that connects a discretization’s Lax-stability with the discretized operators’
pseudo-spectrum has been established and proven in Ref. [175]. The version applied on
one-step time integrators is summarized in the following (Theorem 7.1 within Ref. [175]). If
the matrix powers are bounded ||A(∆t)n|| ≤ C1 for all n ≥ 0, then the ϵ-pseudo-eigenvalues
{zϵ} of ∆tL(∆t) lie at most within a distance of order ϵ away from the region of stability
of the time integration scheme. In other words dist(zϵ, S) ≤ C2ϵ for all ϵ ≥ 0. Further,
this implies that the power bound will depend on either the number of spatial grid points or
on the number of time steps performed via ||A(∆t)n|| ≤ C3min(Nr, n), where Nr = Nr(∆t)
exemplarily denotes the space dimension chosen for a given time step. For the theorem
to hold, S must be bounded, and G′(w) must not be equal to zero at the boundary of S,
which is fulfilled for the RK4 scheme. Further, the family of matrices {∆tL(∆t)} must
be uniformly bounded, a condition which can be met for the LBD operator by choosing at
least ∆µ̂ ∼ ∆v̂|| ∼ ∆t̂. The constants C1, C2, C3 depend on the number of grid points or
time steps. The above condition is formulated for an infinite maximum time. It can be
relaxed to 0 ≤ n∆t ≤ Tmax by using C2ϵ+ C4∆t as the upper bound for the distance of the
pseudo-eigenvalues from the region of stability173.

Fig. 4.12 shows an example of the pseudo-spectra for the perpendicular part of the finite
volume version of the LBD operator with parameters T̂ = 1, Lµ = 64, M = 32 and ∆t̂ =
4 × 10−4 (other parameters are the same as in the cases before). The continuous lines show
bounds of the pseudo-spectra computed with the pseudopy177 package based on algorithms
in Ref. [173]. The markers show a way to estimate the pseudo-spectra by evaluating the
eigenvalues of the perturbed matrix L+E, where E is a random complex matrix with L2 norm
||E||2 ≤ ϵ. It is constructed using normally distributed random numbers with zero mean and
standard deviation of one. Real and imaginary parts of each matrix entry use independent
random numbers, and the total matrix is scaled such that its L2 norm is equal to ϵ. This
method does not create all possible matrices with norm ϵ. Thus not the whole region within
the continuous lines is filled. The algorithm computing the bounds on the pseudo-spectra
becomes very slow for matrices of dimension 100 or more. In contrast, the estimation via
random matrices can still be used with larger matrices.

∗And also for convergence as ∆t → 0, given that the discretization is consistent. This additional relation
is called the Lax Equivalence Theorem176.
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Figure 4.12. Eigenvalues (black crosses), some pseudo-eigenvalues (colored crosses), and bounds
on the pseudo-spectra (continuous lines) for the perpendicular finite volume collision matrix. Pa-
rameters are T̂ = 1, M = 32 and ∆t̂ = 4 × 10−4 with the other relevant ones being the same as in
the case in Fig. 4.6. The three subplots show the different ϵ-pseudo-spectra, and the box indicates
the degree of non-normality (4.217). The pseudo-eigenvalues (colored crosses) are calculated using
100 perturbed matrices.

Additionally, Fig. 4.12 shows a case where the non-normality of the matrix has a significant
effect. While all the eigenvalues are real-valued, the pseudo-eigenvalues have substantial
imaginary eigenvalues, and further, the extent on the real axis is increased. This discretization
is time-stable with the RK4 scheme as a time integrator. For the explicit Euler scheme, on
the other hand, the eigenvalues would be within the stability region, a unit circle centered
at -1. In contrast, the pseudo-eigenvalues exceed that boundary even for small ϵ. One can
see that the distance between the boundary of the stability region and the pseudo-spectra is
not of O(ϵ). Thus this discretization is unstable, providing a simple example of where the
eigenvalue analysis fails. The instability can be remedied by choosing a smaller time step.
However, it would not be clear from the eigenvalue analysis why the time step is restricted.

The previous (simplified) case showed how the eigenvalue analysis might fail in certain cases
to predict stable time steps of a discretization. Next, the full collision matrix with an RK4
time integrator is considered. Fig. 4.13 shows the power norm of the matrix A(∆t̂) under
consideration for the Lax-stability of the discretization. The time steps have been chosen to
be approximately maximal while keeping all eigenvalues within the region of stability of the
RK4 time integrator (Table 4.2). As the number of grid points increases, the power norm
grows significantly, reaching a maximum at N × M = 32 × 32∗. However, increasing the
number of grid points further does not result in an unbounded growth of the power norm.
This behavior can be explained by considering the (approximate) pseudo-spectra shown in
Fig. 4.14. One can observe that for N×M = 32×32 grid points the ϵ = 10−7 and potentially
the ϵ = 10−9 pseudo-eigenvalues exceed the stability region of the RK4 scheme. This results
in a transient growth173 in the order of up to 109, as observed in Fig. 4.13. Due to the
high computational cost of computing the pseudo-spectra, only the approximate method is

∗This has been tested against other grid sizes such as 31 × 31 or 33 × 33.
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Table 4.2. Values of the time step used for different grid sizes in Fig. 4.13.

N ×M 16 × 16 28 × 28 32 × 32 36 × 36 48 × 48 64 × 64
∆t̂/10−4 16.432 8.9 7.06576 4.3 2.02 1.049
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Figure 4.13. Power norm of the total finite volume LBD collision matrix A(∆t̂) = G(∆t̂LV (∆t̂))
for different grid sizes. The time steps are given in Table 4.2. All other parameters are the same as
in the case in Fig. 4.6.

used. The exact pseudo-eigenvalues are larger, as can be seen by comparing the growth of the
N × M = 28 × 28 curve in Fig. 4.13 with its approximate pseudo-eigenvalues in Fig. 4.14.
However, observing pseudo-eigenvalues outside the stability region is sufficient to identify
stability issues.

The stability issue is confirmed in a test where the collision matrix is applied on the anisotropic
distribution function f = a1π

−3/2 exp
(
−(v̂|| + 0.3)2/a2 − µ̂B̂/a3)

)
. The parameters are cho-

sen such that the moments of this distribution are n̂ ≈ 1 and T̂ ≈ 1∗. While for the
N × M = 28 × 28 case, no stability issue is found within 500 time steps (which covers ap-
proximately the temporal range in Fig. 4.13), the N × M = 32 × 32 case experienced a
numerical instability after 264 time steps, followed by an abrupt ending. Using only 90% of
the maximal time step given by the eigenvalue analysis leads to a stable simulation.

The apparent reason for this peculiar behavior of the discretization is the fact that the
character of the LBD collision matrix changes from advection to diffusion dominated (see

∗The numbers are a1 = 9.16, a2 = 0.7 and a3 = 0.4 for the N ×M = 28×28 case and a1 = 3.16, a2 = 0.9
and a3 = 0.55 for the N × M = 32 × 32 case. Further, a mean flow is used. The collision operator has been
applied with conservative corrections and nonlinear coefficients, where the moments are calculated at each
time step and RK4 stage.
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Figure 4.14. Eigenvalues and approximated pseudo-spectra of the total finite volume LBD collision
matrix for different grid sizes. Parameters are explained in the caption of Fig. 4.13. The degree of
non-normality (4.217) is shown in the box. The purple line shows the stability region of the RK4
time integrator. The pseudo-spectra are approximated with the method shown in Fig. 4.12, using
100, 10, 10, 10, 5, and 5 perturbed matrices, respectively.
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eigenvalues in Fig. 4.14). The shape of the pseudo-spectra seems to be relatively bounded
on the real axis, except for the case N ×M = 32 × 32, for which ∆µ̂ = 2 given M = 32 and
µmax = 64. In that case, the advective and diffusive terms are balanced in the perpendicular
part of eq. (4.211). This is the case with the highest non-normality∗. An interesting fact
is the concentration of eigenvalues at large negative real values in this case, distinguishing
it from the N × M = 36 × 36 case, where the spectrum looks very similar. However, the
eigenvalues are more concentrated at smaller real values.

The final point is that Fig. 4.13 suggests that the discretization is Lax-stable for the given
parameters within the range of grid sizes considered. Since the maximum of the power
norm does not seem to grow with larger grids, it can be bound by a constant independent
of the number of grid points or time steps. However, in the choice of the time step, care
must be taken not to excite instabilities, especially in conditions where the operator has
a mixed advective-diffusive character. A pragmatic approach is to estimate the possible
time step with the eigenvalue method, take some “safety factor” like 90% (especially when
the spectrum indicates a mixed advective-diffusive character), and try for some hundreds of
steps. For realistic simulation cases, where several hundreds of thousands of real-space points
with different parameters (density, temperature, magnetic field) are present, analyzing each
parameter set individually is not practical. In such a situation, carefully chosen cases with
extremal parameters may be investigated instead.

4.5.4 Advanced Time-Stepping Schemes

So far, this section has covered the stability of the discretized collision operator only. The
target application cases consider the gyrokinetic Vlasov equation and the collisional part.
Thus, the stability of the complete discretized equation needs to be considered. In practice,
the stability analysis of the discretized Vlasov part is non-trivial due to the complexity of
the operator (see Ref. [62] for the full discretized Vlasov operator). Further, compared to
collisions-only, the dimensionality of the full problem increases rapidly due to the necessary
inclusion of real-space dynamics. The scaling of the problem leads quickly to matrices with
dimensions of 109, making a detailed stability analysis impractical.

On the other hand, performing a detailed stability analysis for each case is often unnecessary.
Given a time-stable collisionless simulation (found using estimations with the CFL criterion
for that problem62), collisions will most likely restrict the maximum time step possible. The
consideration from section 4.5.2 can explain this. Supposing the discretized Vlasov part
has eigenvalues close to the stability boundary, adding collisions will shift these outside the

∗Although the N ×M = 28×28 case has the same non-normality, the impact on the stability is less severe
due to the shape of the pseudo-spectrum. In this case, the single measure of non-normality is insufficient to
provide a detailed prediction of the behavior of the matrix.
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stability region, requiring a decrease in the time step to keep the simulation stable∗. Such a
global decrease in the time step makes collisional simulations very expensive, despite using
a relatively simple and computationally cheap collision operator. This potential decrease
in time step motivates a splitting between the time evolution of the collisionless and the
collisional processes in the simulation. Ref. [160] provides an overview of different splitting
methods.

Strang Splitting
The method of Strang splitting178 is an accurate second-order technique to split the time
evolution of an operator into two parts59,

T (∆t)fα =
TC

(
∆t
2

)
◦ TV (∆t) ◦ TC

(
∆t
2

)fα, (4.219)

where T denotes the total time evolution operator and TC and TV the time evolution due to the
collisional and Vlasov part respectively. In this notation, applying T (∆t) on the distribution
fα will advance it by time step ∆t. Thus, the splitting will apply the two operators TC and
TV consecutively on the distribution function. The collisional and collisionless time evolution
are split, and the time step ∆t has to be chosen such that both operators are individually
stable. As an effect, the stricter time step criterion will apply to the total time evolution. In
two consecutive applications of the total time evolution operator, the collisional steps can be
combined

T 2(∆t)fα =
TC

(
∆t
2

)
◦ TV (∆t) ◦ TC

(
∆t
2

)
◦ TC

(
∆t
2

)
◦ TV (∆t) ◦ TC

(
∆t
2

)fα,
=
TC

(
∆t
2

)
◦ TV (∆t) ◦ TC (∆t) ◦ TV (∆t) ◦ TC

(
∆t
2

)fα. (4.220)

Although this seems computationally beneficial, there are two drawbacks. First, algorithmic
changes would be required for the first and last and for all the time steps where diagnostics
are written to file. Second, while in the not-combined case, the collisions need to be stable
concerning time step ∆t/2, in the combined case, the requirement is stability for ∆t. Despite
splitting the collisional and collisionless parts, a reduction in ∆t due to the stability of the
collision operator will also reduce the time step of the collisionless part. Since the LBD
collision operator is relatively cheap computationally, keeping the separate evaluations with
the time step ∆t/2 is beneficial.

The current default time stepping scheme in GENE-X using LBD collisions is Strang splitting
with RK4 for both the Vlasov and the collisional part. In principle, both operators can use

∗The simple picture shown here is only strictly valid if the Vlasov part is independent of v||.
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different time integrators. In practice, RK4 is chosen for the collisional step due to the large
extent of the stability region on the imaginary axis. As shown in the previous sections, this
allows for simulations in both advective and diffusive regimes of the collision operator.

RKC Schemes
A possible alternative time integrator for the collisional part of the gyrokinetic equation could
be provided by the family of Runge-Kutta-Chebyshev (RKC) schemes160. Here, the stability
region is determined by Chebyshev polynomials of first kind Ts (see Ref. [135] §3.11(ii)).
The stability region is given by160

SRKC
s (z) = Ts(1 + z/s2), (4.221)

where s is the order of the scheme and z ∈ C. These polynomials have the issue that for
s > 0 “knots” along the negative real axis exist, where the extent of the stability region
on the imaginary axis is zero (see Fig. 4.15 grey dashed line). For perfectly diffusive prob-
lems described by normal operators, this would be sufficient. However, any small imaginary
eigenvalue will lead to instability. Thus, a modified version exists160

SRKC
s,η (z) = Ts(1 + η + wz)

Ts(1 + η) , w = Ts(1 + η)
T ′
s(1 + η) , (4.222)

where T ′
s(z) ≡ ∂Ts(z)/∂z and η is a damping parameter∗. The effect of this damping is an

enlarged imaginary stability region close to the knots of the undamped region of stability for
the price of a reduction in the extent along the negative real axis (compare the grey dashed
against the dotted line in Fig. 4.15). The choice of η will also depend on the non-normality
of the collision matrix since, for diffusion-dominated problems, the pseudo-eigenvalues may
have substantial imaginary parts (see previous section, in particular, Fig. 4.14).

The combination of Strang splitting with RKC time integrators for the collision operator was
investigated in Ref. [179] for a similar problem. There, a computational benefit was found
due to the diffusive nature of the collision operator used. The same observation is made
in a diffusive regime for the LBD collision operator, as shown in Fig. 4.15 (right). Here,
a second-order RKC scheme could improve the possible time step by ≈ 2.86 (compared to
Fig. 4.9). However, for an advection-dominated case, as in Fig. 4.15 (left), the maximal time
step is restricted due to the smaller extent of the RKC2 stability region along the imaginary
axis. Thus, advanced schemes must be considered for the application in real space domains
where both cases happen simultaneously (such as the edge and SOL region of fusion devices).
Possibilities include advanced RKC methods180 or implicit-explicit (IMEX) (or IMEX-RK)
schemes160,181,182 using Jacobian-free Newton-Krylov methods183 to solve the implicit part of

∗The definition in Ref. [160] is slightly different, there the choice ω0 = 1 + ϵ/s2 corresponds to 1 + η in
this work.
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Figure 4.15. Eigenvalues of the discretized finite volume LBD collision operator for the advective
(T̂ = 1) and diffusive (T̂ = 30) cases with all other parameters given in the caption of Fig. 4.6.
The time step is maximal within the RKC2 (s=2) stability region with damping η = 0.01 (orange
line). For comparison, the RK4 stability region and RKC2 with two different damping parameters
are given.

the time evolution (such as used in Ref. [165]). For the applications in this work, using the
RK4 scheme for the collisional part is sufficient.

4.6 Performance Analysis

The parallelization in the high-performance code GENE-X is based on a hybrid OpenMP184

(open multi-processing) / MPI185 (message passing interface) approach62. The φ, v||, µ and α
(species) dimensions of the computation are parallelized across multiple compute nodes with
MPI, while the remaining RZ dimension is parallelized across multiple cores (processors) with
OpenMP. The implementation is very flexible, allowing any distribution of MPI processes along
the four dimensions just mentioned, also using multiple MPI processes per compute node (e.g.,
one per socket) if desired.

Since typical simulations with GENE-X consume computing resources in the range of millions
of core-hours59,112, implementing the newly developed collision operators must be highly
efficient. The following section presents a performance analysis, considering only the finite
volume version of the LBD collision operator.
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4.6.1 Node-Level Performance

First, the performance on the level of a single compute node is analyzed. The results can
be used to detect possible inefficiencies that may lead to an overall slowdown of the code.
The analysis is performed with the use of the roofline model186 (additional details are given
in Ref. [62]). To summarize, the performance in terms of floating point operations per
second (FLOPS) and the memory bandwidth in GB/s are measured. The performance is
plotted against the arithmetic intensity in FLOP/B (often also denoted as FLOP/Byte). The
memory bandwidth limits applications with low arithmetic intensity, whereas applications
with high arithmetic intensity are limited by the possible amount of floating point (FP)
operations. These two limits together form the shape of the roofline.

For this purpose, a benchmark program will apply the parts of the code to be analyzed over 20
times on a distribution function fα = 1. The code is compiled with the Intel Fortran compiler
version 19.1.1, and the benchmark program is executed with the Intel Advisor 2022.3 toolkit
that analyzes the execution and provides the data of interest. The benchmark is run on a
single node of the Cobra supercomputer at the Max-Planck Computing and Data Facility
(MPCDF), featuring two Intel Xeon Gold 6148F processors (SkyLake architecture) with 20
cores of 2.4 GHz clock rate and 27.5 MB L3 cache each. The number of OpenMP threads used
is 40, the same as the number of cores per node available.

The chosen problem is of dimension (RZ × φ × v|| × µ × α) = (131126 × 4 × 20 × 2 × 2),
representing the typical load of a single compute node in a production run distributed among
320 nodes. The total amount of grid points is approximately 42 million, resulting in arrays
of size 335 MB without ghosts. With four ghost points in φ and v|| and 2 in µ, the total
number of points is 201 million, with array sizes of 1611 MB. Thus the distribution function
does not fit into the L3 cache, and the performance is expected to be either limited by the
bandwidth of the DRAM (the memory entity next in size) or by the number of FLOPS that
can be performed.

The benchmark includes the BGK and LBD collision operators as well as the velocity space
moments (MOM) and, for reference, the linear combination (LC) (y = ax1 + bx2) and AXPY
(y = ax + y) operators. All computations have been performed with double precision.
Fig. 4.16 shows the result of the benchmark program in the form of the roofline model. First,
the two reference operators, LC and AXPY, reproduce results from Ref. [62]. As expected,
they are clearly bound by the DRAM memory bandwidth of approximately 210 GB/s due
to the low arithmetic intensity of the operators. While the BGK and the MOM operators
have approximately the same arithmetic intensity, the former has a memory bandwidth of
approximately 846 MB/s and 150 GFLOPS against 584 MB/s and 105 GFLOPS∗. The

∗The memory bandwidth reported in Intel Advisor is the memory transferred between the CPU and the
L1 memory subsystem.
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Figure 4.16. Roofline model of the performed benchmark described in the main text. The lines
show the performance bounds given by the L3 bandwidth (970 GB/s), DRAM bandwidth (209
GB/s), and scalar add peak (190 GFLOPS). Other hardware limits that extend beyond the plot
limits are not shown. The points represent the results for the BGK, MOM, and LBD operators and
reference results for the linear combination (LC) and AXPY operators. The size of the points is
scaled by the elapsed time spent in the operators.

memory traffic is close to the L3 memory bandwidth of approximately 970 GB/s, indicating
that the operators most likely benefit from cache re-usage. The LBD operator has a higher
arithmetic intensity due to stencil operations. Its memory bandwidth is 322 GB/s with
151 GFLOPS. The BGK and MOM operators do not use ghost points compared to the
LBD operator. The execution of the BGK, LBD, and MOM operators is vectorized with an
approximate vectorization efficiency (estimated gain per vector length, vector length is four
here) of 100%, 88%, and 99%, respectively.

4.6.2 Parallel Efficiency

The second part of the performance analysis considers the scaling of the code with an increas-
ing number of compute nodes. An application is parallelized by splitting the computational
domain into sub-domains distributed over several compute nodes. The application considered
here uses stencil operations to calculate derivatives, meaning that part of the data required
to calculate the derivative at a sub-domain boundary is located at a different compute node.
These points are communicated via ghost exchange. The library used to implement this
approach is MPI. Since the ghost exchange is already required in the collisionless code, its
contribution is factored out from the following analysis. Nonetheless, there is additional
communication between compute nodes that are required. Calculating integrals over veloc-
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ity space requires splitting sums into partial sums that are performed on each compute node.
At the end of summation, the individual results must be collected across different compute
nodes. This operation is called reduction. Such operations are performed when calculat-
ing the velocity space moments and the velocity space boundary sums in the conservative
corrections of the finite volume LBD operator. These operations will be analyzed.

In the following, a strong scaling is performed, which means that the problem size is kept
fixed while the number of nodes is increased, resulting in an expected decrease of runtime187.
Since the φ and α dimensions are orthogonal in the computation of collisions, these will not be
considered in the scaling. Further, the BGK operator does not contain stencil operations and
is not dependent on ghost exchange. Hence ideal strong scaling is assumed, and no analysis
is performed. For the LBD and MOM operators, a domain size of (RZ × φ× v|| × µ× α) =
(261121 × 1 × 64 × 32 × 2) is chosen, resulting in approximately one billion points and arrays
of size 8.5 GB. With ghosts, the array size increases to 48 GB. Since multiple instances need
to be stored due to the RK4 time integration, the Cobra supercomputer’s fat partition must
be used for the run on a single node. All other runs used the standard partitions with the
same CPUs as in the node-level performance analysis. The Cobra supercomputer features an
OmniPath network connecting the compute nodes with memory bandwidths of 100 GB/s.

First, a scaling only in the v|| dimension is performed, and the contributions to the runtime
by computations and reduction operations are analyzed. Figure 4.17 shows that for a small
number of compute nodes, the communication part is negligible, and the scaling of the
total (computation plus communication) time per time step is nearly ideal. With a more
notable amount of compute nodes, the total scaling deviates from the ideal expectation due to
increased required communication since the pure computation time still scales almost ideally.
The communication in the MOM operator starts to dominate the overall computational cost
when more than four compute nodes are used. Because the LBD operator has a higher
computational intensity, the effect of communication is not as strong. The scaling performed
here exhausted all available dimensions of the problem. As a result, the ratio of ghost to grid
points is 4:1.

Next, the parallel efficiency of the implementation is of interest. Keeping the problem size
fixed, doubling the number of processes should ideally result in half the computational time
required. Due to Amdahl’s law188 the ideal speedup will be diminished due to serial parts in
the program. The speedup used here is defined as187,

sp(n) = t1
tn
, (4.223)

where t1 is the execution time on one process and tn on n processes. The parallel efficiency187

η(n) = sp(n)/n is a measurement of how efficiently the program is parallelized. This quantity
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Figure 4.17. Time per time step for the strong scaling of the LBD and MOM (velocity space
moments) operators in the v|| dimension. The contributions due to computation and communication
are shown separately. The black dotted line indicates the ideal scaling. The fraction of runtime
(per time step) for computation and communication is shown on the right.
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will be different for each test case due to runtime fluctuations. Thus an average efficiency is
of greater interest. This number is obtained by fitting a function,

sp(N||, Nµ) = c1N
η||
|| N

ηµ
µ , (4.224)

to the results obtained from a 2D strong scaling in the two velocity space directions. Here
η|| and ηµ denote the efficiency when parallelizing along the v|| or µ dimension and c1 is an
irrelevant constant. This function is a natural choice since doubling the number of processes
in one dimension would ideally result in double the speedup.

The scaling tests have been performed on the same hardware as before, scanning the 2D
parameter space selectively with up to 512 compute nodes. Figs. 4.18 and 4.19 show the
results of a 2D strong scaling for the computation only and the total (computation plus
communication) part, together with efficiency fits. The fits have been performed with the
nonlinear least squares method and the Levenberg-Marquard algorithm189. The results con-
firm the previous observations from the v|| scaling. The computational part scales nearly
ideal (≈94-96%), whereas the communication lowers the overall efficiency to ≈65-74%. For
currently performed production runs, the runtime spent in communication is tolerable, since
typically the number of v|| and µ processes is around 2 and 10, respectively∗. For future
production runs with more than 1000 nodes, more processes in the velocity space dimensions
must be used (due to the exhaustion of the φ and α dimensions), and further performance
optimization may be required.

∗Using a total of 320 compute nodes with 16 and 2 processes in φ and α respectively, with one process
per socket.
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4.7 Chapter Summary
In this chapter, the technical part of this thesis has been covered. First, the quadrature
schemes have been improved, resulting in a better evaluation of the velocity space moments
of the distribution function. Second, a basic finite difference (FD) discretization and an
advanced conservative finite volume (FV) of the LBD operator were developed. A unique
scheme to achieve the conservation of momentum and energy up to machine precision has
been developed. Third, both discretizations have been verified, and the advantages of the FV
version have been analyzed. Due to the enhanced conservation properties, the FV version can
be used with much smaller grids while still being stable in contrast to the basic FD version.
Fourth, the stability of the discretizations has been investigated, providing approximate
criteria on the maximal time steps possible. Further, an advanced time-stepping scheme
(Strang splitting) has been implemented and shown to be advantageous in the simulation
of collisional kinetic equations. Fifth, the discretization presented has been implemented
in a high-performance code. The node level performance and a strong scaling of the MPI
parallelization have been provided.

The conservative finite volume discretization and the two verification studies have been pub-
lished in Ref. [58].
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Chapter 5

Collisional Gyrokinetic Simulations of
the TCV Tokamak

In this chapter, the previously presented collision models will be used in the GENE-X code to
perform gyrokinetic simulations of edge and scrape-off layer (SOL) turbulence of the “Toka-
mak à configuration variable” (TCV)190. The results of a validation study are presented,
where the collisionless, BGK, and LBD models were used in three individual simulations.
The validation considers the plasma profiles, power balance, and scrape-off layer fall-off
length. The turbulence observed is analyzed and characterized using Fourier and trapped
particle diagnostics. At the end of this chapter, an alternative, optimized implementation of
the LBD operator using a formulation based on the perpendicular velocity is used to com-
pare a simulation with lower resolution against the reference from the TCV validation. The
validation and turbulence characterization results have been published in Ref. [59].

5.1 Validation against TCV-X21
The difference between verification and validation can be summarized as follows. Verifica-
tion checks if a computer code (or simulation) implemented the equations given by a model
correctly, whereas validation checks if the implemented model describes the physical reality
(i.e., experiments) correctly191. For example, section 4.4 presented a verification of the imple-
mentation of the collision models by checking against known properties of collisions, such as
conservation and relaxation. By passing such a check, it is inherently unclear if the collision
model under consideration is sufficient to describe processes observed in the experiment, such
as, for example, neoclassical physics. Thus, the way of addressing the degree to which the
collision model describes the experiment in a particular application case is validation191. In
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the following, the collisionless, BGK, and LBD collision models are used for the simulation
of micro-turbulence and validation against the experiment.

The collisionless part of the GENE-X code has passed several verifications34,62 as well as a
first validation, together with simulations including BGK collisions, in the ASDEX-Upgrade
(AUG) tokamak112. The AUG validation has shown that including collisions improves the
agreement with the experiment. Besides that, two GRILLIX simulations without192 and
with193 neutral gas physics provide strong indications that neutral gas dynamics heavily
influence the chosen experimental case. These findings suggest that the current model in
GENE-X should be extended to include neutral gas dynamics in future model improvements.
Nonetheless, it is interesting to see if the current model in GENE-X can describe plasma micro-
turbulence in experimental cases with little influence by neutral gas. Further, the question
arises as to which degree collisions are required in such simulations, focusing on the edge and
SOL region.

In the following, the experimental case called “TCV-X21”194 will be used for validation. It
was developed as an edge turbulence reference case, minimizing the effect of neutral gas
dynamics and making simulations cheaper using a smaller magnetic field (since the real
space resolution depends on the Larmor radius, which is larger for smaller magnetic fields).
The original validation study has been performed in Ref. [194] and compared simulations
by three different fluid turbulence codes, GRILLIX115,192,195,196, GBS197,198 and TOKAM3X199,200.
The original study’s results are publicly available in Ref. [201]. Additional details can be
found in Ref. [202].

5.1.1 Simulation Setup

The setup of all three simulations is described in detail in Ref. [59]. This section provides
a summary of the most important points. Due to the shared approach of GRILLIX and
GENE-X of treating the complicated X-point geometry, the same magnetic equilibrium as in
the GRILLIX simulations194 can be used (Fig. 5.1). The grid in RZ is built with ∆R = ∆Z ≈
1.23 mm, resulting in 200657 points. In the toroidal direction, 32 planes are used, and the
velocity space is discretized with (nv|| ×nµ) = (80 × 20) points for the collisionless and BGK
simulation and 60 µ points for the LBD simulation. The total number of grid points is thus
≈20 billion for the collisionless and BGK and ≈60 billion for the LBD simulation (without
ghost points). The real space domain is chosen to cover the region from poloidal flux surface
label ρpol ∈ [0.74, 1.1]. The velocity space bounds are v̂||,max = 8 and µ̂max = 64, with a
symmetric grid in parallel velocity and magnetic moment grid starting at 0. Quadrature
schemes are used as mentioned in section 4.1, Simpson in v|| and Gauss-Laguerre in µ for the
collisionless and BGK simulation and midpoint in both dimensions for the LBD simulation.
The reference parameters used for the normalization are Lref = 0.906 m, Bref = 0.929 T,
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Figure 5.1. Geometry of the simulations given by flux surfaces, the separatrix, and the device
wall. The simulation uses the outboard midplane (OMP) for profile comparisons. The Thomson
scattering (TS) line of sight (LoS) shows the location of the experimental measurements194. Taken
from Ref. [59].

Tref = 0.02 keV and nref = 1019 m−3. The derived reference parameters read cref ≈ 43769 m/s,
ρref ≈ 4.9 × 10−4 m, βref ≈ 9.33 × 10−5 and coll_ref ≈ 0.628. For the collision operators,
a floor value of 0.25 in normalized density and temperature is used because the numerical
scheme in GENE-X is not positivity preserving, and spurious negative values of the distribution
function may occur, resulting in unphysical (negative or imaginary) collision frequencies. The
plasma species simulated are electrons and deuterium ions, with masses of m̂e ≈ 1/1830 and
m̂i = 2 respectively.

The simulation is initialized with a canonical Maxwellian105,112,203,204 distribution, with pro-
files given by Fig. 5.2. For time integration, RK4 is used with time step ∆t̂ = 4 × 10−4 for
the collisionless and BGK simulation, chosen by trial and error starting from an estimation
with the CFL criterion given in Ref. [62]. For the LBD simulation, Strang splitting (with
RK4 for the Vlasov and collisional part, see section 4.5.4) is used with a decreased time step
of ∆t̂ = 2 × 10−4. Due to the splitting, the collisional step is effectively performed with
∆t̂/2 = 10−4, being close to the stability limit of the RK4 integrator for the case where the
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Figure 5.2. Initial profiles of the simulations. Taken from Ref. [59].

perpendicular diffusion is most unstable in the simulation domain∗. The advective part of
the LBD operator imposed no further restrictions since the lower limit of the temperature
was chosen around 25 eV to stabilize the initial condition (see Appendix A in Ref. [59]). The
simulations are performed until the turbulence reaches a quasi-stationary state (Fig. 5.3),
which is approximately achieved after 85k, 53k, and 110k time steps for the collisionless,
BGK, and LBD simulation. Both collisional simulations saturate faster than the collisionless
simulation59.

5.1.2 Profile Validation

After the simulations have reached a quasi-stationary state, the statistical properties of the
turbulence are assumed not to change, and the time-averaged plasma profiles are validated.
The results of validating the plasma profiles were presented in Ref. [59] and can be seen in
Figs. 5.4-5.6. The profiles agree well within the confined region ρpol < 1 and deviate in the
SOL. The deviation is due to the Dirichlet boundary conditions that keep the distribution
function fixed at the domain boundaries of the simulation, effectively working as a heat and
particle bath. The boundary conditions compensate for local positive profile gradients that
arise due to lower density or temperatures than the boundary value. In principle, one can
think that the profiles, while fixed at the left and right boundary, are free to evolve to any
shape in between the boundaries. As discussed in Appendix A of Ref. [59], the choice of the
SOL density and temperature values is due to the stability of the initialized equilibrium of

∗This point is chosen where the real space dependent factor in eq. (4.169), B̂/(ναβTαβ) ∼ B̂
√

T̂ /n̂ has a
minimum. Approximate values at this point are n̂ = 1.59, T̂e = 5.23 and B̂ = 0.86. Using these parameters,
an eigenvalue stability analysis (section 4.5.2) is performed, with the smallest negative real eigenvalue of
−2.305 (83% of RK4 stability boundary).
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Figure 5.3. Time traces of the OMP density and ion temperature at a point close to the separatrix
(ρpol = 0.9996). Taken from Ref. [59].

the simulation. Lower values did not lead to a stable initial state, and other equilibrating
dynamics happen before the onset of turbulence205. For the future, an improved initial
state resulting from neoclassical simulations would be beneficial to simulate in realistic SOL
conditions. Such a procedure is described in, e.g., Ref. [32]. The additional diffusion applied
in the buffer zone will dominate the dynamics at the domain boundaries. Results in these
regions are thus not considered physical and not considered in the validation.

One of the main results is given by the validation of the electron temperature (Fig. 5.5),
where the most advanced collision model, the LBD operator, reproduces the profile observed
in the experiment within the error bars. The profiles can be imagined to be fixed only at
the boundaries, leaving the shape free to evolve from the initial state given in Fig. 5.2.
Further, only a minimal set of input parameters is used in the simulation (the values set
at the boundaries in addition to the magnetic equilibrium) in contrast to δf simulations
where the experimental background profiles have to be prescribed98. Another result concerns
the electron temperature profile, which is too high in the edge and SOL, consistent with
previous simulations in AUG112. This behavior is because trapped electrons cannot undergo
collisional cooling in the collisionless simulation59. In other words, the collisional interaction
with passing electrons that can take the excess energy to the divertor plates in the open
field line region is missing. Thus the trapped electrons drift radially outward to the wall,
keeping their energy, resulting in the observed temperature profile being too high. Finally,
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Figure 5.4. Density profiles along the OMP from the three GENE-X simulations using different
collision models. The profiles have been averaged toroidally and temporally over 100 µs, and the
shaded area shows the standard deviation. Experimental references are given by core measurements
from the Thomson scattering diagnostics and SOL measurements from the fast reciprocating probe
(FHRP)194. The result of the GRILLIX simulation194 is given for comparison. Taken from Ref. [59].

a comparison with the GRILLIX simulations shows that, while GRILLIX performs very well
in the SOL, the confined region is much better described with GENE-X. The former is due to
the advanced boundary conditions in GRILLIX. The latter is because trapped electron modes
(TEMs) were found to dominate the turbulence in the GENE-X simulations59, physics which
are currently not included in the GRILLIX model.

Additionally to the results published in Ref. [59], the density and electron temperature at
the Thomson scattering (TS) line of sight as well as the OMP radial electric field are shown
(Figs. 5.7-5.9). First, the qualitative difference between the OMP and TS profiles in the
simulations is small, except for the collisionless electron temperature, which is higher than
in the experiment but not as much as in Fig. 5.5. The reason is that the TS line of sight
is located much closer to the X-point (Fig. 5.1) and, therefore, closer to the mirror point of
trapped electrons in the confined region and near the mirror point in the SOL. The density
of trapped particles is reduced at these radial locations and thus their contribution to the
temperature (in agreement to measurements of the trapped particle density along a flux
surface59). Second, the fluctuation amplitudes at the TS line of sight are reduced, consistent
with the expected ballooning character of the turbulence. The radial electric field shown in
Fig. 5.9 has a similar shape in all three simulations. The profiles contain alternating local
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Figure 5.5. Same as Fig. 5.4 for electron temperature. Taken from Ref. [59].
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Figure 5.6. Same as Fig. 5.4 for ion temperature. Taken from Ref. [59].
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Figure 5.7. Same as Fig. 5.4 but at the location of the Thomson scattering (TS) diagnostics (Fig.
5.1).

extrema indicating the presence of zonal flows192, which can be confirmed by investigating
the video in the supplementary materials of Ref. [59]. The GRILLIX simulation agrees well
with GENE-X in the open field line region, while differences are observed in the closed field
line region.

5.1.3 Power Balance and Heat Exhaust Validation

The second part of the validation considers the simulation’s power balance and heat exhaust.
The results in this section have been published in Ref. [59]. The parallel heat flux is given
by the third moment of the distribution function

q||,α =
∫
fαv||

(
mαv

2
||

2 + µB

)
dV. (5.1)

and the radial E × B heat flux is approximated as62

qE,α ≈ − c

B
{∇⊥ϕ1 × b}rWα, (5.2)

where Wα is the total energy (sum of parallel and perpendicular parts in section 3.2.5).
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Figure 5.8. Same as Fig. 5.5 but at the location of the Thomson scattering (TS) diagnostics (Fig.
5.1).
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Table 5.1. Results of the validation of the power balance. The index “sep” indicates the total heat
flux crossing the separatrix and “div” the total heat flux hitting the divertor plates. The simulation
values were averaged over 100 µs. The experimental values (TCV) are from Ref. [194]. The other
values have been published in Ref. [59].

TCV No Coll BGK LBD
Qsep
r / kW 120 393.8 51.7 132.3

Qdiv
|| / kW - 134.4 92.5 145.0

Qright−div
|| / kW 38.1 102.2 54.3 78.7

Qleft−div
|| / kW - 32.2 38.5 66.3

The total heat fluxes are,

Qdiv
|| = 2π

∑
α

∫
div

〈
q||,α(l)

〉
φ,t
R(l) sin

(
αI(l)

)
dl, (5.3)

Qsep
r = 2π

∑
α

∮
sep

⟨qE,α(l)⟩φ,tR(l) dl. (5.4)

Here, the magnetic field line incidence angle αI (see Fig. 5.11) is accounted for the parallel
heat flux on the divertor. Both expressions use the toroidal and temporal (100 µs) averaged
heat fluxes, where the average operation is denoted as ⟨·⟩. The integrals go over a line with
length l of the corresponding domains shown in Fig. 5.10. The results of the power balance
validation can be seen in Table 5.1. Using collisions improves the power balance significantly,
in agreement with the theory of hot trapped electrons leaving the simulation at the radial
domain boundary in the collisionless simulation (which was not measured here). The LBD
simulation agrees with the experiment within 10% and, as the only simulation, shows a
consistent power balance. The mismatch of the divertor power to the experiment is most
likely due to the missing neutral gas model in GENE-X, as neutrals would contribute to the
power balance by radiation193. Only contributions from E × B fluxes were considered for the
separatrix power here.

Not only the total amount of power deposited on the divertor plates is of interest, but also the
shape of the heat flux against the distance along the plates. Power spreading over a larger
distance reduces the overall power density on the divertor plates. The profile is typically
peaked close to the point where the separatrix hits the plates and falls off along the plate,
described by the empirically established Eich function48

qdiv(r) = q0

2 exp
( S

2λq

)2

− r − r0

λq

 erfc
(
S

2λq
− r − r0

S

)
+ qBG . (5.5)

The parameters of this function are the SOL fall-off length λq, the power spreading factor S,
the peak heat flux q0, the background heat flux qBG and a radial shift r0

48. The procedure
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Figure 5.10. Surfaces used for the separatrix power and the divertor heat flux measurements
performed in the validation. A closed flux surface approximates the separatrix with ρpol = 0.999.
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Figure 5.11. Magnetic field line incidence angles on the divertor plates given by Fig. 5.10 in the
TCV geometry (Fig. 5.1).
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Table 5.2. Results validating the SOL fall-off length (right divertor) by fitting the 100 µs averaged
simulation values with the Eich function. The first block (upper sub-table) is taken from Ref. [194].
The second block (lower sub-table) was published in Ref. [59].

Right divertor:

TCV GRILLIX GBS TOKAM3X
λq / mm 5.5 1.1 11.6 0.1

GENE-X
No Coll BGK LBD

λq / mm 1.34 4.68 3.75

Table 5.3. Same as Table 5.2 but for the fit of the GENE-X simulations on the left divertor.

Left divertor:
GENE-X

No Coll BGK LBD
λq / mm 1.88 4.98 3.50

of how this quantity is measured for the GENE-X simulations is described in Refs. [59, 112].
The divertor lineouts in Fig. 5.10 and the magnetic field line incidence angles in Fig. 5.11
are used. Fig. 5.12 shows the fits for all simulations for both divertor plates. The Eich
function describes the heat flux profiles well, and the overall fit improves by adding collisions
to the simulation. The corresponding result of the fits for the quantity of interest, the SOL
fall-off length λq are given in Table 5.2 for the right and Table 5.3 for the left divertor.
The collisional gyrokinetic simulations produce the best agreement with the experiment.
A collisional broadening can be observed, consistent with previous simulations in AUG112.
However, an improved match with the LBD collision model is not achieved. This finding
indicates that other physics are missing, e.g., neutral gas dynamics or improved boundary
conditions.

5.2 Turbulence Characterization of TCV-X21
This section analyzes the simulations previously presented in section 5.1. The goal is to
discover more about the underlying turbulence and compare the differences observed between
the three simulations using different collision models. The results of this study have been
published in Ref. [59]. Here a summary containing additional details is presented.

First, fluctuations of density, as well as electron and ion temperature, are considered. The
fluctuations are defined by subtracting the average over a given temporal period,

δg = g − ⟨g⟩t
⟨g⟩t

, (5.6)

where g can be any fluctuating quantity of interest. Fluctuations for the density, electron,
and ion temperature are shown in Figs. 5.13, 5.14 and 5.15. All three quantities show that
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Figure 5.12. Parallel heat fluxes on the left and right divertor plates for the three simulations
performed. The individual contributions of ions and electrons are separately shown, and the total
heat flux is fitted with the Eich function. The lowermost right figure (LBD: Right Divertor) is taken
from Ref. [59].
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Figure 5.13. Density fluctuations relative to the temporal average over the last 100 µs at a single
poloidal plane. Taken from Ref. [59].

the fluctuation amplitudes are highest in the collisionless and lowest in the BGK simulation,
with LBD in between the other two. Further, the fluctuations in the SOL are similar for both
collisional simulations. While the density fluctuations are not that strong in the collisionless
case, the temperature fluctuations are significant and, in fact, larger than in the confined
region. The larger temperature fluctuations are found for the electron temperature, which is
significantly too hot in the SOL, and the ion temperature.

Second, the radial profiles of turbulence parameters are of interest. Here, the gradient lengths
LT,α = 1/∇ ln(Tα) and Ln,α = 1/∇ ln(nα) can be compared to the flux surface line aver-
aged major radius ⟨R⟩y. This yields the normalized gradients ⟨R⟩y /LT,α and ⟨R⟩y /Ln,α.
If electromagnetic effects are considered weak (as in L-mode discharges), the most dom-
inant micro-instabilities in the confined region are the ITG and TEM206. The former is
destabilized by ion temperature gradients207 while stabilized by density gradients208. The
latter is destabilized by both electron temperature and density gradients207. The ratios
ηα = Ln,α/LT,α are parameters of interest. Further, TEMs are stabilized by collisional
de-trapping of trapped particles209, thus the collisionality64 ν∗ = (νe/ϵ)/ωb should be consid-
ered. Here, ϵ ≈ r/ ⟨R⟩y denotes the inverse aspect ratio, approximated by an effective radius
r ≈ reff = L/(2π), where L is the total flux surface arc length. The electron collision rate
is16 νe = 4

√
2πe4 ln Λeene/(3

√
meT

3/2
e ) and ωb =

√
ϵvth,e/(q ⟨R⟩y) the electron bounce fre-

quency64, with safety factor q obtained by constructing a symmetry flux coordinate system
(see section 5.2.1).
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Figure 5.14. Same as Fig. 5.13 but for electron temperature.

0.8 1.0
R / m

0.2

0.0

-0.2

-0.4

-0.6

Z 
/ m

No coll

0.8 1.0
R / m

BGK

0.8 1.0
R / m

LBD

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Io
n 

T
/%

Figure 5.15. Same as Fig. 5.13 but for ion temperature.
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Fig 5.16 shows radial profiles of the turbulence parameters. Since ηi ≲ 1.1, ITG modes
are considered stable in the simulations208. On the other hand, the normalized electron
temperature and density gradients are high, conditions that drive TEMs. Towards the last
closed flux surface, the collisionality increases, indicating an increased stabilization of TEMs.
This fact is consistent with the current understanding of edge turbulence, wherein the edge
drift waves and, in the SOL, resistive ballooning modes become important206.

5.2.1 Theory of Flux Surface Fourier Diagnostics

In the closed field line region, decomposing fluctuating quantities in Fourier modes along a
flux surface is interesting. This decomposition allows the identification of contributions from
large and small-scale modes. Cross-spectra and cross-phase (or phase shift) analyses can
also be performed. Using a temporal Fourier analysis, the propagation direction of a Fourier
mode can be identified. The combined information makes it possible to identify the main
linear micro-instability driving the observed turbulence.

This section summarizes the theoretical part of the flux surface Fourier diagnostics developed
in Ref. [59]. The expressions are slightly different since a modified Fourier representation is
used.

Flux Surface Fourier Spectra
The coordinate system chosen here is a field-aligned symmetry flux coordinate system (ψ, θs, φ),
constructed such that magnetic field lines are straight210. The radial component ψ ∼ ρpol ∼ r

is given by a flux surface label, φ is the geometric toroidal angle, and θs is the so-called
poloidal symmetry angle. The arc length along the flux surface can be represented by a bi-
normal coordinate y = rθs, where r = L/(2π) is an effective radius obtained from the total
flux surface arc length L. For a single flux surface under consideration, this is a constant.

The Fourier representation is based on Ref. [211] and defined in terms of the bi-normal
coordinate y,

g(y) = 1
2π

M∑
m=−M

ĝ(ky)eikyy, (5.7)

ĝ(ky) = 1
r

∮ L

0
g(y)e−ikyydy, (5.8)

where ĝ(ky) is the Fourier amplitude of a single Fourier mode with poloidal mode number m
and poloidal wavenumber∗ ky = m/r, and M is the number of modes under consideration.

∗The location of the factor 2π is different than in Ref. [211]. Further, the fundamental wavenumber used
therein is given by k0 = 1/r in this work.
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Figure 5.16. Profiles of normalized gradients ⟨R⟩y /Lq,α (q either n or T ), ratios ηα = Ln,α/LT,α
and the collisionality ν∗ in the confined region. Taken from Ref. [59].
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Any quantity given along a flux surface can be used instead of g(y) in this expression. Eq.
(5.7) accounts for the fact that, in reality, the simulation domain is discretized, and only a
finite number of Fourier modes exist.

Since the signals to be analyzed are real-valued quantities, the Fourier modes must satisfy211

ĝ(−ky) = ĝ∗(ky), (5.9)

where ĝ∗ denotes the complex conjugate. This condition makes sure that applying eq. (5.7)
transforms the complex Fourier amplitudes back to a real-valued signal.

Equation (5.8) presents a standard computation that is performed with a fast Fourier trans-
form (FFT) algorithm163. These algorithms typically have a specific way of performing the
Fourier transform. Thus the equation needs to be discretized first. As a first step, eq. (5.8)
is written with respect to a normalized variable ξ ∈ [0, 1],

ĝ(ky) = 2π
∮ 1

0
g(y)e−i2πξmdξ. (5.10)

In a second step, this is discretized using ξ → ∆ξn = n/N , where N denotes the number of
ξ points. Then,

ĝ(ky) ≈ 2π
N

N∑
n=0

g(y)e−inm 2π
N . (5.11)

Using a common FFT algorithm such as provided by the scipy package212,213, will per-
form the sum and, if specified, the normalization by 1/N . Thus, to get the correct Fourier
amplitudes, the following pseudo-code has to be used

ĝ(ky) = 2π FFT(g(y), norm=forward). (5.12)

Temporal Fourier Spectra
Given the real-valued signals analyzed so far, the flux surface Fourier analysis produces a
spectrum where the negative k-frequency Fourier amplitudes are complex conjugates of the
positive ones. This information is redundant and thus usually discarded in the analysis211.
Applying a second Fourier transform, from time to ω-frequency space, produces non-trivial
negative ω-frequency Fourier amplitudes since this signal, the output of the first Fourier
transform, is complex-valued. As a result, the negative and positive ω-frequency Fourier
modes will distinguish modes that propagate counter- or clockwise in the specified direction
of the flux surface. This information is interesting, as the different main micro-instabilities
have characteristic propagation directions. While turbulence dominated by ITG or TEMs
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happens on similar length scales, the modes can be distinguished due to the propagation
direction, the ion diamagnetic direction for the ITG, and the electron counterpart for the
TEM206.

A summary of the temporal Fourier diagnostics developed and used in Ref. [59] is given in
the following. The formulation is slightly adjusted to use similar expressions as the previously
defined flux surface Fourier transform. For simplicity, the combined flux surface and temporal
Fourier transform will be called the temporal Fourier transform. The definition used expands
on eqs. (5.7) and (5.8),

h(y, t) = 1
(2π)2

M∑
m=−M

N∑
n=−N

Ĥ(ky, ω)ei(kyy−ωt), (5.13)

Ĥ(ky, ω) = 1
rT

∮ L

0
dy
∮ T

0
dt h(y, t)e−i(kyy−ωt), (5.14)

where ω = 2πn/T is the signed frequency for temporal mode number n, and T is the time
period length. Since the symmetry flux angle θs is defined counter-clockwise, using the above
definition of the Fourier transform will result in positive ω describing propagation in the
counter-clockwise direction. The propagation direction is compared against the direction of
the diamagnetic velocity (diamagnetic direction in the following),

vD,α = qαb × ∇⊥(nαTα). (5.15)

Since the profiles are monotonically decreasing, the gradient will always be radially inward.
Thus, the diamagnetic direction depends on the magnetic field direction and the charge. For
the TCV case considered here194, the magnetic field points outwards of Fig. 5.1, thus the ion
diamagnetic direction will be clockwise since qi > 0. For electrons, the diamagnetic direction
is counter-clockwise.

Performing the temporal Fourier transform is more involved since the time traces for the
flux surface Fourier amplitudes are not time-periodic. Additionally, residual growth from
the onset of turbulence may still be present. Applying a direct temporal Fourier transform
on the flux surface Fourier amplitudes will yield the propagation direction in the laboratory
frame. Since the plasma can have a mean background rotation due to the electric field, the
propagation of any micro-instability is superimposed on that background rotation214. Thus,
this background rotation must be removed to get the propagation direction in the moving
frame.

These points are considered using the following procedure. First, a growth function f(ky, t) =
A(ky) exp(−γ(ky) t) +B(ky) is fitted for each flux surface Fourier mode∗. Ideally, the growth

∗The same fit procedure as described in section 4.6 was used.

149



Chapter 5 – Collisional Gyrokinetic Simulations of the TCV Tokamak

rate γ(ky) is very small since the measurements should be performed in a steady state. The
fitted growth function is then removed from the initial signal by subtraction, ĝ′(ky, t) =
ĝ(ky, t) − f(ky, t). A Kaiser215 window function is applied ĥ′(ky, t) = K(ĝ′(ky, t), β). The
window forces the signal at the time domain boundaries to zero, making it periodic. In
practice, care has to be taken to not introduce too much spectral leakage with the applied
window function216. These properties are adjusted by choosing different parameters or win-
dow functions. Here, β = 8 is used. In the final procedure, the average poloidal background
rotation is approximated by,

vE = − c

B

〈
{∇⊥ϕ1 × b}y

〉
t,φ,y

, (5.16)

and removed from the signal by applying a Doppler shift214,

ĥ(ky, t) = ĥ′(ky, t)eivEkyt, (5.17)

where ωD = vEky corresponds to the Doppler shift frequency. This function is used in the
temporal Fourier transform,

Ĥ(ky, ω) = 1
T

∮ T

0
ĥ(ky, t)eiωtdt. (5.18)

The discretized version of the temporal Fourier transform is obtained using t → ∆tm =
(T/M)m, with M being the number of temporal points. This results in

Ĥ(ky, ω) ≈ 1
M

M∑
m=0

ĥ(ky, t)eimn 2π
M . (5.19)

An important technical detail must be considered in the analysis. It should only be applied
for a single toroidal angle φ and not on a toroidal average. Within the FCI approach, because
structures are mostly field-aligned, the same structures appear on nearby poloidal planes but
shift slightly due to the helical twist of the magnetic field lines. Averaging such a rotating
mode will have a mode structure itself217. The resulting spectra have bands around mode
numbers m ∼ lqnφ, where l = 0, 1, 2, . . . are positive integer numbers. In the cases considered
in section 5.2.2, this leads to bands around m = 0, 84, 168, . . . consistent with nφ = 32 and
q ≈ 2.6 on the ρpol = 0.92 flux surface. The spectrum of interest is hidden behind such a
band structure. Considering only a single toroidal angle φ avoids this problem entirely.
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Spectral Fluxes and Cross Phases
Part of the development of the spectral flux and cross-phase diagnostics have been performed
during the master’s thesis of J. Pfennig∗ and used in Refs. [218] and [59]. In the following,
a derivation based on the Fourier decomposition in eqs. (5.7) and (5.8) is given.

The total integral radial particle flux, which in the following is called particle flux, is given
by219

Γα :=
∮ 2π

0

∮ 2π

0
⟨nαvE,r⟩y rRdφdθs =

∮ 2π

0

∮ 2π

0
⟨δnαδvE,r⟩y rRdφdθs, (5.20)

where splitting of fluctuating parts is performed given by g = g0 + δg for any function g.
Only the fluctuating part of the density and E × B velocity contribute to the particle flux
due to the assumption that the equilibrium radial E × B velocity is zero, v0,E,r = 0. The
average of a fluctuating quantity vanishes, ⟨δvE,r⟩ = 0.

In the chosen symmetry flux coordinate system, the gradient of the electrostatic potential is

∇δϕ1 = 1
√
gψψ

∂δϕ1

∂ψ
eψ + 1

R

∂δϕ1

∂φ
eφ + 1

r

∂δϕ1

∂θs
eθs , (5.21)

where gψψ denotes the ψψ-component of the metric tensor and e are unit vectors. It will
contribute to the particle flux via δvE = (c/B)b × ∇δϕ1. Assuming a toroidally domi-
nant magnetic field b ∼ eφ, only one component of the electrostatic potential gradient will
contribute to the particle flux,

Γα ≈ −
∮ 2π

0

∮ 2π

0

〈
c

B
δnα

∂δϕ1

∂θs

〉
y

Rdφdθs. (5.22)

Using the Fourier representation (5.7) for both, potential and density and approximating
R ≈ ⟨R⟩y and B ≈ ⟨B⟩y yields

Γα ≈ −
c ⟨R⟩y r

⟨B⟩y
1

(2π)2 Re
∮ 2π

0

∮ 2π

0

〈 ∑
m,m′′

ik′′
y n̂α(ky)ϕ̂1(k′′

y)ei(ky+k′′
y )y
〉
y

dφdθs

 . (5.23)

Here, ∂δϕ1/∂θs = r∂δϕ1/∂y was used, which allows performing the differentiation on the
exponential in the Fourier representation. Taking the real part of the right-hand side ensures
the physical requirement that the particle flux is a real quantity. For simplicity in the
notation, the bounds of the sums are not denoted, but it should be noted that these are

∗J. Pfennig, Turbulence Characterization for Simulations of Magnetic Confinement Fusion Devices, un-
published master’s thesis (Technische Universität München, 2022)
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finite. Thus the sums and the flux surface line average operations can be interchanged.
Further performing a change of variables k′′

y = −k′
y while using eq. (5.9), results in

Γα ≈
c ⟨R⟩y r

⟨B⟩y
1

(2π)2 Re
∮ 2π

0

∮ 2π

0

∑
m,m′

ik′
yn̂α(ky)ϕ̂∗

1(k′
y)
〈
ei(ky−k′

y)y
〉
y

dφdθs

 . (5.24)

The flux surface line average of the exponential can be written in terms of an average over
the symmetry flux angle θs,

〈
ei(ky−k′

y)y
〉
y

= 1
L

∮ L

0
ei(ky−k′

y)ydy = 1
2π

∮ 2π

0
ei(m−m′)θsdθs. (5.25)

This expression coincides with the contour integral representation of the Kronecker delta220

δm,m′ = 1
2πi

∮
|z|=1

zm−m′−1dz = 1
2π

∫ 2π

0
ei(m−m′)θdθ, (5.26)

where z ∈ C. The first expression holds, since if m = m′ then z−1 has an isolated singularity
of order one at z = 0 and the residue is 2πi. Otherwise, the expression evaluates to zero.
The second equality is trivially obtained by substituting z = exp(iθ). The complex contour
integral in eq. (5.26) differs from the closed integral in eq. (5.25) which is denoted by the
same symbol. In the latter, the ring only indicates that the domain closes on itself and can
be omitted, like in the second integral in eq. (5.26).

Substituting the Kronecker delta (5.26) for the flux surface average219, reduces the double
sum to a single sum, resulting in

Γα =
c ⟨R⟩y

2π

∫ ∑
m

Γ̂(ky)dφ, (5.27)

Γ̂(ky) = r

⟨B⟩y
Re

(
ikyn̂α(ky)ϕ̂∗

1(ky)
)
. (5.28)

The remaining θs integral was trivial, leading to the cancellation of a factor of 1/(2π). This
expression is equivalent to the ones in Refs. [59, 218], but based on a slightly different Fourier
representation. Eq. (5.28) defines the spectral particle flux, describing the contributions from
each Fourier mode ky on the flux surface. An alternative expression is obtained by considering
the relation

n̂α(ky) = a(ky)ϕ̂1(ky)e
−iα
(
n̂α,ϕ̂1

)
, (5.29)
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where a(ky) and α
(
n̂α, ϕ̂1

)
denote amplitude factor and phase shift (or cross-phase) between

the two Fourier modes, respectively. It follows that |n̂(ky)| = a(ky)|ϕ̂1(ky)| and further59,218

Γ̂(ky) = 1
⟨B⟩y

Re
(

iky|n̂α(ky)||ϕ̂1(ky)|e
−iα
(
n̂α,ϕ̂1

))
,

= 1
⟨B⟩y

ky|n̂α(ky)| |ϕ̂1(ky)| sin
(
α
(
n̂α, ϕ̂1

))
. (5.30)

The phase shift can alternatively be defined as211

α
(
n̂α, ϕ̂1

)
= Im

(
log(n̂∗

αϕ̂1)
)
. (5.31)

This expression is a more precise definition since the sign of the phase shift depends on the
order of arguments applied and different notations exist∗.

For the total integral heat flux219 a similar procedure can be performed,

Qα :=
∮ 2π

0

∮ 2π

0

〈3
2nαTαvE,r

〉
y
rRdφdθs, (5.32)

≈
∮ 2π

0

∮ 2π

0
dφ3rR

2

 ⟨Tα⟩y ⟨δnαδvE,r⟩y + ⟨nα⟩y ⟨δTαδvE,r⟩y

dθs, (5.33)

where the same assumptions as in eq. (5.20) have been applied and additionally triple
correlations of order O(δ3) have been neglected. In the following, this quantity is called the
heat flux. The first term is the same as the particle flux up to a factor of 3 ⟨Tα⟩y /2. Due
to this proportionality, it is also called the convective heat flux218. The second term can be
treated the same way as the particle flux, replacing the density with the temperature. This
contribution is called the conductive heat flux218.

In terms of flux surface Fourier modes, the heat flux is59

Qα =
c ⟨R⟩y

2π

∮ 2π

0

∑
m

(
Q̂conv
α (ky) + Q̂cond

α (ky)
)

dφ, (5.34)

∗Here, the same convention as in Ref. [211] is used. Comparing to Ref. [218], with notation α
(
n̂α, ϕ̂1

)
→

αϕ̂1,n̂α
, substituting αϕ̂1,n̂α

= Im
(
log(n̂∗

αϕ̂1)
)

yields the same expression as used here. Further this is the
same as α(n̂α × ϕ̂1) = arctan (Im(A/B)/Re(A/B)) used in Ref. [221].
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with convective

Q̂conv
α (ky) :=

3r ⟨Tα⟩y
2 ⟨B⟩y

Re
(
ikyn̂α(ky)ϕ̂∗

1(ky)
)
,

=
3r ⟨Tα⟩y
2 ⟨B⟩y

ky|n̂α(ky)| |ϕ̂1(ky)| sin
(
α
(
n̂α, ϕ̂1

))
, (5.35)

and conductive part218

Q̂cond
α (ky) :=

3r ⟨nα⟩y
2 ⟨B⟩y

Re
(
ikyT̂α(ky)ϕ̂∗

1(ky)
)
,

=
3r ⟨nα⟩y
2 ⟨B⟩y

ky|T̂α(ky)| |ϕ̂1(ky)| sin
(
α
(
T̂α, ϕ̂1

))
. (5.36)

The significance of these expressions lies in the fact that in this approximation, transport
can only happen if density or temperature fluctuations lie out of phase with electrostatic
potential fluctuations. Results from linear theory suggest that plasma micro-instabilities can
be associated with cross phases (phase shifts)207. Typically modes are then characterized as
drift-wave (α ≈ 0) or interchange (α ≈ ±π/2) like206.

Trapped Particle Contributions
Analyzing turbulent contributions by certain velocity space parts of the distribution function
may be interesting. For example, TEMs are expected to be driven by the part of the distri-
bution function, representing electrons trapped on a flux surface. Conversely, evidence that
trapped electrons have a more prominent role than passing electrons would point to TEMs
driving the observed turbulence. This section summarizes the developed trapped particle
diagnostics from Ref. [59]. The decomposition into contributions from trapped and passing
particles can be used in conjunction with the Fourier analysis presented before.

The criterion for particles to be trapped on the low field side of a flux surface is64,

trapped if: v⊥ > vtrap
⊥ =

∣∣∣v||

∣∣∣/
√

maxy(B)
B

− 1. (5.37)

Here the maximum magnetic field on the flux surface given by maxy(B) defines the spatial
point where particles are reflected. The trapped and passing parts of the distribution function
are defined as

f trap
α = fα

(
x, v||, v⊥ > vtrap

⊥

)
,

fpass
α = fα − f trap

α . (5.38)
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Figure 5.17. Velocity space dependence of the electron distribution function of the collisionless
simulation at a single poloidal plane at the final time. A single point at the outboard midplane in
the confined region / SOL, close to the separatrix, has been chosen within the poloidal plane. The
red line indicates the loss cone. In the SOL, particles are trapped in a magnetic well between the
bottom of the device (close to the X-point) and the top of the device.

Velocity space moments can be calculated for trapped and passing distributions, respectively.
However, temperatures are ill-defined since, at some spatial locations, the density of trapped
particles may be zero due to the reflection of all particles. A more robust definition of trapped
and passing temperatures is given concerning the total density,

T trap/pass
α = Tα

(
nα,W

trap/pass
α

)
. (5.39)

Equation (5.37) specifies a region in velocity space v⊥ < vtrap
⊥ which is typically called the

loss cone (see Fig. 5.17). Particles within the loss cone have enough parallel energy to pass
the reflection point given by the maximal magnetic field. Calculating the fraction of trapped
particles requires the integration of the distribution function over the correct region in velocity
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space222. Changing the velocity space coordinates to pitch-angle space, (v, θ, ζ) described
by the velocity magnitude, gyroangle, and pitch-angle, respectively, allows to conveniently
calculate the density of particles in the loss cone as

nloss
α =

∫ ∞

0
dv
∫ 2π

0
dθ
∫ ζtrap

0
dζv2 sin ζfα(v, ζ), (5.40)

where ζtrap = arctan(vtrap
⊥ /v||) denotes the pitch angle of the loss cone and v2 sin ζ is the Ja-

cobian. The gyroangle integral is trivial, and assuming a velocity space isotropic distribution
function f(v, ζ) ≈ f(v), the pitch-angle integral yields 1 − cos(ζtrap). The total density is
obtained using the same formula, with upper bound ζmax = π instead, resulting in a factor of
2 due to the pitch-angle integral. Fig. 5.18 shows a sketch of the loss cone in velocity space,
visualizing the above integration. Because there are two loss cones, the density of passing
particles is twice that of a single loss cone. This fact is used in calculating the fraction of
trapped particles,

F trap
α = 1 − 2nloss

α

nα
= 1 −

4π
(
1 − cos(ζtrap)

) ∫∞
0 dvv2fα(v)

4π
∫∞

0 dvv2fα(v) = cos(ζtrap). (5.41)

Using the identity223 cos(arctan(x)) = 1/
√

1 + x2 and the definitions for ζtrap and vtrap
⊥

yields222

F trap
α =

√
1 − B

maxy(B) . (5.42)

5.2.2 Flux Surface Fourier Analysis

In this section, the theoretical tools presented in section 5.2.1 are applied to the simulations
of TCV-X21 (section 5.1). The collisionless and BGK simulation results are shown here
to allow qualitative comparisons of the turbulence characteristics between simulations with
different collision models∗. The results for the LBD simulation have been published in Ref.
[59]. The data in the plots for all simulations were made publicly available in Ref. [224].

The signals analyzed are the electrostatic potential, the density, parallel, perpendicular, and
total temperature. These are given as 2D quantities on a poloidal plane and interpolated
to flux surfaces specified by a poloidal flux surface label ρpol. Fig. 5.19 shows an example
of the electrostatic potential. The turbulence shows a ballooning character, meaning the

∗The results here use the continuous Fourier formulation from Ref. [59]. This formulation allows a better
comparison between the already published results and the additional results from the BGK and collisionless
simulation. The qualitative analysis does not depend on the formulation since the Fourier amplitudes differ
by constant factors only.
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Figure 5.18. Sketch of the loss cone (orange) in the 3D velocity space coordinate system (v1, v2, v||).
The perpendicular velocity space here is given by v1 = v⊥ cos(θ) and v2 = v⊥ sin(θ). Two loss cones
are present, facing in positive and negative v|| direction.

fluctuations are localized at the low field side. In comparing the different collision models,
the BGK simulation shows decreased fluctuation amplitudes, consistent with observations of
density and temperature fluctuations in Figs. 5.13, 5.14 and 5.15. The flux surface spectra
of these signals are shown in Fig. 5.20. The axis is given in dimensionless wavenumbers
scaled by the local sound Larmor radius ρs = c

√
⟨Te⟩ymi

/(
e ⟨B⟩y

)
. In the spectra, the

broadband character of the turbulence can be observed. Collisions generally dampen the
spectra, an effect that is much stronger in the BGK simulation than for LBD. Especially
in the innermost flux surface considered, the BGK spectrum is significantly lower than for
the other simulations. As noted in Ref. [59], the non-averaged spectra contain clear visible
effects of the fourth hyperdiffusion applied, which manifests at kyρs > 1 by a linear decay of
slope four in the double logarithmic plot.

Since six diagnostics for three cases, in total, 18 figures are considered, the figures can be
found in Appendix D, where a direct comparison between the cases is made more conveniently.

The temporal flux surface Fourier spectra are shown in Figs. D.1, D.2 and D.3. The frequency
is given in physical and dimensionless units, where the latter are obtained by multiplying
the local sound speed cs = (⟨Te⟩y /mi)1/2. In addition to the spectra, the linear frequency
of the TEM225, ω = ωD(1 + xtrap − xtrap ⟨R⟩y /Ln,e)/2 with ωD = c ⟨Te⟩y ky/(eB0 ⟨R⟩y) and
xtrap = Ftrap/(1 − Ftrap), is given. The trapped fraction is approximated with eq. (5.42).
Considering a measure for the mean frequency in the spectrum, the agreement with the
linear TEM frequency is good for all cases. In the collisionless and LBD case, the mean
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Figure 5.19. Electrostatic potential fluctuations on flux surfaces at different radial locations
at the final time of the collisionless, BGK, and LBD simulations. On the bottom and top, the
corresponding symmetry flux angle θs and geometrical angle θ are given for each flux surface,
measured counter-clockwise. The outboard midplane is located close to θs = 0 (low field side), and
the inboard midplane at around θs = π (high field side). Taken from Ref. [59].
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Figure 5.20. Flux surface Fourier spectra of the electrostatic potential of the collisionless, BGK,
and LBD simulation averaged toroidally and temporally over 100 µs. On the top, the mode number
of the LBD simulation is shown for reference. For the collisionless and BGK simulation, m is similar
but not the same for the given kyρs since the latter quantity is calculated based on the local electron
temperature. Taken from Ref. [59].
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growth rate is smaller than linear, consistent with the nonlinear saturation of TEMs226. The
BGK simulation shows larger frequencies at small wavenumbers with the largest deviations
at around kyρs ∼ 0.5. The apparent width of the spectra depends on the color scale, which
was chosen the same for all cases. Thus, with reduced fluctuation amplitudes, the collisional
simulations appear to have a narrower spectrum in ω than the collisionless ones.

Figs. D.4, D.5 and D.6 shows the spectral particle and heat fluxes. The electron and ion
contribution to the particle flux is the same in all simulations, while the electrons tend to
dominate the heat flux. The collisional spectra peak at approximately kyρs ≈ 0.7, which
is the region where transport is expected to peak227. The collisionless spectral fluxes are
broader and peak at around kyρs ≈ 0.5. The region of interest is where the fluxes are
non-zero, approximately between 0.2 < kyρs < 1.8. Here, the phase shifts shown in Figs.
D.7, D.8 and D.9 should additionally be considered. In all cases, all phase shifts involving
ion quantities are close to α ∼ 0. The density phase shift for the electrons is α ∼ 0,
whereas the temperature phase shift is π/4 ≲ α ≲ π/2 in the region of interest. This
phase shift indicates an interchange character of the electrons, i.e., TEMs dominate207,228,229.
This fact is strengthened by the observation that these phase shifts are the same as for the
perpendicular temperature. The parallel temperature phase shift is around α ∼ π/4 for both
collisional cases, while in the collisionless simulation, it is around α ∼ 0. These findings are
consistent with the previously made observation, where passing electrons carry most of the
parallel energy. In the collisionless case, there is no interaction with trapped electrons. Thus
passing electrons can be strongly adiabatic. On the other hand, trapped electrons have an
interchange-like character.

Similar to the last paragraph, a decomposition of spectral fluxes and phase shifts to contribu-
tions from all (total), trapped, and passing electrons is shown in Figs. D.10, D.11, D.12 and
Figs. D.13, D.14, D.15 respectively. In all cases, the trapped electrons dominate the spectral
particle and heat flux. The phase shifts confirm the TEM hypothesis, previously made by
analyzing the parallel and perpendicular temperature contributions. Passing electrons are
mostly adiabatic, while trapped electrons have larger phase shifts between the temperature
and electrostatic potential. Differences between the three collision models are not observed
in the phase shifts, while the spectral fluxes differ similarly, as seen in Figs. D.4, D.5 and D.6.
While the BGK flux is much smaller, the collisionless and LBD flux have similar amplitudes.
The broader structure in the collisionless case results in a larger total heat flux, consistent
with the total power measured, given in Table 5.1.

The characterization of the trapped and passing electrons is shown in Figs. D.16, D.17 and
D.18. First, in all cases, the trapped fraction agrees well with the analytical estimate given
by eq. (5.42). The densities of trapped particles are highest at the low field sides, approach-
ing zero past the reflection point. The parallel energy is carried mostly by passing particles,
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while trapped particles carry most of the perpendicular energy at the low field side. Both
collisional simulations do not differ significantly, whereas the collisionless simulation shows
different behavior of perpendicular energy. At the low field side, the trapped particles have
substantially more perpendicular energy than the other cases, resulting in higher perpendic-
ular temperatures. This finding is consistent with the observed too-hot electron temperature
in the collisionless simulation (Fig. 5.5).

5.3 Effect of Perpendicular Velocity Space Resolution
The study of the effect of collision models on edge and SOL turbulence has shown that the
LBD collision operator is a minimum requirement for realistic simulations59. A drawback
in that study was the increased computational time required because of a large magnetic
moment grid. Since the finite volume discretization of the LBD operator requires a uniform
magnetic moment grid, the grid resolution was increased by a conservative factor of three59.
It is of great interest to reduce this factor again, ideally without drawbacks in the accuracy
of the simulation. A uniform magnetic moment grid is poorly suited to resolve distribution
functions that fall off exponentially in that dimension. Thus, the discretization of the LBD
operator is adapted to use a uniform perpendicular velocity space grid, resulting in a quadratic
magnetic moment grid and improving the resolution of distribution functions close to µ = 0.
The explanation can be found in greater detail in Appendix C, where the new conservative
discretization of the LBD operator is presented. In the remainder of this section, the initial
LBD simulation from Ref. [59] is compared against the newly implemented version with
reduced grid size.

The simulation with reduced grid size uses a perpendicular velocity space resolution of Nµ =
24 points. Computational resources are saved by increasing the real space spacing to ∆R =
∆Z ≈ 1.78 mm, resulting in ≈ 105 points per poloidal plane. The time step could be
increased to ∆t = 4 × 10−4tref . All other parameters are kept the same as in the original
LBD simulation59. The simulation is performed beyond a quasi-stationary state to a total
time of around 950 µs. This value corresponds to approximately 114 × 103 time steps on 256
nodes (around 12k computational cores) of the Marconi supercomputer at Cineca. In total,
4.3 × 106 core-hours were spent with an average time per timestep of 11 s. The reference
simulation was run for a shorter physical time. The total time from the reference simulation,
450 µs, corresponds to around 2 × 106 core-hours with lower resolution. Due to the use of
different machines, the total times cannot be easily compared. The computational cost was
reduced by approximately five due to the reduced velocity space, while a factor of two is due
to the reduced real space grid.

Figs. 5.21, 5.22 and 5.23 show a comparison between the profiles of the original LBD sim-
ulation (labeled LBD) and the simulation with reduced resolution (labeled LBD2). These
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Figure 5.21. Comparison of time-averaged outboard midplane density profiles from the original
LBD simulation59 (data given in Ref. [224]) and the simulation with reduced resolution (LBD2).

Table 5.4. Comparison of the radial ion and electron heat flux crossing the separatrix, averaged
over 100 µs. The symbol δ denotes the standard deviation of the temporal average. LBD denotes
the reference simulation, where the electron and ion heat flux adds to the values published in Ref.
[59]. LBD2 denotes the simulation with reduced resolution.

LBD LBD2
Qsep,i
r / kW 46.2 36.9

δQsep,i
r / kW 10.2 14.9

Qsep,e
r / kW 79.0 74.3

δQsep,e
r / kW 12.9 24.3

are given for the final times of both simulations and time-averaged over 100 µs. Assuming a
quasi-stationary state in both simulations, comparing averaged profiles at different times is
justified. Overall, there is an agreement observed between the two simulations.

Further, radial heat fluxes crossing the separatrix are compared. As before, the values at
the final simulation time for both simulations are considered and temporally averaged over
100 µs. The results are given in Table 5.4. The values agree well for both simulations,
considering the standard deviation from the temporal fluctuations of the heat fluxes.
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Figure 5.22. Same as Fig. 5.21 but for the electron temperature.
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Figure 5.23. Same as Fig. 5.21 but for the ion temperature.
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5.4 Chapter Summary
This chapter presented the application of the developed collision operators in this thesis. In a
validation study against the TCV-X21194 case, simulations of gyrokinetic turbulence with the
GENE-X code have been compared against experimental measurements of physical quantities
of interest, such as density and temperature profiles, as well as total power and divertor
power fall-off measurements. It was shown that the newly developed LBD collision operator
significantly improved the match with the experiment. A turbulence characterization was
performed to unravel that the observed turbulence is dominated by the trapped electron mode
(TEM), explaining the differences observed across simulations with different collision models.
Finally, the finite volume discretization of the LBD operator was further improved to use a
perpendicular velocity formulation that allows saving a substantial amount of computational
resources, as was shown in a comparison between differently resolved simulations.

The validation and turbulence characterization has been published in Ref. [59]. The data for
the additionally characterized BGK and collisionless simulation was made publicly available
(along with the results from Ref. [59]) in Ref. [224].
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Chapter 6

Summary and Outlook

The qualitative and quantitative understanding of turbulent transport in the plasma edge
and scrape-off layer (SOL) is most important for realizing fusion energy. Due to the complex
geometry and nonlinear physics present in the system, numerical modeling using gyrokinetic
codes belongs to the main tools used to explore the nature of edge and SOL turbulence. Only
a few computational tools exist that combine these features, one of which is the GENE-X code.

This thesis presents a physics extension of the GENE-X code by including the effect of collisions
in the gyrokinetic model. Collisional gyrokinetic simulations were enabled by developing
a conservative numerical discretization of the LBD collision operator. The main result is
that collisions significantly impact edge and SOL turbulence. The code extension allows for
realistic turbulence simulations in cold and collisional edge plasmas. The newly developed
LBD collision model reproduces vital aspects of the experiment in the confined plasma region
in a first-of-its-kind code validation against TCV-X21. The LBD collision model balances
accuracy and computational performance, especially with optimizations implemented in the
perpendicular velocity space. The developments in this thesis pave the path toward realistic
simulations of plasma turbulence in future fusion devices.
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6.1 Summary
A specialized numerical scheme was developed based on a finite volume discretization, aug-
mented by correcting discretization errors. This scheme achieved the conservation of particle
densities, total momentum, and energy up to machine precision. These properties allow for
long-term stable simulations with moderate grid sizes, reducing the computational complex-
ity of the simulations. Studies comparing the electron-deuterium system’s physical relaxation
rates have verified the newly developed discretization. The verification reproduces analytical
intra- and inter-species temperature and momentum relaxation rates in good approximation.

The stability of the time-stepping schemes was analyzed in detail, providing an understand-
ing of the numerical restrictions on the simulation speed. The resulting time-step criteria
facilitate the choice of an optimal time-step to save upon the computational cost. Imple-
menting a second-order splitting scheme allows treating collisionless and collisional terms
independently, decoupling the individual dynamics and resulting in increased possible time
steps. The result is a gain of a factor of two in the application cases considered. The intra-
and inter-node performance of the implementation was quantified, resulting in a 95% com-
putational efficiency of the computational part and insights into the diminishing effects of
the communication. The numerical scheme was further improved, changing the perpendic-
ular velocity space representation of the collision model, enabling the use of a better-suited
quadratic magnetic moment grid in velocity space. A verification study showed that simu-
lations using the improved perpendicular velocity space formulation could achieve the same
results with reduced velocity space grid size. The reduced velocity space grid also allowed
for doubling the time step in the simulation.

A code validation against the TCV-X21 experimental case tested the developed collision
models. Comparing simulations without collisions against the simple BGK or advanced LBD
collision operator allowed the assessment of the influence of collisions on edge turbulence.
The result shows that the LBD collision operator’s fidelity is required to achieve a realistic
simulation that reproduces essential aspects of the experiment. The collisionless simulation
resulted in electron temperature profiles that were significantly too high, an inconsistent
power balance, and unrealistic fluctuation amplitudes in the SOL, which were higher than
in the confined region. A systematic analysis found that collisionless trapped particles in
the SOL are the reason for this observation. Collisional interactions with passing particles
allow for a collisional cooling of trapped particles, resulting in electron temperature profiles
closer to the experiment. The BGK collision model suppressed turbulence, especially in the
confined region, resulting in electron temperature deviations and less transport. The LBD
simulation shows an excellent agreement of plasma profiles in the confined plasma region, a
consistent power balance, and the SOL fall-off length.
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The observed turbulence in the TCV-X21 simulations was analyzed using newly developed
Fourier and trapped particle diagnostics. The observed transport peaks around normalized
poloidal wavenumber kyρs ≈ 0.7, showing the same particle flux for electrons and ions,
while electrons dominate the heat flux through conduction. Analyzing the trapped particle
contributions revealed turbulence driven by trapped electron modes (TEMs). The temporal
Fourier analysis showed a dispersion similar to the one of the linear TEM. The observations
showed the expected nonlinear deviations at high mode numbers kyρs ≥ 0.5. Additionally,
performed cross-phase analyses support these findings.

In summary, the additions to the GENE-X code in this work have improved the realism of
simulations and extended the applicability of the code.

6.2 Outlook
The presented developments of the GENE-X code have proven to be a crucial step towards
being a predictive tool for the simulation of edge and SOL turbulence. There are various
model and code extensions possible. The following provides a selection.

First, the scrape-off layer physics in the presented simulations is still to be improved. Effects
of the plasma sheath108, neutral gas dynamics193, as well as impurities230, need to be included
in future simulations. The LBD collision model could not significantly improve the heat flux
fall-off length in the TCV-X21 validation. Thus the remaining mismatch is anticipated to
result from missing non-collisional physics.

Second, the current gyrokinetic model employs the long-wavelength approximation. Relaxing
this approximation is necessary for simulations of the plasma core, full device simulations,
and future benchmarks against traditional field-aligned gyrokinetic codes such as GENE. Thus,
adding gyroaverages and higher-order finite Larmor radius effects is vital when considering
such applications.

Third, the LBD collision model, while advancing the fidelity and realism of the simulations,
yet contains some deficiencies. Due to the approximation of anisotropic diffusion and simpli-
fied velocity-constant collision rates, the accurate reproduction of neoclassical physics cannot
be expected231. Considering the application in pedestal-like narrow real space and high gra-
dient regions, the collision operator’s details can significantly impact the turbulence evolving
in the simulation57,155.

Fourth, the performance of the GENE-X code, while being excellent for modest cases considered
here, requires significant improvements in the view of large-scale simulations of huge devices
such as ITER, full device simulations of current medium-sized tokamaks or simulations in
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the three-dimensional geometry of stellarators. Achieving these goals could be accomplished
with multiple improvements. The main one is porting the code to graphical processing
units (GPUs), allowing for significant speedups. Additionally, algorithmic changes, such
as block-structured velocity space grids232, or pseudo-spectral methods25,233, are promising
optimizations.

Many of the points mentioned above are already under active development. For example,
alongside the main developments in this work, the full nonlinear Fokker-Planck-Landau col-
lision operator has been implemented152. The current stage of development focuses on com-
putational improvements. This collision operator requires storing multiple eight-dimensional
arrays, exceeding the memory capabilities of current supercomputers, rendering it inapplica-
ble to use in realistic device simulations. The optimization of this operator, or the develop-
ment of a highly efficient nonlinear Fokker-Planck operator based on Rosenbluth potentials,
is the next step in developing advanced collision models.

The current version of GENE-X allows investigating many interesting applications already
because it is one of the few available codes which combines a high fidelity collisional, elec-
tromagnetic, gyrokinetic model with the capability of simulating in highly complex realistic
tokamak geometries. So far, only L-mode discharges have been considered in GENE-X sim-
ulations, leaving gyrokinetic edge and SOL turbulence simulations of H-modes unexplored.
The transition of L- to H-mode is yet to be fully understood, and any progress along these
lines would help to improve the current models and theories about the cause of the LH tran-
sition234–237. In H-mode discharges, periodic large-scale magnetohydrodynamic instabilities,
so-called edge localized modes (ELMs) occur, linked to turbulence during a density build-up
in the inter-ELM phases238. Improved confinement regimes and turbulence are fundamentally
connected237, making the former highly interesting for future code applications. Examples
are the I-mode239, QH-mode240 and strongly shaped negative triangularity scenarios241.

In conclusion, this thesis has achieved the overall aim: the collisional physics added to the
GENE-X code has proven necessary to understand edge turbulence better. These improvements
provide a considerable step towards unraveling the nature of edge and SOL turbulence. Fu-
ture extensions, expanding the physics, numerics, or performance of the code will enable truly
realistic simulations and provide predictive capabilities for simulating turbulent transport in
future fusion devices.
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Appendix A

Quadrature Schemes

The quadrature schemes used in collisionless and BGK simulations in the GENE-X code are
derived and summarized in this appendix.

A.1 Simpson Quadrature
This section presents the derivation of the Simpson quadrature weights given in Ref. [62].
The standard Simpson’s rule as well as Simpson’s 3/8 rule are163

∫ x3

x1
fdx ≈ ∆x

[1
3f(1) + 4

3f(2) + 1
3f(3)

]
, (A.1)∫ x4

x1
fdx ≈ ∆x

[3
8f(1) + 9

8f(2) + 9
8f(3) + 3

8f(4)
]
, (A.2)

where the grid spacing ∆x = x2 − x1 is assumed uniform and f(i) denotes the function on a
grid point i. These will approximate the integral between grid points x1 and x3, and x1 and
x4, respectively. An extended (or composite164) scheme is obtained by applying the rules on
each grid point and summing over the result. The extended Simpson scheme is163

∫ xN

x1
fdx ≈ ∆x

1
3f(1) + 4

3f(2) + 2
3f(3) + 4

3f(4) + . . .

+ 2
3f(N − 2) + 4

3f(N − 1) + 1
3f(N)

, (A.3)

where the factors 2/3 and 4/3 alternate andN denotes the number of grid points. This scheme
will give an approximation of the integral over the whole domain. Alternative extended

169



Appendix A – Quadrature Schemes

schemes are obtained by a combination of other (extended) schemes (see Ref. [163]). The
alternative scheme used here can be found in Ref. [242]. The extended Simpson scheme
(A.3) and a modified version where Simpson’s 3/8 rule (A.2) is instead used at the domain
boundaries are written as

I1 = h

1
3f(1) + 4

3f(2) + 2
3f(3) + 4

3f(4) + . . .

+ 2
3f(N − 2) + 4

3f(N − 1) + 1
3f(N)

,
I2 = h

1
3f(2) + 4

3f(3) + 2
3f(4) + 4

3f(5) + · · · + 2
3f(N − 3) + 4

3f(N − 2) + 1
3f(N − 1)


+ h

3
8f(1) + 9

8f(2) + 9
8f(3) + 3

8f(4)

+ 3
8f(N − 3) + 9

8f(N − 2) + 9
8f(N − 1) + 3

8f(N)
,

= h

3
8f(1) + 9

8f(2) + 9
8f(3) + 17

24f(4) + 4
3f(5) + 2

3f(6) + . . .

+ 4
3f(N − 4) + 17

24f(N − 3) + 9
8f(N − 2) + 9

8f(N − 1) + 3
8f(N)

.

The average of these results is the “alternative” Simpson scheme62,242

∫ xN

x1
fdx ≈ I1 + I2

2 = ∆x
17

48f(1) + 59
48f(2) + 43

48f(3) + 49
48f(4) + f(5) + . . .

+ f(N − 4) + 49
48f(N − 3) + 43

48f(N − 2)

+ 59
48f(N − 1) + 17

48f(N)
. (A.4)

This scheme has the advantage that the weights are very simple since all except eight weights
are one. Further, it has no special requirements on the number of grid points, unlike the
extended Simpson scheme that requires pairs of intervals, i.e., an odd number of grid points163.
The scheme converges with fourth -order in grid spacing (same order as the original schemes
used in the construction).
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A.2. Gauss-Laguerre Quadrature

A.2 Gauss-Laguerre Quadrature
Gauss-Quadrature is a standard technique for numerical integration. This section presents a
summary based on Ref. [163]. The definition is

∫ b

a
W (x)f(x)dx ≈

N∑
i=1

w(i)f(x(i)), (A.5)

where W (x) is a weight function, wi are integration weights and x(i) are the abscissas. Gauss
quadrature methods are designed to integrate a polynomial P (x) times the weight function
W (x) exactly. Alternatively, one may write eq. (A.5) as

∫ b

a
f(x)dx ≈

N∑
i=1

w(i)
W (x(i))f(x(i)) ≡

N∑
i=1

w̃(i)f(x(i)). (A.6)

Given a weight function W (x), the abscissas of the N -point Gauss quadrature are defined
as the roots of the Nth polynomial pN , orthogonal under the scalar product defined as∫ b
a W (x)pN(x)pj(x) ∼ δNj, where 1 < j < N and δij is the Kronecker delta. Consequently,

grid points cannot be chosen arbitrarily but must coincide with the roots of Nth degree
polynomials.

To calculate the velocity space moments of the distribution function (3.100)-(3.103), one
in principle may use Gauss-Laguerre quadrature in µ and Gauss-Hermite quadrature in v||.
These methods have weight functions that coincide with the functional form of the Maxwellian
(3.76), fα ∼ exp(−µ) and fα ∼ exp(−v2

||), respectively163. However, as mentioned above, the
velocity space grid points must then coincide with the roots of Laguerre and Hermite poly-
nomials, respectively. This restriction is non-ideal for calculating velocity space derivatives
based on central finite differences on a regular grid. Since the gyrokinetic equation contains
v|| derivatives, Simpson quadrature (see last section) is used instead for the parallel velocity
space. Gauss-Laguerre quadrature is used for the perpendicular velocity space because the
magnetic moment is a parameter for collisionless systems or using BGK collisions.

Gauss-Laguerre quadrature uses the weight function W (x) = exp(−x) on the interval [0,∞)
with abscissas defined by LN(x(i)) = 0, where LN is the Nth Laguerre polynomial (see Ref.
[135] §18) and i = 1..N . The weights are given by62

w̃(i) = x(i)e−x(i)

(N + 1)2[LN+1(x(i))]2 , (A.7)

where the formulation given by eq. (A.6) is used. The roots of the Nth Laguerre polynomial
are calculated with an algorithm given in Ref. [163].
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Further, since the use of Gauss-Laguerre quadrature defines the grid points that are used, a
re-scaling is applied to map the grid back to a chosen interval µ ∈ [0, Lµ]. First, a “typical”
length is evaluated by calculating the integral of the simplest polynomial P (x) = 1 in eq.
(A.6)∗,

b− a =
N∑
i=1

w̃(i). (A.8)

Then, the points and weights are re-scaled according to

fac = Lµ∑N
i=1 w̃(i)

, x(i) = x(i) × fac w(i) = w(i) × fac. (A.9)

The re-scaling makes sure that the last grid point generated by the Gauss-Laguerre quadra-
ture algorithm lies within the specified simulation domain [0, Lµ].

∗This length coincides with the interval length of most Gauss methods (e.g., Gauss-Legendre163). For
Gauss-Laguerre quadrature, the left-hand side is ill-defined if the correct bounds [0, ∞) are used, which is
the case since version (A.6) instead of (A.5) has been used. However, one can treat the bounds as unknowns
that determine the typical length by summation over the integration weights.
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Appendix B

Finite Difference Stencils

The method to obtain finite difference coefficients presented in the following uses Lagrange
interpolation168. The derivative of a function q will be approximated on grid points xk close to
a point x. The function is interpolated through all these points using a Lagrange polynomial
(see Ref. [135] §3.3(i)),

P (x) =
n∑
k=0

qklk(x), (B.1)

lk(x) =
n∏
j=0
j ̸=k

x− xj
xk − xj

, (B.2)

lk(xj) = δkj, (B.3)

where n is the order of the polynomial or scheme, lk are the Lagrange basis functions and
the set (xk, qk) contains the grid points and values of q at these points that are used in
the interpolation. The symbol δkj denotes the Kronecker delta, and qk ≡ q(k) ≡ q(xk).
The derivative of q at x is approximated by differentiating the Lagrange polynomial and
evaluating the result at x. A different set of interpolation points will lead to a different order
and different type of stencil.

Higher-order derivatives of q are obtained by calculating higher derivatives of the Lagrange
polynomial, requiring a minimum amount of grid points. The strength of this method is that
it can be easily implemented in any computer algebra tool, automating the creation of finite
difference stencils and allowing one to obtain custom stencils.
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Appendix B – Finite Difference Stencils

Example
The previously shown method is explained based on the example of the first derivative at a
grid point xi. In choosing a symmetric 3-point stencil, the two neighbors xi−1 and xi+1 are
considered. Thus, a second-order polynomial n = 2 needs to be chosen.

The basis functions are (B.2),

li−1(x) = x− xi
xi−1 − xi

x− xi+1

xi−1 − xi+1
= x2 − x(xi + xi+1) + xixi+1

(xi−1 − xi)(xi−1 − xi+1)
,

li(x) = x− xi−1

xi − xi−1

x− xi+1

xi − xi+1
= x2 − x(xi−1 + xi+1) + xi−1xi+1

(xi − xi−1)(xi − xi+1)
,

li+1(x) = x− xi−1

xi+1 − xi−1

x− xi
xi+1 − xi

= x2 − x(xi−1 + xi) + xi−1xi
(xi+1 − xi−1)(xi+1 − xi)

,

and their derivatives,

l′i−1(x) = 2x− (xi + xi+1)
(xi−1 − xi)(xi−1 − xi+1)

,

l′i(x) = 2x− (xi−1 + xi+1)
(xi − xi−1)(xi − xi+1)

,

l′i+1(x) = 2x− (xi−1 + xi)
(xi+1 − xi−1)(xi+1 − xi)

.

Constructing the polynomials (B.1) and evaluating it at xi yields the general centered differ-
ence scheme for arbitrary grid spacing,

q′
i ≈ P ′(xi) = xi − xi+1

(xi−1 − xi)(xi−1 − xi+1)
qi−1

+ 2xi − (xi−1 + xi+1)
(xi − xi−1)(xi − xi+1)

qi

+ xi − xi−1

(xi+1 − xi−1)(xi+1 − xi)
qi+1. (B.4)

For constant grid spacing xi+1 − xi = ∆x, the common second order centered difference
formula is obtained,

q′
i ≈ 1

∆x

(
−1

2qi−1 + 1
2qi+1

)
. (B.5)
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Appendix C

Perpendicular Velocity Formulation of
the LBD Operator

The finite volume formulation constructed in section 4.3 relies on an equidistant grid in
velocity space. This restriction from the collision operator also affects other parts of the
code, especially the calculation of velocity space moments. Typically distribution functions
are Maxwellian-like, and especially in the magnetic moment direction, a uniform grid is poorly
suited to resolve such functions (see Fig. C.1). Construction of a finite volume discretization
utilizing non-equidistant grids is non-trivial. Nonetheless, improvements can be made by
using a uniform grid in perpendicular velocity for the collision operator. Since µ ∼ v2

⊥ this
would result in a quadratic µ grid for the non-collisional part of the code that is much better
suited to resolve Maxwellian-like functions (Fig. C.1)∗. This appendix gives a finite volume
discretization of the LBD operator based on the perpendicular velocity coordinate.

The relation between magnetic moment and perpendicular velocity is given by,

µ = mαv
2
⊥

2B , dµ = mα

B
v⊥dv⊥, (C.1)

v⊥ =
√

2Bµ
mα

,
∂f

∂µ
= v⊥

2µ
∂f

∂v⊥
. (C.2)

The velocity space element in this formulation depends on the cell element under consid-
eration. Instead of ∆W , the symbol ∆V will be chosen for the velocity space cell size to

∗Such a quadratic magnetic moment grid was used previously but with a trapezoidal quadrature for
collisionless and BGK simulations only62.
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Figure C.1. Schematic comparison of a uniform and quadratic µ grid used to resolve a function
exp(−µ).

distinguish between the magnetic moment and perpendicular velocity formulation. Both are
given by,

∆W (j) = ∆W = 2π∆v||∆µ, (C.3)
∆V (j) = ∆V v⊥(j) = 2π∆v||∆v⊥v⊥(j). (C.4)

The cell size is chosen not to depend on the magnetic field and species mass.

C.1 Velocity Space Moments
The velocity space moments in the perpendicular velocity formulation are given by,

M0,α = ∆V
N∑
i=1

M∑
j=1

v⊥(j)fα(i, j)
B∗

||(i)
B

, (C.5)

M1,α = ∆V
N∑
i=1

M∑
j=1

v⊥(j)v||(i)f(i, j)
B∗

||(i)
B

, (C.6)

M2,⊥,α = 1
2mα∆V

N∑
i=1

M∑
j=1

v3
⊥(j)f(i, j)

B∗
||(i)
B

, (C.7)

M2,||,α = 1
2mα∆V

N∑
i=1

M∑
j=1

v⊥(j)v2
||(i)f(i, j)

B∗
||(i)
B

, (C.8)

M2 = M2,⊥ +M2,||. (C.9)
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C.2. Finite Volume Discretization

µ                                                                           1               2                     3

f(1)
f(2)

f(3)

µ=0

f(j) = f(i=const, j)

f(µ)

Figure C.2. Midpoint boxes for a quadratic µ grid. The box width is chosen such that the
symmetric half-width is given by the distance of a grid point to the closest previous box boundary.

These are discretized with the midpoint method (see section 4.1). The midpoint boxes are
chosen such that at each grid point, the distance to the closest previous box boundary is
used as a symmetric half-width of the box. Fig. C.2 provides a visualization.

C.2 Finite Volume Discretization
The construction of the finite volume scheme is similar to the one in section 4.3. A second-
order midpoint scheme approximates the volume integral of the collision operator,∫

V (i,j)
B∗

||CαβfαdV ≈ B∗
||(i)(Cαβfα)(i, j)∆V (j). (C.10)

The surface integral is split into four edges,

∮
∂V (i,j)

J · n d∂V = 2π
−

∫ v||(i+ 1
2 )

v||(i− 1
2 )

dv||v⊥J⊥(v||, v⊥)

∣∣∣∣∣∣
j− 1

2

+
∫ v⊥(j+ 1

2 )

v⊥(j− 1
2 )

dv⊥v⊥J||(v||, v⊥)

∣∣∣∣∣∣
i+ 1

2

+
∫ v||(i− 1

2 )

v||(i+ 1
2 )

dv||v⊥J⊥(v||, v⊥)

∣∣∣∣∣∣
j+ 1

2

−
∫ v⊥(j− 1

2 )

v⊥(j+ 1
2 )

dv⊥v⊥J||(v||, v⊥)

∣∣∣∣∣∣
i− 1

2

,
(C.11)

and approximated with the second-order midpoint rule

∮
∂V (i,j)

J · n d∂V ≈ 2π
− ∆v||v⊥(j − 1

2)J⊥(i, j − 1
2) + ∆v⊥v⊥(j)J||(i+ 1

2 , j)

+ ∆v||v⊥(j + 1
2)J⊥(i, j + 1

2) − ∆v⊥v⊥(j)J||(i− 1
2 , j)

. (C.12)
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The resulting expression for the collision operator is

(Cαβfα)(i, j) = 1
B∗

||(i)

 1
∆v||

(
J||(i+ 1

2 , j) − J||(i− 1
2 , j)

)

+ 1
∆v⊥v⊥(j)

(
v⊥(j + 1

2)J⊥(i, j + 1
2) − v⊥(j − 1

2)J⊥(i, j − 1
2)
).
(C.13)

Defining,

J̃⊥(j ± 1
2) =

v⊥(j ± 1
2)

v⊥(j) J⊥(j ± 1
2), (C.14)

leads to a more symmetric form,

(Cαβfα)(i, j) = 1
B∗

||(i)

 1
∆v||

(
J||(i+ 1

2 , j) − J||(i− 1
2 , j)

)

+ 1
∆v⊥

(
J̃⊥(i, j + 1

2) − J̃⊥(i, j − 1
2)
). (C.15)

Equations (3.72) and (3.70) give the fluxes,

J|| = ναβ

[(
v|| − u||,αβ

)
fαB

∗
|| + Tαβ

mα

∂fαB
∗
||

∂v||

]
≡ ναβ

(
J c|| + Jd||

)
, (C.16)

J⊥ = ναβ

[
v⊥fαB

∗
|| + Tαβ

mα

∂fαB
∗
||

∂v⊥

]
≡ ναβ

(
J c⊥ + Jd⊥

)
. (C.17)

In second-order midpoint discretization, the parallel flux is

J c||(i± 1
2 , j) =

(
v||(i± 1

2) − u||,αβ

)
fα(i± 1

2 , j)B
∗
||(i± 1

2), (C.18)

Jd||(i± 1
2 , j) = Tαβ

mα

∂fαB
∗
||

∂v||

∣∣∣∣∣∣
i± 1

2 ,j

. (C.19)

with

fα(i± 1
2 , j) = 1

2

(
fα(i, j) + fα(i± 1, j)

)
, (C.20)

∂fαB
∗
||

∂v||

∣∣∣∣∣∣
i± 1

2 ,j

= 1
∆v||

(
± fα(i± 1, j)B∗

||(i± 1) ∓ fα(i, j)B∗
||(i)

)
. (C.21)
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The perpendicular flux in second-order midpoint discretization is

J c⊥(i, j ± 1
2) = v⊥(j ± 1

2)fα(i, j ± 1
2)B∗

||(i), (C.22)

Jd⊥(i, j ± 1
2) = Tαβ

mα

∂fαB
∗
||

∂v⊥

∣∣∣∣∣∣
i,j± 1

2

, (C.23)

with

fα(i, j ± 1
2) = 1

2

(
fα(i, j) + fα(i, j ± 1)

)
, (C.24)

∂fα
∂v⊥

∣∣∣∣∣∣
i,j± 1

2

= 1
∆v⊥

(
± fα(i, j ± 1) ∓ fα(i, j)

)
. (C.25)

C.3 Conservation Properties
Eq. (C.15) has the same form as used in the conservation equation in the magnetic moment
formulation (4.58). The result that the partial integration is conserved (4.63) also holds for
the perpendicular velocity formulation. The only change is in the velocity space element,
which now depends on j,

N∑
i=1

M∑
j=1

∆V (j)ϕ(i, j)(∇ · J)(i, j) =
N∑
i=1

M∑
j=1

∆V (j)ϕ(i, j)
 1

∆v⊥

(
J̃⊥(i, j + 1

2) − J̃⊥(i, j − 1
2

)

+ 1
∆v||

(
J||(i+ 1

2 , j) − J||(i− 1
2 , j

).
(C.26)

The calculations that follow are the same as starting from eq. (4.59). One difference considers
the expression for the perpendicular flux, which upon re-indexing j → j + 1 becomes

v⊥(j − 1
2)

v⊥(j) J⊥(i, j − 1
2) →

v⊥(j + 1
2)

v⊥(j + 1)J⊥(i, j + 1
2). (C.27)

This right-hand side of this expression is not the same as J̃⊥(i, j + 1
2). The equation corre-
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sponding to eq. (4.62) is,

∆V


N∑
i=1

M−1∑
j=1

J⊥(i, j + 1
2)v⊥(j + 1

2)ϕ(i, j) − ϕ(i, j + 1)
∆v⊥

+
N−1∑
i=1

M∑
j=1

J||(i+ 1
2 , j)v⊥(j)ϕ(i, j) − ϕ(i+ 1, j)

∆v||

. (C.28)

The result of the calculation is,

N∑
i=1

M∑
j=1

∆V (j)ϕ(i, j){∇ · J}(i, j) = −∆V


N∑
i=1

M−1∑
j=1

J⊥(i, j + 1
2)v⊥(j + 1

2) ∂ϕ
∂v⊥

∣∣∣∣∣∣
i,j+ 1

2

+
N−1∑
i=1

M∑
j=1

J||(i+ 1
2 , j)v⊥(j) ∂ϕ

∂v||

∣∣∣∣∣∣
i+ 1

2 ,j

, (C.29)

= −∆V


N∑
i=1

M−1∑
j=1

J̃⊥(i, j + 1
2)v⊥(j) ∂ϕ

∂v⊥

∣∣∣∣∣∣
i,j+ 1

2

+
N−1∑
i=1

M∑
j=1

J||(i+ 1
2 , j)v⊥(j) ∂ϕ

∂v||

∣∣∣∣∣∣
i+ 1

2 ,j

. (C.30)

C.3.1 Momentum Conservation

Using ϕα = mαv||, the momentum is

Pα = −∆V mα

N−1∑
i=1

M∑
j=1

J||(i+ 1
2 , j)v⊥(j). (C.31)

With the explicit form of the parallel flux,

P̃α = −∆V
N−1∑
i=1

M∑
j=1

v⊥(j)

(v||(i+ 1
2) − uαβ

)
fα(i+ 1

2 , j)B
∗
||(i+ 1

2) + Tαβ
mα

∂fαB
∗
||

∂v||

∣∣∣∣∣∣
i+ 1

2 ,j

 ,
(C.32)

where prefactors are put into P̃α = P/(mαναβ). Repeating the same calculations as in section
4.3 gives the total momentum

Pα
mαναβB

= − (M1,α − uαβM0,α − PBC,αβ) , (C.33)
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where a factor of 1/B has been added on both sides. The boundary correction term is

PBC,αβ = ∆V
2B

M∑
j=1

v⊥(j)
(v||(

1
2) − uαβ + 2Tαβ

mα∆v||

)
fα(1, j)B∗

||(1)

+
(
v||(N + 1

2) − uαβ − 2Tαβ
mα∆v||

)
fα(N, j)B∗

||(N)
. (C.34)

C.3.2 Energy Conservation

Using ϕα = mα(v2
|| + v2

⊥)/2, the energy is

Eα = −mα∆V
N∑
i=1

M−1∑
j=1

v⊥(j)v⊥(j + 1
2)J̃⊥(i, j + 1

2)
︸ ︷︷ ︸

E⊥,α

−mα∆V
N−1∑
i=1

M∑
j=1

v⊥(j)v||(i+ 1
2)J||(i+ 1

2 , j)︸ ︷︷ ︸
E||,α

,

(C.35)

the energy contribution is split into parallel and perpendicular parts. The calculation for the
parallel energy is the same as in section 4.3 and results in

E||,α

ναβB
= −2

(
M2,||,α + (∆v||)2

8 mαM0,α − uαβ
2 mαM1,α − Tαβ

2 M0,α −mαEBC,||,αβ

)
, (C.36)

with

EBC,||,αβ = ∆V
2B


M∑
j=1

1
2v⊥(j)

[
v2

||(
1
2) −

(
uαβ − 2Tαβ

mα∆v||

)
v||(

1
2)
]
fα(1, j)B∗

||(1)

+
M∑
j=1

1
2v⊥(j)

[
v2

||(N + 1
2) −

(
uαβ + 2Tαβ

mα∆v||

)
v||(N + 1

2)
]
fα(N, j)B∗

||(N)

.
(C.37)

Perpendicular Energy

The calculation of the perpendicular energy is different than in section 4.3 and is detailed in
the following. The energy contribution is written explicitly as

Ẽα,⊥ = −mα∆V
N∑
i=1

M−1∑
j=1

v2
⊥(j + 1

2)

v⊥(j + 1
2)fα(i, j + 1

2)B∗
||(i) + Tαβ

mα

∂fαB
∗
||

∂v⊥

∣∣∣∣∣∣
i,j+ 1

2

 , (C.38)
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using Ẽα,⊥ = Eα,⊥/ναβ. Applying eqs. (C.24) and (C.25),

Ẽα,⊥ = −mα∆V
N∑
i=1

M−1∑
j=1

B∗
||(i)

fα(j)
[1
2v

3
⊥(j + 1

2) − Tαβ
mα∆v⊥

v2
⊥(j + 1

2)
]

+ fα(j + 1)
[1
2v

3
⊥(j + 1

2) + Tαβ
mα∆v⊥

v2
⊥(j + 1

2)
], (C.39)

or with re-indexing j → j + 1 in the second sum,

Ẽα,⊥ = −mα∆V


N∑
i=1

M−1∑
j=1

B∗
||(i)fα(j)

[1
2v

3
⊥(j + 1

2) − Tαβ
mα∆v⊥

v2
⊥(j + 1

2)
]

N∑
i=1

M∑
j=2

B∗
||(i)fα(j)

[1
2v

3
⊥(j − 1

2) + Tαβ
mα∆v⊥

v2
⊥(j − 1

2)
]. (C.40)

Splitting off the boundary correction terms,

Ẽα,⊥ = −mα∆V
N∑
i=1

M∑
j=1

B∗
||(i)fα(j)1

2

v3
⊥(j + 1

2) − 2Tαβ
mα∆v⊥

v2
⊥(j + 1

2)

+ v3
⊥(j − 1

2) + 2Tαβ
mα∆v⊥

v2
⊥(j − 1

2)
+ 2mαEBC,⊥,αβ,

(C.41)

where

EBC,⊥,αβ = ∆V
2B


N∑
i=1

1
2

(
v3

⊥(1
2) + 2Tαβ

mα∆v⊥
v2

⊥(1
2)
)
fα(i, 1)B∗

||(i)

+
N∑
i=1

1
2

(
v3

⊥(M + 1
2) − 2Tαβ

mα∆v⊥
v2

⊥(M + 1
2)
)
fα(i,M)B∗

||(i)

. (C.42)

The squares and cubes are expanded as,

v2
⊥(j + 1

2) = v2
⊥(j) + ∆v⊥v⊥(j) + (∆v⊥)2

4 , (C.43)

v2
⊥(j − 1

2) = v2
⊥(j) − ∆v⊥v⊥(j) + (∆v⊥)2

4 , (C.44)

v3
⊥(j + 1

2) = v3
⊥(j) + 3v2

⊥(j)∆v⊥

2 + 3(∆v⊥)2

4 v⊥(j) + (∆v⊥)3

6 , (C.45)

v2
⊥(j − 1

2) = v3
⊥(j) − 3v2

⊥(j)∆v⊥

2 + 3(∆v⊥)2

4 v⊥(j) − (∆v⊥)3

6 , (C.46)
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resulting in a cancellation of terms with same signs for the squares and a cancellation of
terms with opposite signs for the cubes. This yields,

Ẽα,⊥ = −mα∆V
N∑
i=1

M∑
j=1

B∗
||(i)fα(j)v⊥(j)

v2
⊥(j) + 3(∆v⊥)2

4 − 2Tαβ
mα

+ 2mαEBC,⊥,αβ (C.47)

Using the definition of the velocity space moments results in

Eα,⊥
ναβB

= −2
(
M2,⊥,α + 3(∆v⊥)2

8 mαM0,α − TαβM0,α −mαEBC,⊥,αβ

)
. (C.48)

Total Energy

The final result for the total energy conservation equation is,

Eα
2ναβB

= −
(
M2,α − 1

2uαβmαM1,α + (∆v||)2 + 3(∆v⊥)2

8 mαM0,α − 3
2TαβM0,α −mαEBC,αβ

)
,

(C.49)

with boundary corrections,

EBC,αβ = ∆V
2B


M∑
j=1

1
2v⊥(j)

[
v2

||(
1
2) −

(
uαβ − 2Tαβ

mα∆v||

)
v||(

1
2)
]
fα(1, j)B∗

||(1)

+
M∑
j=1

1
2v⊥(j)

[
v2

||(N + 1
2) −

(
uαβ + 2Tαβ

mα∆v||

)
v||(N + 1

2)
]
fα(N, j)B∗

||(N)


+∆V

2B


N∑
i=1

1
2

(
v3

⊥(1
2) + 2Tαβ

mα∆v⊥
v2

⊥(1
2)
)
fα(i, 1)B∗

||(i)

+
N∑
i=1

1
2

(
v3

⊥(M + 1
2) − 2Tαβ

mα∆v⊥
v2

⊥(M + 1
2)
)
fα(i,M)B∗

||(i)

. (C.50)

In addition to the (∆v||)2 term which is also present in the magnetic moment formulation
(4.81), the perpendicular velocity formulation has a (∆v⊥)2 contribution.
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C.3.3 Conservative Corrections

Defining the boundary sums,

S1,α = ∆V
4

M∑
j=1

v⊥(j)fα(1, j)
B∗

||(1)
B

, S3,α = ∆V
4

N∑
i=1

fα(i, 1)
B∗

||(i)
B

, (C.51)

S2,α = ∆V
4

M∑
j=1

v⊥(j)fα(N, j)
B∗

||(N)
B

, S4,α = ∆V
4

N∑
i=1

fα(i,M)
B∗

||(i)
B

, (C.52)

the boundary corrections can be written as

PBC,αβ = 2S1,α

(
v||(

1
2) − uαβ + 2Tαβ

mα∆v||

)
+ 2S2,α

(
v||(N + 1

2) − uαβ − 2Tαβ
mα∆v||

)
, (C.53)

EBC,αβ = S1,α

(
v2

||(
1
2) −

(
uαβ − 2Tαβ

mα∆v||

)
v||(

1
2)
)

+ S2,α

(
v2

||(N + 1
2) −

(
uαβ + 2Tαβ

mα∆v||

)
v||(N + 1

2)
)

+ S3,α

(
v3

⊥(1
2) + 2Tαβ

mα∆v⊥
v2

⊥(1
2)
)

+ S4,α

(
v3

⊥(M + 1
2) − 2Tαβ

mα∆v⊥
v2

⊥(M + 1
2)
)
.

(C.54)

This can be cast into the following form,

PBC,αβ = uαβp1,α + Tαβp2,α + p3,α, (C.55)
EBC,αβ = uαβp4,α + Tαβp5,α + p6,α. (C.56)

using

p1,α = −2 (S1,α + S2,α) , (C.57)

p2,α = 4
mα∆v||

(S1,α − S2,α) , (C.58)

p3,α = 2
(
v||(

1
2)S1,α + v||(N + 1

2)S2,α

)
, (C.59)

p4,α = −
(
v||(

1
2)S1,α + v||(N + 1

2)S2,α

)
= −1

2p3,α, (C.60)

p5,α = 2
mα∆v||

(
v||(

1
2)S1,α − v||(N + 1

2)S2,α

)
+ 2
mα∆v⊥

(
v2

⊥(1
2)S3,α − v2

⊥(M + 1
2)S4,α

)
, (C.61)

p6,α =
(
v2

||(
1
2)S1,α + v2

||(N + 1
2)S2,α

)
+
(
v3

⊥(1
2)S3,α + v3

⊥(M + 1
2)S4,α

)
. (C.62)
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The condition to achieve momentum and energy conservation is

0 = mαναβ (M1,α − uαβM0,α − PBC,αβ) +mβνβα (M1,β − uβαM0,β − PBC,βα) , (C.63)

0 = ναβ

(
M2,α − 1

2uαβmαM1,α − 3
2TαβM0,α + (∆v||)2 + 3(∆v⊥)2

8 mαM0,α −mαEBC,αβ

)

+ νβα

(
M2,β − 1

2uβαmβM1,β − 3
2TβαM0,β + (∆v||)2 + 3(∆v⊥)2

8 mβM0,β −mβEBC,βα

)
.

(C.64)

For the collision frequency, the combined form of eqs. (3.135) and (3.140) for EM and ET
can be used,

νβα = ναβ
M0,α

M0,β
καβ, (C.65)

καβ =


mα

mβ
, EM,

1, ET.
(C.66)

The parallel flow is written the same as in the magnetic moment version,

uβα = uαβη, (C.67)

η ≡

1, physical units,
ηref , normalized units.

(C.68)

Inserting these relations yields

0 = mα

(
M1,α

M0,α
− uαβ − PBC,αβ

M0,α

)
+mβκαβ

(
M1,β

M0,β
− uαβη − PBC,βα

M0,β

)
, (C.69)

0 =
(
M2,α

M0,α
− 1

2uαβmα
M1,α

M0,α
− 3

2Tαβ +mα

(∆v||)2 + 3(∆v⊥)2

8 −mα
EBC,αβ

M0,α

)

+ καβ

(
M2,β

M0,β
− 1

2uαβηmβ
M1,β

M0,β
− 3

2Tαβ +mβ

(∆v||)2 + 3(∆v⊥)2

8 −mβ
EBC,βα

M0,β

)
. (C.70)

Using the formulation with “s-factors”,

s1,αβuαβ + s2,αβTαβ = s3,αβ,

s4,αβuαβ + s5,αβTαβ = s6,αβ.
(C.71)
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with the coefficients

s1,αβ =
(
mα +mβκαβη + p1,αmα

M0,α
+ p1,βmβκαβη

M0,β

)
, (C.72)

s2,αβ =
(
p2,αmα

M0,α
+ p2,βmβκαβ

M0,β

)
, (C.73)

s3,αβ =
(
M1,αmα

M0,α
+ M1,βmβκαβ

M0,β
− p3,αmα

M0,α
− p3,βmβκαβ

M0,β

)
, (C.74)

s4,αβ =
(

1
2
M1,αmα

M0,α
+ 1

2
M1,βmβκαβη

M0,β
+ p4,αmα

M0,α
+ p4,βmβκαβη

M0,β

)
, (C.75)

s5,αβ =
(

3
2(1 + καβ) + p5,αmα

M0,α
+ p5,βmβκαβ

M0,β

)
, (C.76)

s6,αβ =
(
M2,α

M0,α
+ M2,βκαβ

M0,β
+ (∆v||)2 + 3(∆v⊥)2

8 (mα +mβκαβ) − p6,αmα

M0,α
− p6,βmβκαβ

M0,β

)
.

(C.77)

The system of equations is solved by (4.113) and (4.114).

C.4 Normalized Version
The normalized perpendicular velocity and cell sizes are,

v̂⊥ =
√
µ̂B̂, (C.78)

µ̂ = v̂2
⊥

B̂
, (C.79)

∆µ̂ = 2v̂⊥∆v̂⊥

B̂
, (C.80)

∆v̂⊥(j) = v̂⊥∆v̂⊥ = 1
2B̂

√
µ̂∆µ̂. (C.81)
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C.4. Normalized Version

C.4.1 Normalized Velocity Space Moments

The velocity space moments are normalized as,

M̂0,α = ∆V̂
N∑
i=1

M∑
j=1

v̂⊥(j)f̂α(i, j)
B̂∗

||(i)
B̂

, (C.82)

M̂1,α = ∆V̂
N∑
i=1

M∑
j=1

v̂⊥(j)v̂||(i)f̂(i, j)
B̂∗

||(i)
B̂

, (C.83)

M̂2,⊥,α = ∆V̂
N∑
i=1

M∑
j=1

v̂3
⊥(j)f̂(i, j)

B̂∗
||(i)
B̂

, (C.84)

M̂2,||,α = ∆V̂
N∑
i=1

M∑
j=1

v⊥(j)v̂2
||(i)f̂(i, j)

B̂∗
||(i)
B̂

, (C.85)

M̂2 = M̂2,⊥ + M̂2,||, (C.86)

with ∆V̂ = 2π∆v̂||∆v̂⊥. The reference quantities used are

M0,ref,α = nref , (C.87)
M1,ref,α = vth,αnref , (C.88)
M2,ref,α = Trefnref . (C.89)

Using eq. (C.81) allows to write,

M̂0,α = π∆v̂||

√
∆µ̂

N∑
i=1

M∑
j=1

√
µ̂(j)f̂α(i, j)B̂∗

||(i), (C.90)

M̂1,α = π∆v̂||

√
∆µ̂

N∑
i=1

M∑
j=1

√
µ̂(j)v̂||(i)f̂(i, j)B̂∗

||(i), (C.91)

M̂2,⊥,α = π∆v̂||

√
∆µ̂

N∑
i=1

M∑
j=1

√
µ̂(j)µ̂B̂f̂(i, j)B̂∗

||(i), (C.92)

M̂2,||,α = π∆v̂||

√
∆µ̂

N∑
i=1

M∑
j=1

√
µ̂(j)v̂2

||(i)f̂(i, j)B̂∗
||(i). (C.93)

The above formulation is convenient because the integrand is the same as in the magnetic
moment formulation, apart from the integration weights (

√
µ̂(j) that can be moved to new,

grid-dependent integration weights).
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C.4.2 Normalized Finite Volume Discretization

Normalizing eq. (C.15),

(Ĉαβ f̂α)(i, j) = trefJref

frefBrefvth,α

1
B̂∗

||(i)

 1
∆v̂||

(
Ĵ||(i+ 1

2 , j) − Ĵ||(i− 1
2 , j)

)

+ 1
∆v̂⊥

(
ˆ̃J⊥(i, j + 1

2) − ˆ̃J⊥(i, j − 1
2)
), (C.94)

yields the required reference for the collisional flux,

Jref = frefBrefvth,α

tref
, (C.95)

which components are given as

Ĵ|| = ν̂αβ

(v̂|| − ûαβ)f̂αB̂∗
|| + 1

2 T̂αβ
∂f̂αB̂

∗
||

∂v̂||

, (C.96)

Ĵ⊥ = ν̂αβ

v̂⊥f̂αB̂
∗
|| + 1

2 T̂αβ
∂f̂αB̂

∗
||

∂v̂⊥

. (C.97)

We normalize the boundary sums,

Ŝ1,α = ∆V̂
4

M∑
j=1

v̂⊥(j)f̂α(1, j)
B̂∗

||(1)
B̂

, Ŝ3,α = ∆V̂
4

N∑
i=1

f̂α(i, 1)
B̂∗

||(i)
B̂

, (C.98)

Ŝ2,α = ∆V̂
4

M∑
j=1

v̂⊥(j)f̂α(N, j)
B̂∗

||(N)
B̂

, Ŝ4,α = ∆V̂
4

N∑
i=1

f̂α(i,M)
B̂∗

||(i)
B̂

, (C.99)

with

S1,ref = S2,ref = nref , S3,ref = S4,ref = nref

vth,α
. (C.100)
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The normalized boundary corrections are

P̂BC,αβ = 2Ŝ1,α

(
v̂||(

1
2) − ûαβ + T̂αβ

∆v̂||

)
+ 2Ŝ2,α

(
v̂||(

1
2)(N + 1

2) − ûαβ − T̂αβ
∆v̂||(1

2)

)
, (C.101)

ÊBC,αβ = Ŝ1,α

(
v̂2

||(
1
2) −

(
ûαβ − T̂αβ

∆v̂||

)
v̂||(

1
2)
)

+ Ŝ2,α

v̂2
||(N + 1

2) −

ûαβ + T̂αβ
∆v̂2

||

 v̂2
||(N + 1

2)


+ Ŝ3,α

(
v̂3

⊥(1
2) + T̂αβ

∆v̂⊥
v̂2

⊥(1
2)
)

+ Ŝ4,α

(
v̂3

⊥(M + 1
2) − T̂αβ

∆v̂⊥
v̂2

⊥(M + 1
2)
)
. (C.102)

with

PBC,ref = nrefvth,α, EBC,ref = nrefv
2
th,α. (C.103)

The normalization of the alternative form

P̂BC,αβ = ûαβ p̂1,α + T̂αβ p̂2,α + p̂3,α, (C.104)
ÊBC,αβ = ûαβ p̂4,α + T̂αβ p̂5,α + p̂6,α, (C.105)

yields expressions for the normalized “p-factors”,

p̂1,α = −2
(
Ŝ1,α + Ŝ2,α

)
, (C.106)

p̂2,α = 2
∆v̂||

(
Ŝ1,α − Ŝ2,α

)
, (C.107)

p̂3,α = 2
(
v̂||(

1
2)Ŝ1,α + v̂||(N + 1

2)Ŝ2,α

)
, (C.108)

p̂4,α = −
(
v̂||(

1
2)Ŝ1,α + v̂||(N + 1

2)Ŝ2,α

)
= −1

2 p̂3,α, (C.109)

p̂5,α = 1
∆v̂||

(
v̂||(

1
2)Ŝ1,α − v̂||(N + 1

2)Ŝ2,α

)
+ 1

∆v̂⊥

(
v̂2

⊥(1
2)Ŝ3,α − v̂2

⊥(M + 1
2)Ŝ4,α

)
, (C.110)

p̂6,α =
(
v̂2

||(
1
2)Ŝ1,α + v̂2

||(N + 1
2)Ŝ2,α

)
+
(
v̂3

⊥(1
2)Ŝ3,α + v̂3

⊥(M + 1
2)Ŝ4,α

)
. (C.111)
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The normalized conservation equations are

0 = ϵ̂α
√
m̂α

(
M̂1,α

M̂0,α
− ûαβ − P̂BC,αβ

M̂0,α

)
+ ϵ̂β

√
m̂β

M̂1,β

M̂0,β
− ûαβ

√
m̂β

m̂α

− P̂BC,βα

M̂0,β

 , (C.112)

0 = ϵ̂α

(
M̂2,α

M̂0,α
− ûαβ

M̂1,α

M̂0,α
− 3

2 T̂αβ + (∆v̂||)2 + 3(∆v̂⊥)2

4 − 2ÊBC,αβ

M̂0,α

)

+ ϵ̂β

M̂2,β

M̂0,β
− ûαβ

√
m̂β

m̂α

M̂1,β

M̂0,β
− 3

2 T̂αβ + (∆v̂||)2 + 3(∆v̂⊥)2

4 − 2ÊBC,βα

M̂0,β

 , (C.113)

with

ϵ̂α =


1
m̂α
, EM,

1, ET.
(C.114)

Writing the normalized system of equations,

ûαβ ŝ1,α + T̂αβ ŝ2,α = ŝ3,α, (C.115)
ûαβ ŝ4,α + T̂αβ ŝ5,α = ŝ6,α. (C.116)

gives the normalized “s-factors”,

ŝ1,αβ = γ̂α + γ̂βδαβ + γ̂α
p̂1,α

M̂0,α
+ γ̂βδαβ

p̂1,β

M̂0,β
, (C.117)

ŝ2,αβ = γ̂α
p̂2,α

M̂0,α
+ γ̂β

p̂2,β

M̂0,β
, (C.118)

ŝ3,αβ = γ̂α
M̂1,α

M̂0,α
+ γ̂β

M̂1,β

M̂0,β
− γ̂α

p̂3,α

M̂0,α
− γ̂β

p̂3,β

M̂0,β
, (C.119)

ŝ4,αβ = ϵ̂α
M̂1,α

M̂0,α
+ ϵ̂βδαβ

M̂1,β

M̂0,β
+ ϵ̂α

2p̂4,α

M̂0,α
+ ϵ̂βδαβ

2p̂4,β

M̂0,β
, (C.120)

ŝ5,αβ = 3
2(ϵ̂α + ϵ̂β) + ϵ̂α
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C.4. Normalized Version

with

γ̂α =
√
m̂αϵ̂α =


1√
m̂α
, EM,

√
m̂α, ET,

(C.123)

δαβ =
√
m̂β

m̂α

. (C.124)
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Appendix D

Turbulence Characterization Figures

This appendix contains a collection of figures of the turbulence characterization from section
5.2.2.

D.1 Temporal Fourier Spectra
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Figure D.1. Temporal flux surface Fourier transform of the electrostatic potential over the last
100 µs of the LBD simulation. The solid line shows a measure for the mean value of ω, whereas the
dotted line shows a linear estimation for the frequency of the TEM. Taken from Ref. [59].
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Figure D.2. Same as Fig. D.1 but for the collisionless simulation. Based on data available at Ref.
[224].
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Figure D.3. Same as Fig. D.1 but for the BGK simulation. Based on data available at Ref. [224].
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D.2. Spectral Fluxes

D.2 Spectral Fluxes
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Figure D.4. Spectral particle and heat flux for electrons and ions from the LBD simulation,
averaged toroidally and temporally over 100 µs. The fluxes are weighted by ky to account for the
logarithmic scale of the abscissa. Taken from Ref. [59].
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Figure D.5. Same as Fig. D.4 but for the collisionless simulation. Based on data available at Ref.
[224].
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Figure D.6. Same as Fig. D.4 but for the BGK simulation. Based on data available at Ref. [224].
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D.3 Phase Shifts
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Figure D.7. Histogram count of phase shifts (cross-phases) between the density, the parallel,
perpendicular, and total temperature of electrons and ions, and the electrostatic potential for the
LBD simulation. The histogram counts are collected over 100 µs, and the black line shows a measure
for the mean value by taking a rolling average over the last three mean values on the phase shift
dimension. Taken from Ref. [59].
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Figure D.8. Same as Fig. D.7 but for the collisionless simulation. Based on data available at Ref.
[224].
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Figure D.9. Same as Fig. D.7 but for the BGK simulation. Based on data available at Ref. [224].
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D.4 Trapped Particle Fluxes
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Figure D.10. Spectral total, trapped and passing electron particle and heat flux at the final time
of the LBD simulation. Taken from Ref. [59].
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Figure D.11. Same as Fig. D.10 but for the collisionless simulation. Based on data available at
Ref. [224].
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Figure D.12. Same as Fig. D.10 but for the BGK simulation. Based on data available at Ref.
[224].
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D.5 Trapped Particle Phase Shifts
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Figure D.13. Histogram count of phase shifts (cross-phases) between total, trapped, and passing
electron density, parallel, perpendicular, and total temperature, and the electrostatic potential
for the LBD simulation. The histogram counts were collected toroidally at the final time of the
simulation. The black line shows a measure for the mean value by taking a rolling average over the
last three mean values on the phase shift dimension. Taken from Ref. [59].
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Figure D.14. Same as Fig. D.13 but for the collisionless simulation. Based on data available at
Ref. [224].

203



Appendix D – Turbulence Characterization Figures

10 100 1000m

/2

0

/2

(n
,

1)
Total Electrons

=0.92
10 100 1000m

Trapped Electrons

=0.92
10 100 1000m

Passing Electrons

=0.92

/2

0

/2

(T
||,

1)

=0.92 =0.92 =0.92

/2

0

/2

(T
,

1)

=0.92 =0.92 =0.92

10 2 10 1 100
ky s

/2

0

/2

(T
to

t,
1)

=0.92

10 2 10 1 100
ky s

=0.92

10 2 10 1 100
ky s

=0.92

100

101

co
un

ts

100

101

co
un

ts
100

101

co
un

ts

100

101

co
un

ts

Figure D.15. Same as Fig. D.13 but for the BGK simulation. Based on data available at Ref.
[224].
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D.6 Trapped Particle Characterization
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Figure D.16. Density, parallel and perpendicular temperature for total, trapped, and passing
electrons as well as the trapped fraction at the final time of the LBD simulation. The orange line
shows the analytical estimation for the trapped particle fraction. Taken from Ref. [59].
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Figure D.17. Same as Fig. D.16 but for the collisionless simulation. Based on data available at
Ref. [224].
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Figure D.18. Same as Fig. D.16 but for the BGK simulation. Based on data available at Ref.
[224].
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