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Abstract

Correspondence estimation is a fundamental problem in point cloud registration. Typically,
establishing correspondences involves utilizing geometric descriptors, where the geometry
is represented in a higher dimension, and matching is performed based on the similarity of
these descriptors. Recent advancements in deep learning have led to significant progress in
point cloud correspondence estimation and geometry description. However, certain challenges
still exist, such as the repeatability issue when matching sparse keypoints and the trade-offs
between rotation invariance and distinctiveness of descriptors. To address these challenges,
this thesis proposes several deep learning-based approaches for generating more reliable cor-
respondences and learning more powerful descriptors.

To improve the reliability of correspondences, we present CoFiNet, a novel approach that tack-
les the challenge of keypoint repeatability in point cloud matching by generating correspon-
dences in a coarse-to-fine manner. At the coarse scale, CoFiNet learns to propose superpoint
correspondences whose vicinities share more overlap. Moving to a finer scale, the finer-grained
correspondences are generated from the overlap vicinities of coarse correspondences by solv-
ing a differentiable optimal transport problem. The proposed coarse-to-fine correspondences
are extensively evaluated on scene-level benchmarks, and the results confirm their superiority
over existing techniques.

While CoFiNet effectively addresses the keypoint repeatability issue, the globally-aware de-
scriptors it utilizes are sensitive to rotations, leading to performance degradation when dealing
with enlarged rotations. To address the issue, we propose RIGA, a novel method that enhances
the globally-aware descriptors by incorporating inherent rotation invariance. RIGA proposes
to represent both local geometry and global structures in a rotation-invariant manner. By
employing these representations, RIGA enables rotation-invariant global context aggregation,
resulting in descriptors that are both rotation-invariant and globally-aware. We validate the
inherent rotation invariance and feature distinctiveness of RIGA through extensive experiments
on several public benchmarks, where the results demonstrate the significance of our approach,
particularly when dealing with enlarged rotations.

Although RIGA effectively incorporates inherent rotation invariance into globally-aware de-
scriptors, the use of simple PointNet architectures results in an insufficient depiction of both
local geometry and global structures. To address this issue, we draw inspiration from the
remarkable success of the Transformer architecture in computer vision and propose RoITr, a
novel Transformer model designed to learn highly representative and discriminative geometric
descriptors while ensuring rotation invariance. By leveraging the advanced capabilities of the
Transformer architecture, RoITr surpasses the state-of-the-art methods in both the rigid and
non-rigid matching scenarios.
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Zusammenfassung

Die Schätzung von Korrespondenzen ist ein grundlegendes Problem bei der Registrierung
von Punktwolken. In der Regel werden bei der Ermittlung von Korrespondenzen geometri-
sche Deskriptoren verwendet, wobei die Geometrie in einer höheren Dimension dargestellt
wird und der Abgleich auf der Grundlage der Ähnlichkeit dieser Deskriptoren erfolgt. Neus-
te Entwicklungen im Bereich des Deep Learning haben zu erheblichen Fortschritten bei der
Schätzung von Punktwolkenkorrespondenzen und der Geometriebeschreibung geführt. Es
gibt jedoch noch einige Herausforderungen, wie z. B. das Problem der Wiederholbarkeit beim
Abgleich dünn besetzter Keypoints und die Kompromisse zwischen Rotationsinvarianz und
Unterscheidbarkeit der Deskriptoren. Um diese Herausforderungen zu bewältigen, werden in
dieser Arbeit mehrere auf Deep Learning basierende Ansätze zur Erzeugung zuverlässigerer
Korrespondenzen und zum Lernen leistungsfähigerer Deskriptoren vorgeschlagen.

Um die Zuverlässigkeit von Korrespondenzen zu verbessern, stellen wir CoFiNet vor, einen
neuartigen Ansatz, der die Herausforderung der Wiederholbarkeit von Keypoints beim Ab-
gleich von Punktwolken angeht, indem er Korrespondenzen auf einer groben bis feinen Ebene
erzeugt. Auf der groben Skala lernt CoFiNet, Superpunkt-Korrespondenzen vorzuschlagen,
deren Nachbarschaften mehr Überschneidungen aufweisen. Beim Übergang zu einer feine-
ren Skala werden die feineren Korrespondenzen aus den überlappenden Nachbarschaften
der groben Korrespondenzen durch Lösung eines differenzierbaren optimalen Transportpro-
blems erzeugt. Die vorgeschlagenen grob- bis feinkörnigen Korrespondenzen werden anhand
von Benchmarks auf Szenenebene eingehend evaluiert, und die Ergebnisse bestätigen ihre
Überlegenheit gegenüber bestehenden Verfahren.

Während CoFiNet das Problem der Wiederholbarkeit von Keypoints wirksam angeht, reagieren
die verwendeten globalen Deskriptoren empfindlich auf Drehungen, was bei größeren Drehun-
gen zu Leistungseinbußen führt. Um dieses Problem zu lösen, schlagen wir RIGA vor, eine
neuartigeMethode, die die global-bewussten Deskriptoren durch die Einbeziehung der inhären-
ten Rotationsinvarianz verbessert. RIGA schlägt vor, sowohl die lokale Geometrie als auch die
globalen Strukturen auf eine rotationsinvariante Weise darzustellen. Durch die Verwendung
dieser Repräsentationen ermöglicht RIGA eine rotationsinvariante globale Kontextaggregation,
was zu Deskriptoren führt, die sowohl rotationsinvariant als auch global bewusst sind. Wir
validieren die inhärente Rotationsinvarianz und Merkmalsunterscheidbarkeit von RIGA durch
umfangreiche Experimente mit mehreren öffentlichen Benchmarks, deren Ergebnisse die Be-
deutung unseres Ansatzes zeigen, insbesondere beim Umgang mit vergrößerten Rotationen.

Obwohl RIGA die inhärente Rotationsinvarianz effektiv in die globalen Deskriptoren einbezieht,
führt die Verwendung einfacher PointNet-Architekturen zu einer unzureichenden Darstellung
sowohl der lokalen Geometrie als auch der globalen Strukturen. Um dieses Problem anzugehen,
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lassen wir uns von dem bemerkenswerten Erfolg der Transformer-Architektur in der Computer
Vision inspirieren und schlagen RoITr vor, ein neuartiges Transformer-Modell, das entwickelt
wurde, um höchst repräsentative und diskriminierende geometrische Deskriptoren zu lernen
und gleichzeitig Rotationsinvarianz zu gewährleisten. Durch die Nutzung der fortschrittlichen
Fähigkeiten der Transformer-Architektur übertrifft RoITr den Stand der Technik sowohl in
starren als auch in nicht-starren Matching-Szenarien.
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1Introduction

Indeed, there are numerous avenues through which we can construct a mental representation
of the world within our brains. We perceive the delicate fragrance of spring flowers, immerse
ourselves in the rhythmic sound of heavy summer rain, marvel at the picturesque view of
autumn leaves, and experience the gentle touch of winter snow. Among our senses, vision
holds a prominent position due to its ability to capture an immense amount of real-time
information and provide us with a three-dimensional perception of the world. It grants us
the capacity to discern depth, distances, and spatial relationships between objects, which is
crucial for our understanding and interaction with the environment. The human visual system
is incredibly complex and intricate, captivating researchers who are dedicated to unraveling
its workings and mechanisms. By comprehending and simulating the intricate processes of the
human visual system, scientists aspire to develop advanced and intelligent computer vision
systems. These systems aim to mimic human visual abilities and accomplish tasks such as object
recognition, scene understanding, depth perception, and visual reasoning automatically.

For a considerable period preceding the rise of deep neural models, while there were some early
attempts at learning-based image understanding [80, 82], computer vision research primarily
revolved around the algorithmic design for extracting valuable information from visual data to
address various downstream tasks, including edge and corner detection [19, 59, 106], pattern
analysis and recognition [102, 103, 130], image editing [9, 118], structure from motion and
SLAM [42, 43, 76, 140], 3D tracking and reconstruction [27, 68, 110, 111], etc. In 2012, the
introduction of AlexNet [81] marked a significant milestone in computer vision as it achieved
remarkable performance on the ImageNet Large-Scale Visual Recognition Challenge [132].
Since then, the widespread adoption of deep learning techniques has had a profound impact
on various fundamental tasks in 2D computer vision. Areas such as image classification [61, 69,
144, 151], object detection [49, 50, 60, 98, 126, 127], and semantic segmentation [101, 129]
have witnessed significant advancements thanks to the capabilities of deep learning models.
These techniques have revolutionized the field by providing more accurate and robust solutions
for tasks that were traditionally challenging to solve using conventional methods.

Our world exists in a three-dimensional space, and understanding it from a two-dimensional
perspective is often limited and inadequate. However, obtaining sufficient 3D data has been a
challenge for a long time, hindering the progress of deep learning in the field of 3D computer
vision. Fortunately, with the rapid advancements in modern sensors such as RGB-D cameras
and LiDAR devices, it has become possible to directly capture and represent visual data in
three dimensions. This breakthrough has led to the emergence of large-scale 3D datasets
that cover diverse scenarios, including vision-based autonomous driving [11, 47], human
reconstruction [182, 189], and indoor scene understanding [21, 29]. These datasets have
paved the way for the popularity of deep learning-based approaches in the field of 3D computer
vision. The combination of deep learning and 3D data has revolutionized the field, enabling
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more accurate and robust solutions for understanding and analyzing the three-dimensional
world around us.

Point clouds play a vital role as a fundamental type of 3D data, which can be captured using
RGB-D cameras or LiDAR devices. They are compact and simple representations that offer high
efficiency for storing and processing. These advantages over alternative representations, such
as voxel grids or meshes, make them invaluable in the field of 3D computer vision. Extracting
correspondences between point clouds represents a fundamental and enduring problem in
the field of point cloud analysis and processing. It involves establishing associations between
the same points in different point clouds and remains challenging due to the variations in
viewpoint, occlusion, and noise. Establishing accurate and reliable correspondences between
point clouds is essential for various applications, including point cloud registration [12, 34,
163], flow estimation [51, 99, 109, 120, 168], tracking and reconstruction [15, 16, 68, 110,
111], etc. The pioneers in 2D computer vision, such as SIFT [102, 103], HOG [31], and
SURF [10], laid the foundation for correspondence estimation with their groundbreaking works
on local descriptors and feature matching. Similarly, in the era before the widespread adoption
of deep neural models, the correspondence estimation between point clouds relied heavily
on handcrafted 3D descriptors. These handcrafted descriptors, such as SpinImages [74],
FPFH [133], PPF [38], and SHOT [155], dominated this field for many years. However,
despite their initial success, handcrafted 3D descriptors have inherent limitations when it
comes to handling occlusion and noise in point clouds. As a result, their performance can
be hindered in challenging scenarios. In recent years, with the emergence of deep learning,
there has been a paradigm shift in the field of correspondence estimation for point clouds.
Deep learning-based models have demonstrated remarkable capabilities in learning robust and
discriminative representations directly from raw point cloud data. By leveraging multi-layer
perceptrons [121, 122], convolutional neural networks (CNNs) [25, 96, 154], graph neural
networks (GNNs) [143, 165], Transformers [44, 188], and other deep learning architectures,
researchers have achieved significant advancements in the correspondence estimation task.
In this thesis, our main objective is to leverage the capabilities of deep neural models to
improve the reliability of point cloud correspondence estimation, particularly in challenging
scenarios. These scenarios may involve real-world noise, low overlap between point clouds,
rapid changes in viewpoint, or non-rigid deformations, which poses significant challenges for
existing correspondence estimation techniques. Specifically, we aim to address two key aspects:
designing new paradigms to enhance the quality of point cloud correspondences obtained
from geometric descriptors, and developing novel methods for learning more representative,
discriminative, and rotation-robust geometric descriptors directly from raw point clouds.

1.1. Motivation

It is a well-known anecdote that when a young student once asked Takeo Kanade about the
three most important problems in computer vision, Kanade famously replied: “Correspondence,
correspondence, correspondence!” [162]. This statement highlights the significance of point
cloud correspondence estimation, which remains a central topic in 3D computer vision. Estab-
lishing reliable correspondences is crucial for the success of various fundamental vision tasks,
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including tracking, reconstruction, flow estimation, and registration. However, due to the
unordered and irregular nature of point clouds, extracting reliable correspondences from them
has posed a significant challenge for a long time. Over the years, researchers have proposed
various methods, ranging from early-stage handcrafted approaches [74, 133, 135, 155] to
more recent deep learning-based techniques [6, 33, 34, 53, 71, 136, 163, 164, 177, 184], all
aimed at improving the quality of correspondences.

The first aspect of this thesis centers around addressing the repeatability issue in existing
paradigms for generating correspondences from geometric descriptors. To mitigate the compu-
tational complexity andmatching ambiguity, point cloud correspondences are often established
between sparse superpoints rather than dense points, based on the similarity of geometric
descriptors. However, relying on sparser superpoints, whether obtained through uniform sam-
pling [33, 34] or salient point detection [6, 71, 88], accounts for the repeatability issue, as
the sparsity of superpoints by nature challenges their repeatability, i.e., it increases the risk
that a certain superpoint loses its corresponding point after sampling. Recent approaches in
point cloud correspondence estimation, such as USIP [88], D3Feat [6], and Predator [71],
have introduced salient point detection as an alternative to uniform sampling. By detecting
salient points, they aim to capture meaningful and distinctive keypoints that are more likely
to be also detected in different point clouds. These approaches have shown promising results
in improving repeatability compared to uniform sampling. However, salient point detection
may not always guarantee high repeatability, as it relies on local geometric properties or other
heuristics to determine saliency. Consequently, there is still a possibility that certain salient
points may not be repeatable in different point clouds. While these methods have made sig-
nificant advancements in correspondence estimation, their performance is still constrained by
the low repeatability of superpoints.

The second concern of this thesis focuses on the power of 3D geometric descriptors, which plays
a crucial role in establishing correspondences between point clouds. Specifically, we address
two important aspects of geometric descriptors: the rotation-invariance tomaintain the descrip-
tion consistency of the corresponding point under different poses, and the discriminativeness
in distinguishing non-corresponding points. In recent years, the trend in learning 3D geomet-
ric descriptors has shifted towards the adoption of neural backbones, such as PointNet [121],
PointNet++ [122], SparseConv [25], KPConv [154], and Point Transformer [188] to enhance
the descriptive power of raw point data. These neural-based approaches have demonstrated
significant improvements over handcrafted features in terms of descriptor quality. The most
recent deep learning-based methods for 3D geometric descriptors can be divided into two cate-
gories based on how they enhance the descriptors. The first category, represented by methods
like PPF-FoldNet [33], 3DSmoothNet [53], SpinNet [1], and YOHO [160], focuses on ensuring
rotation invariance of local descriptors by design, i.e., guaranteeing that the local descriptors
remain invariant under arbitrary rotations. It has been shown that these approaches are more
robust to larger rotations [1, 33]. The second category, including methods like Predator [71],
Lepard [93], and RegTr [179], focuses on incorporating global awareness into local descriptors
to enhance the discriminativeness. By considering the global contexts, these globally-aware
methods produce more discriminative descriptors compared to descriptors that only encode lo-
cal geometry. However, each category of methods has its specific drawback. Rotation-invariant
descriptors tend to be less discriminative due to the blindness to global contexts, while globally-
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aware methods may produce inconsistent description when dealing with large rotations due
to the inherent lack of rotation invariance.

1.2. Objectives

Asmentioned, one of the main challenges faced by existing approaches is the repeatability issue
of sparse superpoints when extracting correspondences by matching them. Recent advance-
ments in 2D image matching, such as DualRC-Net [91], Patch2Pix [191], and LoFTR [149],
have successfully addressed this challenge using a coarse-to-fine mechanism. This mechanism
avoids direct keypoint detection and has shown superior performance compared to detection-
based methods like SuperGlue [139]. However, applying this coarse-to-fine pipeline to point
cloud matching is non-trivial due to the unordered and irregular nature of point clouds. To
this end, our first objective is to address the repeatability issue in point cloud correspondence
estimation through a coarse-to-fine pipeline. Moreover, as the finer-grained correspondence
extraction highly relies on the previous coarse matching stage, learning distinctive superpoint
descriptors becomes the key to success in a coarse-to-fine matching pipeline. To this end, based
on the significance of the coarse-to-fine matching paradigm, our additional goal is to learn
more distinctive superpoint descriptors for extracting more accurate coarse correspondences.

Geometric descriptors serve as the foundation of correspondence estimation, since correspon-
dences can be obtained by matching similar geometry. For geometric descriptors, discrimina-
tiveness and rotation invariance are key aspects when evaluating their effectiveness. While
incorporating global contexts significantly enhances the discriminativeness of descriptors, the
obtained descriptors are still sensitive to rotations. This sensitivity leads to a drop in per-
formance when dealing with larger rotations during testing. As a result, there is a need to
bridge the gap between globally-aware descriptors and the requirement for rotation invariance.
Hence, our second objective aims to address this challenge by developing novel methods that
can generate globally-aware descriptors while maintaining their inherent rotation invariance.
By achieving this, we can benefit from the enhanced discriminativeness provided by global
contexts, while still ensuring the robustness to rotations.

The Transformer architecture [157], originally introduced for natural language processing
tasks [30, 35, 157, 167, 175], has proven to be effective in capturing global dependencies
and relationships between elements. This architecture has since been applied to 2D com-
puter vision tasks, such as image recognition [67, 100, 187] and object detection [20], with
notable success. Recently, Transformer-based approaches have also emerged in the field of
3D computer vision, showing promising results in tasks like point cloud classification and
segmentation [188]. Building upon these achievements, our last objective is to leverage the
power of Transformer models to develop a pipeline that exclusively relies on attention mecha-
nisms for point cloud geometry description and correspondence estimation. By doing so, we
aim to further enhance the representational capacity and discriminativeness of the intrinsi-
cally rotation-invariant geometric descriptors. Furthermore, to demonstrate the description
power improved by adopting the advanced Transformer architecture, we expand the scope
to the non-rigid matching scenario. Nevertheless, the obtained correspondences are usually
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less ideal to be directly used in downstream applications like non-rigid registration, due to
the challenging non-rigid setting. To address this limitation, we propose to prune outlier
correspondences in the non-rigid matching scenarios as an additional objective such that the
putative correspondences can be better applied to downstream tasks.

To summarize, our objectives can be outlined as follows:

• To address the repeatability issue in the point cloud matching task through a coarse-to-
fine pipeline;

• To bridge the gap between globally-aware descriptors and the requirement for rotation
invariance through a neural model that generates descriptors with both properties;

• To further enhance the jointly rotation-invariant and globally-aware geometric descrip-
tors through an attention-based Transformer model.

Upon the proposed objectives, our addition goals are listed as:

• To enhance the discriminativeness of geometric descriptors through a self-attention mech-
anism with rotation-invariant positional encoding;

• To prune outlier correspondences in the non-rigid matching scenario for non-rigid point
cloud registration.

1.3. Contributions

We propose solutions to address each of the objectives outlined in this thesis, with the main
contributions being summarized as follows:

• A keypoint-free learning framework that generates correspondences in a coarse-to-
fine fashion. On a coarse scale, we design a weighting scheme that guides our model
to learn to match uniformly down-sampled superpoints whose vicinity points are over-
lapped, which significantly shrinks the search space for the consecutive refinement. We
further propose a differentiable density-adaptive matching module that generates finer-
grained correspondences from the overlap regions of the coarse matchings by solving an
optimal transport problem with awareness of point density. This design guarantees the
robustness to scenarios where point density varies severely;

• An end-to-end pipeline that guarantees the rotation invariance of globally-aware
descriptors by design. We first learn the rotation-invariant descriptors from the PPF-
represented local geometry. To provide a superpoint-specific description of the entire
scene in a rotation-invariant fashion, we design global PPF signatures that describe each
superpoint by considering the spatial relationship of the remaining superpoints w.r.t. it.
A Transformer architecture is further added, yielding a Vision Transformer (ViT) [37]
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architecture to incorporate global awareness of geometric cues in a rotation-invariant
manner;

• An advanced Transformer model that further enhances the representational capac-
ity of the intrinsically rotation-invariant geometric descriptors. On the local level, we
introduce a self-attention mechanism designed to disentangle the geometry and poses,
which enables the pose-agnostic description of local geometry. Upon that, an attention-
based encoder-decoder architecture that learns highly-representative local geometry in
a rotation-invariant fashion is proposed. On the global level, we further design a global
transformer with rotation-invariant cross-frame position awareness that significantly en-
hances the feature distinctiveness.

1.4. Additional Contributions

Given the main contributions, we further add additional contributions upon them as the en-
hancement or extension. The additional contributions of this thesis are included in the Ap-
pendix and can be concluded as:

• A self-attention mechanism which learns rotation-invariant positional encoding of
superpoints to incorporate position-aware global contexts. Given a superpoint, we
learn a non-local representation through geometrically “pinpointing” it w.r.t. all other su-
perpoints based on pair-wise distances and triplet-wise angles. Self-attention mechanism
is utilized to weigh the importance of those anchoring superpoints. Since distances and
angles are invariant to rotations, we represent the spatial positions of superpoints in a
rotation-invariant manner. This rotation-invariant representation allows us to effectively
aggregate global information and enhance the distinctiveness of superpoint descriptors;

• A graph neural network that leverages spatial consistency of local regions to re-
move outlier correspondences in the non-rigid matching scenario. The local rigidity
of non-rigid deformation, i.e., the movement of local regions can be separately defined
by different rigid transformations, is a fundamental principle in non-rigid data analysis
and processing. Based on that, we employ graph neural networks to capture the spa-
tial consistency of correspondences within each local region, thereby determining the
confidence of correspondences to be inliers. By incorporating this design, we effectively
prune outlier correspondences and enhance the performance of non-rigid registration.

1.5. Outline

This section serves as a guide to the structure of the rest of this thesis and offers a glimpse
into the subsequent chapters. The majority of the content presented in this thesis has been
previously published or is currently being reviewed for publication in top-tier conferences or
journals.
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Chapter 2. In this chapter, we present a concise overview of the fundamental concepts essential
for a comprehensive understanding of this thesis. We commence by introducing various types
of 3D data representations commonly employed in the field of 3D computer vision, which
could be used for training deep neural models. Given that this thesis primarily focuses on the
task of correspondence estimation on point clouds, we then explore different types of deep
neural networks specifically tailored for point cloud processing. Furthermore, we provide an
introduction to the datasets that are closely related to our research topics and can be utilized
for training and evaluating the novel approaches proposed in this thesis. Lastly, we define the
evaluation metrics employed in assessing the performance of our proposed methods.

Part II: Generating Correspondences from Geometric Descriptors

Chapter 3. In this chapter, we first provide an introduction to the motivation behind the de-
velopment of a coarse-to-fine matching strategy for point cloud matching and registration.
Furthermore, we conduct a comprehensive literature review to examine the existing research
and advancements in topics of correspondences from learned local descriptors, 3D keypoint
detection, and 2D coarse-to-fine correspondences. Toward the end of the chapter, we mathe-
matically define the specific problem that we focus on in the following chapter.

Chapter 4. This chapter presents our first work, named CoFiNet, which extracts more reli-
able coarse-to-fine correspondences from point clouds for the tasks of point cloud matching
and registration. To the best of our knowledge, it is the first deep learning-based work that
incorporates a coarse-to-fine mechanism in correspondence search for point cloud registration.
CoFiNet is designed as a keypoint-free learning framework that treats point cloud registration
as a coarse-to-fine correspondence problem, where point correspondences are consecutively
refined from coarse proposals that are extracted from unordered and irregular point clouds. To
address the keypoint repeatability issue, a weighting scheme is proposed to guide the model
to propose the coarse superpoint correspondences whose vicinities share more overlap. For
obtaining the point correspondences that are accurate enough to be used for downstream
tasks like point cloud registration, we consecutively adopt a refinement stage that generates
finer-grained point correspondences from the overlap vicinities of coarse proposals.

Part III: Making Globally-Aware Descriptors Invariant to Rotations

Chapter 5. In this chapter, we begin by pointing out CoFiNet’s low robustness against enlarged
rotations and presenting the motivation behind the development of jointly rotation-invariant
and globally-aware descriptors. Through an extensive literature review, we explore the existing
research and advancements in handcrafted and learning-based geometric descriptors with a
perspective of the inherent rotation invariance, and introduce the previous techniques for
the task of object-centric point cloud registration. By analyzing the strengths and limitations
of these approaches, we aim to identify the gaps in the current literature and establish the
rationale for proposing novel descriptors.

Chapter 6. In this chapter, we shift our attention to developing more powerful descriptors
from which more reliable correspondence can be obtained. To this end, we introduce RIGA
to generate more powerful geometric description by making the globally-aware descriptors
invariant to rotations. Compared with the previous CoFiNet that focuses on the matching
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paradigm, RIGA concentrates more on the descriptor learning stage. In the RIGA pipeline,
PPF descriptors are leveraged to guarantee the inherent rotation invariance in both the local
geometric and global structural description. Upon that, a ViT architecture is leveraged to incor-
porate the global awareness into local descriptors in a rotation-invariant fashion. Compared
to CoFiNet, we provide more extensive experiments, especially on rotated benchmarks, to
prove the superiority of being inherently rotational-invariant for correspondence estimation.
Our proposed RIGA descriptors, combined with the coarse-to-fine correspondence extraction,
achieve state-of-the-art performance on both the original and rotated benchmarks.

Part IV: Improving Rotation-Invariant Descriptors With Transformers

Chapter 7. In this chapter, we first re-emphasize the significance of learning rotation-invariant
and globally-aware descriptors. Then, we point out that developing upon the less powerful
PointNet models leads to sub-optimal capabilities for RIGA’s geometric description. To address
this, we introduce the idea of incorporating the advanced Transformer architecture to learn
jointly rotation-invariant and globally-aware descriptors for point cloud matching and regis-
tration tasks. With the more representative and discriminative descriptors, we further extend
the scope of this thesis to include non-rigid matching, which poses additional challenges. Fur-
thermore, we provide a comprehensive review about the Transformer models. Towards the
end of the chapter, we present a mathematical formulation that defines the specific problem
we focus on in the subsequent chapter.

Chapter 8. In this chapter, we introduce RoITr that incorporates the advanced Transformer
architecture for learning jointly rotation-invariant and globally-aware descriptors for the point
cloudmatching and registration tasks. RoITr contributes both on the local and global levels. For
depicting the local geometry, we design a self-attention mechanism that disentangles the geom-
etry and poses, which enables the pose-agnostic geometric description. Subsequently, a novel
attention-based encoder-decoder architecture that learns highly-representative local geometry
in a rotation-invariant fashion is proposed. Moreover, for incorporating the global contexts
to enhance the feature discriminativeness, a global transformer with rotation-invariant cross-
frame position awareness is further introduced. Benefiting from the advanced Transformer
architecture and all the novel designs, RoITr surpasses existing methods by a large margin
in both the rigid and non-rigid matching scenarios and meanwhile maintains the intrinsic
rotation invariance in the learned descriptors.

Part V: Conclusion

Chapter 9. In this chapter, we summarize all the works and contributions in this thesis and
further discuss the possible directions for future works.

Part VI: Appendix

A. The complete list of all the publications of the author in related topics.

B. A brief introduction to GeoTrans [123], which proposes novel positional encoding to depict
the global positions for increasing the distinctiveness of superpoint descriptors in a coarse-to-
fine matching pipeline.
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C. A brief introduction to GraphSCNet [124], which adopts graph-based neural networks to
remove outlier correspondences for the non-rigid registration task.

In this thesis, a significant portion of the methods, texts, and materials have been previously
published or are currently under submission to major conferences or journals. To ensure proper
referencing and clarify copyright notices, we provide a list of the related publications along
with their respective copyright owners.

Part II is based on :

• Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam, Slobodan Ilic, “CoFiNet: Reliable Coarse-
to-fine Correspondences for Robust PointCloud Registration”, ©MIT Press Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Part III is based on :

• Hao Yu, Ji Hou, Zheng Qin, Mahdi Saleh, Ivan Shugurov, Kai Wang, Benjamin Busam,
Slobodan Ilic, “RIGA: Rotation-Invariant and Globally-Aware Descriptors for Point Cloud
Registration ”, arXiv:2209.13252, 2022, [under submission].

Part IV is based on :

• Hao Yu, Zheng Qin, Ji Hou, Mahdi Saleh, Dongsheng Li, Benjamin Busam, Slobodan
Ilic, “Rotation-Invariant Transformer for Point Cloud Matching ”, In ©IEEE Computer
Vision and Pattern Recognition (CVPR), 2023.

Appendix B is based on :

• Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, Kai Xu, “Geometric
Transformer for Fast and Robust Point Cloud Registration ”, In ©IEEE Computer Vision
and Pattern Recognition (CVPR), 2022.

Appendix C is based on :

• Zheng Qin, Hao Yu, Changjian Wang, Yuxing Peng, Kai Xu, “Deep Graph-Based Spatial
Consistency for Robust Non-Rigid Point Cloud Registration ", In ©IEEE Computer Vision
and Pattern Recognition (CVPR), 2023.

All of the rights belonging to the publications that appeared prior to the submission of this
thesis are transferred to IEEE/MIT Press under the relevant copyrights. The figures, texts,
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2Fundamentals

In this chapter, we provide a brief overview of the fundamental concepts necessary for a better
understanding of this thesis. We start by introducing various types of 3D data that serve as the
input for training deep neural models in Chapter. 2.1. In Chapter. 2.2, as this thesis focuses
on point clouds, we delve into different types of deep neural networks that are specifically
designed to process and analyze point clouds. These networks are tailored to tackle various
tasks in 3D computer vision, such as point cloud segmentation, object detection, and pose
estimation. Lastly, in Chapter. 2.3, we provide an overview of the datasets and metrics used in
this thesis. These datasets, together with metrics, serve as the benchmarks for evaluating the
performance of proposed approaches.

2.1. 3D Representations

In the computer vision domain, representing 3D data introduces additional complexity com-
pared to 2D, primarily due to the additional dimension. While 2D data is represented as
structured images with height and width dimensions, 3D data adds an extra depth dimension,
which requires specialized approaches for representation and processing. As a brief introduc-
tion to 3D representations, Fig. 2.1 illustrates three widely-used 3D representation types. In
the upcoming chapter, we provide more details of the commonly encountered types of 3D data
that serve as the foundation for deep learning-based approaches in 3D computer vision.

2.1.1. Voxel Grids

Voxel grids are a kind of representation of 3D objects or scenes using a 3D grid, where each
voxel (volume element) in the grid is assigned a value or attribute such as occupancy, color,
or material properties. It can be seen as an extension of 2D images to the 3D domain. How-
ever, compared to 2D images, voxel grids introduce an additional dimension, which leads to
increased complexity in terms of data storage, memory requirements, and data processing.
Higher resolutions are often necessary to preserve finer geometric details and capture more
intricate structures, but this comes at the cost of rapidly-increased memory consumption and
computational complexity.

Occupancy grids are a simple and commonly-used representation for objects or scenes in
the form of voxel grids. It uses binary encoding, where a value of 0 represents empty or free
space, and a value of 1 represents voxels that are occupied by surfaces. By discretizing the 3D
space into a grid and assigning binary values to the voxels, the occupancy grids can effectively
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Voxel Grid Point Cloud Mesh

Fig. 2.1. A bench in different 3D representations. The zoom-in areas demonstrate the surface represented by
different types of 3D data. Figures are adapted from [107].

represent the overall structure and layout of the environment. However, using occupancy grids
as the primary 3D representation has limitations, especially when it comes to preserving fine
geometric details or representing large scenes. This poses challenges in terms of memory
management and computational efficiency when working with occupancy grids.

SDF grids, short for Signed Distance Field grids, are a representation of objects or scenes
where each voxel is assigned a distance value based on its proximity to the nearest surface,
conventionally with positive values for outside the objects (or visible in scenes), and negative
values for inside the objects (or occluded in scenes). Unlike occupancy grids, SDF grids
provide a continuous and signed representation of the distances to surfaces, which implicitly
encodes surface information within the grid structure. An example of representing the object
surfaces using SDF grids is illustrated in Fig. 2.2. One advantage of SDF grids is their ability to
preserve geometric details. Since each voxel carries distance information, the surface can be
reconstructed from the SDF representation using techniques like Marching Cubes. In practical
applications, it is also common to truncate the distance values in SDF grids using a distance
threshold, leading to truncated SDF (TSDF), where voxels that are far away from the surfaces
and have distance values beyond the threshold are assigned a fixed distance value.

2.1.2. Point Clouds

As demonstrated in Fig. 2.3, point clouds are composed of a set of points in a 3D coordinate
system, where each point represents a specific position in space and may have additional
attributes associated with it, such as color, intensity, or normal vectors. They are often obtained
through various sensing technologies such as LiDAR scanners and depth cameras. These sensors
capture the geometric information of objects or scenes by measuring the distances or depth
values from the sensor to the surfaces.

Unlike voxel-based representations, point clouds are inherently sparse and unstructured, as
they only store the individual positions and attributes of points. This makes point clouds
memory-efficient and suitable for representing large and complex 3D scenes with intricate
geometric details. However, efficiently processing and analyzing point clouds poses several
challenges due to their irregular nature and varying point densities.

Point clouds find applications in numerous domains, including autonomous driving, robotics,
augmented and virtual reality, computer graphics, etc. They serve as a fundamental data
1Rendered by the toolkit: https://github.com/tolgabirdal/Mitsuba2PointCloudRenderer.
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Fig. 2.2. Surfaces represented by SDF [115]. The isosurface is extracted at the distance value of 0.

Fig. 2.3. Objects represented as point clouds. Point clouds are rendered using Mitsuba2 [112].1

format for tasks such as object recognition and detection, semantic and instance segmentation,
tracking and reconstruction, and registration.

2.1.3. Meshes

Meshes are a collection of vertices, edges, and faces that together represent the surfaces
of 3D objects or scenes. Vertices represent 3D positions in space and serve as foundational
points of mesh models. Edges establish relationships between vertices, outlining boundaries
and connectivity of mesh models. Connections between vertices ultimately give rise to faces,
which represent individual surface elements of objects or scenes. In most cases, these faces
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Fig. 2.4. Objects represented as meshes [57]. This figure demonstrates the advantages of meshes compared
to other 3D representations. Left: In the zoom-in area, the two joints can be separated via geodesic
information, although they are are adjacent in Euclidean space. Right: The flat areas are represented
using a small number of large faces for memory-saving, while the geometry-rich regions are represented
by a large number of small faces for detail-preserving.

are composed of triangles or quadrilaterals. By utilizing vertices, edges, and faces, meshes
enable the representation and manipulation of complex 3D surfaces in various applications
such as computer graphics, virtual reality, and computer-aided design. Examples of objects
represented by meshes are given in Fig. 2.4.

2.2. 3D Deep Models for Point Clouds

In the previous chapter, we discussed various 3D data representations commonly used in
computer vision. Throughout this chapter, we delve into the details of various deep learning
models that have been developed specifically for point clouds. These models are designed
to handle the challenges posed by the irregular nature of point clouds, such as the varying
number of points, unordered point order, and lack of spatial connectivity. We will showcase the
remarkable progress made in point cloud-based deep learning techniques that have enabled
us to effectively address complex tasks.

2.2.1. Multi-Layer Perceptron Networks

PointNet [121] is the pioneering deep learning model for point cloud processing and the first
deep neural model that directly consumes the raw point clouds without the need for prepro-
cessing steps such as voxelization. As shown in Fig. 2.5, the core architecture of PointNet
primarily revolves around multi-layer perceptron networks (MLPs) and pooling operations. In
the PointNet framework, the initial MLP network takes the raw point set as input and individ-
ually projects each point’s coordinate to a higher-dimensional feature space. These projected
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Fig. 2.5. The architecture of PointNet [121]. Each point is projected individually by MLP networks. The global
feature is generated by a global pooling operation over all the features. For tasks like segmentation, this
global feature is concatenated with each point feature for dense prediction.

Fig. 2.6. The architecture of PointNet++ [122]. Compared to PointNet that projects each point individually
and obtains the global information via a global pooling operation, PointNet++ hierarchically learns the
local geometric structures from raw points and progressively refine the local features.

features are then processed by subsequent MLPs, enabling the model to capture increasingly
abstract representations of the points. To incorporate global contextual information that is
crucial for tasks like object recognition, PointNet employs a global pooling operation that is
permutation-invariant. This pooling operation aggregates the information from each individ-
ual point and generates a global descriptor, which holistically represents the entire point cloud
and remains invariant to the order of input points. By its advanced design, PointNet achieves
the ability to efficiently and effectively process point clouds, making it suitable for a wide range
of tasks in point cloud processing and analysis.

PointNet++ [122] is an extension of the original PointNet model to address its limitations
in capturing local geometric structures. To tackle the problem, PointNet++ introduces a
hierarchical architecture that progressively samples and processes local regions of the input
point cloud. As demonstrated in Fig. 2.6, it consists of multiple stages, each comprising
three main components: sampling, grouping, and feature projection. In the sampling stage,
PointNet++ utilizes farthest point sampling (FPS) to select a subset of representative points
from the input point cloud. These sampled points act as centroids of local regions for the

2.2 3D Deep Models for Point Clouds 17



Fig. 2.7. Demonstration of the 3D convolution operation [65]. The learnable kernel matrix (shown as yellow)
shifts along the input 3D voxels (shown as blue) in a sliding-window manner and computes the corre-
sponding value (shown as red) in the output voxels (shown as green).

consecutive learning of local geometry. Then in the grouping stage, the neighboring points
are grouped around each centroid through ball query. Lastly in the feature projection stage,
within each local region, a PointNet architecture is adopted to extract local features from
the local geometry represented by the grouped neighboring points. By recursively repeating
the three stages at different resolutions, PointNet++ can capture hierarchical structures and
progressively refine the local features. By hierarchically processing the point cloud, PointNet++
enhances the discriminative power and captures intricate patterns in the point data, leading
to improved performance compared to the original PointNet model.

2.2.2. 3D Convolutional Neural Networks

3D ResNet [58] is an adaptation of the original 2D ResNet [61] to 3D domain for handling
3D data. Similar to the original ResNet in 2D domain, 3D ResNet is designed to handle
well-structured data, such as voxel-based representations by adopting 3D convolutions (see
Fig. 2.7). However, when it comes to processing point clouds, a format transfer is required to
convert the point cloud data to a voxel representation suitable for 3D ResNet. Moreover, the
inherent sparsity of 3D representations poses a challenge for convolutional neural networks
like 3D ResNet, as processing 3D data densely using conventional 3D convolutions would be
computationally expensive and inefficient.
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Fig. 2.8. Illustration of 3D SparseConv at different active spatial locations [54]. Light grey voxels represent
the surfaces and dark grey voxels stand for the empty space. During the convolution operation, within
the receptive field, the surface voxels (shown as green) are active and involved in the computation, while
the empty space (shown as red) is ignored.

Fig. 2.9. Illustration of KPConv [154] in comparisons with the conventional convolutions in 2D. Different to
image convolutions where each pixel feature is multiplied by a weight matrix assigned by the alignment
of the kernel with the image (left), in KPConv, each point feature is multiplied by all the kernel weight
matrices with correlation coefficients depending on its relative position to kernel points (right).

3D SparseConv [25, 54, 55] is a technique proposed to address the computational burden
associated with dense 3D convolutions on inherently sparse 3D data. As illustrated in Fig. 2.8,
it selectively computes convolutions only on the occupied or active regions of the 3D data and
therefore excludes the empty space for computation. By doing this, the redundant computa-
tions on inactive regions are eliminated, resulting in significant reductions in memory usage
and increased computational efficiency. Consequently, leveraging SparseConv allows for the
construction of deeper models with larger receptive fields, which improves the representative
capability and enables better performance on various 3D computer vision tasks. When it comes
to point cloud processing, although voxelization is still necessary for leveraging 3D SparseConv,
its efficiency surpasses that of conventional 3D convolutions, as it allows for more efficient and
scalable operations without the computational overhead of dense convolutions.

KPConv [154] is specifically designed for point cloud processing by replacing the conventional
convolution operations used for well-structured data, e.g., voxels, with a convolution operation
that is directly applicable to irregular and unstructured point clouds (see Fig. 2.9). More
specifically, given a point p ∈ R3 and its vicinity patch P ∈ RN×3 consisting of N points,
together with the associated features X ∈ RN×D, the point convolution of X by a kernel g at
p can be defined as:
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Fig. 2.10. Architecture of the original Transformer for machine translation and the vision Transformer (ViT)
for image recognition. Left: The original Transformer architecture [157]. Right: The Vision Trans-
former (ViT) architecture [37].

(X ∗ g)(p) =
∑

pi∈Np

g(pi − p)xi, (2.1)

with pi ∈ P, xi ∈ X, and Np = {pi ∈ P
∣∣∥pi − p∥ ≤ r}, where r ∈ R is the chosen radius for

radius-based neighborhoods. The core of Eq. 2.1 is the definition of kernel function g, which
takes as input the neighbor positions centered at p, i.e., qi = pi−p. Let {p̃k

∣∣k < K} ⊂ B3
r be

the kernel points (with B3
r defined as the ball within a radius r, i.e., B3

r = {qi ∈ R
∣∣∥qi∥ ≤ r}),

and {Wk

∣∣k < K} ⊂ RDin×Dout be the associated weight matrices that map features from
dimension Din to Dout. The kernel function g for any point qi ∈ B3

r can be computed as:

g(qi) =
∑
k<K

h(qi, p̃k)Wk, (2.2)

where h calculates the correlation between qi and p̃k as:

h(qi, p̃k) = max(0, 1− ∥qi − p̃k∥
σ

), (2.3)

where σ defines the influence distance of kernel points. Compared to conventional convolutions,
KPConv provides a more flexible and effective way to perform convolutional operations directly
on point clouds, and addresses the challenges posed by the irregular and unstructured nature
of point clouds. Therefore, it is widely adopted as the backbone network for point cloud
processing in solving 3D computer vision problems.

2.2.3. Transformer Models

Transformer [157] models are first introduced for modeling the potential relationships in
sequential data like sentences. As shown in the left figure of Fig. 2.10, the input sequence
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Fig. 2.11. Illustration of the scaled dot-product attention and the calculation of multi-head attention [157].
Left: Scaled dot-product attention. Right: Multi-head attention computation.

is first embedded into vectors with positional information informed. These vectors are then
processed by multiple layers, each consisting of a multi-head self-attention mechanism (see
the right figure of Fig. 2.11) and a feed-forward network. The self-attention mechanism allows
Transformer models to attend to different positions in the input sequence, while the feed-
forward network applies non-linear transformations to each position independently. The core
part of the self-attention mechanism is the scaled dot-product attention (see the left figure of
Fig. 2.11), which allows Transformer models to weigh the importance of different parts of the
input sequence when generating the output. The input of this attention mechanism consists of
queries and keys of dimension dk, and values of dimension dv. Given a set of queries packed
together into a matrix Q, as well as the keys and values packed into K and V, respectively,
the scaled dot-product attention can be briefly defined as:

Attention(Q,K,V) = softmax(QKT

√
dk

)V, (2.4)

where √dk stands for the scaling factor. By adopting the attention mechanism, Transformer
models are able to focus on more relevant information and capture long-range dependencies
more effectively.

One of the key advantages of Transformermodels is their ability to capture global dependencies
and contextual information efficiently. Motivated by the remarkable success of Transformer
models in natural language processing, researchers have begun exploring the application of
this advanced architecture in computer vision. They have developed models such as Vision
Transformer [37] (depicted in the right figure of Fig.2.10) and Detr[20], which address chal-
lenges in image recognition and object detection, respectively. This trend has also influenced
the field of 3D computer vision. Point Transformer [188] is among the pioneering works that
utilize the Transformer architecture for essential tasks in 3D computer vision (illustrated in the
left figure of Fig. 2.12). Similar to previous Transformer models, the core of Point Transformer
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Fig. 2.12. Demonstration of Point Transformer and the computation of its attention mechanism [188]. Left:
Point Transformer demonstration. Right: Attention computation.

Fig. 2.13. Demonstration of scene pairs with different overlap ratios in 3DMatch [71]. According to the overlap
ratios, scene pairs are split into 3DMatch (>30%) and 3DLoMatch (10% ∼ 30%).

still lies at the design of the attention mechanism. As shown in the right figure of Fig. 2.12,
given a point p ∈ R3 with its associated feature x ∈ RD, the attention mechanism fuses the
information from a local vicinity by:

y =
∑

pi∈Np

ρ(γ(φ(x)− ψ(xi) + δ)⊙ (α(xi) + δ), (2.5)

where Np is the set consisting of the local neighbors of p, and xi is the feature associated to
point pi. φ, ψ, and α are different linear layers. γ is a multi-layer perceptron network (MLP).
δ is the positional encoding learned from the relative position p− pi by a MLP. ρ is a normal-
ization function such as softmax. By adopting the Transformer architecture, Point Transformer
outperforms the state-of-the-art convolution-based baselines, which confirms the effectiveness
of Transformer models in the 3D computer vision field.

2.3. Datasets and Metrics

In this chapter, we briefly introduce the benchmarks for training and evaluating our proposed
deep neural models for the correspondence estimation and registration tasks on point clouds.
In Chapter. 2.3.1, the used datasets are first introduced. Then in Chapter. 2.3.2, the metrics
that are leveraged for evaluation are defined.
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Fig. 2.14. Demonstration of deformable object pairs with different overlap ratios in 4DMatch [93]. The first
row depicts the point cloud pairs under different poses, while the second row shows the ground-truth
alignment. According to the overlap ratios at the bottom, scene pairs are split into 4DMatch (>45%)
and 4DLoMatch (<45%).

2.3.1. Datasets

3DMatch [184] collects 62 indoor scenes, among which 46 are used for training, 8 for vali-
dation, and 8 for testing. In this thesis, we use the data processed by Predator [71], where
the 3DMatch data is spilt into 3DMatch (> 30% overlap) and 3DLoMatch (10% ∼ 30% over-
lap) (see Fig. 2.13). Moreover, to evaluate the robustness against arbitrary rotations, we
further created the rotated datasets, where random full-range rotations are individually added
to the two frames of each point cloud pair.

4DMatch [93] contains 1,761 animations randomly selected from DeformingThings4D [95].
The 1,761 sequences are divided into 1,232/176/353 as train/val/test, respectively. The
test set is further split into 4DMatch and 4DLoMatch based on an overlap ratio threshold of
45% (see Fig. 2.14).

ModelNet40 [171] consists of 12,311 CAD models of objects from 40 different categories. In
this thesis, we follow the setting of [164], where 9,833 shapes are used for training, and the
rest 2,468 for testing. For each model, 1,024 points are randomly sampled from its surface. For
simulating the partial overlap from scanning, 768 points that are nearest to a randomly selected
viewpoint are sampled from the 1,024 points and serve as the input. Following [114], instead
of using the ground truth normals, we estimate them based on the input point clouds using
Open3D [190]. To demonstrate the significance of being rotation-invariant, we follow [114]
to enlarge the rotations of objects to a maximum of 180◦. As the rotations are generated by
adopting Rodrigues’ rotation formula on a random rotation axis together with a random angle,
the rotation angles within [0, 180◦] cover the full range of 360◦.
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Fig. 2.15. Example of an outdoor scene from KITTI [47] dataset. For objects that are far from the LiDAR scanner,
the point representation is much sparser, which poses challenges in point cloud processing.

KITTI [47] consists of 11 sequences scanned by a Velodyne HDL-64 3D laser scanner in outdoor
driving scenarios (see Fig. 2.15). We follow [6] to pick point cloud pairs with at least 10m
intervals from the raw data. This rule leads to 1,358 training pairs, 180 validation pairs, and
555 testing pairs. Moreover, as the ground truth poses provided by GPS are noisy, we follow [6]
to use ICP to further refine them.

2.3.2. Metrics

In this thesis, we validate the models not only by directly evaluating the extracted correspon-
dences, but also by applying the estimated correspondences to the point cloud registration
task. Given a partially-overlapping point cloud pair P ∈ RN×3 and Q ∈ RM×3, as well as
the putative correspondence set C = {(pi,qj)

∣∣pi ∈ P,qj ∈ Q}, we detail all the metrics for
evaluation hereafter.

Inlier Ratio (IR). IR counts the fraction of putative correspondences (pi,qj) ∈ C whose Eu-
clidean distance is under a threshold τ1 (0.1m on 3DMatch, 0.04m on 4DMatch) under the
ground-truth transformation T∗:

I(C
∣∣T∗) = 1

|C|
∑

(pi,qj)∈C

1(∥T∗(pi)− qj∥2 < τ1), (2.6)

where 1(·) is the indicator function.
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Feature Matching Recall (FMR). FMR counts the fraction of point cloud pairs whose IR is
larger than a threshold τ2 = 0.05:

F(T ) = 1
|T |

|T |∑
t=1

1(I(Ct

∣∣T∗t ) > τ2), (2.7)

where T represents the testing set, and t is the indices of point cloud pairs in the testing set.

Registration Recall (RR). RR is a metric for evaluating the estimated poses. It computes the
fraction of point cloud pairs that are registered correctly based on the putative correspondences,
measured by the Root-Mean-Square Error (RMSE). Following [71], we define RMSE on the
original 3DMatch/3DLoMatch as:

R1(C
∣∣C∗) =

√√√√ 1
|C∗|

∑
(p∗

u,q∗
v)∈C∗

∥T(p∗u)− q∗v∥2
2, (2.8)

where C∗ represents the ground-truth correspondence set established between P and Q, and
T stands for the transformation estimated based on C. On Rotated 3DMatch/3DLoMatch, we
follow [180, 183] to define RMSE as:

R2(C
∣∣T∗,P) = 1

N

√∑
p∈P

∥T(p)−T∗(p)∥2
2, (2.9)

where T and T∗ define the estimated and ground-truth transformation, respectively. RR is
finally calculated as:

R(T ) = 1
|T |

T∑
t=1

1(R1(C
∣∣C∗) < τ3) and

1
|T |

T∑
t=1

1(R2(C
∣∣T∗,P)) < τ3),

(2.10)

with τ3 = 0.2m, for the original and rotated benchmarks, respectively.

Non-Rigid Feature Matching Recall (NFMR). NFMR is used to evaluate the estimated corre-
spondences in the non-rigid matching task. It counts the fraction of ground-truth correspon-
dences C∗ that can be recovered by the putative correspondences C. The deformation flow du

for each putative correspondence (pi,qj) ∈ C is defined as di = qj−pi. For each (p∗u,q∗v) ∈ C∗,
the deformation flow is recovered via interpolation as:

du =
∑

i∈N (u) w
u
i di∑

i∈N (u) w
u
i

, with wu
i = 1

∥p∗u − pi∥2
, (2.11)
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whereN (u) indicates the k-nearest neighbors (k = 3 in practice) ofp∗u from pointspi satisfying
(pi,qj) ∈ C. NFMR is finally computed by:

FN (C∗
∣∣C) = 1

|C∗|
∑

(p∗
u,q∗

v)∈C∗

1(∥du − d∗u∥2 < τ4), (2.12)

where d∗u indicates the ground-truth deformation flow of p∗u, defined as d∗u = q∗v − p∗u. τ4 is
set to 0.04m in practice.

Relative Rotation and Translation Errors (RRE and RTE). Given the estimated rotation
R ∈ SO(3) and translation t ∈ R3 between a pair of point clouds P andQ, RRE and RTE w.r.t.
the ground-truth rotation R∗ ∈ SO(3) and translation t∗ ∈ R3 are computed as:

RR(R
∣∣R∗) = arccos( trace(R

∗T R)− 1
2 ), and

RT (t
∣∣t∗) = ∥t∗ − t∥2,

(2.13)

respectively.

Modified Chamfer Distance (MCD). We define MCD following RPM-Net [177]. For a pair
of partially-overlapping point clouds P and Q, MCD measures the Chamfer distance between
one frame and the clean-and-complete version of the other frame, which can be defined as:

MCD(P,Q) = 1
N

∑
p∈P

min
q∈Qclean

∥p− q∥2
2+

1
M

∑
q∈Q

min
p∈Pclean

∥p− q∥2
2.

(2.14)
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Part II

Generating Correspondences from
Geometric Descriptors





3Introduction

In this chapter, we first present the motivation of developing novel algorithms to generate
more robust point cloud correspondences based on globally-aware geometric descriptors for
point cloud registration. Next, a literature review of related topics is provided for a better
understanding of the task as well as the developed method. Finally, the problem that this
chapter aims to tackle is formulated.

3.1. Motivation

Correspondence search is a core topic of computer vision and establishing reliable correspon-
dences is a key to success in many fundamental vision tasks, such as tracking, reconstruction,
flow estimation, and particularly, point cloud registration. Point cloud registration aims at
recovering the transformation between a pair of partially overlapped point clouds. It is a fun-
damental task in a wide range of real applications, including scene reconstruction, autonomous
driving, simultaneous localization and mapping (SLAM), etc. However, due to the unordered
and irregular properties of point clouds, extracting reliable correspondences from them has
been a challenging task for a long time. From early-stage hand-crafted methods [74, 133, 135,
155] to recently emerged deep learning-based approaches [6, 33, 34, 53, 71, 136, 184], many
works contributed to improving the reliability of correspondences.

We can broadly categorize recent deep learning-based point cloud registration methods into
three categories. The first [163, 164, 177] follows the idea of ICP [12], where they iteratively
find dense correspondences and compute pose estimation. The second [2, 72] includes the
correspondence-free methods based on the intuition that the feature distance between two
well-aligned point clouds should be small. Such methods encode the whole point cloud as a
single feature and iteratively optimize the relative pose between two frames by minimizing
the distance of corresponding features. Though achieving reasonable results on synthetic
object datasets [171], both of them struggle on large-scale real benchmarks [47, 184], as the
first suffers from low correspondence precision and high computational complexity, while the
second lacks robustness to noise and partial overlap.

Differently, the second category of methods [6, 33, 34, 53, 71, 136, 184] tackles point cloud
registration in a two-stage manner. They firstly learn local descriptors of down-sampled
sparse points (superpoints) for matching, and afterward use robust pose estimators, e.g.,
RANSAC [45] or its variants [7, 8, 125], for recovering the relative transformation. Their
two-stage strategy makes them achieve state-of-the-art performance on large-scale scene-level
benchmarks [47, 184]. Uniform sampling [33, 34] and keypoint detection [6, 71, 88, 136]
are two common ways to introduce sparsity. Compared to uniform sampling that samples
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points randomly, keypoint detection estimates the saliency of points and samples points with
strong geometry features, which significantly reduces the ambiguity of matching. However,
sparsity by nature challenges repeatability, i.e., sub-sampling increases the risk where a certain
point loses its corresponding point in the other frame, which constrains the performance of
detection-based methods [6, 71, 88, 136].

Recently, a coarse-to-fine mechanism has been leveraged by our 2D counterparts [91, 149, 191]
to avoid direct keypoint detection, which shows superiority over the state-of-the-art detection-
based method [139] in the task of estimating 2D image correspondences. However, in 3D point
cloud matching, where keypoint detectors usually perform worse, existing deep learning-based
methods have yet to exploit such a coarse-to-fine strategy, since designing such a coarse-to-fine
pipeline for point cloud matching is non-trivial, mainly due to the inherent unordered and
irregular nature of point clouds. To fill the gap, we propose to leverage the coarse-to-fine
mechanism to eliminate the side effects of detecting sparse keypoints in point cloud matching
and registration.

In addition, correspondences are typically established based on the similarity of geometric
descriptors. However, many existing deep learning-based approaches only encode local ge-
ometry, which limits their ability to capture global contexts and differentiate similar but non-
corresponding geometric structures. To tackle the problem, Predator [71] leverages graph
neural networks to expand the receptive fields for descriptor learning. Although it incorporates
additional contexts, the learning of descriptors still remains constrained to local regions. To
this end, we propose to adopt the self-attention mechanism [157] to incorporate the global
contexts into each local descriptor. By doing that, we enable the learning of globally-aware
descriptors that are more distinctive and facilitate the extraction of reliable correspondences.

3.2. Related Work

Correspondences from learned local descriptors. Early networks proposed to learn local de-
scriptors for 3D correspondence searchmainly took uniformly distributed local patches as input.
As a pioneer, Zeng et al. [184] proposed the 3DMatch benchmark, on which they exploited a
Siamese network [17] that consumes voxel grids of truncated distance fields (TDFs) to match
local patches. PPFNet [34] directly consumed raw points augmented with Point Pair Features
(PPFs) by leveraging PointNet [121] as its encoder. PPF-FoldNet [33] leveraged only PPF,
which is naturally rotation-invariant, as its input and further incorporated a FoldingNet [174]
architecture to enable the unsupervised training of rotation-invariant descriptors. Gojcic et
al. [53] proposed a network to consume the smoothed density value (SDV) representation
aligned to the local reference frame (LRF) to eliminate the rotation variance of learned de-
scriptors. To extract better geometric features, Graphite [136] utilized graph neural networks
for local patch description. SpinNet [1] utilized LRF for patch alignment and 3D cylindrical
convolution layers for feature extraction, achieving the best generalization ability to unseen
data. However, these patch-based methods usually suffer from low computational efficiency,
as typically shared activations of adjacent patches are not reused. To address this, Choy et
al. [26] made the first attempt by using sparse convolutions [25] to compute dense descriptors
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of the whole point cloud in a single pass. Such a design leads to a 600× speed-up as well as a
comparable performance compared to those patch-based methods.

Learned 3D keypoint detectors. USIP [88] learned to regress the position of the most salient
point for each local patch in a self-supervised manner. However, it suffers from degenerated
cases when the number of desired keypoints is relatively small. D3Feat [6] exploited a fully
convolutional encoder-decoder architecture for joint dense detection and description. However,
it does not consider overlap relationships and shows low robustness on low-overlap scenarios.
In addition to jointly estimating salient scores and learning local descriptors, Predator [71] also
predicted dense overlap scores that indicate the confidence whether points are on the overlap
regions. Keypoints were sampled under the condition of both saliency and overlap scores.
Though Predator surpasses existing methods by a large margin on both 3DMatch[184] and
3DLoMatch[71], the precision of estimated scores and the repeatability of sampled keypoints
still constrain its performance.

2D coarse-to-fine correspondences. As witnessed in the 2D image matching task, many re-
cent works [91, 149, 191] have leveraged a coarse-to-fine mechanism to eliminate the inherent
repeatability problem in keypoint detection. Such a mechanism has significantly boosted their
performance. More specifically, DRC-Net [91] utilized 4D cost volumes to enumerate all
the possible matches and established pixel correspondences in a coarse-to-fine manner. Con-
currently with DRC-Net, Patch2Pix [191] first established patch correspondences and then
regressed pixel correspondences according to matched patches. In a similar coarse-to-fine
manner with Patch2Pixel, LoFTR [149] leveraged Transformer [157] models, together with
an optimal transport matching layer [139], to match mutual-nearest patches on the coarse
level, and then refined the corresponding pixel around the patch center on the finer level.

3.3. Problem Statement

Given a pair of point clouds P ∈ RN×3 with N points p ∈ R3 and Q ∈ RM×3 withM points
q ∈ R3, we aim at extracting a correspondence set C = {(pi,qj)

∣∣pi ∈ P,qj ∈ Q)} and further
estimating the rigid transformation T ∈ SE(3) based on the putative correspondences. Given
the putative correspondence set C, the rigid transformation T ∈ SE(3) consisting of a rotation
R ∈ SO(3) and a translation t ∈ R3 can be solved as:

min
R,t

∑
(pi,qj)∈C

∥R · pi + t− qj∥
2
2, (3.1)

with ∥·∥2 representing the Euclidean norm.
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4Coarse-to-Fine Correspondences
from Globally-Aware Descriptors

For point cloud correspondence estimation, existing works benefit from matching sparse key-
points sampled from dense points but usually struggle to guarantee their repeatability. To
address this issue, we present CoFiNet - Coarse-to-Fine Network which extracts hierarchical
correspondences from coarse to fine without keypoint detection. On a coarse scale and guided
by a weighting scheme, our model first learns to match down-sampled superpoints whose
vicinity points share more overlap, which significantly shrinks the search space of a consecu-
tive stage. On a finer scale, superpoint proposals are consecutively expanded to patches that
consist of groups of points together with associated descriptors. Point correspondences are
then refined from the overlap areas of corresponding patches, by a density-adaptive matching
module capable to deal with varying point density. Extensive evaluation of CoFiNet on both
indoor and outdoor standard benchmarks shows our superiority over existing methods.

4.1. Overview

In CoFiNet, we replace the typical paradigm ofmatching sparse keypoints/superpoints with our
proposed coarse-to-fine matching pipeline. Ourmain contributions include a weighting scheme
for coarse superpoint matching and a density-adaptive matching module for correspondence
refinement, which enable CoFiNet to extract coarse-to-fine correspondences from point clouds.
More specifically, on a coarse scale, the weighting scheme proportional to local overlap ratios
guides the model to propose correspondences of superpoints whose vicinity areas share more
overlap, which effectively squeezes the search space of the consecutive refinement. On a finer
scale, the density-adaptive matching module generates finer-grained correspondences from
the overlap vicinities of coarse matchings by solving a differentiable optimal transport problem
[139] with awareness to varying point density, which shows more robustness on irregular
points. Our main contributions are summarized as follows:

• A detection-free learning framework that treats point cloud registration as a coarse-to-
fine correspondence problem, where point correspondences are consecutively refined
from coarse proposals that are extracted from unordered and irregular point clouds;

• A weighting scheme that, on a coarse scale, guides our model to learn to match uniformly
down-sampled superpoints whose vicinity areas share more overlap, which significantly
shrinks the search space for the refinement;

33



• A differentiable density-adaptive matching module that refines coarse correspondences
to point level based on solving an optimal transport problem with awareness to point
density, which is more robust to the varying point density.

To the best of our knowledge, CoFiNet is the first deep learning-based work that incorporates
a coarse-to-fine mechanism in correspondence search for point cloud registration. Extensive
experiments are conducted on both indoor and outdoor benchmarks to show our superiority.
Notably, CoFiNet surpasses the state-of-the-art with much fewer parameters. Compared to
[71], we only use around two-third and one-fourth of parameters on indoor and outdoor
benchmarks, respectively.

4.2. Method

We propose CoFiNet that takes a pair of point clouds as input and outputs point correspondences
C, which can be leveraged to solve the rigid transformation either by directly adopting singular
value decomposition (SVD) [3] or by combining SVD with RANSAC [45]. An overview of
CoFiNet can be found in Fig. 4.1.

4.2.1. Coarse-Scale Matching

Point encoding. On the coarse level, our target is to match uniformly down-sampled super-
points whose vicinity areas share more overlap. To achieve this goal, we first adopt shared KP-
Conv [154] encoders to down-sample dense points to uniformly distributed sparse superpoints
P′ ∈ RN ′×3 andQ′ ∈ RM ′×3, while jointly learning their associated featuresX′ ∈ RN ′×D′ and
Y′ ∈ RM ′×D′ . Demonstration of down-sampled superpoints can be found in 1) of Fig. 4.1.

Attentional global context aggregation. To learn globally-aware descriptors that are more
distinctive, we leverage the attention mechanism [157] to further enhance local descriptors
with global contexts. As illustrated in Fig. 4.1, the Correspondence Proposal Block (CPB) takes
as input the down-sampled superpoints and associated features. In CPB (a), following [71,
139], the attention mechanism [157] is leveraged to incorporate more global contexts to the
learned local features. Following [71], we adopt a sequence of self-, cross- and self-attention
modules, which interactively aggregates global contexts across superpoints from the same
and the other frame in a pair of point clouds. Below we briefly introduce the cross-attention
module as an example. Given (X′, Y′), akin to database retrieval, the former is linearly
projected by a learnable matrix WQ ∈ RD′×D′ to query Q as Q = X′WQ, while the latter
is similarly projected to key K and value V by learnable matricesWK andWV , respectively.
The attention matrixA is represented asA = QKT /

√
D′, whose rows are then normalized by

softmax. The messageM flows fromY′ toX′ is formulated asM = A·V, which represents the
linear combination of values weighted by the attention matrix. In the cross-attention module,
contexts are aggregated bidirectionally, fromX′ toY′ and fromY′ toX′. For global awareness
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Fig. 4.1. Left: Overview of CoFiNet. From top to bottom: 1) Dense points are down-sampled to uniformly
distributed superpoints, while associated features are jointly learned. 2) Correspondence Proposal Block
(Top Right): Features are strengthened and used to calculate the similarity matrix. Coarse superpoint
correspondences are then proposed from the confidence matrix. 3) Strengthened features are decoded
to dense descriptors associated with each input point. 4) Correspondence Refinement Block (Bottom
Right): Coarse superpoint proposals are first expanded to patches via grouping. Patch correspondences
are then refined to point level by our proposed density-adaptive matching module, whose details can be
found in Fig. 4.2.

and computational efficiency, we replace the graph-based module [165] leveraged in [71] with
the self-attention module used in [139], which has the same architecture as the cross-attention
module but takes the features from the same point cloud, i.e., (X′,X′) or (Y′,Y′), as input.

Correspondence proposal. As shown in CPB (b) of Fig. 4.1, we leverage the enhanced fea-
tures X̃ and Ỹ to calculate the similarity matrix. Down-sampled superpoints whose vicinity
areas share enough overlap are matched. However, there can be two cases where a superpoint
fails to match: 1) The major portion of its vicinity areas is occluded in the other frame; 2)
While most of its vicinity areas are visible in the other frame, there does not exist a superpoint
whose vicinity areas share sufficient overlap with its. Thus, for the similarity matrix, we ex-
pand it with a slack row and column withM ′ and N ′ slack entries, respectively [18], so that
superpoints fail to match other superpoints could match their corresponding slack entries, i.e.,
having maximum scores there. Similar to [139], we compute the similarity matrix using an
inner product, which can be presented as:

S′ =


X̃′Ỹ′ T z

zT z

 , S′ ∈ R(N ′+1)×(M ′+1), (4.1)
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Fig. 4.2. Illustration of our proposed density-adaptive matching module. The input is a pair of patches trun-
cated by k. a) We use the context aggregation part from the Correspondence Proposal Block to condition
on both patches and to strengthen features. b.1) The similarity matrix is computed. Slack entries are
initialized with 0 and muted entries corresponding to repeatedly sampled points are set to −∞ . b.2)
R iterations of the Sinkhorn Algorithm are performed. We drop the slack row and column for row and
column normalization, respectively. b.3) We obtain the confidence matrix, whose first K rows and K
columns are row- and column-normalized, respectively. For correspondences, we pick the maximum
confidence score in every row and column to guarantee a higher precision.

where all slack entries are set to the same learnable parameter z. On S′ we run the Sinkhorn
Algorithm [28, 119, 145], seeking an optimal solution for the optimal transport problem.
After that, each entry S′i,j in the obtained matrix represents the matching confidence between
the ith and jth superpoints from P′ and Q′, respectively. To guarantee a higher recall, we
adopt a threshold τc for likely correspondences whose confidence scores are above τc. We
define the obtained coarse superpoint correspondence set as C′ = {(p′i,q′j)

∣∣p′i ∈ P′,q′j ∈ Q′}.
Furthermore, we set a threshold τm to guarantee that |C′| ≥ τm, with | · | denoting the set
cardinality. When |C′| < τm, we gradually decrease τc to extract more coarse superpoint
correspondences until it satisfies |C′| ≥ τm.

4.2.2. Point-Level Refinement

Superpoint decoding. On the finer scale, we aim at refining coarse correspondences from
the preceding stage to point level. Those refined correspondences can then be used for point
cloud registration. We first stack several KPConv [154] layers to recover the raw points, P
and Q, while jointly learning associated dense descriptors, X ∈ RN×D and Y ∈ RM×D. We
thereby assign to each point p an associated feature p ↔ x ∈ RD, as illustrated in 3) of
Fig. 4.1. Then, as demonstrated in 4) of Fig. 4.1, obtained dense descriptors, together with
raw points and coarse correspondences are fed into the Correspondence Refinement Block
(CRB), where coarse proposals are expanded to patches that are then refined to finer-grained
point correspondences.

Point-to-superpoint grouping. For refinement, we need to expand superpoints in coarse cor-
respondences to patches consisting of groups of points and associated descriptors. Accordingly,
we use a point-to-superpoint grouping strategy [79, 87, 88] to assign points to their nearest
superpoints in geometry space. If a point has multiple nearest superpoints, a random one will
be picked. We demonstrate this procedure in CRB (a) of Fig. 4.1. The advantages of point-to-
superpoint over k-nearest neighbor search or radius-based ball query are two-fold: 1) Every
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point will be assigned to exactly one superpoint, while some points could be left out in other
strategies; 2) It can automatically adapt to various scales [88]. After grouping, superpoints
with their associated points and descriptors form patches, upon which we can extract point
correspondences. For a superpoint p′i ∈ P′, its associated point set GP

i and feature set GX
i

can be denoted as:


GP

i = {p ∈ P
∣∣∥p− p′i∥2 ≤ ∥p− p′j∥2,∀j ̸= i},

GX
i = {x ∈ X

∣∣x↔ p with p ∈ GP
i },

(4.2)

where ∥·∥2 represents the Euclidean norm. Similarly, for a superpoint q′j ∈ Q′, its associ-
ated point set GQ

j and feature set GY
j are also obtained by the point-to-superpoint grouping

strategy. By adopting the grouping strategy, we expand the coarse superpoint correspondence
set C′ = {(p′i,q′j)} to its corresponding patch correspondence set, both in geometry space
C′G = {(GP

i ,G
Q
j )} and feature space C′F = {(GX

i ,GY
j )}.

Density-adaptive matching. Extracting point correspondences from a pair of overlapping
patches is in some way analogous to matching two smaller scale point clouds from a local
perspective. Thus, directly leveraging CPB in Fig. 4.1 with input (GP

i ,GX
i ) and (GQ

j ,GY
j )

could theoretically tackle the problem. However, simply utilizing CPB to extract point corre-
spondences would lead to a bias towards slack rows and columns, i.e., the model learns to
predict more points as occluded. Reasons for this are two-fold: 1) For computational efficiency,
similar to radius-based ball query, in a point-to-superpoint grouping, we need to truncate the
number of points to a unified numberK for every patch. If a patch contains less thanK points,
like in [122], a fixed point or randomly sampled points will be repeated as a supplement; 2)
On a coarse level, our model learns to propose corresponding superpoints with overlapping
vicinity areas. However, after expansion, proposed patches can be supplemented by some
occluded points, which introduces biases in the training of refinement. To address the issue,
we propose a density-adaptive matching module that refines coarse correspondences to point
level by solving an optimal transport problem with awareness to point density. We denote
the truncated patches as (G̃P

i ∈ RK×3, G̃X
i ∈ RK×D) and (G̃Q

j ∈ RK×3, G̃Y
j ∈ RK×D) and

demonstrate our proposed density-adaptive matching module in Fig. 4.2. Notably, both during
and after normalization, the exponent projection of any muted entries always equals to 0,
which eliminates the side effects caused by the repeated sampling of points. The final point
correspondence set C is represented as the union of all the obtained correspondence sets Cl

with 1 ≤ l ≤ |C′|. C can be directly leveraged by RANSAC[45] for registration.

4.2.3. Loss Functions

Our total loss L = Lc + λLf is calculated as the weighted sum of the coarse-scale Lc and the
fine-scale Lf , where λ is used to balance the terms. We detail the individual parts hereafter.
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Coarse scale. On the coarse scale, we leverage aweighting scheme proportional to the overlap
ratios over patches as coarse supervision. Given a pair of down-sampled superpoints p′i and q′j ,
with their expanded patch representation in geometry space, GP

i and Gq
j , we can compute

the ratio of points in GP
i that are visible in point cloud Q as:

ri = R(GP
i

∣∣Q) = |{p ∈ GP
i |∃q ∈ Q s.t. ∥T∗(p)− q∥2 < τp}|

|GP
i |

, (4.3)

where T∗ is the ground-truth transformation and τp is the distance threshold. Similarly, we
can calculate the ratio of points in GP

i that have correspondences in GQ
j as:

ri,j = R(GP
i

∣∣GQ
j ) =

|{p ∈ GP
i |∃q ∈ GQ

j s.t. ∥T∗(p)− q∥2 < τp}|
|GP

i |
. (4.4)

Based on Eq. 4.3 and Eq. 4.4, we define the weight matrixW′ ∈ R(N ′+1)×(M ′+1) as:

W′
i,j =



min(ri,j , rj,i), i ≤ N ′ ∧ j ≤M ′,

1− ri, i ≤ N ′ ∧ j = M ′ + 1,

1− rj , i = N ′ + 1 ∧ j ≤M ′,

0, otherwise.

(4.5)

Finally, we define the coarse scale loss as:

Lc =
−

∑
i,j W′

i,j log(S′i,j)∑
i,j W′

i,j

. (4.6)

Finer scale. On the finer point level, for the lth truncated patch correspondence (G̃P
i , G̃

Q
j )

generated from (GP
i ,G

Q
j ) ∈ C′G, we define the binary matrix Bl ∈ R(K+1)×(K+1) as:

Bl
u,v =

 1, ∥T∗(pu)− qv∥2 < τp,

0, otherwise,
∀u,∀v ∈ [1,K] , (4.7)

with pu ∈ G̃P
i and qv ∈ G̃Q

j , and

Bl
u,K+1 = max(0, 1−

K∑
v=1

Bl
u,v), ∀u ∈ [1,K] ,

Bl
K+1,v = max(0, 1−

K∑
u=1

Bl
u,v), ∀v ∈ [1,K] .

(4.8)
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Fig. 4.3. The detailed architecture of our proposed CoFiNet. In self- and cross-attention modules, we use four
heads for the multi-head attention part. The Patch Grouping layer indicates the Grouping module in the
Correspondence Refinement Block (CRB).

Additionally, we further set the rows and columns ofBl which correspond to repeatedly sampled
points to 0 to eliminate their side effects during training. Bl

K+1,K+1 is also set to 0. Therefore,
by defining the confidence matrix in b.3 of Fig. 4.2 as Sl, the loss function on the finer scale
reads as:

Lf =
−

∑
l,u,v Bl

u,v log(Sl
u,v)∑

l,u,v Bl
u,v

, (4.9)

where we define 0 · log(0) = 0.

4.3. Results

We evaluate our model on three challenging public benchmarks, including both indoor and out-
door scenarios. Following [71], for indoor scenes, we evaluate ourmodel on both 3DMatch [184],
where point cloud pairs share > 30% overlap, and 3DLoMatch [71], where point cloud pairs
have 10% ~30% overlap. In line with existing works [6, 71], we evaluate for outdoor scenes
on odometryKITTI [47]. The details of datasets can be found in Chapter. 2.3.
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Fig. 4.4. Qualitative results on Inlier Ratio. We compare our point correspondences (the last column) with our
coarse correspondences (the third column) and correspondences from Predator (the second column) on
a hard case from 3DLoMatch. The first column provides the ground truth alignment, which shows that
overlap is very limited. The significantly larger Inlier Ratio can be observed from the incorrect (red) and
correct (green) correspondence connections.

4.3.1. Network Architectures

CoFiNet mainly leverages an encoder-decoder architecture based on KPConv [154] operations,
where we also add two attention-based networks [157] for context aggregation. Details of our
network architecture are demonstrated in Fig. 4.3. Compared to [71], although we add addi-
tional local attention layers, our coarse-to-fine design enables us to use a lightweight encoder,
which leads to the reduction of around 2M and over 20M parameters on 3DMatch/3DLoMatch
and KITTI, respectively. Since we use the voxel size and convolution radius same to Preda-
tor [71] for our KPConv backbone, each time of point down-sampling in CoFiNet results in
superpoints identical to those in [71].

4.3.2. Implementation Details

CoFiNet is implemented by PyTorch [117] and can be trained end-to-end on a single RTX
2080Ti GPU. We train 20 epochs on 3DMatch/3DLoMatch and KITTI, with λ = 1, both using
Adam optimizer [78] with an initial learning rate of 3e-4, which is exponentially decayed
by 0.05 after each epoch. We adopt similar encoder and decoder architectures as [71], but
with significantly fewer parameters. We use a batch size of 1 in all experiments. For training
the attention-based network on a finer scale, we sample 128 coarse correspondences, with
truncated patch size K = 64 on 3DMatch (3DLoMatch). On KITTI, the numbers are 128
and 32, respectively. Moreover, due to the severely varying point density on KITTI, we only
sample superpoint correspondences with overlap ratios > 20% for training. At test time, all
the extracted coarse correspondences are fed into the finer stage for refinement, with the
same K as in training. We use our proposed point correspondences and RANSAC [45] for
registration.
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Fig. 4.5. FeatureMatching Recall in relation to: 1) Inlier Ratio Threshold (τ2) and 2) Inlier Distance Threshold
(τ1) on 3DMatch.

4.3.3. Comparisons on 3DMatch and 3DLoMatch

We compare our proposed CoFiNet to other state-of-the-art approaches including 3DSN [53],
FCGF [26], D3Feat [6], and Predator [71] in Tab. 4.1 1 and Fig. 4.5. Comparisons to Spin-
Images [74], SHOT [155], FPFH [133] and 3DMatch [184] are also included in Fig. 4.5.
Qualitative results are demonstrated in Fig. 4.6.

Metrics. We adopt three typically-used metrics, namely Registration Recall (RR), Feature
Matching Recall (FMR) and Inlier Ratio (IR), to show the superiority of CoFiNet over existing
approaches. Specifically, 1) RR is the fraction of point cloud pairs whose error of transformation
estimated by RANSAC is smaller than a certain threshold, e.g., RMSE < 0.2m, compared to
the ground truth. 2) FMR indicates the percentage of point cloud pairs whose Inlier Ratio is
larger than a certain threshold, e.g., τ2 = 5%. 3) IR is the fraction of correspondences whose
residual error in geometry space is less than a threshold, e.g., τ1 = 10cm, under the ground
truth transformation. Please refer to Chapter. 2.3 for more detailed definition.

Correspondence sampling. We follow [6, 71] and report performance with different num-
bers of samples. However, as CoFiNet avoids keypoint detection and directly outputs point
correspondences, we cannot strictly follow [6, 71] to sample different numbers of interest
points. For a fair comparison, we instead sample correspondences in our experiments but keep
the same number as them. Correspondences are sampled with probability proportional to a
global confidence cglobal = cfine · ccoarse. For a certain point correspondence refined from the
truncated patch correspondence (G̃P

i , G̃
Q
j ), we define cfine as its fine-level confidence score

and ccoarse as S′i,j .

1As Predator computes Inlier Ratio on a correspondence set different to the one used for registration, we give more
results in 4.3.3 and Tab. 4.3 for a fair comparison.
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3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250 # Params ↓

Registration Recall(%) ↑

3DSN[53] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0 10.2M
FCGF[26] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8 8.76M
D3Feat[6] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1 27.3M
Predator[71] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1 7.43M
CoFiNet(ours) 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0 5.48M

Feature Matching Recall(%) ↑

3DSN[53] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2 10.2M
FCGF[26] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3 8.76M
D3Feat[6] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5 27.3M
Predator[71] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3 7.43M
CoFiNet(ours) 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6 5.48M

Inlier Ratio(%) ↑

3DSN[53] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8 10.2M
FCGF[26] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6 8.76M
D3Feat[6] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0 27.3M
Predator[71] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8 7.43M
CoFiNet(ours) 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9 5.48M

Tab. 4.1. Results1 on both 3DMatch and 3DLoMatch datasets under different numbers of samples.We also
show the number of utilized parameters of all the approaches in the last column. Best performance is
highlighted in bold while the second best is marked with an underline.

Inlier Ratio.1 As the main contribution of CoFiNet is that we adopt the coarse-to-fine mecha-
nism to avoid keypoint detection, while existing methods struggle to sample repeatable key-
points for matching, we first check the IR of CoFiNet, which is directly related to the quality of
extracted correspondences. We show quantitative results in Tab. 4.1 and qualitative results in
Fig. 4.4. As shown in Tab. 4.1, in terms of IR, CoFiNet outperforms all the previous methods
except Predator [71] on 3DLoMatch and only performs worse than Predator and FCGF[26]
on 3DMatch. Notably, when the sample number is 250, we perform the best on both datasets,
since detection-based methods face a more severe repeatability problem in this case. By con-
trast, as our method leverages a coarse-to-fine mechanism and thus avoids keypoint detection,
it is more robust to the aforementioned case. Furthermore, the fact that sampling fewer cor-
respondences leads to a higher IR indicates that our learned scores are well-calibrated, i.e.,
higher confidence scores indicate more reliable correspondences.

Reliability of correspondences. Although IR is an important metric of correspondence qual-
ity, it is naturally affected by the distance threshold τ1. To better illustrate the reliability of
correspondences extracted by CoFiNet and show our superiority over existing methods, we
conduct another experiment and show related results in Tab. 4.2. In this experiment, we di-
rectly solve the relative poses using singular value decomposition (SVD) based on extracted
correspondences, without the assistance of the robust estimator RANSAC [45]. As we can see,
for FCGF [26] and D3Feat [6], though they can work on 3DMatch, they fail on 3DLoMatch,
where point clouds share less overlap, and thus reliable correspondences are harder to obtain.
Compared with Predator [71], on both 3DMatch and 3DLoMatch, our proposed CoFiNet per-
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3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Registration Recall w/o RANSAC (%) ↑

FCGF[26] 28.5 27.9 25.7 23.2 21.2 2.3 1.7 1.3 1.1 1.1
D3Feat[6] 24.3 24.0 23.0 22.4 19.1 1.1 1.4 1.1 1.0 1.0
Predator[71] 48.7 51.8 54.3 53.5 53.0 6.1 8.1 10.1 11.4 11.3
CoFiNet(ours) 63.2 63.4 63.8 64.9 64.6 19.0 20.4 21.0 20.9 21.6

Tab. 4.2. Registration results without RANSAC [45]. Relative poses are directly solved based on extracted
correspondences by singular value decomposition (SVD). Best performance is highlighted in bold while
the second best is marked with an underline.

3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Registration Recall(%) ↑

Predator[71](mutual) 86.6 86.4 85.3 85.6 84.3 61.8 61.8 61.6 58.4 56.2
Predator[71](non-mutual) 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
CoFiNet(ours) 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0

Inlier Ratio(%) ↑

Predator[71](mutual) 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
Predator[71](non-mutual) 46.6 48.3 47.2 44.1 38.8 19.3 21.6 22.1 21.3 19.7
CoFiNet(ours) 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9

Tab. 4.3. Inlier Ratio and Registration Recall on the same correspondence set. For CoFiNet, coarse corre-
spondences are extracted based on thresholds and non-mutual selection is used on the finer scale. Best
performance is highlighted in bold while the second best is marked with an underline.

forms much better, which indicates that we propose more reliable correspondences on both
datasets.

Feature Matching Recall and Registration Recall. On FMR, CoFiNet significantly outperforms
all the other methods on both 3DMatch and 3DLoMatch. Especially on 3DLoMatch, which is
more challenging due to the low-overlap scenarios, our proposed method surpasses others with
a large margin of more than 4 percent points (pp). It indicates that CoFiNet is more robust to
different scenes, i.e., we find at least 5% inlier correspondences formore test cases. Additionally,
we also follow [6, 71] to show the FMR in relation to τ2 and τ1 on 3DMatch in Fig. 4.5, which
further shows our superiority over other methods. When referring to the most important
metric RR which better reflects the final performance on point cloud registration, though we
perform slightly worse than Predator [71], we significantly outperform others on 3DMatch.
When evaluated on 3DLoMatch, our proposed approach significantly surpasses all the others,
which shows the advantages of our method in scenarios with less overlap. Moreover, we also
compare the number of parameters used in different methods in the last column of Tab.4.1,
which shows that CoFiNet uses the least parameters while achieving the best performance.
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3DMatch 3DLoMatch
τc τm IR (%)↑ RR (%) ↑ # Coarse IR (%)↑ RR (%)↑ # Coarse

0.05 - 49.4 87.4 575 27.3 62.8 260
0.10 - 51.1 88.1 335 29.8 62.3 128
0.15 - 55.5 85.5 222 32.7 58.9 74
0.20 200 51.2 88.9 230 25.9 66.2 203

Tab. 4.4. Ablation study of the number of coarse correspondences, tested with # Samples=2500. # Coarse
indicates the average number of sampled coarse correspondences. Best performance is highlighted in
bold.

3DMatch 3DLoMatch
RR (%)↑ FMR (%)↑ IR (%) ↑ RR (%)↑ FMR (%)↑ IR (%)↑

Full CoFiNet 88.9 98.3 51.2 66.2 83.5 25.9

w/o refinement 79.6 96.5 44.3 41.2 81.4 21.3
w/o weighting 87.4 97.3 50.0 61.5 80.5 23.5
w/o density-adaptive 88.3 97.9 49.3 65.1 82.7 24.7

Tab. 4.5. Ablation study of individual modules, tested with # Samples=2500. Best performance is highlighted
in bold.

Inlier Ratio and Registration Recall on the same correspondence set. In Tab. 4.1, Preda-
tor [71] reports IR on a correspondence set that is different to the one used for registration,
while CoFiNet uses the same. Predator uses correspondences extracted by mutual selection
to report IR, but computes RR on a correspondence set obtained by non-mutual selection. As
we target at registration, we consider it meaningless to evaluate on a correspondence set that
is not used for pose estimation. Thus, to make a fair comparison, we compare CoFiNet with
both Predator(mutual) and Predator(non-mutual) in Tab. 4.3. In mutual selection, two points
p and q are considered as a correspondence when p match to q and q match to p, while in
non-mutual selection, the correspondence is extracted when p match to q or q match to p. In
Tab. 4.3, compared to non-mutual,mutual selection rejects some outliers, and thus increases IR
of Predator. However, as it meanwhile filters out some inlier correspondences, when combined
with RANSAC [45], RR usually drops. Since our task is registration, Predator(non-mutual)
with higher RR is preferred over itself with mutual selection. In this case, CoFiNet achieves
higher IR than Predator on both datasets.

Influence of the number of coarse correspondences. As illustrated in Tab. 4.4, on both 3DMatch
and 3DLoMatch, when sampled only with τc, a higher threshold results in fewer coarse cor-
respondences and meanwhile a higher IR, which indicates that the learned confidence scores
are well-calibrated on the coarse level. However, RR drops at the same time, as the number of
correspondences for refinement is decreased, and thus fewer point correspondences are lever-
aged in RANSAC for pose estimation. The last row is the strategy used in our paper. Except
for τc, we also use τm to guarantee that CoFiNet samples at least τm coarse correspondences
on each point cloud pair, as described before. This strategy slightly sacrifices IR but brings
significant improvements on RR.
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Method RTE(cm)↓ RRE(◦)↓ RR(%)↑ Params↓

3DFeat-Net [176] 25.9 0.57 96.0 0.32M

FCGF [26] 9.5 0.30 96.6 8.76M
D3Feat [6] 7.2 0.30 99.8 27.3M
Predator [71] 6.8 0.27 99.8 22.8M
CoFiNet(ours) 8.5 0.41 99.8 5.48M

Tab. 4.6. Quantitative comparisons on KITTI. Best performance is highlighted in bold.

Importance of individual modules. As shown in Tab. 4.5, in the first experiment, we directly
use the coarse correspondence set C′ for point cloud registration. Unsurprisingly, it performs
worse on all the metrics, indicating that CoFiNet benefits from refinement. Then, we ablate
the weighting scheme which is proportional to overlap ratios and guides the coarse matching
of down-sampled superpoints. We replace it with a binary mask similar to the one used on
the finer level. Results show that it leads to a worse performance, which proves that coarse
matching of superpoints benefits from our designed weighting scheme. Finally, we do the
last ablation study on the density-adaptive matching module. Results indicate that on both
3DMatch and 3DLoMatch, with the density-adaptive matching module, CoFiNet better adapts
to the irregular nature of point clouds.

4.3.4. KITTI

Metrics. We follow [71] and use 3 metrics, namely, the Relative Rotation Error (RRE), which
is the geodesic distance between estimated and ground truth rotation matrices, the Relative
Translation Error (RTE), which is the Euclidean distance between the estimated and ground
truth translation, and the Registration Recall (RR) mentioned before. Please refer to Chap-
ter. 2.3 for detailed definition of the used metrics.

Comparisons to existing approaches. On KITTI, we compare CoFiNet to 3DFeat-Net [176],
FCGF [26], D3Feat [6], and Predator [71]. Quantitative results can be found in Tab. 4.6, while
qualitative results are shown in Fig. 4.6. On RRE and RTE, we stay in the middle, but in terms
of RR, together with [6, 71], we perform the best. Notably, we achieve such a performance by
using only 5.48M parameters and training our proposed model for 20 epochs compared to the
best performing model [71], which uses over 20M parameters and is trained for 150 epochs.
This experiment indicates that our model can deal with outdoor scenarios.

4.3.5. Qualitative Results of Registration

Visualization of example registration from different datasets can be found in Fig. 4.6. Relative
poses are estimated by RANSAC [45] that takes correspondences extracted by CoFiNet as
input.
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Fig. 4.6. Qualitative registration results.We show two examples for each dataset. Column (a) and (b) demon-
strate the input point cloud pairs. Column (c) shows the estimated registration while column (d) provides
the ground-truth alignment.

46 Chapter 4 Coarse-to-Fine Correspondences from Globally-Aware Descriptors



CPU GPU Time(s)↓ Improvement(%)↑

Predator [71] i7-9700KF @ 3.60GHZ × 8 GeForce RTX 3070 0.72 -
CoFiNet(ours) i7-9700KF @ 3.60GHZ × 8 GeForce RTX 3070 0.25 65.3

Tab. 4.7. Model runtime comparisons for a single inference. Time is averaged over the whole 3DMatch [184]
testing set, which consists of 1,623 point cloud pairs. As our target task is registration and neural networks
only provide intermediate results which are later consumed by RANSAC [45] for pose estimation, we
also include the time of writing related results to hard disks.

# Samples 5000 2500 1000 500 250
Predator [71] 2.86s 1.25s 0.45s 0.22s 0.11s
CoFiNet(ours) 0.18s 0.11s 0.07s 0.05s 0.05s

Tab. 4.8. RANSAC [45] runtime comparisons for a single inference. Time is averaged over the whole
3DMatch [184] testing set, which consists of 1,623 point cloud pairs. Settings are the same with Tab. 4.7

4.3.6. Runtime Analysis

We further evaluate the inference time of CoFiNet and compare it to that of Predator [71] which
achieves the highest inference rate among all the state-of-the-art methods. Related results in
Tab. 4.7 indicate the superiority of CoFiNet over Predator in terms of computational efficiency.
Notably, CoFiNet directly proposes point correspondences, while Predator only outputs dense
descriptors, and correspondences are extracted during RANSAC [45]. We further compare
CoFiNet to Predator in regard to RANSAC runtime. Related results are illustrated in Tab. 4.8.
Benefiting from our design, we reduce the RANSAC runtime significantly, especially when
more correspondences are leveraged for pose estimation.

4.3.7. Limitations

The limitations of our proposed CoFiNet are three-fold: 1) There is no explicit design for
rejecting outliers from a coarse scale. False coarse correspondences can be expanded to false
point correspondences which could result in lower IR on a finer level. As shown in column (c)
and (d) of the first row in Fig. 4.7, after refinement, the IR drops; 2) CoFiNet is challenged
by those non-distinctive regions. As illustrated in column (d) of the first row in Fig. 4.7,
mismatched points are located on the surface of the table, which is a flat area with little
variability; 3) Point correspondences expanded from coarse correspondences are not sparse
enough, which might introduce side effects to RANSAC[45] based point cloud registration. As
demonstrated in column (d) of the second row in Fig. 4.7, in comparison to Predator [71],
our method produces a much better Inlier Ratio but extracts less sparser correspondences.
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True: 5
False: 245
IR: 2.0%

True: 14
False: 117
IR: 10.7%

True: 24
False: 226
IR: 9.6%

True: 66
False: 184
IR: 26.4%

True: 62
False: 164
IR: 27.4%

True: 109
False: 141
IR: 43.6%

(a) Alignment (b) PREDATOR (c) Ours - Coarse (d) Ours - Fine

Fig. 4.7. Visualization of correspondences. Examples are from 3DLoMatch [71] and we compare our method to
Predator [71]. In column (b) and (d), we only visualize 250 correspondences for better visibility butmark
all the incorrectly matched points as red in both source and target point clouds. Correct correspondences
are drawn in green.

4.4. Conclusion

In this chapter, we presented a deep neural network that leverages a coarse-to-fine strategy to
extract correspondences from unordered and irregularly sampled point clouds for registration.
Our proposed model is capable of directly consuming unordered point sets and proposing
reliable correspondences without the assistance of keypoints. To tackle the irregularity of
point clouds, on a coarse scale, we proposed a weighting scheme proportional to local overlap
ratios. It guides the model to match superpoints that have overlapped vicinity areas, which
significantly shrinks the search space of the following refinement. On a finer level, we adopted
a density-adaptive matching module, which eliminates the side effects from repeated sampling
and enables our model to deal with density varying points. Extensive experiments on both
indoor and outdoor benchmarks validated the effectiveness of our proposed model. We stay
on par with the state-of-the-art approaches on 3DMatch and KITTI, while surpassing them on
3DLoMatch using a model with significantly fewer parameters.
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Part III

Making Globally-Aware Descriptors
Invariant to Rotations





5Introduction

Successful point cloud registration relies on accurate correspondences established upon pow-
erful descriptors. In last chapter, we introduced CoFiNet that extracts coarse-to-fine correspon-
dences from globally-aware geometric descriptors for point cloud matching and registration
tasks. Although the descriptors in CoFiNet have been made aware to global contexts, they
still remain sensitive to rotations, i.e., the performance of CoFiNet drops significantly when
facing with enlarged rotations at testing time. To this end, we shift our attention to enhancing
the globally-aware geometric descriptors with the inherent rotation invariance for generating
more reliable correspondences from point clouds.

In this chapter, we introduce RIGA to learn descriptors that are rotation-invariant by design
and aware to global contexts. From the Point Pair Features (PPFs) of sparse local regions,
rotation-invariant local geometry is encoded into geometric descriptors. Global awareness of
3D structures and geometric contexts is subsequently incorporated, both in a rotation-invariant
fashion. More specifically, 3D structures of the whole frame are first represented by our global
PPF signatures, from which structural descriptors are learned to help geometric descriptors
sense the 3D world beyond local regions. Geometric contexts from the whole scene are then
globally aggregated into descriptors. Finally, the description of sparse regions is interpolated
to dense point descriptors, from which correspondences are extracted for registration. To
validate our approach, we conduct extensive experiments on both object- and scene-level data,
and extend our scope to the matching and registration tasks with enlarged rotations. The
experimental results confirm the superiority of learning rotation-invariant and globally-aware
descriptors with our RIGA design for the point cloud matching and registration tasks.

5.1. Motivation

Modern depth sensors are able to retrieve distance measures of the environment and represent
it as point clouds. Naturally, registering point clouds under different sensor poses, a.k.a. point
cloud registration, plays a crucial role in a wide range of real applications such as scene
reconstruction, autonomous driving, and simultaneous localization and mapping (SLAM).
Given a pair of partially-overlapping point clouds, point cloud registration aims to recover the
relative transformation between them. As the relative transformation can be solved in a closed
form or estimated by a robust estimator [45] based on putative correspondences, establishing
reliable correspondences becomes the key to successful registration.

Correspondences are established by matching points according to their associated descriptors.
As dense matching is computationally complex, existing works [1, 6, 26, 33, 34, 53, 71, 93,
136, 138] widely adopted a first-sampling-then-matching paradigm to match sparse super-

51



points that are either uniformly sampled or saliently detected from dense points. Although the
computational complexity is significantly reduced, it introduces a new problem of repeatability,
i.e., the corresponding points of some superpoints are excluded after sparse sampling s.t. they
can never be correctly matched. Due to this design, a considerable part of true correspon-
dences is automatically dropped before matching, which significantly constrains the reliability
of putative correspondences. To tackle the problem, we have proposed CoFiNet [181] which
extracts hierarchical correspondences from coarse to fine. On a coarse scale, it learns to match
uniformly-sampled superpoints whose vicinities share more overlap. The coarse matching
significantly shrinks the space of correspondence search of the consecutive stage, where finer
correspondences are extracted from the overlapping vicinities. It implicitly considers all the
possible correspondences in the matching procedure and therefore eliminates the repeatability
issue. However, the descriptors upon which correspondences are extracted by CoFiNet lack
robustness against rotations by design. As a consequence, although reliable correspondences
are extracted from globally-aware descriptors via the proposed coarse-to-fine mechanism, the
performance of CoFiNet still significantly declines when rotations are enlarged.

This phenomenon reminds us of the importance of point descriptors and shifts our attention
to introducing more powerful descriptors for better registration performance. Recent trends
widely adopted neural backbones [121, 122, 154] to obtain more powerful descriptors [1,
6, 26, 33, 34, 53, 66, 71, 93, 136, 152, 160, 181] from raw points, which gains significant
improvement over handcrafted features [38, 133, 134]. The most recent deep learning-based
methods [1, 71, 93, 160, 181] can be split into two categories according to the way they
enhance descriptors. The first one [1, 160] aims at promising the rotation invariance of
descriptors learned from local geometry by design. For a point pi ∈ R3 from point cloud P,
they propose to guarantee that the local descriptor learned from the support area ΩP

i around
pi by a model G is invariant under arbitrary rotations R ∈ SO(3), i.e., G(R(pi)|R(ΩP

i )) =
G(pi|ΩP

i ). According to [1, 33], these methods are more robust to larger rotations. The second
one [71, 93, 181] instead focuses on incorporating global awareness into local descriptors to
enhance the distinctiveness. Compared to descriptors that only encode local geometry, i.e.,
G(pi|ΩP

i ), the globally-aware descriptor G(pi|P) of point pi is more distinctive and much
easier to be distinguished from other globally-aware descriptors G(pj |P) of points pj with
i ̸= j. Therefore, globally-aware methods usually perform better on the registration task
than approaches that only encode local geometry alone. However, each category of methods
has its specific drawback – rotation-invariant descriptors are usually less distinctive due to
the blindness to the global contexts, while globally-aware methods can produce inconsistent
descriptions due to the inherent lack of rotation invariance. The current literature lacks an
approach that fulfills both aspects simultaneously, i.e., G(R(pi)|R(P)) = G(pi|P).

5.2. Related Work

Handcrafted Rotation-Invariant Descriptors.Handcrafted rotation-invariant descriptors [38,
56, 133, 134, 155] have been widely explored in 3D by researchers before the popularity of
deep neural networks. To guarantee the invariance under rotations, many handcrafted local
descriptors [56, 155] relied on an estimated local reference frame (LRF), which is typically
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based on the covariance analysis of the local surface, to transform local patches to a defined
canonical representation. The major drawback of LRF is its non-uniqueness, which makes its
rotation invariance fragile and sensitive to noise. As a result, the attention shifted to those
LRF-free approaches [38, 133, 134]. These methods focus on mining the rotation-invariant
components of local surfaces and using them to represent the local geometry. Given a point
of interest and its adjacent points within the vicinity area, PPF [38] described each pairwise
relationship using Euclidean distances and angles among point vectors and normals. In a
similar way, PFH [134] and FPFH [133] encoded the geometry of local surfaces using the
histogram of pairwise geometrical properties. Although these handcrafted descriptors are
rotation-invariant by design, all of them are far from satisfactory to be applied in real scenarios
with complicated geometry and severe noise.

Learning-based rotation-invariant descriptors. Recently, many deep learning-based meth-
ods [1, 33, 53] have made the attempt to learn descriptors in a rotation-invariant fashion.
As a pioneer, PPF-FoldNet [33] encoded PPF patches into embeddings, from which a Fold-
ingNet [174] decoder reconstructed the input. Correspondences were extracted from the
rotation-invariant embeddings for registration. Different from PPF-FoldNet [33] that learns
from handcrafted LRF-free descriptors, 3DSN [53] leveraged LRF, which transforms local
patches around interest points to defined canonical representations, to enhance the robustness
of learned descriptors against rotations. Similarly, SpinNet [1] and Graphite [136, 138] aligned
local patches according to the defined axes before learning descriptors from them. However, all
those methods are limited by their locality, i.e., their descriptors are only learned from the local
region where their invariance is defined. Those descriptors are blind to the global contexts
and are therefore less distinctive. Without relying on rotation-invariant handcrafted features,
YOHO [160] leveraged an icosahedral group to learn a group of rotation-equivariant descrip-
tors for each point. Rotating the input point cloud will permute the descriptors within the
group, and invariance is achieved by max-pooling over the group. However, its equivariance is
fragile in practice, as the finite rotation group cannot span the infinite rotation space. Addition-
ally, expanding a single descriptor to a group damages efficiency. In object-centric registration,
recent methods [38, 114, 177] strengthened the invariance in their learned descriptors by
concatenating rotation-invariant descriptors, e.g., PPF [38], with their rotation-variant input.
However, the registration performance of those methods still drops severely when facing with
large rotations [114]. In the task of point cloud-based object recognition, there were also
works [32, 77, 186] focusing on describing the whole shape as a rotation-invariant descriptor.
Although they could generate a shape descriptor that globally depicts the shape information,
these methods are not globally-aware for learning point/superpoint descriptors. Taking [77]
as an example, it leveraged graph convolutional networks (GCNs) to expand the receptive
fields to larger areas that still remain local. In the task of point cloud registration, the model
needs to decode dense point-level descriptors from superpoint descriptors for matching. As
the superpoint descriptors are not globally-aware, the point descriptors are also blind to global
contexts.

Globally-aware descriptors. PPF [38], as an example, has been made semi-global for different
tasks [13, 14, 38, 63] before the widespread of deep neural networks. With the widespread of
deep neural networks, Deng et al. [33] made the first attempt to incorporate learned global
contexts into their learned descriptors. However, their descriptors are rotation-variant in na-
ture, as the absolute coordinates and PPF features are concatenated as input. Moreover, naively
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leveraging a max-pooling operator for global awareness largely neglects global information
beyond each local patch. Predator [71] leveraged the attention [157] mechanism in a point
cloud registration method to strengthen their descriptors with learned global contexts. Global
information was incorporated from the same and the opposite frame, by interleaving Edge
Conv-based [165] self-attention modules and Transformer-based [157] cross-attention mod-
ules, respectively. Similarly, CoFiNet [181] interleaved Transformer-based [157] self- and
cross-attention modules for learning globally-aware descriptors. Such a paradigm was also
leveraged in the most recent works [93, 123, 179] for incorporating global awareness into
local descriptors. However, these methods ignore the inherent invariance of their learned de-
scriptors. As a result, invariance is learned through data augmentation during training, which
is intricate for large rotations and adds significant capacity requirements to the deep model.

Object-centric point cloud registration. ICP [12] and its variants [131, 142, 173] have
dominated the realm of object-centric point cloud registration for decades. Recently, many deep
learning-based works [2, 46, 114, 163, 164, 177] have emerged for registering partial point
clouds generated from the object-centric datasets [171]. Most of the aforementionedworks [46,
114, 163, 165, 177] solved relative poses via weighted SVD according to densely predicted
soft assignments between two point clouds. Those methods can be end-to-end trained and
globally constrained by the supervision from ground-truth transformation. However, they were
proved to be hard to apply on real scenes, as demonstrated in [71], due to the decreased
quality of estimated correspondences and the increased computational burden from densely
corresponding. PointNetLK [2] instead encoded the whole point cloud as a single feature
and iteratively optimized the relative pose between two frames by minimizing the distance
of corresponding features. Nevertheless, it still struggles on real scenes, due to the severe
noise and limited overlap. Predator [71], which focuses on large-scale scene registration,
also achieved on-par performance on object-centric benchmarks, which further illustrates the
advantages of correspondence-based methods. However, all these methods are not inherently
rotation-invariant. As illustrated in [46], when rotations are enlarged to a full range, the
registration performance of these methods drops sharply, which further demonstrates the
importance of guaranteeing the inherent rotation invariance by the model design.
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6Rotation-Invariant and
Globally-Aware Descriptors

In this chapter, we focus on learning more powerful descriptors that are inherently rotation-
invariant and globally aware. By combining the coarse-to-fine matching mechanism [181], our
descriptors lead to more reliable correspondences and thus better registration performance.
As mentioned above, the current literature lacks an approach that learns geometric descrip-
tors that are jointly rotation-invariant and globally-aware. To bridge the gap, we propose
RIGA, which simultaneously strengthens the robustness against rotations and distinctiveness
of learned descriptors, from which coarse-to-fine correspondences are consecutively extracted
for downstream tasks, e.g., point cloud registration.

6.1. Overview

To the best of our knowledge, RIGA is the first deep learning-based method that learns jointly
rotation-invariant and globally-aware descriptors for point cloud matching and registration.
More specifically, for depicting the local geometry, we adopt a PointNet [121] architecture,
which takes as input the rotation-invariant handcrafted descriptors to encode rotation-invariant
local geometry. To provide a superpoint-specific description of the entire scene in a rotation-
invariant fashion, we design global PPF signatures that describe each superpoint by considering
the spatial relationship of the remaining superpoints w.r.t. it. Subsequently, rotation-invariant
structural descriptors are learned from global PPF signatures and leveraged to incorporate
awareness of global 3D structures into local descriptors. A Transformer [157] architecture
is further added, yielding a Vision Transformer (ViT) [37] architecture to incorporate global
awareness of geometric contexts. Finally, dense point descriptors are obtained by interpolation,
and the coarse-to-fine mechanism proposed in CoFiNet [181] is extended to extract reliable
correspondences from our rotation-invariant and globally-aware descriptors for point cloud
registration. Our contributions are summarized as:

• We propose an end-to-end pipeline that guarantees the rotation invariance of globally-
aware descriptors by design and extracts coarse-to-fine correspondences for point cloud
registration;

• We propose global PPF signatures to provide a superpoint-specific description of the entire
scene in a rotation-invariant fashion and further learn global structural descriptors from
them to incorporate global structural awareness into local descriptors;
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Fig. 6.1. Method overview. Point cloud P and Q are processed in the same way, and we only explain for P
hereafter. (1) Local and global PPF signatures are computed for each superpoint p′

i, which is sparsely
sampled from P. Local geometry and global structures are encoded into descriptors gP′

i and sP′
i by

PointNet [121] Ψg and Ψs, respectively. (2) sP′
i joins gP′

i with global 3D structures via element-wise
addition, yielding a globally-informed descriptor (0)dP′

i . A stack of K attention blocks is leveraged,
where intra- and inter-frame geometric contexts are globally incorporated, resulting in a globally-aware
descriptor d̃P′

i . (3) Descriptor d̃P
u of every point pu ∈ P is obtained via interpolation. Superpoint

correspondence set C′ is retrieved in the Superpoint Matching Module (Fig. 6.3(a)). In the Matching
Refinement Module (Fig. 6.3(b)), point correspondence set C is extracted according to C′ and point
descriptors. All the descriptors are invariant to rotations by design.

• We empirically show the effectiveness of rotation invariance and global awareness on
both object- and scene-level data.

6.2. Method

An overview of the RIGA pipeline can be found in Fig. 6.1. In the followings, we will detail
the specific designs that make RIGA jointly rotation-invariant and globally-aware.

6.2.1. Learning Rotation-Invariant Descriptors from Local
Geometry

The first step of our method is the rotation-invariant encoding of geometry within local areas.
In the followings, we will explain it on the example of P. Encoding is done in exactly the
same way for Q. Firstly, N ′ superpoints P′ = {p′1,p′2, · · · ,p′N ′} are sampled out of N points
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(a) Local PPF Calculation (b) Global PPF Calculation

Fig. 6.2. Illustration of PPF calculation. n and n′ denote normals. (a) shows the local PPF of a point pu ∈ ΩP′
i

with respect to superpoint p′
i. (b) shows the global PPF setup of a superpoint p′

j sampled from P with
respect to superpoint p′

i.

via Farthest Point Sampling [122]. For each superpoint p′i ∈ P′, its support area ΩP′

i can be
defined by a radius r ∈ R, which is demonstrated as:

ΩP′

i = {pu ∈ P
∣∣∥p′i − pu∥2 < r}. (6.1)

Each support area is represented with a set of rotation-invariant PPFs [38]. As shown in
Fig. 6.2(a), for superpointp′i, normaln′i ofp′i andnu of each pointpu ∈ ΩP′

i are estimated [64],
and the local PPF signature of p′i is represented as a set of PPFs by:

Sl(p′i|ΩP′

i ) = {ξ(pu,nu|p′i,n′i)
∣∣pu ∈ ΩP′

i }, (6.2)

where each PPF is defined as:

ξ(pu,nu|p′i,n′i) = (∥d∥2,∠(n′i,d),∠(nu,d),∠(n′i,nu)), (6.3)

where d represents the vector between p′i and pu, and ∠ computes the angle between two
vectors v1 and v2, following the way in [13, 34] as:

∠(v1,v2) = atan2(∥v1 × v2∥2,v1 · v2). (6.4)

Then, we leverage PointNet [121] to project each local PPF signature to aD′-dimensional local
geometric descriptor:

gP′

i = Ψg(Sl(p′i|ΩP′

i )) ∈ RD′
, 1 ≤ i ≤ N ′, (6.5)

where Ψg stands for a PointNet [121] model shared across all the support areas, and D′ is
the dimension of learned local descriptors. As a result, each support area is described by a
rotation-invariant geometric descriptor of length D′.
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6.2.2. Learning Rotation-Invariant Descriptors from Global
3D Structures

The learned geometric descriptor gP′

i , defined in Eq. 6.5, is conditioned only on its support
area ΩP′

i . Consequently, it lacks awareness of the global contexts and is less distinctive for
correspondence search. We consider this the main reason why existing rotation-invariant meth-
ods [1, 34, 53, 160] fail to compete with rotation-variant but globally-aware approaches [71,
93, 181]. To address this issue, we propose to enrich local descriptors with global structural
cues learned from our global PPF signatures that are invariant to rotations by design.

The design of global PPF signatures is inspired by the handcrafted PPF which is widely used for
describing local geometry. For each superpoint p′i with normal n′i (1 ≤ i ≤ N ′), we compute
the structural relationship of every other superpoint p′j ∈ P′ w.r.t. it (see Fig. 6.2(b)) by:

Sg(p′i|P′) = {ξ(p′j ,n′j |p′i,n′i)
∣∣p′j ∈ P′, j ̸= i}, (6.6)

which we define as the global PPF signature of superpoint p′i. Similar to the original PPF,
the obtained global PPF signatures are rotation-invariant by design. However, the global PPF
signatures are unordered as well. Besides, as the global PPF signatures are conditioned on
the whole scene represented by sparse superpoints, they can be sensitive to partial overlap,
i.e., although some superpoints can be occluded in Q, they still contribute to the structural
awareness of p′i. Therefore, we further leverage a second PointNet [121] architecture Ψs to
address both issues simultaneously. The network Ψs projects each global PPF signature to
a D′-dimension structural descriptor, which successfully eliminates the inherent unordered
property of the global PPF signatures and provides more robustness against the partial overlap
in real scenes. We denote the obtained structural descriptors as:

sP′

i = Ψs(Sg(p′i|P′)) ∈ RD′
, 1 ≤ i ≤ N ′. (6.7)

Each global structural descriptor sP′

i will be used to inform its corresponding local geometric
descriptor gP′

i with the global structural information from 3D space.

6.2.3. Rotation-Invariant Global Awareness

6.2.3.1. Incorporating Global Information from 3D Structures

Following the examples of [71, 139, 181], we interleave self- and cross-attention for intra-
and inter-frame global contexts, respectively. However, the standard attention [157] lacks the
awareness of global 3D structures, as it is based purely on the similarity of learned geometry.
To this end, we inform each learned local geometric descriptor gP′

i (1 ≤ i ≤ N ′) and gQ′

j (1 ≤
j ≤M ′) with global structural cues encoded in corresponding global structural descriptor sP′

i
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(a) Node Matching Module (b) Matching Refinement Module

Fig. 6.3. Illustration of coarse-to-fine correspondence extraction. In (a), superpoints from two frames are
matched according to the similarity of the MLP-projected descriptors, and superpoint correspondences
with Top-K highest scores are selected. In (b), according to Eq. 6.15, each superpoint is assigned with a
group of neighbor points, together with their associated MLP-projected descriptors. For each superpoint
correspondence, the similarity between their neighbor points is computed. The resulting similarity
matrix is normalized by Sinkhorn [145] algorithm. A point correspondence set is extracted from each
normalized matrix, and the final point correspondence set is constructed as the union of all the individual
ones.

and sQ′

j , respectively. The obtained globally-informed descriptors are calculated as (0)dP′

i =
gP′

i ⊕ sP′

i and (0)dQ′

j = gQ′

j ⊕ sQ′

j , where ⊕ is the element-wise addition.

6.2.3.2. Global Intra-Frame Aggregation of Geometric Contexts

A stack of K attention blocks operates on globally-informed descriptors to exchange learned
geometric information among superpoints. Each attention block has an intra-frame module
followed by an inter-frame module.

Taking superpoint p′i ∈ P′ as an example, we detail the computation of the intra-frame module
inside the lth (1 ≤ l ≤ K) attention block hereafter. Learnable matrices (l)Wq, (l)Wk, and
(l)Wv ∈ RD′×D′ are introduced to linearly project (l−1)dP′

i to query, key, and value with:

(l)qP′

i = (l)Wq · (l−1)dP′

i ,

(l)kP′

i = (l)Wk · (l−1)dP′

i ,

(l)vP′

i = (l)Wv · (l−1)dP′

i ,

(6.8)

respectively, where (l)qP′

i and (l)kP′

i are used for retrieving similar superpoints, and (l)vP′

i

encodes the contexts for aggregation.

The attention [157] is defined on a superpoint set S ∈ {P′,Q′} by:

(l)aP′←S
i = softmax([(l)a1

i ,
(l)a2

i , · · · , (l)a
|S|
i ])T /

√
D′ ∈ R|S|, (6.9)

where (l)aj
i is calculated as (l)aj

i = ((l)qP′

i )T · (l)kSj (1 ≤ j ≤ |S|), and | · | denotes the set
cardinality. The message (l)mP′←S

i ∈ RD′ , which flows from set S to superpoint p′i ∈ P′, is
calculated as:

(l)mP′←S
i = [(l)vS1 ,(l) vS2 , · · · ,(l) vS|S|] ·(l) aP′←S

i ∈ RD′
. (6.10)
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We globally aggregate the intra-frame learned geometry with:

(l)dP′

i = (l−1)dP′

i +MLP([(l−1)dP′

i ,mP′←S
i

]
), (6.11)

where MLP is a multi-layer perceptron network (MLP). For the global aggregation across P′, it
has S = P′. For superpoint q′j ∈ Q′, (l)dQ′

j is calculated in the same way according to Eq. 6.11,
but with S = Q′.

6.2.3.3. Global Inter-Frame Fusion of Geometric Contexts

For the lth (1 ≤ l ≤ K) attention block, the inter-frame module takes as input the output of the
intra-frame module, i.e., (l)dP′

i and (l)dQ′

j . Taking superpoint p′i ∈ P′ as an example, similar
to Eq. 6.8, (l)dP′

i is linearly projected by learnable matrices (l)Wq, (l)Wk, and (l)Wv ∈ RD′×D′

by:

(l)qP′

i = (l)Wq · (l)dP′

i ,

(l)kP′

i = (l)Wk · (l)dP′

i ,

(l)vP′

i = (l)Wv · (l)dP′

i ,

(6.12)

upon which (l)aP′←S
i and (l)mP′←S

i are computed following Eq. 6.9 and Eq. 6.10, respectively,
with S = Q′. Finally, the geometric contexts from the opposite frame, i.e., the superpoint set
Q′, are fused to superpoint p′i through:

(l)dP′

i = (l)dP′

i +MLP([(l)dP′

i ,mP′←S
i

]
), (6.13)

with S = Q′. For superpoint q′j ∈ Q′, (l)dQ′

j is calculated in the same way according to
Eq. 6.13, but with S = P′.

Since all the operations are performed in the feature space, the rotation-invariance of (0)dP′

i

remains in all (l)dP′

i and (l)dP′

i with 1 ≤ l ≤ K. As a result, the obtained globally-aware
descriptor d̃P′

i := (K)dP′

i is rotation-invariant by design. In the same way, globally-aware
descriptor d̃Q′

j := (K)dQ′

j is also rotation-invariant for each q′j ∈ Q′.

6.2.4. Rotation-Invariant Dense Description

Until here, we have successfully incorporated global awareness into learned local descriptors
of superpoints without sacrificing the inherent rotation invariance. The aforementioned re-
peatability issue of sparsely sampled superpoints, however, still remains. To address this issue,
we leverage the coarse-to-fine strategy proposed in [181], where superpoints are first matched
according to the overlap ratios of their vicinities, and point correspondences are then extracted
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from the vicinities of matched superpoints. As the first step, dense point descriptors are gener-
ated via interpolation. For each point pu ∈ P, we find its k-nearest neighbor superpoints in P′

according to their Euclidean distance. The descriptor d̃P
u of point pu can be interpolated as:

d̃P
u =

k∑
i=1

wu
i · d̃P′

i , with wu
i = 1/du

i∑k
l=1 1/du

l

, (6.14)

where du
l depicts the Euclidean distance of point pu to its lth nearest superpoint in the 3D space.

Point descriptor d̃Q
v of qv ∈ Q is calculated in the same way. As the interpolation coefficients

are only related to Euclidean distance, the obtained point descriptors remain invariant to
rotations.

6.2.5. Coarse-to-Fine Correspondence Extraction

The coarse-to-fine mechanism [181] is leveraged to extract correspondences from our obtained
superpoint and point descriptors. We first project d̃P′

i and d̃P
u by using two individual multi-

layer perceptrons (MLPs), which provides d̂P′

i and d̂P
u in Fig. 6.3(a) and (b), respectively. We

also project descriptors from point cloud Q to d̂Q′

j and d̂Q
v . On the coarse level, as shown in

Fig. 6.3(a), the similarity between superpoint p′i ∈ P′ and q′j ∈ Q′ is calculated as 1/∥d̂P′

i -
d̂Q′

j ∥2. As the following step, Top-K superpoint correspondences with the highest similarity
values are sampled, resulting in the superpoint correspondence set C′ with |C′| correspondences.
In “Grouping” of Fig. 6.3(b), vicinities (VP′

i ,VQ′

j ) of coarse correspondence C ′l := (p′i,q′j) ∈ C′

are collected by the point-to-superpoint assignment [88, 181], i.e., assigning points to their
nearest superpoints in the 3D space. For superpoint p′i, its vicinity VP′

i and the associated
descriptor group DP′

i can be defined as:
VP′

i = {pu ∈ P
∣∣∥pu − p′i∥2 < ∥pu − p′j∥2,∀j ̸= i},

DP′

i = {d̂P
u

∣∣d̂P
u ↔ pu with pu ∈ VP′

i },

(6.15)

where d̂P
u ↔ pu denotes that d̂P

u is the descriptor associated to point pu. VQ′

j and DQ′

j

are defined in the same way for superpoints q′j ∈ Q′. Finally, we present the similarity of
(DP′

i ,DQ′

j ) as a matrix Sl ∈ R|D
P′
i |×|D

Q′
j
|, where each entry is calculated as Su,v

l = (d̂P
u )T · d̂Q

v ,
with d̂P

u ∈ DP′

i and d̂Q
v ∈ D

Q′

j . To deal with partial overlap, we follow the slack idea [139] and
augment Sl with an additional row and an additional column filled with the same learnable
parameter α. In “Sinkhorn” of Fig. 6.3(b), each augmented similarity matrix is normalized
to a confidence matrix Zl ∈ R|D

P′
i +1|×|DQ′

j
+1|, which is a non-negative matrix with every row

and every column summing to 1, with the Sinkhorn [145] algorithm. From Zl we extract the
point correspondence set Cl as the maximum confidence individually for each row and column.
The union of all Cl (1 ≤ l ≤ |C′|) constructs the final point correspondence set C, which we
use for registration.
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Fig. 6.4. Detailed architecture of components. In attention modules, “Multi-head” stands for the multi-head
mechanism [157], where q, k, and v ∈ Rin are first reshaped to (head, in/head), and attention is then
computed separately for each head channel from corresponding q and k. Value v in each head channel
is fused independently according to the attention computed for the same head. The fused values with
shape (head, in/head) are reshaped back to (in, 1), which is finally projected to messagem ∈ Rin.

6.2.6. Loss Functions

The total loss function L = Lc +λLf consists of a coarse-level matching loss Lc and a fine-scale
correspondence refinement loss Lf . λ ∈ R is the hyper-parameter used to balance the two
terms.

6.2.6.1. Coarse-level Loss for superpoint Matching

Following [181], our coarse-level loss is defined according to the overlap ratios of the vicinities
(VP′

i ,VQ′

j ) of each superpoint correspondence (p′i,q′j). Given vicinities (VP′

i ,VQ′

j ) of superpoint
correspondence (p′i,q′j), the number of visible points in one vicinity w.r.t. the other vicinity is
defined as:

nj
i =

∑
pu∈VP′

i

1(∃qv ∈ VQ′

j s.t.∥T∗(pu)− qv∥2 < τp), (6.16)

and
ni

j =
∑

qv∈VQ′
j

1(∃pu ∈ VP′

i s.t.∥T∗(pu)− qv∥2 < τp), (6.17)

for vicinities VP′

i and VQ′

j , respectively. τp ∈ R is the distance threshold for correspondence
decision. T∗ is the ground-truth transformation and T∗(pu) denotes transforming pu by the
ground-truth transformation T∗. The overlap ratio between vicinities (VP′

i ,VQ′

j ) is further
defined as rj

i = 1
2 ( nj

i

|VP′
i
| + ni

j

|VQ′
j
|
).

Similar to [6, 71, 123], we use Circle Loss [150], a variant of Triplet Loss [141], to guide the
learning of superpoint descriptors. For a superpoint p′i from P′, we sample a positive set E i

p

composed of superpoints q′j from Q′ s.t. T∗(VP′

i ) overlaps with VQ′

j , and a negative set E i
n

consisting of superpoints q′l from Q′ s.t. T∗(VP′

i ) and VQ′

l share no overlap. The loss function
on P′ can be defined upon n superpoints p′i sampled from P′ as:
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LP′

c = 1
n

n∑
i=1

log
[
1 +

∑
q′

j
∈Ei

p

erj
i

βj
p(dj

i
−∆p) ·

∑
q′

l
∈Ei

n

eβl
n(∆n−dl

i)], (6.18)

where rj
i is the overlap ratio between VP′

i and VQ′

j , and dj
i = ∥d̂P′

i − d̂Q′

j ∥2 denotes the
Euclidean distance between superpoints p′i and q′j in the learned feature space. ∆p and ∆n

are the positive and negative margins, which are set to 0.1 and 1.4 in practice, respectively.
Furthermore, βj

p = γ(dj
i − ∆p) and βl

n = γ(∆n − dl
i) are the weights determined for each

sample individually, with the same hyper-parameter γ ∈ R. We can similarly define the loss
LQ′

c and write the total coarse-level loss as Lc = 1
2 (LP′

c + LQ′

c ).

6.2.6.2. Fine-level Loss for Correspondence Refinement

After getting the coarse correspondence set C′, we adopt a negative log-likelihood loss [139]
to guide the correspondence refinement procedure. For superpoint correspondence C ′l :=
(p′i,q′j) ∈ C′, as mentioned before, we compute its confidence matrix Zl ∈ R|D

P′
i +1|×|DQ′

j
+1|

augmented with a slack row and slack column for no correspondence. The ground-truth
point correspondence set between vicinities VP′

i and VQ′

j is denoted asM∗l , while the sets
of unmatched points in vicinity VP′

i and VQ′

j are represented as Il and Jl, respectively. The
ground-truth point correspondence set between vicinities VP′

i and VQ′

j is defined as:

M∗l = {(pu ∈ VP′

i ,qv ∈ VQ′

j )
∣∣∥T∗(pu)− qv∥2 < τp}. (6.19)

The set of occluded points in one vicinity w.r.t. the other one is defined as:

Il = {pu ∈ VP′

i

∣∣∄qv ∈ VQ′

j s.t.∥T∗(pu)− qv∥2 < τp}, (6.20)

and
Jl = {qv ∈ VQ′

j

∣∣∄pu ∈ VP′

i s.t.∥T∗(pu)− qv∥2 < τp}, (6.21)

for vicinities VP′

i and VQ′

j , respectively.

Finally, the correspondence refinement loss of C ′l reads as:

Ll
f = −

∑
(pu,qv)∈M∗

l

log Zu,v
l −

∑
pu∈Il

log Z
u,|DQ′

j
|+1

l

−
∑

qv∈Jl

log Z|D
P′
i |+1,v

l

(6.22)

where Zu,v
l denotes the entry of Zl on the uth row and vth column. The total loss is averaged

across the whole superpoint correspondence set C′ as Lf = 1
|C′|

∑|C′|
l=1 Ll

f .
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6.3. Results

In this chapter, we first detail the network architecture of RIGA. Next, we provide the implemen-
tation details of the model leveraged in the experiments. We then evaluate RIGA on both syn-
thetic object dataset ModelNet40 [171] and real scene benchmarks, including 3DMatch [184]
and 3DLoMatch [71]. To evaluate the inherent rotation invariance of RIGA, indoor bench-
marks are further rotated to create the more challenging scenarios for the point cloudmatching
and registration tasks. RANSAC [45] is leveraged to estimate transformation based on putative
correspondences. We further demonstrate our robustness against poor normal estimation by
using KITTI [48]. We also compare RIGA to the state-of-the-art methods in terms of inference
speed. Qualitative results can be found in Fig. 6.5. Failed cases from 3DLoMatch are shwon
in Fig. 6.6. More qualitative results on ModelNet40 and 3DMatch/3DLoMatch can be found
in Fig. 6.10 and Fig. 6.11, respectively.

6.3.1. Detailed Architecture

The detailed architecture of each component leveraged in RIGA can be found in Fig. 6.4.
PointNets [121] Ψg and Ψs are two individual models with the same architecture (input
dimension in = 4, project dimension proj = 64 and output dimension out = 256), as shown
in the leftmost column in Fig. 6.4. Each attention block has an intra-frame module and an
inter-frame module, both with the architecture of the “Attention Module” shown in Fig. 6.4.
Differently, for intra-frame modules, dq, dk and dv are all from the same frame, while in inter-
frame modules, dk and dv are from the opposite frame. MLPc andMLPf in Fig. 6.3 have
the same MLP architecture shown in the rightmost column of Fig. 6.4, with a input dimension
list of [256, 128, 64, 32].

6.3.2. Implementation Details

RIGA is implemented with PyTorch [117] and can be trained end-to-end on a single NVIDIA
RTX 3090 with 24G memory, where the batch size is set to 2 for 3DMatch/3DLoMatch [71,
184] and 16 for ModelNet40 [171]. Notably, it could also be trained on a GPU with 11G
memory, e.g., NVIDIA GTX 1080Ti. We train for 150 epochs on ModelNet40 and for 20 epochs
on 3DMatch/3DLoMatch, both with λ = 1 to balance different loss functions. We leverage
an Adam optimizer [78] with an initial learning rate of 1e-4, which is exponentially decayed
by 0.05 after each epoch. On ModelNet40, we sparsely sample N ′ = M ′ = 256 superpoints
from each point cloud pair, with a radius r = 0.2m to construct support areas, within which
the number of points is truncated to 64. On 3DMatch/3DLoMatch, N ′ andM ′ are both set to
512, with r = 0.3m and 512 points within each support area. Besides, the number of points in
vicinity V is truncated to 32 and 128 on ModelNet40 and 3DMatch/3DLoMatch respectively.
On both datasets, the dimension of intermediate descriptors g, s and d̃ is set to 256, while
that of descriptors d̂, from which correspondences are hierarchically extracted, is set to 32.
The number of neighbor points used for feature interpolation is set to k = 3. We use 100
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Fig. 6.5. Qualitative results.We use t-SNE [156] to visualize the learned descriptors of source and target point
clouds. In the rectangles, we roughly demonstrate the overlap regions.

iterations for Sinkhorn [145] algorithm. The number of attention blocks is set to K=6, and
the attention mechanism is implemented with 4 heads. During training, 256 superpoint pairs
that overlap under ground-truth transformation are sampled as the superpoint correspondence
set C. During testing, 256 superpoint correspondences with the highest similarity scores are
selected for the consecutive refinement.

6.3.3. Synthetic Object Dataset: ModelNet40

We first tackle the task of object-centric point cloud matching and registration and conduct
experiments on ModelNet40 [171]. We adopt four metrics, including Relative Rotation and
Translation Errors (RRE and RTE), Root-Mean-Square Error (RMSE), and Modified Chamfer
Distance (MCD), for evaluation. Please refer to Chapter. 2.3 for detailed introduction of the
dataset, the data processing procedure, and the metric definition.

Comparisons to the state-of-the-art. We compare RIGA with 9 state-of-the-art baselines,
including 7 direct registration methods and 2 correspondence-based approaches (Predator [71]
and CoFiNet [181]). The detailed results are shown in Tab. 6.1. From the second column
that lists the dimension of descriptors used for correspondence search, it can be noticed that
RIGA uses the most compact descriptors among all the methods. On the “Unseen” setting,
RIGA surpasses all the other methods with rotations in the range of [0, 45◦]. With a maximum
rotation of 180◦, it achieves on-par performance with GMCNet [114] and outperforms others.
When Gaussian noise is added, although RIGA stays comparable with GMCNet [114] with
rotations in [0, 45◦], it outperforms all the baselines on all the metrics by a large margin with
rotations enlarged to 180◦. Notably, all the methods except for RIGA degenerate significantly,
which shows the superiority of the inherent rotation invariance of RIGA. Although direct
registration methods are specifically tuned with good performance on object-level data as
pointed out in [71], RIGA could compete with them and even performs significantly better than
them on data with Gaussian noise and large rotations. Moreover, RIGA also achieves the state-
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Fig. 6.6. Failed cases on 3DLoMatch. We use t-SNE [156] to visualize the learned descriptors of source and
target point clouds. In the rectangles, we roughly demonstrate the overlap regions. The failed cases have
reasonable descriptors but extremely limited overlap.

Methods
Unseen Noise

[0, 45◦] [0, 180◦] [0, 45◦] [0, 180◦]
#dim RRE ↓ RTE ↓ RMSE ↓ RRE ↓ RTE ↓ RMSE ↓ RRE ↓ RTE ↓ RMSE ↓ RRE ↓ RTE ↓ RMSE ↓

PRNet [164] 1024 3.19◦ 0.028 0.036 91.94◦ 0.297 0.545 4.37◦ 0.034 0.045 95.80◦ 0.319 0.542
IDAM [86] 32 0.86◦ 0.005 0.007 16.17◦ 0.073 0.106 9.60◦ 0.052 0.084 71.06◦ 0.217 0.430
RPM [46] 1024 0.34◦ 0.004 0.004 8.78◦ 0.076 0.084 2.21◦ 0.013 0.018 23.58◦ 0.111 0.156
DCP [163] 1024 11.92◦ 0.076 0.119 67.39◦ 0.170 0.410 9.33◦ 0.070 0.097 73.61◦ 0.185 0.441
DeepGMR [183] 128 17.45◦ 0.074 0.130 49.23◦ 0.219 0.349 16.96◦ 0.068 0.120 68.68◦ 0.248 0.419
RPMNet [177] 96 0.60◦ 0.004 0.005 16.91◦ 0.079 0.127 3.52◦ 0.214 0.029 37.82◦ 0.132 0.250
GMCNet [114] 128 0.026◦ 0.0002 0.0002 0.39◦ 0.002 0.003 0.94◦ 0.007 0.008 18.13◦ 0.093 0.132
Predator [71] 96 1.32◦ 0.009 0.012 11.59◦ 0.032 0.058 3.33◦ 0.018 0.025 40.64◦ 0.110 0.207
CoFiNet [181] 32 2.30◦ 0.027 0.033 6.55◦ 0.033 0.056 3.06◦ 0.017 0.027 14.33◦ 0.034 0.091
RIGA 32 0.004◦ <0.0001 <0.0001 0.41◦ 0.002 0.003 1.15◦ 0.006 0.009 5.99◦ 0.008 0.029

Tab. 6.1. Results on ModelNet40. Best performance is highlighted in bold while the second best is marked with
an underline. In “Unseen”, 20 categories are used for training and the rest 20 for testing. In “Noise”, all
the categories are split into training and testing. Gaussian noise sampled from N (0, 0.01) and clipped
to [-0.05, 0.05] is added to individual points in both training and testing. In “[0, 45◦]”, rotations along
each axis are randomly sampled from [0, 45◦] and translations are sampled from [-0.5, 0.5]. Rotations
are enlarged to 180◦ in “[0, 180◦]”.

Methods
Unseen Noise

#dim [0, 45◦] [0, 180◦] [0, 45◦] [0, 180◦]

GMCNet [114] 128 0.0025 0.0064 0.0033 0.0079
CoFiNet [181] 32 0.0087 0.0257 0.0097 0.0395
RIGA 32 0.0017 0.0019 0.0010 0.0013

Tab. 6.2. Modified Chamfer Distance (MCD↓) on ModelNet40. Best performance is highlighted in bold.

of-the-art performance on scene-level benchmarks [71, 184], while most direct registration
methods fail to work there according to [71]. Since the symmetry exists in some categories of
the ModelNet40 data, we follow [177] to use the MCD metric to evaluate CoFiNet [181] that
is the preliminary version of this paper, GMCNet [114] that benefits from its rotation-robust
features (not fully rotation-invariant), and RIGA. Results can be found in Tab. 6.2, where
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3DMatch 3DLoMatch

# Samples Origin Rotated Origin Rotated

Inlier Ratio(%) ↑

3DSN [53] 36.0 - 11.4 -
FCGF [26] 56.8 49.3 21.4 17.3
D3Feat [6] 39.0 37.7 13.2 12.1
RI-GCN [77] 31.2 30.7 12.2 12.0
SpinNet [1] 48.5 48.7 25.7 25.7
Predator [71] 58.0 52.8 26.7 22.4
YOHO [160] 64.4 64.1 25.9 23.2
CoFiNet [181] 49.8 46.8 24.4 21.5
Lepard [93] 58.6 53.7 28.4 24.4
RegTr [179] 57.3 2.7 27.6 1.4
RIGA 68.4 68.5 32.1 32.1

Feature Matching Recall(%) ↑

3DSN [53] 95.0 - 63.6 -
FCGF [26] 97.4 96.9 76.6 73.3
D3Feat [6] 95.6 94.7 67.3 63.9
RI-GCN [77] 90.8 91.0 60.2 60.9
SpinNet [1] 97.4 97.4 75.5 75.2
Predator [71] 96.6 96.2 78.6 73.7
YOHO [160] 98.2 97.8 79.4 77.8
CoFiNet [181] 98.1 97.4 83.1 78.6
Lepard [93] 98.0 97.4 83.1 79.5
RegTr [179] 97.8 5.6 74.3 2.6
RIGA 97.9 98.2 85.1 84.5

Registration Recall(%) ↑

3DSN [53] 78.4 - 33.0 -
FCGF [26] 85.1 90.3 40.1 58.6
D3Feat [6] 81.6 91.3 37.2 55.3
RI-GCN [77] 74.9 80.9 41.0 41.9
SpinNet [1] 88.8 93.2 58.2 61.8
Predator [71] 89.0 92.0 59.8 58.6
YOHO [160] 90.8 92.5 65.2 66.8
CoFiNet [181] 89.3 92.0 67.5 62.5
Lepard [93] 92.7 84.9 65.4 49.0
RegTr [179] 92.0 0 64.8 0
RIGA 89.3 93.0 65.1 66.9

Tab. 6.3. Comparisons to the state-of-the-art on 3DMatch and 3DLoMatch. Best performance is highlighted
in bold while the second best is marked with an underline. In column “Rotated”2, every point cloud
pair is evaluated with # Samples=5,0001 (in Tab. 6.4 and Tab. 6.5), and each point cloud is rotated
individually with random rotations up to 360◦ along each axis. Our method significantly outperforms
state-of-the-art methods on the rotated benchmarks.

RIGA outperforms baselines with a significant margin and also has the strongest robustness
against rotations among all the methods. This experiment again confirms the superiority of
guaranteeing the rotation invariance by model design.
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Fig. 6.7. Illustration of the inherent rotation invariance and distinctiveness of RIGA. In (a), an arbitrary
rotation is applied to the input scan. 1) Rotation invariance: In (b), (c) and (d), local, global and
point descriptors from untrained RIGA are visualized by t-SNE [156], respectively. The rotated point
cloud is aligned for better visualization. All the descriptors from untrained RIGA remain unchanged
after rotation (the second row), which illustrates our inherent rotation invariance guaranteed by design.
2) Distinctiveness: In (b), although two chairs inside pink rectangles have similar local geometric
descriptors, they are distinguishable in (c) where global structures are encoded, and in (d) where global
contexts are incorporated into local descriptors.

6.3.4. Real Scene Benchmarks: 3DMatch and 3DLoMatch

We evaluate RIGA in terms of the point cloudmatching and registration tasks on real scene-level
benchmarks, including 3DMatch [184] and 3DLoMatch [71]. To demonstrate our robustness
against enlarged rotations, we also test on the rotated version of the benchmarks. We adopt five
metrics, including Inlier Ratio (IR), Feature Matching Recall (FMR), Registration Recall (RR),
and Relative Rotation and Translation Errors (RRE and RTE). Please refer to Chapter. 2.3 for
detailed introduction of the dataset, the data processing procedure, and the metric definition.

Verification of the inherent rotation invariance and the feature distinctiveness. We verify
our inherent rotation invariance annd feature distinctiveness by visualizing the color-coded
features of untrained RIGA in Fig. 6.7. See the image caption for more details.

Comparisons to the state-of-the-art. In Tab. 6.4, we compare RIGA with 9 baseline methods.
Specifically, 3DSN [53], SpinNet [1], and YOHO [160] are rotation-invariant approaches
without global awareness. Predator [71], CoFiNet [181], and Lepard1 [93] are globally-aware
algorithms that are variant to rotations. Specially, we also include the comparisons to RI-
GCN [77] which is a rotation-invariant method proposed for point cloud classification with
receptive fields enlarged by graph convolutional networks (GCNs). For a fair comparison,
we use the coarse-to-fine matching strategy same to RIGA to extract correspondences from
RI-GCN descriptors. We validate our method on both original and rotated benchmarks.2 For IR,
RIGA significantly outperforms all the baselines on original 3DMatch and 3DLoMatch, which
indicates RIGA learns more distinctive descriptors and extracts more reliable correspondences.
When the benchmarks are further rotated, our superiority over others becomesmore significant,
1As Lepard [93] and RegTr [179] use a fixed number of correspondences, we use the criterion in [71] and [181] to evaluate Lepard
and RegTr, and use all the correspondences without sampling for both of them.

2On rotated data, RR is calculated with RMSE<0.2m, which is different to RR on original data.
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which demonstrates the advantage of our rotation invariance by design. Notably, with larger
rotations, only the performance of SpinNet [1], YOHO [160], and RIGA remains stable, which
further proves the superiority of inherent rotation invariance over the learned one. For FMR,
we perform the best on rotated data. When rotations are enlarged, especially on 3DLoMatch,
the performance of all the methods except for RIGA, RI-GCN [77], and SpinNet [1] drops
sharply. The performance drop of YOHO further demonstrates the aforementioned drawbacks
of achieving rotation invariance via equivariance. Moreover, due to the lack of global awareness,
SpinNet [1] falls behind Predator[71], CoFiNet [181], Lepard [93], and RIGA in terms of FMR,
which supports the significance of being globally-aware. Finally, for RR, we perform on-par
with CoFiNet [181] and Lepard [93] on original datasets, but again show our excellence
when rotations are enlarged. Specially, the behavior of RegTr [179] should be further noticed.
Different to all the other baselines that extract correspondences by matching descriptors, RegTr
proposes to directly regress the corresponding coordinates. As it outputs the corresponding xyz
coordinates that are sensitive to both rotations and translations, when rotations are enlarged
on the testing set, the performance of RegTr drops sharply on all the metrics (RR even achieves
0), which indicates its high sensitivity to large rotations.

6.3.4.1. Detailed Results with Different Numbers of Samples

In Tab. 6.4, Tab. 6.5 and Fig. 6.8, we follow [71, 181] to show the performance with different
numbers of sampled points/correspondences. Lepard [93] and RegTr [179] are excluded in
this experiment, as the number of correspondences is fixed by their default settings. IR of
RI-GCN [77], CoFiNet [181], and RIGA increases when the number of samples decreases. This
is because methods with the coarse-to-fine matching mechanism implicitly consider all the
potential correspondences and sample the most confident ones for registration, while methods
relying on uniform sub-sampling or keypoint detection only extract correspondences from
sparsely-sampled superpoints, whose repeatability is hard to guarantee especially with fewer
samples. When the sample number is decreased from 5,000 to 250, all the other metrics of
CoFiNet and RIGA remain stable, while those of the others usually drop significantly, which
further proves the excellence of the coarse-to-fine mechanism against fewer samples.

6.3.4.2. Scene-wise Results on 3DMatch and 3DLoMatch

Following [71, 181], we further detail the performance of RIGA with scene-wise results and
2 more metrics (RRE and RTE that have been used for the evaluation on ModelNet40) in
Tab. 6.6. It can be observed that for RRE and RTE, RIGA performs the second best among
all the methods (slightly worse than RegTr [179]). Nevertheless, it should be noticed that
RegTr’s good performance on the original data comes at the cost of losing the robustness
against rotations indicated by the detrimental performance on the rotated data demonstrated
in Tab. 6.3. Hence, the detailed scene-wise results confirm the superiority of RIGA for scene-
level registration.
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3DMatch 3DLoMatch

# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Inlier Ratio(%) ↑

3DSN [53] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [26] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [6] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
RI-GCN [77] 31.2 31.8 32.5 32.7 32.8 12.2 12.4 12.7 12.9 12.9
SpinNet [1] 48.5 46.2 40.8 35.1 29.0 25.7 23.7 20.6 18.2 13.1
Predator [71] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [160] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [181] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
RIGA 68.4 69.7 70.6 70.9 71.0 32.1 33.4 34.3 34.5 34.6

Feature Matching Recall(%) ↑

3DSN [53] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [26] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [6] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
RI-GCN [77] 90.8 90.8 90.9 90.7 91.1 60.2 60.2 59.9 60.1 59.9
SpinNet [1] 97.4 97.0 96.4 96.7 94.8 75.5 75.1 74.2 69.0 62.7
Predator [71] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [160] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [181] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
RIGA 97.9 97.8 97.7 97.7 97.6 85.1 85.0 85.1 84.3 85.1

Registration Recall(%) ↑

3DSN [53] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [26] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [6] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
RI-GCN [77] 74.9 74.1 74.5 73.2 70.5 41.0 39.9 39.4 36.8 35.0
SpinNet [1] 88.8 88.0 84.5 79.0 69.2 58.2 56.7 49.8 41.0 26.7
Predator [71] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [160] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [181] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
RIGA 89.3 88.4 89.1 89.0 87.7 65.1 64.7 64.5 64.1 61.8

Tab. 6.4. Quantitative results on 3DMatch and 3DLoMatch with different Numbers of samples. Best perfor-
mance is highlighted in bold while the second best is marked with an underline. # Samples is the number
of sampled points or correspondences, following [71] and [181], respectively.

6.3.5. Ablation Study

We ablate different parts of RIGA, including (1) Local Description, (2) Global Description,
and (3) Attention Blocks to assess the importance of each individual component. We use
3DMatch and 3DLoMatch, together with their rotated versions for ablation study. Detailed
results are found in Tab. 6.7 for 3DMatch and Rotated 3DMatch, and in Tab. 6.8 for 3DLoMatch
and Rotated 3DLoMatch. Moreover, as an extension of CoFiNet [181], we also ablate on
the matching strategies to demonstrate the superiority of the coarse-to-fine matching, and
to illustrate the generalizability of RIGA descriptors when combined with other matching
strategies. The detailed comparisons can be found in Tab. 6.9. To compare with the concurrent
pipeline of GeoTrans [123] which uses a a rotation-invariant global Transformer, we replace
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3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Inlier Ratio(%) ↑

FCGF [26] 49.3 47.1 42.5 37.4 30.6 17.3 16.4 14.6 12.5 10.2
D3Feat [6] 37.7 37.7 37.0 36.0 34.6 12.1 12.1 11.9 11.7 11.2
RI-GCN [77] 30.7 31.3 32.0 32.2 32.4 12.0 12.2 12.5 12.7 12.7
SpinNet [1] 48.7 46.0 40.6 35.1 29.0 25.7 23.9 20.8 17.9 15.6
Predator [71] 52.8 53.4 52.5 50.0 45.6 22.4 23.5 23.0 23.2 21.6
YOHO [160] 64.1 60.4 53.5 46.3 36.9 23.2 23.2 19.2 15.7 12.1
CoFiNet [181] 46.8 48.2 49.0 49.3 49.3 21.5 22.8 23.6 23.8 23.8
RIGA 68.5 69.8 70.7 71.0 71.2 32.1 33.5 34.3 34.7 35.0

Feature Matching Recall(%) ↑

FCGF [26] 96.9 96.9 96.2 95.9 94.5 73.3 73.4 71.0 68.8 64.5
D3Feat [6] 94.7 95.1 94.3 93.8 92.3 63.9 64.6 63.0 62.1 59.6
RI-GCN [77] 91.0 91.2 90.7 90.7 90.1 60.9 60.1 60.0 60.2 59.8
SpinNet [1] 97.4 97.4 96.7 96.5 94.1 75.2 74.9 72.6 69.2 61.8
Predator [71] 96.2 96.2 96.6 96.0 96.0 73.7 74.2 75.0 74.8 73.5
YOHO [160] 97.8 97.8 97.4 97.6 96.4 77.8 77.8 76.3 73.9 67.3
CoFiNet [181] 97.4 97.4 97.2 97.2 97.3 78.6 78.8 79.2 78.9 79.2
RIGA 98.2 98.2 98.2 98.0 98.1 84.5 84.6 84.5 84.2 84.4

Registration Recall(%) ↑

FCGF [26] 90.3 91.2 90.4 87.8 83.3 58.6 58.7 54.7 44.8 34.7
D3Feat [6] 91.3 90.3 88.4 85.2 80.8 55.3 53.5 47.9 43.6 33.5
RI-GCN [77] 80.9 79.7 80.2 80.0 78.7 41.9 41.3 40.9 39.0 36.3
SpinNet [1] 93.2 93.2 91.1 87.4 77.0 61.8 59.1 53.1 44.1 30.7
Predator [71] 92.0 92.8 92.0 92.2 89.5 58.6 59.5 60.4 58.6 55.8
YOHO [160] 92.5 92.3 92.4 90.2 87.4 66.8 67.1 64.5 58.2 44.8
CoFiNet [181] 92.0 91.4 91.0 90.3 89.6 62.5 60.9 60.9 59.9 56.5
RIGA 93.0 93.0 92.6 91.8 92.3 66.9 67.6 67.0 66.5 66.2

Tab. 6.5. Quantitative results on Rotated 3DMatch and 3DLoMatch with different numbers of samples. Best
performance is highlighted in bold while the second best is marked with an underline. Each point cloud
is rotated individually with random rotations up to 360◦ along each axis.

our global aggregation part with their global Transformer to evaluate the significance of our
remaining pipeline design choices. We show related results in Tab. 6.10.

6.3.5.1. Local Description

In the ablation of (1) Local Description, we replace our local PPF-based geometric descrip-
tion with two rotation-variant variants: (a) xyz - learning local descriptors from the raw 3D
coordinates of all the points in the support area around each superpoint; and (b) relative
xyz - learning descriptors from relative 3D coordinates of points w.r.t. the central superpoint
of the support area. In both cases, the performance drops compared to the baseline RIGA,
which indicates the power of our PPF signature-based geometric description. Moreover, we
observe a more significant drop in performance in terms of IR and FMR when facing larger
rotations, which further demonstrates the importance of rotation invariance. Similarly to [34,
177], we also concatenate PPF signatures with coordinates of points for local description in
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Fig. 6.8. Inlier Ratio (IR) with different numbers of samples. RIGA achieves the best performance on all the
datasets. Notably, the performance of RIGA increases when the number of sampled correspondences de-
creases, which further demonstrates the superiority of our coarse-to-fine mechanism for correspondence
extraction.

(c) and (d). This results in a better performance than the variants with only 3D coordinates,
but it still performs slightly worse than the baseline RIGA. Thanks to the global awareness
in RIGA, it is unnecessary to supplement PPF with global coordinates, as in (c), to incorpo-
rate global contexts. Pure local geometry which is rotation-invariant already promises good
performance.

6.3.5.2. Global Description

We first ablate (2) Global Description by removing structural descriptors learned from our
proposed global PPF signatures. As shown in (a), this significantly damages the performance
especially in terms of IR, which proves the importance of informing local descriptors with
global structural cues. To further prove the significance of our rotation-invariant structural
description, we replace the structural descriptors in baseline RIGA with (b)xyz - learning global
positional descriptors from the raw 3D coordinates of each superpoint, and (c) relative xyz -
learning global positional descriptors from the relative position of each superpoint w.r.t. the
other superpoints in the same frame. Moreover, we also follow [157] to learn descriptors
from superpoint coordinates projected by sinusoidal functions [156] in (d). The decreased
performance of all the variants further confirms the superiority of our design of encoding
structural descriptors from global PPF signatures.
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Method
3DMatch 3DLoMatch

Kitchen Home_1 Home_2 Hotel_1 Hotel_2 Hotel_3 Study Lab Mean Kitchen Home_1 Home_2 Hotel_1 Hotel_2 Hotel_3 Study Lab Mean

Registration Recall(%)↑
3DSN [53] 90.6 90.6 65.4 89.6 82.1 80.8 68.4 60.0 78.4 51.4 25.9 44.1 41.1 30.7 36.6 14.0 20.3 33.0
FCGF [26] 98.0 94.3 68.6 96.7 91.0 84.6 76.1 71.1 85.1 60.8 42.2 53.6 53.1 38.0 26.8 16.1 30.4 40.1
D3Feat [6] 96.0 86.8 67.3 90.7 88.5 80.8 78.2 64.4 81.6 49.7 37.2 47.3 47.8 36.5 31.7 15.7 31.9 59.8
RI-GCN [77] 90.2 79.2 58.5 86.3 74.4 76.9 70.9 62.2 74.9 56.6 32.3 42.8 52.6 27.0 51.2 25.0 34.8 41.0
Predator [71] 97.6 97.2 74.8 98.9 96.2 88.5 85.9 73.3 89.0 71.5 58.2 60.8 77.5 64.2 61.0 45.8 39.1 59.8
CoFiNet [181] 96.4 99.1 73.6 95.6 91.0 84.6 89.7 84.4 89.3 76.7 66.7 64.0 81.3 65.0 63.4 53.4 69.6 67.5

Lepard [93] - - - - - - - - 92.7 - - - - - - - - 65.4
RegTr [179] - - - - - - - - 92.0 - - - - - - - - 64.8
RIGA 97.8 93.4 76.7 98.4 93.6 84.6 85.9 84.4 89.3 77.8 60.6 63.5 79.4 62.0 63.4 48.7 65.2 65.1

Relative Rotation Error(◦)↓
3DSN [53] 1.926 1.843 2.324 2.041 1.952 2.908 2.296 2.301 2.199 3.020 3.898 3.427 3.196 3.217 3.328 4.325 3.814 3.528
FCGF [26] 1.767 1.849 2.210 1.867 1.667 2.417 2.024 1.792 1.949 2.904 3.229 3.277 2.768 2.801 2.822 3.372 4.006 3.147
D3Feat [6] 2.016 2.029 2.425 1.990 1.967 2.400 2.346 2.115 2.161 3.226 3.492 3.373 3.330 3.165 2.972 3.708 3.619 3.361
RI-GCN [77] 2.275 1.877 2.489 2.379 2.574 2.515 3.163 2.343 2.452 3.921 3.660 4.165 4.159 4.690 4.136 4.568 3.510 4.101
Predator [71] 1.861 1.806 2.473 2.045 1.600 2.458 2.067 1.926 2.029 3.079 2.637 3.220 2.694 2.907 3.390 3.046 3.412 3.048
CoFiNet [181] 1.910 1.835 2.316 1.767 1.753 1.639 2.527 2.345 2.011 3.213 3.119 3.711 2.842 2.897 3.194 4.126 3.138 3.280
Lepard [93] - - - - - - - - 2.480 - - - - - - - - 4.100
RegTr [179] - - - - - - - - 1.567 - - - - - - - - 2.827

RIGA 1.789 1.538 1.981 1.677 1.598 1.935 1.833 2.033 1.798 2.987 2.722 3.313 2.743 2.956 2.439 3.836 3.135 3.016
Relative Translation Error(m)↓

3DSN [53] 0.059 0.070 0.079 0.065 0.074 0.062 0.093 0.065 0.071 0.082 0.098 0.096 0.101 0.080 0.089 0.158 0.120 0.103
FCGF [26] 0.053 0.056 0.071 0.062 0.061 0.055 0.082 0.090 0.066 0.084 0.097 0.076 0.101 0.084 0.077 0.144 0.140 0.100
D3Feat [6] 0.053 0.065 0.080 0.064 0.078 0.049 0.083 0.064 0.067 0.088 0.101 0.086 0.099 0.092 0.075 0.146 0.135 0.103
RI-GCN [77] 0.052 0.063 0.079 0.080 0.076 0.056 0.117 0.064 0.073 0.090 0.100 0.098 0.129 0.109 0.092 0.146 0.101 0.403
Predator [71] 0.048 0.055 0.070 0.073 0.060 0.065 0.080 0.063 0.064 0.081 0.080 0.084 0.099 0.096 0.077 0.101 0.130 0.093
CoFiNet [181] 0.047 0.059 0.063 0.063 0.058 0.044 0.087 0.075 0.062 0.080 0.078 0.078 0.099 0.086 0.077 0.131 0.123 0.094
Lepard [93] - - - - - - - - 0.072 - - - - - - - - 0.108
RegTr [179] - - - - - - - - 0.049 - - - - - - - - 0.077

RIGA 0.044 0.048 0.056 0.060 0.059 0.040 0.071 0.071 0.056 0.078 0.082 0.085 0.094 0.082 0.059 0.116 0.114 0.089

Tab. 6.6. Scene-wise results on 3DMatch and 3DLoMatch with #Samples=5,000. Best performance is high-
lighted in bold while the second best is marked with an underline. Results of Lepard [93] and RegTr [179]
are based on their default number of correspondences, and are directly taken from the original papers,
where the scene-wise results are not provided.

6.3.5.3. Attention Blocks

To emphasize the importance of global awareness, we ablate RIGA with different number
of (3) Attention Blocks. In (a), we remove all the attention blocks (K=0) and only use the
globally-informed descriptors, which leads to a sharp decrease of the performance. This proves
the significance of global awareness obtained from learned global contexts. When we increase
the number of attention blocks to (b) K=1 and (c) K=3, the performance increases corre-
spondingly, though it does not reach the baseline performance with K=6. This observation
indicates that stronger global awareness improves the overall performance. However, when
we keep including more and more Attention Blocks in (d) K=10, the performance only stays
on-par with RIGA baseline, indicating that using 6 Attention Blocks is a proper option with
good performance.

6.3.5.4. Matching Strategy

As an extension work of CoFiNet [181] whose core contribution is the coarse-to-fine matching
strategy, we conduct ablation studies on the way to generate correspondences from descriptors
to demonstrate the superiority of the coarse-to-fine matching as well as the generalizability of
RIGA descriptors when combined with other matching strategies. Results are demonstrated
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Ablation Part Models
3DMatch 3DMatch (Rotated)

IR(%) ↑ FMR(%) ↑ RR(%) ↑ IR(%) ↑ FMR(%) ↑ RR(%) ↑

(0) None RIGA (Baseline) 68.4 97.9 89.3 68.5 98.2 93.0

(1) Local Description

(a) xyz 53.7(−14.7) 96.1(−1.80) 86.8(−2.50) 52.7(−15.8) 95.8(−2.40) 89.1(−3.10)
(b) relative xyz 60.9(−7.50) 97.2(−0.70) 87.5(−1.80) 60.0(−8.50) 96.4(−1.80) 90.3(−2.70)
(c) xyz + PPF 66.3(−2.10) 98.2(+0.30) 88.5(−0.80) 65.9(−2.60) 98.1(−0.10) 92.4(−0.60)
(d) relative xyz + PPF 66.8(−1.60) 97.5(−0.40) 87.7(−1.60) 66.7(−1.80) 97.4(−0.80) 92.1(−0.90)

(2) Global Description

(a) none 34.9(−33.5) 97.0(−0.90) 88.1(−1.20) 35.0(−33.5) 97.0(−1.20) 92.8(−0.20)
(b) xyz 42.3(−26.1) 97.8(−0.10) 87.7(−1.60) 42.3(−26.2) 97.6(−0.60) 92.3(−0.70)
(c) relative xyz 37.2(−31.2) 97.0(−0.90) 88.0(−1.30) 37.0(−31.5) 96.8(−1.40) 93.3(+0.30)
(d) xyz+sinusoidal [157] 37.1(−31.3) 97.1(−0.80) 89.8(+0.50) 37.1(−31.4) 97.6(−0.60) 93.0(±0.00)

(3) Attention Blocks

(a) K=0 29.7(−38.7) 94.2(−3.70) 83.0(−6.30) 29.5(−39.0) 94.2(−4.00) 89.3(−3.70)
(b) K=1 43.7(−24.7) 97.4(−0.50) 90.1(+0.80) 43.7(−24.8) 97.3(−0.90) 93.4(+0.40)
(c) K=3 58.1(−10.3) 97.7(−0.20) 88.8(−0.50) 58.4(−10.1) 98.1(−0.10) 92.7(−0.30)
(d) K=10 68.5(+0.10) 98.1(+0.20) 89.0(−0.30) 68.4(−0.10) 97.9(−0.30) 92.2(−0.80)

Tab. 6.7. Ablation study on 3DMatch and Rotated 3DMatch. In the brackets are the changes compared to
baseline RIGA. # Samples = 5,000.

Ablation Part Models
3DLoMatch 3DLoMatch (Rotated)

IR(%) ↑ FMR(%) ↑ RR(%) ↑ IR(%) ↑ FMR(%) ↑ RR(%)↑

(0) None RIGA (Baseline) 32.1 85.1 65.1 32.1 84.5 66.9

(1) Local Description

(a) xyz 20.8(−11.3) 77.5−7.60) 56.0(−9.10) 20.2(−11.9) 76.2(−8.30) 57.4(−9.50)
(b) relative xyz 25.7(−6.40) 79.6(−5.50) 58.5(−6.60) 24.9(−7.20) 79.9(−4.60) 59.9(−7.00)
(c) xyz + PPF 31.1(−1.00) 85.1(±0.00) 65.3(+0.20) 31.1(−1.00) 83.6(−0.90) 66.5(−0.40)
(d) relative xyz + PPF 30.7(−1.40) 83.6(−1.50) 62.5(−2.60) 30.6(−1.50) 83.1(−1.40) 64.5(−2.40)

(2) Global Description

(a) none 13.8(−18.3) 75.4(−9.70) 61.1(−4.00) 13.9(−18.2) 76.0(−8.50) 66.0(−0.90)
(b) xyz 18.6(−13.5) 81.3(−3.80) 65.1(±0.00) 18.5(−13.6) 80.5(−4.00) 65.8(−1.10)
(c) relative xyz 15.1(−17.0) 77.5(−7.60) 62.8(−2.30) 14.8(−17.3) 75.7(−8.80) 65.2(−1.70)
(d) xyz+sinusoidal [157] 15.1(−17.0) 76.7(−8.40) 64.6(−0.50) 15.1(−17.0) 78.3(−6.20) 66.5(−0.40)

(3) Attention Blocks

(a) K=0 10.2(−21.9) 60.8(−24.3) 50.0(−15.1) 10.3(−21.8) 60.2(−24.3) 53.6(−13.3)
(b) K=1 16.6(−15.5) 77.1(−8.00) 63.0(−2.10) 16.6(−15.5) 77.8(−6.70) 66.1(−0.80)
(c) K=3 24.9(−7.20) 82.2(−2.90) 65.1(±0.00) 25.0(−7.10) 82.4(−2.10) 66.6(−0.30)
(d) K=10 32.5(+0.40) 83.6(−1.50) 63.6(−1.50) 32.4(+0.30) 83.4(−1.10) 66.8(−0.10)

Tab. 6.8. Ablation study on 3DLoMatch and Rotated 3DLoMatch with # Samples = 5,000. In the brackets are
the changes compared to baseline RIGA.

in Tab. 6.9, where we combine RIGA descriptors with two other matching strategies (rand for
matching randomly-sampled points and detect for matching keypoints detected by the strategy
used in Predator [71]). We follow the evaluation criterion used in [71] where the mutual
correspondences are used to compute IR and FMR, while the non-mutual ones are leveraged
for RR computation. RIGA descriptors consistently outperform Predator descriptors when
combined with the same matching strategy, which illustrates the significance as well as the
generalizability of our descriptors. Also, the superiority of the coarse-to-fine matching strategy
in comparison with others is well-demonstrated (see the comparisons in terms of FMR and RR
between RIGA-rand and RIGA in Tab. 6.4). Moreover, the correspondences generated from
RIGA descriptors are invariant to rotations, regardless of the matching strategies.

6.3.5.5. Global Aggregation

To evaluate our global aggregation design (global PPF signature + Transformer), as well as to
make a fair comparison with GeoTrans [123], whose core contribution is a rotation-invariant
Transformer for global context aggregation, we design an ablation study that uses the global
transformer proposed in [123] inside the RIGA pipeline. As shown in Tab. 6.10, in terms
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3DMatch 3DLoMatch

# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Inlier Ratio(%) ↑

Predator-rand [71] 51.6 49.5 44.5 38.9 32.1 20.4 19.2 16.8 14.3 11.5
RIGA-rand 67.7 65.1 59.9 53.5 44.8 33.3 30.9 20.7 23.1 18.8
Predator-detect [71] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
RIGA-detect 73.0 72.8 71.2 68.6 63.5 39.2 39.7 39.3 38.2 36.0

Feature Matching Recall(%) ↑

Predator-rand [71] 95.7 95.4 95.3 94.7 93.5 69.1 68.7 67.7 64.4 59.8
RIGA-rand 96.0 95.9 96.0 96.0 95.5 77.4 77.3 76.2 74.5 73.2
Predator-detect [71] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 73.8 69.1
RIGA-detect 96.2 96.4 96.2 96.8 96.2 79.5 79.3 79.8 78.8 78.9

Registration Recall(%) ↑

Predator-rand [71] 86.0 84.8 84.7 81.7 75.3 43.3 45.3 40.4 35.9 28.0
RIGA-rand 87.2 87.2 85.2 83.5 76.4 48.3 48.2 49.0 43.4 35.4
Predator-detect [71] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
RIGA-detect 89.2 89.0 89.2 88.1 85.7 61.8 62.9 62.5 62.1 59.3

Tab. 6.9. Ablation studies on matching strategies. Best performance is highlighted in bold while the second
best is marked with an underline. # Samples is the number of sampled points or correspondences,
following [71] and [181], respectively.

3DMatch 3DLoMatch

# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Inlier Ratio(%) ↑

Global Transformer from [123] 69.2 69.5 69.6 69.7 69.7 33.4 33.8 34.0 34.1 34.2
Original RIGA 68.4 69.7 70.6 70.9 71.0 32.1 33.4 34.3 34.5 34.6

Feature Matching Recall(%) ↑

Global Transformer from [123] 98.3 98.3 98.4 98.2 98.1 84.0 84.3 83.8 84.5 83.6
Original RIGA 97.9 97.8 97.7 97.7 97.6 85.1 85.0 85.1 84.3 85.1

Registration Recall(%) ↑

Global Transformer from [123] 89.1 88.7 88.6 88.4 88.5 64.7 65.0 64.7 63.8 62.2

Original RIGA 89.3 88.4 89.1 89.0 87.7 65.1 64.7 64.5 64.1 61.8

Tab. 6.10. Ablation studies on the global Transformer. Best performance is highlighted in bold. # Samples is the
number of sampled points or correspondences, following [71] and [181], respectively.

of all the metrics, the original RIGA achieves on-par performance with RIGA with the global
Transformer from [123], which confirms the significance of our design of aggregating global
contexts for learning more discriminative descriptors.

6.3.6. Runtime Analysis

We test all the following approaches on a machine with “AMD Ryzen 7 5800X @ 3.80GHZ ×
8” CPU and “NVIDIA GeForce RTX 3090” GPU. In Tab. 6.11 we compare RIGA with 3 state-
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(a) Indoor Scenes (b) Outdoor Scenes

Car

Tree

Remote Noisy Objects

Fig. 6.9. Demonstration of the quality of normal estimation in different scenarios. Normals are estimated
by using Open3D [190] and are color-coded for visualization. The indoor scene in column (a) is from
3DMatch [184], while the outdoor scene in column (b) is from KITTI [48]. For indoor scenes, the normal
estimation is accurate, i.e., the colors are smooth in the visualization. However, the quality of estimated
normals in outdoor scenes is much worse. Although the estimated normals are not bad for the “Car”
which is represented clearly by points with less noise, the normals of the “Tree” are worse, due to its
complex geometry and noisy representation. Moreover, the objects that are far away from the LiDAR and
roughly represented by sparse points are hard to recognize and with the worst normal quality.

Method Desc (s)↓ Reg (s)↓ Total (s)↓

SpinNet [1] 44.92 - >44.92
Predator [71] 0.506 0.677 1.183
CoFiNet [181] 0.145 0.043 0.188

RIGA (Ours) 0.731 0.101 0.832

Tab. 6.11. Runtime. All the reported time is averaged over the whole 3DMatch testing set, which consists of 1,623
point cloud pairs. “Desc” reports the runtime for description, i.e., from data loading to the generation of
descriptors. “Reg” reports the time for registration, i.e., from the generated descriptors to the estimation
of rigid transformation via RANSAC [45]. These two parts of time sum to “Total”.

of-the-art methods in terms of runtime. Among all the baselines, SpinNet [1] is a patch-based
rotation-invariant method, while Predator [71] and CoFiNet [181] are globally-aware models
with fully-convolutional encoder-decoder architectures. As RIGA uses a ViT architecture that
starts from the description of local regions, when compared to Predator and CoFiNet, it takes
more time to generate descriptors. However, RIGA generates descriptors much faster than
SpinNet, as our global awareness simplifies the feature engineering on local regions, and our
mechanism in tackling the repeatability issues significantly reduces the number of required
local regions. For registration time, as we adopt a coarse-to-fine strategy, the runtime is
significantly reduced when compared to Predator. Moreover, we use the second least total
time among all the methods, which demonstrates our efficiency for the task of point cloud
registration.
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Method RTE(cm)↓ RRE(◦)↓ RR(%)↑

3DFeat-Net [176] 25.9 0.57 96.0
FCGF [26] 9.5 0.30 96.6
D3Feat [6] 7.2 0.30 99.8

SpinNet [1] 9.9 0.47 99.1
Predator [71] 6.8 0.27 99.8

CoFiNet [181] 8.5 0.41 99.8

RIGA (Ours) 13.5 0.45 99.1

Tab. 6.12. Quantitative comparisons on KITTI. Best performance is highlighted in bold.

6.3.7. Robustness against Poor Normal Estimation

As our inherent rotation invariance is affected by the quality of the estimated normals, we
further conduct extensive experiments on KITTI [48] which consists of outdoor scans from
LiDAR to prove the robustness of our RIGA descriptors against poor normal estimation. The
estimated normals of both indoor and outdoor scenarios are visualized in Fig. 6.9 to show the
poor normal estimation for outdoor scenes compared to indoor ones. Under this circumstance,
as shown in Tab. 6.12, although RIGA is affected by the poor normal quality, it still performs
on par with those state-of-the-art methods in terms of three different metrics.

6.4. More Qualitative Results.

More qualitative results on both ModetNet40 and 3DMatch/3DLoMatch can be found in
Fig. 6.10 and Fig. 6.11, respectively. In each figure, the first column gives a pair of unaligned
point clouds, where the source point cloud is presented as blue and the target point cloud is
shown in yellow. The second and third columns illustrate the RIGA descriptors visualized by
t-SNE [156] for source and target point clouds, respectively. The forth column demonstrates
the estimated alignment, while the last column provides the ground-truth one.

6.5. Conclusion

In this chapter, we introduced RIGAwith a ViT architecture that learns jointly rotation-invariant
and globally-aware descriptors, upon which correspondences are established in a coarse-to-fine
manner for point cloud registration. RIGA learns from rotation-invariant PPFs for encoding
local geometry and further introduces global PPF signatures to encode a superpoint-specific
structural description of the whole scene. The structural descriptors learned from global PPF
signatures strengthen local descriptors with the global 3D structures in a rotation-invariant
fashion. The distinctiveness of descriptors is enhanced in the consecutive attention blocks with
the learned global contexts and structural cues across the whole scene. The coarse-to-fine
mechanism is further leveraged to establish reliable correspondences upon our powerful RIGA
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Input Target DescriptorsSource Descriptors Estimate Alignment GT Alignment

Fig. 6.10. More qualitative results on modelNet40. We use t-SNE [156] to visualize the learned descriptors of
source and target point clouds.

descriptors. Experimental results confirmed the effectiveness of our approach on both object
and scene-level data. The inherent rotation invariance of RIGA descriptors was also validated
through the extensive experiments on more challenging scenarios with enlarged rotations.
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Input Target DescriptorsSource Descriptors Estimate Alignment GT Alignment

Fig. 6.11. More qualitative results on 3DMatch and 3DLoMatch. We use t-SNE [156] to visualize the learned
descriptors of source and target point clouds. In the rectangles, we roughly demonstrate the overlap
regions.
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Part IV

Improving Rotation-Invariant Descriptors
with Transformers





7Introduction

The intrinsic rotation invariance lies at the core of matching point clouds with handcrafted
descriptors. However, it is widely despised by recent deep matchers that obtain the rotation
invariance extrinsically via data augmentation. As the finite number of augmented rotations
can never span the continuous SO(3) space, these methods usually show instability when
facing rotations that are rarely seen. In the previous chapter, we introduced RIGA that learns
rotation-invariant and globally-aware geometric descriptors for point cloud matching and
registration. However, for guaranteeing the intrinsic rotation invariance, it only adopts several
PointNet [121] models for learning both the local geometry and the global structures, which
leads to sub-optimal performance and makes it hard to compete with the state-of-the-art
rotation-sensitive but globally-aware approaches like GeoTrans [123] on standard benchmarks
such as 3DMatch [184] and 3DLoMatch [71].

Motivated by the recent success of the attention mechanism and Transformer models in the
field of both 2D and 3D computer vision, in this chapter, we introduce RoITr, a Rotation-
Invariant Transformer to cope with the pose variations in the point cloud matching task with
the advanced Transformer architecture. We contribute both on the local and global levels.
Starting from the local level, we introduce an attention mechanism embedded with Point
Pair Feature (PPF)-based coordinates to describe the pose-invariant geometry, upon which
a novel attention-based encoder-decoder architecture is constructed. We further propose a
global transformer with rotation-invariant cross-frame spatial awareness learned by the self-
attention mechanism, which significantly improves the feature distinctiveness and makes the
model robust with respect to the low overlap. Experiments are conducted on both the rigid
and non-rigid public benchmarks, where RoITr outperforms all the state-of-the-art models by
a considerable margin in the low-overlapping scenarios.

7.1. Motivation

With the emergence of deep neural models for 3D point analysis, e.g., multi-layer perceptron
networks (MLPs)-based like PointNet [121, 122], convolutions-based like KPConv [25, 154],
and the attention-based like Point Transformer [137, 188], recent approaches [1, 26, 33,
34, 53, 71, 93, 123, 136, 179–181, 184] proposed to learn descriptors from raw points
as an alternative to handcrafted features that are less robust to occlusion and noise. The
majority of deep point matchers [26, 34, 71, 93, 123, 138, 179, 181, 184, 185] is sensitive
to rotations. Consequently, their invariance to rotations must be obtained extrinsically via
augmented training to ensure that the same geometry under different poses can be depicted
similarly. However, as the training cases can never span the continuous SO(3) space, they
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always suffer from instability when facing rotations that are rarely seen during training. This
can be observed by a significant performance drop under enlarged rotations at inference time.

There are other works [1, 33, 53, 136, 160] that only leverage deep neural networks to encode
the pure geometry with the intrinsically-designed rotation invariance. However, the intrinsic
rotation invariance comes at the cost of losing global context. For example, a human’s left
and right halves are almost identically described, which naturally degrades the distinctiveness
of features. Most recently, RIGA [180] was proposed to enhance the distinctiveness of the
rotation-invariant descriptors by incorporating a global context, e.g., the left and right halves
of a human become distinguishable by knowing there is a chair on the left while a table
on the right. However, it lacks a highly-representative geometry encoder since it relies on
PointNet [121], which accounts for an ineffective local geometry description. Moreover, as
depicting the cross-frame spatial relationships is non-trivial, previous works [71, 123, 138, 181]
merely leverage the contextual features in the cross-frame context aggregation, which neglects
the positional information. Although RIGA proposes to learn a rotation-invariant position
representation by leveraging an additional PointNet, this simple design is hard to model the
complex cross-frame positional relationships and leads to less distinctive descriptors.

7.2. Related Work

Transformer models. Transformer models were initially proposed for sequential data process-
ing, primarily in the field of natural language processing (NLP) [35, 157, 166]. The success
of Transformers in NLP inspired researchers to explore their application in computer vision.
This trend started with 2D computer vision, where Dosovitskiy et al. [37] introduced a method
that split images into local patches and utilized a Transformer model to learn long-range
dependencies between these patches. Building on this idea, researchers sought to combine
the strengths of convolutional neural networks (CNNs) with the advantages of Transformer
models. To overcome the difficulties of adapting Transformer models to dense prediction
tasks, like object detection and semantic segmentation, Wang et al. proposed Pyramid Vision
Transformer [161], which incorporates the hierarchical architecture of CNNs. In SwinTrans-
former [100], the authors introduced the sliding window operation of CNNs to hierarchically
encode local contexts, further enhancing the representation capability of the learned features.
Considering the computational complexity of modeling global relationships in Transformer
models, Katharopoulos et al. [75] introduced linear attention to increase the efficiency of at-
tention computation. Drawing inspiration from the success of 2D computer vision, Zhao et
al. [188] designed a Point Transformer for point cloud analysis and processing. Their approach
successfully applies the vector attention [187] at the local level and achieves remarkable per-
formance in many fundamental 3D computer vision tasks. However, compared to the original
scalar attention [157], although vector attention considers the per-channel relationships, it
introduces heavier computational burdens, potentially becoming a bottleneck for large-scale
point clouds.
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7.3. Problem Statement

In addition to the point cloud matching and registration task in the rigid scenarios, we also
focus on the non-rigid matching problem in this chapter. Consequently, we define the target as
an extension of the definition in Chapter. 3.3. Given a pair of partially-overlapping point clouds
P ∈ RN×3 and Q ∈ RM×3, we aim at extracting a correspondence set Ĉ = {(p̂i, q̂j)

∣∣p̂i ∈ P̂ ⊆
P, q̂j ∈ Q̂ ⊆ Q} that minimizes:

1
|Ĉ|

∑
(p̂i,q̂j)∈Ĉ

∥M∗(p̂i)− q̂j∥2, (7.1)

where ∥·∥2 denotes the Euclidean norm and | · | is the set cardinality. M∗(·) stands for the
ground-truth mapping function that maps p̂i to its corresponding position in Q̂. In rigid
scenarios, it is defined by a transformation T∗ ∈ SE(3). For the non-rigid cases it can be
denoted as a per-point flow f∗i ∈ R3 known as the deformation field.
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8Rotation-Invariant Transformer

8.1. Overview

In this chapter, we present Rotation-Invariant Transformer (RoITr) to tackle the problem of
point cloud matching under arbitrary pose variations by benefiting from the advanced Trans-
former architecture. By using Point Pair Features (PPFs) as the local coordinates, we propose
an attention mechanism to learn the pure geometry regardless of the varying poses. Upon it,
attention-based layers are further proposed to compose the encoder-decoder architecture for
highly-discriminative and rotation-invariant geometry encoding. We demonstrate its superi-
ority over Point Transformer [188], a state-of-the-art attention-based backbone network, in
terms of both efficiency and efficacy in Fig. 8.9 and Tab. 8.7 (a), respectively. On the global
level, the cross-frame position awareness is introduced in a rotation-invariant fashion to facili-
tate feature distinctiveness. We illustrate its significance over the state-of-the-art design [123]
in Tab. 8.7 (d). Our main contributions are summarized as:

• An attention mechanism designed to disentangle the geometry and poses, which enables
the pose-agnostic geometry description;

• An attention-based encoder-decoder architecture that learns highly-representative local
geometry in a rotation-invariant fashion;

• A global transformer with rotation-invariant cross-frame position awareness that signifi-
cantly enhances the feature distinctiveness.

8.2. Method

Method Overview. An overview of RoITr is shown in Fig. 8.1. RoITr consists of an encoder-
decoder architecture named Point Pair Feature Transformer (PPFTrans) for local geometry
encoding and a stack of g× global transformers for global context aggregation. Correspondence
set Ĉ is extracted by the coarse-to-fine matching [181].

87



(3). Decoder(1). Encoder (2). Aggregation

Global

Aggregation

Point

Matching

(0). Input (5). Output(4). Matching

Skip Connections

Global Transformer
G

eo
m

et
ry

 

P
ro

je
c
ti

o
n

Self-Attention

Geometry

Branch

Context

Branch

C
o
n

te
x
t

P
ro

je
c
ti

o
n

Self-

Attention

Update

Cross-Attention

From

Cross 

Attention

Update

Repeat times 

AAL
Downsampling

PAM

Norm

Add & ReLU

Encoder Block

PAL TUL
Interpolation

PAM

Decoder Block

Attentional Aggregation PPF Attention Transition UP PPF Attention

PAM

Norm

Add & ReLU

PAL
PAM

Fig. 8.1. An overview of RoITr. From left to right: (0). RoITr takes as input a pair of triplets P = (P, N, X)
and Q = (Q, M, Y), each with three dimensions referring to the point cloud, the estimated normals,
and the initial features. (1).[§. 8.2.2] A stack of encoder blocks hierarchically downsamples the points
to coarser superpoints and encodes the local geometry, yielding superpoint triplets P ′ and Q′. Each
encoder block consists of an Attentional Abstraction Layer (AAL) for downsampling and abstraction,
followed by e× PPF Attention Layers (PALs) for local geometry encoding and context aggregation. Both
of them are based on our proposed PPF Attention Mechanism (PAM), which enables the pose-agnostic
encoding of pure geometry. (See Fig. 8.2 and Fig. 8.3). (2).[§. 8.2.3] Global information is fused to
enhance the superpoint features of P ′ and Q′. The geometric cues are globally aggregated as a rotation-
invariant position representation, which introduces spatial awareness in the consecutive cross-frame
context aggregation. After a stack of g× global transformers, the globally-enhanced triplets P̃ ′ and Q̃′

are produced. (3).[§. 8.2.2] Superpoint triplets P ′ and Q′ are decoded to point triplets P̂ and Q̂ by a
stack of decoder blocks. Each block consists of a Transition Up Layer (TUL) for upsampling and context
aggregation, followed by d× PALs. (4).[§. 8.2.4] By adopting the coarse-to-fine matching [181], P̃ ′

and Q̃′ are matched to generate superpoint correspondences, which are consecutively refined to point
correspondences between P̂ and Q̂. (5). Ĉ is established between P̂ and Q̂.

8.2.1. PPF Attention Mechanism

Overview. Fig. 8.2 compares three different self-attention mechanisms. The standard atten-
tion [157] only leverages the input context to obtain the query Q and key K to compute the
contextual attentionAC , as well as the value V that encodes information for the contextual mes-
sageMC . GeoTrans [123] proposes to learn the positional encoding E from the geometry and
calculates a second attentionAG to reweighAC . However, the cues contained in the raw geom-
etry are totally neglected. To this end, we propose to learn the pose-agnostic geometric cuesG
and further generate the geometric messageMG in the PPF Attention Mechanism (PAM). On
the local level,MG is combined withMC for feature enhancement, while on the global level,
it is used to learn the rotation-invariant position representation for the cross-frame context
aggregation. More specifically, we define PAM on an Anchor triplet PA = (PA,NA,XA) and
a Support triplet PS = (PS ,NS ,XS), both with three dimensions referring to the point cloud,
the estimated normals, and the associated features, respectively. PAM aggregates the learned
context and geometric cues from PS and flows the messages to PA.

Pose-Agnostic coordinate representation. The basis of PAM is the pose-agnostic local co-
ordinate representation that we construct based on PPFs [38]. Let PA

i := (pA
i ∈ PA,nA

i ∈
NA,xA

i ∈ XA) ∈ PA denote the triplet constructed by picking the ith item on each dimension.
For each pA

i , a subset of PS is first retrieved according to the Euclidean distance w.r.t. PS ,
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Fig. 8.3. Left: The workflow of the PPF Attention Mechanism (PAM). Right: Detailed calculation of the attention.

denoted as PS
N (i) := (PS

N (i),NS
N (i),XS

N (i)) ⊆ PS , withN (i) the indices of k-nearest neighbors.
We then adopt PPFs [38] to construct a local coordinate system around each pA

i to represent
the pose-agnostic position of PS

N (i) w.r.t. it. The coordinate of point pS
j ∈ PS

N (i) is transferred
to:

eS
j = (∥d∥2,∠(nA

i ,d),∠(nS
j ,d),∠(nS

j ,nA
i )), (8.1)

with d = pS
j −pA

i , and nA
i and nS

j the estimated normals of pA
i and pS

j , respectively. ∠(v1,v2)
computes the angles between the two vectors [13, 33]. The transferred coordinates of PS

N (i)
are denoted as ES

N (i).

PPF attention mechanism. PPF Attention Mechanism (PAM) takes as input the Support triplet
PS and the Anchor point cloud PA with estimated normals NA. PAM generates the Anchor
featuresXA by aggregating the pose-agnostic local geometry and highly-representative learned
context from PS , which is defined as:

PA = δ(PA,NA
∣∣PS), (8.2)
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with δ(·) representing PAM. As shown in Fig. 8.3 (a), for each pA
i ∈ PA with normal nA

i , we
find its nearest point pS

j ∈ PS whose associated feature xS
j is assigned to pA

i as the initial
description. Then, k-nearest neighbors from PS are retrieved according to the Euclidean
distance in 3D space, yielding PS

N (i) ⊆ PS and XS
N (i) ⊆ XS . Following Eq. 8.1, PS

N (i) is
transferred to the pose-agnostic position representationES

N (i), which is consecutively projected
to the coordinate embeddingES via a linear layer. xS

j andXS
N (i) are projected to the contextual

features xS and XS by a second shared linear layer, respectively. In Fig. 8.3 (b), the attention
mechanism uses five learnable matricesWG,WE ,WQ,WK , andWV ∈ RD×D to project the
input. Specifically,WG andWE project the input coordinate representation to the geometric
cues and positional encoding by:

G = ESWG and E = ESWE , (8.3)

respectively. Similarly,WQ,WK , andWV project the learned context to query, key, and value
as:

q = xSWQ, K = XSWK , and V = XSWV , (8.4)

respectively. The attention a that measures the feature similarity, and the message m that
encodes both the pose-agnostic geometry and the representative context read as:

a = Softmax(qET + qKT

√
D

) and m = aG + aV, (8.5)

respectively, with D being the feature dimension. The messagem is projected and aggregated
to xS

j via an element-wise addition followed by a normalization through LayerNorm [4]. The
final linear layer projects the obtained feature to xA

i , from which XA is obtained to formulate
the output PA with the known PA and NA.

8.2.2. PPFTrans for Local Geometry Description

Overview. As illustrated in Fig. 8.1, PPFTrans consumes tripletsP andQ. TakingP = (P,N,X)
as an example, it consists ofP ∈ RN×3 the points cloud,N ∈ RN×3 the normals estimated from
P, and X = 1⃗ ∈ RN×1 the initial point features. The encoder produces the superpoint triplet
P ′ = (P′,N′,X′) with P′ ∈ RN ′×3 and X′ ∈ RN ′×D′ . With the consecutive decoder, P ′ is
decoded to a triplet P̂ = (P̂, N̂, X̂) including N̂ points with features X̂ ∈ RN̂×D̂. Notably, as we
adopt a Farthest Point Sampling (FPS) strategy [122], it always satisfies thatP′ ⊆ P̂ ⊆ P. The
same goes for a second point cloudQ with an input triplet Q = (Q ∈ RM×3,M ∈ RM×3,Y =
1⃗ ∈ RM×1) by the shared architecture. In the rest of this paper, we only demonstrate for P
unless the model processes Q differently.

Encoder. The encoder is constructed by stacking several encoder blocks, each including an
Attentional Abstraction Layer (AAL) followed by e×PPF Attention Layers (PALs). Each block
consumes the output of the previous block as the Support tripletPS (PS = P for the first block).
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Fig. 8.4. The computation graph of our global transformer consisting of the Geometry-Aware Self-Attention
Module (GSM) and Position-Aware Cross-Attention Module (PCM).

PS first flows to AAL, where Anchor points PA with associated normals NA are obtained via
FPS [122]. The Anchor triplet PA is then generated in AAL via a PAM following Eq. 8.2. A
sequence of PALs is applied for enhancing the Anchor features XA, each updating the features
as:

PA ← θ(PA) = ReLU(XA + ϕ(δ(PA,NA
∣∣PA))), (8.6)

with ϕ the LayerNorm [4], δ the PAM, and θ the PAL. ← depicts feature updating. The encoder
block outputs the updated PA, and the output of the whole encoder is defined as P ′, which is
the output of the final encoder block.

Decoder. We build the decoder by stacking a series of decoder blocks, each consisting of a
Transition Up Layer (TUL) followed by d× PAL. Each block takes the output of the previous
block as the Anchor triplet PA (PA = P ′ for the first block), and takes the Support triplet PS

from the encoder via skip connections. The input flows to TUL, where each feature x̃S
j ∈ X̃S

assigned to pS
j ∈ PS is interpolated by:

x̃S
j =

∑
i∈N (j) w

j
i xA

i∑
i∈N (j) w

j
i

, with wj
i = 1
∥pS

j − pA
i ∥2

, (8.7)

with N (j) the k-nearest neighbors of pS
j in PA. Features are updated by two linear layers as

PS ← ζ1(XS)+ζ2(X̃S). A sequence of PALs is adopted after TUL, each enhancing the features
as PS ← θ(PS) according to Eq. 8.6. The decoder block outputs the updated PS , and the
output of the whole decoder is denoted as P̂, which is the output of the final decoder block.
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8.2.3. Global Transformer for Context Aggregation

Overview. Our designed global transformer takes as input a pair of triplets P ′ and Q′, and
enhances the features with the global context, yielding X̃′ ∈ RN ′×D′ and Ỹ′ ∈ RM ′×D′ ,
respectively. We stack g×global transformers, with each including a Geometry-Aware Self-
Attention Module (GSM) and a Position-Aware Cross-Attention Module (PCM) (See Fig. 8.1
and Fig. 8.4). Different from previous works [71, 123, 179–181] that totally neglect the cross-
frame spatial relationships, we propose to learn a rotation-invariant position representation
for each superpoint to enable the position-aware cross-frame context aggregation.

Geometry-aware self-Attention module. On the global level, we modify PAM to learn the
rotation-invariant position representation and to aggregate the learned context across the
whole frame simultaneously. The design of GSM is detailed in Fig. 8.4 (a). GSM has two
branches, where the geometry branch mines the geometric cues from the pairwise rotation-
invariant geometry representation proposed in [123], and the context branch aggregates
the global context across the frame. Taking superpoints P′ ∈ RN ′×3 as an instance, the
geometry representation R′ ∈ RN ′×N ′×D′ proposed in [123] depicts the pairwise geometric
relationship among superpoints in a rotation-invariant fashion. It comprises a distance-based
part R′D ∈ RN ′×N ′×D′ as well as an angle-based part R′A ∈ RN ′×N ′×3×D′ , which are defined
hereafter.

Euclidean Distance. The pairwise Euclidean distance is defined as ρi,j = ∥p′i − p′j∥2, which
is projected to a D′-dimensional (note that D′ must be an even number) embedding via the
sinusoidal function [157]:  R′D(i, j, 2l + 1) = sin( ρi,j/σd

100002l/D′ ),

R′D(i, j, 2l + 2) = cos( ρi,j/σd

100002l/D′ ),
(8.8)

with 0 ≤ l < D′/2 and σd = 0.2.

Angles. Given a superpoint pair (p′i,p′j), the 3-nearest neighbors of p′i w.r.t. P′ is first re-
trieved and denoted as N (i). For each k ∈ N (i), we calculate the angle between two vectors
by αk

i,j = ∠(p′k − p′i,p′j − p′i) [13, 34], upon which the D′-dimension angle-based embedding
is defined as:  R′A(i, j, k, 2l + 1) = sin( αk

i,j/σa

100002l/D′ ),

R′A(i, j, k, 2l + 2) = cos( αk
i,j/σa

100002l/D′ ),
(8.9)

with 0 ≤ l < D′/2 and σa = 15.

The pairwise geometry representation R′ finally reads as:

R′ = R′DWD + max
k

(R′AWA), (8.10)
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where max
k

(R′AWA) indicates the max-pooling operation over the second last dimension, and
WD,WA ∈ RD′×D′ stand for two learnable matrices.

Similar to Eq. 8.3, the geometric cuesG′ and the positional encoding E′ are linearly projected
from R′. E′ is further processed in the geometry branch and finally leveraged as the rotation-
invariant position representation. In the context branch,Q′,K′, andV′ are obtained by linearly
mapping the input features X′ similar to Eq. 8.4. The hybrid score matrix S′ ∈ RN ′×N ′ is
computed as:

S′(i, j) =
(q′i)(e′i,j + k′j)T

√
D′

, (8.11)

with e′i,j := E′(i, j, :), q′i := Q′(i, :), and k′j := K′(j, :) the D′-dimension vectors. The hybrid
attentionA′ is obtained via a Softmax function over each row ofS′, and the geometric messages
M′

G ∈ RN ′×D′ are computed as:

M′
G(i, :) =

∑
1≤j≤N ′

a′i,jg′i,j , (8.12)

with a′i,j := A′(i, j) and g′i,j := G′(i, j, :). The contextual messages M′
V ∈ RN ′×D′ are

computed by A′V′. After a feed-forward network [157], the position representation E′P and
globally-enhanced context C′P are generated.

Position-aware cross-attention module. PCM consumes a pair of doublets (E′P ,C′P ) and
(E′Q,C′Q) that are generated from P ′ and Q′ by a shared GSM, respectively. As the cross-
attention is directional, we apply the same PCM twice, with the first aggregation from Q′
to P ′ (See Fig. 8.4 (b)), and the second reversed. As the first step, the rotation-invariant
position representation is incorporated to make the consecutive cross-attention position-aware,
yielding position-aware features F′P = E′P + C′P and F′Q = E′Q + C′Q. Similar to Eq. 8.4,
Q̃′, K̃′, and Ṽ′ are computed as the linear projection of F′P , F′Q, and F′Q, respectively. The
attention matrix Ã ∈ RN ′×M ′ is computed via a row-wise softmax function applied on Q̃′K̃′T .
The fused messages are presented as ÃṼ′, which are finally mapped to the output features X̃′

through a feed-forward network. As we introduce spatial awareness at the beginning of PCM,
both the attention computation and message fusion are aware of the cross-frame positions.
After the twice application of PCM, the input features are enhanced as P ′ ← X̃′ and Q′ ← Ỹ′,
respectively. The global aggregation stage finally generates a pair of triplets P̃ ′ := (P′,N′, X̃′)
and Q̃′ := (Q′,M′, Ỹ′), with the enhanced features from the last global transformer.

8.2.4. Point Matching and Loss Funcion

Superpoint matching. As shown in Fig. 8.1, the point matching stage consumes a pair of
superpoint triplets P̃ ′ and Q̃′ obtained from the global transformer, as well as a pair of point
triplets P̂ and Q̂ produced by the decoder. We adopt the coarse-to-fine matching proposed
in [181]. Following [123], we first normalize the superpoint features X̃′ and Ỹ′ onto a unit
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hypersphere, and measure the pairwise similarity using a Gaussian correlation matrix S̃ with
S̃(i, j) = −exp(−∥x̃′i − ỹ′j∥2

2). After a dual-normalization [123, 128, 149] on S̃ for global
feature correlation, superpoints associated to the top-k entries are selected as the coarse
correspondence set C′ = {(p′i,q′j)

∣∣p′i ∈ P′,q′j ∈ Q′}.

Pointmatching. For extracting point correspondences, denser points P̂ and Q̂ are first assigned
to superpoints. To this end, the point-to-node strategy [181] is leveraged, where each point
is assigned to its closest superpoint in 3D space. Given a superpoint p′i ∈ P′, the group of
points assigned to it is denoted as ĜP

i ⊆ P̂. The group of features associated to ĜP
i is further

defined as ĜX
i with ĜX

i ⊆ X̂. For each superpoint correspondence C′l = (p′i,q′j), the similarity
between the corresponding feature groups ĜX

i and ĜY
j is calculated as Ŝl = ĜX

i (ĜY
j )T /

√
ĉ,

with ĉ the feature dimension. We then follow [139] to append a stack row and column to Ŝl

filled with a learnable parameter α, and iteratively run the Sinkhorn Algorithm [145]. After
removing the slack row and column of Ŝl, the mutual top-k entries, i.e., entries with top-k
confidence on both the row and the column, are selected to formulate a point correspondence
set Ĉl. The final correspondence set Ĉ is collected by Ĉ = ∪|C

′|
l=1Ĉl.

Loss function. Our loss function reads as L = Ls + λLp, with a superpoint matching loss
Ls and a point matching loss Lp balanced by a hyper-parameter λ (λ = 1 by default). The
superpoint matching loss and point matching loss are defined following Chapter. 6.2.6.

8.3. Results

We evaluate RoITr on both rigid (3DMatch [184] & 3DLoMatch [71]) and non-rigid (4DMatch [93]
& 4DLoMatch [93]) benchmarks. For the rigid matching, we further evaluate our correspon-
dences on the registration task, where RANSAC [45] is used.

8.3.1. Network Architecture

PPFTrans encoder-decoder. We detail the architecture of PPFTrans in Tab. 8.1. The encoder
part has 4× encoder blocks. In each block, AAL first downsamples the points and aggregates the
information in a local vicinity. PAL further enhances the features with both the pose-agnostic
local geometry and highly-representative learned context. The decoder part also comprises
4× decoder blocks. In each block (except for Block4), TUL first subsamples the points and
incorporates the information flowing from the encoder via skip connections. The obtained
features are further enhanced by the following PAL.

Global Transformer. The details of the global transformer are demonstrated in Tab. 8.2. It
has 3× transformer blocks, each comprising a geometry-aware self-attention module (GSM)
followed by a position-aware cross-attention module (PCM). In each transformer block, GSM
first aggregates the global context individually for each point cloud. Then in PCM, the global
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Stage Block Operation

Input P = (P, N, X ∈ Rn×1)

Encoder

Blocke
1(P)→ P1

AAL(n× 1)→ n× 64
PAL(n× 64)→ n× 64

Blocke
2(P1)→ P2

AAL(n× 64)→ n/4× 128
PAL(n/4× 128)→ n/4× 128

Blocke
3(P2)→ P3

AAL(n/4× 128)→ n/16× 256
PAL(n/16× 256)→ n/16× 256

Blocke
4(P3)→ P′ AAL(n/16× 256)→ n/64× 256

PAL(n/64× 256)→ n/64× 256

Decoder

Blockd
4(P′)→ P̂4

TUL (n/64× 256)→ n/64× 256
PAL: n/64× 256→ n/64× 256

Blockd
3(P̂4,P3)→ P̂3

TUL(n/64× 256, n/16× 256)→ n/16× 256
PAL(n/16× 256)→ n/16× 256

Blockd
2(P̂3,P2)→ P̂2

TUL(n/16× 256, n/4× 128)→ n/4× 128
PAL(n/4× 128)→ n/4× 128

Blockd
1(P̂2,P1)→ P̂

TUL(n/4× 128, n× 64)→ n× 64
PAL(n× 64)→ n× 64

Output P′ = (P′, N′, X′); P̂ = (P̂, N̂, X̂)

Tab. 8.1. Detailed architecture of the PPFTrans encoder-decoder.

Block Module Operation

Input P′ = (P′, N′, X′) Q′ = (Q′, M′, Y′)

Trans1
Self1(P′)→ P̃′

1 Self1(Q′)→ Q̃′
1 GSM(N ′ ×D′)→ N ′ ×D′ GSM(M ′ ×D′)→M ′ ×D′

Cross1(P̃′
1, Q̃′

1)→ P′
1 PCM(N ′ ×D′, M ′ ×D′)→ N ′ ×D′

Cross1(Q̃′
1,P′

1)→ Q′
1 PCM(M ′ ×D′, N ′ ×D′)→M ′ ×D′

Trans2
Self2(P′

1)→ P̃′
2 Self2(Q′

1)→ Q̃′
2 GSM(N ′ ×D′)→ N ′ ×D′ GSM(M ′ ×D′)→M ′ ×D′

Cross2(P̃′
2, Q̃′

2)→ P′
2 PCM(N ′ ×D′, M ′ ×D′)→ N ′ ×D′

Cross2(Q̃′
2,P′

2)→ Q′
2 PCM(M ′ ×D′, N ′ ×D′)→M ′ ×D′

Trans3
Self3(P′

2)→ P̃′
3 Self3(Q′

2)→ Q̃′
3 GSM(N ′ ×D′)→ N ′ ×D′ GSM(M ′ ×D′)→M ′ ×D′

Cross3(P̃′
3, Q̃′

3)→ P̃′ PCM(N ′ ×D′, M ′ ×D′)→ N ′ ×D′

Cross3(Q̃′
3,P′

3)→ Q̃′ PCM(M ′ ×D′, N ′ ×D′)→M ′ ×D′

Output P̃′ = (P′, N′, X̃′) Q̃′ = (Q′, M′, Ỹ′)

Tab. 8.2. Detailed architecture of the global Transformer.

context flows from the second frame to the first one and then from the first frame to the second
one.

Feed-forward network. The structure of the feed-forward network is illustrated in Fig. 8.5. It
details the feed-forward network in the context branch of GSM in Fig. 8.4.
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Fig. 8.5. Detailed architecture of the feed-forward network. LayerNorm [4] is used for normalization.

8.3.2. Implementation Details

We implement RoITr with PyTorch [117]. The matching model can be trained end-to-end
on a single Nvidia RTX 3090 with 24G memory. In practice, we train the model on-parallel
using 4× Nvidia 3090 GPUs for ∼35 epochs on both 3DMatch (3DLoMatch) [71, 184] and
4DMatch (4DLoMatch) [93]. It takes ∼35 hours and ∼30 hours for full convergence on
3DMatch (3DLoMatch) and 4DMatch (4DLoMatch), respectively. The batch size is set to 1.
We use an Adam optimizer [78] with an initial learning rate of 1e-4, which is exponentially
decayed by 0.05 after each epoch. On 3DMatch (3DLoMatch), we select |C′| = 256 super-
point correspondences with the highest scores. Based on each superpoint correspondence, we
further extract the mutual top-3 point correspondences whose confidence scores are larger
than 0.05 as the point correspondences. For non-rigid matching, we first pick the superpoint
correspondences whose Euclidean distance is smaller than 0.75 (pick the top-128 instead if
the number of selected correspondences is smaller than 128) and extract the mutual top-2
point correspondences with scores larger than 0.05.

8.3.3. Rigid Indoor Scenes: 3DMatch & 3DLoMatch

Dataset.We utilize 3DMatch [184] and 3DLoMatch [71] as the benchmarks for all the experi-
ments in this part. Please refer to Chapter. 2.3 for more details about the datasets. Moreover,
to evaluate robustness to arbitrary rotations, we follow [180] for creating the rotated bench-

96 Chapter 8 Rotation-Invariant Transformer



3DMatch 3DLoMatch

# Samples=5,000 Origin Rotated Origin Rotated

Feature Matching Recall (%) ↑

SpinNet [1] 97.4 97.4 75.5 75.2
Predator [71] 96.6 96.2 78.6 73.7
CoFiNet [181] 98.1 97.4 83.1 78.6
YOHO [160] 98.2 97.8 79.4 77.8
RIGA[180] 97.9 98.2 85.1 84.5
Lepard [93] 98.0 97.4 83.1 79.5
GeoTrans [123] 97.9 97.8 88.3 85.8
RoITr (Ours) 98.0 98.2 89.6 89.4

Inlier Ratio (%) ↑

SpinNet [1] 48.5 48.7 25.7 25.7
Predator [71] 58.0 52.8 26.7 22.4
CoFiNet [181] 49.8 46.8 24.4 21.5
YOHO [160] 64.4 64.1 25.9 23.2
RIGA [180] 68.4 68.5 32.1 32.1
Lepard [93] 58.6 53.7 28.4 24.4
GeoTrans [123] 71.9 68.2 43.5 40.0
RoITr (Ours) 82.6 82.3 54.3 53.2

Registration Recall (%) ↑

SpinNet [1] 88.8 93.2 58.2 61.8
Predator [71] 89.0 92.0 59.8 58.6
CoFiNet [181] 89.3 92.0 67.5 62.5
YOHO [160] 90.8 92.5 65.2 66.8
RIGA [180] 89.3 93.0 65.1 66.9
Lepard [93] 92.7 84.9 65.4 49.0
GeoTrans [123] 92.0 92.0 75.0 71.8
RoITr (Ours) 91.9 94.7 74.8 77.2

Tab. 8.3. Quantitative results on (Rotated) 3DMatch & 3DLoMatch. 5,000 points/correspondences are used
for the evaluation.

marks, where full-range rotations are individually added to the two frames of each point cloud
pair.

Metrics. We follow [71] to use three metrics for evaluation: (1). Inlier Ratio (IR) that com-
putes the ratio of putative correspondences whose residual distance is smaller than a thresh-
old (i.e., 0.1m) under the ground-truth transformation; (2). Feature Matching Recall (FMR)
that calculates the fraction of point cloud pairs whose IR is larger than a threshold (i.e., 5%);
(3). Registration Recall (RR) that counts the fraction of point cloud pairs that are correctly
registered (i.e., with RMSE < 0.2m). See Chapter. 2.3 for detailed definition. 1

Comparison with the state-of-the-art. We compare RoITr with 7 state-of-the-art methods,
among which Predator [71], CoFiNet [181], Lepard [93], and GeoTrans [123] are rotation-
sensitive models, while SpinNet [1], YOHO [160], and RIGA [180] guarantee the rotation
invariance by design. Fig. 8.6 shows the comparisons with all the baseline in terms of FMR

1We follow [180] to calculate the RR strictly with RMSE < 0.2m on the rotated data, which is slightly different from
the RR on the original data.
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Fig. 8.6. FeatureMatching Recall (FMR) on 3DLoMatch [71] andRotated 3DLoMatch.Distance to the diagonal
represents the robustness against rotations. Among all the state-of-the-art approaches, RoITr not only
ranks first on both benchmarks but also shows the best robustness against the enlarged rotations.

regarding both the robustness to rotations and the feature discriminativeness. In Tab. 8.3 we
demonstrate the matching and registration results on 3DMatch and 3DLoMatch, as well as
on their rotated versions, with 5,000 sampled points/correspondences. Regarding IR, RoITr
outperforms all the others by a large margin on both datasets, which indicates our method
matches points more correctly. For FMR, we significantly surpass all the others on 3DLoMatch,
while staying on par with CoFiNet and YOHO on 3DMatch, which indicates that our model
is good at coping with hard cases, i.e., we find at least 5% inliers on more test data. For the
registration evaluation in terms of RR, RoITr achieves comparable performance with GeoTrans
and Lepard on 3DMatch, but leads the board together with GeoTrans on 3DLoMatch with an
overwhelming advantage over the others. Our stability against additional rotations is further
demonstrated on the rotated data, where we outperform all the others with a substantial
margin. Qualitative results can be found in Fig. 8.7.

Analysis on the number of correspondences.We further analyze the influence of a varying
number of correspondences. As illustrated in Tab. 8.4, RoITr shows outstanding performance
on both datasets with various correspondences, proving its stability when only a few corre-
spondences are accessible. We further analyze the performance of different methods w.r.t. the
varying number of correspondences on rotated data. The superiority of RoITr becomes more
significant in the rotated scenarios as shown in Tab. 8.5.

8.3.4. Deformable Objects: 4DMatch & 4DLoMatch

Dataset and metrics.We leverage 4DMatch and 4DLoMatch [93] for evaluating our proposed
method in the non-rigid matching scenario. For the evaluation, we follow [93] to use two
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(a). Input (b). GeoTrans (c). RoITr (Ours) (d). GeoTrans (e). RoITr (Ours) (f). GT Alignment

Correspondences Registration
Overlap:30.0%

Overlap: 18.1%

Overlap: 14.0%

IR: 85.9%

IR: 88.8%

IR: 67.1%IR: 1.9%

IR: 0.0%

IR: 6.6%

Fig. 8.7. Qualitative results on 3DLoMatch. GeoTrans [123] is used as the baseline. Columns (b) and (c) show
the correspondences, while columns (d) and (e) demonstrate the registration results. Green/red lines
indicate inliers/outliers.

3DMatch 3DLoMatch

# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑

SpinNet [1] 97.4 97.0 96.4 96.7 94.8 75.5 75.1 74.2 69.0 62.7
Predator [71] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
CoFiNet [181] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
YOHO [160] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
RIGA [180] 97.9 97.8 97.7 97.7 97.6 85.1 85.0 85.1 84.3 85.1
GeoTrans [123] 97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3
RoITr (Ours) 98.0 98.0 97.9 98.0 97.9 89.6 89.6 89.5 89.4 89.3

Inlier Ratio (%) ↑

SpinNet [1] 48.5 46.2 40.8 35.1 29.0 25.7 23.7 20.6 18.2 13.1
Predator [71] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
CoFiNet [181] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
YOHO [160] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
RIGA [180] 68.4 69.7 70.6 70.9 71.0 32.1 33.4 34.3 34.5 34.6
GeoTrans [123] 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7

RoITr (Ours) 82.6 82.8 83.0 83.0 83.0 54.3 54.6 55.1 55.2 55.3

Registration Recall (%) ↑

SpinNet [1] 88.8 88.0 84.5 79.0 69.2 58.2 56.7 49.8 41.0 26.7
Predator [71] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
CoFiNet [181] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
YOHO [160] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
RIGA [180] 89.3 88.4 89.1 89.0 87.7 65.1 64.7 64.5 64.1 61.8
GeoTrans [123] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5
RoITr (Ours) 91.9 91.7 91.8 91.4 91.0 74.7 74.8 74.8 74.2 73.6

Tab. 8.4. Quantitative results on 3DMatch & 3DLoMatch with a varying number of points/correspondences.

different metrics: (1).Inlier Ratio (IR) which is defined as same as the IR on 3DMatch, but
with a different threshold (i.e., 0.04m); (2). Non-rigid Feature Matching Recall (NFMR)
that measures the fraction of ground-truth matches that can be successfully recovered by the
putative correspondences. More details have been given in Chapter. 2.3.
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Rotated 3DMatch Rotated 3DLoMatch

# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑

SpinNet [1] 97.4 97.4 96.7 96.5 94.1 75.2 74.9 72.6 69.2 61.8
Predator [71] 96.2 96.2 96.6 96.0 96.0 73.7 74.2 75.0 74.8 73.5
CoFiNet [181] 97.4 97.4 97.2 97.2 97.3 78.6 78.8 79.2 78.9 79.2
YOHO [160] 97.8 97.8 97.4 97.6 96.4 77.8 77.8 76.3 73.9 67.3
RIGA [180] 98.2 98.2 98.2 98.0 98.1 84.5 84.6 84.5 84.2 84.4
GeoTrans [123] 97.8 97.9 98.1 97.7 97.3 85.8 85.7 86.5 86.6 86.1
RoITr (Ours) 98.2 98.1 98.1 98.1 98.1 89.4 89.2 89.1 89.1 89.0

Inlier Ratio (%) ↑

SpinNet [1] 48.7 46.0 40.6 35.1 29.0 25.7 23.9 20.8 17.9 15.6
Predator [71] 52.8 53.4 52.5 50.0 45.6 22.4 23.5 23.0 23.2 21.6
CoFiNet [181] 46.8 48.2 49.0 49.3 49.3 21.5 22.8 23.6 23.8 23.8
YOHO [160] 64.1 60.4 53.5 46.3 36.9 23.2 23.2 19.2 15.7 12.1
RIGA [180] 68.5 69.8 70.7 71.0 71.2 32.1 33.5 34.3 34.7 35.0
GeoTrans [123] 68.2 72.5 73.3 79.5 82.3 40.0 40.3 42.7 49.5 54.1
RoITr (Ours) 82.3 82.3 82.6 82.6 82.6 53.2 54.9 55.1 55.2 55.3

Registration Recall (%) ↑

SpinNet [1] 93.2 93.2 91.1 87.4 77.0 61.8 59.1 53.1 44.1 30.7
Predator [71] 92.0 92.8 92.0 92.2 89.5 58.6 59.5 60.4 58.6 55.8
CoFiNet [181] 92.0 91.4 91.0 90.3 89.6 62.5 60.9 60.9 59.9 56.5
YOHO [160] 92.5 92.3 92.4 90.2 87.4 66.8 67.1 64.5 58.2 44.8
RIGA [180] 93.0 93.0 92.6 91.8 92.3 66.9 67.6 67.0 66.5 66.2
GeoTrans [123] 92.0 91.9 91.8 91.5 91.4 71.8 72.0 72.0 71.6 70.9
RoITr (Ours) 94.7 94.9 94.4 94.4 94.2 77.2 76.5 76.6 76.5 76.0

Tab. 8.5. Quantitative results on Rotated 3DMatch & 3DLoMatch with a varying number of points/corre-
spondences.

4DMatch 4DLoMatch

Category Method NFMR(%) ↑ IR(%) ↑ NFMR(%) ↑ IR(%) ↑

Scene Flow PWC [169] 21.6 20.0 10.0 7.2
FLOT [120] 27.1 24.9 15.2 10.7

Feature Matching

Predator [71] 56.4 60.4 32.1 27.5
GeoTrans [123] 83.2 82.2 65.4 63.6
Lepard [93] 83.7 82.7 66.9 55.7
RoITr (Ours) 83.0 84.4 69.4 67.6

Tab. 8.6. Quantitative results on 4DMatch & 4DLoMatch.

Comparison with the state-of-the-art. We compare RoITr with 5 baselines, among which
PWC [169] and FLOT [120] are scene flow-based methods, while Predator [71], Lepard [93],
GeoTrans [123] are based on feature matching. The results shown in Tab. 8.6 indicate that
although our rotation-invariance is mainly designed for rigid scenarios, RoITr could also achieve
outstanding performance in the non-rigidmatching task, which further confirms the superiority
of our model design. Qualitative results are demonstrated in Fig. 8.8.
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(a). Input (b). GT Alignment (d). RoITr (Ours)(c). Lepard

Overlap: 34.5% IR: 2.6% IR: 98.1%

IR: 13.2%Overlap: 42.6% IR: 91.6%

Fig. 8.8. Qualitative results of non-rigidmatching on 4DLoMatchwith Lepard [93] as the baseline.Green/red
lines indicate inliers/outliers. See the Appendix for more examples.

8.3.5. Ablation Study

Local attention.Wefirst replace our PPFTrans with Point Transformer (PT) [188] in Tab. 8.7 (a.1),
which leads to a sharp performance drop. We then ablate by embedding our PPF-based local
coordinates into PT (Tab. 8.7 (a.2)) and by adopting the relative coordinates, i.e., pj − pj ,
used by PT in our PAM (Tab. 8.7 (a.3)). Our local coordinate representation significantly
boosts the performance of PT in the task of point cloud matching and meanwhile makes it
rotation-invariant, although its performance is still far behind ours. However, the relative
coordinates fail to work in our PAM, as we adopt a more efficient attention mechanism [157]
that learns a scalar attention value for each feature x ∈ RD and is consequently hard to work
under varying poses with a rotation-sensitive design. As a comparison, PT learns a per-channel
vector attention a ∈ RD for the same feature x and could deal with the pose variations, but
at the cost of the efficiency as shown in Fig. 8.9. When the number of channels is increased,
our advantage in terms of efficiency is enlarged. As we achieve that with more parameters,
the gap becomes more significant when runtime is normalized with the number of parame-
ters in the right figure. With our PPF-based local coordinate, the scalar attention could focus
on the pose-agnostic pure geometry and therefore achieves the best performance shown in
Tab. 8.7 (a.4).

Abstraction layer. We ablate our Attentional Abstraction Layer (AAL) by replacing it with
the pooling-based abstraction design used in [121, 122, 188]. We test the max pooling in
Tab. 8.7 (b.1) and the average pooling in Tab. 8.7 (b.2), both showing a degrading performance
compared with our AAL, which demonstrates our superiority.

8.3 Results 101



16 32 64 128 256 512 1024
# Channels

0

50

100

150

200

250

300

350

400

450

500
Ru

nt
im

e 
(m

s)
PT
Ours

16 32 64 128 256 512 1024
# Channels

PT
Ours

Fig. 8.9. Left: Runtime comparison between our PPF attention Mechanism (PAM) and the local attention in Point
Transformer [188]. Right: Runtime normalized by aligning the number of parameters.

Backbone. In Tab. 8.7 (a.1) we have shown our superiority compared with PT [188]. We
further replace our PPFTrans with the KPConv-based backbone network which is widely used
in previous deep matchers [71, 123, 181]. The fact that KPConv falls behind our design
demonstrates the advantage of PPFTrans in geometry encoding.

Global Transformer. We replace our design with the global transformer of GeoTrans [123]
which performs state-of-the-art but without the cross-frame spatial awareness. The dropping
results in Tab. 8.7 (d.1) proves the excellence of our design with the cross-frame position
awareness.

The number of global Transformers. To demonstrate the importance of being globally aware,
we first remove the global transformer. The substantial performance drop confirms the signif-
icance of global awareness. Then we add one global transformer and observe an increased
performance. In our default setting with 3 global transformers, the model performs the best.
However, when the number is increased to 5, the model shows a slight performance drop, which
we owe to overfitting. As the data augmentation of rotations has less effect on an intrinsically
rotation-invariant method, more data is required for training a larger model.

Global geometric representation.Using the geometry representation proposed in [123] (instead
of the point pair features [38]) in the global transformer moderately improves the results (see
Tab. 8.8) despite a slightly larger memory footprint. Using it, RoITr has a comparable model
size with GeoTrans [123] (10.1M v.s. 9.8M) and is significantly more lightweight than Lep-
ard [93] (10.1M v.s. 37.6M).
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Origin Rotated

Category Model FMR IR RR FMR IR RR

a. Local

1. PT [188] 79.0 36.5 61.6 76.5 34.7 60.0
*2. PPF+PT [188] 87.0 49.9 69.9 86.8 49.4 71.2
3. ∆xyz+Ours - - - - - -
*4. Ours 89.6 54.3 74.7 89.4 53.2 77.2

b. Aggregation
*1. max pooling 85.2 50.1 70.5 85.4 50.2 71.9
*2. avg pooling 87.8 52.6 73.8 87.2 52.5 74.7
*3. Ours 89.6 54.3 74.7 89.4 53.2 77.2

c. Backbone 1. KPConv [154] 85.2 44.4 70.6 83.0 42.3 71.5
*2. Ours 89.6 54.3 74.7 89.4 53.2 77.2

d. Global *1. GeoTrans [123] 87.7 53.6 73.0 87.5 53.2 75.1
*2. Ours 89.6 54.3 74.7 89.4 53.2 77.2

e. #Global

*1. g = 0 87.2 37.6 70.7 87.5 37.6 72.7
*2. g = 1 87.1 42.1 70.8 86.8 42.1 73.0
*3. g = 3 (Ours) 89.6 54.3 74.7 89.4 53.2 77.2

*4. g = 5 87.1 52.5 72.1 87.0 52.4 73.3

Tab. 8.7. Ablation study on (rotated) 3DLoMatch. 5,000 points/correspondences are leveraged. * indicates the
methods with intrinsic rotation invariance.

3DMatch 3DLoMatch Size Time

Our Model with FMR IR RR FMR IR RR

Point Pair Features 97.9 81.8 91.6 88.6 52.4 73.0 9.5M 0.213s

GeoTrans 98.0 82.6 91.9 89.6 54.3 74.7 10.1M 0.233s

Tab. 8.8. Ablation study of different global geometric embedding.

8.3.6. More Qualitative Results

Indoor scenes: 3DLoMatch.We show more qualitative results on the challenging 3DLoMatch
benchmark in Fig. 8.10.

Deformable objects: 4DLoMatch. More qualitative results of the 4DLoMatch benchmark
consisting of partially-scanned deformable objects are demonstrated in Fig. 8.11.

8.3.7. Runtime

We show the runtime comparison with Lepard [93] and GeoTrans [123] in Tab. 8.9. We run
all the methods on a machine with a single Nvidia RTX 3090 GPU and an AMD Ryzen 5800X
3.80GHz CPU. All the models are tested without CPU parallel and with a batch size of 1. All
the reported time is averaged over the 3DMatch testing set that consists of 1,623 point cloud
pairs. The column “Data” counts the runtime for data preparation, and the column “Model”
reports the time for generating descriptors from the prepared data. As shown in Tab. 8.9,
RoITr has the highest data preparation and overall speed while the lowest model speed. That is
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Method Data (s)↓ Model (s)↓ Total (s)↓

Lepard [93] 0.444 0.051 0.495
GeoTrans [123] 0.194 0.076 0.270
RoITr (Ours) 0.023 0.210 0.233

Tab. 8.9. Runtime comparison.

mainly due to the relatively low speed of the attention mechanism compared to convolutions,
e.g., KPConv [154] used in both Lepard and GeoTrans, and also because we do Farthest Point
Sampling (FPS) and k-nearest neighbor search on GPU, which are counted into the model
time.

8.3.8. Limitations

Further discussion. Although RoITr achieves remarkable performance on both the rigid and
non-rigid scenarios, we also notice the drawbacks of our method. The first is the efficiency of
the attention mechanism. Although our local attention mechanism runs faster compared to
that of Point Transformer [188], its running speed is still lower than that of convolutions, as
shown in Tab. 8.9. Moreover, the intrinsic rotation invariance comes at the cost of losing the
ability to match symmetric structures (see the 4DLoMatch data of Fig. 8.12). Furthermore,
RoITr mainly relies on feature distinctiveness to implicitly filter out the occluded areas during
the matching procedure, which makes it fail in cases with extremely limited overlap (see
the 3DLoMatch data of Fig. 8.12). Finally, as normal data augmentation cannot work on
intrinsically rotation-invariant methods, more data is required to train a larger model.

Failure cases. We further show some failure cases in Fig. 8.12. It can be observed that the
failure on 3DLoMatch is caused by an extremely limited overlap on the flattened areas. In
the first row, the overlap ratio is only 17.6%, and the overlap region is mainly on the floor.
In the second row, the overlap region is even more limited (with an overlap ratio of 10.7%)
and mainly on a wall. For the 4DLoMatch, the failure is mainly due to the extremely limited
overlap and the ambiguity caused by the symmetric structure. The first row shows a case with
the two frames of point cloud showing a horse’s left and right parts, with only 18.1% overlap
in the middle. The second row with 17.9% overlap ratio also has a strong left-right ambiguity
due to the symmetric structure of a pig, which accounts for many left-right mismatches.

8.4. Conclusion

We introduced RoITr - an intrinsically rotation-invariant model for point cloud matching. We
proposed PAM (PPF Attention Mechanism) that embeds PPF-based local coordinates to encode
rotation-invariant geometry. This design lies at the core of AAL (Attention Abstraction Layer),
PAL (PPF Attention Layer), and TUL (Transition Up Layer) which are consecutively stacked to
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(a). Input (b). GeoTrans (c). RoITr (Ours) (d). GeoTrans (e). RoITr (Ours) (f). GT Alignment

Correspondences Registration Overlap:12.9%

IR: 6.2% IR: 59.4%

IR: 0.8% IR: 59.6%

IR: 2.1% IR: 70.1%

Overlap:28.0%

IR: 2.3% IR: 46.7%

IR: 0.5% IR: 62.0%

Overlap:18.1%

Overlap:16.7%

IR: 0.0% IR: 54.4% Overlap:28.4%

Overlap:26.1%

IR: 3.8% IR: 49.9%
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Fig. 8.10. More qualitative results on 3DLoMatch. GeoTrans [123] is used as the baseline.

compose PPFTrans (PPF Transformer) for representative and pose-agnostic geometry descrip-
tion. We further enhanced features by introducing a novel global transformer architecture,
which ensures the rotation-invariant cross-frame spatial awareness. Extensive experiments
were conducted on both rigid and non-rigid benchmarks to demonstrate the superiority of our
approach, especially the remarkable robustness against arbitrary rotations.
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Fig. 8.11. More qualitative results on 4DLoMatch. Lepard [93] is used as the baseline.

(a). Input (b). GT Alignment (d). Registration(c). Correspondences

IR: 0.0%

(a). Input (b). GT Alignment (c). Correspondences
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4DLoMatch3DLoMatch

IR: 1.7%Overlap: 17.6%

Fig. 8.12. Failed cases on 3DLoMatch and 4DLoMatch.
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9Conclusion

In this chapter, we summarize all the contributions we made in this thesis and further discuss
the potential research directions in the future.

9.1. Summary

In this thesis, our research focused on addressing the challenges of correspondence estimation
and geometric descriptor learning on point clouds. We proposed three novel approaches to
tackle specific issues related to the repeatability of matching sparse keypoints, the sensitivity
of deep learning-based globally-aware descriptors to rotations, and the improvement of pose-
agnostic geometric description learning using advanced Transformer architectures. These
works enhance the accuracy and robustness of correspondence estimation and improve the
effectiveness of geometric descriptors for point cloud registration.

Previous approaches relied on matching sparsely sampled superpoints, which often results in
the loss of correspondences due to the sub-sampling process, accounting for the repeatability
issue. To overcome this limitation, we introduced CoFiNet in our first work, which introduces
the concept of coarse-to-fine correspondences in point cloudmatching and registration tasks. In
CoFiNet, the matching process is divided into coarse and fine levels. At the coarse level, down-
sampled superpoints are matched based on the overlap ratio of their vicinities. This ensures
that superpoints with higher overlap were proposed as input for the subsequent refinement
stage. Moving to the fine level, point correspondences are generated from the overlap areas
of the coarse correspondences. This two-step process ensures more accurate and reliable
correspondence estimation. To support our statement, we conducted extensive experiments on
indoor and outdoor scene-level benchmarks, where the results validated the effectiveness of our
approach in generating more reliable correspondences. Moreover, to enhance the performance
of the coarse matching stage, we further proposed Geometric Transformer, which introduces a
novel positional encoding scheme in global context aggregation. This encoding leads to more
distinctive superpoint descriptors, improving the effectiveness of the coarse matching stage.
Please refer to Appendix. B for more details.

In our next work, we addressed the rotation sensitivity of the globally-aware descriptors uti-
lized in CoFiNet by focusing on the geometric description. We proposed RIGA with the ViT
architecture, which enables the joint learning of rotation-invariant and globally-aware descrip-
tors. To achieve rotation invariance, we utilized different PointNet models to encode the local
geometry and global structure based on the corresponding PPF signatures. To incorporate
global context into each local descriptor, we further adopted a global Transformer with the
spatial relationships represented by the global structural descriptors in a rotation-invariant
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fashion. To validate the advantages of being inherently rotation-invariant, we expanded the
scope to point cloud matching and registration tasks with enlarged rotations, which are par-
ticularly challenging. Through extensive experiments conducted in both object-centric and
scene-level scenarios, the superiority of our rotation-invariant and globally-aware descriptors
over existing approaches was demonstrated.

Motivated by the remarkable achievements of the Transformer architecture in computer vi-
sion, and considering the limitations of the simple PointNet models used in RIGA for geometry
description, we set out to design a pure attention-based Transformer model to learn highly
representative and discriminative geometric descriptors for correspondence estimation and
registration on point clouds. Initially, we attempted to represent local geometry using rela-
tive coordinates and employed standard scalar attention to encode geometric cues. However,
we encountered difficulties in achieving convergence for the point cloud matching task with
point clouds observed from different viewpoint. Based on this observation, we made a crucial
design change by leveraging Point Pair Features (PPF) as the local coordinate system and uti-
lizing the attention mechanism to learn pose-agnostic local geometric descriptors. This design
eliminates the side effects caused by pose variances in depicting geometry. Furthermore, we
introduced a novel global Transformer design that incorporates both the intra- and inter-frame
global context in a position-aware manner. By combining these components, we obtained geo-
metric descriptors that are both rotation-invariant and highly representative. To validate the
effectiveness of our descriptors, we conducted extensive experiments in both rigid and more
challenging non-rigid matching scenarios. The results demonstrate that our proposed method
outperforms state-of-the-art models by a significant margin. The intrinsic rotation invariance
of our descriptors was also proved through experiments on rotated benchmarks. Moreover, for
the non-rigid registration task, we further introduced a novel approach for removing outlier
correspondences. Please refer to Appendix. C for more details.

We believe all the works in this thesis have made substantial contributions to the field of 3D
point cloud description, matching, and registration. We hope our works could inspire more
research in related topics in the future.

9.2. Future Work

Based on the works we have done in this thesis, we propose several potential research directions
hereafter.

Combining geometry with RGB information. In this thesis, our focus was solely on the ge-
ometric aspects of point cloud data, disregarding additional information such as RGB colors,
which are naturally associated to geometry when captured by RGB-D cameras. Consequently,
incorporating the color information into geometric description does not account for additional
human labor in capturing data and could potentially help to learn more discriminative descrip-
tors. Zhang et al. [185] proposed to combine these two kinds of information. However, they
rely on a heavily pre-trained model for obtaining 2D features which is less efficient. In the field
of 6D pose estimation, DenseFusion [158] leverages a 2D CNN and a PointNet to learn dense
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description of the 2D image and 3D point cloud from the same RGB-D scan, respectively. Then,
the RGB-based 2D descriptor and the geometry-based 3D descriptor of the same pixel/point
are concatenated as the final description. In FFB6D [62], such an idea is leveraged in the
intermediate layers for exchanging the information between the down-sampled pixels/points.
However, we consider the Transformer architecture a better option for effectively fusing RGB
information with 3D geometric descriptors, as its main advantages are on modeling the pair-
wise relationships between elements. By leveraging the Transformer architecture, we can
potentially achieve improved fusion and representation of both RGB and geometric features,
leading to more robust and discriminative descriptors for point cloud analysis.

Self-supervised Learning. All the models proposed in this thesis were trained in a fully-
supervised fashion, i.e., they require the ground-truth poses between point clouds. However,
generating a sufficient amount of well-annotated data can be time-consuming and resource-
intensive. Consequently, there is value in exploring the training of deep neural networks using
a single frame, or a few frames without knowing the ground-truth poses. Related works have
been proposed for geometry-based local descriptor learning [33, 89, 147] as well as RGB-
D-based correspondence and pose estimation [39–41]. Given the success of self-supervised
learning approaches in these related areas, it would indeed be interesting to explore the
possibilities of training Transformer-based models in a self-supervised fashion for point cloud
analysis tasks.

Multi-frame point cloud registration. For the application of point cloud registration, all
the works in this thesis focused on the pairwise registration scenario, without considering
the cases with multiple frames. Typically, the task of multi-frame point cloud registration
is solved in a two-stage fashion, where the pairwise relative poses are first estimated and
a global synchronization is consecutively performed to refine the estimated poses. For the
reconstruction purpose, many works [52, 159, 178] have been proposed for working in the
multi-frame registration task. All of them mainly focus on the synchronization stage and we
consider it also worthwhile to apply more powerful geometric descriptors for more robust pose
estimation as a better initialization of the synchronization stage.

Outlier removal. As the real data is usually noisy, some techniques are required to further
remove the outlier correspondences before using them for pose estimation. In this thesis, we
adopted RANSAC [45] for this purpose. In the recent advancements, many works [5, 23, 24,
83, 153] have been conducted to reject outliers as a replacement of RANSAC. Among them, Bai
et al. [5], Tang et al. [153], and Chen et al. [23] leveraged the spatial constraint as a necessary
condition to filter out correspondence pairs that are not spatial consistent. However, by solely
adopting the spatial constraint, the relationships of two spatial-consistent correspondences
cannot be define. Motivated by the graph anomaly detection techniques [105], we consider
it possible to formulate the spatial relationships between correspondences as a graph and to
further mine the relationships between spatial-consistent correspondences through detecting
anomaly nodes in the graph.

Point cloud registration on non-rigid data. In our third work, we have proved the effective-
ness of applying rotation-invariant and globally-aware descriptors to the non-rigid matching
tasks. However, we did not go a step further for registering the deformable point clouds based
on the estimated correspondences. Inspired by the recent advancement in leveraging rotation-
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equivariant descriptors for pose estimation in the rigid scenario [90], and the recent work
in neural non-rigid point cloud registration [94], we consider it worthwhile to explore the
possibilities of combining the non-rigid constraints [146, 148] and the rotation-equivariant
descriptors [22, 32] of local regions to learn the per-region rigid transformation and to register
two deformable frames.

112 Chapter 9 Conclusion



Part VI

Appendix





AList of Publications

Authored

1. Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam, Slobodan Ilic, “CoFiNet: Reliable Coarse-
to-fine Correspondences for Robust PointCloud Registration”, Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

2. Hao Yu, Ji Hou, Zheng Qin, Mahdi Saleh, Ivan Shugurov, Kai Wang, Benjamin Busam,
Slobodan Ilic, “RIGA: Rotation-Invariant and Globally-Aware Descriptors for Point Cloud
Registration”, 2022, [under submission].

3. Hao Yu, Zheng Qin, Ji Hou, Mahdi Saleh, Dongsheng Li, Benjamin Busam, Slobodan
Ilic, “Rotation-Invariant Transformer for Point Cloud Matching”, Computer Vision and
Pattern Recognition (CVPR), 2023.

Co-Authored

1. Fu Li, Hao Yu, Ivan Shugurov, Benjamin Busam, Shaowu Yang, Slobodan Ilic, “Nerf-
Pose: A First-Reconstruct-then-Regress Approach for Weakly-Supervised 6d Object Pose
Estimation”, 2022, [under submission].

2. Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, Kai Xu, “Geometric
Transformer for Fast and Robust Point Cloud Registration ”, Computer Vision and Pattern
Recognition (CVPR), 2022.

3. Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, Slobodan Ilic, Dewen
Hu, Kai Xu, “GeoTransformer: Fast and Robust Point Cloud Registration With Geometric
Transformer”, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2023.

4. Zheng Qin, Hao Yu, Changjian Wang, Yuxing Peng, Kai Xu, “Deep Graph-Based Spatial
Consistency for Robust Non-Rigid Point Cloud Registration”, Computer Vision and Pattern
Recognition (CVPR), 2023.

5. Jiayuan Zhuang, Zheng Qin, Hao Yu, Xucan Chen, “Task-Specific Context Decoupling
for Object Detection”, 2023, [under submission].

115





BGeometric Transformer for Fast
and Robust Point Cloud
Registration

Overview

We have proposed CoFiNet that down-samples the input point clouds into superpoints and then
matches them on the coarse level through examining whether their local neighborhood (patch)
overlaps. Such superpoint (patch) matching is then propagated to individual points, yielding
dense point correspondences. Consequently, the accuracy of dense point correspondences
highly depends on that of superpoint matches.

Superpoint matching is sparse and loose. The upside is that it reduces strict point matching
into loose patch overlapping, thus relaxing the repeatability requirement. Meanwhile, patch
overlapping is a more reliable and informative constraint than distance-based point matching
for learning correspondence; consider that two spatially close points could be geodesically
distant. On the other hand, superpoint matching calls for features capturing more global
context.

To this end, Transformer [157] has been adopted [163, 181] to encode contextual information
in point cloud registration. However, vanilla transformer overlooks the geometric structure
of the point clouds, which makes the learned features geometrically less discriminative and
induces numerous outlier matches. Although one can inject positional embeddings [172, 188],
the coordinate-based encoding is rotation-variant, which is problematic when registering point
clouds given in arbitrary poses. We advocate that a point transformer for registration task
should be learned with the geometric structure of the point clouds so as to extract rotation-
invariant geometric features. We propose Geometric Transformer, or GeoTrans for short, for
3D point clouds which encodes only distances of point pairs and angles in point triplets.

Geometric Embedding and Self-Attention
Mechanism

As demonstrated in the left figure of Fig. B.1, given a superpoint, we learn a non-local repre-
sentation through geometrically “pinpointing” it w.r.t. all other superpoints based on pair-wise
distances and triplet-wise angles. Self-attention mechanism is utilized to weigh the importance
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Fig. B.1. An illustration of the distance-and-angle-based geometric structure encoding and its computation.
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Fig. B.2. Left: The structure of geometric self-attention module. Right: The computation graph of geometric
self-attention. R represents the pairwise spatial relationships betweenN superpoints whileF represents
the local geometric descriptors of N superpoints. By adopting our geometric self-attention module, the
local descriptors are enhanced with the position-aware global context.

of those anchoring superpoints. Since distances and angles are invariant to rigid transforma-
tion, GeoTrans learns geometric structure of point clouds efficiently, leading to highly robust
superpoint matching even in low-overlap scenarios.

Based on the proposed geometric embedding, we further design a geometric self-attention to
learn the global correlations in both feature and geometric spaces among the superpoints for
each point cloud. As shown in Fig. B.2, for N superpoints, we represents their pairwise spatial
relationships by the proposed geometric embedding in a rotation-invariant fashion and incor-
porate this information into the global feature aggregation to enhance the discriminativeness
of superpoint descriptors.
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3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑

PerfectMatch [53] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [26] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [6] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [1] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [71] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [160] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [181] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTrans (ours) 97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3

Inlier Ratio (%) ↑

PerfectMatch [53] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [26] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [6] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [1] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [71] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [160] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [181] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTrans (ours) 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7

Registration Recall (%) ↑

PerfectMatch [53] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [26] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [6] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [1] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator [71] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [160] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [181] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTrans (ours) 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5

Tab. B.1. Evaluation results on 3DMatch and 3DLoMatch. Best performance is highlighted in bold while the
second best is marked with an underline.

Results

We evaluate GeoTrans on indoor 3DMatch [184] and 3DLoMatch [71] benchmark and out-
door KITTI odometry benchmark. We adopt three metrics, including Feature Matching Re-
call (FMR), Inlier Ratio (IR), and Registration Recall (RR), for evaluating the performance.
The introduction of datasets and the definition of metrics have been provided in Chapter. 2.3.

Quantitative Results

We first compare the correspondence results of our method with the recent state of the arts:
PerfectMatch [53], FCGF [26], D3Feat [6], SpinNet [1], Predator [71], YOHO [160] and
CoFiNet [181] in B.1(top and middle). Following [6, 71], we report the results with differ-
ent numbers of correspondences. For Feature Matching Recall (FMR), our method achieves
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(a) input (b) ground truth (c) vanilla - pose (d) geometric - pose (e) vanilla - patch correspondences (f) geometric - patch correspondences (g) vanilla - point correspondences (h) geometric - point correspondences

Overlap:  20.8% RMSE:  4.186m RMSE:  0.027m # Patch Corr:  256
Inlier Ratio:  15.6%

# Patch Corr:  256
Inlier Ratio:  59.8%

# Point Corr:  500
Inlier Ratio:  16.0%

# Point Corr:  500
Inlier Ratio:  62.6%

RMSE:  6.516m RMSE:  0.089m # Patch Corr:  256
Inlier Ratio:  7.4%

# Patch Corr:  256
Inlier Ratio:  62.9%

# Point Corr:  500
Inlier Ratio:  5.8%

# Point Corr:  500
Inlier Ratio:  53.0%Overlap:  19.5%

Overlap:  24.7% RMSE:  2.638m RMSE:  0.114m # Patch Corr:  256
Inlier Ratio:  30.9%

# Patch Corr:  256
Inlier Ratio:  80.1%

# Point Corr:  500
Inlier Ratio:  24.0%

# Point Corr:  500
Inlier Ratio:  90.4%

Fig. B.3. Registration results of the models with vanilla self-attention and geometric self-attention. In the
columns (e) and (f), we visualize the features of the patches with t-SNE. In the first row, the geometric
self-attention helps find the inliermatches on the structure-less wall based on their geometric relationships
to the more salient regions (e.g., the chairs). In the following rows, the geometric self-attention helps
reject the outliermatches between the similar flat or corner patches based on their geometric relationships
to the bed or the sofa.

improvements of at least 5 percentage points (pp) on 3DLoMatch, demonstrating its effective-
ness in low-overlap cases. For Inlier Ratio IR, the improvements are even more prominent. It
surpasses the baselines consistently by 7∼33 pp on 3DMatch and 17∼31 pp on 3DLoMatch.
The gain is larger with less correspondences. It implies that our method extracts more reliable
correspondences. To evaluate the registration performance, we first compare the Registration
Recall (RR) obtained by RANSAC in B.1(bottom). Following [6, 71], we run 50K RANSAC
iterations to estimate the transformation. GeoTrans attains new state-of-the-art results on both
3DMatch and 3DLoMatch. It outperforms the previous best by 1.2 pp on 3DMatch and 7.5 pp
on 3DLoMatch, showing its efficacy in both high- and low-overlap scenarios. More importantly,
our method is quite stable under different numbers of samples, so it does not require sampling
a large number of correspondences to boost the performance as previous methods [1, 26, 160,
181].

Qualitative Results

Fig. B.3 provides a gallery of the registration results of themodels with vanilla self-attention and
our geometric self-attention. Geometric self-attention helps infer patch matches in structure-
less regions from their geometric relationships to more salient regions (1st row) and reject
outlier matches which are similar in the feature space but different in positions (2nd and 3rd

rows).

Fig. B.4 visualizes the attention scores learned by our geometric self-attention, which exhibits
significant consistency between the anchor patch matches. It shows that our method is able
to learn inter-point-cloud geometric consistency which is important to accurate correspon-
dences.

120 Chapter B Geometric Transformer for Fast and Robust Point Cloud Registration



Fig. B.4. Visualizing geometric self-attention scores on four pairs of point clouds. The overlap areas are
delineated with purple lines. The anchor patches (in correspondence) are highlighted in red and the
attention scores to other patches are color-coded (deeper is larger). Note how the attention patterns of
the two matching anchors are consistent even across disjoint overlap areas.
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CDeep Graph-based Spatial
Consistency for Robust Non-rigid
Point Cloud Registration

Overview

We further study the problem of outlier correspondence pruning for non-rigid point cloud
registration. In rigid registration, spatial consistency has been a commonly used criterion
to discriminate outliers from inliers. It measures the compatibility of two correspondences
by the discrepancy between the respective distances in two point clouds. However, spatial
consistency no longer holds in non-rigid cases and outlier rejection for non-rigid registration
has not been well studied. In this chapter, we introduce Graph-based Spatial Consistency
Network (GraphSCNet) to filter outliers for non-rigid registration. Our method is based on the
fact that non-rigid deformations are usually locally rigid, or local shape preserving. We first
design a local spatial consistency measure over the deformation graph of the point cloud, which
evaluates the spatial compatibility only between the correspondences in the vicinity of a graph
node. An attention-based non-rigid correspondence embedding module is then devised to learn
a robust representation of non-rigid correspondences from local spatial consistency. Despite its
simplicity, GraphSCNet effectively improves the quality of the putative correspondences and
attains state-of-the-art performance on three challenging benchmarks.

Problem Statement

Given a source point cloud P = {pi ∈ R3 | i = 1, ..., N} and a target point cloud Q = {qi ∈
R3 | i = 1, ...,M}, non-rigid registration aims to recover the warping functionW : R3 → R3

that transforms P to Q. To solve for the warping function, a set of correspondences C =
{(xi,yi) ∈ R6 | xi ∈ P,yi ∈ Q} between two point clouds are first extracted. Then the
warping functionW can be solved by minimizing the following cost function:

E = λcEcorr + λrEreg, (C.1)

where Ecorr is a correspondence term which minimizes the residuals of the correspondences
after being warped, and Ereg is a regularization term to encourage smoothness of deforma-
tions.
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Fig. C.1. Graph-based local spatial consistency for non-rigid registration. The green lines represent the inliers
while the outliers are in red. And the inconsistent distances between two correspondences are also
highlighted in red dotted lines. (a) In rigid scenarios, the distances are identical between any two
inliers, while being inconsistent if outliers exist. (b) In non-rigid scenarios, global spatial consistency
does not hold as the distances between inliers could be different due to irregular movements. (c-d) Our
graph-based local spatial consistency measures the distances between two correspondences within a local
region based on local rigidity of deformations.

Method

Graph-based Local Spatial Consistency

Spatial consistency is a widely used criterion [5, 23, 84] to select inlier correspondences in
rigid registration, e.g., length consistency which preserves the distance between every pair
of points under arbitrary rigid transformations. Given two correspondences ci = (xi,yi) and
cj = (xj ,yj), the spatial consistency between them is computed as:

θ∗i,j = [1−
δ2

i,j

σ2
d

]+, (C.2)

where [·]+ = max(0, ·), δi,j =
∣∣∥xi − xj∥ − ∥yi − yj∥

∣∣ is the difference between the respective
distances in two point clouds, and σd is a hyper-parameter to control the sensitivity to distance
variation. According to length consistency, δi,j should be small if they are both inliers, making
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θ∗i,j close to 1. But if there is at least one outlier, δi,j tends to be large due to the random
distribution of the outliers, so θ∗i,j should be 0. See Fig. C.1(a) for a detailed illustration. This
provides strong geometric support to reject outliers in rigid scenarios.

However, global spatial consistency no longer holds in non-rigid scenarios, especially between
two inliers far from each other, as the points in different parts of the scene could follow
inconsistent movements (see Fig. C.1(b)). But as noted in [73], the local geometric shape
is expected to be preserved and the warping function should be locally isometric and nearly
rigid, i.e., local rigidity of deformations. Inspired by this insight, we propose to adopt spatial
consistency in a local scope and devise a novel graph-based local spatial consistency. Our
method is based on the deformation graph [148] built over the source point cloud. We first
sample a set of nodes V = {vj ∈ R3 | j = 1, ..., V } from P using uniform furthest point
sampling. We start from an arbitrary point in P and iteratively add the furthest point to the
sampled nodes as a new node. The sampling process is repeated until the distances from all
points in P to their nearest nodes are within σn. Then, we assign each correspondence ci to its
k-nearest nodes Ni according to the distances in P. Here Ni is constructed according to the
Euclidean distance. Given two points in a local region, their Euclidean distance is sufficiently
consistent across two point clouds, but is more robust to occlusion than the geodesic distance.
The set of correspondences assigned to a node vj is denoted as Cj = {ci | vj ∈ Ni}. At last, our
graph-based local spatial consistency is defined by computing Eq. C.2 on the correspondence
pairs assigned to a common node:

θi,j =

[1− δ2
i,j/σ

2
d]+, ci ∈ Cv ∧ cj ∈ Cv

0, otherwise
. (C.3)

Based on local rigidity, θi,j is expected to be close to 1 if ci and cj are both inliers and be 0
otherwise. Fig. C.1 compares our local spatial consistency with the global consistency.

An alternative way to define local spatial consistency is to construct a kNN graph around each
correspondence instead of the sampled nodes. However, this manner could have two main
problems. First, it requires more computation and memory usage to compute local spatial
consistency around every correspondence. This seriously restricts its scalability to large point
clouds or dense correspondences. Second, this fashion is sensitive to the density of putative
correspondences. In practice, the distribution of correspondences could be extremely biased
over the point cloud, and thus this manner is prone to be affected by the dense regions. On the
contrary, as our method is designed around uniformly sampled nodes, it has great advantage
in efficiency and is naturally robust to density variation.

Non-rigid Outlier Rejection Network

Based on the local spatial consistency, we then propose an attention-based Graph-based Spatial
Consistency Network (GraphSCNet) for non-rigid outlier rejection. Given a set of putative
correspondences, GraphSCNet leverages the graph-based local spatial consistency to remove
the outliers from them. The overall pipeline is illustrated in Fig. C.2.
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Fig. C.2. Pipeline of GraphSCNet. Given a set of putative correspondences C, our method first extracts initial
features Finit from the point coordinates. The features are enhanced by a stack of graph-based non-rigid
correspondence embedding module which encodes the local spatial consistency. The spatial-consistency-
aware features Fsc are then used to predict the confidence scores S. At last, N-ICP is used to estimate
the warping function.

Initial feature embedding. For each input correspondence, we first concatenate the coor-
dinates of the two endpoints into a 6-d vector ci = [xi; yi], which is then normalized to ĉi

by subtracting the average over all correspondences. Next, ĉi is transformed using Fourier
positional encoding in [108]. As mentioned in [94], low-frequency encoding benefits fitting
relatively rigid motion while high-frequency one can better model highly non-rigid motion.
Recalling our goal to better capture local rigidity, we use relatively low frequency to encode
the correspondences:

di = [ĉ; sin(2−1ĉ); cos(2−1ĉ)] ∈ R18. (C.4)

At last, the encoded correspondence matrix D ∈ R|C|×18 is projected to a high-dimension
feature matrix Finit ∈ R|C|×d by a shallow MLP, which is used as the initial correspondence
embedding. And group normalization [170] and LeakyReLU are used after each layer in the
MLP.

Graph-based correspondence embedding.With the initial correspondence embedding, we
then design a Graph-based Correspondence Embedding Module to enhance the feature repre-
sentation of the correspondences with attention mechanism. The structure of this module is
shown in Fig. C.2 (bottom). Our method is based on the deformation graph constructed in
Fig. C and consists of three steps.

First, we collect for each node vj the correspondences in Cj and their associated features
denoted as Fj ∈ R|Cj |×d. Note that a correspondence could be assigned to more than one
nodes and the nodes with Cj = ∅ are ignored. We also collect the local spatial consistency of
the correspondence pairs in Cj , denoted as Θj ∈ R|Cj |×|Cj |.
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Next, we refine the features for the correspondences by a stack of Spatial-Consistency-Aware
Self-Attention (SCA-SA) module. Specifically, the feature matrix Fj is first projected into the
query Qj , key Kj and value Vj:

Qj = FjWQ, Kj = FjWK , Vj = FjWV , (C.5)

whereWQ,WK ,WV ∈ Rd×d are the projection weights for query, key and value, respectively.
Inspired by [5], we leverage the local spatial consistency to reweight the attention scores in
the original attention computation [157]:

Z′j = LN
(

Fj + MLP
(
Softmax(Θj

QjKT
j√
d

)Vj

))
, (C.6)

where LN(·) is layer normalization [4]. By injecting the graph-based local spatial consistency
into self-attention, the correspondence pairs with strong spatial consistency are encouraged to
have large attention scores, while the attention scores of the incompatible pairs are expected
to be suppressed. This could push the outliers away from the inliers in the feature space,
thus making the resultant features more discriminative. The attention features are further
projected by a two-layer feedforward network with residual connection to obtain the final
output features:

Zj = LN
(
Z′j + MLP(Z′j)

)
. (C.7)

Fig. C.2 (bottom right) illustrates the structure and the computation graph of this module.

At last, for each correspondence, we consider its spatial compatibility w.r.t. different nodes
and aggregate the features from all the nodes where it belongs as the final output features:

hi =
∑

j∈Ni

αi,jzj
i , (C.8)

where αi,j is the skinning factor as in DynamicFusion [110]:

αi,j = exp(−∥xi − vj∥2/(2σ2
n))∑

k∈Ni
exp(−∥xi − vk∥2/(2σ2

n)) . (C.9)

In non-rigid scenarios, it is unreliable to predict whether one correspondence is inlier or not
from merely a single local area as there could be large deformation in it. On the contrary, our
method considers all neighboring regions, which could improve the robustness of the extracted
features.

Classification head. Given the spatial-consistency-aware features Fsc ∈ R|C|×d of the corre-
spondences, we further adopt a three-layer MLP to predict the confidence score si being an
inlier for each correspondence. Group normalization [170] and LeakyReLU are used after the
first two layers in the MLP, and sigmoid activation is applied after the last layer. The corre-
spondences whose confidence scores are above a certain threshold τs are selected as inliers
and the others are removed as outliers.
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Deformation Estimation

After obtaining the pruned correspondences, an embedded deformation graph [148] is com-
puted as the final warping function. We first construct a deformation graph Ĝ = {V̂, Ê} with a
set of graph nodes V̂ and undirected edges Ê connecting them. The nodes are sampled from
P as described in Fig. C with a distance threshold of σg. Each point in P are assigned to its kg

nearest nodes and two nodes are connected by an edge if there exists a point assigned to both
of them. W can then be approximated by a collection of local rigid transformations {(Rj , tj)}
associated with each node v̂j:

W(pi) =
∑

j∈Ni

αi,j

(
Rj(pi − v̂j) + tj + v̂j

)
, (C.10)

where αi,j is computed as in Eq. C.9. Our final optimization objective is shown as in Fig. C.1,
where the correspondence term is the mean squared distance between the correspondences
and an as-rigid-as-possible [73] regularization term is applied to constrain the smoothness of
deformations:

Ecorr =
∑

(xi,yi)∈C

∥W(xi)− yi∥2
2

Ereg =
∑

(vi,vj)∈E

∥Ri(vj − vi) + vi + ti − (vj + tj)∥2
2

. (C.11)

This problem can be efficiently solved by Non-rigid ICP (N-ICP) algorithm [85, 148]. Note
that although embedded deformation is used, GraphSCNet is agnostic to deformation models
and thus can facilitate any correspondence-based non-rigid registration methods.

Loss Functions

Our model is trained with two types of loss functions, including a classification loss and a
consistency loss. The overall loss function is computed as Lall = Lcls + λLcon.

Classification loss. We formulate the prediction of the confidence scores of the correspon-
dences as a binary classification problem. As inliers and outliers are usually very imbalanced in
the putative correspondences, we supervise the confidence scores with a binary focal loss [97].
The label of each correspondence ci = (xi,yi) is computed as:

s∗i =

1, ∥W∗(xi)− yi∥ < τd

0, otherwise
, (C.12)

whereW∗ is the ground-truth deformation. And the classification loss is computed as:

Lcls = −s∗i (1− si)γ log(si)− (1− s∗i )sγ
i log(1− si), (C.13)

where γ = 2 is the focusing hyper-parameter as in [97].

Consistency loss. Inspired by PointDSC [5], we further adopt an auxiliary feature consistency
loss so that the inliers are close to each other in the feature space and are far away from the

128 Chapter C Deep Graph-based Spatial Consistency for Robust Non-rigid Point Cloud Registration



outliers. However, due to the complexity of non-rigid deformations, feature consistency could
not hold between two distant inlier correspondences. For this reason, we propose to supervise
the feature consistency in each local region. For two correspondences cx, cy ∈ Cj of node vj ,
we first compute their feature consistency as:

δx,y = [1− ∥ĥx − ĥy∥2

σ2
f

]+, (C.14)

where ĥx and ĥy are the correspondence features which are normalized onto a unit hyper-
sphere, and σf is a learnable tolerance parameter. The consistency loss is computed as:

Lcon = 1
|V|2

∑
vj∈V

1
|Cj |2

∑
cx∈Cj

∑
cy∈Cj

∈ ∥δx,y − δ∗x,y∥, (C.15)

where the ground-truth targets δ∗x,y = 1 if cx and cy are both inliers and δ∗x,y = 0 otherwise.

Results

Wemainly evaluate GraphSCNet on 4DMatch and 4DLoMatch [93], which has been introduced
in Chapter. 2.3. Following [93, 94], we adpopt 4 metrics in the experiments: (1) 3D End Point
Error (EPE), the average errors over all warped points under the estimated and the ground-
truth warp functions, (2) 3D Accuracy Strict (AccS), the fraction of points whose EPEs are
below 2.5cm or relative errors are below 2.5%, (3) 3D Accuracy Relaxed (AccR), the fraction of
points whose EPEs are below 5cm or relative errors are below 5%, and (4) Outlier Ratio (OR),
the fraction of points whose relative errors are above 30%.

Quantitative Results

We first compare GraphSCNet to previous state-of-the-art non-rigid registration and scene flow
estimation methods: NSFP [92], Nerfies [116], PointPWC-Net [168], FLOT [120], DGFM [36],
SyNoRiM [70], and NDP [94]. To evaluate the generality of our method, we adopt two recent
deep correspondence extractors in the experiments, Lepard [93] and GeoTrans [123]. As
shown in Tab. C.1, our method outperforms the baselines by a large margin on both bench-
marks, indicating the effectiveness of GraphSCNet. On the two most important metrics AccS
and AccR, our method significantly surpasses the previous best NDP by 11 percentage points
(pp) on 4DMatch and 14 pp on 4DLoMatch. Note that benefiting from the high-quality cor-
respondences, our method achieves the new state-of-the-art results simply with N-ICP and
achieves 10 times acceleration than NDP (0.2s v.s. 2s).

Comparisons with outlier rejection methods.We compare to one traditional outlier rejection
method, VFC [104], and two recent learning-based methods for rigid registration, PointCN
from 3DRegNet [113] and PointDSC [5], to evaluate the efficacy of our method. We also report
the precision and recall of the predicted inliers to compare the inlier classification performance.
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Model 4DMatch 4DLoMatch
EPE AccS AccR OR EPE AccS AccR OR

NSFP [92] 0.265 8.7 18.7 65.0 0.495 0.4 1.6 84.8
Nerfies [116] 0.280 12.7 25.4 58.9 0.498 1.1 3.0 82.2
PointPWC-Net [168] 0.182 6.3 21.5 52.1 0.279 1.7 8.2 55.7
FLOT [120] 0.133 7.7 27.2 40.5 0.210 2.7 13.1 42.5
DGFM [36] 0.152 12.3 32.6 37.9 0.148 1.9 6.5 64.6
SyNoRiM [70] 0.099 22.9 49.9 26.0 0.170 10.6 30.2 31.1
NDP [94] 0.077 61.3 74.1 17.3 0.177 26.6 41.1 33.8

GraphSCNet (ours) + [93] 0.042 70.1 83.8 9.2 0.102 40.0 59.1 17.5

GraphSCNet (ours) + [123] 0.043 72.3 84.4 9.4 0.121 41.0 58.3 21.0

Tab. C.1. Comparisons with previous state-of-the-art methods on 4DMatch and 4DLoMatch. Boldfaced num-
bers highlight the best and the second best are underlined.

Model 4DMatch 4DLoMatch
Prec Recall AccS AccR Prec Recall AccS AccR

Lepard [93]

w/o outlier rejection 78.3 100.0 54.2 67.8 49.5 100.0 17.4 29.9
VFC [104] 83.6 93.2 63.6 76.4 54.6 84.1 26.2 40.3
PointCN [113] 87.0 89.0 63.2 78.1 71.8 75.6 31.6 50.7
PointDSC [5] 88.7 92.2 66.3 80.3 74.5 80.3 35.2 53.8
GraphSCNet (ours) 93.0 95.7 70.1 83.8 83.0 88.6 40.0 59.1

oracle 100.0 100.0 74.7 87.5 100.0 100.0 48.9 68.9

GeoTransformer [123]

w/o outlier rejection 81.0 100.0 65.5 79.8 61.0 100.0 31.4 49.4
VFC [104] 83.0 96.0 67.1 79.6 63.2 91.6 33.8 50.5
PointCN [113] 84.8 92.0 67.1 81.0 70.1 79.0 35.0 53.3
PointDSC [5] 88.0 93.9 69.2 82.2 73.7 81.8 37.7 55.0
GraphSCNet (ours) 92.2 96.9 72.3 84.4 82.6 86.8 41.0 58.3

oracle 100.0 100.0 77.4 87.6 100.0 100.0 49.3 66.3

Tab. C.2. Comparisons with outlier rejection baselines on 4DMatch and 4DLoMatch. Boldfaced numbers
highlight the best and the second best are underlined.

For fair comparison, we adopt similar network macro-architecture for all the models and use
the same configurations in N-ICP. For PointDSC, 2048 correspondences are randomly sampled
to avoid too huge memory footprint. We show the results on two correspondence extractors
(Lepard and GeoTrans) to compare the generality of the methods. And the results using
the ground-truth inliers are also reported as oracle. As shown in Tab. C.2, the models with
outlier rejection significantly surpass the models that do not prune outliers. And our method
outperforms PointCN and PointDSC by a large margin on both benchmarks and attains very
close results to the oracle, demonstrating the strong effectiveness of our design. Note that
our method attains both better precision and recall, especially in low-overlap scenarios, which
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Fig. C.3. Comparison of different methods on 4DMatch and 4DLoMatch. Our method provides much better
outlier rejection results in low-overlap and large-deformation scenes and achives better registration results.
Benefiting from the more accurate correspondences, our method successfully recover the geometry in
non-overlap regions (see the registration results enclosed by the red boxes).

means it rejects more outliers while preserving more inliers. This guarantees more thoroughly-
distributed correspondences, facilitating more accurate non-rigid registration.

Qualitative results. Fig. C.3 visualizes the correspondences and the registration results of
different methods. Compared with the baselines, GraphSCNet prunes outliers more accurately
while preserves more inliers, especially in low-overlap or large-deformation scenarios. And
our method performs quite well in the scenes with symmetry (see the 2nd row) or complex
geometry (see the 4th row). As there is little interference from outliers, ourmethod successfully
recover the geometry in non-overlap regions (see the registration results enclosed by the red
box).
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