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— Background

* Problem? Global rise of electricity and energy demand, energy dependency
 Solution contributor? Controlled nuclear fusion as local energy source

« Long-term potential of nuclear fusion in energy systems? Examination of optimal future
pathways

Study Objective

« Description of tokamak and stellarator type fusion power plants in energy systems
« Systematic analysis of respective scenario options

« Modeling and implementation of nuclear fusion power plants in energy system optimization
tools urbs and evrys for analysis of their optimal expansion and operational planning In
Europe and the ASEAN region

— Operational Characterization of 1 GW,_, Fusion Power Plants
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Figure 1: Power requirements of identified operating states [1]
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— Fusion Power Plant Modeling in Energy Systems
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Figure 2: Integration of fusion power plants in energy systems
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Figure 3: Fusion in the energy system optimization framework urbs and evrys

Operational Planning in European Power System

Energy system

~

« Europe in year 2050

« 268 model nodes

 Temporal resolution: 1h

 Installed fusion capacity: 50GW,, (France/ Germany)

» Installed capacities are predetermined

« Optimization method: Mixed integer linear

* |nvestigation objective: Operational planning of fusion in a
largely decarbonized energy system /

Fusion operation (Reference scenario)
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Figure 4: Installed capacity (left) and electricity generation (right) in Europe 2050

— Expansion Planning in the ASEAN Region
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« ASEAN region in year 2050

10 model nodes

 Temporal resolution: 1h

« Expansion of installed capacities part of optimization

« Optimization method: Linear

* |nvestigation objective: Expansion planning of fusion in a
region with high population and demand density as well as
new technological developments /

Fusion expansion (Reference scenario)
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Figure 5: Installed capacity (left) and electricity generation (right) in ASEAN region 2050

— Conclusion

 Three operational states of fusion power plants are modeled in energy systems based on
their operational characterization. Stellarator and tokamak types are distinguished.

 First results regarding the modeling of the European energy system indicate that fusion will
be used in Europe under the assumption that investments in fusion power plants have
been taken and that they are part of the energy system.

« Fusion power could be a suitable extension of energy systems in regions with high
population and demand density and new technological developments, like ASEAN region.
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