
Technische Universität München

TUM School of Computation, Information and Technology

Efficient and Safe Integration of
User-Defined Operators into Modern

Database Systems

Moritz-Felipe Sichert

Vollständiger Abdruck der von der TUM School of Computation, Informati-
on and Technology der Technischen Universität München zur Erlangung des
akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Alexander Pretschner

Prüfer*innen der Dissertation:
1. Prof. Dr. Thomas Neumann
2. Prof. Alfons Kemper, Ph.D.
3. Prof. Dr. Torsten Grust

Die Dissertation wurde am 29.06.2023 bei der Technischen Universität Mün-
chen eingereicht und durch die TUM School of Computation, Information and
Technology am 15.12.2023 angenommen.

Abstract

Modern relational database systems are able to execute SQL queries
on state-of-the-art hardware very efficiently. They are designed to run on
hundreds of CPU cores and effectively utilize terabytes of main memory.

Complex data mining and machine learning algorithms have become
increasingly common in data analytics. However, most data scientists
prefer not to use classical database systems for data analytics. The main
reason why relational database systems are not used is that SQL is difficult
to work with due to its declarative and set-oriented nature, and is not
easily extensible. Instead, several specialized systems which are easier to
use exist to evaluate these algorithms.

However, using these various systems comes at a price. Moving data
out of traditional database systems is often slow as it requires exporting
and importing data, which is typically performed using the relatively
inefficient CSV format. Additionally, database systems usually offer strong
ACID guarantees, which are lost when adding new external systems. This
disadvantage can be detrimental to the consistency of the results.

We present User-Defined Operators as a concept to include custom
algorithms in modern query engines. Users can write idiomatic code in the
programming language of their choice, which is then directly integrated
into our compiling database system Umbra and its generated code. The
system must be guarded against potentially malicious user code. We show
how WebAssembly can be used as an intermediate language to guarantee
the safety of the execution.

Zusammenfassung

Moderne relationale Datenbanksysteme können SQL-Anfragen sehr
effizient auf aktueller Hardware ausführen. Sie zeichnen sich dadurch aus,
dass sie Systeme mit hunderten von CPU-Kernen und mehreren Terabyte
an Hauptspeicher voll auslasten können.

Komplexe Algorithmen für Data-Mining und maschinelles Lernen
werden in der Datenanalyse immer häufiger eingesetzt. Üblicherweise
werden in Data-Science-Anwendungen jedoch keine klassischen Daten-
banksysteme zur Datenanalyse verwendet. Der Hauptgrund warum re-
lationale Datenbanksysteme nicht verwendet werden, ist, dass SQL eine
deklarative und mengenorientierte Sprache ist, die nicht leicht erweiterbar
ist. Stattdessen werden spezialisierte Systeme eingesetzt, die einfacher zu
verwenden sind, um solche Algorithmen auszuführen.

Die Verwendung dieser verschiedenen Systeme hat jedoch ihren Preis.
Das Importieren und Exportieren von Daten aus traditionellen Daten-
banksystemen ist oft langsam, da die Daten üblicherweise in das relativ
ineffiziente CSV-Format konvertiert werden. Außerdem bieten Datenbank-
systeme in der Regel starke ACID-Garantien, die verloren gehen, wenn
weitere Systeme hinzugefügt werden. Dadurch kann die Konsistenz der
Ergebnisse beeinträchtigt werden.

In dieser Arbeit stellen wir das Konzept von User-Defined Operatoren
vor, mit denen benutzerdefinierte Algorithmen in moderne Datenbanksys-
teme integriert werden können. Benutzer können idiomatischen Code in
der Programmiersprache ihrer Wahl schreiben, der dann direkt in unser
kompilierendes Datenbanksystem Umbra und seinen generierten Code in-
tegriert wird. Das System muss gegen potenziell bösartigen Benutzercode
geschützt werden. Wir zeigen, wie WebAssembly als Zwischensprache
verwendet werden kann, um die Sicherheit der Ausführung zu gewähr-
leisten.

Acknowledgments

I am deeply grateful to Prof. Dr. Thomas Neumann, my professor and doctoral
advisor, for his invaluable guidance. I extend my thanks to the members of my
thesis committee, Prof. Alfons Kemper, Ph.D., Prof. Dr. Torsten Grust, and Prof.
Dr. Alexander Pretschner.

Special thanks to my colleagues, friends, and family whose unwavering
support and motivation have been crucial throughout my academic journey.

Preface

The author has published excerpts of this thesis in advance.

Chapter 2 has previously been published in:
Moritz Sichert and Thomas Neumann. “User-Defined Operators: Effi-
ciently Integrating Custom Algorithms into Modern Databases.” In: Proc.
VLDB Endow. 15.5 (2022), pp. 1119–1131

In addition, the author of this thesis also co-authored the following related work,
which is not part of this thesis:

Magdalena Pröbstl, Philipp Fent, Maximilian E. Schüle, Moritz Sichert,
Thomas Neumann, and Alfons Kemper. “One Buffer Manager to Rule
Them All: Using Distributed Memory with Cache Coherence over RDMA.”
in: ADMS@VLDB. 2021, pp. 17–26

Maximilian Rieger, Moritz Sichert, and Thomas Neumann. “Integrating
Deep Learning Frameworks into Main-Memory Databases.” In: 4th Inter-
national Workshop on Applied AI for Database Systems and Applications.
2022

Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, and
Alfons Kemper. “Communication-Optimal Parallel Reservoir Sampling.”
In: BTW. vol. P-331. LNI. Gesellschaft für Informatik e.V., 2023, pp. 567–
578

Contents

Acknowledgments vii

Preface ix

Contents xi

List of Figures xv

List of Tables xvii

List of Listings xix

1 Introduction 1
1.1 Modern Relational Database Management Systems 2
1.2 Data Analytics in Database Systems 3
1.3 Extensible Database Systems . 4
1.4 Challenges and Contributions 6

2 User-Defined Operators 9
2.1 Related Work . 9
2.2 The User-Defined Operator . 11

2.2.1 Overview . 11
2.2.2 The UDO User Compiler 13
2.2.3 The UDO Query Compiler 16

2.3 User-Defined Operators in Code-generating Query Engines . . . 17
2.3.1 UDO User Compiler . 19
2.3.2 UDO Query Compiler 20
2.3.3 UDO Function Inlining 24
2.3.4 Parallel Execution . 25
2.3.5 Implementation Considerations 27

2.4 User-Defined Operators in the Iterator Model 31
2.4.1 UDO User Compiler . 31

xii CONTENTS

2.4.2 UDO Query Compiler 31
2.5 Evaluation . 33

2.5.1 Complex Iterative Algorithm: k-Means 34
2.5.2 Linear Regression . 37
2.5.3 Imperative Programming 40
2.5.4 Data Generation . 43

2.6 Summary . 44

3 Safe Execution of UDOs with WebAssembly 45
3.1 The WebAssembly Language . 47

3.1.1 WebAssembly Modules 47
3.1.2 WebAssembly Memory 48
3.1.3 WebAssembly Stack . 49
3.1.4 WebAssembly Types and Values 50
3.1.5 WebAssembly Instructions 52
3.1.6 Safety . 59
3.1.7 Multi-Threading in WebAssembly 59

3.2 WebAssembly in Compiling Database Systems 61
3.3 Related Work . 63

4 Translating WebAssembly to Umbra IR 65
4.1 Translation to SSA with a Virtual Stack 69
4.2 Translation of Structured Control Flow 72

4.2.1 Translation of if/else Blocks 72
4.2.2 Translation of Branch Instructions 76
4.2.3 Translation of Loops . 79
4.2.4 Unreachable Blocks . 81

4.3 Parallel Execution . 82
4.4 Safety . 84

4.4.1 Safety of Numeric Instructions 84
4.4.2 Memory Safety . 87
4.4.3 Optimization of Bounds Checks 91
4.4.4 Resource Exhaustion . 94
4.4.5 Open Safety and Security Issues 95

4.5 Integration into the UDO Query Compiler 97
4.5.1 Allocation and Initialization of the UDO State 98
4.5.2 Passing SQL Values to WebAssembly 98
4.5.3 String Handling . 99

4.6 Evaluation . 100
4.6.1 Complex Iterative Algorithm: k-Means 101
4.6.2 Linear Regression . 104

CONTENTS xiii

4.6.3 Imperative Programming 107
4.7 Summary . 108

4.7.1 Future Work . 109

5 Conclusion 111

Bibliography 113

List of Figures

2.1 Architecture of the UDO Compilers 12
2.2 The UDO User Compiler . 14
2.3 Code generated using the produce-consume model 21
2.4 Code generated by UDO𝑎 for a pipelined operator 23
2.5 Code generated by UDO𝑎 for a pipeline breaker 24
2.6 End-to-end throughput of k-Means 34
2.7 Scalability of runtime throughput of k-Means in Umbra 35
2.8 End-to-end throughput of linear regression 38
2.9 Scalability of runtime throughput of linear regression in Umbra . . 39
2.10 End-to-end throughput of queries that split comma-separated values

into individual tuples . 41

3.1 WebAssembly stack when executing the function load_add 53
3.2 Translation and compilation phases of a WebAssembly UDO 62

4.1 Translation of the function load_add from WebAssembly to Umbra IR 70
4.2 Translation of an if-block to Umbra IR 74
4.3 Translation of a function containing a condbr branch instruction to

Umbra IR . 77
4.4 Translation of the WebAssembly memory load instruction i32.load . 89
4.5 End-to-end throughput of k-Means using a WebAssembly UDO . . 101
4.6 Scalability of runtime throughput of k-Means using a WebAssembly

UDO . 102
4.7 End-to-end throughput of linear regression using a WebAssembly

UDO . 104
4.8 Scalability of runtime throughput of linear regression using a Web-

Assembly UDO . 106
4.9 Runtime throughput of splitting comma-separated values into indi-

vidual tuples using a WebAssembly UDO 107

List of Tables

2.1 SQL types supported for C++ UDOs 29
2.2 Runtimes of UDOs that generate benchmark data 43

3.1 Value types supported by WebAssembly 51

List of Listings

2.1 SQL syntax to define and use UDOs 13
2.2 Implementation of extraWork for k-Means 18
2.3 Implementations of the produce and consume functions in the

produce-consume model . 20
2.4 Implementation of UDO𝑎 in the produce-consume model 22
2.5 LLVM code generated by the UDO Query Compiler 26
2.6 Implementation of UDO𝑎 in the iterator model 32
2.7 Splitting comma-separated strings into individual integer tuples

using recursive CTEs in SQL. 42
3.1 Example of a small function in C and its translation to WebAs-

sembly . 52
3.2 Example of a function in C and WebAssembly with control flow 55
3.3 Implementation of a mutex using a spin-lock in WebAssembly . 60
4.1 Example function load_add written in Umbra IR 66
4.2 Transformation of the function f_no_ssa to an equivalent func-

tion that satisfies the SSA property 68
4.3 A WebAssembly function containing an if/else-block 72
4.4 Umbra IR generated by the translator for a function containing

a loop . 79
4.5 Translation of the Umbra IR code shown in Figure 4.4 into x86

machine code . 90
4.6 Optimization of bounds checks for adjacent memory accesses . 92
4.7 Optimization of bounds checks in loops 93

CHAPTER 1
Introduction

Excerpts of this chapter have been published in [SN22].

Modern data analytics has evolved to include complex algorithms for data
mining and machine learning. Specialized systems have been designed that
are able to handle ever-growing amounts of data to solve a larger variety of
problems. Unfortunately, traditional systems, especially relational database
management systems (RDBMS), seem difficult to adapt to state-of-the-art data
analytics [Yin+21].

Still, most data that is eventually analyzed in special-purpose systems is
originally sourced from RDBMS. Thus, a common approach is to create ETL
(Extract, Transform, Load) workflows that can accommodate the use of different
systems [Zha+21b]. ETL workflows usually collect data in a data warehouse,
which is built on top of an RDBMS that supports SQL. The data is then exported
to be further processed by the data analytics systems. This extraction process
can be implemented naively by exporting to a CSV file from the data warehouse
and subsequently importing the data into the analytics systems. Additionally,
some systems support more efficient data transfer by directly communicating
with the RDBMS. As the last step, the results of the analysis are often transferred
back to the data warehouse so that they can be further processed, for example,
the data displayed in a dashboard. Exporting and importing data can often
consume considerable time, especially when the data must be serialized to and
parsed from a text format like CSV.

When data is extracted from an RDBMS, many beneficial characteristics of
the system are lost. In particular, the ACID properties – Atomicity, Consistency,
Isolation, and Durability – which are essential for correct transactional pro-
cessing [HR83] can no longer be guaranteed. The atomicity property ensures
that a transaction is either fully committed to the database or not at all, even
if it contains multiple operations, to avoid incomplete or potentially incorrect

2 CHAPTER 1. INTRODUCTION

data. A database system that respects the isolation property must ensure that
concurrent accesses to the same data by different users of the system do not lead
to unexpected or invalid results. In particular, when multiple users are updating
or writing to the database at the same time, the database system must guarantee
that the updates do not interfere with each other.

One could argue that the atomicity and isolation properties may be of minor
importance for systems that mainly process read-only OLAP workloads since
a system processing only read-only transactions cannot violate these proper-
ties. But the durability property, which guarantees that data cannot be lost
accidentally once it is committed to the database, and the consistency property,
which mandates that the data must always be in a consistent state even if a
transaction or the entire database system fails, are essential to provide accurate
results. Additionally, to provide near real-time data analytics, data warehouses
must be periodically updated. Since periodical updates may run in combination
with longer-running analytics queries at the same time, an analytics system
must inevitably support proper transaction management and observe all ACID
properties.

1.1 Modern Relational Database

Management Systems

Modern RDBMS additionally offer excellent execution speeds on modern hard-
ware. Systems such as DuckDB [RM19] or Umbra [NF20] are able to fully
saturate the available resources on modern systems. Traditional RBDMS, such
as Postgres [SR86] or IBM DB2 [HJ84], were developed under the assumption
that most data must be loaded from spinning hard disks or even tape drives
whereas modern systems try to optimize their query execution for in-memory
processing. The bandwidth of hard disks and even modern flash-based SSDs
is lower than the bandwidth of main memory by orders of magnitude; hard
disks can reach a read bandwidth of a few hundred of MB/s, SSDs connected to
the CPU via NVMe several GB/s, while DDR4 or newer main memory reaches
several hundred GB/s. Also, it is now feasible to build systems with several
hundreds or even thousands of GiB of main memory, which means that the
working set of an analytical query will often completely fit in main memory.

Also, while the clock rate of CPUs has increased dramatically up to a few
GHz in the last decades, the growth of CPU clock rates in the last century has
mostly stagnated. This phenomenon has been coined “The End of Moore’s
Law” [TW17]. Instead, CPU vendors now build chips with an increasing amount
of cores and develop new techniques to better utilize the available clock rate.

1.2. DATA ANALYTICS IN DATABASE SYSTEMS 3

Modern, commercially available CPUs contain up to 100 cores and use simulta-
neous multithreading (SMT) to execute up to 200 threads on a single CPU. The
high degree of parallelism in these CPUs necessarily revolutionized software
development towards concurrent processing [SL05].

Naturally, traditional systems run faster on modern hardware than on forty-
year-old hardware. However, to fully utilize the available resources, a database
system must specifically be designed with the capabilities of modern hardware
in mind. Especially the execution engine of modern database systems rely on
techniques such as code-generation [Neu11] or vectorized execution [BZN05],
to be able to saturate the memory bandwidth, instead of relying on traditional
Volcano-style execution [Gra94].

This thesis builds on the database system Umbra. Umbra is a main-memory-
first system that tries to load as much data as possible into main memory but
can gracefully fall back to fast flash-based storage. It employs code-generation
using a custom intermediate representation to achieve low latencies and high
throughput at the same time [Ker+18; KLN18; KLN21a]. In Umbra, all queries are
fully parallelized using morsel-driven parallelism [Lei+14] so that all available
CPU cores can be saturated. Additionally, Umbra’s query optimizer uses several
novel techniques that allow it to generate efficient query plans even for deeply
nested queries or queries with thousands of joins [Fre+20; NK15; NR18] and
it can choose from many specialized join and aggregation algorithms [BGN21;
FN21; KLN21b; RN22]. The optimizer relies on samples of the data, which are
used to predict selectivities and cardinalities [BRN20; FN19; Win+23]. Umbra
also has optimized several components found in traditional database systems or
other data analytics systems for modern multi-core systems [Böt+20; DLN19;
DLN21; Win+20; Win+22].

1.2 Data Analytics in Database Systems

In practice, in data analytics, the advantages of using RDBMS do not out-
weigh the disadvantages. Data scientists often prefer using systems such
as Spark [Zah+12], TensorFlow [Aba+16], or systems using the MapReduce
paradigm [DG08], even if they cannot reach main-memory performance. In
these systems, algorithms can be formulated in procedural programming lan-
guages such as Java, Scala, or Python. In comparison to SQL – the primary query
language for RDBMS – those languages are better suited to formulate algorithms
used in modern data analytics. Such algorithms are often iterative and can be
expressed naturally by using code that contains assignments to variables and
control-flow statements such as loops.

4 CHAPTER 1. INTRODUCTION

However, SQL is declarative, set-oriented, and generally very different from
most programming languages. It was initially proposed over 40 years ago by
Chamberlin and Boyce [CB74], but has remained the most widely used query
language for RDBMS until today. Precisely because of its differences from
procedural programming languages, SQL gives query engines a lot of flexibility
in deciding how to execute a query.

When a database system receives a SQL query, it first translates the query to
an algebraic representation which is based on the relational algebra originally
proposed by Codd in 1970 [Cod70]. Each algebraic operator generates a multiset
of tuples and takes the multisets of any number of input operators. Hence,
database systems based on the relational algebra conceptually process multisets
or streams of tuples.

SQL imposes no additional requirements on database systems to execute
queries. In particular, a database system can freely choose the order in which
the algebraic operators are evaluated, and how exactly each algebraic operator
is implemented as long as the semantics of the result is preserved. Thus, SQL
makes it possible to design efficient query engines that are tailored to old main-
frame systems that mainly read from tape drives, as well as state-of-the art query
engines that rely on fast NVMe SSDs or even run entirely in main memory to
achieve processing speeds of several hundred gigabytes per second. All query
engines use the same SQL queries but can be tuned individually to the features
and capabilities of the hardware they are running on.

1.3 Extensible Database Systems

The feature set of SQL is closely tied to the concept of stream processing, which
supports filtering, several join types, and a wide range of aggregation and
window functions. However, adding new functions is not easily possible. The
execution of SQL queries is tightly coupled to the specific query engine of each
database system, so adding new features to SQL requires deep knowledge of
database internals.

In 1990, Carey and Haas noticed that “a DBMS must be extensible at all
levels” [CH90] to support new types of workloads that SQL does not cover.
Even earlier, the EXODUS system was designed by Carey et al. [Car+86] with
the explicit goal of being an extensible DBMS. For query processing, EXODUS
supports adding new algebraic operators, which must be written in its own
programming language “E”. E is based on C and adds several new types and
functions that allow a program to interact with the other components of the
system, such as the query optimizer or the storage engine. During that time,

1.3. EXTENSIBLE DATABASE SYSTEMS 5

other projects such as Starburst [Sch+86] and Postgres [SR86], which is still a
widely-used RDBMS, set their focus on extensibility, as well.

Most of these projects can be extended by using a low-level C interface.
Often, extensions can be loaded by the database system dynamically, which
means that the database system does not need to be recompiled from its source
code and not even restarted to add new functionality. Because every system
defines its own API, however, programmers that develop extensions need to
learn the API for each specific system. Also, data scientists often prefer to use
higher-level programming languages to implement their algorithms as opposed
to low-level languages like C.

Another downside of a low-level interface is the lack of security; if an
extension runs in the same process as the rest of the database system, a bug
in the extension can bring down the entire database system, or even worse, a
malicious extension can gain unrestricted access to the system. So, extensions
must be fenced from the database system, for example, by running them in a
separate process.

Current database systems also offer some extensibility directly in SQL. In
general, imperative control flow can be formulated in SQL by using recursive
CTEs [DHG20; HG21]. Since SQL with recursive CTEs is turing-complete, it
is possible to translate arbitrary imperative control flow directly to SQL. Also,
some RDBMS offer imperative extensions to SQL such as T-SQL inMicrosoft SQL
Server [22c] or PL/pgSQL in Postgres [22a]. Imperative extensions allow users
to write User-Defined Functions (UDFs), which can be called from standard SQL
queries. The query engine can directly execute queries containing calls to UDFs
written in this extended language. In theory, this functionality makes it much
easier to write more complex algorithms when compared to recursive CTEs.
However, the execution of functions written in these imperative languages tends
to be very slow [GR21].

Further, data analytics pipelines usually rely on several pre-defined algo-
rithms or at least a common standard library, as found in many programming
languages. Data scientists typically use existing frameworks, such as Tensor-
Flow or Spark, to implement their custom analytics workflow in Python or Scala,
respectively. For high-performance applications that require better control of
memory, languages such as C++ or Rust are often used. Using an imperative
extension of SQL is mostly infeasible for data scientists. These extensions offer
no built-in functionality to support data analytics, do not have large commu-
nities that provide solutions to many common problems, and often have poor
debugging support.

Additionally, UDFs are usually not allowed to take entire streams of tuples
as arguments or return them. Instead, UDFs are applied to each tuple of one
particular stream, which is similar to how a map operation works in other

6 CHAPTER 1. INTRODUCTION

systems. Clearly, algorithms used in data analytics cannot generally be expressed
exclusively by map-like operations; clustering, regression, and training machine
learning models all process entire sets of data and must be able to access the
data arbitrarily. Thus, UDFs are unsuitable for efficiently integrating custom
algorithms in database systems.

1.4 Challenges and Contributions

Clearly, data analytics plays an essential role in the era of ever-growing amounts
of data. Relational database systems have evolved to run efficiently on modern
hardware with terabytes of main memory and hundreds of CPU cores. However,
data scientists tend to use specialized data analytics systems because RDBMS
do not fit their needs. To summarize, we identify the following problems with
modern data analytics:

(a) Processing data is inefficient due to costly import and export processes be-
tween different systems. Additionally, many systems cannot use modern
hardware to its full capacity.

(b) Data may not be consistent; especially when extracting from an RDBMS,
ACID properties can no longer be guaranteed.

(c) The most efficient systems have poor usability and use SQL as a query
language that is difficult to extend for data analytics.

(d) Extensible database systems are based on traditional architectures and
older hardware. Also, extensions must be written using low-level APIs,
which can often lead to security issues.

Naturally, problems (a) and (b) can be solved by running all data analytics
algorithms directly in a modern RDBMS. However, using an RDBMS directly
leads to problems (c) and (d). Since most data originates from an RDBMS which
is used to safely and consistently store critical data, leaving the data in the
database system and directly analyzing it is a sensible choice. Therefore, we
focus on the issues (c) and (d).

In this thesis, we present the concept and implementation of User-Defined
Operators (UDOs). UDOs allow users to easily add custom algorithms to modern
query engines. Users can write idiomatic code in the programming language of
their choice, which is then directly integrated into existing database systems.

We demonstrate how UDOs can be integrated efficiently into our modern
database system, Umbra. UDOs can benefit from all the advantages of Umbra,
such as its code-generating query engine and efficient parallelization strategy.

1.4. CHALLENGES AND CONTRIBUTIONS 7

When data analytics algorithms are executed in Umbra using UDOs, they can
easily outperform existing specialized data analytics systems such as Spark. To
demonstrate the usability of UDOs, we also show how they can be integrated
into the traditional database system Postgres. That way, users need to write
UDO code only once and can use it in any database that supports UDOs.

Further, we show how UDOs can be executed safely even if they contain
arbitrary user code. Since our database system Umbra generates code that is
compiled into one program for every query, it is not possible to easily separate
the execution of user code from the rest of the query by executing it in a
separate process. Instead, we leverage WebAssembly to ensure that running
user code cannot lead to security issues. WebAssembly is an assembly-like
language that was initially designed for the safe execution of arbitrary code in
web browsers. We integrate a WebAssembly translator between the UDO code
and the intermediate representation used by Umbra’s code-generating query
engine, which enables safe execution of UDOs at near-native speed.

CHAPTER 2
User-Defined Operators

Excerpts of this chapter have been published in [SN22].

In this chapter, we present the concept and implementation of User-Defined
Operators (UDOs). UDOs integrate user-written code directly into existing
database systems which lets them benefit from existing features of a database
system. The user code can directly process data which does not need be exported
from the system, first. Since the data remains under control of the database
system, running queries with UDOs also maintains all ACID properties which
enables transaction-safe analytics of data.

Users can conceptually write UDOs in any programming language of their
choice and are not limited to SQL. We provide a simple API that lets user code
interact with the database system. The API is independent from internals of
the query engine and the same user code can be used in any database system
that implements UDOs. We describe how UDOs can be implemented in our
code-generating database system Umbra [NF20] and in Postgres.

2.1 RelatedWork

Many database systems offer imperative extensions to SQL that can be used to
write UDFs, which enables easier implementation of iterative algorithms and
also allows the users to reuse existing database functionality. Gupta et al. [GR21]
show that the extensions tend to be slow and cannot reach main-memory speeds.
With their findings they encourage more research to improve the execution of
UDFs.

A very popular approach for large-scale data analytics is MapReduce, which
is often used for Big Data analytics but can also be applied to UDFs. Friedman

10 CHAPTER 2. USER-DEFINED OPERATORS

et al. present an approach to formulate UDFs in MapReduce and integrate them
into SQL queries [FPC09].

Furthermore, separating UDFs into calls to a few predefined functions like
map and reduce can be used to compile UDFs in the database and integrate them
into the query execution as shown by Crotty et al. [Cro+15] who extend the
MapReduce concept by adding more functions such as selection, join, or loop so
that UDFs can address more different use cases. To execute this functionality
efficiently, they make use of the LLVM framework [LA04] to be able to apply
low-level optimization techniques to the generated queries.

Zou et al. [Zou+21] present an optimized approach to automatically partition
workloads that contain UDFs. This approach allows users to develop highly
scalable data analytics pipelines without in-depth knowledge of writing scalable
code.

Palkar et al. [Pal+18] propose the Weld framework for data analytics, which
combines code from different systems, such as queries written in SQL and
programs written in Python. This framework uses a novel intermediate repre-
sentation that can be lowered to LLVM.

Timely Dataflow is a novel concept for scalable data analytics presented in
the Naiad system by Murray et al. [Mur+13]. This concept provides a low-level
interface to assemble computational graphs, upon which high-level libraries
and applications can be built. Murray et al. also present an implementation in
the Rust programming language [Mur+16].

Writing code manually for a specific problem can lead to rapid execution but
may not be easily combined with existing modern database systems. Passing
et al. [Pas+17] present lambda functions, which are used to customize specific
code-generating operators with greater ease. Schüle et al. [Sch+20] show how
this technique can be applied to just-in-time compilation of user-written lambda
functions in Postgres.

Techniques used in modern main-memory databases such as code gener-
ation and vectorized execution can also be used for data analytics. Zhang et
al. [Zha+21a] present a system that automatically analyzes code to dynamically
generate optimal query plans at runtime.

Duta et al. and Hirn et al. [DHG20; HG21] describe an approach that allows
users to write code in the procedural programming language PL/SQL. Such
PL/SQL programs are transformed entirely to recursive CTEs. This technique
allows procedural programs to be interpreted by any SQL engine that supports
recursive CTEs, and works well for many use cases. The result of the transfor-
mation is standard SQL, which can theoretically be executed in a main-memory
database, provided it has an efficient implementation of recursive CTEs.

2.2. THE USER-DEFINED OPERATOR 11

2.2 The User-Defined Operator

To achieve good usability and performance while maintaining ACID properties,
we present the novel User-Defined Operator (UDO), which represents user-
written algorithms as algebraic operators, which extend the relational algebra
utilized by existing RDBMS. UDOs solve the problems in data analytics men-
tioned in Chapter 1 as follows:

Performance: Our implementation can optimize queries containing UDOs
very efficiently. When those queries are executed in our code-generating
database system Umbra, we can generate code that is as efficient as complex
native operators written by database experts. As UDOs are directly executed in
the database, the costly exporting and importing of data is not required.

Consistency: As UDOs are directly integrated into the query engine of exist-
ing RDBMS, they preserve all the ACID properties guaranteed by the system.
User-written code is not required to take any precautions regarding consistency
or isolation; the tuple streams utilized as input by UDOs follow the standard
semantics of the isolation levels in SQL.

Usability and Extensibility: Even though UDOs are deeply integrated into
query and execution engines of existing RDBMS as algebraic operators, users can
use a simple API in the programming language of their choice. The complexity of
writing efficient query engines is entirely hidden, and no knowledge of database
internals is required. As query engines treat UDOs as regular algebraic operators,
they can process arbitrary streams of tuples to generate a new output stream.
This approach also interacts nicely with SQL; the input streams given to an UDO
can be the result of arbitrary SQL queries containing joins and aggregations.
Similarly, the output of the UDO can be further processed by using SQL.

2.2.1 Overview

Figure 2.1 shows the overview of our architecture to compile and integrate
UDOs into a query engine. The user writes a standard SQL query, and the query
uses the UDO given by the user as source code of an imperative programming
language, such as C++ or Rust.

First, the UDO code is processed and analyzed to detect errors in the code.
Next, the UDO must be translated into a representation that the query engine
can use. We call this part of the system the UDO User Compiler ; as an additional

12 CHAPTER 2. USER-DEFINED OPERATORS

UDO User Compiler

UDO Query Compiler

User Code SQL

Query ExecutionDebug Program

C++, Rust, etc.
SQL with
function
calls

shared library,
low-level code

executable execution plan

U
se
r

Q
ue
ry

En
gi
ne

Ex
ec
ut
io
n

Figure 2.1: Architecture of the UDO User Compiler and UDO Query Compiler

feature it can directly generate a debug program that allows flexible debugging
of the user code independent of the database system.

In a second step, the query engine takes the processed user code and in-
tegrates it into the query plan that is generated from the SQL query. This
part of the system is called the UDO Query Compiler, which implements the
representation of the UDO as an algebraic operator.

Both compilers can be developed separately. Once a suitable API for user-
written code is defined, several implementations for different query execution
models can be developed. Different UDOUser Compilers can accept code written
in different programming languages, while the UDOQuery Compiler will usually
be tightly connected to the rest of the database system.

In the following, we explain the concepts of an UDO with the help of the
following example. A blog website uses a relational database system to store its
blog posts. The writer of the blog wants to analyze the posts by category, and
is interested in how many blog posts of the category “lifestyle” were written
and how many posts of the other categories exist. Listing 2.1 shows a query
that uses a UDO written in C++ that can answer the writer’s questions. The
query uses existing SQL syntax; the create function statement creates a new
function with the name count_lifestyle C , which takes a table as an input that
must match the schema specified by InputTuple S . Thus, any subquery with a
string attribute with the name “word” can be used as an input to this UDO. The
function also returns a table, which means that it can be used like a relation in
the from part of a SQL query F . Because the language is set to UDO-C++, the

2.2. THE USER-DEFINED OPERATOR 13

create function count_lifestyle(table) C

returns table language 'UDO-C++' as $$

class CountLifestyle : public UDOperator {

uint64_t lifestyle = 0, other = 0;

public:

struct InputTuple { udo::String word; }; S

struct OutputTuple { udo::String word; uint64_t n; };

void accept(ExecutionState state, const InputTuple& tuple) { 1

if (tuple.word == "lifestyle") lifestyle++;

else other++;

}

bool process(ExecutionState state) { 3

vector<OutputTuple> output = {

{"lifestyle", lifestyle}, {"other", other}

};

for (auto& tuple : output)

emit<CountLifestyle>(state, tuple); 4

return true;

}

};

$$, CountLifestyle;

select * from count_lifestyle(F

table (select category as word from blog_posts)

);

Listing 2.1: SQL syntax to define and use UDOs: create function defines a
function of the language UDO-C++. The C++ code is directly included in the
statement, and the function can be called like any other table function by using
the table keyword for table arguments.

SQL parser knows that this function is an UDO written in C++. The user-written
code is included in the SQL statement (1 , 3 , and 4) and will eventually be
processed by the UDO User Compiler and UDO Query Compiler.

2.2.2 The UDO User Compiler

In this section we introduce the UDO User Compiler. We define a high-level API
that allows user-written code to be used by the User-Defined Operator. This API
consists of only three functions, and it is not specific to any particular program-

14 CHAPTER 2. USER-DEFINED OPERATORS

op
er
at
or

st
ar
t

accept 1

emit 4

en
tir
e
in
pu

ts
ee
n

extraWork 2 process 3

emit 4

op
er
at
or

fin
is
he
d

UDO progress

for every input tuple

Figure 2.2: The UDO User Compiler: A user can write code in the accept and
process functions and call the provided emit function. Conceptually, accept is
called once for each input tuple, and process is called after the entire input was
seen.

ming language. Our implementation provides a C++ API (refer to Section 2.3)
but it is general enough to be implemented for most programming languages.

Figure 2.2 shows the conceptual overview of the functions that an UDO
can implement and use. As the query execution progresses, the user-written
functions accept 1 , extraWork 2 , and process 3 are executed. There are no
additional limitations with the implementation of these functions. As such, the
user can create arbitrary control flow by using conditionals and loops. The
functions accept and process can also call the function emit 4 as provided by
the UDO User Compiler.

These functions are used to integrate the UDO into the tuple stream of
the query. To interoperate with other algebraic operators of the query, the
user-written code must:

1. Optain tuples from its input(s), which are other relational operators,

2. Process the tuples, i.e., do the actual work, and

3. Generate the tuples as output so that the parent operator of the UDO can
continue processing the query.

These requirements map nicely to the functions 1 to 4 from above:

Accept The accept function takes a single tuple from an input and is called
repeatedly for each tuple of the input and implements per-tuple processing. This
function can, for example, materialize the tuple by storing it in a temporary data
structure, or directly compute a (partial) result as shown in 1 in Listing 2.1.

2.2. THE USER-DEFINED OPERATOR 15

ExtraWork and process After all tuples from the input were seen by accept,
the functions extraWork and process are executed. They can be used to post-
process the input, such as aggregating or sorting it. As the user-written functions
can contain arbitrary code and thus arbitrary control flow, more complex data
analytics algorithms that require the entire input to be available upfront can be
implemented as well.

The function extraWork allows the user code to guide the parallel execution
of the UDO. Conceptually, the execution of the extraWork function is separated
into phases. The phases are represented as integers, i.e., every phase has its own
arbitrary integer value. The extraWork function has a parameter that takes the
current phase and it returns the phase that should be executed next. If the UDO
is then executed in parallel, the database system makes sure that all parallel
invocations of extraWork all execute the same phase. Only when all threads
have finished executing the current phase, the next phase will be started.

The function process on the other hand conceptually only has a single phase.
It has no parameter for the phase and also cannot return a phase like extraWork.
However, process is allowed to call emit (see below). The strict separation
between extraWork and process allows implementations to more efficiently
parallelize UDOs. We discuss this in more detail in Section 2.3.4.

Emit The function emit is provided by the UDO User Compiler and can be
called by the accept and process functions to generate a tuple of the output of
an UDO. It takes a single tuple of the output as an argument. Conceptually, this
tuple is then passed to the parent operator of the UDO.

All four functions have a parameter for an implementation-specific execution
state. When the user code calls emit, it must pass along the execution state it
receives as argument in its accept or process functions. The main purpose of the
execution state is to hold auxiliary information that the database system needs
to execute the UDO. The user code does not need to interact with the state at
all other than passing it to emit. However, database systems may implement
additional functionality using the state.

The functions accept, extraWork, process, and emit can be used to easily
implement iterative algorithms. The user code in the accept function should
store all tuples of the input. The implementation of the extraWork and process
functions should then use a loop to iteratively compute the result by repeatedly
accessing the stored tuples. When the result is computed, process should call
emit for every tuple of the result.

In the example shown in Listing 2.1, only process 3 calls emit 4 because
the tuples for the output can only be computed once the entire input was seen.
The example also shows that inputs and outputs do not have to be equal in their

16 CHAPTER 2. USER-DEFINED OPERATORS

schema or their cardinality. The code only uses a string attribute of the input
with an unknown number of tuples while it generates exactly two tuples with a
string and an integer attribute as its output.

Usability and Debugging

As the execution of UDFs is usually interleaved with the rest of the query
and runs in the same process as the database system, it is not obvious how to
enable debugging of the user code. This either requires the database system to
implement a debugger itself, e.g., like in DBToaster [AK09], or the user requires
access to the database process to use common debugging tools. Both approaches
are not optimal. With the former approach users are forced to use DBMS-specific
debugging tools instead of their own, and with the latter approach users need
low-level privileged access to the database process.

For UDOs there is a more elegant solution: The accept, extraWork, and
process functions are implemented by the user as separate functions in the
programming language of their choice. Thus, a test program can be written in
that language that provides a tuple stream and calls those functions. Additionally,
the test program is required to implement the emit function, which is usually
provided by the UDO User Compiler. For debugging purposes, the provided
function could print its argument, for example.

Our implementation provides a standalone program for C++. It is completely
independent from the database system and therefore can be used for any UDO
independent of the system the UDO will eventually be used in. It reads the input
data from regular CSV files and prints the output of the UDO. To match the
characteristics of the execution in a database systemmore closely, our standalone
programs also run multi-threaded and concurrently call the accept, extraWork,
and process functions.

2.2.3 The UDO Query Compiler

The UDO Query Compiler is the part of the system that takes the artifacts
generated by the User Compiler, such as a shared library, an object file, or a
program of some low-level intermediate language, and integrates it into existing
query plans. Additionally, the UDO Query Compiler must implement a standard
algebraic operator. This operator must behave just like any other operator in the
database system, such as selection, aggregation, or join, so that it can be used
in conjunction with other operators in arbitrary queries. As such, the operator
must be directly implemented by the query engine of the database system and
by design requires the use of database internals.

2.3. USER-DEFINED OPERATORS IN CODE-GENERATING QUERY ENGINES 17

There are four points where the UDO interfaces with the query engine,
which are the four functions accept, extraWork, process, and emit. The first
three functions are implemented by the user, but the emit function must be
provided by the UDO Query Compiler. Conceptually, this function takes a tuple
that was generated by the UDO and passes it on to the parent operator of the
UDO. Depending on the actual execution engine used by the database system,
different strategies may be used to implement this function so that it efficiently
interacts with the existing engine.

Modern code-generating database systems based on the produce-consume
model [Neu11], for example, do not need to implement the emit function at all.
They could replace all function calls to emit by the actual code that is generated
in the parent operator. We provide a detailed description of an implementation
of UDOs in a code-generating query engine in Section 2.3.

Database systems that employ the iterator model [Gra94; Lor74] such as
Postgres can implement the emit function by storing the emitted tuples in
a temporary buffer. When the execution of the UDO is finished, the buffer
can be used to return the tuples to the parent operator of the UDO. The same
strategy can be used in vectorized query engines that are used in systems like
MonetDB [BZN05], Vectorwise [ZWB12], or DuckDB [RM19].

Materializing all tuples in a temporary buffer in the iterator model may add
significant runtime overhead. This overhead can be avoided by interrupting the
user code as soon as it calls the emit function. Then, the single generated tuple
can be passed to the parent operator. When the UDO should generate more
tuples, the interrupted code must be continued. We explain how this approach
can be implemented in more detail in Section 2.4.

2.3 User-Defined Operators in

Code-generating Query Engines

In this section we present our implementation of UDOs in our database system
Umbra [NF20]. Umbra is a main-memory first system, which is geared towards
working primarily in memory but also supports storing relations on disks or
preferably fast SSDs. After translating SQL to relational algebra, Umbra uses
the produce-consume model [Neu11] to generate efficient code for the query.
As code generation can be relatively expensive, especially for ad-hoc queries
that complete quickly, Umbra does not directly generate machine code but uses
the intermediate representation Umbra IR. This low-level language that was
inspired by LLVM [LA04] can then be executed in multiple ways: A virtual
machine that interprets the IR, a direct translation fromUmbra IR to x86 assembly

18 CHAPTER 2. USER-DEFINED OPERATORS

enum Phase {

Initialize = 0,

AssociatePoints = 1,

RecalculateMeans = 2,

Finish = -1,

};

Phase extraWork(ExecutionState state, Phase phase) {

switch (phase) {

case Initialize:

// Initialize the cluster centers

// [...]

return AssociatePoints;

case AssociatePoints:

// Iterate over all points to associate them with the closest

// cluster center

// [...]

// Afterwards, continue by recalculating the means of all

// clusters

return RecalculateMeans;

case RecalculateMeans:

// Calculate the new means for all clusters

// [...]

if (/* k-Means exit condition */)

// If some exit condition for the clustering is met, we finish

// the execution of extraWork.

return Finish;

else

// Otherwise, continue by associating the points to the new

// cluster centers.

return AssociatePoints;

}

}

Listing 2.2: Implementation of extraWork for a UDO that implements k-Means
clustering. The user code defines phases in an enum and can switch between
them by returning the phase that should be executed next.

2.3. USER-DEFINED OPERATORS IN CODE-GENERATING QUERY ENGINES 19

called the Flying Start backend [KLN21a], and a more sophisticated translation
that uses LLVM to generate optimized machine code. Umbra uses adaptive
execution [KLN18] to dynamically switch between all three approaches to achieve
low latency for short queries and high throughput for long-running analytical
queries. Finally, to enable good scalability across many CPU cores and even
NUMA nodes, our execution engine employs morsel-driven parallelism [Lei+14].

2.3.1 UDO User Compiler

The goal of our implementation is for queries containing UDOs to run as fast
as “native” queries that consist of only Umbra IR. To achieve this goal, our
implementation supports C++ as the programming language for user code. As a
systems language, it can be directly compiled to efficient native machine code.
The second reason why we chose C++ specifically is that it can also be compiled
to LLVM IR with the Clang compiler. As our compilation framework can use
LLVM IR as well, this makes it possible to completely inline user code into the
generated machine code, thus enabling native query speed.

Our UDO User Compiler for C++ provides some definitions of classes and
functions that users can build on. The user code must define a subclass of the
provided UDOperator base class. The conceptual functions accept, extraWork,
and process functions are realized as member functions of the subclass which
the user code can define. The emit function is a predefined member function of
the base class UDOperator. As the functions that the user writes are member
functions of a class, the UDO code can also make use of member variables to
manage state across invocations of the accept, extraWork, and process functions.
To enable parallelism within the UDO, our system potentially calls accept,
extraWork, and process concurrently. Therefore, users must ensure that these
functions are thread-safe.

The initial example in Listing 2.1 showsC++ code that our UDOUser Compiler
can use. The user-written class CountLifestyle is a subclass of UDOperator,
which uses two member variables that track the number of occurrences of the
word “lifestyle” and all other words. The variables are updated in accept 1 and
used for the generated output in process 3 . The emit function is called with a
single output tuple as an argument 4 . The UDO CountLifestyle in this example
does not require any additional parallel processing, so it does not define an
extraWork function.

Listing 2.2 shows an excerpt of the implementation of extraWork for a
UDO that implements k-Means clustering. The user can use arbitrary integers
to define different phases, for example by defining an enum in C++. When
extraWork is called with the current phase, it performs the operation according
to the current phase and returns the phase that should be executed next. The

20 CHAPTER 2. USER-DEFINED OPERATORS

1 fn Γ.produce():
2 genCode("ht := initialize ht")
3 child.produce()

4 genCode("for r, aggr in ht:")

5 parent.consume("r⊕aggr")
6 fn Γ.consume(t):
7 genCode("ht.update("+t+")")

8 fn 𝜎𝑝.produce():
9 child.produce()

10 fn 𝜎𝑝.consume(t):
11 genCode("if p("+t+"):")

12 parent.consume(t)

13 fn R.produce():

14 genCode("for r in R:")

15 parent.consume("r")

Listing 2.3: Implementation of the produce and consume functions to demon-
strate an aggregation (Γ), a selection (𝜎𝑝), and a table scan (R) in the produce-
consume model.

iterative k-Means algorithm needs to alternate between associating points to
the nearest cluster centers and recalculating the cluster centers with its newly
associated points. So, the user code defines the enum values AssociatePoints and
RecalculateMeans to represent the steps of the k-Means algorithm as phases.
The listing also shows that the user code can dynamically decide which phase
to execute next. When the k-Means algorithm is finished according to some
exit condition, extraWork returns the Finish value to indicate that the database
system should proceed with calling the process function.

For the UDO Query Compiler our User Compiler generates two artifacts
generated from the C++ code: An object file and an LLVMmodule. The object file
uses the ELF format and could theoretically also be generated by any other C++
compiler that supports ELF. The LLVM module is specific to the Clang compiler.
The module is generated, so that the UDO Query Compiler can potentially inline
the UDO code with the rest of the query code generated by the database system.

Even completely different programming languages that do not use LLVM at
all could be used. Our UDO Query Compiler in Umbra can work with any code
that can be compiled to ELF object files. Some optimizations are not possible
when the LLVM module is not available, nevertheless the UDO can be executed.

2.3.2 UDO Query Compiler

Our UDO Query Compiler takes the object file and the LLVM module from the
UDO User Compiler and integrates it into a query plan. In the query, the UDO
is represented as a relational algebra operator, which we will call UDO𝑎. The
implementation of UDO𝑎 is not specific to one particular UDO. UDO𝑎 can take
any UDO that was processed by the UDO User Compiler and integrate it into
existing queries.

2.3. USER-DEFINED OPERATORS IN CODE-GENERATING QUERY ENGINES 21

Γ
𝜎𝑝

R

1 ht := initialize ht
2 for r in R:

3 if p(r):

4 ht.update(r)

5 for r, aggr in ht:

6 output r⊕aggr

Γ.produce():
R.produce():

𝜎𝑝.consume(r):
Γ.consume(r):
Γ.produce():

Figure 2.3: Code generated by a query compiler using the produce-consume
model. The code generated by the algebraic operators is interleaved which leads
to better data locality.

Because it is treated like any other existing algebraic operator, UDO𝑎 in-
tegrates seamlessly with all DBMS components, such as the optimizer. While
general optimizations across UDO𝑎 are not possible since the optimizer does
not have any information about the semantics of the UDO, the subtree that
represents the input of UDO𝑎 and the subtree that contains UDO𝑎 can still be
optimized.

Produce-ConsumeModel

Umbra uses the produce-consume model [Neu11] to generate code for a rela-
tional algebra tree. In this model, every algebraic operator implements the two
functions produce and consume that generate code. Listing 2.3 shows how these
functions could be implemented for an aggregation that uses hash tables (Γ), a
selection with a predicate 𝑝 (𝜎𝑝) and a table scan for the relation R. In general,
the produce function is called when an operator should start generating its
output. For Γ, this function first generates code to initialize a hash table, and
then calls the produce function on its input. When an operator wants to pass
a tuple of its output to its parent, it calls the consume function of the parent.
The Γ operator generates code to update the hash table with the new tuple in
its consume function. The remainder of Γ.produce then iterates over the hash
table and calls the consume function of its parent with the aggregated result.
The implementation of the 𝜎𝑝 operator is simpler; the selection does not need
to initialize any data structures, so it only calls the produce function of its input
in 𝜎𝑝.produce. 𝜎𝑝.consume generates code to evaluate the predicate and calls
the consume function of its parent that will generate code in the true-branch of
the predicate.

Figure 2.3 shows a query that uses those three operators and the generated
code. Code from different operators tends to be interleaved. This approach
leads to good data locality and very efficient execution on modern hardware
but makes it difficult to integrate “foreign” code.

22 CHAPTER 2. USER-DEFINED OPERATORS

1 fn UDO𝑎.produce():

2 child.produce()

3 if UDO has extraWork:
4 genCode("phase = 0")

5 genCode("while phase != -1:")

6 genCode(" phase = extraWork(state, phase)")

7 if UDO has process:
8 genCode("process(state)")

9 genCode("fn emit_helper(t):")

10 parent.consume("t")

11
12 fn UDO𝑎.consume(t):

13 genCode("accept(state, " + t + ")")

Listing 2.4: Implementation of UDO𝑎 in the produce-consume model. The pro-
duce and consume functions of UDO𝑎 generate code to call the UDO functions
accept, extraWork, and process.

Generating Code for UDOs

To integrate the functions 1 – 4 of an UDO into a query plan, the UDO Query
Compiler must generate code that acts as an interface between the user code
and the code generated by built-in operators. As we model UDO𝑎 like any other
algebraic operator, there are two choices to emit code: the produce function and
the consume function.

Integrating accept is straightforward; the consume function must generate
code to call accept. Conceptually, the consume function generates code that
processes a single tuple and we defined accept as a function that takes a single
tuple, so they are a perfect match.

Similarly, the extraWork and process functions must be called in the code
generated by produce. Only then, UDO𝑎 can make sure that the entire input was
seen and accept was called with all tuples from the input before the extraWork
and process functions are called for the first time. To call extraWork, UDO𝑎
generates code that calls it in a loop. The loop repeatedly calls extraWork
keeping track of the current phase until extraWork returns −1 which indicates
that it is finished.

Listing 2.4 shows the implementation of UDO𝑎 in the produce-consume
model. As described above, UDO𝑎.produce generates code to call extraWork
and process and UDO𝑎.consume generates a call to accept.

To interoperate with other operators in the query plan, UDO𝑎.produce also
first calls the produce function of its child operator. In the produce-consume
model, the produce function of the child operator is then responsible for even-

2.3. USER-DEFINED OPERATORS IN CODE-GENERATING QUERY ENGINES 23

Γ

UDO𝑎

R

1 ht := initialize hash table
2 for r in R:

3 accept(r)

4 for r, aggr in R:

5 output r⊕aggr
6
7 fn emit_helper(r):

8 ht.update(r)

Γ.produce():
R.produce():

UDO𝑎.consume(r):

Γ.produce():

Γ.consume(r):

calls to emit

Figure 2.4: Code generated by the UDO Query Compiler and UDO𝑎 for a UDO
that behaves like a selection (i.e., “pipelined operator”). Calls to emit in the user
code are replaced by calls to the generated emit_helper function.

tually calling UDO𝑎.consume with an argument that contains the location or
name of the variable that contains the tuple passed to UDO𝑎.

To implement the emit function in the produce-consume model, UDO𝑎.pro-
duce also generates code that defines a new, separate function emit_helper.
Every call to emit in the user code means that a new tuple of its output is gener-
ated. This tuple must eventually reach the parent of UDO𝑎 so that the query
processing can continue. In the produce-consume model, the parent receives an
input tuple in the code generated by the consume function. To bridge the gap
between the user code and generated code, UDO𝑎 emits the code of its parent
into the separate function emit_helper. Then, the UDO Query Compiler replaces
all calls to emit in the user code by calls to emit_helper.

With this approach, the UDO is entirely transparent both to the user code and
the other relational algebra operators; they do not require any implementation
details about the other. Built-in operators can call produce and consume of
UDO𝑎 as usual, and the user code uses the API functions 1 – 4 .

Figure 2.4 shows the algebra tree and the generated code for a query that
contains an UDO. This query is similar to the query from Figure 2.3; only the
selection was replaced by an UDO. For this example, we assume that the UDO
only calls the emit function in accept and does not implement extraWork or
process. While the generated code defines the function emit_helper, it does not
contain calls to emit_helper, because emit_helper is only indirectly called every
time the UDO code calls emit.

Figure 2.5 shows another algebra tree and its generated code. Again, the
query from Figure 2.3 is shown but we replaced the aggregation with an UDO.
Additionally, the UDO now calls emit only in the process function. Writing
UDOs that call emit only in process is useful for algorithms that can only
generate their output once the entire input is seen. The generated code contains

24 CHAPTER 2. USER-DEFINED OPERATORS

UDO𝑎

𝜎𝑝

R

1 for r in R:

2 if p(r):

3 accept(r)

4 process()

5
6 fn emit_helper(r):

7 output r

R.produce():

𝜎𝑝.consume(r):
UDO𝑎.consume(r):

UDO𝑎.produce(): calls to emit

Figure 2.5: Code generated by the UDO Query Compiler and UDO𝑎 for an UDO
that behaves like an aggregation (i.e., “pipeline breaker”). The generated code
also calls accept and additionally makes sure that process is called only after
the entire input is seen.

a call to process after the loop of the table scan. Thus, the process function will
only be called after the UDO received all tuples of its input.

2.3.3 UDO Function Inlining

The examples in Figures 2.4 and 2.5 show that, initially, UDO𝑎 introduces several
low-level function calls that will be executed for each tuple of the input and
output; the accept function is called in line 3 for every tuple and the user
code calls emit and indirectly emit_helper for every tuple of its output. When
UDOs are executed in main-memory systems running on modern hardware, the
best performance can only be achieved when the number of function calls is
reduced. As data can be processed so quickly, every function call adds noticeable
overhead. To solve this issue, we use a very common approach used in compiler
optimization; we inline the function calls to eliminate them.

This approach is possible in our implementation because we can compile the
user code written in C++ to LLVM. Umbra supports different execution modes,
which includes LLVM, as well. Hence, we generally compile the user code to
native machine code, which is stored as object files. To prepare the UDO code
to be eventually inlined, the C++ code is also compiled to LLVM.

When the query is executed, the object file is loaded into memory and the
code generated by UDO𝑎 uses real low-level function calls into the functions
that are located in the object file. Since the object file is generated only once
when the user runs create function, this compilation incurs no compilation
overhead from the high-level compiler, which for languages like C++ could take
up to several seconds. In fact, since the object file is generated only once for
every UDO, we can afford running all available compiler optimizations on the
user code. This means that even though the compiled query code will execute

2.3. USER-DEFINED OPERATORS IN CODE-GENERATING QUERY ENGINES 25

lots of function calls to accept, extraWork, process, and emit, the UDO code is
very efficient.

When our framework for adaptive execution [KLN18] detects a long running
query, our compilation engine generates LLVM code for the entire query plan.
When that happens, we search for all call instructions that call the accept,
extraWork, process, or emit functions from the object file and replace them by
their LLVM representation.

Note that in Umbra, switching to the LLVM mode is not a static decision
that must be made before executing the query. This decision is made by the
execution engine at runtime. The execution of the UDO code is transitioned
smoothly with no downtime from the unoptimized implementation, which uses
real functions calls into the object files, to the optimized and inlined LLVM code.

Listing 2.5 shows a part of the LLVM code, which is generated by our
UDO Query Compiler. This code was generated from the SQL query shown in
Listing 2.1 that selects from a relation and uses an UDO. The part shown here
contains the table scan and the code for accept. The resulting LLVM code has
no clear boundaries between the user code and the code generated for the table
scan and thus has good locality. The first part of the code loads the string value
from the column of the relation. This code is directly generated by the query
engine for the table scan. It is followed by the inlined UDO code which first
checks if the string has exactly 9 characters, because it compares it with the
word “lifestyle”. If it does, it then actually compares the string by using the
memcmp function and increments the corresponding counter. The rest of the
code, again generated for the table scan, increases the tuple index, and repeats
the loop if any tuples are left.

Independent from the actual implementation, the concept of function inlining
can quickly lead to an increase in code size especially when inlined functions
contain calls to other functions that are inlined. In the UDO Query Compiler,
this issue can occur when a single query contains multiple UDOs. To avoid
any code explosion caused by inlining, we only inline calls to the functions of a
UDO if they are called only exactly once syntactically. As a result, there is no
potential for code to be duplicated; therefore, code explosion can be avoided.
This does not mean that it is impossible to call the emit function multiple times
semantically. Wrapping the call to emit in a loop, for example, still satisfies our
requirement but at runtime the function is called multiple times.

2.3.4 Parallel Execution

Generally, Umbra generates code that processes all queries concurrently on all
available CPU cores. To achieve the best performance, UDO𝑎 must also generate
code that can be executed concurrently.

26 CHAPTER 2. USER-DEFINED OPERATORS

scan_loop_head:

%tuple_index = phi i64 [i64 0, %start_scan],

[%next_index, %string_eq_block]

%attr_ptr = getelementptr { i64, i64 },

{ i64, i64 }* %column_ptr, i64 %tuple_index, i32 0

%str_header = load i64, i64* %attr_ptr, align 8

%str_body = getelementptr inbounds i64,

i64* %attr_ptr, i64 1

%str_offset = load i64, i64* %str_body, align 8

%str_len = trunc i64 %str_header to i32

%is_long_str = icmp ugt i32 %str_len, 12

%str_raw_ptr = select i1 %is_long_str,

i64 %str_data, i64 0

%str_ptr = add i64 %str_raw_ptr, %str_offset

store i64 %str_header,

i64* %local_var_str_header, align 8

store i64 %str_ptr,

i64* %local_var_str_body, align 8

%has_len_9 = icmp eq i32 %str_len, 9

br i1 %has_len_9, label %cmp_str_block, label %else_block

cmp_str_block:

%string_cmp = call @memcmp(i8* %local_var_str,

i8* @str_literal, i64 9)

%string_eq = icmp eq i32 %string_cmp, 0

br i1 %string_eq, label %string_eq_block,

label %string_ne_block

string_ne_block:

br label %string_eq_block

string_eq_block:

%var = phi i8* [%dbs_var, %string_ne_block],

[%nondbs_var, %cmp_str_block]

%counter = bitcast i8* %var to i64*

atomicrmw add i64* %counter, i64 1 monotonic

%next_index = add i64 %tuple_index, 1

%at_end = icmp eq i64 %next_index, %relation_size

br i1 %at_end, label %finish_scan,

label %scan_loop_head

Listing 2.5: LLVM code generated by the UDO Query Compiler after inlining
the UDO from Listing 2.1. The user code is directly interleaved with the rest of
the query code which removes all potential function call overhead.

ta
bl
e
sc
an

U
se
r-
D
efi

ne
d
O
pe

ra
to
r

ta
bl
e
sc
an

2.3. USER-DEFINED OPERATORS IN CODE-GENERATING QUERY ENGINES 27

Our code generation framework and the morsel-driven scheduler ensure
that code generated by the consume function of any relational algebra operator
is called concurrently. As our implementation of consume for UDO𝑎 generates
a call to accept, this means that the user-written code in accept is executed
concurrently as well. Similarly, we generate code that calls the extraWork and
process functions concurrently on all available CPU cores.

Since the extraWork function does not receive any tuples and cannot call
emit and therefore does not interact with any other relational operators in a
query, our UDO Query Compiler can generate more efficient code for it. The
implementation of relational operators usually requires the allocation of state
for intermediate results, such as a hash table to compute a hash-join or an
aggregation. Since the execution of the code generated by UDO𝑎 and all other
relational operators in the produce-consume model is usually interleaved, it is
necessary to keep alive the states of all relational operators that are currently
being executed. However, while extraWork is called, all children of UDO𝑎 have
already finished, so their states can be deallocated, but the execution of the
parent operators has not started, yet. So, the allocation of the states of the parent
operators can be delayed until process is called for the first time.

To parallelize the execution of the extraWork function, our implementation
stores the integer value of the current phase in a global variable. This global
variable is then used as an argument to the call of extraWork. The return value
of extraWork is then compared to the value stored in the global variable. If they
are equal, the execution continues without any synchronization. Otherwise,
our implementation waits until all other concurrent calls to extraWork in other
threads have finished. Then, it updates the global variable with the new phase.
We repeat this until one call to extraWork returns -1 to indicate that the execution
should proceed with the process function.

For this parallelization to work, the functions accept, extraWork, and process
must be thread-safe. Therefore, the user must ensure that those functions can
be called in parallel. Only thread-safe data structures or common idioms for syn-
chronization such as mutexes or atomic operations should be used. Furthermore,
since these functions may contain calls to emit, our UDO Query Compiler en-
sures that emit is thread-safe, as well. When functions are implemented as UDOs
to compete with code-generating operators directly implemented in Umbra, the
user code must be written very well and use state-of-the art synchronization.

2.3.5 Implementation Considerations

In this section we discuss some additional technical details and considerations
for our implementation. While they do not extend the theoretical framework

28 CHAPTER 2. USER-DEFINED OPERATORS

of the UDO User Compiler and UDO Query Compiler, they are still useful to
obtain a full picture of our implementation.

Allocation and Initialization of the UDO State

A UDO usually needs to maintain state during the execution. For UDOs written
in C++, for example, users can define a class that can contain arbitrary data
members. The UDO functions are then implemented as member functions of
this class so they can access these data members. Thus, the UDOQuery Compiler
needs to make sure that the state of a UDO is handled correctly.

When a UDO is created by a user, the UDO User Compiler must determine
the size and alignment of the UDO class and pass it to the UDO Query Compiler.
With this information, the UDO Query Compiler generates code that allocates
the memory for the UDO state at the beginning of the query execution and
stores the memory address of the UDO state in a variable. It also generates code
that initializes the allocated memory. In case of UDOs written in C++, the state
is initialized by calling the constructor of the UDO class.

Similarly, a call to the destructor is generated at the end of the query program.
Our UDO Query Compiler ensures that the destructor is always called even
when the query is cancelled. Therefore, all state created in the constructor is
correctly cleaned up by the C++ destructor which may contain implicit calls to
destructors of member variables of the UDO class.

All member functions of a C++ class have an implicit this argument which is a
pointer to an object of the class. Our UDO Query Compiler uses the variable that
is created when the object is initialized as an argument for all calls to member
functions of the UDO class.

Interestingly, passing the pointer to the UDO object explicitly to all UDO
member functions allows the execution engine to execute different implementa-
tions of the same UDO on the same state. In our implementation in Umbra we
have the choice between using the compiled object file of a C++ UDO or directly
inlining the LLVM code of the UDO into the LLVM code generated for a query
as discussed in Section 2.3.3. Now, when we switch from the code containing
calls to the object file to the optimized inlined LLVM code, no synchronisation
between threads is required. Since both versions of the code are semantically
identical and operate on the same state, they can run concurrently. Thus, we
can seamlessly switch between both versions of the code.

Passing SQL Values to UDOs

Programs written in high-level languages use basic types such as int and float,
and complex types such as std::string in C++. SQL on the other hand uses its

2.3. USER-DEFINED OPERATORS IN CODE-GENERATING QUERY ENGINES 29

SQL Type C++ Type
smallint int16_t / uint16_t

signed and unsigned integers
have identical storage layout

integer int32_t / uint32_t
bigint int64_t / uint64_t
double precision double
text / varchar udo::String udo::String is converted to text

Table 2.1: SQL types supported for C++ UDOs. Values can be converted in both
directions. Nullable types are not supported.

own set of types such as integer, double precision, and varchar. Additionally,
all value types in SQL can also be nullable. To pass SQL values to the user
code and translate values generated by the user code back to SQL values, our
implementation can convert values between the representation used to process
SQL queries and the types of the high-level language used for the user code.

Table 2.1 shows the list of SQL and C++ types supported by our implementa-
tion. In general, no nullable types are supported and potentially nullable values
cannot be passed to UDOs. To circumvent this limitation, a query can use the
SQL function coalesce, for example, to ensure that all NULL values are replaced.

The SQL integer types map directly to integer types in C++. In SQL, all
integers are signed, but C++ UDOs may also use unsigned integers. The storage
layout for both kinds of integers is identical and uses twos-complement to
represent signed integers. When a UDO generates an unsigned integer, it is
converted to the corresponding signed integer type in SQL which can lead
to negative values in case of a wrap-around. For floating-point numbers, no
conversion is necessary. Values of double precision in Umbra’s query engine
and C++ use the same IEEE 754 representation [19].

For SQL strings, the UDO User Compiler provides the class udo::String. This
class wraps the internal representation of SQL strings that is used by the query
execution engine. It supports some basic string operations but more importantly
can be converted cheaply to std::string_view. The std::string_view value then
only references the string data and does not require any memory to be copied.
Similarly, a std::string_view value can be converted cheaply to udo::String to
generate a string as a result in a C++ UDO.

Global State and Concurrent Queries

As user code can be arbitrary code, it can also make use of global variables.
While it is generally considered bad practice to rely heavily on global state,
especially when global state is mutated, it is sometimes useful or even necessary
to use. The standard library of C++, for example, uses global state to implement

30 CHAPTER 2. USER-DEFINED OPERATORS

some functions more efficiently. Another use of global state are thread-local
variables, which are often used to make parallel implementations of algorithms
more efficient.

As we allow users to write arbitrary code, our UDO User Compiler does
not prohibit the use of (thread-local) global variables. Because we also want to
maintain the isolation of separate queries running concurrently to not violate
ACID properties, our UDO Query Compiler maintains entirely separate global
and thread-local states for every instance of an UDO that is being executed.
Thus, when a new query that contains an UDO starts, its global state will always
reflect a clean state and is not affected by any other queries that use the same
UDO.

To allow users to implement parallel algorithms more efficiently, we also
provide a small area of thread-local state in every call to a UDO function. The
functions accept, extraWork, and process all have a parameter for an unspecified
query state. In our implementation for C++ UDOs, the query state provides the
member function getLocalState which returns the pointer to the local state,
which is a small memory area that is reserved for the current thread. The UDO
Query Compiler passes the same local state as argument when a UDO function is
called multiple times in the same thread. This allows the user code to recognize
when a thread accesses a data structure multiple times and optimize theses
accesses.

Linking of Runtime Dependencies

Executing C++ and even C code requires several dependencies to be loaded
at runtime. Most notably the C standard library, also called libc, and the C++
standard librarymust be loaded so that the user code can use all features provided
by the language. The trivial approach of loading them as shared libraries into
the database process is not feasible as this would interfere with the rest of the
system. Additionally, this approach does not allow separating the global states
of the libraries. Just like global variables explicitly written by the user, we also
want to provide full isolation of all runtime dependencies so that two UDOs
running concurrently can never interfere with each other.

To solve this issue, our system contains a custom runtime linker, which can
load the required runtime libraries as object files or static libraries, and load
them into the existing database process. This linker also takes the object file
that is generated from the UDO code and links it with the runtime dependencies.
Finally, the linker also supports allocating global and thread-local state which
allows us to implement the strict separation for global states of concurrent
UDOs.

2.4. USER-DEFINED OPERATORS IN THE ITERATOR MODEL 31

2.4 User-Defined Operators in the Iterator

Model

The concept of UDOs is not limited to being implemented in code-generating
databases. Query engines based on the iterator model can achieve very efficient
execution of UDOs, as well. This approach allows the efficient execution of
custom algorithms in traditional disk-based database systems. In this section,
we present our implementation of UDOs in Postgres.

In the iterator model, every algebraic operator defines a next function. This
function generates a single tuple of the output of the operator. It is called
repeatedly until the entire output is generated, which establishes a pull-based
control flow, that is, the parent operator decides when the child operator should
generate the next tuple. This stands in contrast to the architecture of UDOs; the
user code can decide by itself when to generate a new tuple of the output and
call emit. Thus, UDOs have a push-based control flow; children operators push
their outputs to their parents. An implementation of UDOs in a query engine
based on the iterator model must bridge the gap between the push-based user
code and the pull-based execution of the query in which the UDO is contained.

2.4.1 UDO User Compiler

As the UDO User Compiler can generally be independent of the actual query
engine of the existing database, it does not have to be reimplemented for every
database. Our Postgres implementation uses the exact same UDO User Compiler
as our implementation in Umbra (see Section 2.3.1). As such, it supports user-
written C++ code. The UDO User Compiler in Umbra can also make use of the
LLVM IR to further optimize the code generated for queries that contain UDOs.
Postgres does not generate code for entire queries, so it only uses the object files
generated by the UDO User Compiler.

2.4.2 UDO Query Compiler

As mentioned above, the main problem that the UDO Query Compiler, which
is integrated into the iterator model, must solve is the mismatch between the
pull-based query engine and the push-based user code. Conceptually, the imple-
mentation of the algebraic operator UDO𝑎 must first call accept with all tuples
of the input and then call extraWork and process. In the context of the iterator
model, this is in implemented in the next function of UDO𝑎.

Listing 2.6 shows how the functions of the UDO are called in the iterator
model. The next function must call the accept function for every tuple of its

32 CHAPTER 2. USER-DEFINED OPERATORS

1 fn UDO𝑎.next():

2 if UDO not finished:
3 if state is empty:
4 state = init next_coro()
5 resume state
6 if state is suspended:
7 return state.tuple

8 coro UDO𝑎.next_coro():

9 while child has tuples:
10 accept(child.next())

11 phase = 0

12 while phase != -1:

13 phase = extraWork(phase)

14 process()

15
16 fn UDO𝑎.emit_helper(tuple):

17 state.tuple = tuple

18 suspend state

Listing 2.6: Implementation of UDO𝑎 in the iterator model. Calls to emit are
redirected to emit_helper which suspends the execution of the user code until
the next invocation of UDO𝑎.next.

child operator. These tuples are fetched by calling the next function of the child
in the loop in lines 9 and 10. After all tuples are fetched, the extraWork and
process functions are called in lines 13 and 14.

The iterator model mandates that the next function should return a single
tuple. To avoid memory and runtime overhead, UDO𝑎.next should not store
any intermediate results in temporary buffers. However, the user code can
decide arbitrarily when to call emit either in accept or process. Hence, the
implementation of UDO𝑎.next does not have control over when a new tuple is
generated. To solve this issue, our implementation suspends the execution of
the user code as soon as it calls emit. It saves the execution state, such as the
stack and the instruction pointer, of the user code and jumps back to where the
execution of the user code was first started in line 5. It also remembers the tuple
argument that the user code passed to emit so that it can return the tuple in
line 7.

Conceptually, we treat the next_coro function (lines 8 to 14) as a coroutine.
Instead of calling it once and getting a result value once, we first initialize it
in line 4. This sets up the execution state for the coroutine but does not yet
execute the function. In line 5, the coroutine is resumed, which means that the
execution starts (for a new coroutine) or continues (for an old coroutine that was
suspended before). The execution continues until the coroutine is suspended. In
our implementation, this happens precisely when the user code calls emit.

Note that the coroutine is an implementation detail of the UDO Query
Compiler in the iterator model. The user code is not modified in any way to
enable the execution of the coroutine. As our implementation in Postgres uses

2.5. EVALUATION 33

the same UDO User Compiler as in Umbra, the exact same user code can be
used in both systems.

Like in Umbra, our UDO Query Compiler in Postgres has only one imple-
mentation for UDO𝑎 that is used for all UDOs. Because different UDOs can
use different types for the attributes of the tuples of their input and output,
the implementation for UDO𝑎 must be able to call the accept function and im-
plement the emit function for any attribute types. In Umbra, UDO𝑎 generates
code, so it can generate the correct code for the corresponding attribute type.
However in Postgres, the implementation of UDO𝑎 directly contains a call to
accept and it also directly defines the emit_helper function. To be able to still
handle UDOs with different attribute types, our UDO Query Compiler in Post-
gres uses a custom function calling sequence to call the UDO functions and to
implement emit_helper. We use low-level machine code to be able to precisely
move the UDO tuple attributes from the internal representation in Postgres to
the specific registers mandated by the calling convention of the system. Our
custom machine code also handles suspending and resuming the execution of
the user code by saving and restoring all relevant registers and by switching to
a separate CPU stack.

2.5 Evaluation

To evaluate our implementation, we implemented several different functions as
UDOs and executed them in Umbra and Postgres. We compared their runtime
with equivalent queries implemented in standard SQL or “native” operators of
Umbra that generate code. We also ran some queries on Spark, a data analytics
engine, and DuckDB, an in-memory database system that uses vectorized exe-
cution. Our results show that the runtime of queries containing UDOs is always
similar to or faster than all competing approaches while allowing the user to
write standard C++ code.

We ran all our benchmarks on a NUMA machine with two Intel® Xeon® E5-
2680 CPUs with 14 cores and 28 hyper-threads each and 128GiB of DRAM per
node. Unless otherwise noted, we ran all benchmarks on all 56 hyper-threads.

We ran all queries 10 times and report the root mean square. We ensured
that the data sets were loaded into the file system caches before running the
queries. Postgres is configured to use 128GiB of DRAM. Spark is configured to
use 64GiB of main memory each in the driver and executor.

34 CHAPTER 2. USER-DEFINED OPERATORS

0

25

50

75

0 2.5 5 7.5 10

0

25

50

75

10 100 200 300 400 500

th
ro
ug

hp
ut

(M
tu
pl
es

/s
)

number of tuples (millions)

C++ UDO Umbra / Spark native

Postgres Spark UDO Standalone Umbra

Figure 2.6: End-to-end throughput of different implementations of k-Means.
The measurements include the compilation time of the UDO Query Compiler.
Overall, the UDO implementations surpass the throughput of Spark and can
reach the same throughput of a native, code-generating implementation in
Umbra.

2.5.1 Complex Iterative Algorithm: k-Means

One of the main use cases of UDOs is to integrate complex data analytics
algorithms that are written in imperative code into the database system. We
want to show that implementing such an algorithm as an UDO can achieve
the same performance as if it were implemented directly into the database by
generating code. For nonexperts of our database system, it is not feasible to
implement a new operator on the relational algebra level, especially for complex
algorithms. To be able to understand the performance characteristics of UDOs,
however, it is best to have a direct comparison of UDO vs. native code-generating
code.

For this we chose the comparatively simple k-Means algorithm and imple-
mented it both as a C++ UDO and as a native operator directly into Umbra.
Conceptually, both implementations follow this simplified algorithm:

1. Initialize cluster centers by randomly sampling 𝑘 points.

2. For each point select the cluster center with the smallest distance and
update the point’s cluster id.

2.5. EVALUATION 35

SMT

0

25

50

75

8 16 24 32 40 48 56

number of threads

th
ro
ug

hp
ut

(M
tu
pl
es

/s
)

Umbra C++ UDO native

Figure 2.7: Scalability of runtime throughput of k-Means in Umbra. Here, the
significant compilation time of C++ UDOs is not included. In pure runtime, the
C++ UDO can scale just as well as the native code-generating implementation in
Umbra.

3. For each cluster find all points with the same cluster id and calculate the
new cluster center.

4. Repeat steps (2) and (3) 10 times.

Usually, the iteration is stopped when a cancellation criterion is met, such as a
required minimum movement of the cluster centers. As this depends heavily
on the initialization of cluster centers, which is random in our implementation,
instead we always iterate exactly 10 times to ensure that the runtimes of all
approaches are directly comparable.

We use synthetically generated two-dimensional points that are clustered
in eight clusters as the data-set for our benchmarks. The points within each
cluster are drawn from a normal distribution where each cluster has separate
means and variances. As the number of iterations is fixed to ten, all executions
always must scan all points exactly ten times and compare them to the current
cluster centers of all eight clusters.

The implementation effort required for both approaches – one natively in
Umbra, using code-generating code and database internals, and the other as
a self-contained UDO – highlights the qualitative advantage of using UDOs.
The Umbra implementation extends the relational algebra by adding a new
algebraic operator that implements k-Means. Adding a new operator requires
modifying several parts of the system such as the SQL parser, the optimizer, and
of course the query engine. In its core, the implementation consists of about
500 lines of code of which many generate one or more instructions. The UDO
implementation has 400 lines of self-contained C++ code. This code only uses

36 CHAPTER 2. USER-DEFINED OPERATORS

features from the C++ standard library and some auxiliary data structures. As
the UDO does not use any database-specific code, it can easily be compiled into
a standalone executable program which also makes debugging much easier.

Spark allows for even more straightforward implementation of data analytics
algorithms such as k-Means as they are directly built-in into the system. At its
core, the Spark code consists of only one call to the existing k-Means clustering
function and a few more lines to set up the experiment. When compared to
writing C++ code for UDOs, Spark enables users without in-depth knowledge
of programming languages such as C++ or Rust to do data analytics. However,
Spark cannot reach the performance of queries using UDOs.

The main advantage of using UDOs in existing database systems instead of
specialized data analytics systems like Spark is their execution speed. Figure 2.6
shows the throughput of different implementations of the k-Means algorithms
as described above for data sets containing up to 500 million tuples. We ran the
C++ UDO in our UDO implementations for Umbra (multi-threaded) and Postgres
(single-threaded). Additionally, we tested the performance of the standalone
executable that is mainly used for debugging (see also Section 2.2.2). As a
comparison, we provide measurements of a native k-Means operator of Umbra,
which generates efficient code and makes heavy use of database internals to
achieve good parallelization.

For small data sets that contain up to 10 million tuples, the C++ UDO exe-
cuted in Umbra cannot yet compete with the native implementation. Because
executing the C++ UDO incurs a compilation overhead of almost 400ms while
the entire query only runs for 480ms, the end-to-end throughput is dominated
by the compilation overhead. The native implementation in Umbra, on the other
hand, only has a compilation overhead of approximately 80ms. When the same
queries are executed on a larger data set, the compilation overhead decreases
relative to the total query runtime. Thus, the C++ UDO in Umbra can reach a
throughput similar to the native Umbra implementation for the large data sets
with 400 million tuples or more.

Since the standalone executable is compiled in advance, it has no compilation
overhead. For small data sets this allows the standalone executable to achieve a
higher end-to-end throughput than Umbra. However, for larger data sets Um-
bra’s morsel-driven parallelism strategy and leads to unmatched performance.

The execution of the C++ UDO in Postgres is not able to reach Umbra’s
performance because Postgres only runs single-threaded whereas Umbra uses all
available 56 hyper-threads. Nevertheless, the execution of the UDO in Postgres
achieves a single-threaded throughput that is comparable to the throughput of
each thread in the Umbra implementations; the total throughput of the execution
in Umbra is between 50 and 100 times higher than in Postgres while using 56
times as many CPU threads. Since both Umbra and Postgres use the exact same

2.5. EVALUATION 37

UDO, both execute mostly the same machine code, which allows Postgres to
achieve similar performance on its single thread.

Even though Postgres only uses a single thread, it still achieves a higher
throughput than Spark which also uses all hyper-threads. As for the other
implementations, in Spark we select random points to initialize the cluster
centers and iterate exactly 10 times. The large performance difference between
Spark and the other approaches has several reasons. The C++ UDO executes
efficient machine code which is generated from an optimizing C++ compiler
from a C++ program that stores all its state in main memory. Spark needs to
make sure that the k-Means algorithm can scale out onto large clusters for data
sets which cannot easily fit in main-memory. Thus, it often needs to materialize
intermediate states to synchronize all workers and to allow for the states to
potentially be written to disk. The C++ UDO implementations on the other hand
can heavily benefit from cheap intra-process synchronization.

To demonstrate the scalability of the UDO implementation onto many
threads, we compare the runtime of the k-Means query that processes 500million
tuples while varying the number of threads. Figure 2.7 shows the throughput
excluding the compilation overhead for this query for the native and the UDO
implementations in Umbra. Since the UDO is also executed using Umbra’s
morsel-driven parallelism strategy, it scales similarly to the native Umbra op-
erator. In general, user-written queries have the potential to scale as well as
native database operators as long as their implementation is reasonably efficient
and makes use of lock-free data structures as opposed to relying on mutual
exclusion.

Overall, the experiments show that a k-Means UDO can reach a throughput
comparable to a native operator even though the k-Means UDO is implemented
using only standard C++ constructs. The C++ code is compiled by using the Clang
compiler, thereby enabling all available optimizations. Umbra generates the
low-level code for the native k-Means operator directly without going through
a higher-level language first and uses fewer expensive optimizations than the
Clang compiler. For UDOs, spending more time on compiling C++ is not a
performance issue as this is only done once when the create function statement
is executed. A code-generating database must balance the trade-offs between
spending more time to generate faster code.

2.5.2 Linear Regression

To benchmark another algorithm used in data analytics, we tested simple linear
regression using the least squares error function. We implemented it as an
UDO, natively in Umbra, Spark, and SQL. SQL offers the functions regr_slope
and regr_intercept, which can be used for simple linear regression on a linear

38 CHAPTER 2. USER-DEFINED OPERATORS

0

1

2

3

4

5

0.25 0.5 0.75 1

0

16

32

48

64

1 10 20 30 40

th
ro
ug

hp
ut

(B
tu
pl
es

/s
) throughput(G

iB
/s)

number of tuples (billions)

C++ UDO Umbra / Spark native SQL

DuckDB Postgres Spark UDO Standalone Umbra

Figure 2.8: End-to-end throughput of different implementations of simple lin-
ear regression. For aggregation-like algorithms, all approaches using code-
generation perform best for larger data sets.

function. All Non-SQL implementations instead use a polynomial of degree 2 as
a target function to highlight the use case for hyperparameter tuning, which
often requires slight changes to existing algorithms.

Our implementations solve the following problem: For given pairs of values
𝑥, 𝑦 choose 𝑎, 𝑏, and 𝑐 while minimizing the error term ∑𝑖(𝑎 + 𝑏𝑥𝑖 + 𝑐𝑥2𝑖 − 𝑦𝑖)2.
This problem has the following closed-form solution:

(
𝑎
𝑏
𝑐
) = (

∑1 ∑𝑥 ∑𝑥2
∑𝑥 ∑𝑥2 ∑𝑥3
∑𝑥2 ∑𝑥3 ∑𝑥4

)

−1

⋅ (
∑ 𝑦
∑𝑥𝑦
∑𝑥2𝑦

)

To compute this efficiently, first, all sums need to be calculated. Calculating the
sums requires little synchronization and should scale very well. When multiple
threads compute the sums, each thread can independently compute partial sums
of the part of the input data it sees. The values for 𝑎, 𝑏, and 𝑐 can be determined
at the end by summing up the partial sums of all threads and calculating the
inverse of the matrix.

Figure 2.8 shows the end-to-end throughput for all implementations. As the
linear regression is essentially an aggregation, the very fast code-generating
query engine used in Umbra surpasses all other approaches. This result, of
course, is not due to the use of UDOs but because generating code is the most
efficient approach to compute this algorithm. Still, the throughput of the UDO

2.5. EVALUATION 39

SMT

0

1

2

3

4

5

0

16

32

48

64

8 16 24 32 40 48 56

number of threads

th
ro
ug

hp
ut

(B
tu
pl
es

/s
)

throughput(G
iB/s)

UDO Native reg_slope/intercept

Figure 2.9: Scalability of simple linear regression in Umbra. The faded lines show
the raw throughput without compilation overhead. The UDO query reaches a
raw throughput of over 70 GiB/s but its compilation overhead brings down the
total throughput.

implementation in Umbra is very similar to the native, code-generating operator.
Especially for larger data sets were the compilation overhead of using a UDO
becomes insignificant relative to the total query runtime, the UDO implementa-
tion in Umbra reaches the same throughput as the native operator. Both can
process almost five billion tuples per second. Each tuple consists of the values 𝑥
and 𝑦 which are represented as 8-byte double precision floating-point numbers,
so the raw memory throughput is close to 70GiB/s. The maximum available
memory bandwidth on our system is approximately 110GiB/s which means
that we can nearly fully utilize the available resources of modern hardware.

The in-memory database system DuckDB with its vectorized query engine
can calculate aggregations very efficiently, as well. As vectorized query engines
have no compilation overhead, computing the linear regression in DuckDB can
be faster for small datasets where the significant compilation overhead of a
query containing a UDO still dominates the execution time. For larger data sets,
DuckDB’s memory throughput of 27GiB/s can still utilize a large portion of the
available memory bandwidth.

The performance of the linear regression in Postgres, for both the SQL
regression functions and the UDO function, is significantly worse. In Postgres,
the cost of fetching every tuple from the base table that contains the input
data makes up most of the runtime. Since for every tuple only few numeric
operations are required, using an UDO does not improve the performance. In
fact, in Postgres when using the UDO implementation, every input tuple of the
UDO results in an additional function call which makes the UDO query even
slightly slower than the SQL query. The standalone UDO executable faces a

40 CHAPTER 2. USER-DEFINED OPERATORS

similar problem; it reads all the input data from a CSV file. Parsing a tuple
from a line of the CSV line is significantly more expensive than computing the
partial sum for the linear regression. Therefore, the runtime of the standalone
executable is dominated by the time it takes to parse up to 30GB of CSV data.

In Spark, the linear regression is implemented using one map operation
followed by one reduce operation. These two primitives make it very easy for
the Spark executor to distribute the query execution automatically onto large
clusters. However, on a single machine, Spark cannot compete with systems
that keep their intermediate state in main-memory and use cheap inter-process
synchronization.

We also tested the scalability of the different implementations of linear
regression in Umbra, as can be seen in Figure 2.9. We ran the query on the
data set with 40 ⋅ 109 tuples (640GB) and varied the number of threads. The
throughput of the UDO and the native implementation increase nearly linearly
with the number of cores in the beginning but decreases when executing the
query on more than 14 CPU cores. Our benchmark system is a NUMA system
with two CPU sockets that have 14 cores each, so when more than 14 cores are
used, the query runs on both sockets. When a query runs on multiple sockets,
the synchronization overhead increases significantly due to the communication
latency between the sockets. The communication overhead can be compensated
when more than 18 cores are used.

For more than 24 cores the throughput does not increase significantly any-
more, evenwhen all 56 available threads are used. Umbra generates very efficient
code which can fully saturate the available resources. The generated code con-
tains several floating-point instructions that fully saturate the execution units
on the CPUs. Since all execution units are used when executing the query
without SMT, adding more threads using SMT cannot significantly increase the
throughput. Also, as mentioned above, the query execution is close to hitting
the limit of the main memory bandwidth, as well.

Figure 2.9 also again shows the negative effect of using UDOs; when the total
throughput (faded lines) is compared to the throughput excluding compilation
overhead (green lines), the UDO query can reach the same performance as the
native implementation only when excluding the compilation overhead. Like in
the k-Means experiment, using a UDO leads to a higher compilation overhead
which brings down the total throughput slightly.

2.5.3 Imperative Programming

To highlight the advantages of using an imperative language to process queries,
we tested a query that generates multiple output tuples for every input. The
input contains a string that is a comma-separated list of numbers and words.

2.5. EVALUATION 41

0

1

2

3

4

0 0.25 0.5 0.75 1

0

10

20

30

1 2 4 6 8 10

th
ro
ug

hp
ut

(M
tu
pl
es

/s
)

number of tuples (millions)

UDO SQL unnest Recursive CTE

DuckDB Postgres Umbra

Figure 2.10: End-to-end throughput of queries that split comma-separated values
into individual tuples. When the data set is large enough so that the compila-
tion overhead becomes insignificant, the UDO in Umbra outperforms all other
approaches.

The UDO parses this string, takes out all the numbers, and generates a new
tuple for each number.

While the C++ code for this algorithm is only a few lines, implementing
this query in SQL is very tedious. Listing 2.7 shows how recursive CTEs can
be used to formulate this conceptually simple query. Every input tuple can
generate an arbitrary number of outputs; however, since SQL does not support
loop statements, the SQL query uses recursion instead. To ensure that the cast
is not evaluated for invalid strings, it uses a case when statement. Moving the
similar to expression to the where clause would allow the database to reorder
the expressions which could lead to runtime errors when the cast is evaluated
before the similar to expression.

In DuckDB, this recursion can be prevented by using the special function
unnest, which directly converts an array of values into multiple tuples. Postgres
has a similar function called string_to_table, which splits a string by a given
separator into multiple tuples.

For such an algorithm that is inherently imperative, the UDO can easily out-
perform the SQL versions for larger data sizes. Figure 2.10 shows the throughput
for ad-hoc queries, so it includes the compilation time. For data sets containing
at least one million tuples, the UDO achieves a much better throughput than
all other approaches. The C++ code for the UDO contains a single loop that can

42 CHAPTER 2. USER-DEFINED OPERATORS

with recursive split_arrays(name, value, tail) as (

select c.name, NULL, c.values as tail

-- schema: array_values(name text, values text)

from array_values c

union all

select s.name,

case

when s.comma = 0 then s.tail

else left(s.tail, s.comma - 1)

end as value,

case

when s.comma = 0 then ''

else right(s.tail, -s.comma)

end as tail

from (

select s.*, position(',' in s.tail) as comma

from split_arrays s

) s

where s.tail != ''

)

select name,

case

when value similar to '[0-9]+' then cast(value as bigint)

else null

end as value

Listing 2.7: Splitting comma-separated strings into individual integer tuples
using recursive CTEs in SQL.

efficiently extract all numbers from a string and create a new tuple for every
number. All other approaches cannot use such an efficient loop.

For smaller data sets, some implementations can reach a better performance.
Even when the control flow from the imperative C++ program must be simulated
by using a recursive CTE, Umbra is able to execute the query very efficiently.
Umbra optimizes all string functions used by the query shown in Listing 2.7
(left, right, and position) so that they do not create copies of the string and has
a specialized implementation for recursive SQL queries. Also, the recursive SQL
query in Umbra has a compilation time of only 80ms while compiling the UDO
query takes 2 s, which leads to a higher total throughput for smaller data sizes
when the compilation overhead still dominates the execution of the UDO query.

2.5. EVALUATION 43

Data Set Tuples Size Generate Insert
points (double, integer) 10M 354MiB 0.4 s 5 s
points (double, integer) 100M 3.5GiB 2 s 52 s
comma-separated (text) 10M 700MiB 13 s 15 s
comma-separated (text) 100M 7GiB 123 s 148 s

Table 2.2: Runtimes to generate and insert different benchmark data sets by
using UDOs.

In Postgres, the UDO always performs better than the other approaches.
Even a query that uses the special function string_to_table cannot reach the
same performance as the UDO query. Thus, using UDOs can be beneficial even
in traditional database systems. However, other modern database systems such
as DuckDB can outperform UDOs executed in Postgres.

2.5.4 Data Generation

Our implementation does not require UDOs to have any inputs. Therefore, it is
possible to write “output-only” functions that can take scalar arguments and
then return a stream of tuples, that behave similar to functions like generate_
series in SQL.

When writing benchmarks, it is very common to synthetically generate all
data that is used by the test queries. Such data generators are usually written in
an imperative language. Examples for this are C for the widely used benchmarks
TPC-H and TPC-DS, and Python, which has a broad range of libraries for that
purpose. The disadvantage of this approach is that the data is generated first
by a program and then it must be inserted into a database. With UDOs this
can now be implemented directly in the database. No extra steps to export and
import data are required.

All test data for our benchmarks was created by using UDOs which were
directly used in INSERT statements. Table 2.2 shows the runtime of some insert
statements for different data sets. The sizes shown in the table refer to the size
the generated data set would have if exported as a CSV file. For the “comma-
separated” data set, which contains only strings, insert queries using an UDO as
a source can process around 40MiB/s to 50MiB/s while the “points” data set
can process around 70MiB/s. This result is mainly a limitation caused by the
insert statement, not by the UDOs themselves. The “Generate” column shows
how long it takes to just generate the tuples and immediately discard them. The
UDO that makes heavy usage of string operations can reach up to 80MiB/s.
The points dataset that does not use any strings reaches about 1.7GiB/s which
means it can keep up with modern SSDs and the runtime of the data generation

44 CHAPTER 2. USER-DEFINED OPERATORS

will most likely be dominated by the actual insertion of tuples into a physical
relation.

All cases have in common that they do not require writing any intermediate
files to disk that must then be read again by the database system. Especially for
larger data sets, this approach prevents wasting space and time to store data on
disk that is quickly discarded. This approach yields no disadvantages for the
user as this data generation can be written in standard, imperative code.

2.6 Summary

In this chapter, we presentedUser-Defined Operators (UDOs) – a novel framework
to efficiently integrate and execute custom algorithms in modern databases.
UDOs can achieve very high throughput, which is competitive with main-
memory databases. Furthermore, because UDOs are integrated into query
engines of existing RDBMS, all ACID properties can be preserved. Nevertheless,
users are not required to know any database internals. Instead, they are provided
with an easy-to-use API.

We implemented UDOs in Postgres and Umbra – our code-generating
database. Our evaluation shows that queries containing UDOs can achieve
throughputs similar to main-memory databases. Even in disk-based systems
such as Postgres, the execution of UDOs is very efficient. Thus, UDOs enable
users to integrate custom algorithms for data analytics directly into databases
very efficiently.

In Umbra, the excellent performance of UDOs is achieved by directly inlining
user code into the code generated by the database system for other parts of
the query. The code generated by the built-in relational operators is written
by experts and is carefully tested. This means that bugs tend to be rare so that
arbitrary SQL queries can be safely executed. UDOs, however, are potentially
written by users less familiar with the system or even malicious users. Since
the user code is executed with the same capabilities and privileges as the entire
query execution system, bugs in an UDO can crash the entire database system,
and malicious actors can use this as an easy privilege escalation. To prevent
memory bugs, users could use a programming language such as Rust [22b]. The
Rust compiler uses LLVM, and can guarantee memory-safety. However, even
for Rust programs, a static analyzer cannot guarantee that it does not contain
potentially malicious code. Therefore, UDOs as presented in this chapter must
not be accessible to untrusted users.

CHAPTER 3
Safe Execution of User-Defined
Operators with WebAssembly

In Chapter 2 we presented User-Defined Operators which allow integrating
arbitrary user code into existing database systems. UDOs make it very easy to
add new functionality into RDBMS that interoperates seamlessly with existing
SQL features. In compiling database systems, the user code can be integrated
directly with the code generated by the database system. Integrated code leads
to near zero-overhead execution of arbitrary algorithms.

Because the code generated for queries containing UDOs has no clear bound-
aries between user code and system-generated code, it is also not easily possible
to effectively restrict the capabilities of user code. The user code is essentially
executed with permissions of the database superuser. Thus, malicious users can
potentially gain unrestricted access to the database system if they are allowed
to create new UDOs. Even trusted users can accidentally bring down the entire
database system if their code contains bugs that would normally lead to program
termination, such as invalid memory accesses.

The database system needs to be shielded from the execution of arbitrary,
untrusted code. With the introduction of UDFs in IBM’s database system DB2,
IBM established the concept of fenced execution of untrusted code [Cha96,
Ch. 4.4]. Fenced UDFs are executed in an entirely separate process with its own
address space. The database system uses an explicit communication protocol
to send data to and retrieve data from the UDF. In contrast, so-called unfenced
functions – UDFs that have unrestricted access to the database process, such as
our UDOs – can communicate implicitly with the system as they can directly
access all memory that contains the input for the UDF.

The explicit communication and execution in a separate process add signifi-
cant overhead to fenced UDFs. Our UDOs, on the other hand, are very efficient

46 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

but cannot be fenced. Directly integrating UDOs into the query execution en-
gine is a design choice that enables their efficient execution, whereas fencing
untrusted code is necessary in existing systems to prevent security issues. Cur-
rently, database administrators need to chose between slow but secure, and fast
but insecure UDFs.

In this chapter, we present an approach to safely execute UDOs without
resorting to classical, fully fenced execution. Ideally, we want users to be able
to add custom algorithms to the database with little performance overhead
while offering the same strict security guarantees as existing systems. Also, we
want database systems in the cloud to be able to use UDOs. As cloud providers
manage the storage and processing of data on behalf of their customers, they
must ensure that customers cannot harm their systems even when the cloud
system executes arbitrary code provided by potentially adversarial customers.

As discussed above, using fenced execution is not an option if we want to
maintain the efficiency of UDOs. Instead, we must guarantee that executing
user code is safe even when it is combined with code generated by a database
system. Because we want users to be able to write UDOs in any programming
language, it is not feasible to statically analyze user code for safety prior to
execution. In fact, it has been shown that analyzing arbitrary programs to rule
out denial-of-service vulnerabilities requires solving the halting problem which
is undecidable [Coh87].

We propose using WebAssembly to guarantee safe execution of arbitrary
code. WebAssembly is a low-level language that was originally designed for
safe execution of untrusted code in web browsers [Ros+18]. Interestingly, web
browsers faced issues similar to the execution of UDFs in database systems;
browser engines need to execute arbitrary, untrusted code. Before the introduc-
tion of WebAssembly, JavaScript was the only programming language supported
by all major browsers. JavaScript is a garbage-collected, interpreted program-
ming language which requires a runtime to be executed. As such, it does not
allow access or branches to arbitrary memory locations. However, similar to
fenced execution of UDFs, the execution of JavaScript is significantly slower
than native machine code. Even though modern runtimes such as Mozilla’s
SpiderMonkey1 and Google’s V82 have very sophisticated just-in-time compi-
lation engines, they are not able to keep up with the ever growing demand
of high-performance code execution in browsers. Rossberg et al. specifically
mention audio and video processing as well as games as the main motivation
for the development of WebAssembly.

1https://spidermonkey.dev/ (Accessed: 21 June 2023)
2https://v8.dev/ (Accessed: 21 June 2023)

https://spidermonkey.dev/
https://v8.dev/

3.1. THE WEBASSEMBLY LANGUAGE 47

The WebAssembly language is designed to be a compilation target for high-
level languages. Today, C, C++, and Rust can be compiled to WebAssembly.
Both the Clang compiler (for C and C++) and the Rust compiler use the LLVM
project which supports WebAssembly as a target language. Also, all major
browsers support WebAssembly and it has gained popularity in several non-web
environments [SM21]. Thus, we believe WebAssembly to be a good choice as it
is already supported by a few widely-used programming languages and is likely
to become even more relevant in the future.

In the following, we first show an overview of the WebAssembly language.
We present the structure of a WebAssembly program and the stack-based seman-
tics of WebAssembly instructions. Then, we briefly discuss how WebAssembly
can be used to safely execute UDOs in compiling database systems.

3.1 TheWebAssembly Language

WebAssembly is a low-level language that is designed to be used mainly by com-
pilers. It consists of individual instructions and has no concept of more complex
expressions, user-defined types, function overloading, and other features com-
monly found in higher-level languages. Instead, higher-level languages can be
compiled to WebAssembly automatically, as mentioned above. In this section we
will show an overview of the WebAssembly language and its unique properties.
Our work is based on the W3C First Public Working Draft 19 April 2022 of the
WebAssembly Core Specification [Ros22].

3.1.1 WebAssembly Modules

AWebAssembly program consists of aWebAssemblymodule. A module contains
all the information that is required to execute the program. The compiler usually
outputs a single WebAssembly module when it compiles a higher-level program.
Modules are stored in a binary format that efficiently encodes all its contents.
As WebAssembly has been designed primarily for execution in web browsers,
the binary format is designed to be space efficient to reduce the amount of data
that is transferred over the network. Also, module files are structured internally
to allow for streaming compilation, i.e., web browsers can start executing a
WebAssembly module before its contents are completely downloaded.

Functions: The most important components of a module are its functions.
Each module can contain multiple functions which are referenced by a unique
index within the module. Unlike functions in high-level languages, WebAssem-
bly functions usually do not have names. Every function in a module specifies

48 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

its argument and return types, its local variables, and its implementation. The
implementation of a WebAssembly function consists only of a sequence of
instructions. The instructions operate on the function arguments, the local
variables, the global variables defined in the module, and the memory. They can
also call other functions from the module.

Global Variables: Amodule can define global variables. Every global variable
has a type, and its value can be read andmodified by all functions. Like functions,
global variables have no names but are identified by a unique index. One
notable difference to global variables in other programming languages is that
conceptually global variables in WebAssembly are not stored in addressable
memory. As such, WebAssembly programs cannot take the address of a global
variable or use memory instructions to access them. Global variables can only
be accessed by the special instructions global.get and global.set.

Exports: To use a WebAssembly module, code outside of WebAssembly needs
to interact with WebAssembly modules, such as calling a WebAssembly function
or accessing a global variable. For that purpose, WebAssembly modules can
define exports. An export definition references either the unique index of a
function or of a global variable. The export also has a name so that a program
using the WebAssembly module can find the index of an exported function or
global variable.

Imports: Similarly, WebAssembly modules can define imports to access func-
tions from outside of the WebAssembly module. An import specifies the name of
the imported function, and its argument and return types. Like regular functions,
every function import receives a unique index that can be used to identify the
imported function within the WebAssembly module. Imported functions do not
have to be WebAssembly functions defined in other modules. In fact, imports
are intended to be used mostly to import functions that allow a WebAssembly
program to directly interact with the system outside of its module. For example,
an imported function could be a print function that allows a WebAssembly
program to write text to the terminal, or a UDO function such as accept that
interacts with the outside query execution engine.

3.1.2 WebAssembly Memory

WebAssembly instructions conceptually operate on one contiguous memory
area. The memory is byte-addressed by 32-bit addresses, and the memory
instructions have an additional 32-bit immediate that is added to the address.

3.1. THE WEBASSEMBLY LANGUAGE 49

Thus, the maximum addressable memory size is 233 B = 8GiB, though the upper
4GiB can only be accessed using constant instruction immediates, making only
the lower 4GiB generally accessible. A module can specify an additional limit
for the memory size of less than 8GiB and the minimum memory size required
to execute the module.

At runtime, the size of the WebAssembly memory is set to the minimum
specified in the module or to zero if the module has no minimum. After that,
the memory can be grown at runtime by special memory instructions as long as
the new size does not exceed the limits. However, there are no instructions to
decrease the memory size.

An additional constraint for the size of the WebAssembly memory is that it
must be a multiple of the WebAssembly page size. The page size is defined as
216 B = 64KiB by the specification. This makes it similar to the page sizes of
existing CPU architectures: On x86-64, the page size is usually 4KiB, modern
ARM architectures (ARMv7-A, ARMv8-A) support 4KiB and 64KiB pages.

Since the WebAssembly memory is contiguous, the first memory address is
always 0. When a new page is added, the next 216 memory addresses become
usable implicitly. The specification requires that all programs that implement
the execution of WebAssembly must make sure that invalid memory accesses
must terminate the execution the WebAssembly program immediately.

3.1.3 WebAssembly Stack

In addition to reading from and writing to memory, WebAssembly programs
mostly use values from the stack. The WebAssembly language is stack-based,
which means that its instructions do not use registers or explicit operands.
Instead, every instruction conceptually pushes and pops values to and from
a stack. This differentiates WebAssembly from modern CPU architectures
which are register-based. While CPUs do usually have a stack and a stack
register, they use the stack as a special memory region with cheap allocation and
deallocation. CPU instructions still operate on registers and the stack must be
accessed explicitly with load and store instructions. However, stack-based low-
level languages are often used in interpreters such as the Java Virtual Machine,
Microsoft’s CLR, which is used for .NET programming languages like C#, or the
CPython interpreter.

The WebAssembly stack has two kinds of entries: values and labels. Values
are pushed and popped by arithmetic and memory instructions. A memory
load instruction, for example, first pops a value from the stack that contains
the memory address. Then, it reads the value at that address and pushes that
value to the stack. Labels are used by control-flow instructions: Every block
of WebAssembly instructions starts by pushing a label to the stack. A branch

50 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

instruction can then pop entries from the stack until it pops the label it is
targeting.

The WebAssembly stack has a few interesting properties that guide imple-
mentations in ensuring the safety of the execution. Unlike CPU stacks, the
WebAssembly stack does not lie in addressable memory. Values that live on
the WebAssembly stack cannot be referenced by any memory address, so load
and store instructions cannot access the stack. Thus, common stack overflow
vulnerabilities that modify the control flow by overwriting return addresses on
the stack are not possible.

Also, all stack accesses can be statically analyzed without executing the
program because every instruction operates on a known, fixed number of stack
entries. Therefore, a static analyzer can determine the maximum number of
stack entries required for every function and can analyze whether the program is
guaranteed to never pop from the stack if it is empty. This also includes the stack
state across control-flow instructions. After a conditional branch instruction,
for example, the stack state must be consistent in all cases. When the branch is
not taken, the execution continues with the same stack. If it is taken, the stack
is unwound to the target label. All branch instructions that target the same label
must leave the stack in the same layout, i.e., the same number of entries with
the same types.

3.1.4 WebAssembly Types and Values

As described above, the WebAssembly stack can contain values. Every value
has one of the following types: one of the four number types, a vector type that
extends a value type, or a reference type. No other types are supported by the
stack or the instructions directly. User-defined types defined in higher-level
languages must be accessed by combining multiple instructions, like when these
languages are compiled to real machine code.

Table 3.1 shows all supported types. For numbers, only 32-bit and 64-bit
integers and floating-point values are supported. Arithmetic WebAssembly
instructions cannot operate on integers smaller than 32 bits. However, some
memory instructions support smaller integer sizes and implicitly convert them
to one of the supported sizes. Thus, higher-level languages that support smaller
integer types can still be compiled to WebAssembly.

Since little-endian two’s complement integers and IEEE 754 floating-point
numbers are the de-facto standard in modern CPU architectures, the number
types of WebAssembly are based on them as well. Integer types do not specify
the signedness of their values. Instead, most instructions that operate on integers
specify whether they interpret the value as signed or unsigned integers.

3.1. THE WEBASSEMBLY LANGUAGE 51

Name Description
Number Types
i32 32 bit integer (little endian, two’s complement)
i64 64 bit integer (little endian, two’s complement)
f32 32 bit floating-point number (IEEE 754)
f64 64 bit floating-point number (IEEE 754)
Vector Types
v128 128 bit vector containing values of any number type
Reference Types
funcref A reference to a function, used for indirect calls
externref A reference to an “external” object

Table 3.1: Value types supported by WebAssembly

Values of type v128 are 128 bit wide. Vector instructions that operate on
these values interpret them either as four i32/f32 values, or as two i64/f64 values.
They are designed so that modern CPUs can store a WebAssembly vector value
in a single CPU vector register, e.g., XMM0-15 on x86-64, or v0-v31 on ARMv8-A.

Function reference values are used by the indirect call instruction. A regular
call instruction encodes the function it calls directly, while an indirect call
determines the called function using a funcref value. Since funcref values are
guaranteed to always be valid, it is not possible to corrupt the execution by
calling into an arbitrary address. All instructions that create function references
ensure that the new reference is either null, i.e., it references no function, or
references an existing function with known argument and return types. To
make this possible, no instructions exist to convert arbitrary memory addresses
to function references.

Similarly, externref values reference objects that live outside of the Web-
Assembly module. WebAssembly has no instructions that can directly inspect
externref values or convert them to memory addresses. However, functions can
take externref values as arguments and return them. Since WebAssembly pro-
grams can also import functions, an implementation can provide functions that
can handle these references. A use case envisioned by the specification is that a
browser could pass references to complex JavaScript objects to a WebAssembly
function as an externref value. The WebAssembly function can then extract
information from this object by calling functions provided by the browser that
take the reference as an argument.

52 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

1 // Example function written in C

2 double load_add(double* ptr) {

3 return ptr[0] + ptr[1];

4 }

5 ;; Define a WebAssembly function called "load_add" with one para-

6 ;; meter of type i32, which is used as a pointer by the function.

7 (func $load_add (result f64) (param i32)

8 local.get 0 ;; Push the argument onto the stack

9 f64.load 0 ;; Load a 64 bit float from memory

10 local.get 0 ;; Push the argument onto the stack again

11 f64.load 8 ;; Load a 64 bit float from memory with offset 8

12 f64.add ;; Add the two values loaded from memory

13 ;; Implicitly return the result of f64.add

14)

Listing 3.1: Example of a small function in C and its translation to WebAssembly.
It loads two f64 values from memory, adds them, and returns the result.

3.1.5 WebAssembly Instructions

All WebAssembly functions contain a list of WebAssembly instructions. Like
most low-level assembly languages, each individual instruction operates on
only a few values and generally performs exactly one operation. WebAssembly
has arithmetic instructions that operate on integers and floating-point values,
as well as control-flow instructions. However, WebAssembly instructions also
have several properties that set them apart from common CPU architectures,
such as structured control flow, i.e., control-flow instructions cannot jump to
arbitrary code, and their stack-based semantics, i.e., most instructions operate
on an implicit stack of values.

Numeric Instructions

To operate on values of number type, the WebAssembly specification defines
several numeric instructions. For integer values, WebAssembly has instructions
for all basic arithmetic and comparison operators. In addition, several bitwise
operations are defined, including advanced instructions such as bitwise rotation,
clz/ctz (“count leading/trailing zeroes”), and popcnt (counts the number of 1-
bits). It is also possible to convert between integer sizes by using conversion
instructions.

All integer instructions are designed to be able to be executed in a single
or few CPU instructions. All reasonable CPUs support basic arithmetic and

3.1. THE WEBASSEMBLY LANGUAGE 53

call $load_add(0xABC)

0xABC+0 1.23

0xABC+8 4.56

address f64 value

WebAssembly memory

local.get 0

i32: 0xABC

WebAssembly stack

f64.load 0

f64: 1.23

WebAssembly stack

f64.load 8

f64: 4.56

f64: 1.23

WebAssembly stack

local.get 0

i32: 0xABC

f64: 1.23

WebAssembly stack

f64.add

f64: 4.56

WebAssembly stack

Figure 3.1: State of the conceptual WebAssembly stack after every instruction
when executing the function load_add from Listing 3.1.

comparison, and even special instructions such as clz, ctz, and popcnt are found
on most modern architectures. Again, x86 and ARM in particular have a CPU
instruction for every WebAssembly integer instruction.

Basic arithmetic and comparison operations are also defined for floating-
point values. They are based on the semantics of the IEEE 754 standard [19].
Thus, the bit representation of floating-point values in WebAssembly is compat-
ible with their bit representations on real hardware.

To ensure safety, WebAssembly imposes some additional restrictions on the
numeric instructions. As for all instructions, it can be statically proven that every
numeric instruction receives the correct number of values with the correct types:
Integer instructions, for example, usually pop up to two integer values from
the stack and push the result back onto the stack. Also, no instructions leads to
unpredictable results. The WebAssembly specification achieves this by precisely
defining the behavior of instructions in cases where real hardware offers little
or no guarantees. For example, arithmetic operations on integers have well-
defined overflow, division by zero must immediately terminate the execution of
theWebAssembly program, bitwise shift operations have predictable results even
when shifting by more than 64 bits, and all instructions operating on floating-
point values have well-defined results when operating on NaN or infinity values.

54 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

Memory Instructions

To interact with the WebAssembly memory, functions can use several different
load and store instructions. These instructions can pop integer, floating-point,
or vector values from the stack and write them to memory, or read them from
memory and push them onto the stack. To support reads and writes smaller
than the size of the smallest integer type in WebAssembly (32 bits / 4B), load
and store instructions can also read and write individual bytes by implicitly
converting them from or to 32-bit integers.

All load and store instructions use 32-bit addresses which refer to the con-
tiguous WebAssembly memory that always starts at address 0. The address
of a memory instruction is computed by popping an i32 value from the stack
and adding the 32-bit immediate that is encoded directly in the instruction. As
mentioned above, semantically, every load and store instruction is also required
to ensure memory safety by checking that the address it uses is valid before
performing the memory access.

New memory can be allocated by using the memory.grow instruction. It
increases the size of the WebAssembly memory by a multiple of the WebAs-
sembly page size (64KiB). The new pages always contain zero bytes and their
address range always extends the current usable address range so that the entire
WebAssembly memory is always one contiguous area of memory.

Listing 3.1 shows an example of a function that loads two 64-bit float values
from memory, adds them, and returns the result. In C, this function can easily
be written in one line. As a low-level language, WebAssembly naturally uses
several instructions to define an equivalent function. The example shows that
the local.get instruction pushes the function argument, which in this function
contains a memory address, onto the stack, the f64.load instruction loads a 64-bit
float value from memory, and the f64.add instruction adds two f64 values.

The example also shows that the instructions do not have explicit operands.
Figure 3.1 illustrates how the implicit operands of the instructions are passed
via the WebAssembly stack. The memory load instruction f64.load in line 9, for
example, reads the memory address from which it should load the f64 value
from the stack. This address originates from the instruction local.get in line 8,
which takes the argument of the function, 0xABC in the figure, and pushes it
onto the stack.

Control Flow Instructions

Naturally, WebAssembly also has control-flow instructions in order to support
arbitrary algorithms. Similar to other low-level languages, WebAssembly defines
conditional and unconditional branch instructions. It also has instructions to

3.1. THE WEBASSEMBLY LANGUAGE 55

1 int func1(); int func2(int);

2 // Example function written in C

3 int control_flow(int a) {

4 int result;

5 if (a == 123) {

6 if (func1()) goto end;

7 result = 456;

8 } else {

9 result = func2(a);

10 }

11 return result;

12 end:

13 return -1;

14 }

15 (func $control_flow (result i32) (param i32)

16 block ;; Start a block

17 local.get 0 ;; Push the argument onto the stack

18 i32.const 123 ;; Push the constant 123 onto the stack

19 i32.eq ;; Compare two i32 values for equality

20 if ;; Start an if-block

21 call $func1 ;; Call the function func1

22 br_if 1 ;; Conditional branch to the second parent (Line 30)

23 i32.const 456 ;; Push the constant 456 onto the stack

24 else

25 local.get 0 ;; Push the argument onto the stack

26 call $func2 ;; Call the function func2

27 end ;; End of the if-block

28 return ;; Return from the function

29 end ;; End of the block

30 i32.const -1 ;; Push the constant -1 onto the stack

31 ;; Implicitly return the value -1

32)

Listing 3.2: Example of a function in C and WebAssembly demonstrating how
different control-flow constructs are represented in WebAssembly’s structured
control flow.

56 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

call and return from functions. However, again motivated by the safety of
the execution, branch and call instructions cannot jump to arbitrary memory
addresses.

Instead, WebAssembly employs so-called structured control flow by defining
the three special structured instructions block, if/else, and loop. These instruc-
tions define a block of execution in a function and contain one or more other
instructions, including structured instructions. Thus, WebAssembly functions
are not defined as a single sequence of instructions but as strictly nested se-
quences. Conceptually, all block instructions push a label onto theWebAssembly
stack when they are executed. At the end of each block, indicated by an end
instruction, the topmost label in the stack must be the label initially pushed
at the start of the block. Additionally, the stack may contain an arbitrary but
statically known number of values on top of the label, which are considered the
result values of the block.

To jump between blocks, WebAssembly defines the regular branch instruc-
tions br and br_if, as well as the instructions br_table and return which can
be used in many cases to reduce code size. The instruction br represents an
unconditional branch, br_if a conditional branch. The condition of a br_if or
an if block is popped from the WebAssembly stack when the instruction is
executed and is stored in an i32 value. A condition is considered true if the value
is non-zero. To efficiently represent switch/case statements from higher-level
languages, the br_table acts as a sequence of br_if instructions; an i32 value
is popped from the stack which represents the “switch label”. The br_table
instruction can contain one branch target for each value of the switch label and
must have a default branch target.

Note that all blocks of instructions in WebAssembly are not equivalent to
basic blocks in other low-level languages such as LLVM IR or Umbra IR. Concep-
tually, a basic block is a directed acyclic graph of non-terminator instructions
and one terminator instruction. The edges of the graph represent data depen-
dencies between the instructions. A terminator instruction is an instruction that
transfers the control flow to another basic block or terminates the execution.
Since every basic block has exactly one terminator and branch instructions
are only allowed to branch to the beginning of a basic block, a compiler can
assume that all instructions within the same basic block are always executed
together. Therefore, to analyze the control flow of a program, the compiler
can consider entire basic blocks at once instead of every individual instruction,
which often simplifies optimization of programs. However, a WebAssembly
block can contain multiple branch instructions. Branch instructions can still
only branch to the beginning of a WebAssembly block, but a block can have
multiple terminators.

3.1. THE WEBASSEMBLY LANGUAGE 57

To statically ensure well-formed control flow, WebAssembly branch instruc-
tions can only jump to blocks they are transitively contained in. In particular,
branch instructions cannot jump to arbitrary other instructions or even arbi-
trary memory locations. It is also not possible to branch to “sibling”-blocks, i.e.,
other blocks that are not direct ancestors of the branch instructions. The set of
target blocks of every branch instruction is statically known; indirect branch
instructions do not exist.

To ensure that all branch instructions adhere to these rules, every branch
instruction specifies its target as an immediate integer operand 𝑛. Then, the
target of a branch instruction is the 𝑛 + 1st parent block in which it is contained.
Also, because every structured instruction pushes a label onto the stack and
structured instructions are strictly nested, a branch instruction targets the 𝑛+1st
label entry of the stack. Thus, the instruction br 0 is an unconditional branch
to the block this instruction is contained in and the topmost label on the stack,
and br_if 2 is a conditional branch to the third parent block and the third label
entry on the stack.

The purpose of label entries in the stack is to encode the expected return
values of a block and the label’s continuation. The continuation determineswhere
the execution continues when a branch instruction targets a label. For labels
generated by the block and if/else instructions, the continuation specifies that
the execution should continue after the end instruction of the block. Therefore,
branch instructions that target regular blocks or if/else-blocks jump out of the
block. Labels generated by the loop instruction, on the other hand, set the
continuation to the loop instruction itself. Thus, branch instructions targeting
a loop-block repeat the loop from the beginning. An end instruction always
continues execution with the instruction immediately following it, which also
includes the end instruction of a loop. So, unlike loops in higher-level languages,
loop blocks are only executed repeatedly when they contain at least one branch
instruction that targets them.

A static analyzer can easily check for every branch instruction whether
its branch target is actually valid; it can statically count the number of parent
blocks a given instruction has and check whether the target value of the branch
is smaller than the number of parents. Alternatively, it can count the number of
label entries on the stack which is always equal to the number of parents of the
current instruction.

To allow for efficient static analysis, the state of the WebAssembly stack
before and after a branch instruction must be consistent. To be consistent, all
branch instructions targeting a particular block and label must leave the stack in
a state compatible with the continuation of the label. The expected return values
in a label specify which values the stack must contain when a branch instruction
targeting this label is executed. This expected stack state is always compatible

58 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

with the state of the stack when the end instruction of the label’s block is reached
normally without branch instructions. Only then, the consistency of the stack
is ensured in the presence of branch instructions. Conditional branches must
additionally ensure that the stack is consistent even if the branch is not taken
because the condition is false. Again, this property can be statically proven
since all instructions consume and generate a statically know number of values
from the stack.

Similarly, the call instruction can only call functions that are statically defined
in advance. It is also possible to call functions indirectly. The indirect call
instruction encodes the expected function type of the function it will call. At
runtime, the execution must ensure that the function that is called is valid and
has the correct expected type. Just like for branch instructions, indirect call
instructions cannot call arbitrary addresses. Instead, function target addresses
are represented by values of type funcref. These values can only be created from
existing functions and cannot be written to memory or inspected in any way.
Thus, it is not possible for WebAssembly programs to generate invalid funcref
that are non-null, and therefore no unexpected control flow can occur.

An example of WebAssembly’s structured control flow can be seen in List-
ing 3.2. The WebAssembly function begins with a block instruction in line 16.
This block is targeted by the conditional branch instruction in line 22 which
means that the execution continues after the end instruction of this block in
line 29 when the condition evaluates to true, i.e., the value is non-zero. Since the
function returns exactly one value of type i32, the stack must contain exactly
one value of that type at the end of the function. Since the last instruction
of the function in line 30 pushes an i32 value onto the stack, the stack state
immediately before executing the i32.const instruction must be empty. So, at the
end of the block that starts at line 16 and ends at line 29, the stack must also be
empty, which means that the block has no return values. Therefore, all branch
instructions that have this block as target, such as the conditional branch in
line 22, must leave the stack empty as well.

We can verify this by following the instructions from the start of the function
until the conditional branch: The instructions local.get and i32.const in lines 17
and 18, respectively, each push one value to the stack. In line 19, i32.eq pops
two value from the stack, compares them, and pushes a result back onto the
stack. So, before the if instruction the stack contains exactly one value. The
if instruction then pops one value representing the condition from the stack.
Then, when the condition is true, the execution continues at line 21. The call
instruction calls a function that has no arguments and returns an i32 value, so,
it pops nothing from the stack and pushes the return value of the function onto
the stack. Then, the br_if instruction in line 22 pops the condition value from the
stack leaving the stack empty. Therefore, the conditional branch is well-formed.

3.1. THE WEBASSEMBLY LANGUAGE 59

As can be seen for this example, verifying that all branch instructions are
valid and leave the stack in a valid state only requires a single pass over the
function; no complex control-flow analysis is necessary. Also, since the control-
flow graph generated by WebAssembly program consists only of strictly nested
blocks and loops that have a single entry point, WebAssembly programs cannot
contain irreducible loops [All70]. While programs containing irreducible loops
are not inherently less secure than programs without them, analysis of programs
containing irreducible loops is generally harder. As a result, machine code
generated for programs containing irreducible loops is generally less efficient.

3.1.6 Safety

The WebAssembly specification is carefully designed to rule out any potential
safety issues when executing WebAssembly programs. For every instruction,
the specification exhaustively lists which behavior may occur at runtime; all
instructions only have few precisely defined outcomes. While the outcome of
an instruction may not be deterministic, all outcomes are well-defined in order
to prevent an unpredictable or unsafe execution.

One possible outcome for every instruction is a WebAssembly trap. When a
trap is raised, the execution of the WebAssembly program must immediately
terminate. It is not possible for WebAssembly programs to react to a trap in any
way, in particular a trap does not behave like an exception in other programming
languages as it cannot be caught. WebAssembly traps usually occur due to
unrecoverable programming errors, e.g., when a memory instruction uses an
invalid memory address, explicitly when the instruction unreachable is executed,
or at any time when an implementation decides to terminate the execution.

All other possible outcomes for all instructions are precisely defined. Most
instructions have only one deterministic outcome other than raising a trap.
Integer instructions, for example, deterministically compute their result using
twos-complement arithmetic and all edge cases are covered by the specification
as well; for example, division by zero always raises a trap, and the instructions clz
and ctz have a deterministic result if their input is zero. Similarly, every floating-
point instruction precisely defines its outcome in case one of its operands has
one of the special values NaN, positive infinity, or negative infinity.

3.1.7 Multi-Threading in WebAssembly

The current WebAssembly specification assumes that only one function is exe-
cuted at a time and that all global variables and the memory are not accessed
concurrently. An extension to WebAssembly is currently being proposed in

60 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

(func $lock-mutex (param i32)

loop ;; the loop of the spin-lock

local.get 0 ;; push the function argument onto the stack

i32.const 1 ;; push the constant 1 onto the stack

;; atomically exchange the current flag with the constant 1

i32.atomic.rmw.xchg 0

br_if 0 ;; continue the loop if the old value was 1

end ;; break out of the loop otherwise

)

Listing 3.3: Implementation of a mutex using a spin-lock in WebAssembly using
atomic instructions introduced by the Threads Proposal.

the “Threads Proposal”3. While the proposal is still under active development
and has not been standardized, yet, many implementations already support it.
The Clang compiler can generate thread-safe WebAssembly and Mozilla’s and
Google’s runtimes support executing thread-safe WebAssembly modules.

The Threads Proposal describes twomain additions to theWebAssembly core
specification; it allows the WebAssembly memory to be accessed concurrently,
and it adds several new memory instructions, most importantly atomic memory
instructions, that help with multi-threaded programming. However, it does not
describe how a WebAssembly program can create new threads. Instead, starting
and managing threads is up to the WebAssembly runtime that implements the
Threads Proposal.

When a module should be executed concurrently in multiple threads, the
proposal describes that every conceptual thread has its own, separate module
instance. A module instance contains the WebAssembly stack and the values
of all global variables. Naturally, every thread needs its own separate Web-
Assembly stack to prevent threads interfering with each other. Interestingly,
global variables are also specific to a module instance which means that the
variables are not shared between threads; each thread has its own separate set
of global variables. Thus, global variables in WebAssembly can be compared to
thread-local variables used in programming languages like C++ and Rust.

Only the WebAssembly memory is shared between all threads. So, all syn-
chronization between threads is done via the memory. An implementation of a
mutex using a simple spin lock, for example, must specify a memory address
that stores a boolean flag. When a lock should be acquired, the flag can be set
to true using atomic instructions. This must be executed in a loop to make sure

3https://github.com/WebAssembly/threads (Accessed: 22 March 2023)

https://github.com/WebAssembly/threads

3.2. WEBASSEMBLY IN COMPILING DATABASE SYSTEMS 61

that the value of the flag prior to setting it was actually false. Listing 3.3 shows
the WebAssembly code for such a spin lock.

Currently, the Threads Proposal requires all atomic instructions to have
sequential consistency [WRP19]. Therefore, all threads must observe all modifi-
cations of atomic memory locations in a single total order. In particular, it is
not possible to execute atomic instructions with weaker consistency guarantees,
such as “acquire” and “release” which are available in most programming lan-
guages. However, the proposal does allow unsynchronized non-atomic memory
operations on the same memory location. Usually these data races are forbidden
by higher-level languages; in C++ and Rust, for example, the behavior of unsyn-
chronized data races is undefined. The Threads Proposal, on the other hand,
defines all non-atomic loads and stores to behave like byte-wise atomic loads
and stores with relaxed consistency. Because non-atomic memory instructions
are only defined to be byte-wise consistent, data races will potentially lead to
torn reads and other similar issues.

3.2 WebAssembly in Compiling Database

Systems

Our goal is to useWebAssembly to safely execute UDOs in database systems. We
will mainly focus on compiling database systems such as our database system
Umbra. Only in a compiling database system can we inline user code into
the code generated by the system. On the one hand, this leads to the best
performance of UDOs as they are integrated into the query execution with near
zero overhead. On the other hand, the lines between trusted and untrusted
code are blurred, which means that ensuring the safety of the untrusted code is
crucial.

Our database system Umbra generates code for every SQL query. Instead
of generating real machine-code directly, Umbra uses a special intermediate
representation called Umbra IR. Umbra IR shares many properties with LLVM’s
IR: It is a register-based language, which means that all instructions operate
on explicit register operands, and it uses static single assignment (SSA) which
means that every register can be assigned to exactly once syntactically.

To actually execute the generated code, Umbra has different options: It
can interpret the IR using an integrated VM, it can compile the IR directly to
less efficient x86 or ARM assembly using its Flying Start backend [KLN21a],
and it can transform the Umbra IR to LLVM IR and use the LLVM framework
to generate optimized machine code. The three options trade off compilation
latency and execution speed; the VM generally has very low latency but is also

62 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

C++ Rust SQL

WebAssembly

Umbra IR

x86LLVM IR ARM Umbra VM
byte code

Clang rustc

Our Translator

Umbra code gen.

Umbra compilation backends

LLVM JIT compiler

Figure 3.2: Translation and compilation phases of a WebAssembly UDO in
Umbra. C++ or Rust source code is compiled to WebAssembly and our translator
translates it to Umbra IR.

slowest while the LLVM framework has a large compilation overhead but it
generates very fast machine code. The Flying Start backend lies in-between the
other options; it has a higher latency than the VM but faster execution speeds
and has lower latency than using LLVM but generates less efficient code.

When executing SQL queries that contain calls to WebAssembly UDOs,
Umbra should still be able to use all its different execution options. As discussed
in Chapter 2, to integrate UDOs written in C++ into Umbra, we exploit the fact
that C++ can be compiled to LLVM IR which is one of the compilation modes
also supported by Umbra. However, when a query containing a C++ UDO is
executed using one of Umbra’s other compilation modes that do not use LLVM,
we need to fall back to calling functions of the pre-compiled object-file of the
UDO. Using the pre-compiled object file incurs more execution overhead as the
UDO cannot be inlined into the code generated for a query which leads to at
least one additional function call per input and output tuple of the UDO.

To enable the efficient execution of WebAssembly UDOs, we propose trans-
lating WebAssembly directly to Umbra IR. By design, the instruction set of
WebAssembly is small enough so that developing a WebAssembly runtime can

3.3. RELATED WORK 63

be accomplished in reasonable time. Also, its semantics is general enough,
yet designed with the capability of existing hardware in mind, so that most
WebAssembly instructions can be translated to a single Umbra IR instruction.

Compilers for complex high-level languages such as C++ or Rust are very
sophisticated, are written by large teams of compiler engineers, and often con-
sist of several millions lines of code. Thus, we deem it infeasible to design
a compiler for these languages to Umbra IR. However, as mentioned earlier,
both C++ and Rust can be compiled to WebAssembly. If our system can execute
WebAssembly, it can therefore also execute WebAssembly modules that were
generated from C++ and Rust. Then, we can not only execute untrusted user
code safely, because we rely on the safety properties of WebAssembly, but we
can also execute all programs written in higher-level languages that can be
compiled to WebAssembly.

Additionally, since all WebAssembly code is translated to Umbra IR, all
queries containing WebAssembly UDOs can directly inline the user code. In
contrast to our approach when inlining LLVM IR when compiling C++ UDOs,
the inlining of WebAssembly is possible independent of the compilation back-
end used by Umbra. Thus, we can benefit from all properties of the different
compilation backends with all WebAssembly UDOs.

Figure 3.2 shows an overview of how a UDO originally written in C++ or Rust
is compiled, translated, and executed. The proposed WebAssembly to Umbra IR
translator is used as an intermediate step to tie together the world of high-level
language compilers and Umbra. Existing compilers such as Clang or rustc must
be used by the user to compile the high-level source code to WebAssembly. In
our system we provide a C++ header file that defines the declarations for a UDO
such as the UDOperator base class (see Section 2.2.2). Still, the compilation from
C++ to WebAssembly is entirely external to the database system and occurs prior
to submitting a create function statement.

The database system receives the compiled WebAssembly module when a
new UDO is created. As discussed earlier, when a SQL query is executed that
contains a call to a WebAssembly UDO, the SQL query is translated to Umbra IR.
Our proposed WebAssembly translator can then also translate the UDO code to
Umbra IR which results in a single Umbra IR module for the entire query. The
Umbra IR module can then be executed using one of Umbra’s several backends.

3.3 RelatedWork

Since WebAssembly was originally designed for safe and efficient execution of
untrusted code in web browsers, the first WebAssembly runtimes were imple-
mented in browser engines. The JavaScript engines of both Firefox and Google

64 CHAPTER 3. SAFE EXECUTION OF UDOS WITH WEBASSEMBLY

Chrome – SpiderMonkey4 and V85 – implement very sophisticated just-in-time
compilation for JavaScript. As such, both engines already contained a com-
pilation backend that generates machine code. The engines now also have a
WebAssembly runtime that reuses most of the existing compilation backends.

As WebAssembly is becoming increasingly popular for use-cases outside of
a web browser, several projects exist that develop independent WebAssembly
runtimes. Wasmtime6 and Wasmer7 are two popular WebAssembly runtimes.
Both projects can compile WebAssembly programs to machine code using the
Cranelift8 compilation framework. Cranelift’s intermediate representation is
similar to Umbra IR; it is register-based and uses SSA. Wasmer can also translate
WebAssembly programs to LLVM IR.

Ménétrey et al. have explored how WebAssembly can be used to run pro-
grams on untrusted systems [Mén+21]. Especially for cloud systems where
users may process confidential data on servers controlled by the cloud provider,
it is desirable for users to ensure that cloud providers have no access to the
data. The authors present Twine, a WebAssembly runtime that runs inside of
a Trusted Execution Environment of a CPU, such as Intel SGX, which allows
to run arbitrary WebAssembly programs confidentially. To demonstrate the
usability of Twine for data processing, they compile the embeddable database
system SQLite to WebAssembly and run several benchmarks on SQLite running
in Twine.

4https://spidermonkey.dev/ (Accessed: 21 June 2023)
5https://v8.dev/ (Accessed: 21 June 2023)
6https://wasmtime.dev/ (Accessed: 21 June 2023)
7https://github.com/wasmerio/wasmer (Accessed: 21 June 2023)
8https://cranelift.dev/ (Accessed: 21 June 2023)

https://spidermonkey.dev/
https://v8.dev/
https://wasmtime.dev/
https://github.com/wasmerio/wasmer
https://cranelift.dev/

CHAPTER 4
TranslatingWebAssembly to

Umbra IR

Our goal is to safely integrate UDOs into compiling database systems. We
identified that WebAssembly can be used as an intermediate compilation target
to execute untrusted user code safely. Then, we need to translate WebAssembly
to a format understood by the database system. To integrate WebAssembly in
our system Umbra, we translate WebAssembly to Umbra IR.

As a low-level language that is designed to be used as a compilation target
for higher-level languages, WebAssembly shares several properties with Umbra
IR. In fact, most WebAssembly instructions can be translated to an equivalent
Umbra IR instruction. The WebAssembly instruction i32.add, for example, can
be translated directly to the Umbra IR instruction add i32.

One main difference between WebAssembly and Umbra IR is that WebAs-
sembly is a stack-based language while Umbra IR is register-based. Listing 4.1
shows how the function load_add from the example in Listing 3.1 can be written
in Umbra IR. The load instructions in lines 3 and 4 take the function argument
which is stored in the conceptual register ptr as explicit operand. Umbra’s load
instructions also support immediate operands to specify a fixed offset which
should be considered to calculate the actual memory address. In this example,
it is specified as the array index 1 while in WebAssembly the corresponding
instruction f64.load 8 specifies its fixed offset in bytes. The function returns the
result of the add double instruction which is stored in the register ret explicitly
by using a return instruction in line 6.

So, to translate WebAssembly programs into Umbra IR, we must translate all
indirect operands implicitly passed via the stack into explicit register operands.
Fortunately, translating a stack-based language into a register-based language
has been studied before. Especially in the context of Java and its well-studied

66 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

1 define double @load_add(double* %ptr) {

2 body:

3 %ptr0 = load double %ptr

4 %ptr1 = load double %ptr, int32 1

5 %ret = add double %ptr0, %ptr1

6 return %ret

7 }

Listing 4.1: Example function load_add from Listing 3.1 written in Umbra IR.
Because Umbra IR is register-based, all instructions have explicit operands.

JVM, the benefits of register-based languages have been researched. Gregg et
al. [Gre+05] show that translating JVM byte-code to a register-based language
first can lead to significant benefits while interpreting the new register-based
language. Shi et al. [Shi+08] expand on that and describe in detail how implicit
accesses to the stack can be translated to explicit register accesses. The general
idea is to assign one register to every stack slot. Since in JVM byte-code, like in
WebAssembly, the height and state of the stack can be determined statically, a
compiler can also statically determine for every instruction which stack slot(s)
it reads from or writes to. Now, every instruction can be transformed to an
instruction with explicit register operands by using the registers assigned to the
stack slot(s) used by the original instruction.

The transformation using one register per stack slot assumes that every
register can be written to multiple times since multiple instructions can use the
same stack slot for their result, mostly purely coincidentally. However, Umbra
IR uses static single assignment (SSA) for its registers. Like LLVM, Umbra IR
uses SSA to simplify lifetime analysis of registers and therefore better register
allocation when translating to real machine code that only has a limited number
of registers.

In SSA, the instruction set has access to an infinite number of registers.
Every register must be statically assigned to exactly once. “Statically once”
means that exactly one instruction must exist that stores its result in a given
register. Since an instruction can be executed multiple times, e.g., when it is
contained in a loop, a register still can be assigned to multiple times at runtime.
But because registers cannot be assigned to multiple times statically when using
SSA and thus for Umbra IR, the approach described by Shi et al. cannot be used
directly.

It is possible to modify arbitrary programs written in a register-based lan-
guage into SSA form. Cytron et al. [Cyt+91] show that by introducing so-called
phi nodes at the edges of the control-flow graph, the program can be trans-

67

formed into an equivalent program that satisfies the SSA requirement. The
transformation requires analyzing all registers and how they are used. Taking
into account all possible control flow of the function, the so-called dominator
relation between all instructions and registers is calculated. An instruction 𝑋
dominates an instruction 𝑌 if and only if every path through the program that
ends at 𝑌 also contains 𝑋.

To transform a program to SSA form, all assignments to registers are ana-
lyzed. Every time an existing register 𝑅 would be overwritten by an instruction
𝐼, thereby violating the SSA property, a new register 𝑅′ is introduced instead. Ev-
ery instruction 𝑈 that is dominated by 𝐼 and uses the register 𝑅 as operand is then
updated to use 𝑅′ instead. All instructions that dominate 𝐼 remain unchanged.

It is possible for an instruction 𝑁 that uses 𝑅 to neither dominate 𝐼 nor be
dominated by 𝐼, e.g., when 𝐼 appears inside of an if/else branch that may not
always be taken. In that case, a phi node is introduced at the first position in the
control-flow graph after 𝐼 that dominates 𝑁. A phi node acts like an instruction
that has two or more inputs, for example the registers 𝑅 and 𝑅′, and writes
one of the inputs to its output register. It chooses which input register to use
according to which branch was taken before the phi node and stores it in a new
register Φ. All other instructions that are dominated by the phi node and use
any of the operand registers of the phi node are then updated to use Φ instead.

Listing 4.2 shows how a program that is not in SSA form is transformed
into an equivalent program that satisfies it. The function f_no_ssa contains
three assignments to the register ret in lines 6, 9, and 12 which violates the SSA
property. Also, the add instruction in line 6 does not dominate the instruction
in line 12 which also uses the register ret because the add instruction lies in
the if_true branch that may not always be taken. Likewise, the sub instruction
in line 9 writes to the register ret but does not dominate line 12, either. To
transform this function into SSA form, first, new registers are introduced so
that no register is assigned to twice; lines 20, 23, and 27 now use the separate
registers ret1, ret2, and ret3, respectively. Eventually, the registers ret1 and ret2
must be combined again so that all other instructions that used the register ret
before the transformation still work correctly after the transformation. The
registers ret1 and ret2 are combined into the register ret.phi by using a special
phi instruction. This instruction must be inserted in the function such that it
dominates all following instructions that used the old register ret, which in the
example is at the beginning of the end block. The phi instruction specifies that
its result should be the value of the ret1 register if during the execution this
instruction was reached via the if_true block, or the value of ret2 when coming
from the if_false block. Finally, all instructions that used the register ret are
updated to use ret.phi instead, such as the add instruction in line 27.

68 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

1 define int32 @f_no_ssa(int32 %a, int32 %b) {

2 body:

3 %is_42 = cmpeq i32 %a, 42

4 condbr %is_42 %if_true %if_false

5 if_true:

6 %ret = add i32 %a, %b

7 br %end

8 if_false:

9 %ret = sub i32 %a, %b

10 br %end

11 end:
12 %ret = add i32 %ret, 123

13 return %ret

14 }

15 define int32 @f_ssa(int32 %a, int32 %b) {

16 body:

17 %is_42 = cmpeq i32 %a, 42

18 condbr %is_42 %if_true %if_false

19 if_true:

20 %ret1 = add i32 %a, %b

21 br %end

22 if_false:

23 %ret2 = sub i32 %a, %b

24 br %end

25 end:

26 %ret.phi = phi i32 [%ret1 %if_true, %ret2 %if_false]

27 %ret3 = add i32 %ret.phi, 123

28 return %ret3

29 }

Listing 4.2: Transformation of the function f_no_ssa with a conditional branch
that violates the SSA property into an equivalent function f_ssa that satisfies it.

4.1. TRANSLATION TO SSA WITH A VIRTUAL STACK 69

The transformation to SSA form requires detailed and expensive analysis of
each function. To find the dominator relation, the control-flow graph of each
function must be built. Since registers are updated during the transformation,
it is also necessary to track all usages of every register throughout a function.
Finally, the control-flow graph must be used to find suitable locations to add
new instructions representing phi nodes. Adding new instructions at arbitrary
locations may also require moving around neighboring instructions.

This expensive transformation is necessary because programming languages
usually do not require the strict SSA property. In general, SSA languages are
not designed to be written by humans. Instead, SSA is chosen as a property, for
example, by LLVM IR or Umbra IR, because it simplifies the optimization of the
program. WebAssembly is also designed as a target language for compilers but is
a stack-based language without registers and, therefore, does not satisfy the SSA
property. However, because of its strict structured control flow, it is efficient
to reason about the control flow and dominator relations of WebAssembly
programs.

In the remainder of this chapter, we present how WebAssembly can be
translated directly to a register-based language in SSA form to eventually safely
execute UDOs in compiling database systems. First, we show howWebAssembly
can be efficiently translated into Umbra IR. We also explain how the translator
ensures all safety guarantees of WebAssembly programs when they are trans-
lated to Umbra IR. Then, we present how our WebAssembly translator can be
integrated into a UDO Query Compiler to eventually execute UDOs using Web-
Assembly. To evaluate the feasibility of using WebAssembly for safe execution
of UDOs, we measure the efficiency of our translator and its generated code
running in our database system Umbra.

4.1 Translation to SSA with a Virtual Stack

We want to directly translate the stack-based WebAssembly language to a
register-based language such as Umbra IR which requires that all programs
satisfy the SSA property. We cannot assign each stack slot a fixed register as
proposed by Shi et al. as that potentially generates multiple different instructions
that write to the same register. Furthermore, all values in WebAssembly have a
specific type but the same stack slot could contain values of different types at
different points in the program.

Instead, we will track a virtual stack while translating the program. When
translating a WebAssembly instruction, we generate the corresponding Umbra
IR instruction and push the name of the register that the Umbra IR instruction
uses for its result into the virtual stack. Similarly, when a WebAssembly stack

70 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

WebAssembly Umbra IR Virtual Stack

func $load_add

(result f64)

(param i32)

define double

@load_add(int32 %arg1)

local.get 0 (no instruction) i32: %arg1

f64.load 0 %r1 = load double %arg1 f64: %r1

local.get 0 (no instruction) i32: %arg1

f64: %r1

f64.load 8 %r2 = load double

%arg1, int32 1
f64: %r2

f64: %r1

f64.add %r3 = add double %r1, %r2 f64: %r3

implicit return return %r3

Figure 4.1: Translation of the function load_add from Listing 3.1 from WebAs-
sembly to Umbra IR by using a virtual stack.

4.1. TRANSLATION TO SSA WITH A VIRTUAL STACK 71

would need to pop values from the stack at runtime, we pop values from the
virtual stack while translating the instruction and use the registers stored in the
stack as input operands for the new Umbra IR instruction. The virtual stack is
only used while translating the program; at runtime, no stack is required.

Figure 4.1 shows how the example function load_add from Listing 3.1 is
translated to Umbra IR by using a virtual stack. For the first WebAssembly
instruction local.get, no Umbra IR instruction is generated. However, after
translating the instruction, the virtual stack now contains an entry that ref-
erences the register arg1. Semantically, the local.get instruction gets the first
function argument and pushes it onto the stack. When translated to an Umbra
IR function where the function argument is stored in the register arg1, we only
need to remember that the result of the local.get instruction will be available
in the register arg1 at runtime. Now, when the next WebAssembly instruction
f64.load would need to pop a value from the stack at runtime, we instead pop a
value from the virtual stack while translating the instruction. Because the stack
contains the register arg1, we know that the translated instruction load double
must use it as an operand. For its result, the translator allocates the new register
r1 and pushes it onto the virtual stack. When another instruction eventually
pops the entry from the virtual stack again, such as f64.add in our example, it
will then use r1 as an operand.

The example shows that the translator is able to generate an Umbra IR
program that is identical to the manual translation shown in Listing 4.1. Also,
the translation happens in a single pass over the WebAssembly program. In
particular, no analysis of the control-flow graph or the dominator relation is
necessary here. It also shows that the translator does not need to generate any
Umbra IR instructions for some WebAssembly instructions; all instructions that
are used to manipulate the WebAssembly stack without any other operations do
not lead to the generation of any Umbra IR instruction. Instead, the translator
only remembers the new structure of the virtual stack after processing such a
WebAssembly instruction. Examples for WebAssembly instructions that do not
lead to Umbra IR instructions are local.get which pushes the value of a function
argument or local variable onto the stack, as seen in the example, and drop
which pops a value from the stack and discards it.

As long as the virtual stack contains only registers, the translation of Web-
Assembly to Umbra IR is very straight-forward; for every generated instruction,
the translator can immediately determine all operand registers. However, the
WebAssembly stack can also contain labels when a program contains control-
flow instructions. In the next section we explain how WebAssembly labels can
be represented in the virtual stack to be able to translate arbitrary control flow.

72 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

1 (func $f (result i32) (param i32 i32)

2 local.get 0 ;; Push the first argument onto the stack

3 local.get 1 ;; Push the second argument onto the stack

4 local.get 0 ;; Push the first argument onto the stack

5 i32.const 42 ;; Push the constant 42 onto the stack

6 i32.eq ;; Compare two i32 values for equality

7 if ;; Start an if-block

8 i32.add ;; Add two i32 values

9 else

10 i32.sub ;; Subtract two i32 values

11 end

12 i32.const 123 ;; Push the constant 123 onto the stack

13 i32.add ;; Add two i32 values

14 ;; Implicitly return the result of i32.add

15)

Listing 4.3: A WebAssembly function containing an if/else-block. The function
is equivalent to f_ssa shown in Listing 4.2 and the translator should be able to
generate exactly the same code.

4.2 Translation of Structured Control Flow

Naturally, when a program contains control flow, it is not possible to statically
determine where the operands from a given instruction originate from. When
an instruction in a stack-based language pops a value from the stack, or an
instruction in a non-SSA register-based language uses a register, the actual
value used by the instruction potentially could have been generated by several
different instructions. Especially when two sides of a conditional branch which
depends on an unknown runtime value contain two different instructions that
write to the same stack slot or register, a static analyzer must assume that at
runtime either branch can be executed.

4.2.1 Translation of if/else Blocks

Listing 4.3 shows a small WebAssembly function that contains an if instruction.
This function is equivalent to the function f_ssa shown in Listing 4.2. The goal
for the translator is to directly generate Umbra IR, which is in SSA form, so the
resulting code should be equal to f_ssa. The result of the function depends on
the value generated by either the instruction i32.add in line 8 or the instruction
i32.sub in line 10. After the end instruction, the WebAssembly stack contains
exactly one value, which is then used by the last i32.add instruction in line 13.

4.2. TRANSLATION OF STRUCTURED CONTROL FLOW 73

We extend the approach shown in Section 4.1 so that it can handle control-
flow instructions. The translator generates two new registers when translating
the instructions within the if and else instructions in lines 8 and 10. At the
end of the if/else-block in line 11, the translator must generate a new register
that represents the result value of the if/else-block. Unifying the values from
different branches into a single register is precisely why the phi instruction
in SSA languages exists. So, a WebAssembly translator must generate a phi
instruction at the end of every if/else-block.

The translation of an if-branch is shown in Figure 4.2. The function argu-
ments have been translated to be stored in the registers arg1 and arg2. After the
translator reaches and translates the instruction i32.eq in line 6, the virtual stack
contains the first and second function argument, which were pushed earlier
when translating the instructions in lines 2 and 3, as well as the result of the
comparison.

When the if instruction needs to be translated, the translator first needs to
determine how many values from the stack will be used inside the if/else-block,
which is called the block input type in WebAssembly. In our example, the if-block
contains a single i32.add instruction. This instruction needs to pop two i32
values from the stack and pushes one to the stack again. So, the input type of
the if-block has two i32 values. Also, since at the end of the block one i32 value
remains on the stack, its result type is i32. Note that WebAssembly requires that
the input and result types of an if- and its else-block must always match. In our
example, this obviously holds since the else-block also contains only exactly
one instruction that pops two values from and pushes one onto the stack.

Then, the translator pops values from the stack according to the input type,
pushes a new label entry onto the virtual stack, and pushes the values back onto
the stack. The stack entry for the label contains additional information such
as the input and result type of the block, and the names of the basic blocks in
the generated code – ifblock, elseblock, and ifend in our example – so that the
translator can later generate branches to these basic blocks. In general, every
branch instruction terminates a basic block in Umbra IR. Since translating an
if/else-block requries three branch instructions – the conditional branch that
checks the condition, and the two unconditional branches from the end of the
if- and else-blocks to the end – the translator creates three new basic blocks.

Before translating the first instruction inside the if-block, the translator
also creates a copy of the current stack. The copy is used to later translate the
else-block. Since after executing the conditional branch the execution could
continue at either the if- or the else-block, the virtual stack must have the same
state at the beginning of the translation of both branches.

Since an if/else-block can occur at any point in a program, in particular at
points where the virtual stack contains many entries, it is important to imple-

74 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

WebAssembly Umbra IR Virtual Stack

func $f (result i32)

(param i32 i32)

define int32 @f(int32 %arg1, int32 %arg2)
body:

⋮ ⋮ ⋮

i32.eq %r1 = cmpeq i32 %arg1, 42 i32: %r1

i32: %arg2

i32: %arg1

if condbr %r1 %ifblock

%elseblock

ifblock:

i32: %arg2

i32: %arg1

L: if-block

i32.add %r2 = add i32 %arg1, %arg2 i32: %r2

L: if-block

else br %ifend

elseblock:
i32: %arg2

i32: %arg1

L: else-block

i32.sub %r3 = sub i32 %arg1, %arg2 i32: %r3

L: else-block

end br %ifend

ifend:

%r4 = phi i32 [%r2 %ifblock,

%r3 %elseblock]

i32: %r4

copy

sa
ve

Figure 4.2: Translation of the if-block from the function shown in Listing 4.3
to Umbra IR. Additional bookkeeping of the stack is necessary to be able to
generate the phi instruction eventually at the end of the if-block.

4.2. TRANSLATION OF STRUCTURED CONTROL FLOW 75

ment the copying of the stack efficiently. Naively copying the entire stack every
time an if/else-block is translated can easily lead to quadratic complexity in the
number of instructions. So, instead, we employ reference counting on the stack
entries so that for every translated if/else-block only the values representing its
input type are copied. Since an input type of a block in WebAssembly can only
contain a fixed number of values, copying only the input values and increasing
the reference count on the topmost entry of the remaining stack guarantees
that the storage complexity of the translator remains linear in the number of
if/else-blocks in a function. Fortunately, because of WebAssembly’s design
goal to facilitate efficient translation, every block instruction in WebAssembly
directly encodes its input type and result type. So, a translator can immediately
determine the required input type without having to traverse the block to find
out how many stack entries the instructions in the block pop and push.

After the label representing the if-block and all input values of the block are
pushed onto the stack, the translation continues normally. In our example, the
next instruction i32.add is translated by popping two values from the virtual
stack and using the registers contained in the stack entries as operands. The
translation routine for the instruction i32.add requires no knowledge of the fact
that it is contained in an if-block.

When the translator encounters an else instruction, it first needs to post-
process the if-block; it must collect the result values from the stack, create a
branch instruction to the end of the entire if/else-block and create a new basic
block for the else-block, called elseblock in the example. To collect the result
values, the translator scans the stack, without modifying any entries, to find
the label of the if-block this else instruction belongs to. The label entry stores
the result type of the block, so the translator can pop values from the stack
accordingly. Because the result values of the if-block need to be used later
to generate phi nodes, they are saved in a new label entry that is created for
the else-block. All additional information that was stored in the label entry
of the if-block is saved in the label entry for the else-block as well. Finally,
the translator restores the copy of the stack that it made when translating the
if-block and replaces the label entry for the if-block with the new label entry
for the else-block. Then, the translation can again proceed as usual.

The first instruction inside the else-block sees the virtual stack in the same
state as the first instruction if-block when it is translated. This is necessary,
because when the function is executed eventually, the execution can reach either
of these two instructions from the same condbr instruction. Again, when the
i32.sub instruction is translated, the translator can pop and push values without
special handling for the translation in an else-block.

The translator detects the end of the else-block when it reaches the end
instruction. Again, the translator scans the virtual stack to find the topmost

76 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

label entry. Then, it post-processes the else-block similar to the if-block; it
generates a new branch instruction and then creates the basic block for the
end of the entire if/else-block, called ifend in our example. It also pops values
from the stack according to the result type of the block. Now, the translator
needs to generate a phi instruction to reconcile the result values of the if-block
that were saved into the label entry for the else-block and the result values that
it just popped from the virtual stack. In the example, the result value of the
if-block is an i32 value that is stored in register r2 and the result value of the
else-block is stored in register r3. Therefore, a new phi instruction is created
that evaluates to r2 if during execution the path over the ifblock was taken, or
to r3 for the elseblock. The result of the phi instruction is stored in the new
register r4. As the last steps, the translator pops the label entry from the stack
as it is not needed anymore, and pushes a new entry that contains the register
r4 representing the result of the entire if/else-block.

To summarize, if/else-blocks are translated by duplicating the virtual stack
for the if-block and the else-block. The entry on the stack that contains the
label for the blocks contains auxiliary information that allows the translator to
generate the necessary branch and phi instructions.

This strategy for translating if/else-blocks to Umbra IR while maintaining
the SSA property and correctly creating phi instructions is facilitated by Web-
Assembly’s design; the structured control flow guarantees that the state of the
stack at the end of the if-block and its else-block must be compatible which
means that a translator does not have to analyze the control flow further to
generate all required phi instructions.

4.2.2 Translation of Branch Instructions

In addition to its block instructions, WebAssembly also has branch instructions
which a translator needs to handle. Similar to if/else-blocks, the conditional
branch instruction br_if can lead to program states during execution where an
entry for a value in the WebAssembly stack can have multiple sources. Again,
to represent control flow where the value of a register can have multiple sources
in a SSA language, phi instructions must be inserted correctly.

To implement conditional branch instructions efficiently in a translator, two
observations are crucial: First, a branch instruction in WebAssembly cannot
target arbitrary other instructions in the same function but only labels created by
block instructions, and second, in SSA languages phi nodes are only necessary
when two diverging branches need to converge again. Both observations lead to
the conclusion that special handling for translating branch instructions is only
necessary at the end of every block instruction, i.e., every time an end instruction
is translated. In WebAssembly, only at an end instruction two different blocks

4.2. TRANSLATION OF STRUCTURED CONTROL FLOW 77

WebAssembly Umbra IR Virtual Stack

func $f (result i32)

(param i32 i32 i32)

define int32 @f(int32 %arg1,

int32 %arg2, int32 %arg3)
body:

block (no instruction) L: block

local.get 1

local.get 0

(no instructions) i32: %arg1

i32: %arg2

L: block

br_if 0 (current block body:)
condbr %arg1 %endblock %cont

cont:

i32: %arg2

L: block

drop

local.get 2

(no instructions) i32: %arg3

L: block

end (current block cont:)
br %endblock

endblock:

%r1 = phi i32 [%arg2 %body,

%arg3 %cont]

i32: %r1

implicit return return %r1

Figure 4.3: Translation of a function containing a condbr branch instruction to
Umbra IR. For every branch instruction the current basic block and the result
values from the stack are saved to the label entry for the target block.

78 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

can converge again, such as an if- and an else-block as shown before. So, phi
instructions only need to be created at that point in the translation.

Nevertheless, when a branch instruction is translated, the translator must
store enough information so that the end instructions can eventually correctly
create all required phi instructions. Figure 4.3 shows the translation of a function
that uses a block instruction which contains a br_if branch instruction that
targets the block. When the translator reaches the br_if instruction, it must first
determine the target of the instruction. In the example, the branch instruction
has the index 0 so the translator must scan the virtual stack to find the first label.
Then, it extracts the result type of the block from the label entry. Since a branch
instruction conceptually skips ahead to the end of its target block, the translator
must ensure that the result values of the block are taken from the state of the
stack at the point of the branch instruction. So, using the extracted result type,
all stack entries representing the result type of the block in case the branch is
taken are saved to the label entry of the block. To be able to create phi nodes
later, the name of the current basic block must be saved as well.

The actual conditional branch is implemented by generating a condbr in-
struction which uses the topmost value on the stack as its condition. The target
of the conditional branch is the basic block stored as continuation in the label
entry that was found for the target of the br_if instruction. In our example,
the conditional branch targets the end of the WebAssembly block for which
the translator generated a basic block named endblock. Since every branch
instruction terminates a basic block, the translator needs to create a new basic
block that represents the path of the program that is taken when the condition
is false, called cont in the example.

The structure of the virtual stack only changes by the br_if popping one
value representing the condition – the register arg1 in the example. All following
instructions can again be translated normally; the drop instruction pops a value
from the stack and discards it, and the local.get instruction pushes a new value
onto the stack.

At the end of every block, when its end instruction is translated, the transla-
tor needs to generate phi instructions for all return values of the block. When
translating if/else-blocks as shown in Figure 4.2, the phi instructions are gen-
erated for the if-block and the else-block. Similarly, Figure 4.3 shows how a
phi instruction is generated, even for regular block instructions. The approach
is the same as when translating if/else-blocks; for every “incoming” branch
instruction, i.e., all branch instructions that were added to the label entry for
the current block, the resulting phi node contains one entry. In our example,
when the translator translated the br_if instruction, it saved the name of the
current block (body) and the register containing the return value (arg2). Thus,
the generated phi instruction has one entry for the register arg2 and the basic

4.2. TRANSLATION OF STRUCTURED CONTROL FLOW 79

1 define void @f(int32 %arg1) {

2 body:

3 ; [...]

4 br %loop_head

5 loop_head:

6 %var1 = phi i32 [%arg1 %body, %var1next %loop_end]

7 ; [...]

8 br %after_loop

9 loop_end:

10 %var1next = phi i32 [...]

11 br %loop_head

12 after_loop:

13 ; [...]

14 }

Listing 4.4: Umbra IR generated by the translator for a function containing a
loop. The translator generates two sets of phi instructions to correctly handle
the loop variables.

block body. It also has a second entry for the implicit incoming edge from the
regular execution up to the current end instruction – the register arg3 and the
basic block cont here. The register that contains the result of the phi instruction
is then also pushed back to the stack so that following instructions can use it.

Overall, for every translated end instruction our translator creates one
phi instruction per result value with one entry per incoming edge. In if/else-
blocks, naturally there are at least two incoming edges, so the generated phi
instructions have at least two entries. Of course, the if- and else-block could
contain more branch instructions thus leading to more entries in every phi
instruction. Similarly, regular block instructions have at least one incoming
edge at the end, which is the edge from the last instruction of the block. In the
special case where at the end instruction only one incoming edge exists because
no branch instructions were used inside the block, the translator does not need
to generate any phi instructions. Instead, it can directly use the registers from
the virtual stack as result values.

4.2.3 Translation of Loops

When a branch instruction targets a loop-block, the execution continues at the
beginning of the loop, i.e., these branch instructions act like continue statements
in higher-level languages instead of breaking out of the loop. In WebAssembly,
loop-blocks can also have input values, just like if/else and regular blocks. The

80 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

input values of a loop-block can be thought of as “loop variables”; they have one
initial value when the loop is executed for the first time. For every subsequent
iteration, the value of the loop variables depends on the previous iteration which
may modify them arbitrarily. Since the values of the loop variables can come
either from the code before the loop-block, or from code inside the loop-block
executed before a branch instruction, a translator must generate phi-instructions
at the beginning of a loop.

However, all incoming edges of the phi nodes at the beginning of the loop
are only known after all instructions inside the loop-block are translated. But
the instructions in the loop may already use the registers that contain the results
of the phi instructions from the beginning of the loop. To break the circular
dependencies of the phi registers while translating loop-blocks, our translator
first generates two sets of phi instructions; one set at the beginning of the
code generated for the loop-block and one set at its end instruction. The set of
phi instructions generated for the end instruction are very similar to the phi
instructions generated for the end instruction of regular and if/else blocks; the
translator creates one phi instruction for every input value of the loop-block
(as opposed to creating one for every result value like in regular and if/else
blocks) which has one entry for every incoming edge. At the beginning of the
loop-block, the translator also generates one phi instruction for every input
value. These phi instructions have exactly two entries: One entry for the basic
block that is executed immediately before the loop with the initial value for the
loop variable, and another entry for the basic block that contains the branch
instruction back to the top of the loop, i.e., the back edge of the loop, with the
value of the loop variable for the next loop iteration.

Listing 4.4 shows the Umbra IR function generated by the translator when it
translates a function containing a loop-block with one loop variable. In line 10,
it generated the phi instruction for the end of the loop. This instruction is
generated using the same approach as shown in Figures 4.2 and 4.3. The result
of this phi instruction is stored in the register var1next. Thus, in the next
iteration of the loop, this register should be used as loop variable.

Note that the br instruction in line 8 does not jump to the basic block
loop_end. As mentioned before, at the end of a WebAssembly loop-block, the
execution continues with the first instruction after the loop, i.e., the basic block
after_loop. Only explicit branch instructions inside the loop-block that could
occur in line 7 can potentially jump to loop_end.

When the translator generates the code for the beginning of the loop-block,
naturally, it does not know the name of the registers that will contain the
values for the loop variables for the next iteration. This register is only created
when translating the end of the loop-block. The translator still generates a phi
instruction for each loop variable and sets the first entry of each instruction to

4.2. TRANSLATION OF STRUCTURED CONTROL FLOW 81

contain the initial value, but sets the second entry to dummy values. Only when
the phi instructions at the end of the loop are created, the translator updates
the second entry of the phi instructions at the beginning of the loop, as shown
in line 6.

4.2.4 Unreachable Blocks

It is possible to write WebAssembly programs that contain instructions that
cannot be reached during execution. In some cases, a static analyzer can easily
prove that some parts of the program are unreachable. For example, all instruc-
tions within the same block following a return instruction can never be executed.
Only the instructions after the next end instruction are potentially reachable
again, for example when the execution branches to the end instruction using a
branch instruction before the function returns.

The WebAssembly specification generally requires all programs to be well-
formed. In particular, since every instruction pops and pushes a statically
known number of values from and onto the stack, WebAssembly programs
may not contain sequences of instructions that would lead to an invalid stack
state. However, there are three exceptions; a block of instructions may contain
arbitrary, malformed sequences of instructions as long as they follow one of the
instructions which guarantee the unreachability: return, as motivated above, br,
since an unconditional branch is always taken, br_tablewhich is a specialization
of br that can be used to better represent switch/case statements from higher-
level languages, and the special unreachable instruction which immediately
terminates the execution if it is reached.

When a WebAssembly program is interpreted, unreachable instructions
which are potentially malformed, cause no problems. But our translator relies
on the fact that all instructions leave the stack in a valid state to be able to create
the virtual stack during translation. Naturally, if the translator translates an
unreachable instruction and tries to pop a value from the virtual stack even
though the stack is empty, the translator is not able to generate any sensible
Umbra IR instruction.

Therefore, the translator must track the reachability of every instruction. If
an instruction is known to not be reachable due to one of the exceptions in the
WebAssembly specification, the translator must silently skip it. Fortunately, this
can be implemented cheaply; as soon as one of the instructions that make all the
following instruction unreachable is translated, the translator must set a flag
indicating that it is currently in an unreachable state. Then, it can skip over all
following instructions as long as the flag is set. Only when the end instruction
of the block that contains the instruction that caused the flag to be set is reached,
the flag needs to be unset again so that the translation can continue as usual.

82 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

When translating an if/else-block, the translator additionally needs to consider
that the else-block may be reachable even if the end of the if-block is not.

In some cases, skipping over unreachable WebAssembly instructions can
lead to phi instructions with no incoming edges. For example, when a regular
block has a result type with more than one value but it contains only a return
instruction, its result will never be created. So, a translator must be able to handle
the end of a block even if it cannot be reached. In Umbra IR, phi instructions are
allowed to have no entries, which means that the translator requires no special
handling for these cases.

Of course, all code following a block which by itself is determined to never
reach its end, is also unreachable, even if theWebAssembly specification requires
it to be well-formed. Thus, a translator could omit translating these instructions
as well. However, in general, finding these unreachable instructions requires
complex reasoning about the control flow of the program whereas only handling
the exceptions made by the WebAssembly specification can be implemented by
using a single flag. Since programs containing mostly unreachable instructions
are hardly useful, and high-level language compilers are unlikely to generate
them, our translator only handles the cases required by the WebAssembly
specification to achieve higher translation speeds for useful programs.

4.3 Parallel Execution

The specification ofWebAssembly currently does not allow for parallel execution
of WebAssembly functions. However, an extension to WebAssembly called the
“Threads Proposal” is available which is supported by many compilers and
WebAssembly runtimes (see also Section 3.1.7). The Threads Proposal defines
several new instructions, most importantly atomic memory instructions. Since
Umbra is designed to execute all queries in parallel, Umbra IR also has several
different atomic instructions. Both WebAssembly and Umbra IR require their
atomic operations to have sequential consistency, so most atomic memory
instructions in WebAssembly can be translated directly to exactly one atomic
instruction in Umbra IR.

The Threads Proposal also contains less common atomic instructions. For
example, WebAssembly programs can use an atomic xor instruction. Because the
hardware architectures that Umbra runs on do not have atomic xor instructions,
Umbra IR does not define them. To still be able to translate WebAssembly
programs containing this instruction, our WebAssembly translator generates a
function call to a runtime function that implements the atomic xor operation
using a loop with an atomic compare-exchange operation.

4.3. PARALLEL EXECUTION 83

To allow WebAssembly to efficiently implement semaphores that do not
only rely on spin locks, the Threads Proposal also defines a notify and a wait
instruction. Their semantics maps closely to the functions with similar names
used by implementations of condition variables in different programming lan-
guages, such as pthread_cond_wait and pthread_cond_signal/pthread_cond_
broadcast for POSIX systems. Therefore, our translator translates the notify
and wait instructions to function calls to runtime functions that use a condition
variable implementation.

Since everymemory access in aWebAssembly program semantically requires
a bounds check with the current memory size, a WebAssembly runtime using
the Threads Proposal must ensure that the bounds checks work as expected even
if the memory is grown in one thread while other threads concurrently access
the memory. Fortunately, the Threads Proposal does not require the bounds
checks to have atomic sequential consistency with respect to the memory size.
This choice was made deliberately as otherwise every memory access, even if it
is non-atomic, would require an atomic sequentially consistent bounds check.
Instead, almost no requirements are put on the memory grow instruction for
parallel execution. In particular, all bounds checks can be implemented with
weak consistency which means that no atomic instructions are required on
architectures that guarantee atomicity of individual loads and stores, such as
x86.

Finally, even though the LLVM project and its Clang compiler support emit-
ting the new instructions specified in the Threads Proposal, a WebAssembly
runtime still needs to take additional steps before functions of the same WebAs-
sembly module can be executed in parallel. Programs written in C or C++ require
dynamic global initialization for global variables which must run before any
other function of the program is called. Naturally, the global initialization must
be complete before any other threads start executing any C or C++ function that
was compiled to WebAssembly. The Clang compiler generates the special func-
tions called __wasm_call_ctors and __wasm_call_dtorswhich must be called for
global initialization and destruction, respectively. Similarly, when C++ programs
use thread_local global variables, they must be initialized in every thread. The
Clang compiler generates a special function to initialize thread-local storage
called __wasm_init_tls. Our implementation calls all of these special functions
correctly and ensures that no other WebAssembly functions are executed before
the initialization is complete.

The Clang compiler additionally creates a WebAssembly global variable
called __stack_pointer. Since C and C++ programs can take the addresses of stack
variables and pass pointers to them to other functions but theWebAssembly stack
cannot be accessed by memory instructions, the compiler instead generates code
to store the stack variables at the location stored in __stack_pointer. Obviously,

84 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

every thread requires a separate stack. So, our implementation allocates a single
WebAssembly page for every thread dedicated to its stack and sets the __stack_
pointer variable accordingly. Note that global WebAssembly variables are not
shared between threads, so every thread will correctly read its own stack pointer
address.

4.4 Safety

We proposed using WebAssembly as an intermediate language so that it is
possible to safely execute arbitrary, potentially untrusted user code. With its
specification, WebAssembly lies some ground rules for the behavior of its ex-
ecution. However, it does not prescribe how the execution of WebAssembly
programs must be implemented by a WebAssembly runtime. As long as the exe-
cution of a WebAssembly program semantically follows the behavior described
in the specification, a runtime has no additional restrictions to implement the ex-
ecution. In particular, since WebAssembly programs cannot inspect the current
state of the execution, such as the stack trace of the function that is currently
being executed, or the current instruction pointer, a runtime may even modify
programs to optimize the execution. Still, it must make sure that any potential
trap may not be accidentally removed by an optimization.

In the remainder of this section, we discuss how our translator ensures that
the execution of a translated WebAssembly program follows the semantics of
the specification. In particular, we explain how the execution of the programs
generated by the translator maintains the safety guarantees of the WebAssembly
language.

4.4.1 Safety of Numeric Instructions

For most numeric WebAssembly instructions, Umbra IR has an equivalent in-
struction. For these instructions, a simple one-to-one mapping between Web-
Assembly and Umbra IR instructions can be used. Since both WebAssembly
and Umbra IR use twos-complement integer arithmetic, both languages handle
overflows in addition and subtraction identically, so no special instructions are
required. Similarly, both languages use IEEE 754 floating-point numbers, so
most floating-point instructions can also be translated directly.

Some numeric operations can sometimes have unexpected results or even
lead to program crashes. To prevent safety issues, the WebAssembly specifi-
cation precisely defines every numeric instruction and which outcomes are
allowed for all possible inputs. When a numeric operation has no unexpected
behavior, such as integer additions and subtractions as described above, all pos-

4.4. SAFETY 85

sible combinations of input values must always lead to a deterministic output
value.

Integer Division. Integer division has two edge cases that are handled dif-
ferently by different processor architectures: division by zero and overflow. In
both cases the WebAssembly specification requires an implementation to always
raise a trap. For a translator this means that it must generate additional code
that checks whether the divisor is zero. Also, overflow in integer division when
using twos-complement arithmetic only happens if the dividend is equal to
the smallest possible negative integer and the divisor is -1. Thus, this special
case can also be detected by generating additional code that checks for these
two values in the dividend and the divisor. WebAssembly also has an integer
reminder instruction for which the same handling of both special cases applies.

Integer Multiplication. Like division, integer multiplication can also lead to
overflow, for example whenmultiplying the smallest possible negative integer by
-1. However, unlike for division, this overflow is not the only possible overflow
when multiplying two numbers in twos-complement. Naturally, the magnitude
of the result of a multiplication is always larger than the magnitude of the
factors. As a result, modern hardware handles overflow while multiplying by
just truncating the result to the number of bits of the result type. Because
this cannot lead to unexpected execution behavior, WebAssembly also defines
integer multiplication such that the potentially overflowing result must always
be truncated. Thus, for the translator this means no special handling for integer
multiplication is required.

Bitwise Shifts. Conceptually, bitwise shifts simply multiply or divide by a
power of two. However, especially higher-level languages require the shift
amount to not exceed the number of bits in the shifted value. For example,
shifting a 32-bit integer by more than 32 is considered undefined behavior in
C and C++. Similarly, shifts by negative amounts are also often disallowed. To
avoid ambiguities and unexpected results, WebAssembly specifies that the shift
amount in a shift instruction is always treated as an unsigned integer modulo
2𝑛 where 𝑛 is the number of bits of the result type. Therefore, a translator must
generate an additional bitwise-and instruction that ensures that the shift amount
is less than 2𝑛.

Bit Counting. Modern CPUs usually offer special instructions to efficiently
count bits in an integer: “count leading zeroes”, “count trailing zeroes” and
“popcount”. Since these instructions are useful to efficiently implement many

86 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

algorithms, they are also available in WebAssembly as clz, ctz, and popcnt,
respectively. The two instructions clz and ctz count the number of consecutive
zero bits until the first one bit starting with the most-significant and least-
significant bit, respectively. The popcnt calculates the number of bits that
are set in an integer. Some CPU architectures have different results for these
instructions when the input is zero. In WebAssembly, on other hand, all three
instructions each only allow exactly one result when the input is zero. Thus,
again, the translator must generate additional code that explicitly handles this
case to ensure compatibility with the semantics of WebAssembly.

Float Functions. Several common operations on floating-point values such as
rounding a number or computing the square root are available as WebAssembly
instructions. These functions have several edge cases, especially when their
operands are NaN or infinity values, for which the outcomes are precisely
defined in WebAssembly. Our translator does not generate additional code to
handle all of the numerous edge cases. Instead, it generates only a function
call instruction which calls a runtime function provided by the translator. The
runtime functions for every instruction can be implemented in a higher-level
language, such as C++ for our translator to Umbra IR. While in general a function
call is much more expensive than a single instruction, these float functions are
complex enough to make any function call overhead hardly noticeable. Also,
implementing them in a higher-level language as opposed to an assembly-like
language like Umbra IR reduces the complexity of ensuring that all edge cases
are handled correctly.

Float Conversions. To convert floating-point values to integers, WebAssem-
bly offers two sets of conversion instructions: truncating and saturating. Both
sets of instructions make sure that all conversions that would lead to an overflow
in the resulting integer are handled. In the truncating instructions, all overflows
raise a trap. The saturating instructions result in the smallest negative or largest
positive integer when converting negative and positive infinity, respectively,
and in zero when the argument is NaN. These conversion are usually available
as single CPU instructions, however, CPUs often handle overflow differently.
Thus, our translator implements the conversion in separate runtime functions as
well, and only generates a call to one of the runtime functions when translating
a float conversion instruction.

4.4. SAFETY 87

4.4.2 Memory Safety

The source for most critical safety issues and one of the main motivations for
the creation of WebAssembly are invalid memory accesses. To ensure memory
safety, the WebAssembly specification defines a special memory model with
several restrictions (see also Section 3.1.2). One important component of the
memory model is the contiguous memory area, also called the WebAssembly
memory. WebAssembly programs access the WebAssembly memory using
32-bit addresses. The WebAssembly memory can be grown dynamically by
WebAssembly programs but its size cannot be reduced. The second component
of memory safety in WebAssembly is that the specification defines that all
memory accesses which lie outside of the current memory size must raise a trap.

All constraints on the WebAssembly memory and how it can be used were
chosen to allow for efficient implementation of the WebAssembly memory while
maintaining safety guarantees. Conceptually, for every WebAssembly load
and store instruction, an implementation has to check whether the referenced
address is valid. Since the WebAssembly memory is only one contiguous area of
memory, this can be implemented by a single comparison of the WebAssembly
memory address with the current memory size, called bounds check.

Since WebAssembly memory pages are a multiple of common page sizes
found in real CPU architectures, bounds checks can also be avoided entirely:
The implementation must reserve 8GiB of contiguous virtual address space.
Then, only the first 𝑛 pages must be made accessible, where 𝑛 is the number of
pages required for the current WebAssembly memory size, while all remaining
pages must be configured to allow no reads or writes. All WebAssembly memory
instructions can then be implemented by adding the WebAssembly memory
address to the first address of the virtual address space. For all invalid memory
accesses, the CPU will then generate a page fault which subsequently leads to
the operating system terminating the process.

This solution using virtual memory addresses is suggested by Rossberg et
al. to implement WebAssembly memory efficiently. As it requires no additional
bounds checks, this approach incurs no overhead compared to native machine
code. Also, on modern 64-bit architectures allocating 8GiB of virtual memory
is easily possible without requiring any special operating system support or
memory layout of the process.

Because pre-allocating virtual memory for the WebAssembly execution is
easy to implement and allows for efficient bounds checking, this approach is
used by many current implementations of WebAssembly. Since after an illegal
memory access the WebAssembly program must be terminated anyway, letting
the operating system kill the program is a sensible solution.

88 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

Our motivation for using WebAssembly is to safely integrate UDOs into
a database system. In particular, this means that the WebAssembly program
is not the only code that is being executed in the process. Since we intend to
inline user code directly into code generated by the database system from a SQL
query, it is not possible to easily distinguish between the execution of user code
and database-generated code. When the implementation of the WebAssembly
memory in the query execution relies on the operating system to kill the process
when an illegal memory access occurs, the entire database system could be
affected. Of course, this goes directly against our goal to safely execute arbitrary
user code in the database system.

Thus, our translator actually generates a bounds check for every WebAs-
sembly memory instruction when translating it. Of course, doing so naively
not only negatively affects the execution speed, but also can potentially heavily
slow down the translation of WebAssembly programs.

Conceptually, a bounds check can be implemented by an integer comparison
and a conditional branch instruction that jumps to a trap-blockwhen thememory
address is invalid. The trap-block then contains the code that raises a trap
to terminate the execution. Therefore, every naive translation of a memory
instruction leads to at least one additional basic block and one conditional branch
instruction in the generated Umbra IR program. If we assume that the number of
memory instructions in a WebAssembly program is linear in the amount of total
instructions, the bounds checks result in a number of new blocks and branch
instructions linear in the amount of total instructions as well. The large amount
of new blocks and branch instructions slows down all analysis and optimization
on the generated program. Since many optimization passes need to reason about
the control-flow graph and the dominator relation of instructions, they require
traversing all blocks and branch instructions.

To avoid generating many blocks and branch instructions when translating
WebAssembly memory instructions, we instead extend Umbra IR by adding a
dedicated boundscheck instruction. This instruction has two operands: The
WebAssembly memory address representing the end of a memory access, and
the current size of the memory. During execution, this instruction semantically
compares the two operands and raises a trap if the first operand is larger than
the second.

Now, when the translator translates a memory instruction, it first generates a
load instruction to determine the current memory size. The current memory size
is stored in a global variable which is accessible from all functions in all threads
which are executing the same WebAssembly program. Then, it generates the
code to calculate the WebAssembly memory address representing the end of
the memory access. Since the number of bytes that are accessed by a memory
instruction is known statically, e.g., a load of an 32-bit integer reads exactly

4.4. SAFETY 89

WebAssembly Umbra IR

i32.load 42 %wasm_addr_base = zext i64 %load.i32_arg

%wasm_addr = add i64 %wasm_addr_base, 42

%wasm_addr_end = add i64 %wasm_addr_base, 4

%mem_size = load int64 @mem_size_global

boundscheck i64 %wasm_addr_end, %mem_size

%real_addr = getelementptr int8

%wasm_memory, %wasm_addr

%load.i32_result = load int32 %real_addr

Figure 4.4: Translation of the WebAssembly memory load instruction i32.load.
To ensure memory safety, the translator generates a special boundscheck in-
struction.

4 bytes, together with the fixed offset specified as an immediate in WebAssembly
memory instructions, the translator only needs to generate add instructions
with constant operands.

Figure 4.4 shows the generated code including a bounds check when trans-
lating a WebAssembly memory load instruction. The WebAssembly instruction
uses a fixed offset of 42, so this constant is added to the operand of the instruc-
tion which in this example is stored in the register load.i32_arg. To avoid any
overflows when calculating the memory offsets, our translator first converts the
operand to a 64 bit integer using a zero-extension instruction. After calculating
the correct WebAssembly address, the end-address for the bounds check is cal-
culated. In this example a 32 bit integer is loaded, so the constant 4 is added to
the memory address. The boundscheck instruction then takes the end-address
and the memory size as operands. Since the memory size can change during the
execution of a program, it must be loaded from the global variablemem_size that
contains the current memory size. When the bounds check does not terminate
the execution, the real memory address is calculated by using a getelementptr
instruction which adds the WebAssembly address to the base pointer of the
WebAssembly memory which is stored in the register wasm_memory. Finally,
the load instruction uses the real memory address to perform the actual memory
load.

By generating one boundscheck instruction for everyWebAssembly memory
instruction the translator ensures the memory safety of the execution. Untrusted
programs have no way to access memory outside of the address range reserved
for the WebAssembly module. When an Umbra backend compiles an Umbra IR
program containing boundscheck instructions, it can translate them to a condi-

90 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

mov 0x28(%rsp), %r14d # load the WebAssembly memory address into %r14d

lea 0x2e(%r14), %rax # Calculate the end of the memory access (4 + 42)

cmp (%rbx), %rax # Compare the end address with the memory size

ja trap_block # Conditional jump to the trap block

mov 0x2a(%r13, %r14, 1), %r15d # Load 4 bytes into %r15d at address

%r13 (base address) + %r14 (WebAssembly address) + 0x2a (42)

Listing 4.5: Translation of the Umbra IR code shown in Figure 4.4 into x86
machine code. The current memory size is stored in memory at the address rbx.
The real memory address of the WebAssembly memory is stored in r13.

tional branch which consists of an integer comparison and a conditional jump
instruction which jumps to a “trap block” if the bounds check is unsuccessful.
The trap block then contains the machine code that causes the execution to
terminate which could be a single function call to a function that throws an
exception, for example.

Listing 4.5 shows how the Umbra IR generated for the WebAssembly load
instruction in Figure 4.4 could be compiled to x86 machine code. The machine
code first fetches the WebAssembly address, which in this example is stored
on the CPU stack at offset 0x28. It stores the result in the register r14d which
represents the lower 32 bits of the r14 register. This mov instruction also
implicitly zero-extends the 32-bit value so that the same value is available as 64-
bit integer in the r14 register. The next instruction calculates the end-offset for
the bounds check. Instead of using an add instruction, small offset calculations
can be encoded more efficiently on x86 using the lea instruction. Here, it adds
0x2e to the register r14 and stores the result in rax. The offset 0x2e is calculated
by taking the fixed offset of the WebAssembly immediate (42) and adding the
size of the memory access (4). The register rax is then compared to the value
at the memory address which is stored in the register rbx. Here, rbx contains
the memory address of the global variable that contains the current size of the
WebAssembly memory. If the comparison determines that the memory access is
out of bounds, the execution jumps to the trap block using the conditional jump
instruction ja. Finally, the last instruction performs the actual memory load
and stores the result in register r15d. The real memory address is calculated by
using a x86 memory operand in the mov instruction. Semantically, the memory
operand 0x2a(%r13, %r14, 1) is equivalent to %r13 + %r14 + 0x2a. The register
r14 contains the WebAssembly address as calculated earlier and r13 contains
the real memory address of the WebAssembly memory.

4.4. SAFETY 91

4.4.3 Optimization of Bounds Checks

As can be seen in Listing 4.5, multiple Umbra IR instructions are often combined
into one x86 instruction. For example, zero extension usually is an implicit result
of many instructions, and multiple additions followed by a memory instruction
can be combined into a single mov instruction with a memory operand. Still,
every memory access in WebAssembly leads to multiple instructions in the
machine code. In the example, a single WebAssembly memory load instruction
leads to two x86 instructions that load memory: one to read the memory size
and another for the actual memory load.

Naturally, executing multiple machine instructions for each WebAssembly
memory instruction leads to additional runtime overhead. Every bounds check
is implemented as an integer comparison followed by a conditional branch
instruction. For modern CPUs with sophisticated out-of-order execution, branch
instructions can potentially lead to pipeline stalls which significantly delays
and slows down the execution. A bounds check for a WebAssembly memory
access is usually expected to succeed as it can only fail due to a programming
error, which means that the branch predictor of the CPU will be able to predict
branches and improved pipelining most of the time. Still, our experiments show
that the bounds checks often reduce the performance of a program by more
than 50%.

The bounds checks are crucial to ensure the memory safety of the execution,
so we cannot remove them. However, memory accesses frequently occur in
predictable patterns or loops with fixed upper bounds. When a WebAssembly
function contains two adjacent memory accesses and a static analyzer can
determine that one of the memory accesses always uses an address which is
larger than the address of the other memory access, the bounds checks for both
memory access can be combined into one. Since the WebAssembly memory has
no holes and can only grow but never shrink, a bounds check for an address addr𝑎
that is executed after the bounds check for an address addr𝑏 always succeeds if
addr𝑏 > addr𝑎.

Listing 4.6 shows an example for optimizing adjacent memory accesses. The
function init written in C accesses two fields of the struct Input. When this
function is compiled to WebAssembly, the memory accesses could be translated
into the two WebAssembly instructions i32.store 0 and i32.store 4. Both pop an
i32 value and a memory address from the stack and add their immediate offset, 0
and 4, respectively, to the address. The unoptimized Umbra IR shows that both
memory access have separate bounds checks.

Since through static analysis we can determine that wasm_addr2 is always
greater than wasm_addr1, even if the exact value of wasm_addr1 is unknown,
the bounds check for wasm_addr2 also implicitly includes the bounds check

92 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

struct Input { int a; int b; };

void init(struct Input* in) {

in->a = 123;

in->b = 456;

}

(a) Original C code

(func $init (param i32)

local.get 0

i32.const 123

i32.store 0

local.get 0

i32.const 456

i32.store 4

)

(b) Generated WebAssembly

%wasm_addr1 = ; [...]

%wasm_addr1_end = add i64 %wasm_addr1, 4

boundscheck i64 %wasm_addr1_end, %mem_size

store int32 i32 123, %wasm_addr1

%wasm_addr2 = add i64 %wasm_addr1, 4

%wasm_addr2_end = add i64 %wasm_addr2, 4

boundscheck i64 %wasm_addr2_end, %mem_size

store int32 i32 456, %wasm_addr2

(c) Umbra IR with regular bounds checks

%wasm_addr1 = ; [...]

%wasm_addr2 = add i64 %wasm_addr1, 4

%wasm_addr2_end = add i64 %wasm_addr2, 4

boundscheck i64 %wasm_addr2_end, %mem_size

store int32 i32 123, %wasm_addr1

store int32 i32 456, %wasm_addr2

(d) Umbra IR with optimized bounds checks

Listing 4.6: Optimization of bounds checks for adjacent memory accesses. The
optimizer determines that wasm_addr2 is always larger than wasm_addr1, so it
combines both bounds checks into one.

for wasm_addr1. So, our optimizer combines them into one bounds check and
eliminates the other.

Note that our static analyzer knows that WebAssembly memory addresses
cannot be larger than 33 bits (32 bit memory address plus 32 bit immediate).
Thus, adding a constant offset to wasm_addr1 to calculate wasm_addr2 using
64 bit integers cannot lead to integer overflow. The condition wasm_addr2 >
wasm_addr1 always holds.

Similarly, memory accesses inside a loop often directly depend on the loop
variable. Also, the upper bound of the loop variable can often be determined

4.4. SAFETY 93

void init(int* a, int n) {

for (int i = 0; i < n; ++i) {

// bounds check at address a + 4 * 2 * i + 4

a[2 * i] = 123;

// bounds check at address a + 4 * (2 * i + 1) + 4

a[2 * i + 1] = 456;

}

}

(a) C code with comments annotating where regular bounds checks are inserted.

void init(int* a, int n) {

// bounds check at address a + 4 * (2 * (n - 1) + 1) + 4

for (int i = 0; i < n; ++i) {

a[2 * i] = 123;

a[2 * i + 1] = 456;

}

}

(b) C code with comments annotating how the bounds checks are optimized.

Listing 4.7: Optimization of bounds checks in loops. The optimizer can statically
derive the upper bound of the loop and sees that all memory accesses depend
on the loop variable.

statically. Listing 4.7 shows a C function that contains a loop for which the
bounds checks can be optimized. The regular bounds checks as annotated in
Listing 4.7 (a) are inserted for every memory access. Our optimizer detects
that all memory accesses inside the loop depend on the loop variable i and the
upper bound for the value of i inside the loop is n due to the loop condition.
Therefore, the address of the highest memory access is a + 4 ⋅ (2 ⋅ (n − 1) + 1),
so the last bounds check must check the end of this memory access at address
a + 4 ⋅ (2 ⋅ (n − 1) + 1) + 4.

The optimized bounds check is inserted before the loop and the bounds
checks inside the loop are eliminated, as shown in Listing 4.7 (b). Since the
number of executed bounds checks is now constant and independent of the
value of n, the optimized program will execute significantly less bounds checks.

Both types of bounds check optimizations can eliminate many bounds checks
from common WebAssembly programs, thereby increasing their performance
while maintaining the memory safety. However, our optimizer must not modify
the behavior of the program; it needs to ensure that the new optimized bounds
checks always succeed if the bounds checks in the unoptimized program would
have succeeded.

94 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

There are two cases that prevent the optimization of bounds checks: function
calls and conditional branches. If a function contains a call to another function,
the optimizer has to assume that the called function may grow the memory.
If the memory is potentially grown between two bounds checks, the bounds
checks obviously cannot be combined. Also, a bounds check must not be moved
outside of a conditional branch. When the conditional branch is not taken at
runtime but its bounds checks are still executed, the execution of the program
could be terminated even without invalid memory accesses.

4.4.4 Resource Exhaustion

When WebAssembly programs are executed, they obviously use real resources
that they share with the rest of the system, such as the available main-memory
and the CPU. The resource utilization of potentially untrusted programs must
be taken into account for the safety of the execution.

Since WebAssembly programs cannot allocate memory arbitrarily, keeping
track of the memory utilization of aWebAssembly programs can be implemented
efficiently. The WebAssembly instruction memory.grow is the only instruction
for which an implementation potentially has to allocate new memory. Also, this
instruction is not expected to be executed often, so it can be implemented as
a function call into the runtime system. The function of the runtime system
that handles this instruction can then decide in every call whether to allow the
WebAssembly program to allocate more memory.

When WebAssembly functions are translated and compiled to machine-code
functions, the resulting machine-code frequently uses the CPU stack. The CPU
stack is used to store temporary variables if the limited number of hardware
registers is not sufficient. Also, the CPU stack often needs to store return
addresses of function calls so that a called function knows where to continue
the execution when it returns. In particular when functions call themselves
recursively, keeping track of the call stack is necessary.

WebAssembly functions are allowed to call each other arbitrarily and every
function call can potentially require several bytes of memory from the CPU
stack. However, the CPU stack usually has a very limited size and it is separate
from the region of memory allocated for the WebAssembly memory. When
machine code tries to access the CPU stack in excess of its capacity, the program
is usually terminated by the operating system similar to an illegal memory
access. The CPU stack is also not accessed explicitly by the generated Umbra IR
as only the compilation backend generates real machine-code that may use the
CPU stack. So, it is not possible to add explicit bounds checks for accesses of
the CPU stack when translating WebAssembly programs.

4.4. SAFETY 95

Since the CPU stack is a limited resource and exceeding its capacity may lead
to program crashes, the translator must prevent the translated WebAssembly
programs to use an unbounded amount of CPU stack space. Conceptually, this
can be implemented by keeping track of the current depth of the call stack. At
the beginning of the translation of every WebAssembly function, the translator
needs to generate instructions that load the current depth of the call stack,
increase it, and then raise a trap if the depth exceeds a pre-defined limit. As an
approximation for the amount of stack space a compiled WebAssembly function
will potentially use, our translator counts the number of local variables that are
defined in the function and adds this number to the current call stack depth. At
the same time, it uses a relatively low limit of 1000 for the stack depth. Every
local variable requires up to eight bytes of CPU stack space, so a limit of 1000
bounds the CPU stack utilization to approximately 8KB. Our implementation
was tested on Linux where programs usually receive several MiB of stack space,
so limiting the WebAssembly execution to use 8KB of stack space prevents
program crashes. Often, the compiled machine code will actually use much
less stack space as local variables can often be optimized to be stored only in
registers.

4.4.5 Open Safety and Security Issues

WebAssembly is designed to avoid most common safety and security issues. The
specification focuses largely on the execution of untrusted code in web browsers
and how to achieve memory safety and the safety of individual instructions.
However, using WebAssembly to execute UDOs in a database system poses
additional security requirements which are not covered by WebAssembly.

Loss of Control

A database system usually executes queries from many different users. Often,
multiple queries from the same or different users are executed in parallel. To
fairly distribute the available hardware resources between all queries and users,
the query execution engine must schedule all currently active queries onto
the available CPU cores, main memory, and hard disk capacity. Umbra uses
morsel-driven parallelism to efficiently distribute queries onto multiple CPU
cores. A morsel can be processed by any worker in the system. Umbra’s
query execution engine and scheduler cooperate to dynamically adjust the
morsel sizes to generate morsels that have a predictable runtime of only few
milliseconds [WKN21].

Crucially, Umbra’s scheduler is entirely cooperative, i.e., it relies on the
execution of a morsel to finish within only a few milliseconds, but cannot

96 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

preempt the execution of a morsel. If a morsel is executed that contains a call
to a function of a WebAssembly UDO, the query engine has no control over
how long the execution of the WebAssembly function takes. In the worst-case,
a WebAssembly program could contain an infinite loop. Since the scheduler
currently cannot forcibly terminate the execution of a morsel, an infinite loop
in WebAssembly effectively blocks at least one CPU core from doing any useful
work.

WebAssembly does not disallow infinite loops. In general, a static analyzer
also cannot detect whether executing a function always or dependent on the
inputs leads to an infinite loop. Similar to bounds checks that ensure memory
safety, our WebAssembly translator could add cancellation checks at the begin-
ning of each loop. The cancellation checks must track how much CPU time
was spent on executing the WebAssembly function so far and terminate the
execution if the time exceeds a pre-defined limit.

The cancellation checks add significant runtime overhead and in many cases
can prevent useful optimizations, such as loop vectorization. Preliminary exper-
iments showed that for our implementation cancellation checks can increase
the execution time of WebAssembly UDOs by more than 30%. Therefore, our
translator does not generate any cancellation checks and the loss of control can
only be solved by user intervention in our system.

Side-Channel Attacks

In our system, WebAssembly UDOs run in the same process as other queries
and other parts of the system. A WebAssembly function cannot access arbitrary
memory locations but is restricted to its own separate memory. However,
the machine code that Umbra’s compilation engine generates contains both
instructions generated by relational operators and also instructions generated
for the code of WebAssembly UDOs. Since the machine instructions generated
for a WebAssembly program have no spatial or temporal boundaries to other
instructions, i.e., the memory locations and the execution of all instructions are
interleaved, malicious WebAssembly programs can use side-channel attacks.

For example, Spectre [Koc+19] is a famous side-channel attack that relies
on speculative execution of modern CPUs and precise timing. WebAssembly
UDOs are compiled to native machine code and directly executed on the CPU,
so it is easily possible for WebAssembly programs to launch a Spectre-style
attack. Spectre allows programs to read the contents of a memory location
without any direct memory load instruction from that location. A WebAssembly
UDO could therefore theoretically read memory outside of the WebAssembly
memory. Since it runs in the main process of the database system, it could read
confidential data that enables further security exploits.

4.5. INTEGRATION INTO THE UDO QUERY COMPILER 97

Side-channel attacks for JIT-compiled programs such as the WebAssembly
UDOs are hard to mitigate. OurWebAssembly translator could add a synchroniz-
ing instruction such as lfence on x86 after every conditional branch to prevent
speculative execution. However, disabling branch prediction significantly re-
duces performance [Koc+19]. So, executing WebAssembly UDOs in Umbra still
leads to potential security vulnerabilities and should therefore be disallowed for
completely untrusted users.

4.5 Integration into the UDO Query

Compiler

We translate WebAssembly programs to Umbra IR to safely execute UDOs in a
compiling database system such as Umbra. Untrusted, potentially unsafe user
code must first be compiled to WebAssembly and can then be translated to
Umbra IR. The translator ensures that the generated Umbra IR program cannot
lead to program crashes or illegal memory accesses. We call all UDOs that use
WebAssembly as an intermediate language WebAssembly UDOs, independent of
the high-level language that the original program is written in.

Conceptually, the user code is first processed by the UDO User Compiler
(see Section 2.2.2) and then integrated into the execution environment of the
database system by the UDO Query Compiler (see Section 2.2.3). Ideally, users
should not need to change their code when it is safely executed using WebAs-
sembly. Thus, the UDO User Compiler for WebAssembly UDOs should also
accept different high-level languages that can be compiled to WebAssembly.
C++ can be compiled to WebAssembly using the Clang compiler, so the UDO
User Compiler can use the exact same API for the user code as described in
Section 2.2.2.

The UDO User Compiler compiles the user code such that it can be processed
by the UDO Query Compiler. As shown in Figure 2.1, the UDO User Compiler
then passes the compiled program to the UDO Query Compiler. In regular
UDOs, the compiled program is usually an object file and in our implementation
also the program compiled to LLVM IR. For WebAssembly UDOs, the UDO User
Compiler creates binary WebAssembly module files, instead. These module files
are entirely self-contained and have no external dependencies. They can contain
one WebAssembly function for each of the UDO functions accept, extraWork
and process and have one function import that represents the emit function.

When a SQL query that contains a call to a WebAssembly UDO is executed,
the UDO Query Compiler uses the WebAssembly translator to generate the
Umbra IR program for the UDO. As for any UDO, the relational operator UDO𝑎

98 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

generates code that calls the UDO functions. For WebAssembly UDOs, the
functions are directly available as Umbra IR functions, so UDO𝑎 which also
needs to generate Umbra IR, can directly create call instructions to the UDO
functions.

4.5.1 Allocation and Initialization of the UDO State

The WebAssembly modules used as WebAssembly UDOs are programs created,
for example, by the Clang compiler that compiles the user code for a C++ UDO
to WebAssembly. Therefore, the UDO Query Compiler for WebAssembly UDOs
must offer the same functionality as the UDO Query Compiler for C++ UDOs. In
particular, in C++ every UDO function is implemented as member function of a
class which means that the state of the UDO is allocated at the beginning of the
query execution and is then passed to the UDO functions as the implicit first
this parameter. Since WebAssembly functions can only access the WebAssembly
memory, the state for a WebAssembly UDO must be allocated inside of the
WebAssembly memory.

To allocate the state of a WebAssembly UDO, the UDO Query Compiler
generates code that semantically executes the WebAssembly instruction mem-
ory.grow. It grows the WebAssembly memory by at least one page which will
eventually be used as the state of the UDO. Growing the memory from code that
does not originate from the WebAssembly program could potentially confuse a
memory allocator implementation in the WebAssembly program as the memory
size changes outside of the control of the allocator. We analyzed several memory
allocators used by WebAssembly modules and saw that, in practice, all memory
allocators handle external modifications of the memory size correctly.

To implement C++ constructors and destructors that initialize and clean
up the UDO state, and similar functions in other programming languages, the
UDO User Compiler for WebAssembly UDOs creates the two functions exports
wasmudo_init and wasmudo_destroy in the generated WebAssembly module. If
either is defined in a WebAssembly module, the UDO Query Compiler generates
code to call them at the beginning or the end of the query execution, respectively.

4.5.2 Passing SQL Values to WebAssembly

As for UDOswritten in C++, as described in Section 2.3.5, it is necessary to convert
SQL values to a format that can be processed by WebAssembly. WebAssembly
supports 32 bit and 64 bit integers natively and they use the same native twos-
complement layout as SQL integers in Umbra IR, so the UDO Query Compiler
can pass SQL integer values directly to the accept function as long as they
are not NULL. Also, floating-point numbers are passed as f64 values to the

4.5. INTEGRATION INTO THE UDO QUERY COMPILER 99

WebAssembly functions. Similarly, integers and floating-point numbers are
passed back from the WebAssembly code to the query engine by taking the
WebAssembly values of types i32, i64, or f64 and using them directly as SQL
values.

4.5.3 String Handling

WebAssembly has no native type for strings butWebAssembly UDOs should also
be able to use SQL attributes of types text or varchar. Also, the WebAssembly
memory is entirely separate from the memory of the query engine, so it is not
possible for a WebAssembly function to use a pointer to data that exists outside
of the WebAssembly module.

Eventually, all string data that aWebAssembly function wants to access must
to be copied to the WebAssembly module. Especially copying larger strings or
binary blobs is expensive, so the UDO Query Compiler should not eagerly copy
all strings that are passed to a WebAssembly UDO.

Instead, our implementation passes strings as values of type externref. Con-
ceptually, these values reference data that is external to the WebAssembly
module, which our UDO Query Compiler uses to reference the string data. To
then access the actual string contents, our UDO User Compiler for WebAssem-
bly UDOs provides the two functions wasmudo_string_length and wasmudo_
extract_string. The function wasmudo_string_length takes an externref as ar-
gument and returns the length of the string. The function wasmudo_extract_
string takes the following arguments: The externref for the string, an offset off,
a WebAssembly address addr, and a size s. The function then copies s bytes
to the memory area starting at addr from the string starting at offset off. The
off and s parameters allow WebAssembly UDOs to only extract parts of input
strings and to read only parts of a string in smaller chunks, if necessary.

When a WebAssembly UDO wants to output a tuple containing a text or
varchar attribute, it must also pass an externref value to the emit function. By
design, no WebAssembly instruction to create externref values exists, so our
UDO User Compiler provides the additional function wasmudo_create_string.
This function takes a WebAssembly address and a size and then creates a string
with the given size by copying the data starting from the given WebAssembly
address. It returns the new string as an externref value which can then be passed
to emit. Our UDO Query Compiler implements this function by copying the
data from the WebAssembly module into the internal string representation used
by Umbra and then creating an externref value that references this internal
string.

Of course, the three functions that access or create strings must ensure
memory safety. The implementation of these functions in our UDO Query

100 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

Compiler ensures that all WebAssembly addresses are valid before it uses them.
Also, the internal strings referenced by externref values are only deallocated
when they are not referenced by any externref anymore. Since there are no
WebAssembly instructions to duplicate externref values or to store them in
memory, an internal string is always only referenced by exactly one externref.
Therefore, it is trivial for the UDO Query Compiler to track the lifetime of an
externref and deallocate internal strings correctly.

4.6 Evaluation

Our goal is to allow compiling query engines to execute untrusted UDOs which
could contain malicious code. Thus, we first compile a UDO to WebAssembly as
an intermediate step, and then translate the generated WebAssembly module
to Umbra IR. To ensure the safety of the execution, the translator must insert
runtime checks into the generated Umbra IR, such as bounds checks that ensure
the memory safety.

We evaluated the impact of the runtime checks by measuring the execution
time of different algorithms executed in Umbra using WebAssembly UDOs. As
a comparison, we test equivalent UDOs written in C++. In fact, since the Clang
compiler can compile C++ to WebAssembly, our benchmarks use the exact same
user code for the WebAssembly and the C++ UDOs. Thus, potential differences
in the execution time of both approaches directly show the overhead caused by
runtime checks inserted by the WebAssembly translator.

In all experiments, we run the WebAssembly UDOs in three different con-
figurations of the WebAssembly translator. The configurations affect how the
WebAssembly translator generates the bounds checks for memory access, which
can be one of “none”, “optimized”, or “full”. When full bounds checks are enabled,
the translator creates one bounds check for every WebAssembly memory in-
struction that it translates to Umbra IR. Conversely, in the “none” configuration,
the translator creates no bounds checks at all. Disabling all bounds checks can
obviously lead to safety violations but allows us to establish a baseline of the
overhead caused by compiling a C++ program to WebAssembly. Finally, when
the bounds checks are optimized, the translator also generates all bounds checks,
to ensure memory safety. We additionally enable the optimizations described in
Section 4.4.3 to reduce the impact of the bounds checks on the execution.

As for our benchmarks for UDOs that do not use WebAssembly, we ran all
our benchmarks on a NUMA machine with two Intel® Xeon® E5-2680 CPUs
with 14 cores and 28 hyper-threads each and 128GiB of DRAM per node. To

4.6. EVALUATION 101

0

10

20

30

0 5 10 15 20

number of tuples (millions)

th
ro
ug

hp
ut

(M
tu
pl
es

/s
)

Bounds Checks: none optimized full

C++ UDO WebAssembly UDO

Figure 4.5: End-to-end throughput of k-Means using a WebAssembly UDO.
The WebAssembly translator adds a significant compilation overhead which
decreases the total throughput.

compile C++ programs to WebAssembly, we used Clang 17 and wasi-sdk 201. We
ran the same algorithms using the same UDOs as presented in Section 2.5.

4.6.1 Complex Iterative Algorithm: k-Means

In our first experiment, we tested the widely-used clustering algorithm k-Means.
As described in Section 2.5.1, our implementation clusters two-dimensional
points from a randomly generated data set with eight clusters and iterates
exactly 10 times over all points. The UDO has no other exit conditions to make
different runs of the benchmark directly comparable.

We ran the benchmark using a C++ UDO that provides no security. We
also compiled the same C++ code to a WebAssembly module and then executed
it as a WebAssembly UDO. Thus, the only difference in the execution of both
approaches is theWebAssembly translator which adds additional runtime checks
to ensure the safety of the execution of the WebAssembly module.

Running a WebAssembly UDO has one significant disadvantage over C++
UDOs; currently, memory addresses in WebAssembly are 32-bit integers, so
a WebAssembly UDO can effectively only use 4GiB of memory. To run a
clustering algorithm such as k-Means, the implementation must scan over the
input data multiple times which means that the entire input must be materialized

1https://github.com/WebAssembly/wasi-sdk/releases/tag/wasi-sdk-20

https://github.com/WebAssembly/wasi-sdk/releases/tag/wasi-sdk-20

102 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

SMT

0

25

50

75

8 16 24 32 40 48 56

number of threads

th
ro
ug

hp
ut

(M
tu
pl
es

/s
)

Bounds Checks: none optimized full

C++ UDO WebAssembly UDO

Figure 4.6: Scalability of runtime throughput of k-Means using a WebAssembly
UDO. The WebAssembly UDO scales similarly to the C++ UDO, and reaches a
comparable throughput when bounds checks are disabled.

and stored. For our implementation, each tuple of the input requires 32B of
memory, so the WebAssembly UDO implementation can process only up to
4GiB
32B = 227 ≈ 134 ⋅ 106 tuples. The real limit before the execution terminates
with an out-of-memory error is even lower. Because of memory fragmentation
and allocation overhead our implementation cannot reliably store more than
20 million tuples.

Figure 4.5 shows the total throughput of running the k-Means algorithm
with both UDO types with up to 20 million tuples. For the largest data set,
even the WebAssembly UDO that has no bounds checks reaches only half the
throughput of the C++ UDO. However, this difference in the throughput is caused
entirely by the additional compilation overhead of the WebAssembly translator;
when running the C++ UDO, Umbra takes approximately 375ms to compile the
query while compiling the WebAssembly UDO takes around 890ms when the
bounds checks are disabled. Executing the query for 20 million tuples has very
similar runtimes for both approaches: 255ms for the C++ UDO and 276ms for
the WebAssembly UDO without bounds checks.

In C++ UDOs, the database system can run the most expensive steps of
the compilation once when executing a create function statement. In Umbra,
the statement then creates an LLVM module file which is cached and can be
used by all queries that contain the UDO. For a WebAssembly UDO, the create
function statement only checks the WebAssembly module for syntactic errors.
The translator then has to translate the WebAssembly module to Umbra IR for
every query. Because Umbra IR is designed specifically for efficient ad-hoc
query compilation, it is not possible to pre-translate a WebAssembly module to

4.6. EVALUATION 103

Umbra IR and then insert the pre-translated IR into another Umbra IR module.
All Umbra IR instructions are stored in a dense array of opcodes which does not
allow to move around instructions or functions after they are generated.

Translating a WebAssembly module to Umbra IR for every query also leads
to significantly more Umbra IR instructions. For C++ UDOs, the UDO Query
Compiler only generates one call instruction for every UDO function. These
call instructions are only replaced by the cached LLVM code in Umbra’s LLVM
compilation backend. In a WebAssembly UDO, the WebAssembly translator
always generates Umbra IR for all WebAssembly instructions which then must
also be translated to LLVM IR instructions. For the k-Means algorithm, using the
WebAssembly UDO results in almost 30.000 Umbra IR instructions when bounds
checks are enabled, and around 22.000 instructions without bounds checks, but
only 1100 instructions for the C++ UDO.

Interestingly, the differences between the throughputs of the different Web-
Assembly configurations as shown in Figure 4.5 are also mostly caused by the
compilation time and not the actual execution time of the query. When a query
contains bounds checks, the resulting LLVM module contains a huge number of
conditional branch instructions. Every memory instruction requires a bounds
check and every bounds check is implemented using a conditional branch in-
struction. Thus, the LLVM module contains one conditional branch for every
WebAssembly memory instruction. When an LLVMmodule contains lots of con-
ditional branches, LLVM’s register allocator and other parts of its compilation
backend take significantly longer to generate machine code. For the k-Means
UDO, translating the WebAssembly module to Umbra IR with bounds checks,
then translating it to LLVM IR, and finally using the LLVM compiler to generate
machine code takes around 1.25 s.

The pure runtime without compilation overhead for both WebAssembly
configurations that use bounds checks are similar: 350ms for the full bounds
checks and 325ms for the optimized bounds checks. The C++ code and the
resulting WebAssembly do not have many memory access patterns that can be
optimized easily. Thus, our optimizer cannot significantly reduce the runtime
overhead of the bounds checks.

The runtime throughputs without compilation overhead are also shown in
Figure 4.6. Wemeasured the throughput of the k-Means UDOs with an input size
of 20 million tuples and different numbers of threads. The plot shows that the
WebAssembly UDO without bounds checks has nearly identical throughput to
the C++ UDO. When only a small number of threads are used, the WebAssembly
UDO without bounds checks can slightly outperform the C++ UDO which has a
higher constant overhead caused by linking the runtime dependencies required
to execute C++ code as described in Section 2.3.5. The WebAssembly UDOs with
bounds checks have a lower throughput but scale similarly when increasing

104 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

0

1

2

3

4

5

0

16

32

48

64

0 10 20 30 40

number of tuples (billions)

th
ro
ug

hp
ut

(B
tu
pl
es

/s
)

throughput(G
iB/s)

Bounds Checks: none optimized full

C++ UDO WebAssembly UDO

Figure 4.7: End-to-end throughput of linear regression using a WebAssembly
UDO. Because theWebAssembly UDO requires significantly more memory loads
than the C++ UDO, it cannot reach the same performance even without bounds
checks.

the number of threads. So, while the bounds checks impact the throughput
negatively, they do not affect the scalability of the query execution. In a bounds
check, the current memory size is loaded using a weakly consistent atomic load
which requires no expensive synchronization between the CPU cores.

4.6.2 Linear Regression

We also tested the performance of an implementation of simple linear regression
with a quadratic target function using the least squares error function. As
described in Section 2.5.2, our UDO implementation for linear regression solves
the following problem: For given pairs of values 𝑥, 𝑦 choose 𝑎, 𝑏, and 𝑐 while
minimizing the error term ∑𝑖(𝑎 + 𝑏𝑥𝑖 + 𝑐𝑥2𝑖 − 𝑦𝑖)2.

The UDO implementation for the linear regression computes partial sums of
the input data and in the end combines the partial sums to calculate the values
for 𝑎, 𝑏, and 𝑐. Every thread only needs to store the partial sums but does not
need to materialize any other state. Since the partial sums require only 64B
of memory per thread and no tuples of the input are stored, the WebAssembly
UDO for this algorithm can process an arbitrary number of input tuples and is
not limited to data sets smaller than the maximum addressable WebAssembly
memory size of 4GiB.

4.6. EVALUATION 105

The C++ code from which the C++ UDO and the WebAssembly UDO are
created contains mostly floating-point operations that calculate the partial sums
and memory load and store operations that load the current value of the partial
sums and update the values. The floating-point operations remain mostly un-
changed when they are translated toWebAssembly, then to Umbra IR, and finally
to LLVM IR, compared to the output of the Clang compiler when it generates
LLVM IR directly from the C++ source code. Thus, when our WebAssembly
translator generates no bounds checks, the WebAssembly UDO should reach a
performance similar to the C++ UDO.

Figure 4.7 shows our measurements for the end-to-end throughput of ex-
ecuting the linear regression as a C++ UDO and as a WebAssembly UDO. For
the larger data sets, the WebAssembly UDO can process up to 48GiB/s of data
when the bounds checks are disabled. However even without bounds checks,
the WebAssembly UDO is significantly slower than the C++ UDO which reaches
a throughput of almost 70GiB/s. The machine code generated by Umbra for
both UDOs is very similar and both use the same x86 instructions to compute
the partial sums. The machine code of these two versions differs only in the
memory operands of the generated instructions and how they are interleaved.

To load the current value of a partial sum, the machine code for the C++
UDO uses the memory operand 0x8(%rax). The register rax contains the base
address of the memory location for the partial sums to which the memory
operand adds the constant offset 8. The WebAssembly UDO on the other hand
uses the memory operand 0x8(%r15,%rsi,1) for the same partial sum. The CPU
calculates the memory address of this operand as %r15+%rsi+0x8. The register
r15 contains the memory address of the start of the WebAssembly memory
and rsi contains the WebAssembly memory address. The additional register
in the memory operand requires at least one additional cycle to compute the
final address which leads to noticeable overhead in the execution, but does not
explain the entire difference in the throughput.

The main reason for the significantly reduced throughput in the WebAssem-
bly UDO are the memory loads in the machine code. The core of the machine
code in both UDO implementations is a loop that iterates over several thousand
tuples of the input and updates the partial sum for every tuple. Our implemen-
tation calculates eight partial sums in total. The machine code for the C++ UDO
contains eight load instructions that load the current values into the registers
xmm0-xmm7, which are the floating-point registers of a x86 CPU. These eight
load instructions are executed before the loop that iterates over the tuples. Inside
the loop, the registers xmm0-xmm7 are updated to calculate the new values for
the partial sums and then written back to memory.

The machine code for the WebAssembly UDO, on the other hand, interleaves
the memory loads and stores. For every partial sum, it first loads the value

106 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

SMT0

1

2

3

4

0

16

32

48

64

8 16 24 32 40 48 56

number of threads

th
ro
ug

hp
ut

(B
tu
pl
es

/s
)

throughput(G
iB/s)

Bounds Checks: none optimized full

C++ UDO WebAssembly UDO

Figure 4.8: Scalability of runtime throughput of linear regression using a Web-
Assembly UDO. Because the WebAssembly UDO uses more memory loads, it
cannot scale as well as the C++ UDO.

from memory into the register xmm0 or xmm1, calculates a new value, and
stores it into memory again. Unfortunately, these interleaved loads and stores
are inside of a loop which means that for every input tuple one iteration of
the loop contains eight memory loads and eight memory stores. The LLVM
optimizer is not able to move the memory operations out of the loop because
it is missing the high-level alias information which is provided by the Clang
compiler when compiling the C++ UDO. Our measurements show that executing
the WebAssembly UDO leads to ten times more memory loads compared to the
C++ UDO.

Naturally, the performance decreases even more when bounds checks are
enabled. Figure 4.7 shows that for the “full” bounds checks, the throughput
of the WebAssembly UDO is reduced to a third of the throughput without
bounds checks. However, for this algorithm, our bounds check optimization can
significantly improve the performance while maintaining the memory safety
properties ofWebAssembly. Because the core of the implementation of the linear
regression consists of several sequential memory access with constant offsets,
our optimizer is able combine all bounds checks for these memory accesses into
one. In total, the optimizer reduces the number of bounds checks by 90%.

We also tested the scalability of theWebAssembly UDOs for linear regression.
Figure 4.8 shows the runtime throughput without compilation overhead when
executing the UDOs on different numbers of threads for the data set with 40 bil-
lion tuples. The measurements show that the WebAssembly UDOs do not scale
as well as the C++ UDO, especially when the bounds checks are not optimized.
As explained above, the WebAssembly UDOs in our implementation require

4.6. EVALUATION 107

0

50

100

0 2.5 5 7.5 10

number of tuples (millions)

th
ro
ug

hp
ut

(M
tu
pl
es
/s
)

Bounds Checks: none optimized full

C++ UDO WebAssembly UDO

Figure 4.9: Runtime throughput of splitting comma-separated values into indi-
vidual tuples using aWebAssembly UDO. Because all strings must be copied into
the WebAssembly memory, the WebAssembly UDO has a significantly lower
throughput than the C++ UDO.

significantly more memory loads which means that the available resources of
the system are exhausted more quickly when adding more threads.

The figure also shows the positive impact of our bounds check optimizer.
Figure 4.8 does not include the compilation overhead which brings the through-
put of the WebAssembly UDO with optimized bounds checks slightly closer
to the UDO without bounds checks. Translating and compiling the UDO with
optimized bounds checks takes more than 2 s but only 1.5 s when the bounds
checks are disabled. The runtime without compilation on all 56 threads is 16.4 s
for the optimized bounds checks and 11.0 s without bounds checks. So, the
difference of 0.5 s in the compilation time still has a small effect on the total
runtime which means that for longer running queries, optimizing the bounds
checks leads to even better total throughput.

4.6.3 Imperative Programming

Our last experiment shows how UDOs can easily express problems that are
formulated using loops in imperative programming languages. We tested a
UDO that takes a string of comma-separated integers, splits the string into the
individual integers and then generates a new tuple for each integer. So, the
UDO generates a variable number of output tuples for every input tuple.

108 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

In Section 2.5.3, we compared the UDO implementation to other approaches
using recursive SQL statements or special unnesting functions supported by
some database systems. The UDO easily outperformed all other approaches
since the query engine could generate an efficient loop only when using the
UDO.

For WebAssembly UDOs, this algorithm poses a different challenge. WebAs-
sembly functions can take integer and floating-point numbers as arguments but
cannot handle strings directly. Instead, our implementation passes strings to the
WebAssembly module as externref values. The WebAssembly module can then
use special functions that operate on the externref values to extract the actual
bytes of the string, as discussed in Section 4.5.3. In any case, all strings passed
to the WebAssembly module must be copied completely into WebAssembly
memory before the WebAssembly UDO can access them.

Figure 4.9 shows the runtime throughput excluding compilation overhead
when executing this algorithm with up to 10 million input tuples. Unfortunately,
even without bounds checks, theWebAssembly UDO is significantly slower than
the C++ UDO. The C++ UDO directly operates on the strings created by the table
scan operator which fetches them from the table they are stored in whereas the
WebAssembly UDO copies every string it receives. Also, the loop that finds all
substrings of the input contains several conditional branches which prevents
our bounds check optimizer from eliminating the most frequent bounds checks.

Still, when the bounds checks are optimized, the WebAssembly UDO is able
to process over 25 million tuples per second. The strings in our generated input
data have an average length of 65B, so the WebAssembly UDO processes more
than 1.5GiB of string data per second. All approaches not using UDOs at all, as
shown in Section 2.5.3, are slower by several orders of magnitude.

4.7 Summary

In this chapter, we presented our WebAssembly translator. The translator
takes WebAssembly modules and generates equivalent Umbra IR instructions
which can then be used directly by the query compilation system of Umbra.
WebAssembly is a stack-based language while Umbra IR is a register-based
language which uses static single assignment (SSA). We translate WebAssembly
instructions directly to Umbra IR instructions by statically analyzing the state
of the WebAssembly stack in a virtual stack. The virtual stack does not contain
actual values but only register names which are then used as operands for the
generated Umbra IR instructions. Our translator also directly generates phi
instructions to efficiently translate WebAssembly control-flow instructions to
SSA.

4.7. SUMMARY 109

We use WebAssembly to safely execute UDOs containing untrusted code.
While translating WebAssembly programs, we insert runtime checks that ensure
the safety of the execution, such as bounds checks for every memory access.
Naturally, these runtime checks cause a noticeable runtime overhead. Since
memory bounds checks frequently occur in sequential patterns, our transla-
tor can often combine multiple bounds checks into one without affecting the
semantics of the program.

Our evaluation shows that WebAssembly UDOs can be used to execute a
large variety of algorithms efficiently and safely. However, the safe execution
comes at a cost; the memory bounds checks add significant runtime overhead,
often leading to a reduction of throughput by more than 50%. Especially when
a UDO handles a large number of strings, the performance decreases by over
80% because all strings must be copied between the query execution system
and the WebAssembly memory. Currently, WebAssembly memory addresses
are 32-bit integers, so it is impossible to run algorithms that need to materialize
their entire input on data sets larger than 4GiB. Nevertheless, WebAssembly
UDOs can still easily outperform alternative approaches that do not use UDOs
by multiple orders of magnitude.

4.7.1 Future Work

The WebAssembly language is under active development. As discussed in Sec-
tion 3.1.7, multi-threaded execution in WebAssembly is being proposed in the
Threads Proposal. Two other new features that could significantly improve the
performance of WebAssembly UDOs are currently being proposed: “Memory64”
and “Multiple Memories”. The Memory64 Proposal2 adds new memory instruc-
tions that can use 64-bit memory addresses. Enabling 64-bit memory addressing
in WebAssembly modules would allow WebAssembly UDOs to materialize in-
puts larger than 4GiB and run complex algorithms on these larger data sets.
The Multiple Memories Proposal3 also modifies the memory instructions by
adding an immediate to each memory instruction for a memory index. This
allows WebAssembly modules to use multiple separate contiguous memories
which can be accessed and grown independently. For WebAssembly UDOs, this
feature could be used to efficiently implement passing string data between the
query execution engine and the WebAssembly module. Instead of relying on
externref values, the UDO Query Compiler could use a dedicated WebAssembly
region that references the memory of the query engine. Then, WebAssembly

2https://github.com/WebAssembly/memory64 (Accessed: 23 June 2023)
3https://github.com/WebAssembly/multi-memory (Accessed: 23 June 2023)

https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/multi-memory

110 CHAPTER 4. TRANSLATING WEBASSEMBLY TO UMBRA IR

programs could directly access string data using regular memory instructions
without costly copying of the string data.

CHAPTER 5
Conclusion

In this thesis, we presented a novel approach to integrate custom algorithms
into modern database systems. User-Defined Operators (UDOs) allow users to
write new algorithms in an imperative programming language such as C++ or
Rust, which are then handled like a relational operator by an existing database
system.

We identified that relational database systems are rarely used for complex
analytical queries in modern data analytics. Other specialized systems offer
better usability to run complex data-mining and machine-learning algorithms.
Also, systems like Spark have easy-to-use programming interfaces that can be
used to extend or customize existing functionality easily. Relational database
systems, on the other hand, must be queried using SQL. Even though SQL
was originally designed several decades ago, it has remained the dominant
query language for database systems. Because SQL is declarative and, therefore,
does not prescribe how a query engine must compute the result of a query,
SQL gives query engines a lot of flexibility in their implementation. Modern
database systems such as our compiling database system Umbra can efficiently
process SQL queries on machines with hundreds of CPU cores and terabytes of
main memory. Unfortunately, because SQL is declarative, writing imperative
algorithms in SQL is not easily possible. Theoretically, SQL with recursive CTEs
is turing-complete, i.e., any imperative algorithm can also be formulated in SQL.
However, manually writing recursive CTEs is tedious, and database systems
cannot execute them as fast as imperative code.

Running analytics in a relational database system still has several advantages.
Critical business data is usually stored in a relational database system and then
exported to be analyzed in other systems. Naturally, exporting and importing
data leads to more overhead in data analytics. Also, relational database systems

112 CHAPTER 5. CONCLUSION

offer strong transactional guarantees, which are lost when data is extracted from
the system.

To enable easy-to-use data analytics in relational database systems, UDOs
have a simple API that can be implemented in any imperative programming
language. The API allows user code to interact with the database system by
receiving tuples as inputs and generating tuples as output. Thus, User-Defined
Operators act like any other relational operator in the database system, such as
selections, aggregations, or joins, and can easily be combined with them. We
demonstrated that UDOs can also be implemented in other database systems
like Postgres. UDOs perform best when running in Umbra, where the user code
can be inlined directly into the code generated by the query engine for other
relational operators.

When the database system executes arbitrary code that could be malicious
alongside code generated by native relational operators, the boundary between
trusted and untrusted code is blurred. To execute UDOs safely, we introduced
WebAssembly UDOs, which first compile the user code to WebAssembly as an
intermediate step. WebAssembly is a low-level language initially designed to
safely execute arbitrary code in web browsers. The language guarantees that all
potential safety issues, such as invalid memory accesses, lead to a termination
of the execution. We introduce a WebAssembly translator, which can translate
WebAssembly programs to Umbra IR, the low-level language used internally by
Umbra’s compiling query engine. The translator generates code ensuring that
all WebAssembly language safety guarantees are maintained.

Our evaluations showed that UDOs in Umbra can easily outperform special-
ized data analytics systems. Umbra employs code generation and morsel-driven
parallelism to achieve excellent performance on modern hardware. When UDOs
are executed in Umbra, they benefit from Umbra’s fast query execution and
achieve comparable throughputs to native code-generating operators. Using
WebAssembly UDOs to ensure the safe execution of untrusted user code leads to
significant runtime overhead. The throughput of WebAssembly UDOs is often
reduced by 50% due to the runtime checks introduced by our WebAssembly
translator. Nevertheless, WebAssembly UDOs outperform other data analytics
systems by several orders of magnitude.

Bibliography

[19] “IEEE Standard for Floating-Point Arithmetic.” In: IEEE Std
754-2019 (Revision of IEEE 754-2008) (2019), pp. 1–84. doi:
10.1109/IEEESTD.2019.8766229.

[22a] PL/pgSQL – SQL Procedural Language. 2022. url:
https://www.postgresql.org/docs/14/plpgsql.html.

[22b] Rust Programming Language. 2022. url:
https://www.rust-lang.org/.

[22c] Transact-SQL Reference. 2022. url:
https://docs.microsoft.com/en-us/sql/t-sql/language-

reference.

[Aba+16] Martín Abadi et al. “TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems.” In: CoRR abs/1603.04467
(2016).

[AK09] Yanif Ahmad and Christoph Koch. “DBToaster: A SQL Compiler
for High-Performance Delta Processing in Main-Memory
Databases.” In: Proc. VLDB Endow. 2.2 (2009), pp. 1566–1569.

[All70] Frances E. Allen. “Control flow analysis.” In: Symposium on
Compiler Optimization. ACM, 1970, pp. 1–19.

[BGN21] Maximilian Bandle, Jana Giceva, and Thomas Neumann. “To
Partition, or Not to Partition, That is the Join Question in a Real
System.” In: SIGMOD Conference. ACM, 2021, pp. 168–180.

[Böt+20] Jan Böttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and
Alfons Kemper. “Scalable and robust latches for database systems.”
In: DaMoN. ACM, 2020, 2:1–2:8.

[BRN20] Altan Birler, Bernhard Radke, and Thomas Neumann. “Concurrent
online sampling for all, for free.” In: DaMoN. ACM, 2020, 5:1–5:8.

[BZN05] Peter A. Boncz, Marcin Zukowski, and Niels Nes. “MonetDB/X100:
Hyper-Pipelining Query Execution.” In: CIDR. www.cidrdb.org,
2005, pp. 225–237.

https://doi.org/10.1109/IEEESTD.2019.8766229
https://www.postgresql.org/docs/14/plpgsql.html
https://www.rust-lang.org/
https://docs.microsoft.com/en-us/sql/t-sql/language-reference
https://docs.microsoft.com/en-us/sql/t-sql/language-reference

114 BIBLIOGRAPHY

[Car+86] Michael J. Carey, David J. DeWitt, Daniel Frank, Goetz Graefe,
M. Muralikrishna, Joel E. Richardson, and Eugene J. Shekita. “The
Architecture of the EXODUS Extensible DBMS.” In: OODBS. IEEE
Computer Society, 1986, pp. 52–65.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A
Structured English Query Language.” In: SIGMOD Workshop, Vol. 1.
ACM, 1974, pp. 249–264.

[CH90] Michael J. Carey and Laura M. Haas. “Extensible Database
Management Systems.” In: SIGMOD Rec. 19.4 (1990), pp. 54–60.

[Cha96] Donald D. Chamberlin. Using the New DB2: IBM’s Object-Relational
Database System. Morgan Kaufmann, 1996.

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data
Banks.” In: Commun. ACM 13.6 (1970), pp. 377–387.

[Coh87] Fred Cohen. “Computer viruses: Theory and experiments.” In:
Comput. Secur. 6.1 (1987), pp. 22–35.

[Cro+15] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska,
Carsten Binnig, Ugur Çetintemel, and Stan Zdonik. “An
Architecture for Compiling UDF-centric Workflows.” In: Proc.
VLDB Endow. 8.12 (2015), pp. 1466–1477.

[Cyt+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. “Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph.” In: ACM
Trans. Program. Lang. Syst. 13.4 (1991), pp. 451–490.

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data
processing on large clusters.” In: Commun. ACM 51.1 (2008),
pp. 107–113.

[DHG20] Christian Duta, Denis Hirn, and Torsten Grust. “Compiling
PL/SQL Away.” In: CIDR. www.cidrdb.org, 2020.

[DLN19] Dominik Durner, Viktor Leis, and Thomas Neumann.
“Experimental Study of Memory Allocation for High-Performance
Query Processing.” In: ADMS@VLDB. 2019, pp. 1–9.

[DLN21] Dominik Durner, Viktor Leis, and Thomas Neumann. “JSON Tiles:
Fast Analytics on Semi-Structured Data.” In: SIGMOD Conference.
ACM, 2021, pp. 445–458.

[FN19] Michael J. Freitag and Thomas Neumann. “Every Row Counts:
Combining Sketches and Sampling for Accurate Group-By Result
Estimates.” In: CIDR. www.cidrdb.org, 2019.

BIBLIOGRAPHY 115

[FN21] Philipp Fent and Thomas Neumann. “A Practical Approach to
Groupjoin and Nested Aggregates.” In: Proc. VLDB Endow. 14.11
(2021), pp. 2383–2396.

[FPC09] Eric Friedman, Peter M. Pawlowski, and John Cieslewicz.
“SQL/MapReduce: A practical approach to self-describing,
polymorphic, and parallelizable user-defined functions.” In: Proc.
VLDB Endow. 2.2 (2009), pp. 1402–1413.

[Fre+20] Michael J. Freitag, Maximilian Bandle, Tobias Schmidt,
Alfons Kemper, and Thomas Neumann. “Adopting Worst-Case
Optimal Joins in Relational Database Systems.” In: Proc. VLDB
Endow. 13.11 (2020), pp. 1891–1904.

[GR21] Surabhi Gupta and Karthik Ramachandra. “Procedural Extensions
of SQL: Understanding their usage in the wild.” In: Proc. VLDB
Endow. 14.8 (2021), pp. 1378–1391.

[Gra94] Goetz Graefe. “Volcano - An Extensible and Parallel Query
Evaluation System.” In: IEEE Trans. Knowl. Data Eng. 6.1 (1994),
pp. 120–135.

[Gre+05] David Gregg, Andrew Beatty, Kevin Casey, Brian Davis, and
Andy Nisbet. “The case for virtual register machines.” In: Sci.
Comput. Program. 57.3 (2005), pp. 319–338.

[HG21] Denis Hirn and Torsten Grust. “One WITH RECURSIVE is Worth
Many GOTOs.” In: SIGMOD Conference. ACM, 2021, pp. 723–735.

[HJ84] Donald J. Haderle and Robert D. Jackson. “IBM Database 2
Overview.” In: IBM Syst. J. 23.2 (1984), pp. 112–125.

[HR83] Theo Härder and Andreas Reuter. “Principles of
Transaction-Oriented Database Recovery.” In: ACM Comput. Surv.
15.4 (1983), pp. 287–317.

[Ker+18] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann,
Andrew Pavlo, and Peter A. Boncz. “Everything You Always
Wanted to Know About Compiled and Vectorized Queries But
Were Afraid to Ask.” In: Proc. VLDB Endow. 11.13 (2018),
pp. 2209–2222.

[KLN18] André Kohn, Viktor Leis, and Thomas Neumann. “Adaptive
Execution of Compiled Queries.” In: ICDE. IEEE Computer Society,
2018, pp. 197–208.

[KLN21a] Timo Kersten, Viktor Leis, and Thomas Neumann. “Tidy Tuples
and Flying Start: fast compilation and fast execution of relational
queries in Umbra.” In: VLDB J. 30.5 (2021), pp. 883–905.

116 BIBLIOGRAPHY

[KLN21b] André Kohn, Viktor Leis, and Thomas Neumann. “Building
Advanced SQL Analytics From Low-Level Plan Operators.” In:
SIGMOD Conference. ACM, 2021, pp. 1001–1013.

[Koc+19] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative
Execution.” In: IEEE Symposium on Security and Privacy. IEEE,
2019, pp. 1–19.

[LA04] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation.” In:
CGO. IEEE Computer Society, 2004, pp. 75–88.

[Lei+14] Viktor Leis, Peter A. Boncz, Alfons Kemper, and
Thomas Neumann. “Morsel-driven parallelism: a NUMA-aware
query evaluation framework for the many-core age.” In: SIGMOD
Conference. ACM, 2014, pp. 743–754.

[Lor74] Raymond A. Lorie. “XRM - An Extended (N-ary) Relational
Memory.” In: Research Report / G / IBM / Cambridge Scientific
Center G320-2096 (1974).

[Mén+21] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and
Valerio Schiavoni. “Twine: An Embedded Trusted Runtime for
WebAssembly.” In: ICDE. IEEE, 2021, pp. 205–216.

[Mur+13] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. “Naiad: a timely
dataflow system.” In: SOSP. ACM, 2013, pp. 439–455.

[Mur+16] Derek Gordon Murray, Frank McSherry, Michael Isard,
Rebecca Isaacs, Paul Barham, and Martín Abadi. “Incremental,
iterative data processing with timely dataflow.” In: Commun. ACM
59.10 (2016), pp. 75–83.

[Neu11] Thomas Neumann. “Efficiently Compiling Efficient Query Plans
for Modern Hardware.” In: Proc. VLDB Endow. 4.9 (2011),
pp. 539–550.

[NF20] Thomas Neumann and Michael J. Freitag. “Umbra: A Disk-Based
System with In-Memory Performance.” In: CIDR. www.cidrdb.org,
2020.

[NK15] Thomas Neumann and Alfons Kemper. “Unnesting Arbitrary
Queries.” In: BTW. Vol. P-241. LNI. GI, 2015, pp. 383–402.

[NR18] Thomas Neumann and Bernhard Radke. “Adaptive Optimization
of Very Large Join Queries.” In: SIGMOD Conference. ACM, 2018,
pp. 677–692.

BIBLIOGRAPHY 117

[Pal+18] Shoumik Palkar et al. “Evaluating End-to-End Optimization for
Data Analytics Applications in Weld.” In: Proc. VLDB Endow. 11.9
(2018), pp. 1002–1015.

[Pas+17] Linnea Passing, Manuel Then, Nina Hubig, Harald Lang,
Michael Schreier, Stephan Günnemann, Alfons Kemper, and
Thomas Neumann. “SQL- and Operator-centric Data Analytics in
Relational Main-Memory Databases.” In: EDBT.
OpenProceedings.org, 2017, pp. 84–95.

[Prö+21] Magdalena Pröbstl, Philipp Fent, Maximilian E. Schüle,
Moritz Sichert, Thomas Neumann, and Alfons Kemper. “One
Buffer Manager to Rule Them All: Using Distributed Memory with
Cache Coherence over RDMA.” In: ADMS@VLDB. 2021, pp. 17–26.

[RM19] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable
Analytical Database.” In: SIGMOD Conference. ACM, 2019,
pp. 1981–1984.

[RN22] Maximilian Reif and Thomas Neumann. “A Scalable and Generic
Approach to Range Joins.” In: Proc. VLDB Endow. 15.11 (2022),
pp. 3018–3030.

[Ros+18] Andreas Rossberg, Ben L. Titzer, Andreas Haas, Derek L. Schuff,
Dan Gohman, Luke Wagner, Alon Zakai, J. F. Bastien, and
Michael Holman. “Bringing the web up to speed with
WebAssembly.” In: Commun. ACM 61.12 (2018), pp. 107–115.

[Ros22] Andreas Rossberg. WebAssembly Core Specification. W3C Working
Draft. https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/.
W3C, Apr. 2022.

[RSN22] Maximilian Rieger, Moritz Sichert, and Thomas Neumann.
“Integrating Deep Learning Frameworks into Main-Memory
Databases.” In: 4th International Workshop on Applied AI for
Database Systems and Applications. 2022.

[Sch+20] Maximilian E. Schüle, Jakob Huber, Alfons Kemper, and
Thomas Neumann. “Freedom for the SQL-Lambda:
Just-in-Time-Compiling User-Injected Functions in PostgreSQL.”
In: SSDBM. ACM, 2020, 6:1–6:12.

[Sch+86] Peter M. Schwarz, Walter Chang, Johann Christoph Freytag,
Guy M. Lohman, John McPherson, C. Mohan, and Hamid Pirahesh.
“Extensibility in the Starburst Database System.” In: OODBS. IEEE
Computer Society, 1986, pp. 85–92.

118 BIBLIOGRAPHY

[Shi+08] Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. “Virtual
machine showdown: Stack versus registers.” In: ACM Trans. Archit.
Code Optim. 4.4 (2008), 2:1–2:36.

[SL05] Herb Sutter and James R. Larus. “Software and the concurrency
revolution.” In: ACM Queue 3.7 (2005), pp. 54–62.

[SM21] Benedikt Spies and Markus Mock. “An Evaluation of WebAssembly
in Non-Web Environments.” In: CLEI. IEEE, 2021, pp. 1–10.

[SN22] Moritz Sichert and Thomas Neumann. “User-Defined Operators:
Efficiently Integrating Custom Algorithms into Modern
Databases.” In: Proc. VLDB Endow. 15.5 (2022), pp. 1119–1131.

[SR86] Michael Stonebraker and Lawrence A. Rowe. “The Design of
Postgres.” In: SIGMOD Conference. ACM Press, 1986, pp. 340–355.

[TW17] Thomas N. Theis and H.-S. Philip Wong. “The End of Moore’s Law:
A New Beginning for Information Technology.” In: Comput. Sci.
Eng. 19.2 (2017), pp. 41–50.

[Win+20] Christian Winter, Tobias Schmidt, Thomas Neumann, and
Alfons Kemper. “Meet Me Halfway: Split Maintenance of
Continuous Views.” In: Proc. VLDB Endow. 13.11 (2020),
pp. 2620–2633.

[Win+22] Christian Winter, Jana Giceva, Thomas Neumann, and
Alfons Kemper. “On-Demand State Separation for Cloud Data
Warehousing.” In: Proc. VLDB Endow. 15.11 (2022), pp. 2966–2979.

[Win+23] Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann,
and Alfons Kemper. “Communication-Optimal Parallel Reservoir
Sampling.” In: BTW. Vol. P-331. LNI. Gesellschaft für Informatik
e.V., 2023, pp. 567–578.

[WKN21] Benjamin Wagner, André Kohn, and Thomas Neumann.
“Self-Tuning Query Scheduling for Analytical Workloads.” In:
SIGMOD Conference. ACM, 2021, pp. 1879–1891.

[WRP19] Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod.
“Weakening WebAssembly.” In: Proc. ACM Program. Lang.
3.OOPSLA (2019), 133:1–133:28.

[Yin+21] Lujia Yin, Yiming Zhang, Zhaoning Zhang, Yuxing Peng, and
Peng Zhao. “ParaX: Boosting Deep Learning for Big Data
Analytics on Many-Core CPUs.” In: Proc. VLDB Endow. 14.6 (2021),
pp. 864–877.

BIBLIOGRAPHY 119

[Zah+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker,
and Ion Stoica. “Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing.” In: NSDI. USENIX
Association, 2012, pp. 15–28.

[Zha+21a] Wangda Zhang, Junyoung Kim, Kenneth A. Ross, Eric Sedlar, and
Lukas Stadler. “Adaptive Code Generation for Data-Intensive
Analytics.” In: Proc. VLDB Endow. 14.6 (2021), pp. 929–942.

[Zha+21b] Yuhao Zhang, Frank Mcquillan, Nandish Jayaram, Nikhil Kak,
Ekta Khanna, Orhan Kislal, Domino Valdano, and Arun Kumar.
“Distributed Deep Learning on Data Systems: A Comparative
Analysis of Approaches.” In: Proc. VLDB Endow. 14.10 (2021),
pp. 1769–1782.

[Zou+21] Jia Zou, Amitabh Das, Pratik Barhate, Arun Iyengar,
Binhang Yuan, Dimitrije Jankov, and Chris Jermaine. “Lachesis:
Automated Partitioning for UDF-Centric Analytics.” In: Proc. VLDB
Endow. 14.8 (2021), pp. 1262–1275.

[ZWB12] Marcin Zukowski, Mark van de Wiel, and Peter A. Boncz.
“Vectorwise: A Vectorized Analytical DBMS.” In: ICDE. IEEE
Computer Society, 2012, pp. 1349–1350.

	Acknowledgments
	Preface
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Modern Relational Database Management Systems
	Data Analytics in Database Systems
	Extensible Database Systems
	Challenges and Contributions

	User-Defined Operators
	Related Work
	The User-Defined Operator
	Overview
	The UDO User Compiler
	The UDO Query Compiler

	User-Defined Operators in Code-generating Query Engines
	UDO User Compiler
	UDO Query Compiler
	UDO Function Inlining
	Parallel Execution
	Implementation Considerations

	User-Defined Operators in the Iterator Model
	UDO User Compiler
	UDO Query Compiler

	Evaluation
	Complex Iterative Algorithm: k-Means
	Linear Regression
	Imperative Programming
	Data Generation

	Summary

	Safe Execution of UDOs with WebAssembly
	The WebAssembly Language
	WebAssembly Modules
	WebAssembly Memory
	WebAssembly Stack
	WebAssembly Types and Values
	WebAssembly Instructions
	Safety
	Multi-Threading in WebAssembly

	WebAssembly in Compiling Database Systems
	Related Work

	Translating WebAssembly to Umbra IR
	Translation to SSA with a Virtual Stack
	Translation of Structured Control Flow
	Translation of if/else Blocks
	Translation of Branch Instructions
	Translation of Loops
	Unreachable Blocks

	Parallel Execution
	Safety
	Safety of Numeric Instructions
	Memory Safety
	Optimization of Bounds Checks
	Resource Exhaustion
	Open Safety and Security Issues

	Integration into the UDO Query Compiler
	Allocation and Initialization of the UDO State
	Passing SQL Values to WebAssembly
	String Handling

	Evaluation
	Complex Iterative Algorithm: k-Means
	Linear Regression
	Imperative Programming

	Summary
	Future Work

	Conclusion
	Bibliography

