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Abstract— Lane keeping, as a fundamental functionality of
autonomous navigation, remains a challenging task for auto-
nomous robots and vehicles. Recently, spiking neural networks
(SNNs) have gained attention and research interest due to their
biological plausibility and application potential on neuromor-
phic processors. SNNs have also been successfully deployed on
robots to solve autonomous navigation problems. However, lane
keeping with a LiDAR sensor is still an open problem for SNNs.
In this work, we propose an end-to-end approach based on an
SNN to solve the lane-keeping problem using a 3D LiDAR sensor.
For the first time, we explore the capability of the proposed SNN
controller to perceive the LiDAR input and exploit the features
to perform reward-based feedback learning. To ensure the
effectiveness of the controller, the proposed method is deployed
and evaluated on two high-fidelity simulators. The experimental
results demonstrate the high applicability and performance in
different scenarios. Furthermore, experiments show that the
SNN is capable of performing lane keeping in a simulated
urban environment with only 18 control neurons and 32 synapse
connections, producing on average only a 17cm deviation from
lane center, which is 4.3% of the lane width.

I. INTRODUCTION

Autonomous navigation poses a formidable challenge for
autonomous robots and vehicles, which involves algorithms
for path planning, obstacle perception and avoidance. High
autonomy for robots hinges on precise perception based
on sensors to solve navigation tasks. To this end, various
sensors have been successfully deployed on robots, including
cameras, sonar sensors, and LiDARs. Among the utilized
sensors, LiDAR has the advantages of high accuracy, low
noise, and high robustness with luminance changes in the
environment, which make it a commonly used sensor for
autonomous driving [1]. Although the algorithm complexity
can increase due to the large data scale of LiDAR, LiDARs
have been extensively used for autonomous driving tasks
such as object detection and semantic segmentation [1], [2].

With the advent of deep representation learning and arti-
ficial neural networks, deep neural networks (DNNs) have
become a powerful end-to-end approach and framework
for solving autonomous navigation problems due to their
extensive applications and the capability of learning intricate
policies in high-dimensional environments. However, DNNs
that only rely on deep convolutional layers, devoid of tem-
poral information from sensor data, are often prone to noisy
and inaccurate input [3]. In addition, the high complexity
of DNNs engenders computationally expensive and power-
consuming training and inference, which makes them barely
suited to deployment on power-constrained vehicles.

In recent years, spiking neural networks (SNNs) have
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gained attention due to the feature that an SNN is able
to more closely mimic natural neural networks based on
the temporal synaptic model and spike-timing-dependent
plasticity. Besides, SNNs have the potential to be deployed
on neuromorphic processors, which enable the networks to
perform highly efficient computation [4]. Many studies have
investigated the efficacy of SNNs on autonomous navigation
tasks based on different sensors [5]–[7]. However, rare
research exists on the utilization of SNNs to process 3D
LiDAR sensor data for lane-keeping tasks. Mitchell et al. in
[5] and Shalumov et al. in [8] respectively proposed two
SNN models with 2D LiDARs to perform basic collision
avoidance. However, without reward-modulated feedback
learning, the models are not able to perform some advanced
tasks, such as lane keeping on a bidirectional road without
physical lane separators. Bing et al., in the previous work [9],
[10], proposed a SNN for the dynamic vision sensor (DVS)
to solve the lane-keeping problem. By utilizing the reward-
modulated spike-timing-dependent plasticity (R-STDP) rule,
this method performs feedback learning for the SNN [11].
Despite that, the method is not suited to unstructured point
clouds from LiDARs. In contrast to DVS, LiDAR presents
relatively high performance and robustness for lane feature
extraction in noisy and complex urban scenes [12], [13],
and LiDAR remains a more prevalent sensor on autonomous
vehicles. Hence, utilizing LiDAR can further improve the
performance and robustness of spike-based navigation. How-
ever, there is a dearth of research with regard to learning-
based lane keeping SNNs using LiDARs.

In this work, for the first time, we propose an end-to-
end approach to address the lane-keeping problem with a
3D LiDAR sensor based on a spiking neural network. The
primary contributions are distilled and listed as follows: First,
we propose an end-to-end learning-based SNN controller that
is suited and targeted for the LiDAR sensor. The proposed
SNN controller is capable of perceiving the LiDAR input
using the convolutional layers as the lane feature extractor
and exploiting the feature input to perform feedback learning
from the environment to solve the lane-keeping problem.
Second, to evaluate the effectiveness and performance of the
proposed method, the experimental environments and testing
scenarios are built on the high-fidelity simulators Cop-
peliaSim and CARLA, in which the proposed approach is
deployed and analyzed. The experimental results demonstrate
the high generalizability and performance of the proposed
method in different environments and scenarios. One of the
experiments shows that the SNN controller is capable of
performing lane-keeping in the CARLA urban scenario with
only 18 control neurons and 32 synapses.
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Fig. 1. Architecture of the lane-keeping system, which consists of the lane feature extractor and the SNN controller. The SNN controller perceives the
LiDAR input extracted by the convolutional lane feature extractor and utilizes the lane feature to infer the actuator output.

II. METHODOLOGY

The proposed lane-keeping system consists of two main
components, the lane feature extractor, and the SNN con-
troller, as shown in Fig. 1. The SNN controller perceives the
LiDAR sensor input that is extracted and transformed by the
lane feature extractor consisting of convolutional layers. The
input lane feature is utilized by the SNN controller to activate
and generate the actuator output to drive the robot.
A. Lane Feature Extractor

In this work, we adapted a convolutional network to
roughly segment the lane area from the LiDAR input to
generate the lane features. The perception results are encoded
to activate the sensory neurons of the SNN controller.

1) Point Cloud Data Preprocessing
The convolutional layers for lane feature extractor expects

a 2D input of a fixed size. To adapt the unstructured
point cloud into a fixed-size input format for the network,
preprocessing of the LiDAR point cloud is performed. The
serial point cloud data is transformed into a 2D top view
grid-based representation as the input of the lane feature
extractor network. The point cloud data is first filtered
based on the specified region of interest (ROI). For an ROI
that covers 15m for the front and 5m for the left and
right sides of the robot, the points (x, y, z)T , in the left-
handed coordinate system with the x-axis facing forward,
are retained if x ∈ [0, 15], y ∈ [−5, 5]. The filtered points
are then downsampled into a grid based on the grid size.
For a 0.1m grid size, the preprocessing generates the top
view representation with a size of 150× 100. The top view
representations for the point cloud data are subsequently
scaled to the input size of the lane feature extractor.

2) Convolutional Feature Extractor
The lane feature extractor is implemented based on a

lightweight fully convolutional network designed for lane
segmentation [13]. The original lane segmentation network
consists of 5 convolutional layers, 2 pooling layers, 7 dilated
convolutional layers, and an unpooling layer. These layers
compose the encoder, context module, and the decoder of
the network to perform the semantic segmentation task. In
order to extract a lane feature suited to the SNN controller,
the network is re-trained to detect only the lane boundary

The source code of the proposed networks and resources can be found
at: https://github.com/tum-in-zhuang/lidar-snn-navigation

features to strengthen the sparsity of the network output,
which subsequently facilitates the training of the SNN con-
troller. Moreover, to additionally reduce the network scale,
the original decoder module is removed, where the unpooling
layer is bypassed, and the encoder and context module are
retained from the trained model and connected with a pooling
layer to further shrink the output size.

To make use of the lane feature results and feed them into
the sensory neurons in the SNN-based controller, the continu-
ous values of the lane feature must be properly converted into
spikes. In the proposed method, frequency encoding based
on a Poisson spike generator [14] is employed to convert
the LiDAR rough lane feature output to spikes, which is
a common approach that has been successfully deployed
for dynamic vision sensors and camera sensors [11]. The
result from the lane feature extractor is first cropped based
on the receptive field of the sensory input of the SNN
controller, which can be defined as the ROI for the SNN
input. Subsequently, the continuous values of the lane feature
are connected and fed to the spike generators to generate
the sparse spikes for the lane boundary. In the process, a
many-to-one connection fashion for the connections from the
lane feature and spike generators is implemented in order to
perform downsampling for the lane feature and modulate the
spike frequency.
B. SNN Controller

The spiking neural network of the controller consists
of sensory neurons, two actuator neurons, and the fully
connected synapses between the sensory neurons and the
actuator neurons. The sensory neurons are Poisson neurons
that accept activation from the LiDAR perception input and
emit spike trains to the actuator neurons via the synapses.
The number of sensory neurons varies depending on the
LiDAR configuration and environment settings. The two
actuator neurons correspond to the left and right motors for a
differential drive model. To exploit the temporal information
from the sensor input, the leaky integrate-and-fire (LIF)
neuron model is set up for the actuator neurons.

1) Feedback Learning
In order to control the robot for autonomous navigation in

the environment, the parameters and weights of the synapse
connections in the SNN controller should be precisely tuned
and trained. In this work, a training method based on the
spike-timing-dependent plasticity (STDP) rule is utilized for
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Fig. 2. Experiment scenarios on CoppeliaSim

the SNN controller. The STDP learning rule, which is derived
from Hebbian learning theory, corresponds to the learning
and refinement mechanisms of neuronal circuits in the brain
and has been widely adopted in SNN training [15]. In the
training process, the R-STDP method that combines STDP
with the rewards from the environment is used to carry out
the feedback learning for the controller [16], [17], so that
the SNN can adjust the synapse weights actively based on
the environment feedback and learn the temporal associations
between the LiDAR sensor input and the proper speed output
for the lane-keeping task. For the simulation environment
scenarios involved in the experiments, the reward is de-
termined based on the deviations of the robot’s position
from the center and the orientation from the lane direction.
To drive the robot back to the center of the lane when it
deviates, one motor should suppress the other motor or in the
opposite way according to the deviation direction. Therefore,
the reward for the left actuator is the additive inverse of the
reward for the right actuator. The rewards are defined as
follows:

rl = −(γd · d+ γθ · v · tan θ),

rr = γd · d+ γθ · v · tan θ,
(1)

where d is the distance deviation from the lane center, θ is
the orientation deviation, and v is the current velocity of the
robot. The reward considers not only the position but also the
real-time heading direction of the robot, which can help the
controller react more promptly. When the robot deviates to
the left of the lane but it is heading right, back to the center,
the deviation rewards should be accordingly alleviated. In
the other case, the rewards and the turning tendency should
be further strengthened if the robot is heading left when it
has already deviated to the left. γd and γθ are the constants
to adjust the importance of the two kinds of deviations.

In the training process, the STDP rule updates the synapse

(a) Car agent in the scenario (b) Scenario roadmap

Fig. 3. Experiment scenarios on CARLA

weights based on the time difference between the presynapse
spike and the postsynapse spike. The update is given as:

τ = tpost − tpre,

STDP (τ) =

{
−A− eτ/τ− , τ < 0,

A+ e−τ/τ+ , τ ≥ 0,

(2)

where τ is the time difference between two spikes, A− and
A+ are the constant multipliers applied to the weight update,
and τ− and τ+ are the STDP time constant for weight
changes [18]. To take the rewards from the environment into
account, R-STDP first computes the eligibility trace c for the
synapse as follows:

ċ = −c/τc + STDP (τ) · δ(t− tpre/post) (3)
in which tpre/post is the time of the spike pairing, δ(t −
tpre/post) is the Dirac delta function that filters STDP (τ)
and step-increases the eligibility trace c [16]. Then the
synapse connection weights w are updated based on the
eligibility trace c and the rewards r:

ẇ = c · r (4)
2) Output Decoding
To drive the robot with the output from the SNN controller,

the output spikes from the actuator neurons must be decoded
into continuous motor speed values. In the decoding process,
the output spikes for an actuator neuron are measured, and
the spike rate nt is linearly scaled to the output velocity vt:

vt = γv · nt/nmax (5)
where nmax is the maximum possible spike rate and γv is
the constant multiplier to adjust the maximum output speed.
Subsequently, the output velocities are utilized to actuate
the differential wheeled robot agent in the environment.
To drive a normal four-wheel vehicle with the Ackermann
steering model that accepts a translational velocity and a
steering angle, a conversion from the differential velocities
to the linear velocity vlinear and steering angle α is further
performed as follows:

vlinear =
vl + vr

2
,

R =
L

2
· vl + vr
vr − vl

,

α = arctan
W

R

(6)

where vl and vr are the velocities of the left and right
actuators, R is the turning radius, and L and W are the track
width and wheelbase of the vehicle. With the conversion, the
SNN controller is able to navigate a car agent in a high-
fidelity simulator environment.
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Fig. 4. Scenario 1 on CoppeliaSim. Training process with 8× 8 sensory
neurons and 2 actuator neurons.

133 296 167 236 208 209 206 205
98 136 207 234 204 263 175 197

110 111 128 286 244 266 205 200
68 53 148 120 260 242 228 191

207 170 331 43 336 293 248 244
197 235 318 55 165 325 255 214
87 305 232 100 77 379 214 201
45 446 199 187 9 452 196 199

Left Weights
323 130 265 164 182 171 191 181
322 271 175 136 193 113 194 190
294 303 323 132 153 144 200 197
349 275 259 227 186 123 131 177
219 273 107 485 102 167 169 154
201 132 130 497 214 94 150 184
349 91 159 322 227 82 186 199
415 84 184 217 368 52 200 200

Right Weights

Fig. 5. Scenario 1 on CoppeliaSim. Learned synapse weights for 8 × 8
sensory neurons and 2 actuator neurons.

III. EXPERIMENTS

To evaluate the effectiveness of the proposed method, a
series of lane-keeping experiments in three scenarios on
two different simulators were carried out. In this section,
we elaborate on the experiment settings for simulators and
scenarios and analyze the experimental results to demonstrate
the applicability and performance of the proposed system.
A. Experimental Setup

In order to examine the performance and the capability
of the proposed approach to generalize for different en-
vironments, two distinct simulators, CoppeliaSim [19] and
CARLA [20], are utilized to carry out the experiments. In
the CoppeliaSim simulator, the proposed method is evaluated
on a differential wheeled Pioneer robot, as shown in Fig. 2a,
with a 16-channel 3D LiDAR installed at the front of the robot
agent. Besides, to further investigate the performance of the
proposed method in the urban area, the subsequent experi-
ments are performed in the high-fidelity simulator CARLA
which is targeted for autonomous driving simulation. While
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Fig. 6. Scenario 2 on CoppeliaSim. Training process with 8× 8 sensory
neurons and 2 actuator neurons.

130 11 217 470 199 114 477 203
202 102 106 153 171 156 381 162
270 72 152 77 430 182 457 173
143 8 93 132 225 283 425 205
164 14 251 259 102 265 257 308
131 92 317 284 146 151 402 321
163 170 328 266 170 88 434 245
165 17 414 245 166 19 533 223

Left Weights
268 469 136 105 185 285 57 216
207 376 198 211 176 157 85 210
104 290 201 513 135 137 136 240
174 330 363 189 61 94 63 162
252 56 238 102 353 135 173 132
332 290 49 126 242 217 65 125
285 282 52 131 229 362 31 149
227 333 43 146 240 340 11 171

Right Weights

Fig. 7. Scenario 2 on CoppeliaSim. Learned synapse weights for 8 × 8
sensory neurons and 2 actuator neurons.

a gap does exist between simulators and reality, studies
show that conducting training and testing in the high-fidelity
simulators provides models with good generalizability and
transferability to the real world [21]. The proposed lane-
keeping method is deployed on a car agent in the simulator
with a 16-channel 3D LiDAR. The LiDAR sensor is mounted
on the top of the vehicle to obtain the necessary point cloud
data around the agent. The training for the SNN controller
requires careful tuning for the parameters of the neurons
and synapse connections. In the experiments, we have set
the time step 50ms for SNN simulation, the parameters
A− = A+ = 1.0 and τ− = τ+ = 200.0 for STDP learning,
γd = 3.0, γθ = 5.0 for the reward feedback, and the synapse
weights were initialized at 200.0.

In the training process, the SNN controller is trained in
a fashion to navigate the robot agent to drive within the
lane area. In each training episode, the robot agent is first
placed in the starting position to begin the training. During
the navigation, the LiDAR point cloud data obtained from the
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Fig. 8. Urban scenario on CARLA. Training process with 8× 4 sensory
neurons and 2 actuator neurons.

132 135 8 30 175 70 469 218

93 77 38 294 203 0 397 239

229 104 68 561 146 1 195 199

175 40 66 386 194 103 763 329
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314 406 102 340 507 31 137 273

438 448 47 68 119 92 129 251

199 535 28 11 186 114 65 75

239 394 116 86 44 7 64 13
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Fig. 9. Urban scenario on CARLA. Learned synapse weights for 8 × 4
sensory neurons and 2 actuator neurons after the training iterations.

simulator are fed into the lane feature extractor network to
generate the sensory input for the SNN controller. The spikes
from the SNN controller are detected and converted into the
speed output, which is passed to the simulator to actuate the
robot agent. In each simulation step, to perform the feedback
learning for the SNN controller, the robot position relative
to the lane center is computed to update the rewards for
the R-STDP training. Once the robot drives away from the
lane area, the episode fails, and the robot agent is reset to the
starting point to start a new training episode. The experiment
scenarios are designed to be complete loops allowing the
robot agent to return to the starting point to conclude
the training episode as a successful training iteration. The
training process continues to perform the feedback learning
for the controller until the robot agent stably completes loops
and the synapse weights remain steady.
B. Experiments on CoppeliaSim

We first conduct experiments on CoppeliaSim. To evaluate
the performance of the proposed method in different scenario
settings, two scenarios with different roadmaps are set up
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Fig. 10. Urban scenario on CARLA. Training process with 4× 4 sensory
neurons and 2 actuator neurons.

255 769 306 0

730 2024 179 151

474 1203 100 509

420 1 164 396

Left Weights

458 486 438 287

946 202 11 406

76 322 1702 818

60 265 812 88

Right Weights

Fig. 11. Urban scenario on CARLA. Learned synapse weights for 4× 4
sensory neurons and 2 actuator neurons after the training iterations.

and utilized in the CoppeliaSim experiments, as shown in
Fig. 2. In the experiments, we train the SNN controller with
8 × 8 sensory input neurons and set the receptive field for
the sensory input to x ∈ [0, 5], y ∈ [−2, 2].

Scenario 1 contains a loop with bidirectional roads and
curbs at the sides. The 3D LiDAR sensor is installed at the
front of the robot to reduce the blind spot of the sensor.
During the experiments, the robot agent is trained to drive
within the right lane. The lane width is 0.5m. If the robot
agent deviates from the lane center by more than 0.25m, it
will be reset to one of the starting points. In the experiments,
two starting points are chosen alternately to train the robot
for both lanes. Fig. 4 shows the training process of approxi-
mately 17, 500 simulation steps for scenario 1. In the figure,
the distance traveled for each training iteration is shown on
the top, which can indicate the training progress over the
simulation steps. During the beginning of 4, 000 simulation
steps, the robot agent mostly resets around 5m. Due to the
fact that the synapse weights are evenly initialized with a
constant value, the robot agent is not able to make the first



TABLE I
PERFORMANCE COMPARISON WITH DQN

Training
steps

Deviation
Neurons

Inference
Mean RMSE Time Energy

DQN
Copp. 1 80,400 0.022m 0.027m

715
67ms CPU: 166J

GPU: 5.79JCopp. 2 97,500 0.071m 0.088m
CARLA 136,500 0.438m 0.665m 1027

SNN

Copp. 1 10,000 0.025m 0.036m
66

50ms
Loihi:

1.87×10-3J
Copp. 2 12,500 0.042m 0.052m

CARLA 8x4 11,200 0.148m 0.180m 34
CARLA 4x4 33,500 0.166m 0.202m 18

turn at 5m in the beginning. After 8, 000 simulation steps of
learning, the robot starts to finish the complete loop for both
lanes. The weight curves show the learning process for the
synapses over the simulation steps. The weights are updated
gradually and remain stable after 10, 000 steps. Fig. 5 shows
the learned weights after approximately 17, 500 steps.

In order to investigate the capability of the proposed
method to adapt to different environments, the experiments
are also carried out in scenario 2. As shown in Fig. 2c,
scenario 2 is a one-way loop in the shape of figure eight,
with an intersection in the center. The training for sce-
nario 2 is performed with the same parameter settings as
scenario 1. Fig. 6 illustrates the learning process of approx-
imately 17, 500 steps. In the beginning, resetting happens
repeatedly at around 2m, and the synapse weights are
gradually updated over the simulation steps. At around step
6, 000, the SNN controller starts to turn the robot agent
properly and is able to navigate the robot agent in the
scenario stably after 12, 500 simulation steps. Fig. 7 shows
the learned synapse weights after the approximately 17, 500
simulation steps. Interestingly, the robot agent can freely pass
the intersection in the center. One explanation is that the open
area with no boundary in the intersection will not trigger the
sensory spikes to further unevenly activate the output actuator
neurons. Hence, the robot agent will continue to follow the
prior control and go straight ahead to pass the intersection.

For the purpose of comparative evaluation for the SNN
controller, we additionally conduct aforementioned exper-
iments based on a deep Q-learning network (DQN). The
implemented DQN is composed of three fully-connected
dense layers, a 32x16 input layer, a hidden layer with 200
neurons, an output layer with 3 neurons, and 103,000 con-
nections between the layers. The DQN controller is trained
and tested with the same scenario settings and sensory input.
As shown in TABLE I, the DQN controller requires eight
times more training steps than the SNN controller to achieve
comparable results in scenario 1 and scenario 2. With fewer
neurons and connections, SNN outperforms DQN in scenario
2 in terms of deviation errors, demonstrating the superior
generalization and adaptability of the proposed method to
different scenarios compared to the DQN controller.

The experiments on CoppeliaSim demonstrate that the
proposed SNN controller is capable of learning the control
policy from the sensory input to perform lane-keeping, and
presents high efficiency and generalizability in two scenarios.
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Fig. 12. Urban scenario on CARLA. Mean and standard deviation of lane
keeping errors in testing. The errors remain low and slightly fluctuate when
the vehicle turns at right-angle bends.

C. Experiments on CARLA
The experiments conducted on CARLA aim to analyze and

demonstrate the applicability of the proposed method in the
urban environment. In the experiments, the SNN controller
is trained to navigate a vehicle within the lane area in the
specified roadmap, as shown in Fig. 3, where the starting
point is marked in red. The γv parameter for the velocity
control is set to 3.0. The travel distance to complete a
successful training iteration in the scenario is 220m. The
lane width of the scenario is 4m, which is taken into account
to reset a deviating car agent. The training iteration is reset
if the agent is 2m away from the lane center or a collision
is detected. We carried out experiments on CARLA with
different parameter settings to investigate the performance
of different numbers of sensory neurons.

We first evaluate the SNN controller with 8 × 4 sensory
input neurons. In this setting, the receptive field for the
sensory input is set to x ∈ [0, 10], y ∈ [−5, 5]. The
SNN controller has been trained for 11, 200 iterations for
the experiment setting. Fig. 8 illustrates the training process
over the 11, 200 simulation steps. As shown in the graph, in
the beginning, the training extensively resets around 20m,
along with the dramatic changes in the synapse weights.
After 500 simulation steps, the reset distance increases to
around 70m. The SNN controller can successfully finish a
complete navigation iteration in the scenario after around
1, 000 training steps. In the following iterations, the synapse
weights are reinforced or adjusted based on the failures
at simulation steps 3, 700 and 5, 200 approximately. Fig. 9
shows the synapse weights of the SNN controller after the
11, 200 training steps. Fig. 12 shows the deviations from lane
center over distance traveled in each loop in the testing runs.
The mean error and root-mean-square error (RMSE) of lane
deviations in testing are 0.148m and 0.180m, respectively,
for 8×4 sensory neurons, only around 4% of the lane width.

In an attempt to reduce the involved neurons in the SNN
controller, we conducted experiments with 4 × 4 sensory
neurons in the same scenario on CARLA. Due to fewer
sensory neurons, the receptive field for the sensory input is
adjusted to x ∈ [0, 7], y ∈ [−3, 3]. As illustrated in Fig. 10,
the SNN controller requires more training steps to achieve a
stable state in comparison with the case of 8 × 4 sensory
neurons. The SNN controller starts to successfully finish
a complete navigation iteration after around 3, 000 training
steps. During the simulation steps, approximately from 8, 000



to 30, 000, the synapse weights are adjusted based on the
failures. The weights remain stable after 30, 000 training
steps. Fig. 11 shows the learned weights after the 33, 500
simulation steps. As shown in Fig. 12, the deviations from
lane center are slightly higher than that of 8 × 4 sensory
neurons when the vehicle turns at right-angle bends. The
mean error and RMSE of lane deviations in testing are
0.166m and 0.202m, respectively. Due to the decline of the
receptive field for the sensory input, compared with 8 × 4
sensory neurons, the reinforced connections are different,
which indicate SNN learned the weights from exploiting
different associations from lane perception to turning actions.

Comparative experiments were also carried out on the
high-fidelity urban scenario for LiDAR-based DQN as well as
the DVS-based SNN method [9]. However, the DVS-based
controller failed to complete proper lane-keeping due to the
high scene complexity. We only present the comparative
results of LiDAR-DQN, which requires an enlarged hidden
layer with 512 neurons to achieve proper navigation. As
illustrated in TABLE I, with 8 × 4 and 4 × 4 input, the
training steps required by the proposed SNN controller are
only 8.2% and 24.5%, respectively, compared with the DQN
controller. In spite of fewer involved neurons, the SNN
controller achieves superior lane-keeping accuracy, showing
only 33.8% and 37.9% of mean deviation error by the DQN
controller, for 8 × 4 and 4 × 4 input, respectively. The
experiments illustrate superiority of the SNN controller in
terms of training efficiency and lane-keeping accuracy with
limited control neurons and synapses, and demonstrate the
high applicability in the urban scenario.

In addition, in order to further investigate the energy
efficiency of the proposed spike-based system, we estimate
the approximate inference energy consumption with the
Nengo simulator [22] based on the number of the involved
operations of the modules. Listed in the last column in
TABLE I, we evaluate the energy consumption per inference
for the DQN-based solution on CPU and GPU as well as
the proposed SNN-based system on the Loihi neuromorphic
processor. The results exhibit the tremendous advantage and
significant potential of the spike-based lane-keeping system
in regard to energy efficiency on neuromorphic hardware.

IV. CONCLUSION

In this work, we propose an end-to-end approach to
address the lane-keeping problem using a 3D LiDAR sensor
based on a spiking neural network. The proposed SNN con-
troller perceives the LiDAR input using the convolutional lane
feature extractor and exploits the feature input to perform
feedback learning from the environment to solve the lane-
keeping problem. The experimental environments and testing
scenarios are built and set up on two high-fidelity simula-
tors. The experimental results on CoppeliaSim and CARLA
demonstrate the high generalizability and performance of the
proposed method in different environments and scenarios.
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