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Abstract

Simulating quantum many-body dynamics is essential for understanding the emergent phe-
nomena that arise due to the interplay of interactions and quantum fluctuations. Except for
rare analytically tractable cases, classical numerical methods or quantum simulations are
indispensable. This thesis explores variational approaches to study quantum many-body
dynamics. We consider three classes of variational wavefunctions: tensor network states,
neural-network quantum states, and sequential quantum circuit wavefunctions. First, we
show that classical algorithms based on isometric tensor network states can efficiently
simulate the dynamics of two-dimensional systems on finite and infinite strip geometries.
Second, we study the complexity scaling of classically simulating quantum many-body dy-
namics with neural-network quantum states. Third, we confirm the complexity scaling of
using sequential quantum circuits to simulate dynamics on a quantum computer and pro-
pose hybrid quantum-classical algorithms for simulating the dynamics of one-dimensional
finite and infinite systems.
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Kurzfassung

Die Simulation der Quanten-Vielteilchendynamik ist für das Verständnis der emergenten
Phänomene, die durch das Zusammenspiel von Wechselwirkungen und Quantenfluktua-
tionen entstehen, unerlässlich. Abgesehen von wenigen analytisch zugänglichen Fällen
sind klassische numerische Methoden oder Quantensimulationen unverzichtbar. In dieser
Arbeit werden variationelle Ansätze zur Beschreibung der Quanten-Vielteilchendynamik
untersucht. Wir betrachten drei Klassen von variationellen Wellenfunktionen: Tensor-
netzwerkzustände, neuronale Netzwerkquantenzustände und Zustände gegeben durch se-
quentielle Quantenschaltungen. Zunächst zeigen wir, dass klassische Algorithmen, die
auf isometrischen Tensornetzwerkzuständen basieren, die Dynamik zweidimensionaler Sys-
teme auf endlichen und unendlichen Streifengeometrien effizient simulieren können. So-
dann untersuchen wir das Skalenverhalten der Komplexität von Dynamiksimulationen mit
Quantenzuständen repräsentiert durch neuronale Netzwerke. Schließlich bestätigen wir die
Komplexitätsskalierung der Verwendung sequentieller Quantenschaltungen zur Simulation
der Dynamik auf einem Quantencomputer und schlagen hybride quantenklassische Algo-
rithmen zur Simulation der Dynamik eindimensionaler endlicher und unendlicher Systeme
vor.
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1. Introduction

Quantum many-body systems are well-known for their rich emergent behaviors arising
from the interactions between a large number of degrees of freedom. Prominent examples
are quantum spin liquids that give rise to fractionalized excitations [8, 9] and high-Tc
superconductivity [10]. Driven by the rapid experimental progress, e.g., cold atoms and
trapped ions, with unprecedented levels of control and long coherence times [11–16], even
more unexpected novel phenomena can emerge out of equilibrium. These include many-
body localization [17–21], quantum many-body scars [22–24]. The underlying theme in all
these discoveries is the study of quantum thermalization and its breakdown [25], which is
at the intersection of condensed matter, quantum information, and statistical physics and
has application in engineering quantum devices [26, 27].

How do we study quantum many-body systems? On the one hand, the emergent nature
of these fascinating behaviors means that the systems can be qualitatively different with a
lager number of degrees of freedom. As a result, we would like to study N -body systems
where N is as large as possible. On the other hand, interactions play a central role.
Therefore, we are interested in methods that could solve all coupling regimes, even when
perturbation theories break down. There are few exactly solvable models that give us
valuable insights. More often, we turn to the help of numerical simulations. Below we
briefly give an overview of wavefunction-based numerical approaches 1 for studying many-
body ground states and dynamics, and we comment on their connection to excited states
and finite temperature.

Consider a pure state describing a quantum many-body system

|ψ⟩ =
∑

σ1,σ2··· ,σN
Ψσ1σ2···σN |σ1⟩ ⊗ |σ2⟩ ⊗ · · · ⊗ |σN ⟩, (1.1)

where {|σi⟩ ∈ Hi} are the local basis states. The full Hilbert space is the tensor product of
a set of local Hilbert spaces H = ⊗Ni Hi. Each is of dimension di. The order-N coefficient
tensor Ψσ1σ2···σN contains all the information of the state, but the number of parameters
O(∏i=N

i=1 di) scales exponentially with the system size N . Nevertheless, for a small system,
we can represent the quantum state exactly and use standard linear algebra algorithms
to solve quantum many-body problems. Widely used are exact diagonalization (ED) and
Krylov-subspace methods, which simulate ground states and dynamics exactly. These
serve as an important benchmark for developing new numerical methods and are a reliable
method for studying systems with unknown properties. However, the system size we can
address is strongly limited due to the exponential growth of the many-body Hilbert space.

Wavefunction-based methods

Variational wavefunction-based methods are a family of methods overcoming the expo-
nential scaling by parameterizing the wavefunction with fewer parameters. The choice

1There are various numerical methods not based on wavefunctions. One broad class is the qariational
Monte Carlo (QMC) methods [28]. The stochastic series expansion is an example that computes the path
integral in imaginary time by Monte Carlo sampling. In general, QMC methods provide efficient simula-
tions for finite temperatures and ground states properties of one-dimensional (1D) and higher dimensional
quantum systems. However, QMC methods are restricted by the infamous sign problem [29] when the
systems involve fermionic degrees of freedom or geometric frustration, and from these methods, it is hard
to obtain dynamical properties as the numerical analytic continuation is often ill-conditioned.

1



Chapter 1. Introduction

and design of variational wavefunctions depend on prior knowledge about the physical
states. Below we consider three classes of variational wavefunctions: (i) tensor network
states (TNSs), (ii) neural-network quantum states (NQSs), (iii) sequential quantum circuit
wavefunctions.

Tensor-network methods [30–35] approximate wavefunctions with networks of tensors,
where contracting all tensors together recovers the wavefunction. The decomposition of a
global wavefunction into local tensors utilizes the locality of the problem. Tensor network
methods are not limited by the system size but by the entanglement [30, 36]. Therefore,
ground states of local gapped Hamiltonians that satisfy the entanglement area-law [37–
39] 2 can be efficiently simulated 3. For 1D systems, tensor networks provide arguably
the most powerful numerical method in finding ground states and simulating dynamics
using matrix-product state (MPS) [45, 46] methods, such as the density matrix renormal-
ization group (DMRG) algorithm [31, 47] and the time-evolving block decimation (TEBD)
algorithm [48, 49]. Nevertheless, the application of MPSs to study non-equilibrium dy-
namics [48–54] is strongly limited by the fast growth of entanglement [55, 56]. In certain
cases, non-equilibrium phenomena are accessible even at long times using additional ap-
proximations [57–59]. For 2D systems, TNSs [60–63] carry similar successes and limita-
tions as MPSs in 1D. Ground states and dynamics problems can be solved using different
methods, including full update [64, 65], gradient update [66–68], variational Monte Carlo
(VMC) [69–71], and more. The main difference between 1D TNSs and 2D TNSs are the
lack of canonical form and the non-trivial boundary contraction [60, 64, 72–74] in 2D TNSs.
Such difference motivates the proposal of isometric tensor network states (isoTNSs) [75],
which are TNSs consisting of only isometric tensors. The isometric structure in isoTNSs
gives rise to an efficient time evolution algorithm and a principled variational energy opti-
mization algorithm, which are the main topics discussed in Part I of the thesis.

A promising new approach to simulate the ground states and dynamics of many-body
systems is based on a representation of quantum states using artificial neural networks
(ANNs) [76]. Neural networks are parameterized functions that take strings representing
the computational basis {σ1, · · · , σN} as input and output a complex number f(σ1, · · · , σN )
corresponding to the quantum amplitude. Recent works have shown not only promising re-
sults for simulating non-equilibrium dynamics [77] but also in describing 2D critical ground
states [78] and states with chiral topological order [79]. Importantly, states based on ANNs
can efficiently encode volume law entanglement [80, 81] and are thus per se not limited
by the entanglement growth in non-equilibrium systems. While the mathematical founda-
tion and limitations of neural networks are active fields of research [82], less is known in
the context of representing quantum many-body states. In Chapter 5, we study the open
question on the scaling of representing states under quench dynamics.

In recent years, the rapid development of universal quantum computers [83, 84] has led
to the era of noisy intermediate scale quantum (NISQ) devices [85]. NISQ devices con-
tain order 50 qubits and give access to hundreds of quantum gate operations [86]. The
noise currently precludes implementing many quantum algorithms [87, 88] and motivates
the consideration of quantum circuits directly as a variational ansatz for studying ground
states [89] and dynamics [90–96]. The premise is that quantum circuits can be efficiently
executed on a quantum computer and are hard to simulate on a classical computer, so it
could potentially give us an advantage by treating a quantum computer as an accelerated
device to execute the quantum circuit. Whether or not we would see a quantum advantage

2While it is proven that the ground states of 1D local gapped Hamiltonian have area-law entangle-
ment [37] and MPSs are faithful representations [40], it remains an open question in two-dimensional
(2D) [38, 41] and is only proven with additional conditions [38, 42, 43], e.g., non-interacting or frustration-
free Hamiltonian.

3This is rigorously proven [44] in 1D. In practice, tensor network methods work well for 2D problems.
We discuss this in more detail in Chapter 2.

2



Variational algorithms for
quantum many-body dynamics

Part I: (p7: overview)
Algorithms for
classical simulations

Part II: (p78: overview)
Algorithms for
quantum simulations

Chapter 2:
Review of tensor
network methods

Chapter 6:
Review of sequential
quantum circuits

Chapter 3:
Finite 2D IsoTNS

Chapter 4:
IsoTNS on an
infinite strip

Chapter 5:
Scaling of time
evolution algorithm

Chapter 7:
Finite system

Chapter 8:
Infnite system

classic
al quantum

te
ns

or
ne

tw
or

k

neural network
Figure 1.1.: A roadmap through the chapters of the thesis.

for ground state problems is under debate [97]. A more promising application is the simu-
lation of dynamics [98]. We expand the discussion in Chapter 6 and review the equivalence
of isoTNSs and sequential quantum circuits. We propose variational algorithms for time
evolution and study the properties of sparse sequential quantum circuits as variational
ansätze to represent states under quantum quenches in Part II of the thesis.

The main goal of the thesis is to understand the limitation of current numerical methods
and develop new numerical methods for quantum many-body problems. While we focus on
algorithms for the simulation of ground states and quantum dynamics, these algorithms
are also the building blocks of algorithms to study excited states or finite temperature
physics. We can use imaginary-time evolution with purified states [99–101] or the minimally
entangled typical thermal states [102] to study finite temperature physics. The real-time
evolution algorithms could be used to obtain spectral functions, i.e., dynamical structure
factors [103–105], and compute physical observables at finite energy [106–108].

The organization of this thesis:

An interconnection of the chapters of this thesis is shown in Fig. 1.1. We separate the thesis
into two parts with overviews on pages 7 and 73, respectively. Part I studies the classical
algorithm for simulating quantum many-body problems. Chapter 2 gives a review of TNSs
and isoTNSs algorithms in the literature. Chapter 3 generalizes the DMRG algorithm
for isoTNSs in 2D and perform the real-time evolution algorithm to compute the spectral
functions. Chapter 4 generalizes isoTNSs to an infinite strip geometry. Part II studies the
quantum algorithm for simulating quantum many-body problems. We give a brief review
of quantum computing and the connection of isoTNSs and sequential circuits in Chapter 6.
We study the representation power of finite sparse sequential circuits and infinite (uniform)
sparse sequential circuits in Chapter 7 and Chapter 8 respectively.
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Overview of Part I

As mentioned in the introduction, Part I of this thesis focuses on the classical algorithms
for simulating quantum many-body dynamics.

Chapter 2: Review of tensor network methods

Chapter 2 provides a review of tensor network methods from the literature, focusing on one-
dimensional (1D) and two-dimensional (2D) tensor network states (TNSs) and isometric
tensor network states (isoTNSs). We begin with a quick refresh of the notation and the
basics of tensor networks and set up the central idea for the following chapters by identifying
the matrix-product states (MPSs) in isometric form as an example of 1D isoTNSs. We
describe the generic properties of the isoTNSs and show that the isometric condition is
crucial for efficient numerical algorithms.

We then briefly review 2D TNSs, which differ from 1D TNSs due to the nontrivial
contraction. We review boundary contraction algorithms, which are used in the next
chapters. Utilizing the contraction algorithms, we see that the 1D algorithms for time
evolution and energy minimization can be generalized to 2D with slightly higher complexity.
In the last part of the chapter, we review the pioneering work [75] on 2D isoTNSs, showing
a different route to address 2D tensor network problem by imposing isometric form. This
avoids the need for tensor network contraction and instead utilizes the algorithm for shifting
isometric form, i.e., the Moses move (MM) algorithm. As an application, the time-evolving
block decimation (TEBD) algorithm is generalized to 2D, termed TEBD2 algorithm.

Chapter 3: Efficient simulation of dynamics with two-dimensional isometric tensor
networks

Chapter 3 explores the efficient simulation of dynamics with 2D isometric tensor networks.
We extend the study of the MM algorithm, studying the effect of alternative cost func-
tions on the tripartite decomposition in MM and proposing a two-column variational MM
algorithm. We further generalize the 1D variational energy minimization algorithm, i.e.,
density matrix renormalization group (DMRG) algorithm to 2D, dubbed DMRG2 algo-
rithm, and benchmark its performance by comparing it to imaginary time evolution using
TEBD2. We then revisit the TEBD2 and explore its power for the real-time evolution of
2D lattice systems. Using TEBD2 and DMRG2, we demonstrate that we can simulate the
dynamics of locally perturbed 2D quantum many-body ground state, which give us access
to the spectral functions, i.e., dynamical spin structure factors. We focus on two paradig-
matic models: First, we compare our results for the transverse field Ising model on a square
lattice with the prediction of the spin-wave theory. Second, we consider the Kitaev model
on the honeycomb lattice and compare it to the result from the exact solution.

Chapter 4: Isometric tensor network states on an infinite strip

Tensor networks have been shown to provide a powerful way to study quantum many-body
systems in the thermodynamic limit since their introduction. Chapter 4 attempts to further
complete the study of 2D isoTNSs by generalizing finite 2D isoTNSs to states on a finite by
infinite geometry, i.e., an infinite strip. The essential step is the generalized infinite Moses
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move (iMM) algorithm. The chapter explores various variations of the algorithm, including
iMM-Local, iMM-Polar, iMM-MPO, and iMM-CG. It also discusses error measures and
presents benchmarks to evaluate the performance of these different variant algorithms.
As the application of the iMM algorithms, we demonstrate that the local observables can
be evaluated efficiently. Finally, we introduce an infinite time-evolving block decimation
algorithm (iTEBD2) and use it to approximate the ground state of the 2D transverse field
Ising model on lattices of infinite strip geometry.

Chapter 5: Scaling of neural network quantum states for time evolution

Chapter 5 delves into neural-network quantum states (NQSs). As a new emerging numer-
ical technique for simulating quantum many-body systems, their limitation on simulating
quantum dynamics remains unknown. In this work, we provide insight into the scaling of
the number of parameters required based on numerical results of simulating global quench
dynamics of a non-integrable 1D quantum Ising chain.

After briefly reviewing the NQSs and neural autoregressive quantum states (NAQSs), we
explore the supervised learning framework for quantum state approximation with stochastic
sampling and stochastic gradient descent. We propose cost functions for joint learning
magnitudes and phases with NAQSs, ensuring an unbiased stochastic gradient. We confirm
the correctness of the framework by comparing numerical results of state approximation
by supervised learning with MPSs and by the standard MPS variational algorithm.

The bulk part of the chapter focuses on approximating states undergoing global quench
dynamics of a non-integrable quantum Ising chain. We present numerical results for ap-
proximating such time-evolved states by shallow NAQSs, deep NAQSs, and restricted
Boltzmann machine quantum states. We find that the number of parameters required
to represent the quantum state at a given accuracy increases exponentially in time. The
growth rate is only slightly affected by the network architecture over a wide range of dif-
ferent design choices: shallow and deep networks, small and large filter sizes, and dilated
and normal convolutions, with and without shortcut connections.
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2. Review of tensor network methods

In this chapter, we review the properties and algorithms for one-dimensional (1D) and
two-dimensional (2D) tensor network states (TNSs) and isometric tensor network states
(isoTNSs) from previous works in the literature.

As discussed in the introduction, tensor networks are efficient variational wavefunctions
for studying quantum many-body systems. Consider a quantum many-body system de-
scribed by the pure state

|ψ⟩ =
∑

σ1,σ2··· ,σN
Ψσ1σ2···σN |σ1⟩ ⊗ |σ2⟩ ⊗ · · · ⊗ |σN ⟩, (2.1)

where {|σi⟩ ∈ Hi} are the local basis states. Tensor network methods approximate the
order-N coefficient tensor Ψσ1σ2···σN by low-rank tensor decompositions [34]. Usually tensor
networks, for example, matrix-product states (MPSs) in 1D and TNSs in 2D, have a
connectivity resembling the underlying lattices. The success of tensor network methods
is due to the locality of the physical system. Roughly speaking, tensor networks are
efficient representations for area-law entangled states with poly(N) number of parameters.
In 1D, all states with area-law entanglement can be expressed as MPSs with a system
size independent bond dimension [40, 109]. In contrast for D ≥ 2, TNSs capture only
part of the area-law states [110] but are believed to capture ground states of local gapped
Hamiltonian [41] 1.

Tensor network diagram

Tensor networks are defined through diagrams consisting of nodes and edges representing
tensors. An order-k tensor is represented by a node with k edges. The example for
k = 0, 1, 2, 3 are given below,

s = s, v

i

= vi, Mi j =Mij , Ti k

j

= Tijk, (2.2)

where from left to right we have a scalar, a vector, a matrix, and an order-3 tensor.
Since the spaces of tensor, C

∏i=N
i=1 di and C

∏i=M
i=1 d̃i , are isomorphic as long as the overall

dimensions match, i.e.,
∏i=N
i=1 di =

∏i=M
i=1 d̃i, this means we can group the indices or split

the indices and change the order of the tensor. It is common to first transform a tensor
into a matrix, i.e., matricization, by grouping the indices of the tensor and then apply
linear algebra operation on the matrix. The following discussion regarding matrices can
also be applied to higher-order tensors by grouping the indices.

If two nodes share one edge, the index over the corresponding edge is summed over and
we can group the two nodes into one. For example, the matrix-matrix multiplication can
be represented as,

Mi
j

N k =
∑

j

MijNjk = (MN)ik = MNi k , (2.3)

1There were doubts on whether TNSs can represent non-critical chiral topological states due to the no-
go theorem proven in the case of free fermions [111–115]. Recent numerical study shows positive supporting
evidence for the use of TNSs to represent chiral topological states [116].
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Chapter 2. Review of tensor network methods

where the intermediate index j is summed over. This operation is known as tensor con-
traction.

Conversely, we can split one node into two nodes sharing one edge, for example through
matrix decomposition. An example of QR decomposition is given below.

Mik = Mi k = Qi
j

R k =
∑

j

QijRjk. (2.4)

Special care should be taken into account to distinguish the difference between the
original Hilbert space, the ket space, and the dual Hilbert space, the bra space. This
restricts the operations we can perform on the tensors. For example, we should not contract
two ket vectors directly or group the ket index with the bra index directly. Some people
use the convention of drawing incoming or outgoing arrows on the edges to distinguish the
ket and the bra. However, here we use a different convention where the arrow directions
are used for denoting the isometric direction as discussed below.

To sum up, tensor networks take advantage of the inherent locality structure within
the quantum wavefunction. Instead of dealing with a single, large coefficient tensor, the
tensor network decomposes it into a series of smaller tensors linked by contractions. This
approach results in a network of interconnected tensors, hence giving the name – “tensor
network”. It is the systematic exploitation of these local structures that facilitates the
development of more efficient algorithms. In this thesis, we explore a specific subclass of
tensor networks composed of isometric tensors. By constraining our focus on isometric
tensors, we introduce additional mathematical structure into the network that leads to
efficient algorithms in higher dimensions.

Notation for isometries and isometric tensors

An isometry is a linear map W : Vs → Vl from a smaller vector space Vs to a larger
vector space Vl, such that W †W = 1, WW † = PVs , where PVs is the projection operator
to the vector space Vs. Isometric tensors are tensors that by grouping the indices, i.e.
matricization, become isometries. We consider a convention as shown below. In particular,
for isometric tensors, we draw the indices belonging to the larger dimensions as incoming
arrows and the indices for smaller dimensions as outgoing arrows, for example,

A

A∗

i j

k

k′

=
∑

ij

AijkA
∗
ijk′ = δkk′ =

k

k′

. (2.5)

For general (non-isometric) tensors, we draw the indices without arrows. Throughout the
thesis, we refer to isometric tensor networks as tensor networks consisting of isometric
tensors whose edges can consistently be assigned arrows.

2.1. TNSs and isoTNSs in 1D

In this section, we review the basic properties of the simplest tensor network in 1D, i.e.,
MPSs. We identify the MPSs with left/right-normalized tensors as 1D isoTNSs. For more
detailed reviews for MPSs and general TNSs, we refer the readers to [31–33, 54].

An MPS is defined as

|ψ⟩ =
∑

σ

∑

m1,m2,...

T σ1m0,m1
T σ2m1,m2

· · ·T σNmN−1,mN
|σ⟩, (2.6)
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2.1. TNSs and isoTNSs in 1D

where the T are general tensors of order three and the mi are indices in virtual space
between site i and i + 1. The bond dimension D is the dimension of the virtual space,
such that mi = 1, · · · , D. Carrying out the summation

∑
m1,m2,···, i.e. contraction, over

the virtual indices explicitly gives the coefficient Ψσ1σ2···σN . The number of parameters of
MPSs scales as O(ND2), which avoids the exponential scaling in the system size.

One can always transform the MPS tensors into the left/right-normalized form without
loss of generality. Importantly, the left/right normalization of the tensors simplifies and
stabilizes MPS-based algorithms. A tensor Aσimi−1,mi

is left-normalized if it satisfies the
isometric condition, ∑

σimi−1

Aσimi−1,mi

(
Aσi
mi−1,m′

i

)∗
= 1mi,m′

i
. (2.7)

Similarly a tensor Bσi
mi−1,mi

is right-normalized if it satisfies the isometric condition,

∑

σimi

Bσi
mi−1,mi

(
Bσi
m′

i−1,mi

)∗
= 1mi−1,m′

i−1
. (2.8)

The tools to bring MPSs tensors to the left/right-normalized form are orthogonal matrix
decompositions, i.e., QR decomposition and singular value decomposition (SVD). Given
an MPS with general tensors, we can bring all tensors successively into the left/right-
normalized form by successive SVDs or QR decompositions. For example, one can start
from the left with QR decomposition T σ1m0,m1

=
∑

m1′
Aσ1m0,m1′

Rm1′ ,m1 , and absorb the R
tensor into the nearby T tensor,

∑
m1
Rm1′ ,m1T

σ2
m1,m2

= T̃ σ2m1′ ,m2
. Now the original T σ1m0,m1

tensor becomes a left-normalized tensor Aσ1m0,m1′
. Iteratively, one can exactly bring all

tensors into the left-normalized form. Similarly, one can start from the right and move left
and end up with all tensors being right-normalized.

Gauge degrees of freedom

The fact that we can always bring tensors in an MPS into left/right-normalized form is
related to the gauge degrees of freedom of an MPS. The gauge degrees of freedom of an
MPS, and more generally for a tensor network, is the freedom to insert a pair of invertible
matrix and its inverse XX−1 to the non-external edge (virtual bond) of the tensor network.
By separately absorbing the X and X−1 to the nearby two tensors, we modify the two
tensors in the MPS while leaving the overall physical state unchanged. Therefore, given
a physical state, its tensor network representation is not unique. This is known as the
gauge degree of freedom in the tensor networks. In the case of MPSs, this gauge freedom
is sufficient to bring the tensors into left/right-normalized form. However, this does not
apply to TNSs in higher dimensions.

The left/right-normalized form does not fully fix the gauge freedom for the MPSs. There
is the freedom to insert pairs of unitaries and their adjoint to the virtual bond, which
preserve the isometric form. We will introduce the canonical form below, which fully fixes
the gauge of degrees of freedom.

Orthogonality center

The orthogonality center of an MPS is a single bond or a region of sites such that to the
left of the center all tensors are left-normalized and to the right, all are right-normalized
(note that this does not have to be the geometric center of the chain). By the combination
of both moves mentioned above, one can exactly obtain an MPS with normalized tensors
and orthogonality center at any desired bond or region.
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Chapter 2. Review of tensor network methods

For example, following the normalization procedure by QR decomposition mentioned
above from both ends of the MPS inwards, we have the following decomposition:

Ψσ1···σN =
∑

{mi}
Aσ1m1

· · ·Aσl−1
ml−1,mlRml,ml′B

σl
ml′ ,ml+1

· · ·BσN
mN−1

. (2.9)

By definition, Rml,ml′ is the orthogonality center on bond-l. Note that, the orthogonality
center on bond-l can be a general matrix without the restriction of upper-triangular form.
From this point on, we denote such general matrix by Ψml,ml′ , which is also known as the
0-site wavefunction.

We can obtain the MPS with orthogonality center on a single site by merging the tensors∑
ml′

Ψml,ml′B
σl
ml′ ,ml+1

= Ψσl
ml,ml+1

, leading to

Ψσ1···σN =
∑

{mi}
Aσ1m1

· · ·Aσl−1
ml−1,mlΨ

σl
ml,ml+1

B
σl+1
ml+1,ml+2 · · ·BσN

mN−1
. (2.10)

Ψσl
ml,ml+1

is the orthogonality center on site-l and a single-site wavefunction. We can move
the orthogonality center forward keeping constant bond dimension by repeating orthogonal
matrix decompositions and merging tensors.

Isometric boundary map

The tensors excluding the orthogonality center, for example Ψσl
ml,ml+1

in Eq. (2.10), are a
collection of isometries

{Aσ1m1
, · · · , Aσl−1

ml−1,ml , B
σl+1
ml+1,ml+2 , · · · , BσN

mN−1
}.

Contracting all the internal virtual indices, they form a single isometry T V←∂V . In other
words, the boundary map T V←∂V of the orthogonality center Ψσl

ml,ml+1
is an isometry

mapping from the virtual space ∂V to physical Hilbert space V . Similarly, the boundary
map of the orthogonality center on bond-l is also isometric. Because the boundary map is
isometric, we can interpret the orthogonality center itself as the wavefunction in the lower
dimensional space. For example, the Ψml,ml′ can be interpreted as a zero-dimensional (0D)
representation of the state in terms of orthogonal states |ml⟩ and |ml′⟩, i.e.,

|ψ⟩ =
∑

σ

∑

{mi}

(
Aσ1m1

· · ·Aσl−1
ml−1,ml |σ1, . . . , σl−1⟩

)
Ψml,ml′

(
Bσl
ml′ ,ml+1

· · ·BσN
mN−1

|σl, . . . , σN ⟩
)

=
∑

ml,ml′

Ψml,ml′ |ml⟩|ml′⟩. (2.11)

Since the isometric map is norm-preserving, the truncation on Ψml,ml′ based on an SVD
is not only optimal for Ψml,ml′ in L2 norm but also for Ψσ1···σN in L2 norm.

Moreover, we define the norm tensor Nl with respect to site-l as the contraction of
the norm ⟨Ψ|Ψ⟩ but leaving out tensors on site-l, e.g., Ψσl

ml,ml+1
and (Ψσl

ml,ml+1
)∗. In

other words, it is the contraction of the boundary map with its complex conjugation,
(T V←∂V )†T V←∂V . Because of the isometric condition of the boundary map, the norm
tensor Nl = (T V←∂V )†T V←∂V = 1∂V with respect to the orthogonality center is an identity
operator.

From the above we see that an isoTNS in 1D has the following properties: It is a tensor
network composed of isometries, as from Eq. (2.7) and (2.8), and all the tensors excluding
the orthogonality center form an isometric boundary maps in both Eq. (2.9) and (2.10).
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2.1. TNSs and isoTNSs in 1D

ΨAσ2Aσ1 Bσ3 Bσ4 Ψσ3Aσ2Aσ1 Bσ4 TV←∂V
N = =

(a) (b) (c) (d)

Figure 2.1.: (a) An MPS with orthogonality center on a bond and (b) on a single site. (c)
The boundary map T V←∂V of the MPS (b). (d) The norm tensor N of the
orthogonality center Ψ of the MPS (b).

Efficient tensor network algorithms in 1D

Coincidentally, the invention of the density matrix renormalization group (DMRG) algo-
rithm [47] and MPSs [45, 117] happen in the same year 1992. The connection between the
DMRG algorithm and the underlying tensor network structure [118], which gives DMRG
algorithm the interpretation as a variational algorithm over MPS wavefuncion [119], is not
well appreciated by the community back then. The understanding of the underlying tensor
network structure naturally leads to the further development of powerful algorithms, for
example, the time-evolving block decimation (TEBD) algorithm [48, 49] for solving time
evolution and its generalization to higher dimension [60].

The finite DMRG algorithm is an iterative algorithm updating tensors Ψ such that Ψ
satisfies the stationary condition for an extremum.

∂Ψ∗
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ = 0

⟨∂Ψ∗ψ|H|ψ⟩ − ⟨∂Ψ∗ψ|ψ⟩ = ⟨∂Ψ∗ψ|H|∂Ψψ⟩Ψ− ⟨∂Ψ∗ψ|∂Ψψ⟩Ψ
= HeffΨ−NΨ = 0

(2.12)

That is we update Ψ by solving the lowest eigenvector of the eigenvalue problem HeffΨ =
NΨ. The TEBD algorithm performs time evolution by applying Trotterized 2-site gate
e−idtHi on the two-site orthogonality center Ψ and then truncates the bond dimension by
SVD. For a detailed review of the algorithms, we refer the reader to the review article [31].

Isometric form and canonical form

The canonical form of MPSs imposes an additional condition aside from the isometric
condition [46], ∑

σimi

Aσimi−1,mi
ρ(i)mi,mi

(
Aσi
m′

i−1,mi

)∗
= ρ

(i−1)
mi−1,m′

i−1
(2.13)

where the ρ(i) and ρ(i−1) are positive diagonal matrices and Tr
[
ρ(i)

]
= Tr

[
ρ(i−1)

]
= 1.

An MPS with all left/right-normalized tensors can be brought into canonical form by the
unitary transform determined by the condition in Eq. (2.13). It is often stated in the
literature that the canonical form of MPSs is crucial to the success of the DMRG and
TEBD algorithms. Here, we would like to point out that most of the advantages in 1D
numerical algorithms come from merely the isometric condition. In terms of numerical
algorithms, the linear geometry of MPSs itself ensures the O(D3) complexity for the exact
shifting of the orthogonality center and the exact contraction between MPSs. Apart from
that, the success of efficient 1D algorithms including DMRG and TEBD with MPSs are
because of the two properties at the orthogonality center: (i) the identity norm tensor N
and (ii) the optimal bond truncation. Firstly, because the norm matrix at the orthogonality
center is the identity, the optimization problem in DMRG is a standard eigenvalue problem
instead of a generalized eigenvalue problem. Secondly, at each step in the algorithm, the
truncation based on the SVD over the two-site orthogonality center is a local update, which
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Chapter 2. Review of tensor network methods

is optimal for the global state since the basis is orthonormal. Both properties above come
from the isometric condition of the normalized MPS tensors as discussed above. And it
does not require the additional Schmidt-state gauge condition from the canonical form. To
generalize the success of 1D algorithms to higher dimensions, one can focus on generalizing
the isometric condition to TNSs in higher dimensions. We review the previous work in
Sec. 2.3.

2.2. TNSs in 2D

In this section, we review the properties and algorithms of general TNSs in 2D, focusing
on rectangle lattice geometry.

The projected entangled pair statess (PEPSs) [60] are the generalization of MPSs to
2D and higher-dimensional systems. The concept has been introduced earlier [61–63] as
TNSs in higher dimensions. In the following, we use the two terms “PEPS” and “TNS”
interchangeably. An example of PEPS on a finite 2D lattice is given below.

|ΨPEPS⟩ =

A14

A13

A12

A11

A24

A23

A22

A21

A34

A33

A32

A31
(2.14)

There are some significant differences between 1D TNSs and 2D TNSs. First of all, not
all area-law states can be expressed as constant bond dimension TNSs for D > 1 [110]. Still,
2D TNSs are conjectured to be efficient representations for ground states of gapped local
Hamiltonians [41] and numerically [66–68, 120] have shown great success in simulating
ground states of strongly correlated models, even for gapped chiral topological ordered
state [116].

Secondly, even if a finite bond dimension PEPS efficiently approximates the desired
ground state in terms of the number of parameters, the computation can still be nontrivial.
Precisely, the exact evaluation of the norm of the PEPS or any physical observables is
complete for the complexity class #P [72, 121, 122]. Nevertheless ,in practice, approximate
contraction methods still work reasonably well for physical states with polynomial cost in
bond dimensions. We briefly review the approximate contraction scheme and the numerical
algorithms based on them in the following sections.

Lastly, we would like to point out that there is no rigorous definition of canonical form
for TNSs in dimension D > 1 2. Moreover, general TNSs cannot be brought into the
isometric form directly by gauge freedom. This is, however, not surprising as the isometric
form of TNSs ensures efficient computation of the norm of the TNSs. IsoTNSs form a
subclass of general TNSs and we give a more detailed introduction in Sec. 2.3

2.2.1. Boundary contraction

As mentioned above, the evaluation of tensor network contraction is average-case hard [122].
Approximate contraction methods [124] have been developed since the start of the field
and can be roughly separated into two categories; namely, coarse-graining methods and
boundary contraction methods. Coarse graining methods include the tensor renormaliza-
tion group (TRG) [125] and its generalization [126–130]. These methods resemble the

2A recent work proposes the minimal canonical form which differs from the original definition of
canonical form but can rigorously generalize to higher dimensions. See Ref [123].
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2.2. TNSs in 2D

real-space renormalization group scheme from Kadanoff [131] where the algorithm itera-
tively zoom out from, i.e., coarse grain, the underlying systems. Hence, these algorithms
can contract exponentially large system sizes in terms of the number of iterations.

In the following and in this thesis, we mainly focus on the boundary contraction ap-
proaches, where the boundary is contracted iteratively and the number of degrees of free-
dom summed over grows linearly with the number of iterations. There are two main
common boundary approaches to contract the double layer (bra-ket) structure of PEPS;
namely the boundary matrix-product operator (bMPO) contraction and the corner transfer
matrix renormalization group (CTMRG) approach.

The bMPO approach relies on compressing the boundary environment information with
matrix-product operators (MPOs) iteratively. At each iteration, one contracts a new col-
umn of the PEPS and its conjugation with the bMPO and solve the approximation problem
to find the new bMPO,

l4

l3

l2

l1

≈

l4

l3

l2

l1

A4

A3

A2

A1

A4

A3

A2

A1

. (2.15)

We approximate the right-hand side of the equation, including the previous bMPO and the
column to contract, by a new bMPO with at most bond dimension D′. The approximation
can be formalized as a minimization problem of the L2 difference 3 between the left and
right-hand sides of the equation.

For finite systems without translational invariance, the problem of finding optimal bMPO
resembles the structure of MPO-MPS compression. The direct SVD approach first merges
the bra column, ket column, and bMPO tensor and then performs SVD truncation, which
has more expensive scalingO(D8D′2+D6D′3). Instead, the variational update from solving
the alternating least square problem can utilize the sparse tensor contraction structure and
has the scaling O(D6D′2 +D4D′3).

For infinite systems with translational invariance, the problem of finding the bMPOs
is reduced to finding one fixed point bMPO and is first solved by infinite time evolving
block decimation (iTEBD) algorithm [120] and recently by the variational uniform matrix-
product state (VUMPS) method [133].

The other common boundary approach applied to infinite translationally invariant sys-
tems is the CTMRG method [73, 134], which combines the idea of corner transfer matrix
from Baxter [135–137] and White’s DMRG algorithm [47, 138]. The CTMRG methods
have successfully been applied to the contraction of 2D and three-dimensional (3D) classi-
cal partition functions and 2D quantum systems.

All the approaches above are algorithms designed to contract the tensor network on
a regular lattice in some given orders based on prior knowledge about the physical sys-
tems. It is worth noting the recent development in automatic contraction schemes for
both exact [139, 140] and approximate contraction [141]. For approximate contraction, the
contraction order and compression strategy are optimized according to the score function,
yielding results matching the state of the art of tensor network contraction algorithms 4.

3It may be advantageous to consider other distance measures. One potential direction is to incorporate
the recently proposed MPO canonical form [132].

4For exact contraction, the algorithm can find contraction paths yielding many orders of magnitude
speed-up across various use cases. For approximation contraction, contractions of “non-hard” tensor net-
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Chapter 2. Review of tensor network methods

Another exciting direction is the connection between the tensor network contraction
and the belief propagation [142], motivated by the duality of tensor networks and graph-
ical models [143]. It is shown that the approximate contraction using a product state is
equivalent to the loopy belief propagation [142]. The improved version using the block
belief propagation shows similar results to the approximate contraction using bMPO [144].
It is an active field of study that potentially could lead to more powerful algorithms [145].

2.2.2. Algorithms for time evolution

Time evolution of 2D PEPS can be achieved using various algorithms. In this section, we
will review different approaches for performing time evolution on PEPS.

Local update approaches

Local update approaches are methods that perform local tensor updates iteratively, for
example, the TEBD algorithm with MPS. These algorithms typically involve applying a
Trotterized time evolution operator locally and finding the update tensors that approximate
the time-evolved state locally. However, there is a fundamental difference between the
time evolution algorithm for PEPS and MPS. While general MPS can be brought into the
canonical/isometric form, allowing the update tensors to be determined through a SVD,
general PEPS does not have this isometric condition. As a result, updating the tensors in
PEPS requires solving an alternative least squares (ALS) problem, which is defined by the
double-layer contraction of the overlap and the norm matrix N . The contraction is usually
computed with the previously introduced approximate contraction algorithms. Below, we
provide a list of different methods categorized based on the accuracy of their environment
approximations:

• Simple update (SU): This method involves approximating the environment by a
product state [146]. The entanglement structure of the PEPS is neglected, resulting
in a simplified representation of the environment. The complexity of the update is
O(D5) when using reduced tensors.

• Cluster update (CU) / Neighborhood tensor update (NTU): In this ap-
proach, a cluster of tensors, i.e., the neighborhood, around the update tensor is taken
into account as the environment [147]. The cluster is either contracted exactly to pre-
serve hermiticity [148] or approximately using boundary contraction approaches [149].
The computational cost is reduced compared to a full update.

• Full update (FU): The FU method aims to approximate the full environment
surrounding the update tensor by approximate contraction [64, 65]. This approach
considers the entanglement structure explicitly and provides a more accurate repre-
sentation of the environment, but it can be computationally demanding.

Global update approaches

Global update approaches are methods that update all the parameters of the PEPS simul-
taneously at each iteration. Two common methods are:

• Gradient update: This approach involves approximating a time-evolved state
U(dt)|ψ⟩ with a variational state |ϕ⟩ of smaller bond dimension, where U(dt) is typ-
ically an unitary acting globally. The variational state is determined by maximizing

works, e.g., the partition function of the Ising model, achieve similar or slightly better performance than
standard boundary contraction methods on regular lattices.

16



2.2. TNSs in 2D

the overlap between the variational state and the time-evolved state with gradient
methods over all variational parameters. The gradient is computed by approximate
boundary contraction methods.

• Variational Monte Carlo (VMC): VMC is a stochastic method to evaluate the
expectation values from the given trial wave function with Monte Carlo sampling.
Moreover, one can evaluate the energy gradient and the quantum Fisher matrix. This
information, together with the log gradient, defines the time-dependent variational
principle (TDVP) equation, also often known under the name of the stochastic re-
configuration (SR) method in VMC context [150]. As a result, we can perform time
evolution by solving the TDVP equation.

These algorithms for time evolution provide different trade-offs between accuracy and
computational cost. Depending on the specific problem and available resources, different
approaches may be preferred. In the section 2.3, we will see that imposing the isometric
condition on PEPS leads to a simple local update method for time evolution, i.e. TEBD2,
which is a 2D generalization of TEBD algorithm.

2.2.3. Algorithms for energy minimization

Algorithms for energy minimization are crucial for studying the ground states of quantum
many-body systems. In this section, we discuss various algorithms that are commonly
used.

• Imaginary time evolution: Imaginary time evolution is a widely used technique
for finding the ground state of a quantum system. By applying the imaginary time
evolution operator e−τH to an initial state |ψ0⟩ that has a finite overlap to the ground
state and iteratively projecting onto the low-energy states, the system gradually
evolves towards the ground state, i.e.,

|ground state⟩ = lim
τ→∞

e−τH |ψ0⟩
|e−τH |ψ0⟩|

. (2.16)

This method is versatile as it can be implemented using one of the time evolution
methods introduced above by changing the evolution time t to imaginary time τ =
−it.

• DMRG2: The DMRG algorithm is a powerful method originally developed for
studying one-dimensional quantum systems using MPS. The algorithm iteratively
updates the tensors locally to minimize energy by solving the standard eigenvalue
problem. It can also be generalized to PEPS [60]. The algorithm iteratively updates
the tensors locally to minimize energy by solving the generalized eigenvalue prob-
lem, due to the lack of isometric condition. We denote this 2D generalization of the
algorithm as DMRG2.

• Gradient descent: Gradient descent algorithms can be broadly categorized into
two types: stochastic gradient descent (SGD) algorithms and approximate gradient
descent algorithms. The SGD algorithm is commonly implemented within the VMC
framework. A simple example of a SGD algorithm is the plain VMC method. By
incorporating techniques such as SR, the SGD algorithm can be interpreted as an
imaginary time evolution or a second-order SGD algorithm. Approximate gradient
descent algorithms attempt to approximate the exact gradient using approximate
boundary contractions. They have been shown to yield state-of-the-art results for
infinite projected entangled pair states (iPEPS). While these algorithms can also be
applied to finite PEPS, special care must be taken to avoid instability.
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Chapter 2. Review of tensor network methods

These algorithms for energy minimization provide valuable tools for exploring the ground
state properties of quantum many-body systems. In the following chapters and sections,
we will further explore and discuss the applications of these algorithms in the context of
isoTNS on finite 2D and infinite strip geometries.

2.3. IsoTNSs in 2D

IsoTNSs, which are tensor networks constructed using only isometric tensors, have their
origins in the study of 2D quantum cellular automata, as first described by Richter in
1995 [151]. However, it was not until recently, that isoTNSs were formulated within the
modern tensor network language as variational ansatz by Zaletel and Pollmann [75]. This
enables the application of isoTNSs to the study of 2D quantum many-body systems.

Following the work, it has been proven by Soejima et al. [152] that all the fixed-point
ground state wavefunction of string-net liquid model [153, 154] admit exact isoTNS rep-
resentation with finite bond dimension and that the orthogonality hypersurface may be
placed anywhere. Moreover, states formed by finite depth local unitary circuits with the
fixed point wavefunctions also admit exact isoTNS representations of finite bond dimen-
sion. This covers a wide range of 2D quantum states, including all bosonic abelian topo-
logical orders with gappable edges, indicating the ability of isoTNSs to encode long-range
entanglement as in the topological ordered state.

2.3.1. Finite 2D isoTNSs

Using the introduced isometric tensor notation, an isoTNS on a 2D square lattice can be
represented diagrammatically as

|Ψ⟩ = , (2.17)

where each tensor has five indices, one physical index, and four virtual indices, with the lo-
cal Hilbert space dimension denoted as d and the virtual bond dimension asD. The specific
structural arrangement of the 2D isoTNS is motivated by the following considerations.

Generalization of isometric structure to higher dimensions

To generalize the isometric structure of 1D isoTNS to higher dimensions, we consider
a structural arrangement of isometries for the isoTNSs described as follows. For a k-
dimensional isoTNS, we assume that we can find a (k − 1)-dimensional hyperplane in the
isoTNS, that separates the k-dimensional space into two parts with the condition that the
isometries from both parts are pointing towards the hyperplane. This means we can define
a (k − 1)-dimensional state in terms of the boundary states of the two isometric maps
representing the full k-dimensional state. We can then successive continue this reduction
of the dimension until 0D. In other words, we represent the k-dimensional state as the
(k − 1)-dimensional state in an orthonormal basis formed by the k-dimensional boundary
map.
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2.3. IsoTNSs in 2D

For clarity, let us first consider some examples: (i) A 1D MPS with an orthogonality
center, as discussed in the previous section, has a 0D orthogonality center and 1D boundary
maps as shown in Fig. 2.1. The truncation on the orthogonality center is optimal for the
1D quantum state as shown in Eq. (2.11). (ii) A 2D isoTNS on a rectangular lattice as
shown in Fig. 2.2a. The column colored in red is an effective 1D wavefunction with 2D
isometric boundary maps as shown in Fig. 2.2c. We can view the 1D wavefunction as a
1D MPS by grouping and reinterpreting the virtual indices.

Ψ[3]TV←∂V TV←∂V TV←∂VΨA[2]A[1] B[3] B[4] Ψ[3]A[2]A[1] B[4]

(a) (c)(b) (d) .

Figure 2.2.: Analogously, an isoTNS in 2D having orthogonality hypersurface colored in
red and with a column (a) without physical indices Ψ and (b) with physical
indices Ψ[l]. (c) The decomposition of an isoTNS as the left and right isometric
boundary maps with effective 1D wavefunction Ψ[3]. (d) The boundary map
T V←∂V of the orthogonality center of the isoTNS (b).

General properties of isoTNSs

With the structure of isoTNSs in mind, we now discuss the their general properties and
give concrete examples using 2D isoTNSs. In terms of the numerical algorithm, isoTNSs
have two ideal properties: (i) optimal bond truncation on the orthogonality center and
(ii) identity norm tensor on the orthogonality center. These two properties are the direct
consequence of the isometric boundary map. The nested isometric boundary maps of
dimension k, k−1, . . . , 1 would form a single isometric boundary map to the orthogonality
center. Therefore, any optimal truncation on the orthogonality center in the L2 norm, e.g.
SVD, is an optimal truncation of the k-dimensional wavefunction because the isometric
boundary map is norm-preserving. Similarly, because the boundary map of the tensor
on the orthogonality center is isometric as shown in Fig. 2.2d, the norm tensor Nl =
(T V←∂V )†T V←∂V = 1∂V is an identity operator. Formally, the arrangement of isometries
described above defines a causal structure of the tensor network flowing in the reverse
direction of the arrows since the isometries would form Kraus operators. With our setup,
the arrows of isometries don’t form a loop. It means the isoTNSs considered are physical
states that could be prepared by sequential quantum circuits [155, 156]. Here, we only
consider the isoTNSs with a single orthogonality center 5.

Notation

In this work, we focus on 2D isoTNSs and use a notation inherited from MPSs. We can
view the 2D isoTNS on the rectangular lattice as a generalization of the MPS where each
isometry of the MPS is extended to a column of isometries. Therefore, we use A[l] and B[l]

to denote columns of isometries that are left-normalized and right-normalized. We use Ψ
and Ψ[l] to denote the columns containing orthogonality center that are without and with
physical indices as shown in Fig. 2.2a and Fig. 2.2b. We see in Fig. 2.2, that the direction

5It is possible to have more than one orthogonality center in the isoTNS. In that case, the reduced
density matrices of the orthogonality centers will be separable.
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Chapter 2. Review of tensor network methods

of the isometries is chosen consistently pointing toward the orthogonality center (red circle)
and each column can be contracted to an isometry, recovering the MPS structure.

Following the discussion above, we see the red-colored region in Fig. 2.2a and Fig. 2.2b
define sub-regions of isoTNSs that have special properties. We call these effectively 1D
regions the “orthogonality hypersurfaces” of the isoTNSs. Inside this region, we can move
the orthogonality center from site to site exactly by orthogonal matrix decomposition. This
1D region has only incoming arrows and hence an isometric boundary map. Any varia-
tionally optimal algorithm inside the orthogonality hypersurface is variationally optimal
for the global state. Utilizing these properties, we can run similar 1D algorithms on the
orthogonality hypersurface.

Evaluation expectation values

General 2D TNSs contractions have the complexity scaling exponentially in the system size
and require approximate contractions [124]. For a 2D isoTNS, the expectation values for
any operator acting only on column Ψ[l] or within the orthogonality hypersurface permit
an exact evaluation with polynomial scaling in the system size. The expectation values can
be evaluated using standard MPS contraction on this column, i.e., ⟨ψ|Ô|ψ⟩ = ⟨Ψ[l]|Ô|Ψ[l]⟩
– no contraction of 2D networks is involved.

For observables outside the column Ψ[l], we could move the orthogonality column or
hypersurface over the sites by approximate methods introduced in Sec. 2.3.2 and evaluate
the expectation as described above. Alternatively, one can perform the general 2D TNSs
contraction. Note that both approaches are approximate algorithms.

Shifting the orthogonality column

To implement practical algorithms using isoTNSs, we need a method to move the column
Ψ[l] around efficiently. For an MPS, we can exactly move the orthogonality center to any
position by the QR algorithm, enabling efficient evaluation of local operators. However, it
is not possible to change the isometric direction of the entire column for 2D isoTNS directly
going from Ψ[l] to A[l]Ψ. The direct approach, which collapses the entire column Ψ[l] into
a single tensor and performs a QR decomposition, is doomed because of the exponential
scaling. Therefore, new algorithms are required to shift the isometry direction of the whole
column Ψ[l] to A[l]Ψ. The pioneering work [75] proposed two different algorithms to do
this; namely, the variational Moses move (MM) and the sequential MM 6. We give a brief
review of the methods in Sec. 2.3.2 and Sec. 2.3.3 and extend the study of the algorithms
in the next chapter.

2.3.2. Variational Moses move

Recall in 1D the orthogonal matrix decompositions, e.g. QR decomposition, move the or-
thogonality center (thus shift the directions of the isometries) by Ψσl−1Bσl = Aσl−1ΨBσl =
Aσl−1Ψσl , where each of the Ψ, A,B is a tensor. In 2D, Ψ, A,B each refers to a column
of tensors as in Fig. 2.2. There is no orthogonal decomposition of the whole column of
tensors while keeping the locality (tensor decomposition) structure. QR decomposition or
SVD on each individual tensor would destroy the matching of isometry directions and thus
destroy the identity boundary map of isoTNS.

While an exact solution does not exist, we consider the following variational problem:
Given the column Ψ[l], we find columns A[l],Ψ such that the distance between two repre-

6The name comes from the biblical story of Moses splitting the Red Sea. The name suggested by Roger
Mong is given for that the algorithms approximately split the sea of entanglement.
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sented states is minimized, i.e.,

argmin
A[l],Ψ

∥∥∥Ψ[l] −A[l]Ψ
∥∥∥
2

(2.18)

with the constraint that A[l] is a column of isometries pointing toward Ψ column (see
Fig. 2.3). Notice that the Ψ column does not have physical indices. One can think of
this variational problem as the analogy of the QR decomposition for a column of tensors
except that Ψ is not restricted to be upper triangular. While the QR decomposition
is a deterministic algorithm providing a numerical exact decomposition, the variational
problem here generically only provides an approximate decomposition. If the problem
could be solved, the next step is to contract the “zero-site” column Ψ to the next right-
normalized column B[l+1] and form the Ψ[l+1] column as in Fig. 2.3b and Fig. 2.3c. And
one can continue forward with the move in analogy to the 1D case. We call this procedure
of solving Eq. (2.18) iteratively and obtaining A[l],Ψ columns the variational Moses move.

ΨA[l] B[l+1]

(b)(a)

Ψ[l] B[l+1] A[l] Ψ[l+1]

(c)

Figure 2.3.: The column Ψ[l] is shifted by starting with a Moses move from (a) Ψ[l]B[l+1]

to (b) A[l]ΨB[l+1]. The combination of ΨB[l+1] = Ψ[l+1] would lead to higher
bond dimension which requires further truncation. We implement this with
the same idea as the standard MPO-MPS compression method. This gives the
two columns A[l]Ψ[l+1] in (c). An optional but more expensive step includes the
maximizing of the two columns overlap ⟨ψ|ψ′⟩ of the wavefunction before in (a)
and after in (c). We describe the detail of the steps above in Appendix 3.1.3.

We separate the variational MM into two parts which correspond to two common types
of variational problems for tensor networks. The first part is the variational optimization
over tensors in column Ψ. This is an unconstrained optimization problem with general
tensors. The second part is the variational optimization over the isometries in column A[l].
This is a constrained optimization problem with isometry tensors. Both types of problems
could be solved in an ALS fashion as described below.

Unconstrained optimization for tensors in column Ψ

The unconstrained optimization problem over Ψ is similar to the problem of variational
approximation that occurs in the iterative compression of an MPS [31, 64]. The general
problem has the following setup: Given a target state |ψ⟩, we want to find the optimal
isoTNS |ϕ⟩ representation in L2 norm by varying a single tensor x at site-l at a time 7.

The solution of the minimization problem

argmin
x

∥∥∥|ψ⟩ − |ϕ(x)⟩
∥∥∥
2

(2.19)

7Notice that when the problem is imposed on normalized tensor networks, minimizing the difference
in L2 norm is equivalent to maximizing the fidelity F(ϕ, ψ) = |⟨ϕ|ψ⟩|2. This is because of the global phase
is not fixed and one can always set it such that |⟨ϕ|ψ⟩| = Re [⟨ϕ|ψ⟩]
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must satisfy the extremum condition ∂x∗⟨ϕ|ϕ⟩ − ∂x∗⟨ϕ|ψ⟩ = 0. Therefore, the optimal
tensor x is found by solving the system of linear equations,

Nlx = b, i.e. x = N−1l b (2.20)

where Nl is the norm matrix for site-l obtained from contraction ⟨ϕ|ϕ⟩ and leaving out
tensor x in ket and tensor x∗ in bra, and b results from leaving out tensor x∗ from ⟨ϕ|ψ⟩.

Similar to the variational compression of MPS, at each update, we keep the update
tensor x at the orthogonality center such that the norm matrix for site-l is the identity
operator, Nl = 1. As a result, the optimal update is given by the contraction b without
solving a system of linear equations. In variational MM, each local update b is formed by
the contraction of three column Ψ[l], A[l],Ψ. After each update, we move the orthogonality
center to the next site in the column by orthogonal matrix decomposition.

Constrained optimization for isometries in column A[l]

The constrained optimization over tensors x within column A[l] requires x to be an isom-
etry. The constrained optimization could not be solved by the previous approach as in
Eq. (2.20), since the previous solution is a general tensor. The isometric constraint can-
not be consistently restored by orthogonal matrix decomposition. First, we rewrite the
problem from minimizing L2 distance between states to maximizing the real part of the
overlap,

argmin
x∈isometry

2− 2Re [⟨ψ|ϕ⟩]

= argmax
x∈isometry

Re [⟨ψ|ϕ⟩]

= argmax
x∈isometry

Re
[
Tr[b†x]

]
.

In the first line, we use the condition that the isoTNSs have an identity norm. In the
last line, we reshape the isometric tensor x and the tensor b to matrices. The resulting
constrained optimization problem is known as the orthogonal Procrustes [157] 8 problem
and admits closed-form solutions. The optimal update for x is given by V U † from the
SVD of the b† = UΣV † matrix. A similar problem also appears in optimizing multi-scale
entanglement renormalization ansatz (MERA) with linearization [158, 159]. The derivation
and detailed discussion are given in Appendix A.1.

One could start with randomly initialized A[l],Ψ and iteratively sweep through and
update all the tensors in both columns. The algorithm stops when desired accuracy or
convergence criterion is reached. In practice, we observe that random initialization with
local updates may lead to slow convergence toward a sub-optimal minimum. Therefore,
we introduce in the next section a complementary approach for shifting the column, which
could serve as a good initialization for the variational MM.

After each variational MM, one contracts the Ψ column to the next column. The two
columns contraction is similar to the application of an MPO to an MPS. Therefore, the
most efficient way is to consider the MPO-MPS contraction variationally [54, 102]. Note
that there are a few subtleties: The variational MM Ψ[l−1]B[l] = A[l]Ψ[l] is generically not
exact and inherits errors. Furthermore, after moving and tagging the column, the bond
dimension on column l grows. To keep the bond dimension fixed, a truncation occurs.

8The problem is named after Procrustes, a bandit from the Greek mythology, who forced passersby to
fit his bed by stretching or cutting off their bodies.
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2.3.3. Sequential Moses move

In this section, we review a sequential solution for moving the orthogonality hypersur-
face [75]. The sequential MM is a greedy algorithm that sequentially splits one column
into two satisfying the isometric constraints by a single unzipping sweep. We observe in
practice that the sequential MM has an error very close to the optimal variational re-
sult while being much faster. In addition, this approximate solution can serve as a good
initialization for variational MM.

The idea of the sequential MM is to perform a sequence of tripartite decompositions at
the orthogonality center. We illustrate the idea in Fig. 2.4. At each step, we split the single
tensor into three tensors as shown in Fig. 2.4a to Fig. 2.4d. Iteratively, we split the full
column into two by repeating such decompositions as illustrated in Fig. 2.4e. To simplify
the notation, we always merge the indices of the tensor at the orthogonality center as an
order-3 tensor and denote it as Ψa,b,c.

The tripartite decomposition is composed of two consecutive SVDs and a gauge fixing
procedure. We use Einstein summation convention and describe the decomposition step
by step as follows:

(i) Perform an SVD on Ψ(a),(b,c)

Ψa,(b,c) = Aa,sΛs,sVs,(b,c) = Aa,sΘs,b,c.

The A is an isometry. In principle, we could also directly arrive at the final form
by reduced QR decomposition Ψ(a),(b,c) = Aa,sΘs,(b,c). However, in certain cases, we
would truncate the bond dimension which requires the SVD instead.

(ii) Split the index s. To get to Fig. 2.4b, we split the index s into sl, sr. In practice,
we choose their dimensions |sl| ∼ |sr| ∼ ⌊

√
|s|⌋ in order to distribute the bonds

evenly (though in anisotropic models, other prescriptions may be appropriate). Also
the bond dimension |sl| and |sr| should be smaller than the maximum vertical bond
dimension DV and horizontal bond dimension DH set for the simulation. Notice that
if |s| > |sl||sr|, then the SVD in step (i) is a truncated SVD, i.e.,

Ψa,b,c ≈ Aa,(sl,sr)Θ(sl,sr),b,c. (2.21)

For a given pairs of (sl, sr), we first truncate and keep only the leading |sl||sr| singular
values in Λs,s. We then form the Θs,b,c and reshape it into Θsl,sr,b,c. Note the
ordering of the reshaping, column-major or row-major, has only a minor effect for
the following reason. The decomposition Ψ = AΘ has a gauge degree of freedom
AΘ = (AU †)(UΘ) = A′Θ′, where U is an arbitrary unitary matrix. Absorbing
U † into orthonormal basis A results in a new orthonormal basis A′. We defer the
discussion of finding the unitary U , i.e., fixing the gauge, for the decomposition until
after we describe the full picture of the sequential MM. At this point, we assume we
fix the gauge by the unitary determined by some procedures.

(iii) Perform an SVD on Θ(sl,c),(sr,b). Given Θsl,sr,b,c, we rearrange and group the in-
dices (sl, c) and (sr, b) and perform the (truncated) SVD as shown in Fig. 2.4b and
Fig. 2.4d. That is

Θ(sl,c),(sr,b) ≃ V(sl,c),tΛt,tQt,(sr,b) = Ψsl,c,tQt,(sr,b).

(2.22)

Finally, combining Eq. (2.21) and Eq. (2.22), we have the decomposition

Ψa,b,c ≈ Aa,sl,srΨsl,c,tQt,sr,b (2.23)

as in Fig. 2.4d.
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Figure 2.4.: (a-d) The tripartite decomposition (e) Moses move Ψ[l] = A[l]Ψ by iterative
tripartite decomposition. (a) We group the indices of color black, blue, and red
together respectively as a, b, c and denote the orthogonality center as Ψa,b,c. (b)
After the SVD and merging the singular values to the orthogonality center, we
again group the indices of the same color together and denote it as Θ(sl,c),(sr,b).
The index sr is colored in blue and sl in red. (c) The insertion of identity
operator I = U †U , where U is chosen to minimize the entanglement in Θ.
We absorb the U † into isometry A and U into Θ. (d) SVD on the final
Θ complete the tripartite decomposition. (e) Utilize the decomposition, we
unzip the columns with the orthogonality center moving to the top.

The entire sequential MM is shown in Fig. 2.4e, where we start from the orthogo-
nality center at the bottom and move to the top, unzipping the entire Ψ[l] column by
the tripartite decomposition. Before the MM, the Ψl] column is composed of tensors
[Ψσ1 , P σ2 , . . . , P σLy−1 , P σLy ]. At each step, we

(i) Reshape the orthogonality center Ψσl to an order-3 tensor Ψa,b,c

(ii) Perform a tripartite decomposition on Ψa,b,c as in Fig. 2.4a-d

(iii) Merge the orthogonality center after the decomposition with the tensor above to form
the new center, i.e., ΨP σl+1 = Ψσl+1 .

After step (iii) (merging the tensors), we recover the form as in Fig. 2.4a. Therefore, we can
repeat and continue from step (i) until we reach the top of the column. We end the split-
ting at the top of the column by a single SVD. Collecting the A tensors and the Q tensors
along the way, we obtain the A[l] column consisting of tensors [Aσ1 , Aσ2 , . . . , AσLy−1 , AσLy ]
and the Ψ column consisting of tensors [Q,Q, . . . , Q,Ψ]. The full procedure is illus-
trated in Fig. 2.4e. To continue, we see we could combine the Ψ column easily with
the B[l+1] column as in Fig. 2.3b and result in the Ψ[l+1] column consisting of tensors
[Qσ1 , Qσ2 , . . . , QσLy−1 ,ΨσLy ] as in Fig. 2.3c.

In practice, we would impose a maximum bond dimension for column Ψ and also for
column Ψ[l+1] = ΨB[l] as in Fig. 2.3c. Truncations may take place on column Ψ during
the second SVD and on column Ψ[l+1] after the combination of columns.

Now we discuss the criterion and how to find the optimal U in the tripartite decom-
position. The crucial insight from [75] is that the truncation error occurs in MM can be
made smaller by utilizing the gauge degree of freedom between tensors (see Fig. 2.4c). An
insertion of a pair of unitary and its conjugate, i.e., identity operator, before the second
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2.3. IsoTNSs in 2D

SVD leave the overall tensors invariant. However, this changes the distribution of the
singular values of the tensor Θ when we absorb the unitary U into it and hence changes
the truncation error. Therefore, we include the insertion of the pair of unitary and its
conjugate as in Fig. 2.4c between the first and second SVD.

Algorithm 1: The sequential Moses move algorithm
Input : central column Ψ[l], cost function L, bond dimension D, central bond

dimension η
Output: left-normalized column A[l] and central column Ψ minimizing∥∥Ψ[l] −A[l]Ψ

∥∥2 with error ε
idx = 0, ε0 = inf;
for ( idx < Nrow − 1 ) {

idx = idx + 1 ;
Group the indices of Ψ[l][idx] to form Ψa,b,c;
Tripartite Split ( Ψa,b,c ){

(i) SVD on Ψ(a),(b,c)

Ca,b,c ≃ Aa,sΛs,sVs,b,c = Aa,sΘs,b,c

(ii) Split the index s to sl, sr, s.t.
|sl| < D, |sr| < D
Ca,b,c ≃ Aa,(sl,sr)Θ(sl,sr),b,c

(iii) Find unitary U from
argmin U∈unitary L(UΘ)

(iv) Insert the identity I = U †U
A← AU † and Θ← UΘ

(v) SVD on Θ(sl,c),(sr,b), s.t.
Θsl,sr,b,c ≃ Vsl,c,tΛt,tQt,sr,b = Ψsl,c,tQt,sr,b
|t| < η

(vi) Collect the tensors and error
Ψa,b,c ≈ Aa,sl,srΨsl,c,tQt,sr,b
A[l][idx]← A, Ψ[idx]← Ψ
εsplit = εSVD-1 + εSVD-2

}
Absorb Ψ to Ψ[l][idx + 1] ;
ε+ = εsplit

}
SVD on Ψ[l][N ] ≃ A[l][N ]Ψ[N ]
ε+ = εSVD

The optimal U is the U that leads to the smallest truncation error. Therefore, we solve
the variational problem

argmin
U∈unitary

L(UΘ) (2.24)

where the cost function L(UΘ) is chosen such that minimizing it reduces truncation error.
Originally, Rényi-α entanglement entropies, which act as a proxy to the truncation error,
is considered as the cost function [75]. Once the cost function is given, the variational
problem is solved by gradient descent methods. We give an overview of these procedures
in Appendix A.1.3. The overall MM algorithm has a complexity of O(D7), when all virtual
bond dimensions in the isoTNS are D and physical dimension d << D is ignored.

In Chapter 3 Sec. 3.1, we expand our study by considering truncation error as the cost
function. We compare the results obtained by using the Rényi-α entanglement entropies
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Chapter 2. Review of tensor network methods

and truncation errors as cost functions and provide insights on the optimization problem.
Furthermore, we thoroughly examine the complexity of the algorithms, particularly when
the bond dimension on the orthogonality column is increased to η.

To conclude, we show the overall sequential MM algorithm as in Alg. 1. We choose the
convention that the algorithm takes central column Ψ[l] with isometries pointing downward
as input and returns left-normalized column A[l] and central column Ψ with isometries
pointing upward.

2.3.4. TEBD2 algorithm

Given the ability to move the orthogonality center and column around the isoTNSs, stan-
dard tensor network algorithms can naturally be formulated. In the original work [75],
the imaginary time evolution algorithm TEBD2 is proposed and used to study the ground
state problem. Here we give a brief review of the algorithm. In Chapter 3, we use the
algorithm to perform real-time evolution.

The TEBD algorithm with MPSs is an algorithm utilizing local updates to perform
time evolution. The TEBD-like algorithms for time evolution consist of three parts: (i)
Suzuki-Trotter decomposition of the time evolution operator Û(dt) =

∏
i e
−idtHi of local

Hamiltonian H =
∑

iHi into a set of two-site local operators (ii) local updates by applying
the time evolution operator following optimal bond truncation at the orthogonality center
(iii) shifting of orthogonality center. Combining these with 1D isoTNSs, i.e., MPSs, the re-
sulting TEBD-like algorithms are similar algorithms slightly varying in the implementation
details [48–51].

(i)

(iii) (iv)

(ii)TEBD(a) (b)

Figure 2.5.: The TEBD2 algorithm: (a) The 1D TEBD (b)(i) Beginning with isometries
pointing toward the upper left, one TEBD step as in (a) on the column would
bring the orthogonality center down as in (ii). The MM, as in Fig. 2.3, brings
the arrow back up and shifts the orthogonality hypersurface as in (iii). Re-
peating this through the system, we arrive at the form in (iv) in the end. With
an anti-clockwise 90◦ rotation of (iv) we are back to (i) with column and row
reverse. We then repeat the same steps and evolve the rows.

The TEBD2 algorithm is the 2D generalization of the TEBD algorithm with 2D isoTNSs.
The three building blocks work similarly in two dimension. For part (i), we consider the
Suzuki-Trotter decomposition of the time evolution operator Û(dt) =

∏
r,i e
−idtHr

i
∏
c,j e

−idtHc
j ,

where Hr
i and Hc

j are the terms of the local Hamiltonian acting on columns and rows. For
part (ii), we perform similar local updates at the orthogonality center. Since optimal bond
truncation is guaranteed by the isometric form, there is no difference to the 1D algorithm
except for the additional indices. However, the computational cost can be drastically reduce
from O(D9) to O(D5) by applying the two-site gate update on the reduced tensors [64].
Moreover, the reduced tensor update is optimal for isoTNSs, which is different from the
general TNSs [64, 160]. For part (iii), we utilize the SVD and MM to move around the
orthogonality center and orthogonality hypersurface.
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2.3. IsoTNSs in 2D

We sketch the outline of TEBD2 algorithm here.

(i) Start with an isoTNS with all isometries pointing toward the top left as in Fig. 2.5b(i).

(ii) Perform 1D TEBD with a reduced tensor update on the column of the orthogonality
center. After the sweep, the isometries all points down as in Fig. 2.5b(ii).

(iii) Perform MM to bring the orthogonality center forward to the next column Fig. 2.5b(iii),
then repeat the 1D TEBD as in step (ii). Continue and repeat these steps over all
columns.

(iv) The isometries now point toward the top right as in Fig. 2.5b(iv). The orientation of
the isometries has effectively been rotated by 90◦ counterclockwise from the starting
point, Fig. 2.5b(i). We may thus go back to step (i) by rotating the network by 90◦,
exchanging the role of rows and columns, and repeat.

Each TEBD2 step evolves the system dt with two cycles of operation from step (i) to (iv).
This is because on the first round, we finish the application of all the terms on columns
Û col(dt) =

∏
c,j e

−idtHc
j to the state. With the rotation at step (iv), we interchange the

columns and rows. On the second round, we thus evolve the “rows” of the original lattice.
After two rounds, we arrive at a 180◦ rotated lattice with the system evolved by Û(dt). By
repeating this, one can perform real- or imaginary-time evolution with isoTNSs. We note
that while each 1D TEBD step is individually a 1st-order Trotterization, after four rounds
we obtain a 2nd-order Trotterization within columns and rows, as the effective reversal by
180◦ during rounds 3-4 cancels out errors via symmetrization. By using half time steps in
the first and last time steps of the column updates, we could make the overall algorithm
2nd-order [75]. The method is termed TEBD2 since it is a nested loop of the 1D TEBD
algorithm [75].

The TEBD2 algorithm differs from the time evolution algorithm of general 2D TNSs [64,
161] in the step of tensor updates. In general, applying the time evolution operator in-
creases the bond dimensions of the TNSs. For isoTNSs, we can simply truncate the bond
dimension by a local SVD, which is the globally optimal truncation because of the isometry
conditions. For generic TNSs, local truncation is not optimal because it does not take into
account the information of the rest of the tensor network. Instead, one has to solve the
minimization problem approximating the time-evolved state |ψ(t+ dt)⟩,

argmin
x

∥∥∥|ϕ⟩ − Û(dt)|ψ(t)⟩
∥∥∥
2
. (2.25)

The |ψ(t)⟩ denotes the original state at time t. One updates a single local tensor x in
|ϕ⟩, where |ϕ⟩ is a 2D TNS of the same fixed bond dimensions as the original TNS 9.
The optimal update is given by solving the systems of linear equations with the norm
matrix N and vector b, similar to the problem described in variational MM. For TNSs, the
evaluation of the norm matrix N and vector b involves the approximate TNSs contraction
for the environment, which gives rise to the difference in SU and FU scheme [64] 10. The
isometric condition provides the optimal truncation and avoids the need of solving the
systems of equation and environment approximation. This advantage comes with the cost
of the truncation error in MM. Nevertheless, the computational complexity for the time
evolution algorithm decreases from D10 for general TNSs to D7 for isoTNSs, where the D7

complexity comes from the MM.
9In practice, one updates two tensors at the a time using the reduced tensors update to lower the

computational cost [64].
10See discussion in Sec. 2.2.2.
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Chapter 2. Review of tensor network methods

The 1D TEBD algorithm with MPSs has two sources of error: the Trotterization error
εTrotter and truncation error εtrunc due to the restricted bond dimension. Suppose we want
to evolve the system to time T with a controllable targeted error of order εT , we could
keep the error εTrotter and εtrunc both around the order ∼ εT . The truncation error εtrunc
could be made smaller than εT by increasing the bond dimension. The Trotterization error
can be made as small as one wishes by decreasing step size δt or increasing the order p of
Trotterization [54]. More precisely, the Trotterization error of each time step δt is ∼ δt(p+1)

in L2 norm, and the accumulated Trotterization error is estimated by the sum of error at
each time step and is about ∼ Tδtp 11.

The TEBD2 algorithm has one additional source of error: the error in the MM εMM.
This additional error affects the optimal choice of step size and order of Trotterization,
depending on the use case. Crucially, unlike in one dimension, where the truncation per
step εtrunc → 0 as δt → 0 (because the state does not change), in two dimension εMM
remains finite even as δt → 0. This is because the MM is generally not exact (though
εMM → 0 as D → ∞). To assess the consequence for real-time evolution, suppose we
are interested in evolving a system to a specific total time T , and assume the MM error
εMM is fixed, there exists an optimal step size δt and order p, which minimizes the sum of
Trotterization error εTrotter and MM error εMM, i.e. εtotal = (Tδtp)2+ T

δtεMM. By iterating
through p = 1, 2, . . ., we can solve the minimization problem given the values of T and εMM
and obtain the error ε∗total and step size δt∗ for the corresponding p. Comparing the total
error obtained for different p, we can pick the optimal p∗ and the corresponding optimal
step size δt∗. When considering imaginary-time evolution, this error εtotal acts against the
deceasing of energy ∼ εEe−∆Egapdτ per time step dτ . The converging results thus have an
error in energy εE ∼ aδτ2p + b εMM

δτ [75].

2.3.5. Discussion

To conclude the section on isoTNSs, we discuss and give some general remarks on the
properties of isoTNSs and the related work.

Similar 2D isoTNS ansätze have been proposed recently with different approaches for
shifting the orthogonality hypersurface [162, 163]. The isoTNSs have been generalized to
represent 2D thermal states [101] and can be generalized to higher dimensions or different
lattice geometries, for example, the recent work on 3D cubic lattice [164].

We note that it is possible for 2D isoTNSs to have a different arrangement in the direction
of isometries that does not look like Fig. 2.2a. For example, we can have columns A and B
not contracted to isometries pointing only toward the orthogonality center. As also pointed
out in [162], the identity maps formed by the left and the right boundary are a sufficient
but not necessary condition for an isoTNS to have an orthogonality center. For our work,
we choose the “natural” arrangement in the sense that it is the direct generalization of
MPS tensors to columns. In [162], columns of TNSs are turned into layers of unitaries
as in quantum circuits, which corresponds roughly to the pattern as in Fig. 2.2a. All the
work so far [75, 162, 163, 165] considers a similar arrangement of isometries for numerical
convenience.

Aside from the previous attempts to generalize the canonical form of MPSs to PEPSs [166],
recently a different generalization of canonical form for cyclic tensor networks by gauge
fixing is proposed by Evenbly [167]. The proposed weighted trace gauge (WTG) condition
requires the left and right boundary matrices to be proportional to identity 1 for all the

11For an error per unit time ε = εT /T to be satisfied, first order method needs T
δt

= T
ε

time steps, while
second order method T

δt
= T

ε1/2
and so and so on. The total evaluation for first order TEBD is then T

ε
× 2,

and for second order T

ε1/2
× 5. Higher order is computationally preferred if one aims at higher accuracy

ε≪ 1.
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virtual bonds. We briefly review the definition of WTG in Appendix A.2. For acyclic
networks, the WTG condition is equivalent to the canonical form condition. For general
cyclic networks, the WTG condition does not restrict the state compared to the isomet-
ric condition since the WTG condition is only a gauge fixing, which does not change the
overall states. TNSs in the canonical form defined with WTG are the same manifold as
general TNSs. In contrast, isoTNSs restricted the states and are sub-manifolds of the gen-
eral TNSs. Applying WTG to isoTNSs will lead to the Γ−Λ form [48, 49]. The isometric
condition is still satisfied by combining the bond and site tensors.

One distinguishing property of isoTNSs from TNSs is the absence of internal correlation.
The direct renormalization and truncation for general cyclic TNSs are not optimal due
to internal correlations. One class of prominent examples are cyclic tensor networks with
corner double line tensors [128, 168]. The cycle entropy Scycle on a bond is a measure defined
in [167] to quantify this physically redundant information contained in cyclic networks, i.e.,
internal correlations. We give a brief review of the definition of the cycle entropy Scycle in
Appendix A.2. When Scycle = 0, the bond does not carry physically redundant information.
However, TNSs usually have a non-zero internal correlation, i.e., Scycle ̸= 0. One advantage
of isoTNSs representation is that the cycle entropy Scycle is always zero for all the bonds by
construction. This is a property following the definition of the cycle entropy Scycle. While
we discuss this in more detail in Appendix A.2, we provide an intuitive argument here.
IsoTNSs are states generated under sequential unitaries from the product states [169, 170].
The bonds in isoTNSs correspond to the actual physical degree of freedom on which the
unitaries act, and hence, Scycle = 0.

29





3. Efficient simulation of dynamics with
two-dimensional isometric tensor
networks

This chapter is largely based on the work published in Ref. [1], which builds on the previous
work on isometric tensor network states (isoTNSs) reviewed in Chapter 2. The chapter
is organized as follows. In Sec. 3.1, we revisit and study the effect of different cost func-
tions for tripartite decomposition in the sequential Moses move (MM). We discuss the
implementation detail and extend the variational MM to a two-column variational MM. In
Sec. 3.2, we introduce a generalized density matrix renormalization group (DMRG) algo-
rithm with two-dimensional (2D) isoTNSs (DMRG2) for variational energy minimization
and implement the time-evolving block decimation (TEBD) algorithm with 2D isoTNSs
(TEBD2) for real-time evolution. We show that one can study ground state properties
and simulate the dynamics of the 2D systems with isoTNSs. In Sec. 3.3, we demonstrate
both methods introduced by computing the dynamical spin structure factor of 2D quantum
spin systems. First, we compare our results for the transverse field Ising model on a square
lattice with the prediction by spin-wave theory. Second, we consider the Kitaev model on
the honeycomb lattice and compare it to the result from the exact solution. We conclude
by discussing these results in Sec. 3.4.

3.1. Extended study on Moses move

We have reviewed two complementary approaches shifting the orthogonality hypersurface
Ψ[l] = A[l]Ψ in Sec. 2.3. The sequential MM focuses on solving the optimal tripartite de-
compositions locally and building up the solution from these decompositions. In Sec. 3.1.1
and Sec. 3.1.2, we study the effect of the cost functions on the tripartite decompositions
and the MM. The variational MM treats the whole shifting as a variational problem and
solves it with the alternative least square updates. The original MM [75] transform the
isoTNSs in the form Ψ[l]B[l+1] to A[l]ΨB[l+1]. Going from A[l]ΨB[l+1] to A[l]Ψ[l+1], we
apply standard variational matrix-product operator (MPO)-matrix-product state (MPS)
compression. Similar to the numerical algorithms in one-dimensional (1D), the move from
Ψ[l]B[l+1] to A[l]Ψ[l+1] is the fundamental step. In Sec. 3.1.3, we describe the implementa-
tion detail of MM and extend the variational MM between the two-columns wavefunction
before Ψ[l]B[l+1] and the two-columns wavefunctions after A[l]Ψ[l+1].

3.1.1. Sequential Moses move with alternative cost functions

In the following, we consider two classes of cost functions. Regardless of the cost function in
consideration, the gradient of the unitary can be computed by either analytical derivation
or auto-differentiation scheme [68]. One can solve the optimization problem using Rieman-
nian gradient descent or Newton-based methods over the Stiefel manifold [171–175]. We
give an overview of these procedures in Appendix A.1.3.
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Entanglement entropies as cost functions

The first class of cost functions we consider are entanglement entropies. In [75], Rényi-α
entanglement entropies α

1−α log [Tr(ρα)] are chosen as the cost function, where ρ is the
reduced density matrix from the bipartition of the tensor Θ(c,sl),(b,sr) in Fig. 2.4 and α = 1

2

or 2 1. Choosing Rényi-12 entropy as a cost function is justified by the fact that Rényi-α
entropy with α < 1 upper bounds the truncation error for a fixed bond dimension [40].
With α > 1, the optimization, however, would not give a certified bound on the truncation
error. Such a cost function is still often considered in the literature since the optimization
is more straightforward. For example, the optimization converges to a minimum quickly
with the Evenbly-Vidal algorithm [159] due to the cost function landscape [175]. See
Appendix A.1.2. Therefore, it is common to consider Rényi-α entropy with α = 2 as an
alternative cost function or initialization for optimization with α < 1.

Truncation error as cost functions

The second class of cost functions is simply the truncation error set by the maximum bond
dimension D,

εD =
∞∑

i=D+1

Λ2
i,i . (3.1)

Direct minimization of the truncation error is possible and may be more effective than
minimizing an upper bound or surrogate cost function in some cases.

As an illustrative example, we consider the case when the random tensor Θ(c,sl),(sr,b) of
size (6, 4, 4, 6) has a completely flat spectrum, i.e., constant singular values in the singular
value decomposition (SVD) between the indices pair (c, sl), (sr, b). We evaluate different
cost functions with the final unitaries U found by minimizing Rényi-α entropy and the
truncation error εD. The overall result is shown in Table 3.1, and the singular values after
the optimization are plotted in Fig. 3.1.

Comparison of disentangling approach and direct minimization of truncation error

Minimize
Result

Rényi-2 Rényi-1 Rényi- 12 εD=4 εD=8 εD=12 εD=16

– 3.18 3.18 3.18 0.833 0.667 0.5 0.333
Rényi-2 1.56 2.09 2.53 0.28 0.116 0.0432 0.0114
Rényi-1.5 1.58 2.06 2.5 0.26 0.1 0.0364 0.00945
Rényi-1 1.72 2.04 2.41 0.236 0.0645 0.0181 0.00344
Rényi-0.75 1.86 2.09 2.35 0.266 0.0608 0.00727 0.000507
Rényi-0.5 1.94 2.16 2.36 0.32 0.0727 0.00656 7.59e-06
εD=4 1.8 2.12 2.5 0.208 0.0964 0.0373 0.0108
εD=8 2.02 2.17 2.43 0.374 0.0336 0.0133 0.00407
εD=12 2.26 2.37 2.47 0.465 0.165 0.000714 0.000184
εD=16 2.52 2.62 2.69 0.561 0.273 0.087 9.95e-17

Table 3.1.: The resulting values for Rényi-α entropy and truncation error εD of UΘ after
minimizing Rényi-α or εD as the cost function. The first row gives values for
the original tensor Θ before optimization. The minimal value of each column
is highlighted in boldface.

1Similar variational problems of “disentangling” also show up in various contexts. In [176], one finds the
minimal entanglement representation of MPSs for purified states by utilizing the gauge degree of freedom
of the ancilla space in the purification, where Rényi-2 entropy is considered. In a different context of
interacting fermionic system, the local mode transformation looks for the optimal unitary leading to the
smallest truncation in MPS representation by minimizing the Rényi- 1

2
entropy [177, 178].
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We observe that all the entanglement entropies and the truncation errors εD become
smaller after minimization for different cost functions considered, compared to the original
values before optimization. This suggests that exploiting the gauge degree of freedom and
inserting the unitary is beneficial regardless of the cost functions chosen. Additionally,
we generally observe a trade-off: minimizing entanglement entropies results in lower final
entanglement entropies but slightly higher final truncation errors. Conversely, minimizing
truncation errors results in lower final truncation errors but slightly higher final entangle-
ment entropies. Overall, the distribution of the resulting singular values depends on the
cost function chosen and could have orders of magnitude differences in truncation error.
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Figure 3.1.: Singular values of UΘ after optimization with respect to U using Rényi-α and
εD as cost functions, where Θ is a random tensor with flat singular values
spectrum. The inset shows a zoom-in view.

Choosing Rényi-α as a cost function, we observe in Fig. 3.1 that the singular values
modified vary “smoothly”. For smaller α, we see smaller singular values in the tail, while
for larger α, we see the first few singular values have larger values. This means minimizing
Rényi-α entropy for a smaller α leads to better results when the truncated bond dimension
D is large, while minimizing a larger α leads to better results when the truncated bond
dimension D is small. This is consistent with the fact that the Rényi-α entanglement
entropy for α→∞ is equivalent to εD=1. Overall, the optimal α depends on the truncated
bond dimension. It is worth noting that, in all cases, minimizing the Rényi-α entropy leads
to the smallest Rényi-α entropy but could have a larger truncation error compared to the
result of minimizing εD.

In contrast to the “smooth” change in singular values when minimizing the entanglement
entropy, the singular values obtained from minimizing εD show a sharp drop at the corre-
sponding bond dimension D. The optimization takes into account the information of the
specific bond dimension D and pushes down all singular values afterward to minimize the
truncation error. For a given bond dimension D, we see that minimizing εD always leads
to the smallest truncation error εD even while it may have larger entanglement entropy.

The moral we learned from this illustrative example is that the conventional way of
“disentangling” a tensor Θ by minimizing entropy indeed brings down the truncation error,
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but (at least locally) in a sub-optimal way. Disentangling modifies the overall spectrum but
does not utilize the information about the anticipated truncated bond dimension D. The
direct minimization of truncation error utilizes such information to avoid the ambiguity in
choosing α and thus could potentially lead to smaller truncation errors.

In practice, the spectrum for a physical system would not be a constant but decay ex-
ponentially. We observe similar results that direct minimization of truncation error gives
a slightly smaller truncation error than the disentangling approach (See Sec. 3.1.2). How-
ever, the optimization problems are prone to get stuck at local minima when minimizing
truncation error, while minimizing entanglement entropy is generally more robust. As a
result, we only report the results based on minimizing Rényi-12 entanglement entropy in
this work.

3.1.2. Comparison of Moses moves

We consider the similar test on truncation error for a 2-column physical wavefunction 2 as
in [75] for MM Ψ[1,2] → A[1]Ψ[2] minimizing two different cost functions, Rényi-12 and εη.
The wavefunction considered is the ground state of the transverse field Ising model on a
two-column ladder of size 2× 20 obtained from DMRG. The coupling strength is set to be
different between the horizontal and vertical bonds, i.e., H =

∑
i gσ

x
i −

∑
⟨i,j⟩h Jhσ

z
i σ

z
j −∑

⟨i,j⟩v Jvσ
z
i σ

z
j , where g = 2.5, Jh = 0.5, Jv = 1.5.
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Figure 3.2.: Comparison of the error in the decomposition
∥∥Ψ[1,2] −A[1]Ψ[2]

∥∥2 for the
MM with minimization based on Rényi-12 entropy and truncation error εη.
Furthermore, the variationally optimized solutions are also included. η is the
vertical bond dimension of Ψ[2]. The test state Ψ[1,2] is the ground state of the
TFI model on a two-columns ladder.

The MM factorizes the 2-column wavefunction Ψ[1,2] into A[1]Ψ[2], where [1] denotes all
physical indices for the first column and [2] for the second column. We consider the A[1]

column to have fixed horizontal bond dimension DH and vertical bond dimension DV with
DH = DV = 2, while for Ψ[2] column we have DH = 2 and DV = η. We compare the result
of two different cost functions in the tripartite decomposition as described in Sec.2.3.3 and

2We represent the 2-column wavefunction as an MPS where there are two physical indices at each site.
We can place one index to the left and one to the right of the column, resulting in the standard form of
the input for MM.
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Comparison of disentangling approach and direct minimization of truncation error

Minimize
Result

Rényi-2 Rényi-1 Rényi- 12 εη=2 εη=4 εη=6 εη=8

– 0.386 0.575 0.914 0.0198 0.00263 0.000178 1.28e-05
Rényi-2 0.266 0.429 0.749 0.00751 0.00103 9.06e-05 9.59e-06
Rényi-1.5 0.266 0.426 0.74 0.00673 0.000973 9.23e-05 9.44e-06
Rényi-1 0.268 0.425 0.727 0.00558 0.000943 0.000105 9.19e-06
Rényi-0.75 0.272 0.426 0.72 0.00494 0.000885 0.000109 9.22e-06
Rényi-0.5 0.278 0.431 0.718 0.00461 0.000767 7.49e-05 9.88e-06
εη=2 0.283 0.435 0.719 0.00437 0.000623 6.43e-05 9.35e-06
εη=4 0.289 0.441 0.717 0.00446 0.000579 4.44e-05 7.34e-06
εη=6 0.296 0.449 0.718 0.00481 0.000665 1.99e-05 1.45e-06
εη=8 0.298 0.452 0.725 0.00511 0.000842 2.28e-05 1.27e-06

Table 3.2.: The result for tripartite decomposition from a tensor taken in the middle of
MM for the two-column wavefunction described in Sec. 3.1.2. We compare
the resulting values for Rényi-α entropy and truncation error εD of UΘ after
minimizing Rényi-α or εD as the cost function. We use a bond dimension
DV = η for the column Ψ[2], so we use the notation εη instead. The values in
the first row are from the original tensor Θ. The best values of each column
are highlighted in boldface.

measure the performance of MMs by
∥∥Ψ[1,2] −A[1]Ψ[2]

∥∥2 which depends on η as shown in
Fig. 3.2. Choosing the truncation error εη as a cost function gives slightly better results,
and the variational Moses move based on such initialization barely improve.

To understand the effect of cost functions in the tripartite decomposition for physical
states, we take one tensor from the middle of the column during the MM and repeat the
benchmark of the tripartite decomposition on this tensor based on all different cost func-
tions introduced in Sec. 2.3.3. We show the resulting truncation error and entanglement
entropy in Table 3.2. Similar to the observation in Sec. 2.3.3, disentangling and direct
minimizing truncation error both lead to smaller truncation errors, while direct minimiz-
ing truncation error gives a slightly better result. Unlike the test in Table 3.1, we see
exponential decay in the truncation error εη for the original tensor in the first row. This
indicates that the singular values of the original tensor decay exponentially. Utilizing the
gauge degree of freedom to perform disentangling or direct minimizing truncation error
could still substantially improve the truncation error.

3.1.3. Implementation details

Optimization

In practice, the results for MMs depend both on the cost function and the optimization,
and the optimization is generically not guaranteed to converge to the global minimum or
stopped early due to efficiency considerations. We consider two different types of first-order
Riemannian optimization methods: Riemannian Adam [179] and Riemannian non-linear
conjugate gradient method [180] with line search. Setting Rényi-12 entanglement entropy
as the cost function, both optimization methods give similar convergent results. When the
truncation error is set as the cost function, the Riemannian Adam yields a slightly lower
truncation error compared to using Rényi-12 entanglement entropy as the cost function.
However, setting the truncation error as the cost function, the Riemannian conjugate
gradient method with line search often gives worse results, i.e., higher truncation error,
than the result of having Rényi-12 entanglement entropy as cost function. Although the
Riemannian Adam optimization with truncation error as a cost function gives slightly
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better results, it has a slower convergence rate. Moreover, the Riemannian Adam method
does not include a line search procedure but is sensitive to set step size and requires
problem-specific step size tuning. As a result, we consider the Riemannian conjugate
gradient methods with Rényi-12 entanglement entropy as a cost function in this work for
efficiency reasons.

In practice, we find the tensors from the consecutive SVDs, update the isometry with
unitary found by linearizing the Rényi-2 entanglement entropy until convergence, and
finally, we perform conjugate gradient method with Rényi-12 entanglement entropy. The
above scheme is not guaranteed optimal but is stable.

Bond dimensions and computational complexity

In practice, it is observed that increasing the bond dimensions on the orthogonality hy-
persurface could increase the representation power with less cost compared to increasing
the bond dimensions uniformly. As a result, we consider a maximal bond dimension D
throughout the tensor network and a maximal bond dimension η on the orthogonality hy-
persurface. With this setup, MM would decompose the column Ψ[l] with bond dimension
η into two new columns A[l] and Ψ with bond dimension D and η respectively 3. The
computation complexity of MM is O(η3D4+η2D5), including the variational Moses move.

After the MM, we combine Ψ column and B[l+1] column to form the new Ψ[l+1] col-
umn. This step is similar to the standard MPO-MPS contraction. The direct contraction
and truncation by randomized SVD have complexity O(η2D5) and O(η3D4) respectively.
Similar to MPSs compression, the one-sided truncation may lead to a sub-optimal result,
and one could consider it as initialization and further improve by variationally optimizing
the truncated column with O(η3D4). Another possible way would be to consider com-
bining the column variationally like variational MPO-MPS contraction, which gives the
same structure in contraction as in variational MM but with now the single Ψ[l+1] column
varying. Thus, it would also have the same cost. Note that direct contraction of Ψ and B[l]

following standard SVD truncation would cost O(η3D5), which should be avoided. With
the above counting, we show that shifting the columns from Ψ[l]B[l+1] to A[l]Ψ[l+1] has
complexity O(η3D4 + η2D5) in general.

After MM and combining the columns, i.e., Ψ[l]B[l+1] → A[l]Ψ[l+1], an optional step to
improve overlap can be considered by variationally maximizing

F = |⟨Ψbefore|Ψafter⟩|2 = |⟨Ψ[l]B[l+1]|A[l]Ψ[l+1]⟩|2

again over the two new column A[l] and Ψ[l+1] 4. This variational optimization has a
contraction structure of four columns and the computation complexity O(η3D4+η2D6). In
this work, we adapted all three variational procedures as in Fig. 2.3 when the numerical cost
is acceptable. Notice that even with the optional variational step, the overall computational
complexity for the time evolution algorithm would still be cheaper than full update [64] if
the bond dimension in central column η does not grow as O(D2).

One can reduce the computational complexity further by decomposing the order-4 isom-
etry into two trivalent tensors (omitting the physical indices). A similar strategy is con-
sidered in the so-called triad network in the context of tensor network renormalization

3For the schematic drawing, see Fig. 2.3.
4The variational optimization over two new column A[l] and Ψ[l+1] is different and more precise than

the original variational Moses Move [75]. In more recent works [2, 101], another different approach from the
original MM is used. The new approach first groups two physical columns Ψ[l] and B[l+1] to form Ψ[l,l+1]

and then perform MM on the two-column wavefunction to split it into A[l] and Ψ[l+1]. This two-column
approach is related to the two-column variational approach here and gives better numerical results.

36



3.2. DMRG2 algorithm

group [181] 5. The scaling could then be reduced to O(η3D3). The trade-off for less rep-
resentation power is compensated by the potential advantage of working with larger bond
dimensions. It has shown to be advantageous in the context of tensor renormalizations.

3.2. DMRG2 algorithm

With the isometric form generalized to two dimensions, we can easily adapt the 1D tensor
network states (TNSs) algorithms. As seen in Chapter 2 Sec. 2.3.4, the time evolution al-
gorithm TEBD2 mimics the TEBD algorithm in 1D for MPSs. This section describes the
ground state search algorithm by variational energy minimization – DMRG2. TEBD2 and
DMRG2 algorithms can be formulated as the minimization problems of certain cost func-
tions for local tensors. In this fashion, both algorithms are iterative algorithms performing
local updates over each tensor. Here we consider the case where the tensor updated is
always at the orthogonality center by shifting the orthogonality hypersurface.

Extending the DMRG algorithm for 2D TNSs is considered in [60, 182] with the main
drawbacks of high complexity O(D12) and numerical instability 6. Here, we first re-
view the general energy minimization approach with TNSs and then discuss the difference
when isoTNSs were used. The energy minimization algorithm with 2D isoTNSs is dubbed
DMRG2 as it resembles the 1D DMRG algorithm.

The energy minimization problem is solved by an iterative local update on each tensor
x with

xupdate ← argmin
x

⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ . (3.2)

By introducing the Lagrangian multiplier λE , the problem can be rewritten as,

∂x∗⟨ψ|Ĥ|ψ⟩ − ∂x∗λE⟨ψ|ψ⟩ = 0, (3.3)

and the solution of the optimization problem on a single tensor x is given by the generalized
eigenvalue problem

Heffx = λENx, (3.4)

where Heff is the contraction of energy expectation value ⟨ψ|Ĥ|ψ⟩ with leaving x and x∗

tensors out. The N is the norm matrix, as defined in Sec. 2.3, which is the contraction of
the norm ⟨ψ|ψ⟩ leaving the x and x∗ tensors out.

The crucial difference between considering TNSs and isoTNSs as variational ansätze
is that the generalized eigenvalue problem reduces to a standard eigenvalue problem with
isoTNSs. This is because the norm matrix of the orthogonality center is an identity operator
N = 1 by the isometric condition. See Fig. 3.3. This simplifies the computation and
stabilizes the algorithm since the ill-conditioned generalized eigenvalue problem may return
infinite or ill-disposed eigenvalues [182].

In practice, we implement the Hamiltonian as a sum of 1D MPOs over the rows and
columns. The expected energy is a sum of the contraction over the double layer isoTNSs
and MPOs. Similarly, the Heff is a sum of the contraction over the isoTNS and MPOs
while leaving the tensor x and x∗ (See Fig. 3.3). We contract each term approximately
using the boundary matrix-product operators (bMPOs) approach [64]. The accuracy of
the approximation is controlled by the bond dimension DbMPO of the bMPO, and the
overall cost of contracting the bMPO is O(D6D2

bMPO +D4D3
bMPO). In the following, we

5This is similar to approximated gate decomposition in the language of the quantum circuit. The
consideration of sparse structure within the tensor network is an active research direction, which we
discuss further in the second part of the thesis, particularly in Chapter 6.

6A recent proposal on fixing the issue of instability for general TNSs [97] shows potential to be applied
to large system sizes.
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take DbMPO = 2D2 and explicitly construct the matrix Heff with the cost O(D12). Note
that, in principle, only the matrix-vector multiplication Heffx operation is required for
solving the eigenvalue problem. The complexity can be reduced to O(D10) if Heff were
not constructed explicitly. It is possible that the approach above may be improved by the
advanced optimal MPO compression scheme in [183].

Figure 3.3.: The generalization of DMRG algorithm to 2D isoTNSs: (a) The norm matrix
N of isoTNSs is an identity operator N = 1 when the update site is the
orthogonality center. (b) Heff is constructed by summing up the contraction
of MPO representation of the Hamiltonian in the rows and columns.

We sketch the outline of the DMRG2 algorithm here. It is similar to the TEBD2 algo-
rithm but replaces the local update with solving an eigenvalue problem.

(i) Start with an isoTNS with the orthogonality center at the left-most column.

(ii) Perform the 1D DMRG over the column. That is, we update each tensor x in the
column by solving the standard eigenvalue problem Heffx = λx on the orthogonality
center to obtain the lowest eigenvector xupdate. We move the orthogonality center
from site to site by SVD.

(iii) Perform MM to bring the orthogonality center forward to the next column, then
repeat the 1D DMRG as in step (ii). Continue and repeat these steps over all
columns.

(iv) At the end of the sweep, all tensors are updated. We perform a similar trick of
rotation or a horizontal reflection to bring the direction of isometries back to the
starting arrangement as in step (i).

The above steps give one DMRG2 sweep updating over all tensors. The algorithm continues
until the energy converges.

We would like to point out that the DMRG2 proposed here is not a standard variational
algorithm, which optimizes over the parameters of a single variational wavefunction. In-
stead, we optimize over a set of quantum states approximately connected by MM. While we
can variationally update the tensors in the column with an orthogonality center to improve
the result, we always introduce an approximation (truncation) error when we move on with
MM to optimize the tensors in the next column. As a result, the variational energy does
not monotonically decrease as in the standard DMRG algorithm, which is observed later
in our numerical experiment and similarly in Ref. [163]. The approximation of the ground
state energy found by DMRG2 is, thus, similar to TEBD2, bound by the MM error.

Another possible way to carry out DMRG2 with isoTNSs is to fix the isometric structure
and not perform MM when one sweeps through the lattice. In that case, one has to
compute theN and solve for generalized eigenvalue problems. One expects better condition
numbers compared to the case without gauge fixing. With this approach, one can study the
representation power of the isoTNSs since there is no truncation involved. Our observation
is that the isometric condition itself, without gauge fixing, is still not stable. Therefore,
for the application in this work, we consider the former approach only.
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Benchmark on transverse field Ising model

To benchmark both TEBD2 and DMRG2 algorithms discussed, we consider the transverse
field Ising (TFI) model on the square lattice defined as

HTFI = −J
(∑

⟨i,j⟩
σ̂xi σ̂

x
j − g

∑

i

σ̂zi

)
, (3.5)

where ⟨i, j⟩ denotes the nearest neighbors for site i, j. We set J = 1 as the unit. In
the thermodynamic limit, the TFI model exhibits a quantum phase transition from a
symmetry-broken phase to a disordered phase at gc ≈ 3.044. We consider a square lattice
of size Lx = Ly = 11 with open boundary conditions (OBC) and g = 3.0, close to the
critical point. We compare the ground state energy estimate obtained from the imaginary-
time evolution using second-order TEBD2 and DMRG2 with the numerically exact results
from 1D-DMRG simulation with bond dimension D = 1024. The result is plotted in
Fig. 3.4. The bond dimension of the overall isoTNS is denoted by D, and we allow the
bond dimension in the orthogonality hypersurface to be η. We consider the setup where
η = 2D for TEBD2 and η = D for DMRG2. In Fig. 3.4a, we show that for TEBD2

the energy estimates do not go down monotonically with the decrease of step dτ because
of the MM error εMM. As described in the previous section, the energy error could be
fitted with ∆ETEBD2 = aεMM/dτ + bdτ2p where p is the order of Trotterization [75].
The extrapolated optimal energy estimate is given by the minimum of the fit. On the
other hand, ∆EDMRG2 ∝ εMM. We see, in general, DMRG2 has smaller error estimates
than the imaginary TEBD2 even when we use the same bond dimension η = D over the
orthogonality hypersurface. We plot the computational runtime in Fig. 3.4b. Despite the
difference in the scaling of computational complexity with respect to bond dimension, we
observe that TEBD2 and DMRG2 reach similar accuracy at a given time for isoTNSs of
different bond dimensions.

Let us finally comment on the error made by repeated MMs. Note that we introduce
an error εMM for each MM. Consider a state |Ψ0⟩ with the orthogonality center in the
0th-column. By repeating the MM, we can move the orthogonality center to nth-column–
we denote the corresponding state as |Ψn⟩. The accumulated error of repeating the MM
results in a deviation from the original state, which can be measured by the fidelity between
the state |Ψn⟩ and the original state |Ψ0⟩, i.e., F = |⟨Ψ0|Ψn⟩|2 ≈ (1− εMM)n.

We take the D = η = 2 isoTNS obtained from the DMRG2 for the TFI model with
g = 3.0 on an 11 × 11 square lattice and repeatedly perform MM using bond dimension
D′, η′ sweeping from left to right and then from right to left. The result is shown in Fig. 3.5.
We indeed observe a decrease of F to n in Fig. 3.5a as we sweep from left to right. However,
we find that sweeping from the right back to the original 0th-column does not cause a further
decrease in fidelity. In fact, the fidelity F even increases in some cases. We measure the
corresponding energy for state |Ψn⟩ and plot the error in Fig. 3.5b. The error density
εMM introduces a bound on the accuracy that can reach by the algorithms. Continuing
the left-right sweep of MM more than once leads to further degradation in fidelity. But
we also find an approximate fixed point in some cases, where the fidelity almost converges
with the continuing left-right sweep of MM. We show the data in Appendix A.3.
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Figure 3.4.: The result from the TEBD2 and DMRG2 algorithms for the TFI model with
g = 3.0 on an 11 × 11 square lattice. (a) The relative energy error εE =
(E − Eexact)/|Eexact| is plotted as function of the Trotter step size dτ . We
show data of different bond dimensions D in different colors. The solid lines in
the background represent the error of DMRG2 with the bond dimension D of
the same color. (b) We plot the relative energy error εE against the runtime
with TEBD2 in dotted lines and DMRG2 in solid lines. The bond dimension
on the orthogonality hypersurface is all η = 2D for TEBD2 and η = D for
DMRG2.

3.3. Spectral functions

As an application of the algorithms introduced above, we consider numerical evaluation
of the dynamical spin structure factor (DSF), a.k.a. the spectral function. The DSF is
defined as

Sαα(k, ω) =
1

2π

∑

R

e−ik·R
∫ ∞

0
2Re

[
eiωtCαα(R, t)

]
dt, (3.6)

where the correlation functions Cαα(R, t) = ⟨σ̂α†R (t)σ̂α0 (0)⟩ is evaluated with respect to
the ground state |ψ0⟩. It is of special importance since it gives us direct insight into the
physical properties of the quasi-particles and the spectral properties of the Hamiltonian.
In addition, DSF can be measured by inelastic neutron scattering in experiments and can
be computed using various methods theoretically.

Here, we compute Sαα numerically following the definition Eq. (3.6). We first obtain
the ground state |ψ0⟩ by DMRG2 with isoTNSs. Then the locally perturbed state σ̂α|ψ0⟩
is evolved using the TEBD2 algorithm. Once we have the ground state |ψ0⟩ and the-time
evolved state e−iĤtσ̂α|ψ0⟩, the time dependent real space correlation function ⟨σ̂α†R (t)σ̂α0 (0)⟩
is obtained by the approximate contraction of TNSs. For the data shown in the next section,
we apply linear prediction to double the time simulated from T to 2T . In all cases, we
multiply the data with a Gaussian (σt ≈ 0.44T ), which corresponds to a decay of factor 10
at time T , and effectively smooth out and broaden the data in the frequency space. Finally,
the double Fourier transform of the correlation function gives us the spectral function. We
plot the spectral function in a logarithmic scale with a cutoff chosen to avoid showing the
noise.

For the isoTNS with bond dimension chosen here, we observed MM error around εMM =
∥|ψ⟩−|ψ′⟩∥2 ∼ 10−2 for sweeping the central column from left to right. The corresponding
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Figure 3.5.: Benchmark on repeating the MM over a D = η = 2 isoTNS representing the
ground state of the TFI model with g = 3.0 on an 11× 11 square lattice. (a)
The fidelity F between the original state |Ψ0⟩ and the state |Ψn⟩ after n MM.
(b) The relative energy difference of the state |Ψn⟩ compared to the original
state. We perform in total 2L − 1 = 21 MM, sweeping from left to right and
right to left. The MM is carried out in different bond dimensions D′, η′ plotted
in different colors. The solid circle and the cross mark the data obtained with
variational MM and without variational MM. The fidelity and the energy are
measured by bMPO method with DbMPO = 4η′2.

two errors made for first-order and second-order TEBD2 are similar. For easier evalua-
tion of the time-dependent correlation function, we choose the first-order TEBD2 method
here 7. We consider two different models to demonstrate the methods introduced could
give qualitative insight into the physical Hamiltonian.

3.3.1. Transverse field Ising model

The TFI model, defined in Eq. (3.5), is a paradigmatic model for studying quantum many-
body systems. The ground state is ferromagnetically ordered for g smaller than gc ≈
3.044 [184, 185], and a disordered phase for g > gc. The excitation spectrum is known
perturbatively in the large and small-g limit by the effective Hamiltonian method. We
compute the DSF Syy on a square lattice of size Lx = Ly = 11 for g = 1 to g = 5. We plot
the DSF result from the simulation and the perturbative calculation in Fig. 3.6.

In the limit g ≪ 1, the single-particle (magnon) excitation consists of a single spin
flip costing energy ∼ 8J . To lowest non-vanishing order in g, we find a nearest-neighbor

7With εMM ∼ 0.01 and T ∼ 1, for first-order method, we have optimal around δt ∼ 0.21 and total
error ∼ 0.09. And for the second-order method, total error ∼ 0.05, δt = 0.4.
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Figure 3.6.: The dynamical structure factor Syy(k, ω) for g = 1 to g = 5 in logarithmic
color scale. The dark (light) green curve indicates the dispersion calculated
perturbatively from the limit g ≪ 1 (g ≫ 1).

hopping model with energy,

εg≪1 = 8− g2

4
(1 + cos(kx) + cos(ky)) +O(g3). (3.7)

The two-magnon excitations in the ferromagnetic phase form a bound state. By simple
counting, these bound states, which consist of two flipped spins on nearest neighbor sites,
have energy 12J (lower than the two-particle continuum ε ∼ 16J). For the g = 1 and
g = 2 plots in Fig. 3.6 the dispersion obtained by the simulation matches the result from
the perturbative calculation. Moreover, we can see a slight signal of the bound states.
However, throughout the full range of coupling, the two-magnon continuum is not observed.

In the limit g ≫ 1, by carrying out a similar calculation, the energy of single-particle
excitation is given as,

εg≫1 = g
[
2− 2

g
(cos(kx) + cos(ky)) +O(1/g2)

]
. (3.8)

We again find that the DSF matches well with the perturbative calculation.
Near the critical point g = 3, we observe a small gap. The gap size is slightly larger

than the result in [186] due to the finite size effect.

3.3.2. Kitaev model on honeycomb lattice

As a second example, we consider the Kitaev model on the honeycomb lattice [187], con-
sisting of three alternating spin couplings between bonds,

HKitaev = −Jx
∑

⟨ij⟩x
σ̂xi σ̂

x
j − Jy

∑

⟨ij⟩y
σ̂yi σ̂

y
j − Jz

∑

⟨ij⟩z
σ̂zi σ̂

z
j (3.9)

The Kitaev model is an exactly solvable model describing two types of quantum spin liquids
depending on the couplings. The system is either a gapped Z2 spin liquid with abelian
excitations or a spin liquid with gapless Majorana and gapped flux excitations. Here, we
consider the isotropic coupling Jx = Jy = Jz, which belongs to the latter category.

The Kitaev model is of special importance because there are few examples of excitations
of topological states that can be solved analytically. Utilizing the Majorana fermions repre-
sentation, one can obtain the ground state properties and the excitations’ properties. The
exact solutions for the Kitaev model provided by [188, 189] for infinite systems and [190]
for finite system serve as a challenging benchmark for numerical simulation of the DSF for
2D systems.
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We obtain the DSF by a similar procedure with isoTNSs as before and plot the result in
Fig. 3.7 8. We compare the data with the exact solution [188]. The DSF at the isotropic
gapless point is gapped due to the flux excitations and has a broad excitation continuum, as
seen in Fig. 3.7a. In Fig. 3.7b, the simulation reproduces the gapped excitation and broad
dispersiveless signal due to fractionalization, similar to the analytic result. In Fig. 3.7c, we
examine the Sxx(k = 0, ω) more closely, and confirm the excitation to be gapped. While
it is promising to see that we can qualitatively reproduce the result similar to the analytic
solution, we would like to point out that the result is still severely limited by the accuracy
from both DMRG2 and TEBD2 method. See Appendix A.3 for more details.
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Figure 3.7.: The total dynamical structure factor S(k, ω) =
∑

α S
αα(k, ω) for Kitaev hon-

eycomb model at the isotropic point in logarithmic color scale. (a) The exact
result obtained for infinite system size following [188]. (b) Our numerical result
obtained from the simulation of system size 11 × 11. For better comparison,
we perform smoothing by linear interpolation between discrete k-points. (c)
The dynamical structure factor at Γ point, i.e. Sxxk=0,ω.

3.4. Conclusion

IsoTNSs are the natural generalization of MPSs in the isometric form to higher dimensions.
The isoTNSs in higher dimensions embed an effective 1D sub-region resembling the MPSs,
where the known 1D algorithms can run efficiently within it. The MM is the method
to shift this 1D orthogonality region introduced in [75] and reviewed in Sec. 2.3. In this
work, we study the effect of different cost functions on the tripartite decomposition in
the MM. Despite noting a reduced truncation error when directly minimizing it within
the tripartite decomposition, the convergence outcome remains sensitive to the chosen
optimization method. Therefore, further refinement is necessary before we can use the
direct minimization of truncation error in practical application. We propose the DMRG2

algorithm for variational energy minimization with 2D isoTNSs. Combining with the
previously proposed TEBD2 algorithm, we demonstrate that one can efficiently simulate
the real-time evolution for 2D systems and compute the dynamical structure factors of the
TFI model on a square lattice and the Kitaev model on a honeycomb lattice.

The study of isoTNSs is related to quantum computation [155, 156]. Essentially, isoTNSs
are sequential and geometrically local circuit ansatz. IsoTNSs, in this perspective, are
states that could be directly prepared on quantum computers. The study of the properties,
e.g., variational power, of isoTNSs tells us the properties of the constant depth sequential
quantum circuit [169, 170] constructed by local gates of the size of bond dimensions.

8We perform DMRG2 to obtain the ground state and evolve the states by TEBD2 with dt = 0.2 to
total time t = 20.

43



Chapter 3. Efficient simulation of dynamics with two-dimensional isometric tensor
networks

Algorithms for isoTNSs can be viewed as classical simulation algorithms for quantum
circuits. The insight from the study of isoTNSs could potentially lead to new quantum
algorithms. As we see, MMs are approximate algorithms for changing the isometric pattern
in isoTNSs. In other words, they are approximate algorithms for re-ordering the quantum
gates in the circuit. They have potential applications in quantum state preparation and
quantum circuit compilation. One example is that applying MM iteratively on MPSs yields
1D quantum circuits. Additionally, it is shown that noisy quantum computers could be
simulated efficiently classically by MPS [87]. As a generalization of MPS, 2D isoTNSs
could possibly yield a better classical simulation algorithm for 2D quantum circuits.

The accuracy achieved by the isoTNSs algorithm could be improved by improving the
algorithms for shifting orthogonality hypersurface. A bottom-up approach would be to
develop better tripartite decomposition to directly target the truncation error and overcome
the difficulties in the optimization. Alternatively, one may consider the top-down approach
which optimizes the variational Moses move using different gradient-based optimization.
This global update approach may result in a better minimum than the current local update
approach in solving the alternating least square problem.

One promising application of isoTNSs would be to combine them with Monte Carlo
methods for studying ground states and time evolution. IsoTNSs fit in Monte Carlo meth-
ods because isoTNSs allow ancestral sampling along the direction of causality, i.e. reverse
direction of the arrows in the isometries. This requires only single layer TNSs contraction
which is shown can be contracted at a cheaper cost O(D6) [69, 70]. Samples from ancestral
sampling are independent and do not have the problem with the auto-correlation time as
in Markov chain Monte Carlo (MCMC) sampling. Therefore, it may be more efficient in
terms of the number of Monte Carlo sweeps and the number of samples NMC compared
with the approach using general TNSs [69, 70]. In this approach, there is no truncation
error since the orthogonality hypersurface is held fixed and it would serve as a good test
for the variational power of isoTNSs. Recently, a similar idea has been applied to general
TNSs with the combination of importance sampling [71].

44



4. Isometric tensor network states on an
infinite strip

Quantum phase transitions, strictly speaking, take place only in the thermodynamic limit.
While some analytic solutions provide insight directly at such limits, most numerical meth-
ods provide solutions for finite systems and are typically combined with finite-size scaling
analysis. Tensor network methods can provide another angle to approach the problem by
directly working at the thermodynamic limit with infinite translationally invariant tensor
networks [47, 66, 67, 138, 191] 1. For the tensor networks considered in this thesis, i.e.,
matrix-product state (MPS) and projected entangled pair states (PEPS) 2, the tensor net-
work representation of the infinite translationally invariant critical states is restricted by
the finite bond dimension, thus the finite entanglement, instead of the finite size. The
finite entanglement induces a length scale and, similar to finite-size scaling, the theory of
finite-entanglement scaling for MPS has been established [194–197]. Recently, efforts have
been put into developing a similar scaling theory for PEPSs [198–200]. It is a natural ques-
tion to ask whether we can also extend the study of 2D isoTNSs to the thermodynamic
limit. The first step to generalize the finite two-dimensional (2D) isometric tensor network
states (isoTNSs) to infinite translationally invariant systems is to consider translational
invariance in one direction. Thus, we are motivated to consider the tensor network on a
finite by infinite geometry with the open boundary condition, i.e., an infinite strip.

On a separate note, MPSs are often used to study quasi-2D systems with infinite lengths
and finite widths, such as an infinite strip (cylinder) when open (periodic) boundary con-
ditions are used for the finite dimension. Since an MPS is inherently a one-dimensional
(1D) ansatz targeting 1D area-law states, the complexity of such quasi-2D MPS simulation
grows exponentially with the width [201, 202], necessitating the extrapolation of results
from strips of modest width. To avoid this exponential scaling yet retain the benefits of
the isometric form to study quasi-2D systems, we are motivated to generalize the finite
isoTNS and the MM algorithm on a square lattice to infinite strip geometries.

This chapter is structured as follows. We consider the generalization of the finite isoTNS
on a square lattice to infinite strip geometries in Sec. 4.1 and extend the Moses move (MM)
algorithm to the thermodynamic limit in Sec. 4.2. This infinite Moses move (iMM) algo-
rithm splits a two-sided infinite matrix product state (iMPS) into an infinite isometric
tensor network operator (isoTNO) and a normalized iMPS, which are all translationally
invariant. In Sec. 4.2.1-Sec. 4.2.4, we propose and compare four different methods for solv-
ing the splitting problem: (i) repeated application of the finite, local MM algorithm; (ii-iii)
two iterative update methods optimizing over different objective functions; and (iv) a con-
jugate gradient optimization maximizing the overlap. We then benchmark the various iMM
algorithms in Sec. 4.3. In Sec. 4.4, we show that one can evaluate the expectation value of
physical observables, e.g., energy, efficiently by utilizing the iMM algorithm. We compare
the iMM approach to different methods for evaluating expectation value, including bound-
ary matrix-product operator (bMPO) contractions methods. As a highlight of applications
using iMM, we develop a generalized time-evolving block decimation (TEBD) algorithm,

1In the following, we refer to infinite translationally invariant tensor networks either as infinite tensor
networks or uniform tensor networks.

2Here we do not include the multi-scale entanglement renormalization ansatz (MERA) [192, 193] into
the discussion, which can extract the critical exponents directly due to its scale invariance structure.
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dubbed iTEBD2 algorithm, and investigate its performance via imaginary time evolution
for finding the ground state (GS) of the 2D transverse field Ising model in Sec. 4.5. We
end with the discussion and outlook in Sec. 4.6.

4.1. Isometric TNS on an infinite strip

In this section, we generalize the 2D finite isoTNS to infinite strip geometries. An isoTNS
on an infinite strip that is uniform along the infinite direction can be represented diagram-
matically as

|Ψ⟩ =

...

...

...

...

...

...

...

...

. (4.1)

The example is a 4 × ∞ isoTNS, where the tensors within a column are the same but
could be different for each column. Within the 1D orthogonality hypersurface (colored
light red), the orthogonality center (OC) can be placed anywhere within the column using
the standard uniform MPS methods [203]. In the networks we consider, we place the
OC at either y = ±∞ (given the upward pointing arrows, it is placed at positive ∞
in Eq. (4.1)) so that the network has uniform vertical isometry arrows for all columns.
Different from the finite case, here we work with an orthogonality “column”, instead of the
+-shape orthogonality hypersurface. We note that while we only consider a single-site unit
cell in this work, all algorithms presented can be extended to multi-site unit cells, allowing
for periodic inhomogeneity along the infinite direction.

While boundary indices for finite isoTNS are typically trivial, as in Eq. (2.17), in general,
the indices on the boundary can be non-trivial with dimension Db, as shown in the infinite
strip network Eq. (4.1). The boundary legs always carry incoming arrows as the OC is
contained within the network. When Db = 1, |Ψ⟩ is a pure quantum state. When Db > 1,
indicating non-trivial boundary indices, |Ψ⟩ can be viewed as a purification of the density
matrix of the physical sites. Typically for a bond-dimension χ strip isoTNS, we take
Db = χ 3.

3It can be shown [2] that having non-trivial boundaries makes optimization easier and ensures that the
orthogonality column, viewed as a two-sided MPS, is injective [35].
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4.2. Infinite Moses move

Recall the finite MM algorithm performs the following decomposition of the orthogonality
column as a two-sided MPS:

(i)

≈

(ii)

=

(iii)

≈

(iv)

≈ ... ≈

(v)

, (4.2)

where in the 2D isoTNS, the physical sites are grouped either with the left or the right
virtual index. The MM algorithm effectively “unzips" the original MPS into an isoTNO
and a new MPS. The starting point of the MM algorithm is an orthogonality column with
all vertical arrows pointing down, all horizontal arrows pointing in, and the bottom-most
site being the OC.

The core of the algorithm is the approximate local tripartite decomposition at each site
of the column:

≈
j

k i
. (4.3)

Due to the isometric form, this local decomposition is done in an orthonormal basis and is
a constrained optimization problem. For details of the tri-splitting algorithm in Eq. (4.3),
see [1, 75].

Similar to the case of finite isoTNS, we desire the ability to change the isometric structure
and move the orthogonality column of the infinite strip isoTNS network. This would allow
for the evaluation of correlation functions within the orthogonality column by 1D iMPS
methods and also ensures that optimization algorithms are done in an orthonormal basis.
The iMM algorithm solves the problem of splitting a normalized infinite two-sided MPS
|Ψ⟩ into an infinite isoTNO A and a normalized infinite two-sided MPS |Φ⟩:

ψ

ψ

ψ

ψ

...

...
|Ψ⟩

≈

a

a

a

a

...

...

ϕ

ϕ

ϕ

ϕ

...

...
A |Φ⟩

. (4.4)

Note that we group the physical leg with the right or left legs of the ψ tensor depending
on whether we want the physical leg to be on the a tensor or the ϕ tensor after splitting.
In cases where |ψ⟩ represents the horizontal contraction of two columns, we distribute one
physical leg to each of the left and right legs of ψ so that both a and ϕ will have a physical
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Chapter 4. Isometric tensor network states on an infinite strip

leg. For all iMM algorithms we present, we require the initial iMPS to have all vertical
arrows pointing down, all horizontal arrows incoming, and the OC to be at −∞. With
this, the iMM can again be viewed as unzipping the two-column iMPS into an isoTNO A
and a new iMPS |Φ⟩.

Formulating this as an optimization problem, one finds the optimal isometric tensor a′

and normalized MPS tensor ϕ′ by maximizing the overlap density between |Ψ⟩ and A|Φ⟩:
a′, ϕ′ = argmax

a,ϕ∈isometry
Reλ1(Tψ:aϕ) (4.5)

where Re λ1 denotes the real part of the largest eigenvalue of the mixed transfer matrix
Tψ:aϕ between |Ψ⟩ and A|Φ⟩:

T ≡ Tψ:aϕ = ψ a

ϕ
. (4.6)

As any iMPS can be written exactly in isometric form with the same bond dimension,
we directly search for isometric ϕ tensors. In the following, when no confusion arises, we
simply use T to denote this mixed transfer matrix. Note that maximizing Reλ1(T ) or
|λ1(T )| is equivalent for our purpose because of the unitary freedom of the isometries.

We now propose and evaluate four algorithms for solving the splitting problem posed
in Eq. (4.4): iMM-Local, iMM-Polar, iMM-MPO, and iMM-CG. We first give a brief overview
of these methods. iMM-Local is the direct generalization of the finite MM, in which the
local tripartite decomposition in Eq. (4.3) is iterated until convergence. The method is not
guaranteed to converge, but we find it quickly provides an approximate solution. Thus,
we use it as an initialization for the following optimization methods. The iMM-Polar
method minimizes the error of the fixed-point tripartite decomposition using repeated polar
decompositions. It is slower than iMM-Local and does not directly maximize the overlap
density Re λ1. However, we find it to be nearly optimal in practice. Finally, iMM-MPO and
iMM-CG maximize the overlap density Re λ1 through two different methods. The iMM-MPO
method finds the ϕ tensor by the variational MPO-MPS compression algorithm and the
a tensor by the polar decomposition over the linearized overlap. The method is slightly
slower than iMM-Polar and yields comparable results. The iMM-CG method is based on
the conjugate gradient ascent of the overlap density Re λ1. This method has difficulty
reaching a satisfying (local) minimum on its own and is best used to improve the results of
other methods. It is found that the most efficient strategy is to use iMM-Local to obtain
a stable initial guess and then use iMM-Polar to finish the infinite splitting optimization.
Using iMM-MPO or iMM-CG in the end is optional, as the improvements they provide after
iMM-Polar are very few. We include details of the four methods for completeness but do
not use iMM-MPO and iMM-CG beyond benchmarking.

4.2.1. iMM-Local

Given the input iMPS |Ψ⟩ made of tensors ψ as shown on the left in Eq. (4.4), one
performs the finite MM in Eq. (4.2) assuming that all the blue tensors above the OC equal
ψ. The first, normalized s1 is randomly generated such that the dimensions of the lower
two legs match that of the desired a and ϕ tensors; s1 plays the role of the initial zero-site
wavefunction. One then uses the tripartite decomposition in Eq. (4.3) to solve the following
problem for site n iteratively along the infinite direction:

ψ

sn

≈
an
k

ϕn

i
sn+1

j

l

. (4.7)
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This iteration terminates if ∥sn − sn+1∥ is smaller than a certain threshold or n exceeds a
certain iteration limit. One then takes A and |Φ⟩ to be composed, respectively, of the last
an and ϕn in the iteration.

For faster runtime and better convergence, we found it important to minimize Rényi-2
entropy in the tripartite splitting here. We suggest the interested reader check out the
details in previous works [1, 75] and describe the additional modification in the following.
The tripartite splitting has unitary gauge redundancies on the internal bonds i, j, and k.
To increase the chance that the MM iterations converge along the infinite direction, we
need to fix the gauge redundancies on bond k and i. We do not need to fix the redundancy
on bond j, because only S is used for the convergence criteria. To fix k and i, we do an
singular value decomposition (SVD) on matrix Sk:li = UsV †, which is formed by grouping
bond i and l as the column index, and replace S with sV †. We then do an SVD on matrix
Slk:i = UsV †, formed by grouping bond k and l, and replace S with Us. The two SVDs
almost fix the gauge redundancy except for the gauge freedom in the SVD itself: every
column of U from an SVD can be multiplied by a phase, as long as the corresponding row
of the V † is multiplied by the inverse of that phase. To fix this phase freedom, we view
Sl=0 as a matrix and demand its first column and first row to be all positive numbers.
This can be achieved by a unitary diagonal matrix on bond i and k independently. When
the singular values of Sk:li and Slk:i are not degenerate, these operations fix the gauge
freedom on bond i and k completely. Despite the gauge-fixing, iMM-Local still often fails
to converge. Thus, it is best used to provide an initial guess for the iMM-Polar algorithm
which is guaranteed to converge along the infinite direction.

4.2.2. iMM-Polar

To overcome the convergence issue of iMM-Local, we consider iMM-Polar to directly opti-
mize the approximate fixed point equation of the tripartite decomposition in Eq. (4.7). In
other words, we enforce translational invariance of the iMM by requiring sn = sn+1 = s
in Eq. (4.7) and optimize over s, a, and ϕ to make the equality close to exact. More
precisely, we maximize the real part of the overlap between the left and right-hand side of
the Eq. (4.7) under the constraints that ∥s∥ = 1, a is an isometry, and ϕ is a normalized
MPS tensor in isometric form 4:

F = Re ψ

s a ϕ

s
= Re s†Ts. (4.8)

We note here that the fitness function above is not the same as the one in Eq. (4.5), in
which the s tensor plays no role. iMM-Polar is thus not variationally optimal. This way
of solving Eq. (4.5) approximately is entirely motivated by the finite MM, and as shown
later, is very close to being variationally optimal.

Here we describe the steps of iMM-Polar which consists of maximizing Eq. (4.8) alter-
nately:

1. When s and a are fixed, one forms the environment Eϕ of ϕ in F such that F =

Tr(E†ϕϕ). Here ϕ is viewed as a matrix with its incoming and outgoing indices grouped
as the row and column index respectively. Eϕ is grouped as a matrix such that its row

4The reason to take the real part in Eq. (4.8) is that for any normalized states |x⟩ and |y⟩, ∥|x⟩−|y⟩∥2 =
2(1− Re⟨x|y⟩).
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and column index contract with the row and column index of ϕ respectively. Then
the optimal isometry ϕ′ maximizing F is given by the polar decomposition of Eϕ:
ϕ′ = argmax ϕ F = Uϕ where UϕPϕ = Eϕ is the polar decomposition of Eϕ [158].

2. When s and ϕ are fixed, one analogously find the optimal update a′ = argmax a F
through the polar decomposition of Ea.

3. When a and ϕ are fixed, F = Re s†Ts = s†
(
(T + T †)/2

)
s, and optimal s′ =

argmax s F is given by the leading eigenvector of the Hermitian matrix (T + T †)/2.

We repeat steps 1 to 3 to update ϕ, a, s many times until convergence is reached within
a threshold. Note that F is strictly increasing at each step. Like DMRG, this style
of alternate optimization is not convex, and a good initial guess, given by iMM-Local ,
can speed up the optimization greatly. Typically such an optimization results in local
extremum.

4.2.3. iMM-MPO

The iMM-MPO method maximizes the overlap density Re λ1 through alternatively updating
a and ϕ tensor until convergence. We describe the two alternative steps of iMM-MPO as
follows:

1. Given a, which determines a matrix product operator (MPO) A† acting on the state
|Ψ⟩, the optimal update of ϕ is determined by the variational MPO-MPS compression
algorithm developed for uniform (infinite) MPS [204]. The update for ϕ is optimal
since the compression algorithm maximizes the overlap density. We perform only
one update step in the MPO-MPS compression algorithm [204] instead of finding the
converged solution.

2. Given ϕ, we linearize the overlap Re ⟨Ψ|AΦ⟩, i.e., viewing each a tensor in |A⟩ as an
independent tensor, and find the update for a by the polar decomposition over the
environment of a tensor,

Ea =
ψ

L ϕ

R (4.9)

where LT (row vector) and R (column vector) are the left and right leading eigen-
vectors of mixed transfer matrix T .

We repeat steps 1 to 2 to update ϕ, a until convergence is reached within a threshold or
the overlap density Re λ1 starts increasing in the update for the a tensor. Note that the
update in step 2 usually, but is not guaranteed to, increase the overlap density. In fact,
it is related to a gradient ascent update [174, 205] on tensor a. We observe this update
is efficient in increasing the overlap at the initial stage but is slower in the final stage of
the convergence compared to a non-linear conjugate gradient update. Overall, this method
tends to give slightly more accurate results at the cost of slightly longer runtimes compared
to iMM-Polar.
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4.2.4. iMM-CG

An alternative way to maximize the overlap density Re λ1 is to perform non-linear conju-
gate gradient ascent on isometries a and ϕ. To respect the isometric constraint on A and Φ,
we parametrize the tensors as a = Uaa0 = exp(Xa)a0 and ϕ = Uϕϕ0 = exp(Xϕ)ϕ0, where
a0 and ϕ0 are any fixed isometries, Ua and Uϕ are unitary matrices acting on the incoming
legs of a and ϕ, respectively, and Xa and Xϕ are anti-Hermitian matrices. Assuming all
bonds to be dimension χ, Xa is a χ2 × χ2 matrix, while Xϕ is χ3 × χ3. The variational
space is now the vector space of the anti-Hermitian matrices Xa and Xϕ, and conjugate
gradient ascent can readily be applied.

Denote the fitness function as

O[Xa, Xϕ] ≡ Re λ1(T ) ≡ Re λ1(Tψ:a[Xa]ϕ[Xϕ]). (4.10)

The change in the objective due to dXa can be computed as

dO = ReLT · dT ·R = Re tTr(EXa , dXa) (4.11)
= tTr(ReEXa , dReXa)− tTr(ImEXa , dImXa)

where LT (row vector) and R (column vector) are the left and right leading eigenvectors
of T . We assume they are normalized so that LTR = 1. Above, tTr denotes tensor
contraction, and EXa is the environment of Xa in the tensor contraction:

EXa =
ψ

L a ϕ

R (4.12)

Note the implicit dependency of L and R on Xa in the current form give zero contribution
to the change in the objective [206].

The ascent direction for the maximization is thus given by the derivative:

∂O

∂ReXa
= ReEXa ,

∂O

∂ImXa
= −ImEXa (4.13)

Thus, the ascent direction of Xa is EXa
5. In fact, dO is manifestly positive if dXa = EXa ,

where the overline denotes complex conjugation. Note that the EXa computed in Eq. (4.12)
and the ascent direction EXa are generally not anti-Hermitian. Therefore, one needs to
anti-Hermitian-ize dXa so that the updatedXa is still anti-Hermitian. One can analogously
compute the ascent direction for Xϕ.

With these ingredients, the conjugate gradient ascent is done as follows.

1. At CG step k, compute EXa and EXϕ
and anti-Hermitian-ize them. We overload

notation and use EX to refer to the anti-Hermitian environments below.

2. Set the ascent direction, H, using the gradient and the ascent direction from the
previous step:

Ha(k) = EXa − βHa(k − 1)

Hϕ(k) = EXϕ
− βHϕ(k − 1)

(4.14)

where β is determined by a non-linear CG β-mixer, e.g. Polak-Ribiére.
5Here we treat the real and imaginary part of Xa as independent variables. An alternative way to

arrive at the same result is to treat Xa as complex-valued variables and the ascent direction is given by
dO/dXa = 1

2
R†(dT †/dXa)L = 1

2
EXa .
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Chapter 4. Isometric tensor network states on an infinite strip

3. Parametrize a(t) and ϕ(t) along the ascent direction: a(t) = exp(tHa)a and ϕ(t) =
exp(tHϕ)ϕ. Via the linesearch algorithm, look for tmax at which O(tmax) is maximized
along the t-curve. This needs the computation of dO(t)/dt:

dO(t)

dt
=Re tTr(EXa(t)

, Ha)

+ Re tTr(EXϕ(t)
, Hϕ)

(4.15)

4. Update a→ a(tmax) and ϕ→ ϕ(tmax) and k → k + 1.

This process is iterated until a and ϕ converge to within the desired threshold.

4.2.5. Error measures

Before presenting benchmarks and applications of the iMM, we first discuss error measures
for the splitting problem in Eq. (4.4). As before, let |Ψ⟩ be the input to the iMM, and A
and |Φ⟩ be the output. |Ψ⟩ and |Φ⟩ are always normalized. We consider the error of the
fidelity density,

ε ≡ 1− (Reλ1(T ))2 = 1− λ1(T )2, (4.16)

where we assume the iMM algorithm finds A and |Φ⟩ such that the dominant eigenvalue
of T is real 6.

It can be shown that ε is a sum of two errors (see Appendix B.1 for the derivation):

ε = εp + εt +O(ε2p, ε
2
t , εpεt) (4.18)

where

εp ≡ 1− λ1(TA†Ψ:A†Ψ),

εt ≡ 1−
(
λ1(TÃ†Ψ:Φ

)
)2
. (4.19)

Here Ã†|Ψ⟩ = A†|Ψ⟩/∥A†|Ψ⟩∥ is normalized. εp measures the norm that A†|Ψ⟩ loses due

to the projection and εt measures the truncation error due to approximating Ã†|Ψ⟩ with
the MPS |Φ⟩.

In practice, these errors guide the choice of internal bond dimensions of the iMM. Let
us denote the bond dimensions of the iMM as the following:

ψ

χ0

χ0

χℓ χr

|Ψ⟩

≈ a ϕ

χv

χv

η

η

χℓ χr
χh

A |Φ⟩

. (4.20)

Assuming the non-convex optimization in the iMM is successful, increasing η decreases
εt, and increasing χv and χh decreases εp. Perhaps less obvious is that increasing χv

6To motivate this definition, let us consider the example of splitting a finite and uniform system of size
L, as in Eq. (4.2). The error of the splitting is given by

∥|Ψ⟩ −A|Φ⟩∥2 =2− 2Re⟨Ψ|A|Φ⟩
≈ 2− 2(

√
1− ε)L ≈ εL.

(4.17)

Thus, ε is the intensive error density.
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and χh can also decrease εt, because A, in addition to being a projector, also serves as a
disentangler of Ψ 7. That is, if A is well-chosen, Ã†|Ψ⟩ will have less entanglement entropy
than Ψ, and, when truncated to an MPS with smaller bond dimension, will have less
truncation error compared to directly truncating |Ψ⟩. Implicitly in iMM, when minimizing
ε, the optimization reaches a balance between the projecting (εp) and the disentangling
(εt) role of A so that their collective effect minimizes ε. The disentangling effect of A will
be reflected in |Φ⟩ having less entanglement entropy than |Ψ⟩.

The above discussion would appear to indicate that, as long as the computational cost
is affordable, the internal bond dimensions should be as large as possible to reduce ε. In
regular iMPS compression algorithms, one can set the bond dimension of the trial state to
be as large as desired, and the only side-effect is that the code will run for longer. This
is indeed the case for η, as it is just the bond dimension of the new MPS |Φ⟩. For χh,
we have to choose χh ≤ χℓ in order for A to be an isometry (see Eq. (4.20)). However,
special care must be taken in choosing the bond dimension χv to ensure the injectivity of
the state. One way to ensure this is by choosing χℓ > χh

8 – this motivates the choice of
the boundary bond dimension Db to be greater than 1.

4.3. iMM benchmarks

Having introduced algorithms for performing the iMM splitting procedure depicted in
Eq. (4.4) and decomposed the resulting error as the sum of truncation and projection error
terms, we now perform several experiments. The first is to compare the four different iMM
algorithms introduced in Sec. 4.2 and various combinations of these algorithms. From this,
we conclude that the combination of iMM-Local and iMM-Polar produces accurate results
without the significant computational cost, and we use this combination for all future
experiments. Then, we repeatedly apply iMM to a strip isoTNS, sweeping back and forth,
and find that the accumulated error saturates after about 20 iterations.

In this section and those that follow, we consider the 2D transverse field Ising (TFI)
model,

H = −
∑

⟨i,j⟩
ZiZj − g

∑

i

Xi, (4.21)

to benchmark the performance of the iMM algorithms and the iTEBD2 algorithm. Unless
otherwise noted, we choose g = 3.5 to be in the paramagnetic phase. The critical coupling
for this model, obtained via cluster Monte Carlo simulations, in the thermodynamic limit
in both directions is g2DC ≈ 3.04438 [185], while the critical coupling with infinite density
matrix renormalization group (iDMRG) calculation on infinite cylinders increases from
g1DC = 1 towards g2DC with width [207].

4.3.1. Benchmark for a single run of iMM

We begin by investigating the performance of the iMM algorithms introduced earlier. The
input state is the ground state of the 2D TFI model on an infinite strip of width Lx = 4
obtained from iDMRG with bond dimension χ = 128. The input tensor for the algorithm
is obtained by contracting the four iMPS tensors in the unit cell (one row) to one iMPS
tensor with 4 physical legs, each of dimension d = 2. We then group the two physical legs
corresponding to the left two sites in the row into the left leg and the remaining two legs

7The hint is given in the tripartite decomposition, where tensors in column A act as a disentangler to
the physical wavefunction Ψ.

8This is due to the structure theorem derived in [2] and the counting of the bond dimensions.
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Chapter 4. Isometric tensor network states on an infinite strip

into the right leg of the two-sided iMPS. The splitting problem is defined diagrammatically
below.

ψ

128

128

4 4

|Ψ⟩

≈ a ϕ

2

2

10

10

4 4
2

A |Φ⟩

(4.22)

This splitting problem involves both projection and truncation, as χh < χℓ.
We compare all four iMM algorithms discussed above and various combinations of them.

We report errors and the runtimes on a standard workstation, averaged over five runs, in
Table 4.1. In this discussion, we use the shorthand notation L to represent iMM-Local , P
for iMM-Polar , M for iMM-MPO , and C for iMM-CG for convenience.

iMM method εp εt time (s)
L 1.8e-03 ± 1.0e-06 3.4e-05 ± 8.2e-06 0.7 ± 0.01
P 1.3e-03 ± 1.4e-03 2.3e-05 ± 4.4e-06 38 ± 15
M 1.0e-02 ± 6.7e-03 1.4e-03 ± 1.7e-03 12 ± 21
C 2.2e-01 ± 2.6e-01 3.7e-01 ± 3.6e-01 21 ± 10
LP 6.2e-04 ± 1.9e-08 2.6e-05 ± 1.8e-08 11 ± 0.1
LM 5.0e-04 ± 2.0e-10 9.4e-06 ± 5.7e-10 62 ± 0.6
LC 5.0e-04 ± 1.2e-07 4.2e-05 ± 1.1e-06 29 ± 1.9
LPM 4.6e-04 ± 2.0e-08 5.8e-07 ± 8.8e-11 12 ± 0.05
LPC 4.6e-04 ± 4.2e-06 5.2e-06 ± 2.6e-07 19 ± 1.4
LMC 5.0e-04 ± 2.1e-11 9.3e-06 ± 2.1e-11 72 ± 0.4
LPMC 4.5e-04 ± 3.7e-10 2.4e-07 ± 1.0e-10 20 ± 0.07

Table 4.1.: Projection and truncation errors as defined in Eq. (4.19) in Sec. 4.3.1 and run-
times for different iMM methods applied to the splitting problem in Eq. (4.22).
Results from five different runs are average to give the standard deviations.
We conclude that the combination of iMM-Local and iMM-Polar provides an
accurate result without incurring a large computational cost.

We find that L is indeed the fastest but does not achieve the accuracy of other standalone
methods. However, even though this method is not guaranteed to converge, the gauge
fixing procedure reduces variance, indicating that this method can be used to provide a
stable starting point for other methods. Seeding methods P and M with the a and ϕ tensors
provided by L, yielding methods LP and LM, decreases the error and standard deviation,
while also for LP significantly reducing the runtime, compared to P and M alone. Further
improving the results with C is possible, but the improvements are not significant yet have
added computational cost. Thus for all future experiments, we use LP.

Additionally, empirically we find that when χv is large, it is best to use L to produce
starting solutions with a smaller vertical bond dimension, say χ′v = 4, and then isometri-
cally expand the vertical dimensions of the a tensor gradually. At each intermediate bond
dimension between χ′v and χv, we use P to improve the result. We then expand the isomet-
ric tensor a by viewing it as a matrix by grouping the incoming legs into a row index and
the outgoing legs into a column index. The incoming row index can be increased by zero
padding, while the outgoing leg must be increased by adding orthogonal columns. Such
a gradual iMM procedure improves the stability and performance of the splitting as χv
grows.
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4.3. iMM benchmarks

Figure 4.1.: Error between original isoTNS |Ψ(0)⟩ and isoTNS |Ψ(n)⟩ produced by repeated
n iMM sweeps. |Ψ(0)⟩ is an isoTNS with Lx = 6, χinit = 2, Db = 1 describing
the ground state of the 2D TFI model.

4.3.2. Repeated application of iMM to an isoTNS

The iMM algorithm performs the splitting in Eq. (4.4) approximately, and so, unlike
moving the OC by QR decomposition in 1D MPS, iMM will not exactly preserve the
state. Thus it is important to quantify how repeated applications of iMM affect an isoTNS
and perturb it away from the starting state. Here we consider specifically the case where
the starting state is an approximate ground state of the 2D TFI model on an Lx = 6 strip
represented by an isoTNS. We measure the deviation of the state after consecutive iMM
from the original state.

Suppose that the current (after n− 1 iterations) isoTNS |Ψ(n−1)⟩ has its orthogonality
column |Ψ(n−1)

1 ⟩ as the leftmost column of the strip; we then write the tensor network as
|Ψ(n−1)⟩ = |Ψ(n−1)

1 ⟩B(n−1)
2 . . . B

(n−1)
Lx

, where B denotes an isoTNO with horizontal isom-
etry arrows pointing left. We fuse the columns |Ψ(n−1)

1 ⟩ and B
(n−1)
2 to form a doubled

column |Ψ(n)
1,2 ⟩ with two physical sites per tensor; we split this doubled orthogonality col-

umn using iMM into the isoTNO A
(n)
1 with rightward pointing isometry arrows and the

new orthogonality column |Ψ(n)
2 ⟩, with each column having a physical index. We perform

this procedure of merging and splitting two columns a total of Lx − 1 times, moving the
orthogonality column entirely to the right of the strip. This completes one sweep and
produces a new isoTNS |Ψ(n)⟩ = A

(n)
1 . . . A

(n)
Lx−1|Ψ

(n)
Lx
⟩. We can now repeat the process

moving to the left (or in practice horizontally mirroring the isoTNS and again moving to
the right) to produce |Ψ(n+1)⟩. We measure the error of fidelity density as in Eq. (4.16),
where the transfer matrix T is formed by one row of the original state |Ψ(0)⟩ and the state
at n-iteration |Ψ(n)⟩.

The results of this procedure for an Lx = 6, χinit = 2 isoTNS is shown in Fig. 4.1. This
isoTNS represents the ground state of the 2D TFI model. We choose bond dimensions in
the iMM splitting to be χ = χv = χh and η = 24. After each sweep, the maximum bond
dimension in |Ψn⟩ is χ. Some bonds will have values smaller than χ so that the isometric
conditions on each tensor are satisfied. We find that for each of the bond dimensions used
in the iMM and thus the bond dimensions of the resulting isoTNS, the accumulated error
saturates after 20 sweeps. Additionally, we find that increasing χ decreases the error as
expected, as the iMMs in the sweep can be done more accurately and thus have a less
corrupting effect on the state.
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Chapter 4. Isometric tensor network states on an infinite strip

4.4. Evaluation of local observables: Energy as an example

(a)

=

(b)

⟨h1,2⟩ =

Figure 4.2.: bMPO energy evaluation. (a) boundary MPO representing the fixed point
of the isoTNS transfer matrix. Lx × ∞ strip is oriented so that the infinite
direction is vertical. Horizontal arrows are omitted for clarity. The fixed point
only needs to be found against the direction of vertical arrows, as the fixed
point in the direction of arrows is the identity. (b) Evaluation of ⟨h1,2 using
bMPO fixed point and trivial fixed point. The energy of a row is found by∑

c⟨hc,c+1⟩.

The evaluation of expectation values of local observables is crucial and non-trivial for
2D finite and infinite TNS. As the second application of the iMM algorithm, we show
that, up to some small error density, we can efficiently evaluate the expectation of local
observables of the given strip isoTNS using iMM. We benchmark the result by comparing
it to results obtained by approximate PEPS contractions using boundary MPO (bMPO)
approach [124, 149] and the exact contraction by collapsing the state into iMPS. Here, we
consider the evaluation of energy as an example, but the method can be applied to the
evaluation of other local observables.

4.4.1. Energy evaluated by iMM

Suppose we wish to evaluate the energy of a state given a Hamiltonian H =
∑

cHc,c+1

where Hc,c+1 acting on columns c and c+1 is composed of a translationally invariant local
operator hc,c+1. The expectation value of Hc,c+1 can be found by evaluating the energy of
each local operator hc,c+1 with an isoTNS with doubled column c, c+1 as the orthogonality
column. This is because calculating expectation values of operators contained entirely in
the orthogonality column reduces to an efficient 1D iMPS problem. If we could move the
orthogonality column freely around the strip in an exact fashion, this would give us an
exact method for evaluating the energy. However, as moving the orthogonality column
requires the iMM, this method inherently incurs an approximation error on the order of
the iMM errors. As demonstrated in Sec. 4.3.2, the state represented by an isoTNS is
not significantly affected by iMM applications, where the individual errors of each iMM
application were presented in Table 4.1. Thus we can perform a full sweep of iMM iterations
over the entire strip and use the two-site orthogonality center of each doubled column to
evaluate the expectation value of hc,c+1. Doing this for each two-column term gives us
the energy of one row, ⟨Erow⟩ =

∑
c⟨hc,c+1⟩, which can be converted to per-site energy by

dividing by strip width.
Note that the maximum bond dimension χ′ = χ′h = χ′v, and η′ of the iMM used to

calculate observables do not need to be the same as χ and η, that of the original isoTNS.
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4.4. Evaluation of local observables: Energy as an example

The accuracy of calculated observables increases as we increase χ′, as this improves the ac-
curacy of iMM. This method for calculating observables scales linearly with the strip width
and requires Lx − 1 applications of iMM, which as stated previously has a computational
cost of O(χ′4η′3).

4.4.2. Energy evaluated by boundary MPO

To check the energy evaluation from the iMM independently, we compute the energy of
an isoTNS strip without using the iMM. To do this, we consider the isoTNS row transfer
matrix and find its fixed point. We can compute local observables efficiently given the fixed
points of the row transfer matrix. However, as the dimension of the transfer matrix grows
exponentially in the width Lx, we approximate the fixed point “vector” by the boundary
MPO (bMPO) [60] as depicted in Fig. 4.2(a). Note that the strip is oriented such that
the infinite direction is vertical. Combining the bMPO contraction methods developed for
finite TNS [60, 64, 149] and the power method, we find the dominant eigenvector of the
transfer matrix represented by a bMPO with bond dimension DbMPO.

We only have to converge the fixed point against the direction of the vertical isometric
arrows (from the top down in Fig. 4.2(b)). This is because the fixed point along the
direction of the arrows is, by definition, an identity operator over each column. The non-
trivial fixed point against the isometric arrow direction admits a spectral decomposition
UρU †, where ρ is diagonal and positive definite, encoding the square of the Schmidt values.
However, we do not utilize this property but use a bMPO directly to parameterize the fixed
point vector. With this bMPO representing the fixed point of the isoTNS row transfer
matrix, we calculate the energy of a row by evaluating ⟨∑c hc,c+1⟩ =

∑
c⟨hc,c+1⟩. This is

done by contracting the network shown in Fig. 4.2(b) for each two-column local operator
hc,c+1, shown here to act on two neighboring rows.

This method can be made arbitrarily accurate by increasing the bond dimension DbMPO,
but we note that this method is very costly as strip width Lx and the bond dimension χ of
the isoTNS grows. Calculating the fixed point scales asO

(
NiterLx(χ

4D3
bMPO + dχ6D2

bMPO)
)
,

where d is the local Hilbert space dimension and χ is the dimension of all virtual legs in the
isoTNS. Typically DbMPO ∼ χ2, so this method scales as O(χ10). The Niter is the number
of the transfer matrix-vector multiplications required for convergence which is related to
the gap in the transfer matrix.

4.4.3. Energy benchmarks

The exact but most computationally intensive O(exp(Lx)) method is to find the exact fixed
point and perform an exact contraction. To this end, we collapse each row of an isoTNS
to form an iMPS with physical dimension dLx , representing Lx physical sites per tensor.
Then, standard MPS methods can be used to find the exact fixed point and evaluate the
energy. We use this essentially exact method only to benchmark the previous two methods.

The benchmark result is shown in Fig. 4.3. We apply both methods to a Lx = 8, χ = 4
isoTNS representing 2D TFI ground state. We find that the bMPO method is essentially
exact for large enough DbMPO, while the accuracy of the iMM energy increases with both
χ′ and η′, as the splitting can be done more accurately with the larger space of available
tensors. From this, we note that the iMM energy tends to underestimate the true energy;
yet for large strip widths and large χ, other methods are infeasible due to computational
costs.
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Chapter 4. Isometric tensor network states on an infinite strip
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Figure 4.3.: The energy of the Lx = 8, χ = 4 isoTNS produced by peeling evaluated with
the iMM and bMPO methods. We compare the energies to the exact energy
evaluated by exact iMPS contraction. The energy from the bMPO method is
close to exact for large DbMPO but is very costly as DbMPO grows due to the
complexity of finding the fixed point. The accuracy of iMM energy increases
with both η′ and χ′ used in iMM. In the figure, we use f ≡ η′/χ′.

4.5. iTEBD2

We now introduce the TEBD-based time evolution algorithm for infinite strip isoTNS,
dubbed iTEBD2. We then demonstrate the algorithm by performing imaginary time evo-
lution to find the ground states of the two-dimensional transverse field Ising model.

(a)

...

...

...

...

=

...

...

iTEBD
...

...

iMM
...

...

...

...

(b)

...

...

...

...

...

...

|Ψ(t)⟩ =

iTEBD + iMM

e−idtH1,2

→

...

...

...

...

...

...

iTEBD + iMM

e−idtH2,3

→

...

...

...

...

...

...

= |Ψ(t+ dt)⟩

Figure 4.4.: iTEBD2 Algorithm. (a) Subroutine acting on two columns, the left of which
is the orthogonality column. First, the two columns are fused. 1D iTEBD
is applied to the physical legs (colored red) of the double column using gates
e−idthc,c+1 , acting on a plaquette of four physical sites; note that the gate does
not act on any virtual legs. iMM is then applied to split the doubled column
and move the orthogonality center to the right. (b) The iTEBD2 algorithm
involves Lx − 1 iterations of the subroutines described in (a) to implement
a total Trotterized time evolution step of dt. Subsequent iTEBD2 sweeps
alternate sweep directions, left-to-right and vice-versa.

4.5.1. iTEBD2 algorithm

TEBD-like algorithms perform time evolution by approximating it as successive local time
evolutions via the Suzuki-Trotter decomposition of a Hamiltonian, i.e., the sum of local
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4.5. iTEBD2

terms.
|Ψ(t+ dt)⟩ = e−iHdt|Ψ(t)⟩ ≈

∏

j

e−ihjdt|Ψ(t)⟩. (4.23)

After each local time evolution operation e−ihjdt, we find the closest state within the ansatz
manifold to represent the time-evolved state. This general approach leads to tensor network
implementations as the TEBD algorithm for finite MPS [48, 49], the iTEBD algorithm for
iMPS [191, 208], the TEBD2 algorithm for 2D isoTNS [75], and the simple and full update
for TNS time evolution [65, 120, 209]. Here we focus on the application of iTEBD2 to strip
isoTNS.

For a width Lx strip, we write the Hamiltonian as

H =

Lx−1∑

c=1

Hc,c+1, (4.24)

where each Hc,c+1 is the infinite collection of local operators acting on columns c and c+1.
Each infinite two-column operator is the sum of local terms, and we will assume the form

Hc,c+1 =
∑

i

hi,i+1
c,c+1, (4.25)

which acts on a plaquette of four spins on columns c and c+ 1 and rows i and i+ 1. We
work with models where the local term hi,i+1

c,c+1 is translationally invariant in the vertical
direction, so we will drop the row superscripts.

To perform time evolution, we Trotterize the full Hamiltonian according to

e−idtH = e−iH1,2dte−iH2,3dt . . . e−iHLx−1,Lxdt (4.26)

which is a first-order splitting of the column operatorsHc,c+1. We then perform a first-order
splitting of the individual plaquette terms hc,c+1 within the column operators. The iTEBD2

algorithm on an infinite strip using a Hamiltonian of this form is depicted graphically in
Fig. 4.4. Our initial isoTNS has the orthogonality column with arrows pointing up as
the left-most column. As shown in Fig. 4.4(a), we first merge columns 1 and 2 to form
a doubled column with two physical sites per tensor. We then apply the time evolution
operator e−idtH1,2/2 ≈∏

e−idth1,2/2 to only the physical legs of the doubled column, which
flips the isometric arrows to point down. We note that we do not use the standard iTEBD
algorithm that enforces at least a two-site unit cell along the column [191], as we do not
wish to have a non-trivial unit cell. Instead, we simply apply the two-site gates and do
SVD truncation with gauge-fixing to sweep downward until convergence. Following this
1D iTEBD on a doubled column, we apply the chosen iMM algorithm to split this doubled
column into an isoTNO A1 and a new orthogonality column |Φ2⟩, both of which have
isometry arrows pointing up and a single physical leg. We can now repeat this process
with columns 2 and 3. Proceeding in this way from left (right) to right (left) on odd (even)
iterations of iTEBD2, we perform one-time evolution step dt using Lx − 1 applications of
the iMM and 1D iTEBD; this procedure is summarized in Fig. 4.4(b).

Both of these subroutines utilize deterministic SVDs and have complexity O(χ4η3) 9,
where we assume that χh = χv = χ, and allow the bond dimension η along the orthogo-
nality column to be different from χ. Hence we see that increasing the strip width incurs
a linear increase in the cost of algorithms for systems obeying area law, compared to an
exponential increase in costs for 1D algorithms applied to 2D strips.

9After merging two columns, the merged column would have bond dimension ηχ. Optionally, com-
pression can be performed after merging two columns and before the iTEBD. In this work, we compress
the bond dimension from ηχ down to η before performing the iTEBD. If a compression to bond dimension
η is performed before the iTEBD, the complexity is O(χ4η3); otherwise, the complexity is slightly higher,
O(χ5η3). In practice, we observe a slight deterioration in the result with compression. But we can obtain
better results overall by using larger bond dimensions within the same run-time.
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4.5.2. Ground state search
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Figure 4.5.: Ground state energies achieved with iTEBD2 for paramagnetic 2D TFI with
g = 3.50 on an Lx = 4, 8, and 20 strip. We compare the isoTNS energies
against essentially exact energies from QMC extrapolated from strips of finite
length. As a comparison, the dashed line is the result of an iDMRG calculation
with bond dimension χ = 512. For Lx = 4, the iDMRG result is below the
bottom axis of the plot.

With the iTEBD2 algorithm, we can perform imaginary time evolution to find the ground
state of Hamiltonian starting from an initial state |Ψ0⟩:

|ΨGS⟩ = lim
τ→∞

e−τH |Ψ0⟩
∥e−τH |Ψ0⟩∥

. (4.27)

We benchmark the algorithm with 2D TFI model on strips of width Lx = 4, 8, 20 using
isoTNS of bond dimensions χ = 4, 8 withDb = χ. We investigate a range of f ≡ η/χ values,
where again f controls the bond dimension of the intermediate |Φ⟩ columns produced by
iMM during the iTEBD2 sweeps. As an essentially exact benchmark, we compute the
energy via QMC with the ALPS library [210] on strips of both finite width and length;
we find the energy of strips of increasing length and extrapolate to infinite strips. The
results are presented in Fig. 4.5. Here, the energy of each isoTNS is calculated by the
iMM method discussed in Sec. 4.4.1, using χ = 10 and f = 4 to give an accurate energy
estimate.

If iMM were exact, then the energy would decrease monotonically with time step dτ .
Yet we clearly see that there exists an energy minimum at intermediate dτ . There are
competing effects between less Trotter error from a smaller time step but then more error
accumulated from an increased number of iTEBD and iMM iterations [1, 75]. Additionally,
the largest f does not provide the lowest energy, as one would naively suspect. Larger f
leads to increased vertical bond dimensions during the sweep, leading to larger truncation
errors during the iTEBD on the doubled column.

4.6. Conclusions

In this work, we have extended isometric tensor networks on a square lattice to infinite strip
geometries and introduced algorithms to both manipulate and time-evolve the ansatz. We
introduced four different iMM algorithms and found the combination of iMM-Local and
iMM-Polar to be efficient and stable. The isoTNOs produced by iMM have a signifi-
cant disentangling effect on a two-sided MPS. We demonstrated two different applications
based on iMM algorithms: (i) the evaluation of local observables and (ii) the iTEBD2
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4.6. Conclusions

algorithm, which enables ground state optimization via imaginary time evolution. These
results demonstrate that the isoTNS is a 2D network ansatz permitting both efficient opti-
mization and calculations, and we expect the benefits of this method to become apparent
as strip width increases beyond the reach of 1D methods.

We conclude by commenting on interesting applications of our work. Of foremost interest
is the extension of our methods to the simulation of strongly correlated many-body systems
that are infinite in both directions. Having now dealt with infinite columns through the
methods we’ve introduced, a remaining challenge is to find a fixed point solution to the
splitting problem AΨ = ΨB, where A (B) is an infinite isometric column with horizontal
arrows pointing right (left) and Ψ is an infinite orthogonality column. While this is solved
in 1D by iterative gauge-fixed QR decompositions, the iMM algorithms, as currently for-
mulated, do not fix the gauge on the horizontal legs, so there is no a priori reason that
repeatedly applying the algorithm will converge. Additionally, many interesting physical
systems display spontaneous translational symmetry breaking. While in our current pre-
scription, the tensors in a row can differ from one another, each row is repeated along the
vertical direction. To allow for a non-trivial unit cell in the infinite direction, we must
generalize the iMM methods discussed in Sec. 4.2 to multi-site unit cells. Such modi-
fications are simple extensions of the iMM algorithms introduced earlier. We leave the
generalization of iMM to infinite width and exploration of non-trivial unit cells as future
works.

A second application is motivated by using tensor networks as sequential circuits on
quantum computers [169, 170, 211]. This relies on the isometric condition so that ten-
sors can be interpreted as unitaries acting on qubits and that there is a unidirectional
flow of time opposite to the isometry directions. The isometric tensor of bond dimension
χ would translate into a gate acting across logχ qubits. To construct the circuits that
could run on quantum computers, we have to further decompose such “dense” unitaries
into quantum circuits consisting of two-site gate [212], resulting in the so-called quan-
tum circuit tensor network. Quantum circuits of finite 2D isoTNS [155, 156] and infinite
1D isoTNS [5, 213, 214] have been numerically and analytically explored for this pur-
pose 10. With the abovementioned changes, the infinite strip networks developed here can
be prepared on a quantum computer, allowing for the calculation of expectation values
by directly measuring the state without expensive and approximate boundary contraction
methods. Additionally, the finite MM algorithm was recently used to prepare isometric cir-
cuits encoding entanglement renormalization principles to accurately measure long-range
correlations in critical quantum chains [215]. The iMM algorithm developed here can be
used to extend this work to the thermodynamic limit.

10We explore the quantum algorithm inspired by infinite 1D isoTNSs in Chapter 8.
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5. Scaling of neural network quantum
states for time evolution

Hope is not a strategy.

Anonymous

In the past few chapters, we have discussed tensor network methods for simulating
ground states and dynamics of quantum many-body systems. The tpyical limit of expo-
nential growth of the many-body Hilbert space is circumvented [30–34], and instead, the
simulation is limited by the entanglement. For example, ground states of one-dimensional
(1D) local gapped Hamiltonians [47] satisfy the entanglement area-law [37, 39] and can
thus be efficiently simulated. However, the application of matrix-product state (MPS) to
study 1D non-equilibrium dynamics [48–53] is strongly limited by the fast growth of en-
tanglement. In particular, the entanglement generically grows linearly and hence leads to
an exponential growth of the required parameters.

A promising new numerical approach to simulate the dynamics of many-body systems is
based on a representation of quantum states using artificial neural networks (ANNs) [76].
Recent works have shown not only promising results for simulating non-equilibrium dy-
namics [77] but also in describing two-dimensional (2D) critical ground states [78] and
states with chiral topological order [79]. Notably, states based on ANNs can efficiently
encode volume law entanglement [80, 81] and are thus, per se, not limited by the entangle-
ment growth in non-equilibrium systems. It remains an open question of what limits the
representation based on ANNs and how the number of parameters generically scales.

In this Chapter, we benchmark the variational power of a number of different ANNs
approaches to simulate quench dynamics in 1D and compare them to MPS-based approx-
imations. We find numerical evidence that states based on ANNs can describe quantum
many-body states under quenched time evolution of local Hamiltonian with a number
of parameters that grow exponentially in time – which, in fact, resembles the scaling of
MPS-based simulations.

The outline of this chapter is as follows: We first describe the variational wavefunc-
tions based on ANNs and the variational method to approximate quantum states using
supervised learning in Sec. 5.1. To study the time scales accessible by different variational
wavefunctions, we variationally optimize wavefunctions to approximate the exact time evo-
lution in Section 5.2. In Section 5.3, we conclude by discussing the implication of numerical
algorithms and possible future directions.

5.1. Methods

In this section, we review variational wavefunctions based on general neural networks and
autoregressive neural networks. Moreover, we introduce a novel cost function to approxi-
mate complex-valued quantum states with autoregressive neural networks in the supervised
learning framework [82, 216].
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5.1.1. Neural-network quantum states

A pure quantum state |Ψ⟩ describing a quantum many-body system in the Hilbert space
H = ⊗Ni Hi can be represented as

|Ψ⟩ =
∑

σ1,σ2··· ,σN
Ψσ1σ2···σN |σ1⟩ ⊗ |σ2⟩ ⊗ · · · ⊗ |σN ⟩,

where {Hi} and |σi⟩ are the local Hilbert spaces and the corresponding local basis states,
respectively. The exact representation Ψσ1σ2···σN requires a number of parameters that
grow exponentially with the system size N . Neural-network quantum states (NQSs) [76]
are variational wavefunctions that approximate the amplitudes by neural networks f with
a polynomial number of parameters poly(N),

Ψσ1σ2···σN ≈ f(σ1, σ2, · · · , σN ;w) := ΨNN
σ1σ2···σN , (5.1)

where w denotes the parameters. One of the motivations to consider neural networks
is the universal approximation theorem [217–221], which guarantees an arbitrarily close
approximation of the given function provided a sufficiently large number of hidden neurons
is included (a review of neural networks can be found in Appendix C.1). Various different
types of neural networks have been considered for approximating quantum states, including
restricted Boltzmann machines (RBMs) [222, 223] in Ref. 76, fully-connected feed-forward
neural networks (NNs) in Ref. 224, convolutional neural networks (CNNs) in Ref. 225, and
recurrent neural networks (RNNs) [226, 227] in Refs. 228, 229. NQSs found applications in
studying ground states and low-energy states [230–234], quantum state tomography [235],
simulating open quantum systems [229, 236–240], and real-time evolution [76, 77, 241–244].

In general, NQSs have the following properties: The unnormalized probability amplitude
and its gradient ∇wΨ

NN can be efficiently evaluated at a cost of O(N2). This property
allows one to combine NQSs with conventional Monte Carlo methods. For example, the
expectation value of few-body observables Ô can be computed as

⟨ΨNN |Ô|ΨNN ⟩
⟨ΨNN |ΨNN ⟩ =

∑

σ

|ΨNN (σ)|2
⟨ΨNN |ΨNN ⟩Olocal(σ), (5.2)

where Olocal(σ) =
∑

σ′⟨σ|Ô|σ′⟩ΨNN (σ′)/ΨNN (σ). This expectation value can be esti-
mated using Markov chain Monte Carlo (MCMC) sampling from the normalized proba-
bility PΨNN (σ) = |ΨNN (σ)|2

⟨ΨNN |ΨNN ⟩ . One can then minimize the energy expectation value by
stochastic gradient descent (SGD) method. This method is also known as variational
Monte Carlo (VMC) [245–248] and is often combined with the second-order optimization
method, stochastic reconfiguration (SR) [248–250], a.k.a. imaginary time-dependent vari-
ational principle or natural gradient descent [251]. While being a versatile method, the
NQS-based method has potential drawbacks, including the intractable normalization and
the long auto-correlation time in MCMC, which can lead to difficulties in training large
deep neural networks.

5.1.2. Neural autoregressive quantum states

A proposed solution to resolve the potential drawbacks mentioned above is the neural au-
toregressive quantum states (NAQSs) [78, 228, 229, 252]. NAQSs are NQSs with causal
restrictions in the connectivity of the networks. Concretely, NAQSs approximate the con-
ditional probability amplitudes of a given ordering of sites {1, . . . , N} by a neural network,

Ψσ1σ2···σN = Ψσ1Ψσ2|σ1 · · ·ΨσN |σ1···σN−1
(5.3)

≈ f [1]NN(σ1)f
[2]
NN(σ2|σ1) · · · f

[N ]
NN(σN |σ1 · · ·σN−1) (5.4)
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where the network has N outputs. Each output represents a conditional probability am-
plitude on each site Ψj := Ψσj |σi<j

. The fact that Ψj can only depend on σi<j leads to a
causal structure. Since every single site conditional probability amplitude Ψj can be easily
normalized, the multiplication of them gives a normalized variational quantum state (see
Fig. 5.1).

As a subclass of NQSs, NAQSs share the same properties of NQSs where one can ef-
ficiently evaluate the probability amplitudes and the gradients. Furthermore, a NAQS
represents an autoregressive model. An autoregressive model can be sampled by the an-
cestral sampling algorithm which allows sampling directly from the probability PΨNN (σ) =
|ΨNN (σ)|2 (see Appendix C.2 for further details). As a result, quantum states represented
by a deep neural network with millions of parameters can be trained efficiently using the
SGD algorithm for studying ground states [78].

σ1 σ2 σ3 σ4

lnΨ1 lnΨ2 lnΨ3 lnΨ4

lnΨ

l2-normalization

Type-Amasked
connectivity

Type-B masked
connectivity

Normalized
wavefunction

Computational
basis

Neural Autoregressive Quantum States

Figure 5.1.: Illustration of a neural autoregressive quantum state. The neural network ap-
proximates the conditional probability amplitudes Ψ1,Ψ2, . . . in the log space.
Each of the conditional probability amplitudes is normalized to give a nor-
malized wavefunction. The network connectivity is restricted (masked) for
causality, such that Ψj only depends on σ1 . . . σj−1. The network itself could
be either a fully-connected neural network or a convolutional neural network.

5.1.3. Supervised learning for quantum state approximation

We now describe the variational problem of approximating complex-valued wavefunctions
in the supervised learning setting and propose a new cost function for normalized varia-
tional wavefunctions, e.g., NAQSs, to jointly learn the probabilities and phases.

Given a target wave function |Φ⟩, we would like to find the optimal NAQS |ΨNN⟩ ap-
proximating the target wave function by minimizing a cost function R(Φ,ΨNN). In the
following, we consider the setup that we are given the samples {σ,Φ(σ)} according to
the probability distribution PΦ(σ) = |Φ(σ)|2 instead of the full wave function. It is a
practical setup for the exponentially large Hilbert space. In the supervised learning setup,
a loss function L measures the difference between the data points ⟨σ|Φ⟩, ⟨σ|ΨNN⟩. A cost
function R is the expectation value of the loss function L with respect to the probability
PΦ(σ) and is, therefore, a measure of the difference between the quantum states |Φ⟩, |ΨNN⟩.
As a result, the optimization problem can be solved using the SGD method, where the
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Chapter 5. Scaling of neural network quantum states for time evolution

stochastic gradient is computed from the sampled cost function R̂ (see Appendix C.3 for
a detailed discussion).

Here we present a joint learning scheme for a complex-valued wave function where the
cost function Rjoint is the sum of the so-called Kullback–Leibler (KL) divergence of the
probabilities RKL and the weighted L2 distance of the phases Rθ,

Rjoint = RKL +Rθ. (5.5)

In order to learn the magnitude of the probability amplitude Re
[
logΨNN(σ)

]
, we con-

sider the forward KL-divergence RKL, which is defined as

RKL =

DH∑

i

PΦ(σi) log

(
PΦ(σi)

PΨNN(σi)

)

≈
∑

σi∼|Φ(σi)|2 2Re
[
log Φ(σi)− logΨNN(σi)

]
.

Nsamples

(5.6)

It is a common cost function for learning a probability distribution when one can sample
from the exact distribution, which is equivalent to maximal likelihood learning.

For learning the phase of the probability amplitude Im
[
logΨNN(σ)

]
, we consider the

weighted L2 distance of the phases embedded on a unit circle,

Rθ =
N∑

i

|Φ(σi)|2 dist(Im [log Φ(σi)] , Im
[
logΨNN(σi)

]
)

=

N∑

i

|Φ(σi)|2 dist(θΦ(σi), θΨ
NN

(σi))

≈ 1

Nsamples

∑

σi∼|Φ(σi)|2
dist(θΦ(σi), θΨ

NN
(σi))

, (5.7)

with
dist(θ1, θ2) =

(
cos (θ1)− cos (θ2)

)2
+
(
sin (θ1)− sin (θ2)

)2
.

The stochastic gradient can be computed from the sampling estimate of the cost functions
in Eq. (5.6) and Eq. (5.7). During the optimization procedure, the magnitudes and phases
are learned at the same time. This cost function is only valid for normalized wavefunc-
tion because the KL-divergence is unbounded from below if PΨNN(σi) is an unnormalized
probability distribution. As a result, we consider NAQSs which ensure the normalization
without additional cost.

The advantage of choosing the cost function Rjoint is that the resulting stochastic gra-
dient is unbiased and with low variance. The optimization problem can be solved by SGD
with a small mini-batch size or even a single data input at a time. It is important to
have this property for efficiently solving the variational state approximation problem with
a large neural network and when the Hilbert space is large.

Another cost function, which also can be rewritten as an expectation value and gives a
physical interpretation, is the real part of the negative overlap,

Rneg. overlap = −Re

[
DH∑

i

Φ∗(σi)ΨNN(σi)

]

= −
DH∑

i

PΦ(σi)Re
[
ΨNN(σi)

Φ(σi)

] (5.8)
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We observed that it has a similar performance as the joint cost function. In Appendix C.3,
we show the two cost functions are indeed equivalent to first order in error. In principle,
one should include a constant term cratio in the equation Rjoint = RKL+cratioRθ, where the
cratio is a hyper-parameter to be tuned controlling the ratio between the two cost functions.
We consider cratio = 1 because the equivalence to Rneg. overlap in the small error limit.

In passing, we mention that several different proposals for the cost functions have been
discussed in the literature. This includes the L2 distance of the probability amplitudes [224,
253], the weighted L2 distance of log of the probability amplitudes [254], and negative log
fidelity [255]. We discuss the detail of the difference between different cost functions in
Appendix C.3

Note that the variational algorithm to approximate quantum states using neural net-
works has found applications in imaginary-time evolution [253], real-time evolution [241],
simulating open quantum system [229], classical simulation of quantum computation [255]
and the study of the expressivity and generalization properties [6, 224, 254, 256].

5.2. Numerical results

To test the variational power of different networks, we consider far-from-equilibrium dy-
namics resulting from global quenches for a paradigmatic 1D model. The fast (ballistic)
growth of entanglement prohibits the classical simulation based on MPS at long times.
Recent work with NQSs suggests that NQSs could reach time scales comparable with or
exceeding those of the state-of-the-art tensor network methods [77]. Here, we consider a
similar setup with a x-polarized initial product state |ψ0⟩ =

∏
i | →⟩i. We then evolve the

state using the Hamiltonian of the quantum Ising model with transverse (g), longitudinal
(h) fields, and an interaction term (k):

Ĥ = −J



N−1∑

j=1

(
σ̂zj σ̂

z
j+1 + kσ̂xj σ̂

x
j+1

)
+

N∑

j=1

(
gσ̂xj + hσ̂zj

)

 . (5.9)

We consider two cases that exhibit different growth of entanglement: a weak quench to
g = 3, h = 0.1, k = 0 with slow growth of entanglement and a strong quench near the
critical point g = 1, h = 0, k = 0.25 with fast growth. Note that the model is non-integrable
for both parameter sets. In the following, we consider open boundary conditions (OBC)
and provide additional data for periodic boundary conditions (PBC) in Appendix C.5.

5.2.1. Approximation with MPSs

We first variationally approximate the exact time-evolved state using the MPS ansatz
with small bond dimension χ and reproduce the well-known result that the number of
parameters scales exponentially in time. In particular, we perform the exact simulation
of time evolution following the quench to obtain the target states |Φexact(t)⟩ at certain
discrete times using exact diagonalization (ED). We then find the MPS with the given
bond dimension χ approximating the target state at each time t by SGD over the cost
function Rjoint. Note that the MPS found by supervised learning with the SGD method
is close to the optimal result obtained by iteratively minimizing the L2 distance of the
quantum states [31]. We include this additional result in Appendix C.5 for comparison.
The details of the parameters used in the optimization are shown in Appendix C.4.

In Fig. 5.2 we show the error in fidelity after the quantum state approximation for the
two parameter sets of the Ising model. We also show the expectation value ⟨σ̂x⟩ in the
middle of the chain and the half-chain von Neumann entanglement entropy SvN . For a fixed
bond dimension χ, an MPS can accurately approximate the state under time evolution to a
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Figure 5.2.: MPSs with bond dimension χ approximating the exact time-evolved states
following a quantum quench from an initial paramagnetic product state. The
MPSs are obtained by supervised learning with SGD. The quenched Hamilto-
nian is given in Eq. (5.9) for a chain of length N = 20 with (a) quantum Ising
model in the paramagnetic phase with weak longitudinal field (g = 3, h = 0.1,
k = 0) and (b) close to a critical point with interacting term (g = 1, h = 0,
k = 0.25).

certain timescale after which the error in fidelity grows exponentially to a saturation value.
This timescale coincides with the deviation in the local observable ⟨σ̂x⟩ and the saturation
of entanglement.

To quantitatively access this time scale, we determine the reachable time t∗ by the time
when the error in fidelity exceeds a threshold value 1 − F = 10−3. This is indicated by
the grey dashed lines in Fig. 5.2. We then plot the number of parameters of the MPS as a
function of the time t∗ that can be reached in Fig. 5.4. The data shows a clear exponential
growth of the number of parameters as a function of t∗. This is directly related to the
linear growth of the entanglement S entropy [56], which yields an exponentially growing
bond dimension χ ∼ eS to correctly capture the underlying states [257, 258].

Note that the exponential scaling of the number of parameters with t∗ is not affected by
the threshold value chosen as long as the threshold value for the error in fidelity 1− F is
chosen below the value where the curves flatten due to finite size effects.

5.2.2. Approximation with shallow NAQSs

We now investigate the variational power of NAQSs in a similar setup as before. Namely,
given the exact time-evolved state |Φ(t)⟩ at the selected time t, we perform supervised
learning to approximate the state variationally with NAQSs. As a first example, we con-
sider a one-hidden layer convolutional (CNN-1) NAQS. The ratio of the number of hidden
neurons to the system size α = Nhidden/N controls the width of the network. For CNNs,
α is the number of channels. Increasing the width of the network increases the number
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of parameters and the variational power of the network. We optimize the cost function
described in Section 5.1.3 using SGD with the Adam [259] optimizer. We begin with a
batch size of 512 samples and a learning rate of 10−3 which is then decreased to 10−4 once
the sampled cost converges. Technical details are described in Appendix C.1.
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Figure 5.3.: One-hidden layer convolutional NAQS of different width α approximating the
exact time-evolved states following a quantum quench from an initial param-
agnetic product state. The quenched Hamiltonian is given in Eq. (5.9) for a
chain of length N = 20 with (a) quantum Ising model in the paramagnetic
phase with weak longitudinal field (g = 3, h = 0.1, k = 0) and (b) close to
critical point with interacting term (g = 1, h = 0, k = 0.25).

In Fig. 5.3, we show the results obtained for the quantum Ising model described in
Eq. (5.9). We observe for a fixed network that the accuracy of the approximation decreases
with time. The error increases exponentially and saturates at a size-dependent final value
as in the case of MPSs. Moreover, we find that the accuracy improves when increasing the
width α of the networks. Identically to the procedure for MPSs, we determine the reachable
time t∗ by the time when the error in fidelity exceeds the threshold value 1 − F = 10−3

indicated by the grey dashed lines. We notice that the entanglement entropy also deviates
from the exact value but does not saturate even at long times after the accessible time t∗.
This result is plausible since NAQSs can indeed represent volume law states.

In Fig. 5.4, we plot the number of parameters against this reachable time t∗ with various
widths α. The result suggests an exponential scaling of the number of parameters with
the reachable time t∗. This is identical to the scaling behavior of MPSs but the growth
constant is in fact larger.

A big advantage of NAQSs is the flexibility in the design of network architectures. Essen-
tially, NAQSs are broad classes of wavefunctions based on different network architectures.
With a fixed network architecture, two common factors to control the model complexity
are the network width and network depth [260–262]. An important question is how these
choices affect the network expressivity, hence the quality of the approximation.

To understand the effect of the network width on the expressivity, we focus on shallow
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Figure 5.4.: Effect of increasing network width: The number of parameters required to
reach time t∗ for following a quantum quench for different approximation
schemes. The quenched Hamiltonian is given in Eq. (5.9) for a chain of length
N = 20 with (a) quantum Ising model in paramagnetic phase with weak lon-
gitudinal field (g = 3, h = 0.1, k = 0) and (b) close to a critical point with
interacting term (g = 1, h = 0, k = 0.25). The black line with star (cross)
markerS shows the results for MPS (RBM). For NAQS, we denote each com-
bination as (network type)-(number of hidden layers)-(filter size). The circles,
squares, and triangles represent 1,2,3-layer networks respectively. The gradi-
ent colors describe the same networks of different numbers of hidden layers.
NNs (Blue); CNNs with global connectivity (Green-Blue); CNNs with local
connectivity (Red).

NNs with at most 3-hidden layers and consider three types of network architectures: (i)
fully-connected neural networks (NNs), (ii) CNNs with a large filter size equaling to the
system size, and (iii) CNNs with small filter sizes but have receptive fields (causal cone)
covering the full system. For simplicity, we fix the same network width α over the hidden
layers. For a given combination of the network type and the number of hidden layers, we
repeat the procedure of state approximation described above with an increasing network
width α 1. We plot the number of parameters of the network against the obtained accessible
times t∗ in Fig. 5.4. We denote each combination as (network type)-(number of hidden
layers) and with (filter size) if a CNN is considered.

From the data, we observe consistent exponential scaling of the number of parameters
with the reachable time t∗ by increasing the width α for all network architectures and
depths considered. Changing the network architecture results in a constant shift and a

1In the context of CNN, increasing the width means increasing the number of channels.
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slight change in the growth rate in the scaling. There is a significant difference between
NNs and CNNs, where we see an order of magnitude improvement likely due to the sharing
of parameters 2. The difference between CNNs with small and large filter sizes is, however,
not obvious. While here we focus on shallow neural networks, the data still shows a slight
improvement in the growth rate when increasing the network depth. Notably, the scaling
of NNs deviates more from that of MPS for parameter set (b). It is different from the
naive expectation that MPS would perform less efficiently when the entanglement grows
rapidly.

We would like to point out that the scaling does not depend on boundary conditions—
the same exponential scaling is observed for systems with PBC (see Appendix C.5). Due to
the causality requirement of the NAQSs, we have zero padding instead of periodic padding
for CNNs. This implies that the wavefunction is not translational invariant; hence, it can
be applied to both OBC and PBC systems. While we found a significant constant shift
in scaling between CNNs and NNs due to parameter sharing, we expect an even more
significant shift for other types of NQSs where one enforces exact translational symmetry.

5.2.3. Approximation with deep NAQSs

To study the effect of network depth on expressivity, we consider two types of deep network
architectures: (i) CNNs with gated activation unit and residual connection (Gated-CNNs)
(ii) WaveNets [263]. Both networks consist of modular building blocks. One can sys-
tematically increase the network depth by stacking more blocks. The building block of
Gated-CNNs includes causal convolution following a gated activation unit and a residual
connection [260]. The building block of WaveNets replaces the standard causal convolution
with dilated causal convolution, which allows the size of the receptive field (causal cone)
to grow exponentially with the network depth, and it includes an additional parameterized
skip connection. We show the building block and the network architecture in Fig C.1 and
describe the detail of the network architectures in Appendix C.1. For a fixed network archi-
tecture and width α, we increase the network depth to increase the number of parameters
and repeat the procedure of state approximation. We vary the number of blocks between
6 to 14 for WaveNets and 10 to 20 for Gated-CNNs.

In Fig. 5.5, we show the results for Gated-CNNs of width α = 12. We find a similar result
as in Fig. 5.3. With a larger network, it is now obvious that the entanglement entropy
deviates but does not saturate long after the accessible time. We even observe slightly larger
entanglement entropy at the deviation (See also data for WaveNets in Appendix C.5).

In Fig. 5.6, we plot the number of parameters of networks with different depths against
the accessible times t∗ and denote each combination as (network type)-(network width
α). We observe again consistent exponential scaling of the number of parameters with
the reachable time t∗ by increasing the network depth for the two networks and widths
considered. Similarly, we see a small constant shift for different network widths favoring
“narrower" networks. More importantly, data for both network architectures roughly fall
on the same line despite the drastically different design choices of using dilated or normal
convolution. Compared with the data from shallow CNNs where we vary the network
width, all data again fall roughly on the same line. This suggests that increasing the
number of parameters by increasing network width has the same effect on expressivity
as increasing the network depth for the cases considered. Even more surprisingly, such
results are independent of the network architectures of whether one considers global or
local, dilated or normal convolution, with or without skip and residual connections. Note

2CNNs utilize translational invariance such that the convolution kernels are applied across the system
size, instead of independent parameterized weight acting on each site. Therefore, the parameters are
“shared” compared to typical NNs.
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that, however, the optimization problem may be strongly affected by the choice of different
network architectures. For example, a deep neural network without shortcut connections
may be hard to optimize.
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Figure 5.5.: Gated-CNNs NAQS of different depth, i.e. number of blocks Nb, approximat-
ing the exact time-evolved states following a quantum quench from an initial
paramagnetic product state. The network is of width α = 12. The quenched
Hamiltonian is given in Eq. (5.9) for a chain of length N = 20 with (a) quan-
tum Ising model in the paramagnetic phase with weak longitudinal field (g = 3,
h = 0.1, k = 0) and (b) close to a critical point with interacting term (g = 1,
h = 0, k = 0.25).

We further note that there are two main differences in the network structure considered
here and in previous works [76, 77, 241, 244]. The first difference is the autoregressive
property. It is unknown how the autoregressive constraint affects the expressivity of the
neural networks. The second difference is the activation function. In Ref. 77, 241, the
choice of polynomial activation with complex-valued weight is crucial to the result. Notice
that such networks [221] do not have the universal approximation property. In contrast, we
consider real-valued weights with the rectified linear unit (ReLU) [264], tanh, and sigmoid
activation functions. For shallow NNs, we observe that changing the activation function
does not affect the result significantly. The difference in the setup calls into question
whether the good result before [77] is not a general property of neural networks.

5.2.4. Approximation with RBMQSs

As the last example, we study the expressivity of the restricted Boltzmann machine quan-
tum states (RBMQSs) [76] with increasing width. One prominent difference between RB-
MQSs and NAQSs is that RBMQSs belong to general (non-autoregressive) neural net-
works, and hence is not normalized. The normalization constant is in general intractable.
Nevertheless, it is possible to estimate the fidelity to another wavefunction by stochastic
sampling. The gradient of such stochastic estimates gives a biased stochastic gradient,
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Figure 5.6.: Effect of increasing network depth: The number of parameters required to
reach time t∗ for following a quantum quench for different approximation
schemes. The quenched Hamiltonian is given in Eq. (5.9) for a chain of length
N = 20 with (a) quantum Ising model in paramagnetic phase with weak lon-
gitudinal field (g = 3, h = 0.1, k = 0) and (b) close to a critical point with
interacting term (g = 1, h = 0, k = 0.25). The black line with star (cross)
markers shows the results for MPS (RBM). For NAQS, we denote each com-
bination as (network type)-(network width α). The diamonds and hexagons
represent a network of width α = 8, 12 respectively. The gradient colors de-
scribe the same networks of different network widths. Gated-CNNs (Red);
WaveNets (Green); we keep the shallow NAQSs data (light grey) from Fig. 5.4
for comparison.

which works well in practice for supervised learning with stochastic gradient methods.
We repeat the similar benchmark of state approximation on networks of increasing width

α = Nhidden/N = {1, 2, 4, 8}. We minimize the negative fidelity between the RBMQS and
the target state by SGD. We confirm our implementation yields similar results to the
NetKet [6] implementation using the SR method. For more detail, see the discussion
of the cost function in Appendix C.3 and the additional data for consistency check in
Appendix C.5.

The result for state approximation using RBMQSs is shown in Fig. C.6 in Appendix C.5,
which resembles the results of NAQSs shown in Fig. 5.3 and Fig. 5.5. We plot the reachable
time t∗ in Fig. 5.4 and Fig. 5.6. We observe again consistent exponential scaling of the
number of parameters with the reachable time t∗ by increasing the network width.

We would like to point out that our observation in the reachable time is consistent with
previous works [76, 244] which show similar difficulties around Jt = 0.5 for representing
states quenched by Hamiltonian near the critical point using RBM-based NQS. It is also
observed in [241] that a lack of expressibility from the RBM-based NQS leads to a rapid
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increase in the error in fidelity in a short time scale for a quench across critical points.
Lastly, similar scaling plots as in Fig. 5.4 and Fig. 5.6 could also be obtained in a

more realistic setup when exact data is not known. For MPSs, one could perform the
time-evolving block decimation (TEBD) algorithm [48, 49], and only increase the bond
dimension χ when the approximation (truncation) error reaches the threshold value 10−3.
For NQSs, one could perform a time evolution algorithm based on supervised learning [229,
241] and increase the size of the neural network when the approximation error reaches the
threshold value 10−3. If we plot the number of parameters of the variational wavefunctions
to the time steps, we could obtain a similar scaling plot.

5.3. Conclusion

We provide numerical evidence that the required number of parameters to represent quan-
tum states following a global quench by neural networks grows exponentially in time. Thus,
despite the ability to represent highly-entangled states, the NQSs, including NAQSs and
RBMQSs, considered in this work cannot represent time-evolved states efficiently. An im-
portant remaining question is to understand this scaling. The scaling is agnostic to the
design of network architectures we considered but is only affected by the difference in ar-
chitecture related to symmetry, i.e. convolution. The scaling of NQSs resembles that of
MPSs. However, for the 1D models considered, NQSs show a larger growth rate of param-
eters in time while its entanglement entropy saturates slower. Explaining this difference
and understanding the limitation of NQSs may require a new measure for the complexity
of states different from the entanglement entropy.

The proposed cost function for joint learning magnitudes and phases with NAQSs ensures
an unbiased and low-variance stochastic gradient. It could be applied to the real-time
evolution for pure states and mixed states [229, 241] and the imaginary-time evolution [253].
We expect it to speed up the state approximation at each time step and to be suitable for
learning with deep neural networks. Monitoring the training and convergence of the two
costsRKL andRθ gives information about the hardness of learning probability distributions
and the phases. We observe similar difficulty in learning both the magnitudes and the
phases for time-evolved states. This may provide additional insight for learning frustrated
ground states, which previous works [254, 265] show the main difficulty comes from learning
the phases.

Finally, our findings do not invalidate the simulation for time evolution with NQSs in
general but rather provide insight into the choice of networks to reach the desired time
scale. It also suggests the importance to consider dynamically increasing the network size
for the time evolution algorithm based on supervised learning. It is still important to search
for different network architectures [260, 263, 266–269], which might be more efficient in
optimization or better in the scaling for different Hamiltonians. Network architectures
incorporating the symmetry of the states have the potential to give better scaling. More-
over, the approach based on neural networks is less affected by the spatial dimension of
the systems than that based on tensor networks. This suggests the potential advantage of
NQSs over tensor network states (TNSs) in two and higher dimensions.

While understanding the expressivity and scaling of NQSs is the essential step for de-
signing practical algorithms, the recent work [270] studies the numerical instability in
obtaining the NQS using time-dependent VMC when the time-evolved states can be ex-
pressed as NQSs accurately. The article [270] and this work complement each other and
provide insights for simulating time evolution using NQSs. The code implementation of
this work is based on TensorFlow [271] and is available at [272].
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Overview of Part II

As mentioned in the introduction, Part II of this thesis focuses on the quantum algorithms
for simulating quantum many-body dynamics.

Chapter 6: Review of sequential quantum circuits

Chapter 6 provides a comprehensive review of sequential quantum circuits, the variational
ansätze considered in both Chapter 7 and Chapter 8. We start with the overview of gate-
based quantum computation and focus on the connection between isometric tensor network
states (isoTNSs) and sequential circuits. We first show the formal equivalence of isoTNSs
and the sequential circuits consisting of n-site unitary. Then, we consider the approximate
decomposition of the n-site unitaries into local circuits of 2-site gates. We refer to the
resulting ansätze the sparse sequential circuits, alternatively referred to as the quantum
circuit tensor networks (QCTNs) in the literature.

We end the chapter by discussing the number of 2-site gates required to approximate
a given n-site unitary, which relates to the concept of quantum complexity that measures
the computational complexity of implementing the given unitary on the quantum com-
puter. By comparing the classical computational complexity of classical algorithms with
the quantum complexity of quantum algorithms, we discuss the tasks in which potential
quantum advantages are to be expected.

Chapter 7: Real- and imaginary-time evolution with compressed quantum circuits

Chapter 7 investigates the properties of the sparse sequential circuits on one-dimensional
(1D) finite systems introduced in Chapter 6. We study the representation power of the
sparse sequential circuits and confirm that exponentially fewer parameters compared to
matrix-product states (MPSs) are required to represent the time-evolved state generated
under non-equilibrium quantum dynamics. Based on the efficient representation, we pro-
pose a hybrid quantum-classical algorithm for time evolution. We benchmark the algo-
rithms classically by finding the ground state with imaginary time evolution and simulating
a global quench of the transverse field Ising model with a longitudinal field. Finally, we
run the classically optimized gate sets on the IBM quantum processing unit (QPU) and
show qualitatively consistent results with the classical simulation.

Chapter 8: Time evolution of uniform sequential circuits

Chapter 8 continues the exploration of Chapter 7 and extends it to the infinite case,
where the uniform MPS motivated sparse sequential circuits on infinite 1D systems are
introduced. We name the ansätze the layered uniform sequential circuitss (l-USCs).

Notably, quantum algorithms for infinite translationally invariant systems are still rarely
considered. Inspired by the tensor network algorithm, we introduced the fundamental
concept of the left and right environment of the infinite circuit, which are the fixed points
of the (mixed) transfer matrix. We introduced algorithms to find these environments and
measure physical observables for the infinite quantum circuit on a quantum device with a
finite number of qubits.
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We then turn to the investigation of the representation power of the ansätze. By tuning
the two complexity parameters, the width and the depth of the local circuit, the observa-
tions reveal a similar overall linear complexity growth in the state complexity for simulating
dynamics, similar to the findings from the finite case. Interestingly, a quadratic growth of
complexity with time is found for circuits representing the environments.

A hybrid quantum-classical algorithm is proposed to time evolve 1D uniform systems in
the thermodynamic limit. We represent both the infinite translationally invariant quantum
states and the environments using l-USCs. We show numerically that this ansatz requires
a number of parameters scaling polynomially in the simulation time for a given accuracy.
After benchmarking the evolution algorithm on a classical computer, we demonstrate the
measurement of observables of this uniform state using a finite number of qubits on a QPU.
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6. Review of sequential quantum circuits

In the first part of the thesis, we see that it is hard for classical computers to simulate
quantum dynamics. Fundamentally, this is due to the fact that classical computers, such
as laptops, personal computers, cellphones, etc., are based on classical physics. In the
early 1980s, people started to consider the possibility of utilizing quantum mechanics for
simulating quantum systems [98, 273, 274]. The proposals are now understood as quantum
simulators or analog quantum computation, where the “quantum computer” contains some
qubits and can be controlled to realize certain dynamics resembling the dynamics of a
model system of interest. In 1985, David Deutsch defined the universal quantum Turing
machine [275], which leads to the digital quantum computation or gate-based quantum
computation.

While analog quantum simulation has been an active area of research over the past two
decades [276, 277], recently digital quantum simulation has started to enter the game.
Analog quantum simulation has shown the ability to study dynamics that may be hard to
simulate classically [22, 84, 278–282]. In the long run, we expect digital quantum computers
to be the better quantum simulators because of the general purpose framework and the
ability to implement quantum error correction [283]. In this chapter, we review the basics
of gate-based quantum computation in Sec. 6.1, show the connection between isometric
tensor network states (isoTNSs) and sequential circuits in Sec. 6.2, and discuss the classical
and quantum complexity of simulating the problem in Sec. 6.3.

6.1. Gate-based quantum computation

Digital quantum computers, which perform gate-based quantum computation, are com-
puters with a finite number of qubits and a universal set of quantum gates. Furthermore,
they need to have the ability to prepare an initial state and measure the final state in the
computational basis [284]. An algorithm run on a digital quantum computer prepares an
initial state, transforms the state by a sequence of unitary gate operations, and performs
measurements. Each of these parts poses the challenge for realizing a large-scale quantum
computer: (i) scalable number of qubits, (ii) accurate quantum gates, (iii) accurate state
preparation, (iv) long qubit coherence time, and (v) accurate measurement. Experimen-
tal realizations of gate-based quantum computers have been achieved using a variety of
physical systems, including superconducting qubits, trapped ions, and photonics.

Current noisy intermediate scale quantum (NISQ) [85, 283] devices contain order 50
qubits and give access to hundreds of quantum gate operations [86]. The term NISQ
device indicates that we are at the transition point where the number of qubits reaches
intermediate scale > 50, which is beyond brute force simulation but these devices are
noisy and hence have restricted ability. The term NISQ era is also used to contrast the
longer-term goal of reaching fault-tolerant quantum computing (FTQC). By quantum error
correction (QEC), which trades a large number of noisy physics qubits with a few logical
qubits, we can have FTQC with the cost of the overhead given by the QEC [285, 286].

The idea of a universal gate set for quantum computation leads to the distinction between
different computation complexity classes. For different universal gate sets, we can simulate
one from each other with an error ε using polylog(1/ε) number of gates according to the
Solovay-Kiaev theorem [287]. This means an easy quantum circuit for one universal gate
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set is easy for all universal gate sets. Therefore, we can assign the state or the unitary
transformation a “complexity” based on the number of gates required. We discuss this in
further detail in Sec. 6.3.

6.2. IsoTNSs as sequential circuits

Remarkably, there exists a connection between isoTNSs and quantum circuits, which has
been recognized since the early stage of development of tensor network theory [169, 170,
288]. By viewing isometries as unitaries acting on an ancilla qubit, an matrix-product state
(MPS) in isometric form is equivalent to a sequential quantum circuit. The equivalence can
be easily generalized to isoTNSs in higher dimensions and was recently applied in several
works [92, 213, 289–291]. The resulting sequential circuits consist of multi-qubit gates.
By approximately decomposing the multi-qubit unitaries into a sequence of 2-site gates,
we obtain the “sparse” sequential circuit ansätze, which is also known as quantum circuit
tensor networks (QCTNs) [212]. We study the one-dimensional (1D) finite version of the
ansatz in Chapter 7 and the 1D infinite version of the ansatz in Chapter 8. Below, we
review the equivalence of isoTNSs and sequential circuits using MPSs as an example and
discuss the approximate decomposition of n-site gates.

IsoTNSs as “dense” sequential circuits

An MPS of bond dimension χ is equivalent to a sequential quantum circuit with (n+1)-site
unitaries, where n = log2 χ

1. An MPS in right isometric (normalized) form is given as,

|ψ⟩ =
∑

{ik}

∑

{αl}
B[1]i1
α0α1

B[2]i2
α1α2
· · ·B[N ]iN

αN−1αN
|i1i2i3 · · · iN ⟩ (6.1)

where {i} are indices representing physical degrees of freedom and {α} are virtual indices,
which encode entanglement. The rank of the virtual indices is proportional to the size of
the gates in the quantum circuit representation, as we show below. The right orthogonality
condition ∑

ik,αk

B[k]ik
αk−1αk

(B
[k]ik
α′
k−1αk

)∗ = δαk−1,α
′
k−1

(6.2)

indicates that each individual tensor B[k] is an isometry mapping between the vector spaces
V|αk−1⟩ → V|αk,ik⟩. Any isometry can always be rewritten as slices of unitary. Therefore, it
is equivalent to unitary acting on a normalized state |0k⟩ 2, i.e.,

B[k] = U [k]|0k⟩ (6.3)

B[k]ik
αk−1αk

= ⟨αk, ik|U [k]|0k, αk−1⟩ (6.4)

One can easily verify the equivalence by substituting Eq. 6.4 into Eq. 6.2. Note that
the equivalence holds for generic isometric tensors and hence the discussion also holds for
higher dimensional isoTNSs.

Once the connection between the isometries B[k] and unitaries U [k] acting on a state |0k⟩
is established, we can rewrite the right normalized MPS as a quantum circuit with a set
of corresponding gates {U [k]} acting on the initial state |0⟩⊗N (see Fig. 6.1). As expected,
the dimension of the final state is the same as the initial state, because the virtual indices
{α} are internally contracted. This is the formal equivalence of an isometric MPS and a
sequential quantum circuit.

1We note that the mapping applies to isoTNSs [75] in general.
2The state |0k⟩ lives in the vector space of dimension dim(|0k⟩) = χk × dim(|ik⟩)/χk−1. We assume

dim(|0k⟩) to be an integer without loss of generality since we can always enlarge the bond dimension to
match this condition.
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6.2. IsoTNSs as sequential circuits

Figure 6.1.: (a) Two tensors in right orthogonal form. (b) A right orthogonal MPS can be
directly mapped to a quantum circuit. (c) The corresponding quantum circuit,
where the gates act sequentially from the first to the last qubit.

From “dense” sequential cirucits to “sparse” sequential circuits

For spin-1/2 systems, the physical dimension is d = 2 and the |0k⟩ gives the standard qubit.
If the MPS consists of tensors B[k] with bond dimension χ = dim(αk−1) = dim(αk) = 2n,
where n ∈ N, then the corresponding unitaries act on (n+ 1) qubits. As a result, an MPS
with maximum bond dimension χ is equivalent to a quantum circuit defined by unitaries
acting on maximally log2 χ+ 1 sites sequentially.

Figure 6.2.: An MPS tensor can be exactly represented as a unitary over some number of
qubits, which can then be approximated as a series of 2-qubit gates.

The n-site unitary contains ∼ χ2 number of parameters, which must be decomposed into
a series of sequential 2-site unitaries to make the quantum circuit implementable on a real
device. In the worst case, the number of required 2-site unitaries scales at most exponential
in n [292]. The number of 2-site unitaries required is problem dependent and gives us insight
into the potential quantum advantage (See Sec. 6.3). Here, we consider approximating the
n-site unitary by a local circuit of 2-qubit gates and treat the resulting “sparse” sequential
circuits as variational ansätze. The structure of the local circuit can be of arbitrary types,
for example, brickwall or staircase (ladder) 3, and the depth of the local circuit is a tuning
parameter of the complexity of the variational ansätze. In the following chapters, we
investigate the power of such ansätze for simulating dynamics. The central question we
want to investigate is: In order to reach similar accuracy in representing the target states,
how does the depth of the local circuit scale? We will show that for the simulation of
quantum dyanmics we can reach similar accuracy by using shallow local circuits, which
have parameters scaling polynomial in n, to parameterize the n-site unitaries. This means
we use exponentially fewer parameters compared to the generic case and hence have the
potential of exponential quantum advantage (see discussion below).

3We note that there are different possible circuit structures. Numerical efforts have been carried out
to study the effect of different circuit structures and the scaling for ground state problems [212]
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In chapter 7, we consider the approximation of the n-qubit unitary by a single layer
of sequential unitaries as shown in Fig. 6.2. We call this finite ansatz of order-M where
M + 1 = n is the number of qubits the unitary acts upon. For example, an MPS of bond
dimension χ = 2 maps exactly to our circuit ansatz of order-1. Note that this is particular
to our ansatz; the commonly studied brickwall circuit structure with two layers, which has
the same number of two-site gates, can be mapped to an MPS of bond dimension χ = 2
but cannot represent states having correlations of arbitrary length scales, for example, the
GHZ state. Our order-M circuit ansatz permits a sparse representation of MPS of bond
dimension 2M . The sparsity of the representation comes from replacing the (M + 1)-site
unitary with a sequence of 2-site unitaries, see Fig. 6.2. Repeating such replacement, one
arrives at a circuit with the pattern as in Fig. 7.1 (a).

In chapter 8, we further generalize the ansatz by considering approximating the n-qubit
unitary by MU layers of sequential unitaries and furthermore imposing the translational
invariance over the quantum circuit. We observe a similar exponential reduction in the
number of parameters required to represent the n-qubit unitaries.

Entanglement and classical complexity

Before delving into the quantum complexity of tensor-network-inspired quantum circuits,
it is important to first review the computational complexity of classical tensor network
simulations. Brute force classical simulation of quantum systems has computational com-
plexity scaling exponentially in the number of qubits or system size. As we have seen
in earlier chapters of this thesis, tensor network algorithms provide powerful simulation
tools, which avoid this exponential scaling in the system size. Instead, the computational
complexity of tensor network algorithms is restricted by and scales exponentially with the
entanglement entropy. Roughly speaking, the bond dimensions of tensor networks scale
∼ eS with the entanglement entropy S, and the computational complexity is polynomial
in the bond dimensions. Therefore, the computational complexity scales exponentially
∼ eS in the entanglement entropy. This means that ∼ eS elementary operations on a
classical computer are required to evaluate the answer, for example, the expectation value
of some physical observables. The value of the entanglement entropy S depends on the
problem at hand. Prominent examples include an area-law entanglement for the ground
states of gapped local Hamiltonians, which is ∼ 1 for 1D systems. For simulating the dy-
namics of many-body localized systems, the entanglement growth is logarithmic [293], i.e.,
∼ log t, while for simulating the dynamics of chaotic systems, the entanglement growth is
linear [56], i.e., ∼ t.

6.3. Quantum complexity

Suppose that we have a quantum computer, a natural and important question to consider
is: how difficult is it to solve a particular problem using this computer? As discussed
in the previous section, the concept of quantum complexity can be defined for a quantum
computer equipped with a universal gate set. It is a measure of the number of computation
steps required to carry out to solve the problem. In this context, it is useful to recall two
important concepts from quantum information theory: the state complexity and the unitary
complexity.

Broadly speaking, the state complexity of a state |Ψ⟩ is the minimum size of a quantum
circuit over some universal gate set required to generate a state ˜|Ψ⟩ from |0⟩⊗m, where the
error ∥ ˜|Ψ⟩−|Ψ⟩∥2 < ε is within some tolerance ε. Similarly, the unitary complexity of a
unitary U is the minimum size of a quantum circuit over some universal gate set required
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to generate a unitary Ũ such that ∥U − Ũ∥⋄ < ε for some error ε 4.

Potential quantum advantage

With the concepts of quantum complexity and entanglement in mind, we can estimate the
classical and quantum complexity to simulate 1D quantum many-body systems specifically
for MPSs and the corresponding sequential circuits. We consider the setup where the
problem is defined with the system size L, the evolved time t, and an error tolerance
ε. The classical MPSs simulation with bond dimension χ has a number of parameters 5

∼ Lχ2 and the complexity 6 ∼ Lχ3. For the sparse sequential circuits introduced above,
the number of parameters is given as ∼ LC, where C is the number of two-site gates within
the local circuit parameterizing a n-site unitary 7. Since C is the quantum complexity of
the unitary as shown in Fig. 6.2, the overall quantum complexity of the sparse sequential
circuits scales the same as the number of parameters ∼ LC. For sequential circuits, the
number of parameters is proportional to the computational complexity on a quantum
device, we can utilize this fact and understand the complexity by studying the required
number of parameters.

For simulating quantum dynamics, we consider the following setup. We fix a large enough
system size L and a target accuracy set by the error tolerance ε. We vary the evolved time
t and study the classical and quantum complexity of the variational ansätze introduced.
Precisely, we study how the required bond dimension χ to accurately (within error ε)
represent the time-evolved states grows with t. Similarly, we study how the required C
of the sequential quantum circuits grows with t. By this setup, the observation would
give us a hint on the number of parameters required and the computational complexity
of the classical and quantum algorithms. If we observe C ∼ log(χ) asymptotically with
increasing t, this indicates a potential exponential quantum advantage. On the other hand,
if we observe C ∼ χp asymptotically with increasing t, this indicates the potential of
no quantum advantage or polynomial quantum advantage. Note that we provide neither
exclusive search on all possible variational ansätze nor on all possible algorithms. Therefore,
in both cases, the observed result will merely indicate the (non)existence of a potential
quantum advantage.

As mentioned earlier, a linear entanglement growth is expected for simulating the global
quench dynamics of chaotic systems [55, 56], which translates into an exponential growth
of the bond dimension χ ∼ et. On the other hand, nature simulates its own evolution and
intuitively a complexity scaling C ∼ t for the quantum simulation is expected, which is in-
deed proven analytically using product formula [295]. As a result, the quantum simulation
for dynamics with the Lie-Trotter product formula is expected to provide an exponential
quantum advantage, if no classical algorithm can be more efficient than et. In Chapter 7
and Chapter 8, we confirm the linear scaling in C in the context of variational optimization
and treating the sparse sequential circuits as variational ansätze.

It is noteworthy that the situation differs for the ground state problems. Recent works
have been carried out for similar analyses for studying ground state problems. It is shown
that if we fix the system size L and study the accuracy of the ground state representa-
tion in terms of the energy error ε by variational optimization, the ε ∼ poly(1/D) and
ε ∼ poly(1/C) for MPSs and sparse sequential circuits [212]. This suggests potentially a
polynomial quantum advantage. A separate study [97] compares classical variational algo-

4See [294], for more rigorous definition.
5We assume a fixed and small physical dimension d≪ χ.
6Both the density matrix renormalization group (DMRG) and time-evolving block decimation (TEBD)

algorithm has this scaling. In general, variational algorithms for MPSs have similar scaling.
7We ignore the constant prefactor from the number of parameters required for parameterizing a two-site

gate.
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rithms in evaluating the ground state energy E with the quantum phase estimate (QPE)
algorithm, which has a complexity poly(L)poly(1/ε)poly(1/S) in determining E on a
fault-tolerant device, where the S is the overlap between the initial state used for QPE and
the actual ground state. Numerically, it is observed that, as one of the classical variational
algorithms, tensor network methods have the empirical cost poly(L)poly(1/ε) 8 for 1D,
two-dimensional (2D), and three-dimensional (3D) paradigmatic models. Thus, this raises
questions about the existence of generic exponential quantum advantage for ground-state
problems but does not rule out the possibility of polynomial speed-up.

8This comes from the empirical observation that the error density goes down as ε/L ∼ 1/D and a
constant energy density ε/L holds for fixed D in 3D Heisenberg model for L up to 1000 sites. Since the
tensor network algorithms have the complexity poly(L)poly(D), equivalently we have the complexity
poly(L)poly(1/ε)
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7. Real- and imaginary-time evolution
with compressed quantum circuits

Experimental advances in quantum computation technology have raised several fundamen-
tal questions about the relationship between the complexity and entanglement of physically
relevant quantum states. In classical algorithms, especially tensor network methods, the
entanglement is a good proxy for the difficulty of representing a state. For a quantum
circuit, however, these measures are relatively independent; one can have states with high
entanglement but low complexity. This distinction between complexity and entanglement
means we can roughly divide the states in the Hilbert space into three categories (i) The
low-entangled and low-complexity states can be efficiently simulated on both classical and
quantum devices, for example, the ground states of local gapped Hamiltonians. (ii) The
highly-entangled and high-complexity states occupy the majority of the full Hilbert space.
Such states are not physical because they can only be produced after an exponentially long
time [296]. (iii) The remaining highly-entangled and low-complexity states can be simu-
lated efficiently on quantum but not classical devices. The identification of these classes of
states is a major problem in quantum complexity and is of importance for understanding
quantum advantage [86].

In this work, we focus on the class of states generated under time evolution (which is
known to fall in the third category) and study a class of quantum circuits motivated by the
representation of matrix-product states. For a given amount of entanglement, we see the
quantum circuits require exponentially fewer parameters than the matrix-product states,
which agrees with the picture we described. While these states mark the limit of current
classical numerical methods, quantum simulators and quantum computers may allow us
to study these physically interesting states. Moreover, we propose a variational quantum
algorithm for time evolution.

means we can roughly divide the states in the Hilbert space into three categories (i) The
The structure of this chapter is as follows. We demonstrate that the ansatz states are a

good approximation for the states obtained during time evolution in Section 7.1 by compar-
ing them with classical numerics. In Section 7.2, we consider a variational time evolution
algorithm for general quantum circuits for both real and imaginary time evolution. In
Section 7.2.3, we classically optimize the gates, then implement the compression directly
on a quantum processing unit (QPU). We conclude, in Section 7.3, by noting several future
avenues of exploration using the techniques developed in this work.

7.1. Compressed circuits

Although entanglement is a good proxy for the difficulty of representing a state using an
matrix-product state (MPS) ansatz, the light cone determined by a time evolution under a
local Hamiltonian enforces a particularly simple entanglement pattern that can in principle
be captured with fewer parameters. We use an ansatz where sequential quantum circuits
represent our states. These circuits consist of a set of two-qubit gates {Ui} that are applied
sequentially as shown in Fig. 7.1(a). The circuit is said to be of order M when there are M
“layers” of gates. The total depth of this circuit is 2(M − 1) +N − 1, which scales linearly
in both the system size N and with the order M . We emphasize that the algorithms
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we present in this work are independent of the choice of ansatz, though different ansätze
may describe different classes of states. For instance, in contrast to the more commonly
studied brickwall/checkerboard circuit structure [289, 297], the sequential ansatz can have
correlations over arbitrary length scales even at the lowest order M . This means that
an order M = 1 sequential ansatz can represent states like a GHZ state, which is not
possible for a brickwall/checkerboard type of circuit with the same number of gates. For
this reason, we studied the sequential ansatz. For the definition and comparison with the
brickwall circuit ansatz, see Appendix D.1.

Figure 7.1.: (a) We parameterize an order M variational ansatz with M layers of gates. (b)
We show the region of the Hilbert space accessible by our ansatz, which cor-
responds to states with high entanglement but (by definition) low complexity.
Each circuit order spans a sub-manifold of a larger MPS manifold with bond
dimension χ. (c) To perform time evolution, we prepare a state |ΨM

qc(t)⟩, then
apply a Trotterized time evolution to obtain |ΨM

qc(t + ∆t)⟩. By variationally
optimizing each of the gates, we find an optimal representation of the time-
evolved state within the sub-manifold defined by our variational ansatz.

We note that the states defined by these quantum circuits form a sub-manifold of MPSs
with bond dimension χ = 2M . In the case of M = 1, the quantum circuit is exactly
equivalent to an MPS of bond dimension χ = 2 (see Chapter 6, Sec. 6.2). However,
for M > 1, these quantum circuits have exponentially fewer parameters than a generic
matrix-product state in canonical form with bond dimension 2M . In other words, these
quantum circuits describe states with high entanglement but low complexity, which—
as we demonstrate below—encompass time-evolved states. Note that this reduction of
parameters does not necessarily translate into a sparse representation when converted into
MPS form. Furthermore, although we still store the parameters of our circuit classically,
if we were to process the state classically (such as in the computation of an observable),
this would still scale exponentially with the entanglement in the state.

To test this class of quantum circuit ansatz, we first consider the far-from-equilibrium
dynamics of a global quantum quench. Crucially, such dynamics are typically accompanied
by fast ballistic growth of entanglement, which puts mid-to-long time dynamics out of

86



7.1. Compressed circuits

reach for numerics beyond small systems. Concretely, we consider dynamics under the
Hamiltonian

Ĥ = −J



N−1∑

j=1

σ̂xj σ̂
x
j+1 +

N∑

j=1

gσ̂zj +

N∑

j=1

hσ̂xj


 , (7.1)

which is a quantum Ising spin chain on N sites with both transverse (g) and longitudinal
(h) fields. For the special case h = 0, the model is integrable. We consider a global quantum
quench protocol with polarized initial state |Ψ⟩ = | · · · ↑↑↑ · · · ⟩ at time t = 0. Our goal is
then to accurately approximate the state |Ψ(t)⟩ = e−iĤt|Ψ⟩, at (real or imaginary) time t
after the quantum quench.

7.1.1. Efficient representation of quantum states
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Figure 7.2.: Quantum circuit representation of order M of quantum states generated un-
der non-equilibrium dynamics. The Hamiltonian is given in Eq. (7.1) for a
chain of length N = 31 with transverse field g = 1.4 and data shown for
h = 0, 0.1, 0.5, 0.9045. The top row shows the fidelity F defined in Eq. (7.2),
compared with MPS with bond dimension χ = 1024. The bottom row shows
the half-chain von Neumann entanglement entropy S for the quantum circuit.

We now demonstrate the representation power of the quantum circuit ansatz by com-
paring it with classical numerics using MPS. We first perform the time evolution using 4th

order Trotterized time-evolving block decimation (TEBD) [31] for N = 31 with maximum
bond dimension χ = 1024 and step size τ = 0.01 to obtain a quasi-exact approximation
of the state |Ψ(t)⟩. This bond dimension ensures that our results are close to exact for
all considered timescales. We then take the MPS at a selection of times, which we denote
|Ψmps(t)⟩, and find the optimal quantum circuit of order M , which we denote |ΨM

qc(t)⟩. The
state represented by the quantum circuit is implicitly parameterized by a set of two-qubit
unitaries {Ui(t)}. We perform an optimization over the unitaries in our quantum circuit
to find the state with maximum fidelity

F = |⟨ΨM
qc(t)|Ψmps(t)⟩|2. (7.2)

This is done iteratively by updating each Ui(t) using a polar decomposition [158] (see
Appendix D.2 for more details).
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In Fig. 7.2 we show the fidelity of the quantum state obtained from the quantum circuit
ansatz as well as the half-chain von Neumann entanglement entropy, S. Data are shown
for a range of values of the longitudinal field h = 0, 0.1, 0.5, 0.9045. The parameters g =
1.4, h = 0.9045 are chosen such that the dynamics of the system are expected to be chaotic
and hard to simulate due to fast scrambling [56, 298]. The accuracy of the approximation
decreases with time as correlations build throughout the system, but improves as the order
M is increased. For a given order M , this data also shows that the circuit more accurately
captures the state for weaker h, indicating an increase in the complexity of the simulation
for larger h.

Figure 7.2 also shows the growth of entanglement. We find that the ansatz easily captures
the rapid ballistic growth of entanglement for small h. As we increase h, we find that
the growth of entanglement slows down. This indicates that the practical complexity of
the quantum states increases with h whereas the growth of entanglement decreases, thus
providing a diminished but still exponential advantage.
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Figure 7.3.: Comparison of the number of parameters and the accessible time t∗. This time
t∗ corresponds to the time at which the fidelity F drops below 1− 10−4. Data
are shown for MPS and our quantum circuit ansatz for three values of the
longitudinal field h. The dashed lines correspond to exponential (MPS) and
linear (circuit) fits, respectively. See Appendix D.5 for more details.

From this data, we can compare the number of parameters required to achieve a given
accuracy using our quantum circuits with those needed for an MPS. For a given order
M we find the time t∗ up to which the fidelity is greater than F = 1 − 10−4, indicated
by the grey dashed line in Fig. 7.2. In Fig. 7.3, we plot the number of parameters in
the quantum circuits and the MPSs as a function of the reachable time t∗. This figure
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shows that the number of parameters in our quantum circuit ansatz scales linearly with the
reachable time t∗, in stark contrast to the exponential growth in parameters for the MPS.
Note that the circuit depth of a fully Trotterized time-evolution also scales linearly with
time [295, 299] and has for sufficiently small time steps an error for local observables that
is independent of system size as well as simulation time [300]. However, we find that the
compressed circuit generically performs better while the quantitative improvement over
the fully Trotterized time-evolution depends on the model parameters–this reduction of
circuit depth is particularly valuable for current noisy intermediate scale quantum (NISQ)
devices on which Trotterized time evolution is very challenging [92].

We stress that the linear scaling of the number of parameters persists across the different
values of h. The additional complexity for large values of h appears as a change in the
gradient of the linear scaling. These results demonstrate that the complexity of the quan-
tum state grows linearly in time, while the MPS ansatz requires a number of parameters
that grow exponentially in time due to the linear growth of entanglement. For all values
of h we can see that the quantum circuit has an exponential advantage over MPS in terms
of the number of parameters required. Even for short times of O(1) in the coupling J ,
we require fewer parameters to accurately represent the state with a quantum circuit than
with an MPS.

7.2. Variational time evolution algorithm

Having confirmed the representation power of our ansatz, we now demonstrate how to
implement time evolution restricted to the states defined by our ansatz. This, in turn,
demonstrates that the optimization of the quantum circuit can be performed on a quan-
tum device using hybrid quantum optimization algorithms. This potentially enables the
simulation of dynamics beyond the reach of classical numerical methods, which are limited
by the cost of storing the quantum state.

Our algorithm for time evolution is shown schematically in Fig. 7.1(c). Given the
quantum circuit at time t, we apply a second-order Trotterized approximation V̂ (∆t) =

e−iĤeven∆t/2e−iĤodd∆te−iĤeven∆t/2 to the time evolution operator e−iĤ∆t. We then find the
state |ΨM

qc(t+∆t)⟩ that maximizes fidelity

F = |⟨ΨM
qc(t+∆t)|V̂ (∆t)|ΨM

qc(t)⟩|2, (7.3)

That is, we iteratively optimize over the set of 2-site unitary gates {Ui(t + ∆t)} that
define the state |ΨM

qc(t+∆t)⟩. To carry out the optimization as a hybrid quantum-classical
algorithm, one measures the fidelity on quantum devices and performs the optimization
classically. The fidelity/overlap can be measured by the setup as in Fig. 7.1(c) or by the
swap test [301, 302]. The optimizations for fidelity/overlap find direct application in tar-
geting excited states and have been realized on quantum devices in recent works [303, 304].
Moreover, we expect the recent advance in new approaches for overlap measurement [305–
307] and in optimization algorithms [308–313] could be applied effectively for our algorithm.
We leave this for future work. In this work, we simulate the algorithm classically and per-
form the optimization similarly to that in the previous section, where we update each Ui
iteratively using a polar decomposition.

7.2.1. Real time evolution

In Fig. 7.4 we show the local magnetization and the half-chain entanglement entropy simu-
lated using our quantum time evolution algorithm. We consider the same quantum quench
protocol as above with h = 0.1. Importantly, this case is non-integrable and has a fast
linear growth of entanglement under the non-equilibrium dynamics.
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Figure 7.4.: Time evolution algorithm restricted to the quantum circuit ansatz for different
orders M . We use g = 1.4 and h = 0.1, with N = 11 sites. In the top panel,
we show the magnetization on the central sites, and in the bottom panel, we
show the half-chain von Neumann entanglement entropy S. See Appendix D.2
for more details.

Our results show that we are able to accurately capture the magnetization for times that
scale linearly with the order M . Here it is important to note that the time evolution is
performed entirely within the sub-manifold of circuits defined by our ansatz with a fixed
order. We additionally find that we are able to capture the linear growth of entanglement
using these quantum circuits and that the saturation of the entanglement depends linearly
on the order M . In contrast, the corresponding MPS representation has an exponentially
large bond dimension requiring O(2M ) parameters.

We emphasize that this time evolution algorithm is different from the time-dependent
variational principle (TDVP) algorithm simulating time evolution with a quantum circuit
proposed in [93, 94]. In those approaches, one solves the TDVP equations approximately
by stochastic sampling, i.e., measurement, and performs finite time stepping by numerical
integration 1. In the present algorithm, we first perform finite time stepping by Trotter-
ization and then try to find the optimal states within the sub-manifold defined by our
ansatz. This is much closer to the time-dependent density matrix renormalization group
(tDMRG) [50, 51] or TEBD [48, 49] algorithms, but also has similarities with the infinite
TDVP-inspired algorithm proposed in [213]. This optimization algorithm for the time
evolution is similar to one used for the multi-scale entanglement renormalization ansatz
(MERA) [314] and in the context of symmetry-preserving ansätze [315].

The problem of efficiently optimizing a variational ansatz is one that is common to
many current hybrid quantum-classical algorithms [89, 316]. The primary requirement to
implement our algorithm is the capability to evaluate fidelities, at which point one can
classically optimize the unitaries. This general scheme has been applied in various other
cases – for example, in variational quantum eigensolvers [89], where the cost function being

1A similar argument applies to equations resulting from the Dirac-Frenkel variational principle and the
McLachlan variational principle.
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optimized is the expectation value of a Hamiltonian [89]. In this paper, we performed the
optimization classically to avoid problems such as barren plateaux [317]. However, as
previous studies have demonstrated the capability to compute fidelities [301, 302], this
algorithm can be directly implemented as a hybrid quantum-classical algorithm.

7.2.2. Imaginary time evolution

We can also apply this time evolution algorithm to find ground states using imaginary-time
evolution. In this section, we first explicitly show how one can embed the required non-
unitary operators in unitary gates using an ancilla qubit and post-selection [72]. Second, we
demonstrate that our ansatz can effectively converge to the ground state under imaginary-
time evolution.

One can formally write down the exact imaginary-time evolution procedure |GS⟩ =

limτ→∞ e−Ĥτ |ψ0⟩, where τ is real. This is equivalent to evolving in imaginary time (t →
−iτ) and corresponds to acting on the state with a non-unitary operator, which becomes a
projector onto the ground state in the limit τ →∞. We perform imaginary-time evolution
analogously to our real-time evolution algorithm, where we sequentially compress the state
back onto our ansatz as in Eq. (7.3) but now with V̂ (∆τ) = e−Ĥ∆τ . Similarly to real-time
evolution, V̂ (∆τ) can be approximated by a product of 2-qubit non-unitary gates using
Trotterization.

To perform imaginary-time evolution, we are therefore required to implement non-
unitary gates on the quantum computer. We achieve this by embedding the non-unitary
gate in a unitary gate acting on one extra ancilla qubit. For a generic non-unitary operator
A acting on N qubits, we define a unitary (N + 1)-unitary VA by

VA =

(
sA B
C D

)
, (7.4)

The strategy we employ is to find a block C and a scaling factor s that ensures the first
2N columns of VA are mutually orthonormal, which guarantees unitarity. The remaining
columns can be fixed using a QR decomposition. We explicitly show the full embedding
procedure in Appendix D.3. Note that if we were to implement a full Trotter step for each
optimization step, as we did previously for real-time evolution, we would require a linear
number of ancilla qubits resulting in an exponential cost due to post-selection. Instead, one
should apply and optimize the state for each 2-qubit gate in the Trotterized time evolution
separately. In this case, the total number of measurements required across all Trotterized
gates in a single time step scales only linearly with system size. Furthermore, the successful
rate of post-selection is controlled by the step size ∆τ . In the small ∆τ limit, the failure
rate is linear in ∆τ . This suggests the imaginary time evolution has complexity scaling
linearly in both the system size and also the imaginary time evolved. See Appendix D.4.

To benchmark how well our ansatz can approximate the true ground state, we directly
minimize the energy

E = ⟨ΨM
qc |Ĥ|ΨM

qc⟩. (7.5)

This procedure is similar to the variational quantum eigensolver (VQE) [89], where the
parameters encoding the quantum state are iteratively adjusted to minimize the energy.
We perform the procedure on a classical computer where it is intended to benchmark our
imaginary-time evolution algorithm, where we consider the energy in Eq. (7.5) to be the
best achievable by our chosen ansatz, shown as dashed lines in Fig. 7.5. Instead of using
gradient descent methods, we iteratively replace the unitaries using polar decomposition,
see appendix D.2.

In Fig 7.5, we show the results of our imaginary time evolution. These show that we can
successfully converge to the optimal energy attainable with this ansatz. As expected, the
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Figure 7.5.: We perform imaginary-time evolution for circuits of order M = 1, 2, 3 for the
quantum Ising model with N = 31, g = 1.2, h = 0.1. To find the optimal
performance of our ansatz, we perform a procedure similar to VQE, where we
iteratively optimize the expectation value of the Hamiltonian in Eq. (7.1) for
our ansatz. For these depths, our imaginary-time evolution algorithm success-
fully converges to the optimal point, depicted by the dashed lines. The χ = 4
line indicates the ground state energy of an MPS with bond dimension 4 found
using DMRG. To achieve a better accuracy, we successively decrease the time
step ∆τ after achieving convergence for the previous step size.

results for M = 1 match those from density matrix renormalization group (DMRG) with
bond dimension χ = 2 due to the equivalence between the circuit and MPS representation.
Note that while a modest MPS bond dimension χ = 4 performs better than our ansatz for
M = 2, 3, we still achieve errors well below the threshold of current NISQ hardware, which
validates this approach as a method for finding ground states on a quantum device.

We note that an alternative approach to imaginary-time evolution was taken in the QITE
algorithm [318–320]. There it was noted that if enough information about the initial state
is known, a non-unitary gate can be replaced by a unitary one without the use of ancillas.
However, getting closer to the ground state requires state-dependent unitary operators with
increasingly large support. In contrast, our algorithm requires a fixed set of local gates that
can be repeatedly applied to reach later times, much like the TEBD algorithm for MPS [48].
While the approximation step is stochastic on a quantum computer, the overall procedure
deterministically converges to the ground state. The choice of ansatz is also completely
flexible. Viewing the procedure as a sequential compression in this way raises an interesting
comparison with the compression of a tensor network to form a MERA and the emerging
view of learning with tensor networks as a procedure of compression [128, 321].

7.2.3. Simulation on QPU

While our algorithms are designed for near-term quantum computers, the noise and co-
herence times of currently available devices place strong limits on what can be achieved.
However, we are able to demonstrate parts of the algorithm on a quantum computer by
delegating more of the algorithm to the classical computer. Here we classically optimize
the time evolved states |ΨM

qc(t)⟩, then construct and measure the corresponding state on
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Figure 7.6.: We show the benchmark results for L = 5. Quenched dynamics from a product
state with a single domain wall and Hamiltonian parameters g = 0.25, h = 0.2.
(a) The ⟨σx⟩ expectation values over the full system from ED simulation and
measurements on the time evolved states prepared on QPU. (b) The ⟨σxL/2⟩
expectation value on the central qubit measured on the QPU and compared
with ED. The data displayed is averaged over ten different circuit realizations
(see Appendix D.6).

a QPU, namely the 5 qubit IBM-Q device codenamed Bogota [322]. This process allows
us to access times on the QPU that are inaccessible using standard Trotterized evolution
techniques.

Concretely, we consider the following quantum quench setup on N = 5 qubits. We
initialize the system in the product state | − − + ++⟩, i.e., a domain wall in the x-basis,
and evolve with the Hamiltonian (7.1) with g = 0.25, h = 0.2. For this range of parameters
and initial state the dynamics are dominated by the motion of a single mobile domain
wall and so can be well approximated by an order M = 1 circuit. The longitudinal
field, h, leads to a linearly confining potential between domain walls, and in the case of a
single domain wall corresponds to a linear background potential leading to Wannier-Stark
localization [323]. In Fig. 7.6(a), our ED results show the characteristic periodic melting
and revival of the domain wall.

In Fig. 7.6 we show the results of constructing and measuring our compressed quantum
state on the IBM QPU compared with ED results. Here we optimize the set of gates
{Ui(t)} on a classical computer, which is then fed to the QPU to create the quantum state.
The measurement of the magnetization in the x-basis closely matches the exact results. In
particular, the spatial distribution of the magnetization (Fig. 7.6(a)) shows the periodic
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spreading and reconstitution of the domain wall. Furthermore, the magnetization on the
central spin, shown in Fig. 7.6(b) accurately and quantitatively matches the ED simulation
for long times, which are not limited to the range we have considered. These timescales are
currently inaccessible using a naive Trotterized evolution on this quantum device, which
would require a circuit depth of O(t).

7.3. Discussion

In this paper, we have shown that physically relevant quantum states, namely ground
states and those arising under non-equilibrium dynamics, can be efficiently represented
using a sequential quantum circuit ansatz. This ansatz describes a “sparse” representation
spanning a corner of the larger MPS manifold. For time evolution, the time scales that
we can reach scale linearly with the number of parameters in the circuit, representing
an exponential advantage over existing classical methods. This suggests that even within
the class of MPS defined by a fixed bond dimension, there exists a range of physical
states for which our ansatz is a more efficient representation than an MPS. To exploit the
representation power, we used a time evolution algorithm for a general quantum circuit
ansatz that can be implemented natively on existing quantum computers. Importantly,
the quantum circuit ansatz is flexible and is not restricted to the one used in this paper.
Using near-term devices may provide access to non-equilibrium dynamics beyond the reach
of current classical algorithms. Finally, we have shown that this time evolution algorithm
can also be applied in imaginary time to obtain ground states on a quantum computer.

The optimization procedure that we used [158]—fidelity maximization using a polar
decomposition—may have other potential applications. For instance, instead of considering
the compression of states, one can consider the compression of unitaries. This technique
can be applied to approximate a multi-qubit unitary by a series of 2-qubit unitaries or
to compress a deep quantum circuit. Both of these are particularly important for current
NISQ devices.

Our procedure is also a potentially practical tool for studying quantum complexity.
Quantum state complexity is an intriguing research field but is difficult to study numer-
ically. Previous results primarily focus on non-interacting systems [324–326]. By using
states acquired from procedures such as TEBD and DMRG, and approximating them using
a chosen ansatz and polar decomposition methods, one can concretely probe the complexity
of generic classes of states (such as quantum scar states and many-body localized states)
that were previously difficult to analyze. Additionally, the separation between complexity
and entanglement is of significant interest. In particular, Ref. [294] uses a random unitary
circuit model for time evolution to demonstrate that even when the growth of entangle-
ment saturates in a finite system, the complexity of the quantum states continues to grow
linearly in time over far longer time-scales. This highlights a drastic distinction between
maximally entangled states and maximally complex states. Our work shows that this sep-
aration appears to be smaller for non-integrable systems (see Fig 7.2). The techniques
developed in this paper open the opportunity to directly study the separation between
complexity and entanglement in concrete systems.

The algorithms studied in this work open up several intriguing generalizations. First,
one could apply the algorithm to study short-time dynamics for higher dimensional sys-
tems, which are generally difficult problems for classical numerics. Applied directly on
a quantum computer, this algorithm offers a tractable way to study higher dimensional
systems at large system sizes and to probe physics that only manifests at higher dimen-
sions. Moreover, the algorithms considered are agnostic to the specific ansatz used. It is
an interesting question to compare how an ansatz with a different entanglement pattern
performs. For instance, in Ref. [327] quantum circuits containing entangling gates acting
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over the full system are considered and optimized to represent time-evolved states by a
reinforcement learning approach, which is complementary to our approach. Additionally,
quantum circuits inspired by matrix product states have shown promise for solving non-
linear Schrödinger equations [328]. Similar analyses for various ansatz structures could
shed light on the deeper relationship between entanglement and complexity.
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8. Time evolution of uniform sequential
circuits

In this Chapter, we extend the study of finite systems in Chapter 7 to infinite systems.
Simulation of dynamics of infinite translationally invariant systems facilitates our under-
standing of the physics in the thermodynamic limit. However, the quantum advantage and
the complexity scaling are subtler since direct applying the algorithms for finite system
case [295, 329] is not possible, due to the linear scaling in the system size and the re-
quirement of an infinite large quantum computer. Recent works have proposed and shown
that it is possible to perform the simulation with a finite number of qubits [213, 214] for
models with small entanglement growth. It is a crucial question now on how to improve
the scalability and stability of such an algorithm.

In this context, we present a modified hybrid quantum-classical algorithm for time evolv-
ing translation invariant infinite systems in one-dimensional (1D). We propose layered
uniform sequential circuits (l-USC) ansatz, which is a generalization to the single-layer
uniform sequential circuits (USC) ansatz introduced in Ref. [213]. The ansatz l-USC forms
a subclass of dense uniform sequential circuits (d-USC), which are equivalent to uniform
matrix-product states (MPSs) [169, 288]. Moreover, we propose a gradient-based algorithm
for time evolving quantum states within the manifold spanned by l-USC. This includes a
routine for computing the transfer matrix and environments of the uniform states that
does not require tomography or post-selection that would lead to exponential scaling.

To benchmark the proposed algorithm, we simulate it on a classical computer. We show
that the number of variational parameters required to accurately time-evolve a quantum
state for the time t with the l-USC ansatz, scales only polynomially in t. Lastly, having
obtained the time-evolved l-USC state representation on a classical computer, we compute
physical observables on a cloud-based quantum processing unit (QPU) and demonstrate
agreement with quasi-exact results obtained with the infinite time evolving block decima-
tion (iTEBD) algorithm at a large bond dimension [191].

This chapter is organized as follows. In Section 8.1, we introduce the layered uniform
sequential circuit ansatz and the gradient-based variational time-evolution algorithm. In
Section 8.2 we present the simulation results and analyze the effect of the layered decom-
position on the accuracy of the time-evolved quantum state representation and fixed points
of the transfer matrix. In addition, we show physical observables obtained from the clas-
sically optimized circuits, measured on real quantum hardware. In Section 8.3 we discuss
the obtained data and outline the prospects for future work.

8.1. Methodology

In this section, we introduce the l-USC ansatz, which is a subclass of d-USC where the
dense unitary is replaced by the layered decomposition. We present the necessary entities,
e. g., transfer matrices and the environments, to measure the physical observables with
l-USC. We then turn to the algorithm for time evolving the l-USC and the routines to
perform the variational time evolution.
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8.1.1. The layered uniform sequential circuit ansatz

Motivated by the sequential quantum circuit representation of the MPS [169, 288], we
consider the d-USC on an infinite chain, as shown in Fig. 8.1 (a). The resulting wave
function encoded by the d-USC reads

|ψR⟩ =
+∞∏

i=−∞
Û iR(θ)|0⟩, |ψL⟩ =

−∞∏

i=+∞
Û iL(θ

′)|0⟩, (8.1)

where Û iR(θ) and Û iL(θ
′) are i–independent unitaries acting on Nq consecutive qubits i, i+

1, . . . , i + Nq − 1. The ‘R’ index denotes the right representation and similarly the left
representation ‘L’ is defined by a different unitary ÛL(θ

′) acting in the opposite order. The
d-USC ansätz in left and right representations over Nq qubits are MPS in left and right
isometric forms with the bond dimension χ = 2Nq−1 respectively.

Figure 8.1.: (a) Circuit representing ⟨ψR(θ)|Ô|ψL(θ
′)⟩ with |ψL(θ

′)⟩ and |ψR(θ)⟩ being
the same state in left and right representations. The shaded region singles
out the repeated circuit element, i.e., transfer matrix. (b) Decomposition
of a state-unitary into MU layers of sequential 2-qubit gates. (c) Transfer
matrix T̂

{AB}
{ab} (θ,θ′) between the left and right representations |ψL(θ

′)⟩ and

|ψR(θ)⟩. (d) Circuit representation of ⟨l, 0|Û †RÔÛL|0, r⟩ on finite number of
qubits (e) Decomposition of an environment-unitary into ME layers of sequen-
tial 2-qubit gates.

The l-USC ansatz is defined as a specific form of Eq. (8.1), where each unitary ÛR/L is
parameterized by a sequential circuit of MU layers, as shown in Fig. 8.1 (b). Each layer
consists of a consecutive application of 2-qubit gates between neighboring qubits in the
direction shown in Fig. 8.1 (a-b). While for any d-USC state in the right representation,
there exists an exact d-USC of the same size in the left representation, this does not
always hold for l-USC with the same Nq and MU unless the state is inversion symmetric.
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We note that l-USC ansatz belongs to the broad class of quantum circuit tensor network
ansätze [212] 1, where the dense unitaries in the isometric tensor networks are replaced by
various kinds of local circuits, e. g., brick-wall circuits or sequential circuits (see discussion
in Chapter 6, Sec. 6.2). The d-USC and l-USC wave functions are both universal: if one
allows arbitrary Nq,MU , all translationally-invariant quantum many-body states can be
represented either d-USC or l-USC form. The required Nq,MU indicates the complexity
of the quantum many-body state. For example, the Greenberger–Horne–Zeilinger (GHZ)
state [330] can be represented with Nq = 2,MU = 1. Rigorous studies of the scaling
properties of the quantum circuit ansatz could give us more insight into the ansatz, for
example, the recent work for ground states [331]. In this work, we focus on studying the
expressivity of the ansatz applied to the time evolution with a chaotic Hamiltonian.

The l-USC with local circuits acting on Nq qubits defines a subclass of states within
the manifold of d-USC, or equivalently uniform MPS of bond dimension χ = 2Nq−1. As a
generic 2-qubit gate, up to a global phase, requires 15 parameters [332], the l-USC ansatz is
parametrized by at most 15(Nq−1)MU optimization parameters 2, as compared to 22Nq+1

parameters necessary for the dense parametrization in the d-USC ansatz. In the previous
works, it has been shown that similar ansätze on a finite system are polynomially more
efficient in representing ground states [212] and exponentially more efficient in representing
time-evolved states [4]. Previous works studying the dynamics of infinite systems have
been focused on the specific case Nq = 2,MU = 1. The question remains on whether
the same conclusion, i.e., exponential advantage, applied to the generic l-USC, hold in the
thermodynamic limit. The question remains on whether the same conclusions, applied to
the l-USC, hold in the thermodynamic limit. Later in Section 8.2, we will demonstrate
that l-USC forms a physically relevant subset of the d-USC states with the corresponding
bond dimension, and allows for efficient time-evolution of quantum states. We begin here
with the description of the tools to acquire physical observables from the l-USC state
representation.

Transfer matrix

Computation of physical observables and other operations of an infinite system can be
performed on a finite number of qubits using the transfer matrix and its dominant eigen-
vectors, known as environments in the context of tensor networks. Utilizing the left and
right representation of l-USC, we always consider the (mixed) transfer matrix defined be-
tween the states in the left representation, |ψL⟩, and in the right representation, |ψR⟩, as
shown as the shaded area in Fig. 8.1 (a). In Fig. 8.1 (c), we explicitly write down the trans-
fer matrix T̂ {AB}{ab} (θ,θ′), with {AB} forming a united out-index and {ab} forming a united
in-index. The arrow directions indicate the flow of time of the quantum circuit execution.

With this construction, the transfer matrix is a linear operator T : V ab → V AB mapping
a pure state in Hilbert space V ab to a pure state in Hilbert space V AB. The linear map
is realized by a combination of unitary operators with the post-selection on one qubit, as
shown in Fig 8.1 (c). The transfer matrix is therefore generally non-Hermitian and non-
unitary. In Appendix E.1.4, we show that the post-selection probability is close to unity
for cases considered in this work. This formalism comes from the construction of the
transfer matrix using simultaneously left and right representations. This is different from
Ref. [213, 214], where the transfer matrix is defined with the inner product of states in
the same representation, and the transfer matrix is a quantum channel mapping between

1Following the naming scheme in [212], our ansatz is the uniform qMPS-L. The direction of the appli-
cation of layered 2–site gates is, however, the opposite.

2We note that the number of parameters can be reduced considering the redundancy of the consecutive
single-qubit gates.
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Chapter 8. Time evolution of uniform sequential circuits

density matrices.
The left and right environments |l⟩ and |r⟩ are the dominant eigenvectors of the transfer

matrix T̂ satisfying the fixed point equations T̂ |r⟩ = λ|r⟩, T̂ †|l⟩ = λ∗|l⟩, where λ is the
eigenvalue of T̂ with the maximum absolute magnitude. The absolute value of the eigen-
value |λ| ⩽ 1 defines the overlap density between the two states, and |λ| = 1 if and only if
the states are identical. In such case, the left and right environments are identical up to
complex conjugation, as we prove in Appendix E.7.

From the construction of the transfer matrix, these environments are of dimension
22Nq−2. To translate the environments into variational quantum circuits, we introduce two
22Nq−2 × 22Nq−2 parametrized environment unitaries Êr and Êl, such that |r⟩ = Êr(φr)|0⟩
and |l⟩ = Êl(φl)|0⟩, as shown in Fig. 8.1 (d). Ultimately, we also consider the decompo-
sition of environment unitaries in the form of the sequential circuits decomposition with
ME layers, as shown in Fig. 8.1 (e). We discuss the method of obtaining the environments
in the next section.

Evaluating local observables

We evaluate the expectation value of an local observables utilizing the mixed representa-
tion,

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩⟨ψ|ψ⟩ =
⟨ψR(θ)|Ô|ψL(θ

′)⟩
⟨ψR(θ)|ψL(θ′)⟩

. (8.2)

In Fig. 8.1 (a), we show the circuit representation of the numerator ⟨ψR(θ)|Ô|ψL(θ
′)⟩, where

Ô is a local observable that is Hermitian and unitary. Using the definition of the environ-
ments, the expectation reduces to

⟨Ô⟩ = ⟨l, 0|Û
†
RÔÛL|0, r⟩

⟨l, 0|Û †RÛL|0, r⟩
=
⟨l, 0|Û †RÔÛL|0, r⟩

λ⟨l|r⟩ . (8.3)

Therefore, the expectation value of local observables can be evaluated by measuring finite
circuits, which can be implemented on a quantum computer. The projective measurement
on |00 . . . 0⟩ at the end of the circuit in Fig. 8.1 (d) has the probability equal to the squared
magnitude of the expectation value |⟨l, 0|Û †RÔÛL|0, r⟩|2. The same applies for the denomi-
nator. Combining this together, one can measure the squared magnitude of the expectation
value |⟨Ô⟩|2. In Appendix E.1, we provide the derivation of the above equations. In the
next section, we will describe the procedure to measure the expectation ⟨Ô⟩, including
both real and imaginary parts.

We note that the outlined procedure can be generalized to evaluating correlation func-
tions of the form ⟨ψ|ÂiB̂i+δ|ψ⟩, where the operators Âi, B̂i+δ act on single qubits and are
separated by δ sites.

8.1.2. Translationally invariant Trotterization

The time evolution of an initial wave function |ψ0⟩ under the action of a Hamiltonian
Ĥ is given by application of the evolution operator to the initial state |ψ(t)⟩ = Ût|ψ0⟩ =
exp(−itĤ)|ψ0⟩. Here, we consider a Hamiltonian acting on a one-dimensional infinite spin–
1/2 chain. When Ĥ is local, i. e., can be written as Ĥ =

∑
i ĥi with all terms ĥi having

a finite support, we can approximate the evolution operator ÛT using a sequential Trotter
decomposition. A first-order sequential Trotterization can be written as

ÛT = (û(δt))k +O(kδt2), (8.4)

where û(δt) =
∏
j ûj(δt), ûj(δt) = exp(iδtĥj) and δt = T/k. A single sequential evolution

operator û(δt) is shown in Fig. 8.2 (a). Due to the sequential decomposition, û(δt) and
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8.1. Methodology

hence ÛT are translationally invariant with a single site unit cell. Starting with a trans-
lationally invariant state, we always need only a single unitary Û(θ) parameterizing the
state as in Eq. (8.1) 3. All these considerations can be generalized to cases with a larger
unit cell.

8.1.3. The time evolution algorithm

Figure 8.2.: (a) Quantum circuit for the overlap between the time-evolved left-represented
state û(δt)|ψL(θt)⟩ at time t and right-represented state |ψR(θt+δt)⟩ at time
t + δt. For illustration, here Nq = 3 is chosen. The orange shaded area
singles out the transfer matrix. (b) The explicit form of the transfer matrix
T̂
{ABC}
{abc} (θt,θt+δt). The capital indices {ABC} form a composite out-index,

similarly {abc} form a composite in-index. The arrow direction indicates the
operation order (time flow). (c) The circuit of the generalized functional L.
The unitary Ŵ (β) acts on the first 2Nq−1 qubits of the |00 . . . 0⟩ state prepared
on 2Nq qubits, then unitary Ô(θ,θ′) acts all qubits and V̂ †(α) acts on the last
2Nq − 1 qubits. (d) General Hadamard test scheme for measurement of the
algebraic value of L.

We now introduce a hybrid quantum-classical algorithm to the perform time evolution
of the l-USC representation. At the time t, we parametrize the state-unitary ÛR/L(t) by
a set of variational parameters θt. The gradients of the parameters are measured on a
quantum computer and the update is performed on a classical computer. Here, for the
sake of concrete notation, we present the even time steps of the algorithm. In these steps,
representation of the wave function flips from left to right. The odd steps are done similarly,
but with flipping from right representation to left.

To perform the time evolution at an even step, one is required to find the closest state
|ψR(θt+δt)⟩ in right representation approximating the time-evolved state û(δt)|ψL(θt)⟩.
The direct measure of the closeness is the fidelity, i. e., squared overlap, between the two
states,

|ξ(t, δt)|2 = |⟨ψR(θt+δt)|û(δt)|ψL(θt)⟩|2.

It is the probability of measuring the state | . . . 000 . . .⟩ at the end of the circuit shown in
Fig. 8.2 (a). This quantity is either 1 or 0 in the thermodynamic limit and cannot be used
for posing the optimization problem. Instead, we define the mixed transfer matrix between

3This is in contrast to the classical iTEBD algorithm, where the evolution unitaries at even and odd
chain sites are applied consequently, which results in two-site unit cell [191, 208].
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Chapter 8. Time evolution of uniform sequential circuits

the two states over indices {abc}, {ABC} as shown in Fig. 8.2 (a-b) with one additional
index coming from the trotterized unitary. To find the closest state, we maximize the
absolute value of the overlap density |λ| with respect to the parameters at the next time step
θt+δt. The squared magnitude of the overlap density |λ|2 is the probability of measuring
the state |00 . . . 0⟩ at the end of the circuit shown in Fig. 8.2 (c).

We solve the maximization problem with a gradient ascent algorithm which requires the
knowledge of environments |l⟩ and |r⟩ and the leading eigenvalue from the mixed transfer
matrix. To obtain the environments |l⟩ and |r⟩, we employ the modified power method. We
describe the procedure of obtaining the right environment |r⟩, while the procedure for the
left environment is similar, apart from the replacement T → T †. The idea of the power
method is to take an initial state |ψ0⟩ and project it onto the leading eigenvector of T̂ by
repeated application of T̂ , because limp→∞(T/λ)p → |r⟩⟨l|. Here, we consider an iterative
algorithm, which is a slight modification of the power method: at each step, we find the new
vector |r(φ′r)⟩ by performing only a single gradient descent step maximizing the overlap
magnitude |λ|2 = |⟨r(φ′r)|T̂ |r(φr)⟩|2 with respect to φ′r. Namely, φ′r ← φ′r + η∇φ′

r
|λ|2,

where η is the learning rate. Alternatively, a gradient-free method, such as Rotosolve [310–
312, 333], could be used. The environment vector is then updated |r(φr)⟩ ← |r(φ′r)⟩ and
is used in the next iteration. At each step, |r(φr)⟩ has a strictly increasing overlap with
the leading eigenvector of T̂ provided a small enough step size η. The method is presented
in Algorithm 2.

Algorithm 2: The power method for an environment

Input : T̂ ,φpr
Output: Environment |r(φr)⟩
φr,φ

′
r ← φpr ▷ from the previous step ;

while not converge do
Measure λ = ⟨0|Ê†r (φ′r)T̂ Êr(φr)|0⟩ ;
Measure ∇φ′

r
λ ▷ See Eq. (8.5) ;

∇φ′
r
|λ|2 = 2Re

[
λ∗∇φ′

r
λ
]

;
φ′r ← φ′r + η∇φ′

r
|λ|2 ;

φr ← φ′r ;
end
Return |r(φr)⟩ = Êr(φr)|0⟩ ;

Next, we show in Algorithm3 how to perform a time evolution step using gradient ascent
methods with the environments we obtained. The algorithm uses a nested variational
approach, in which left- and right-environments are variationally optimized between the
consecutive gradient descent steps. Both algorithms are run until the change of |λ|2 between
two consecutive iterations becomes smaller than 10−12.

Note that we can use the algorithm to find the opposite representation of the same wave
function if the time evolution operator is taken to be the identity. The algorithm proposed
here resembles the time evolution algorithm for a finite size system [4, 315] and for an
infinite system [213]. As the main difference, in this work the (mixed) transfer matrix is
constructed as the mixed representation ⟨ψR(θ)|ψL(θ

′)⟩. The environments of the transfer
matrix are represented as quantum states parametrized with layered sequential circuits.
We study the effect of such approximation in Sec. 8.2 (B).

8.1.4. Required measurements

To implement the time-evolution Algorithm 3 in practice, one has to measure the algebraic
value of the overlap λ = ⟨0|Ê†r (φ′r)T̂ Êr(φr)|0⟩, of its derivative with respect to the pa-
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8.1. Methodology

Algorithm 3: Time evolution algorithm for l-USC
Input : θt,φtr,φtl
Output: New parameters θt+δt after one evolution step
θt+δt ← θt ;
φr,φl ← φtr,φ

t
l ;

while not converged do
φr ← Environment(T̂ (θt,θt+δt),φr);
φl ← Environment(T̂ †(θt,θt+δt),φl);
|r⟩ ← Êr(φr), |l⟩ ← Êl(φl);
λ = ⟨l|T̂ (θt,θt+δt)|r⟩/⟨l|r⟩;
∇θt+δt

|λ|2 = 2Re
[
λ∗∇θt+δt

λ
]

; ▷ See Eq. (8.5) ;
θt+δt ← θt+δt + η∇θt+δt

|λ|2;
end
return θt+δt;

rameters of the environment ∇φ′
r
λ = ⟨0|∇φ′

r
Ê†r (φ′r)T̂ Êr(φr)|0⟩, and of its derivative with

respect to the state unitary

∇θt+δt
λ =

⟨l|∇θt+δt
T̂ (θt,θt+δt)|r⟩
⟨l|r⟩ . (8.5)

We prove the latter formula in Appendix E.1.3. Notably, the implicit dependency of the
right- and left-environments on θt+δt gives no contribution to the gradient. These expecta-
tion values can all be expressed in terms of a general overlap functional L[V̂ (α), Ô(θ,θ′), Ŵ (β)] =
⟨0|V̂ †(α)Ô(θ,θ′)Ŵ (β)|0⟩. In our case, V̂ (α) and Ŵ (β) are the environment unitaries or
their derivatives, while Ô(θ,θ′) is the transfer matrix or its derivatives. We note that all
mentioned unitaries’ derivatives are also unitary due to the specific parametrization of the
two-qubit gates (for details, see Appendix E.2).

Absolute and algebraic values of this functional can be measured on a quantum computer.
First, the square of the magnitude |L|2 is given by the probability of projection onto the
|00 . . . 0⟩ state in the circuit in Fig. 8.2 (c) [334]. The algebraic value of the expectation L
and its derivative ∇φ′

r
L can be measured within the Hadamard test procedure [335] shown

in Fig. 8.2 (d). We denote |0̄⟩ = |00 . . . 0⟩ and the quantum state before the ancilla qubit
measurement reads

|ψM ⟩ =
1

2
|0⟩ ⊗

(
|0̄⟩+ eiφV̂ †(α)Ô(θ,θ′)Ŵ (β)|0̄⟩

)

+
1

2
|1⟩ ⊗

(
|0̄⟩ − eiφV̂ †(α)Ô(θ,θ′)Ŵ (β)|0̄⟩

)
. (8.6)

The probability difference in measurement over the ancilla qubit yields

p(|0⟩)− p(|1⟩) = Re
[
eiφ⟨0̄|V̂ †(α)Ô(θ,θ′)Ŵ (β)|0̄⟩

]
. (8.7)

This scheme can also be used for obtaining algebraic values of the observable expectation
⟨O⟩ introduced in Section II. A.
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Figure 8.3.: Simulations of time evolution using l-USC with MU = 1 and exact envi-
ronment for the Hamiltonian in Eq. (8.8) with g/J = 1.0 and h/J = 0. (a)
Expectation value of ⟨σ̂z(t)⟩ using l-USC with different values of Nq. Inset: the
difference in the single-site density matrices between the quasi-exact iTEBD
simulation and optimization of l-USC. (b) The number of parameters required
to reach time t∗ with the fidelity density at least F = 1 − 10−4. The black
crosses represent the standard iTEBD approach with the black dashed line
showing an exponential fit. The blue markers show the results for l-USC,
while the line shows the linear fit. Left inset: the reachable time t∗ under
the condition F ⩾ 1 − 10−4 as a function of Nq. The dashed line shows a
linear fit. Right inset: error in fidelity density 1 − F for different Nq. (c)
Entanglement entropy as a function of evolution time tJ compared with the
quasi-exact result. The horizontal dashed lines mark the theoretical maximum
entanglement entropy levels (Nq − 1) log 2.

8.2. Results

To benchmark the proposed algorithm, we simulate the quenched dynamics of the transverse-
field Ising model with the longitudinal field

Ĥ = J
∑

i

σxi σ
x
i+1 + g

∑

i

σzi + h
∑

i

σxi (8.8)

over an infinite spin–1/2 chain. The initial wave function is taken as a fully-magnetized
state |ψ0⟩ = | . . . 000 . . .⟩ in the σz basis. We use a fourth-order Trotterized iTEBD sim-
ulation with χ = 1024 uniform MPS and δtJ = 10−2 as a quasi-exact reference labeled
iTEBD in all figures. In the following, we simulate the algorithm on a classical computer
to study the properties of the l-USC ansatz. The complexity of the l-USC ansatz is con-
trolled by MU and Nq. The complexity of measuring local observables and running the
time-evolution algorithm depends additionally on ME , i. e., the accuracy of approximating
the environments. In Sec. 8.2.1, we study the effect of varying Nq and MU in simulating
the time evolution with exact environment obtained by exact diagonalization of the trans-
fer matrix. In Sec. 8.2.2, we study the accuracy of approximating an exact environment
with a layered circuit with finite ME , derive the relation between the required ME and Nq

and perform the full realistic simulation with both state and environment presented in the
sequential form. Finally, in Sec. 8.2.3, we demonstrate measuring the evolution of physical
observables on a QPU with a classically optimized l-USC circuit.

8.2.1. Layered state unitary, exact environment

As the first step, we study the performance of the l-USC ansatz using exact environments
obtained through direct diagonalization of the transfer matrix, and perform the algorithm
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outlined in Algorithm 3. In Fig. 8.3, we show the simulation results obtained with MU = 1
and various Nq.

In Fig. 8.3 (a), we plot the evolution of the local magnetization ⟨σz(t)⟩ and observe that
the time of deviation from the quasi-exact solution increases with Nq. In the inset, we plot
the Frobenius norm squared of the difference in the single-site density matrices between
the quasi-exact state and the l-USC, i. e. ∥ρ − ρexact∥2. The difference shows fluctuating
behavior as a function of tJ , but at some point shows rapid growth. This fast growth
coincides in evolution time t with the noticeable discrepancy in ⟨σz(t)⟩.

To quantify the representation capacity of l-USC, we define the reachable time t∗ of the
given ansatz as the time when the error in fidelity density with the quasi-exact (iTEBD)
state crosses the threshold value 1−F = 10−4. Here, F is the fidelity density, i. e., squared
overlap per unit cell, between the l-USC state and the iTEBD wave function. In Fig. 8.3 (b),
we plot the number of parameters in a given circuit against the reachable dimensionless
time t∗J . We see that within l-USC, the required number of parameters grows linearly
with the reachable time. Note that, in contrast, the number of parameters required to
store a d-USC state grows exponentially in the reachable time t∗J . Therefore, the l-USC
ansatz defines a sub-manifold of uniform MPS that is relevant for representing states under
time evolution. Namely, the l-USC is “sparse” as compared to d-USC (uniform MPS) and
requires exponentially fewer parameters.

In practice, one does not have access to the exact state and, therefore, no access to
the error in fidelity. Instead, one can utilize the leading transfer matrix eigenvalues {λi}
obtained at all steps of the time evolution and define the accumulated error measure
M(t) = 1−∏

i<t |λi|2 to monitor the error and understand whether the simulation result
is reliable. In Appendix E.4, we demonstrate that this measure follows closely the true
infidelity 1−F and thus can be used for assessment of the optimization quality.
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Figure 8.4.: Fidelity density between the quasi-exact simulation and the time-evolved l-
USC state with Nq = 6 and varied number of layers MU . Inset: the entangle-
ment entropies obtained within optimization of the l-USC circuit at Nq = 6.

Lastly, in Fig. 8.3 (c) we show entanglement entropy as a function of tJ . The deteriora-
tion of wave function quality, as shown in Fig. 8.3 (a-b), is clearly connected to saturation
of capability of a circuit with given Nq to encode the linearly-growing entanglement en-
tropy of the system. An l-USC of given Nq could encode at most Sent. ⩽ (Nq − 1) log 2
entanglement entropy. We show in Fig. 8.3 (c) that the entanglement grows linearly with
time up to saturation. We observe that for Nq = 2 and 3 the saturated entanglement
entropy is close to the theoretical bound and for Nq ⩾ 4 the entanglement entropy does
not reach the theoretical bound.
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To study the effect of increasing the MU in the layered sequential unitary decomposition,
in Fig. 8.4 we compare the quality of time-evolved l-USC ansätze with 1 ⩽ MU ⩽ 4.
Strikingly, we observe that increasing MU leads to negligible improvement in the reachable
time t∗J , as compared with the effect of Nq. Similarly, increasing MU does not lead to
a significant change in the entanglement entropy of the time-evolved l-USC ansatz. In
Appendix E.3, we demonstrate that time-evolution of the l-USC ansatz at MU = 1 leads
to the same wave function accuracy, as optimization of the full dense d-USC ansatz at
χ = 2Nq−1.
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Figure 8.5.: (a) Maximum (over evolution time) error of approximating the exact environ-
ment by the ME–layered environment throughout the full simulation shown
in Fig. 8.3 (b). The black dashed line shows the environment approximation
error at ME = Nq − 1. (b) Expectation value ⟨σ̂z(t)⟩ obtained within the full
algorithm of time-evolution of l-USC with MU = 1 and layered environment
with ME = Nq − 1. Left inset: the reachable time t∗ of simulations with the
exact environment and the layered environment with ME = Nq − 1. The lines
show linear fits. Right inset: error in fidelity density 1−F for different Nq.

8.2.2. Optimization with a layered environment

In the previous section, we have shown that the state-unitary U can be approximated by
the layered quantum circuit using exponentially fewer parameters than the d-USC ansatz.
In a real simulation, however, the environments should also be approximated. We now
investigate if the environments |l⟩, |r⟩ can also be represented by layered quantum circuits
using fewer parameters. To address the question, we take the exact environments obtained
during the MU = 1 simulation shown previously in Fig. 8.3 (b) and approximate them with
the ME–layer sequential circuits. The approximation is based on an alternative update
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with polar decomposition outlined in AppendixE.2. We plot the approximation error in
Fig. 8.5 (a).

We observe that, for a fixed MU = 1, the environment approximation error increases
upon increasing Nq, while the error decreases with increasing ME . We set a threshold 10−4

in the approximation errors for the environment, which is motivated by the respective
error threshold in the fidelity density. From Fig. 8.5 (a), we see that the error in the
environment approximation remains strictly below 10−4 during the whole time evolution,
if it is approximated using ME = Nq − 1 layers. It remains an open question on whether
the approximation holds for larger Nq.

When our observation holds, this allows one to determine the number of variational pa-
rameters to approximate the environment. SinceME ∝ Nq, Nq ∝ t∗J (see Fig. 8.3 (b)), and
each layer of the sequential circuit for the environment contains 2Nq − 2 two-qubit gates,
representing the environment requires O(t2) or O(N2

q ) two-qubit gates. By contrast, rep-
resenting the environment exactly using dense unitary requires O(e2Nq), or, equivalently,
O(e2tJ) parameters. The fact that we can approximate the environment with quantum
circuits efficiently makes the overall algorithm scaling polynomially in time tJ instead of
exponentially. We note that although a priori the complexity of the environment approx-
imation for the l-USC ansatz is not known, there exist exact solutions representing the
environments for an infinite brickwall circuits [289, 331]. These exact solutions are formed
by contracting O(N2

depth) number of gates, where Ndepth is the depth of the brickwall
circuit, which is consistent with our finding here.

Using the condition ME = Nq − 1, we simulate classically the time evolution algorithm
using l-USC withMU = 1, different Nq, and layered sequential circuits for the environment.
We plot the ⟨σz⟩ expectation value, the reachable time (tJ)∗ as a function of Nq, and the
error in the fidelity density 1 − F in Fig. 8.5 (b). The reachable time is again determined
by the threshold value F = 1 − 10−4. As shown in the left inset, we observe slightly
smaller reachable times, compared to the simulation with the exact environment, due to the
accumulation of the approximation errors and approximated environment. Nevertheless,
the reachable time (tJ)∗(Nq) retains the linear scaling with Nq.

8.2.3. Simulation on QPU

Given the available cloud-based QPU from IBM-Q, we implement the circuit shown in
Fig. 8.1 (d) for Nq = 2 and measure |⟨σz(t)⟩|2 as the probability of projecting onto the
|00 . . .⟩ state. The parameters of the environments and states are optimized on a classical
computer. Unfortunately, the available hardware does not allow to use controlled two-
qubit gates in large amounts, since they require decomposition into several non-controlled
two-qubit gates. Due to error and noise levels, this is out of reach for the available device.
This prevents us from measuring the algebraic value of ⟨σz(tJ)⟩ using the Hadamard test.
Nevertheless, the numbers of qubits and gates required to run the algorithm until the time
t∗ scale linearly and quadratically, respectively with t∗. Depending on the device connec-
tivity, an additional constant to linear factor in t∗ overhead may occur in implementing
the controlled-unitary operation. Therefore, with improved read-out and gate noise level,
we expect this algorithm to be usable on the NISQ devices. For the measurement of the
squared magnitude, we consider two parameter sets: g = 0.2 J , h = 0 and g = 0.8 J ,
h = 0.05 J and Nq = 2, MU = ME = 1. To mitigate the device noise, we employ the
randomized circuits averaging introduced in Ref. [4] (for details, see Appendix E.6), and
readout error mitigation.

In Fig. 8.6, we include data obtained from various sources. This includes the quasi-exact
simulation (iTEBD), the classical simulation of the algorithm (l-USC), a simulation of
the magnetization measurement on a fault-tolerant device using a finite number of circuit
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Figure 8.6.: (a): Expectation value of |⟨σ̂z(t)⟩|2 obtained by various methods: quasi-exact
(iTEBD), the presented algorithm with Nq = 2,MU = ME = 1 (l-USC),
simulation of an ideal quantum device (simulator), and on the real hardware
ibmq-jakarta (QPU) at h/J = 0, g/J = 0.2. (b): h/J = 0.05, g/J = 0.8.

‘shots‘ (simulator), and the direct measurement on a real hardware device ibmq-jakarta
(QPU). Due to the small expressive power of the quantum circuit at Nq = 2, MU =ME =
1, the exact and the simulated time evolution algorithm results agree only up to tJ = 1.4
in the former and 0.8 in the latter cases. However, the quantum hardware measurement
shows a good degree of agreement with the classical simulation of the l-USC ansatz and
the simulation of QPU on a classical computer.

8.3. Discussion

In this work, we introduced and studied a hybrid quantum-classical algorithm for time evo-
lution based on the l-USC ansatz, which is a generalization of the single-layer sequential
quantum circuit motivated by uniform MPS. Unlike previous works [213, 214, 289], we con-
struct the transfer matrix in the mixed representation. In this formalism, the environments
are pure states instead of density matrices. We represent the environments by quantum
circuits and determine the variational parameters of these circuits using gradient descent.
Based on the result from classical simulation, we observe that the number of parameters
required to accurately represent the state at a given time t scales linearly with t, which
gives an exponential advantage compared to classical algorithms based on MPS. While
such scaling is anticipated based on the theoretical prediction [295], more interestingly,
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we observe numerically that the number of parameters required to represent the environ-
ment scales quadratically in the evolution time. This suggests that while the ansatz has
a linearly scaling number of parameters with the evolution time, the overall algorithm for
simulating the time evolution of an infinite system has complexity scaling quadratically in
the evolution time using quantum computers with a finite number of qubits. Importantly,
by working directly in the thermodynamic limit, complexity does not scale with the system
size L which is in contrast with the O(Lt) complexity scaling required for a finite system
simulation [4]. We emphasize that unlike Ref. [4, 213], we consider the multi-layered de-
composition of the state-unitary with MU ⩾ 1. However, as we have seen from Fig. 8.3 (b),
Fig. 8.4, and Appendix E.3, considering MU > 1 does not lead to any sizable improvement
in the ansatz performance for time evolution.

We note that we can also perform imaginary time evolution with the proposed algorithm
with the price of one additional ancilla qubit [336] to realize the non-unitary gates in the
transfer matrix. One straightforward application is the study of ground states for infinite
systems. Important questions remain on whether one would observe similar polynomial
advantages [212] in representing the ground state using l-USC for an infinite system, and
on whether the environments of the ground states can be efficiently represented as quantum
circuits. Another future direction is to consider the generalization for quantum systems and
circuits in two dimensions. For instance, recently the formal generalization of sequential
quantum circuits to finite two-dimensional (2D) systems is proposed [156]. The study of
ground states of finite 2D systems is performed using quantum circuits of isometric tensor
network states [155]. We believe it will be therefore beneficial to generalize the l-USC
ansatz and extend the algorithm to infinite two-dimensional systems.
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9. Conclusion and outlook

In this thesis, we studied classical and quantum algorithms for simulating quantum many-
body dynamics. In part I of the thesis, we focused on classical algorithms and showed
the efficient simulation with isometric tensor network states (isoTNSs) on a finite-by-
finite and finite-by-infinite two-dimensional (2D) geometry. While the tensor-network-
based methods are restricted by entanglement, we showed that the neural-network-based
methods are not restricted by entanglement but still have exponential scaling in the number
of parameters in simulating global quench for chaotic Hamiltonian. In part II of the
thesis, we focused on quantum algorithms and showed the potential exponential quantum
advantage in simulating both finite and infinite one-dimensional (1D) systems.

In this concluding chapter, we remark on the key results of each part of this thesis.
Following the remark, we expand the discussion at the end of each chapter and provide an
overview of the remaining open questions and how we might move forward.

9.1. Part I: Classical simulation with isometric tensor network
states

Summary:

In the first three chapters of Part I, we focused on the classical simulation using tensor net-
work methods. We have briefly reviewed the 1D and 2D tensor network states (TNSs) and
the isoTNSs. IsoTNSs generalize the matrix-product state (MPS) isometric form to higher
dimensions, and the Moses move (MM) [75] serves as an approximate numerical method
for moving the orthogonality center. The well-known algorithms for 1D MPSs, i.e., time-
evolving block decimation (TEBD) and density matrix renormalization group (DMRG),
can be generalized to 2D isoTNSs. In Chapter 3, we first revisited the MM algorithms and
showed better results in sequential MM when directly minimizing the truncation error in
the tripartite decomposition. We then introduced the first main result of this part, namely,
a 2D generalization of the DMRG algorithm (DMRG2) for ground state search. Similar to
the 2D generalization of the TEBD algorithm (TEBD2), the DMRG2 utilizes MM to move
the orthogonality center around and perform tensor updates on the orthogonality center.
We observed similarly the DMRG2 algorithm is also affected by the MM error.

We obtained the second main result of this part with the TEBD2 algorithm, demonstrat-
ing the ability to simulate 2D real-time evolution. The accessible time scale and accuracy
of the TEBD2 algorithm are restricted by the entanglement entropy and the MM error. We
simulated the dynamics of the locally perturbed ground state of the transverse field Ising
model on a square lattice and the Kitaev model on a honeycomb lattice and computed
the time-dependent correlation functions. By Fourier transforming the time-dependent
correlation functions, we obtained the dynamical spin structure factor, which shows the
low-energy spectral properties of the underlying systems.

In Chapter 4, we gave the third important result of this part, generalizing the MM
on finite systems to infinite systems. The infinite Moses move (iMM) splits an infinite
1D wavefunction into the infinite projector column and the new infinite 1D wavefunction.
The iMM first iteratively solves the tripartite decomposition and then minimizes the error
of the approximate tripartite decomposition at the fixed point. With the iMM, we can
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generalize the study of 2D isoTNSs on finite systems to finite by infinite systems. Since we
consider only the open boundary condition, the systems are defined on infinite strips. We
showed that we could compute physical observables efficiently and generalize the TEBD2

algorithm to an infinite TEBD2 algorithm.

Outlook:

• Accessing excited states, excitation spectrum, and the entanglement en-
tropy: Perhaps the most interesting outlook is to utilize the isometric structure fur-
ther and explore the possibility of accessing excited states and entanglement entropy.
For a finite strongly disordered system, we can modify the DMRG algorithm [337] to
access the highly excited state that has a large overlap with the given initial state.
This so-called DMRG-X algorithm relies on the isometric structure of the MPS. We
can similarly modify the DMRG2, and potentially study the highly excited state in
2D. For finite critical systems, it has been shown that the excitation spectrum of
the effective Hamiltonian during the DMRG sweep accurately captures the exact
low-energy spectrum [338]. It is an interesting application to explore the generaliza-
tion in 2D with DMRG2. Preliminary results of both directions above suggest it is
indeed possible to access the excited state or excitation spectrum, limited again by
the finite MM error. Finally, an additional application given the isometric structure
is the possibility of reading out the bipartite entanglement entropy of the system.
Consider the orthogonality column without physical indices, which corresponds to
a column encoding the Schmidt spectrum information. It would be interesting to
see if we can compute the entanglement entropy using the recently developed tensor
network algorithm [339].

• Infinite boundary contraction: In Chapter 4, we showed that one way to evaluate
the expectation value of local observables of isoTNSs on an infinite strip is to find
the fixed point of the transfer matrix by the finite boundary matrix-product operator
(bMPO) method. On the other hand, it is possible to perform boundary contraction
in the other direction using an infinite bMPO [132]. With such contraction, we can
generalize the variational uniform matrix-product state (VUMPS) [340], algorithm
for finding ground states with 2D isoTNSs.

• Incorporating triad tensors or anisotropic tensors: Some recent develop-
ment in higher-dimensional tensor network algorithms, namely, the triad tensor net-
works [181] and anisotropic tensor renormalization [341], present modified algorithms
with lower memory footprint and computation cost. These advancements are pri-
marily based on low-rank tensor decomposition, for example, representing a rank-4
tensor by the approximate contraction of two rank-3 tensors. It has been shown that
trading off the representation power with lower computation cost and increasing the
overall bond dimension could lead to more accurate results [342–344]. The idea can
be naturally incorporated into the isoTNS framework by decomposing the rank-5
tensor into contraction of lower rank tensors. The modification can lead to a MM
with complexity D6, which may offer potential advantages over the original MM.

• Pushing the numerical limits: Despite the better result in tripartite decompo-
sition by minimizing truncation error, we refrained from it and instead minimized
the Rènyi-1/2 entanglement entropy in all the works due to stability and conver-
gence issues. Potentially, finding a stable and efficient way to directly minimize the
truncation error in tripartite decomposition could lower the MM error, which is the
current limitation of all isoTNSs algorithms. While we can continue pushing the
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9.2. Part I: Classical simulation with neural-network quantum states

limit of isoTNSs algorithms by increasing the bond dimension, perhaps another im-
portant aspect is to put a comparison with generic TNSs algorithms. Assuming the
bond dimension on the orthogonality hypersurface η scales linear with the overall
bond dimension D, the MM and TEBD2 have the complexity D7, which is between
the complexity of the simple update (SU) D6 and full update (FU) D10 methods of
general TNSs. In this respect, TEBD2 algorithm is an efficient algorithm that pro-
vides insight into the dynamics and ground state properties, while having different
restrictions compared to the SU method. While the SU method is systematically
biased (even with increasing bond dimension) by the trivial boundary approxima-
tion, isoTNSs-based methods are unbiased as we observed vanishing MM error with
increasing bond dimension. A yet-to-be-answered question is to understand whether
isoTNSs can reach the same accuracy as TNSs under the same amount of computa-
tion costs.

• Open questions: The above discussion leads to the important open question: Can
isoTNSs efficiently represent local gapped Hamiltonian in 2D? The question remains
open even for general 2D TNSs [41]. So perhaps, we can focus on the question: What
class of states can isoTNSs efficiently represent? It has been shown [152] that 2D
string-net liquids states [153] admit exact isoTNSs representation. Further study in
this direction would facilitate our understanding of isoTNSs. Another direction is to
study the finite entanglement scaling of infinite isoTNSs on an infinite strip. In this
regard, new algorithms are required to access the bipartite entanglement entropies
for a cut along the finite direction. We leave this as future work.

9.2. Part I: Classical simulation with neural-network quantum
states

Summary:

In the last chapter of Part I, we considered simulating quantum dynamics with neural-
network quantum states (NQSs). As a newly developed numerical method, NQSs have
shown comparable results for simulating quantum many-body ground states and dynam-
ics. At the same time, less is known about the limitation of NQSs. Based on numerical
simulation, we studied the number of parameters required to approximate the quantum
state undergoing global quench dynamics to a given accuracy. For a fixed system size, we
found that the required number of parameter scales exponentially with the evolution time.
Moreover, we found the coefficient of the scaling is problem dependent but is not affected
by the network architecture over a wide range of different design choices: shallow and deep
networks, small and large filter sizes, dilated and normal convolutions, with and without
shortcut connections.

Outlook:

With the remarkable progress and surprising performance in large neural networks [267,
345, 346], we believe we are just at the beginning page of numerical simulations based on
NQSs, and we anticipate more exciting development is yet to come. While incorporating
the autoregressive property [78] provided us with stable training with large models, recent
developments, for example, the quantization [347] or improving optimizer [348], may push
this even further. One exciting direction of having large models is the possibility of encoding
an ensemble of quantum states [349]. Perhaps we are close to our chatGPT moment. While
the physics community can benefit from learning new developments in the computer science
community, hopefully, the reverse also holds true that insight from physics can also help
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train larger neural networks more efficiently [346, 350]. In the following, we list the outlook
and open questions of NQSs.

• Simulating dynamics of 2D systems: Although restricted by entanglement
growth, tensor network algorithms give access to short-time dynamics efficiently and
accurately and are so far the best simulation methods for 1D quantum systems. In
2D, the tensor network algorithms for simulating real-time dynamics are less ex-
plored [64, 148, 351, 352], while algorithms based on NQSs have shown competitive
results recently, such as simulating quench dynamics [77, 353] and resolving spec-
tral functions [354]. It is argued that the result is not limited by the expressivity
of the NQSs but instead by the instability of the variational Monte Carlo (VMC)
method [77, 270]. The study of expressivity and instability could benefit from each
other. We think an important step is to extend our study to 2D and understand the
restriction and scaling of the NQSs in representing time-evolved states. Resolving
the instability and expressivity issue may bring a great step forward in simulating
2D dynamics.

• Combining neural autoregressive quantum states (NAQSs) and isoTNSs:
As both NAQSs and isoTNSs admit direct sampling [355], it is natural to ask whether
we can combine the two ansätze together. On the one hand, NAQSs parameterize the
conditional probability amplitudes and describe autoregressive quantum states. On
the other hand, the isometric tensors in isoTNSs can be interpreted as conditional
probability amplitudes over physical and virtual degrees of freedom,

Bσi
mi−1,mi

= ψ(σi,mi|mi−1) (9.1)

The probability amplitude of an isoTNS is then interpreted as the marginalized
probability amplitude from the joint probability amplitude, including both physical
and virtual degrees of freedom,

ψσ1σ2...σN =
∑

m1,m2,...

ψ(σ1, σ2, . . . , σN ,m1,m2, . . . ,mN−1). (9.2)

Taking this subtle difference into account, we can consider the neural autoregressive
tensor network states (NATNSs)

ψσ1σ2···σN =
∑

m1,m2,...

ψ(σ1,m1)ψ(σ2,m2|m1, σ1) · · ·ψ(σN |mN−1, σ1, σ2, . . .), (9.3)

where each conditional probability amplitude over the physical and virtual degrees
of freedom is parameterized and represented as part of the neural networks. The
normalization and direct sampling can be ensured by imposing the condition that

∑

σi,mi

ψ(σi,mi|mi−1, σ1, . . . , σi−1)ψ∗(σi,mi|m′i−1, σ1, . . . , σi−1) = δmi−1,m′
i−1
. (9.4)

A slightly different idea to combine NAQSs and TNSs has been proposed very re-
cently [356], where a sum of TNS and NATNS is considered. Moreover, the normal-
ization is not enforced by the isometric condition but by explicit normalization. The
work [356] gives state-of-the-art result for computing 2D J1-J2 ground state energies.
It would be interesting for future work to compare these two different approaches.

• Infinite systems: One unexplored direction is to study infinite translationally-
invariant systems with NQS. Related ideas have been explored, including iterative
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retraining [357] and studying the connection of the MPS and the recurrent neural
network (RNN) [358]. But the last missing piece is the formalism of the fixed point of
the RNN functions [359], which may enable the study of infinite systems with NQS.
If such formalism worked out to be valid, an interesting question would be to study
the critical states in the thermodynamic limit by increasing the widths or depths of
the networks, similar to the finite entanglement scaling of MPSs [194–196].

• Open questions: Finally, it is fair to say the question remains open, What deter-
mines the complexity of neural networks in representing quantum many-body states?
Is it more challenging to represent the ground state at a critical point?? Concerning
global quench dynamics, what controls the growth rate of the required parameters?
Perhaps a systematic study of potential factors including, finite energy density, en-
tanglement growth, proximity to integrable models, and others may provide us with
clues. Lastly, more broadly speaking, a challenging question is could we prove the
generic classical hardness of simulating dynamics of chaotic quantum Hamiltonian?

9.3. Part II: Quantum simulation with sequential quantum
circuits

Summary:

In Part II, we turned our attention to quantum algorithms. It turns out that isoTNSs
discussed in the Part I of the thesis are equivalent to sequential quantum circuits [169,
170, 288]. In Chapter 6, we first discussed the equivalence between isoTNSs and sequential
circuits with multi-site unitaries and introduced the sparse sequential circuits ansätze,
consisting of two-site unitaries approximating multi-site unitaries. The sparse sequential
circuits ansätze is equivalent to the known quantum MPS (qMPS) ansatz in 1D, and more
broadly, it belongs to the class of quantum circuit tensor network (QCTN) ansätze [212].
We showed that the sparse sequential circuits ansätze compared to the sequential quantum
circuits (or isoTNSs) require exponentially fewer parameters to represent the time-evolved
states. We observed this scaling for finite systems in Chapter 7 and for infinite systems in
Chapter 8. The framework proposed in Chapter 8 draws inspiration from tensor network
algorithms, offering essential building blocks for implementing quantum algorithms for
infinite systems on a quantum device with a finite number of qubits. Throughout this part,
we also discussed hybrid quantum-classical algorithms for simulating the time evolution of
finite and infinite 1D systems.

Outlook:

While our work presents a first step towards understanding the scaling of uniform sequential
circuits representing time-evolved states, more careful scaling analysis [331] on uniform
sequential circuits is still yet to be explored. Moreover, representing environments, i.e.,
the fixed point of the transfer matrix, requires a number of parameters scaling quadratically
with the evolved time. The nature of this scaling also requires further study. Given the
equivalence of isoTNSs and sequential circuits and our discussion over 2D isoTNSs, it is
natural to consider generalizing the (sparse) sequential circuits to 2D. Indeed such an idea
has been considered recently [155, 156]. It would be challenging but interesting to study
the scaling of such ansätze for representing ground state and time-evolved states. Lastly,
as the gate and measurement fidelity of quantum devices continues to advance, the long-
term goal would be to show that we could simulate longer-time dynamics beyond the reach
of classical devices. In the short term, it may be possible that we can explore the time
evolution algorithm with noisy intermediate scale quantum (NISQ) devices by combining
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the classical shadow method [360], as have been demonstrated for ground state search and
variational circuit recompilation [361].

Some open questions remain. Numerous quantum algorithms simulating the dynamics or
the ground states of many-body quantum systems have been proposed, yet fewer quantum
algorithms have been suggested for preparing excited states or thermal states. The recent
development of using isoTNSs to represent thermal states [101] indicates that we can
also prepare thermal states with sequential quantum circuits. This leads to a series of
compelling questions: What is the quantum complexity of thermal states? Do we expect a
potential exponential quantum advantage in preparing thermal states? It is possible that we
can modify the hybrid quantum-classical algorithm for imaginary time evolution proposed
in Chapter 7 for thermal states. If so, How would such an algorithm compare to other
algorithms preparing thermal states [106–108, 362]?

In conclusion, this ongoing exploration of quantum algorithms continues to shape the
future of quantum computing.
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A. Appendix IsoTNS

A.1. Optimization of isometries

Here, we provide an overview of the optimization problems with isometries. In the most
general form, the problem we are concerned with is the following. GivenW ∈ Cm×n,m ≥ n
and f :W → f(W ) ∈ R, we want to find the optimal W opt leading to extreme of f(W opt)
under the isometry constraintW †W = 1. These problems show up commonly in algorithms
for isometric tensor networks and quantum circuits.

The simplest case for this type of problem is when f is a linear function and with
W restricted to be real-valued, i.e. orthonormal matrix. The problem is known as the
orthogonal Procrustes problem and has close-formed solutions. We review the solution
and the proof of this type of problem in Appendix A.1.1. For general cases where f is a
non-linear function, one could consider to linearize the function and update W in a similar
fashion as in the linear case. This is also known as the Evenbly-Vidal algorithm, which we
review in Appendix A.1.2. However, such an algorithm does not converge to the extrema in
general. As a result, we review the standard gradient descent methods over isometries [171]
used in our previous work [75] and this work in Appendix A.1.3.

A.1.1. Orthogonal Procrustes problem

The orthogonal Procrustes problem [157] is an optimization problem of finding the or-
thonormal matrixW ∈ Rm×m which best transforms matrix A ∈ Rl×m to matrix B ∈ Rl×m,
that is

argmin
W

∥AW −B∥F

Expanding out the expression, the problem is equivalent to

argmax
W

Tr[WM ]

where M = B†A and M ∈ Rm×m.
More generally speaking, the optimization problem could be stated as finding the maxima

of the function f linear : W → f linear(W ) ∈ R, where f linear is a function linear in W . Such
a problem permits an exact solution. We first derive the maximum value of the function
f , and show the solution which gives the maximum value.

We first find out the upper bound for the quantity Tr[WM ]. Suppose the SVD of M
gives M = USV †,

Tr[WM ] = Tr[WU
√
S
√
SV †] = Tr[(

√
SU †W †)†(

√
SV †)]

= ⟨
√
SU †W †|

√
SV †⟩

Since the matrix inner product induces the Frobenius norm. By the Cauchy-Schwarz
inequality, we have

Tr[WM ] ≤ ∥
√
SU †W †∥F ∥

√
SV †∥F = ∥

√
S∥F ∥

√
S∥F

= Tr[S].
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We use the invariance of the Frobenius norm under orthonormal transformation in the first
equality. The result suggests that the quantity Tr[WM ] is upper bounded by Tr[S]. At
the same time, we see that by choosing orthonormal matrix W = V U †, we could have the
maximum value Tr[S],

Tr[WM ] = Tr[V U †USV †] = Tr[S] (A.1)

Therefore, the solution to the optimization problem is given by W opt = V U †.
The generalized version of the problem consists of a matrix M of dimension (n,m),

m ≥ n, which could be complex-valued, M ∈ Cn×m. Instead of optimizing over an
orthonormal matrix, we are now looking for an isometry W ∈ Cm×n which maximizes
the absolute value |Tr[WM ]|. Note that this is equivalent to maximizing Re

[
Tr[WM ]

]

since one can always absorb the phase factor inside the isometry. A similar derivation
from the above holds. The solution is then given as W̃ opt = Ṽ U † from the reduced SVD
M = USṼ †, where U, S, Ṽ † are of dimension (n, n), (n, n), (n,m). Ṽ is now isometry.
That is Ṽ †Ṽ = I, and Ṽ Ṽ † = Pn.

Note that with a matrix M of dimension (n,m), m > n, the solution is an isometry of
dimension (m,n). That is, there is a fixed direction for the isometry tensor. In some cases
in the isoTNSs algorithms, we require the isometry tensor to be in a different direction.
To satisfy the isometric condition needed in the algorithm, one must first truncate the
surrounding tensors to having dimensions n = m and then solve for the unitary matrix W .

A.1.2. Evenbly-Vidal algorithm

In general, the optimization problems with isometries are nonlinear, such as the disen-
tangling problem in the tripartite decomposition or finding the ground state with MERA.
The optimization problem then is to find the isometry matrix W ∈ Cm×n, m ≥ n, which
minimizes the function f : W → f(W ) ∈ R. There is no exact solution in general. It was
proposed by Evenbly and Vidal [158, 159] to linearize the function f(W ) and apply the
exact solution from the previous section as an iterative update.

The idea of linearizing the function is to keep all the tensors fixed except the one being
optimized. One could rewrite the function as,

f(W ) = Tr[WEW ] + constant (A.2)

where EW is the environment tensor of W which in general may also depend on W .
Evenbly and Vidal proposed to update the isometry W ← W ′ = V U † by treating EW as
if it were independent of W and EW = UΣV †. The algorithm continues iteratively until
convergence.

The algorithm has been generalized to cases where the environment tensor cannot be
written easily as a tensor network [175]. Instead of obtaining the environment tensor EW
by tensor-network contraction, one can compute the derivative with respect to W i.e.,
∂f
∂W . The algorithm consists of iterative update of the isometry W ← W ′ = V U † until
convergence, where ∂f

∂W = UΣV †.
This algorithm could be viewed as a first-order optimization algorithm with the connec-

tion given in [174, 175]. The algorithm converges to the optimal point only for restricted
cases. The algorithm converges for a negative (positive) definite quadratic form, which
includes examples such as the entanglement renormalization [175] and minimizing Rényi-α
entropy with α = 2. It is observed that it also converges for cases with α > 1.

A.1.3. Gradient descent algorithm

Gradient descent algorithms are iterative optimization algorithms finding the local mini-
mum given a differentiable function f . Assuming a Euclidean geometry, a simple version
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of the gradient descent algorithm updates the parameters W with,

W ←W ′ =W − γ × ∂f

∂W ∗

where γ is known as the step size and is determined by the line-search procedure or other
prescribed procedures.

To apply the gradient descent algorithm to problems with isometry constraints, one can
consider modifying the update with projection, i.e.,

UΣV † =W − γ × ∂f

∂W ∗

W ← UV †.

A better way to adapt to the isometry constraint is to consider the Riemannian op-
timization approach [171] on the Stiefel manifold with Euclidean metric [363]. Such an
approach has recently been reintroduced for isometric tensor networks and quantum cir-
cuits [174, 175]. The gradient is defined as the projection of partial derivative ΓW = ∂f

∂W ∗

onto the tangent space TW and is given by

∇f = ΓW −
1

2
W (W †ΓW + Γ†WW ) (A.3)

Then the update is given by moving in the gradient direction along the geodesics with step
size γ,

W ← e−γ∇fW. (A.4)

One may also consider generalized approaches not following the geodesics but retraction
and updating the isometry W by The Cayley transform. These approaches are equivalent
to second order [172].

In addition, one can combine the Riemannian gradient descent with various different
first-order gradient-based optimization methods [175, 179, 364]. In this paper and our
previous work on isoTNSs [75], we have used the Riemannian non-linear conjugate gradient
algorithm [180].

A.2. Weighted trace gauge, internal correlation, and the
corner double line tensors

Here, we review the definition of weighted trace gauge (WTG) condition and cycle entropy
Scycle quantifying the internal correlation introduced in [167]. We consider a tensor network
state |ψ⟩, which in general includes bond matrices σ on the virtual leg between two tensors.
The bond environment γiji′j′ is defined through the contraction of ⟨ψ|ψ⟩ leaving out the
corresponding bond matrix σ and its complex conjugation, where the indices ij, i′j′ are
the corresponding bond indices. The left and right boundary matrices are defined as
(ρL)

i
i′ =

∑
k,j,j′ σkjσkj′γ

ij
i′j′ , and (ρR)

j
j′ =

∑
k,i,i′ σikσi′kγ

ij
i′j′ , The WTG is the gauge choice

over the bond such that the resulting left and right boundary matrices ρL and ρR are
proportional to the identity operator and the bond matrix is diagonal and positive and has
elements in descending magnitude. An algorithm to find the WTG is proposed in [167].
For an acyclic tensor network, the WTG is equivalent to the standard canonical form.

For an acyclic tensor network, a bond is a “bridge” if by cutting the bond the tensor net-
work becomes bipartite. As a result, the bond environment factorizes, γiji′j′ = (γR)

i
i′(γL)

j
j′ ,

when the bond is a bridge. To quantify the amount of internal correlation over a bond,
the cycle entropy Scycle is defined as follows,

Scycle = −
∑

i

λ̃i log λ̃i (A.5)
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where λ̃i = |λi|/(
∑

i |λi|) is the normalized eigenvalue of the transfer operator (σ ⊗ σ)γ
formed by contracting the tensor product of the bond matrices to the bond environment.
The definition of cycle entropy is chosen such that it is gauge-invariant and is zero if the
underlying bond is a bridge. It is also invariant under the unitary transformation acting
on the physical degree of freedom as this does not change the bond matrix σ and the
bond environment γ. For an isoTNS, we see for any chosen bond, the corresponding bond
environment always factorizes due to isometric conditions. Therefore, isoTNSs have no
internal correlation inside the tensor network. The alternative way to see that isoTNSs have
zero internal correlation is based on the property that the bond environment is invariant
under unitary transformation acting on the physical degree of freedom. The isoTNSs have
zero cycle entropy because the product states have zero cycle entropy, and isoTNSs are
local unitary transformations from product states.

One example of tensor network having internal correlation is TNS consisting of corner
double line (CDL) tensors, which has the form

.

Each line in the tensor is a Kronecker-delta δij of dimension d. Taking this CDL tensor as
an example, we will gain intuition on why isoTNS has no internal correlation.

The CDL tensor can be viewed as the left or right isometric form up to a normalization
factor as shown below.

= d × ,

= d× .

Consider a state defined by the CDL tensors in a loop over four sites as in [167].

∝ (A.6)

The representation can be viewed as a periodic MPS or a generic 2D TNS. We can also view
it as an isoTNS that has an isometric direction forming a loop and has no orthogonality
center. This is, in fact, an example of invalid isoTNS representation, which violates our
assumption that the isometric direction of isoTNSs does not form a loop and must have ex-
actly one orthogonality center. We will show in the following valid isoTNS representations
of the same state, satisfying our assumption.

Firstly, we notice that the state defined in Eq. (A.6) has redundancy in the tensor
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network representation and can be rewritten as

. (A.7)

The tensor network states in Eq. (A.6) and in Eq. (A.7) are equivalent, but the tensor
network in Eq. (A.6) has bond dimension d2 instead of d due to the internal correlation.
When using generic TNS describing the state, this is often an issue and is hard to diag-
nose in tensor renormalization group [125] algorithms for generic TNS. Recently, there are
proposals for removing this redundancy locally [167, 365].

The tensor in Eq. (A.7) can be normalized and identified as a tensor in four different
isometric forms:

= d × , (A.8)

= d× , (A.9)

= , (A.10)

= d2 . (A.11)

Using the identities shown above, we can rewrite the state in Eq. (A.7) as a valid isoTNS,

∝ , (A.12)

where the orthogonality center is on the first site as in Eq. (A.11) and the tensor on the last
site is as in Eq. (A.10). Note that this is a valid isoTNS representation, i.e., the isoTNS
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has no loop in the isometric direction and has exactly one orthogonality center. In the
valid isoTNS representation of the state, there is no internal correlation.

The valid isoTNS representation of the state, however, is not unique. In fact, we can
also rewrite the tensor network in Eq. (A.7) in the following form,

∝ , (A.13)

which permits another valid isoTNS representation. We notice that this isoTNS represen-
tation has bond dimension d2, which comes from the price of encoding the correlation from
the first site to the last site.

Although the isoTNS representation of the state is not unique and might be subject to the
growth of bond dimension due to encoding long-range correlation, under this construction,
it is not possible to add additional redundancy, i.e., internal correlation, to the valid
isoTNS representation without violating the assumption or the isometric condition. This
is different from the generic tensor network as in Eq. (A.6), which in principle, can have
arbitrary bond dimension growth due to the internal correlation.

The state consisting of CDL tensors shows an illustrative example of why isoTNS rep-
resentation has zero cycle entropy. It might be important to develop an algorithm to un-
derstand and distinguish between the representation in Eq. (A.12) and that in Eq. (A.13).

A.3. Extra Data

In Fig. A.1, we show the benchmark results on repeating the MM over a D = η = 2 isoTNS
representing the ground state of the TFI model with g = 3.0 on an 11× 11 square lattice.
We observe that for MM using D′ = η′ = 2, we can reach an approximate fixed point
where the fidelity almost remains the same. Interestingly, for MM with D′ = η′ = 4, we
find better results for the initial sweeps but do not find an approximate fixed point.
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Figure A.1.: Benchmark on repeating the MM over a D = η = 2 isoTNS representing the
ground state of the TFI model with g = 3.0 on an 11× 11 square lattice. (a)
The fidelity F between the original state |Ψ0⟩ and the state |Ψn⟩ after n MM.
(b) The relative energy difference of the state |Ψn⟩ comparing to the original
state. We perform 30 left-right sweeps, which is in total 30× (2L− 1) = 630
MM. The MMs are carried out in different bond dimensions D′, η′ plotted in
different colors. The solid circle and the cross mark the data obtained with
variational MM and without variational MM. The fidelity and the energy are
measured by bMPO method with DbMPS = 4η′2.

We take the approximate fixed point wavefunction of D′ = η′ = 2 in Fig. A.1 after 30
left-right sweeps and compute the connected correlation functions ⟨σzi,5σz5,5⟩c and ⟨σxi,5σx5,5⟩c
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along the horizontal line across the center of the lattice. We plot the comparison with the
result obtained with the ground state wavefunction in Fig. A.2. The result suggests the
correlation functions remain unchanged under multiple MMs.
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Figure A.2.: The comparison of the connected correlation functions (a) ⟨σzi,5σz5,5⟩c and (b)
⟨σxi,5σx5,5⟩c. The approximate fixed point wavefunction (FP) of D′ = η′ = 2
is obtained from the 30 left-right sweeps as shown in Fig. A.1. The ground
state wavefunction (GS) is the isoTNS obtained from DMRG2 and is also the
initial state for the repeating MM sweep.

We list the ground state energy for Kitaev honeycomb mode obtained through DMRG2

with 2D isoTNSs in Table A.1.

Table A.1.: Table for energy per site E0/N of Kitaev honeycomb model at isotropic point
Jx = Jy = Jz = 1.

System Size1 Exact DMRG DMRG isoTNS isoTNS
(Lx, Ly) χ = 512 χ = 1024 D = 4, η = 8 D = 6, η = 12

(5, 5) -0.71402401 -0.71362916 -0.71401082 -0.70689939
(7, 7) -0.73416737 -0.72593548 -0.73039993 -0.72696637 -0.72987357

(11, 11) -0.75303346 -0.72405548 -0.72808531 -0.74448479 -0.74682331
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B.1. Proof of Eq. (4.18)

Recall A is an isometry such that A†A = 1 and AA† = P. As a result, we have the
following identity:

∥|Ψ⟩ −A|Φ⟩∥2 =∥|Ψ⟩ −AA†|Ψ⟩2

+ ∥A†|Ψ⟩ − |Φ⟩∥2. (B.1)

This identity introduces the unnormalized intermediate states A†|Ψ⟩ and invites an inter-
pretation of the MM error as the sum of a projection error and an MPS truncation error,
which are respectively the first term and the second term in Eq. (B.1).

As we prove below, for a uniform finite system of size L, to the first order in the errors,
both errors are proportional to L:

∥|Ψ⟩ −AA†|Ψ⟩∥2 ≈ [1− λ1(TA†Ψ:A†Ψ)]L

∥A†|Ψ⟩ − |Φ⟩∥2 ≈ [1−
(
λ1(TÃ†Ψ:Φ

)
)2

]L,
(B.2)

where Ã†|Ψ⟩ ∝ A†|Ψ⟩ is the normalized state 1. Recall the definitions as in Eq. (4.19):

εp ≡ 1− λ1(TA†Ψ:A†Ψ),

εt ≡ 1−
(
λ1(TÃ†Ψ:Φ

)
)2
.

Evidently, the total error density in Eq. (4.16) can be decomposed as

ε = εp + εt +O(ε2p, ε
2
t , εpεt), (B.3)

which is Eq. (4.18).
To complete this appendix, we now give the derivation of Eq. (B.2). The first term in

Eq. (B.1) is due to the projection AA†:

∥|Ψ⟩ −AA†|Ψ⟩∥2 = 1− ∥A†|Ψ⟩rV ert2

≡ 1− (1− εp)L ≈ εpL. (B.4)

The second source of ε comes from the truncation error of representing the unnormalized
state A†|Ψ⟩ with the MPS |Φ⟩:

∥A†|Ψ⟩ − |Φ⟩rV ert2 = 1 + ∥A†|Ψ⟩∥2 − 2Re⟨Φ|A†|Ψ⟩

= 2− εpL− 2Re⟨Φ| A†|Ψ⟩
(√

1− εp
)L

(√
1− εp

)L

≡ 2− εpL− 2Re⟨Φ|Ã†|Ψ⟩(
√
1− εp)L,

(B.5)

1Note that it is wrong to use TA†Ψ:Λ in Eq. (B.2) as the states making up the transfer matrix are not
properly normalized
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where we defined Ã†|Ψ⟩ = A†|Ψ⟩/
(√

1− εp
)L as the normalized state. Analogously to

Eq. (4.17),

∥|Φ⟩ − Ã†|Ψ⟩∥2 = 2− 2Re⟨Φ|Ã†|Ψ⟩ ≈ εtL. (B.6)

Thus, by putting everything together, we have

∥A†|Ψ⟩ − |Φ⟩∥2 ≈ 2− εpL− (2− εtL)
(
1− εpL

2

)

= εtL. (B.7)

B.2. Isometric filling of A

Let a denote the tensor making up A. Label its indices as below:

ai0 i1.

i2

i3

. (B.8)

To enlarge the bond dimension χv = dim(i2) = dim(i3) to χ′v while keeping the operator
that A represents invariant and the isometric condition intact, one groups i2i0 and i3i1
respectively as the row and column index of the isometric matrix a. i2 and i3 are the
“slow" index of their respective combined indices. Here we assume dim(i0) = dim(i1), and
thus a is square. To enlarge the bond dimensions, one first zero-pads on the index i2 and
then adds orthogonal columns on index i3:

[a]→
[
a
0

]
→

[
a 0
0 a⊥

]
, (B.9)

where a⊥ is an arbitrary unitary matrix with (χ′v−χv) dim(i0) number of rows and columns.
Thus, when dim(i0) = dim(i1), the result of isometric filling is a→ a′ = a⊕ a⊥.
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Figure B.1.: Ground state energies achieved with iTEBD2 for critical g = 3.04438 2D TFI
on Lx = 4, 8, 20 strip. An intermediate dτ and f yield the best energy, while
χ = 8 outperforms χ = 4. We compare the isoTNS energies against essentially
exact energies from quantum Monte Carlo (QMC) extrapolated from strips
of finite length. As a comparison, the dashed line is the result of an iDMRG
calculation with bond dimension χ = 512. For Lx = 4, 8, the iDMRG result
is below the bottom axis of the plot.
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B.3. Numerical results for g = 3.04438

Here we present numerics at g = g2DC = 3.04438, the critical transverse field for the two-
dimensional TFI in the thermodynamic limit. Close to the critical point, we expect this
model on finite-width strips to be more difficult to capture by an iMPS due to increased
entanglement.

We use the iTEBD2 algorithm to search for the ground state of the g = 3.04438 2D
TFI. Again we compare isoTNS energies evaluated by iMM against iDMRG energies for
χ = 512. Results for Lx = 4, Lx = 8, and Lx = 20 infinite strips are shown in Fig. B.1,
where again we find an intermediate dt, which balances iTEBD and iMM errors, leads to
the optimal energies.
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C.1. Network architectures

Feed-forward neural networks are functions consisting of alternating affine maps and ele-
mentwise non-linear functions. The input of the network is the one-hot encoding of the
computational basis. That is

X : σ ∈ {1, 2, . . . ,M}N −→ X(σ) ∈ RM×N (C.1)

X(σ)i,j =

{
1, if i = σj

0, else
(C.2)

Fully-connected neural networks (NNs) are defined by a recursion relation at each layer

z(l) = g(W (l)z(l−1) + b(l)), (C.3)

where the weight matrix W (l) and bias vector b(l) at each layer (l) together are the varia-
tional parameters. The g is the elementwise non-linear function, a.k.a activation function.
At the first layer, the input is first flattened as a vector, i.e. z(0) = Vec(X(σ)).

We consider NNs with one- and two-hidden layers and denote them as NN-1 and NN-
2. The number of neurons are (N,αN, 4N) for NN-1 and (N,αN,αN, 4N) for NN-2
respectively. The real-valued output is of dimension 4N to encode the M = 2 different
complex-valued conditional probability amplitude on N sites.

Similarly, convolutional neural networks (CNNs) are defined by a recursion relation at
each layer

z(l) = g(W (l) ∗ z(l−1) + b(l)), (C.4)

where now we replace the matrix multiplication with the convolution operation ∗. To be
explicit, we can write it as

z
(l)
c,j = g(

αN∑

c′=1

NF∑

k=1

W
(l)
c,c′,kz

(l−1)
c′,(j+k−NF ) + b

(l)
c,j), (C.5)

where NF denotes the filter size. We consider two different setups of global connectivity
NF = N and local connectivity NF < N . We pad the input with zeros to keep the width
of the network fixed for simplicity and only change the number of channels at each layer.
For shallow networks, we consider CNNs up to three hidden layers and denote them as
CNN-[depth]. The number of channels are (2, α, 4) for CNN-1, (2, α, α, 4) for CNN-2, and
(2, α, α, α, 4) for CNN-3. The output layer is with 4 channels to represent the M = 2
different complex-valued conditional probability amplitudes. All shallow NNs and CNNs
have ReLU as an activation function, i.e. g(z) = max(0, z).

To turn the networks into networks satisfying autoregressive properties, the connectivity
is restricted by masking the weights. For example, the type-A masking makes sure the z(l)i
does not depend on z

(l−1)
i and component afterwards by restricting the sum to z

(l)
i =

g(
∑

j<iW
(l)
i,j z

(l−1)
j + b

(l)
i ). The type-B masking makes sure the z(l)i does not depend on

z
(l−1)
i+1 and component afterwards by restricting the sum to z

(l)
i = g(

∑
j≤iW

(l)
i,j z

(l−1)
j +
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Figure C.1.: The building block and network architecture of WaveNet-like network adapted
from [263]. The building block is indicated by the dotted box. We repeat the
building block to increase the depth. Except for the first and the last block,
the output of the residual connection is the input of the next following block.
The Gated-CNN is a simplification of the WaveNet without skip-connections
and the following layers. Additionally, it uses convolution instead of dilated
convolution.

b
(l)
i ). Combining the type-A masking at the first layer and type-B masking at all layers

afterward, we ensure the autoregressive properties of the network. For more detail about
autoregressive models, see Appendix C.2 and see Fig. 5.1 for a graphical illustration.

We consider two different deep neural networks. In Fig. C.1, we show the network
adapted from the WaveNet [263]. The WaveNet uses dilated convolution, which is the
convolution applied over a larger area by skipping input values. The stacked dilated con-
volutions with exponential growing dilation factors enable an exponential growing receptive
field (causal cone). Similar to the WaveNet, we double the dilation factors at each layer
and repeat again once it reaches the system size, e.g. 1, 2, 4, 8, 16, 1, 2, 4, · · · for N = 20.

Following the dilated convolution is the gated activation unit [268],

z = tanh(W f ∗ x)⊙ σ(W g ∗ x) (C.6)

where ⊙ is the element-wise multiplication. The σ(·) is the sigmoid activation function
and should not be confused with the local computation basis. The W f and W g are the
weight for the filter and gate, respectively.

After the gated activation unit, there are two special connections. The residual connec-
tions [260] are implemented by the 1×1 convolution and the summation with the shortcut
from the input of the dilated convolution. The output of the residual connection is the
input of the next block. The parameterized skip connections are implemented by the 1× 1
convolution to form shortcuts from each block directly to the end of repeating blocks,
which are then summed together with the final output. These “shortcut” connections are
key to training deep neural networks.

In addition to the WaveNet, we consider a simple deep CNN, Gated-CNN, where we
remove the skip connections and use only convolution instead of the dilated convolution.
Without the dilated convolution, the receptive field of a Gated-CNN grows linear with
depth. For the receptive field to cover the system size N = 20, we consider Gated-CNNs
with 10 to 20 blocks. As for WaveNets, we consider having 6 to 14 blocks. While WaveNets
includes one block of 1 × 1 convolution before the final causal convolution, the output of
the Gated-CNN blocks is followed directly by the causal convolution. The design choice is
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arbitrary and turns out not to affect the scaling result. Similar to shallow CNNs, the final
output of both networks has 4 channels to represent the M = 2 different complex-valued
conditional probability amplitudes.

The code implementation based on TensorFlow [271] is available [272] and the hyperpa-
rameters and general setup of the optimization can be found in Appendix C.4.

C.2. Review of neural autoregressive quantum states

A joint probability distribution P over N discrete random variables xi can be factorized
as the multiplication of conditional probabilities.

P (x1, x2, . . . , xN ) = P (x1)× P (x2|x1)× P (x3|x1, x2) . . .

=
N∏

i=1

p(xi|x1, x2, . . . , xi−1)

=

N∏

i=1

p(xi|x<i)

The decomposition imposes an ordering over the random variables and allows for exact
sampling. However, the exact representation of conditional probabilities also scales expo-
nentially with the number of random variables. Autoregressive models are parameterized
functions approximating conditional probabilities.

One important class is neural autoregressive models [366, 367]. By utilizing neural net-
works to approximate conditional probabilities, it allows exact and efficient sampling and
inference. It has been applied to studying statistical physics in the pioneering work [368]
and in [369].

In principle, one can approximate each conditional probability with a different neural
network,

PAR = f(x1)× g(x2|x1)× h(x3|x1, x2)× . . .
A simpler and common approach is to approximate all N conditional probability by one
neural network with N inputs and N outputs,

PAR = f [1](x1)× f [2](x2|x1)× f [3](x3|x1, x2)× . . .

The network can no longer be fully connected, but with connectivity satisfying the au-
toregressive property. That is f [2] can only depend on input x1 and f [3] only on inputs
x1, x2 and so on. It is common to enforce this by zero-masking the original weights w.
Equivalently, we say we have masked weight multiplication or masked convolution (see
Fig. 5.1).

Following the same principle, a probability amplitude can be rewritten as a product of
conditional probability amplitudes [370].

Ψσ1σ2···σN = Ψσ1Ψσ2|σ1 · · ·ΨσN |σ1···σN−1
(C.7)

Neural autoregressive quantum states (NAQS) [78] approximate the conditional probability
amplitudes by neural networks.

ΨNAQS
σ1σ2···σN = f

[1]
NN(σ1)f

[2]
NN(σ2|σ1) · · · f

[N ]
NN(σN |σ1 · · ·σN−1) (C.8)

In the following, we denote f [i]NN as ψi.
It is shown that if each conditional probability amplitude is normalized

∑
σi
|Ψσi|σj<i

|2 =
1, then the full wavefunction is normalized |Ψσ1σ2···σN |2 = 1. Therefore, we can normalize
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the full wavefunction by normalizing each conditional probability amplitude. Suppose
the local basis is of dimension M , each of the N outputs is actually a complex vector
vi = (vi,1, vi,2, . . . , vi,M ), which represents the logarithm of the conditional probability
amplitude at site i.

ψi(σi|σ1, . . . , σi−1) =
evi,σi∑
σ′
i
|evi,σ′

i |2
(C.9)

gives the normalized conditional probability amplitudes. Furthermore, each |ψi|2 gives a
valid conditional probability induced by Born’s rule. This means a NAQS contains a neural
autoregressive model, which permits efficient and exact sampling.

C.3. Cost functions and stochastic gradient descent

In this section, we give a brief review of the setup of supervised learning problems and
discuss the difference between it and the general optimization problem. We further give an
overview of different cost functions for variational states approximation and the resulting
properties. The discussion is general and applies to general variational wavefunctions.

Supervised learning is a minimization problem to learn a function mapping from X to Y .
Given the data {x, y}N , where the data pair {x, y} ∼ P (x, y) are sampled from an unknown
probability distribution P (x, y), and the parameterized function f : x ∈ X → f(x) ∈ Y
with parameters w, we would like to minimize the cost function R(f) with respect to
parameters w. R(f) is defined as

R(f) =
∫
L(f(x;w), y)dP (x, y) (C.10)

where L(f(x;w), y) is the loss function measuring the difference between f(x;w) and y.
In general, the expression cannot be evaluated. Instead, the supervised learning frame-
work, a.k.a. empirical risk minimization, relies on minimizing the cost from the sampling
(empirical risk) R̂(f),

R̂(f) =
∑

{x,y}∼P (x,y)

L(f(x;w), y). (C.11)

One can compute the full batch gradient based on the empirical risk and perform a gradient
descent algorithm. In modern applications, often even the empirical risk itself is too
expensive to evaluate at all steps given the large size of the dataset. One turns to compute
the mini-batch stochastic gradient ∇̂R =

∑
i∇wL(f(xi;w), yi) where the sum is taken

over the mini-batch samples. In terms of deep learning, the supervised learning framework
fits nicely with the stochastic gradient descent algorithm.

Another type of optimization problem is to minimize the cost function R, which is not in
the form as in Eq. (C.10), i.e. an integral or a sum of the loss function L. The cost function
R itself is the thing we want to optimize. In this case, gradient-based algorithms would
require computing the gradient ∇wR. In certain cases, the gradient ∇wR itself cannot be
computed exactly and approximation is required. Moreover, the gradient ∇wR might con-
tain intractable terms as integral or summation, which can be approximated by sampling.
In this case, the sampled “stochastic gradient" has quite different properties compared to
the previous one in the setup of supervised learning. More precisely, the stochastic gradient
is unbiased when the expectation value over the sampling of this stochastic gradient is equal
to the true gradient, i.e.

∇R = E[∇̂R]
The stochastic gradient is biased if the expectation value of the sampled stochastic gradient
does not equal the true gradient. Stochastic gradients in supervised learning setup are
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unbiased, while in the general optimization problem they are not. With this in mind, we
can distinguish the cost function for variational state approximation by whether it has the
form of Eq. (C.10).

In terms of the variational state approximation, given the target wavefunction |Φ⟩, the
variational wavefunction |Ψ⟩ and the dimension of the many-body Hilbert space DH. here
we review different possible cost functions that work for both unnormalized wavefunctions
and normalized wavefunctions introduced in previous works.

In [224, 253], the L2 distance of the probability amplitudes RMSE are considered,

RMSE =
1

DH

DH∑

i

|Ψ(Xi)− Φ(Xi)|2

=
1

DH

DH∑

i

PΦ(Xi)
|Ψ(Xi)− Φ(Xi)|2
|Φ(Xi)|2

.

Similarly, in Ref. 254, the weighted L2 distance of log of the probability amplitudes is
considered,

Rweighted MSE log =
1

DH

DH∑

i

PΦ(Xi)
∣∣∣ logΨ(Xi)− log Φ(Xi)

∣∣∣
2

while in [224] a uniform sampling scheme is considered, and in Ref. 253, 254 the samples
are taken with respect to PΦ. These cost functions are unbiased but with high variance.
Furthermore, the problem is posed as a regression problem instead of taking into account
the probability nature of the problem.

A different setup is considered in Ref. 255 with the negative log fidelity as the cost
function.

Rneg. log fidelity = − log
[⟨Ψ|Φ⟩⟨Φ|Ψ⟩
⟨Ψ|Ψ⟩⟨Φ|Φ⟩

]

= − log

[(∑DH
i Ψ∗(Xi)Φ(Xi)

)(∑DH
i Φ∗(Xi)Ψ(Xi)

)

(∑DH
i Ψ∗(Xi)Ψ(Xi)

)(∑DH
i Φ∗(Xi)Φ(Xi)

)
]

This cost function and the corresponding gradient are in the form that could be estimated
by stochastic sampling. However, the resulting stochastic gradient is biased. In practice,
this cost function works well as long as the batch size is taken large enough. In this work,
we use directly the negative fidelity as the cost function when optimizing the RBMQS.

Rneg. fidelity = −(
∑

iΨ
∗
iΦi)(

∑
iΨiΦ

∗
i )

(
∑

iΨ
∗
iΨi)(

∑
iΦ
∗
iΦi)

= −Ei∼PΦ
[Ψ∗i /Φ

∗
i ]Ei∼PΦ

[Ψi/Φi]

Ei∼PΦ
[|Ψi|2/|Φi|2]

With the stochastic estimate of the fidelity, the biased stochastic gradient is then obtained
from the gradient evaluated by the automatic differentiation framework.

In this work, we consider two cost functions that work only for normalized wavefunction,
which give an unbiased stochastic gradient with low variance. In Section 5.1.3, we mainly
focus on the cost function

Rjoint = RKL +Rθ. (C.12)

135



Appendix C. Appendix Neural Network

An alternative cost function is the real part of the negative overlap,

Rneg. overlap = −
DH∑

i

Re [⟨Φ|Xi⟩⟨Xi|Ψ⟩]

= −
∑

i

PΦ(Xi)Re
[⟨Xi|Ψ⟩
⟨Xi|Φ⟩

]

Minimizing the real part Re [⟨Φ|Ψ⟩] is equivalent to minimizing |⟨Φ|Ψ⟩| because we can
always absorb a phase factor into our complex-valued wavefunction. Minimizing only the
real part gives the form of expectation value and again we can apply the stochastic gradient
descent method. This, however, cannot apply to unnormalized wavefunction because of
the intractable normalization constant.

The fidelity F is the square of the overlap, F = |⟨Φ|Ψ⟩|2. It may be tempting to
maximize the fidelity F instead of the sampling estimate of the overlap. However, again
we encounter the problem of a biased gradient. Although, the fidelity estimate cannot
serve as a cost function. We can still evaluate it as a check for the validity of the final
result.

Finally, we show that these two cost functions are equivalent to the first order.

Rneg. overlap = −
∑

i

PΦ(Xi)Re
[⟨Xi|Ψ⟩
⟨Xi|Φ⟩

]

= −
∑

i

PΦ(Xi)Re

[
er

Ψ
i +iθΨi

er
Φ
i +iθΦi

]

= −
∑

i

PΦ(Xi)Re
[
e(r

Ψ
i −rΦi )+i(θΨi −θΦi )

]

≈ −
∑

i

PΦ(Xi)
[
(1 + (rΨi − rΦi ))

(
1 +

(∆θi)
2

2
)]

≈
∑

i

PΦ(Xi)

[
−1 + (rΦi − rΨi )−

(∆θi)
2

2

]

≈ −1 + 1

2
(RKL +Rθ)

In practice, we observe slightly different dynamics at the beginning of the learning process.

C.4. Setup of optimizations

Below, we first discuss the common setup of optimizations for both NAQS and MPS.

• Optimizer and batch size: We consider Adam optimizer and a batch size of 512.

• Convergence criterion: The convergence criterion is based on monitoring the error in
fidelity. We set the criterion to be either if the error were below 10−4 or if an average
error of the latest 500 batches were higher than the average error of the latest 5000
to 2500 batches. In addition, there is a break condition set by the maximal number
of steps.

• Maximal number of steps: We set the maximal number of steps to be 3× 105, which
is almost never reached. The typical number of steps is below 105.
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• Number of runs: For each data point, we run the optimization with random initial-
ization 4 times and report the best result.

Matrix Product States: The MPS considered are complex-valued. We start out with a
fixed learning rate 10−2 until convergence. Then, we repeat the procedure with the learning
rate decreased to 10−3 and 10−4.

Notice that the canonical (isometric) form or normalization of MPS is not enforced
during the optimization. In fact, we observed that the result is better than the result
enforcing the isometric form using Riemannian optimization [174, 205].

Neural Network: All the networks considered are parameterized by real-valued weights
and biases. We start out with a fixed learning rate 10−3 until the convergence criterion
is met. Then, we decrease the learning rate to 10−4 and continue the optimization again
until the convergence.

Here, we provide the setup of using NetKet to perform state approximation with RB-
MQS.

NetKet:

• Version: 2.1

• Optimizer and batch size: stochastic reconfiguration and stochastic gradient descent.
The batch size is 1000. We take the best result from different step sizes: 1×10−1, 3×
10−2, 1× 10−2.

• Convergence criterion: The convergence criterion is based on monitoring the average
error in fidelity. We set the criterion to be either if the average error were below
10−4 or if average error of the latest 50 batches were close to the average error of the
latest 100 to 50 batches with a relative error 3 × 10−6 and absolute error 3 × 10−7.
In addition, there is a break condition set by the maximal number of steps.

• Maximal number of steps: We start checking for convergence after 5000 iterations
and set a maximum iteration of 10000, which is almost never reached.

• Number of runs: For each data point, we run the optimization with random initial-
ization 4 times and report the best result.

C.5. Additional data

In Fig. C.2, we include the result of MPS approximating the target state by the alter-
nating least square algorithm, which iteratively minimizes the L2 distance of the quantum
states [31] and yield a slightly better result than SGD optimization with supervised learning
as shown in Fig. 5.2.

In Fig. C.3, we include the results with shallow NAQS for periodic boundary condition
(PBC) and plot the number of parameters of the network against the obtained accessible
time t∗.

In Fig. C.4, we show the results for WaveNets of width α = 8.
In Fig. C.5, we plot the errors of the results for Gated-CNNs of width α = 12 and different

depths. We see the errors in ⟨σ̂xL/2⟩ expectation value and half-chain entanglement entropy
SvN follows similar tendency as of the error in fidelity. Interestingly, we observe a peak in
both errors at a relatively short time before the network reaches its accessible time t∗.

In Fig. C.6, we show the results for RBMQS.
In Fig, C.7, we compare the results for state approximation by RBMQS using SGD

and exact gradient optimization and the SGD with stochastic reconfiguration from the
NetKet [6] implementation.
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Figure C.2.: MPS with bond dimension χ approximating the exact time-evolved states
following a quantum quench from an initial paramagnetic product state. The
MPS are obtained by iteratively minimizing the L2 distance. The quenched
Hamiltonian is given in Eq. (5.9) for a chain of length N = 20 with (a)
quantum Ising model in the paramagnetic phase with weak longitudinal field
(g = 3, h = 0.1, k = 0) and (b) close to a critical point with interacting term
(g = 1, h = 0, k = 0.25).
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Figure C.3.: The number of parameters required to reach time t∗ for following a quantum
quench for different approximation schemes. The quenched Hamiltonian is
similar to Eq. (5.9) but with PBC on a chain of length N = 20 with (a) quan-
tum Ising model in paramagnetic phase with weak longitudinal field (g = 3,
h = 0.1, k = 0) and (b) close to a critical point with interacting term (g = 1,
h = 0, k = 0.25). The black line shows the results for MPS. For NAQS, we
denote each combination as (network type)-(number of hidden layers)-(filter
size). The circles, squares, and triangles represent 1,2,3-layer networks, respec-
tively. The gradient colors describe the same networks of different numbers of
layers. NNs (Blue); CNNs with global connectivity (Green-Blue); CNNs with
local connectivity (Red).

139



Appendix C. Appendix Neural Network

10-4

10-3

10-2

10-1

100

1
−
F

(a) (b)

0.6

0.8

1.0

〈 σ̂x L/
2

〉

Exact
Nb = 6

Nb = 8

Nb = 10

0 5 10
gt ∗

0.0

0.5

1.0

S
vN

Nb = 12 Nb = 14

0 1 2 3

Jt ∗

Figure C.4.: WaveNet NAQS of different depths, i.e. number of blocks Nb, approximating
the exact time-evolved states following a quantum quench from an initial
paramagnetic product state. The network is of width α = 8. The quenched
Hamiltonian is given in Eq. (5.9) for a chain of length N = 20 with (a)
quantum Ising model in the paramagnetic phase with weak longitudinal field
(g = 3, h = 0.1, k = 0) and (b) close to a critical point with interacting term
(g = 1, h = 0, k = 0.25).
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Figure C.5.: The errors of Gated-CNNs NAQS of different depths, i.e. number of blocksNb,
approximating the exact time-evolved states following a quantum quench from
an initial paramagnetic product state. The network is of width α = 12. The
quenched Hamiltonian is given in Eq. (5.9) for a chain of length N = 20 with
(a) quantum Ising model in the paramagnetic phase with weak longitudinal
field (g = 3, h = 0.1, k = 0) and (b) close to a critical point with interacting
term (g = 1, h = 0, k = 0.25).
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Figure C.6.: RBMQS of different widths, i.e. α = Nhidden/N , approximating the exact
time-evolved states following a quantum quench from an initial paramagnetic
product state. The quenched Hamiltonian is given in Eq. (5.9) for a chain of
length N = 20 with (a) quantum Ising model in the paramagnetic phase with
weak longitudinal field (g = 3, h = 0.1, k = 0) and (b) close to a critical point
with interacting term (g = 1, h = 0, k = 0.25).
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Figure C.7.: Comparison of results obtained from different optimizers and implementa-
tions for RBMQS of two different widths α = 2, 4 approximating the exact
time-evolved states following a quantum quench from an initial paramagnetic
product state. The quenched Hamiltonian is given in Eq. (5.9) for a chain of
length N = 12, 16, 20 with quantum Ising model close to a critical point with
interacting term (g = 1, h = 0, k = 0.25).

In Fig, C.8, we compare the results for state approximation by one-hidden layer NAQS
using SGD and GD over negative fidelity and using SGD over joint cost function.
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Figure C.8.: Comparison of results obtained by different optimizers and cost functions
for one-hidden layer NAQS of two different widths α = 2, 4 approximating
the exact time-evolved states following a quantum quench from an initial
paramagnetic product state. The quenched Hamiltonian is given in Eq. (5.9)
for a chain of length N = 12, 16, 20 with quantum Ising model close to a
critical point with interacting term (g = 1, h = 0, k = 0.25).
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D.1. Types of ansätze

Quantum circuits with low depth can have different structures and will, by definition,
represent low-complexity quantum states. In Figure D.1, we show two possible ansätze
– a sequential circuit and a brickwall/checkerboard circuit. The brickwall circuit strictly
limits the possible correlations because two qubits are only correlated if their reversed
light cones coincide. If the light cones do not coincide, the correlations should be zero,
i.e. ⟨ÔiÔj⟩ = ⟨Ôi⟩⟨Ôj⟩. More precisely, each layer of the brickwall circuit is a locality-
preserving unitary operator that only creates correlations locally. This contrasts with the
sequential circuit, which allows correlations between qubits over arbitrary length scales.
For this reason, we expect that different ansätze will capture slightly different states.

Figure D.1.: Consider the correlation for ⟨ÔiÔj⟩ − ⟨Ôi⟩⟨Ôj⟩. (a) The sequential circuit
can have a nonzero correlation throughout the entirety of the system. (b)
The correlation in the brickwall/checkerboard circuit is 0 if the backward
lightcones do not cross an input qubit.

Although sequential circuits could represent states having a correlation of arbitrary
length scale, e.g. GHZ state, sequential circuits cannot support the long-range decay
of generic correlators, but only a special subset.

D.2. Classical simulation algorithm for quantum circuit

In this section, we describe two algorithms. The first algorithm maximizes the fidelity
between two states defined by a set of unitaries, similar to the known Evenbly-Vidal al-
gorithm [158]. The second algorithm uses the first algorithm to perform time evolution
restricted to the space defined by the ansatz under consideration.

To maximize the fidelity F = |⟨Ψtarget|ΨM
qc⟩|2, we iteratively optimize the fidelity with

respect to each gate Ui,j , while keeping the remaining gates fixed. Note that the double
indices (i, j) refer to order and site respectively, whereas in the main text we group the
indices into a single index.

We first rewrite the overlap between the target state |Ψtarget⟩ and the order-M circuit

145



Appendix D. Appendix Circuit

|ΨM
qc⟩ in the following form,

⟨Ψtarget|ΨM
qc⟩ (D.1)

= ⟨Ψtarget|
M∏

i=1

N−1∏

j=1

Ui,j |Ψproduct⟩ (D.2)

= ⟨Ψtarget|UM,N−1UM,N−2 . . .︸ ︷︷ ︸
⟨ϕ|

Ui,j

|ψ⟩︷ ︸︸ ︷
. . . U1,2U1,1|Ψproduct⟩ (D.3)

= ⟨ϕ|Ui,j |ψ⟩ (D.4)
= Tr [|ψ⟩⟨ϕ|Ui,j ] (D.5)
= Tr [EUi,j ] (D.6)

(D.7)

where Ui,j is the unitary to optimize and E is the environment matrix as shown in
Fig. D.2(a).

The fidelity F = |⟨Ψtarget|ΨM
qc⟩|2 = Re [⟨ϕ|Ui,j |ψ⟩]2 is equal to the square of the real

part of the overlap. This is because any global phase offset can always be compensated
by absorbing a single site rotation into the 2-site unitary. The solution to the unitary
maximizing Re [⟨ϕ|Ui,j |ψ⟩] is known; for E = XΣY †, the optimal Ui,j is given by Y X† as
in Fig. D.2(b).

Figure D.2.: (a) The environment tensor is constructed by excluding the pertinent unitary
from the overall contraction and viewing the resulting tensor network as a
four-index tensor. (b) To update Ui,j , we perform a polar decomposition of
the environment tensor.

To obtain the optimal circuit, we iterate through all of the gates and update each gate
with the exact solution of the local optimization problem. Given a maximal iteration num-
ber Niter, absolute convergence error εa, and relative convergence error εr, the algorithm
is described in Alg. 4.

We used standard tensor network techniques to construct the environment tensor and
truncated singular values less than 10−14. The algorithm was made significantly less
expensive by caching and updating the environments to avoid recomputing the entire envi-
ronment from scratch during each new iteration. For our computations, Niter = 105, εa =
10−12, εr = 10−4.

We now introduce our second algorithm, which performs time evolution directly on the
manifold defined by our ansatz. To time evolve a state |Ψ(t)⟩, we maximize the fidelity
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Algorithm 4: Maximizing overlap
Input : |Ψtarget⟩, |ΨM

qc⟩, Niter, εa, εr
Output: A set of {Ui,j} maximizing ⟨Ψtarget|ΨM

qc({Ui,j})⟩ , ε
idx = 0, ε0 = inf;
while idx < Niter and εidx > εa and ∆ε > εr do

idx = idx + 1;
for ( i = 1; i < M ; i = i+ 1 ) {

for ( j = 1; j < N − 1; j = j + 1 ) {
Construct environment matrix E;
E = XΣY †;
Update Ui,j ← Y X†;

}
}
εidx = 1− ⟨Ψtarget|ΨM

qc⟩2;
∆ε = |εidx − εidx-1|/|εidx-1|

end

F = |⟨Ψ(t+∆t)|V̂ (∆t)|Ψ(t)⟩|2, where our unitaries parameterize |Ψ(t+∆t)⟩ and V̂ (∆t)
is a single Trotterized time step. In this way, we can iteratively evolve forward in time
from an initial state. The overall algorithm for time evolution is given as in Alg. 5

Algorithm 5: Algorithm for Time Evolution
Input : H, |ΨM

qc(0)⟩, tend, ∆t
Output: The set of gates {Ui,j(tend)} for the state |ΨM

qc(tend)⟩ , Overall error 1−E
E = 1.;
for ( t = 0; t < tend; t = t+∆t ) {

(1) Prepare the state |ΨM
qc(t)⟩ from the set of gates {Ui,j(t)} ;

(2) Apply time evolution gates and obtain |ΨM
qc(t+∆t)⟩;

(3) Find the new set of gates {Ui,j(t+∆t)} best representing the state
|ΨM

qc(t+∆t)⟩ by Alg.1 ;
(4) E = E × F ;

}

There are two primary sources of error in our algorithm: the Trotterization error and
the projection error. The Trotterization error arises from approximating the true time
evolution operator by a series of 2-site gates. This can be made arbitrarily small by
decreasing ∆t or by taking higher-order Trotter decompositions. The projection error
arises from projecting the time evolved state back onto the manifold of circuits of order
M . This error is affected by the chosen ansatz and limits the time to which one can
simulate within a given error threshold.

We can estimate the total error by monitoring the fidelity at the end of each optimization∏
iFi. This total error estimate is accurate as long as the Trotterization error remains small

and if Fi is close to 1 at each step. As an example, in Fig. D.3 we show the error estimates
for the simulation performed in Fig. 7.4. We see that the time when the error crosses the
threshold matches the time when ⟨σz⟩ starts to deviate.
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Figure D.3.: Approximation error of time evolution algorithm restricted to the quantum
circuit ansatz for different M.

D.3. Non-unitary gates

In this section, we describe a procedure to embed an arbitrary non-unitary N -qubit op-
erator A in an (N + 1)-qubit unitary gate. We consider the first of these (N + 1)-qubits
to be an ancilla qubit that we initialize in the |0⟩ state and project into the state |0⟩ by
post-selection. Our claim is that there exists a unitary of the form

UA =

(
sA B
C D

)
, (D.8)

where s−2 is the maximum eigenvalue of A†A (or equivalently AA†. We note that the
matrices A†A and AA† have real and non-negative spectra. This follows from a singular
value decomposition, i.e. A = UΣV † with U, V unitary and Σ non-negative real and
diagonal, and so A†A = V (Σ2)V † and AA† = U(Σ2)U †. Our goal is to show that for any
A (̸= 0, although this case can also be included) we can find the 2N × 2N matrices, B,C
and D such that UA is unitary.

Our approach is the following. We first note that UA being unitary is equivalent to the
statement that the columns of UA form an orthonormal basis of C2N+1 . We will then use
this to find a block C and a scaling factor s consistent with this, i.e. such that the first 2N

columns of UA are orthonormal. Given A,C, and s we can then use a QR-decomposition
to easily find B and D, as explained below.

Let us denote the columns of A and C by aj and cj respectively, e.g., [C]ij = [cj ]i. For
UA to be unitary C and s must satisfy

C†C = 1− s2A†A, CC† = 1− s2AA†. (D.9)

In terms of the column vectors, these can be written as

ci · cj + s2ai · aj = δij . (D.10)

For i = j this is a statement that the first 2N columns of UA are normalized, and for i ̸= j
it is the statement that these columns are mutually orthogonal.

Next, we note that if C satisfies Eq. (D.9), then we have the singular value decomposition
C = U Σ̃V †, where U and V are the same unitaries as in the SVD of A = UΣV †. This
implies that

C†C = V Σ̃2V †, CC† = U Σ̃2U †. (D.11)

Since both Σ2 and Σ̃2 must be non-negative, we only have a solution to Eq. (D.9) if s−2 is
greater than the largest eigenvalue of A†A (all of which are non-negative), and so we set
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s−2 equal to the largest eigenvalue. We therefore have that Σ̃2 = 1−s2Σ2, with our choice
of s ensuring that Σ̃ is real and non-negative.

Finally, given A and C, we can find the blocks B and D using QR-decomposition.
Namely, let us construct the matrix

ŨA =

(
sA B̃

C D̃

)
, (D.12)

where B̃ and D̃ are random matrices, then by QR-decomposition

ŨA = UAR, (D.13)

where UA is the unitary in Eq. (D.9) and R is an upper triangular matrix. Since the
first 2N columns of ŨA are orthonormal, they will be untouched by the QR-decomposition
algorithm.

D.4. Cost of the imaginary-time evolution

In our imaginary-time evolution algorithm, we make use of an ancilla qubit to implement
the non-unitary gates. This approach is therefore probabilistic in the sense that there is
a probability that the ancilla qubit is measured in the state |1⟩ and the corresponding
measurement of the fidelity must be disregarded. It is therefore important to analyze the
probability of the failure of the algorithm and how the resources required scale with system
size and simulation time.

We are interested in using the imaginary-time evolution algorithm to simulate the evolu-
tion with respect to a Hamiltonian H =

∑
i hi, where hi have a finite non-trivial support.

Note that we typically are interested in the case when hi are also local since most quantum
computer architectures have a local connectivity structure. If we have long-range connec-
tivity in the quantum computer, or are able to accommodate the linear cost of using swap
gates, then the locality can be relaxed so long as the terms act on a finite number of qubits.
Note that the circuit depth generically scales exponentially with the non-trivial support of
hi.

In the trotterized evolution, the non-unitary gates we wish to implement are of the
form A = e−∆τhi . Taking into account the scaling factor s, we wish to embed the matrix
sA = e−∆τ(hi−Ei,min), where Ei,min is the smallest eigenvalue of hi. The probability P (0)
that we measure the ancilla in the state |0⟩ is dependent on the state of the physical qubits,
i.e.

P (0) = Tr
[
ρs2A†A

]
= Tr

[
ρe−2∆τ(hi−Ei,min)

]
(D.14)

P (1) = Tr
[
ρ(1− s2A†A)

]
= Tr

[
ρ(1− e−2∆τ(hi−Ei,min))

]
(D.15)

where ρ = |ψ⟩⟨ψ| is the density matrix of the physical state. However, in the worst case
scenario, the probability of success is e−2∆τ(Ei,max−Ei,min). We can choose to scale the
Hamiltonian such that the maximum bandwidth of the terms hi is 1, that is we scale the
total Hamiltonian such that

maxi (Ei,max − Ei,min) = 1. (D.16)

This scaling of the Hamiltonian can be incorporated into ∆τ . Indeed, ∆τ should be
specified relative to the maximum energy density of the Hamiltonian. Given this natural
scaling of the Hamiltonian, the worst-case probability of success for any of the gates in the
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Trotterization is e−2∆τ , which depends only of ∆τ and not on the system size and can be
made arbitrarily close to one.

To measure the fidelity with a certain statistical accuracy, we thus need to measure a
number of shots proportional to e2∆τ . Furthermore, at any step, we can determine the
statistical accuracy of our observables by counting the number of times the ancilla qubit is
in the |0⟩ state and perform more measurements if necessary without the need to restart
the algorithm. We are able to do this because we optimize and store the state ansatz after
applying each of the gates in the Trotter evolution. Therefore, despite the probabilistic
nature of the algorithm, the total cost of the simulation scales linearly with system size
and with the total simulation time.

D.5. Detailed data for parameter counting

In this section, we include the data corresponding to parameter counts required to achieve
a fixed fidelity as a function of time for matrix-product states (Fig. D.4(a)) and quantum
circuits (Fig. D.4(b)).

We observe that a complex isometric matrix W ∈ Cn×p, n ≥ p, satisfying the isometric
conditionW †W = 1 has 2np−p2 real independent parameters since the isometric condition
imposes p2 independent real-valued constraints. To count the number of parameters for
an MPS, we first put the MPS into the canonical form and then sum up the number of
parameters in each isometric tensor.

When counting the number of parameters of an order-M ansatz, because the circuit
starts from a fixed initial state (|000...00⟩), there are redundant degrees of freedom. If we
consider a gate acting on a fixed qubit in matrix form, the columns that do not correspond
to the fixed qubit are irrelevant. The very first gate in the first layer, which acts on two
fixed qubits, will have 2d2 − 1 = 7 parameters. All the other gates in the first layer act
only on one fixed qubit, and thus have 2d3 − d2 = 12 parameters. The gates in all other
layers have 24 = 16 parameters.

Proceeding with this counting, the number of parameters of a bond dimension χ = 2
MPS matches our order M = 1 ansatz, while a two-layer brickwall quantum circuit has
fewer parameters. This confirms the result in Appendix 6.2.
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Figure D.4.: (a) We fit the MPS data with f(Jt∗) = aebJt
∗
+ c and obtain the (a, b, c)

parameters for h = 0, (540, 1.69,−910), h = 0.1, (506, 1.71,−836), and h =
0.9045, (559, 1.52,−711) respectively. Note that we only fit the data points
with bond dimension being power of two, i.e. χ = 2n, n ∈ Z+. (b) We
fit the quantum circuit data with f(Jt∗) = a × (Jt∗) + b and obtain (a, b)
parameters for each case, h = 0, (861, 91), h = 0.1, (1236,−138), and h =
0.9045, (1659,−251), respectively.

D.6. Randomized circuits for QPU measurement

The quantum circuit considered in this paper is described by a series of two-site gates
{Ui}. When the quantum circuit is implemented on a QPU, the two-site gates are de-
composed into a series of finitely-many gates selected from some universal gate set. A
small perturbation of a two-site gate may lead to a large perturbation in the decomposi-
tion. These differences translate into large fluctuations in the measured observables due
to imperfections in the QPU.

To compensate for this problem, we average over the gauge freedom in a quantum circuit.
Given the two-site gates {Ui} describing the quantum states, there are gauge degrees of
freedom to insert identities described by random unitaries and their complex conjugates.
For example, if UiUi+1 act consecutively on the same qubit, we can insert the random
single-site unitary V and its complex conjugate as

Ui+1Ui = Ui+1V
†V Ui =Wi+1Wi (D.17)

and obtain the two-site gates Wi+1Wi describing the same operation. To average over the
gauge degrees of freedom, we average measurement outcomes corresponding to circuits dif-
fering by the insertion of random unitaries and their conjugates. This procedure mitigates
the previously mentioned error to a certain extent.
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E.1. Transfer matrix

Transfer matrices are utilized for computing the physical observables and other operations
of an infinite system. In the context of tensor networks, the transfer matrix T̂ of the
quantum state |ψ⟩ is defined as the repeating block in the computation of the inner product,
Tr[T̂N ] = ⟨ψ|ψ⟩, where N is the system size. Under the mild assumption that the state
considered is injective, the expression is well-defined in the thermodynamic limit N →∞
regardless of the boundary conditions. In the following, we extend the same formalism to
USC.

E.1.1. Transfer matrix of USC

Utilizing the left and right representations of the l-USC ansatz, we have the freedom to
write the inner product as ⟨ψR(θ)|ψL(θ

′)⟩ = limN→∞Tr[T̂N ], of which the repeated block
is defined as the transfer matrix shown as the shaded area in Fig. 8.1 (a). Such mixed
representation allows us to express the transfer matrix as a linear operator acting on pure
states instead of density matrices.

In general, the states |ψL(θ
′)⟩ and |ψR(θ)⟩ can be of different Nq and MU , and they

represent similar but not exactly identical states. We can define the mixed transfer ma-
trix T̂ between two different quantum states |ψL⟩ and |ϕR⟩ as the repeating block in the
computation of their inner product, ξ = ⟨ϕR|ψL⟩ = limN→∞Tr [T̂N ]. The left and right
environments |l⟩ and |r⟩ and the leading eigenvalue λ are defined similarly to the case of
the (not mixed) transfer matrix. In the thermodynamic limit, the absolute value of the
inner product |ξ| is given by

lim
N→∞

|Tr[T̂N ]| = lim
N→∞

|λN | =
{
1 |λ| = 1

0 |λ| < 1
, (E.1)

which is either an identity or zero, depending on whether the states are identical. Therefore,
a better quantity to consider is instead the overlap density, which is equal to the absolute
value of the leading eigenvalue of the transfer matrix |λ|, satisfying the relation

log|λ| = lim
N→∞

1

N
log |ξ|. (E.2)

E.1.2. Evaluating local observables

One can evaluate the expectation value of a local observable with respect to the state
|ψL(θ

′)⟩ following the equation

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩⟨ψ|ψ⟩ =
⟨ψL(θ

′)|Ô|ψL(θ
′)⟩

⟨ψL(θ′)|ψL(θ′)⟩
. (E.3)

The last expression can be evaluated with the right environment in the density matrix
form, which satisfies the fixed-point equations. This is the approach taken by [213, 214].
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Here, assuming we have the (approximately) identical state in left and right representation,
we take an alternative approach and approximate the expression by

⟨Ô⟩ ≈ ⟨ψR(θ)|Ô|ψL(θ
′)⟩

⟨ψR(θ)|ψL(θ′)⟩
+O

(∣∣∣∣
∆

λ1 − λ2

∣∣∣∣
)
. (E.4)

The expectation value is now evaluated utilizing the mixed representation of the transfer
matrix. Here, ∆ is the norm difference between the tensors per site describing the states
when collapsing the circuit to uniform MPS form, and λ1, λ2 are the leading and second
leading eigenvalues of the transfer matrix of the state |ψL(θ

′)⟩. Therefore, the expression
is exact when |ψL(θ

′)⟩ and |ψR(θ)⟩ are exactly the same state. The expression is a valid
approximation, when the norm difference is smaller than the size of the gap in the transfer
matrix of the physical state |ψL(θ

′)⟩.
In the simpler case where |ψL(θ

′)⟩ and |ψR(θ)⟩ represent exactly the same physical state,
we can always absorb the phase factor into one of the state unitaries such that λ = 1. The
numerator and the denominator are then reduced to

⟨ψR(θ)|Ô|ψL(θ
′)⟩ = ⟨l, 0|Û †RÔÛL|0, r⟩ (E.5)

⟨ψR(θ)|ψL(θ
′)⟩ = ⟨l|r⟩ (E.6)

following the definition of the environments. Therefore, we can transform the infinite
circuit ⟨ψR(θ)|Ô|ψL(θ

′)⟩ shown in Fig. 8.1 (a) into the finite circuit ⟨l, 0|Û †RÔÛL|0, r⟩ given
in Fig. 8.1 (d), which can be implemented on a quantum computer.

If |ψL(θ
′)⟩ and |ψR(θ)⟩ are not identical, the numerator is suppressed by the additional

factor λN−1 which cancels out mostly with the additional factor in the denominator λN ,
leading to the expression

⟨Ô⟩ ≈ lim
N→∞

λN−1⟨l, 0|Û †RÔÛL|r, 0⟩
λN ⟨l|r⟩ =

⟨l, 0|Û †RÔÛL|r, 0⟩
λ⟨l|r⟩ . (E.7)

The expression suggests that for generic cases, one shall also take into account the contri-
bution from λ ̸= 1.

E.1.3. Derivative of the transfer matrix

In this appendix, we derive the expression for the derivative of the leading eigenvalue of
the transfer matrix with respect to the state unitary. Consider the transfer matrix T̂ (θ)
depending on variational parameters θ and its left and right environments |l(θ)⟩, |r(θ)⟩,
such that T̂ (θ)|r(θ)⟩ = λ(θ)|r(θ)⟩, T̂ †(θ)|l(θ)⟩ = λ∗(θ)|l(θ)⟩. Therefore, the environments
and the leading eigenvalue depend on θ. We express the leading eigenvalue of the transfer
matrix as

λ =
⟨l|T̂ |r⟩
⟨l|r⟩ , (E.8)

where the θ–dependence is omitted for the sake of notation. Taking derivative with respect
to θ, we obtain

∇λ =
⟨∇l|T̂ |r⟩+ ⟨l|∇T̂ |r⟩+ ⟨l|T̂ |∇r⟩

⟨l|r⟩

− λ⟨∇l|r⟩+ ⟨l|∇r⟩
⟨l|r⟩ . (E.9)

Using T̂ |r⟩ = λ|r⟩ and ⟨l|T̂ = λ⟨l|, we note that the first and third terms in the first
fraction cancel out with the second fraction, leaving

∇λ =
⟨l|∇T̂ |r⟩
⟨l|r⟩ . (E.10)
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E.1.4. Post-selection probability

Consider an arbitrary N–qubit vector |v⟩ parameterized by a unitary Êv such that |v⟩ =
Êv|0 . . . 0⟩, and the (mixed) transfer matrix given by T̂ = ⟨0last|U †RUL|0first⟩, acting on N
qubits as shown in Fig. 8.1 (c). The action of the transfer matrix on the vector reads

T̂ |v⟩ = T̂ Êv|0 . . . 0last⟩
= ⟨0last|U †RUL (1⊗ Ev) |0first, 0 . . . 0last⟩. (E.11)

Therefore, the probability of measuring |0last⟩, i. e., |0⟩ on the last qubit, is given by

P (0) = ∥T̂ |v⟩∥2. (E.12)

Note that by definition, the leading eigenvalue of the transfer matrix is unity and the
absolute value of the leading eigenvalue of any mixed transfer matrix is equal or less than
unity.

We see that the probability is unity if the input vector is the environment |r⟩, i. e., the
leading eigenvector of the transfer matrix T̂ , since in such case P (0) = ∥T̂ |r⟩∥2 = |λ|2 = 1.
For an arbitrary input state |v⟩, the probability can be expressed as

P (0) = ∥T̂ |v⟩∥2 =
∑

i

|ci|2|λi|2, (E.13)

where ci is the coefficient of the eigenbasis of T̂ . As a result, the probability P (0) is lower
bounded by the square of the coefficient |c1|2 corresponding to the leading eigenvector. We
note that |c1|2 is close to unity in the case of Algorithm 2 if we initialize the vector using
the environments from the previous time step.

Furthermore, the above property motivates an alternative algorithm for obtaining the
environments by maximizing probability P (0) using gradient ascent methods. This algo-
rithm is potentially more efficient as it only requires the measurement of the last qubit, with
gradients measured in the absence of ancilla qubits using only the well-known parameter
shift rule [332].

E.2. Details of classical optimization of l-USC

In this appendix, we provide details on the optimization of l-USC that we perform in the
course of classical simulation of the time evolution algorithm.

E.2.1. Unitary parametrization and reunitarization

Optimization of the l-USC ansatz and environments, is performed with the gradient descent
method. To incorporate the gradient descent method with the quantum circuits running
on a quantum computer, one can employ the decomposition of a general two-qubit gate
into 15 gates of the form

û(α) = exp
(
iασa ⊗ σb

)
, a ∈ {Î , X̂, Ŷ , Ẑ}, (E.14)

introduced in Ref. [332]. These gates have an important property, ∂αû(α) = û(α + π/2),
i. e. the derivative of these unitary gates is also unitary. This results in all derivatives of
ÛR/L(θ) or environments being unitary.

In classical optimization, we store N×N unitaries directly using 2N2 parameters, which
is redundant but significantly speeds up the optimization. To ensure the correctness of the
algorithm, after each finite gradient descent step, we reunitarize a gate Û by (i) performing
the singular value decomposition Û = V̂ †D̂Ŵ with D̂ being a diagonal matrix with singular
values and (2) replacing D̂ with a unity matrix: Û → V̂ †Ŵ .
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E.2.2. Derivative with respect to a gate

The main building block of the optimization is obtaining derivatives of the expectation
values. The outlined recipe is applicable not only to two-qubit gates, used in the case of
layered state or environment, but also to larger unitaries, used in the optimization of the
dense (exact) environment or d-USC. Consider an expectation value (generally, a scalar
complex-valued function) that depends on a set of unitary gates λ(Û1, Û2, . . . , ÛN ). To
compute the derivative with respect to Ûk, any such scalar expectation can be written
as λ = Tr ÛkŴ

†
k , with some Ŵk depending on the remaining unitaries. Therefore, the

derivative reads:

∂λ

∂Ûk
= Ŵk. (E.15)

E.2.3. Environment optimization

If the proposed time-evolution algorithm is performed using a dense representation of
environments, the environment is obtained by finding the eigenvector of the transfer matrix
with the largest magnitude of eigenvalue using the Arnoldi iteration method.

If the environments are in the layered representation, we first obtain the exact dense
environment |Eexact⟩ using the Arnoldi iteration, and then obtain the two-qubit gates of
the approximating environment by maximizing the overlap |⟨Elayered|Eexact⟩|2. In such case,
instead of performing a gradient descent with the gradient computed using Eq. (E.15), we
employ the polar decomposition rule [158]. The polar decomposition rule utilizes the fact
that the expectation λ = Tr ÛkŴ

†
k is maximized over all possible unitaries by taking Ûk as

the reunitarization of Ŵk. Thus, to optimize a layered environment, we sweep sequentially
over all two-qubit gates in |Elayered⟩ and change them using the polar decomposition rule.
We stop when the overlap between the environments obtained on two consecutive sweeps
exceeds 1− 10−10.

E.2.4. Details of gradient descent method and stopping criteria

In the classical simulation of the proposed algorithm, we employ the redundant parametriza-
tion of the unitaries. First, having computed the gradient of |λ|2 with respect to a unitary
Ûk, D̂k = ∂|λ|2/∂Ûk = 2Re

[
λ∗∂λ/∂Ûk

]
, we project this gradient onto the tangent space

of the manifold of N ×N unitary matrices:

D̂k → D̂k −
1

2
ÛkÛ

†
kD̂k +

1

2
ÛkD̂

†
kÛk. (E.16)

The resulting unitary is reunitarized.
We employ the ADAM optimizer [259] with the learning rate η = 3 × 10−3. These

two modifications improve the convergence of the algorithm. The optimization finished
when the improvement of the leading eigenvalue of the transfer matrix between the two
consecutive iterations was less than 10−10.

Lastly, to speed up the Arnoldi iteration method, we employed the graphical processing
units (GPU) Nvidia V100.

E.3. Sufficiency of the MU = 1 state-unitary decomposition

In this appendix, we demonstrate that the accuracy of the time-evolved MU = 1 l-USC
ansatz corresponds to the accuracy of the full dense d-USC time-evolved wave function.
To obtain the d-USC ansatz wave function at Nq, we optimize the uniform MPS at χ =
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Figure E.1.: (a) Infidelity density between the quasi-exact solution and the l-USC ansatz
at MU = 1 or uniform MPS at χ = 2Nq−1 as a function of tJ at g/J = 1.0.
(b) Entanglement entropy as a function of tJ . The solid line represents the
quasi-exact solution.

2Nq−1 using the classical iTEBD algorithm. In Fig. E.1 we show the fidelity densities and
entanglement entropies in both layered and full dense cases.

In Fig. E.1 (a), the infidelity of the uniform MPS differs in the small tJ region, where
the infidelity is vanishing, due to different optimization protocols: in the case of the l-
USC ansatz, the gradient descent is used, while uniform MPS is optimized using the
singular-value decomposition and provides best possible approximation at each time step.
Nevertheless, the locations of crossing of the 10−4 infidelity threshold coincide within our
resolution. Therefore, increasing MU would not improve the l-USC ansatz performance,
as it is bounded from above by the uniform MPS performance at χ = 2Nq−1.

Lastly, in Fig. E.1 (b), we show the entanglement entropy obtained within both ap-
proaches. Similarly, the curves are almost identical in the whole course of time evolution.

E.4. The accumulated error M measure

During a realistic optimization on quantum hardware, one has no access to the quasi-exact
time-evolved state. Thus, in order to estimate the current error, one can instead define an
accumulated error measure

M(t) = 1−
∏

i<t

|λi|2, (E.17)
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which is the deviation of the product of leading eigenvalues of the transfer matrices from
unity. Such measure, in case of the absence of Trotter errors, should serve as an upper
bound for the infidelity 1−F ⩽M.
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Figure E.2.: Comparison between the true infidelity density 1 − F computed using the
exact solution (crosses) and using the cumulative estimation metric M(t) =
1 −∏

i<t |λi|2. The simulations were performed at g/J = 1.0, h/J = 0 with
an exact environment and state unitary with MU = 1.

However, in this work, we obtain the exact wave function by running a classical iTEBD
algorithm at high bond dimension, which breaks translation symmetry to two-site emer-
gent unit cell, while in proposed algorithm we use a second-order translationally-invariant
Trotterization. This discrepancy breaks the inequality, however, the two measures are still
strongly correlated. To see this, in Fig. E.2 we show the dependence of the true time-
evolution infidelity 1−F(t) and the accumulated error measure. We observe that the two
measures cross the 10−4 threshold at close moments of time.

E.5. Environment representation complexity

In this appendix, we present additional data illustrating the capacity of the layered repre-
sentation of the environment. In Fig. E.3, we show the norm of the discrepancy between
the exact environment and the layered environment at ME layers as a function of tJ .
The exact environments were obtained within the time-evolution of the l-USC ansatz with
Nq = 6 at g/J = 1.0. The maximum evolution time tJ is such that the overlap density
between the ansatz and the exact state always exceeds 1− 10−4.

We observe that, as the complexity of the state grows with time evolution, the approxi-
mations ME < Nq−1 are clearly incapable of accurately representing |rexact⟩ in the course
of time evolution.
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Figure E.3.: The norm difference between the exact environment |rexact⟩ and the approx-
imated |r(ME)⟩ environment at ME layers as a function of tJ . The 10−4

boundary is chosen in the main text as the threshold of accurate representa-
tion. The data is obtained within fitting of the exact environment emerging
during the Nq = 6 evolution of the l-USC ansatz at g/J = 1.0.

E.6. Randomized circuits for QPU measurement

The quantum circuit considered in this paper is described by a series of two-site gates
{ûi}. When this circuit is implemented on a QPU, the two-qubit gates within qiskit are
decomposed into a series of gates selected from a universal gate set. A small perturbation
of a two-site gate may lead to a large change of the decomposition. These differences lead
to large fluctuations in the measured observables due to the QPU noise.

To mitigate these errors, we consider the following procedure. If the two consequent
gates ûi and ûi+1 act on the same qubit q, we sample a random SU(2) matrix v̂ acting
only on the qubit q and modify ûi → ûiv̂, ûi+1 → v̂†ûi+1. We repeat the measurement
scheme in several runs, each time sampling new single-qubit matrices v̂.

E.7. The equivalence of fixed points

In this appendix, we show that the left and right environments (fixed points), of the l-USC
transfer matrix in mixed representation are identical up to complex conjugation. Using
the formal equivalence between uniform MPS and d-USC shown in Section 6.2, we first
show such property held in the case of uniform MPS. Consider a uniform MPS in the Λ–Γ
canonical form [31, 208]

|Ψ⟩ = . . . Λ Γ Λ Γ Λ Γ Λ . . . , (E.18)

where Λ is a positive-valued diagonal matrix, encoding the Schmidt values. The com-
binations of Λ and Γ give the left (normalized) isometric tensor A = ΛΓ and the right
(normalized) isometric tensor B = ΓΛ. The overlap between the same physical state and
itself is given as the following equation:

⟨Ψ|Ψ⟩ = . . .

Λ∗ Γ∗ Λ∗ Γ∗ Λ∗ Γ∗ Λ∗

Λ Γ Λ Γ Λ Γ Λ

. . . . (E.19)
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The transfer matrix in the mixed representation is constructed with the left isometric
tensor A = ΛΓ colored in light red and the right isometric tensor B∗ = Γ∗Λ∗ colored in
light green. From the left and right isometric conditions, we see that the left and right
environments are simply Λ∗ and Λ, respectively. In this specific case, since the diagonal
matrix Λ is real and positive, the left and right environments are identical.

In the above case, we consider the isometries with gauge fixing, leading to the Λ–Γ
canonical form. In general, the d-USC is equivalent to uniform MPS in isometric form
without gauge fixing. That is, we are allowed to insert identity operators U †U = 1 and
V †V = 1 to the left and the right of the Λ tensor, respectively, where the U and V
are arbitrary unitaries. Similarly, the transfer matrix is constructed by the left and right
isometric tensors describing the same physical state, but now, in arbitrary gauge. The
overlap is then given by the equation

⟨Ψ|Ψ⟩ = . . .

UT2 U∗2 Λ∗ V T
2 V ∗2 Γ∗ UT2 U∗2 Λ∗ V T

2 V ∗2

U †1 U1 Λ V †1 V1 Γ U †1 U1 Λ V †1 V1

. . . . (E.20)

As a result, the left isometric tensor is now given by A = U1ΛΓU
†
1 colored in light red and

the right isometric tensor is given by B∗ = V ∗2 Γ
∗Λ∗V T

2 colored in light green. Similarly,
by isometric conditions, the left environment is U∗1Λ∗V T

2 while the right environment is
U1ΛV

†
2 . Therefore, the left environment and the right environment are identical up to

complex conjugation.
Since any l-USC state can be viewed as a d-USC state, the statement also applies to the

l-USC ansatz: when the l-USC transfer matrix is constructed in the mixed representation,
the left and right environments are identical up to complex conjugation.
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Acronyms

0D zero-dimensional 12, 18, 19
1D one-dimensional 1, 2, 7, 8, 9, 12, 13, 14, 18, 19, 20, 21,

26, 27, 28, 31, 37, 38, 43, 45, 46, 61, 63, 67, 74, 77, 78,
80, 82, 83, 84, 97, 111, 114, 115

2D two-dimensional 2, 3, 7, 8, 9, 14, 15, 17, 18, 19, 20, 26,
27, 28, 31, 37, 38, 42, 43, 44, 45, 46, 47, 61, 63, 84,
109, 111, 112, 113, 114, 115

3D three-dimensional 15, 28, 84

ALS alternative least squares 16, 21
ANN artificial neural network 2, 63

bMPO boundary matrix-product operator 15, 16, 37, 41, 45,
112, 124

CNN convolutional neural network 64
CTMRG corner transfer matrix renormalization group 15
CU cluster update 16

d-USC dense uniform sequential circuits 97, 98, 99, 105, 106
DMRG density matrix renormalization group 2, 3, 7, 13, 15,

17, 31, 34, 37, 38, 83, 92, 111, 112
DSF dynamical spin structure factor 40, 41, 42, 43

ED exact diagonalization 1, 67, 93, 94

FTQC fault-tolerant quantum computing 79
FU full update 16, 27, 113

iDMRG infinite density matrix renormalization group 53, 60
iMM infinite Moses move 7, 8, 45, 60, 61, 111
iMPS infinite matrix product state 45
iPEPS infinite projected entangled pair states 17
isoTNO isometric tensor network operator 45, 47, 48, 55, 59,

60
isoTNS isometric tensor network state 2, 3, 7, 9, 10, 12, 14, 18,

19, 20, 21, 22, 25, 26, 27, 28, 29, 31, 37, 38, 39, 40, 41,
43, 44, 45, 46, 61, 77, 79, 80, 111, 112, 113, 114, 115,
116

162



Acronyms

iTEBD infinite time evolving block decimation 15, 97, 104, 105

KL Kullback–Leibler 66

l-USC layered uniform sequential circuits 77, 78, 97, 98, 99,
101, 103, 104, 105, 106, 107, 108, 109

MCMC Markov chain Monte Carlo 44, 64
MERA multi-scale entanglement renormalization ansatz 22,

90
MM Moses move 7, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 34,

35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 61, 111, 112, 113
MPO matrix-product operator 15, 21, 22, 31, 36, 37, 38
MPS matrix-product state 2, 7, 8, 9, 10, 11, 12, 13, 14, 16,

19, 20, 21, 22, 26, 28, 31, 32, 36, 37, 43, 44, 45, 46, 63,
67, 68, 69, 74, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90,
92, 94, 97, 98, 111, 112, 115

NAQS neural autoregressive quantum state 8, 64, 65, 66, 68,
69, 71, 72, 73, 74, 114

NISQ noisy intermediate scale quantum 2, 79, 89, 92, 94, 115
NN fully-connected feed-forward neural network 64
NQS neural-network quantum state 2, 8, 64, 65, 67, 71, 73,

74, 113, 114, 115
NTU neighborhood tensor update 16

OBC open boundary conditions 39, 67
OC orthogonality center 46, 48, 55

PBC periodic boundary conditions 67
PEPS projected entangled pair states 14, 15, 16, 17, 28, 45

QCTN quantum circuit tensor network 77, 80, 115
QEC quantum error correction 79
QMC qariational Monte Carlo 1, 60
QPE quantum phase estimate 84
QPU quantum processing unit 77, 78, 85, 93, 97

RBM restricted Boltzmann machine 64
RBMQS restricted Boltzmann machine quantum state 72, 73,

74
RNN recurrent neural network 64, 115

SGD stochastic gradient descent 17, 64, 65, 66, 67, 69, 73
SR stochastic reconfiguration 17, 64, 73
SU simple update 16, 27, 113
SVD singular value decomposition 11, 12, 13, 15, 16, 19, 20,

22, 23, 24, 25, 26, 27, 32, 36, 38, 49, 59
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Acronyms

tDMRG time-dependent density matrix renormalization group
90

TDVP time-dependent variational principle 17, 90
TEBD time-evolving block decimation 2, 7, 13, 16, 17, 26, 27,

28, 31, 37, 45, 58, 74, 83, 87, 90, 111
TNS tensor network state 2, 3, 7, 9, 10, 11, 14, 20, 27, 28,

29, 37, 40, 44, 74, 111, 113, 114
TRG tensor renormalization group 14

USC uniform sequential circuits 97

VMC variational Monte Carlo 2, 17, 64, 74, 114
VQE variational quantum eigensolver 91, 92
VUMPS variational uniform matrix-product state 15, 112

WTG weighted trace gauge 28, 29
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