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Abstract— This paper studies consensus control of linear
multi-agent systems (MASs) over directed graphs. The com-
munication topology is assumed to be strongly connected. A
distributed event-triggered state-feedback protocol is proposed
for achieving consensus, which monitors the relative state in-
formation between neighboring agents and triggers a sampling
event when some state-related inequalities are violated. An
existence condition for the protocol is derived, which needs
to solve an algebraic Riccati equation and find some scalar
parameters related to the graph Laplacian. It is proved that the
protocol excludes both singular triggering behavior and Zeno
behavior if some scalars are properly assigned. Compared with
the existing results, the proposed method can deal with general
linear MASs on strongly connected graphs but does not require
the absolute state information of agents. The effectiveness of the
proposed method is illustrated by a numerical example.

I. INTRODUCTION

The last decade has witnessed the fast development of co-

ordination control theory of networked multi-agent systems

(MASs) [1]–[3]. Especially, considerable attention has been

paid to the fundamental consensus problem, that is, to find a

distributed control protocol such that a group of autonomous

dynamic agents reach an agreement of states in some sense

[4]–[6]. Both state- and output-feedback protocols have been

investigated for general linear MASs.

For most of aforementioned existing results, the control

input is updated with continuous- and real-time information

about agents, which is not economical for control of MASs.

In particular, for applications such as sensor networks, mo-

bile robots or unmanned aerial vehicles, each agent usu-

ally has limited communication resources. Thus, for such

resource-limited applications, how to save communication

resources is very important to achieve control objectives.

To this end, a nature idea is to design protocols which

update the control input at discrete-time instants, so that

each agent does not need to continuously occupy the com-

munication resource. In this way, a traditional method is to

design periodic sampled-data control protocols with a fixed

sampling frequency [7]. To further flexibly schedule the sam-

pling frequency, a recent trend is to employ event-triggered

sampling schemes for consensus control of MASs [8]–[17].

In [8]–[10], [14]–[16], various event-triggered state-feedback
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protocols are proposed for single- or double-integrator MASs

over undirected or directed graphs. Event-triggered consen-

sus control of general linear MASs can be found in [11]–[13],

[15], [17]. Note that the sampled error in [8]–[12] is defined

in terms of absolute state/output information of agents, thus

these results still require the absolute information about

agents, which is restrictive for some applications where only

relative information between agents is available. In [13]–

[17], events are triggered when inequalities related to relative

state information is violated. As a result, the protocols therein

only rely on relative state information between agents.

In this paper, we investigate event-triggered consensus

control of linear MASs on directed graphs. The goal is to

design an event-triggered control protocol such that a group

of linear agents reach state consensus. It is assumed that the

communication graph is strongly connected. A distributed

event-triggered state-feedback protocol is proposed, which

compares the sampling error of the relative state information

with a time-dependent term. Once an event is triggered

at one agent, the protocol updates the control input for

that agent. A sufficient condition for the existence of the

protocol is derived, and triggering behavior analysis shows

that no singular triggering and Zeno behavior occurs in the

protocol if some scalars are properly assigned. A numerical

example is finally presented to illustrate the effectiveness of

the proposed protocol.

Compared with the existing related results in [13]–[19]

which aim at special or different cases of event-triggered

consensus, the contribution of this paper is twofold: 1) this
paper deals with event-triggered leaderless consensus of
general linear MASs on strongly connected graphs; and 2)
Zeno behaviors are analyzed in a more systematic way, par-
ticularly distinguishing when the intervals of two successive
events have strictly positive infimums.

Notation: R
m×n represents the set of all m × n real

matrices and In stands for an n×n identity matrix. A square,

positive-definite matrix is denoted by P > 0. Kronecker

product for two matrices A and B is represented by A⊗B.

λ̄ (A) and λ (A) denote the maximum and minimal eigen-

value for a square, symmetric matrix A, respectively. ‖(·)‖
denotes the Euclidean norm of a vector (·) or the spectral

norm of a matrix (·). diag{· · · } means a (block) diagonal

matrix with “· · · ” on the diagonal.

Let G(V, E) be a directed graph with V = {1, . . . , N} the

set of N nodes and E ⊆ V × V the edge set. Define the

adjacency matrix associated with a directed graph as A =
[aij ]N×N , where aij > 0 if (j, i) ∈ E and aij = 0 otherwise.

We say node j is a neighbor of node i, if (j, i) ∈ E or



aij > 0, and represent the set of all the neighboring node

of node i by Ni. Thus, we can denote L = [lij ]N×N with

lii =
∑

k∈Ni
aik and lij = −aij for i, j = 1, 2, . . . , N and

i �= j, as the associated Laplacian matrix. A directed path of

the graph is an ordered sequence of edges connecting two

nodes. A directed graph is said to be strongly connected if

every node can be reached from every other node through

any directed path.

Lemma 1: Consider a directed graph G(V, E) and suppose

it is strongly connected. Then zero is a simple eigenvalue of

the Laplacian matrix L [20]. Moreover, there is a positive

vector h � col{h1, . . . , hN} such that hTL = 0, and

0 < α(L) � minhTx=0, x �=0
xT(HL+LTH)x

2xTHx , where H �
diag{h1, . . . , hN} [21].

II. PROBLEM STATEMENT

Consider a group of N (N ≥ 2) linear dynamic agents

that are described by

ẋi(t) = Axi(t) +Buui(t), i = 1, . . . , N, (1)

where xi ∈ R
nx and ui ∈ R

nu are the state and control input

of agent i, respectively, and A and Bu are system matrices

which are real and appropriately-dimensioned. It is assumed

that the matrix pair (A,Bu) is stabilizable.

To achieve consensus, we aim at designing a distributed

even-triggered state-feedback control protocol, where each

controller can make use of the relative information between

neighbours. Suppose that the overall communication topol-

ogy is determined by a directed graph G(V, E). The relative

state of agent i with regard to its neighbors is defined as

x̃i(t) �
∑
j∈Ni

aij (xi(t)− xj(t)) ,

which can be accessed by agent i. However, instead of

directly using the above relative signal, an event-based state-

feedback protocol applying the sampled data of the above

signal at discrete-time instants is of our interest. Specifically,

consider the following control protocol:

ui(t) = cKx̃i(t
i
k), t ∈ [tik, t

i
k+1), i = 1, . . . , N,

k = 0, 1, . . . , (2)

where tik is the kth sampling instant for the controller of

agent i, K is a constant matrix with appropriate dimensions

and c is a positive constant to be determined. Define T i
k as

T i
k � tik+1 − tik, i = 1, . . . , N ; k = 0, 1, . . . . (3)

The following assumption is needed for later use.

Assumption 1: Graph G is strongly connected.

Under the above assumption, the consensus problem is

to design a control protocol (2) such that the resulting

closed-loop system satisfies limt→∞ ‖xi(t)− xj(t)‖ = 0,

i, j = 1, . . . , N . In this paper, the triggering functions for

i = 1, . . . , N are chosen as

fi(ei(t), t) � ‖Kei(t)‖2 − θie
−δit,

where δi and θi are positive constants to be determined, and

ei(t) � x̃i(t
i
k)− x̃i(t),

which is the error between the real-time relative state x̃i(t)
and its sampled one x̃i(t

i
k) for agent i. The triggering instant

tik+1 is determined as

tik+1 = sup{t|fi(ei(t), t) < 0, t ≥ tik}.
At the triggering instant ti0, we have ei(t

i
0) = 0. Thus,

fi(ei(t
i
0), t

i
0) = −θie

−δit
i
0 < 0 holds. As t increases from

ti0, fi(ei(t), t) < 0 maintains for a time interval until the

change of ei(t) is such that fi(ei(t), t) < 0 is violated, which

triggers the event k = 1. This process repeats and so on.

Fig. 1. An illustrative example on formation flying of indoor unmanned
flying robots. The flying state of robots is monitored by external cameras,
which transmit the obtained information to the robots for flight control.

Remark 1: Compared with the usual continuous-time

state-feedback protocols using x̃i(t), the event-triggered

state-feedback protocol (2) only updates the control input

at the triggering instants. This is beneficial if an external

monitoring layer (e.g., consisting of wireless sensors) is

implemented separately to monitor the state of the physical

layer (i.e., agents), and communicates with the physical layer

through certain communication medium (see Fig. 1 for an

illustrative example). However, to check the triggering condi-

tion, the external monitoring layer still needs to continuously

monitor the states of neighboring agents because of ei(t).
Interested readers can refer to the method in [18, Section

5] on how to generate x̃i(t) as well as ei(t) from sampled

information, thus circumventing the above drawback, while

in this paper, we will not specifically treat this issue.

Another kind of event-triggered protocols are like ui(t) =

cK
∑

j∈Ni
aij

(
g(xi(t

i
k), t)− g(xj(t

j

k̄j
t

, t))
)

, where k̄jt �
argminl∈{1,2,...};t≥tjl

{t− tjl }, and g is a vector function, see

[8]–[12]. Most of the existing results for this type merit in

the fact that no continuous monitoring of neighboring agents

is needed. However, these protocols usually require absolute

state information about agents (in terms of xi(t
i
k) and/or

xj(t
j
k), j ∈ Ni), which is unavailable in some applications

where only relative information can be accurately accessed.

III. MAIN RESULTS

A. Consensus Analysis

Let x(t) = col{x1(t), . . . , xN (t)}, e(t) =
col{e1(t), . . . , eN (t)} and x̃(t) = col{x̃1(t), . . . , x̃N (t)}.



By combining (1) and (2), we can obtain the closed-loop

system given by

ẋ(t) = (I⊗A)x(t) + (cI⊗BuK) (e(t) + x̃(t)).

Since x̃(t) = (L ⊗ I)x(t), we have

˙̃x(t) = (I⊗A) x̃(t) + (cL ⊗BuK) (e(t) + x̃(t)). (4)

Under Assumption 1, it is known from Lemma 1 that 0 is

a single eigenvalue of the Laplacian L with 1 as the right

eigenvector. Thus, it is easy to see that xi(t) − xj(t) → 0
as t → ∞ if and only if x̃(t) → 0. As a result, the

consensus problem is solved if and only if the designed

protocol guarantees the convergence of x̃(t). With this fact

in mind, we have the following theorem on the existence of

the desired event-triggered state-feedback protocol.

Theorem 1: Consider the MAS (1) and the protocol (2)

under Assumption 1. Then consensus is reached, if K =
−BT

u P , where P is the positive-definite matrix solving the

following equation for a given positive-definite matrix Q:

ATP + PA− PBuB
T
u P +Q = 0, (5)

and θi and δi, i = 1, . . . , N , are any positive constants, c is

any positive constant satisfying

c ≥ 1

2α− βγ
, β � λ̄(H 1

2LLTH
1
2 ), (6)

where α and H are defined in Lemma 1, and γ is any constant

satisfying 0 < γ < 2α
β .

Proof: Consider a candidate Lyapunov function as

V (t) = x̃T(t) (H⊗ P ) x̃(t),

where H is defined in Lemma 1 and P is the positive definite

matrix given in the theorem. From Lemma 1, it is known that

H is positive definite. Thus, V (t) ≥ 0, and V (t) = 0 if and

only if x̃(t) = 0. Taking the derivative of V (t) along the

solution of x̃(t) in (4) and substituting K = −BT
u P into the

derivative give rise to

V̇ (t) = 2x̃T(t) (H⊗ P ) ˙̃x(t)

= 2x̃T(t) (H⊗ P ) (I⊗A) x̃(t)

+ 2x̃T(t) (H⊗ P ) (cL ⊗BuK) (e(t) + x̃(t))

= x̃T(t)
[H⊗ (

ATP + PA
)]

x̃(t)

− x̃T(t)
[
c
(LTH+HL)⊗ PBuB

T
u P

]
x̃(t)

− 2x̃T(t)
(
cHL⊗ PBuB

T
u P

)
e(t).

Since (hT⊗ I)x̃(t) = (hT⊗ I) (L ⊗ I)x(t), it follows from

Lemma 1 that

x̃T(t)
[
c
(LTH+HL)⊗ PBuB

T
u P

]
x̃(t)

≥ x̃T(t)
(
2cαH⊗ PBuB

T
u P

)
x̃(t).

Moreover, it is easy to verify that

− 2x̃T(t)
(
cHL⊗ PBuB

T
u P

)
e(t)

≤ x̃T(t)
(
cγHLLTH⊗ PBuB

T
u P

)
x̃(t)

+ eT(t)

(
c

γ
I⊗ PBuB

T
u P

)
e(t)

≤ x̃T(t)
(
cγβH⊗ PBuB

T
u P

)
x̃(t)

+ eT(t)

(
c

γ
I⊗ PBuB

T
u P

)
e(t)

holds for all γ > 0. It follows from the equation (5) and

c > 1
2α−βγ > 0 (which is specified in (6)) that

V̇ (t) ≤ x̃T(t)
{H⊗ [

ATP + PA− c (2α− βγ)PBuB
T
u P

]}
× x̃(t) + eT(t)

(
c

γ
I⊗ PBuB

T
u P

)
e(t)

≤ −x̃T(t) (H⊗Q) x̃(t) + eT(t)

(
c

γ
I⊗KTK

)
e(t)

= −
N∑
i=1

hix̃
T
i (t)Qx̃i(t) +

c

γ

N∑
i=1

‖Kei(t)‖2 .

Noting fi(ei(t), t) = ‖Kei(t)‖2 − θie
−δit ≤ 0 and Q ≥

λ (Q) I ≥ λ(Q)

λ̄(P )
P , we have

V̇ (t) ≤ −
N∑
i=1

λ (Q)

λ̄ (P )
hix̃

T
i (t)Px̃i(t) +

c

γ

N∑
i=1

‖Kei(t)‖2

≤ −λ (Q)

λ̄ (P )
V (t) +

cNθ̄

γ
e−δt,

where θ̄ = maxi{θi} and δ = mini{δi}. Thus, it follows

from the Comparison Principle (see [22, Lemma 3.4]) that

V (t) ≤ V (0)e−λPQt +
cNθ̄

γ (δ − λPQ)

(
e−λPQt − e−δt

)
(7)

if δ �= λPQ, or

V (t) ≤ V (0)e−λPQt +
cNθ̄

γ
te−λPQt (8)

if δ = λPQ, where λPQ � λ(Q)

λ̄(P )
. Thus, V (t) → 0 as t → ∞,

which implies x̃(t) → 0 as t → ∞, that is, consensus is

reached. The proof is completed.

Theorem 1 shows that the consensus problem can be

solved if the gain K is obtained by solving an algebraic

Riccati equation and the scalar parameters satisfy a few

constraints related to the graph Laplacian. Since (A,Bu) is

stabilizable, it is well-known that the equation (5) always

admits a solution P > 0 for any Q > 0. Moreover, obviously

the constraint in (6) is feasible. Consequently, it is seen that

Theorem 1 provides feasible solutions to the event-triggered

consensus control problem on strongly connected graphs.

Note that no specification has been imposed on θi and δi
(except that they are positive). In the next subsection, we will

show that these assigned parameters also guarantee the non-

existence of singular triggering behavior or Zeno behavior.

Remark 2: Similar event-triggered protocols have also

been studied for MASs in [13]–[17], which, however, are

limited to some special cases or aim at different control

problems. Double-integrator MASs over undirected and di-

rected communication graphs are discussed in [14], [16],

respectively. The results in [13], [17], though addressing

general linear MASs, also deal with undirected graphs only.



Although the graph is allowed to be directed in [15], the con-

cerned consensus problem therein is of the leader-follower

kind, which does not cover the leaderless consensus problem

considered in this paper. On the contrary, the MAS in this

paper is not required to satisfy this specification. Conse-

quently, these existing results cannot be straightforwardly

applied to solve the leaderless consensus problem of general

linear MASs considered in this paper.

B. Triggering Behavior Analysis

Singular triggering and Zeno behavior are two factors

preventing the practical usefulness of event-triggering con-

trollers. Singular triggering means no event will be triggered

after a specific event, while Zeno behavior means there exists

at least one finite time interval during which an infinite num-

ber of events are triggered. Thus, it is important to exclude

these two kinds of behavior from the triggering process. The

following theorem reveals the choice of the parameters in

Theorem 1 excludes these undesirable behaviors, and further

illuminates when strictly positive infimums are ensured for

intervals of two successive events.

Theorem 2: Consider the MAS (1) and the protocol (2)

under Assumption 1. With the protocol parameters specified

in Theorem 1, for every positive θi and δi, i = 1, . . . , N ,

both of singular triggering behavior and Zeno behavior are

excluded from the triggering process. Moreover, if δ < λPQ,

then infk=0,1,... T
i
k > 0 for those δi = δ, i = 1, . . . , N .

Proof: We first prove the avoidance of singular trigger-

ing, that is, for any triggering instant tik, the next triggering

instant tik+1 ∈ (tik,∞) must exist. Note that the triggering

process implies ‖Kei(t)‖2 ≤ θie
−δit for t ∈ [tik, t

i
k+1]

and the equality holds for t = tik+1. Since
∥∥Kei(t

i
k)
∥∥2 =

0 < θie
−δit

i
k and ‖Kei(t)‖2 is continuous with respect

to t ∈ [tik, t
i
k+1), the inequality ‖Kei(t)‖2 < θie

−δit can

be maintained for a while or forever for t > tik. In the

proof of Theorem 1, we have shown x̃(t) → 0 as t → ∞,

which implies
∥∥Kx̃i(t

i
k)−Kx̃i(t)

∥∥ → ∥∥Kx̃i(t
i
k)
∥∥ > 0 at

t → ∞. Moreover, θie
−δit → 0 as t → ∞. In view of

ei(t) = x̃i(t
i
k) − x̃i(t), it is easy to see that ‖Kei(t)‖2 =∥∥Kx̃i(t

i
k)−Kx̃i(t)

∥∥2 = θie
−δit > 0 eventually holds at

some finite instant tik+1, which triggers the event k+1. Thus,

there exists an instant tik+1 such that tik < tik+1 < ∞ for

k = 0, 1, . . .. That is, no singular triggering behavior occurs.

Next, we show the exclusion of Zeno behavior. To this end,

we need to prove that T i
k is strictly positive for all finite k

and tik → ∞ as k → ∞. Three cases are discussed in the

following, respectively.

1) δ > λPQ (Case I). Obviously, − cNθ̄
γ(δ−λPQ)e

−δt < 0.

Thus, it follows from (7) that

V (t) ≤ μ1e
−λPQt, μ1 � V (0) +

cNθ̄

γ (δ − λPQ)
, (9)

which implies

‖x̃i(t)‖ ≤ 1√
λ(P )hi

√√√√ N∑
j=1

λ(P )hj ‖x̃j(t)‖2

≤
√

V (t)

λ(P )hi
≤

√
μ1

λ(P )hi
e−

λPQ
2 t,

∀t ≥ 0, i = 1, . . . , N. (10)

Noting ei(t) = x̃i(t
i
k)− x̃i(t) for t ∈ [tik, t

i
k+1), we have

ėi(t) = −Ax̃i(t)− cBuK
∑
j∈Ni

aij

(
x̃i(t

i
k)− x̃j(t

j

k̄j
t

)
)
,

(11)

where tj
k̄j
t

is defined in Remark 1. Using (10) and (11) yields

d ‖Kei(t)‖
dt

=
eTi (t)K

TKėi(t)

‖Kei(t)‖ ≤ ‖Kėi(t)‖

≤ ‖KA‖ ‖x̃i(t)‖+
N∑
j=1

c ‖lijKBuK‖
∥∥∥x̃(tj

k̄j
t

)
∥∥∥

≤ κie
−λPQ

2 tik , ∀t ∈ [tik, t
i
k+1),

where

κi � ‖KA‖
√

μ1

λ(P )hi
+

N∑
j=1

c ‖lijKBuK‖
√

μ1

λ(P )hj
.

(12)

Thus, according to the Comparison Lemma (see [22, Lemma

3.4]) and
∥∥Kei(t

i
k)
∥∥ = 0, we have

‖Kei(t)‖ ≤ κie
−λPQ

2 tik(t− tik), t ∈ [tik, t
i
k+1). (13)

Since
∥∥Kei(t

i
k+1)

∥∥2 = θie
−δit

i
k+1 , it is seen from (13) that∥∥Kei(t

i
k+1)

∥∥ =
√
θie

− δi
2 tik+1 ≤ κie

−λPQ
2 tik(tik+1 − tik).

Further noting δi ≥ δ > λPQ, we obtain√
θie

λPQ−δi
2 tik ≤ κie

δi
2 (tik+1−tik)(tik+1 − tik),

or equivalently
√
θi
κi

e
λPQ−δi

2 tik ≤ e
δi
2 T i

kT i
k. (14)

If limk→∞ tik = ti∞ < ∞, since limk→∞ T i
k = 0, (14)

implies 0 <
√
θi

κi
e

λPQ−δi
2 ti∞ ≤ 0. This cannot be true, and

thus contrarily implies that tik → ∞ as k → ∞. Moreover,

it obviously follows from (14) that T i
k is strictly positive for

any finite horizon tik. Consequently, no Zeno behavior exists.

2) δ < λPQ (Case II). For this case, cNθ̄
γ(δ−λPQ)e

−λPQt < 0

and V (0)e−λPQt ≤ V (0)e−δt. Thus, it follows from (7) that

V (t) ≤ μ2e
−δt, μ2 � V (0) +

cNθ̄

γ (λPQ − δ)
. (15)

By using similar arguments as those for Case I, we can show

that the instant tik+1 satisfies√
θie

− δi
2 tik+1 ≤ κie

− δ
2 t

i
k(tik+1 − tik),

where κi is similarly defined in (12) but with μ1 replaced

with μ2. As a result, we have
√
θi

κi
e

δ−δi
2 tik ≤ e

δi
2 T i

kT i
k, which

again implies that tik → ∞ as k → ∞, and moreover T i
k is



strictly positive for any finite horizon tik. Thus, Zeno behavior

is excluded for this case.

3) δ = λPQ (Case III). For saving space, we omit

the details for this case. Basically, it follows from similar

arguments as those for the previous two cases.

At last, for Case II above, the inequality
√
θi

κi
e

δ−δi
2 tik ≤

e
δi
2 T i

kT i
k, when δi = δ, reduces to

√
θi

κi
≤ e

δi
2 T i

kT i
k, which

always admits a strictly positive T i
k even for k → ∞, that

is, infk=0,1,... T
i
k > 0 for those δi = δ, i = 1, . . . , N .

Remark 3: The results in [13], [14] cannot guarantee the

exclusion of Zeno behavior. As is pointed out in [19], Zeno

behavior for the protocols in [13], [14] will take place when

the relative state x̃i(t) crosses zero. The problem arises from

the fact that the triggering analysis therein does not prove

tik → ∞ as k → ∞. If tik → ti∞ < ∞ as k → ∞, then

an infinite number of events will be triggered before the

finite horizon ti∞, that is, Zeno behavior is exhibited. Similar

to [19], we employ the triggering function fi containing an

exponentially time-dependent term for this purpose, which,

as is shown by Theorem 2, is important for Zeno-freeness.

Remark 4: Theorem 2 contains two main contributions.

First, it shows that scalars θi and δi in the protocol can take

any positive scalars so that Zeno behavior is excluded. Sec-

ond, it further clarifies when the event intervals have strictly

positive infimums. It is readily to see that the latter is stronger

than the former. However, most of the existing results usually

just illuminate one of the two aspects, for instance, [19]

only discusses Zeno-freeness while [15] only finds positive

infimums of event intervals. In addition, to achieve Zeno-

freeness, the protocol in this paper ensures consensus, while

that in [18] only guarantees bounded consensus.

C. Numerical Example

We employ a numerical example to demonstrate the effec-

tiveness of the proposed protocol.

Example 1: Consider the MAS (1) with

A =

⎡
⎣ 0.09 −1.002 0.2

1 0 0
0 0.25 0

⎤
⎦ , Bu =

⎡
⎣ 2

0
0

⎤
⎦ ,

and suppose that 8 agents communicate with each other

according to the graph shown in Fig. 2, where the edge

weights all are 1. Obviously, the graph is strongly connected.

Fig. 2. The communication graph used in the example.

The eigenvalues of the Laplacian are 0, 2, 2.7172 ±
0.8220i, 1.6511 ± 0.8537i and 0.6317 ± 0.3221i, and the

vector h defined in Lemma 1 is h = [0.1826, 0.4564,

0.4564, 0.2739, 0.5477, 0.3651, 0.0913, 0.1826]T, which is

directly output by the function eig of MATLAB. To design

the protocol gain K, let Q = I. Then the solution to the

equation (5) is

P =

⎡
⎣ 0.7106 0.4460 0.5525

0.4460 1.8014 1.3786
0.5525 1.3786 5.8000

⎤
⎦ ,

which leads to the protocol gain

K =
[ −1.4212 −0.8919 −1.1050

]
.

Direct calculation gives α = 0.3647, β = 2.9131, λ (Q) = 1
and λ̄ (P ) = 6.3072. Choose γ = α

β = 0.1252 ≤ 2α
β and

c = 5.4834 = 1
2α−βγ . Moreover, for the scalars δi, we can

take δi =
λ(Q)

λ̄(P )
= 0.0793, i = 1, . . . , N .

To demonstrate the effectiveness of the protocol param-

eters found above, simulation results are presented in Figs.

3–6. For simulation, the scalars θi in the triggering condition

all take 1. Fig. 3 displays the agent states, Figure 4 shows

the control input, Fig. 5 demonstrates the event instants and

Fig. 6 depicts the evolution of ‖Kei(t)‖2 and θie
−δit (right),

and event intervals T i
k (right). It is clear from Figs. 3 and 4

that the closed-loop MAS with the designed event-triggered

protocol reaches state consensus. Fig. 5 demonstrates that

each agent determines its own event-triggered instants, thus

the triggering mechanism works in an asynchronous manner.

Fig. 6 illustrates that event intervals are strictly positive,

implying that no Zeno behavior of the protocol is exhibited.

Moreover, it is seen that relatively dense events are triggered

at the beginning for most agents in this example.
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0

5
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Fig. 3. States of agents.

IV. CONCLUSION

In this paper, the leaderless consensus problem of general

linear MASs has been investigated under a distributed event-

triggered state-feedback protocol over directed graphs. Under

the assumption that the communication graph is strongly

connected, a sufficient condition has been established for the

existence of the protocol, which needs to solve an algebraic

Riccati equation and some scalar parameters related to the

graph Laplacian. Theoretical analysis has shown that no

singular triggering behavior or Zeno behavior is exhibited
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Fig. 4. Control input.
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Fig. 5. Event instants.

in the triggering process of the protocol. The effectiveness

of the proposed protocol has been clearly illustrated by a

numerical example.

This paper is only concerned with leaderless consensus of

general linear MASs on strongly connected graphs. More

systematic and comprehensive results on general directed

graphs are still undergoing investigation.
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