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Abstract

Driven by digital transformation and recent advances in the Industrial Internet of Things,
industrial processes such as quality control and machine monitoring are undergoing
a rapid evolution towards intelligent automation and increased productivity. Recent
achievements in the field of signal processing have led to promising state-of-the-art
data-driven techniques for machine process monitoring.

However, given the environmental and industrial challenges, the application in real-
world production is highly complex and requires a considerable amount of expertise,
from the early phase of data annotation to the extraction of meaningful features from
the sensory data. In addition, data-driven models su�er from poor generalizability and
robustness against data drift and high process variety.

To address manufacturing challenges, this thesis researches di�erent deep learning
methods for noisy industrial time-series data. It first investigates the various indus-
trial and environmental hurdles faced in real-world applications and proposes a novel
benchmark dataset that embeds these challenges. In the second part, an in-depth
study of unsupervised deep learning methods is performed and a new deep learning
architecture, characterized by a small number of parameters and a rich information
extraction capability, is proposed. The unsupervised trained model is then embedded
in a two-stage learning method that improves the learning mechanism using a limited
amount of annotations. The architecture investigation results prove that when dealing
with noisy time-series data, the width of the network architecture is an essential param-
eter where the performance of wide networks exceeds the deep networks. The study
further confirms the superiority of supervised methods over unsupervised methods and
demonstrates that the two-stage learning method is an e�cient and reliable approach
for anomaly detection in machine processes. It outperforms conventional supervised
and unsupervised methods as well as handcrafted feature models, in terms of robust-
ness and generalizability, using a very limited annotated dataset which reduces the
labeling cost significantly.
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kurzfassung

Angetrieben von der digitalen Transformation und den neuesten Fortschritten im
industriellen Internet der Dinge entwickeln sich industrielle Prozesse wie Qualität-
skontrolle und Maschinenüberwachung in Richtung intelligenter Automatisierung und
höherer Produktivität. Aktuelle Errungenschaften auf dem Gebiet der Signalverar-
beitung haben zu vielversprechenden modernen datengesteuerten Techniken für die
Überwachung von Maschinenprozessen geführt.

Allerdings sind reale Produktionsanwendungen angesichts der industriellen Her-
ausforderungen komplex und erfordern ein erhebliches Maß an Fachwissen, von
den frühen Phasen der Datenbeschriftung bis hin zur Extraktion relevanter Merkmale
aus Sensordaten. Darüber hinaus leiden datengesteuerte Modelle unter mangelnder
Skalierbarkeit und Robustheit gegenüber Datendrift und hoher Prozessvielfalt.

Um die Herausforderungen in der Fertigung zu bewältigen, werden in dieser
Arbeit verschiedene Deep-Learning-Methoden für verrauschte industrielle Zeitrei-
hendaten untersucht. Die Forschung untersucht zunächst die verschiedenen in-
dustriellen und externen Hürden, die in realen Anwendungen auftreten, und stellt
einen neuen Benchmark-Datensatz vor, der diese Herausforderungen berücksichtigt.
Im zweiten Teil wird eine eingehende Studie über unüberwachte Deep-Learning-
Methoden durchgeführt und eine neue Deep-Learning-Architektur vorgeschlagen, die
sich durch eine geringe Anzahl von Parametern und eine umfassende Fähigkeit zur In-
formationsextraktion auszeichnet. Die unsupervised trainierten Modelle werden dann
in eine zweistufige Lernmethode eingebettet, die den Lernmechanismus unter Ver-
wendung eines begrenzten Satzes von Annotationen verbessert. Die Ergebnisse der
Architekturstudie zeigen, dass bei verrauschten Zeitreihendaten die Breite der Netzw-
erkarchitektur ein essentieller Parameter ist, bei dem die Leistung von breiten Netzw-
erken die von tiefen Netzwerken übertri�t. Die Studie bestätigt auch die Überlegenheit
supervised Methoden gegenüber unsupervised Methoden und zeigt, dass die zweistu-
fige Lernmethode ein e�zienter und zuverlässiger Ansatz zur Erkennung von Anoma-
lien in maschinellen Prozessen ist. Es übertri�t traditionelle Supervised und Unsu-
pervised Methoden sowie handgefertigte Merkmalsmodelle in Bezug auf Robustheit
und Verallgemeinerbarkeit, wobei ein sehr begrenzter annotierter Datensatz verwen-
det wird, der die Kosten für das Labeling erheblich reduziert.
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1 Introduction

Steered by technological progress, the industrial field has experienced a series of rev-
olutions in recent decades with the common goal of increasing productivity, quality and
automation. Being an important pillar of the industry, quality control has also benefit
from this paradigm and is slowly shifting from being at the end-of-production testing
station to the production cell.

Thanks to advances in the Industrial Internet-of-Things (IIoT) and the proliferation
of sensors in every machine and component, quality inspection becomes possible
instantaneously during production and defects that were previously undetectable are
revealed [4, 22]. This reduces the likelihood of human error, and ensures consistency
in the quality of the product.

This research is not to eliminate manual labour in the quality control process, but
on the contrary to empower the control engineer with analytical methods to support
quality control and move towards augmented intelligence where human and artificial
intelligence would partner together.

1.1 Motivation

Significant developments in artificial intelligence (AI) and, in particular, signal process-
ing methods have further advanced the idea of smart manufacturing by means of data-
driven methods designed to support online and o�ine machine monitoring. These
techniques have the potential to analyse large amounts of data from machines in real
time and identify potential faults and anomalies.

However, being a critical topic, quality control tools require very high precision and
reliability. In industries such as the automotive industry, where customer safety is of
highest importance, there are stringent production control measures in place to ensure
the quality and safety of the automotive systems. Although state-of-the-art data-driven
models have shown promising results in the scientific field, they often do not meet
the high expectations in real-world application [51]. The primary challenge faced by
AI applications in manufacturing is data drift. Data drift refers to the change in the
input data over time or between di�erent systems, which leads to model degradation
[20, 45]. Apart from the issue of data drift, one of the significant challenges faced by
AI applications in the industrial sector is the requirement for expert human input and
domain knowledge.

A high level of human expertise is required to annotate events in noisy time-series
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1 Introduction

(TS) data and extract meaningful patterns. Annotating refers to the process of labeling
specific time intervals or sequences in the data that correspond to specific events and
actions. For example, in the context of process monitoring, events could include the
start and end of a specific step in the process, or the occurrence of a particular anomaly
during production.

Identifying relevant information and patterns from the TS data is commonly referred
to as "Feature Extraction" and is crucial for e�ective process and machinery monitoring,
as the derived features must be relevant and representative for the specific application
with minimal loss of information. In the context of noisy TS data, examples of features
are statistical patterns such as standard deviation, peak-to-peak, kurtosis, ect. It is
important to note that the task of feature extraction also consists of a number of data
manipulation steps to ensure that the data is in a suitable format for analysis, such as
data filtering, which aims to remove unwanted noise or irrelevant information, and data
transformation, which converts the raw data from one domain into another, or feature
selection analysis, which aims to select the most informative features, etc.

Industrial TS data, such as vibration data, is the most common type of data in manu-
facturing and is characterised by its noisiness and non-stationarity [7, 20]. An example
of vibration data collected is illustrated in Fig. 1.1. As previously mentioned, anno-
tating these type of data is a challenging and time-consuming task, especially when
compared to the labeling of textual or visual data. It requires deep understanding of
the underlying physical process, as well as expertise in data analysis.

Figure 1.1: Example of noisy and non-stationary time-series data: Vibration data with a sam-
pling rate of 2 kHZ

The TS data addressed in this thesis are collected from Computer Numerical Con-
trol (CNC) machines (see Fig. 1.2), which are characterised by their high accuracy,
robustness and longevity. These characteristics add complexity to the application in
several ways. Firstly, the aging of machine components over time is a common occur-
rence and leads to changes in the machine’s behavior and thus to data drift. Secondly,
high accuracy and robustness involves a low rate of failures such as chip jamming, tool
breakage, or improper tool clamping, etc. [51]. This leads to a large unbalance be-
tween the normal and abnormal samples.

To address these challenges, deep learning methods are investigated in this thesis.
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1.1 Motivation

Figure 1.2: Overview of the extreme environment during high-speed manufacturing in CNC
machines [56].
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1 Introduction

Deep Learning (DL) has shown promising results in computer vision, natural language
processing, and speech recognition. Their ability to learn from large amounts of data
and extract meaningful features can be of great benefit to industrial applications by
reducing the need for manual feature engineering and improving the performance and
e�ciency of process monitoring techniques.

However, their application in industrial sensor data is characterized by its non-
acceptance due to the "black box" nature and lack of interpretability of these methods
[15, 52]. The application of DL methods to noisy TS data is further hampered by the
lack of annotated data and pre-trained Feature Extractors (FEs) which can enhance
the robustness and accuracy of the model. In comparison to other domains, such
as computer vision where large datasets with labeled data are readily available, the
manufacturing domain has fewer annotated datasets, making it challenging to train DL
models. This results in the need for data collection and annotation, which can be a
time-consuming and expensive process.

In this research work, we address the topic of feature extraction on noisy industrial
TS data and propose methods to tackle the lack of pre-trained FEs by utilizing zero-
label and limited labeled data.

1.2 Research Questions

The aim of this research is to improve the application of machine learning methods
in real-world machine monitoring applications by reducing the need for domain knowl-
edge and data labeling overheads, and investigating the generalization and robustness
capabilities of deep learning techniques. Due to the lack of publicly available datasets
from real-world production, this work first contributes with a novel benchmark dataset
for machine monitoring which incorporates the real-world challenges such as data drift
and the high variety of processes. This dataset will be used as benchmark to answer
the research questions. The main research questions of this dissertation are the fol-
lowing:

RQ 1: What are the real-world challenges with regard to data-driven machine

monitoring?

Data-driven techniques face several challenges in the field of industrial health
monitoring caused by the extreme environment and complexity of the pro-
cesses. The answer to this research question highlights the key challenges
to consider when evaluating and validating data-driven models for industrial
applications.

RQ 2: Can handcrafted features extracted from industrial time-series data be

bypassed by learned features extracted using deep learning techniques?

Current state-of-the-art models rely on domain experts to extract meaningful
features from raw industrial data and are therefore very application specific. DL
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1.3 Dissertation Structure

methods reduce domain knowledge and take the raw data as input to extract
learned features. The answer to this research question delivers a more generic
methodology that minimizes the required domain expertise and increases the
scalability on unseen applications.

RQ 3: Do depth and width of state-of-the-art DL blocks improve the feature

learning of noisy time-series data?

Advances in the field of DL o�er a variety of DL blocks and layers, from con-
ventional convolutional blocks to more complex blocks. As I investigate DL
feature extraction methods for noisy TS data, this research question provides
an in-depth analysis of di�erent DL blocks and their performance, taking into
account manufacturing requirements.

RQ 4: Does fine-tuning pre-trained FEs improve performance and robustness

in the context of noisy time series data?

In a real-world scenario, huge amounts of TS data are available in production,
and in most cases, only a limited set of data is labeled. Research question
4 addresses the fine-tuning of pre-trained models and their ability to improve
based on a limited set of labels. It provides a training methodology with a limited
amount of labeled data and a quantitative overview of the annotations required
to achieve satisfactory performance.

1.3 Dissertation Structure

As mentioned in the previous sections, this dissertation aims to overcome existing
challenges in machine monitoring applications by investigating DL methods for noisy
TS data. The research has been divided into four main chapters and the structure
is illustrated in Fig.1.3 . Chapter 2 discusses the latest advancements in the scien-
tific field. Furthermore, the fundamental concepts and methods used in this thesis
are presented. Chapter 3 describes the experimental setup and case study of the
thesis. RQ1 is answered in this chapter through an investigation of ML challenges
in manufacturing, which are then embedded in the experimental dataset. Chapter 4
introduces the research on feature learning by presenting the results of unsupervised
feature learning methods. An intensive investigation of state-of-the-art DL architec-
tures addresses RQ3 and an evaluation of the performance of unsupervised models
compared to handcrafted FEs partially addresses RQ2. Chapter 5 extends the feature
learning research by examining the performance of few-shot learning methods in com-
bination with unsupervised learning methods, thus answering RQ2 and RQ4. Finally,
a concluding chapter summarises the findings of this thesis and provides an overview
of future work.
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Efficient Deep Feature Learning for 
Noisy Industrial Time-Series Data

Fundamentals & literature 
review

(Chapter 2)
Methodology & results Conclusion & future work
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Feature learning methods 
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(Chapter 5)
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Figure 1.3: Overview of the dissertation structure.
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2 Fundamentals and Contemporary

Developments

Encouraged by the outstanding results in various fields, Machine Learning (ML) in
manufacturing has attracted great interest, with machine monitoring emerging as a
prominent trend. In this chapter I present the fundamental and theoretical concepts of
this thesis as well as the latest achievements of machine monitoring systems and ML
in manufacturing in a broad perspective. In each main chapter, detailed related work
and background information can be found.

2.1 Machine Monitoring

Highly automated machining centers are one of the main pillars of current industry
thanks to their high e�ciency in mass production. Nevertheless, failures during ma-
chining such as tool breakage, improper tool clamping, chatter, are inevitable and mi-
nor deviations in the final product result in significant costs and time-consuming rework
and scrap [4, 51]. With the goal of automating fault detection and reducing downtime,
monitoring of machining systems and processes has been intensively researched, re-
sulting in a variety of approaches.

2.1.1 Classification of monitoring techniques

Maintenance and management of complex process equipment and manufacturing pro-
cesses have become imperative in modern industry. The major objectives are to en-
sure the human safety and the environment, as well as to guarantee the timely pro-
duction and delivery of products that meet high quality standards [2]. Additionally,
the demand for cost-e�ective solutions grows, leading to a need to prioritize energy
e�ciency and environmentally friendly practices in industrial processes. This neces-
sitates the development of systems that can optimize equipment performance and
promote sustainable industrial processes [17].

In machining maintenance, three types of maintenance can be identified: reactive,
preventive, and predictive [50]. Reactive maintenance is performed when a machine
fails and requires immediate attention, leading to high expenses and decreased pro-
duction availability. Preventive maintenance is done periodically to replace compo-
nents, ensuring the machine remains in optimal condition. It increases the produc-
tion availability but at higher costs. Predictive maintenance, based on machine sen-
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2 Fundamentals and Contemporary Developments

sory data, allows for fault diagnosis and predicting remaining useful life which induces
costs reduction and improving production availability. Predictive maintenance is often
referred to as "condition monitoring", which involves the identification of deviations or
changes from the typical operating state of a machine.

Process condition monitoring, often referred to as "quality monitoring" or "quality
control," is a distinct aspect of condition monitoring. Process monitoring focuses on
monitoring the performance of the machining process to ensure that it meets the de-
sired quality standards.

The case study presented in this thesis belongs to the category of process moni-
toring. However, the dataset provided in this work can also be utilized for condition
monitoring research, such as examining the degradation of machining tools thanks to
the wide variety of tools available and the presence of a challenging real-world data
drift.

2.1.2 Time-series data in machine monitoring

State-of-the-art research on CNC machine health monitoring has explored various
types of data, among them temperature, vibration, acoustic emissions, and cutting
force, recorded with thermocouples, accelerometers, microphones, and dynamome-
ters, respectively. The most commonly used type of TS data in machine monitoring is
the cutting force, as it perfectly reflects the condition of the machine and has a high
measurement accuracy. Cutting force has been used for machine monitoring in sev-
eral researches, such as real-time chatter detection for milling processes [72], and
tool condition monitoring and life cycle prediction [24, 48, 69]. However, it is measured
using dynamometers, which are sensitive to the extreme environmental conditions of
CNC machines and are characterised by their high cost [55].

Being the second most common type of time series data in machine monitoring, vi-
bration data generated by accelerometers are characterised by their low cost and low
power consumption [26]. It is widely used in process condition monitoring to detect
process anomalies [41], breakage [9], wear [30], chatter [18, 33], surface roughness
[31], etc. However, vibration data is characterized as noisy, nonstationary, and nonlin-
ear and requires robust expertise to initially label the data. This requires a significant
amount of e�ort and a high degree of accuracy to avoid mislabeling that leads to degra-
dation of the subsequent learning process [57].

In addition to vibration signal and cutting force, acoustic emission (AE) signal is
widely used in health monitoring [32, 49]. Nevertheless, AE sensors are considered
sensitive to the production environment and require meticulous calibration to avoid
undesirable noises [14]. In addition, visual data obtained from optical microscopes
and machine vision technologies have yielded some promising results in research [23,
43]. However, these techniques face a major challenge when dealing with a real-world
environment where disturbances from the cutting fluid and chips a�ect the data quality
and thus the performance of the models [14].
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2.2 Data-Driven Machine Monitoring

In this thesis, vibration data obtained from accelerometers mounted in the machines
is used as monitoring method. This is first because of its low cost, second because of
its robustness against extreme environmental conditions and third because of its high
information content compared to other data sources [41].

2.1.3 Open-source datasets

Open source datasets play a critical role in advancing research and development in
a variety of fields. In the manufacturing industry, the availability of high-quality and
comprehensive datasets is equally important to drive innovation and advances in ML
and industrial analytics.

Although the availability of open-source datasets in the industrial TS field is relatively
limited compared to other domains, several datasets have been made accessible to the
research community. A good collection of industrial and manufacturing-related data,
such as sensor data from machining processes, quality control measurements, and
equipment performance data have been released at the University of California UCI
[3]. In 2011, Randall et al. [53] released a fault diagnosis and condition monitoring
dataset for rotatory machinery, comprising vibration and temperature sensor data col-
lected from bearings. More recently, the University of Michigan published a machining
condition monitoring dataset, specifically focused on detecting tool wear and clamping
failures in milling machines [46]. Additionally, there is a similar milling dataset available
that allows for the study of tool wear using three types of sensors: acoustic emission,
vibration, and current [1]. The University of Paderborn has similarly published a widely
researched dataset for milling systems [37]. This dataset includes a series of machin-
ing parameters recorded during milling operations, including cutting forces, spindle
speed and feed rate.

The existence of these datasets opens up opportunities for numerous studies in the
field of machine monitoring. However, it should be noted that these datasets have
been collected from experimental setups over a relatively short period of time, which
does not fully capture the challenges and complexities of real-world scenarios, such
as data drift over time and the natural degradation of machining components. In order
to address this limitation and facilitate research on scalability and robustness of data-
driven methods, this thesis introduces a dataset collected from real-world production
over a period of two years, providing a valuable resource for future research.

2.2 Data-Driven Machine Monitoring

Driven by the digitization of the industrial world, data-driven models have overtaken
traditional physical models in manufacturing. Due to the complexity and noise of man-
ufacturing systems, traditional monitoring systems fail to model complex and flexible
dynamic or rule-based systems when used in the real-world environment [80]. In con-
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2 Fundamentals and Contemporary Developments

trast, data-driven models such as ML models learn from historical data through extract-
ing useful information and are distinctive by their adaptability and continuous learning.

2.2.1 Traditional machine learning for industrial time-series

ML methods have been widely used in manufacturing over the past few decades. Tra-
ditional ML methods basically start with a preprocessing phase, followed by a feature
extraction and selection phase, and a final decision making phase [13]. The prepro-
cessing phase aims to clean and standardize the sensory input data using signal pro-
cessing techniques such as noise reduction, amplification, interpolation, normalization,
etc. The feature extraction phase is the most fundamental step, since it consists in ma-
nipulating the noisy input data and constructing a set of features that contains the most
relevant information for the decision-making function, thus the accuracy of the model
strongly depends on the extracted features [4].

Feature extraction

In machine monitoring, the handcrafted features are divided into time domain, fre-
quency domain and time-frequency domain. Time domain features are widely used
in time series ML and extract relevant information from the raw data, such as mean,
peak-to-peak, root mean square (RMS), standard deviation, skewness, kurtosis, tooth
frequency, power spectrum, etc. However, these features have a poor robustness and
are sensitive to disturbances [59]. Among the features in the frequency and time-
frequency domain, one can cite the Fast Fourier Transform (FFT) and the Short-Time
Fourier Transform (STFT), which are among the most commonly used signal transfor-
mations and have proven to be very powerful, especially in predicting tool wear [51].
However, extracting these features, e.g., identifying the spectral bands sensitive to tool
wear, is very challenging, time-consuming, and requires a lot of expertise [18, 51]. This
makes it an application-specific and non-scalable process.

With the goal of automating the process and reducing human intervention, Christ
et al. [10] developed a ML tool called TSFRESH (Time Series FeatuRe Extraction
on basis of Scalable Hypothesis tests) that allows automatic extraction and selection
of TS features given statistical methods, features of the sampling distribution, and ob-
served dynamics. These features capture various aspects of the time series data, such
as trend, seasonality, and statistical properties and feature selection is made using a
scalable hypothesis tests. The main drawback of this method remains the high com-
putation time, especially when it comes to high frequency data such as vibration data.
Additionally, TSFRESH relies on statistical hypothesis tests to select relevant features.
It assumes that the underlying data distribution and statistical properties are consis-
tent. In cases where the data violates these assumptions or shows non-stationarity,
which is common in noisy TS data, the selected features may not accurately capture
the relevant patterns.
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2.2 Data-Driven Machine Monitoring

Within the research community, there are alternative options available to TSFRESH.
One such alternative is TSFEL (Time Series Feature Extraction Library), introduced
by Barandas et al. [6], which o�ers a similar feature extraction capability. TSFEL
aims to enhance computation time and provides an extensive selection of features
encompassing statistical, frequency, and information-theoretic measures across var-
ious temporal, statistical, and spectral domains. Fulcher et al. [19] have introduced
a library known as HCTSA (Highly Comparative Time-Series Analysis) with the pur-
pose of aiding in the exploration of new features and the advancement of novel TS
analysis techniques. While TSFRESH focuses on automated feature extraction with
a focus on e�ciency, HCTSA aims to enhance the understanding and analysis of TS
data facilitating comparison and exploration of a wide range of features.

Similar to TSFRESH, these approaches encounter computational challenges when
dealing with high-frequency TS due to the extraction of a large number of features.
Moreover, the performance of handcrafted feature extractors relies on the quality and
preprocessing of the input TS data. The presence of noise, outliers, or missing val-
ues can compromise the reliability and interpretability of the extracted features. An-
other limitation of these tools is their reliance on predefined sets of feature extraction
methods, which may not cover all possible feature engineering techniques or specific
requirements of a particular application.

Decision making

In the conventional ML pipelines for machine monitoring, the final stage involves the
application of a decision-making method to classify or make predictions based on the
handcrafted extracted features. Support Vector Machines (SVMs) have emerged as
one of the widely used methods in the literature for this purpose [11, 26, 42, 70]. SVMs
are advantaged thanks to their strong performance in high-dimensional feature spaces,
which is particularly relevant in machine monitoring tasks where a large number of
features are extracted from sensor data. One key advantage of SVMs is their ability to
provide insights into the importance of di�erent features in the classification process,
thus enhancing the interpretability of the decision-making results [11].

Another commonly used method in condition monitoring is Kernel Density Estimation
(KDE) [21, 35, 60, 77]. Zhang et al. [77] compared the performance of KDE with
SVMs in their research and demonstrated the superiority of KDE. They proposed a KDE
method utilizing Kullback-Leibler divergence to quantitatively measure the similarity
between two estimated distributions, enabling e�ective classification of the extracted
features. The utilization of KDE in condition monitoring showcases its applicability and
e�ectiveness in capturing complex patterns and variations in the monitored systems.

Decision Trees have been applied in various fault diagnosis applications for induc-
tion motors, gearboxes, hydraulic pumps, and other systems over the course of several
decades [36]. These applications have demonstrated the benefits of Decision Trees,
including their transparency and interpretability. However, there is still room for im-
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provement in terms of their generalization performance. Furthermore, Hidden Markov
Models (HMMs) knew significant traction, particularly in manufacturing, due to their
ability to learn patterns in an unsupervised manner, making them suitable when obtain-
ing labels is challenging [16, 47, 74]. HMMs are characterized by modeling sequential
data, allowing them to capture the temporal dependencies and dynamics present in
process variables over time and thus understanding the evolving nature of the moni-
tored system and detecting deviations and anomalies.

Although traditional ML methods have demonstrated their e�ectiveness in machine
monitoring and condition monitoring, they often face limitations in terms of generaliza-
tion capabilities and their performance heavily relies on the quality and relevance of
the handcrafted features that are extracted from the data. Consequently, the success
of the models is closely tied to the expertise and domain knowledge of the feature
engineering stage.
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Figure 2.1: Overview of the intelligent framework: Comparison of the traditional versus DL
techniques [68].

2.2.2 Deep learning for industrial time-series

With the increasing volume of manufacturing data and the need to handle the complex-
ities of feature extraction, there has been a growing interest in DL methods in several
fields, including the manufacturing industry research community [51, 57, 80]. Thanks
to its data-driven nature, nonlinearity, adaptability, automatic noise reduction, and hi-
erarchical representation learning, DL has proven to be a powerful approach to handle
large amounts of data and build robust feature extractor in an end-to-end manner [59,
68]. As shown in Fig. 2.1, in contrast to classical ML solutions, DL builds deep struc-
tured models that start learning from the initial input phase to the final decision phase,
tremendously reducing the complexity of the learning framework. The output model
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learns the distribution of the input data and, through its hierarchical learning framework,
starts extracting low to higher level features, undergoing multiple data transformations.

Advancements and architectures

In the field of machine monitoring, DL architectures have received significant attention
in recent years. Various DL models have been explored to address the challenges
of analyzing noisy industrial data, particularly vibration data characterized by shift-
variance, and fault detection applications for rolling element bearings, gears, motors,
and hydraulic pumps have benefited from these advancements [80].

A very common architecture is the 1D CNN (Convolutional Neural Network) which
has demonstrated remarkable performance in handling such noisy TS data with limited
preprocessing steps and wide first-layer kernels [79]. Janssens et al. [28] conducted
a comparative analysis between the performance of features learned by convolutional
layers and manually extracted features in a machining fault diagnosis application. Their
study demonstrated an improvement in accuracy when using CNN-learned features
obtained through fully supervised training manner. Building upon the performance of
the 1D CNN, researchers have further focused on designing architectures specifically
tailored for TS data.

For instance, Li et al. [39] introduced the WaveletKernelNet architecture, which
incorporates wavelet transformations directly into the convolutional layers. This ap-
proach takes advantage of wavelet analysis, enabling the extraction of both time and
frequency information from the signals. However, it is important to note that this method
also demands considerable computational power due to the additional transformation
involved.

Leveraging the power of convolutional operations to capture temporal dependencies
and patterns in sequential data, Temporal Convolution Networks (TCNs) [34]. TCNs
use dilated convolutions to capture long-range dependencies e�ectively which o�ers
a larger receptive field and captures information across di�erent time scales. TCNs
present a robust alternative to traditional Recurrent Neural Networks (RNNs) and their
variants, such as Long Short-Term Memory (LSTM) networks, o�ering notable advan-
tages in terms of computational e�ciency and processing speed.

Another common convolutional based architectures is the Inception architecture
which aims to capture local and global patterns in the input data using multiple par-
allel convolutional layers with di�erent kernel sizes [61]. The Inception architecture
employs a combination of di�erent sized convolutions along with pooling operations to
extract meaningful features at di�erent scales. This architecture was originally intro-
duced for image classification tasks in the field of computer vision [62]. However an
extension of the Inception architecture specifically designed for TS classification called
InceptionTime has been proposed by Fawaz et al. [27]. It adapts the principles of the
Inception architecture to the time domain by replacing the 2D convolutions with 1D
convolutions having larger kernel sizes as shown in 2.2. The inclusion of a bottleneck
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layer in the network architecture serves the purpose of dimensionality reduction, result-
ing in a more parameter-e�cient model that mitigates the risk of overfitting, particularly
when working with limited training data. This design proves to be highly e�ective in the
analysis of time series data, as it facilitates the extraction of pertinent features from
various levels of detail. By capturing both short-term and long-term dependencies, the
inception architecture represents a good choice for robust feature extraction for TS
data.
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Figure 2.2: Overview of the multi-level convolutional structure employed in the InceptionTime
network [27]. K represents the kernel size, and S corresponds to the stride used in the convo-
lutional layers.

Other DL architectures intensively used in machine monitoring are Multi-Layer Per-
ceptions (MLPs) [12], known for their feedforward architecture nature, Deep Belief
Networks (DBNs) [18, 38], known for their hierarchical data representation, and mostly
Autoencoders (AEs) [29, 44].

AEs are one of the most commonly used types of DL methods in manufacturing
[73]. They consist of two main components: an encoder and a decoder as illustrated
in 2.3. The encoder takes the input data and maps it to a lower-dimensional latent
space representation, while the decoder reconstructs the input data from this latent
representation. The representation learning is achieved using a reconstruction loss
function that measures the di�erence between the original input and the reconstructed
output.

AEs are commonly employed for detecting anomalies when the model struggles to
accurately reconstruct the input "anomalous" data. This utilization highlights their ef-
fectiveness in identifying deviations from normal behavior. However, another notable
advantage of AEs lies in their ability to learn meaningful representations of the data,
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which enhances their potential for feature extraction and learning the underlying pat-
terns in input data. In fact, the latent space representation, also known as the bottle-
neck layer, acts as a compressed and encoded version of the input data. It typically
has a lower dimensionality than the input and serves as a compressed representation
that captures the essential features of the data.

Figure 2.3: Overview of the basic structure of autoencoders.

2.2.3 Limited data in machine monitoring

Obtaining su�cient faulty data to train machine monitoring models poses challenges
due to the infrequency of faults, particularly in high-automated machines, as well as the
cost and labor associated with conducting fault simulation experiments [40, 78]. Zhao
et al. [81] evaluated the performance of the popular architectures on several industrial
TS benchmark datasets and concluded that DL-based methods outperform traditional
ML methods on several tasks, but only when the training dataset is relatively large. In
response to this challenge, researchers have been actively exploring novel methods
to train data-hungry DL models using limited amounts of annotated data.

One approach involves the development of data augmentation techniques [63].
These techniques aim to enhance the training data by artificially expanding its size
and diversity, thereby providing the DL models with a larger and more representative
dataset to learn from. Um et al. [67] conducted a study in the field of sensor data
where they implemented di�erent data augmentation techniques, including time warp-
ing, random scaling, and noise addition. They demonstrated that these strategies were
e�ective in augmenting the limited available data, leading to improved model training
with enhanced robustness and accuracy. Additionally, emerging techniques utilizing
generative adversarial networks (GANs) showed encouraging outcomes in address-
ing the class imbalance issue in industrial machining data. These approaches involve
generating faulty samples from a combination of data distributions, e�ectively restor-
ing balance and enhancing the performance of the models [8, 75, 81, 82]. As an
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example, Zhou et al. [82] proposed a global optimization GAN that generates more
qualified samples for fault diagnosis, improving the accuracy of the model for residual
useful life forecast. However, GANs, and data augmentation techniques in general,
have certain disadvantages. These include the potential loss of original information as
artificial patterns or distortions are introduced into the data, as well as an increased
risk of overfitting, particularly in cases where the data samples from the same process
type is highly similar especially in the repetitive manufacturing scenarios [71].

In addition to data augmentation, successful advancements have been made in un-
supervised learning field, such as the previously mentioned autoencoders, which have
proven e�ective in learning features from no labeled data in the manufacturing domain
[42]. Using a CNN based AE, Shaheryar et al. [58] built a semi-supervised approach
for fault identification in rotatory machines. The proposed method presents a fine-
tuned ensemble of AEs trained separately for each vibration axis signal and proved to
be robust against noise present in vibration data. In the same domain, Huang et al [25]
evaluated RNN-based AEs over CNN-based AEs in the context of feature learning and
showed the superiority of RNNs in data compression performance and the CNNs in
their generalization ability. In [5], the authors proposed an LSTM-based approach that
utilizes multiple autoencoders (AEs) to estimate the remaining useful life of equipment
for condition-based maintenance planning. This approach demonstrated a significant
reduction in preventive stoppages. However, the e�ectiveness of the approach is de-
pendent on the availability of high-quality datasets, which can be challenging to obtain
in real-world applications. Furthermore, AEs are susceptible to overfitting when trained
on a limited dataset due to their training process that involves minimizing the recon-
structed empirical risk [36].

Another technique developed specifically for dealing with the scarcity of available
data is Meta-Learning, also referred to as learning to learn [63]. It involves training
a model on multiple small tasks with a limited number of training samples per class.
By doing so, the model learns to generalize from past tasks and quickly adapt to new,
unseen tasks, resulting in enhanced performance and the ability to generalize e�ec-
tively with limited annotated data. Consequently, Meta-Learning shows great potential
as a valuable approach for machine monitoring applications where fault samples are
very limited. Recent research in this field further supports its e�ectiveness and rele-
vance [78]. In the field of rolling bearing fault diagnosis, Zhang et al. [76] proposed a
siamese-based few-shot approach to e�ectively diagnose faults by measuring feature
vector similarity. Their method demonstrates superior performance compared to the
baseline model, particularly for new unseen fault types or working conditions. Simi-
larly, Ren et al. [54] introduced a novel method called the capsule auto-encoder model,
combining few-shot learning and autoencoder capabilities. This model extracts mean-
ingful feature capsules and utilizes dynamic routing to represent health indices, show-
casing its ability for few-shot learning and quick updating in fault diagnosis and noisy
environments.

Overall, these state-of-the-art methods address the challenges of limited data avail-
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ability by enhancing the training data, extracting meaningful features from unlabeled
data, and enabling models to generalize and adapt to new classes or faults with min-
imal labeled examples. However, they still have some limitations such as lack of ro-
bustness, and interpretability or rely on performant pre-trained FEs trained on large
datasets.
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3 ML Challenges in Manufacturing

The motivation for this research lies in the poor performance of data-driven machine
monitoring methods in manufacturing applications. As mentioned in the previous sec-
tion, the inferior performance in real-world is mainly due to the extreme industrial en-
vironment and its challenges. The first journal paper answers the research question
1 by defining and examining these challenges caused by environmental and indus-
trial factors. These challenges have been embedded in a novel benchmark dataset
and made publicly available at https://github.com/boschresearch/CNC
_Machining. A detailed description of the dataset as well as its main contributions
to the research community can be found in the paper.

In addition to the challenges, the paper presents the experimental setup of the thesis.
It illustrates the intelligent edge-to-cloud data collection system used in this work, which
enhances collaboration between the domain experts on the plant side and the data
scientists on the cloud side. The experimental setup is the same as used for the rest
of this research, and the ML models developed in the next sections will be implemented
and evaluated in the aforementioned architecture.

My contributions in this work are the conceptualization of the data collection system,
the data collection and annotation of the di�erent measurements, the state-of-the-art
research of the existing datasets, the formulation of the challenges as well as the anal-
ysis of the obtained dataset. The research work was supervised by Klaus Diepold.
Michael Feil was involved in the implementation of the edge-to-cloud modules. In the
paper, he also contributed to the Software Architecture section which was reviewed
and reworked by me to meet the post-submission requirements of the reviewers.
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Manufacturing processes have undergone tremendous technological progress in recent decades. To meet the agile philosophy in industry, data-
driven algorithms need to handle growing complexity, particularly in Computer Numerical Control machining. To enhance the scalability of
machine learning in real-world applications, this paper presents a benchmark dataset for process monitoring of brownfield milling machines based
on acceleration data. The data is collected from a real-world production plant using a smart data collection system over a two-years period. In this
work, the edge-to-cloud setup is presented followed by an extensive description of the di↵erent normal and abnormal processes. An analysis of the
dataset highlights the challenges of machine learning in industry caused by the environmental and industrial factors. The new dataset is published
with this paper and available at: https://github.com/boschresearch/CNC_Machining.
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1. Introduction

Manufacturing equipment is characterized by its long-
lasting capability of up to 20 or more years [1] and commu-
nicating with brownfield components and controllers can be a
barrier to scalable real-time applications. Development towards
Industry 4.0, and more specifically Cyber-Physical Systems and
Internet of Things (IoT), paved the way for digitalization and
retrofitting of old machinery with connected sensors, edge in-
telligence, cloud connection, etc. [2, 3]. One of the most robust
and long-standing pillars of the production chain are Computer
Numerical Control (CNC) machines.

Highly automated machining centers are characterized by
their high-speed manufacturing but also by their complexity.
The extreme environmental conditions and the high-speed pro-
cessing engender operation failures such as tool breakage, im-
proper tool clamping or chip jamming [4]. The high variety in
tool types and tool operations (OP), in terms of shape, geome-
tries, materials, coatings, surface finishing and physical changes
over time, rises strong robustness and generalization challenges

for traditional analytics [4]. The complexity increases with the
discrepancy between the same processes caused by changes in
the machining parameters and maintenance methods, such as
lubrication of components.

Addressing these challenges, a wide variety of research in
tool health monitoring [5, 6] and few in process quality [7, 8]
has been performed. To enhance the research in the field, some
machining datasets have been published. One of them is the
SMART LAB Milling Dataset [9], which has been collected at
the University of Michigan over 18 di↵erent experiments from
direct measurements. The goal of the dataset is to investigate the
tool wear detection as well as detection of inadequate clamping.
A second dataset is from the NASA Milling Dataset [10], which
studies the tool wear based on three di↵erent types of sensors,
acoustic emission, vibration and current. However, both exper-
iments were conducted in a laboratory during a short limited
time frame. To the best of the authors knowledge, there exists no
CNC research dataset from a real production environment col-
lected over a long period of time and from di↵erent machines.
These conditions are essential to build robust data-driven mod-
els and improve their generalization and thus their reliability in
industry.
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lubrication of components.

Addressing these challenges, a wide variety of research in
tool health monitoring [5, 6] and few in process quality [7, 8]
has been performed. To enhance the research in the field, some
machining datasets have been published. One of them is the
SMART LAB Milling Dataset [9], which has been collected at
the University of Michigan over 18 di↵erent experiments from
direct measurements. The goal of the dataset is to investigate the
tool wear detection as well as detection of inadequate clamping.
A second dataset is from the NASA Milling Dataset [10], which
studies the tool wear based on three di↵erent types of sensors,
acoustic emission, vibration and current. However, both exper-
iments were conducted in a laboratory during a short limited
time frame. To the best of the authors knowledge, there exists no
CNC research dataset from a real production environment col-
lected over a long period of time and from di↵erent machines.
These conditions are essential to build robust data-driven mod-
els and improve their generalization and thus their reliability in
industry.
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1. Introduction

Manufacturing equipment is characterized by its long-
lasting capability of up to 20 or more years [1] and commu-
nicating with brownfield components and controllers can be a
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Internet of Things (IoT), paved the way for digitalization and
retrofitting of old machinery with connected sensors, edge in-
telligence, cloud connection, etc. [2, 3]. One of the most robust
and long-standing pillars of the production chain are Computer
Numerical Control (CNC) machines.

Highly automated machining centers are characterized by
their high-speed manufacturing but also by their complexity.
The extreme environmental conditions and the high-speed pro-
cessing engender operation failures such as tool breakage, im-
proper tool clamping or chip jamming [4]. The high variety in
tool types and tool operations (OP), in terms of shape, geome-
tries, materials, coatings, surface finishing and physical changes
over time, rises strong robustness and generalization challenges

for traditional analytics [4]. The complexity increases with the
discrepancy between the same processes caused by changes in
the machining parameters and maintenance methods, such as
lubrication of components.

Addressing these challenges, a wide variety of research in
tool health monitoring [5, 6] and few in process quality [7, 8]
has been performed. To enhance the research in the field, some
machining datasets have been published. One of them is the
SMART LAB Milling Dataset [9], which has been collected at
the University of Michigan over 18 di↵erent experiments from
direct measurements. The goal of the dataset is to investigate the
tool wear detection as well as detection of inadequate clamping.
A second dataset is from the NASA Milling Dataset [10], which
studies the tool wear based on three di↵erent types of sensors,
acoustic emission, vibration and current. However, both exper-
iments were conducted in a laboratory during a short limited
time frame. To the best of the authors knowledge, there exists no
CNC research dataset from a real production environment col-
lected over a long period of time and from di↵erent machines.
These conditions are essential to build robust data-driven mod-
els and improve their generalization and thus their reliability in
industry.
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This paper introduces a new dataset collected during real-life
production. The data is collected from three brownfield milling
CNC machines at di↵erent time frames in a two years interval.
The first section of this paper describes the IoT system built to
retrofit the old machinery, ease the data collection and enable
parallel prediction and annotation. The second section provides
in-depth description and analysis of the dataset that will be pub-
lished with this paper. It is followed by an overview of the en-
vironmental and industrial challenges, which have been consid-
ered in a systematic way during dataset creation and annotation.
This allows the scientific community to work on solutions for
these real-world problems and provide comparable results for
benchmarking. More specifically, the dataset has been designed
to address the challenges of feature drifts between machines
and over time, the high diversity of tool operations during pro-
duction and the severe dataset imbalance in terms of number of
samples per class. To overcome these challenges, we propose
some data split scenarios which can be used in future work.

2. Experimental Set Up/ Data Acquisition System

2.1. Hardware components

To keep the research as close as possible to the industrial
scenario, the data is collected from di↵erent 4-axis horizontal
CNC machining centers during production. The machines are
processing aluminum workpieces as depicted in Figure 1. For
the data acquisition, we used an indirect method by collecting
accelerometer data from Bosch CISS sensors [11] mounted to
the rear end of the spindle housing. Other approaches opt for
mounting the sensors in the machining area [12, 13, 5, 7]. This
rear area remains una↵ected by extreme machining environ-
ment, coolant or material chips and is available for retrofitting
new sensors to brownfield machines. The sensor maintains a
constant distance to the tool center point and the three axes of
the accelerometer are in alignment with the linear motion axis
of the machine. The sensor coordinate system is indicated in
Figure 1.

Fig. 1: Schematic sketch of the experimental setup: 4-axis machining center
with mounted sensor.

Using the low-cost tri-axial CISS sensor, acceleration data is
collected with a sampling rate of 2 kHz. As mentioned in Sec-
tion 3.2.2, most relevant frequencies to monitor the machining

processes are low integer multiples (1..4) of the spindle speed.
For tool operations present in this dataset (see Table 1), these
frequencies will be in the range of 75 Hz to 1 kHz. According to
the Nyquist-Shannon theorem [14], a minimum sampling rate
of 2 kHz is su�cient to detect machine anomalies. Sampling
with this rate along the 3-axes produces an amount of 4.14 GB
per day. Such volumes of data cannot be fully stored and pro-
cessed in on-premise solutions. It demands a smart data mining
system to collect, store, annotate, process and learn from the
gathered data.

2.2. Software Architecture for Data Collection

To have reliable annotation, continuous data collection and
simultaneous Machine Learning (ML) evaluation, we require
an IoT architecture which enables:

1. central aggregation of selected anomalies and processes
across di↵erent machining centers and locations,

2. local storage and processing of raw sensor data including
event annotation by product experts,

3. aggregation of annotated data in a central database,
4. centralized training of ML models, and
5. management and deployment of models and modules from

the cloud to the edge device.

Sun et al. [15] proposes the o✏oading of the ML inferenc-
ing to on-premise servers to improve the communication e↵ort
and latency. In similiar fashion, Yigitoglu et al. [16] proposed
a framework for Fog computing. Motivated by both works
[16, 15], the data collection system presented in this work is
characterized in an edge-to-cloud architecture. The main goal
of this architecture is the simplification of data annotation, the
use of expert knowledge in the shop floor, and the centralized
storage of annotated data in the cloud. Through an anomaly de-
tector module, potential events and anomalies are pre-selected
for annotation. In this section, we outline the edge-to-cloud data
collection system.

2.2.1. Edge stack

Fig. 2: Concept and interaction of containers in the edge stack.
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The edge stack represented in Figure 2 describes the mod-
ules running in the production line on site. The modules are
managed from the cloud side by an orchestration client running
on the edge device. A messaging bus using the Message Queu-
ing Telemetry Transport (MQTT) protocol provides a standard-
ized interface for local inter-application communication. The
data gathering and annotation system involves multiple mod-
ules. Firstly, a data gathering module establishes a connection
to the accelerometer sensor and triggers the read. The data
stream is afterwards published on the message bus. Secondly,
the data stream is subscribed by a ML module, which with pre-
dictions on the stream, supports the quality check process by
pre-selecting the correct time frame for anomalies. This allows
time-delayed annotations to be entered by the end-of-line qual-
ity check, while retaining the majority of data only in the edge
time-series database. Ultimately, a dashboard allows the visu-
alization of the ML pseudo-labels and manual annotation via
the user interface. Once an event is validated by the experts,
the corresponding data segment gets acquired and queried for
upload to the cloud. The major benefit of the architecture is the
collaboration of data science and domain expertise. It allows ad-
ditionally in-place distribution of updated ML modules, which
support and improve data annotation.

2.2.2. Cloud Stack
Publishing large-scale dataset, training ML models centrally

or aggregating data from multiple edge devices require a cloud
stack. Figure 3 presents the data flow and the main components
required in the cloud. Annotated vibration fragments from edge

Fig. 3: Services and building blocks in cloud stack.

devices get streamlined to the central data storage. Using the
vibration fragments from the central data storage, the data is
segmented and preprocessed. Since annotating high frequency
data can be very challenging for human experts, verification of
correctness of the labels is essential. After verification, the ML
model is (re-)trained, gets build and registered in the Container
Registry. The edge device management communicates the new
model version to the local server. Using this paradigm, we suc-
cessfully improve our models at the edge through the continu-
ous collection of anomalies.

3. New CNC Machining Dataset

The overall goal of this paper is to enhance the scalability
of machine learning in real-world applications by presenting a
dataset containing the main challenges that hinder the reliability

of ML algorithms in the manufacturing environment. The chal-
lenges are caused on the one hand by the variation of material
components (spindle, machining tools, raw material produced,
etc.) due to wear or discrepancies in the physical structure of
parts across machines, and on the other hand by the frequent
changes in the production flow as a result of customer require-
ments and technological progress.

The following section presents the dataset and the various
process operations. We introduce how we systematically embed
the real-world challenges into the collected data.

3.1. Data Description

The data is collected in a production plant from 3 di↵erent
CNC machines (M01, M02 and M03) on a regular basis during
the time interval of October 2018 to August 2021. The time
frame is tagged as ”Month Year” and represents the 6-month
interval before the label. For example, ”Aug 2019” would refer
to the period between February 2019 and August 2019.

The machine performs a sequence of several operations us-
ing di↵erent tools on aluminium parts to work the specified de-
sign. It is important to mention that the machines produce dif-
ferent parts and the process flow changes over time. To study
the drift between machines and over time, the dataset is built
with 15 di↵erent tool operations that run on all 3 machines at
di↵erent time frames. Table 1 gives an overview on the charac-
teristics of the di↵erent operations.

Table 1 Tools operations collected from M01, M02 and M03.

Tool op-

eration

Description speed

[Hz]

feed

[mm s�1
]

duration

[s]

OP00 Step Drill 250 ⇡ 100 ⇡ 132
OP01 Step Drill 250 ⇡ 100 ⇡ 29
OP02 Drill 200 ⇡ 50 ⇡ 42
OP03 Step Drill 250 ⇡ 330 ⇡ 77
OP04 Step Drill 250 ⇡ 100 ⇡ 64
OP05 Step Drill 200 ⇡ 50 ⇡ 18
OP06 Step Drill 250 ⇡ 50 ⇡ 91
OP07 Step Drill 200 ⇡ 50 ⇡ 24
OP08 Step Drill 250 ⇡ 50 ⇡ 37
OP09 Straight

Flute
250 ⇡ 50 ⇡ 102

OP10 Step Drill 250 ⇡ 50 ⇡ 45
OP11 Step Drill 250 ⇡ 50 ⇡ 59
OP12 Step Drill 250 ⇡ 50 ⇡ 46
OP13 T-Slot Cut-

ter
75 ⇡ 25 ⇡ 32

OP14 Step Drill 250 ⇡ 100 ⇡ 34

For sake of confidentiality the tool operations order has been
shu✏ed and only a part of the production flow is present in the
dataset. Each operation in the table represents a specific process
performed by a di↵erent tool with unique parameters.

As described in the experimental set-up, the data has been
collected from the accelerometer with no further information
from the machine’s controller. Figure 4 gives an overview on
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Fig. 4: Overview of the segmentation step of the di↵erent tool operations. The
X, Y, Z acceleration axes of 4 sequential tool operations are illustrated. The tool
number is mentioned in the upper border.

the collected acceleration data from a machining sequence. The
data is then manually segmented and structured in the research
database. Having no connection to the controller hinders the au-
tomated segmentation and thus the process-wise anomaly de-
tection. A non-intrusive solution to monitor and prevent pro-
cess failures consist of windowing the data stream with a fixed-
sized window length and processing the windows steam inde-
pendently from the process ID.

3.2. Real-world Challenges

Generalization is still one of the primary challenges for in-
dustrial ML due the continuous disturbances. Driven by mar-
ket demand and technical progress, CNC machining produc-
tion processes are constantly changing with R&D advancement,
which goes along with modifications in the tool process oper-
ations. Another type of disturbance is caused by the noisy en-
vironment in the shop floor and the high imbalance of the nor-
mal/abnormal classes. This section presents the di↵erent indus-
trial challenges based on the Bosch CNC Machining Dataset
described in the previous section.

3.2.1. Environmental challenges
During machining, the di↵erent process operations are con-

ducted in high-speed, requiring a frequent mounting and un-
mounting of tools on the spindle chuck. These factors lead oc-
casionally to process failures mainly caused by tool misalign-
ment, chip clamping, chip in chuck, tool breakage, etc. To reach
the optimal product quality, after each batch an expert on the
shop floor controls the resulting workpiece in a gauging station
and annotate the process health. Nevertheless, labeling during
production is still very challenging. Due to the manual drudgery
gauging, some processes are wrongly labelled and precise an-
notations are missing. The published dataset focuses on the
quality process failures, i.e., the OK class refers to a healthy
process and NOK refers to a faulty process.

A common challenge in industrial datasets is the strong
OK/NOK unbalance, especially in process monitoring tasks.
Figure 5 shows an unbalance rate of 816:35 between the
OK/NOK in our dataset. In our real production, the amount of
OK samples are significantly higher. To provide an exemplary
dataset, a reasonable number of OK processes were selected

Fig. 5: Class distribution per process operation.

from the di↵erent time periods, which reduces the class imbal-
ance.

Besides the process failures, some condition anomalies oc-
cur and are detected only after machine maintenance. These
anomalies are caused mainly by components wear, hydraulic is-
sues, incorrect settings, etc. However, before reaching a critical
phase, a slight deterioration/change over time is seen, causing
additional noise in the vibration data. This causes a drift in the
OK class between di↵erent time frames. In addition to ageing
drift, a discrepancy between the conditions of the machines and
machine components increases the challenge in real-world ap-
plications. The within-class discrepancy over time and between
machines is studied in Figure 6.

Fig. 6: Example of feature maps of 3 di↵erent OPs reduced into 2D using prin-
cipal component analysis [17]. (a) plots the drift between the 3 machines (in
Aug 2019). (b) plots the drift between the 3 largest time frames (in M01).

Considering the data stream challenges, the raw data from
3 di↵erent processes are first snipped using a sliding window
with window length equal to 4096. This value has been de-
fined empirically, due to the nature of the collected data and
the known process steps. From each window, the most com-
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mon features for industrial time-series data are extracted using
a generic feature extractor Tsfresh [18]. This includes summary
statistics, characteristics of samples distribution and observed
dynamics. To visualize the discrepancies, the high-dimensional
features have been reduced to 2 dimensions using principal
component analysis [17]. Figure 6.a visualizes the discrepancy
cross-machines in a single time interval (Aug 2019) and high-
lights the challenge of scaling data-driven algorithms to solve
industrial tasks. In a similar manner, in Figure 6.b, the drift of
the data over time is depicted for the 3 largest time intervals
from a single machine (M01).

To encounter the mentioned challenge, generalization of the
ML models must be the main evaluation criteria. By building
the training dataset, some processes should be kept aside to
evaluate the performance of the models. The dataset published
with this paper provides suitable content and structure to en-
able ML researchers to develop more robust models for such
unavoidable environmental challenges from real life.

3.2.2. Industrial challenges
To enhance the ML generalization, our dataset presents an

example of 15 di↵erent tool operations. As mentioned previ-
ously, each OP is characterized by a unique parametrization
that results in di↵erent patterns in the time series signal, mak-
ing it di�cult to predict health status. Using the same pipeline
as in Section 3.2.1, the features are extracted from the di↵erent
OPs and the high-dimensional extracted features are mapped
in a two-dimensional space using principle component analy-
sis [17]. An overview of the reduced features is presented in
Figure 7.

Fig. 7: Feature maps of the complete dataset reduced into 2D using principle
component analysis [17].

In Figure 7, the distancing between the OKs and NOKs of
the di↵erent OPs is illustrated. Some processes of the NOK
class are easily distinguishable from the OK class. In others,
it is di�cult to distinguish between the OK class and the NOK
class due to the di↵erence in severity of the anomaly’s impact.
An example is shown in Figure 8, where a comparison between
OP07 and OP08 in time and frequency-domain is conducted. It
shows that the impact is more severe in OP07 than in OP08 and

a clear divergence between the two processes in both time and
frequency domains. However, a common observation is that the
anomaly can be detected in frequencies which are integer mul-
tiples of the spindle speed. For this example of OP07, the fre-
quency characteristics in the 200 Hz and 400 Hz regions there-
fore have visibly higher amplitude compared to the healthy pro-
cess.

Fig. 8: Comparison of 2 di↵erent tool operations: OP07 vs. OP08.

To achieve rapid processing and non-intrusive solutions,
time series signals are usually windowed at fixed length (WS).
This technique is generally used as a data augmentation tech-
nique, especially for NOK data. The drawback of segmenting
NOK data is that the label of small segments may not corre-
spond to the complete process. This e↵ect is mainly observed in
the first and last extracts, where anomalies are not present yet.
When labelling the published data, we truncated the start and
end of the OP from the NOK samples. However, this issue can
appear in the middle of the process due to fast position change.
This can be seen in Figure 9, where a small snippet from the
middle of OP08 of the OK and NOK classes matches exactly.
To encounter this issue, a reasonable choice of WS needs to be
defined.

The CNC Machining dataset provides the needed variety of
samples and classes with di↵erent levels of discrimination that
allow the research community to work on solutions in a sys-
tematic way and investigate the robustness of the data-driven
methods to industrial challenges.

3.2.3. Dataset partitioning
By publishing this dataset, we encourage the research of ML

models and learning techniques for noisy time-series data. To
realistically measure performance in the real-world challenges,
we propose three strategies for partitioning the CNC Machining
dataset. With a machine-wise partitioning, as in Figure 10.a, the
ability to perform on a new machine outside the training set
is addressed. Using time-wise partitioning, as in Figure 10.b,
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Fig. 9: Data segmentation causing faulty labels. Data taken from
”OP08 Feb2019 000” and windowed with ws = 1000. For sake of perfect over-
lap, the OK sample is cropped to the range [4650, 64231].

we address a data drift over time, by withholding some time
intervals exclusively for validation and testing.

Fig. 10: Three strategies for dataset partitioning.

We intentionally suggest doing this already for the validation
set and not only for the test set to be able to check overfitting
during training. A third option for partitioning is the application
of the same strategy on each process as in Figure 10.c.

4. Conclusion

Generalization is still a major challenge for industrial ML
applications. To overcome this limitation, we proposed in this
paper a challenging dataset from a real production plant. We
depicted our smart data collection system based on an edge-
to-cloud IoT architecture. The main benefit of this approach
is, firstly, to retrofit brownfield CNC machinery where a di-
rect measurement is extremely complicated, and secondly, en-
able the data science and domain expertise collaboration. With
the presented system, vibration data has been collected from 3
di↵erent machines over a long time-interval. The data analysis
showed that, with a low-cost accelerometer mounted in the rear
side of the machine, process anomalies are detectable. The ad-
vantage of this approach is to avoid the extreme conditions from
the front side, i.e. the machining area. Finally, to enhance ML
and machine monitoring researches, we highlighted the envi-
ronmental and industrial challenges embedded in the presented
dataset. Some dataset scenarios have been proposed to enable
the researchers to work on solutions in a systematic way. Fu-
ture research will focus on development of robust ML architec-

tures. Labeling and segmenting time-series data remain impor-
tant topics and will be further investigated.
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3 ML Challenges in Manufacturing

The patent document that follows paper 1 describes the research case study and
provides a supplementary description to the paper. The supplementary information
relates firstly to the machining process failure, referred to as "NOK" in the published
dataset. During high-speed machining of aluminium materials on CNC machines,
anomalies in the process occasionally occur, caused by material chips getting caught
between the chuck and the machining tool. The anomaly and the case study are de-
scribed and explained extensively in the patent document.

Additionally, the patent document provides an overview of the ML module used on
the Edge to support data annotation, which was mentioned in paper 1. As the focus
of the first paper is on highlighting the challenges of the open source dataset and its
analysis, the ML module used to support event annotation and detection has been
described in the following publication as a complementary disclosure to paper 1.

My contribution, as before, is the design, implementation and evaluation of the ma-
chine learning based data annotation tool and the production of the published docu-
ment. The data collection project was supervised by Benjamin Menz and Scott Hib-
bard.
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electronic processor conligured to rccetvc raw vtbratton data
from thc sensor. gcncrate uanslhnncd vibratton deut by
trtlllsftsrllltllg tltc Iuv: vtbratlotl Clara, alltl u ~ ltlg a lllttcllllle
)canting model. analyze the raw vibration data and trans-
formed vibration data to determine whether there is a piece
of material caught between the removable tool and the
cite c It.
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DETECTING WHEN A PIECE OF MATERIAL
IS CAUGHT BETWEEN A CHUCK AND A

TOOL

RELATED APPLICATIONS

[0001] This application is related to and claims the beneht
of and priority to U.S. Provisional Patent Application Ser.
No. 62/985,170, lilcd Mar. 4, 2020, (itled "DETECTING
WHEN A PIECE OF MATERIAL IS CAI IGHT BETWEEN
A CHUCK AND A TOOL" (A(torney Docket No. 022896-
3233-US01 J. the disclosure of w:hich is hereby incorporated
herein by reference as if set fort)i in its entirety.

l)A('K(IR(R

IN( 

)

[0002] Machinulg equipmcnt, such as nnlling m whines,
ollml mclude a spindle chuck ulto wluch diiii:rent tools can
be inserted. I(quipped lvith these tools milling machines can
be used to form oblects. for example. machine parts

SUMMARY

[0003] FIG. 1A shows a (ool 100 [for cxmnplc. a cutting
tool] ul 0 chuck 105. In some cmboclunents, die chuck is
conncxted lo a spindle tlrat is tumix! by a molor (for
example, as part of a computer numerical control (CNC)
nlachine]. In I'l(i I A, the tool 100 is aligned with the chuck
105, As illustrated in FICi. 1B. sometimes during the manu-
facturing process, a small piece of material 110, such as a
metal chip. becomes stuck bc(wccn thc (ooi 100 and thc
cluick 105. For cxtunple, a meuil clup may become lodged
bctw cml thc clnick 105 and tool 100 when the tool 100 in thc
chuck 105 is changed either manually or automatically 'I he
lodued chip may change the angle of the tool 100 in the
chuck 105 as illustrated in Flfi. 1B. Thus. the piece of
material may cmise the tool 100 to become misaiigned with
thc chuck 105 and, as a result, make maccuralc culs. tap
inaccurate lxiles, or both. In some cases, the misaligiunmlt of
thc tool 100 in the chuck 105 may cause damage to the tool
(00. the spindle, the chuck 105, other parts of the machine
operatiim the tool, or a combination of the foregoing It
should be noted that the (ool 100. although not illustrated
herein. may include both a tool and a tool holder.
[0004] Existing systems use sensors mounicd [via, for
example, a hearing) on the spindle connecting the chuck to
the motor and limit-based monitoring, to determine when a
piece of material is caught between the chuck and the tool.
However. these existing systems are not easily used on older
or legacy machulcs, and thc hardware usxxl (0 auach thc
smlsor to thc spuldle often fails. Additionally, these existing
systems sullbr I'rom lunitcd scalabihty anil required defined
measuring cycles, which cause downtime Some existing
systenls require connection to a machine control system to
determine ivhen monitoring should take place (when is a
tool in use], v,hich tool is in use. or both. Some existing
systems use ddlbrcnt models I'or detcnnuung whether mate-
rial is caught bctw ccn a tool and a chuck depending on the
(001 nl llsC and neixl 10 dCn:nunlC WhlCh (001 ts 111 llsc 111

order to select the correct model ('onnecting to the machine
control system is complex and requires customivation for the
difi'erent hardware of each machine control system vendor
and each machine setup.
[0005] Thercforc, cmboihmcnts hcrcul descube, among
other things. a system and method for detecting v hen a piece
of material is caught between a chuck and a tool ('ertain

embodiments described herein utdize maclfine learning sofi-
warc lo dc(cnninc when a puxc of matcnal is caught
bc(wixn the chuck and the tool based on vibration data from
a sensor mounted on a surface of the machine (for example,
a motor housing]. ('ertain embodiments described herein do
not require a sensor to be mounted on the spindle and
overcome many of the aforementioned deticiencies of exist-
ing systems. Additionally, the embodiments described
hcrcin do not rcquirc conncxtion lo machine control systems
bixausc they usc vibration clara to detcnnlne when a tool is
in use and a machine learning nlodel to determine, for a
variety of ditferent tool~. v hether a piece of material is
caught betv,een a tool and a chucl .

[0006] For example. one embochment pmvides a system
for detectin material caught between 0 chuck and a remov-
able lool. The system includes a sensor mounted on a surface
that vibrates. Thc vibrauon of tlu: surface 1 ~ caused by a
rotating of the reniovable tool in the chuck I he systenl also
includes an electronic pmcessor configured to receive rmv
vibration data from the sensor, enerate transformed vibm-
tion cLsta by transforming the raw vibmstlon data, and using
a machine learning nlodel, analyze the raw vibration cLsta
and transformixl vlbrauon data to detennlnc whether there is
a puxc of ma(anal caught between thc tool and the chuck
[UU07J Another embodiment pmvides a method fordetect-
ing material caught between a chuck and a tool The method
includes receiving raiv vibmstion data from a sensor mounted
on a surface that vibrates. The vibration of the surface is
caused by a rotating of the renlovable tool in the chuck,
generating translbrmed libration data by transfiinnlng (he
raw vibration data, and using a machine lcaming model,
analyzing the raw vibmtion data and transformed vibration
data to deterinine whether there is a piece of nlaterial caught
between the tool and the chuck
[0008] Yet another embodiment provides a method for
detecting material caught between 0 clnick and a removable
tool. The method ulcludes rcxcivulg raw vibration data I'rom
a sensor mounted on a surlhcc that vibrates. Tlm vlbrauon of
the surface is caused by an operation of the removable tool
in the chuck and using a machine learning nlodel, analyzing,
msw vibration data, trmlsformed vibration data generated
from the raw vibration data. or both to detemline whether
there is a piece of material cauvght betv een the removable
(001 ting thC ChllCk.
[0009] Other aspixis. features, mid cmbodunents will
become apparent by considemstion of the detailed description
allcl;lccoinpailvlilg clmlvlilgs

BRIEF DESCRIPTION OF THE DRAWINGS

[UUIUJ ill(i IA illustrates an exanlple of a tool in a chuck
v hen there is no piece of material caught between the tool
and the chuck.
[0011] FI(L 1B illusuatcs an example of a (ool in a clnick
when there is a piece of nui (ariel caught bc(w ix 0 thc tool and
the chuck
[0012] FICi. 2 is a block diagram of a system for detecting
when 0 piece of material is cauvght between a chuck and a
tool imcordulg to onc embodiment.
[(B)13J FI(i 3 is a block diagmm ofa local conlputer of the
system of FR3. 1 according to one embodiment.
[0014] FIG. 4 is nn cxmnple illustrauon of tmuung dais
used to train thc maclmc lcamulg model u(lllzcd durul (he
execution of the method of ill(i 5 according to one embodi-
luCflt.
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[0015] FIO. 5 is a ffov chart of a method of using the
system 01'FICi. 2 to detect when a piece ofma&anal &s cmight
betwcmn a clnick und a tool accorduig to one mnboduncnt.
[0016J I'l(i. 6 is a block disgram of a neural network used
to pertilrnl the method of I&I(i. 5 according to one embodi-
IUC&tt.

[00171 FICI. 7 is an illustration of msw vibmtion data and
resulting predictions according to one embodiment.

DETAILED DESCRIPTION

[00(0] l)efbre any enlbodiments are explained in data&1. it
is to be understood that this disclosure is not intend&xI to be
limited in its apphcat&on to the details of construction and
the arrangement of components set forth in the following
dcscupuon or illustrated &n the followuig drawings. EmbOC&-
ments arc capable of other coniigurauons and oi'eing
practicixl or ol'e&ng carried out in various ways.
[0019] /1 plurality of hardware devices and software. as
&sell as a plurality of diff'erent structural components may be
used io implement vanous embodiments. In addition,
mubodimcnts may include hardware, software. mid clm-
tronic components or modules that, li&r purposes of discus-
sion. may be illustrated and described as if the majority of
the components were &nlplemented solely in hardware.
However, one of ordinary skill in the art. Und based on a
reading of this detailed description, would recognize that. in
at least onc embodunm&t, the clcclronic based aspecls of the
invention may bc &mplcmentcd ui sof(werc (fi&r exiunple,
stored on nou-truns&tory computer-rca&k&blc medn&m)
executable by one or more processors l&or example. "contml
units" and "controllers" described in the speci(ication can
include one or more electronic processors. one or more
menulry modules includ&ng non-transitory computer-read-
dblC 11&CclUIU, Olio Or &1&0&C Col&Ill&Ill&&CB&li&11 ill&CIIBCCS, 01&C Or
morc application spec&lic uitcgratcd circuits (ASICS), and
1 arious connixUous (for cxim&pie, a syslem bus) coiulecting
the various conlponents It should also be understood that
although certain drawings illustnlte hardware and softv are
located within particuLar devices. these depictions are for
illustrative purposes only. In some embodiments. the illus-
trated components may bc combuicd or d&vxlcd mto separate
software, Iimiware and/or hardware. For cxamplc, ulslead of
beulg located w&tlun and pcrfol&ncxI by a suigie cloctronic
pmcessor. logic and processinu nlay be distributed among
nniltiple electronic processors ITegardless of lxlv they are
conlbined or divided. hardv are and soihvare components
may be located on the same computing device or may be
Cistubuted among d&ili:rent computuig Ccviccs co&ulcc&cd by
onc or morc networks or other suilable communication
links.
[0020] FICI. 2 illustmstes a system 200 for detecting when
a piece of material is caught between a chuck and a tool. In
the exmnple prov&dixk thc system 200 uicludes a nuichinc
203 w&th a motor/motor housing 205. a z-axis bali screw
210. a z-axis ball screw eud cap 212. a chuck 215, a tool 220,
and a sensor 225 The system 200 also includes a local
computer 230 (an edge device) and a server 235 In some
embodiments, the mach&ne 203 is a computer numerical
control (C:NC) machine. In some embodiments. the local
computer 230 &s u&cludcd in thc maclune 203. The motor 205
i@clod&xi in thc maclunc 203 doves the z-dx&s ball screw 210
and thc z-axis ball screw 210 tmnslatcs (he rotary mot&on of
the motor 205 to linear motion to change the z-lxis The
chuck 215 connects the z-axis ball screw 210 to the tool 220

so that lvhen the motor 205 turns, the tool 220 moves. The
chuck 215 allows d&ffi:rent tools to bc coiu&cctcd to the z-ax&s
ball screw 210. 11&c tool 220 auachcd to the chuck 215 may
be changed automatically or manually In one example, the
tool 220 is a turning tool capable of forming obiects such as
mechaiucal components out of a piece ofmaterial by cutting
away at the material. When the tool 220 cuts the material,
clups are generated winch can get stuck betw een the tool 220
and thc chuck 215 causing misalimuncnt of the tool 220.
such as thc nusal& ament shown in FIG. IB.
[0021] The sensor 225 is a v&brdtion sensor, capable ol'&casuringthc v&brauons generated by thc moving tool 220.
For example, thc sensor 225 may bc a Structure-Borne
Sound Sensor (SI3 SS) or a Connected Industrial Sensor
Solution (CISS) manufactured by Robert 130sch I I,(L The
sensor 2Z5 is conununicatively connected to the local com-
puter 230 and sends vibration (Llta to the local computer 230
via various wired or wireless connections. For example, in
some cmbod&ments, the sensor 225 &s d&rectly coupled v&a a
dcd&ca&cd wire to the local computer 230. In other embodi-
ments, the sensor 225 is comnlunicatively coupled to the
local computer Z30 via a shared con&munication link such as
a Bluetoothr" or other wireless connection. In some
embodiments. the sensor 225 is mounted to the motor
hous&n Z05. In other emboC&ments, the sensor 225 is
mounted to thc z-ax&s ball screw cnd cap 212, au x-dx&s ball
screw cnd cap (not six&wn), or a y-ax&s ball screw end cdp
(not shown)
[0022] Thc local computer 230 aud thc scrvcr 235 com-
lllllluCd I C 0VCI Olio Ol Ilx&I C W i&Ci! Ol w 1&CICSS Col&Ill&UIUCd &1011

networks 240. Portions of the wireless con&munication net-
v orks 24U may be implenlented using a &vide area nenvork,
such as the Internet, a local area network, such as a Wi-Fi
network, short-ran e &vireiess netv,orks. such as a Blu-
etoolh™M ac&work, near Iield conmiurucaUon co&ulcc&&ons,
and combinations or derivatnes tlmrcof. Iu alternative
embodiments, thc server 235 is part ol'a cloud-based system
external to the system 200 and accessible by the local
cmnputer 230 over one or more add&tional networks.
[UU23J It should be noted that &vhile certain functionality
described herein as being performed by one component of
the system ZOO, in some embodiments that fi&nctionality &nay
be performed by a different component of the system 200 or
a combination ofcomponents of the system 200. It should be
&11&cCP'rood that &1&C Sv'SU:Iu 200 illa)'1&CIUcc d ihifcrC&lt
number of machuies (for cxiunple, m&lluig maclmies) ouch
w&th a sensor. a dilii:rent number ol'ocal computers, and a
ditferent &n&mber of servers than the single machine 2(hk
local computer 230, and server 235 illustrated in I'I(& 2.
[00241 FICi. 3 is a block diagram of one example embodi-
ment of the locai computer 230 of the system 200 of FI(i. 2.
The local computer 230 includes. amon other things, an
clectroiuc processor 300 (such as a progrununablc clcctroiuc
m&croproccssor, m&crocontrollcr, or s&miler dcv&cc). a
men&Cry 305 (for example. non-transitory. machine readable
men&Cry), and a communication interface 310 Zhe elec-
tronic processor 300 is conununicatively connected to the
memory 305 and the conmuuucat&on interface 310. The
electronic processor 300. in coordinat&on with the memory
305 aud thc conuuun&cat&on ultcrlhce 310, &s coniigured to
implmnent, mnong other thuigs. thc methods dc&el&bcxi
herein.
[(N)25J The memory 305 includes sof )ware that, when
executed by the electronic processor 300, causes the elec-
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tronic processor 300 to perform the method 500 illusrrated
in FIG. 5. For cxmnplc, the memory 305 illustratnl ut FIG.
3 Includes macluuc lcanung model 315 and mv, data pro-
cessing sofixvare 320. I'he machine learning model 315 may
be a deep neural nenvork (for example, a convolutional
neural netxvork (CNN) or a recurrent neural network
(RNN)). In one example, the neumsf network includes two
input channels. allowing the neural networl to analyze both
r;m vtbrauon data aud vtbmfion data transfonued by thc raw
darn processing softw are 320 sunulraneou sly to de(cct when
a piece of material is caught betwent a chuck and a tool As
described below, in some embodiments, the neural neixvork
may include a different number of channels than nvo cbmt-
nels illustrated and descnbed herein.
[0026] In some embodiments, the machine learning model
315 is trained to detect when a piece of material is caught
berwcxn a clnick and a tool usin Iraming dani including
samples or snippets ol'ibration data tha( have been labeled
to indicate ivhether or not they are indicative of a piece of
ntaterial being caught between a tool and a chuck The
training data mcludes a tmsining set, a validation set. and a
test set. The tmsinin set is a set of vibration data samples or
snippets used to train the machine lean(it(5 model 315 (for
example. Io detcnntne wngh(s and biases in Ihc nutchinc
learning model 315). Thc valalation sc( is a se( ol'ibration
data smnples or snippets used to evaluate the machine
learning model 315 after each training epoch and test the
loss mtd accuracy of the machine learning model 315 on
unseen data. The test set is a set of vibration data samples or
snippets used to provide an unbiased evaluation of the firml
machine icamtng model 315 and define Ihc de~am of
gencrahzarton ol'lm machutc lcanung model 315. The
training thats mcludes data vibration data from a variety of
ditferent machines. using a variety of tools in a variety of
stares of wear while ntanufacturing, a variety of ditferent
objects. The training data may include rmv vibration data
and transformed vrbmstion data. FIG. 4 provides a visual
rcprcscnlanon ol onc example ol Iraming daIa. As Illustrated
in FIG. 4. (hc training sct 402, validation sct 404. and lest scr
406 may each be different sets of vibration data collected
fmm different ntachines, using di(Terent tools of difTerent
ages to manufacture different objects. 'I'he vibration data
samples for tools Illustrated in FIG. 4 having a darker shade
represent tools which possess both good process measure-
mcnts (c.g., vibrations gnrcrarcd by Ihe maclune operarutg
without material caught In thc chuck) mtd dclixt process
mcasurcmnrts (c.g., vibrations gencmrcd by dte mtmhute
operating ivith material is caught in the chuck). 'I'he process
ntea su re ments of the too Is that are shared by the train and the
validation dataset are split between both datasets. Using
such varied training data produces a model trained to detect
ma(cnal caught betwixu a chucl and a tool across a vancty
of conditions Iuxl I:Iri:Umstanccs.
[0027] In some cmboduuenrs, thc (raining data is seg-
mented utro snippets allowutg thc number of Irarning
samples having a standard length to be increased. Dataset
segmentation consists of shcing a signal into smaller seg-
ments (i.e.. snippets), wlfich allow enlargement of the train-
in population v,ith samples having a standard len th Each
snippet has a wurdow size. For vrbrauon daIa, drive moIor
speed and sntsor samplurg mte should bc corwidered when
dercrmuung Ihc window size. In some embodmrcnIs, a
windoiv size Is set to cover at least one full revolution of the
ntoror (i e . the selected window should contain the penodi-

cal spatial position of the drive motor). In some embodi-
meuIS, Ihc window size is dctcnutnaxf accordutg Io Ihc
follow ulg fornudtl.

Samprn I eqaeanyV'ndowstce„„, =* '"'otattnnal Speed

In some embodiments, each snippet Is smaller (for example,
half of the v indow size). In sonte embodiments, the training
dare is downsamplcd. Doysnsttmphng n utdrzcd to incrcasc
thc pcrfornnulca'. of sonic neared ni:(works (for cxanlphx
I.ong c hortdi'erm Networks) by using sntaller wmdotv sires
In sonic embodiments. the trainin data is normalized using,
for example, Standard-Scaling
[UUZS] In some embodiments. the trainin data is collected
via one or more local computers such as the local computer
230 and sent to Ihe server 235. The server 235 uncs Ihe
recctvcd trainutg dare Io train a machine lcamrng model 315
and, when the machine learnin model 315 Is trained, sends
the nrachine learning model 315 to each local computer in
the system 200. When the local computer 230, executing the
machine leanung model 315. cannot determine whether
vibration data is indicative of a piece of matenal being
cmighr bcrwixn a tool mtd a chuck, thc local computer 230
may send a notification Io Ihc server 235 (lor cxrunplc, usutg
a suitable uettvork message or an application progranlming,
interface) In sonte embodiments, the notificatio may
include the vibration data and a label that the machine
operator has associated with the vibration data In response
to receiving the notification. the server 235 may retmsin the
maclunc lcarrung model 315 and send thc retraincd maclunc
lcanuug model Io each of Ihc local compu(crs In the sys(cm
200 Thcrcforc. thc machine learrung model deployed Io
each iocal computer improves over time fnym collective
mvareness and the initial training time needed to apply the
machine learnin model to monitonng a new machine is
reduced.
[0029] Although not Illustrated hcrctn, thc scrvcr 235 may
contain components sunilar to those illusrmtcd In FIG. 3 as
being included In Ihc local computer 230. The functronahty
described herein as being performed by the local computer
23U or the server 235 may be distributed amongst a plurality
of local computers and servers. Additionally. the local
computer Z30. the server 235. or both may contain sub-
modules that uwludc addi(ional electronic processors,
memory. or apphcarron specific inrcgmraxf circut(s (ASICS)
fbr handing communication fuge(iona. processing of sig-
nals, and application of the methods listed belowt In other
embodinrents, the local computer 23U, server 235, or ixyth
include additional, fewer. or difi'creat components than those
illustrated in FI(i. 3.
[0030] FIG. 5 illustrates an example method 500 ofdcrect-
iug when a prtxc of nunerial Is caught betwent a chucl and
a tool AI step 505, the clcc(ronic processor 300 rccctvcs raw
vibration data from a sensor mounted on a surface of the
machine 203 that experiences a vibration In some embodi-
ments. the vibration is caused by a removable tool (for
example. the tool 220) rotating in the chucl 215. For
i:xtunplc, thc sensor 225 nnIy'apture Ihi: nlovcnlcnr ol lhc
motor housing 205 or z-axis ball screw ntd cap 212 ut Ihe
x-dtrixtton. thc y-drrcc(ion. or both. In some cmboduucnrs,
at step 510, the electronic processor 300 transforms the rmv
vibration data to pmduce transformed vibratiton data. Itor
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example. at step 510. the electronic processor 300 may
cxccu(e the raw data processing sofiwarc 320 to apply a Fast
Founcr Transform to thc raw vibration data received from
the sensor 225. Applying a I 'ast I 'ourier 'I'ransform to the msw
vibration data can reduce the dimensions of the input space
by extractin the power spectral density series. At step 515,
the electronic pmcessor 300, using a machine learning
model (for example„ the machine learning model 315),
analyzes the raw vibration data imd Iransfomied vibration
ililta 10 iIClcrnllilC when IhcrC is B plCCC ill lllau:lllll Cail hl
betiveen the tool 22U and the clnlck 213 In some embndi-
ment~. as explained in detail with regard to lii(IS 6 and 7,
the machine learnin model 315 uses a neuml network to
predict whether the raw vibration data and transformed
vibration data are indicative of vibrations caused by B tool
and clnici operuting with a piccc ofmalcnal caughl belwecn
them. FIG. 6 illustra(cs onc example of hov; the electronic
pmcessor 3UU (at step 515) determines ivhen a piece of
nlaterial is cau ht between the chuck 220 and the tool 220.
ln the exanlple illustmsted in Iii(i. 6, the rnachine learniag
model 315 is illustrated as a convolutional neural network
lvith two input channels. In the example illustrated in FICI.
6. raw vibration data in thc x-direction is Ibd to thc neural
nc(work as a signal via a lira( channel 600 and transformed
vibration data in the x-direction is fed to the neural nenvork
'ls 'l slgilal via 'l sccoild chBilncl 610
10031] 1 he neural network has a plurality of)ayers includ-
ing feature extraction layers 613and a classification layer
620. There are two types of feature ex(mac(ion Layers 615
convolutional layers and poolin or sub-siunpling layers.
Each comolutionul layer applies filters Io lhc raw and
translbmied vibration data ui the x-direction. In ccrlmn
embodiments. a tilter is a matrix of weight values The
wei ht values nf the filters are set by training the neural
netivork. Sub-sampling layers reduce the size of the input
data or BI~IS being processed by the neural neuvork A
sub-sampling Layer creates a ~mailer portion thorn a larger
sigruil by creating thc smaller signal wi(h pal(ems lha(
rcprcscn( groups of pa(terna in Ihe lar cr signal. The clas-
si(ication layer 620 is responsible for using the extmscted
features of the ralv and transformed vibration data in the
x-direction detecting lvhen a piece of material is caught
between a chuck and a tool.
10032] It should be understood that the machine learning
model 315 may receive different input via rhe two input
cluutncls than thc raw and Iransl'ormcd vibmtion da(a ui the
x-dircc(ion illustrated in FICI. 6. For example, thc mimhule
lcaming model 315 may reccivc riiw Bnd translomied vibra-
tion CLsta in the y-direction. raiv vibration data in the
x-direction and transformed vibration thsta in the y-direction,
or rais vibration data in the y-direction nnd trmlsformed
vibration data in the x-direction. It should be undersrood that
dill):rmlt combinauons of vibrauon dais, o(hcr than those
dcscnbtxl herein, may be rcccived by die maclune learning
model 315 via two inpu( channels. 11 should also be under-
stood that the machine learning model 315 inav be a neural
netivork ivith a different munber of channels than the tv o
channels illustrated in FICI 6. For example, the machine
learning model 315 may be a neural network with a single
inpu( ciianncl mid the neural network may receive raw
libration da(a in Ihc x-dirccuon, riiw vibra(ion daut ui the
y-dircc(ion. tramformcd vibrauon data ui thc y-direction, or
transformed vibration data in the x-direction via the single
input channel. In another example. the machine learniag

model 315 may be a neumsl network v, ith four input channels
Bnd lccclvc raw vlbl'litton ilatil nl Ihc x-dllcc(loll. Iiiw
vibra(ion CLita in the y-dirccuon, transformed vibrauon dais
in the y-direction, and transfornled vibration data in the
x-directinn via the four input channels It should be under-
stood that the machine learning model 315 may be a neural
network with a different number of channels than those
described in the examples presented herein. Additionally. the
machine leanung model 315 may receive diffbren( uipui via
thc ulput chiumels (iran thc inputs descnbcd in thc cxiunples
presented herein
JUU33J Iii(i 7 is an exmnple illustration of raw vibmstion
data m the x-direction 700 tiir tools 7U2 (labeled I through
8). ralv vibration data in the y-direction 705 for tools 702
(labeled I throu/I 8), and a prediction 710 (made by the
maclunc learning model 315 using ruw vibrntion data ui Ihe
x-diriwtion 700 and raw vibrauon dnta in the y-direction
705) as to whc(her a pnxe of matcnal is caught bc(ween B

clnick and a tool. In the example illustrated in ISIG. 7, tools
with numbers outlined in dashes (in lilG 7, tools I. 5, and
8) are detemlined to be rotating without a piece of material
caught betv een the chuck and the tool and tools with
numbers outlulcd in a solid linc (in FIG. 7, tools 2, 3, 4. 6.
and 7) arc detcrnuncd to be rotating with a piece of matcnai
cmigh( bctwccn the chuck and thc tool.
JUU34J In some embodiment~, when a piece of material is
deternnned to be caught betv een the chuck 215 and the tool
22U, the electrnnic processor 300 is configured to send a
signal to Intemipt the nlachining process (for example, using
a suitable message protocol or discrete signal). send a signal
to cause a no(lfication uidicatuig that thcrc is a piece of
material cmight betv:een thc clumk 215 und thc tool 220 Io
a user (for exanlple, a technician). a combination of the
foregning, and the like I'or example. the user may be
notified of the existence of the piece of the matenal via a
user interface of a user device or the local computer 230. In
some embodiments, intemipting the machinin process
includes preventing the maclmu: 203 from manufactunng
any fur(hcr objects un(il a human opcrntor approves thc
machine 203 fnr further mamifacturing.
JUU35J I(mbndiments described herein are described in
terms nf detecting a piece of material caught benveen a
clnick and a tool during a rotation of the tool by the chuck
and a spindle. Holvever. it should be understood that the
embodiments may be used to detect piece(s) of material
cmigh( bctwccn a clumk, clamp (for cxamplc, a blade
clamp). or other tool holder and a tool held by thc clnick,
clamp, or holder during non-rotational niovements of a tool
by a machine In one non-limiting example. a tool (tiir
example. a sav: bLsde) used in a reciprocatin motion may
generate vibrations during the opemstlon of the tool that can
be used to determine lvhether material is caught in the tool
holder (for example, a blade clamp). Systmns mid methods
dcscribcd hcrcin arc also Bpphcable to machines operatulg
silch toiils.
JUU36J In the foregoing specitication. specific embodi-
ments and examples have been described I iowever, one of
ordinary skiil in the art appreciates that vanous modifica-
tions Bnd changes can be made without departing from the
scope of Ihc uivenuon as se( fiir(h ul thc claims bcloss.
Accordingly. thc spccilicauon and figures are to bc rcgardcx(
ill Bn llhlslliulvc la(hcl l(lail tl lcsulctlvc scilsc, rind Bll silch
nxidifications are intended to be included within the scope of
present teachings.
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]0037] In this document. relational terms such ns first and
second. top and bottom, and the hkc mdy be uscst solely to
disiinguish one cooly or acuon Irom mioihcr cnlily or action
without necessarily requiring or implying any actual such
relationship or order between such entities or actions The
tellus co&up&'iscs, coil&pris&11', has, havnig.
"includes," "including." "contains,'* "containing" or any
other variation thereof, are intended to cover n non-exclusive
inclusion. such Ihal a process, method, drucle, or apparatus
Ihal comprises. has, includes, contauis a hsl oi elements does
not include only those elements but may include other
elements not expressly listed or inherent to such prncess,
method, article. or apparatus. An element proceeded by
"comprises... a.** "has... a.*'includes... a." or "contains... a" does not. v ithout more constraints. preclude the
cx&stcncc of additiooal &den&ical elmuenls m Ihc process,
method. anicle, or apparatus that compnscs, has, uicludes,
contains the elenlent The terms "a" and "an" are defined as
one or more unless explicitly stated otherwise herein The
terms "substantially, "essentially. "appnlxinlately,
"about" or any other version thereof, are defined ns being
close to as understood by one of ordinary skill in the arl, and
in onc non-1&miting embodiment the tenn is delincd to bc
wilhm 10%, in another embodiment within 5%. ui another
embodiment withm 1% and in another einbodiment within
0 5%. The term "coupled" as used herein is defined as
connected. although not necessarily directly and not neces-
sarily mechanically. A device or structure that is "contig-
ured" in a certain wny is contigured in at least that way but
may also bc conligurcd in ways thai arc nol is&est.
10030] Various features, advantages, and embodiments are
set forth in the following claims.

IVhat is clainled is
1. A system for detecting material caught between a chuck

and a rcmovablc tool, thc system comprisuig.
a sensor mounted on a surface that experiences a vibration

caused by a mtating of the removable tool in the chuck,
and

&Ill cli:i'Irolllc proc&:ssor, tile clcclrolllc ploccssoi coiltig-
ured to
receive rnw vibration &Lute thorn the sensor:
gcncrale transforn&cd vibration data by lransfi&mung

the raw vibration data; and
using a machine teaming model, analyze the rnw vlbm-

tion data and transformed vibration data to deter&nine
whether &herc is a p&cce of mau:nal caught between
lhc rcmovablc tool and thc chuck.

2. The system according to claim 1. wherein the machine
teaming model includes a convolutional neural network.

3. The system uccording lo clmm 2. wherein die convo-
lutional neumll network includes a first clmnnel whereby the
convolutional neural network receives the mlv vibration data
for analysis and a second channel whereby the convolutiolml
neural networl receives the transfomled vibmtion data for
dli'IIVS&S.

4 '11&e system according to claim 1. wherein the sensor is
a vibration sensor

5 The system according to claim I, wherein the electronic
pmcessor is fiirther conhgmed to send a first signal to
internipt a machining pnlcess send a second signal to cause
a notiticntion indicatin that the piece of material is caught
between the clnick and the removable tool to be sent to a
user. or both.

6 The system according to claun 1. wherein the electronic
processor is included in n local computer and the electronic
pmcessor is configured to receive the machine learning,
nxldel from a server.

7 Thc system accorduig to clmm 6, whcrcin thc scrvcr is
conf&gurcxt lo Ira&n lhe mdclnnc learnuig model usuig vibra-
tion data coilected from one or more difi'erent machines,
using one or more difi'erent tools of one or more difihrent
ages to ma&nifacture one or niore different objects.

0 'I'he system accordin to claim l. &vherem the electronic
processor is coniigured to Irausfor&u Ihc rtiw vibration dais
by applying a Fast Founer Trmisibnu to thc raw vibrat&on
CLlta.

9 A method for detecting material caught between a
chuck mid a removable tool. the method compnsing

receiving ra&v vibration data from n sensor mounted on a
surface that experiences a vibmtion caused by a rotat-
uig of Ihc rmnovable loot in Ihc clnick,

gmmraluig Iransfor&ucd v&brat&on dnta by transfi&nning Ihe
mlw vibration data: and

usmg a rnachine learnin model, analyzing the raw vibm-
tion data and tmlnsfilrmed vibration data to determine
v hether there is a piece of material caught between the
removabie tool and the chuck.

10. Thc method according to claim 9. wherein thc
machine learning model includes a convolutional neural
network

ll. 'I'he method according to claim 10, wherein the
convolutional neural nenvork includes a tirst channel
v hereby the convolutional neuml network receives the raw
vibration data for analysis and n second channel whereby the
convolutional neural ac&work rcccivcs thc tmnsfor&next
Vibrdl&011 ila&B foi &ill&&IVS&s.

12. 'I'he method according to claim 9, wherein the sensor
is a vibration sensor

13. 'I'he method accordion to clainl 9. the niethod further
comprising sending a first signai to interrupt a machining
process. sending a second Bi~I to cause a notitication
ind&caluig that Ihe piece 01 ma&coal is caught bctwccn thc
chuck and thc rcmovablc tool to bc scut lo a user, or bod&.

14 I'he &nethod accordin to claim 9. the nlethod further
comprising receiving„&vith a local computer. the machine
learning model from a sei&er.

15. The method according to claim 14, wherein the server
is config&ued to train the machine learning model usin
vibral&on dale collect&xt from onc or more ihifcrenl
macluncs, using onc or more difii:rent removable loots of
Onc Or morc dilli:rent ages lo manufuclurc one or more
ditferent objects

16. 'I'he method accordin to claim 9. wherein transtilrm-
ing the ralv vibration data includes applying a Fast Fourier
Tmnsfoml to the ra&v vibration data.

17. A method Ibr dctccluag whmi mutennl caught bctw ceo
d Cl&OCk iiilil &I IC&l&OVublC &001. Il&C il&C&110&l Coil&pi&S&11

receiving raw vibrat&on data Ibom u sensor mounted on a
surface that experiences a vibration caused by an
operation of the removable tool in the chuck; and

usln a machine learning model, analyzing at least one
selected from the group consisting of the raw vibration
dale and transform&xi l ibration datu gcncrated from Ihe
raw vibration data Io dclernnnc whclhcr &herc is a pmce
of malarial caught between Ihc removable loot and Ihe
chuck

t t t





4 Unsupervised Feature Learning

Labeling and annotating the data is still the most significant barrier in machine learning
and especially in DL applications. From the conclusions and findings of the first section,
this is mainly due to the human expertise required to label the data. As mentioned in
the introduction, this research aims to bypass domain knowledge using DL methods,
and for this reason, I start by investigating the unsupervised methods, which benefit
from the abundance of sensory data and do not require labeling e�ort.

The following paper answers research question 3 and to some extent research ques-
tion 2 by investigating the ability to learn from noisy raw data using the autoencoder
method, which allows not only the extraction of relevant features from the raw data but
also the compression and encoding of the data in the edge system presented in paper
1. To answer research question 2, the results of the paper show that using only unsu-
pervised methods to extract relevant information from the noisy vibration data has its
limitations. The extraction is successful for a few process operations but fails when ap-
plied to more complex processes, leaving an opening for further improvements. This
is mainly due to the wide variety of machine processes mentioned in paper 1 and the
di�erent impacts of the anomaly on the di�erent process operations.

Considering the real-time requirements of the real-world application, di�erent state-
of-the-art DL blocks are investigated. Finally, a lightweight architecture that best meets
the manufacturing requirements is presented. The results of the following paper an-
swer research question 3 and conclude that the width of the DL architectures plays a
crucial role in feature extraction for noisy vibration data, as seen with the dilated con-
volutions and multilevel convolutions, while the depth of the DL architecture increases
the complexity and training/inferencing time.

My contribution to this work is the conceptualization, design, and analysis of the re-
sults. I formulate the introduction, the preliminaries, the experiments, the results, and
the conclusions of the work. Together with Paul Subarnaduti, I implemented and formu-
lated the state-of-the-art and methodology section of the paper. As with the previous
publications, the research work is supervised by Klaus Diepold and I am responsible
for reviewing and revising the supplementary requirements of the reviewers.

53



Extract, Compress and Encode: LitNet an Efficient
Autoencoder for Noisy Time-Series Data

Mohamed-Ali Tnani⇤†, Paul Subarnaduti†, Klaus Diepold†
⇤Department of Factory of the Future, Bosch Rexroth AG, Lise-Meitner-Str. 4, 89081 Ulm, Germany

†Department of Electrical and Computer Engineering, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany

Abstract—The Industrial Internet of Things has emerged to

enhance massive sensory data collection. Characterized by their

large volume and hard interpretability, these data require highly

skilled human expertise to compress and extract meaningful

information from the raw data using computationally intensive

signal processing methods. Deep learning, and autoencoders, in

particular, have shown promising results in computer vision and

natural language processing. In this paper, different state-of-

the-art deep learning blocks are investigated and a lightweight

Inception Network, called LitNet, is presented. The experiments

are performed with real-world vibration data collected from

different CNC machines during production. The models are

evaluated based on their compression and feature extraction

capabilities. The results show that LitNet outperforms all models

and provides a good trade-off between compression and feature

extraction. The latent vector analysis shows promising results

and that the LitNet encoder can be used as a pre-trained feature

extractor for vibration data.

Index Terms—autoencoder, data compression, unsupervised

feature learning, vibration data, manufacturing, deep learning

I. INTRODUCTION

Driven by the fourth industrial revolution and the digitaliza-
tion of manufacturing, the number of Internet-of-Things (IoT)
devices is growing exponentially and a massive amount of data
is gathered among countless sensors, machines, actuators, etc.

Being the most ubiquitous type of data collected in the
industrial and automotive sector, high-frequency time series
(HF-TS) generators produce constantly a huge amount of data
that requires real-time processing, and ideally a transfer to
the cloud for storage or further investigations. This leads
to an increasing necessity of time-series (TS) processing
methods running locally on the edge devices which require
low computation power and agnostic data compression tech-
niques to reduce the bandwidth usage, encrypt the sensitive
manufacturing data, and minimize the volume that is sent to
the cloud.

However, characterized by their noisiness and hard inter-
pretability, HF-TS data, such as vibration data, requires high
signal processing and domain expertise to extract meaningful
patterns, detect anomalies, and monitor industrial assets.

Deep Learning (DL) opened the gate to new techniques for
extracting useful features with rich information content from
high-dimensional data. Autoencoders (AE) [1] is a subset of
unsupervised deep learning methods which are distinguished
by learning with no pre-assigned labels and having the ability

to compress high-dimensional data to low encoded latent
space. Using autoencoders on HF-TS fulfills several Industry
4.0 requirements. It reduces the need for domain expertise for
data manipulation and annotation, encoding and compressing
sensitive data before transferring it over the network, and
extracting learned features from noisy high-dimensional data
for further use such as process anomaly detection, process
classification, and decision making.

In this paper, we present an evaluation of several types
of autoencoders using state-of-the-art deep learning blocks.
The goal of the papers is to define an efficient unsupervised
DL feature extractor that runs on edge devices, compresses
the high dimensional noisy data to low-dimensional space,
and offers a reduced lossy reconstruction of the original data.
The experiments are conducted on an open-source Computer
Numerical Control (CNC) machining dataset collected during
real-world production. The dataset has been collected from
different machines over 2 years time period in order to project
real-world manufacturing challenges such as drift over time
and the high variety of process operations.

The paper is structured as follows. Section 2 gives an
overview of the related work to compression and feature
extraction methods in manufacturing. It is followed by a sec-
tion where the dataset and used state-of-the-art deep learning
blocks are introduced. Section 4 describes the autoencoder
architecture and the methodology behind the LitNet model. In
Section 5, the experimental concept conducted in this paper is
presented followed by the model’s evaluation. Finally, a con-
clusion section summarizes the study and gives an overview
of the future works.

II. RELATED WORK

During the last decades, data engineering and science have
taken the main seats in the world of industry. Machine
Learning (ML) and data-driven methods have been strongly
researched and showed promising results.

Prior to DL methods, the traditional feature extraction and
compression approach primarily involved statistical models
and other machine learning algorithms. Principal Component
Analysis (PCA) [2] is one of the most popular feature extrac-
tors in ML which aims to decompose the dataset into principle
orthogonal components.

The introduction of DL algorithms for noisy time-series
data, and autoencoders, in particular, is one of the latest
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advancements. To eliminate some of the bottlenecks of the tra-
ditional methods, Jia et al. [3] proposed efficient deep featuring
autoencoder, where the model is trained layer-by-layer using
the frequency spectra. The encoder part is then fine-tuned with
a supervised algorithm. In the context of health monitoring of
rotatory machines, several methods have been implemented in
the literature. Shaheryar et al. [4] proposed an efficient feature
extraction process for fault detection in rotatory machines.
It follows a semi-supervised approach where each channel
of the raw vibration data is pre-trained with autoencoders.
The pre-trained weights are then used to train the stacks of
convolutional layers which is then followed by another stack
of denoising AE. It achieved much better results in comparison
to Deep Belief Networks (DBN) and Support Vector Machines
(SVM). Huang et al. [5] tackled the problem by using a
Recurrent Neural Network (RNN) Variational Autoencoders
(VAE) architecture that was proved to be more efficient in
compressing the data compared to standard Convolutional
Neural Network (CNN) AE architectures but with minimal
generalization capability.

In the context of real-time anomaly detection, CNN-based
autoencoders (CAE) have been widely explored for industrial
sensor data. Chen et al. [6] have proposed a unique data
augmentation technique for the high-dimensional sensor data
in the form of sliding windows which is then fed in a CAE
model. Few other works related to anomaly detection in
rotatory machines primarily involve RNNs or VAEs. Kim et
al. [7] proposed a squeezed convolutional VAE network for
process anomaly detection that proved to be highly efficient
for computing on edge devices.

The architectures proposed in the state-of-the-art litera-
ture largely focus on 1D-CNN, RNN-based Autoencoders, or
VAEs. This paper goes beyond the multilayer CNN-based AEs
and investigates more complex deep learning building blocks.

III. PRELIMINERIES

A. Data Set: CNC Milling Machine
CNC machines are characterized by their precision and

high production speed and are among the most widely used
rotatory systems in the industry. To analyze and monitor a
rotating process, the expert mainly uses a vibration sensor to
detect the oscillating motion of the spindle. This work uses a
publicly available industrial vibration dataset collected during
real-world production [8]. In order to tackle the challenges
of data drift and generalization of data-driven approaches,
normal and abnormal data from three different machines were
streamed over four different periods of five months each. The
complexity of the CNC machine monitoring use case is mainly
caused by the numerous process operations that take place in
a production flow. Therefore, during the collection campaign,
data has been collected from 15 different process operations,
each having a unique configuration and carried out with a
different physical tool. A tri-axial accelerometer is used to
collect and process the data and allow the operator to flag the
process status. The acceleration data of the X-, Y- and Z- axes
are acquired with a sampling rate of 2 kHz. Fig. 1 gives an

overview of the dataset. For each process operation, normal
and abnormal data were collected from 3 different machines
(M01, M02, M03) and at different time frames.

Fig. 1: Overview of the Bosch CNC Milling Machine dataset.

B. Deep leaning building blocks

This work explores several variants of convolutional opera-
tions inside an AE network as it tries to decode the importance
of the individual variants in terms of feature extraction and
data compression. Starting with standard convolutional layers,
it gradually transits into wider and deeper forms of networks
that require several modifications to use in the context of time-
series data. Deep CNN networks like AlexNet [9], VGG [10]
have shown promising results in the context of images but
consists of millions of parameters and require high computa-
tional power and memory consumption. Our paper studies a
lighter version of deep-stacked CNN networks for noisy time-
series data that runs on small compute instances. Residual
connections used in ResNet [11] has helped to improve the
performance of dense networks by adding shortcuts at different
locations. Our paper explores the importance of the depth of
the network and the usability of shortcut connections. Two
more unique variants of convolutional layers are investigated:
dilated convolutions, the core block of Temporal Convolutional
Network (TCN) [12] and depthwise separable convolution
(DSC), the core block of Xception [13]. Dilated convolutions
are computationally efficient and offer larger receptive fields
which extract meaningful temporal dependencies in the input
data [12]. DSCs exploit the benefits of channel-wise feature
extraction by performing spatial convolutions independently
over each channel, followed by a point-wise convolution to
project the extracted features in a new channel [13]. This
reduces considerably the number of parameters of the block.
Lastly, we explore the power of Inception blocks [14] as

Fig. 2: Building block of the multi-level convolutions ”Incep-
tion” [14].
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shown in Fig. 2 which perform convolutional operations of
different filter sizes in a parallel manner and concatenate
the outputs afterward. This technique enables a multi-level
feature extraction which improves the performance of dense
networks by making the block wider instead of deeper. Fig. 2
describes the vanilla Inception block used for two dimensional
input data where filter sizes are depicted by NxN, used to
extract features at different spatial locations. Fawaz and al.
presented in [15] a novel idea using Inception blocks for time
series classification. It inherited the concept of Inception V4
architecture and proposed a highly scalable and efficient deep
CNN network with larger filter sizes with 10, 20, 40 being
chosen as the optimal sizes. However, the drawback of this
approach is that it increases the number of parameters and
computation time considerably. The approach proposed in our
paper takes advantage of convolving with large receptive fields
while reducing computational time and model size.

IV. METHODOLOGY

A. Autoencoder backbone

This section provides an overview of the generic architec-
ture proposed for all different AEs implemented in the scope
of this work. As shown in Fig. 3, convolution layers form the
basic building blocks for all the proposed AE architectures.
The encoder and decoder networks are divided into three
distinct flows: entry, middle, and exit. Each flow serves a vital
role in the feature extraction process at different levels.

Fig. 3: Overview of the generic modeling of the AEs. Entry
and exit flows are identical for all models, only the middle
flow varies.

1) Entry flow: It defines the initial layers of the encoder
network that takes the raw vibration data as input. It comprises
multiple convolution layers that help extract high-level features
from the input data. Unlike images, the input vector length for
vibrational time-series data is much wider in length, which is
equal to 4096 data points for each axis in the scope of this
work. The initial convolutional layers typically use a large
filter size that aids the network to learn a more accurate
representation of the high dimensional data and significantly
improves the accuracy of the AEs in reconstructing the original
input. As shown in Fig. 4, the noisy data sample is fed
to a convolutional layer with a kernel size of 127 followed
by a Max-pooling layer for dimensionality reduction. The
transposed entry flow, which is the transposition of the encoder
entry flow, represents the final layers of the decoder network
that completes the decoding of the encoded feature maps.

Fig. 4: Overview of the three different flows of the encoder
network of AE architecture. K: kernel size, Conv1D: 1-D
convolutional layer, MP: max-pooling

2) Middle flow: This flow varies for all the proposed AE
architectures as it undergoes significant modifications in each
network. It hosts modified versions of several state-of-the-art
DL architectures defined in Section III-B that can be used
for the purpose of time-series data. The middle flow plays
a crucial role in finding an optimal AE architecture as it is
mostly responsible for determining the depth and the width
of the network. It also undergoes extensive hyperparameter
tuning to explore the depth and the computational complexity
of the network. However, this work sets the number of DL
blocks inside the middle flow to three to propose a network
that is suitable for real-time inferencing on edge devices.
When passing through the decoding part of the network, the
middle flow, as mentioned in Fig. 3, uses several layers of
transposed convolutional operations that follow the structure of
the encoding part to decode the encoded features. An overview
of the model’s hyperparameter tuning conducted is presented
in the following section.

3) Exit flow: The exit flow is used as the final terminating
block for the encoder network and as an entry block for
reconstructing the original data in the decoder network. It
primarily hosts only one bottleneck layer consisting of a
pointwise convolution. As this work aims to explore the data
compression capability of AE alongside its feature extraction
efficiency, the encoded features from the middle flow are
compressed to a low dimensional latent vector. All AE models,
except the baseline model, achieve a compression rate equal
to 24.

B. LitNet: a Lightweight Inception based AE Network

This paper proposes a unique lightweight AE network based
on Inception, which we call LitNet. The architecture closely
depicts the ideas used while structuring the Inception-V3 [16]
and Inception-V4 network [17]. It implements a simplified
version of Inception-V4 architecture in the scope of time-
series data which combines the importance of using smaller
convolutions and residual connections inside the Inception
blocks. The proposed architecture follows the AE backbone
proposed in the previous section, i.e. entry, middle, and exit
flow. The entry and the exit flows are kept identical as other
AE architectures while the middle flow consists of three
unique inception blocks, named Inception A, Inception B,
and Inception C. The Inception blocks follow an asymmetric
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architectural design among each other. An extensive hyper-
parameter tuning is performed on the Inception block to
derive an optimal and efficient model for the Inception blocks.
Our LitNet network offers a significant reduction in model
complexity, keeping the number of parameters for the network
below one million.

The convolutional filters are factorized to different filter
sizes in each of the Inception blocks. However, every block
consists of four different convolutional filters along with
a max-pooling layer to extract essential filters at different
temporal lengths. The use of Max Pooling operation instead
of Average Pooling in this work has shown better performance
on the TS feature extraction. Unlike pixels in an image, it is
essential to spot the peaks within the vibrational data at each
time step. The convolutional block consists of a convolutional
layer followed by a batch normalization and a linear activation.
The use of unbounded linear activation function is explained
by the fact that vibrational data is a real number, i.e. 2 R, and
thus allows the reconstruction of the input data. Finally, the
architecture is designed to achieve an Inception-inspired AE
that has the optimal balance between the depth and the width
of the network.

Fig. 5, Fig. 6, and Fig. 7 describes the architecture of In-
ception A, Inception B, and Inception C blocks respectively.
A common colour pattern is followed for all of the above
mentioned figures. A convolutional layer with kernel size 1,
3, 5, and 7 are colored in yellow, blue, grey, and green
respectively. Whereas, the max-pooling layer is colored in
pink.

Fig. 5: Architecture of Inception A block. K: kernel size, S:
Stride, F: Filter channels, MP: Max Pooling layer

Inception A: It can be described as an enlarged version
of the 1-D vanilla Inception module where an additional
layer of convolutional operation with a larger filter size is
added. Most specifically, it follows an approach of factor-
izing the larger filters into smaller convolutions. As shown
in [16], convolutions with large spatial filters tend to be
more computationally expensive without contributing much to
the overall performance. The architecture is solely based on
convolutional filters with a shape of N x 1 where N represents
an integer value. Due to the one-dimensionality nature of the
HF-TS data, it is not possible to establish asymmetry between

the convolutional layers inside the network as explained in
[16]. To extract essential information at different temporal
lengths, the filters are factorized to 1, 3, 5, and 9 where the
filter size of 9 is further factorized into smaller filters. The
architecture highlights the re-factorization of the filter size 9
with a black bounding box that consists of four smaller-sized
filters of 3 stacked sequentially. A point-wise convolutional
layer precedes each of the N x 1 filters as it helps to limit
the computational cost of the network. A residual connection
is used as a part of the network and connects the input to
the output as shown in Fig. 5. One of the reasons to use
residual connections between the entry and the middle flow
is to transfer essential input features before being compressed
to lower dimensions. Besides that, extensive experimentation
has led to the choice of using the residual connection only at
the first block of the network. The number of filter channels
used for each convolutional layer is subject to extensive
hyperparameter tuning.

Fig. 6: Architecture of Inception B block. K: kernel size, S:
Stride, F: Filter channels, MP: Max Pooling layer

Inception B: Comparing the architecture of the previous
Inception A network, this block gradually aims to decrease
the filter sizes as we proceed to the final stages of the entire
architecture. It is sequentially stacked with the Inception A
block inside the network as it forms the second essential
feature extraction block. As the input dimension of the data
decreases with the depth of the network, it uses convolutional
layers with filter sizes of 1, 3, 5, and 7. Instead of using a filter
size of 9, it is decreased to 7. The rest of the architecture is
kept identical to the base Inception block besides the point-
wise convolutional layers to limit the computational cost.

Inception C: The third and final block of our network,
Inception C, follows the overall architecture used in the In-
ception B. It again follows the approach of factorizing large
convolutional filters into smaller filter sizes. However, in this
architecture, we went one step further where we re-factorize
two large filters instead of one as in Inception A. As in
Inception B, we use convolutional filters of sizes 1, 3, 5,
and 7. We again factorize the filters with sizes 5 and 7. The
modifications are highlighted in Fig. 7 with black bounding
boxes. We use two small filters of size 3 for filter 5 and three
small filters of size 3 for filter 7. Such implementation holds
the power to improve the generalization ability of the network,
as it looks closely into finer trends in the raw data.
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Fig. 7: Architecture of Inception C block. K: kernel size, S:
Stride, F: Filter channels, MP: Max Pooling layer

V. EXPERIMENTS

A. Data set partitioning
Generalization is one of the major obstacles in industrial

ML. In fact, data-driven algorithms are constantly challenged
by data drift caused, for example, by components that wear out
over time, and by the rapid implementation of new processes in
production due to technological progress. The data partitioning
in this work maps these scenarios and is presented in Fig. 8.
The training set consists of samples from 12 different machine
operations out of 15, leaving 3 operations reserved for the test
set. The test set contains all 15 machine operations, including
the 3 tool operations unseen in the training set. In addition,
the samples in the test set are picked from a different time-
period than the training set to validate the data drift over time.
In a real-world scenario, the data are streamed and processed
in chunks. For that purpose, the data are windowed using a
sliding window method with a window length of 4096.

Fig. 8: Class distribution per process operation within the
training set (left) and the test set (right).

B. Training Set up
In this work, eight groups of experiments with different

AE architectures are conducted. It gradually transitions from
a shallow AE network to a more complex deep network.
The search for a highly scalable AE architecture begins with
Baseline AE. It defines the generic form for the entry flow
used for the other AE networks implemented in this work. The
middle flow is intentionally kept empty for this network, while
the exit flow consists of a single bottleneck layer. The shallow
Baseline AE is gradually made more profound with the
multiple stacked CNN layers (S-CNN), residual connections
(Res-CNN), and depthwise-separable convolutions (DS-CNN)
within the middle flow. Besides the standard and depthwise-
separable convolutional layers, dilated convolutional layers

(Di-CNN) are experimented with using dilation rates of 2,
4, and 8 gradually. The next set of experiments explores the
importance of the width of the network with Inception AE,
where the 3 DL blocks from the middle flow are replaced
by standard 1-D inception blocks having kernel sizes of 1x1,
3x1, and 5x1. The final experiment is the LitNet architecture
proposed in the previous section.

The training of the models are performed on GPU NVIDIA
Tesla K80 and each model architecture goes through an
extensive hyperparameters search using the ranges presented
in Table I. In the scope of this work, we have used Optuna

TABLE I: Choices for training parameters for all the proposed
model.

framework [18] to tune our training parameters. To have a
comparative evaluation of the different model architectures,
certain training parameters, such as the number of epochs,
batch size, and optimizer, have been fixed. Each AE is trained
for 40 epochs with a batch size of 32 and AdamW optimizer
[19]. Learning rate is determined through hyperparameter
tuning and it varies for the individual model. Although the
optimal learning rate for all the models is found in the range
of 1e-4.

VI. PERFORMANCE ANALYSIS

In this section, we evaluate the models from different
aspects. We first evaluate the compression performance based
on the reconstruction loss and the generalization capability on
unseen processes. The real-time capability of deep learning
feature extractors on edge devices is then discussed based on
the training and inference time of the different architectures.
Lastly, the unsupervisingly extracted features are visualized
and discussed.

A. Compression performance
Data compression plays an essential role in industrial IoT.

Diminishing the data volume facilitates the data traffic over the
network by reducing bandwidth. The AE models presented in
the previous section offer a compression rate equal to 24 for all
the models. The compression performance is evaluated using
the Mean Squared Error (MSE) calculated using the following
equation:

MSE =
1

n

nX

i=1

1

m

mX

j=1

(xi,j � xreci,j )
2 (1)

with n denoting the number of samples, m being the channel
number, i.e. the {X�, Y�, Z�} vibration axis, x the input
sample and xrec the reconstructed input. As we can see in
Table II, the MSEs of the implemented models outperform
the baseline model, showing that deeper architectures improve
reconstruction accuracy and reduce compression loss. It also
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highlights that dilated and multi-level convolutional layers
significantly reduce the test loss by a factor of 10 compared
to the baseline model. LitNet delivers the best MSE of 0.024,
which is a 50% improvement over Di-CNN and Inception.

TABLE II: Performance evaluation of the different autoen-
coders. The training is run on a GPU NVIDIA Tesla K80.
The inference is performed on a CPU IntelCore i7 9850H.

DS-CNN performs poorly and has the second-highest recon-
struction loss of 0.379 (after the baseline). However, looking at
the MSE for each process in Fig. 9.a, a valuable advantage of
depth-wise separable convolution becomes apparent. It shows
that the MSE of OK samples in the training set is relatively
low compared to NOK samples and OK samples that are
unseen during training, such as OP13 and OP14. This means

(a) Model: DS-CNN

(b) Model: LitNet

Fig. 9: Distribution of the MSE recontruction loss over the
different machine process operations. For analysis purposes,
the red line in (a) shows the maximum MSE reached by the
LitNet (b).

that depth-wise separable convolutions tend to overfit the
samples in the training set and require a large number of

samples, making DS-CNN a good candidate for anomaly and
novelty detection. Fig. 9.b shows the generalization capability
of LitNet in reconstructing unseen process operations. Fig.
10 shows the compression performance of the LitNet model
on an unseen machine operation (OP11) from the test set.
This proves the data compression reliability of the proposed
approach.

Fig. 10: Compression performance of the LitNet model on an
unseen machine operation (OP11) from the test set.

Despite the reconstruction loss, the timing of compression
is an essential criterion in the development of industrial ap-
plications. One can mention two scenarios: First where solely
the encoding, i.e. features extraction, is performed on the edge.
The second, where both encoding and decoding take place on
the edge. The second scenario is chosen when AEs are used
for anomaly detection tasks based on the reconstruction error.
However, this can also be used as a monitoring technique
to detect when the compression is faulty and retraining is
required.

In Table II, the encoding and decoding time for a single-
window is illustrated. A window represents one tri-axial vibra-
tion data segment of dimension (4096,3) which corresponds
to a 2048ms segment. In the input dimension, 4096 represents
the window length and 3 represents the number of axes. LitNet
is the slowest model in the list and takes 32.2ms to encode
a single window. This operation is considered real-time since
it uses only 1.57% of the time to process one input segment
before the next window is queued. However, it is important to
highlight that Di-CNN, the model with the second-best MSE
score, requires less than half LitNet’s time to encode the tri-
axial vibration segment. This is explained by the computation
efficiency of dilated convolutional layers which offer larger
coverage with fewer parameters. This advantage is reflected
in the training time as well. To train the 40 epochs, Di-CNN
takes only 2341 seconds, which is 3.7 times faster than LitNet.

For industrial applications, reconstruction quality is key and
more critical than computational speed, making LitNet the
best performing model, which is slower but still under 35
ms/window.
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Fig. 11: Comparison of the X-axis vibration data of an unseen
tool operation (OP07) with its reconstruction signal mapped
by the LitNet, Di-CNN, and DS-CNN models separately. The
left and right columns show the tool operations OK and NOK,
respectively.

B. Features analysis

In this section, we evaluate the latent space representing
the information content extracted by the encoder model. For
this purpose, we examine the reconstruction signal of both
OK and NOK samples from an unseen tool operation, i.e.,
OP07. Fig. 11 shows the comparison of the X-axis of the
input raw signal with its reconstruction mapped by Di-CNN
and LitNet, the two best-performing compression models,
and DS-CNN, which showed promising anomaly detection
capabilities. LitNet reconstructed both the OK and NOK
signals the best. The anomalous patterns occurring at seconds
1.2, 1.6, and 2.0 in the NOK signal were better encoded in
LitNet’s feature vector than in Di-CNN, where there is some
loss of information due to the dilation operation. In contrast,
DS-CNN fails to reconstruct these patterns and overshoots in
the anomalies sections as seen in the figure.

To further investigate the latent space, the high dimensional
feature vector is projected into a lower-dimensional space
using principal component analysis (PCA) [2]. To analyze the
feature space in 2-D, only the first two principal components
are considered. Fig. 12 illustrates the 2-D feature maps of Lit-
Net, Di-CNN, and DS-CNN. The figure shows the distribution
of OK and NOK classes. It shows that LitNet and DS-CNN
have better separation of the anomaly classes than Di-CNN.
This can be explained by the results of Fig. 11, where we
see that Di-CNN has difficulty in reconstructing the anomaly
patterns. However, DS-CNN slightly outperforms LitNet, and
only when looking at the first principal component. However,
the second principal component shows the rich information
content of the features extracted by LitNet compared to DS-
CNN.

Fig. 12: Feature map of the encoded OK and NOK latent space
resulting from the LitNet, Di-CNN and DS-CNN encoding
models.

VII. CONCLUSION

In this paper, different autoencoder architectures have been
investigated in terms of compression and feature extraction
performance. The experiments performed gradually transits
from a shallow autoencoder to a more complex network.
A lightweight inception network called LitNet is proposed.
It provides multi-level feature extraction for high-frequency
time series data using sequential convolutions with small-sized
filters, keeping the number of parameters small. Experiments
show that deep networks with wide blocks, such as dilated
convolutions and multi-level convolutions, perform the best
on noisy vibration data. The proposed network outperforms
all models in encoding performance with a mean square
reconstruction error of 0.024 and provides promising results
in feature extraction. The results also show that the proposed
model meets the industry requirements as it is shown to be
highly scalable across new tool operations. The improvement
in generalizability is explained by the stack of smaller filters,
which simultaneously reduces the number of parameters in
the model, making it real-time capable. Future work will
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investigate the supervised tuning of the LiNet architecture and
its feature extraction capability. Keeping in mind the industrial
challenges, methods that use a limited number of labeled
samples will be considered.
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5 Two-Stage Feature Learning

Based on the results from paper 2, unsupervised feature learning revealed some limita-
tions. Motivated by the presence of a limited amount of labeled data in manufacturing,
in this section I investigate the semi-supervised methods and in particular the "few-
shot" metric-based learning techniques. The research consists of investigating the
prototypical few-shots learning method, which has shown promising results in com-
puter vision and natural language processing. It is used as part of the proposed two-
stage feature learning method and evaluated in comparison with conventional proto-
typical learning. The proposed few-shots method is compared with the conventional
supervised method and the handcrafted feature extractor.

The results of the following journal article address research questions 2 and 4. The
evaluation of the results concludes that the semi-supervised DL method, which com-
bines the benefits of the unsupervised autoencoder method and the prototypical few-
shots method, outperforms the handcrafted method in terms of computation time, per-
formance, and robustness. With faster computation time and lower sensitivity to data
drift, the proposed method has demonstrated its superiority over the handcrafted meth-
ods and reduces the overhead of domain knowledge and human labeling. Moreover,
the results show that fine-tuning does not always improve the performance and robust-
ness of DL models and is highly dependent on the method. Based on the results of
the paper, we see poor performance when using conventional supervised fine-tuning
methods in contrast to "few-shots" learning methods. This is explained by the limited
amount of labeled data in real-world use-cases, making the conventional supervised
fine-tuning method overfitting on the small dataset.

The contributions of the authors are depicted in the journal.
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Abstract: In the last decades, data-driven methods have gained great popularity in the industry,
supported by state-of-the-art advancements in machine learning. These methods require a large
quantity of labeled data, which is difficult to obtain and mostly costly and challenging. To address
these challenges, researchers have turned their attention to unsupervised and few-shot learning
methods, which produced encouraging results, particularly in the areas of computer vision and
natural language processing. With the lack of pretrained models, time series feature learning is still
considered as an open area of research. This paper presents an efficient two-stage feature learning
approach for anomaly detection in machine processes, based on a prototype few-shot learning
technique that requires a limited number of labeled samples. The work is evaluated on a real-world
scenario using the publicly available CNC Machining dataset. The proposed method outperforms
the conventional prototypical network and the feature analysis shows a high generalization ability
achieving an F1-score of 90.3%. The comparison with handcrafted features proves the robustness of
the deep features and their invariance to data shifts across machines and time periods, which makes
it a reliable method for sensory industrial applications.

Keywords: feature learning; CNC machining; machine monitoring; machine learning; few-shot
learning; vibration data; two-stage learning

1. Introduction

The latest advances in technology coupled with an aim to realize smart intelligent
systems have contributed to a rapid move towards the next industrial revolution. Unlike the
third industrial revolution powered by electronics and information technology, digitization
and automation have been the front runners to revolutionize industry to its fourth chapter.
The fourth industrial revolution has proved to be a boon to the traditional machining
processes as it brings some key advantages such as improvement in the production and
quality, cost reduction, and monitoring of machining processes in real time. As a result,
condition monitoring and process condition monitoring systems are integral parts of
intelligent manufacturing that support the quality inspection. Such highly automated
systems rather support the flow of huge volumes of data that can be analyzed in real time
without interrupting any machining workflow [1].

Enabled by the significant advancements in industrial Internet of Things (IIoT), the pro-
cess involved in collecting and monitoring data from industrial environment is made more
convenient. The initial step usually involves the acquisition of different types of signals
such as vibration, cutting force, and a few others that can determine the health of machining
parts and tool processes. This work largely focuses on the vibration-based signals as it
provides critical information about the machining health. However, the vibration signals
collected from the sensors are largely affected by several environmental factors and are
commonly characterized by their nonlinearity, nonstationarity and noisiness. This brings
us to the next steps of monitoring systems that are filtering the collected signals [2]. Feature
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extraction as means of signal filtering is a crucial step in the data processing pipeline. With
the gradual development in machine learning (ML) algorithms and eventually deep neural
networks, the idea of feature extraction from the raw vibration signals has varied over
time. Traditionally, the feature extraction mainly involved signal processing techniques
such as statistical analysis on the time, frequency or time–frequency domain [3–6]. Al-
though these techniques have produced fair results over the years, they also present some
major drawbacks. These algorithms often require extensive domain knowledge as well as
human expertise specifically designed for a specified task. As the volume of the collected
data increases, which is particularly huge in modern automated smart systems, the effort as
well as time to produce meaningful representation increases. One implementation done by
Christ et al. named as TSFRESH [7] has achieved remarkable results. It can automatically
extract statistically based features and observe dynamics without much human expertise.
Lines et al. [8] also presented a hierarchical transformation ensemble method for time series
classification. However, these methods fail to meet the demands of a fast reliable algorithm
due to the high computational time.

Recently, encouraged by the outstanding performance of deep learning (DL) in several
fields, some interesting end-to-end DL algorithms have been proposed to replace tradi-
tional time-consuming monitoring systems. Unlike image processing, research in machine
monitoring has mostly overlooked the advantages of deep neural networks due to their
hard interpretability and their nonacceptance in industry [9]. Nevertheless, state-of-the-art
research works [10,11] have integrated DL techniques on vibration data that are treated
as one-dimensional time series data and showed state-of-the-art results, bypassing the
handcrafted-based methods. However, these supervised methods require a huge quantity
of labeled data to achieve satisfying performance. Data annotation is another critical factor
in real-world production plants, as labeling large quantities of data is often an inconvenient,
costly, and erroneous approach under human supervision. Moreover, in a highly automated
system, the occurrence of anomalies is a rare event that causes a huge imbalance between
OK and NOK samples. These factors deteriorate the performance of supervised DL algo-
rithms that fail to generalize on noisy time-series (TS) data. To tackle these shortcomings,
unsupervised feature extraction technique has proved to be promising. In particular, au-
toencoders have been found to be most beneficial algorithm [12]. Sun et al. [13] showed that
a sparse autoencoder with a small number of trainable parameters can learn good features
based on induction motor data. Shao et al. [14] also proposed a work that addresses the
generalization of autoencoders on unseen working conditions in fault diagnosis.

Despite its huge success, conventional DL techniques require huge quantities of data
to offer meaningful generalization on unseen data. In the literature, the problem of insuffi-
cient labeled data samples has been handled in different ways. Data augmentation plays
a crucial role in processing such raw vibration data. Overlapping input data samples to
generate small snippets of new samples is one such technique used by [10]. In the fault
diagnosis applications, a few works have showed how data augmentation could generate
new synthetic samples using GANs [15,16]. However, they suffer from overfitting problems.
To overcome the challenge of limited labeled data, certain ML algorithms named few-shot
learning (FSL) methods have been proposed in the state-of-the-art literature [17]. Such
a learning paradigm has been designed to tackle scenarios where data with appropriate
labels are difficult to produce, such as in an industrial environment. Considering a small
training dataset (x, y), FSL can be best described as an optimization algorithm that searches
for the best hypothesis space from x to y described by the set of optimal parameters [18].
Current state-of-the-art literature has produced FSL for various applications mostly featur-
ing computer vision tasks and only a few implementations can be found for time-series
classification. The authors in [19–22] proposed a metalearning model for few-shot fault
diagnosis applications. The prototypical network is also a popular FSL technique for time-
series classification. It has proved to achieve state-of-the-art results for both few-shot and
zero-shot classification problems [23,24]. Tang et al. [25] proposed a novel few-shot learning
approach for time-series classification. In the feature learning research on rolling bearing
fault diagnosis, Wang et al. [21] proposed a metric-based metalearning method named
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relational network which learns fault features from the input FFT frequency signals. A few
studies [21,26] also explored few-shot learning for fault diagnosis on rotatory machines
such as CNC machines.

To address the problem of costly data annotation and the imbalance between normal
and abnormal machine faults, this work aims to propose a novel two-stage feature learning
framework using the prototypical few-shot technique. Recently, researchers have largely
benefited from the two-stage frameworks, which have gradually attracted a lot of attention.
The existing methods in the state-of-the-art literature fall into two categories. The first
category is the two-stage predicting category, which aims to improve the performance of
the prediction task by decomposing the application task into two sequential tasks. Few
studies [6,27,28] have explored the two-stage predicting category. To detect defective rolling
element bearings, Yiakopoulos et al. [6] presented a two-stage method, where the first task
was to detect the existence of a bearing fault while the second stage task classified the type of
detected anomaly. The second category is the two-stage learning framework, which aims to
improve the learning following a graduated training methodology. In the image processing
field, Das et al. [29] tackled the problem of the high dimensionality and the variable
variance among the base classes with a two-stage feature learning approach. The first
stage produces a relative feature extractor, while the second stage handles the classification
task by measuring the variance using distance metrics such as the Mahalanobis distance.
Afrasiyabi et al. [30] aimed to represent rich and robust features from input images using
mixture-based feature learning (MixtFSL). The proposed end-to-end approach learned
in a progressive manner till the best feature representation was achieved. Ma et al. [31]
proposed a two-stage training strategy called partner-assisted learning, where soft anchors
were generated by a partner model in the first stage and the main encoder was trained by
aligning its outputs with the soft anchors in the second stage. In wind turbine condition
monitoring applications, Afrasiabi et al. [32] presented a sequential training pipeline that
resolved the limited data problem by generating artificial data in the first stage and training
a robust deep Gabor network in the second stage.

This work falls into the second category and proposes a novel two-stage feature learn-
ing framework for industrial machining processes. The study focuses on the performance
of the resulting feature extractor trained with limited labeled data, its ability to generalize
over unseen machining process operations with different working conditions as well as its
robustness against data drift. The work is divided into sections. The second section presents
the background of the prototypical network (PN) and the different distance measures used
in this work. In the third section, we define the smart data sampling technique for noisy
time series and the proposed two-stage learning approach. In the fourth section, we in-
troduce the publicly available Bosch machining dataset and present a real-world scenario
mapped in the dataset-splitting part. In the fifth section, we describe the experiments
performed, followed by an in-depth analysis of the results as well as a comparison with
different types of feature extractors. Finally, we conclude with a short summary and the
prospect of some future work.

2. Background

2.1. Prototypical Networks
This work greatly focuses on prototypical networks [23] for few-shot learning. For

an N-way and K-shot FSL, we have a small training dataset D with k labeled samples.
D = {(x1, y1), .., (xk, yk)}, where xi represents a D-dimensional input feature vector and
each yi represents its corresponding label. The training is divided into several episodes
termed as training episodes. For each episode, training sets are sampled to form a support
set S and a query set Q.

Support Set: A random subset of classes from the training set is selected as support set
containing K examples from each of the N classes.

Query Set: A set of “testing” examples called queries.
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Taking each class into consideration, prototypical networks generate the embedded
points for each example in S using an embedding function fq . For each class Nk, a mean
vector of the embedded points Ck is computed using Equation (1) and represents the
prototype of the Nk class.

Ck =
1

|Sk| Â
x2Sk

fq(x) (1)

By computing a distribution over classes, the prototypical network classifies the
queries using a softmax function over the distances to the prototypes following Equation (2).
Snell et al. [23] highlighted the significance of using a squared Euclidean distance as a
distance function in image classification tasks. In this paper, we further studied different
distancing functions for noisy time-series classification tasks.

Pq(y = k|x) = exp(�d( fq(x), Ck))

Âk0 exp(�d( fq(x), Ck0))
(2)

Finally, the network is optimized by minimizing the negative log-probability of the
true class with an Adam optimizer [33] and updating the parameters q of the embedding
function f using the loss Equation (3).

L � L +
1

NC NQ

"
d( fq(x), Ck) + log Â

k0
exp(�d( fq(x), Ck)

#
(3)

2.2. Distance Metrics
L2 Euclidean: Given two vector points U: (u1,. . . , uk) and V: (v1,. . . ,vk), the Euclidean

L2 distance is defined as the shortest distance between two vector points, a commonly used
similarity metric in various applications.

D(U, V) =

vuut
k

Â
i=1

(ui � vi)2 (4)

DTW distance: DTW or dynamic time warping [34] was coined as a distance metric to
find the similarities between two time sequences. Unlike the Euclidean distance, which
is prone to both global and local shifts in time dimension, DTW tackles such unintuitive
results and aims at finding the minimum warp path between two time sequences. Given
two time sequences P and Q and their individual lengths |P| and |Q|, respectively, DTW
constructs a warp path which is given by

W = w1, w2, .., wk, where wk = (i, j) and wk + 1 = (i⇤, j⇤) (5)

The warp path begins at index (1,1) and ends at (|P|,|Q|). The optimal warp path
Dist(W) is thereby given by the sum of the distances between the individual warp paths
from index i in P to index j in Q, meaning

Dist(W) =
k=K

Â
k=1

Dist(wki, wkj) (6)

To reduce the time complexity of DTW from O(N2) to O(N), FastDTW has been
proposed in the state-of-the-art literature [34]. Keeping the whole DTW algorithm simi-
lar, it introduces three constraints: coarsening (shrinking the time sequence into smaller
time steps), projection (calculating the minimum warp distance at low resolution), and
refinement (refining the low-resolution warp path through local adjustments) to reduce the
time complexity.
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Cosine distance: The cosine distance is another metric that is used to measure the
similarity between two vector points. It measures the cosine of the angle between two
vector points. The cosine similarity metric and cosine distance metric are correlated and
can be found in the following equations.

Cosine similarity(U, V) = cos(q) =
U.V
kUkkVk =

Âk
i=1 uiviq

Âk
i=1 u2

i

q
Âk

i=1 v2
i

(7)

D(U,V) = 1� Cosine similarity(U,V)

3. Method

In this paper, we propose a generic feature learning method for monitoring machining
processes using limited TS data annotations. In the next sections, the mixture-based data
selection method is defined, followed by the proposed two-stage feature learning method.

3.1. Mixture-Based Data Selection
The learning performance depends mainly on the input data. This makes data selection

not only the first but also a crucial step in FSL since it aims at choosing the training
query and support sets. In computer vision, sample selection is straightforward given
the standardized format of the image data. However, TS data, such as process vibration
data, is characterized by the variation of signal length due to the different measurement
lengths. This leads to an imbalance of data after data windowing and degrades the learning
performance. In this work, we used a mixture-based data selection technique (MDS), which
is illustrated in Figure 1.

labeled set 

windowing

windowed set  

random 
picking

SB 1

SB 2
Class 1

Class 2
SB 1 SB 2 SB 3

SB 1

Class 1

Class 2

SB 2

SB 1

SB 2

SB  3 training set 

SB 1
Class 1

Class 2

SB 2

SB 1 SB 2 SB 3

Figure 1. Mixture-based data selection method used in a 2-way and 5-shot FSL for single-axis
vibration signals (C = 1). SB: subclass

The data signals x 2 D in each class Nk are first windowed using a sliding window
with a fixed ws. In online industrial applications, data are buffered in chunks, which
explains the use of the sliding window when developing industrial data processing tech-
niques and speeds up the computing by avoiding additional data analysis steps. The output
of the first step is a set of same-shaped signals xw 2 Rws⇥C, where C is the number of
channels. In the case of the vibration data used in this work, C was equal to 3 with refer-
ence to the {X, Y, Z} axes. For the sake of simplicity, only one axis of the vibration signal
(C = 1) is shown in the MDS illustration in Figure 1. The windowing step is followed by
a random selection step that samples the training sets, i.e., the query and support sets,
during the episodic learning process. For an FSL task with N ways and K shots, the MDS
outputs support set S = (x, y)N⇥K and query set Q = (x, y)NQ with NQ being the number
of queries per iteration. As stated above, the measurement length mismatch leads to an
imbalance between the different subclasses, i.e., the different machining processes. The
MDS sampling technique produces an equal number of data samples in the OK and NOK
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training sets at each training episode, which reduces the negative impact of the imbalance
rate and results in more unbiased models. The second advantage of the MDS method is
the high informativeness of the training sets in terms of the diversity of signals in each
class. In fact, at each training episode, thanks to the windowing step followed by a random
selection, the MDS leads to a more diverse selection of samples from different periods,
machines, and processing operations, which allows the FSL models to be drift invariant
and facilitates the search for discrepancy between the OK and NOK classes. This result
increases the robustness of the feature extractor, which is insensitive to the challenging
conditions in machining applications.

3.2. Two-Stage Learning Framework
The proposed method represents a two-stage learning framework for noisy industrial

TS data and is shown in Figure 2. The first stage consists of an unsupervised pretraining
stage, while the second step consists of fine-tuning the learned feature extractor using very
limited annotations and is therefore referred to as the metalearning stage.

		"!

		"!unlabeled set pre-trained FE

Unsupervised Pre-training Stage  

Meta-Learning Stage  

representation transfer

support set 

mean

		"!query sample 

		"#$%
score label

loss

feature vector

#"

Figure 2. Two-stage few-shot feature learning framework. The OK and NOK classes are shown in
green and red respectively.

3.2.1. First Stage: Unsupervised Pretraining
Industrial use-cases are characterized by their large volume of unlabeled data, in

particular for time series data. In order to take advantage of the unannotated data and
overcome the imbalance effect on supervised learning, the two-stage learning starts with
an unsupervised feature learning using the autoencoder (AE) method [12]. In this phase,
the encoder f with parameters q learns the representation of the unlabeled dataset Dunlabeled
by encoding the input signal x into a compressed vector xenc. The encoder architecture,
which represents the deep feature extractor of the proposed method, was designed based
on a convolutional neural network (CNN) and is illustrated in Figure 3. To best evaluate
the two-stage learning method, a simple stacked CNN was chosen with 3 consecutive con-
volutional blocks followed by a final bottleneck layer. Each convolutional block consisted
of a 1-D convolutional layer, a batch normalization layer [35], a ReLu (Rectified Linear Unit)
activation function, and a max pooling layer.
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Figure 3. Architecture of the deep feature extractor fq . MaxPool: maxpooling layer; Conv: 1D
convolutional layer; BN: batch-normalization; K: kernel size; F: filter channels

The decoder gf is a transposition of the encoder fq and performs the decoding of
the encoded feature vector xenc into the reconstructed signal xrec. The objective function
of the autoencoder E is the mean square error (MSE) between xrec and the input signal x
according to the following equation:

E =
1
n

n

Â
i=1

⇥
x� gf( fq(x))

⇤2 (8)

The result of this phase consists of the pretrained parameters of the encoder function
fqpretrained and the decoder part is dropped. The training process of the first stage follows the
pseudocode in Algorithm 1.

Algorithm 1 First stage: unsupervised pretraining

Input: Unlabeled data set Dunlabeled
Output: Pretrained encoder function fqpretrained

q, f Initialize randomly
for number of epochs do

compute MSE error E using Equation (8)
q, f Update using gradients of E . compute backpropagation

end for

3.2.2. Second Stage: Metric Meta Learning Stage
The second stage consists of fine-tuning the unsupervised pretrained feature extractor

fq for a specific task using very limited annotated dataset Dlabeled in an episodic manner.
The first step consists of sampling the training steps using the Section 3.1 method resulting
in highly informative support sets. For each signal in the support set, the embedded
vector is extracted using the feature extractor fq and these deep feature vectors are then
averaged by class. This results in N representative Ck prototypes for each class. Using a
distancing function, each prototype is then matched against each embedded query point,
which is classified by simply finding the closest class prototype. The distancing function is
crucial to the feature learning process as it defines the loss function L (3) and therefore the
optimization of the feature extractor parameters. To find the optimal distance function for
the noisy vibration data, we evaluated in the experimental section different TS measures
(Euclidean, cosine, and DTW). The parameters q are later updated using the gradients of
the loss function L using the Adam optimizer function [33]. Once the metric metalearning
stage is completed, the resulting feature extractor fq is evaluated on an unseen dataset Dtest
and on the visualization of the embedding space of vibration data. The training process of
the second stage follows the pseudocode in Algorithm 2.
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Algorithm 2 Second stage: metric-based fine-tuning

Input: Labeled data set Dlabeled, pretrained encoder function fqpretrained

Output: Two-staged trained encoder function fq
fq  fqpretrained . initialize encoder with the pretrained parameters
L 0
for number of epochs do

Sample SQ and SS from Dlabeled using the Section 3.1 method
Generate prototypes CS using the averaging Equation (1)
Calculate L for the minibatches using the loss Equation (3)
q  Update using gradients of L . compute backpropagation

end for

4. Real-World Case Study

4.1. Data Description
CNC milling machines are widely used in a variety of machining industries, commonly

known for their precision and high production speed. The dataset in consideration offers a
great insight into the complexity and challenges of the CNC machine monitoring use case as
it closely represents a real-world industrial case inside a production plant. This work used
a publicly available dataset [36] comprising sensor data recorded with the help of a triaxial
accelerometer mounted on top of the machining parts of the CNC machine. The data
collection was stretched over four different periods of five months each starting from
February 2019 to February 2021. Such collection procedures help to tackle the challenges
of data drift and the generalization of data-driven approaches. The training and the
test dataset host both the normal and abnormal vibration data samples caused by the
tool misalignment. Typical process operations that are being carried out by a machining
workpiece greatly vary from drilling to cutting. In the scope of this work, each machine
hosted 15 different process operations carried out with different physical tools and under a
unique configuration. Each sample was a triaxial (X-, Y-, Z-) acceleration data acquired with
a sampling rate of 2 kHz. The data were collected from three different CNC machines (M01,
M02, and M03) in contention, each containing 15 different process operations ranging from
OP00 to OP14. Each data sample was accompanied with the necessary labeling parameters,
such as Label, Machine, and Period.

4.2. Data Splitting
This section describes the data splitting used in this work. The data were mainly

divided into 2 unique sets: training set and test set. The training dataset contained 172 dif-
ferent samples with 156 OK samples and 16 NOK samples, while the test dataset contained
1702 different samples with 1632 OK samples and 70 NOK samples. This reflected the
real-world scenario where we generally have a limited labeled data set (training set) with
an imbalanced OK/NOK ratio and a relatively large number of unlabeled data (test set).
This is illustrated in Figure 4 where the color “violet” represents the training set samples,
whereas “orange” denotes the test set samples. To assess the generalization to unseen data
and the robustness of the models to data drift, the data splitting was performed according
to three different criteria:
• Machine-wise: This allowed the evaluation of the scalability of the models across

different machines. We had 3 CNC Machines in consideration (M01, M02, and M03).
Even though, they generated data samples representing the same tool process opera-
tions, they varied due to external conditions. Both the training and the test sets were
uniformly distributed across the three machines as shown in Figure 4. With a uni-
form distribution, the model was not offered any unnecessary bias across a particular
machine. M03 was not included in the training and was placed aside for testing.

• Process-wise: This allowed the evaluation of the generalization of the models across
unseen tool processes. In industrial applications, new processes are constantly being
added due to technological progress and market demand. The training set only
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contained 4 different tool operations whereas 11 new tool process operations were
introduced in the test set.

• Period-wise: This allowed the evaluation of the robustness of the models across
unseen periods. Worn components and aging cause a drift in the data, which affects
the data-driven models. For that purpose, the periods of August 2020 and August
2021 were not included in the training and were placed aside for testing.

a. Distribution per machine b. Distribution per timeframe

c. Distribution per process operation

Figure 4. Distribution of the training and test datasets per machine, timeframe, and machining
process. To reflect the challenges of industrial practice, a limited amount of data is included in the
training set (violet) and unseen data from different machines, time periods and process operations is
included in the test set (orange).

5. Experiments and Analysis

The following section describes the experiments carried out in the scope of this work.
The goal of this work was to investigate different strategies for training feature extractors
(FEs) for raw industrial time-series data and evaluate them in terms of robustness and
generalization. The training of the FE was conducted in a progressive manner. We started
by evaluating the performance of the single-stage prototypical network. Once the best
parameters were obtained, we proceeded to a comparison with the proposed two-stage
model framework. The trained FE models were evaluated on unseen data samples from
the test set. We concluded by comparing the FE model obtained by the proposed method
with the handcrafted FE and the end-to-end supervised trained FE using a distribution
analysis coupled with a feature space analysis. All the experiments were performed under
similar conditions with identical training parameters (learning rate = 8 ⇥ 10�4, number of
epochs = 4, window size ws = 4096 and optimizer = Adam). N was fixed to 2 as we only
considered two distinct classes for our experiments {Class 1: OK, Class 2: NOK}. While
training, the data samples from OP00 to OP04 were separated into the OK and the NOK
class sets. During each episode, we randomly picked a number K of data samples from
these two classes to create the support and query set using the MDS method. The value of
K representing the number of shots during each episode was varied to determine its effect
on the performance of the model. To test generalizability, the models were evaluated using
sample data from all available machining operations (OP00 to OP15). The sample data
were then picked following the same way as for the training set. The experiments were
conducted three times and averaged over their sum to produce the final results. The PN
FE models were thereafter evaluated for 1000 episodes of four epochs. The models were
trained on a GPU NVIDIA Tesla K80 and generated in Python (version 3.7.4) using the
PyTorch library (version 1.8.1).
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5.1. Single-Stage Prototypical Network
Experiment: The single stage prototypical network proceeded with a vanilla imple-

mentation of FSL for process failure on the industrial vibration data. The first phase of
the experiments used a PN technique with a randomly initialized encoder fq with the
architecture presented in Figure 3. This experiment was designed to vary two distinctive
parameters: K , the number of shots, and dist, the distance metric. First, K was varied
between 1 and 10 shots and the dist was set to the Euclidean distance. Second, dist was
varied between Euclidean, DTW, and cosine and K was set to seven. Combined with
the MDS sampling technique, we focus on obtaining the best set of prototypical learning
parameters for industrial vibration data.

Results: Tables 1 and 2 list all the results from the experiments that are compared
using different metrics such as “train loss”, “test loss”, “train Accuracy”, “accuracy” (test
set), “F1-score” (test set), “precision” (test set), “recall” (test set). For the K -shot analysis,
all the models converged with 100% accuracy on the training data. The PN model with one-
shot learning had the worst F1-score of 76.70%. This is plausible, especially for machining
anomaly detection applications, where we face large variations within a single class and
often require more samples on the support set to produce better representations (prototypes)
and thus a better generalization. The performance of the models gradually increased with
the number of shots as can be seen in Table 1. The convergence of the F1-score was reached
by the seven-shot PN model at the 87.3% mark. We also noted that the test loss was reduced
to 22.76 with a precision score of 89.3%. Upon further increasing the number of shots to
10, we suffered a minimal deterioration of the training loss that can be explained by the
drawback of the averaging function performed on the noisy time-series feature vectors.
In fact, averaging a relatively large number of deep TS-type features affects the information
richness of the prototype vector at some point.

Table 1. Results of the K-shots experimentation.

Model Train Loss Test Loss Accuracy F1-Score Precision Recall

1-shot 0.1340 87.31 0.765 0.767 0.759 0.773
3-shot 0.0304 36.95 0.848 0.847 0.856 0.835
5-shot 0.0053 29.33 0.860 0.859 0.869 0.848
7-shot 0.0048 22.76 0.876 0.873 0.893 0.855

10-shot 0.0079 21.73 0.882 0.878 0.906 0.853

Table 2. Results of the distance measures experimentation.

Distance
Train

Accuracy
Accuracy F1-Score Precision Recall

Euclidean 0.999 0.876 0.874 0.894 0.855
DTW 0.737 0.663 0.535 0.865 0.387

Cosine 1.000 0.842 0.851 0.803 0.905

Table 2 compares the results achieved with different distance metrics. With an F1-score
just below 54% and a training accuracy of only 66.3%, the DTW-based PN failed to learn.
One assumption why the DTW technique failed can be due to the failure to find the best
alignment between the prototype vectors and the query vector due to the cyclic behavior
of the data. The Euclidean distance, on the other hand, gave the best results, followed
by the cosine distance metric, the former getting an F1-score of 87.6% (2.3% higher). This
confirmed the findings from Snell et al. [23] for image classification tasks. However, the
cosine-based PN offered a better recall (90.5%) over the Euclidean distance recall (85.5%)
meaning that it was more reliable in detecting the faulty processes but returned more false
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positives. This is usually important for industrial applications where quality checks are
crucial and demand to be accurate in detecting anomalies, thus prioritizing detecting faulty
parts rather than accurately detecting all the good parts.

5.2. Two-Stage Prototypical Network
Experiment: Using the Euclidean distance and the K equal to seven shots, we evalu-

ated and compared the two-stage proposed FE learning framework with the conventional
single-stage learning method. Instead of randomly initializing the FE encoder fq , a pre-
training CNN autoencoder was added as an additional layer on top of the prototypical
network as stated in Section 3.2. The AE was trained on the full dataset irrespective of the
splitting scenario mentioned earlier. This was justified by the fact that today, thanks to
IIoT advancements, a huge quantity of unlabeled sensory data is available in the industry
and could be used for unsupervised training. We considered a batch size of 32 windows
each spanning over 4096 data points which were trained for 40 epochs with a learning rate
of 8·10�4.

Results: The goal of stage one consisted of pretraining the feature extractor fq via a
CNN AE network in order to break down the complex architecture of high-dimensional
sensor data. The results are shown in Figure 5 where we visualize the feature extracted by
the fqpretrained and the reconstructed signal using gfpretrained . The reached training loss value is
as low as 0.2.

		"! #"

Input signal Reconstructed signal

Encoded signal

Figure 5. Performance of the resulting AE model at the end of stage one.

Upon initializing with the learned weights, the PN as part of the two-stage model
shows a clear improvement over the single-stage network. It significantly tops the per-
formance chart by achieving an F1-score of 90.3% and an accuracy of 91.0% as shown in
Table 3. The two-stage model also proves to have better generalizability on unseen data
samples from new class labels as the test loss is significantly decreased from 22.76 for the
standard PN to 6.582. It can be further explained with the confusion matrices of both
models in Figure 6. The two-stage confusion matrix shows a similar improvement with
the inclusion of the pretrained network. The proposed model reaches a prediction rate
among its OK samples with an accuracy of 97.62% compared to the single-stage being
only at 88%. However, we see a slight deterioration in the NOK accuracy of 1.06%. This
can be explained by the pretrained weights in the two-stage training, as the number of
OK samples dominated the full dataset over the NOK samples, with an 816:35 imbalance
rate. It created a slight bias on the OK samples. We also note a longer training time of
1298 seconds due to the unsupervised pretraining of the feature extraction. The effect of
pretraining on the FE model is illustrated in Figure 7. The 2D feature map was generated
using a principal component analysis (PCA) [37]. The feature maps changed over time
upon increasing the number of epochs. After training four epochs with 1000 episodes each,
a clear distinction in the clusters between OK and NOK samples on the two-stage model
can be seen in Figure 7, in contrast to the single-stage model where a large number of false
positives are observed (in the PC1 > 1 range). That confirms the results of the confusion
matrices from Figure 6.
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Table 3. Evaluation of the proposed method against the single-stage method. The training was run
on a GPU NVIDIA Tesla K80.

Model Test Loss Accuracy F1-Score Precision Recall
Training

Time (s)

Single-
Stage 22.76 0.876 0.873 0.893 0.855 295.91

Two-Stage 6.582 0.910 0.903 0.973 0.843 1295.68

a. Single-Stage PN b. Two-Stage PN

17,598
87.99%

17,080
85.40%

19,524
97.62%

16,868
84.34%

2,402
12.01%

476
2.38%

3,132
15.66%

2,920
14.60%

Figure 6. Comparison of the confusion matrices of the single-stage and two-stage learning methods.

a. Single-Stage PN

b. Two-Stage PN

Pretrained FE (AE) FSL FE (1-epoch) FSL FE (4-epoch)

FE (random init) FSL FE (1-epoch) FSL FE (4-epoch)

× 10!
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× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

Figure 7. Comparison of the PCA feature spaces of the single-stage and two-stage PN on the
pretraining, 1-epoch, and 4-epoch levels. The encoder of the single-stage PN was not pretrained and
its parameters were therefore initialized randomly.

5.3. Handcrafted vs. Supervised vs. Two-Stage FE
Experiment: This section provides a detailed comparison of the proposed two-stage

model with the handcrafted features and with a feature extractor trained using the tra-
ditional end-to-end supervised method. The handcrafted features were extracted using
TSFRESH, a state-of-the-art handcrafted feature learning algorithm for industrial time-
series data. The supervised method consists of building a classifier block on the top of the
feature extraction block presented in Figure 3 and training the network in a conventional
end-to-end manner. The classifier block consists of two sequential fully connected layers
and a sigmoid as activation function. For the proposed and handcrafted methods, the exper-
iments consisted of training the classifier NN separately using the features extracted with
the two-stage FE and TSFRESH, respectively. All the experiments were performed under
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similar conditions with identical training parameters (epochs: 8, learning rate: 8·10�4, batch
size: 32, optimizer: Adam, loss function: binary cross-entropy). The end-to-end supervised
method uses the state-of-the-art weight-balancing factor.

Results: Table 4 and Figure 8 lay out the results of each of the three methods. The su-
pervised learning delivers the lowest performance among the other methods. Therefore,
the F1-score of predicting the correct class only stands at 5.6%. This can be explained by
the fact that conventional supervised training requires a huge quantity of labeled data and
fails to learn using limited quantity of data. Table 4 shows that features extracted using
the two-stage FE outperform the handcrafted FE method with an accuracy of 98.9% (vs.
86.6%) and an F1-score of 88.4% (vs. 84.8%). This performance further highlights the high
precision of the proposed method (99.55%) with the classification of the OK class that is
shown in the confusion matrix in Figure 8. This confirms the efficiency of the unsupervised
pretraining phase where the model learns reliably the dynamic representations of the
vibration data and turns more robust against data drift caused by time and wear of the
machining components. This can be seen in Figure 9, where the drift across machines and
across timeframes is visualized.
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Figure 8. Comparison of the handcrafted (a), supervised (b), and the proposed method (c) trained
feature extractors: the top row shows the confusion matrices obtained by the MLP classification,
and the bottom row shows the 2D visualization of the FEs’ feature spaces.

Table 4. Evaluation of the proposed method against handcrafted and supervised trained feature
extractors. The extraction was performed on a CPU Intel Core i7 9850H.

Feature

Extractor
Accuracy F1-Score Precision Recall

Training

Time per

Window (s)

Handcrafted 0.868 0.845 0.862 0.848 2.2502
Supervised 0.767 0.056 0.200 0.032 0.0054
Two-Stage 0.989 0.884 0.905 0.885 0.0054
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The features extracted from the OK class of the exact same process operations using
the handcrafted method vary from one machine to another and also over time (when
considering the same machine). In contrast, Figure 9 shows the robustness of the two-
stage FE, where the OK class data points have the same distribution, with no drift for the
across-machine and across-time analysis. We note also that this holds true for the process
operations not seen during training (OP06, OP07, and OP12 in Figure 8, as well as for
the timeframe (Feb_2020) and the machine (M3) not included in the training set. This
result is supported by Table 5, which presents the quantitative analysis of the drift between
machines and over time based on the handcrafted features and the deep features extracted
by the proposed method. The drift between the U and V domains was measured using the
Wasserstein distance. The two-stage FE shows excellent robustness to drift across the seen
and unseen domains within the OK class. We also see a larger distance between the OK
and NOK classes, which is consistent with the results from Figure 8.
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Figure 9. Evaluation of the data drift across machines and time of the handcrafted FE and the
proposed method FE within the OK class.

On the other hand, the handcrafted FE provides less robustness as the distance between
the OK domains is not consistent and in some cases, even higher than the distance between
the OK and NOK domains. In fact, the OK–NOK Wasserstein distance is equal to 35,869,
which is more or less equal to the distances: (M2, M3), (M1, M2), (August 2019, February
2019), and (February 2020, February 2019). A further analysis of Figure 8 reveals the
superiority of the proposed two-stage method in OK/NOK separation in the feature space
generated by the first two principal components. The two-stage method in Figure 8 shows
a clear separation of the normal and abnormal classes compared to the handcrafted and
supervised FE methods. It is also important to note that the handcrafted FE has slightly
better NOK accuracy, which can be seen in the confusion matrices, with 82.56% compared
to 77.47% (two-stage FE). However, the major drawback of the handcrafted technique is the
high extraction time (2.2502 s/window) compared to the deep feature learning techniques
(0.0054 s/window). This is an important feature for industrial applications that require
real-time execution when dealing with real-world use cases.
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Table 5. Quantitative drift analysis of the handcrafted and two-stage trained feature extractors across
time and machines using the Wasserstein distance between the different domains (U and V).

(a) Handcrafted FE

Within only OK class

U= Aug_2019 Feb_2020 Aug_2019 M1 M1 M2 OK

V= Feb_2019 Feb_2019 Feb_2020 M2 M3 M3 NOK

37,680.36 36,229.76 6435.13 37,919.52 14,147.56 37,602.05 35,868.79

(b) Two-Stage FE

Within only OK class

U= Aug_2019 Feb_2020 Aug_2019 M1 M1 M2 OK

V= Feb_2019 Feb_2019 Feb_2020 M2 M3 M3 NOK

0.484 0.529 0.146 0.337 0.513 1.001 6.22

6. Conclusions

In the field of machine condition monitoring, industrial time-series data face major
challenges, such as class imbalance, data drift, and most importantly, the lack of pretrained
feature extractors. To overcome these challenges, we proposed an efficient two-stage
feature learning approach. The proposed technique bridged the gap between unsupervised
learning and few-shot learning, which makes it suitable for the industrial scenario where
a large quantity of sensory data is available with a limited number of labels. Intuitively
adding an autoencoder to a prototype network has proven to be effective. Through a
rigorous experimentation and analysis process, we showed that initializing the network
with pretrained weights enabled the FE network to upgrade its learning performance.
The two-stage learning method produced a feature extractor with higher generalization
capabilities compared to the traditional prototypical network, achieving an F1-score of
90.3% with very limited samples. However, it had the disadvantage of a longer training
time and a slight decrease in the recall score, while significantly improving the precision
score. The research experiments conducted with the traditional prototypical network
showed that Euclidean and cosine distance performed best on noisy industrial data, with
the Euclidean distance being the best choice in terms of accuracy and the cosine distance in
terms of recall. This makes the cosine a better choice for critical quality-testing applications.
Finally, the proposed method slightly outperformed the traditional handcrafted feature
extractor with an improvement of 4% in the F1-score. Although handcrafted features have
the potential to match the performance of the proposed two-stage learning method in terms
of classification performance, they have a disadvantage in terms of computation time and
robustness to drift. However, this opens the door for future research on hybrid solutions
combining handcrafted and deep features. Indeed, extracting handcrafted values from
deep features would reduce computation time since it creates a compression of the raw
data with the most informative patterns.
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The following abbreviations are used in this manuscript:

AE Autoencoder
CNC Computer numerical control
DL Deep learning
DTW Distance time warping
FE Feature extractor
FSL Few-shot learning
IIoT Industrial Internet of things
MDS Mixture-based data selection
MSE Mean square error
NN Neural network
PCA Principle component analysis
PN Prototypical network
TS Time series
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6 Conclusion & Future Work

Time-series-based machine learning techniques encounter significant challenges in
real-world industrial applications. Using a smart data collection system, this work in-
vestigated and embedded these challenges in a novel benchmark CNC machining
dataset that models the real-world scenario. The challenges mainly arise from the
data drift and the wide variety of process operations in industry. In addition to data
variance, data-driven models su�er from the high imbalance of OK/NOK classes and
require a high level of expertise for data labeling and feature extraction, limiting the
scalability of state-of-the-art machine monitoring techniques.

Addressing the challenge of data labeling in industry, unsupervised deep learning
methods are investigated, namely autoencoders. Multi-stage feature learning and se-
quential small filters have resulted in a lightweight, more e�cient architecture on noisy
vibration data. Rigorous examination of the various architectures has shown that the
wide network architectures outperform the deep networks when dealing with noisy
time-series data. Unsupervised methods, however, do have feature learning limita-
tions but remain a viable method for data compression and encoding.

To overcome the shortcomings of unsupervised methods, a two-stage learning
framework was proposed. By combining autoencoder learning and prototypical few-
shot learning, the resulting method outperform handcrafted feature extractors and con-
ventional supervised fine-tuning methods. With a very limited amount of labeled data,
the proposed feature extractor achieves an F1 score of 90.3%. This confirms the su-
periority of semi-supervised methods over unsupervised methods and the necessity of
data annotation to accurately identify patterns. With an F1 score below perfection, a
fully autonomous deep learning-based solution is still unrealistic, proving that machine
learning is still a supporting rather than a supervising tool.

This work opens up doors for further exploration in the field of hybrid feature learn-
ing, where the combination of learned and handcrafted features, using for example
weak supervision techniques, can be investigated. By leveraging weak supervision,
researchers can further improve the performance of the two-stage learning method and
explore the synergistic e�ects of combining di�erent types of features. This approach
would enable the indirect incorporation of human expertise in signal processing into the
learning mechanism, leading to more robust and interpretable models. Additionally, fu-
ture research focuses on enhancing the explainability and interpretability of the learned
features. While visualizing the embedding space is a valuable step, it is not su�cient
to enable operators and domain experts to fully comprehend the decision-making pro-
cess of the models. In fact, building trust in the system is crucial for successful de-
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ployment in industrial environment. Integrating human-in-the-loop approaches, which
allow human operators to provide feedback and override model decisionss, would not
only improve feature learning but also enhance the interpretability of the models.
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