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Abstract—It is crucial for automated vehicles to explicitly
comply with specifications, including traffic rules, to ensure their
safe and effective participation in road traffic. Such compliance
is also essential for vehicle manufacturers to avoid liability claims
in the event of accidents. We propose a novel approach address-
ing the problem of specification-compliant motion planning for
automated vehicles. Our approach couples set-based reachabil-
ity analysis with automata-based model checking and outputs
specification-compliant driving corridors. These driving corridors
serve as motion planning constraints and expedite the generation
of trajectories complying with specifications expressed in metric
temporal logic. In contrast to existing works, our approach
efficiently and exhaustively verifies all driving corridors of an
automated vehicle, leveraging mature model checking techniques.
We demonstrate the applicability, effectiveness, and efficiency
of our approach using various specifications on scenarios from
the CommonRoad benchmark suite. Moreover, we benchmark
the performance of our prototype against multiple scenarios,
indicating that our approach is real-time capable.

Index Terms—automated vehicles, motion planning, traffic
rules, temporal logic, reachability analysis, model checking.

I. INTRODUCTION

AUTOMATED vehicles are expected to explicitly comply
with traffic rules to safely and effectively participate in

mixed road traffic, where both automated and human-driven
vehicles coexist. In addition, automated vehicle manufacturers
bear the responsibility to certify such compliance and by this
avoid liability claims in the event of accidents. Despite the
importance of this matter, most previous studies on motion
planning of automated vehicles reported in recent surveys [1]–
[4] either entirely disregard traffic rules or only consider a
limited fraction of them. This is due to the sheer difficulty of
formalizing traffic rules in a machine-interpretable way and
their integration into motion planners. In this article, the term
specifications refers to traffic rules and other requirements
formalized in temporal logic to which vehicles must adhere.
Examples of such formalizations can be found in [5]–[9].

Generating drivable trajectories for vehicles complying with
specifications involves reasoning with both their continuous
and discrete states. The former typically contains the position,
velocity, and orientation of a vehicle; examples of the latter
are the operation mode of the vehicle and its logical relation
to other traffic participants. Computational challenges arise
in generating such trajectories due to factors such as vehicle
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dynamics, considered specifications (including collision avoid-
ance), and the interdependence of planned trajectories and
constraints originating from the specifications [10]. Per recent
surveys [1]–[4], no approach exists that plans specification-
compliant motions in continuous state space: Classical motion
planners generate collision-free and dynamically feasible tra-
jectories but cannot guarantee specification compliance; Also,
planning in a discretized state space may output discrete
plans that satisfy the specifications but disregard drivability
constraints or lead to collisions.

We propose a novel and efficient approach addressing
the problem of specification-compliant motion planning for
automated vehicles using set-based reachability analysis and
automata-based model checking. Reachability analysis is a
technique for determining the set of states reachable by a
system over time (henceforth referred to as reachable set),
starting from a set of initial states. Computing the reachable
sets of a vehicle in an over-approximative fashion enables
the exploration of its continuous state space and the identi-
fication of all its collision-free driving corridors [11]–[13]. A
driving corridor represents a timed sequence of position and
velocity bounds that can be utilized by motion planners to
significantly reduce the planning space, especially in situations
with a narrow solution space [12]–[14]. Model checking is a
formal verification technique that verifies desired behavioral
specifications on a suitable model of a given system through
systematic inspection of all states of the model. By cou-
pling reachability analysis with model checking, we efficiently
identify all driving corridors of automated vehicles that are
both collision-free and compliant with enforced specifications.
Applying constraints extracted from such driving corridors
to motion planners expedites the generation of trajectories
complying with enforced specifications.

A. Related Work

We categorize existing works on specification-compliant
motion planning based on when specifications are considered:

1) Considering Compliance After Motion Planning: Run-
time verification, also known as monitoring, refers to checking
whether an execution of a system meets the expected behav-
iors. For instance, a monitor for examining the compliance
of vehicles with safe distance rules and overtaking rules is
presented in [9]. While the monitoring is often efficient,
monitors typically only return a robustness degree (the extent
of satisfaction of specifications) or a verdict (true or false) on
whether the specifications have been satisfied. No alternative
trajectory is returned if a trajectory is deemed inferior or
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rejected by a monitor. This generally leads to replanning and
verifying many trajectories for more complex specifications
before finding a specification-compliant solution.

Instead of examining individual trajectories, it is also pos-
sible to verify infinitely many trajectories at once: The work
in [15] describes a method for model checking reachable sets
of continuous and hybrid systems against signal temporal
logic [16] specifications. As with monitoring, it only returns a
verdict (possibly with counterexamples in case of violation),
which has limited usage for our motion planning application.

2) Considering Compliance During Motion Planning: Ex-
isting efforts in this category can be roughly divided into three
groups: multilayered approaches, approaches based on mixed-
integer linear programming (MILP), and approaches based on
rapidly exploring random trees (RRTs) [17]. Multilayered ap-
proaches [18]–[27] commonly handle specification-compliant
motion planning problems using a high-level discrete planning
layer and a low-level trajectory planning layer. The discrete
planning layer relies on discrete abstractions of the system of
interest and generates plans satisfying the specifications, which
guide the trajectory planning process at a later stage. The
discrete plans are generated based on, among others, automata
theory [20], [22]–[25], [27], satisfiability modulo theory [18],
[21], and monitors [19]. For instance, article [24] adopts
timed automata to generate timed paths that satisfy metric
temporal logic (MTL) [28] specifications for indoor robot
navigation; the work in [21] introduces a satisfiability modulo
convex programming framework that handles both convex
constraints over continuous states and Boolean constraints over
discrete states for cyber-physical systems; in [19], the authors
obtain high-level driving maneuvers of automated vehicles that
respect traffic rules in linear temporal logic (LTL) [29] via
monitoring. In most cases, the dynamic constraints of the
system are not considered in the discrete plans; thus, the
drivability of the plans is often not ensured. Consequently,
frequent replanning in both the discrete and trajectory planning
layers can be expected, especially in complex and highly
dynamic environments.

The basic idea of MILP-based approaches is to cast tempo-
ral logic specifications as mixed-integer linear constraints. Af-
ter introducing system dynamic constraints, a solver generates
a specification-compliant trajectory while optimizing certain
cost functions. MILP problems are NP-hard in nature [30,
Ch. 11], and the constraints mentioned above bring about
auxiliary decision variables that exponentially increase the
complexity and solution time of the optimization problem
(e.g., see [31]–[35]). This is often a limiting factor for ap-
plications with high real-time requirements such as motion
planning of automated vehicles.

RRT-based approaches typically generate specification-
compliant trajectories in an incremental manner. The works
in [22], [36]–[40] build on the RRT* algorithm [41], which
is an asymptotically optimal variant of the well-known RRT
algorithm. The growth of the tree is steered or pruned, e.g., us-
ing automata [22], [36], [38], [40] or robustness degrees [37],
[39] of the specifications. Given enough time and iterations,
a trajectory respecting the system dynamics and specifications
can be found. While RRT-based methods provide fast solutions

to specific problems, they are not well-suited for safety-critical
applications due to their inherent characteristic known as prob-
abilistic completeness [17], [41]. Moreover, the performance
of RRT-based methods typically degrades in situations with a
narrow solution space [42].

B. Contributions

Our approach provides the following contributions:
• Extension of [43] by integrating temporal logic specifi-

cations (including interstate and intersection traffic rules)
into the reachability analysis of automated vehicles.

• Coupling reachability analysis with model checking
for identifying collision-free and specification-compliant
driving corridors. Such corridors expedite the generation
of specification-compliant trajectories for motion plan-
ners that accept position and velocity constraints.

• Generation of a product graph from which the optimal
driving corridor can be determined using arbitrary utility
functions in a separate stage.

Our approach has the following properties:
• In contrast to conventional motion planners, our reach-

able set computation requires less time in more critical
scenarios: The computation can be performed the faster,
the smaller the solution space is, which is often the case
in critical scenarios.

• Efficient and exhaustive verification of all driving corri-
dors of an automated vehicle against considered specifi-
cations, owing to mature model checking techniques.

• Detection of conflicting or non-satisfiable specifications
before motion planning.

• Applicability in traffic scenarios involving static and
dynamic obstacles of arbitrary shapes.

• The total computation time requires only a fraction of the
planning horizon.

The remainder of this article is organized as follows: After
presenting the preliminaries and problem statement in Sec. II,
we describe our methodology in Sec. III. The implementation
of our reachability analysis is detailed in Sec. IV, followed by
the evaluation of predicates and the rewriting of specifications
in Sec. V and Sec. VI, respectively. In Sec. VII, we elaborate
on the identification of specification-compliant driving corri-
dors. Our approach is evaluated in Sec. VIII and we finish
with conclusions in Sec. IX.

II. PRELIMINARIES AND PROBLEM STATEMENT

After introducing the necessary preliminaries, including the
general setup, temporal logics to formalize our specifications,
set-based reachability analysis, automata-based model check-
ing, and driving corridors, we present the problem statement.

A. General Setup

The vehicle for which trajectories should be planned is
referred to as the ego vehicle. The road network consists of
lanelets [44], each modeled with polylines representing its left
and right boundaries. We assume a high-level route planner is
available that plans a route through the road network, whose
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centerline is considered as the reference path Γ : R → R2.
A local curvilinear coordinate system F L of the ego vehicle
is constructed from the reference path as described in [44],
within which (s, d) describes the longitudinal coordinate s
along the reference path and the lateral coordinate d orthogonal
to Γ(s). The adoption of F L facilitates the formulation of
maneuvers from the perspective of the ego vehicle, such as
following a lane and stopping before a stop line. We denote
by k ∈ N0 a step corresponding to time tk = k∆t, with
∆t ∈ R+ being a predefined time increment. Motions of the
ego vehicle are planned up to the planning horizon kh ∈ N,
whose dynamics is

xk+1 = f(xk,uk), (1)

where xk ∈ Xk ⊂ Rnx represents the state of the ego vehicle
in the state space Xk, uk ∈ Uk ⊂ Rnu represents an input
in the input space Uk. A possible input trajectory over time
is denoted by U . We also denote by τk the valuation of the
ego vehicle with state xk over atomic propositions AP (see
Sec. II-B), each of which indicates a logical relation between
the ego vehicle and entities in an environment model such as
lanes and obstacles (later detailed in Sec. V).

B. Temporal Logics

Specifications considered in this work are expressed in MTL
with past over finite traces (MTLpf ) [28], [45]. MTLpf shares
the same syntax with MTL and is interpreted over traces of
finite length. We settle on MTLpf since (a) it is expressive
enough to formulate traffic rules with timing constraints, e.g.,
see [5]–[7], and (b) traces in our system have finite length.

1) Metric Temporal Logic with Past over Finite Traces:
An MTLpf formula ϕM over atomic propositions AP has the
following syntax given in Backus-Naur form [28], [45]:

ϕM ::= σ | ¬ϕM |ϕM
1 ∧ ϕM

2, |XIϕ
M |ϕM

1UIϕ
M
2 |YIϕ

M |ϕM
1SIϕ

M
2,

where σ ∈ AP is an atomic proposition, ¬ (Not) and ∧ (And)
are Boolean connectives, X (neXt) and U (Until) are future-
time connectives, Y (Yesterday) and S (Since) are past-time
connectives, and I = [a, b] is a bounded interval. Without loss
of generality, we assume a, b ∈ N0. We also use the following
common abbreviations [28]:
• Contradiction: ⊥ ≡ ϕM ∧ ¬ϕM,
• Tautology: > ≡ ¬⊥,
• Or: ϕM

1 ∨ ϕM
2 ≡ ¬(¬ϕM

1 ∧ ¬ϕM
2),

• Implication: ϕM
1 ⇒ ϕM

2 ≡ ¬ϕM
1 ∨ ϕM

2,
• Future: FIϕ

M ≡ >UIϕ
M,

• Globally: GIϕ
M ≡ ¬FI¬ϕM,

• Once: OIϕ
M ≡ >SIϕ

M,
• Historically: HIϕ

M ≡ ¬OI¬ϕM.
MTLpf over the point-wise semantics [46] is interpreted

over timed traces, which can be thought of as sequences of
events with timestamps. Given is a trace τ := (τ0, . . . , τk, . . . )
with length |τ |, where τk : AP → {true, false} denotes a
valuation over AP , i.e., an assignment of true or false to
every atomic proposition σ ∈ AP , at step k. The notation
(τ, k) |= ϕM indicates that ϕM holds in the k-th valuation of

τ , i.e., τk. We simplify the semantics of MTLpf in [28], [45]
since valuations τk are synchronized with steps k:
• (τ, k) |= σ if and only if (iff) τk(σ) = true,
• (τ, k) |= ¬ϕM iff (τ, k) 6|= ϕM,
• (τ, k) |= ϕM

1 ∧ ϕM
2 iff (τ, k) |= ϕM

1 and (τ, k) |= ϕM
2,

• (τ, k) |= XIϕ
M iff k < |τ |−1, 1 ∈ I , and (τ, k+1) |= ϕM,

• (τ, k) |= YIϕ
M iff k > 0, 1 ∈ I , and (τ, k − 1) |= ϕM,

• (τ, k) |= ϕM
1UIϕ

M
2 iff ∃l, k ≤ l ≤ |τ | − 1: (τ, l) |= ϕM

2,
l − k ∈ I , and ∀m, k ≤ m < l: (τ,m) |= ϕM

1,
• (τ, k) |= ϕM

1SϕM
2 iff ∃l, 0 ≤ l ≤ k: (τ, l) |= ϕM

2, k − l ∈ I ,
and ∀m, l < m ≤ k: (τ,m) |= ϕM

1.
As examples, formulas X[2,3]ϕ

M and ϕM
1U[1,4]ϕ

M
2 can be re-

spectively read as “next valuation occurs within 2 and 3 steps
(from now), in which ϕM holds” and “within 1 and 4 steps,
a valuation occurs in which ϕM

2 holds, and ϕM
1 holds for all

valuations before that”. The past-time connectives Y, S, O,
and H mirror their future-time counterparts X, U, F, and G,
respectively, backward in time.

2) Linear Temporal Logic (with Past over Finite Traces):
Since τk are synchronized with k, we do not require the full
expressiveness of MTLpf for model checking our system. We
interpret MTLpf formulas as LTL with past over finite traces
(LTLpf ) [47] and further convert them into LTL over infinite
traces for model checking. This reduces the complexity of
model checking from EXPSPACE-complete for MTLpf [48]
to PSPACE-complete for LTL [49]. Moreover, this allows us
to employ mature and efficient LTL model checkers such as
Spot [50]. MTLpf is syntactically reduced to LTLpf by drop-
ping intervals I over the temporal connectives [47]; further
dropping past-time connectives results in standard LTL [29].
We respectively denote by ϕL, ϕ, and F an LTLpf formula,
an LTL formula, and the set of formulas converted into LTL.

C. Set-based Reachability Analysis

Next, we define one-step reachable sets and drivable areas
of the ego vehicle.

Definition 1 (Occupancy). The operator occ(·) returns the
occupied positions within F L. For example, occ(xk) returns
the occupancy of the ego vehicle with state xk.

Definition 2 (Set of forbidden states). Let Ok ⊂ R2 be the set
of positions occupied by all obstacles at step k and the space
outside the road. The set of forbidden states of the ego vehicle
at step k is defined as

X F
k :=

{
xk ∈ Xk

∣∣ occ(xk) ∩ Ok 6= ∅
}
. (2)

Definition 3 (One-Step Reachable Set). Let Re
0 = X0 be

the exact reachable set of the ego vehicle at the initial step,
with X0 being the set of collision-free initial states including
measurement uncertainties. The exact reachable set Re

k+1 is
the set of states reachable from Re

k without intersecting the
set of forbidden states X F

k+1, denoted by reach(Re
k):

Re
k+1 :=

{
xk+1 ∈ Xk+1

∣∣∃xk ∈ Re
k,∃uk ∈ Uk :

xk+1 = f(xk,uk),xk+1 /∈ X F
k+1

}
.︸ ︷︷ ︸

reach(Re
k)

(3)
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Fig. 1: Minimal example of automata-based model checking. The colors correspond to components in Fig. 3. (a) A Kripke structure GK with AP = {a, b,D},
SK = {sK,(1)0 , . . . , s

K,(3)
3 , sK,D}, and SK0 = {sK,(1)0 }. For clarity, we show all atomic propositions regardless of their truth values. (b) Automaton AM converted

from graph GK in (a), with SB = SBA = {sB0, . . . , sB9, s
B,D
10 }. (c) Automaton Aϕ converted from ϕ := G(a ⇒ X(b)): whenever a holds, b should hold in

the next valuation. (d) Product automaton AP = AM ⊗ Aϕ. For brevity, we only show the subscripts of the states in AP. For example, the state 9,1 in AP

references sB9 in AM and sB1 in Aϕ. Transitions along the only accepting run in AP are colored gray. For comparison, we also show other transitions that
do not lead to an accepting state. The accepting run in AP corresponds to the run sB0 � sB3 � sB6 � sB9 � sB,D10 � sB,D10 � . . . in AM and the execution
s
K,(1)
0 � s

K,(3)
1 � s

K,(3)
2 � s

K,(3)
3 � sK,D � sK,D � . . . in GK (both colored gray). Please note that an auxiliary atomic proposition D (Dead) and an

auxiliary self-looping state sK,D (respectively sB,D) are required for extending the traces in GK (respectively AM and Aϕ) to infinite length (see Sec. VI-3).

Definition 4 (Projection). The operator proj♦(x) maps the
state x ∈ X to its components ♦. For example, proj(s,ṡ)(x) =

(s, ṡ)T for x = (s, ṡ, s̈)T. A set can be projected using the
same operator: proj♦(X) =

{
proj♦(x)

∣∣x ∈ X}.

Definition 5 (Drivable Area). The drivable area De
k of the ego

vehicle at step k is the projection of its reachable set Re
k onto

the position domain: De
k := proj(s,d)(Re

k).

In practice, X F
k can be of arbitrary shape and the computation

of Re
k as well as De

k is generally difficult or even impos-
sible [51]. Therefore, we compute their over-approximations
Rk and Dk, which will be detailed in Sec. IV.

D. Automata-based Model Checking

As motivated in Sec. I, we leverage model checking to
efficiently and exhaustively identify all collision-free and
specification-compliant driving corridors within the reachable
sets of the ego vehicle. Let AM be a finite state automaton

representing a system M . To verify whether all possible
executions of M satisfy a given LTL formula ϕ, denoted by
M |= ϕ, the basic idea of automata-based model checking is
to find a run in AM that satisfies the negated formula ¬ϕ. If
such a run does not exist, it can be concluded that M |= ϕ.
Instead of examining whether M |= ϕ, model checking can
alternatively be formulated to find the subset of runs in AM

that satisfy ϕ [52]. We follow the latter formulation since
we aim to identify specification-compliant driving corridors
rather than verifying whether all driving corridors satisfy the
enforced specifications. We introduce two required definitions.

Definition 6 (Nondeterministic Büchi Automaton [53]). A five-
tuple (Σ,SB, sB0, transB,SBA) defines a nondeterministic Büchi
automaton, where
• Σ := P(AP )1 is an alphabet with letters λ ∈ Σ,
• SB is a set of states with elements sB,

1The operator P(·) returns the power set of the input.
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• sB0 ∈ SB is the initial state,
• transB : SB × Σ→ P(SB) is a transition relation,
• SBA ⊆ SB is a set of accepting states.

A nondeterministic Büchi automaton is an finite state automa-
ton accepting inputs of infinite length.

Definition 7 (Product Automaton [52]). Given nondeterminis-
tic Büchi automata Am = (Σ,SBm, sB0,m, transBm,SBAm ), m ∈
{1, 2}, their synchronous product is A = A1 ⊗ A2 :=
(Σ,SP, sP0, transP,SPA), where
• SP = SB1 × SB2 is the set of states with elements (sB1, s

B
2),

• sP0 = (sB0,1, s
B
0,2), sP0 ∈ SP is the initial state,

• transP : SP × Σ → P(SP) is a transition relation such
that (s̃B1, s̃

B
2) ∈ transP((sB1, s

B
2), λ) iff s̃B1 ∈ transB1(sB1, λ)

and s̃B2 ∈ transB2(sB2, λ),
• SPA ⊆ SP is a set of accepting states such that (sB1, s

B
2) ∈

SPA iff sB1 ∈ SBA1 and sB2 ∈ SBA2 .

Automaton A is also a nondeterministic Büchi automaton and
accepts runs that are accepted by both automata A1 and A2.
Fig. 1 depicts a minimal example of automata-based model
checking, whose steps are presented as follows [52]:

1) Construct Automaton AM: Given a Kripke structure GK

(see Def. 11), it is converted into a nondeterministic Büchi au-
tomaton as described in [54]. Fig. 1a–b illustrate an exemplary
GK and the automaton AM converted from GK.

2) Construct Automaton Aϕ: An LTL formula ϕ can be
readily translated into a Büchi automaton Aϕ using, e.g., the
tool Spot [50]. The reader is referred to [49], [50], [55] for
further details. We use Aϕ := {. . . , Aϕ

m, . . . } to denote the
set of automata converted from LTL formulas F .

3) Retrieve Accepting Runs in Product Automaton AP: Let
automaton AP be the product of AM and Aϕ (see Sec. VII-A).
Based on the Büchi acceptance condition [56], a run in a
nondeterministic Büchi automaton is accepting if it visits some
accepting states in SBA infinitely often. An accepting state is
illustrated by a double circle (see Fig. 1b–d).

E. Driving Corridor

The reachable sets Rk of the ego vehicle enclose the
collision-free solution space for motion planning; however,
they may (a) be disconnected in the position domain due to the
presence of obstacles and (b) contain states xk having different
valuations τk. This renders the direct usage of the reach-
able sets unsuitable for obtaining constraints for generating
specification-compliant trajectories. To address this problem,
we identify collision-free and specification-compliant driving
corridors that are subsets of the reachable sets, which can be
utilized as constraints over the states xk in the motion planning
problem. We present the necessary definitions.

Definition 8 (Connected Component). A connected component
Ck ⊆ Rk with valuation τk over AP is a set such that
(a) Ck is a connected set [57] and collision-free in the

position domain, i.e., Ck ∩ X F
k = ∅,

(b) the states xk in Ck have the same valuation τk.

Definition 9 (Driving Corridor). A driving corridor DC is a
sequence of connected components Ck over steps 0 to kh.

Definition 10 (Specification-Compliant Driving Corridor). A
driving corridor complying with specifications F is one such
that ∀ϕ ∈ F : (τ0, . . . , τkh

) |= ϕ.

F. Problem Statement

The problem we aim to solve is formally defined as follows:

Problem 1 (Optimal Specification-Compliant Driving Corri-
dor Identification). The optimal specification-compliant driv-
ing corridor DCO of the ego vehicle is one with the maximum
utility over steps k:

max

kh∑
k=0

uk (4a)

subject to x0 ∈ C0, (4b)
∀k ∈ {0, . . . , kh − 1} : Ck+1 ∩ reach(Ck) 6= ∅, (4c)

∀ϕ ∈ F : (τ0, . . . , τkh
) |= ϕ, (4d)

where uk is the utility of Ck (see Sec. VII-C).

Constraints (4c) and (4d) respectively encode the reachability
of successive connected components of DCO and its com-
pliance with the enforced specifications. Collision-freeness
of DCO follows directly from Def. 8. We aim to obtain
DCO and extract constraints over xk for motion planning:
Given a driving corridor, the motion planning problem can
be formulated such that the trajectory of the ego vehicle is
contained within the driving corridor.

Problem 2 (Motion Planning with Driving Corridor). Given a
driving corridor, the motion planning problem is to minimize
the cost function J : Rnx × Rnu → R over steps k:

min
U

kh∑
k=0

J(xk,uk) (5a)

subject to (5b)
∀k ∈ {0, . . . , kh} :xk ∈ Ck, (5c)

∀k ∈ {0, . . . , kh − 1} :xk+1 = f(xk,uk). (5d)

III. METHODOLOGY

The input to our approach is the current environment model,
including the road network, a curvilinear coordinate system
F L, the set F of considered specifications, and all relevant
obstacles, e.g., those perceived within a certain field of view
of the ego vehicle. Without loss of generality, we assume the
obstacles to be vehicles, each denoted by Vn. Furthermore, we
assume that the predicted trajectories of all vehicles, e.g., their
most likely trajectories, are given as input. For demonstration
purposes, we consider interstate and intersection traffic rules
formalized in [6], [7] as specifications. Nevertheless, our
approach can be easily extended to handle other specifications
expressible in MTLpf , e.g., traffic rules described in [5], [8].

Let us introduce our approach for identifying collision-free
and specification-compliant driving corridors, whose solution
concept and relevant components are respectively illustrated
in Fig. 2 and Fig. 3. As a first step, we apply reachability
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Drivable
area

Ego
vehicle
Dynamic
obstacle

Compliant DC

Non-Compliant DC

Reachability graph Driving corridorsSpecifications

Fig. 2: Solution concept for identifying collision-free and specification-
compliant driving corridors (DCs). Such driving corridors can be determined
by model checking an automaton constructed from the reachability graph
against automata translated from the enforced specifications. In this example,
we assume overtaking from the right side is forbidden; thus, driving corridors
corresponding to this maneuver are dismissed.

analysis on the ego vehicle to obtain its reachable set. Due to
the presence of obstacles, the reachable set is represented as
the union of multiple partial reachable sets, whose reachability
and time relationships are stored in a reachability graph (see
Sec. IV-A). Next, we process the reachability graph and the
considered specifications for model checking:

1) As addressed in Sec. II-E, partial reachable sets may be
disconnected or may contain states xk having different
valuations. To utilize their bounds as constraints for
motion planning, they are grouped into connected com-
ponents. These connected components form a component
graph, based on which driving corridors are identified
(see Sec. IV-B). A finite state automaton is constructed
from the component graph and represents discrete state
transitions of the ego vehicle over time (see Sec. II-D1).

2) The valuations of the partial reachable sets required
for checking the compliance with specifications F are
determined by evaluating a set of predicates (see Sec. V).
Also, as motivated in Sec. II-B2, we rewrite MTLpf
formulas as LTL formulas, whose details are presented in
Sec. VI. The LTL formulas are translated into multiple
finite state automata determining the accepting sequences
of discrete state transitions (see Sec. II-D2).

3) As the number of driving corridors within a component
graph grows exponentially with the planning horizon kh,
we rely on model checking to efficiently and exhaustively
identify driving corridors complying with the enforced
specifications F . By computing the synchronous product
of all automata, we obtain a product automaton based on
which specification-compliant sequences of discrete state
transitions and their corresponding driving corridors are
identified (see Sec. II-D3).

Since numerous candidate driving corridors may exist, we

Product
AutomatonAP

Driving
CorridorsDCP

Product
GraphGP

Model

Driving Corridor Identification

⊗

Kripke
StructureGK

Component
GraphGC

Reachability
GraphGR

AutomatonAM

Specification

LTL

MTLpf

LTLpf

Automata AϕProduct

Fig. 3: Relationships of different components.

generate a product graph from the product automaton, from
which the optimal driving corridor is identified based on user-
defined utilities (see Sec. VII). If the solution to (5) cannot
be found within a driving corridor, we select the next optimal
driving corridor. As long as time permits, trajectories can be
planned for each available driving corridor; thus, it is possible
to obtain multiple trajectory options.

The state and input of our vehicle model for reachability
analysis only capture the position, velocity, and acceleration
components of the ego vehicle (see Sec. IV); therefore, speci-
fications concerning other components such as orientation and
jerk cannot be handled using our approach. We resort to a
trajectory repairer [58] to repair the planned trajectories so that
the unconsidered specifications are also satisfied (whenever
possible). If this also does not work, we execute a fail-safe
trajectory as described in [59].

IV. REACHABILITY ANALYSIS

We describe the computation of reachability graphs based
on [43] as well as its component graphs and driving corridors.

A. Reachability Graph

As motivated in Sec. II-C, we aim to compute the over-
approximations of the exact reachable set Re

k and drivable
area De

k of the ego vehicle. For computational efficiency,
the dynamics of the ego vehicle is abstracted by two double
integrators within the coordinate system F L, with the geomet-
ric center of the ego vehicle set as the reference point. The
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states and inputs in our model are xk = (sk, ṡk, dk, ḋk)T and
uk = (s̈k, d̈k)T, respectively:

xk+1 =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t

0 0 0 1

xk +


1
2∆2

t 0
∆t 0
0 1

2∆2
t

0 ∆t

uk.

︸ ︷︷ ︸
f(xk,uk)

(6)

This abstraction ensures that the reachable sets of the adopted
model always subsume those of high-fidelity vehicle models;
alternative abstractions can be found in [60], [61]. Let � be a
variable with its minimum and maximum values respectively
denoted by � and �. The velocities and accelerations at
(sk, dk) are bounded by

ṡ(Γ, sk) ≤ ṡk ≤ ṡ(Γ, sk), ḋ(Γ, sk) ≤ ḋk ≤ ḋ(Γ, sk), (7a)

s̈(Γ, sk) ≤ s̈k ≤ s̈(Γ, sk), d̈(Γ, sk) ≤ d̈k ≤ d̈(Γ, sk). (7b)

These bounds are chosen conservatively to consider the kine-
matic limitations within a curvilinear coordinate system, see,
e.g., [62]. As a final check, the drivability of the planned
trajectories should be examined separately, e.g., using the
drivability checker described in [63].

Following [11], we under-approximate occ(xk) by its in-
scribed circle and Ok by axis-aligned rectangles accounting
for its arbitrary shape, yielding an under-approximative set
of forbidden states in (2). Therefore, the over-approximative
reachable sets Rk ⊇ Re

k enclose all drivable trajectories of the
ego vehicle. To reduce computational complexity, we adopt
the union of so-called base sets R(i)

k , i ∈ N, as the set
representation for Rk, i.e., Rk := ∪iR(i)

k . Every base set R(i)
k

is a Cartesian product of two convex polytopes that enclose
the reachable positions and velocities of the ego vehicle in
the (s, ṡ) and (d, ḋ) planes, respectively. To simplify the
notation, we also denote the collection2 of R(i)

k with Rk, i.e.,
Rk :=

{
. . . ,R(i)

k , . . .
}

. The unified valuation of the states xk

within R(i)
k over atomic propositions AP is denoted by τ (i)k .

A directed and acyclic reachability graph GR is computed as
described in [43] to store the relationships of R(i)

k in terms of
reachability, see Fig. 4a. An edge (R(i)

k ,R(j)
k+1) in graph GR

indicates that set R(j)
k+1 is reachable from set R(i)

k after one
step. Similar to Def. 5, the projections of Rk and R(i)

k onto
the position domain are respectively denoted by Dk and D(i)

k .

B. Component Graph and Driving Corridors

To facilitate the identification of driving corridors, we group
the base sets R(i)

k in a graph GR into connected components
C(j)k , whose collection is denoted by CCk. Based on Def. 8,
every connected component C(j)k with valuation τ (j)k over AP
is a collection of base sets R(i)

k such that (a) sets R(i)
k form a

connected set [57] and their drivable areas D(i)
k are collision-

free and (b) sets R(i)
k and C(j)k have the same valuation,

i.e., τ (j)k = τ
(i)
k . Without loss of generality, we assume that

2Throughout this article, a set of sets is referred to as a collection.

R(1)
k−1, τ (1)k−1

k − 1 k k + 1

R(4)
k , τ (4)k

R(2)
k , τ (2)k R(1)

k+1, τ (1)k+1

R(3)
k+1, τ (3)k+1

R(1)
k , τ (1)k

R(3)
k , τ (3)k

R(5)
k , τ (5)k

R(2)
k+1, τ (2)k+1

Rk Rk+1Rk−1

(a)

D(1)
k−1

D(1)
k+1

D(3)
k+1

C(1)k−1, τ (1)k−1

D(1)
k

D(3)
k

D(2)
k

D(4)
k D(5)

k

C(1)k , τ (1)k

C(2)k , τ (2)k

C(3)k , τ (3)k

C(1)k+1, τ (1)k+1

C(2)k+1, τ (2)k+1

D(2)
k+1

F L

d

s

Ck Ck+1Ck−1

(b)

Fig. 4: A reachability graph GR and its component graph GC. Nodes of the
same color have the same set of atomic propositions. (a) Graph GR connecting
nodes of different steps. (b) Graph GC resulted from grouping the base sets
R(i)

k in GR into connected components C(j)k .

the set of initial states X0 of the ego vehicle is enclosed in
the connected component C(1)0 . Connected components C(j)k ,
together with edges connecting them, form a component graph
GC, see Fig. 4b. An edge (C(j)k , C(l)k+1) in GC indicates that at
least one base set in C(j)k reaches a base set in C(l)k+1 within one
step. We also define the Kripke structure [64] from a graph GC,
which is required for model checking, see Sec. II-D1. Fig. 1a
shows an example of a Kripke structure GK.

Definition 11 (Kripke Structure of Component Graph). The
Kripke structure GK of a component graph GC is a four-tuple
(SK,SK0 , transK, labelK):
• SK = {. . . , sK,(j)k , . . . } ∪ {sK,D} is a set of states, where

a state s
K,(j)
k maps to a connected component C(j)k in

GC; sK,D is an auxiliary self-looping state required for
extending a trace in GK to infinite length.

• SK0 = {sK,(1)0 } is a set of initial states.
• transK : SK → P(SK) is a transition relation and is

defined as: sK,(l)k+1 ∈ transK(s
K,(j)
k ) if the edge (C(j)k , C(l)k+1)

exists in GC; sK,D ∈ transK(s
K,(j)
kh

); sK,D ∈ transK(sK,D).
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TABLE I: SELECTION OF CONSIDERED PREDICATES.

Category Type Predicate Rule (see [6], [7])

Position VI in lanelet, on main carriageway, behind stop line, at traffic sign, . . . R-I5, R-IN1
VD in front of,behind, beside, left of, right of, in same lane, . . . R-G1, R-I2

Velocity VI keeps lane speed limit,perserves flow, in standstill, . . . R-G3, R-G4, R-I1, R-IN2
VD keeps safe velocity prec, drives faster, . . . R-G1, R-I2

Acceleration VI admissible braking R-G2

Priority VD has priority over, same priority as, . . . R-IN3, R-IN4, R-IN5

Traffic VI changes lanelet,passing stop line, turning left, turning right, . . . R-IN1, R-IN3
Situation VD slow leading vehicle, in congestion, cut in, . . . R-G1, R-G4, R-I1

• labelK : SK → P(AP ) is a labeling function that labels
each state with a set of atomic propositions, which is
defined as σ ∈ label(s

K,(j)
k ) if τ (j)k (σ) = true.

Each path in a graph GC corresponds to a collision-free
driving corridor based on Def. 9. For example, let k = 1 and
kh = 2 in Fig. 4b. Sequences DC1 := (C(1)0 , C(1)1 , C(1)2 ) and
DC2 := (C(1)0 , C(3)1 , C(2)2 ) correspond to two driving corridors
of the ego vehicle. We utilize the position and velocity bounds
of the connected component C(j)k within a driving corridor as
constraints over the state xk to restrict the planning space:

[xk,xk] = hull(C(j)k ), (8)

where hull(·) returns the interval hull of a set.

V. PREDICATE EVALUATION

The valuations over atomic propositions required for deter-
mining the satisfaction of specifications are often generated by
evaluating a set of predicates formulated in higher-order logic.
Our predicates have the general form of predicate(xk; ·) and
accept appropriate arguments. Tab. I lists selected predicates
pertinent to rules formalized in [6], [7], which are divided into
different categories and types. The evaluation of a vehicle-
dependent (VD) predicate relies on other vehicles, whereas
that of a vehicle-independent (VI) predicate does not.

Let us define some sets and functions to assist the evaluation
of predicates. We denote by L the lanelets along the reference
path Γ and their adjacent lanelets; the set Ldir ⊂ L refers to
lanelets having the same driving direction as the ego vehicle.
The lanelets occupied by the ego vehicle with state xk are
obtained as follows:

lanelets(xk) :=
{
L ∈ L

∣∣ occ(L) ∩ occ(xk) 6= ∅
}
,

lanelets dir(xk) := lanelets(xk) ∩ Ldir.

The functions type(L) and traffic sign(L) return the type of
a lanelet L (main carriageway, access ramp, etc.) and the set
of traffic signs referenced by L, respectively. The functions
front(·) and rear(·) return the s coordinate of the front and
rear bumper of the input within F L, respectively. Variable xoth

n,k

denotes the state of vehicle Vn at step k. We only describe a
few exemplary predicates from each category for a concise
presentation. The reader is referred to [6], [7] for detailed
definitions of other predicates.

1) Position Predicates: Vehicle-independent position predi-
cates relate to lanelets and traffic rule elements in the scenario.
We provide three examples:

in lanelet(xk;L)⇔ L ∈ lanelets(xk),

on main carriageway(xk)⇔
main carriage way ∈ {type(L)|L ∈ lanelets(xk)} ,

at traffic sign(xk;TS)⇔
∃L ∈ lanelets dir(xk) : TS ∈ traffic sign(L),

where TS stands for a traffic sign. Vehicle-dependent po-
sition predicates reflect positional relations between the ego
vehicle and other vehicles. For example, the mutually exclu-
sive predicates in front of(xk;xoth

n,k), behind(xk;xoth
n,k), and

beside(xk;xoth
n,k) along the s direction can be evaluated with

respect to Vn as follows:

in front of(xk;xoth
n,k)⇔ rear(xk) > front(xoth

n,k),

behind(xk;xoth
n,k)⇔ front(xk) < rear(xoth

n,k),

beside(xk;xoth
n,k)⇔

(
left of(xk;xoth

n,k) ∨ right of(xk;xoth
n,k)

)
∧ ¬ in front of(xk;xoth

n,k) ∧ ¬ behind(xk;xoth
n,k),

where the mutually exclusive predicates left of(xk;xoth
n,k),

right of(xk;xoth
n,k), and aligned with(xk;xoth

n,k) are analo-
gously defined along the d direction.

2) Velocity Predicates: Vehicle-independent velocity pred-
icates typically describe minimum or maximum velocity re-
quirements. Rules R-G3 and R-G4 [7] specify different ve-
locity limits that vehicles should respect, including limits
introduced by the restricted field of view of a vehicle, the
type of lane(let) in which the vehicle is driving, and the type
of the vehicle. For instance, given the maximum velocity limit
of the lane occupied with state xk, denoted by ṡlane, we have:

keeps lane speed limit(xk; ṡlane)⇔ projṡ(xk) ≤ ṡlane.

Examples of vehicle-dependent velocity predicates indicate
whether the ego vehicle is driving at a safe velocity with
respect to a leading vehicle or driving faster than a vehicle.
The latter predicate can be evaluated as follows:

drives faster(xk;xoth
n,k)⇔ projṡ(xk) ≥ projṡ(xoth

n,k).

3) Acceleration Predicates: These predicates relate to the
acceleration component of the ego vehicle. As an example, rule
R-G2 [7] specifies situations in which a vehicle is allowed to
brake harder than a predefined threshold. If the input uk of
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the state xk is within the range of admissible acceleration, the
predicate admissible braking(xk) evaluates to true.

4) Priority Predicates: Vehicles should respect driving
priorities specified by traffic regulations, which can be
inferred from the road structure or indicated by traf-
fic signs. The predicates has priority over(xk;xoth

n,k) and
same priority as(xk;xoth

n,k) reflect whether the ego vehicle
has priority over Vn or has the same priority as Vn, respec-
tively. They are evaluated by comparing the driving priorities
determined based on the current traffic scenario and road
priorities listed in [6, Tab. II].

5) Traffic Situation Predicates: The truth of these predi-
cates depends on given traffic situations. For example, vehicle-
independent predicates may indicate whether the ego vehicle
is passing a stop line:

passing stop line(xk)⇔
behind stop line(xk) ∧ X(¬behind stop line(xk)),

where behind stop line(xk) evaluates to true if the ego
vehicle is behind a stop line. Vehicle-dependent predicates may
indicate whether a slow leading vehicle exists and whether a
vehicle is stuck in traffic congestion.

VI. SPECIFICATION REWRITING

As motivated in Sec. II-B2, we rewrite and interpret an
MTLpf formula ϕM as an LTL formula ϕ on our system:

1) Eliminate Intervals over Temporal Connectives: Since
valuations τk of our traces are synchronized with steps k, we
rewrite an MTLpf connective as a combination of X and Y
connectives in LTLpf . We use the notation X[k̃] as a shorthand
for k̃ consecutive X connectives:

X[k̃]ϕ
L := XX . . .X︸ ︷︷ ︸

k̃ times X

ϕL. (9)

It follows from the semantics of XI , UI (see Sec. II-B1) that
the time interval I = [a, b] over future-time connectives can
be eliminated:

X[a,b]ϕ
L =

{
XϕL, if 1 ∈ [a, b].

⊥, otherwise.
(10)

ϕL
1U[a,b]ϕ

L
2 =

∨
a≤k̃≤b

(
G[0,k̃−1]ϕ

L
1 ∧ X[k̃]ϕ

L
2

)
, (11)

G[a,b]ϕ
L =

∧
a≤k̃≤b

X[k̃]ϕ
L, (12)

F[a,b]ϕ
L =

∨
a≤k̃≤b

X[k̃]ϕ
L. (13)

That is, X[a,b]ϕ
L is only satisfiable by τ if the unit step jump is

within [a, b] and ϕL holds in the next valuation; ϕL
1U[a,b]ϕ

L
2 is

satisfied if within a and b steps, a valuation occurs in which
ϕL
2 holds, and ϕL

1 continuously holds for valuations before
that; G[a,b]ϕ

L (F[a,b]ϕ
L) is satisfied if ϕL holds in all (any)

valuations occurring within a and b steps. Intervals over the
past-time connectives YI , OI , HI , and SI can be analogously
eliminated by rewriting using the Y connective.

τ |= ϕ̃L
1

0 1 2 3 4k

τ |= ϕ̃L
2

τ |= ϕ̃L
3

ϕL
1 = >

ϕL
2 = >

arbitrary

Fig. 5: Example traces satisfying ϕ̃L
1, ϕ̃L

2, and ϕ̃L
3, respectively. ϕ̃L

1 :=
G[0,0]ϕ

L
1∧X[1]ϕ

L
2, ϕ̃L

2 := G[0,1]ϕ
L
1∧X[2]ϕ

L
2, ϕ̃L

3 := G[0,2]ϕ
L
1∧X[3]ϕ

L
2. A

circle represents a valuation in which the atomic proposition corresponding
to the color is assigned true. A sequence of circles represents a trace.

Running example:

ϕL
1U[1,3]ϕ

L
2

(11)
= ϕ̃L

1 ∨ ϕ̃L
2 ∨ ϕ̃L

3,where

ϕ̃L
1 := G[0,0]ϕ

L
1 ∧ X[1]ϕ

L
2

(12)
= ϕL

1 ∧ XϕL
2,

ϕ̃L
2 := G[0,1]ϕ

L
1 ∧ X[2]ϕ

L
2

(12)
= ϕL

1 ∧ XϕL
1 ∧ X[2]ϕ

L
2,

ϕ̃L
3 := G[0,2]ϕ

L
1 ∧ X[3]ϕ

L
2

(12)
= ϕL

1 ∧ XϕL
1 ∧ X[2]ϕ

L
1 ∧ X[3]ϕ

L
2.

Fig. 5 shows traces satisfying ϕ̃L
1, ϕ̃L

2, and ϕ̃L
3.

2) Eliminate Past-Time Connectives: A syntactic procedure
for separating past-time and future-time connectives in LTL is
presented in [65], which has been further applied to LTLpf
in [47]. Although the procedure offers straightforward rules
for rewriting, it leads to so-called non-elementary blow-up in
formula size [66], [67]. As an alternative, one can explicitly
reformulate ϕL using only future-time connectives with an
exponential growth in the formula size [68]. For practical
reasons, we adopt a less strict rewriting procedure to avoid
the mentioned unfavorable complexities. To this end, we tem-
porarily switch from the strong semantics defined in Sec. II-B1
to the repeat semantics as described in [69] for the X and Y
connectives, which allows one to cancel out pairs of X and Y:
Intuitively, we expect that the previous step of the next step
along a trace τ is the current step, and vice versa:

XYϕL ⇒ ϕL, (14)
YXϕL ⇒ ϕL. (15)

After canceling out all pairs of X and Y, we restore the strong
semantics for interpreting the remaining YϕL, i.e., they all
evaluate to ⊥: YϕL asserts that there exists a valuation prior
to τ0 and ϕL is true therein, which does not hold since our
traces start with τ0 at step k = 0. As for the S connective, we
apply the axiom [70, A12]

ϕL
1SϕL

2 = ϕL
2 ∨ (ϕL

1 ∧ Y(ϕL
1SϕL

2)) (16)

and examine the expanded formula.

Running example:

F[0,2](ϕ
L
1SϕL

2)
(13)
= ϕ̃L

1 ∨ ϕ̃L
2 ∨ ϕ̃L

3,where
ϕ̃L
1 := ϕL

1SϕL
2

(16)
= ϕL

2 ∨ (ϕL
1 ∧ Y(ϕL

1SϕL
2)) = ϕL

2,

ϕ̃L
2 := X[1](ϕ

L
1SϕL

2)
(16)
= X(ϕL

2 ∨ (ϕL
1 ∧ Y(ϕL

1SϕL
2)))



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 10

0 1 2 3 4k

ϕL
1 = >

ϕL
2 = >

arbitrary

τ |= ϕ̃L
3

τ |= ϕ̃L
3

τ |= ϕ̃L
3

τ |= ϕ̃L
2

τ |= ϕ̃L
2

τ |= ϕ̃L
1

Fig. 6: Example traces satisfying ϕ̃L
1, ϕ̃L

2, and ϕ̃L
3, respectively. ϕ̃L

1 := ϕL
2,

ϕ̃L
2 := XϕL

2∨(XϕL
1∧ϕL

2), ϕ̃L
3 := X[2]ϕ

L
2∨(X[2]ϕ

L
1∧(XϕL

2∨(XϕL
1∧ϕL

2))).

= XϕL
2 ∨ (XϕL

1 ∧ (ϕL
1SϕL

2))

ϕ̃L
1= XϕL

2 ∨ (XϕL
1 ∧ ϕL

2),

ϕ̃L
3 := X[2](ϕ

L
1SϕL

2)
(16)
= X[2](ϕ

L
2 ∨ (ϕL

1 ∧ Y(ϕL
1SϕL

2)))

= X[2]ϕ
L
2 ∨ (X[2]ϕ

L
1 ∧ X(ϕL

1SϕL
2))

ϕ̃L
2= X[2]ϕ

L
2∨

(X[2]ϕ
L
1 ∧ (XϕL

2 ∨ (XϕL
1 ∧ ϕL

2))).

Fig. 6 shows traces satisfying ϕ̃L
1, ϕ̃L

2, and ϕ̃L
3.

3) Conversion to LTL: An LTLpf formula without past-
time connectives is converted to an LTL formula ϕ based
on [71], [72]. This conversion introduces an auxiliary atomic
proposition D (Dead) in ϕ and an auxiliary self-looping state
sB,D in the automaton Aϕ translated from ϕ (see Fig. 1c).

VII. DRIVING CORRIDOR IDENTIFICATION

This section describes the computation of automaton AP

and the generation of its product graph, based on which we
identify (optimal) specification-compliant driving corridors.

A. Product Automaton Computation

Given an automaton AM and a set of automata Aϕ (see
Sec. II-D2), their product AP can be computed considering
factors such as flexibility and priorities in case the spec-
ifications are conflicting, i.e., cannot be satisfied by any
trace. Rulebooks [73] specify qualitative relations between
specifications as a pre-order and assigns the same priority to
specifications in a group. Following this concept, automaton
AP can be computed to expedite compliance with the groups
of specifications of higher priorities:

AP
0 = AM, AP

m̃ = AP
m̃−1 ⊗ (· · · ⊗Aϕ

m ⊗ . . .︸ ︷︷ ︸
Ãϕ

m̃

), (17)

where Ãϕ
m̃ denotes the product of the automata in a group with

priority m̃ (a smaller m̃ indicates a higher priority). Automaton
AP

m̃−1 is assigned to AP if an accepting run exists in AP
m̃−1

but not in AP
m̃. Two special instances with drawbacks exist

that should ideally be avoided:

Algorithm 1 Remove Unreachable Base Sets

Inputs: Collections CCk of connected components C(j)k .
Output: Updated connected components C(j)k .

1: Rkeep
0 ← C(1)0 .BASESETS() . Initialization

2: for k = 1 to kh do
3: Rkeep

k ← ∅ . Collection of base sets to keep at k
4: for C(j)k ∈ CCk do
5: RC ← C(j)k .BASESETS() . Base sets to keep in C(j)k

6: for R(i)
k ∈ C

(j)
k .BASESETS() do

7: if R(i)
k .PARENTBASESETS()∩Rkeep

k−1 = ∅ then
8: RC ← RC \ {R(i)

k } . Remove R(i)
k

9: else
10: Rkeep

k ←Rkeep

k ∪ {R(i)
k } . Keep R(i)

k at k
11: end if
12: end for
13: C(j)k .BASESETS() ←RC . Update base sets in C(j)k
14: end for
15: end for

1) Assigning the Same Priority to All Automata Aϕ
m: This

instance yields an exponential growth in the number of states
in Ãϕ

m̃ with respect to |Aϕ| (see Def. 7). Moreover, it does
not allow one to flexibly adjust enforced specifications per the
current traffic situation or their orders based on user-defined
measures such as importance or criticality. The latter property
is unfavorable when not all prescribed specifications can be
satisfied: possible reasons are conflicts in the specifications,
misbehavior of other vehicles, etc.

2) Assigning a Unique Priority to Each Automaton Aϕ
m:

This instance allows one to explicitly prioritize the specifica-
tions and expedite compliance with those of higher priorities;
however, meticulously ordering specifications becomes non-
trivial as |Aϕ| increases.

B. Product Graph Generation

Given an automaton AP with at least an accepting run, we
convert it into a directed, acyclic, and weighted graph GP,
which is referred to as a product graph. Graph GP retains
the general structure of AP and consists of nodes referencing
corresponding connected components C(j)k . States in AP with
outgoing edges for which the auxiliary atomic proposition D
is assigned true are dismissed in GP since they are irrelevant
to the identification of driving corridors, see Fig. 7. Every edge
(C(l)k−1, C

(j)
k ) in GP is weighted by the utility of C(j)k , denoted

by u
(j)
k (detailed in Sec. VII-C). The paths in GP from C(1)0

to C(j)kh
correspond to specification-compliant driving corridors

(see Def. 9 and Def. 10) and are stored in a collection DCP.
Let CP and CC represent the collection of all connected

components in graphs GP and GC, respectively. Since CP ⊆ CC,
we update the reachability relationship between the base sets
R(i)

k in the connected components and by this remove R(i)
k

that no longer have a valid parent. For example, suppose
DC1 := (C(1)0 , C(2)1 , C(2)2 ) in Fig. 4b is the only path in GP, set
R(3)

2 is no longer reachable along DC1 as per Fig. 4a. Alg. 1
removes unreachable base sets from connected components:
For every step k, we maintain a collection Rkeep

k of base sets
to be kept, with Rkeep

0 initialized with the base sets in C(1)0
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Fig. 7: Example of a component graph GC and a product graph GP. Nodes of the same color have the same set of true atomic propositions. (a) Graph GC

with kh = 4. (b) Graph GP converted from a product automaton AP, which is the output of model checking GC against specification ϕ := G(¬a)∨G(¬c):
either a never holds, or c never holds. Dismissed states in AP are shown in gray (cf. Fig. 1d).

(Alg. 1, line 1). For steps 1 to kh, we iterate through C(j)k ∈ CCk
and examine each of its base sets R(i)

k . If none of the parent
base sets of R(i)

k is present in Rkeep
k−1, R(i)

k is removed from
C(j)k ; otherwise it is added to Rkeep

k (Alg. 1, lines 7–11).

C. Utility Computation

Identifying the optimal specification-compliant driving cor-
ridor, i.e., the solution to Prob. 1, requires computing the utility
u
(j)
k of connected components C(j)k . Since multiple base sets
R(i)

k may exist in a connected component C(j)k , we define a
function w mean(C(j)k ,♦) that returns the weighted mean of
component ♦ in C(j)k :

w mean(C(j)k ,♦) :=
∑

R(i)
k ∈C

(j)
k

w
(i)
k mean

(
proj(♦)(R

(i)
k )
)
,

(18)

w
(i)
k :=

area(R(i)
k )∑

R(l)
k ∈C

(j)
k

area(R(l)
k )

, (19)

where w
(i)
k is the weight of R(i)

k within C(j)k and area(·)
returns the area of the input in the position domain. The utility
u
(j)
k of C(j)k is defined as the weighted sum of partial utilities:

u
(j)
k := wTu

(j)
k , (20)

where w is a weighting vector and u
(j)
k is a vector of user-

defined partial utilities. We consider the following partial
utilities, which are all normalized to [0, 1]:

1) Area: We reward C(j)k of a larger area in the position
domain since this generally yields more flexible position
constraints for subsequent trajectory planning:

uarea(C(j)k ) :=
area(C(j)k )

maxC(l)k ∈CP
area C(l)k

. (21)

2) Velocity: We reward C(j)k of higher weighted longitudinal
velocity to increase the traffic flow:

uvel(C(j)k ) :=
w mean(C(j)k , ṡ)− ṡ0

s̈(Γ, sk) ∆t k
. (22)

3) Position: We encourage C(j)k of longer weighted traveled
distance in the longitudinal direction of the reference path:

upos(C(j)k ) :=
w mean(C(j)k , s)− s0

0.5 s̈(Γ, sk) (∆t k)2 + ṡ0 ∆t k
, (23)

4) Reference Path: We penalize C(j)k of larger weighted
lateral deviation from the reference path:

uref(C(j)k ) := exp
(
−wref w mean(C(j)k , d)

)
, (24)

where wref ∈ R+ is a factor dictating how fast uref(C(j)k )
approaches zero as the lateral deviation increases. Alternative
utilities such as comfort, criticality measures, and robustness
degrees of specifications can be taken into consideration,
whose computation is out of the scope of this article.

D. Optimal Driving Corridor

Given a graph GP, graph-search and sampling-based tech-
niques can be employed to extract optimal paths in GP with
respect to u

(j)
k . For instance, the longest paths from the root

node C(1)0 to nodes C(j)kh
can be efficiently obtained using

a single-source shortest path algorithm on graph −GP in
which the weights are negated [74]. These paths correspond
to collision-free and specification-compliant driving corridors
with the maximum cumulative weights and are stored in the
collection DCO. Every candidate in DCO is processed again
using Alg. 1 to remove unreachable base sets. We identify
the optimal driving corridor DCO with the highest cumulative
weight, within which trajectories are planned.
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TABLE II: SELECTED PARAMETERS USED IN THE EXPERIMENTS

Parameter kh ∆t ṡ ṡ ḋ ḋ s̈ s̈ d̈ d̈

Value 15 0.2 0.0 20.0 −4.0 4.0 −6.0 6.0 −2.0 2.0

VIII. EVALUATION

This section evaluates our approach and demonstrates its
applicability, effectiveness, and efficiency. To this end, we
integrate identified driving corridors into two sampling-based
motion planners and compare the planning results under differ-
ent traffic scenarios and specifications. In addition, we evaluate
the performance of our approach under increasingly critical
scenarios and compare computation times. Furthermore, we
benchmark of computation time of our prototype against
multiple scenarios. Lastly, we compare our approach with that
described in [19].

A. Implementation Details

For evaluation, we adopt scenarios from the CommonRoad
benchmark suite3 [75], whose typical components are a road
network consisting of lanelets, static and dynamic obstacles,
traffic rule elements such as traffic signs and traffic lights,
the initial state of the ego vehicle, and a goal region. Every
scenario has a unique benchmark ID and can be unambigu-
ously reproduced. The prototype of our approach extends [76]
and is partially implemented in Python and C++. We ran the
experiments on a laptop with an Intel Core i7-7700HQ 2.8GHz
processor. Tab. II lists selected parameters. The weights in w
for driving corridor identification are all empirically set to 1.0.
We briefly introduce the two adopted motion planners:

1) Reactive Planner: The popular motion planner described
in [77], which we refer to as the reactive planner, generates a
finite set of candidate trajectories connecting the initial state
of the ego vehicle to different goal states. These goal states
are generated based on samples of longitudinal velocity, lateral
position, and the terminal time of the lateral maneuver. The
candidate trajectories are checked for (a) feasibility (including
drivability and collisions) using the drivability checker in [63]
and (b) compliance with specifications using Spot [50].

2) RRT*: To showcase the possibility of integrating our ap-
proach with RRT-based planners that we reviewed in Sec. I-A,
we also consider the RRT* planner [41]. In our implementa-
tion, a tree is incrementally constructed from sampled nodes,
between which a trajectory is generated using Dubins car
model [78]. As with the reactive planner, we check the feasi-
bility and compliance with the specifications of the trajectories
and terminate once a solution is found.

Besides these planners, it has been shown in [12], [13] that
optimization-based planners also substantially benefit from the
integration of driving corridors.

B. Scenario I: Merging via On-Ramp

Fig. 8 depicts a baseline scenario where the ego vehicle is
driving on a two-lane main carriageway and another vehicle

3http://commonroad.in.tum.de/
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(c) Scenario at step k = 15

(d) Trajectories planned at step k = 0 without DCO (RP)

(e) Trajectories planned at step k = 0 with DCO (RP+DC/RP+DC*)

Fig. 8: Drivable areas and planned trajectories for scenario I (benchmark ID:
ZAM_TIV-1_1_T-1).

is approaching via an on-ramp. While the ego vehicle is
dynamically able to proceed in its current lane or to change to
the lane on the right, rule R-I5 [7] prohibits the latter maneuver
as the ego vehicle has to respect entering vehicles:

G
((

on main carriageway(xk) ∧ behind(xk;xoth
n,k)∧

on access ramp(xoth
n,k)∧

F
(
on main carriageway(xoth

n,k)
))

⇒(
on main carriageway right lane(xk)∨

G
(
¬ on main carriageway right lane(xk)

)))
.

In addition to the baseline scenario, we create two alternative
scenarios with increased difficulty by adding secondary speci-
fications: in variant 1, we require that the ego vehicle reaches
lanelet 2 before the end of the planning horizon; in variant 2,
lanelet 2 should be reached between steps 5 and 12, which is
a stricter requirement with a smaller solution space.

Fig. 8a–c visualize the computed drivable areas at different
steps. Because the connected components in GP reference a

http://commonroad.in.tum.de/
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subset of base sets in GR, their drivable areas at step k, denoted
by DP

k, is a subset of Dk. Furthermore, the drivable areas of
the optimal driving corridor DCO at step k, represented by
DO

k, is a subset of DP
k since DCO corresponds to a path in GP.

That is, DO
k ⊆ DP

k ⊆ Dk. The non-empty drivable area DO
k

implies that one may find a specification-compliant trajectory
within the position and velocity bounds extracted from DCO.
We generate three sets of trajectories using the reactive planner
under three settings:

• RP: the basic implementation of the reactive planner with
fixed sampling intervals [77].

• RP+DC: enhances RP by drawing time, position, and
velocity samples within DCO as described in [14].

• RP+DC*: in addition to [14], enforces constraint (5c) and
discards a trajectory if any of its states is outside DCO.

Fig. 8d–e illustrate the sampled trajectories under different set-
tings. While the trajectories sampled with RP covers both lanes
and even off-road region, those planned with RP+DC/RP+DC*
lie within the current lane of the ego vehicle.

Tab. III reports the computation results, among which we
focus on the feasible trajectories and their compliance rate.
In the baseline scenario, while around 40% of the trajectories
planned with RP violate rule R-IN5 by entering the lane on
the right, all trajectories considering DCO comply with the
rule. In both alternative scenarios, the compliance rate of the
trajectories sampled with RP significantly decreases, with that
drastically reduced to around 0.5% in variant 2. Although
the compliance rate of RP+DC exhibits a milder drop than
that of RP, it is less than ideal because not all states of the
planned trajectories are entirely contained in DCO. In contrast,
RP+DC* performed consistently well in the given scenarios.
Further enforcing a conflicting or non-satisfiable specification
(e.g., F[0,5]

(
in lanelet(L2)

)
, see Fig. 8a) would yield an

empty product graph GP; thus, no DCO would be output and
we can reject the specification before trying to plan a trajectory
satisfying the specification.

We also compare the time required to obtain the first
specification-compliant trajectory under different settings.
Since the trajectory sampling and the feasibility check are
shared among all three settings, we focus on generating a
compliant trajectory from the feasible candidates. The compu-
tation is repeated for 50 times and the candidate trajectories are
shuffled in each iteration. For RP+DC and RP+DC*, we also
include the computation time of reachable sets. Fig. 9 depicts
the computation results: RP required less (median) computa-
tion time than the other two settings in the baseline scenario
and variant 1. This is justified by the fact that the enforced
specifications in these two scenarios are relatively easy to be
satisfied by the ego vehicle. With increased difficulty in variant
2, the computation time of RP grows remarkably (almost
two orders of magnitude) since it struggles to find the few
compliant trajectories among a large number of candidates. In
contrast, the computation times of the settings adopting our
reachable sets are consistent across the scenarios regardless of
the considered specifications. In variant 2, the overhead of our
reachable set computation is compensated by restricting the
sampling space and, with RP+DC*, avoiding excessive com-

TABLE III: Number of trajectories and compliance rate under different
settings in scenario I: ZAM_TIV-1_1_T-1.

Method #Sampled #Feasible #In Corridor #Compliant %Compliant

Baseline: R-IN5
RP 13464 3839 - 2232 58.14 %
RP+DC 11288 4031 - 4031 100.00 %
RP+DC* 11288 4031 64 64 100.00 %

Variant 1: R-IN5 + F[0,kh]

(
in lanelet(L2)

)
RP 13464 3839 - 968 25.21 %
RP+DC 11288 4031 - 3418 84.79 %
RP+DC* 11288 4031 62 62 100.00 %

Variant 2: R-IN5 + F[5,12]

(
in lanelet(L2)

)
RP 13464 3839 - 18 0.47 %
RP+DC 11288 4031 - 1021 25.33 %
RP+DC* 11288 4031 62 62 100.00 %
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Fig. 9: Computation times in scenario I: ZAM_TIV-1_1_T-1. For better
visibility, outliers of the box plot are not shown.

pliance checks for sampled trajectories. Although RP+DC and
RP+DC* performed similarly in these scenarios, adopting the
latter allows us to explicitly constrain the sampled trajectories
to the optimal driving corridor concerning user-defined utilities
presented in Sec. VII-C.

C. Scenario II: Four-way Intersection

Next, we consider a scenario in which the ego vehicle must
come to a full stop before an intersection to respect passing
priorities. Rule R-IN3 [6] dictates that the ego vehicle should
not endanger another entering vehicle at an intersection if it
is left of the other vehicle. Due to space limitations, we refer
the reader to [6] for the MTL formulation of this rule. We
also create an alternative scenario to increase the difficulty of
the planning problem. Specifically, we alter the initial velocity
of the ego vehicle from 7.0 m/s to 9.0 m/s, which reduces the
compliant drivable areas and state space.

Fig. 10a–b illustrate the drivable areas of the ego vehicle
in the baseline scenario. The ego vehicle can, among other
maneuvers, accelerate and pass through the intersection before
the vehicle entering from the right or respect the passing
priority and stop before the intersection. The optimal driving
corridor DCO is the only path in the product graph GP, thus
DP

k = DO
k. We demonstrate the benefits of our approach for

RRT-based planners by comparing the following settings:
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Fig. 10: Drivable areas and planned trajectories for scenario II (benchmark ID: ZAM_TIV-2_1_T-1).
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in scenario II: ZAM_TIV-2_1_T-1. For better visibility, outliers of the box
plot are not shown.

• RRT*: the basic implementation of RRT*. For a fairer
comparison, we restrict the state and sample spaces to
lanelets on the route leading to the goal region.

• RRT*+DC*: based on RRT*, we enforce constraint (5c)
by restricting the state and sample spaces to DCO.

Fig. 10c–d show exemplary explored trees under different
settings. While the tree explored by RRT* spans to incoming
and outgoing lanelets of the intersection, the tree explored by
RRT*+DC* is, as expected, contained within the incoming
lanelet before the intersection.

We compare the number of tree nodes required to generate a
collision-free and specification-compliant trajectory lasting 3.0
seconds. To account for the stochastic nature of RRT*, we ran
the planners for 50 times and present the results in Fig. 11. For
both the baseline and variant scenarios, the median numbers
of sampled tree nodes of RRT*+DC* are substantially lower
than those of RRT*. This can be explained by the fact that
only a fraction of the state and sample spaces are relevant
for planning a trajectory satisfying rule R-IN3. Reducing the
specification-compliant drivable areas noticeably increases the
effort for planning a compliant trajectory by RRT*, which is
not the case for RRT*+DC*. These observations are in line
with our findings in Sec. VIII-B.

D. Scenarios with Decreasing Solution Spaces

It has been demonstrated in [12, Sec. VII-E] that the
computation times of reachable sets are proportionally reduced
with a decreasing solution space. We verify the validity of
this finding on our reachable set computation by considering
a cluttered scenario populated with vehicles and cyclists, see
Fig. 12. To decrease the solution space, we gradually raise the
initial velocity of the ego vehicle by 30 % at a time until a
collision is unavoidable. This process increases the criticality
of the scenario based on measures such as Time-to-Collision
and Time-to-React, which can be evaluated using the CriMe
toolbox [79]. We repeat the computations for 50 times and
list the results in Tab. IV. Increasing the initial velocity of
the ego vehicle leads to reduced numbers of base sets in the
reachability graph and required set operations, resulting in
lower mean computation times and smaller overall sizes of the
drivable area cumulated over steps k. We observe that with the
initial velocity raised to 310 %, which yields the most critical
scenario with inevitable collision using parameters in Tab. II,
the computation time is exceptionally low, at approximately
4 ms. The results thus confirm the favorable property of our
reachable set that less computation time is required in more
critical scenarios with smaller solution spaces.

E. Computation Time

The performance of our prototype is benchmarked by
computing the reachable sets for over 50 randomly chosen
scenarios from the CommonRoad benchmark suite. We only
focus on position predicates concerning lanelets and vehicles
as well as traffic situation predicates. The former causes
frequent splitting of reachable sets and the latter requires
relatively more effort in the annotation operation [43]. Fig. 13
illustrates the computation times of required operations in our
reachable set computation as described in [43, Sec. III-D].
Our current implementation, with 75% of the computations
executed within 250 ms, requires only a fraction of the plan-
ning horizon, specifically 3.0 s, thereby demonstrating its real-
time capability. To further improve the performance of our
prototype, adequate optimization and parallelized computation
techniques can be employed. For instance, our observations
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Fig. 12: A cluttered scenario with vehicles and cyclists at step k = 0
(benchmark ID: ESP_Monzon-2_2_T-1).

TABLE IV: Mean computation time, number of base sets, and size of the
drivable area (in relative percentage) cumulated over steps k, when increasing
the initial velocity in scenario ESP_Monzon-2_2_T-1.

Init. Vel. %Vel. Comput. Time #Base Sets %Drivable Area

4.69 m/s 100 % 139.51 ms 165 100.00 %
6.10 m/s 130 % 126.87 ms 160 99.33 %
7.51 m/s 160 % 124.47 ms 155 97.44 %
8.92 m/s 190 % 113.07 ms 148 96.06 %

10.32 m/s 220 % 98.10 ms 134 86.30 %
11.73 m/s 250 % 84.60 ms 118 71.67 %
13.14 m/s 280 % 58.30 ms 83 52.24 %
14.55 m/s 310 % 3.88 ms 5 0.13 %

from [76] suggest that translating the annotation operation
from Python to C++ is expected to accelerate its computation
by a factor of 20. For both scenarios I and II presented in the
previous subsections, computing the product automaton AP

and determining the optimal driving corridor DCO required
only about 100µs and 1 ms, respectively.

F. Comparison

While most of the works that we reviewed in Sec. I-A focus
on reach-avoid problems with temporal requirements for robot
navigation, to the best of our knowledge, article [19] is the only
work that aims to achieve a goal similar to ours. Specifically,
the article (a) focuses on constraint extraction for motion
planning of automated vehicles, (b) considers compliance with
specifications in temporal logic, and (c) handles dynamic
obstacles. For this reason, we compare our approach to [19].

Let us recapitulate the approach presented in [19]: The au-
thors first partition the collision-free state space and construct
a so-called navigation graph GN, in which a node denotes a
segment of a lanelet with a unique position relation concerning
other vehicles. Connecting such nodes forms a path represent-
ing a timed envelope, i.e., position constraints, enclosing a set
of homotopic trajectories. Next, to examine the compliance
of these envelopes with traffic rules expressed in LTL, each
path in GN is individually verified using runtime verification.
Finally, the authors assign heuristic costs to specification-
compliant envelopes, from which the best solutions are output
as constraints for trajectory planning.

Our approach outweighs [19] in the following two aspects:
1) Model Accuracy: Article [19] does not incorporate a

vehicle model accounting for the dynamics of the ego vehicle
and only constructs GN at the sub-lanelet level. In contrast,
our approach adopts a double-integrator point mass model (6),
effectively capturing the ego vehicle’s position, velocity, and
acceleration components. While both approaches extract posi-
tion constraints for the ego vehicle that comply with enforced
specifications, our driving corridors additionally offer velocity

Computation time [ms]
25020015050 1000 300

Splitting

Propagation

Collision check

Annotation

Sum

Base set creation

Fig. 13: Benchmarked computation times of our reachable set computation.
For better visibility, outliers of the box plot are not shown.

constraints. This allows us to integrate specifications pertinent
to the velocity of the ego vehicle (see Tab. I). Also, speci-
fications on the accelerations can be handled directly during
our computation of reachable sets through the modification of
input bounds (7b).

In addition, our approach provides a less over-approximative
abstraction of the ego vehicle. This can be substantiated
by comparing the sizes of the discrete system models in
the two approaches. For comparison, we consider a scenario
(benchmark ID: ZAM_TIV-3_1_T-1) featuring three parallel
lanelets, each containing two other vehicles. Due to the
limitations of [19], only the position predicates relative to other
vehicles are considered in the comparison. Using the setting
described in Sec. VIII-A, our approach generates a component
graph GC comprised of nearly 180 nodes, which is significantly
less than about 520 nodes in graph GN.

2) Verification Efficiency: Since the number of possible
paths in graphs GN and GC grows exponentially in relation to
the planning horizon kh, even for the relatively simple scenario
described in Sec. VIII-F1, graph GN already contains about
250 billion paths to be monitored. This task is computationally
demanding, if not intractable, for motion planning of auto-
mated vehicles with strict real-time requirements. Moreover,
the task is incomplete unless all paths are examined. In stark
contrast, our employment of automata-based model checking
ensures that all paths in graph GC are efficiently verified. At
the same time, the computational complexity only increases
linearly with the number of nodes in graph GC [49], thereby
demonstrating a far superior efficiency compared to runtime
verification adopted by [19].

IX. CONCLUSIONS

Our novel approach offers a promising solution to the
problem of specification-compliant motion planning for au-
tomated vehicles, paving the way to safer and more efficient
road traffic. By coupling set-based reachability analysis with
automata-based model checking, we identify collision-free and
specification-compliant driving corridors of the ego vehicle.
The driving corridors can be integrated into arbitrary motion
planners accepting position and velocity constraints to expe-
dite the generation of specification-compliant trajectories. In
contrast to existing works, our approach realizes exhaustive
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verification of all possible driving corridors of the ego vehicle
while accounting for its system dynamics and not sacrificing
real-time capability. Moreover, the generation of a product
graph enables detecting conflicting or non-satisfiable specifi-
cations before actually planning a trajectory. The experiments
show that our approach can be easily integrated into mo-
tion planners to efficiently obtain trajectories complying with
temporal specifications, especially when the solution space
is increasingly small. Although our computation of reachable
sets requires only a fraction of time of the planning horizon,
as demonstrated with benchmarking over 50 CommonRoad
scenarios, we will further improve the implementation so that
it can achieve even better run time.

ACKNOWLEDGMENT

This work was funded by the German Research Foundation
(DFG) under grant No. AL 1185/20-1, the German Federal
Ministry for Education and Research (BMBF) under grant
No. 03ZU1105KA (MCube), and Huawei Technologies under
grant No. YBN2020035151. The authors also appreciate the
fruitful collaboration with the project partners.

REFERENCES

[1] S. Aradi, “Survey of deep reinforcement learning for motion planning of
autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2,
pp. 740–759, 2020.

[2] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 1826–1848, 2019.
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