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Abstract

Robot programming is often still reserved for experts because it requires knowledge
of coding, kinematics, and dynamics. This prevents novice users such as production
workers from easily using robots and programming them for new tasks. However, fast
reconfigurability is required to increase flexibility in production planning, allowing au-
tomation for small lot sizes and coping with market uncertainties. Therefore, intuitive
programming solutions are needed to revolutionize how we program robots today. Pro-
gramming interfaces for collaborative robots have already moved towards the concept
of robot skills, which are reusable building blocks with a clear meaning to the human
operator. However, such building blocks are often constrained to manipulation actions
such as pick and place and do not tackle contact-rich problems requiring interaction
forces. This thesis introduces the concept of contact skills, which implement robot
capabilities to interact with the human and the environment. Intuitive programming
interfaces then use these contact skills, allowing more sophisticated robot behaviors by
incorporating the force-sensing capabilities of the robot. The main contribution of this
thesis is to simplify robot programming for end-users and enable robots to learn from
human demonstrations as an intuitive way of transporting knowledge between humans
and robots. Kinesthetic teaching is the primary input modality to intuitively program
single skills, sequences of skills, and multiple solutions for task variants. Further, inter-
active programming schemes allow the teaching of robotic decision-making and recovery
behaviors by generating robot programs as task graphs. The presented methods seg-
ment and classify actions from human demonstrations, termed skill recognition. This
approach allows incrementally building and refining task representations that display
the robot’s knowledge in a human-understandable form. The identified skills can be au-
tomatically parameterized and adaptively sequenced to be executed on the robot. The
proposed methods in this thesis are validated in real robotics experiments and various
user studies. The results show that the proposed contact skills are interpretable by
both humans and robots and can be recognized online during kinesthetic teaching while
the user receives immediate feedback. Finally, a unified framework is proposed that
combines the automatic skill recognition and parameterization approach with existing
manual programming methods. An ontology serves as central element to bundle the
knowledge.
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Zusammenfassung

Die Programmierung von Robotern ist häufig noch Experten vorbehalten, da sie Kennt-
nisse über Codierung, Kinematik und Dynamik erfordert. Dies hindert unerfahrene Be-
nutzer daran, Roboter für eine neue Aufgabe zu programmieren um die Flexibilität
in der Produktionsplanung zu erhöhen, die Automatisierung für kleine Losgrößen zu
ermöglichen und mit Marktunsicherheiten umzugehen. Daher sind intuitive Program-
mierlösungen eine Möglichkeit, die Art und Weise der Roboterprogrammierung zu re-
volutionieren. Programmierschnittstellen für kollaborierende Roboter benutzen bereits
sogenannte Roboterfähigkeiten, die wiederverwendbare Bausteine darstellen und für
den menschlichen Bediener klar verständlich sind. Diese Bausteine beschränken sich
jedoch oft auf die Manipulation von Objekten wie das Aufnehmen und Ablegen von
Gegenständen und gehen nicht auf kontaktreiche Probleme ein, die Interaktionskräfte
erfordern. In dieser Arbeit wird das Konzept der Kontaktfähigkeiten eingeführt, die
Roboterverhalten zur Interaktion mit dem Menschen und der Umgebung implemen-
tieren. Diese Kontaktfähigkeiten werden dann in intuitiven Programmierschnittstellen
verwendet, die sowohl den Bewegungs- als auch den Kraftbereich einbeziehen und da-
durch anspruchsvollere Verhaltensweisen ermöglichen. Es werden neuartige Algorithmen
für das Erlernen kraftbasierter Roboterfähigkeiten vorgeschlagen, die für Systeme mit
eingeschränkter visueller Wahrnehmung von entscheidender Bedeutung sind. Der Haupt-
beitrag dieser Arbeit ist die Vereinfachung der Roboterprogrammierung für den Endbe-
nutzer mit Hilfe von menschlichen Demonstrationen um auf intuitive Weise das Wissen
vom Menschen auf den Roboter zu übertragen. Intuitives Programmieren wird vor allem
durch das Vormachen von einzelnen Fähigkeiten oder Sequenzen von Fähigkeiten er-
reicht. Darüber hinaus ermöglichen interaktive Programmierverfahren das Erlernen von
Entscheidungs- und Fehlerbehebungsverhalten des Roboters durch die Generierung von
verzweigten Ablaufplänen. Die vorgestellten Methoden segmentieren und klassifizieren
Aktionen aus menschlichen Demonstrationen, was als Fähigkeitserkennung bezeichnet
wird. Dies ermöglicht den schrittweisen Aufbau und die Verfeinerung von Ablaufplänen,
die das Wissen des Roboters in einer für den Menschen verständlichen Form darstellen.
Darüber hinaus können die identifizierten Fähigkeiten automatisch parametrisiert und
bei der Ausführung adaptiv sequenziert werden. Die vorgeschlagenen Methoden werden
in realen Roboterexperimenten und verschiedenen Benutzerstudien validiert. Die Ergeb-
nisse zeigen, dass die vorgeschlagenen Kontaktfähigkeiten sowohl von Menschen als auch
von Robotern interpretiert werden können. Sie können während der Demonstrations-
phase erkannt werden, wobei der Benutzer sofortiges Feedback erhält. Schließlich wird
ein einheitlicher Ansatz vorgeschlagen, der die automatische Erkennung und Parametri-
sierung von Fähigkeiten mit bestehenden manuellen Programmiermethoden kombiniert.
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Zusammenfassung

Dabei wird eine Ontologie als zentrales Element zur Bündelung des Wissens verwendet.
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1 Introduction

The first known tool usage by the genus Homo, an ancient of the Homo Sapiens, is dated
back 2.6 million years ago when large quantities of stone tools were found in Tanzania [1].
Through millennia of human tool usage, there must have been a social form of knowledge
sharing, which improved the tools and how we use them. Social learning theory describes
one of these methods as observational learning, where simply one subject learns by
observing the other [2]. Robotics researchers have long tried to employ this principle of
human knowledge transfer in the robot learning domain. Here, a well-known concept is
Learning from Demonstration (LfD), shown in early works that use teleoperation [3, 4],
visual observation of the human [5], or kinesthetic teaching [6]. Similar to LfD, PbD is a
well-known concept that describes how an end-user programs a robot by demonstrating
the required strategy or behavior. The research community currently aims to use the
concept of PbD to simplify robot programming for inexperienced users.

Another important concept of robot programming uses so-called robot skills, which
implement a robot capability that solves a specific problem in the physical world. This
concept has two advantages. First, it enables the reuse of behaviors among different tasks
by parameterizing these skills. Second, it allows the representation of robot knowledge
in a legible way to the end-user.

Given these two enablers, PbD and robot skills, they can be combined to develop
new learning algorithms. Skill learning from demonstration has been shown in various
applications using state variables such as position, orientation, velocities, and kinematics.
These are located under the term motion domain. However, since a human naturally
exploits forces and tactile feedback, contact-based interactions deserve more attention
in today’s research landscape. The state variables of force and torque are located under
the term force domain.

This thesis proposes new algorithms and frameworks to recognize and learn robotic
skills from human demonstrations, putting a major focus on the force domain beside
the motion domain. Such force-based skills are defined as contact skills in this thesis.
They are required by various physical actions that both humans and robots can per-
form individually. Exemplarily, a human uses the sense of touch, also known as tactile
feedback, for manipulation tasks as a natural enhancement besides the visual and propri-
oceptive input. The tactile feedback becomes even more critical if the visual perception
is impaired, e.g., due to poor lighting conditions or occlusion. Similarly, a robot can be
equipped with force sensing, visual perception, and proprioception and then be employed
in manipulation tasks. Analogously to the human scenario, the vision of the robot could
be impaired, which raises the importance of force sensing.
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The previous example illustrated the importance of incorporating the force domain into
the learning problem of robot skills. Furthermore, this thesis proposes that the knowl-
edge transfer from a human to a robot skill is achieved in two steps:

1. Recognition of the robot skill from a human demonstration.

2. Parameterization of the robot skill by automatic parameter extraction from the
human demonstration.

The presented approaches in this thesis allow an inexperienced user to program com-
plete robot tasks from scratch, summarized as task definition. In the following, possible
task definition methods are introduced.

1.1 Overview of Task Definition Methods

Definition 1 A task is governed by fixed goals that are reached with a parameterized
behavior of the robot.

While a task can be adaptive, e.g., picking object A from varying locations, its goal and
parameters are always fixed, e.g., placing the picked object A on top of object B.

This thesis focuses on a scenario where a single user programs a robot by demonstra-
tion to solve a given task. This process is termed task definition and consists of three
phases:

1. analysis of inputs, i.e., required resources, robot capabilities, and task goals;

2. human selection of a task definition method considering the user’s level of experi-
ence; and

3. usage of a task definition method to create a task representation.

Fig.1.1 gives an overview of established task definition workflows that connect different
inputs, task definition methods, and possible task representations. The inputs in Fig.1.1
(lefts) are goals, resources, and demonstrations. A goal formulation is mandatory in
task planning and can be achieved with a symbolic description of the final state of an
environment. Besides that, the resources need to be described that a task planner can
use to reach the specified goal, for instance, the parts that shall be manipulated. One
or multiple user demonstrations serve as input for PbD or collaborative programming.

The task definition methods in Fig.1.1 (middle) are manual programming, task plan-
ning, programming by demonstration (PbD), and collaborative programming. From top
to bottom, domain experts can implement a new task through manual programming.
However, this requires expert knowledge in two fields: First, in the used programming
language, the user must be able to write programs using g-code, robot-specific dialects,
or high-level languages such as Python, C++, or C#. Second, in the software ecosys-
tem, the user needs to know the application programming interface or the capabilities
of a software library and decide how specific software functions are used. Alternatively,
also skill sequences or task graphs can be programmed manually supported by graphical
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Figure 1.1: The task definition process connects different inputs with task definition methods
that create possible task representations.

programming environments. Task planning algorithms enable the automatic definition
of a task plan, usually represented as a sequence of actions, referring to the skill sequence
in Fig. 1.1. A limitation from an end-user’s perspective is that the task goals and re-
sources need to be explicitly defined, which is a difficult task that might require expert
knowledge. Furthermore, it is known that planned tasks do not perform well in practical
applications due to the symbol grounding problem. Finally, end-users have the option to
define a task by PbD (Chapters 4, 5 and 6) or collaborative programming (Chapter 7).
The latter allows the incremental extension of a task graph, enabling decision-making
or recovery behaviors (Chapter 7).

The task representations in Fig.1.1 (right) are program, skill sequence, and task graph.
A manually coded robot program can encode dexterous robot behaviors such as decision-
making, reactive behaviors, or synchronization with other agents. However, it is not
intuitive to read and to adapt for end-users. A skill sequence instead represents explicitly
the intended actions of the robot. Each skill encapsulates several hardware functions
and, therefore, hides the internal complexity from the end-user. While a skill sequence
is limited to a sequential execution flow, a task graph can encode more dexterous robot
behaviors, for instance, decision-making or error recovery. Although its representation
is more complex than a skill sequence, it is well-interpretable by end-users since the
individual building blocks remain legible. Therefore, a task graph is assumed to be a
good trade-off between legibility and allowed complexity of the robot behavior it can
implement.

Indeed, the underlying skills used in PbD or collaborative programming use some
implementation in one of the previously mentioned programming languages. However,

3



1 Introduction

their code is hidden from the end-user, which reduces complexity and gains explainability.
PbD can also be combined with other paradigms such as human feedback and transfer
learning [7], while this thesis focuses only on PbD and human feedback in the form of
additional demonstrations, used to extend the robot’s knowledge.

1.2 Motivation of Robot Skills

This work assumes that a system is equipped with previously defined robot skills. Two
different perspectives motivate the usage of the concept of skills. From the human per-
spective, researchers suggest that humans structure their learned movement capabilities
into reusable blocks called motor skills [8, 9]. Due to the separation of learned motions
into these building blocks, humans can reuse and adapt the learned patterns for similar
tasks without retraining them. More recently, it has been shown that such skills are
developed over the whole lifespan of a human [10], which is an appreciated feature if
transported to the robotics domain.

From the technical perspective, this work states four main motivations for using skills.
First, the system designer is able to implement a skill as a function, which has parameter-
izable arguments for a specific task. Parameterization allows adaptation and reusability
of the same skill in different environments. Second, an end-user can reuse existing build-
ing blocks when a new task needs to be defined. With a known set of skills, the user can
learn the system’s capabilities by looking only at an interpretable representation of the
robot actions. The skills offered by a robotic system can be loosely related to human
skills or actions. This relation is beneficial when a user tries to understand or modify
an existing task representation consisting of a sequence of skills with legible names, for
instance, pick, move, place, press. Third, a robot execution system that performs skills
can run these as delimited execution blocks. This structuring helps to start, stop, pause,
or resume the operation at known states, e.g., between two skills. Fourth, to manage the
complexity within skills, the underlying implementation, specific robot controller param-
eters, or only machine-readable data are hidden from the end-user, who has potentially
no experience in robotics. This encapsulation of the functionality simplifies the usage
of skills for end-users since the complexity of the program code is hidden by the system
designer, who needs to ensure that only human-readable and relevant parameters are
visible from the outside.

This thesis puts a high emphasis on force-based robot skills. It is assumed that their
definition and parameterization are more complex to achieve for end-users than pure
motion or manipulation skills such as move, pick, and place. Compared to manual
programming, where code is often repeatedly implemented for every new task, skills
use existing building blocks such as control algorithms and strategies, which can be
parameterized for the context in which they are used. From the end-user’s perspective,
a skill is a self-contained entity with an explainable behavior described by its name.
From the outside, a skill exposes only its parameters as a human-readable interface.

An essential part of this work is defining robot skills that both humans and robots
can interpret. From the human perspective, this is mainly achieved by legible skill
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labels, which provide an understanding of what the actual skill intends to do. From
the robot perspective, a skill shall be interpretable so that its characteristics can be
recognized from a human demonstration. Interpretability does not necessarily require
human interpretable data that is describing the characteristics of a skill. Still, it is
required that an algorithm, such as a classifier, can predict the correct skill with sufficient
accuracy.

1.3 Definition of a Robot Skill

Definition 2 A robot skill implements a robot capability and represents it as a
generic building block for robot programs that can be parameterized for different
contexts.

A skill can have multiple inputs, termed parameters, and has at least one or multiple
outputs. A parameter has a name and a value, allowing to set default parameter values.
An output has a name and a value, where at least one output specifies the outcome of
a skill. A skill writes to the output once it terminates. Additionally, outputs can be
connected to parameters of other skills.

A skill can be seen as a building block of a robot program that implements a policy
to reach a specific goal. Task-specific parameter values passed to the skill parameterize
this policy. More flexibly, a skill could even employ multiple strategies or policies to
reach the same goal, where a selection could be made based on the passed parameters.
In literature, skills are often conceptualized with pre- and postconditions, also called
effects. This conceptualization is reasonable and necessary in symbolic reasoning or task
planning problems. However, this thesis does not require the modeling of skill-specific
pre- and postconditions per se in the context of PbD. This additional specification is
only needed if PbD is combined with symbolic reasoning. Otherwise, trivial conditions
that describe if a skill is running or terminated are also sufficient. Figure 1.2 shows a
schema of how skills can be implemented in a hardware-agnostic manner. The following
sections refer also to this concept.

1.3.1 Skill Granularity

Skills can be defined in different granularities, describing the intended scope of their
actions that form a reusable building block for different robot programs. For example, a
pick skill can be in charge of approaching and grasping objects, whereas a pick and place
skill can handle picking and placing objects in one go. If the granularity is fine, skills can
be reused and assembled more flexibly to define tasks. However, if the granularity is too
fine, handling them for the end-user might be cumbersome, and the explainability might
decrease. If the granularity is too coarse, the reusability and generalization capability of
a skill might be decreased, allowing just to handle very specific situations. Furthermore,
the explainability decreases again if it is no longer possible for the end-user to understand
what the skill does because of its internal complexity. The question about the granularity
is not yet consistently answered considering existing literature about robotic actions [11]
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cartesian_move(x=0.1, y=0.2, ...)

touch(object_id=object_A, place_id=place_123)

robot.cart_ipol.start(x=0.1, y=0.2, ...)

Skill

Primitive A Primitive B

high level: 
hardware agnostic

low level: 
hardware specific

robot interface

agnostic primitive interface

agnostic skill interface

...

Figure 1.2: A skill can be composed of multiple primitives. A skill uses a hardware-agnostic in-
terface towards a higher-level control instance (top). Its primitives use a hardware-
agnostic interface within the skill and a hardware-specific interface towards the low
level (bottom), connecting them to the robotic system.

and no consensus exists yet in this area. There also exist hierarchical concepts of skills
that can be composed of other skills [12]. This work follows the structure surveyed
in [13], where a skill comprises a single layer, consisting of one to many primitives that
command the robotic hardware or sense the environment.

1.3.2 Skill Composition by Primitives

Primitives are defined as basic robot capabilities, which connect hardware-agnostic func-
tionality with hardware-specific interfaces (Fig. 1.2). The term agnostic describes that
the skill is independent from hardware-specific assumptions. Primitives are also termed
atomic functions [14], hardware functions, or elementary actions as explored in [13]. An
exemplary primitive is a point-to-point interpolation in Cartesian space, supported by
most modern robot control architectures. Although the expected outcome can be consid-
ered hardware agnostic, i.e., the robot shall move its end-effector linearly from point A
to point B, the communication with the robotic system is often hardware-specific. Nowa-
days, system integrators often have to deal with robot-specific and proprietary interfaces
for different robot types and implement new primitives and skills in a hardware-specific
way. However, some progress can be seen in the standardization of hardware inter-
faces, considering real-time control such as OPC UA over Time Sensitive Networking
(TSN) [15]. For high flexibility and scalability, primitives could implement a hardware-
agnostic interface visible to the skills.

1.4 Teaching Data Sources

Programming by Demonstration, Learning from Demonstration, or Imitation Learning
all refer to extracting knowledge from the user by observing a task demonstration. The
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common goal is to learn an execution behavior that solves a task. Compared to au-
tonomous or reinforcement learning approaches, learning in the presence of a human
teacher can speed up the task definition process because the user can account for excep-
tional task constraints that a system designer did not foresee. Since the research domain
of glspbd considers a variety of data sources, the most relevant ones in the context of
this thesis are introduced and summarized at the end of this section.

1.4.1 Kinesthetic Teaching

Kinesthetic teaching is a widespread methodology in the LfD domain. Usually, a human
teacher physically interacts with a robot by exchange of forces. Typically, the human
holds the robot at a single or multiple locations at the end-effector. Furthermore, the
human can interact with additional parts of the robot, for instance, close to the elbow
joint, to configure the null space of the robot [16–18]. During the teaching process, robots
are usually controlled in a compliant or free-floating manner such that the controller
compensates for their weight and the payload. This control mode is known as gravity
compensation or zero-gravity control. When considering a robot’s capability, a robot is
described to be backdrivable. This capability can be achieved mainly by two different
means [19]. Firstly, admittance control uses an external force measurement to regulate
the motion when facing external forces caused by the user. Usually, a velocity reference
is generated by measuring the external force on the robot [20]. Secondly, impedance
control measures the deviation from an equilibrium point to regulate a force [21], which
offers a more sensitive control mode with smaller interaction forces between human and
robot. The controller is usually parameterized such that it behaves like a spring mass
damper system with zero stiffness. This system enables a free-floating robot arm that
holds its weight and, if desired, the weight of the payload.

A system used for PbD usually records the Cartesian pose and the Cartesian forces
and torques at the end-effector. Force and torque are collectively termed as wrench in
the following. Furthermore, a system can record the joint positions and, if applicable,
end-effector states. These states can be the gripper finger opening width, grasp forces
between gripper fingers, and grasp status, which describes the presence of an object in
the gripper.

For torque-controlled robots equipped with joint torque sensors, it is possible to mea-
sure the individual joint torques and estimate the Cartesian wrench at the TCP or any
known contact point at the tool or robot structure.

A challenge with kinesthetic teaching is recording forces at the end-effector, which
requires an additional FTS during the teaching phase. For clarification, there are two
different situations with each two cases that can be distinguished. In the first situation, it
is assumed that the end-effector is in free motion as shown in Fig. 1.3 on the left. In case
1, a human interacts with the robot structure before an additional FTS, considering the
kinematic chain in green. The interaction force fT equals the force fdyn caused by the
robot inertia. The measured force at the FTS fFT is subject to the tool inertia, which can
be canceled out if the tool inertia, gravity vector, and current acceleration are known. In
a state of constant velocity and without touching the end-effector, fFT approaches zero.
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end effector in free motion end effector in contact

F/T sensor
F/T sensor

Figure 1.3: Force transmission flows depicted as arrows for different contact situations during a
gravity compensation control mode. Left: In the free motion case, no static forces
act on the end-effector when interacting with the robot at the point of the green
hand. Interacting at the point of the red hand causes the FTS to measure the
forces caused by the robot dynamics. Right: In the contact case with a closed-
loop kinematic chain, forces at the end-effector can be measured by the FTS when
interacting with the robot at the point of the green hand. Instead, no human-
induced contact forces can be measured at the end-effector when interacting with
the robot at the point of the red hand.

In case 2, a human interacts with the robot structure after an additional FTS at the
end-effector, considering the kinematic chain in red. Now, the force at the end-effector
fEE equals the robot’s dynamics force fdyn. Additionally, the force measured by the
FTS approximates the robot’s dynamics force fdyn.

In the second situation, it is assumed that the end-effector is in contact with the en-
vironment as shown in Fig. 1.3 on the right. Once the end-effector makes contact with
the environment, traction can be established between the human hand and the environ-
ment via the end-effector. In case 1, a human interacts with the robot structure before
an additional FTS, considering the kinematic chain in green. The interaction force fT
approximates the end-effector force fEE. The FTS measures now the end-effector force,
i.e. fFT = fEE. In case 2, a human interacts with the robot structure after an additional
FTS at the end-effector, considering the kinematic chain in red. The interaction force
fT equals the end-effector force fEE] between end-effector and environment. However,
the FTS force fFT approaches zero because the kinematic structure between the sensor
and robot base is free-floating due to the gravity compensation control.

A further challenge is to ensure a safe interaction between humans and robots. Most
works consider separated teaching and execution phases where the user interacts with the
robot in the first phase, and the robot executes an autonomous behavior in the second
phase. Ideally, a user should be allowed to physically interact with or correct the robot
at any time, which requires a detection mechanism when and how this happens [22].
Overall, important interaction types to be considered are intended, and unintended
interactions. Interaction contact points can be found at the manipulated object, tool,
and robot body (Fig. 1.4). At the same time, the robot tool can be in contact with the
environment or not.
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(a) Interacting with tool (b) Interacting with gripper

(c) Unintended interaction /
collision

(d) Interacting with robot
body

Figure 1.4: Four different interaction types between human and robot in kinesthetic teaching.
In all cases, the tool can be in contact with the environment or not.
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(a) Task demosntration by
hand pose.

(b) Kinematic mapping be-
tween hand and gripper.

(c) Reproduction of the task
on a simulated robot.

Figure 1.5: A task definition system that uses hand pose demonstrations (left). The hand co-
ordinate system is constructed from the three points I, B, T forming the kinematic
structure of a two finger gripper (middle). This kinematic mapping allows to re-
produce the task on a robot in simulation (right).

1.4.2 Hand Pose

Intuitively, humans learn from each other when they use their hands in everyday manipu-
lation tasks. PbD aims to transfer this learning concept to robots. Therefore, techniques
to observe the human hand have emerged, known as hand pose estimation [23], and hand
pose tracking [24]. These techniques allows to estimate the position of individual fin-
ger joints and links, which enables the teacher to transfer specific grasp configurations
to a robotic system. Usually, a deep neural network generalizes the estimation among
different biometric hand shapes, lighting conditions, backgrounds, and even occlusions
caused by objects in the observed hand [25].

Relevant data from the hand pose estimation consists of each finger’s joint and link
position, obtained periodically by tracking the hand with a depth camera and feeding
the image frames into a neural network. The estimated finger poses can then be used in
the respective application to learn from a human strategy and to parameterize existing
robot skills [26]. Additional data from a human hand and arm are biosignals obtained
by force- and electromyography [27] or by optical myography [28], which allows a system
to learn from hand or finger gestures or muscle activation patterns. Figure 1.5 shows an
approach that maps a simplified kinematic structure onto a human hand and how it can
be used to command a two-finger robot gripper [26].

1.4.3 Teaching Device

Teaching devices are systems that a human demonstrator can hold to transfer motions
and forces to a learning algorithm or directly to a robotic system. They can be manually
[29] or actively actuated to operate a gripper as an end-effector. Figure 1.6 shows a
teaching tool developed at the German Aerospace Center that can actively operate a
gripper. It connects an optically tracked grasping handle with an FTS and a flange to
attach different tools, such as a two-finger gripper. The whole device is battery-powered.
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optically tracked markers

control buttons

F/T sensor

end effector

Figure 1.6: A wireless, manually guided teaching device that is used to record the Cartesian
motion and wrench of a human demonstration.

Table 1.1: Data sources, their sensing modalities, and properties

Modalities Properties
joint
pose

Cart.
pose

wrench corre-
spon-
dence

inertia
free

Kinesthetic teaching ✓ ✓ - ✓ -
Kinesthetic teaching w/ FTS ✓ ✓ ✓ ✓ -
Hand-pose estimation ✓ ✓ - - ✓
Teaching device - ✓ ✓ - -

It wirelessly transmits the measured wrench, readings from an inertial measurement unit,
and the button states that can be used, for instance, to trigger the start and stop of a
demonstration recording. An optical tracking system observes the markers on top of the
device.

1.4.4 Summary

Tab. 1.1 shows the introduced teaching methods with their data sources. The “cor-
respondence” column refers to the property if the demonstration system is the same
embodiment as the one used for task execution. This property is true for kinesthetic
teaching, which inherently solves the correspondence problem between demonstration
and execution. Instead, other data sources might collect data that leads to behaviors
not executable by the robot due to limitations in its manipulability. The “inertia-free”
column describes whether the user can serve a data source without being constrained by
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additional inertia other than the manipulated objects. For instance, kinesthetic teaching
or a teaching device require the user to deal with the inertia of the robot or teaching
tool, respectively. Since this inertia has to be accelerated and decelerated during the
demonstration phase, it might negatively influence the teaching performance regarding
speed and accuracy. Hand-pose estimation overcomes this limitation since the human
teacher naturally uses their hand as a tool. However, measuring forces on the human
hand requires attaching additional sensors to the palm and fingertips. In summary, this
thesis focuses on kinesthetic teaching with a FTS due to its advantages over the other
data sources.

1.5 Technology Readiness Level

The framework proposed in this work targets Technology Readiness Level (TRL) 5 as
an indicator of the maturity of a technology. Level 5 describes a “Component and/or
breadboard validation in relevant environment.” according to the NASA definition [30]
or “Technology validated in a relevant environment” according to the European Union
Horizon 2020 Programme [31].

This statement emphasizes the applicability of the proposed methods. Compared
to theoretically focused research, which often lacks a realistic validation in a relevant
environment, this work aims to reach a high practical value to the field of robotics in
industry and manufacturing. Specifically, all algorithmic developments of this work were
tested on real robotic hardware, and all of them were evaluated with humans in the loop,
where several user studies helped to stress the proposed methods against novice users.

1.6 Structure of this Thesis

The main topics of this thesis cover skill identification, recognition, and parameteriza-
tion. While the skill identification is conducted once and leads to a set of legible skill
types, skill recognition uses this set during the task definition process. Once a skill is
identified (Chapter 4), different approaches are proposed to recognize it from a user
demonstration (Chapters 4, 5, and 6). Besides programming of single skills, sequen-
tial tasks and task structures that involve decision-making or recovery behaviors can be
programmed (Chapter 7). A unifying framework shows how a user can program a new
task either via demonstration or via offline skill-based programming (OSP), and how the
skills are parameterized and executed (Chapter 8).

Chapter 2 : Related Work introduces the state of the art and points out the advance-
ments of this thesis concerning skill identification, recognition, and parameterization. It
compares existing frameworks for PbD and examines how end-users interact with them.

Chapter 3 : Prerequisites and Background states the prerequisites and the back-
ground that the following chapters commonly use. It describes the mathematical sym-
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bols and expressions and defines common terms to create a consistent understanding
across the following chapters.

Chapter 4 : Skill Identification and Recognition presents the approach of skill identifi-
cation through a user study with a manual labeling task. In a manual classification task,
a human test group verifies the interpretability of the extracted labels. Subsequently,
the chapter proposes an approach to recognize the identified skills with an automatic
segmentation and classification system using only proprioceptive data.

Chapter 5 : Skill Sequence Recognition proposes an approach to extract sequences of
skills to program complete tasks. It exploits the parallelization of two skill recognition
pipelines, namely a symbolic and a data-driven recognition pipeline, to recognize the
demonstrated skills on the fly. At the same time, it builds a visual task representation,
which provides feedback to the user about what the robot has already understood from
the demonstration. It also presents a user study that evaluates both the recognition
capabilities and the explainability of the task representation.

Chapter 6 : Contact-based Exploration presents an approach that can learn from
multiple demonstrations to explore uncertain object locations in the workspace. This
concept combines the previously identified touch skill with gripper-based object manip-
ulation skills. The exploration strategy is fully extracted from the demonstrations. The
recognized and automatically parameterized touch skills can parameterize subsequent
skills at execution time, leading to an adaptive execution behavior.

Chapter 7 : Task Decision Programming proposes two approaches that each allow
end-users to program task decisions or recovery behaviors by demonstration. While
one approach allows end-users to program them in the teaching phase, the other allows
adding them incrementally during the execution phase. A user study compares the
introduced approaches to a baseline, providing various insights about how users behave
when programming task decisions or recovery behaviors.

Chapter 8 : Unified Framework for Skill-based and Demonstration-based Program-
ming proposes a unified programming framework that combines PbD with OSP as task
definition methods. A knowledge-driven system based on ontologies integrates the stages
of skill recognition, parameterization, and execution. The chapter presents the advan-
tages that arise from this combination: improved skill parameterization with ontological
knowledge, ease of programming by empowering users to select a method based on their
capabilities, and reduced demonstration effort by exploiting existing knowledge in the
ontologies.

Chapter 9 : Conclusion summarizes the findings from each of the previously mentioned
chapters and states future research directions.
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The state of the art is structured with respect to the main chapters of this work.
Skill Identification and Recognition (Sec. 2.1) refers to Chapter 4, Recognition of Skill
Sequences (Sec. 2.2) refers to Chapter 5, Force-based Exploration and Manipulation
(Sec. 2.3) refers to Chapter 6, and Learning Task Decision Making (Sec. 2.4) refers
to Chapter 7. Finally, Intuitive Robot Programming Frameworks (Sec. 2.5) refers to
Chapter 8.

2.1 Skill Identification and Recognition

Various tasks can be listed that require force-based robot behaviors, which could be
implemented in the form of skills. These are for instance peg-in-hole [32, 33], wood
planing [34], engraving [35], pouring from a bottle [36], door opening [37, 38], screw
driving [39], object grasping [40], touching and contact-sensing [41–43], pushing [37],
rotating a hand-wheel [44], and ironing [38]. Additionally, a number of methods for
collaborative use-cases were proposed, such as for assembly [45] or human-robot joint
transportation tasks [46,47], whose implementations can be also seen as robotic skills.
Skill identification will be later introduced in Chapter 3, Definition 4. It refers to the

process of finding which skills are purposeful to a human for programming a system and
to a robot in achieving the goals of a task. This process is considered to be completed
before the actual programming phase and is also known as skill definition [48] or skill
formalization [49].
Skill recognition will be later introduced in Chapter 3, Definition 5. It is the pro-

cess of inferring about which skill is performed in a human demonstration. Usually,
recognition of a skill is based on time series data, hence requiring to solve a twofold
problem consisting of simultaneous segmentation and classification. This thesis defines
skill recognition to solve both problems of time series segmentation and classification
to infer the semantic meaning of each segment. Generally, the research community is
unsure about if segmentation is defined to involve only the process of splitting a time
series into multiple segments or if it also incorporates action recognition, meaning that
each segment has a descriptive character.
Force and motion based skill recognition has been early proposed in [3]. They show

how force-based state transitions are classified given a task model in the form of a finite
state machine. The surgical skill evaluation in [50] employs Hidden Markov Models to
detect manual skills in a fixed environment. In both of these works, the classification is
task-specific and would have to be re-learned if the environment changes. A better task
invariance is shown in [51] by introducing force primitives and claiming that only 20
different relative motions between two mechanical parts are possible. Instead of labeling
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actions or skills, the proposed primitives are labeled, for example edge parallel to surface
or surface against surface. It is left open how the process of task decomposition into
primitives can be automated or even learned from demonstration. In [41], only contact
events are classified from time series data in a task specific setup without considering
additional contact-based behaviors.

There exist also explicit approaches that focus on the problem of task invariance
[52–56], presenting descriptors that can be used to encode a motion in a task invariant
manner avoiding any relation to task specific motion frames. However, none of these
works consider task invariance of forces and torques, which is required to describe a skill
on the robotic capability level and making it task invariant.

Unsupervised learning to solve the segmentation problem could be an option to avoid
a strong overfitting on specific tasks. Relevant works are about surgical gesture recogni-
tion [57], bi-manual robot task learning [58], surgical trajectory segmentation [59], and
painting task imitation [60]). However, unsupervised segmentation methods have the
problem that they do not provide human interpretable labels for the identified segments
and therefore cannot semantically describe the segmentation result. This leaves the user
alone with a task representation that is difficult to interpret.

Often, probabilistic models are considered to compare the current action with, e.g.,
in the form of Hidden Markov Model (HMM) or GMM [61, 62], Beta-Process Auto-
Regressive HMM (BP-AR-HMM) [58,63], or probabilistic flow tubes [64].

2.2 Recognition of Skill Sequences

Approaches for recognition of skill sequences from a human demonstration can be divided
into two major categories. One category utilizes symbolic action descriptions and pre-
and post-conditions, referred to as a symbolic approach. The other category involves
data-driven methods that use a pre-trained model to recognize skills, referred to as a
data-driven approach. Each approach has its own strengths, which can be best illustrated
through an example about kinesthetic teaching. Suppose an end-user opens the robot’s
gripper during a task demonstration. This event can be easily captured and described
on a symbolic level by evaluating the truth value of a symbol that describes the open
state of the gripper. Such events are useful in establishing preconditions for robotic
skills, such as open-gripper or place skills. Applying a symbolic approach is suitable
for this scenario as the underlying conditions can be easily designed, implemented, and
confidently evaluated with minimal cost. On the other hand, training a classifier to
infer about opened and closed gripper states would be computationally inefficient and
would require a dataset of opened and closed gripper states. Another example is about
a user who moves the robot tool along a surface while exerting force onto the plane.
Here, a sequence of measurements is generated that is challenging to be described by
manually designed conditions. Consequently, a trained classifier is the favorable choice
to recognize an appropriate skill in this phase of the demonstration, such as a surface
processing skill as required in robotic grinding.
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2.2.1 Symbolic Approaches

Symbolic approaches assign names to specific robot states to define the meaning of the
represented knowledge. Such names are referred to as symbols, which can be used to form
predicates that allow to evaluate the pre- or post-conditions of a skill. According to [65],
a well-known syntax for defining these conditions is the Planning Domain Definition
Language (PDDL) [66]. By evaluating the pre- and post-conditions of all predefined skills
simultaneously, a skill can be inferred if all of its conditions are fulfilled. This is referred
to as the symbolic approach to recognize a sequence of skills from a demonstration. An
overview recognition algorithms that focuses on human motion recognition is presented
in [67], highlighting their semantic aspects.

The action recognition system presented in [68, 69] uses a module that produces a
symbolic description of the scene based on visual perception. The work in [70] provides
a definition of a robot skill within an industrial setting, which outlines a skill conceptual
model that includes pre- and post-condition checks. In this context, the sequence of
skills that found a task is programmed manually and afterwards parameterized.

The approach in [71] suggests that each skill has a unique set of post-conditions,
which describe the effects the skill has on the state of the robot and its environment.
Additionally, pre-conditions can be employed, which describe the conditions that need to
be fulfilled before or during skill execution. A skill description used for skill recognition
that employs pre- and post-conditions can be achieved with Planning Domain Definition
Language (PDDL) [72]. To check if such conditions are fulfilled, a world model can be
used that provides the poses of all relevant objects in the workspace [72]. If such world
model is not updated frequently by the robot’s perception capabilities, it can lead to
inconsistent states. Therefore, [73] used image recognition to evaluate which conditions
are fulfilled. It introduces so-called Object Action Complexes, where the predefined
conditions in the action recognition describe contact changes between objects in the sense
of overlapping image segments. An estimation of physical contacts is not considered in
their work.

In summary, pure symbolic segmentation methods require the manual design of pre-
and post-conditions for each skill, making it challenging to find distinguishing symbolic
expressions and requiring manual design effort. This is particularly problematic for skills
that act on the same object but differ only in the forces they apply. Several attempts
have been made to extract pre- and post-conditions automatically [74–76], but none
have been applied to a variety of force-based interactions such as consecutive in-contact
movement primitives.

2.2.2 Data-driven Approaches

Data-driven approaches learn to discriminate skills based on a pre-trained model or by
finding grouping patterns in the data. For instance, demonstrated motions can be en-
coded in a collection of probabilistic models. During inference time, newly observed
motions can be classified by comparing them with the existing models [77]. A data-
driven framework for task structure extraction is presented in [78], which relies on an
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activity recognition method based on visual perception [79]. In [80], a segmentation tech-
nique is proposed that utilizes variance analysis among demonstrations relative to data
variability within a time window. Simultaneously, various object frames are tracked to
map segments to them. The approach requires a world model with associated coordinate
frames and can only be used with multiple demonstrations of the same task.

Visual perception of the human hand is used in [26], applying so-called template
matching with HMMs to recognize skills that are performed by hand and finger move-
ments. This allows the user to naturally pick and place objects with the hand, without
dealing with the inertia of the robot as in kinesthetic teaching. Visual hand-pose esti-
mation alone does not allow to infer about interaction forces, as they occur in contact
skills. Although attempts have been made to estimate forces and dynamics indirectly
from visual perception [81], such an approach can only provide a rough estimate about
real contact forces. A sliding window approach is used in [82], where a SVM classifies
the image sequence in the current stream window to recognize skills. The previously
mentioned approaches limit the detection of skills to visually observable behaviors and
ignore measurable interaction forces or torques. Instead of relying on vision data, tactile
and proprioceptive signals were considered in [83], presenting a segmentation algorithm
that is based on Bayesian online change-point detection, but without the capability of
inferring a human readable task representation due to the unsupervised nature of the
approach.
Unsupervised approaches typically attempt to identify similarities between demon-

strations or fit generative models to segment the data. Similar skill transition states in
repeated task demonstrations are identified in [59] using hierarchical clustering based
on GMMs. A first GMM is fitted to each demonstration to obtain candidate transi-
tion states, which were then clustered in secondary GMMs in the spatial, sensory, and
temporal domains. Bayesian non-parametric extensions of the HMM are used in several
studies [63,84,85]. A beta process (BP) prior helps to infer the number of active modes,
which are referring to skills, per demonstration and enables sharing of identified modes
across different demonstrations. As shown in [63, 84], a Beta Process Autoregressive
HMM (BP-HMM) relaxes the conditional independence of observations by describing
their time dependencies as a so-called vector auto-regressive process. In [85], a BP-
HMM is combined with a clustering approach to determine the appropriate level of
granularity for identified motion primitives based on clustering performance. Only sin-
gle demonstrations were exploited in [86], which accelerated the teaching phase. The
approach infers the observed skill sequence by using the cost of compliance with prede-
fined feature constraints as grouping mechanism in the data, as it is also known from
inverse reinforcement learning.
A known limitation of data-driven approaches is the requirement of some amount of

training data. Supervised approaches even require capturing of labeled training data,
which can be an expensive process that is blocking hardware, computational resources,
and manpower. During inference time, data-driven approaches also comes with a delay
in prediction time due to computational cost. Further, the prediction accuracy might
be limited depending on the generalization capability of the employed model and extent
of the training set. Such disadvantages should only be accepted by a system designer if
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the underlying problem cannot be solved by straightforward and manually implemented
rules, as they are used in the symbolic approach.

2.2.3 Combined Approaches

Combining symbolic evaluation and data-driven algorithms aims to utilize the strength of
both approaches. In [87], it is shown that symbols can automatically emerge through task
observations by learning to discriminate a variety of system states with a probabilistic
model. These symbols are extracted to be used in task planning, which operates in a
discrete and abstract state space through PDDL, where they are used as pre- and post-
conditions. However, the approach requires a significant number of manually collected
samples to cover all potential scenarios in the surroundings of the robot. With that
samples, multiple symbol grounding classifiers are trained. This implies that also for
simple state symbols such as gripperOpen, a model is learned before symbolic evaluation,
which contradicts the motivation to learn only the necessary parts of a task and provide
prior knowledge where applicable. These symbols are then able to segment the data in
an event-based manner whenever they change their truth value.
With the aim to predict skills online during the demonstration, fast evaluating of a

symbol can be based on a single measurement. The approach in [87] combines data-
driven and symbolic approaches. Basically, the evaluation of any symbolic state could
be learned if there is sufficient data present, which would take away the burden of imple-
menting evaluation strategies from the system designer. Notwithstanding, only complex
features should be learned that cannot be easily described by the system designer. For
example, it would be hard for a programmer to take care of multi-dimensional and
mutually interacting dimensions, which is for instance known as cross-talk [88] or ac-
tion interference [27, 89]. Another well-known problem in classification describes if a
dataset is linearly separable or not, which is rather hard to tackle by manually described
rules. Data-driven classification algorithms can easily address this with nonlinear deci-
sion boundaries or kernel methods. Lastly, information could also be hidden in temporal
sequences that describe the process dynamics instead of being observable in a single
states. For instance, an approach can observe only the force thresholds in robotic as-
sembly [90] or consider the temporal information of force transients instead [43].
This thesis proposes to combine the symbolic with the data-driven approach to utilize

the strength of both techniques in an online skill recognition framework (Chapter 5).
With that, manipulation skills such as pick and place can be defined mostly through
symbols that can be intuitively described and implemented by simple rules. Instead,
contact skills, which are characterized by their time series and process dynamics, are
recognized through data-driven methods.

2.3 Force-based Exploration and Manipulation

Force-based exploration is defined as the strategy, where the robot uses its body or
an attached tool to explore unknown regions in the workspace in order to update the
world state with the gained knowledge. Section 2.1 introduced a number of works that
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consider contact skills. It is noticeable that none of the mentioned approaches addresses
the sensing of object locations in the environment.

Once an object location or a specific state of the environment has been sensed, the
robot shall be able to adapt its task to the new situation. Therefore, a number of force-
based learning frameworks are analyzed, which learn from forces to allow the adaptation
of the robot behavior during execution time. The framework proposed in [91] allows
the robot to continuously react to force variables which have been identified by Mutual
Information analysis from the demonstrated behavior. The purpose of this algorithm is
to find a mapping between state space variables and control input variables to allow real-
time control of a force-based task. The experimental task was to guide a ball trough a
maze by measuring the forces that the ball exerts and controlling the pitch and roll angles
of the surface where the ball is rolling on. In the learning process, there is no motion
segmentation employed that would consider involvement of several objects, making it
unsuitable for manipulation tasks.

The method in [40] is applied on object manipulation. The robot learns grasping skills
from motion and force data while it is tele-operated with a data glove. The learned forces
are used to generalize the learned skill on objects of different mass and size. Although
different object types are considered, the approach has no ability to explore the object
location itself. Continuous online movement adaption is presented in [92] and also applied
to reactive object manipulation. The approach lets the robot adapt its motion based
on the perceived forces in accordance with a model learned from demonstration. This
allows the robot to react to uncertainties and disturbances during execution. However,
exploration of uncertain object locations is not considered.

Learning force-based tasks can be also combined with motion segmentation to support
different reference frames that are associated with objects [80]. Another learning scheme
pairs vision with tactile sensing [93] and focuses on material type and object detection.
However, the system is not initialized or parameterized by means of PbD and the inferred
class is not used to adapt the behavior of the robot. In the context of segmenting and
sequencing, [94] proposes the prediction of manipulation phases and [12] shows learning
of hierarchical skills by reinforcement learning, where both approaches require object
tracking if the object is not initially in the hand. Complex tasks can be also learned
by a combination of kinematic and video data from human demonstrations [84]. The
approach does not incorporate force-based sensing and assumes that all objects can be
visually observed in the scene. In [95], compliant manipulation is achieved by interaction-
based phase transitions in a Hidden Markov Model, which is able to transition between
non-constrained and constrained motions. The framework does not support non-linear
unconstrained motions and exact goal points in free space were not addressed.

Autonomous exploration can be achieved even without a task demonstration [96].
Here, the whole robot workspace is haptically explored in combination with tactile-based
object discrimination. Although this strategy does not require prior demonstrations, its
goal is to explore the whole workspace to recognize eventual objects which is usually not
the objective of a repetitive robotic task such as in production environments. In [97], the
search policy is learned from human behavior to act in the whole workspace. Although
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the strategy is learned from human demonstrations, it cannot be tailored to a specific
application by the end-user.

Instead of exploring a whole workspace, in-hand object localization reduces the spatial
search volume but requires to have the object already fitted in the robotic hand. It
can be achieved by a tactile sensor array [98], which can be combined with tactile
based manipulation. Here, a DMP approach is used during execution similarly to [99],
which reproduces both desired motion and tactile trajectory. This tactile trajectory
contains the tactile image time series obtained from the sensor array. More elaborate
sensing techniques make use of embedded sensors in gripper fingers [100], or tactile
sensor arrays for object recognition [101]. The latter authors use sampling-based motion
planning [102], which requires a model of the environment or a huge number of real
robot executions.

Learning from human hand motion observation when grasping an object is presented
in [103]. The goal is to correct the observed hand postures with the sensed contact infor-
mation while grasping. Considering the field of tactile sensing, a review [104] shows that
a variety of sensors is technically available but the major challenge lies in development
of novel manipulation algorithms to actually make use of them.

Generally speaking, the analyzed approaches do either not explore the object location
itself [40,91,92,95], unnecessarily search the whole workspace without the focus on object
manipulation [96, 97], require visual perception for object tracking [12, 80, 84, 93, 94],
depend on additional hardware such as sensitive tactile sensors and specific end-effectors
[100,101,104], or allow only in-hand localization [98,103].

2.4 Learning Task Decision Making

2.4.1 Learning Conditional Tasks from Demonstration

Conditional tasks require the robot to adapt to an environmental state and to make a
decision about the further execution. Such strategies can be designed and implemented
by hand in the form of a finite state machine (FSM) [105]. Alternatively, such plans
can be also learned from multiple demonstrations [106]. Here, a knowledge base of
manipulation tasks is built from demonstrations by observation of a virtual workspace
and by segmentation into predefined skills with pre- and post-conditions. In [58], these
plans are interactively built in form of a Finite State Machine (FSM), using visually
tracked object poses. The state transitions are inferred by a classifier in case that there
is more than one transition option. A classifier is trained on final robot pose and object
pose for each state of the FSM. Recovery behaviors are considered for grasp and object
pose failures, but unknown anomalies are not detected by the system itself and the user
has to intervene if a new behavior shall be added.

Instead of learning the whole decision making strategy from demonstration, it could
potentially be solved analytically such as with Markov Decision Process (MDP)s, if
enough knowledge about the robotic workspace and possible world states would have
been modeled. There exist also solvers that can handle continuous state spaces and do
not require predefined transition probabilities, such as a Partially Observable Markov
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Decision Process (POMDP)s [107]. They require a black-box model to sample from and
the reward or possible goal states need to be defined manually. In [108], a switching
scheme between deterministic planning and decision-theoretic planning in the form of
POMDP is proposed, which requires a problem description in the Planning Domain
Definition Language.

Common planning approaches, e.g. based on a Probabilistic Roadmap (PRM) [109]
or on a Rapidly Exploring Random Tree (RRT) [110], always require a model in order to
reason in the world, which has to be built beforehand. If this could be avoided, the end-
user would have more freedom to program the robot in new, unmodeled scenarios. In
[111], multiple demonstrations are encoded in sequences of predefined symbols to find the
longest common sub-sequence. This approach can be used to construct generalized task
graphs from multiple demonstration sequences of actions. As a prerequisite, this would
require that the observed demonstration is first segmented into predefined symbolic
actions that can be later used by the mentioned approach. Extraction of symbolic
actions for planning is actually shown in [112] and [113]. In both works, pre-conditions
and effects of symbolic actions are learned from demonstration but the corresponding
symbols need to be manually defined. In [114], complex tasks are learned by kinesthetic
teaching involving multiple visually tracked objects, where the task structure itself has
to be defined manually.

2.4.2 Fault Detection and Recovery

Common terms for recognition of abnormal states are fault detection, error detection, or
anomaly detection. Faults in the scope of robotics can be divided into internal robotic
system faults and task execution faults [115]. This thesis only addresses the latter, where
anomalies in expected robot pose, external wrench or grasp status are considered.

As part of a task execution faults, geometric assembly errors are theoretically described
in [116], and possible recovery strategies are provided. The authors explicitly state that
an event is termed an error if no solution exists to handle it. Further, they term an action
a recovery strategy, if it is a possible solution to the given problem. Hence, it can be
concluded that a task execution fault is considered to be a simple event in a guaranteed
plan, if the system has the ability to detect it and change its plan or execution behavior
accordingly.

Several approaches in the literature exploit time series of previously observed execu-
tions for error detection. Force signatures extracted from force or torque time series
are exploited in [117] to train a SVM with a batch of successful and unsuccessful as-
semblies from hand-labeled trials. In [118], HMMs are trained as a process monitor in
robotic assembly. The approach is only evaluated in a 2D experimental setup, requiring
20 samples to be observed for each contact event. In [119], a HMM is trained on the
wrench and its derivative to monitor force-based interactions with the environment to
enable reasoning about if the execution is successful or not. As a drawback, the specific
modality, which allows for detecting the deviation, needs to be selected beforehand and
an expert user need to observe a number of executions to manually label them. The
execution strategy has to be manually programmed as a FSM. Also based on HMMs, a
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multi-modal abnormality detection is presented in [120], which monitors forces, vision
and sound during execution.

The authors of [121] use a pre-processing mechanism that uses statistical dependency-
detection methods to determine sub-groups of monitoring variables. These sub-groups
are used in the online phase to compute the Mahalanobis distance for anomaly detection.
A data-driven anomaly detection approach based on dimensionality reduction of sensor
data, pattern recognition and a threshold on the Mahalanobis distance is presented
in [122] and further evaluated in [123]. All these works have in common that they are
able to detect abnormal states or faults but are not designed to recover from faults
automatically.

The approach of task stratification is used to order possible faults into classes such
as execution, planning, modeling, or sensing error [124]. This method also describes a
forward and backward correction process to successfully accomplish an error-prone task.
While providing labels for error classes, there is no methodology presented on how to
identify an error given a state or time series of observations. A so-called task outcome
prediction compares sensor signals with successful trials coming from a reinforcement
learning system [125]. A z-test infers if the observed signals stem from a population of
successful trials. This approach relies on manual labeling of successful and unsuccessful
trials. Learning from failed demonstration trials is presented in [126] to avoid repeating
the human’s mistakes with the goal to converge faster to an optimal policy. The under-
lying assumption is that every shown trial is a failing one and the robot tries to find a
better strategy in between these failures.

Error detection and recovery can be hand-designed in the form of an FSM. Such hand-
designed detection schemes can then be tailored for specific autonomous behaviors. An
example is the haptic-based detection of a hand driller’s operation state by analyzing
the frequency spectrum of a force sensor [105]. However, such detection schemes require
manual design effort and they need to be activated in the right state during execution.
Therefore, the system can only handle errors that the user has foreseen and implemented
already.

An FSM can also be constructed from a number of human demonstrations [58]. Pos-
sible recovery behaviors were only considered, if the human triggered a button during
execution. In contrast, the presented system in this thesis decides autonomously with
the help of anomaly detection when a new demonstration is required. Furthermore, the
pose of all task relevant objects is visually tracked by the system and the force domain
is not considered in the task definition process.

2.4.3 Clustering of Time Series

The goal of time series clustering is to group similar demonstrations that could be later
encoded in a model for motion primitives. The demonstration data in PbD can be in the
form of multiple, multidimensional time series with unequal length due to demonstration
variations. The data may consist of continuous variables from multiple modalities such
as position, orientation, wrench and end-effector grasp information. A survey of time
series clustering [127] groups popular methods into raw-data-, feature- and model-based
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approaches. Methods which act in the raw-data domain with multidimensional input
and variable length often employ Euclidean distance as the general distance metric.
The approach in [128] uses Dynamic Time Warping (DTW) to cluster the raw data time
series. The authors not only warp multiple time series but also provide a technique to find
the average time series representing the cluster center, which they term as the prototype.
All feature-based approaches analyzed in [128] consider only single variables and are
therefore not further compared. However, feature computation might be applicable on
individual dimensions of multi-dimensional time series and the time series might be
processed again as described in the raw-data approaches. Model-based approaches use
for instance GMMs [129] or continuous HMMs [130], both employing the log-likelihood
as distance metric. In the setting of multivariate data, dimensional dependence within
the time series has been examined in [131]. Here, a Euclidean distance metric is either
applied dimension-wise in so-called independent DTW or applied in a multidimensional
manner in so-called dependent DTW.

One problem is to identify the number of clusters automatically, e.g., with the help of
a distance parameter [132]. However, this parameter has to be specified by the system
designer. Consequently, substituting the hyperparameter for the number of clusters with
a distance parameter might lead to an unpredictable number of clusters depending on
the variance of the input data.

2.4.4 Knowledge Representations for Decision Making

To allow a robot to make decisions during task execution, it might rely on a more complex
knowledge representation as such a sequential arrangement of actions. Therefore, the
research community came up with structured representations of tasks, for example in
the form of task graphs [58,83,114,133–135].

Some of these task graphs are implemented as decision trees while others use the
concept of behavior trees. While decision trees are stateless, behavior trees are stateful,
i.e. they can mark a behavior in a branch as currently running or failed, hence being
able to skip the current evaluation or to select another behavior the next time. Branches
in the tree are usually arranged from left to right according to their priority and the
behavior in the branch that first has a valid condition is executed next. Another possible
implementation for a task decision framework is a FSM, which does not require a tree-like
arrangement of states, hence being able to represent loop closures of action sequences.
Since a behavior tree allows to mark a branch as running or completed, it could also
achieve the definition of loop closures by setting the running flag of a branch once started
and resetting it once completed.

A decision tree implementation can also achieve the functionality of a behavior tree
by adding pre- and post-conditions to the relevant branches [114]. This approach is ex-
ploited in the presence of humans, who might cause uncertainties or restructure the
workspace on the fly. The approach employs visual perception and activates only
branches of the tree that are feasible for the robot at the given environmental state.
The collaborative robot programming framework in [136] uses augmented reality projec-
tions and a touch-enabled hardware table to intuitively parameterize an existing robot
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program. The program itself allows pre-defined branching or cyclic operations and the
task graph appears to be a FSM.

It is also common to use a pure sequential task execution, where the robot executes
a sequence of actions or skills [42, 72, 80]. However, a fixed sequence of actions is not
able to solve conditional tasks, since it does not include re-planning or decision making
on the task level. Although re-planning of a robotic task during execution is possible, a
task planner requires a goal definition and world representation to work.

The framework presented in [134] proposes a robot state automaton which models
a state for each discrete time step in the execution. The framework allows to observe
environmental conditions and to branch into different states during execution. This
thesis adapts the approach and employs it as a baseline method for comparison. It
is adapted in a way to only create graph-nodes where a decision state is required in
order to obtain a task graph. Hence, ordinary robot states within a trajectory are not
represented as graph nodes. This allows visual representation of the task graph with
only the relevant information for the user, which are the decision states. Similarly to
the approach presented in this thesis, a task graph is incrementally constructed in a
combined teaching- and execution phase. The main difference is that with [134], the
user has to observe anomalies during execution of the task and needs to decide if and
when a new demonstration is needed.

2.5 Intuitive Robot Programming Frameworks

This section examines intuitive programming frameworks with respect to four aspects:
1) Usability by end-users; 2) reuse of existing knowledge to reduce human programming
effort and increase autonomy; and 3) automatic skill parameterization from demonstra-
tion data.

The first aspect concerns the usability for end-users. Well designed graphical program-
ming interfaces allow a good user experience and should represent the robot program, or
more generally, the knowledge that is available within the system in an understandable
manner. Therefore, skills as graphically represented elements are considered in [137].
Commercially available solutions can be found in [138, 139]. Here, skills can be se-
quenced and parameterized on a Graphical User Interface (GUI), which is termed as
OSP in the following. Lower-level representations for programming that construct finite
state machines rather target domain experts and more experienced users to develop the
robot skills itself [140,141]. Many other approaches allow to define a task by the end-user
without implementing task specific knowledge [26, 58, 72, 142, 143]. However, the aspect
of usability and intuitiveness is often neglected. For example, in [58], tasks can be fully
programmed by demonstration and also executed, but the task representation gives only
a vague idea about what the robot will perform in the form of left and right arm move-
ments. In [142], skill sequences are learned and executed but without providing human
readable skill labels. A task representation in the form of a legible skill sequence is con-
sidered in [26] and [72]. In [72], a user study assesses the intuitiveness of the PbD method
in comparison to manual programming on a GUI. In [144], user effort and discomfort

25



2 Related Work

are assessed in a visual demonstration framework. Another user study assesses the chal-
lenges that arise from redundant manipulators and how kinesthetic teaching can be used
in task space and null-space [17]. Another limitation of some programming frameworks
is that they focus on the programming of individual skills without considering scenarios
that consist of skill sequences [18,44,145].

The second aspect concerns the reuse of existing knowledge. This is often tackled
by common knowledge bases and semantic reasoning. Starting from unlabeled demon-
strations, symbols can be assigned to detected skills to be used in task planning for
semantic reasoning [87], which inverts the well-known problem of symbol grounding. A
system can also query only missing knowledge by means of symbol grounding and reuse
existing knowledge in the form of previously learned motion primitives as shown in [114].
Hardware abstractions for skills are presented in [48, 146] and allow a user to reuse a
skill independent of the robot hardware. Later on, skills could be transferred to other
systems without re-implementing them.

The third aspect concerns automatic skill parameterization from human demonstra-
tions. The parameters itself can be extracted from the demonstration data such that
no further human input is required. In comparison, the method of OSP uses a GUI
that requires the manual parameterization of skills [137, 147]. Examples of automatic
parameter extraction can be found for hybrid motion and force control in force-based
skills [148], for task-parameterization techniques by using a demonstrated target frame
as task parameter [149] or for visually extracted task parameters [150, 151]. Further,
task parameters can be automatically extracted from trajectory data [152]. By using
semantic skill models, parameter values can be also extracted by symbolic evaluation
using a world model [72], for instance an object label can be used as parameter of a
pick skill. Furthermore, parameter values can also be extracted by predefined functions
that are mapped to the skill parameters, for example by computing the relative grasp
transformation between robot gripper and object during demonstration [26].

2.6 Unsolved Issues

Most skill learning approaches assume that the underlying methods are pre-selected and
parameterized by a domain expert, usually being the system designer or experimenter.
This is not meant to be a drawback of the presented methods itself. Rather, it shows
that appropriate methods and controllers exist that can be tailored for specific applica-
tions. The problem is that the method selection in a specific task must be made by a
domain expert, which would prevent novice users to intuitively use them to setup new
applications. Skill recognition would cope with this problem such that a suitable skill is
automatically selected by the system, which maps a robot capability to each application
specific behavior that is required in the task.

The result of a skill identification phase should be a set of predefined robot skills
that a task planner or a human programmer can use to solve a robotic task. However,
many frameworks simply propose a set of actions or skills that is task specific without
being analyzed to be interpretable by humans. Predefining skills from the technical
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perspective might be a valid approach, if used for autonomous execution or in task
planning approaches. Nevertheless, it is often desired that such skills are legible to
describe a robot task in a way that is understandable to end-users.
When it comes to skill recognition, it can be often observed that the models used for

inferring an action or a skill are trained on task-specific instances in the motion domain.
So called task invariance is often striven for, such that actions can be classified by their
motion characteristics with a broad range of variations. However, action characteristics
in the force domain are often neglected, although the reign the behavior of contact skills.
The end-user does often not receive the required attention in the research landscape of

LfD and PbD. Although there are many works about human factors and human machine
interaction, there are too many methods that are reserved for experts because they are
too complex to be understood by end-user.

2.7 Conceptual Differences

The main conceptual differences between this thesis and the state of the art are stated
as follows.

i) Proven legibility of the proposed skill set

ii) Exclusive usage of proprioceptive data in the task definition and execution

iii) Bootstrapping of decision behaviors without world and object models

This thesis aims at identifying a number of contact skills and proves that the skill’s
descriptive names are legible and distinguishable by a variety of people without requiring
a background in robotics. The identified skills are then used in PbD to be recognized
automatically by the robot. Instead of using representations of previously learned mo-
tions, this thesis considers features that are derived from both the motion and force
data to make the skill recognition independent from reference frames or specific envi-
ronments. This implies that the recognition generalizes over different tools, materials or
objects. Additionally, this thesis presents and approach that merges the advantages of
data-driven and symbolic evaluation in skill recognition. With that, only the challenging
inference problems are trained on demonstration data and trivial problems are evaluated
by symbolic predicates.
This thesis focuses on the proprioceptive measurements of a robot as input modality

and does not require visual perception in any of the presented methods. This focus has
the advantage that a modern lightweight robot can easily serve as input device, without
setting up additional sensors and hardware. A drawback is that visual perception is
missing, which reduces the robot’s capabilities. However, the intended usage of the
proposed methods is rather seen in structured and semi-structured environments, as
they occur in the industrial assembly and manufacturing domain.
The presented methods intend to bootstrap robot task only from human demonstra-

tion data, wherever applicable. This is also known as no-code robotics and no-code robot
programming. With that, the end-user shall be able to define new robot tasks without
writing a single line of code. This thesis aims to push the limits of PbD, such that
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also task decisions and recovery behaviors can be programmed just by demonstration
without providing prior knowledge about involved objects and the environment.

This thesis proposes several methods for task definition that work without world
representation and object models. Conceptually, this differs from works that require a
large amount of prior knowledge about the task, making it infeasible to deploy them
in unknown environments. This thesis presents methods that allow to define tasks in
entirely unknown environments, as long as they are of static nature or at least partially
structured.
Finally, a framework is proposed that unifies different task definition methods for end-

users. While many frameworks propose a single, specific teaching or learning method to
setup new tasks, the presented framework allows to combine PbD with another program-
ming paradigm, where a GUI is used to manually define the task. Both task definition
methods can be considered as no-code robot programming. This framework relies on
an ontology to bundle the knowledge obtained from each source with prior knowledge
that can be possibly predefined. This knowledge representation allows then to combine
expert knowledge that is embedded in the ontology and skill implementations with the
parameterization coming from the end-users.
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This chapter introduces the prerequisites and the background for the subsequent chapters
in Sec. 3.1. Section 3.2 states the demonstration encoding approach used in this thesis.
Section 3.3 clarifies that human and robot use different perception modalities when
dealing with demonstrations.

3.1 Definitions of the Programming by Demonstration Process

3.1.1 Demonstrations and Time Series

The task definition and learning approaches in the subsequent chapters of this thesis deal
with human demonstration data. Usually, the end-user employs kinesthetic teaching to
give a single demonstration of the task.

Definition 3 A demonstration trial is a single human demonstration represented
as a multidimensional time series. Synonyms for demonstration trial are demon-
stration, demo, and trial.

A major distinction is made between skill identification and skill recognition. Skill
identification is made prior of implementing skills.

Definition 4 Skill identification is the method of labeling a set of distinguishable,
generic, and reusable robot capabilities that are interpretable by humans and robots
and that follow the definition of a skill (Definition 2).

Skill recognition uses a set of predefined skill types to classify demonstration data.

Definition 5 Skill recognition is the process of automatic inference about the per-
formed actions that were observed in a human demonstration. During inference, a
human readable label is provided for each recognized skill.

The process of skill recognition can be performed on a dataset (offline) or during the
demonstration on a stream of data (online). If it is applied on a sequence of demonstrated
actions, it simultaneously solves the problem of data segmentation and classification.
The input data of this process is defined as a multidimensional time series

X =
[
X(1); . . . ;X(N)

]
∈ RN×D (3.1)

with N samples and D dimensions. The samples are vertically stacked in the matrix,
which is denoted by a semicolon throughout this thesis. A demonstration sample X(t) at
time step t might contain a combination of measurements such as a pose and a wrench.
This thesis considers the demonstration data by the concept of modalities.
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Definition 6 A teaching modality describes the state space of physically related
quantities and their derivatives. These quantities can be of continuous or discrete
manner. Multiple teaching modalities can be observed simultaneously by different
sensor in one demonstration.

Naturally, the pose modality is recorded in LfD systems. This work expresses all poses
in the world frame {O} if not other specified and defines a Cartesian pose ξ as

ξ = [p,o] ∈ R7

with position p = [p1, p2, p3] and orientation as quaternion o = [ox, oy, oz, ow]. The
scalar-last notation is used for quaternions with the vector part [ox, oy, oz] followed by
the scalar ow. Additionally, also the time derivatives of the pose are covered by the
pose modality, such as the velocity ṗ and the acceleration p̈. A time series of poses is
expressed as

Ξ =
[
Ξ(1); . . . ;Ξ(N)

]
∈ RN×7 .

This work puts a strong emphasis on the force domain and naturally considers force
and torque data in the recognition methodology. The wrench modality is expressed in
the world frame {O} if not other specified. This work defines the wrench w as

w = [f ,ϱ] ∈ R6 (3.2)

with force vector f = [wx, wy, wz] and torque vector ϱ = [wa, wb, wc]. A time series of
wrenches is expressed as

W =
[
W (1); . . . ;W (N)

]
∈ RN×6 .

The gripper state of the robot is defined as dedicated modality which is of interest
when interacting with objects in this work. For a two finger gripper, it is expressed as

ϑ = [g, h] ∈ R2

with g ∈ R being the gripper finger opening width and h ∈ {−1, 0, 1} representing
the grasp status. The opening width g is a value in the range of [0 . . . 1] where 0 and
1 represent the gripper to be fully closed or opened respectively. The grasp status is
defined as

h =


−1 : no object in gripper

0 : gripper moving
1 : object in gripper

 .

A time series of gripper states is expressed as

G =
[
G(1); . . . ;G(N)

]
∈ RN×2 .

Revisiting (3.1), the standard demonstration sample used in this work and if not other
specified is denoted as X(t) at time step t and it is defined as

X(t) =
[
Ξ(t),W (t),G(t)

]
∈ R15, (3.3)

consisting of pose, wrench, and gripper states. All samples are expressed in the world
frame {O} if not other specified..
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3.1.2 Multiple Demonstrations

Definition 7 Multiple demonstrations are forming a set of demonstration trials
(Def. 3) for the same task (Def. 1).

Multiple demonstrations of a task use the index i ∈ [1, . . . , I], where I is the number of
demonstrations. Any variable X that is associated with demonstration i is denoted as
X [i]. The t-th sample of this variable is referred to as X [i](t).

3.2 Demonstration Encoding with Gaussian Mixture Models

This work encodes multidimensional time series with GMMs [153]. The resulting prob-
abilistic models can be used to exploit their variance in confidence bounds and to repro-
duce a mean trajectory from multiple demonstrations. There exist state-based models,
which reproduce an action conditioned on a state, and time-based models, which repro-
duce an action conditioned on a time variable. This thesis uses only time-based models,
similarly to Dynamic Movement Primitive (DMP)s that rely on a phase variable.
A multidimensional time seriesX is encoded alongside a time vector u = [1, . . . , N ]T ∈

RN . When encoding multiple demonstrations within the same model, they can be
stacked along their temporal dimension while the same time vector is repeatedly stacked
alongside. This technique exploits the spatial variance among multiple demonstrations,
bringing a few advantages. First, it increases the robustness by merging the knowl-
edge from multiple trials with task variations. Second, it smooths the noise inside jerky
demonstrations. Third, it allows subsequent execution stages to exploit the model vari-
ance, for instance, to specify controller gains or to evaluate confidence bounds used in
anomaly detection. Note that the length of each time series and time vector must match.
Otherwise, resampled time series can be created to unify their lengths. Possibly, DTW
can be applied to compute warping paths that temporally align the time series with each
other.
Assume that a GMM encodes multiple time series X [i] = [P [i],O[i]] ∈ RN [i]×D with

i ∈ [1, . . . , I]. Each time series i consists of position P [i] and orientation O[i]. All time
series have the same length N = N [1] = N [2] = · · · = N [I]. The input data Rin consists
of all stacked demonstrations alongside the time vector

Rin =

P [1] O[1] u
...

...
...

P [I]t O[I] u

 ∈ R(I·N)×(D+1) . (3.4)

The Expectation Maximization (EM) algorithm fits a number of Gaussian distributions
onto this input data [153]. The resulting model is defined asMGMM = EM(Rin). The
most important hyperparameter is the number of model components. This work defines
the number of Gaussian components to be proportional to the temporal duration of
the time series. This is denoted as Ng ∼ Nλ

fs
, where λ defines the number of model

components per second and fs defines the system’s sample frequency.

31



3 Prerequisites and Background

GMR conditions the model MGMM on the time vector u. The results are stored in
the generalized time series for mean Y ∈ RN×D and covariance Z ∈ RN×D×D obtained
by (Y ,Z) = GMR(MGMM,u). The samples at time t are specified as

Y (t) = [Y (t)
p ,Y (t)

o ] ∈ RD , (3.5)

and

Z(t) =

[
Z

(t)
p,p Z

(t)
p,o

Z
(t)
p,o Z

(t)
o,o

]
∈ RD×D. (3.6)

The subscripts of Y and Z refer to each modality, with p for position and o for orienta-
tion. If the input data contained quaternions, the orientation trajectory quaternions in
Yo are normalized to unit quaternions afterward. The computations for the GMM and
GMR are carried out using pbdlib [149].

3.3 Skill Transfer Modalities

The technically observable modalities of a robotic system are usually a subset of the
modalities that a human actively uses during teaching, and they usually do not match
the perception capabilities of the human. For instance, a human naturally employs visual
perception, which might not be the capability of a robotic system.
Multiple sets of modalities are important for the task transfer from human to robot,

which are defined as follows.

1. Natural modalities: Modalities of the physical world, e.g., pose, wrench, vision,
acoustics, smell

2. Teaching modalities: Modalities that the human actively uses during the demon-
stration to solve the task efficiently, e.g., pose, wrench, vision

3. Observable modalities: Modalities that a technical system can observe with its
sensors, e.g., pose, wrench

4. Utilizable modalities: Modalities that the system can utilize as feedback in its skill
implementations and controllers, e.g., pose

3.3.1 Skill Transfer Example

An exemplary scenario suggests several natural modalities that are available from the
physical world, which are vision, pose, wrench, acoustics, and smell (Fig. 3.1: natural).
In this example, a human teacher uses kinesthetic teaching to demonstrate how to wipe
a surface by employing a set of teaching modalities (Fig. 3.1: teaching). At this moment,
a human could rely on

i) the control of the hand pose and proprioception of the arm kinematics (pose modal-
ity),

ii) the wrench that is perceived when pressing on the surface (wrench modality), and
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natural

human perspective

task transfer

robot perspective

teaching observable utilizable

vision
pose
wrench
acoustics
smell
...

vision
pose
wrench

pose
wrench

pose

modalities

Figure 3.1: Sets of modalities during the task transfer from human to robot. From left to right,
a human has natural modalities but might use only a subset of these as teaching
modalities. A robot might be able to observe only a subset of these as observable
modalities and might utilize a different modality subset during task execution.

iii) the visual perception used to approach the surface and track the wiping path (vision
modality).

Since the acoustics and smell might not be task relevant for the human demonstrator,
they are not contained in the teaching modalities. The robotic system can measure its
pose and the applied wrench during kinesthetic teaching. However, being not equipped
with a camera, the robot cannot visually observe the task and its environment. There-
fore, the vision modality is missing in the observable modalities (Fig. 3.1: observable).
Finally, the robotic system could learn a wiping strategy from the human demonstra-
tion. Assuming that the robot has no closed-loop force control capabilities, it could still
execute the task with a position controller and a mechanical compliance mechanism at
the end-effector. This example then leads to a robot-specific set of utilizable modalities
without wrench modality and only a pose modality left (Fig. 3.1: utilizable).
This example showcases a possible mismatch between human and robot sensing modal-

ities that might be caused by the hardware and software endowment of the robotic sys-
tem. Consequently, robots that can only use a subset of the human teaching modalities
must exhibit different strategies than humans to reach the same goals. Therefore, robot
skills can be developed that consider the robot’s limited capabilities but still can achieve
the task goals as intended by a human. An example is a peg-in-hole task that can be
solved visually and haptically by a human and only haptically by a robot without visual
perception.
The mismatch between humans’ and robots’ capabilities requires the robot to under-

stand which capabilities should be used in which context. This requires the identification
of a set of skills that can account for different steps within robot tasks. Later, such skills
can solve the part of the task as the user intended it, but with the given robot’s capa-
bilities. With that background, the next chapter proposes a method for identifying and
automatically recognizing contact-based robot skills.
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4 Skill Identification and Recognition

This chapter introduces a method for identification of contact skills, where the identified
skills can be understood from the human and robot perspective.

A major part of this chapter was published in [154]:

• T. Eiband and D. Lee, “Identification of common force-based robot skills from the
human and robot perspective,” in IEEE-RAS 20th International Conference on
Humanoid Robots (Humanoids), 2021, pp. 507–513.

The author of this thesis developed the proposed methods and conducted the user study
and experiments. D. Lee advised in developing research methodologies and analyzing
the results and revised the article.

This chapter is structured as follows. Section 4.1 introduces the skill identification
process. Section 4.2 explains how a robot recognizes these skills. Section 4.3 presents
the experiments with the classification results on the underlying dataset. Finally, Sec. 4.4
discusses and concludes the main findings.

4.1 Skill Identification

A human can naturally select an appropriate strategy to achieve a specific task goal. A
human also knows which constraints to consider when interacting with the environment.
For instance, a human intends to grasp an object while the object is outside of the field
of view. Usually, the human arm moves with adapted velocity toward the expected
object location while trying not to hit any obstacles. The arm’s feed-forward motion
is controlled with low stiffness to reduce possible undesired impacts. When the hand
touches the object, the human tries to minimize the contact force such that the object is
not unintentionally shifted or dropped. Next, the human searches for a stable grasp pose
by tactile exploration. All these steps require specific and adaptive control strategies
that account for different constraints. The human can select an appropriate interaction
strategy subconsciously from the made experiences. However, a robot cannot naturally
rely on such experiences when executing a task.

With that in mind, experts design robot skills that execute a specific behavior with
the help of inbuilt constraints. It is emphasized that the research community paid the
most attention to robot skills intended to solve position-based tasks [58, 72, 112, 155].
From the human perspective, there is an intuitive need for contact forces in various
human actions. Consequently, a robot should exploit contact forces and force feedback
to interact with its environment.
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1) cultural and linguistic background

2) level of experience in the 
    application domain

3) level of experience in 
    human machine communication

4) perceptiveness 

human factors technical factors

1) adaptability for 
internationalization standards

2) adaptability to novice users

3) capability to continually 
learn from human feedback

4) communication channel / 
explainability of task representation

Figure 4.1: Human robot communication quality factors. Human factors depend on the indi-
vidual end-user while technical factors depend on the robotic system characteristics.

Identifying skills that are interpretable by both humans and robots helps to improve
the explainability of a technical system.

Definition 8 Explainability describes how well a system can express itself to the
system’s user in terms of its knowledge and capabilities.

Explainability concerns the technical side about how well a system was designed to let
users understand what it does and why it is doing.

What precisely a human understands from a system’s task representation in the form
of skills could be influenced by many factors, such as shown in Fig. 4.1.

4.1.1 Human Factors

Fig. 4.1 shows the human factors: 1) cultural and linguistic background, 2) level of
experience in the application domain, 3) level of experience in human machine commu-
nication, and 4) perceptiveness.
Considering point 1) the linguistic point of view greatly influences the legibility of

skills. For example, a system shows a task representation with a skill labeled in a
language the user is not proficient with. Therefore, a system designer must account
for the cultural and linguistic background of the target group. Works that analyze the
linguistic conception of forces in the English language [156–159] express only a weak
connection to physical forces. The discussed usage of the word force and so-called force
dynamics points instead to the field of cognitive linguistics and not necessarily to physical
forces. For example, the expression “to force something” has only an indirect relation
to a physical force. Instead of the works mentioned above that describe force dynamics
as a concept from cognitive linguistics, skill identification aims to derive expressions
for skills understood as force-based interactions in the physical sense. Although several
works describe a set of force-based constraints [51, 160, 161], they do not validate them
to which extent they are interpretable by users.

36



4.1 Skill Identification

Considering point 2), the level of expertise in the application domain is crucial for
qualitative human-machine communication. An example domain could be woodwork-
ing, where a carpenter would have a better imagination about the used terms, such as
sawing, grinding, screwing, etc., than a novice user who has never worked in this area.
Therefore, a system should ideally consider that the target group does not necessarily
have a background in the application domain.

For point 3), level of experience in human-machine communication, it is assumed that
people continually adapt to a technical system since a) the used terms reappear and
become familiar; b) the human sees the consequences that a previous action caused;
c) the user adapts to the system’s communication behavior, even though some of its
expressions are considered wrong in the beginning. Ideally, not only the user adapts
to the system but also vice-versa. This behavior is also called co-adaption and would
assume that there are learning agents on both sides.

Lastly, addressing point 4), perceptiveness refers to the human ability to understand
what the system represents. Here, it is assumed that mental receptivity differs among
users for the same task representation and communication channel. An example is that
people have different perceptual strengths, which can be visual, auditory, or haptic.
Consequently, some people would prefer a graphical task representation, while others
would rely on speech and auditory feedback while teaching a robot.

4.1.2 Technical Factors

Fig. 4.1 lists important technical factors that influence the communication quality be-
tween humans and robots, which are: 1) cultural and linguistic background, 2) level of
experience in the application domain, 3) level of experience in human machine commu-
nication, and 4) perceptiveness.

Point 1), adaptability for internationalization standards, refers to a machine’s capa-
bility to switch to a suitable style of knowledge expression, such as a proper language
for a textual task representation or appropriate speech that the user can understand.

A system should ideally adapt to the user’s expertise, referring to point 2), adaptability
to novice users. For instance, a system could provide hints in a graphical interface about
how to be used in an introductory phase. Similarly, a user could start to use a system
in a mode with reduced options and gradually move to a more sophisticated interface.

Point 3), capability to continually learn from human feedback, targets again the co-
adaption between humans and robots but considers the technical aspect. While a system
can incrementally learn to improve its performance generically, it could even adapt to
the behavior of specific users by continually interacting with them.

Point 4), communication channel / explainability of task representation, addresses the
style and quality of how a system can express itself. Different communication channels
can be used to describe the system’s knowledge, such as graphical or verbal feedback.
Then, the style of how the knowledge is represented influences the explainability. For
example, visual feedback can be expressed graphically through sequenced items, graph-
like representations, or behavior trees. The labeling or description of these items can be
achieved textually or graphically by pictograms.
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Figure 4.2: Two examples for demonstrations and reproductions using the classified skill. Top:
a demonstrated force profile (left) and possible reproduction based on detected slide
skill (right). Bottom: a demonstrated peg-in-hole trajectory achieved with user’s
visual feedback (left) and possible reproduction of a peg-in-hole skill using a spiral
search primitive to identify the insertion point (right).

4.1.3 Skill Constraints and Properties

The skill characteristics are formulated such that a hybrid force-position or force-impedance
controller can reproduce them. A skill might have associated constraints during each
phase of the execution. A constraint could be of kinematic or dynamic nature, such as
described in the task frame formalism [161]. For instance, the robot controller would
track the position in one subspace and track the wrench in another subspace [148].

The execution of a skill could further involve different states arranged in the form
of a finite state machine. These states are either sequentially arranged or exploit a
more complex architecture. Each state could then enable different control modes and
control parameters. For instance, this is required when switching from position to force
control after contact is made [162]. Each skill in this chapter also refers to multiple
exemplary applications and related implementations from the state of the art. Such
mapping between skill and implementation allows to reuse existing methods in the proper
context without re-implementing robot behaviors repeatedly.

The following paragraphs introduce a set of skills that is analyzed throughout this
chapter. At first, a skill is introduced that humans use for haptically identifying the
state of the environment.

Touch is intended for a slight contact between the robot tool and the environment. Ex-
emplary usages are to detect physical constraints in the world, the presence of expected
objects, and for haptic search strategies [42, 96, 97, 163]. While the forces in this skill
shall be limited, it might be desired to reproduce a specific force onto the environment.

Press achieves a desired force onto a counterpart, such as press fitting in assembly
[37, 164, 165]. Pressing shall reach the desired force on a single point of application.
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4.1 Skill Identification

However, one could require to move a tool along a surface while maintaining the same
force, as explained in the following.

Press and Slide enables polishing tasks [166], surface smoothing [34], grinding [167],
or gluing [168] where usually a contact force normal to the surface is maintained. Tools
can be also applied on free-form countours as part of many workpieces.

Contour targets to follow a free-form path, for instance, used in deburring tasks or
edge smoothing of mechanical parts [169–172]. The requirement is to maintain a force
normal to the edge such that the tool applies constant pressure onto the counterpart.
Motion around a center of rotation is contained in many technical mechanism, requiring
either the robot tool or a mechanical part to be rotated, depending on where the desired
center of rotation lies in.

Turn aims for rotational motions, for instance, to screw or unscrew parts like a bottle
cap, or to rotate a valve or lever [105,173,174]. More sophisticated robot behaviors are
required for insertion tasks, also known as peg-in-hole tasks.

Insertion is designed for physically constrained mating operations, also referred to as
peg-in-hole, where a variety of algorithms were presented [33, 145, 175]. A comparison
of algorithms is presented in [176] and [177]. In a collaborative workcell, hand-overs
between human and robot become possible.

Hand-over targets situations where an object shall be passed between robot and user.
Examples can be found in [178], where actions such as “receiving” or “handing over” are
defined. Such events can be, for instance, triggered by touching the robot’s structure. A
robot can not only pass around or manipulate objects by grasping, but also by pushing
them with any part of its structure.

Push can be employed in nonprehensile manipulation, meaning to handle objects with-
out grasping them. For instance, used to shift an object over a table without using a
gripper. A survey about robot pushing is presented in [179].

4.1.4 User Study for Skill Identification

The aim of this study is to identify human interpretable skill names for different human
actions. These skill names are found by showing the users a video demonstration for
different force-based interactions between the human hand or a tool within the human
hand and the environment. In order to generalize over each of the previously introduced
skills, two different videos were provided per skill. This results in 16 prerecorded videos
that are referred to as video samples. Each video shows a force-based interaction between
a human hand and its environment. An interaction can be achieved via a tool that is
hold in the hand or directly via the human hand. Some examples are shown in the
Figures from 4.3 to 4.10.

Each interaction class was shown in two different situations. For instance, touching
was performed in the following two configurations: 1) the human hand holds a tool and
touches one object (in this example, the tool is a pen as shown in Fig. 4.3); 2) the human
uses the fingers directly to touch an object. Although the human holds a tool in the first
configuration but not in the second one, a user might still consider that these actions
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belong to the same type. All video examples can be seen in the accompanying video
of [154].

This study involved 26 subjects (10 female, 16 male, average age of 28.6 (SD = 4.04)).
Prior to the study, they rated their level of robotics experience (RE) with an average
of 2.35 (SD = 1.20)) in the range from 1 (no experience) to 5 (in-depth experience).
Additionally, they rated their English skills (ES) with an average of 3.88 (SD = 0.71)
in the range from 1 (basic) to 5 (native language). Each participant was instructed to
propose a suitable textual label for each of the 16 videos via a browser interface. No
restrictions were given about how to label a video, meaning that the user could either
provide a single word or multiple words as designation.

The 26 subjects provided a textual label for each of the 16 interactions, resulting in
416 labels. The goal of this study was to find unique and human interpretable labels for
each of the eight skills. To reach this goal, similarities have to be identified in order to
maximize the number of matching designations. Therefore, all labels were pre-processed
by lemmatization, employing the lexical database of WordNet [180]. Lemmatization
makes use of a dictionary in order to remove the inflectional ending of a word. An
example is the word touching, which results in the word touch after lemmatization. A
more complex example are irregular verbs, such as slide, whose past tense is slid, which
results in the word slide after lemmatization.

The results of the labeling study are shown in the bar charts of Figures 4.3 to 4.10.
Each bar chart reports the 10 most frequently mentioned names. The users were rather
consistent with labels for the touch skill, with 10 mentions of touch, followed by 4
mentions of tap 4.3. The press skill press was labeled 10 times with press, followed by
two mentions of push 4.4. In the case of hand-over, 10 users mentioned the same skill
name, while one user each labeled it as give and take, grab, and pass. The insert skill
received also a rather obvious labeling with 10 mentions of the same skill name and only
one mention each of the labels stick in, fit, and place. Another rather clear labeling
received the push skill, with 10 mentions of the same name, three mentions of slide, two
mentions of move, and one mention of push object.

Some of the skills received a larger variety of labels. The press and slide skill was
termed five times slide, two times press and slide, and two times stroke. The contour
skill was termed only three times with its expected name. Further, it received two
mentions of follow contour, follow edge, scrap, and trace respectively. The turn skill
received also a large variety of labels, where users mentioned only five times the label
turn, four times twist, three times screw, and two times rotate. From these results, each
skill is termed with the most frequently mentioned label. Figures 4.3 to 4.10 show the
scenes of the interactions that were presented in the user study. The bar plot beside
each figure shows the 10 most frequently mentioned labels.

4.1.5 User Study for Skill Classification

In this user study, the previously extracted labels are used as skill names in a classifica-
tion task performed on the same video samples as the previous study. The difference to
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Figure 4.6: contour
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Figure 4.11: User study for skill classification: Confusion matrix of the human classified skills
with original names.

the previous study is that now, the users could not freely provide a textual description
but had to choose from a list of eight skill names that fit best to each sample.

The first user study about skill identification produced the most frequently mentioned
labels for each skill, which are now used as labels in a classification task. A group of
15 subjects participated in this study (8 female, 7 male, average age 33.3 (SD = 5.43),
RE = 2.13 (SD = 1.13), EE = 3.13 (SD = 0.83)). None of the subjects was involved
in the previous user study. The subjects watched the same 16 videos as in the previous
study and were asked to select one textual label that suits best to each video. The set
of provided labels was {touch, press, press and slide, contour, turn, insert, hand-over,
push}.

This study can be seen as testing a classifier. The classification model is represented
by people’s common comprehension of the classification task. Since the subjects could
not communicate with each other and had never seen these video samples before, it
is expected that there is a common understanding of force-based physical interactions
embedded in the subjects’ mental models and their linguistic cognition.

From the classification study, 15 users selected the labels for 16 video samples, resulting
in 240 labels. The classification results are shown in the confusion matrix in Fig. 4.11.
The average accuracy of the subjects’ labeling is 0.89. In other words, the users could
recognize about 9 out of 10 skills correctly. The push skill faced the lowest accuracy
of 0.42. This means that less than half of the group could recognize its expected label.
Moreover, the subjects most often confused it with slide (in the proportion of 0.54)
as they might have associated the sliding of an object over a surface stronger with a
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slide skill. However, slide was intended for an interaction where pressure is applied
onto a surface and maintained while moving a tool. After examination of this issue, it
was assumed that the main confusion in the case of push and slide suggested proposing
a different skill name for slide since it was even more frequently selected than push
itself. Therefore, a different label for slide was used in a follow-up study for the skill
classification.

4.1.6 User Study for Skill Classification with Modified Label

The third and final study revisits the skill classification task as it was designed in the
previous study. However, the limited accuracy in the recognition of the slide that was
mainly confused with the contour skill suggested to run a study with a modified skill
label to possibly increase the legibility of the whole skill set.
The difference to the previous classification study is that the skill slide is renamed

to press and slide. This modified label reached the second highest number of mentions,
namely two, as shown in the bar-plot of Fig. 4.5. Although the label stroke also reached
two mentions, it was hypothesized that press and slide has a higher interpretability than
stroke. This study involves a number of 10 subjects (2 female, 6 male, average age
28.8 (SD = 4.13), RE = 3.00 (SD = 1.51), ES = 3.75 (SD = 0.71)). These subjects
have neither participated in any other of the previous studies nor seen any of the video
samples before the experiment.
The classification results are again shown as a confusion matrix in Fig. 4.21a. The

average accuracy is reported as 0.89, which is comparable to the previous classification
study. However, the main goal of this study was to improve the interpretability of the
push skill, whose recognition accuracy could be increased from 0.43 to 0.70. This change
also had a positive effect with respect to the slide skill that has been renamed to press and
slide. Its recognition accuracy could be increased from 0.73 to 1.00, and the confusion
between push and press and slide could be decreased from 0.54 to 0.2. In other words,
only two out of 10 subjects confused these two skills compared to previously 14 out of
26 subjects.
Considering the improved accuracy of the push skill and the reduced confusion be-

tween push and press and slide, it is concluded that the skill labels are reasonably well
interpretable by a general audience. Therefore, the final set of proposed skills is shown
in Fig. 4.12 and a compact overview is given as {touch, press, press-and-slide, contour,
turn, insert, hand-over, push}.

4.2 Robotic Skill Recognition

A human shall be able to interpret how the robot will behave when executing a skill.
Analogously, a technical system shall be able to recognize a skill in a human demon-
stration. After identifying the skills, they can be considered commonly interpretable by
both humans and robots and therefore serve as recognizable skill classes. Consequently,
a skill recognition algorithm can infer the observed skill class from the demonstration
data. Fig. 4.12 shows such concept of a skill demonstration and recognition system.
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Robot
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1 2
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classification result

feedback

Figure 4.12: Concept overview of a PbD process where the human demonstrates and the robot
recognizes skills.

Figure 4.13: An overview of the system architecture and data flow.

First, a human provides a kinesthetic demonstration that is observed by the robot’s
proprioception. It is assumed that the provided demonstration contains skills the sys-
tem can interpret. This process is called skill recognition employing a feature-based
time series classification. It is a feature-based approach since it computes manually
designed features from the raw measurements. The underlying problem is time series
classification because the robot measurements that resemble a skill have the form of
a multi-dimensional time series. This section introduces an algorithm for robotic skill
recognition and proposes a system architecture used in the experiments. The compo-
nents of this system are shown in Fig. 4.13.

First, a segmentation module observes the demonstration data X, segments the time
series based on the tool’s contact state, and extracts so-called contact segments Ss. A
feature computation module (Sec. 4.2.3) reads these contact segments and outputs a
feature vector z per segment Ss. This feature vector has two purposes: 1) to predict
a skill label y in the classification module (Sec. 4.2.4); 2) to serve as a data sample
for the long-term memory of the classification module. The user can see the predicted
label on a GUI. Finally, the system assumes either the user’s agreement if no action is
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4 Skill Identification and Recognition

undertaken or accepts a manually corrected label yuser. This process is further described
in the User Interaction Concept in Sec. 4.2.5. In case the user does not take any action,
the final label ŷ becomes ŷ = y, or in case the user corrects the label, it is ŷ = yuser. The
final label ŷ and its associated feature vector z is then added to the system’s long-term
memory.

4.2.1 Task Demonstration

The user demonstrates the task via kinesthetic teaching. The robot must be back-
driveable and equipped with a wrist FTS, mounted between the robot and tool. The
robot records the demonstration data time series denoted as X ∈ RNd×15 with Nd

samples. It consists of position and orientation, force and torque, gripper finger distance,
and grasp status. See Sec. 3.1 and Equation (3.3) for more details.

4.2.2 Contact State Segmentation

At this stage, the contact state segments the demonstration time series. It is expected
that a task demonstration X consists of multiple alternating segments, which are: 1)
unconstrained motion without tool contact (abbreviated as no-contact: NC); 2) tool
contact with the environment (abbreviated as in-contact: IC).
The contact segmentation approach is introduced in more detail in Sec. 6.2.2. In brief,

it logically combines threshold evaluation on absolute force and torque measurements
to differentiate between free motion and contact state. The criterion for splitting the
demonstration data is(∥∥∥f (t)

∥∥∥ < δf ∧
∥∥∥f (t+1)

∥∥∥ > δf

)
∨
(∥∥∥ϱ(t)

∥∥∥ < δϱ ∧
∥∥∥ϱ(t+1)

∥∥∥ > δϱ

)
,

given the force and torque vectors f (t) and ϱ(t) at time step t and their respective
thresholds δf and δϱ. The notation of ∥ · ∥ is the Euclidean norm and ∧ and ∨ refer to
mathematical conjunction and disjunction, respectively.
After the segmentation, there is a post-processing stage where all NC segments in

between IC segments that are below the duration of 250ms are removed. This rule exists
for two reasons: 1) users have to deal with the robot’s inertia during kinesthetic teaching
and therefore cause undesired contact losses during a contact-rich operation. Examples
are small lift-offs when the tool moves along a complex surface and the user cannot fully
compete with the robot’s inertia behavior. 2) the proposed algorithm assumes that the
whole contact skill is demonstrated in one piece while the tool maintains contact with
the environment. If the contact loss duration becomes too long, it lets a new NC segment
emerge.
The segmentation module produces new segments online while observing the demon-

stration. A segment is denoted as Ss with s ∈ {1, ..,M} where M is the number
of segments per demonstration. Whenever the system identifies that a contact state
changes, the next segment Ss is passed to the feature computation module, introduced
in the next section. Fig. 4.14 shows an exemplary demonstration with multiple contact
segments.
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4.2 Robotic Skill Recognition

Figure 4.14: Segmented demonstration of multiple touch events, showing the in-contact seg-
ments in gray. From left to right over time, first the force and later the torque
signals caused the segmentation to identify contact states.

4.2.3 Feature Design

This section introduces 30 features (Table 4.1) that are computed on each segment’s
motion and wrench data Ss. The feature design required:

1. pose invariance, i.e. invariance to a task-specific reference frame without mattering
in which Cartesian frame a skill demonstration lies;

2. shape invariance, i.e. invariance to various geometries of the contacted object or
environment;

3. scaling invariance, i.e. invariance to the spatial scaling of a skill demonstration;

4. tool frame invariance, i.e. the feature computation does not assume a specific
contact point on the tool, which can arbitrarily change during the demonstration.

In the following example, the number of each of the requirements above can be found
in parentheses. A contour skill could be demonstrated in an arbitrary task frame (1.),
has a motion trajectory whose geometric shape is not contained in the training set (2.),
uses a larger spatial scaling than in the training data (3.). Additionally, the robot’s
tool follows a contour while its contact point constantly changes (4.). The classification
method shall still be able to predict the correct skill while facing these challenges.
Table 4.1 shows the proposed features. The leftmost column contains an ID of each

feature, referenced later in the feature analysis. The middle column shows the feature
names trailed by a set of possible input variables. For example, “Path length (p,o)”
describes two independent features with IDs 1 and 2 using p and o as input, respectively.
The rightmost column shows the feature equations, where x is a placeholder for each
input variable. The dot notation ẋ refers to the first derivative over time. A segment
comes with a number of samples N . The Euclidean norm is written as ∥ · ∥.
The proposed features consider the physical relation between the motion and wrench

modalities. For instance, there are features such as Work (ID 17, 18), No. of Zero-power
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4 Skill Identification and Recognition

Table 4.1: Contact Features

ID Feature Equation or Description

0 Duration N = length(X)

1..2 Path length (p,o) dx =
∑N−1

t=1 ∥ẋ(t)∥
3..4 Path length ratio (p,o) ∥xN−x1∥

dx

5..6 Distance (p,o) ∥x(N) − x(t)∥
7..10 Time to max. (ṗ, ȯ,f ,ϱ) argmax

t
{x(t)}

11..14 Mean absolute value (ṗ, ȯ,f ,ϱ) 1
N

∑N
t=1 ∥x(t)∥

15..16 Normalized sum (f ,ϱ) 1
N

∥∥∥∑N
t=1 x

(t)
∥∥∥

17..18 Work ((ṗ,f), (ȯ,ϱ)) w =
∑N

t=1 f
(t)T · ṗ(t)

19..20 Mean power 1
Nw

21 No. of Zero-power crossings (ZPC)
∣∣ZPC(f (t)T · ṗ(t))

∣∣
22..23 Linear regression correlation ((ṗ,f), (ȯ,ϱ)) coefficient of determination:R2

24 Position linearity ve1

25 Position planarity ve1,e2

26..27 Relative spatial variance (p,o) 1
dx
∥var(x1..N )∥

28..29 Relative wrench variance (f ,ϱ) 1
max(∥x∥)∥var(x)∥
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4.2 Robotic Skill Recognition

crossings (ID 21) and the Linear regression correlation (ID 22, 23) between position and
force. Related works also apply so-called template matching, where a parametric model
of prior demonstrations is learned and compared to the actual demonstration, making
the model task-specific. The requirements above and the designed features intend to
make the skill recognition invariant to specific environments.
Next, the computation of certain features is clarified in more detail. Zero-power cross-

ings (ZPC) describes the number of events where the power in the physical sense changes
its sign. This feature counts how often the energy flow between the robot and the en-
vironment reverses. Position linearity ve1 is the ratio of explained variance of the first
principal component when applying a Principal Component Analysis (PCA) on the po-
sition trajectory. It is a metric describing how linear a trajectory is in the task space.
Similarly, position planarity describes the ratio of explained variance in the PCA’s first
two principal components, which scores how well a trajectory lies in a two-dimensional
plane in the task space. These variables are computed by

ve1 =
tr(V )− V1,1

tr(V )
and ve1,e2 =

tr(V )− V1,1 + V2,2

tr(V )
,

where V is the diagonal matrix of eigenvalues computed on the position p, which are
sorted in descending order. The Linear regression correlation is the coefficient of deter-
mination R2 as computed in [181]. It is obtained by the multivariate linear regression
function

Y (t) = f(X(t),β) + e(t),

where Y (t) denotes the dependent variable, X(t) denotes the independent variable, β
are the estimated parameters, and e(t) describes the error terms at time step t. More
specifically, the features with ID 22 and 23 fit the force f as a function of linear velocity
ṗ, and torque ϱ as a function of angular velocity ȯ.
A mutual information analysis applied to the feature set assesses their importance. It

relies on non-parametric entropy estimation methods as proposed in [182] and computes
a score of dependency between features and dependent variables in the dataset. Fig. 4.15
shows these results. The feature’s score is then sorted in descending order. In an ablation
study, the subsets of the k-best scoring features are used in a cross validation using the
support vector classification described in the following subsection. Figure 4.16 shows
the resulting classification accuracies converging to about 0.96.

4.2.4 Support Vector Classification

The examined problem is a multi-class classification with continuous features, which can
be solved by an SVM. This algorithm was in favor of a Neural Network (NN) designed as
Multi-layer Perceptron (MLP) that could not outperform the SVM in preliminary tests.
The NN could perform better on more complex data without using the proposed fea-
tures, but it might also require a much larger dataset and depend on data augmentation
methods. There are other advantages of using an SVM, which are:

• simple optimization due to a small number of hyperparameters, which are usually
kernel width and a regularization parameter;
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4 Skill Identification and Recognition

Figure 4.15: Score of each feature based on the mutual information analysis.
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Figure 4.16: Classification accuracy over the reduced feature sets used in the SVM.
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• a very short prediction time compared to NNs; and

• availability of confidence measures for each class’ membership that allow scoring
of the class assignment

In the training process, features that are computed on all contact segments are nor-
malized to values between [0, 1]. The values of this normalization step are saved for
the prediction step. Computing the features over a segment Ss yields a feature vector
z ∈ R30. The kernel of the SVM is chosen as Radial Basis Function (RBF) using the
implementation of [183]. A hyperparameter search using a 5-fold cross-validation iden-
tified the regularization parameter of the training loss function to be C = 100 . Finally,
the trained SVM can predict the label y of the skills given a contact segment obtained
from a human demonstration. Further, it can score the prediction concerning each class
using a decision function dc(z) for a class c given the feature vector z. The decision
function returns the sample’s distances to each separation hyperplane defined by the
previously trained support vectors. This distance metric allows ordering the predicted
class membership scores that the user can choose from.

4.2.5 User Interaction Concept

Whenever the user demonstrates a new task, the system segments the incoming data,
computes the feature vector z on each contact segment, and predicts a candidate skill
denoted as y. The candidate skill is then forwarded to the GUI to be presented to the
user (Fig. 4.17 left). The user now has two options:

Accept The system’s suggestion is added to the new task definition. This means there
is consent between the system and the user about the skill to be specified, allowing the
user to continue with the task definition (y = ŷ). Notably, the system can learn from
the user’s feedback. Accepting a suggestion is treated as an approval of the predicted
label, which allows to add the unseen sample z and accepted label ŷ to the system’s
long-term memory (Fig. 4.13).

Correct When the user is unsure about the proposed skill or is concerned that a misclas-
sification occurred, a correction can be made. At this moment, a new skill ŷ is selected
from the proposed list ordered by the skill’s class membership scores (Fig. 4.17 right).
Examples of skill decision scores are shown in the experiment section in Fig. 4.22(b) and
Fig. 4.23(b)). This scheme comes with the advantage that the user inherently labels new
data. Analogously as in the case above, a new sample z plus associated label ŷ is added
to the system’s long-term memory.
The system’s prediction capabilities can be improved over time by retraining the

classifier given newly labeled samples. In this case, a relatively small dataset is sufficient
to bootstrap the system, which were 400 manually labeled contacts. With this interactive
scheme, a new sample and label is obtained after each prediction because both actions
of accept and correct achieve that. The burden for the user is relatively small because
only a small fraction of misclassified predictions must be actively labeled.
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4 Skill Identification and Recognition

Figure 4.17: First, the system suggests a skill on the interactive GUI (left). Next, the user
corrects the system’s suggestion by opening the drop-down list. Now, probabilis-
tically sorted suggestions for alternative skills are presented to the user (right).
The user finally selects a skill to correct the system.

Figure 4.18: The tools used to collect the dataset. Bar and cylinder have been grasped by the
gripper during demonstration.

4.3 Robot Experiments

4.3.1 Dataset

The dataset that facilitates this research is named KROCO (Kinesthetic Robot Con-
tacts), which is publicly available1 It contains a collection of demonstrated contact
segments for each introduced skill. Figure 4.18 shows a variety of tools and Fig 4.19
shows different environments used in the data collection process. The dataset consists
of about 400 labeled interactions and exemplary samples for each skill can be seen in
the accompanying video of [154]. The bar and cylinder tools in Fig. 4.18 have been
grasped lengthwise to point away from the gripper during all trials. Trajectories were
demonstrated at varying locations and orientations of the task space. See Fig. 4.20 for
examples where either the tool or the task frame varies while a circular tool is in contact
with an object. Furthermore, the skill demonstrations in the dataset exhibit a large
variance in temporal length, spatial scaling, and contact forces. For instance, there were
demonstrations on multiple surface types with varying friction coefficients for the slide
skill. The skills of contour and push were demonstrated on the wood form and the box.

1Description: https://teiband.github.io/KROCO/
Dataset: https://dx.doi.org/10.21227/nhea-gt59
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4.3 Robot Experiments

Figure 4.19: Different environments in dataset collection.

Figure 4.20: Examples about varying tool frames and task frames where the contact point on
the tool can lie anywhere on the circumference of a circular tool, such as a cylinder
or a cone.

53



4 Skill Identification and Recognition

The turn skill was demonstrated on lever rotations (see lever in Fig. 4.19). The user
interactions for the hand-over skill were recorded by holding the end-effector with one
hand and touching it with the other hand, leading to a small position displacement.

4.3.2 Robot Classification Results

As introduced in Fig. 4.13, the demonstration is segmented into free motion and contact
segments. Next, the feature vector is computed over each segment, leading to a stacked
feature matrix of Z ∈ R400×30 with associated label vector y∗ ∈ R400. After that, the
described SVM classifier is trained on feature matrix Z and label vector y∗. The classifier
is evaluated offline with the dataset based on a 5-fold cross-validation. The accuracy
reaches 0.96 with a training time of 1.39 s and an overall prediction time of 3 · 10−4 s.
Noticeable is the fast training and prediction time that allows to run the algorithm in
online scenarios.

Fig. 4.21b shows the confusion matrix of the robot’s classification performance. The
classifier’s accuracy of 0.96 is higher than the human’s performance with an accuracy
of 0.88. The human confusion matrix is shown below in Fig. 4.21a. Both confusion
matrices show obvious similarities, suggesting that humans and the robot perceived the
same characteristics of the skills. Interestingly, both the robot and the group of subjects
share a stronger confusion concerning the contour skill. It is mostly confused with the
press and slide skill in 0.20 of the robot cases and 0.27 of the cases for the human. This
particularity suggests that a high similarity in the motion and wrench data corresponds
to a high similarity in the human’s visual perception.

4.3.3 Online Classification with User Feedback

This section handles the classification of unseen interactions not contained in the dataset.
The generalization capability is therefore tested with tools and environments that are
not contained in the dataset.

Insertion A new cylindrical tool was introduced for the insertion task, which has dif-
ferent diameter (d = 18mm) and length (l = 75mm) as the cylinder tool (d = 24mm,
l = 125mm) used in the dataset. Additionally, the mating geometry of the hole leads
to a tight fit with the new tool. The hole’s insertion depth is shorter (25mm) than
the one from the training set (50mm). See Fig. 4.22a for the experimental setup. The
classification predicted the skill insertion, with the skills’ decision function scores shown
in Fig. 4.22b. Fig. 4.22c shows the experimental position and force data.

Screw Tightening A screw-tightening task evaluates the rotation of an object with the
turn skill. The demonstration tool is a grasped socket wrench insert of 13mm used to
tighten a metric M8×20 screw (see Fig. 4.23a. This task differs from previously shown
motions and force profiles in the dataset, including no screw-tightening samples. Instead,
the turn skill was trained on lever rotations (see the lever in Fig. 4.19). Although screw
tightening and lever rotation are different in their motions, they share common features,
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(a) User study with modified label: Confusion matrix of the human classified skills with name modifi-
cation.
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(b) Confusion matrix of the robot’s feature-based time series classification.

Figure 4.21: Confusion matrices for the human (a), (b), and machine classification (c).
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(a) The unseen test tool and
its hole for the insertion
skill detection.

(b) The decision function
scores of the classifi-
cation (Sec. 4.2.4).

(c) Force and position trajectory with in-contact segment
(grey) found by the contact state segmentation (Sec.4.2.2)
(Sec. 4.2.4).

Figure 4.22: Peg-in-hole insertion experiment.
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(a) The unseen test setup for the
robotic screw tightening as
turn skill.

(b) The decision function
scores of the classifi-
cation (Sec. 4.2.4).

(c) Torque and orientation trajectories with in-contact seg-
ment (grey) found by the contact state segmentation.

Figure 4.23: Screw tightening experiment.

for example the applied torque in conjunction with angular velocities. The classification
predicted the skill turn, with the skills’ decision function scores shown in Fig. 4.23b.
Fig. 4.23c shows the position and force trajectories of the demonstration, including the
segmentation results.

4.4 Discussion and Conclusion

4.4.1 Discussion

Comparing the results of the human and robot classification in Figure 4.21 shows that
the push skill had a lower accuracy in the initial classification in Fig. 4.11. In the
human classification case, this might be caused by the fact that objects were pushed
along the table, which could also be interpreted as sliding an object over a surface.
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4 Skill Identification and Recognition

From the linguistic perspective, it suggests that the English verbs of push and slide
are interpreted similarly. Physically, both skills require a constant force while moving
along a path. However, changing the name from slide to press and slide improved the
interpretability on the human side (Fig 4.21a). Since misclassifications likely occur in a
real system, the robot could suggest skills to the user via the interaction concept. The
user has the option to accept or correct each of it. The corresponding class labels could
then be used to incrementally retrain the classifier with new incoming data in a continual
learning setup.
This research about skill identification and recognition from the human perspective is

constrained to the English language. However, the proposed strategy for skill identifica-
tion could be used to extract the same information in other languages.

4.4.2 Conclusion

The proposed set of contact skills can be interpreted by users in the role of robot pro-
grammers, as evaluated in a user study. The proposed classification method enables the
robot to classify force-based interactions from only the motion and force data without
requiring additional sensors. Contact skill detection is an essential direction in LfD,
which shifts the burden of defining specific constraints or the parameterization of a con-
troller for a particular behavior from the user to the system. As a prerequisite, a system
designer would implement the required behaviors as skills to reproduce the desired be-
haviors. A system distributor could then ship a skill library along with the hardware.
The proposed interactive classification scheme uses a feedback mechanism about the
detected skill, which has the potential to improve the system’s performance. It further
enhances the system’s transparency and explainability and lets the user understand the
system’s capabilities.
Successfully recognizing a basic set of skills paves the way to detect a wider variety of

specific contact-based skills from motion and force data, for instance, snap-fit or press-
fit connections or other surface processing techniques such as brushing, polishing, or
sanding. An open issue at this stage is the automatic extraction of control parameters
and compliance frames from the detected skills. Additionally, the contact skills should be
recognizable within manipulation tasks that require unconstrained manipulation skills
such as pick and place.
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The previous chapter concerned the recognition of individual skills from a demonstration.
In this chapter, recognition of a sequence of skills is considered as task definition method.
The main idea of the presented skill recognition pipeline is that symbolic and data-driven
approaches are merged in an online fashion to provide immediate feedback to the user
during the demonstration phase.
This chapter includes the content of the following publication [184]:

• T. Eiband, J. Liebl, C. Willibald, and D. Lee, “Online task segmentation by
merging symbolic and data-driven skill recognition during kinesthetic teaching,”
Robotics and Autonomous Systems, vol. 162, p. 104367, 2023.

The author of this thesis proposed the concept of merging symbolic skill recognition,
using pre and post-conditions, with data-driven skill prediction, using support vector
machines for skill classification. J. Liebl designed the merging algorithm that uses a
segments pool, implemented it, and conducted the user study. C. Willibald supported
the software development as well as the user study. D. Lee advised in developing research
methodologies and analyzing the results and revised the article.

This chapter is structured as follows. Section 5.1 introduces the fundamentals, Sec. 5.2
proposes the method, and Sec. 5.3 shows the experiments. Section5.4 presents a user
study that evaluates the intuitiveness of the method for end-users, and Sec. 5.5 concludes
the findings.

5.1 Fundamentals

PbD is intuitively understandable to non-experts and requires less background knowl-
edge in robotics or traditional programming [185]. While PbD allows non-experts to
program robots, it does not imply that all human demonstrators are good teachers. The
demonstrations non-experts give to machines are often sub-optimal [186], which stems
from a mismatch between the mental model that the users have of the robot and the
robot’s real knowledge [187]. Therefore, it is helpful to provide the users with feedback
about what the robot has learned to improve their teaching capability [188]. Further-
more, an understandable representation of the robot’s knowledge allows it to explain
itself. This kind of explainability helps users to build trust in robots, which is necessary
to make non-experts feel at ease when using robots and gives them the insight required
to debug incorrect robot programs [189].
Skill recognition is defined as a technique to segment demonstration data and classify

the resulting segments to obtain a sequence of meaningful, understandable steps that are
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Figure 5.1: An overview of the information flow in the framework. The user provides a demon-
stration segmented by the system to recognize appropriate robot skills. At the same
time, the user can monitor the evolving task representation that is editable at any
time.

represented as robot skills. This is achieved by solving a segmentation and classification
problem simultaneously. The combination of symbolic and data-driven skill recognition
extracts a rich task representation consisting of manipulation and force-based skills.
Fig. 5.1 shows an overview of this approach, where the user demonstrates a task while
monitoring how the robot builds up its knowledge. This chapter proposes an approach
for task segmentation that combines symbolic evaluation with supervised data-driven
methods to recognize manipulation and contact skills. With that, the system builds a
task representation during kinesthetic teaching. This task representation reflects how
the system interprets the demonstration and helps the user to understand the robot’s
knowledge. Furthermore, it offers future options to correct it and thus supports non-
expert users in their role as programmers.

The framework in this chapter:

1. reduces the amount of training data by ’outsourcing’ simple skills like pick and
place, which can be easily described in terms of symbolic preconditions/effects;

2. exploits only proprioceptive data and end-effector forces while avoiding vision-
related issues such as problematic lighting conditions, occlusion, and inaccuracies
due to calibration;

3. segments the demonstration online by two parallel segmentation pipelines;

4. reduces over-segmentation of data-driven classifications by the usage of a segment
pool and reconsideration of combined segments candidates;

5. provides live feedback in the form of a human-readable task representation; and

60



5.2 Online Skill Recognition

6. enables the user to debug the graphical task representation via a graphical user
interface, evaluated in a user study.

5.2 Online Skill Recognition

The information flow in the framework is shown in Fig. 5.1. The process starts with a user
that demonstrates a task to the system. The robot observes the human demonstration
and collects samples X(t) as defined in eq. (3.3) at each time step t. The output of the
algorithm is a sequence of skill labels along with their corresponding demonstration data
segments.

5.2.1 Skill Definition

There are two sets of skills defined, which are called Logic Skills and Classified Skills
(Fig. 5.2). Logic Skills can be symbolically described (Fig. 5.2a). These are designed

Logic Skill Definitions

Classified Skill Definitions

contact
(abstract)

pre: ContactRisingEdge

post: ContactFallingEdge
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Figure 5.2: Logic and classified skill definitions.

by a human understandable precondition (pre:) and postcondition (post:). It is known
that manipulation skills such as pick and place are commonly used in robotics [65, 67],
leading to the set in Fig. 5.2a. The abstract skill contact is recognized by evaluating its
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pre- and post-conditions, which are described by the symbols ContactRisingEdge and
ContactFallingEdge. Their binary values are obtained by

ContactRisingEdge =
(∥∥∥f (t)

∥∥∥ < δf ∧
∥∥∥f (t+1)

∥∥∥ > δf

)
∨
(∥∥∥ϱ(t)

∥∥∥ < δϱ ∧
∥∥∥ϱ(t+1)

∥∥∥ > δϱ

)
,

and

ContactFallingEdge =
((∥∥∥f (t)

∥∥∥ > δf ∧
∥∥∥f (t+1)

∥∥∥ < δf

)
∧ ϱ(t+1) < δϱ

)
∨((∥∥∥ϱ(t)

∥∥∥ > δϱ ∧
∥∥∥ϱ(t+1)

∥∥∥ < δϱ

)
∧ f (t+1) < δf

)
,

with the force and torque signals f (t) and ϱ(t) at time step t that are compared to
thresholds δf and δϱ respectively.
These symbols are evaluated by checking if the absolute force and torque measurement

exceed or fall below a threshold. These thresholds were set to 5N for force and 2Nm for
torque based on preliminary experiments and as inspired by [42]. The skill is marked
as abstract in Fig. 5.2, which means that it will only appear in the processing pipeline
and finally be refined by the algorithm, which is explained in more detail later. A move
skill defines a demonstration section where the end-effector is in motion without physical
contact while the gripper fingers are not actuated. The precondition AnyLogicSkillPost
is automatically triggered when the preceding skill reached its postconditions. Similarly,
the postcondition AnyLogicSkillPre is automatically triggered when any subsequent
skill has valid preconditions.
Consequently, a move skill fills gaps in the time series between other available Logic

Skills. The rest of the described skills involve gripper operations and are termed Gripper
Skills.
Classified Skills (Fig. 5.2b) are challenging to describe by manually defined rules. The

presented set is mainly based on the identification in Chapter 4. The move skill is
also part of this set because a classifier can better predict free motion and contact as a
symbolic predicate can do, which only evaluates a fixed threshold in the force domain.
The skills in the group labeled as Contact Skills perform a force-based interaction with
the environment. Since these interactions are hard to evaluate by manually defined
conditions, they are classified by a data-driven model.

5.2.2 Symbolic Skill Recognition

The symbolic pipeline evaluates each skill’s pre- and post-conditions to recognize a skill
during the demonstration. The symbolic pipeline using exemplary data is shown in
Fig. 5.3, step 1a . The input of the algorithm is a stream of measurements X, marked
as <in> in the figure. The output lists segmentation points and skill labels, marked as
<out>.

The pre- and post-conditions for each skill specified in Fig. 5.2a are evaluated at
each time step t. These conditions are computed from the movement of the robot’s
gripper fingers and the measurements from the FTS mounted between the gripper and
the robot. As these symbols do not suffice to distinguish between different Contact
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Figure 5.3: Skill Recognition Pipeline. The color code is the same as in Fig. 5.2, where the
logic skill definitions are in green, and the classified skill definitions are in blue
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Skills, the symbolic approach is limited to detecting an abstract contact skill instead. In
summary, the symbolic segmentation can detect the skills specified in Fig. 5.2a.

Algorithm 1 describes the process of evaluating the pre- and post-conditions in the
symbolic recognition pipeline. All skill candidates start with their status set to IDLE

until the symbolic conditions indicate that the preconditions are met for any skill. Then,
the status of the skill is set to ACTIVE as long as the post-conditions are not yet met.
Once its post-conditions are met, its status is set to DONE and added to the list of detected
skills with the information about where its data segments start and end. If the ACTIVE

state temporally overlaps for multiple skills, the one that first fulfills its post-conditions
dominates the selection and causes a reset of the ACTIVE state of all other skills. An
exemplary output of the algorithm is shown in Fig. 5.3, step 1a , labeled as <out>.

Algorithm 1 Symbolic Recognition

Require: Measurements: X, Set of Logic Skills (Fig. 5.2): LS
while X(t) do

condvals← evaluate conditions(X(t)) ▷ Compute value of each predicate
for s ∈ LS do

update status(s, condvals) ▷ set IDLE, ACTIVE, or DONE
if s.status == DONE then

segments([s.start : s.end])← s.name ▷ label each sample with skill name
for s ∈ LS do

s.status← IDLE

end for
break

end if
end for

end while
Ensure: segments

5.2.3 Data-Driven Skill Recognition on Time Window

Figure 5.3, step 1b shows the data-driven recognition pipeline. The input (labeled as
<in>) is the stream of measurements X and the output (labeled as <out>) is a list
of skill labels. The recognition module employs a support vector machine (SVM) with
a sliding window approach similar to [82]. At each time step t, a feature vector F (t) is
computed from the measurements

[
X(t−W+1); . . . ;X(t)

]
in the current time window of

length W . The SVM predicts on F (t) which skill is most likely performed in the given
time window.

The features in F (t) consist of two parts. The first part shows features extracted with
the library tsfresh [190], using the proposed minimal feature set that consists of standard
deviation, sum of values, maximum, median, minimum, variance, and mean. The feature
extraction function ftsfresh maps a univariate time series of length W to seven feature
values, defined as

ftsfresh : RW 7→ R7.
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Table 5.1: Additional Contact Skill Features

Feature Definition

mean translation power pf = 1
L

∑N
t=1 f

(t)T · ṗ(t)

mean rotation power pϱ = 1
L

∑N
t=1 ϱ

T
t · ȯ(t)

slope to max force

∆f =
max(f̂ (1), ...,f̂ (N))−f̂ (1)

argmax
n
{f̂ (n)} with f̂ (t) = ||f (t)||2

slope from max force

∇f =
f̂ (N)−max(f̂ (1), ...,f̂ (N))

N−argmax
n
{f̂ (n)}

contact duration N

contact distance d = ∥p(N) − p(1)∥
force-torque correlation Coefficient of determination R2, obtained from a

linear function approximation f : ϱ −→ f .

Consider the time series

Xtsfresh =
[
X

(t−W+1)
tsfresh ; . . . ;X

(t)
tsfresh

]
∈ RW×4

with a number of W samples obtained from a sliding window. A single sample is defined
as

X
(t)
tsfresh = [||ṗ||, ||ȯ||, ||f ||, ||ϱ||] ∈ R4 ,

where the velocity ṗ is computed from the Cartesian position p and the angular velocity
ȯ from the orientation o of the end-effector frame. The variables f and ϱ refer to
the force and torque at the end-effector. The Euclidean norm is computed over these

variables, denoted as ∥...∥. The feature vector F
(t)
tsfresh ∈ R28 is obtained by applying

ftsfresh column-wise on Xtsfresh and by stacking the results row-wise.
The second part consists of manually designed features mainly taken from Sec. 4.2,

denoted as F
(t)
add ( Tab. 5.1). They address physical relations between motion and force

as expected in the Contact Skills. A combined feature vector is constructed as F (t) =[
F

(t)
tsfresh,F

(t)
add

]
. Finally, F (t) is normalized dimension-wise to mean µ = 0 and standard

deviation σ = 1 for improved numerical stability in the classification.
As the strength of the data-driven segmentation lies in detecting skills by their force

and torque profile, the SVMs are trained to predict the Classified Skills specified in
Fig. 5.2b. The Gripper Skills specified in Fig. 5.2a (pick, place, open-gripper, close-
gripper) are not classified in a data-driven manner, as the symbolic segmentation can
robustly and efficiently identify them without any uncertainty. The SVMs use a Radial
Basis Function (RBF) kernel, whose regularization parameter and the kernel bandwidth
are found through a grid search. They are trained on data of the skills, both consisting
of the whole skill as well as sub-segments of the skills that lie within the sliding window.
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Algorithm 2 shows the computational steps required for the data-driven recognition
pipeline. While the window is sliding over the incoming measurement stream, the SVM
keeps on predicting each sample, and the predicted label is appended to a list. The
prediction rate easily achieves 50Hz since SVMs are known to be computationally very
efficient.

Algorithm 2 Data-driven Segmentation & Recognition

Require: Measurements: X, Set of Classified Skills (Fig. 5.2): CS
ylast ←None
tlast ← 0
while X(t) do

F (t) ← compute features([X(t−W+1); . . . ;X(t)]) ▷ Compute features over batch of
measurements with length W

y = SVM.predict(F (t)) ▷ Predict skill label
if ylast != y then

segments[tlast : t]← ylast
ylast ← y
tlast ← t

end if
end while

Ensure: segments

5.2.4 Combined Recognition

This section describes the stages 2 , 3 , and 4 of the recognition pipeline in Fig. 5.3.

Now, both recognition pipelines from 1a and 1b are merged into a common pipeline.

Construction of Segments Pool Stage 2 combines the output of both recognition

pipelines. The inputs are the segmentation points and skill labels of both symbolic 1a

and data-driven 1b recognition pipelines. The task of this stage is to fill a segments
pool, and its output is a list of segment candidates constructed by the following three
rules:

1. A segment that is intersected by a segmentation point of the other recognition
source leads to the addition of both split parts as segment candidates. An example
is the addition of the segment candidates in Fig. 5.3 labeled as s11 and s12.

2. If two segments from the same recognition source, which is either symbolic or
data-driven, follow each other, e.g., press and slide, it leads to the addition of the
concatenated segment. An example is the segment candidate in Fig. 5.3 labeled as
s21. This enables the recognition of skills that consume more time and are composed
of multiple steps, such as peg-in-hole.

3. If a segment is intersected by the segmentation point of a Gripper Skill, it does
not lead to the addition of new segment candidates and the overlapping segment
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candidate is removed from the pool. An example for excluded segments is given in
Fig. 5.3), step 2 , with the crossed out segment candidates, labeled as s21 and s31.

Rule 3. emerged since the recognition of Gripper Skills is considered to be highly reliable,
and therefore avoids to create new segment candidates at regions that overlap with any
of the Gripper Skills.

Data-driven Skill Recognition of Complete Interactions When the segment candi-
dates are available in the segments pool, they can be classified by the data-driven stage

in step 3 . It uses the same implementation as in stage 1b . However, it is operated
with the following differences:

1. The SVM is trained solely on complete examples of Classified Skills instead of
examples observed in a fixed length time window.

2. The SVM predicts skills based on features computed from the segments in the
segments pool instead of features computed on a fixed length time window.

The segment candidates that serve as input to this stage vary in duration. However,
computing the features over one segment s always leads to a single feature vector Fs

of fixed length. Each feature is designed to produce a scalar when computed on a time
series of arbitrary length.

A skill is recognized by scoring all segment candidates for each possible skill class
using the results of the SVM’s decision function, given as

DSVM : RNF 7→ R6 with DSVM(Fs) = zs . (5.1)

Above function maps the feature vector Fs with NF elements to a vector zs that holds
the prediction scores for each of the six possible Classified Skills. The skill with the
highest score is extracted by

∗
s = argmax

s
{zs} . (5.2)

The resulting skill is inserted into the task representation. All other segments that
overlap this segment are removed from the segments pool. This step is repeated until
the whole demonstration is segmented into move skills and Contact Skills.

Finalization with Gripper Skills Step 4 adds the Gripper Skills to the task represen-
tation. These skills are directly taken from the symbolic recognition pipeline results of
stage 1a and overwrite the existing labels in the task representation. Exemplary, the

input of this step is labeled as <in>, coming from the data-driven results of step 3 and
the output is labeled as <out>. A final post-processing step reduces over-segmentation
by splitting all segments below a predefined minimum length in the middle and merging
the resulting parts into the segments before and after.
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5.2.5 Online Segmentation with Immediate Feedback

The previously described method of combining the symbolic and data-driven recognition
pipelines requires the demonstration to be completed, i.e., fully observed by the system.
This only allows the approach to run offline. To overcome this limitation, an online seg-
mentation algorithm is presented (Alg. 3). The main idea is to run the whole recognition
pipeline whenever the system is confident about a past sub-sequence of skills. This confi-
dence is given once a GripperSkill is detected by the symbolic recognition pipeline, which
is a reliable segmentation point that will not change anymore throughout the following
stages in the skill recognition.

Algorithm 3 Online Segmentation

Require: Measurements: X,Skill Classes: skills
while X(t) do

s← get symbolic segmentation results(X(t))
if s.state == DONE and s.type == contact skill then

show data driven results() ▷ Fig. 5.4a
else

show preliminary results() ▷ Fig. 5.4b
end if
if s.type == gripper skill then

do combined recognition(s) ▷ Sec5.2.4
end if
skill sequence.append(s)
show combined results() ▷ Fig. 5.4c

end while
Ensure: skill sequence

The symbolic recognition detects online which skill is currently performed. When it
detects a contact skill, the SVMs of the data-driven approach predict the most likely
Contact Skill, as shown in the example in Fig. 5.4a. Once the symbolic skill segmentation
detects the end of a Gripper Skill, such as pick or place, an intermediate fixed segmen-
tation point is set since it will not change during the rest of the recognition process.
Therefore, the demonstration part that ends with this point can already be treated as a
complete demonstration part and thus be processed with the combined recognition algo-
rithm. The results of the combined recognition then replace the preliminary recognition
in the task representation (Fig. 5.4b). This technical feature enables the task repre-
sentation to continuously develop, where past skills of the demonstrations are already
finalized while the most recent skills are displayed as preliminary results. This process
continues until the demonstration is complete and fully processed with the combined
recognition algorithm as illustrated in Fig. 5.4c.

Due to the nature of the online skill recognition, the user receives immediate feedback
about what the robot has already learned during the demonstration. The confidence of
the robot can be visually indicated by a color for each recognized skill as exemplified in
Fig. 5.4, showing how the confidence evolves from Fig. 5.4a to Fig. 5.4c.
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(a)

(b)

(c)

Figure 5.4: Consolidation of task representation during online kinesthetic teaching. The colors
allow the user to monitor to which extent each skill is consolidated, i.e., which
step of the online recognition has already passed. Yellow: SVMs currently predict
the label. Green: The preliminary recognition is done. Turquoise: The combined
recognition is finished.

Table 5.2: Parameter Values used in the Experiments

Parameter Name Value

sampling rate 50Hz
SVM feature window length W 0.4 s
SVM regularization parameter C 100
SVM RBF kernel coefficient gamma = 1

2σ2 0.01
minimum skill length before merging 0.4 s

5.3 Experiments

The framework is first assessed offline using a dataset of demonstrations (Sec. 5.3.1).
Next, two benchmarks of its segmentation and skill recognition performance follow. On
the one hand, it is compared to a purely symbolic approach. On the other hand, it is
compared to a purely data-driven approach. This comparison uses an exemplary task
demonstration (Sec. 5.3.2). Table 5.2 shows the parameter values used throughout the
experiments.

5.3.1 Skill Recognition Performance

The recognition algorithm was trained and evaluated on a dataset based on the demon-
strations of three subjects. The dataset contains approximately 100 demonstrations per
skill recorded in batches, meaning that each user demonstrated ten times the press skill,
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then ten times the slide skill, and so forth. The skills were separated by demonstrating
a free motion without contact.

The recognition algorithm was tested in a five-fold cross-validation, with the data
split into 80% training data and 20% test data. The ground truth was obtained by
annotating the skills manually. The approach is evaluated based on two commonly used
metrics [191], which are temporal tolerance and classification by data point label. The
temporal tolerance assesses how close the algorithmic segmentation points lie to the
ground truth, without considering the labels of each segment. All algorithmic segmenta-
tion points that lie in a region of ±terr around the ground truth are considered as True
Positive (TP) and False Positive (FP) otherwise. If a ground truth segmentation point
has no corresponding algorithmic segmentation point within its region, it is considered
a False Negative (FN). The region margin ±terr was chosen as 0.2s in this evaluation.
The overall metric is computed by the F1-score

F1 =
2 · TP

2 · TP + FN + FP
. (5.3)

The framework segmented the dataset with an F1-score of 0.93, which combines the
measures of precision and recall in a balanced manner. The placement of the segmen-
tation points matters, as even if a skill has been mislabeled, the user could correct the
label of the skill without having to further adapt the segmentation result.

The second metric evaluates the classification accuracy by data point label, given as

C = Ncorrect labels/Nall labels, (5.4)

which represents the ratio of data point labels l that have been chosen correctly by the
algorithm. Consequently, a confusion matrix can be calculated showing what percentage
of ground truth labels lg have been labeled with label la by the algorithm (Fig. 5.5). The
average recognition accuracy on the dataset was 92.2%, which means that this ratio of
data points was correctly labeled.

5.3.2 Comparison of Approaches

This section compares the results of the symbolic approach from stage 1a , the data-

driven approach from stage 1b , and the merged approach from stage 4 . The experi-
menter demonstrated multiple skills in a versatile environment to collect experimental
data. Fig. 5.6a shows a part of this environment, which was also used for demonstrating
the peg-in-hole skill shown in Fig. 5.6b. The segmentation results are shown in Fig. 5.7.
The three rows in the plot represent each recognition approach. First, in the symbolic
recognition results, the Gripper Skills were correctly recognized, but the areas of con-
tact led to an abstract contact skill. This approach is not able to predict the specific
skill type of the Contact Skills, and it does not resolve multiple sequenced skills within
one contact block, for instance, in the contact area starting at time = 25 s. Next, the
data-driven approach tends to over-segment the demonstration. It produces numerous
artifacts in the form of very short skills. For example, starting at time = 10 s, the skills

70



5.3 Experiments

Move
Press

Slide

Contour

Peg-in-hole
User

Pick
Place

Open-Gripper

Close-Gripper

Prediction

Move

Press

Slide

Contour

Peg-in-hole

User

Pick

Place

Open-Gripper

Close-Gripper

G
ro

un
d 

T
ru

th

0.01

0.01

0.00

0.01

0.01

0.03

0.04

0.04

0.03

0.00

0.03

0.00

0.05

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.19

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.22

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.04

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.98

0.96

0.73

0.77

0.94

0.98

0.97

0.96

0.96

0.97

Figure 5.5: Confusion matrix for the classification by data point label.

(a) Three different peg-in-hole problems with
square, small round, and large round peg. The
left and right ones are contained in the SVM
training set.

(b) Exemplary peg-in-hole task with un-
seen objects.

Figure 5.6: Experimental environment for data collection.
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Figure 5.7: Comparison of approaches.

of contour, slide, and peg-in-hole were recognized sequentially, although the demonstra-
tion contained only a single peg-in-hole skill in this interaction. This issue could be
caused by the fact that a single peg-in-hole interaction could consist of a sequence of
other skills. The greedy search principle might then favor such skills, given that only
a small time-frame can be observed in the sliding window. Finally, the results of the
merged approach are shown in the bottom row. Due to the usage of the segments pool,
which possibly contains longer data segments compared to the one in the sliding window,
the data-driven algorithm was also able to classify adjacent skills in the same contact
and found the most likely candidate. This feature allowed to handle situations where
the observed skills significantly differed in their duration. Consequently, the proposed
algorithm handles the over-segmentation problem of the data-driven approach well while
recognizing the full palette of skills with instances of varying duration.

5.3.3 Discussion

The skill recognition performance of the framework was assessed based on a dataset
(Sec. 5.3.1) and by an exemplary demonstration, comparing a symbolic, a data-driven,
and the presented approach with each other. The framework uses only proprioceptive
sensor values and does not require object recognition or tracking. Object independence
enables the framework to be deployed in new setups without predefining the involved
objects. However, the system would not recognize changes in the scene due to the missing
visual input.

One limitation is the robustness towards large demonstration speed in combination
with the minimum allowed skill duration. If a user would demonstrate in a too fast
pace, the overall duration of a data segment could lie below the minimum skill length
(Tab. 5.2). Then, recognizing the skill would become impossible. This could be tackled
by decreasing the minimum skill length, potentially leading to very small segments.
Consequently, the user could use a GUI that supports decisions about which of these
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skills shall be kept or merged together. The data-driven approach uses the combined
features from Fadd and Ftsfresh. An ablation study could improve the feature set to
extract only the highly relevant ones, increasing the classification accuracy.

The ability to perform online segmentation distinguishes the presented approach from
purely data-driven approaches such as [59, 84–86]. By combining symbolic and data-
driven segmentation, the framework can efficiently evaluate the segmentation result, as
described in section 5.2, at each time step during user demonstration. The methods
in [84] and [86] use a sample-based inference approach that is not feasible to be solved
online. In [85], the segmentation result of different demonstrations is passed to a clas-
sification task, making it unsuitable for online segmentation. Moreover, the proposed
method can segment a single task demonstration, while the approaches in [59,63,84,85]
require multiple demonstrations of the same task. The BP-AR-HMM based segmenta-
tion approaches [63,84] use the variation in skill endpoints from different demonstrations
to identify the relevant coordinate frame of each skill. Similarly, [59] analyzes the skill
endpoints from different demonstrations to obtain transition states for segmentation.
The presented approach uses a predefined and pre-trained skill library to avoid the
need for multiple user demonstrations. This may limit flexibility in detecting unknown
skills, but it is expected that reusable, domain-specific skills are known in advance in a
production environment and suffice for most situations.

5.4 User Study

The user study has two aims: 1) Assess the framework’s segmentation accuracy and
correctness of the recognized skill sequence in a laboratory study with six subjects; 2)
Evaluate if users can teach a robotic task and debug incorrect robot programs with the
help of the task representation that the framework automatically constructs from the
recognized skills.

All participants have some technical background in different fields of robotics. Still,
they have not used the presented framework or participated in the data collection for
the training set.

5.4.1 Procedure of the Laboratory Study

The laboratory study consisted of a teaching phase (points 1..5) and a debugging phase
(points 6..9) as specified in the following procedure:

1. Experimenter shows instruction video for method A

2. Experimenter shows instruction video for task 1

3. Subject demonstrates task 1 with method A

4. Experimenter shows instruction video for task 2

5. Subject demonstrates task 2 with method A

6. Experimenter explains that a task can be debugged given a task representation of
method A

73



5 Skill Sequence Recognition

7. Experimenter asks subject for expected task outcome of debug task D(x, y) and
lets subject correct it if desired using method A

8. Experimenter asks subject again for expected task outcome and lets subject correct
if desired

9. Subject observes the task execution according to the current task representation

10. Subject evaluates overall framework by questionnaire concerning method A

11. Subject evaluates comparison between methods A and B by questionnaire

Tasks 1 and 2 are placeholders for the stamping and assembly tasks correspondingly.
Methods A and B are placeholders for two different task representations, which are
the skill-based and time-line representations. A detailed description can be found in
Sec. 5.4.4. The steps above from 1 to 10 were then reiterated but using Method B instead
of Method A. Throughout the study, the sequential order of tasks ∈ 1, 2, debug tasks
D(x, y) ∈ D(1,1), D(1,2), D(2,1), D(2,2), and methods ∈ A, B were permuted through
a Latin Square design [192]. Before commencing the experiment, the participants were
offered a familiarization phase with the robot in gravity compensation control.

In the teaching phase (points 1..5), the participant engaged in programming two robot
tasks by utilizing two distinct forms of visual feedback, thereby generating a total of four
programming sequences. The participant was aware that the robot would replay each
human demonstration to capture the robot’s repetition of the task. For this, a Cartesian
impedance controller tracks the demonstration trajectory. Gaussian Mixture Models
were constructed for each skill jointly using the demonstration and repetition data ac-
quired from the participant and robot. Subsequently, Gaussian Mixture Regression was
applied based on these models to derive a trajectory for task execution. More details
about this procedure are described in [193].

In the debug phase (points 6..9), the participant examines previously programmed
task representations demonstrated by the experimenter, where the tasks were either
demonstrated correctly or intentionally incorrectly. These debug tasks utilize the same
environment as the stamping and assembly task, resulting in four different debug task
conditions with associated task representations, namely: D(1,1): stamping task - correct;
D(1,2): stamping task - incorrect; D(2,1): assembly task - correct; D(2,2): assembly task
- incorrect. The incorrect tasks were designed to exhibit a wrong skill sequence with
respect to the correct skill sequence of the stamping and assembly tasks. The goal of the
subject was to validate if those task representations correctly perform the tasks. It was
of interest if the task representation alone provided sufficient information. Therefore,
the users were asked to give their opinion on the correctness before they were allowed
to watch the robot executing the program. If they expected a task representation to be
incorrect, they were asked to correct it by selecting the skill that appeared to be faulty
in the task representation. Subsequently, the robot moved to the correct start location.
Finally, the user could provide a new demonstration that was subsequently segmented,
resulting in an updated task representation.
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Figure 5.8: Stamping task instructions. (a) pick the stamp, (b) push it into the ink pad and
then push it into the ink target surface, (c) place it at its original location, and (d)
move the gripper up to the home position. The task demonstration is shown in the
accompanying video for the stamping task.

5.4.2 Skill Recognition for Online Task Representation

This section evaluates the task representation that the framework builds as a sequence
of skills while the user is teaching the robot. Therefore, using the presented framework,
two users were asked to program a DLR LWR IV [6] robot. The robot was equipped with
a Robotiq 85 two-finger gripper connected to a wrist-mounted FT sensor that measures
the wrench acting on the gripper. Fig. 5.8 shows this setup. The user transferred the task
by kinesthetic teaching and used two buttons, one to start and stop the demonstration
and another to open and close the gripper. The following paragraphs describe two
experimental programming tasks used in the evaluation.

Stamping Task Fig. 5.8 shows the visual task description for the stamping task, and its
caption specifies the textual user instructions to demonstrate a task that involves two
force-based interactions with the environment. The first interaction requires pressing
the stamp into the ink pad. The second interaction requires pressing the stamp onto
the surface of the ink target. The system is expected to recognize a press skill in both
interactions.

The skill recognition results are shown as colored segments overlaid on the gripper
position and applied force in the z-axis (Fig. 5.9). The users achieved a segmentation
accuracy of 96.9% (f1-score=0.75) and 98.2% (f1-score=1) respectively. The skill recog-
nition results show that the robot moved to the stamp (move), picked it (pick), moved
to the ink pad (move), pressed on it (press), moved to the ink target surface (move),
pressed on it (press), moved to the stamp’s place location (place), placed the stamp
(place), and moved up to the robot’s home pose (move). Both force-based interactions
were recognized as press skills, referring to the regions of large force magnitude in the
bottom plot of each user.

Assembly Task In this task, users were asked to demonstrate to the robot how to
apply glue to a surface and then attach an object to it. Fig. 5.10 presents a visual task
description, and the textual user instructions can be found in the caption.
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(a) Subject 1

(b) Subject 5

Figure 5.9: Stamping task results for subject 1 and 5. pz shows the position in z-axis and fz
the force in z-axis.
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Figure 5.10: Assembly task instructions. (a) pick the glue stick, (b) slide it over the contact
surface and place it back at its original location, (c) pick the object and press it
onto the object target, (d) move the gripper up to the home position. The task
demonstration is shown in the accompanying video for the assembly task.

The skill recognition results for both users are overlaid as colored segments in Fig. 5.11,
which also presents the end-effector position and force in the z-axis.

For subject 1, a validly programmed task is shown in which the glue stick is picked up
(pick), then slides over the adhesive surface (slide), and is placed back in the original
position (place). The object is then picked up (pick) and pressed onto the sticky surface
(press). While still in contact with the environment, the gripper is opened, leading to
the detection of a place skill. Finally, the robot is moved to its initial position (move).
The user decided to press on the object while it was still gripped, corresponding to
the task description of assembling it by pressing on the glue bonding. Considering the
strategy of subject 1, the skill recognition seamlessly detected the transition from press
to place without an intervening move (Fig. 5.11a). It is highlighted that the presented
framework can detect transitions from forceful interactions to grasp actions, where the
opening of the grasp itself causes the contact break with the environment.

Subject 5 followed the strategy of subject 1 until the object was grasped. Instead of
using the sequence of (press) and (place), subject 5 placed the object without significant
force application (place), then moved the gripper over the object (move), closed the
gripper without the object (close-gripper), moved downward towards the object (move),
pressed on the object with the empty and closed gripper (press), and finally moved the
end-effector to the initial position (move). Although the strategy was different compared
to subject 1, both users achieved the task goal of attaching the object to the target object
by pressing on the glue bonding.

5.4.3 Performance Metrics

All participants saw the same video instructions about how to program the stamping
and assembly task, which is represented as a storyline in Figs. 5.8 and 5.10. Regarding
the assembly task, no specific gluing strategy was required, allowing the user to perform
the sliding action as desired. For instance, some users decided for a single and possibly
curved sliding interaction, while others decided on multiple sliding interactions with the
glue contact surface.

77



5 Skill Sequence Recognition

(a) Subject 1

(b) Subject 5

Figure 5.11: Assembly task results for subject 1 and 5. pz shows the position in z-axis and fz
the force in z-axis.
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Table 5.3: Task representation results

Subject
ID

Task Representation Succ.

stamping
GT (as in-
structed)

move, pick, move, press, move, press, move, place, move

1, 2, 3, 5 move, pick, move, press, move, press, move, place, move ✓
4 move, pick, move, press, move, press, move, press, place, move ✓*
6 move, pick, move, press, move, place, move –
assembly
GT (as in-
structed)

move, pick, move, slide, move, place, move, pick, move, press, place, move

1 move, pick, move, slide, move, place, move, pick, move, press, place, move ✓
2 move, pick, move, slide, move, press, move, place, move, pick, move, press, place, move,

close gripper, move, press, move
✓**

3 move, pick, move, slide, move, slide, move, place, move, pick, move, place, move,
close gripper, press, open gripper, move

✓**

4 move, pick, move, slide, move, press, move, place, move, pick, move, place, move, press,
move

✓***

5 move, pick, move, slide, move, place, move, pick, move, place, move, close gripper,
move, press, move

✓**

6 move, pick, move, slide, move, place, move, pick, move, place, move –

*, **, and *** refer to special cases that are discussed in Sec. 5.4.6.

Table 5.4: Overall performance metrics

stamping assembly average

F1 score (see. Equation 5.3) 0.90 0.84 0.87

C (accuracy, see. Equation 5.4) 0.97 0.94 0.96

Table 5.3 shows the task representation results of the stamping and assembly task for
each subject numbered from one to six. The ground truth (GT) is stated for a successful
skill sequence, as it was instructed to the participants.

Even though the initial instruction video suggests a skill sequence that solves the task,
other skill sequences originating from the user’s personal strategy can still lead to a suc-
cessful task execution. Successful executions are marked in column “Succ.” with ✓and
unsuccessful ones with –. Exceptional cases marked with (*) refer to the discussion sec-
tion 5.4.6. Table 5.4 summarizes the quantitative performance of the framework when
confronted with the untrained subjects of this study. The metrics were already intro-
duced in Sec. 5.3.1. The laboratory study achieved an F1-score of 0.87 and an accuracy
of 96%.

5.4.4 Evaluation of Task Representation

The evaluation consists of two parts. The first part is a laboratory study, as described in
Sec. 5.4.1, in which six participants program a robot using the framework. The second
part is a remote study involving 26 users to evaluate the comprehensibility of the pro-
posed approach. There were different participants recruited in each of these parts. The
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Figure 5.12: Top: stamping task in the time-line representation; bottom: stamping task in the
skill-based representation.

type of the presented task representation is termed skill-based. A so-called time-line task
representation was defined as a baseline that does not provide a skill annotation for each
demonstration segment. This representation was introduced in [168], and its segmenta-
tion approach originally uses the Douglas-Peucker line simplification algorithm to detect
notable points of a trajectory, which are then used to encode the trajectory. As these
points have no semantic meaning, the resulting task representation describes the learned
task through a time-line, showing the detected points and gripper movements. Since the
focus was on evaluating the task representation, the same segmentation points found
with the proposed approach were used to construct the time-line task representation.
The time-line task representation shows the segmentation result without skill annota-
tion. Additionally, the opening and closing events of the gripper are displayed. The same
task, but in different task representations can be seen in Fig. 5.12. The contact skills
used in the experiments were limited to press and slide to decouple the classification
results from the evaluation of the task representations. The time-line representation,
like the skill-based representation, is updated online when a new task segment is found.
It also displays the currently active segment while the task is being replayed. It further
allows the robot to be moved to a selected point in the task representation or to delete
points through the user interface, e.g., for debugging purposes.

After performing all steps for one of the task representations in the laboratory study,
the users were asked to fill out questionnaires. The NASA-TLX was used to measure
the workload, and the ISO 9241-110 questionnaire for Interaction Principles was used
to evaluate the quality of interaction between the robot’s user interface and the human.
To further investigate the explainability of the task representations, based on [189],
questions with regards to three more categories were used: trust in the robot, ease of
debugging, and match of the user’s mental model to the real robot.

The remote study was planned to expand the laboratory study, focusing on the debug
phase and employing the same robotic task scenario. Instead of programming a physical
robot, users were requested to associate a task description, presented by a video, with
a corresponding task representation. In contrast to the previous approach of correcting
the robot program, the participants were instructed to label the task outcome as correct
or incorrect. The subjects were split into two groups of equal size, each only seeing one
of the task representations evaluated through the ISO 9241-110 questionnaire and an
interview.
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Figure 5.13: The results of the NASA-TLX questionnaire obtained from the laboratory study
participants. The users scored the categories on a scale from 1 (best) to 20 (worst).
The plots show the mean scores for the individual categories for the skill-based
task representation used in the presented approach (blue) and the time-line task
representation (red). The ∗ marks that a p-value of p < 0.05 was found with a
Wilcoxon signed rank test.
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Figure 5.14: The combined results of both the online and the laboratory study for the ISO
questionnaire. The scores rate how much the users agree with the category from
1 (strongly disagree) to 7 (strongly agree). For details about the ∗ that marks
significance and colors please refer to Fig. 5.13.

5.4.5 Subjective Results

A number of subjective results were collected from the user study with the help of
questionnaires. Fig. 5.13 shows the perceived workload of the approaches with different
task representations. A clear reduction of the mental workload and effort is visible for
the use of the skill-based representation in comparison to the time-line representation.

Figure 5.14 opposes the intuitiveness and usability of the different representations, as
assessed by the ISO 9241-110 questionnaire. The users rated the usability of the skill-
based task representation 32% higher than that of the time-line representation. Notably,
in terms of intuitiveness, the skill-based task representation significantly outperformed
the time-line task representation in the categories of self-descriptiveness (48% higher)
and conformity with the user’s expectation (50% higher). Fig. 5.15 shows how the pre-
sentation of the robot’s knowledge influenced the teaching procedure. They are grouped
in the abovementioned categories as proposed in [189]. In the debugging category, the
users were asked to rate the ability to detect errors in the robot’s learned program with
the help of the task representation. The results suggest a clear preference for the skill-
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1
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Figure 5.15: The combined results of both the online and the laboratory study for the ex-
plainability questions. For details about the ∗ that marks significance and colors
please refer to Fig. 5.13. The questions were grouped in the categories ’Ease of
debugging,’ ’Trust in the robot,’ ’Match of the user’s mental model to the robot’s
real knowledge,’ and ’Explainability of the task representation,’ shown from left
to right. The users rated on a 5-point Likert scale from 1 (strongly disagree) to 5
(strongly agree). The higher the result, the better.

Figure 5.16: The results of the debug tasks. The participants were asked whether a task repre-
sentation would execute the task successfully. The diagrams show the percentage
of answers where the user’s predicted outcome matched the task outcome. The
answers were evaluated to be correct, false, or undecided (not sure) for the skill-
based task representation (left) and the time-line task representation (right).

based task representation. The users’ self-evaluation is also confirmed by the number
of times the users could predict if a task representation would perform a task as de-
sired, shown in the results in Fig. 5.16. It shows that, with the help of the skill-based
task representation, 84% of the participants recognized that the visualized task repre-
sentation would not match the intended task goal. In contrast, only 64% could do so
with the time-line task representation. In the categories match of mental model and
explainability, the skill-based task representation also outperformed the time-line task
representation drastically (see Fig. 5.15). The influence of the task representation was
also noticeable in the laboratory study. Most participants caused the detection of a press
skill before the placing of objects, as they would forcefully set them on the workspace.
In the time-line representation, none of the users chose to correct this behavior, which
could be seen in the robot’s execution of the task. In contrast, in the skill-based task
representation, 50% of the users removed this press skill, as the graph did not match
their expectation of how the task should be executed.

Furthermore, the users exhibited a 24% increase in trust towards the robot, although
the execution of the taught programs was unrelated to the task representation. In the
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final interview of the laboratory study, the participants favored the skill-based task
representation. When asked about their initial impressions, half of the participants
found the time-line representation to be more comprehensible when seeing it for the first
time, as it conveyed less information than the skill-based representation. However, when
asked which one they found easier to use in practice, their preference shifted towards
the skill-based representation.

5.4.6 Discussion

The user study showed that the generated robot programs among the subjects differed for
the same task. However, most subjects reached the task goals with their strategy in each
task. Variations between task description and the user’s teaching behavior are marked
with the symbol * in Table 5.3. Regarding the stamping task, the symbol * denotes that
one user pressed the tool twice on the ink target surface, which was correctly recognized
by the system, although the task description did not require it. Regarding the assembly
task, the symbol ** marks users who decided on another strategy by closing the gripper
before applying pressure on the object. In this case, the system also correctly recognized
the skills, and the task was performed successfully. User 4 (***) demonstrated a skill
sequence that involved two additional press skills caused by contacting the environment
with the tool. This issue might be caused due to low expertise in kinesthetic teaching
but did not lead to unsuccessful task execution.

Considering the human and robot perspective, numerous benefits emerge from the
obtained task representation. First, it contains the knowledge about the recognized
skills, which can be used by the robotic system to efficiently reproduce them. Here, the
robot can rely on a library of existing skill implementations to execute the skills using an
optimized strategy available from the state of the art. Second, the user could adapt skill-
related parameters given a graphical interface without demonstrating the task again. An
example is to adjust the pressing force in the press skill. Third, the user could adapt
the task representation without providing a new demonstration, for instance, exchanging
skill types that fit better to the task requirements. For example, the system identified a
slide skill although the user wants to employ a skill of type ”polish.” Then, the associated
data segment could be reused to parameterize the desired skill implementation. Fourth,
the user can observe what the robot is currently performing, which helps the robot to
explain itself and the user to gain trust in the system.

The results of the user study indicate that a skill-based task representation has a
significantly better explainability and usability as a time-line task representation. With
the skill-based representation, users were able to identify errors in the task representation
at first glance. In contrast, the time-line representation forced users to go through every
step of the task and estimate how many steps this might correspond to in the time-line.

In the user study phase of debugging a faulty program, the users inserted new demon-
strations in the time-line task representation at points where the gripper opened or
closed, as these were the easiest to detect. On the contrary, the skill-based task repre-
sentation allowed the users easier access to correct a task since each represented skill had
an understandable meaning. Furthermore, the users of the laboratory study often did
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not notice the necessity of correcting a program when it was presented in the time-line
task representation. Especially in the case mentioned above of the press skills before the
place skills, users only noticed the necessity to correct this mistake in the skill-based rep-
resentation. The stronger engagement with the skill-based task representation suggests
that the user has finer control over the knowledge of the robot.

5.5 Conclusion

The presented online task segmentation and skill recognition algorithm combines sym-
bolic segmentation by evaluating pre-conditions and post-conditions and data-driven
segmentation and recognition by a classifier that predicts appropriate skills. This com-
bination enables detecting a more comprehensive set of skills, involving Contact Skills,
while still allowing the algorithm to run online.
The experimental results confirm the recognition capabilities and showcase how task

representations emerge from kinesthetic user demonstrations. These task representations
are consolidated on the fly whenever the incoming data increases the confidence of the
system. With that, the users receive immediate feedback about the currently processed
skills and finally obtain a consolidated task representation about how the robot inter-
preted their demonstration. Immediate feedback for the end-user is expected to build
trust by closing the gap between the user’s mental model of the robot’s knowledge and
its actual knowledge.
Future work could focus on the integration of additional input modalities beside kines-

thetic teaching during the skill recognition process. However, using only proprioceptive
data is cheap, easy to achieve with a collaborative robot, and does not suffer from known
problems of visual perception, such as occlusion or sensitivity to lighting conditions. Be-
side that, it could be explored what is a feasible task complexity that users would still
like to address with a single demonstration. There must be a trade-off between ease of
task definition by a one-shot demonstration and the mental load that comes with it. For
a too complex task, users might be overloaded with demonstrating it in a single shot.
Then, partial task demonstrations or individual skill demonstrations might be preferred,
which is too be explored.
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This chapter proposes a method for robotic exploration of an uncertain workspace by
sensing object locations using force-sensing capabilities at the end-effector. The pre-
sented task definition method relies on multiple demonstrations as input to define an
adaptive task execution behavior, which allows the robot to adapt its motions online
based on the explored state of the environment.

The chapter includes the content of the following publication [42]:

• T. Eiband, M. Saveriano, and D. Lee, “Learning haptic exploration schemes for
adaptive task execution,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2019, pp. 7048–7054.

The author of this thesis developed the proposed methods and conducted the user study
and experiments. D. Lee advised in developing research methodologies and analyzing
the results and revised the article.

The chapter is outlined as follows. Section 6.2 describes the approach for segmentation
and skill identification. Section 6.3 introduces the method for learning skill relations.
Section 6.4 presents the experiments. Conclusions and future work are stated in Sec. 6.5.

6.1 Introduction

In contact-based exploration, two familiar terms are tactile and haptic sensing. From the
human perspective, tactile sensing is considered to be a sub-type of haptic sensing, which
can be of two different forms: tactile and kinesthetic. Tactile sensing is known to be the
detection of forces on the skin. The human tissue is equipped with a myriad of sensors
that allow the sensation of touch and pressure, surface texture type, and vibrations.
Kinesthetic sensing is close to what is known as proprioception, but it assumes that
there is a physical connection between body parts and the environment such that forces
can be exchanged. It incorporates sensing a body part location with respect to external
objects and sensation of forces due to changes in muscle strength. Considering the term
feedback in place of sensing, haptic feedback combines tactile and kinesthetic feedback.
This work addresses the exploration of the environment by a robotic tool, where the
most appropriate term is identified to be haptic exploration.

Revisiting the human perspective, it is evident that interaction forces play an essential
role when detecting and exploring the surroundings in daily life scenarios. Besides visual
observations, humans use haptic feedback as an additional source of information when
exploring or manipulating an uncertain environment [194–197]. Planning an exploratory
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action is achieved by relying on the sense of touch in a region of the human’s spatial
imagery where physical contact is expected [198].

There are several cases where a human cannot rely on vision alone, which makes haptic
sensing purposeful to gain feedback about the state of the environment. In contrast to
humans, technical systems are not naturally equipped with an integrated vision system.
Furthermore, using a vision system is not always applicable. The following ten points
list known limitations of visual perception in robotic manipulation:

1. occlusion and self-occlusion, i.e., the object of interest is not visible in the current
frame of vision, e.g., because it is behind an object or hidden behind the robotic
structure or tool.

2. poor eye-hand coordination, i.e., the object is visible in the workspace, but the
eye-hand coordination behavior does not provide an appropriate camera pose to
observe the scene, e.g., the camera moves too slowly relative to the hand movement.

3. adverse eye-hand kinematic, i.e., the object cannot be observed due to constraints
of the eye-hand kinematic chain, e.g., joint limits prevent the camera from observ-
ing the scene where the arm is acting on.

4. weak illumination, i.e., poor or missing light sources do not allow visual perception.

5. low color gradients, i.e., the object of interest is in the line of sight but is not
recognized due to missing contrast to its surroundings.

6. poor perception and inference capability, i.e., the perception algorithm has low
accuracy in object recognition or frame extraction.

7. rough environmental conditions, i.e., hazards of the environment such as dust or
mechanical impacts prevent the usage of a camera system.

8. task observation constraints, i.e., a scene must be visually observed while the arm
acts simultaneously in another region out of sight, e.g., catching something requires
observation of the flying object rather than the catching hand.

9. real-time constraints, i.e., the image processing speed given a required image res-
olution does not fulfill the task requirements.

10. resolution constraints, i.e., the image resolution or quality is too low to detect
fine-grained geometrical features or spatial discontinuities.

Service robots or collaborative robots usually have to deal with unstructured or un-
certain environments. An unstructured environment is defined as a world in which not
all objects are known or where the locations of existing objects are unknown. Such
environments exist or were usually built without consideration about how a robot would
act in them. An uncertain environment is defined as a world in which all objects are
known, but their locations can be uncertain, meaning that the estimated object location
is a sample of a probability distribution around the actual object location.
Unstructured environments are outside the scope of this approach since they often

require visual perception to deal with them. Although haptic exploration strategies
exist for whole workspaces [96, 97], this work focuses on the intuitive bootstrapping of
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Figure 6.1: The skill demonstration, learning, and execution framework to execute parame-
terized motions. Previously observed constraints influence motion start and end
points during exploration of the environment. All behaviors are extracted from
human demonstrations via kinesthetic teaching.
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an automation behavior, which targets uncertain environments as they could occur in
a human-robot shared workspace. Examples are pick and place positions that depend
on an object’s position, such as a manually filled object store or a staple that varies in
height.

Manually programming a robotic exploration strategy is cumbersome and requires
expert knowledge about the programming method and the robot’s capabilities and sen-
sors. LfD is employed to simplify this procedure by extracting the desired behavior from
the demonstration. In the proposed method, the user demonstrates the task consisting
of exploration and manipulation motions multiple times. Each demonstration requires
a change in object locations within their expected region during task execution. Pick
and place actions are demonstrated by opening and closing the gripper with additional
human input.
The presented approach segments at least two demonstrations of a task into parametriz-

able robot skills. If the task requires exploratory actions that the robot can haptically
sense, so-called haptic exploration skills take care of environmental variations during
task execution. The developed method extracts the position-based transformations be-
tween skills based on the variance observed from multiple demonstrations. Furthermore,
a method is presented to learn the motions for the exploratory behavior, which is also
extracted from the variations among multiple demonstrations.

6.2 Skill Recognition from Human Demonstrations

The basic building blocks of the framework are robot skills that are predefined robot
behaviors parameterized by a human demonstration via kinesthetic teaching. Fig. 6.1
shows an overview of the framework with the task demonstration starting at the top
left. The task demonstration system is explained in Sec. 6.2.1. The task segmentation
module explained in Sec. 6.2.2 takes demonstration data as input and produces labeled
segments as output. The skill identification step explained in Sec. 6.2.3 constructs a
sequence of skills from the previously labeled segments.

6.2.1 Task Demonstration System

The robot is guided by kinesthetic teaching where the user grasps the robot on a hold
above the sensing plate of the FTS (Fig. 6.2a. The user can demonstrate exploratory
movements by touching a part of the environment with any part of the end-effector, such
as the gripper fingers. At this time, the gripper can be in opened or closed state. The
contact forces between the gripper and environment are recorded by an FTS, mounted
between the robot flange and gripper.
Each demonstration trial (Definition 3) is represented as the time series X [i] ∈ RNi×15

as defined in eq. (3.1) with Ni samples corresponding to demonstration trial i. A demon-
stration sample at time t is denoted as X(t) ∈ R15 as defined in eq. (3.3). A number
of I demonstration trials of the same task is stacked in the set T = {X [1], . . . ,X [I]}.
The presented method requires a minimum of two demonstrations (I ≥ 2) to exploit
the variance among environmental changes. Ideally, the user demonstrations cover the
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(a) End-effector and hand hold posi-
tion

(b) Foot pedal for additional user input

Figure 6.2: Kinesthetic teaching by manually guiding the robot (a) and controlling gripper
actions and demo recording by a foot pedal (b).

changes in the environment that are expected during task operation since the distance
of an exploration path is derived from the boundaries faced in the demonstrations. The
demonstration trials can differ in length depending on the user variations and teaching
performance.

6.2.2 Task Segmentation

Pre-Processing The set of demonstrations T is pre-processed before segmentation into
skills. This process is required to align temporal differences and equalize the demonstra-
tion trial length to find common segmentation points over all trials at once. In the first
step, all phases in which neither the robot’s linear nor angular velocity exceeds their
respective thresholds are removed from the data. This optimizes the task reproduction
since unnecessary waiting times are purged. Then, each wrench measurement time se-
ries W [i] of trial i is filtered by a first-order low-pass Butterworth filter with a cut-off
frequency of fco = 1Hz.

DTW is used to temporally align the demonstration trials with each other [199].
The DTW standard formulation computes a warping path and a warping distance only
between a pair of time series. In this work, each trial from the set T is aligned with a
medoid trial X [m], except the medoid trial itself that is part of the set. This medoid
is found in two steps. First, the distances between all possible pairs of trials (i, j) are
computed as

d
[i,j]
DTW = f(X [i],X [j])
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for i, j ∈ [1, . . . , I]. Second, the trial m with a minimum sum of squared distances to all
other demos is found by

X [m] = argmax
k

I∑
i=1

(d
[i,k]
DTW)2.

Finally, a warping path is computed for all trials with respect to the medoid trial.
The warped trials are stored in C = [X̃p, X̃o, W̃ , G̃] ∈ RI×N [m]×Nd with a number of
I demonstration trials, N [m] samples, and Nd dimensions. Warped position and orien-
tation time series are represented as X̃p and X̃o respectively and the warped wrench
time series is denoted as W̃ = [F̃ , T̃ ] with forces F̃ and torques T̃ . Further, the warped
gripper finger distance is represented as G̃.

The averages of F and T over demonstrations i ∈ [1, . . . , I] are calculated as

Fm =
1

N [m]

I∑
i=1

F̃ , and Tm =
1

N [m]

I∑
i=1

T̃ .

Using these average force and torque trajectories in the subsequent segmentation reduces
the impact of involuntary human actions. Here, the number and quality of demonstration
trials influence the robustness of the segmentation. A larger number of demonstrations
increase the robustness of the learning process as undesired forces are canceled out. On
the other hand, querying too many demonstrations increases the risk of introducing an
involuntary change in the sequence of actions compared to existing demonstration trials.
Such involuntary actions are, for instance, multiple bumps when the user establishes
contact with a rigid environment, accidentally touching the tool below the FT sensor with
a human body part, or unintended force interactions between the tool and environment
while picking and placing an object.

Segmentation of Contact States The contact state segmentation aims to differentiate
between contact states and free movement. Here, two things are tackled: 1) finding
segmentation points between no-contact and in-contact states, and 2) labeling the found
segments with in-contact (IC) and no-contact (NC). Finding the segmentation points
is achieved by predefined force and torque thresholds δf and δϱ that are compared
with the Euclidean norm of force and torque measurements, respectively. Algorithm 4
detects rising and falling edges in the force and torque domain. Whenever a rising edge
is detected in one of the domains, the subsequent segment is labeled as IC. For every
falling edge, the subsequent segment is labeled as NC.
The independent comparison of force and torque domains increases segmentation ro-

bustness as contact events can be triggered by any of these signals when establishing
contact with the environment. Reaching the threshold in one domain is sufficient to
trigger segmentation of an IC state, while both domains need to be below their thresh-
olds to reset it, leading to the start of an NC segment. This strategy prevents a single
contact from being over-segmented. For example, a single perpendicular contact of the
gripper with an object can lead to torques and forces in the FTS where a rising and
falling edge might be observed several times in each domain. While the gripper is still
in contact, the algorithm would produce only one segment.
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6.2 Skill Recognition from Human Demonstrations

Algorithm 4 IC segmentation

Require: Fm

1: Initialization :
2: c← 1
3: IC ← false
4: for n = 1 . . . Nn do
5: Detect rising edge:
6: if (∥Fm,f(t− 1)∥ < δf and ∥Fm,f(t)∥ > δf ) or
7: (∥Fm,t(t− 1)∥ < δϱ and ∥Fm,t(t)∥ > δϱ) and not
8: IC then
9: ICs(c)← n ▷ add segmentation index to list

10: IC ← true ▷ set in-contact flag
11: c← c+ 1
12: end if
13: Detect falling edge:
14: if (∥Fm,f(t)∥ < δf and ∥Fm,t(t)∥ < δϱ) and
15: IC then
16: ICe(c)← n ▷ add segmentation index to list
17: IC ← false ▷ reset in-contact flag
18: end if
19: end for
20: return ICc, ICe

Segmentation of Gripper States This segmentation stage has the aims of 1) finding
segmentation points where the gripper has been actuated within the NC segments from
the previous segmentation stage and 2) labeling the found segments with gripper open

(GO) and gripper closed (GC). All event’s indices for gripper open (GO) n
[i]
GO and gripper

close (GC) n
[i]
GC are extracted for each demo i and then averaged over demos, resulting in

the averaged indices n̄GO = 1
I

∑I
i=1 n

[i]
GO and n̄GC = 1

I

∑I
i=1 n

[i]
GC respectively. Segments

before these indices are labeled as GO or GC, accordingly. The demonstration data for
segment s is stored in the matrix Ss = [Ps,Os,Ws] ∈ RI×Ns×13, with Ns samples from

I demos. It contains position P
[i]
s , orientation O

[i]
s , and wrench W

[i]
s for each demon-

stration i. The segmentation result is stored as a set of all segments S = {S1, . . . ,SNS
}

with a number of NS segments.

6.2.3 Skill Recognition

The system can identify a sequence of predefined robot skills, which are moving in free
space (MO), haptic exploration (HE), and motions ending with gripper open (GO) or
gripper close (GC). The skill recognition uses the previously labeled segments to infer
a skill from the mapping shown in Fig. 6.3. A HE skill is recognized from the sequence
of an NC and an IC segment. The skills of GC and GO are directly inferred from their
corresponding GC and GO segments. An MO skill is recognized from a NC segment.

A recognized skill is denoted as r ∈ [1, . . . , Nr]. If an NC and an IC segment occur suc-
cessively, a HE skill r is recognized and provided with the stacked data Rr = [SNC,SIC]

T
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Figure 6.3: Mapping between segments and skills

of both segments. Using the data from both segments is required as the NC segment
provides information to learn the motion and exploration strategy, and the IC segment
provides information to infer the direction of the exploration of the HE skill. The re-
maining skills (GC, GO, MO) are provided with the data of their mapped segments (GC,
GO, NC) according to Fig. 6.3. This mapping approach leads to a number of skills Nr

that is less or equal to the original number of segments Ns, i.e., Nr ≤ Ns. The identified
skills are stored in the sequence R = (R1, . . . ,RNr).

6.3 Learning Adaptive Task Structures

6.3.1 Skill Relation Learning

After the skill recognition stage, the goal is to build an adaptive task structure that
can adapt to changes in the environment. This goal is accomplished by using relative
transformations between skill motions. More specifically, a skill motion can be exe-
cuted 1) relative to another skill’s motion frame or 2) relative to the origin {O} (root
frame). Therefore, a metric is proposed that pairwise compares all skills’ motion frames
to identify how strong they are spatially related to each other.
First, the goal position of a skill r is extracted for each demonstration i as

p[i]
g,r = R[i](Nr)

r ∈ R3,

where Nr is the number of samples of Rr. This leads to I goal points for skill r, stored
in the key-points matrix

Kr = [p[1]
g,r, . . . ,p

[I]
g,r]

T ∈ RI×3.

All key-points are added to a set of available key-points given by L = {K1, . . . ,KNr}.
Next, a dimension-wise metric for the relation distance between skills m and n with

their key-points Km and Kn in dimension d over all demonstrations is given by

vdm,n = Var


Km(1, d)−Kn(1, d)

...
Km(I, d)−Kn(I, d)


 for m ̸= n. (6.1)

The notation Km(1, d) refers to the element in matrix Km in row 1 and column d.
Similarly, the dimension-wise relation distance between a single skill m with key-point
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Km and the coordinate origin {O} is given by

vdm,n = Var


Km(1, d)

...
Km(I, d)


 for m = n. (6.2)

The relation distance over all dimensions for all m,n is computed using the root mean
squared error

V (m,n) =

√√√√1

3

3∑
d=1

vdm,n
2

for ∀ m,n. (6.3)

Each skill now has a relation distance to any subsequent skill in the sequence. Consider
a skill m whose behavior is influenced by a preceding skill k. Consequently, skill k
minimizes the relation distance to the subsequent skill m in the skill sequence. The skill
k is found from the relation distance matrix V ∈ RNr×Nr by

k = argmin
k∈{1,...,m}

{V (m, k)} with k ≤ m. (6.4)

The notation V (m, k) refers to the matrix element of V in row m and column k. Con-
straining the search by k ≤ m considers only skills in the demonstrated sequence before
skill m and excludes non-causal relations to future skills. In other words, a relation
between skills is only searched for in the past since past events can influence future task
behavior but not vice versa. The skill k is stored in a relation matrix Rrel ∈ RNr×Nr by
Rrel(m, k) = 1. In the case m = k, the skill is relative to the coordinate origin {O} by
setting Rrel(m,m) = 1, as it does not depend on any other skills. All other entries in
Rrel are set to 0.

A so-called relation tree is constructed from the relation matrix Rrel, representing a
hierarchical structure of relative coordinate transformations. The transformed coordi-
nates affect the skill’s goal points. An exemplary relation tree is shown in Fig. 6.9,
where each node represents a skill, and each arrow represents the direction of a coordi-
nate transformation. This work considers only the translations between the skill’s goal
points. The translations are directed from a parent skill goal point to a child skill goal
point and can be adapted during the execution by a HE skill. Since the HE skill has
the capability to explore unknown environments, it will find a new contact point online,
which leads to an adapted transformation to its attached children skills.

Skills that are directly attached to the root node (acting as the coordinate origin {O})
are executed with absolute motions, such as HE0 and GO3. The first skill of a task is
always attached to root as any other preceding skill cannot influence it anymore. Skills
attached to any other parent skill are executed with relative motions to their parent
skills. For instance, the goal point of GC2 is defined to be relative to the explored
contact point of HE1. Consequently, a single HE skill can affect multiple child skills.
It is important to note that child skills can be executed right after its parent skill but
also at any time later in the task. This means that the relation tree does not represent
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6 Contact-based Exploration

the sequence of skills but only the transformations between their frames. The sequential
skill order is indicated by the number at the end of each skill label in Fig. 6.9

The relation tree is built by Algorithm 5. It uses a mean key-point

µp =
1

I

I∑
i=1

K [i]
p

of a parent skill p to transform the position data Pc and key-points Kc of the child skill
c.

Algorithm 5 Constructing the skill relation tree

Require: R,Rrel

1: for each child parent relation c, p in Rrel(c, p) do

2: T
µp

Kp
← [µp, . . . ,µp]

T −Kp ▷ parent key-point translations

3: Kc ←Kc + T
µp

Kp
▷ transform child key-points

4: Pc ← Pc +
[
T

µp

Kp
, . . . ,T

µp

Kp

]
▷ transform skill data

5: pt
c ← mean(Kc −Kp) ▷ parent child translation

6: connect nodes with trafo(c, p, pt
c)

7: end for
8: return R

6.3.2 Skill Learning

The skills that execute free motions (MO, GO, GC) are encoded as DMPs that are
learned from the data of multiple demonstrations. The HE skill is intended for contact-
based exploration of uncertain environments where the contact point is unknown before
execution. Therefore, a collision-aware exploration strategy is necessary, and the origi-
nally demonstrated motions must be modified.

Modeling the Exploration Motion An exploration motion allows the robot to explore
the workspace outside the demonstrated region. It consists of two sections: 1) an ap-
proach path (AP) to reach the exploration area and 2) an extended exploration path
(EEP) inside the exploration area (Fig.6.4). The subscript HE refers to any HE skill in
the following. It is assumed that the variance in the demonstrations resembles the uncer-
tainty in the environment, captured by the distribution of key-points. This uncertainty
is modeled as normal distribution

KHE ∼ N (µHE,ΣHE)

with mean and covariance

µHE =
1

I

I∑
i=1

K
[i]
HE; ΣHE = Cov(KHE) .
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Figure 6.4: Schema of multiple demonstrations in a changing environment (left), the distribu-
tion over extracted key-points with principal component eigenvector (middle) and
learned exploration trajectory (right).

The proposed algorithm requires at least two demonstrations to exploit the variance in
the data. More than two demonstrations might be intended to cover a wider exploration
area or to transfer a more complex exploration behavior. The HE skill uses a linear
exploration path to find an object in the workspace. This exploration path is identified
with the help of a principal component analysis, using the covariance matrix ΣHE.
Its principal eigenvector eHE is termed as main exploration vector (Fig. 6.4 middle).
However, the principal eigenvector’s direction might be anti-parallel to the demonstrated
paths and desired linear exploration direction. The true direction of the main exploration
vector shall be aligned with the demonstrated motions and is found by the direction of
the contact force vector of the corresponding data segment. The maximum force vector

is denoted as F̂
[i]
IC for each demo i. Examples of these vectors can be found in Fig. 6.10.

Then, the average force vector over all demos is computed as

F̄IC =
1

I

I∑
i=1

F̂
[i]
IC .

The alignment with the main exploration vector eHE is ensured using the sign of the
dot product F̄IC · eHE. This allows to determine if the exploration direction points
against the expected contact force. If positive, the main exploration vector eHE must
be inverted to align with the approaching path. The position trajectory PEEP of the
EEP is constructed by connecting the exploration start point xsp = µHE − keeHE and
the exploration endpoint xep = µHE + keeHE with linearly spaced points, where ke is a
parameter to scale the exploration region (Fig. 6.4 right). In contrast to the position, the
orientation is kept fixed during the whole EEP, taken from the quaternions average [200]
at the contact points.
The motion of the HE skill consists of two phases. In the first phase, the robot follows

the AP until it reaches the exploration region. The data PAP for the AP is constructed

95



6 Contact-based Exploration

from samples from the beginning of the corresponding segment until the index where
a sample falls below a distance to the exploration start point xsp (Fig. 6.4 right). In
the second phase, the robot follows the EEP where xsp is a desired via-point before the
robot reaches the exploration endpoint xep. The final definition of the input data of a
HE skill is then PHE = [PAP,PEEP]. An example can be found in Fig. 6.10.

Motion Encoding Each skill r is encoded by a GMM as described in Sec. 3.3. The

model encodes multiple demonstrations i ∈ [1, . . . , I] consisting of position P
[i]
r and

orientation O
[i]
r , and a time vector t ∈ RNr in a single model. Expectation Maximization

fits a number of Gaussian distributions on the input data Rin
r that consists of all stacked

demonstrations

Rin
r =

P
[1]
r O

[1]
r t

...
...

...

P
[I]
r t O

[I]
r t

 ∈ RNr×8. (6.5)

GMR (Sec. 3.3) reproduces the generalized trajectory

Rout
r = [P out

r ,Oout
r ] ∈ RNr×7 . (6.6)

The quaternions in the orientation trajectory Oout
r are normalized to unit quaternions

after the GMR.

The trajectory obtained in Rout
r is then used to learn a DMP, which is used to produce

a stable motion that is guaranteed to converge to a desired goal point [201]. This work
adopts the approach from [202] to learn DMPs for position and orientation based on
quaternions. It uses the quaternion logarithmic and exponential map, which does not
violate the constraints of the orientation group (SO3) manifold. The DMPs enable the
adaptation of their start and goal point given the transformations that are stored in
the relation tree. The DMP weights for a skill r are learned from its motion data Rout

r

generated by the GMR.

6.3.3 Task Execution and Skill Sequencing

The adaptive execution scheme is implemented in Algorithm 6, which generates motions
with parameterized start xs and goal point xg. The coordinate origin is termed as {O}.
During the execution of a HE skill, a contact is detected when the exploration force or
torque exceeds a defined threshold. Whenever a contact is registered, the controller stops
the current motion. The contact point xc is extracted, and the goal point translation
between this skill and its parent skill is updated in the relation tree (Alg. 6, line 13).
If required, object positions can be explored in multiple dimensions. For instance, this
could be necessary for a structured arrangement of objects or a single object in a plane.
As relative skill’s motions are adapted by their parent skills, multiple HE skills can be
chained to allow more complex exploration behaviors, which is shown in the following
experiments section.

96



6.4 Experiments

Algorithm 6 Adaptive task execution

1: for r = 1 . . . Nr do
2: p← get parent skill(r)
3: if skill r is HE skill then
4: xg ← get trafo(O, p) + P out

r (Nn,r)− P out
r (1)

5: else
6: xg ← get trafo(O, r)
7: end if
8: xs ← get robot pos()
9: execute skill(r,xs,xg)

10: if skill r is HE skill then
11: xc ← get contact pos()
12: tcp ← xc − get trafo(O, p)
13: update trafo(r, p,p t

c)
14: end if
15: end for

6.4 Experiments

6.4.1 Hardware and Setup

A DLR LWR4 [6] robot was used in all experiments, mounted on a linear axis and
equipped with a two-finger Robotiq-85 gripper. A FTS manufactured by JR3 was
mounted between robot tip and gripper. The measured external wrench at the FTS
was compensated by the tool mass. Therefore, it resembled only the contact force and
torque between tool and environment. The robot was operated in Cartesian impedance
control with 800N/m linear and 80Nm/rad angular stiffness. Skill learning and se-
quencing were implemented in Python and low-level control in C++ communicating
with Matlab/Simulink models.

6.4.2 Experimental Task

The experimental task was to pick boxes from an uncertain location and place them
in a fixed, demonstrated location. Fig. 6.5 shows the experimental environment, which
contains a 2-dimensional arrangement of boxes with four possible box locations. The
number of boxes can vary from one to four, and the boxes can be stapled in different
configurations. The experimenter gave two demonstrations applied on a subset of two
box configurations. This is sufficient to allow the system to exploit the variance among
two dimensions. Moreover, it is the minimum number of demonstrations to let the
algorithm work while keeping the teaching effort low. In the first demo, boxes were set at
locations p11, p21, p22. In the second demo, only one box was located at p11. Figure 6.6
shows that in each demonstration, one box was touched in the horizontal and vertical
direction as an exploration strategy to identify its position. The demonstrator started
the first exploration motion horizontally at the bottom row because it is guaranteed to
find a box when one is available on the table. Starting the exploration behavior in the
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p11 p21

p12 p22

Figure 6.5: Arrangement of boxes at locations p11, p12, p21, p22 and approaching robot exe-
cuting first skill HE0.

1A 2A 3A 4A 

1B 2B 3B 4B 

Figure 6.6: Demonstration of the adaptive task. In demonstration A, the demonstrator touched
the bottom row of boxes horizontally (1A) and the upper box of the first staple
vertically (2A). The box was picked (3A) and placed (4A) in a fixed position on
the table. After rearranging boxes for demonstration B, the demonstrator touched
the residual box in horizontal (1B) and vertical (2B) directions, picked it (3B), and
placed it (4B) at the same position on the table.

vertical direction to explore a column of boxes would not succeed whenever this column
contains no boxes.

6.4.3 Results

The two task demonstrations were commonly segmented into contact states and free
movements and thereafter segmented by their gripper states. The segmentation result
with according segment labels is shown in Fig. 6.7. These segment labels were then
mapped to a sequence of skills: (NC, IC) →HE0; (NC, IC) →HE1; (GC) →GC, (GO)
→GO, (NC) →MO. The number after each skill label denotes the sequential order during
task execution.

Skill relations were learned based on the relation distance matrix V (Fig. 6.8 and
are represented in the tree structure in Fig. 6.9. The position data Pr and learned
motion of both HE skills (HE0, HE1) are shown in Fig. 6.10. The shown motion and
according key-points of HE1 are already transformed by Algorithm 5. The system can
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Figure 6.7: Segmented task with labeled segments.

Figure 6.8: Relation distance matrix V with extracted relations, where the red boxes mark
which skill (in each row) is relative to a skill in the column.

generalize to unseen box arrangements during execution. Figure 6.11 shows the motion
and contact forces for a new box configuration {p11, p12, p21}. The pick position at
t = 21 s was adapted based on the detected state of the environment from the contact-
based explorations at t = 4.8 s and t = 12 s. The fixed place position at t = 32 s was
reached with a fixed goal as demonstrated at sample 385 in Fig. 6.7. This experiment
proved that no prior knowledge about the initial object configuration was needed and no
knowledge about the involved object’s geometry needed to be modeled. However, this
required that the same objects were consistently used in demonstration and execution.

root
{O}

HE0

HE1

GC2

GO3

MO4

 

Figure 6.9: Relative skill tree from the box experiment. The goal point transformation between
two skills is a directed relationship from parent to child skill.
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(a) Skill HE0 exploring in approximately horizontal direction of the workspace.
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(b) Skill HE1, which is executed relative to HE0, exploring in approximately vertical direction.

Figure 6.10: Haptic exploration skills HE0 and HE1 exploring in two different directions of
the workspace. Shown are position samples Rp,r (grey dots), GMM covariance
ellipses (blue), key-points (×), and learned GMR motion (green). Black arrows

show magnitude and direction of F̂
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Figure 6.11: Measured position and forces for an unseen box configuration {p11, p12, p21}.
Dashed lines show where each skill terminated. Detected contacts by the HE
skills stopped the robot movement and adapted the pick position at GC3. The
place position at GO4 was reached with a fixed goal.
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6.5 Discussion and Conclusion

6.5.1 Discussion

The learned adaptive task allows to explore a workspace with so-called haptic exploration
skills via linear exploration paths according to the demonstrator’s desired exploration
strategy. Theoretically, each object might be manipulated after exploring its location
if it is touchable and graspable at the same points as the corresponding object used
in the demonstration. The exploration strategy is also tailored to the requirements of
the demonstrator and, therefore, considers only relevant parts of the workspace during
execution. This strategy differs from approaches that explore a whole workspace [96,97],
which is rarely needed in industrial applications. However, the presented approach does
not provide advanced exploration behaviors if an object is not contacted at all in the
current exploration skill. If the object’s location is outside of the modeled exploration
region, it would not be found by the HE skill.
The exploration does not consider object orientations and cannot estimate them. Es-

timating the object orientation might come with the additional burden of modeling the
geometry of each involved object. The presented approach does not require any object
to be geometrically modeled. It is also independent of the number of involved objects.
Therefore, the approach is easy to implement in new environments. Approaches that
assign motions to specific reference frames usually first model objects in the world and
then associate reference frames with them. For instance, [80] assigns motions to refer-
ence frames of objects. During execution, these frames can be tracked, for example, by
means of visual perception. This requirement differs from the presented approach, which
does not depend on any object tracking approach.

6.5.2 Conclusion

The introduced framework consists of a demonstration system, a segmentation method,
and a skill learning approach to execute adaptive tasks. The framework relies on so-
called haptic exploration skills that use linear exploration motions to identify objects
locations during task execution. It was shown that learning of an adaptive task structure
is possible within only two demonstrations. The segmentation approach uses averaged
demonstration data with the aim of increasing robustness. The skill learning method
considers environmental constraints such that the exploration path starts at a point
outside of the demonstrated contact points to avoid unexpected collisions. The haptic
exploration behaviors were validated with two exploration dimensions and can adapt
skills online in a systematically changing environment. The proposed framework does
not require visual perception and prior knowledge about the involved objects, and purely
relies on the robot’s sense of touch.
The experiments also showed that the strategy of the haptic exploration skill substi-

tuted parts of the human demonstrations. In detail, the demonstrated approach path
from the user was substituted by the extended exploration path in the execution. This
use case shows that parts of the human demonstration can be optimized by the strategy
embedded in the skill according to the task objectives.

101



6 Contact-based Exploration

The haptic exploration skill capabilities of the framework are limited to exploring
object positions only, without estimating an object’s orientation. This works well if
the environment is partially structured and objects are, for instance, arranged in a
stack or a staple. A contact based full pose estimation including object orientation
could be addressed in future work. However, a possible use-case should first justify if
camera-free object pose estimation is needed or if the system capabilities can possibly
be extended with a camera. Future work could also assess the mental load of providing
multiple demonstrations with consistent actions that vary only spatially with respect
to the objects that shall be explored in the task. Although the demonstration effort
is kept to a minimum, it is hardly known how well approaches that require multiple
demonstrations would be received from end-users, for instance, in industrial working
environments.
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7 Task Decision Programming

Conditional tasks include a decision on how the robot should react to an observation.
This problem requires the selection of an appropriate action during execution by a so-
called task decision. Such events can either be foreseen by the user or detected by the
system in case of unexpected task faults. Then, recovery behaviors must be selected
during execution to account for the error. Intuitive programming of these use cases via
PbD is termed task decision programming.

This chapter includes content from the following publications [193,203,204]:

• T. Eiband, M. Saveriano, and D. Lee, “Intuitive Programming of Conditional Tasks
by Demonstration of Multiple Solutions,” IEEE Robotics and Automation Letters,
vol. 4, Art. no. 4, Oct. 2019.

• C. Willibald, T. Eiband, and D. Lee, “Collaborative Programming of Conditional
Robot Tasks,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 5402–5409.

• T. Eiband, C. Willibald, I. Tannert, B. Weber, and D. Lee, “Collaborative Pro-
gramming of Robotic Task Decisions and Recovery Behaviors,”Autonomous Robots,
pp. 1–19, 2022.

The author of this thesis conducted the conceptual development, contributed with the
anomaly detection method from [203], conducted additional experiments with respect
to [204], and planned a user study to compare the developed approaches. M. Saveriano
adviced in the method development. C. Willibald developed the task graph construction
concept and implemented it in the experimental system. I. Tannert and B. Weber
proposed the statistic design of the user study. I. Tannert conducted the user study,
assisted by C. Willibald. D. Lee advised in developing research methodologies and
analyzing the results and revised the article.

This chapter is structured as follows. Section 7.1 introduces the fundamentals for the
problem of task decision programming. Section 7.2 proposes the concept of multiple
solutions to program conditional tasks and recovery behaviors. This concept allows the
system to switch to an alternative behavior anytime during execution. Section 7.3 adapts
this concept to construct task graphs with the method of collaborative programming.
These task graphs allow online decision-making at specific points during execution and
can be incrementally extended or refined. Section 7.4 presents a user study that compares
the proposed approaches. The findings are concluded in Sec. 7.5.
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(a) Avoiding an obstacle (marked as red box).
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(b) Approaching different goal points (marked as
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Figure 7.1: Two examples of encoding two demos each (X [1], X [2]) in a single GMM with
Gaussian components represented as covariance ellipses Σ. Both examples do not
showcase their initial objectives in the reproduced trajectory X̂ obtained by GMR.

7.1 Fundamentals

From the user’s perspective, there are examples of conditional tasks, such as sorting
objects by specific object properties. An exemplary task is sorting objects by their
weight by picking each object and putting the object in tray A if it is light and in tray B
if it is heavy. Another example is performing a task in the workspace, and after detecting
that specific conditions are not met, e.g., parts are missing to complete the subtask, the
robot continues with another subtask. Examples of recovery behaviors are sorting out
defective parts based on a measurable property and continuing the nominal task with
the next available healthy part. Another example is to mate assembly parts, and if the
mating is unsuccessful, the robot tries another behavior given the current condition.

Although there might be a different understanding of what a conditional task or a
recovery behavior is from the user’s perspective, the introduced methods of multiple so-
lutions (Sec. 7.2) and collaborative programming (Sec. 7.3) handle these use cases equally.
From the robot’s perspective, a task should follow an expected behavior. If an observed
condition deviates from the expectation, the robot can react to this condition by select-
ing and executing an appropriate behavior, which is also called solution. Therefore, the
following sections do not differentiate between the terms solution and recovery behavior.

7.1.1 Introductory Example

Several works in the field of LfD make use of multiple demonstrations (Def. 7) for the
same task. This strategy can be meaningful for learning algorithms to increase robust-
ness, exploit task variations, or enable task generalization, such as in task parameteri-
zation approaches. Often, multiple demonstrations are merged to learn a single model.
Depending on the application, this might cause problems, as shown in the two examples
in Fig. 7.1. In both examples, a GMM is fitted with six Gaussian components on two
demonstrations (X [1], X [2]) together with a time vector t. GMR is used to reproduce a
trajectory X̂ by conditioning the model’s distribution on the time t. Figure 7.1a shows
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an obstacle avoidance example, where the learned trajectory cancels out the intended
variations of both demos. Similarly, in Fig. 7.1b, two demonstrations that end in dif-
ferent goal positions lead to a learned trajectory that ends at a position in between the
demonstrated goal positions.
These issues indicate that a single machine-learning model cannot seamlessly encode

the objectives from multiple demonstrations. Although task parameterization models
[205, 206] account for different coordinate frames, these frames have to be known or be
observable by the system, which is not always given. Further, they do not generalize
well if, as for conditional tasks, the required action is too different from what has been
demonstrated. Additionally, it may be hard for a novice user to select task parameters
manually or to implement a higher-level abstraction layer that accounts for decisions or
recovery behaviors. Therefore, it is suggested that a system learns individual models for
diverse task conditions and automatically selects an appropriate model that matches the
currently observed situation.

7.1.2 Requirements

This chapter proposes that a task decision and recovery behavior programming frame-
work needs the following properties:

(i) An anomaly detection mechanism,

(ii) an extendable knowledge representation allowing to learn from the user and envi-
ronment,

(iii) correctability of the robotic actions to increase robustness, and

(iv) an adaptive system to react during task execution. (Sec. 7.3.5).

With reference to the above, (i) anomaly detection is required to determine if the system
is behaving as expected. (ii) A knowledge representation is needed to store existing and
future information in a structured format that both humans and robots can interpret.
(iii) Correctability of existing actions is required, such that the system can either learn
from experiences or human feedback. (iv) An adaptive system can react to changes that
occur during task execution and that cannot be foreseen at the starting time of the task.

7.1.3 Task Representations

Reactive behaviors are required for both task decisions and fault recovery. Therefore,
two fundamental task representation types are introduced in Fig. 7.2 and used in the
following sections. It is argued that fault recovery and conditional tasks are closely
related because they require (a) monitoring of the execution, (b) branching from the
nominal execution flow, and (c) multiple actions for each decision and recovery behavior.

Solution Pool This task representation was introduced in a previous work [203] and
represents a set of multiple actions, so-called solutions, that are already known to the
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(a) Solution pool (SP), with a nominal
solution (thick arrow) and possible
transitions (dashed lines) to alterna-
tive solutions.

(b) Task graph where links represent ac-
tions and nodes represent decision
states.

Figure 7.2: A task representation that incorporates recovery behaviors can be defined as so-
lution pool, where multiple solution actions exist in parallel (a) or as task graph,
which arranges the actions as links and decision states as nodes (b).

system (Fig. 7.2a). In the solution pool (SP), no branching states are specified. Instead,
transitioning between solutions is possible at any time during execution.

Task Graph The presented framework uses a structured task graph (Fig. 7.2b) that
employs specified decision states, which are the graph’s nodes. The links represent the
robotic actions that either lead to the next decision state or a designated task termi-
nation. Later in this chapter, it is explained how this representation can be generated
incrementally in an interactive scheme involving the user and robot.

7.1.4 Anomaly Detection Mechanisms

In the presence of possible task faults, the end-user wants the robot to handle such
situations autonomously. In reality, it might not be always clear to the robot what is
exactly a fault state. However, a human might have capabilities the robot does not have
to identify such states. Therefore, both manual and autonomous detection mechanisms
are considered in this chapter.

Manual Anomaly Detection This mechanism relies on the humans to use their percep-
tion capabilities to identify states where the robot is in an unexpected or faulty state or
where it should make a decision about its following action [58,134]. This information can
be obtained from a user who observes the task execution and provides manual feedback,
e.g., via a button or GUI.

Autonomous Anomaly Detection This mechanism automatically detects unexpected
or faulty states in the task execution. It removes the burden on the user to observe
the task execution and react accordingly. It enables the detection of abnormal states in
the absence of the user and of newly occurred situations that could not be foreseen at
programming time. Other approaches focus on identifying low confidence task regions
to improve the robot’s spatial generalization capabilities [207]. Instead, the focus lies
on identifying anomalies that can occur in the position and force domain. The anomaly
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Figure 7.3: System components for real-time execution and monitoring. Solid connections are
real-time-capable up to 1 kHz, dashed connections are slow asynchronous connec-
tions.

detection scheme was proposed in a previous works [203] and is based on a probabilistic
action encoding and statistical outlier detection using the Mahalanobis distance.

7.1.5 Demonstration System

The user starts the task definition process by providing multiple demonstrations for
varying task conditions, which the robot shall account for. The demonstration system
presented in [42] is used to transfer knowledge to the robot that is equipped with an
FTS mounted between the robot and gripper. The system provides three foot pedals
that trigger the start and stop of teaching, open and close the gripper, and switch
to the next demonstration. A sample at time t of demonstration i is given by X [i](t)

(3.3). The wrench is filtered by a 1st-order Butterworth low-pass filter with a 1Hz cutoff
frequency. The samples of demonstration i ∈ {1, . . . , I} with sample length Ni are stored
in a matrix X [i] = [X [i](1); . . . ;X [i](Ni)]. Steady states with nearly no change in position
and orientation are removed.

7.1.6 System Architecture

Fig. 7.3 shows an overview of the system architecture. The task of each module is
explained subsequently.

Scheduler A high-level decision module without real-time capability that handles events
that occur during task execution. It selects an action when the system reaches a deci-
sion state or when the monitoring detects an anomaly during the execution. Then, it
passes the trajectory and covariance time series of the selected action to the execution.
Depending on the method and situation, it makes a decision autonomously or actively
queries input from the user.

Execution This module commands a Cartesian Impedance controller with overlaid
wrench term. The joint torque is controlled as

τcmd = JT (K(xd − x) +wd −Dẋ) + g(q), (7.1)
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where J is the Jacobian, K the Cartesian stiffness matrix, xd and x the desired and
measured position, wd the desired wrench, D a positive definite damping matrix and
g represents the robot’s gravity term, depending on the joint position q. The overlaid
wrench wd accounts for the demonstrated dynamics and external wrenches observed
in the demonstrations. The gripper finger distance g is commanded by a simple feed-
forward controller with a predefined maximum velocity and grasp force. The grasp status
h is only streamed to the robot for monitoring purposes.

Monitoring This module observes both the nominal state, which is the command sent
to the robot, and the measured state in real-time during execution. Anomalies are
detected by a one-class classification approach [208] via a probability distribution of
the expected state and an anomaly distance metric. Whenever an anomaly is detected
during execution, an event with relevant process data is sent to the scheduler. The
commanded state Y (t) and measured states M (t) at time step t are defined as:

Y (t) = [P (t),O(t),W (t),G(t)] ∈ R15

M (t) = [M (t)
p ,M (t)

o ,M (t)
w ,M (t)

g ] ∈ R15

The deviation between nominal execution and measured state is computed at each time
step t by the Mahalanobis distance

DM =
√
(X(t) −M (t))(Z(t))−1(X(t) −M (t))T , (7.2)

with Z(t) being a matrix that describes the covariance of the data dimensions in the
commanded trajectory at time t. The distance DM is compared with a threshold ϵ
at each time step. Consequently, a large enough deviation from the commanded state
signalizes the failure of the nominal solution. If the threshold is exceeded for a few
consecutive time steps, an anomaly event is triggered, which stops the execution module
in real-time. This event and the measured erroneous state xe at time step t are sent to
the scheduler. All modalities contribute equally to the anomaly detection as the error
that they are causing is scaled by the covariance matrix. Specifically, these errors can
be introduced by

i) deviation in position or orientation;

ii) abnormal wrench due to unexpected interaction forces or object weights

iii) deviation in gripper finger distance due to unexpected object geometry; or

iv) mismatch of grasp status due to misplaced objects in the environment.

7.2 Multiple Solutions

This section includes content of [203]. The framework introduced in the following al-
lows a user to demonstrate conditional tasks, including recovery behaviors for expected
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situations. The user can demonstrate several solutions corresponding to different execu-
tive conditions that construct the robot’s behavior. Each solution accounts for different
task conditions that may arise during execution. The demonstrations are clustered, and
each cluster is assigned to a specific solution, which is then encoded in a probabilistic
model. At runtime, the robot monitors the pose, external wrench, and grasp status
of the current solution. Deviations from the expected state are classified as anomalies.
This triggers the execution of an alternative solution appropriately selected from the
solution pool (SP). The programming paradigm of this framework is called SBP since
the teaching and execution phases can follow sequentially after each other. Batch pro-
gramming refers to the user’s option to provide a batch of demonstrations that account
for different solutions.
In summary, the presented framework:

i) learns a variety of task solutions without labeled data or a symbolic task represen-
tation by clustering human demonstrations,

ii) switches online between solutions by anomaly detection in the motion and force
domain, and

iii) recovers from an error by choosing the most likely state within the set of alternative
solutions.

7.2.1 Overview

The execution of a conditional task is affected by the executive context, meaning that a
conditional task has several possible outcomes depending on the conditions faced during
execution. Therefore, a task is not necessarily a fixed temporal sequence of skills or
actions. Instead, it can be a variable execution strategy that considers environmental
changes. For instance, sorting objects by their weight, where light and heavy objects
should be placed on two different destinations, would require two different solutions as
shown in Fig. 7.4. In addition, the sorting example requires physical interaction with
the objects to estimate their weight. This object property cannot be observed visually
prior to task execution. The correct execution of a conditional task requires continuous
monitoring of the execution state and the ability to detect anomalies, i.e., deviations
between the expected state of the current (nominal) solution and the measured state.
Such anomalies can trigger the execution of an alternative solution that accomplishes
the task. A suitable solution is found by identifying the best alternative solution in the
SP (Fig. 7.4, right). In the teaching and execution phases, the robot’s proprioceptive
sensing is exploited without incorporating a vision system. This constraint requires a
partially structured environment since object frames cannot be tracked online. Each task
is bootstrapped from the demonstrations without requesting further knowledge about
task goals. In line with that, neither a world model nor any object model is required in
the learning and execution phases.

One or multiple human demonstrations build each solution required for task comple-
tion. Fig. 7.5 shows an example of multiple demonstrations encoded in two solutions.
Since a solution can be learned from multiple demonstrations, a clustering algorithm
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solution 1
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Figure 7.4: Teaching multiple solutions for different conditions in a task, e.g., sorting by object
weight. The robot executes a nominal solution (solution 1) and monitors measured
stateM and commanded state Y1. The scheduler selects an alternative solution (so-
lution 2) with commanded state Y2, when the current solution’s confidence bound
Z1 is violated.

Figure 7.5: Example of six demonstrations encoded in two solutions, which are added to a SP.
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can assign multiple demonstrations to a specific solution in an unsupervised fashion,
i.e., without explicitly labeling each demonstration. Multiple solutions are then in-
cluded in a SP. Here, it does not matter whether an execution that deviates from the
target execution is considered a recovery behavior or an alternative solution. Similarly,
the event that leads to the adjustment of the execution can be considered a failure or
simply an expected environmental condition that deviates from the nominal execution.

During execution, alternative solutions can be executed by switching from the initial
nominal solution to the state in the alternative solution where the error between the
environmental condition and the expected state is minimized. This strategy can be
compared to a behavior tree where the precondition of an inactive branch is continuously
observed until it is activated when the condition becomes true.

All observable state variables of the robotic system can be taken into account for
anomaly detection. The presented framework follows a vision-free approach focusing
only the proprioceptive measurements of the robot, which are 1) robot pose, obtained
by joint position sensors; 2) wrench, obtained by an external FTS; and 3) gripper finger
distance in combination with a discrete grasp status (−1: no object in gripper, 0: gripper
moving, 1: object in gripper) provided by the gripper interface.

7.2.2 Clustering

Several unlabeled demonstrations can be clustered to find a set of solutions (Fig. 7.5).
First, all demonstrations are vertically stacked in X = [X [1]; . . . ;X [I]]. In a pre-
processing stage, all demonstrations are standardized dimension-wise by a z-transform.
Let

zn,d =
xn,d − x̄∗,d

σx∗,d

,

with xn,d being the element of X in row n and column d, x̄∗,d being the mean and σx∗,d

being the standard deviation over column d of X. Computing zn,d for each sample n and
dimension d results in the standardized demonstrations {X̄ [1], . . . , X̄ [I]}. This step is re-
quired to handle all dimensions with the same importance in the DTW step to contribute
equally to the warping error. Otherwise, signals with relatively high amplitudes, such as
forces and torques, would significantly impact the warping error compared to position
values. Next, a pairwise distance matrix between all possible pairs of demonstrations
is computed by the DTW distance. This distance is denoted as DTW(A,B), for some
multi-dimensional time series A and B. The distance matrix over all demonstrations is
given by

DDTW =

DTW(X̄ [1], X̄ [1]), · · · ,DTW(X̄ [1], X̄ [I])
. . .

DTW(X̄ [I], X̄ [1]), · · · ,DTW(X̄ [I], X̄ [I])

 .

The distance matrix DDTW serves as input to single linkage hierarchical clustering [209].
The system requests the user to specify the desired number of solutions S, used as
cluster quantity, where each cluster corresponds to an individual solution. A number of
S clusters is obtained by flattening the hierarchical cluster structure, where a minimum
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threshold is computed on the cophenetic distance between two observations in the same
cluster such that no more than S flat clusters are created.

Once the clusters are identified, DTW is applied again by computing a warping path
between each demonstration and its cluster’s medoid. The cluster medoid is found by
the minimum sum of squared distances to all other demos within the same cluster, given
as

argmin
k∈{1,...,Cs}

Is∑
l=1

(dDTW k,l)
2 ,

with Is being the number of demonstrations in cluster s, and dDTW k,l referring to the
DTW distance between the k-th and l-th demonstration within the current cluster. The
resulting warping path is used to realign all demons of a cluster with their medoid. The
warped demos of solution s are resampled to share the same length of Ns within one

cluster and are vertically stacked into the matrix C̄s = [X̃
[1]
s ; . . . ; X̃

[Is]
s ].

7.2.3 Trajectory Learning

Each cluster corresponding to solution s consists of one or multiple demonstrations and
is converted into a generalized trajectory. The data has been standardized (Sec. 7.2.2),
whereas the original scaling of the data is used in the trajectory learning stage. There-
fore, the inverse z-transform is applied by column-wise multiplication with the standard
deviation and addition of the mean, resulting in a non-standardized cluster Cs. The
number of data dimensions is D = 15.

A time-based GMM is learned for each solution s to generalize multiple demos. The
input matrix

Gs =

Cs

u...
u


 ∈ RNsIs×D+1 (7.3)

serves as input to learn a joint probabilistic model, given a time vector u = [1, . . . , Ns]
T

that is added to each demo in Cs.

See Sec. 3.3 about learning the GMM using Expectation Maximization that fits a
number of NG Gaussian components on the data. The model complexity is defined
proportionally to the length of the time series, i.e., NG = Ns

fs
with fs as the sample rate

of the time series. GMR (Sec. 3.3) provides a generalized trajectory Ys ∈ RNs×D and
a time series of covariance matrices Zs ∈ RNs×D×D by conditioning the model on the
time vector u. The trajectory of each solution s is stored in Ys = [Y (1); . . . ;Y (Ns)] and
the according covariance time series in Zs = [Z(1); . . . ;Z(Ns)]. A symmetric covariance
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matrix at time step t is represented as

Z(t) =



Z
(t)
p,p Z

(t)
p,o Z

(t)
p,w Z

(t)
p,g Z

(t)
p,h

. . . Z
(t)
o,o Z

(t)
o,w Z

(t)
o,g Z

(t)
o,h

. . . . . . Z
(t)
w,w Z

(t)
w,g Z

(t)
w,h

. . . . . . . . . Z
(t)
g,g Z

(t)
g,h

. . . . . . . . . . . . Z
(t)
h,h


. (7.4)

The subscripts of Z refer to each modality, with p as position, o as orientation, w
as wrench, g as gripper finger distance, and h as grasp status. The quaternions of
the orientation trajectory are normalized at this point. Since GMR and DTW act in
Euclidean vector space, they do not preserve the quaternion properties that are only
valid in SO3. The deviation between original quaternions and regressed and normalized
quaternions is small enough to justify the usage of such a compact orientation encoding
alongside the other modalities. The trajectory learning stage is applied on each solution
s, and the trajectories of Ys and Zs are added to the SP.

7.2.4 Online Solution Selection

The scheduler manages a SP, from which it selects an appropriate solution in case this
is triggered by the monitoring module during task execution. Its behavior is depicted
in Algorithm 7. Two types of events are expected, which are either an anomaly or task
completion. There are a few suggested strategies to select the initial nominal solution
for a task from the SP:

i) The scheduler selects the solution whose cluster contains the first demonstration
given by the human.

ii) The user chooses the solution to start with.

iii) The scheduler selects the solution with the minimum number of samples to favor
short execution times and simple behaviors as employed in the experimental evalu-
ation of this chapter.

Once an anomaly has been detected by the monitoring module, the scheduler selects
an appropriate alternative solution that lies closest to the abnormal state. The trajec-
tory and covariance time series of the selected solution is then passed to the execution.
Suppose only two solutions are in the SP, and one is currently executed. In that case,
only one solution remains to be executed, and the problem of selecting an alternative
becomes trivial. If there are more than two solutions in the SP, the scheduler shall select
the best strategy to cope with the current abnormal situation.
Let the monitoring module identify an abnormal state X(e) at time step t = e given a

nominal solution η and let Y
(t)
s be the sample in the trajectory of solution s at time step

t and Z
(t)
s the associated covariance matrix. Then, the minimum squared Mahalanobis

distance over each sample in solution s is given by

Cs = min
t∈[1,Ns]

{(Y (t)
s −X(e))(Z(t)

s )−1(Y (t)
s −X(e))T }. (7.5)
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Algorithm 7 Scheduler

Require: solution pool: SP; anomaly threshold: ϵ
1: Initialization :
2: t← 1 ▷ set trajectory starting index
3: s← get nominal solution(SP) ▷ described in this section
4: while not empty(SP) do
5: goto start point(s, t)
6: execute solution(s) ▷ implemented in execution module (Sec. 7.1.6)
7: remove solution s from pool SP
8: event← wait for event(ϵ) ▷ implemented in monitoring module (Sec. 7.1.6) ▷

anomaly or finished task
9: if event is anomaly then

10: if not empty(SP) then
11: given: measured erroneous state: xe

12: s, t← find alternative solution(xe, s)
13: ▷ described in Sec. 7.2.4
14: else
15: return stop on error ▷ no more solutions available
16: end if
17: else
18: return finished ▷ successful completion
19: end if
20: end while
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and the solution with the closest state to the erroneous state is extracted as follows

s∗ = argmin
s∈ SP\η

{Cs} . (7.6)

It excludes the currently executed nominal solution η. The identified alternative solution
trajectory is stated as Ys∗ .
There are two additional requirements for the alternative solution. First, it shall be

executed right after the error is detected with the smallest possible time delay. Second,
it shall start at a point to resolve the error without executing it from the beginning.
Therefore, the time step in which the alternative solution starts is identified similarly to
(7.5) with

t∗ = argmin
t∈[1,N∗

s ]
{(Y (t)

s∗ −X(e))(Z(t)
s )−1(Y

(t)
s∗ −X(e))T }. (7.7)

This step leads to the construction of a trimmed solution trajectory that the scheduler
switches to at runtime, defined as Ys∗ = [Y (t∗);Y (t∗+1); . . . ;Y (Ns∗ )] .

7.2.5 Experiments

The following experiments were performed on a DLR Light Weight Robot (LWR IV) [6]
mounted on a linear axis, equipped with a 2-finger Robotiq 85 gripper.

Evaluation of Monitoring System A baseline experiment was conducted to evaluate
that a system without monitoring capabilities cannot detect anomalies from an expected
behavior and that the proposed monitoring system can do so. The anomaly threshold
was chosen to be ϵ = 6 in the following experiments. The task was to pick a peg
object and insert it into a hole, as shown in Fig. 7.6. Only small external forces were
expected between the peg and hole for the nominal solution. The user provided four
demonstrations of picking and inserting the peg in the hole. From that, a single cluster
was identified (7.2.2) and a single solution was learned 7.2.3.

The results show how errors from different modalities contributed to the overall error
DM. Therefore, positional errors are defined by

Dp =

√
(P (t) − Y

(t)
p )(Z

(t)
p,p)−1(P (t) − Y

(t)
p )T

and force errors are defined by

Df =

√
(F (t) − Y

(t)
f )(Z

(t)
f,f )

−1(F (t) − Y
(t)
f )T ,

where F (t) is the measured force, Y
(t)
f the commanded force, and Z

(t)
f,f the sub-matrix

of the wrench covariance Z
(t)
w,w. The gripper finger distance and grasp status errors are

defined by Dg and Dh respectively. In the monitoring module, the entire state space is
used to compute DM as denoted in (7.2).
In the following, three execution runs were conducted. In the first run, the robot

executed the nominal solution without obstacle in the hole (Fig. 7.6 (c)) The execution
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Figure 7.6: Robot is approaching the hole (a) and inserts the peg with expected forces during
the nominal solution (b). On the right, the empty hole (c) and the hole with the
obstacle marked with a purple arrow (d) are shown.

led to success regardless of monitoring since there is no abnormal configuration in the
setup (Fig. 7.7). In the second run, an obstacle was inserted in the hole (Fig. 7.6 (d),
purple arrow) to construct an abnormal configuration of the setup. The task was then
run by a system without monitoring capability (Fig. 7.8), which resulted in the robot
executing the whole commanded motion without detecting the failed insertion, poten-
tially damaging the robot or the object. In the third run, the task was rerun with the
inserted obstacle, the same as in the second run, but while the monitoring system was
activated. Consequently, the monitoring detected the anomaly and stopped the robot
to prevent further damage and signalized that something went wrong during execution
(Fig. 7.9). At this state, no recovery behaviors were available in the SP. Hence, the error
could not be resolved.

Conditional Task: Weight-based Sorting This task of sorting objects by weight can
be solved by the nominal solution or by switching to an alternative solution that resolves
the abnormal state. Figure 7.10 shows the experimental setup. Full milk cartons shall
be placed in the left box, and empty milk cartons shall be dropped in the right box.
For this purpose, the user gave three demonstrations each for the full and empty carton
setup. The user specified that the number of desired solutions is two since the robot
shall either place the cartons in the left or in the right box. The clustering stage assigned
three demonstrations to the solutions labeled as full carton and empty carton.

In the execution phase, the nominal solution was full carton, which is successfully
executed if a full carton is present. Figure 7.11 shows the force in z-axis and the mon-
itored errors. In the next run, an empty carton was present, and the nominal solution
full carton caused an anomaly, as can be seen from the force measurements and mon-
itored error in Fig. 7.12. Here, a switch occurs from full carton to empty carton. It
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Figure 7.7: Peg-in-hole experiment: First run with nominal environment, where running with
or without monitoring does not affect the execution. Top: Measured (m) and com-
manded (µ) force in z-axis and ±2 standard deviations around commanded state
(green). Bottom: Monitored error in different domains with anomaly threshold set
to ϵ = 6.
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Figure 7.8: Second run with obstacle but without monitoring, leading to an undetected error
at around 16 s. Plot shows measured (m) and commanded (µ) force in z-axis and
±2 standard deviations around commanded state (green).
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Figure 7.9: Third run with obstacle and active monitoring, stopping the robot at the abnormal
state (event EA marked by vertical purple bar). Top: Measured (m) and com-
manded (µ) force in z-axis and ±2 standard deviations around commanded state
(green). Bottom: Monitored errors in different domains.

Figure 7.10: (a) Human demonstration at carton pick location with motion paths in green; (b)
empty milk carton disposed at the right box; (c) full milk carton placed in the left
box; (d) robot execution while lifting the carton after picking it.
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Figure 7.11: Top: Measured (m) and commanded (µ) force in z-axis for execution with solution
full carton and ±2 standard deviations around commanded state (green). Bottom:
Monitored error in different domains. No anomaly was detected in the nominal
solution.
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Figure 7.12: Top: Measured (m) and commanded (µ) force in z-axis for execution with solution
full carton but environment with empty carton, while monitoring was active. In
green, ±2 standard deviations around the commanded state. Bottom: Anomaly
during execution at event EB11 caused the switch from full carton to empty carton.
Vertical purple bars mark the switching event.
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Figure 7.13: (a) Possible initial setup; (b) target configuration. The conveyor belt moved in
the direction of the blue arrow until an object interfered with the light barrier
(red dashed line).

is emphasized that the visual appearance of the full and empty carton does not allow
humans to detect their state by vision. Hence, only the robot’s force measurements
allowed the system to make a decision.

Switching with Multiple Alternatives This experiment shows that switching to not
only one but multiple alternative solutions is possible, which may refer to an intended
task goal or a recovery behavior. The experiment was carried out in a partially structured
environment where objects with the same properties (e.g., geometry and weight) were
located at the same position during execution. Figure 7.13 shows the experimental
setup. A conveyor belt (in blue, to the right side of the robot) was used to deliver new
objects in a random sequence. It stopped whenever an object entered the light barrier
and restarted after the object had been removed. The teaching phase consisted of nine
demonstrations, showing three different behaviors to the robot. The demonstrations were
given in a random order, specified by the sequence of objects arriving at the conveyor
belt. In three demonstrations according to solution empty box, the user showed the
desired behavior to sort empty boxes (mass m = 0.15 kg, marked with a yellow square)
to a desired goal pose. Similarly, three more demonstrations were provided for solution
full box, where full boxes (mass m = 0.85 kg, marked with a pink square) were placed at
a different goal pose, according to Fig. 7.13. Three more demonstrations were dedicated
to handling the profile object (mass m = 0.70 kg) with solution profile. The clustering
method finally mapped nine demonstrations to three solutions (S = 3).

In the following, it was evaluated that the robot was able to detect anomalies during
execution and to act without requiring any prior knowledge or a symbolic task represen-
tation. The anomaly threshold was set to ϵ = 20 based on preliminary experiments. The
task was to manipulate the arriving objects (full box, empty box, profile) onto the target
locations as shown in Fig. 7.13. When the robot executed solution empty box and faced
an empty box at the pick location, the task could be solved without anomalies. Next,
the case was analyzed where the nominal solution was empty box but the robot faced a
full box at the pick location. Figure 7.14 shows the monitored error and the detected
anomaly during lifting of the box, mainly caused by the deviations in the force domain.
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Figure 7.14: Error during execution with solution empty box with a switch at event EC11 to
solution full box. A vertical purple bar marks the switch in both plots.
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Figure 7.15: Top: Measured (m) and commanded (µ) grasp status h, when the robot tried to
pick an unavailable object. In green, ±2 standard deviations around the com-
manded state. Bottom: Error during execution with solution empty box with a
switch at event EC21 to solution full box and a 2nd switch at event EC22 to solution
profile. Vertical purple bars mark the switch in both plots.

This triggered a switching event EC11, where the scheduler switches from empty box to
full box.

In the next run, the robot starts again with the nominal solution empty box but faces
the profile at the pick location. Figure 7.15(top) shows the grasp status, indicating
if objects were as intended. Figure 7.15(bottom) shows the Mahalanobis distance and
how different modalities contributed to the overall error, especially influenced here by
the grasp status (Dh) and force (Df). The first anomaly when the object picking failed
triggered a switching event EC21 from empty box to full box. It was identified as the next
closest solution mainly because of the proximity of the pick location. The next picking
attempt triggered the switching event EC22 and the start of the solution profile. Finally,
an alternative solution was executed that manipulated the profile object successfully to
the target position.
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7.2.6 Conclusion

The proposed framework uses an anomaly detection strategy to trigger an alternative
solution that best fits the current observed erroneous state. The alternative is param-
eterized such that it starts near the error sample in the nominal solution. Multiple
alternatives can be provided via demonstrations, where the most appropriate one is se-
lected by minimizing the error to the failed state. The framework employs PbD to allow
end-users to teach conditional tasks and error recovery strategies without requiring any
other prior knowledge or semantic information about the task.

The experiments show that the online solution switching works in different scenarios.
However, there is no guarantee that the transition to the alternative will succeed. This
limitation may depend on multiple factors, such as the initially selected solution, the
demonstrator’s performance, or how the objects in the environment are arranged. Find-
ing or learning a general anomaly threshold on the state space, which is invariant of the
task goals and does not require any parameterization is a challenge that should be con-
sidered in future work. This framework exploits the proprioceptive sensing capabilities
of the robot, which might be fused with additional sensors in the future, such as vi-
sual perception, to allow an even more adaptive and reactive framework in unstructured
environments.

7.3 Collaborative Programming with Task Graphs

Section 7.2 explained how a batch of demonstrations provided before task execution
can be exploited to program adaptive robot behaviors for conditional tasks or recovery
behaviors. It proposed a sequential programming paradigm that consisted of two phases.
In the first phase, the user demonstrated all possible scenarios. In the second phase, the
robot used the accumulated knowledge to spawn new behaviors during execution time.

This section introduces a new programming paradigm called collaborative program-
ming, which sees the robot as a cooperative counterpart to the human, contributing with
efforts to create a robot program. This paradigm constitutes a flexible and interactive
teaching strategy, where the joint efforts of human and robot can add knowledge at any
time.

7.3.1 Overview

The manufacturing domain moves from repetitive robot tasks to more adaptive, collab-
orative, and intelligent robotic applications. The two main goals of this section are to
increase the adaptability and robustness of robot behaviors. In this context, collabora-
tion between human and robot is the enabler to reach these goals utilizing a tree-like
task structure, which is called task graph.

Adaptability is needed whenever the robot needs to change its behavior on the fly if the
task requires it. It is seen as an inherent property of a robot’s behavior. Therefore, two
possible solutions are given. On the one hand, new environmental conditions could be
foreseen by the programmer and implemented on demand. On the other hand, the system
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Figure 7.16: Collaborative PbD framework for programming of task decisions and recovery
behaviors that uses decision states (DS) within a task graph. From left to right, a
human demonstrates a task, the robot executes and monitors the current action,
the robot detects a possible anomaly, human and robotic agent collaborate and
decide how the new information shall be embedded into the task graph. The
evolution of the task graph is shown on top.

could extend any existing robot behavior on the fly. Similarly, robustness is required to
achieve the task goals with environmental variations or unforeseen environmental states.
Per se, a system can only be seen as robust concerning a certain environment in which
it has been tested. As soon as the environment changes, the robot’s behavior might
no longer be able to cope with all eventualities and require modifications to guarantee
robustness. With that in mind, it becomes infeasible for the programmer to think
about all eventualities and, therefore, requires an incremental strategy to add missing
knowledge to the system. Incremental teaching, as proposed in this section, has the
following requirements on the human, task, and system:

i) Availability of a human teacher in case the system requests input

ii) A structured, repetitive task with possibly unexpected conditions

iii) Physical access to the system allowing kinesthetic teaching

One way to achieve robustness can be through recovery behaviors, where the system
knows how to resolve erroneous states. Another way is to increase the system’s adapt-
ability to the environment with task decisions that are made based on the environmental
condition, enabling the robot to act in different ways. Ideally, end-users can intuitively
transfer the required knowledge for robot programs that include task decisions or re-
covery behaviors. For instance, a robot could cope with a failed grasp by a re-grasping
action that is automatically triggered during runtime. Another example is to let a robot
make a decision based on a specific object property, for instance, sorting objects by
their weight. Such problems that depend on observed conditions are also referred to as
conditional tasks.
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This section proposes a PbD task graph learning framework that allows the intu-
itive transfer of task knowledge that includes task decisions and recovery behaviors
using a bidirectional communication channel between human and robot (see concept in
Fig. 7.16).

7.3.2 Graph-based Incremental Programming

The proposed approach combines task graph programming with an autonomous fault
detection scheme. The robot acts as an active learner that requests new user demonstra-
tions in unknown regions of the input space. This enables the robot to decide ad-hoc
when further information is required to extend the task graph with decision states and
possible recovery behaviors.

7.3.3 Probabilistic Action Encoding

The user is requested to only demonstrate a new behavior once to add a new action.
This demonstration is combined with a robotic repetition of the same. This process
accounts for two problems. First, it incorporates some variance of the environment
since the objects that are manipulated in both cases are set back to their initial state
with possible uncertainty. Second, it accounts for the differences in dynamics and con-
trol behavior between human demonstration and robotic repetition. For instance, the
impedance controller’s stiffness parameters influence the robot’s tracking performance
and disturbance-induced control deviations.
The obtained two trajectory samples from human and robot are then used to encode

the demonstrated action and determine the regions of variance around the nominal
trajectory. Fig. 7.17a shows an example of these variance regions. Here, low variance
regions lead to a more sensitive anomaly detection and vice versa. In parts with high
variability, higher deviations are accepted during the execution, which increases the
overall robustness. The whole system only makes use of the robot’s proprioceptive
sensing capabilities, which are the wrench measured with a FTS at the robot wrist, the
Cartesian pose, the distance between the gripper fingers, and the grasp status indicating
if an object is grasped or not, evaluated by the grasp force. Visual perception is not
part of the presented approach. Instead, force measurements are exploited, which help
to make a system independent of object visibility or lighting conditions.
A data sample at time t is given as X(t) as specified in (3.3) with D = 15 data

dimensions. It contains the robot pose, wrench, and gripper states. The data is recorded
at a frequency of 1 kH and is down-sampled to 50Hz in order to reduce the computational
effort in the data processing. The recorded data from the user demonstration

XUdem =
[
X

(1)
U ; . . . ;X

(NU)
U

]
∈ RNU×15

and robot repetition

XRrep = [X
(1)
R ; . . . ;X

(NR)
R ] ∈ RNR×15

with respective sample lengthNU andNR are collected for each new demonstration. Sim-
ilar as in Sec. 7.2.2, the data is standardized dimension-wise with the z-transformation
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Figure 7.17: Stages of creating a task graph by monitoring the execution and by reacting to
anomalies.
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by subtracting the mean and dividing by the standard deviation. This step assures that
each dimension contributes equally to the DTW error in the following step. DTW is
then used to align the two sensor sequences on a joint time vector with equalized length
N . After warping the data, the standardization is undone by applying the inverse z-
transformation dimension-wise.
In the next step, Expectation Maximization (EM) approximates a multivariate, time-

based Gaussian Mixture model (GMM) for the input matrix

Gs =

[
XU n
XR n

]
∈ R(2N)×(D+1) (7.8)

with a time vector n = [1, . . . , N ].
The variables XU and XR serve as placeholders for demonstrated and repeated time

series, respectively, where further use-cases are considered in Sec. 7.3.4. The model
complexity is chosen such that the number of model components k is proportional to
the length N of the demonstrated time series data. The EM algorithm is initialized by
k-means clustering with a number of k clusters. Applying EM results then in the model
M = GMM(Gs). GMR is applied to reproduce a generalized trajectory

Ys = [Y (1); . . . ;Y (N)] ∈ RN×D

with an associated sequence of covariance matrices

Zs = [Z(1)
s ; . . . ;Z(N)

s ] ∈ RN×D×D.

A Cartesian impedance controller can now track the generalized trajectory. The desired
behavior is monitored by computing an error between measurements and generalized
trajectory while considering the sequence of covariance matrices as a confidence bound-
ary.

7.3.4 Online Anomaly Detection

The system design for online anomaly detection is shown in Fig. 7.3. Its main purpose is
to monitor the execution and detect new situations unknown to the system. A number
of sensor modalities are introduced that allow to distinguish the source of error. These
modalities are

1. the robot pose (p,o),

2. the wrench (f ,ϱ), and

3. the gripper finger distance g and grasp status h.

The symbolm is a placeholder for the above modalities. The system constantly compares
the commanded and measured variables for each of these modalities to detect abnormal
states. This mechanism detects new situations and determines a possible error source,
e.g., an abnormal state caused by unexpected external forces. In each time step t of the

execution, the deviation between the measurement M
(t)
m and commanded state Y

(t)
m of

126



7.3 Collaborative Programming with Task Graphs

a modality m is quantified using the Mahalanobis distance as defined in eq. (7.2). The

modality specific Mahalanobis distance is denoted as D
(t)
m .

By defining a custom anomaly threshold ϵmi for each modality m of an action s, this
metric leads to a higher error sensitivity in time steps where the execution needs to be

precise, indicated by small values of the reduced covariance matrix Z
(t)
m . During the

execution, all modalities are monitored simultaneously. If any D
(t)
m exceeds its action

and modality-specific anomaly threshold ϵm for e consecutive time steps, an anomaly is
detected.

The approach does not rely on manual error threshold tuning but is automatically
parameterized by the training data. The anomaly threshold ϵm is computed for each
modality m of an action, based on the recorded trials of the user demonstration U

and robot repetition R. Let M
(t)
m,d be the sample of time series d ∈ {U, R} belonging

to modality m at time step t. It corresponds to the mean sample Y
(t)
m of the GMR

trajectory. After encoding a new demonstration in a GMM and computing the GMR,
the maximum Mahalanobis distance is extracted by

D̃m,d = max
t∈ [1,N ]

√
(M

(t)
m,d − Y

(t)
m )(Z

(t)
m )−1(M

(t)
m,d − Y

(t)
m )T . (7.9)

Then, the maximum distance over all trials is defined as

ϵm = max
d∈{U,R}

D̃m,d (7.10)

and used as a modality-specific error threshold.

Collaborative and Incremental Graph Construction A task graph structures the avail-
able robotic actions and possible decision states on an abstract level (as shown in
Fig. 7.17h). Such a graph is incrementally built by accumulating task knowledge from
several user demonstrations. The graph’s nodes represent system states that can be of
type start, end, and decision state (DS).

In order to construct a new task, a user enters a demonstration phase and provides an
initial task demonstration. The system extracts a robotic action from this demonstration
as explained in Sec. 7.3.3 (Fig. 7.17a). Next, a start and end state is added to the
beginning and end of this action. The result is shown in Fig 7.17b, which already allows
the execution of that simple task.

If an anomaly is detected during execution, as explained in Sec. 7.3.4, the robot stops
at the unseen state (Fig. 7.17c and Fig. 7.17d). Next, the system requests the user to
choose from the following options:

1. The detected situation shall be handled by a new dedicated action in future exe-
cutions (Graph Extension)

2. It shall be incorporated as a refinement for the current action (Action Refinement).
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Graph Extension If the user selects to add a new action to resolve the current situation,
the system switches to a demonstration phase and waits for the user’s input. The robot
configuration is still in an abnormal state and can now be changed by the user via
kinesthetic teaching. It is assumed that an anomaly has been detected beforehand at
time step tanomaly. In the following, a user demonstration XUdem is recorded. This data
is appended to the time series M recorded during the interval [tα; tanomaly], resulting in
X̃Udem = [M ,XUdem]. After the demonstration, the system requests the user to restore
the environment to the state before the demonstration. Here, the manipulated object
locations are set back to their initial state. Next, the robot moves to the configuration at
time step tα and repeats the extended user demonstration X̃Udem. Two resulting time
series from the user and robot are then probabilistically encoded and saved as action s2.

Finally, a new decision state is inserted into the graph, splitting up action s1 into two
actions before and after the anomaly, depicted s1A and s1B respectively (see Fig. 7.17g
and Fig. 7.17h). The actions s1B and s2 are then appended to the newly inserted decision
state. In detail, action s1 is split at time step

tα = tthresh + αe , (7.11)

where tthresh is the time step in which the error metric D
(t)
m first exceeds the anomaly

threshold ϵm. The parameter e is the number of consecutive time steps for which

D
(t)
m > ϵm until an anomaly is triggered. The scaling factor α (0 < α < 1) places

the decision state in between time step tthresh and tanomaly.

An early and smooth transition from action s1A to its successor, without pursuing a
possibly erroneous strategy for too long, requires a minimum α. This means that the
decision state should be close to time step tthresh. However, a robust decision requires a
sufficiently long sequence of unique sensor readings associated with a particular action,
shifting the decision state towards tanomaly and thus α → 1. Moreover, the decision for
the subsequent action must be made before tanomaly is reached when the action s1A is
executed. Otherwise, the anomaly detection would incorrectly identify a new situation
for the scenario handled by s2 (see Fig. 7.17h). Preliminary experiments have shown
that the number of error samples e = 30 (corresponding to 30/50Hz = 0.6 s) and the
scaling factor α = 1/3 provide a good trade-off between robustness and delay in decision
making.

Action Refinement If the user chooses to refine the action s where the anomaly is
detected, its encoded trajectory Ys and associated sequence of covariance matrices Zs

is adjusted by new data. This refinement option enables an existing action to handle
various conditions so that the robot learns which features are essential and which regions
of the state space do not require strict monitoring and error handling. For example, a
sorting task for geometrically different objects that ignores object weight can be achieved
by refining the actions that handle the different geometries. In this case, the refinement
results in actions where monitoring no longer depends on object weights, thus avoiding
false positive detection of force anomalies in future task executions. One such example
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is evaluated later in the experiments section. A trial that provides the time series acting
in the new environment is performed in one of the following ways:

1. by a user demonstration in the so-called user-refine mode

2. by the robot in the so-called auto-refine mode.

In the user-refine mode, a manual demonstration allows adjusting the whole trajec-
tory of the correction, which starts directly where the anomaly has been detected. In
comparison, in auto-refine mode, the robot can autonomously continue execution after
the anomaly is detected until the end of the action. Since it is already known that a
new situation shall be included in the action encoding, anomaly detection is disabled
for the rest of the execution. For both possible modes, the recorded time series XRref is
appended to the time series M of the action before the anomaly, resulting in a stacked
matrix X̃Rref = [M ,XRref]. This data, along with the initial user demonstration XUdem

and robot repetition XRrep of this action, is used for new probabilistic coding as de-
scribed in section 7.3.3. Finally, the task graph is updated to incorporate the new
action model.

7.3.5 Task Execution

An efficient switching mechanism between robot execution and human teaching gov-
erns the production phase. Switching occurs ad-hoc, just if required by environmental
changes. Otherwise, the system stays in the task execution phase to operate under
nominal conditions. After an initial task demonstration, an execution phase can im-
mediately follow to start production. Adding knowledge to the task graph at any time
is seamlessly possible. The user can intentionally add knowledge for known situations
from the beginning, or the system requests a user interaction at any time, e.g., after un-
foreseen errors occur during production. The task graph allows the robot to reproduce
any demonstrated task and to adapt to environmental conditions by exploiting known
decision states. It enables a fundamental extension compared to simple sequential task
execution, namely selecting the appropriate action based on current sensor readings.
Conditional tasks allow, for example, sorting by object properties or selecting recovery
actions for faulty states.
The task graph structures the available actions at a high level. The actions are encoded

probabilistically at a low level, enabling real-time monitoring by exploiting the model’s
uncertainty. Decision states are automatically inserted at critical state transitions of
the task, which simplifies the decision process for a particular state but also eliminates
perceptual aliasing and thus the risk of making a wrong decision for an action. A decision
state also helps to make decisions as early as possible and avoids unnecessary delays or
robot movements. Since the decision is enforced in the decision state, the system can
react faster than approaches that use only sequential knowledge representations.
The presented approach also identifies the sensor modality that has a major impact

on causing the anomaly. This is achieved by only considering the relevant sensor values
to select the subsequent action in a decision state. An example is used in the following
to explain the action selection in a decision state, as shown in Fig. 7.17h. The robot

129



7 Task Decision Programming

starts with the first action s1A. In case no anomaly is detected during the execution,
the robot reaches the first decision state (DS). From here, the subsequent action ŝ is
determined by

ŝ = argmin
s

(
∥mDS,m − Y (0)

s,m∥
)
, (7.12)

where mDS,m is the measurement in the modality m at the decision state and Y
(0)
s,m is the

first sample in the modality m of an encoded action s. In this example, the next executed
action ŝ is selected from the set {s1B, s2}. It contains all actions that are attached to
the decision state. In contrast to the anomaly detection method, an Euclidean distance
metric is used here. The reason is that the Mahalanobis distance favors actions with
high uncertainty, expressed by large values in the covariance matrix that lead to small
errors in the first time step. With the proposed scheme, the robot always chooses an
action that minimizes the error in the current environmental state and monitors that
action to detect possible future anomalies.

7.3.6 Experiments

The experiments evaluate a scenario where a user transferred a sorting task to a robot
by incrementally adding knowledge. The system queried only three user demonstrations
while providing instructions via a GUI. When the robot detected an anomaly during task
execution, the user could either demonstrate a new action that accounts for this situation
or refine the current action by incorporating the new conditions into it. This experiment
demonstrates both the action refinement and the task graph extension capabilities of
the presented framework, which allows the robot to ignore irrelevant and learn relevant
features of a task.

Experimental Setup As shown in Fig. 7.18, a DLR LWR IV was mounted on a linear
axis and equipped with a Robotiq 85 two-finger gripper as well as a FTS measuring the
forces and torques acting on the end-effector. The robot was impedance controlled with
a control rate of 1 kHz and parameterized with constant linear stiffness ktrans = 1200
N/m, angular stiffness krot = 100 Nm/rad, and damping coefficients dm = 0.3 Ns/m
respectively. User buttons and a tablet displaying a GUI allowed the user to operate
the robot and receive visual feedback. The buttons were used to open and close the
gripper and to start and stop the demonstration recording. Kinesthetic teaching was
used to provide the demonstration data. The GUI guided the user through the teaching
process and requested input whenever needed. A conveyor belt placed perpendicular to
the table transported boxes with supplies for an assembly task to a determined place in
the working space.
The goal of the task was to program the robot to distinguish different boxes based

only on their geometry to place the supplies at a specific spot in the part storage. This
experiment focuses on sorting by the object’s geometry while sorting by an object’s
weight was validated in Sec. 7.2.5. Here, the weight of the boxes was intentionally
ignored when deciding on the final position of a box. More specifically, it is assumed
that boxes of equal dimensions contain the same type of pieces but do not necessarily
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Figure 7.18: Experimental setup where a conveyor belt delivers different boxes to a pick loca-
tion, from where they can be sorted with respect to different properties.

contain the same amount of pieces, hence differing in their weight. The experiment is
structured in the following phases, considering three different conditions in the task’s
environment.

Nominal Condition First, the user provided an initial demonstration by guiding the
robot to pick up a box with supplies from the start position on the conveyor belt and to
place it on its designated spot in the part storage (Fig. 7.19d). After the demonstration,
the box was set back to the start position on the conveyor belt so that the robot could
repeat the demonstrated sequence. The resulting two time series of human and robot
are shown in Fig. 7.19a. They were used to learn a model of the action represented in
Fig. 7.19a with the Gaussian mixture components shaded in gray. Then, the robot exe-
cuted the learned model in the same environment, where both commanded and measured
states behave similarly (Fig. 7.19c).

Differing Weight Condition The robot manipulated a box of the same type but with
a different weight, which caused an anomaly caused by an unexpected force fz in z-
direction (Fig. 7.20a). A weight deviation of a box was not considered to be an important
feature of the task. Therefore, the user decided to refine the current action with the
auto-refine mode (Sec. 7.3.4) in order to incorporate the new condition into the action’s
model. The refinement condition is shown in Fig. 7.20d. In auto-refine mode, the robot
continued the learned motion and placed the box in its designated spot in the part
storage.

Differing Shape Condition Here, the robot was confronted with a box of a different
shape during grasping, resulting in an anomaly detected by the gripper finger distance
(Fig. 7.21a). The user decided to demonstrate a new action, where the box with differing
shape was placed on another spot in the part storage (Fig. 7.21d). The user demonstra-
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tion was repeated by the robot with the same box type and encoded in the model of
action s2, shown in Fig. 7.21b.

Results The approach has been evaluated to show robustness in the case of differing
external forces (box weight) and adaptability in the case of different object shapes (box
geometry). It learned that the critical feature to consider in the online decision was the
object shape and that the object weight is irrelevant to the task. As shown in Fig. 7.20c,
the task structure handles the lighter box the same as the heavier box by considering
the value of fz with a larger variance σfz and increased force anomaly threshold ϵf ,
derived by (7.9) and (7.10). As introduced in Sec. 7.3.4, this leads to a less sensitive
force anomaly detection in future executions of this action and allows to manipulate
boxes with a variety of weights without triggering a false positive anomaly detection. At
the same time, the robot can still learn additional actions for unforeseen situations by
requesting user demonstrations.
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(a) Execution with anomaly detection in
the gripper finger distance.

(b) Learned model after splitting action
s1 into s1A and s1B and added action
s2.

(c) Execution exploiting the decision
state to switch from action s1A to
the new action s2 that resolves the
anomaly.

(d) Left: picking the small box with edge
length ls, right: placing the small box
on a new location specified by the
user.

Figure 7.21: Experimental results of the box sorting task with action refinement and graph
extension.
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Fig. 7.21a and 7.21d shows the detected anomaly of the gripper finger distance when
grasping a smaller box. This event allowed the user to demonstrate a new action that
places the box on another goal location. When grasping the box, a new decision state was
inserted into the task graph (Fig. 7.21b). Here, the robot decided on the subsequently
executed action based on the measured gripper finger distance (see Fig. 7.21c).

7.4 User Study for Approach Comparison

This section evaluates and compares the intuitiveness of CIP, SBP, and UIP by means
of a user study. UIP is introduced in the related work (Sec. 2.4.4). Furthermore, the
task structures generated with these frameworks are compared by their ability to reach
the task goals.

7.4.1 Materials and Study Design

Sample Within this study, 21 participants (19 male and 2 female) were recruited from
the German Aerospace Center (Age = 25.24 ± 7.03 years, ranging from 21 to 56). All
participants have a background in different technical fields but not necessarily in robotics.

Setup Sec. 7.1.5 describes the used demonstration system. Throughout the study, all
tasks involved the same object, which is an aluminum block (dimensions: 6.8 cm x 4 cm
x 2 cm) that was placed in different locations (see Fig.7.22).

Procedure Each participant was informed about the study’s aim and procedure. In the
introduction phase, the robot’s sensing capabilities were explained, highlighting that no
vision-based monitoring of the environment was used. After a maximum of five minutes
to familiarize with the robot and control buttons, the experimental tasks were explained.
Each participant watched a short instruction video that explained each method (CIP,
SBP, UIP) individually. Then, the participant programmed both tasks for all three
methods. The order of teaching each task with each method was permuted among all
subjects by a Latin square design [192].

After completing the programming with one of the methods, the NASA-TLX [210] and
the Questionnaire for Measuring the Subjective Consequences of Intuitive Use (QUESI)
[211] were filled out by the participant. At the end of the experiment, an overall evalua-
tion of the methods took place, where the participant rated intuitiveness and efficiency
on a 7-point Likert-type scale followed by a semi-structured interview.

Data Analysis Successful task completions were nominally scaled and analyzed using
Cochran’s Q test and McNemar post-hoc tests in case significant differences between
methods were found. For questionnaire items, a repeated measures ANOVA was calcu-
lated. In case of violation of sphericity (Mauchly’s sphericity test), Huynh-Feldt (> .75)
or Greenhouse-Geisser (< .75) corrections were made. Post-hoc tests with Bonferroni
correction were performed to identify which methods differed significantly.
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Table 7.1: Overview of Compared Frameworks

Properties

Methods

proposed:
Sequential
Batch Programming
(SBP)

proposed:
Collaborative
Incremental
Programming
(CIP)

baseline:
User-triggered
Incremental
Programming
(UIP)

task representation
teaching-interaction unidirectional bidirectional unidirectional
incrementally extendable ✘ ✔ ✔

online decision making ✔ ✔ ✔

collaborative programming ✘ ✔ ✘

7.4.2 Compared Methods

Table 7.1 provides an overview of the PbD approaches that were compared in the user
study, which all used the same sensory input without visual perception. The approaches
are summarized in the following:

SBP (Sec. 7.2) uses separated teaching and execution phases. First, a teacher sequen-
tially demonstrates all task solutions that the robot shall account for and stores these
solutions independently in a SP. If an anomaly occurs during task execution, the system
switches to the state within an alternative solution that minimizes the error between the
current measurement and all alternative solution states.

CIP Sec. 7.3 combines anomaly detection with collaborative programming to account
for new task conditions. Collaborative programming relies on intertwined teaching and
execution phases. Compared to SBP, the decision state is explicitly programmed by
collaboration between the user and robotic agent.

UIP (as introduced in Sec. 2.4.4) is inspired by the framework presented in [134],
where similar to CIP, a task graph is incrementally constructed in a combined teaching
and execution phase. The difference is that the teacher has to detect anomalies with
UIP during the execution of the task and needs to trigger the exact time step when the
robot shall make a task decision.

7.4.3 Hypothesis

This study had the aim to verify the following hypotheses:

• H1 (based on objective metrics): Using CIP with its collaborative programming
concept and autonomous anomaly detection results in a significant increase in
successful task completions,

– compared to SBP (hypothesis H1.1), and
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Figure 7.22: Initial and final setups of each task with each two different environmental condi-
tions (Cond. 1 and Cond. 2).

– compared to UIP (hypothesis H1.2).

• H2 (based on subjective ratings): A significant increase in programming intuitive-
ness is achieved by CIP with its collaborative programming scheme,

– compared to SBP, which uses a training phase to collect all demonstrations
in the beginning (hypothesis H2.1), and

– compared to UIP, which requires the user to trigger the insertion of decision
states manually (hypothesis H2.2).

• H3 (based on subjective ratings): A significant decrease in workload is achieved
by CIP,

– compared to SBP (hypothesis H3.1), and

– compared to UIP (hypothesis H3.2).

7.4.4 Experimental Tasks

The user study evaluated all methods in two experimental tasks, namely task 1: Re-
orientation and task 2: Contact-based Sorting. Fig. 7.22 shows their initial and final
environmental states. The goal of task 1 was to manipulate an object from a start lo-
cation to a target location with the following constraints: 1) At the start location, the
object might be aligned either with its short or with its long edge with a mark on the
table, i.e., it may be rotated by ±90◦ in the table plane; 2) at the target location, the
object’s long edge must be aligned with a mark on the table. Given constraints 1 and
2 and depending on the environmental state, the robot might be required to reorientate
the object before placing it in the target location. Schematic examples of how the task
can be performed are given in Fig. 7.23 for SBP and in Fig. 7.24 for CIP and UIP. The
goal of task 2 was to fill target locations in a sequential order, starting with target I.
The object had to be placed on target II if target I was occupied. The manipulation
steps and the generation of the task graph are shown in Fig. 7.27.
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Figure 7.23: Task 1: Reorientation, SBP: In step (1), the user demonstrated a pick and place
action s1. In step (2), the user extended the SP with a second action s2, in which
the object was rotated by 90◦ before being placed in the target location. During
the execution of the nominal solution s1, the rotated object in the start location
caused an anomaly that triggered a transition to the alternative solution. The
bottom row illustrates an example of a failed execution, where the robot decided
on a wrong entry point of the alternative and skipped the reorientation part of s2.

Figure 7.24: Task 1: Reorientation, CIP and UIP: In step (1), the user demonstrated a pick
and place action s1. Step (2) shows the updated graph after the first execution,
where an anomaly led to the insertion of a decision state (DS) and split s1 into
s1A and s1B . The DS was created by the anomaly detection algorithm in CIP
and by the user manually in UIP. In step (3), the user added a new action s2 that
accounted for the anomaly and properly rotated the object before placing it.
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(a) CIP: Autonomous anomaly detection
when grasping object.

(b) UIP: Example for an incorrect user-
triggered anomaly before grasping
object.

Figure 7.25: Correct (a) and wrong (b) robot configuration to provide an alternative action for
solving a new situation. Due to the user’s influence on the anomaly detection, a
configuration in which the robot can’t sense the anomaly is more likely with UIP.

Figure 7.26: Task 2: Contact-based Sorting, SBP: The user successively demonstrated two pick
and place actions in step (1) and (2). In demonstration of action s2, the object is
placed in target location II, if target location I is occupied by another object. The
bottom row shows the execution of the nominal solution s1, where an unexpected
contact force triggered a transition to s2 while approaching target location I. The
robot interpolated to the entry state of the alternative solution and placed the
object in location II.
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Figure 7.27: Task 2: Contact-based Sorting, CIP and UIP: Step (1) shows the initial demon-
stration of a pick and place action s1. Step (2) shows the updated graph after the
first execution where an anomaly led to the insertion of a decision state (DS) and
splitting of s1 into s1A and s1B . The DS was created by the anomaly detection
algorithm in CIP and by the user manually in UIP. In step (3), the user added a
new action s2 that recovers from the anomaly.

7.4.5 Objective Results

The compared methods were evaluated using objective performance data and subjec-
tive user feedback from the post-experimental questionnaires and the interview. Fur-
thermore, the experimental hypotheses are evaluated accordingly. The objective data
analysis examines successful completions and the decision state insertion.

Successful Completions The experimenter observed each task execution to determine
if it reached its task goals successfully, as described in the experimental task description.
This led to the success rate of executions for each method shown in Fig. 7.31. Cochran’s
Q test indicated significant differences between the conditions for task 1 (p < .001) and
task 2 (p < .001). McNemar post-hoc tests revealed significant differences between SBP
and CIP (p < .05) and CIP and UIP (p < .001) for task 1. For task 2, significant
differences could be found for SBP versus UIP (p < .001) as well as CIP versus UIP (p
< .001).
H1.1 does not hold for task 1 (✘) but is true for task 2 (✔), meaning that there are

significantly more successful task completions by using the collaborative programming
scheme of CIP compared to the collection of demonstrations in a batch as used in SBP.
This effect could be explained by the importance of proper timing in task 1 (Reorien-
tation), where it was critical for SBP to find the precise entry point in the alternative
solution, which could lead to failed grasps and an unsuccessful task outcome. In task 2,
this timing issue was less critical as the recovery behavior did not grasp the object again,
but just executed an action with a different trajectory while the gripper remained closed.

140



7.4 User Study for Approach Comparison
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1 2

1

2

(a) Task 1: Reorientation: At time step (1), the robot detected an unexpected griper opening that
triggered the switching to an alternative action. The robot chose a wrong entry time step in the
alternative action, thus skipping the reorientation part, which caused the task execution to fail (2).

1 2

1

2

(b) Task 2: Contact-based Sorting: When trying to place the object in the occupied target location I,
the robot sensed an unexpected force in the z-direction (1) that triggered switching to an alternative
action. The robot transitioned to a correct entry time step in the alternative action, adjusting the
end-effector’s y-position (2) before it successfully placed the object in target location II.
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CIP

1 2
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(a) Task 1: Reorientation: When grasping the object, the robot decided for the subsequent action s2
in the decision state (1) based on the measured gripper finger distance. Using action s2, the robot
rotated the object before successfully placing it in the goal location (2).

1 2
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(b) Task 2: Contact-based Sorting: When trying to place the object in the occupied target location I,
the robot sensed a contact force in z-direction in the decision state (1) and decided for the subsequent
action s2. With action s2, the robot adjusted the end-effector’s y-position (2) before it successfully
placed the object in target location II.
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UIP
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(a) Task 1: Reorientation: In the decision state (1), the next action was chosen before grasping the
object, at a time step in which the robot did not interact with the environment and thus could not
sense a difference between action s1B and s2. The robot selected the unsuited action s1B in this
situation, which led to an unsuccessful task execution (2).

21

1

2

(b) Task 2: Contact-based Sorting: In the decision state (1), the next action was chosen before the object
in target location I could be detected by a contact force in the z-direction. The robot selected the
unsuited action s1B for this situation and tried to place the object in the occupied target location
(2), thus causing an unsuccessful task execution.

Figure 7.30: Exemplary executions from the user study experiments.
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Figure 7.31: Successful completion of the different tasks for all three methods in percent.*, p
< .05; **, p < .01; ***, p < .001.

H1.2 holds for both tasks (✔) with significantly more successful task completions by
using the autonomous anomaly detection of CIP in favor of a manual anomaly detection
in UIP. Due to this discrepancy in the success rates, it was examined where exactly the
decision states were inserted in these approaches.

Decision State Insertion This analysis only concerns CIP and UIP, which deal with
decision states. The time step where the anomaly is detected by either human (in UIP)
or robot (as in CIP) defines where the decision state is inserted into the task graph.
This insertion is a critical operation as it determines when and where to switch to the
appropriate action from the task graph during execution. The ”when” is considered less
critical since a task can be fulfilled at a wide range of speeds, and the pace of actions
might differ throughout the task execution. Therefore, the ”where” is considered of
higher importance since the end-effector position has 1) the main sensing capabilities
caused by interactions with the environment, and 2) has a major influence on causing
forces and altering the environment. The end-effector position at the decision state is
called decision state position.

A ground truth had to be defined for each task to analyze the distance between the
decision state position and an optimal end-effector position. First, all decision state
positions among all users were extracted for each task, considering only successful task
executions of both CIP and UIP. Next, the mean positions were computed for each
task, which are seen as near-optimal solutions. Finally, the distance dEE,C between each
decision state position of the overall amount of trials and the ground truth was computed,
shown as green marks in Fig. 7.32. With CIP (Fig. 7.32(a) and (c)), the automatically
identified decision states are densely distributed around the ground truth while with
UIP (Fig. 7.32(b) and (c)), the manually triggered decision states are distributed with
a larger spread compared to the ground truth. These errors may lead to decision states
that are not physically grounded because the targeted sensor signal is not present in that
state. An exemplary scenario is when the user manually triggers a decision state that
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Figure 7.32: Each plot shows the probability density (blue curve) for the computed distances
between decision state position and ground truth. These distances are marked by
the samples on the x-axis (green ticks). The left column displays the automati-
cally detected decision states by CIP, while the right column shows the manually
triggered decision states by UIP. Automatically detected states (left column) lie
closer to the ground truth.

should decide about the weight of an object before the robot actually grasps it, which
makes it impossible to sense such property.

7.4.6 Subjective Results

QUESI Ratings Fig. 7.33 reports the intuitiveness of the compared methods. Users
rated the intuitive use of SBP best, followed by CIP, except for “perceived achievement
of goals,” where CIP reached the highest score. UIP was rated worst for all scales. A
repeated measures ANOVA showed that statistically significant differences occurred for
the subscales “Subjective Mental Workload” (F(1.37, 27.39) = 5.36; p < .05), “Perceived
Effort of Learning” (F(1.38, 27.67) = 5.39; p < .05) and “Familiarity” (F(2, 40) = 4.09;
p < .05). Post-hoc comparisons showed that SBP scored higher for those items than
UIP (“Subjective Mental Workload”: p < .001; “Perceived Effort of Learning”: p < .05;
“Familiarity”: p < .05) (see Fig. 7.33).

Workload Fig. 7.34 reports the NASA-TLX scores. A significant ANOVA main effect
has been found (F(2, 40) = 4.30; p < .05). Post-hoc comparisons identified a significant
lower workload for SBP (M = 4.48; SD = 2.21) compared to UIP (M = 5.82; SD =
2.79; p < .05). No significant difference was evident comparing CIP (M = 4.81; SD =
2.29) to any other method. H3.1 suggests that the programming workload is reduced
by CIP in comparison with SBP and H3.2 suggests the same effect for the comparison
of CIP with UIP. Both hypotheses were rejected. Instead, only a significant difference
between SBP and UIP was found. That SBP shows the smallest workload rating could
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Figure 7.33: Scores for QUESI (error bars indicate 95% confidence intervals).*, p < .05; **, p
< .01; ***, p < .001.

Figure 7.34: NASA-TLX workload
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Figure 7.35: Scores for overall evaluation. p < .05; **, p < .01; ***, p < .001.

be explained by a minimum of required human-robot interactions since all knowledge is
transferred sequentially in the teaching phase before the robot executes the task.

Overall Evaluation Fig. 7.35 shows the user ratings for intuitiveness and efficiency that
are explained in the following. Intuitiveness of the method (with the query shown to the
user: “The method was easy to use and intuitive”). CIP (M = 6.29; SD = 1.35) and
SBP (M = 6.00; SD = 1.10) were more intuitive than UIP (M = 4.95; SD = 1.69).
This is supported by a significant ANOVA main effect (F(2, 40) = 4.89; p < .05), where
CIP and UIP significantly differ (p < .05). Conventional level of significance for the
difference between SBP and UIP was not reached (p = .053). H2.1 that suggests a
higher intuitiveness of CIP compared to SBP in programming a task is supported by the
overall QUESI ratings but without statistically significant effect (Fig. 7.33 very left). In
contrast, H2.1 holds for the comparison of CIP with UIP (✔) and shows a significantly
higher intuitiveness in programming a task.
Efficiency of the method (with the query shown to the user: “I could solve the given

tasks efficiently with the method”). Subjects rated CIP (M = 6.43; SD = 0.98) as most
efficient, followed by SBP (M = 6.24; SD = 1.09). UIP (M = 5.52; SD = .47) was slightly
less efficient. However, this is not supported by a significant ANOVA effect.

7.4.7 Discussion

Objective Data The results from the number of successful completions (Fig. 7.31)
show that programs created with SBP and CIP were able to solve both experimental
tasks with relatively high success rates. In contrast, UIP failed in the majority of
cases in both tasks. Due to the different abilities of the user and the robot to perceive
the environment (e.g., vision), UIP cannot guarantee that the robot will be able to
measure abnormal values when the user identifies a new situation and demonstrates
an alternative behavior. As shown in Fig. 7.25b, many subjects did not wait before
triggering a new decision state until the robot touched the environment and sensed the
transition condition for the second sub-task. When programming the reorientation task,
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13 participants demonstrated a new action before the robot closed the gripper to grasp
the turned object. For the contact-based sorting task, even 16 subjects did not wait
until the robot could detect an object in the target location. With CIP, however, a
deviation in sensor values is a requirement for detecting new situations. Thereby, a
measurable difference between the programmed transition conditions for every action of
a decision state can be guaranteed. Consequently, it leads to a successful transition to
the appropriate successor action when reproducing the situation because the measured
sensor values reflect a programmed condition for action transitioning.

With SBP, a transition between actions is triggered when an anomaly is detected
during the task execution. The time step of an action with the closest sensor values to the
anomaly state is chosen as an entry point to continue the task. Since all time steps of all
actions are potential candidates for the entry point, the approach is prone to perceptual
aliasing, which causes transitions to wrong actions or entry points. Furthermore, the
interpolation to the entry point does not guarantee a collision-free trajectory. In CIP,
a transition between actions only happens in decision states. Therefore, it limits the
number of possible successor actions to the intended ones and avoids perceptual aliasing
by avoiding arbitrary transitions. Consequently, this guarantees a successful transition
between actions when facing known situations.

Subjective Data Analysis of the questionnaires and the responses in the interviews led
to the conclusion that SBP is an easily usable and intuitive framework for programming
apriori known tasks and conditions. Compared to SBP, CIP has the advantage that
overlapping parts of actions can be reused between different scenarios, and complex
tasks can be incrementally generated. For tasks with several different decisions and
actions, it is difficult for the user to predict all possible scenarios and demonstrate
the corresponding behavior before execution. Hence, it can be argued that for more
complex tasks, the advantages of CIP can be fully exploited since the user does not have
to anticipate new situations but can demonstrate new actions on demand. Furthermore,
the combined teaching and execution mode of CIP allows the users to instantly verify
the result of their demonstrations.

Analyzing the NASA-TLX sub-categories reveals that CIP reduces the user’s mental
workload when programming a task, compared to UIP. CIP reached a score of 6.2 in
this sub-category, compared to 8.5 for UIP. These outcomes match with the results
from the guided interviews, where 19 of 21 participants mentioned as advantages of CIP
that the robot autonomously detects new situations and that the user does not have
to pay constant attention. The negative aspects for UIP, related to an increased need
for attention and mental demand, were mentioned 17 times. The overall evaluation of
the methods confirmed the increased intuitiveness of CIP over UIP. As mentioned 11
times in the interviews, deciding for the right moment to stop the task execution of UIP
to add a new action is not intuitive for the user. This decision would require a deeper
understanding of the principle behind the method. Fig. 7.25 shows an example where
the robot automatically stopped the task execution when it sensed an anomaly. This

148



7.4 User Study for Approach Comparison

intuitiveness efficiency
−2.0

−1.5

−1.0

−0.5

0.0

0.5

sc
or

e
sh

if
t

-0.60

-0.00

-0.40

-0.80

0.20

-1.80

SBP CIP UIP

Figure 7.36: Shift of intuitiveness and efficiency scores before and after users have seen the
robot’s execution. A negative value means that users have downgraded their
ratings on average compared to their first ratings.

automated behavior outperformed the human in most cases, who stopped the robot too
early before it could sense the anomaly in the task environment.

7.4.8 Post-Experiment User Ratings

The robot’s execution success was evaluated in the absence of the 21 users. Here, five
of the user study subjects were consulted again after finishing their participation in the
study. They were asked to rate again the intuitiveness and efficiency of each program-
ming method. The ratings of these five users were also collected before they saw the
execution. Hence, a comparison was made, analyzing the shift in intuitiveness and ef-
ficiency scores from before and after users have seen the robot’s execution (Fig. 7.36).
For both SBP and UIP, the intuitiveness and efficiency dropped noticeably, while for
CIP, the intuitiveness remained the same (no change), and the efficiency increased by
0.2 points on the Likert-type scale. These results support the assumption that due to the
bidirectional information flow between human and robot in CIP, the participants better
understood how the robot changed its task knowledge compared to the other methods.

This study concludes that CIP is more transparent to the user regarding what the
system has learned and what the robot is expected to do in the task execution. Related
to that, an objective metric to evaluate the teacher’s efficiency in robot learning is pro-
posed in [188], given a specific feedback channel, e.g., by observing the robot’s execution
performance. From the objective success rate, it is concluded that CIP performed best
given the experimental tasks. However, in PbD, many subjective circumstances caused
by the human in the loop influenced the quality of interaction between human and robot.
Hence, analyzing the effect of different task representations used as feedback channels
in terms of teaching efficiency could aid developers in creating better user interfaces.
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7.5 Conclusion

The problem of task decision programming concerns two scenarios. First, the program-
ming of conditional tasks, for instance to allow sorting of objects by their object proper-
ties. Second, the programming of recovery behaviors, for instance to re-grasp and object
in case of a task fault. Therefore, this chapter proposes two different methods, which
are termed multiple solutions and collaborative programming. Both methods share an
anomaly detection mechanism that allows the robot to switch to alternative actions that
still solve the task. Further, both methods allow a user to program task decisions purely
by demonstrations without the need to provide additional knowledge. In both cases, the
complete behavior is transferred by kinesthetic teaching using the robot’s proprioceptive
capabilities as input modalities.

The main differences of the methods are the following. Multiple solutions work in two
stages. First, the user provides a batch of demonstrations that accounts for possible task
variants. Second, the robot executes the task and is able to switch to alternative solutions
at arbitrary states once it detects an anomaly. While this might increase the flexibility
to switch whenever desired, it could also lead to invalid switching conditions where the
robot might execute unexpected paths. Therefore, the allowed region of switching could
be manually limited.

Collaborative programming works with intertwined teaching and execution stages. The
user starts with an initial set of demonstrations. Once the robot executes the task and
detects and anomaly, the user can incrementally add knowledge to the system to account
for further task variants. The automatic anomaly detection reduces the user’s workload
by just querying necessary information and guarantees a functioning task model, since
transitions to other actions are only allowed within a decision state. This enables the
user to scale the complexity of a task over time without demonstrating the whole task
repeatedly.

A user study compared both methods also with a baseline method and examines their
advantages and disadvantages in two different programming tasks. It also analyzes how
users performed in reaching the task goals with each method. The study suggests that
both methods are intuitively usable by non-experts that have only a minor experience
in robotics. While multiple solutions provide more flexibility due to the possibility
of switching at arbitrary states, it requires the user to foresee possible task variants.
Instead, collaborative programming actively queries the user to add knowledge in case of
unseen task variants. However, this methods constrains the system to only switch at so
called decision states.

The conducted experiments stressed on the discrepancies in human and robot percep-
tion, since humans use vision but not every robotic system does so. Future approaches
should incorporate a vision system as an additional sensor source given the fact that
some anomalies can be observed visually before object interaction and some cannot,
such as interaction forces. Beside that, the options for program flow control elements
could be extended. So far, only branching of the execution was enabled by so-called de-
cision states. Desirable would be also to merge execution flows at later stages or to allow
creation of loop closures. Adding such flow control elements could be achieved manually
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or automatically by the system. Exploitation of extended flow control elements could
be especially helpful to extend the options for recovery behaviors.
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8 Unified Framework for Skill-based and
Demonstration-based Programming

This framework allows end-users to intuitively setup new robotic tasks via PbD, em-
ploying skill recognition, automatic skill parameterization and task execution. PbD is
combined with offline, skill-based programming via a GUI to propose a unified task
definition process.

The chapter includes the content of the following publication [212]:

• T. Eiband, F. Lay, K. Nottensteiner, and D. Lee, “Unifying Skill-Based Program-
ming and Programming by Demonstration through Ontologies,” in Procedia Com-
puter Science, 2023, p. accepted.

The author of this thesis integrated the task definition approaches into a single framework
and developed the skill recognition, parameterization and execution pipeline. F. Lay
implemented the GUI for manual task definition by offline, skill-based programming. K.
Nottensteiner advised in the framework design and revised the article. D. Lee advised
in developing research methodologies and analyzing the results and revised the article.

The chapter is outlined as follows. Section 8.1 describes the overall framework, Sec. 8.2
states experimental uses cases, and Sec.8.3 concludes the findings.

8.1 Framework

Modern robotic production sites require fast reconfiguration towards new products to
deal with uncertain market conditions or problems in the supply chain. A key enabler for
fast reconfiguration of a robotic workcell is that it must be intuitively programmable by
the end-user. There are two main programming paradigms considered in this chapter.
The first method is termed OSP, which is the method of arranging skills as building
blocks of a robot program in a GUI. This method can be also used without blocking a
robotic system that is currently performing a production task. The other programming
method is known as PbD, which enables a fast and intuitive definition of new robot
behaviors whenever the robotic system is directly accessibly and not currently involved
in a production task.

Furthermore, this framework is connected to an ontology that represents the concep-
tual knowledge and the world model, based on the Factory of the Future (FoF) ontology
developed for the automation and manufacturing domain [14]. The highlights of the
proposed framework are
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8 Unified Framework for Skill-based and Demonstration-based Programming

i) intuitive programming by combining (PbD) with OSP;

ii) automatic skill parameterization by combining demonstrated features with semantic
knowledge represented by the ontology; and

iii) integration of skill recognition, automatic parameterization, and execution in a sin-
gle framework.

Despite the desire for a high level of autonomy that would minimize manual pro-
gramming efforts, achieving such autonomy is often challenging due to uncertainties and
unforeseen edge cases that arise in new tasks. [105]. Instead of achieving a high level
of autonomy, the presented framework in this chapter tries to reuse exiting knowledge
about the concepts in the world in combination with information provided by the end-
user either in the form of manual programming or via programming by demonstration.
It unifies the concepts of PbD and OSP with the help of an ontological knowledge base,
such that the end-user only needs to take care of missing task knowledge and where
the system exploits existing knowledge wherever possible. It is aimed that an end-user
would use OSP for well-known, easy to describe parts of a tasks and PbD for parts that
are more intuitive to be demonstrated and difficult to model.
The method of OSP allows the user to manually add skills in the task definition

process with the help of the so-called Human Factory Interface (HFI) [14, 213]. This
GUI visualizes an editor for task definition and offers a library of robot skills, that each
can be manually parameterized according to the task needs. The PbD method in this
framework lets the end-user intuitively set up new robotic tasks by demonstration, using
skill recognition, automatic skill parameterization and task execution as a sequence of
parameterized skills. The process of automatic skill parameterization involves extracting
parameter values from data instead of manually specifying them. This approach requires
only a single demonstration to achieve the following two objectives: 1) defining the skill
type, and 2) automatically parameterizing it. This is ultimately achieved by connecting
this framework to an ontological knowledge base, which represents conceptual knowledge
of the system as well as resembles a world model, which represents geometric information
about the environment. The underlying ontology was developed for the automation and
manufacturing domain and is called FoF, where a detailed description can be found
in [14].
Figure 8.1 shows an overview about the unified programming framework. It allows to

define a new task either by PbD(blue enclosed area) with the demonstration data X or
graphically by OSP (green enclosed area) with the manually selected actions A. The
output of both programming methods is fed to the execution stage, which runs the actual
skill instances on the robotic hardware. These skill instances command the robot via
the associated robot hardware interface, manipulate the physical world, and update the
representations of the objects in the knowledge base. The motion planner module can be
queried from each skill instance and provides collision free paths in the environment of
the workcell. It is interfaced with both the execution stage and a central knowledge base,
depicted as ontology. The knowledge base serves geometric data about the environment,
and conceptual data, such as the relationship between knowledge entities and their
properties.
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Figure 8.1: Unified programming framework. Solid lines show the process flow, dashed lines
show the data exchange with the ontological knowledge base (ontology).

The connection to the ontological knowledge base has two major advantages when
combined to the PbD method. First, the skill recognition process can make use of
a set of known skills and can query semantic data during the recognition phase if a
skill is valid in the current context. An example is that a place skill is only a valid
candidate if an object is currently present in the gripper. Second, it also simplifies the
skill parameterization process because knowledge about the environment exists apart
from the human demonstration data. For instance, the skill parameterization process
can exploit information about the arrangement of objects in a workcell, shaping the
motion that a specific skill should perform in this situation.

8.1.1 Skill Recognition and Parameterization

The blue-bordered area in Fig. 8.1 refers to the programming mode of PbD. The skill
recognition method is based on an earlier work [154], which mainly considers skills with
physical contact, such as touch, press, or insert. Later, it was extended to manipulation
skills such as pick, place, or move [184]. The skill recognition stage accepts a time series
X from a human demonstration and outputs the tuple (s,X) with the predicted skill s
that is displayed to the user. Then, the parameterization stage automatically derives a
parameter set θ using the mapping function θ = f(X) and delivers the tuple (s,θ) to
the execution stage.

8.1.2 Offline, Skill-based Programming

The green-bordered area in Fig. 8.1 refers to the programming mode of OSP and uses
the HFI as programming interface. The user actions are referred to as A. The first
user action is to select a predefined skill from a skill library. The second user action is
to define the parameter values of the skill. Here, the HFI guides the user through the
parameterization process, displaying only parameter values that are valid in the current
world state. For instance, the user can only select objects that are available in the
current workcell and are not yet bound as a resource elsewhere. Analogous to PbD, the
output of the OSP stage is a tuple (s,θ) that is passed to the execution stage.
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8.1.3 Task Execution

The execution stage performs two key tasks: running a skill and configuring its un-
derlying primitives dynamically at runtime. A skill consists of reusable building blocks
called primitives, denoted as < ... >, which represent atomic functions of the robot.
Some examples of such primitives are < planned motion >, < open gripper >, and
< cartesian path >. This work assumes a sequential arrangement of primitives within a
skill, although other structures like decision trees or state machines are possible. During
the execution phase of a skill, each primitive is configured based on the skill’s extracted
parameters θ. A mapping function, denoted as θp = fp(θ), determines the configuration
of a primitive p in [1..P ]. Suppose that there exists a < planned motion > primitive that
represents an approach path for an insertion skill. Analyzing force and torque values
and applying a threshold allows to identify the first contact point on the target object.
The endpoint of the approach path can then be extracted relative to the object, allowing
to plan future motions towards different target object locations.

Skill parameters are specific to a particular task and remain constant for the same
task goals, while capturing the overall requirements and objectives of the skill. On the
other hand, primitive parameters are context-specific and can change depending on the
specific location or properties of each object involved in the task. These parameters
are adjusted to the current world state and might not be known before task execution.
During execution, a skill orchestrates its underlying primitives and the controllers they
implement. This requires each primitive to generate the control input x̂(t) at each
time step t. The control input guides the actions and behavior of the robot during the
execution of the skill, ensuring that the desired task goals are achieved.

8.1.4 Ontological Knowledge Base

The development of robotic domain ontologies has made significant progress in repre-
senting the abilities and skills of robotic agents in the manufacturing domain, as well
as concepts related to autonomy. These ontologies serve as structured, human read-
able notations that enable the modeling and sharing of knowledge in the robotics do-
main. One contribution in this area is the IEEE 1872-2015 standard, which provides a
core ontology that defines the fundamental concepts, relations, and axioms of robotics
and automation most general concepts, relations, and axioms of robotics and automa-
tion [214,215]. It serves as a foundation for building more specialized ontologies, like the
FoF ontology [14]. It extends the already standardized concepts by object manipulation
properties relevant to assembly processes. This includes for instance the modeling of
pick poses, approach and departure paths, and entities like Parameter, Skill, Task,

Place, and StorageDevice. Each entity is uniquely addressed by an Internationalized
Resource Identifier (IRI). This ensures that the information captured in the ontologies
can be accessed publicly and enables the sharing of conceptual knowledge among the
robotics community and among robotic systems.

Every physical object, referred to as an Artifact, is associated with a transformation
relative to a spatial parent. For example, an object located in a StorageDevice has a
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(a) (b)

Figure 8.2: Graphical representations of ontological knowledge. (a) shows entities (circles) and
their properties (lines) that are modeled in the ontology. The example shows a phys-
ical object marked as blue dot (Artifact) of a specific type (→idealizedByDesign
→Design) and how it is geometrically (→spatialParent →Storage) and semanti-
cally (→causes →Occupation →ofPlace →Place) referenced in the ontology. (b)
Visualization of the variable workstation.

transformation chain that leads over a specific Place to the frame of the storage. This
concept allows to compute transformation chains between any entities with a geometrical
context. A Design represents the specific type of an object and exists as a single instance.
It has assigned the property of GraspSet, which specifies at least one grasp pose, as well
as an approach and departure path, all expressed relative to the object. This allows to
define this information only once and to be shared among all Artifacts of that Design.

All objects of the same Design that reside in the same StorageDevice can seamlessly
be queried, which is later exploited in Sec. 8.2.1 to find a pattern in the arrangement
of objects. A further example is the placement of objects on a predefined Place, which
can make use of modeled approach paths and create a so-called Occupation on the
respective Place. Since the relative transformation between Design and Place is known,
autonomous placement of objects becomes possible. This allows also to reuse previously
learned behaviors from PbD by transforming them to new target frames of a new Place,
as exploited in Sec. 8.2.2. Figure 8.2a shows an excerpt of the modeled knowledge.
Figure 8.2b shows the geometric world representation of a variable workstation.

8.2 Experimental Use Cases

All experimental scenarios were implemented and tested on a DLR SARA lightweight
robot [216], mounted on a variable workstation of the flexible production network, as
shown in [14,213].

8.2.1 Object Identification by Touch

In a shared workspace, either humans or robots can manipulate objects, resulting in
changes to the physical world. The robot utilizes its skills to update not only the
physical state but also the modeled world state, which is represented in the knowledge
base. On the other hand, humans may only modify the physical state of objects without
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necessarily affecting their modeled world state, as it is often difficult for a system to
track all the changes introduced by human actions.

There are several reasons why there can be a mismatch between the physical state
and the modeled state of the world. These include:

1. Shared assembly processes, where both users and robots manipulate parts, where
especially human actions are hard to track by the system

2. Manual removal of objects due to quality checks or sorting out defective parts.

3. Incompletely filled storage arrangements, as depicted in Figure 8.3c, may be ex-
pected to be completely filled by the system, but are not in reality.

To address these issues, a touch skill is employed in this use-case. This skill allows the
system to haptically explore the environment until it locates an object. It is specifically
used to identify the next object in an object storage that does not match the modeled
state due to the aforementioned reasons.

Implementation The implementation of the touch skill is based on the concept intro-
duced in [42]. The objective is to identify a linear exploration path that locates an object
within the workspace. In the original work [42], the skill acquired all necessary informa-
tion through multiple user demonstrations. In contrast, this implementation also exploits
the information stored in the ontology to infer the exploration path. Consequently, the
system can fully parameterize the skill based on just a single demonstration, resulting in
reduced teaching effort. Additionally, the utilization of the ontological knowledge base
enables collision-free movements and improves the inference about the exploration path
because the expected object locations are already modeled in the ontology.

In more detail, the internal parameterization of the skill constructs multiple prim-
itives based on the initial demonstration (Fig. 8.3b). The first primitive, denoted as
< cartesian path >, approaches the designated exploration region. The second prim-
itive, denoted as < cartesian move >, locates the next object by a linear exploration
motion. This linear motion is determined by querying all potential storage locations
from a storage container. Next, a singular value decomposition (SVD) is performed on
the storage positions to identify the best-fitting line through these positions. Notably,
the eigenvector as shown in Fig. 8.3b might be anti-parallel to the intended exploration
direction, depending on the outcome of the SVD. The identified line is then translated to
intersect the contact point observed in the demonstration, resulting in the actual explo-
ration path. A representation of the parameterization can be found in the experimental
results (Fig. 8.3b).

The skill execution process arranges the previously generated primitives in sequential
order, and the transition from one primitive to the next is determined by predefined
conditions. While executing the exploration path, a crucial transition condition is the
detection of the contact between tool and object. Upon detecting this contact, the
system transitions to the subsequent primitive, which is designed to depart from the
contact point.
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Experiment The procedure is as follows:

1. User creates a new empty task via the HFI (the whole task is shown in Fig. 8.3d).

2. User manually adds an equip device skill with parameter: tool: robotiq-140,
attaching it as tool.

3. User provides demonstration of touching an object in the workspace (Fig. 8.3a and
8.3c).

4. Robot automatically recognizes a touch skill and adds it to the skill sequence

5. User manually adds a pick skill with parameter: object: housing, defining the
type of object to be picked.

6. User starts the fully defined task.

7. Robot executes task with identification of new object location, and picks the next
object of same type (Fig. 8.4).

The experiment shows that the user can demonstrate one part of the task that is
automatically recognized as touch skill by the system. The user then proceeds to define
the task further by manually adding the pick skill. As the pick skill is already imple-
mented and can function independently, it merely needs to be adjusted with parameters
without requiring a user demonstration. Hence, the user demonstrates only those parts
of the task where the knowledge base lacks information or where the user prefers the
programming mode of PbD rather than OSP.

8.2.2 Object Insertion

Implementation The insert skill is used to assemble an object by inserting it into
the fit of a target object, as it is known for instance from peg in hole tasks. This
implementation uses a time-based motion and force trajectory that is extracted from the
user demonstration. By accessing the knowledge base, the skill can query the coordinate
frame for new target objects, which enables it to adapt and apply the learned strategy
with respect to the target object’s coordinate frames. Hence

The skill parameterization constructs the following four primitives from the demon-
stration data (Fig. 8.5b). The initial primitive, denoted as ”< planned motion >”, is
constructed by extracting the first physical contact point from the demonstration until
the object makes contact with the environment. This contact point serves as the target
frame for motion planning. The second primitive, denoted as ”< motion force path >”,
is shaped based on the demonstration and replicates the demonstrated trajectory and
wrench. It uses a Cartesian impedance controller with a wrench overlay and pre-
defined stiffness values. The third primitive, denoted as ”< open gripper >”, op-
erates the gripper once the insertion is finished. The fourth primitive, denoted as
”< cartesian move >”, departs linearly from the insertion location in opposite direction
of the insertion direction. During the skill execution, these primitives are sequenced in
sequential order, while transitioning from one to the next without additional constraints.
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(a) Demonstration data.
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(b) Derived parameters and primitives de-
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Figure 8.3: Demonstration of touching an object in a storage.
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contact point

Figure 8.4: Sequenced execution of touch and pick.
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Experiment The procedure is as follows:

1. User creates a new empty task via the HFI (the whole task is shown in Fig. 8.5d).

2. User manually adds an equip device skill with parameter: tool: robotiq-140,
attaching it as tool.

3. User manually adds a pick skill with parameter: object: motor, defining the
type of object to be picked.

4. User provides demonstration of inserting a motor into the housing (Fig. 8.5a and
8.5c).

5. Robot automatically recognizes an insert skill and adds it to the skill sequence.

6. User starts the fully defined task.

7. Robot executes pick skill and picks motor.

8. Robot executes insert skill and inserts motor into housing.

9. Robot executes task of inserting the motor into a new target housing by reusing
the demonstrated strategy (Fig. 8.6).

In the same manner as in the previous experiment, users have the option to demon-
strate specific phases of the task that are recognized as skills. Alternatively, they can
manually define parts of the task by adding skills to the HFI. The advantage of this
combination is that only the parts of the task are demonstrated where the knowledge
base lacks information or when the user favors the programming mode of PbD over OSP
due to personal preferences.

8.3 Conclusion

The presented framework combines a manual, skill-based programming with PbD. The
PbD programming mode integrates the full pipeline encompassing user demonstration,
skill recognition, skill parameterization, and skill execution. A first advantage of this
framework is that the user is relieved from the burden of knowing all individual skills
or searching through an extensive collection of skills. Instead, task phases are simply
demonstrated and a suitable skill is suggested by the system. This suggests that novice
users should familiarize quickly with such as system without requiring prior knowledge
about the systems capabilities that is implemented in the collection of skills. Subse-
quently, a recognized skill can be automatically parameterized using the same demon-
stration data, without requiring further manual input in comparison to OSP. The pro-
gramming modes of PbD and OSP can be combined, providing flexibility to the end-user
to select a suitable programming method based on personal preferences.
In this chapter, it has been shown that the skill recognition and skill parameterization

approach can be enhanced with ontological knowledge, which reduces additional demon-
stration effort. In comparison to approaches that exploit multiple demonstration trials
to cover distributions about object locations as used in [42], the demonstration effort
could be reduced to a single trial. This is validated in the first experiment, where the
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(a) Demonstration data.
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Figure 8.5: Demonstration of touching an object in a storage.
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Figure 8.6: Sequenced execution of pick and insert.
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task is represented by a sequence of a touch and a pick skill. First, a touch skill is recog-
nized from demonstration, whose parameters for its exploration path are automatically
extracted from both the information contained in the demonstration and ontology. The
knowledge that is embedded in the touch skill implementation is exploited during exe-
cution by halting the robot at the explored contact point and by updating the inferred
object position. Second, a pick skill is added manually via the user interface, which
accounts for the extracted object location of the prior touch skill during execution.
This chapter also shows that LfD can be used as input for a skill parameterization

technique, which yields optimized, adaptable robot behaviors in the form of previously
implemented skills. The second experiment highlights this feature by considering a task
that sequences a pick skill and an insert skill. First, a pick skill is manually added to
the task via the user interface. Second, a human demonstration leads to the recognition
of an insert skill, which is parameterized automatically from the demonstration. It
uses a planned motion phase to approach the insertion and an impedance controlled,
force-superimposed insertion phase during execution.

The two distinct programming modes, PbD and OSP, exhibit fundamental differences
in their interaction behavior between human and robot. On the one hand, PbD heavily
relies on haptic feedback while the user can directly check the feasibility of the guided
motions. However, the user might be negatively affected by the robot dynamics while
the arm is manually guided. On the other hand, OSP primarily relies on visual feedback.
However, the user cannot perceive the physical correspondence between robot and envi-
ronment and needs to rely on the representations that are displayed on the screen. Both
techniques come with technical advantages and drawbacks, while it is a clear advantage
that the user has the superiority to decide about which programming mode shall be
employed. This empowers end-users to select the interaction mode that best matches
with their personal skills and allows to efficiently solve the respective part of the task.
The main subjective factors that determine the selection of a programming mode are

seen in 1) the detail of modeling of the robotic system and its surroundings; 2) the
user-specific preference and competence over the teaching modality; and 3) the task-
specific requirements that allow each teaching modality. Further studies should analyze
these factors in depth to assess the future importance of PbD and LfD beside other
programming modes.

165





9 Conclusion

This thesis focuses on the challenges of robot programming, which is typically limited to
experts due to its complexity. To address this, several intuitive programming methods
are proposed that work with human demonstrations as input. One path is to first identify
required skills, such that they can be automatically recognized from human demonstra-
tion data. These skills can than be automatically parameterized and executed without
writing a single line of code. Another path allows to program task decisions and recov-
ery behaviors by learning from multiple demonstrations. Experiments and user studies
validate the proposed methods, showing that the proposed skills are interpretable by
both humans and robots and can be recognized in real-time during kinesthetic teaching.
Finally, a unified framework combines automatic skill recognition and parameterization
with existing manual programming methods, showing that the proposed method can be
well integrated in realistic setups.

9.1 Skill Identification

Identification of suitable skills has been described in Chapter 4 and highlights the im-
portance of pre-defined, human understandable skills, that can be at the same time
recognized by a technical system. On the one hand, such skills has been selected from
daily live scenarios, for instance touching different objects, applying force onto an object
by pressing, or sliding over a surface with constant force. On the other hand, such skills
have been employed in robotic scenarios in this thesis. Ideally, each of the identified
skills is a reasonable human action that can be easily understood by different users, and
at the same time, resembles a meaningful robotic behavior that can be recognized by a
robot and be used in a robotic manipulation or assembly task.
The concept of skills allows to embed expert knowledge into each skill, which hides the

implementation details from the end-users. This is beneficial, since the end-user does
not need to deal with the low level functions of the hardware and can build a generic
understanding of what the skill does independent of the hardware. In addition, skills
can be developed hardware independent if they make use of hardware abstraction, for
instance in the form of an implementation layer that uses primitives, which connect the
required functionality of the skill with the hardware itself.
The proposed skills in this work are a comparable small set with respect to all possible

human actions. However, these skills were extracted to be used on a robotic system and
could already fulfill a variety of tasks in the manufacturing domain. The question of
which skills exactly need to be identified and provided to a robot is also of philosophical
nature, since it is arguable how a skill has to be labeled to express its capability, which
capability it should characterize, and how specific or generic such a behavior shall be.
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An example is given with the insert skill, which could either be able to insert all kind of
objects and shapes, or there could be a batch of dedicated skills for different constrained
insertions, such as round-insert, rectangular-insert, or shallow-insert. Of course, inherent
generality and good adaptability is favored by researchers, system designers and end-
users. In reality, a good generalization behavior of a skill is often hard to achieve. This
challenge often forces system designers to develop dedicated skill implementations that
solve only the specific part of a task. Highly specialized skills are, for instance, listed in
a survey about capability-based frameworks [13].

No matter on how specific the intended usage of a new skill definition shall be, the
identification procedure in Sec. 4.1 shall aid future researchers and system designers
to put an eye on how skills shall be labelled legibly such that the system users easily
understand what the system is capable of. Consequently, this increases the explainability
during the programming and execution phase and increases the capability of the system
to explain itself.

9.2 Skill and Skill Sequence Recognition

Once a set of skills has been identified, it can be used in robot programming, termed as
skill-based programming. One paradigm of skill-based programming is to manually ar-
range and parameterize sequences of skills. The paradigm promoted in this work is PbD,
where a novice user either demonstrates individual skills to be recognized (Sec. 4.2), or
demonstrates the whole task, requiring the recognition of a sequence of skills (Chap-
ter 5). This thesis presents the individual recognition of skills from a set of eight contact
skills and the recognition of skill sequences both involving contact skills and manipula-
tion skills such as pick and place. The major aims of skill recognition are to connect
LfD with a comprehensive knowledge representation about what the robot has learned,
the ability to represent and adapt the robot program by the end-user in the form of
understandable building blocks, and the usage of dedicated algorithms during execution
time that are embedded in the skill.

In comparison to the individual recognition of skills, it might appear more intuitive
to demonstrate the whole task at once, leading to the recognition of skills in a sequence.
However, both approaches have their advantages and limitations. Demonstrating a sin-
gle skill is mentally less demanding and the user can fully focus on one or multiple trials
of the same task phase. Additionally, the user has the freedom about what to demon-
strate, what to specify manually, or what to reuse from previous demonstrations. As
a drawback, the user is required to handle a multitude of individual interaction with
the system. This involves for example the triggering of demonstration start and stop
signals, checking and optionally modifying the result of each interaction, and providing
additional information for each skill. Demonstrating the whole task at once results in a
sequence of skills and the construction of a complete task representation. Parameteriza-
tion of individual skills is simplified since they are demonstrated in conjunction, where
the existence of a valid motion path is evident from the demonstration. As a limitation,
the mental demand of the users is increased as the whole task has to be demonstrated
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at once and errors in the demonstration can possibly lead to an unusable skill sequence.
Depending on the underlying framework, the user has to demonstrate the whole task
again. This is encountered in the framework described in Chapter 5, where incorrect
skills can be still corrected afterwards due to the skill-based task representation.

In general, the proposed frameworks focus on the recognition of contact-based skills,
which received less attention than unconstrained manipulation skills. Nevertheless, con-
tact skills deserve the same attention since end-users need to understand what the robot
actually understood from their demonstration and furthermore, the selection of the ap-
propriate robot behavior does not solely rely on the demonstration but rather on the
skill implementation that executes the desired behavior. Due to the supervised learning
paradigm in this work, it is straightforward to label a skill in a comprehensive manner
since the labels are predefined and proven to be understandable, as it has been shown
in the skill identification of Sec. 4.1. In comparison, unsupervised approaches might
generalize better to unseen situations and work without predefined skill types but lack
the ability to express the results in a comprehensive way that user can understand.

9.3 Contact-based Exploration

Contact based exploration can be used to explore the presence or location of objects
in a workspace with the proprioceptive sensors of a robot. Chapter 6 introduces such
approach, namely haptic exploration, which makes use of skill sequence recognition, but
extends this approach by extracting the skill sequence from multiple demonstrations of
the same task. The results showcased that a system can effectively learn an exploration
behavior in multiple directions of the workspace, where only one demonstration per
exploration direction is needed. This results in a behavior where the robot is able to
adapt subsequent skills by means of the explored object locations. An example is that
an object can be picked relative to the location, where it has been explored in a previous
step.

The tackled problem is to identify the position of an object in a bounded area of the
workspace, while ignoring its orientation. This works for task where the environment is
partially structured and the robot has to deal with object arrangements such as piles or
stacks with one or more dimension of arrangements, for instance an array-like structure
storage. The benefits are seen in its robustness, since it can cope with such situations
without employing visual perception. This allows to adapt robot behaviors in occluded
or rough areas, and estimates the state of objects in the workspace up to the precision
of the robot itself, which is likely more precise than a visual estimation. Generally, the
proposed technique could be also used to complement other sensing techniques. For
instance, a system that is equipped with a pan-tilt camera might be bound in observing
one part of the workspace while the robot haptically explores another part of it. One
important thing is that the exploration strategy can be tightly tailored to the application
needs, since the resulting strategy is closely derived from the human demonstration,
which ensures that no unpredictable robot motions will ever occur.
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9 Conclusion

The presented approach deals with multiple demonstrations, namely one demonstra-
tion per exploration direction. Although, this method tries to minimize the number of
teaching interactions with the system, it still requires the user to demonstrate the task
multiple times in a similar manner. On the one hand, it is remarkable that all necessary
information can be extracted by a little number of demonstration without the need to
provide prior knowledge about the task. On the other hand, it might not be a teach-
ing paradigm for end-users that quickly want to achieve their goals and who fear the
increased mental demand. Although there are numerous research works with attempts
to learn from multiple demonstrations, it might be advantageous to combine single task
demonstrations with an option to add further constraints, such as by means of a GUI.

9.4 Task Decision Programming

Two of the limitations of traditional LfD are a limited robustness to uncertainties when
learning from single demonstrations and transfer of decision making behaviors without
providing prior knowledge. Chapter 7 proposes strategies to cope with both of these lim-
itations. First, robustness can be increased by learning from multiple demonstrations,
and second, decision making can be extracted from multiple demonstrations or by mul-
tiple system interactions with the help of an actively learning system. Programming of
decision making behaviors also refers to the problem of recovery behavior programming,
which copes with anomalies during execution in the same manner as online decision
making does, which switches to an alternative execution flow.

In the first approach, presented in Sec. 7.2, the user has to think in advance what is
needed for the task decision to be learned, and then comes up with a batch of demon-
strations that include all eventualities, represented as multiple solutions in the task
representation. The approach in Sec. 7.3 extends this idea and lets the user collabo-
ratively program all required task decisions together with the robot. This is achieved
by a continuous interaction scheme in the context of active learning, where the system
queries information from the user only when it is not confident to solve it alone. The
confidence is derived from multiple demonstrations of the same task phase. Whenever
the confidence bound is violated in an anomaly detection scheme, it leads to either a user
interaction, if no additional knowledge is present in this area, or it triggers an alternative
action that is intended to resolve the faulty state.

A major aim was to reach a highly intuitive teaching scheme for end-users, which
was compared to a baseline method in an exhaustive user study involving 21 subjects.
The presented framework in Sec. 7.3 received the best scores in the subjective user
ratings since it lets the user directly start the programming phase, queries only relevant
information when needed, keeps the mental load low due to the autonomous anomaly
detection, and is able to present the learned task in an understandable graph-based
task representation. Further, it also received the best score in the category of successful
execution, since it avoids problems in the process of decision making by using a structured
knowledge representation, which is implemented as task graph.
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Overall, Chapter 7 has shown that task decisions can be solely programmed by demon-
stration without the need of adding prior knowledge about the task. The only informa-
tion that is needed in Sec. 7.2 is the number of expected task solutions that the algorithm
shall learn. To recall that it is physically and mentally demanding for the user to pro-
vide multiple demonstration, the approach of collaborative programming achieved a good
trade-off between its benefits and drawbacks. On the one hand, it can be already used
as single-shot learning algorithm if no task decisions need to be programmed. On the
other hand, it can be extended by adding further demonstrations at runtime, once an
anomaly has been detected that requires human intervention.

9.5 Unified Framework for Skill-based and
Demonstration-based Programming

It is important to highlight that the proposed methods in this thesis do not only work
in an isolated setup but can also be integrated into a realistic framework in combination
with other task definition methods (Chapter 8). A key enabler for this integration is the
ontological knowledge base that exchanges the information from multiple input sources
using a structured format.

The full integration of the pipeline from user demonstration to skill execution high-
lights the benefits of automatic skill recognition in a realistic scenario. Here, end-users
can simply demonstrate the desired behavior without knowing the entire set of skills. If
applicable, recognized skills can be automatically parameterized from the same demon-
stration data, eliminating the need for additional manual effort. If that is not applicable,
the user can always add missing parameterization or whole skills via a GUI

The experiments have shown that a user can either start with PbD or OSP and
alternate between these teaching modes such that the whole task can be efficiently
programmed and only knowledge that is not yet present in the system is added via PbD.
The ontological knowledge that is already modeled in the system complements the skill
recognition and parameterization methods. It allows to reduce demonstration effort by
providing contextual information that is not contained in the demonstration data itself.
Vice versa, demonstration data is used to extract information for skill parameters that
is not modeled in the ontology. Another advantage of the framework integration is that
a user can also benefit from supportive tools that the framework offers, for instance,
automatic workspace analysis and layout planning [213], or automatic commissioning of
missing parts.

Factors influencing the choice of the teaching modality (PbD or OSP) include the
level of detail in modeling the robotic system and its surroundings, user preferences and
competence, and task-specific requirements. Combining PbD with the proposed skill
recognition approach empowers users to select between two different teaching modalities,
which leverages their personal abilities more effectively.
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9 Conclusion

9.6 Future Research Directions

The identified skills in Chapter 4 shall provide behaviors that solve contact-based tasks.
The focus of the identification procedure was to prove their interpretability and dis-
criminability from the human and robot perspective. A number of limitations of the
conducted study could be addressed with the following recommendations. First, an
analysis could be conducted using the same identification procedure for robot skills of
other domains. Although manipulation skills such as “pick” and “place” are frequently
used, it might not be obvious for a user to term the placement of an object into another
as “place” or as “insert”. Second, the considered skills focus all on contact-based task
but it is not analyzed to which extent they are complete. Therefore, a more exhaustive
study of contact-based tasks, assembly problems, and geometric mating might shed more
light on this topic and lead to a more complete contact skill palette. Third, the analysis
has been made in English language and could consider other languages as well. Fourth,
the same skill identification process could be repeated with pictograms that serve as
graphical skill labels, since it is known that humans are able to quickly familiarize with
visual cues. Instead of a manually conducted user study, a Large Language Model (LLM)
in combination with an image or video captioning network could also extract skill labels
from visual observations. However, it might be hard to quantify the legibility of such
labels without any user study.

The strength of the proposed skill recognition algorithms can be played out when an
intelligent and robust behavior is embedded in each of the recognized skills. The dexterity
of the skill implementations is not in the focus of this work, and the motivation lies in
connecting the recognized skills with existing approaches that the research community
has already developed. If this connection is not made, recent developments are hardly
usable by end-users since they require too much expertise to be deployed in the desired
applications. Although there were tremendous efforts in developing dexterous robot
behaviors, they are seldom deployed in production systems. One reason could be the
researcher’s lack of awareness of how their approaches can be used in systems, that
are actually programmed by end-users with little experience in robotics. Especially
the parameterization of existing approaches from human demonstrations could be a
promising direction, where the user provides the task demonstration, and the approach
extracts automatically the necessary information to parameterize itself. This also follows
the trend to not only derive motor primitives but extracting as much as contextual and
high-level knowledge as possible from the demonstration [217].

This work introduces different teaching modalities and demonstration data sources
but clearly puts the main emphasis on kinesthetic teaching. This is a largely adopted
technique as it simplifies many problems that other data sources such as visual perception
have. For instance does it overcome the correspondence problem by using the same
kinematic embodiment for teaching and execution. Further, it gives immediate and
tangible feedback about the applied forces and the kinematic constraints. Nevertheless,
it is less intuitive than using the own hands for demonstrating a new task [26] because
there is no additional inertia that the human must handle. It is also known that PbD
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has its limitations when it comes to abstract constraints that can hardly be transferred
via demonstrations, such as controller parameters.
Considering LLMs as programming input channel, they could easily process text or

speech-based prompts to generate a sequence of skills that would solve a task goal. How-
ever, the generated skill sequence would still lack the required parameters to solve the
task, for instance, pick and place locations, desired forces, velocities, and control param-
eters, meaning that the symbol grounding problem remains to be solved. Only if the
implementation of each required skill would contain enough intelligence to extract all this
information autonomously from the world, human demonstrations could be substituted
by other input channels on the long term.
Generally, the user should be offered a combination of teaching modalities that open

different channels of interaction to enhance the knowledge of the system, while taking
into account the user’s personal preferences and strengths. This goes in line with the
aims of the 5th industrial revolution, where beside strong digitalization and automation
efforts, the human still plays a central role in future production environments.

173





Bibliography

[1] G. Clark, J. G. D. Clark, et al. World prehistory: in new perspective. Cambridge
University Press, 1977.

[2] S. J. Shettleworth. Cognition, evolution, and behavior. Oxford university press,
2009.

[3] M. Skubic and R. A. Volz. Learning force sensory patterns and skills from hu-
man demonstration. In Proceedings of International Conference on Robotics and
Automation, pages 284–290. IEEE, 1997.

[4] B. Brunner, K. Arbter, G. Hirzinger, and R. Koeppe. Programming robots via
learning by showing in a virtual environment. Virtual Reality World, 95:63–72,
1995.

[5] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In ICML,
volume 97, pages 12–20, 1997.
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[36] L. Rozo, P. Jiménez, and C. Torras. Force-based robot learning of pouring skills
using parametric hidden markov models. In 9th Workshop on Robot Motion and
Control (RoMoCo), pages 227–232. IEEE, 2013.

[37] M. Racca, J. Pajarinen, A. Montebelli, and V. Kyrki. Learning in-contact con-
trol strategies from demonstration. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 688–695. IEEE, 2016.

[38] P. Kormushev, S. Calinon, and D. G. Caldwell. Imitation learning of positional
and force skills demonstrated via kinesthetic teaching and haptic input. Advanced
Robotics, 25(5):581–603, 2011.
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[191] J. F.-S. Lin, M. Karg, and D. Kulić. Movement primitive segmentation for hu-
man motion modeling: A framework for analysis. IEEE Transactions on Human-
Machine Systems, 46(3):325–339, 2016.

[192] D. A. Grant. The latin square principle in the design and analysis of psychological
experiments. Psychological bulletin, 45(5):427, 1948.

[193] T. Eiband, C. Willibald, I. Tannert, B. Weber, and D. Lee. Collaborative pro-
gramming of robotic task decisions and recovery behaviors. Autonomous Robots,
pages 1–19, 2022.

[194] S. J. Lederman and R. L. Klatzky. Haptic perception: A tutorial. Attention,
Perception, & Psychophysics, 71(7):1439–1459, 2009.

[195] G. Robles-De-La-Torre. The importance of the sense of touch in virtual and real
environments. Ieee Multimedia, 13(3):24–30, 2006.

[196] M. O. Ernst and M. S. Banks. Humans integrate visual and haptic information in
a statistically optimal fashion. Nature, 415(6870):429, 2002.

[197] G. Metta and P. Fitzpatrick. Better vision through manipulation. Adaptive Be-
havior, 11(2):109–128, 2003.

[198] Y. Hatwell, A. Streri, and E. Gentaz. Touching for knowing: cognitive psychology
of haptic manual perception, volume 53. John Benjamins Publishing, 2003.

[199] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE transactions on acoustics, speech, and signal processing,
26(1):43–49, 1978.

[200] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman. Averaging quaternions.
Journal of Guidance, Control, and Dynamics, 30(4):1193–1197, 2007.

[201] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynami-
cal movement primitives: learning attractor models for motor behaviors. Neural
Computation, 25(2):328–373, 2013.

191



Bibliography
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