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Abstract—An externally positive system has the property of
giving a nonnegative output for any nonnegative input. By
making the inter-vehicle spacing a nonnegative output, this
system property is significant for collision avoidance in platoon-
ing. Yet, existing platooning results based on external positivity
just apply to adaptive cruise control (ACC): as ACC uses
on-board sensing only, these results do not apply when on-
board sensing is integrated with inter-vehicle communication,
as in cooperative adaptive cruise control (CACC). This work
provides an integrated external positivity design for CACC. When
unreliable communication requires transitions between CACC
and ACC, the design still guarantees graceful degradation in
terms of collision avoidance and disturbance rejection. Such
graceful transitions can be attained also in the presence of vehicle
parameter uncertainty, via a suitable adaptive control design.

Index Terms—External positivity, automated vehicles, platoon-
ing, adaptive control, string stability.

I. INTRODUCTION

Longitudinal platooning refers to automated vehicles driving
at desired inter-vehicle spacing. Although a wide range of
platooning strategies have been proposed, they can all be cate-
gorized along two main technologies: Adaptive Cruise Control
(ACC), only using on-board sensors like radar, tachometer, ac-
celerometer [1], [2]; and Cooperative Adaptive Cruise Control
(CACC), where on-board sensing is augmented by wireless
inter-vehicle communication [3], [4], [5].

The additional wireless signals offer improved behaviour of
CACC as compared to ACC [3], [4], e.g., in terms of string
stability [6] and disturbance decoupling [7], [8]: the former
refers to attenuating a disturbance propagating throughout
the platoon from the preceding vehicles; the latter refers to
decoupling such disturbance from the inter-vehicle spacing
error. Collision avoidance is another significant behaviour
in platooning: in this regard, external positivity has been
shown as a promising property to avoid collisions [1], [2]:
external positivity of a dynamic system is defined as the
nonnegativity of the output (i.e., inter-vehicle distance) for
any given nonnegative input (i.e., predecessor velocity). This
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property has been studied only for ACC; its application in
CACC is potentially significant but still open.

In practical platooning scenarios, unreliability of wireless
communication may induce several transitions between CACC
and ACC [9], [10]: thus, notions of graceful degradation
of platooning performance are needed to guarantee desirable
properties even when CACC degenerates to ACC. Unfortu-
nately, available graceful degradation notions only considered
string stability [4], giving a first motivation for this work:
studying an external positivity design for CACC with desirable
properties even when CACC degenerates to ACC.

The uncertainty around vehicle dynamics gives a second
motivation to the work: most platooning designs rely on the
knowledge of the time needed by the engine of each vehicle
to reach a desired acceleration (engine time constant). As
the engine time constant is highly uncertain and affected by
velocity, gear, vehicle load, and road slope, adaptive designs
have been proposed that adjust the control gains online to cope
with vehicle uncertainty [11], [12]. Yet, external positivity and
graceful degradation remain open problems in such adaptive
designs. The main contributions of this work are:

• An augmented external positivity design for CACC,
where on-board sensing is augmented by inter-vehicle
wireless communication;

• An integrated CACC-ACC design with graceful degra-
dation, i.e. where collision avoidance and string stability
are retained in both CACC and ACC modes;

• A novel adaptive design inspired by adaptive switched
control [13], [14], [15], [16] where stability is proven for
arbitrary transitions between CACC and ACC modes.

The problem is presented in Section II. Section III discusses
external positivity in CACC and ACC; Section IV discusses
the graceful degradation. Section V presents an adaptive design
to cope with vehicle uncertainty. Numerical validations are in
Section VI, with conclusions in Section VII.

Standard norms are adopted, such as the L2 norm
(∥v∥2 =

[∫∞
0

v⊤(t)v(t)dt
]1/2

) and the L∞ norm (∥v∥∞ =

supt≥0

[
v⊤(t)v(t)

]1/2
). We say that v ∈ L2 or v ∈ L∞

whenever the signal is bounded in the corresponding norm.

II. PROBLEM FORMULATION

Consider a predecessor-follower system with vehicles in-
dexed as i − 1 (predecessor) and i (follower). Each vehicle
has longitudinal dynamics

ṡi(t) = vi(t),

v̇i(t) = ai(t), (1)
τiȧi(t) = −ai(t) + ui(t),



where si, vi, ai ∈ R are the longitudinal position, velocity, and
acceleration of vehicle i (similar for vehicle i− 1). Dynamics
(1) are standard in the literature [3], [17], [18], [19], with
the last equation capturing the engine dynamics, i.e. the time
constant τi > 0 representing the time required by the engine
to reach the desired acceleration ui ∈ R.

To establish a platoon, a spacing error is needed. The
velocity-dependent spacing error with time-headway h > 0

ei(t) = si−1(t)− si(t)− hvi(t), (2)

is commonly adopted to seek desirable properties like string
stability [6]. To regulate ei, consider an input in the form

ui(t) =

ACC mode︷ ︸︸ ︷
k1ei(t) + k2νi(t) + k3ai(t)+k4ai−1(t)︸ ︷︷ ︸

CACC mode

, (3)

with νi = vi−1−vi being the relative velocity, and k1, k2, k3,
k4 control gains to be designed. The platooning protocol (3)
includes feedback from ei, νi, ai acquired via ACC on-board
sensors (radar, tachometer, accelerometer), and ai−1 available
to vehicle i via CACC wireless communication.

Remark 1 (Transitions between modes). In line with [4],
we study transitions between CACC and ACC dictated by
communication failures that make ai−1 unavailable, cf. Fig. 1.
Unavailability of ai−1 during failures can be equivalently
represented by imposing k4 = 0 in ACC mode.

The following notions of external positivity and string
stability are known from the literature:

Definition 1 (External positivity [1]). A system described by
the transfer function G(s) from input u to output y is said
externally positive if and only if its corresponding impulse
response satisfies (L−1 is the inverse Laplace transform)

g(t) = L−1 {G(s)} ≥ 0, ∀t ≥ 0.

Thus, assuming zero initial conditions, we have

u(t) ≥ 0, ∀t ≥ 0 ⇒ y(t) ≥ 0, ∀t ≥ 0.

Lemma 1 (External positivity of inter-vehicle distance [1]).
For the predecessor-follower system (1), if system G(s) with
input ai−1 and output ai (equivalently, input vi−1 and output
vi) is externally positive, then the system with input vi−1 and
output ϵi = si−1 − si is also externally positive.

Definition 2 (String stability [6]). For the predecessor-
follower system (1), let G(s) be the transfer function from
ai−1 to ai. If G(s) satisfies

∥G∥∞ = sup
ω∈R

|G(jω)| ≤ 1,

then the predecessor-follower system is string stable.

Remark 2 (Collision avoidance). As ϵi is the inter-vehicle
distance, Definition 1 guarantees collision avoidance since, in
view of Lemma 1, any vi−1(·) ≥ 0 implies ϵi(·) ≥ 0. With
vi−1(·) ≥ 0, external positivity also allows vi(·) ≥ 0 [1].

The problem to be solved can be broken down as follows:

Fig. 1: Integrated CACC/ACC architecture.

Problem 1. For the predecessor-follower system (1) with
spacing error (2), consider:

a) CACC mode: design the control gains (k1, k2, k3, k4) in
(3) to achieve external positivity, string stability, and

ai−1 ∈ L2 ∩ L∞ ⇒ lim
t→∞

ei(t) = 0; (4)

b) ACC mode (equivalently, k4 = 0): design the remaining
gains (k1, k2, k3) in (3) to achieve external positivity,
string stability, and (4);

c) Graceful degradation: design the gain k4 in CACC and a
set of gains (k1, k2, k3) common to CACC and ACC, to
guarantee properties in a)-b) in both modes and stability
for arbitrary transitions between CACC and ACC;

d) Adaptive design: with unknown τi in (1), design adaptive
gains (k̂1, k̂2, k̂3, k̂4) guaranteeing convergence to exter-
nally positive and string stable dynamics, and stability
for arbitrary transitions between CACC and ACC.

Defining the state xi = [ei νi ai]
⊤ and closing the loop

with (3), the following error dynamics are obtained

ẋi(t) =

 0 1 −h
0 0 −1
k1

τi
k2

τi
k3−1
τi

xi(t) +

 0
1
k4

τi

 ai−1(t), (5)

with k4 = 0 in ACC mode. The rationale of Problem 1 is as
follows: dynamics (5) show that ai−1 acts as a disturbance.
A persistent ai−1(·) prevents in general convergence. Thus,
(4) considers asymptotic convergence when ai−1(·) ∈ L2 ∩
L∞: (4) also accounts for string stability in Definition 2, since
∥G∥∞ is the L2-induced norm from ai−1 ∈ L2 to ai ∈ L2.
Analogous to [11], [12], convergence to externally positive and
string stable dynamics in d) guarantees that the properties in
a)-b) are attained asymptotically.

III. EXTERNAL POSITIVITY: CACC AND ACC MODES

When ai−1 is available for control, [7], [8] proposed a
CACC design inspired by disturbance decoupling1 in the form

ui(t)=k1ei(t) + k2νi(t) +
(
1− τi

h
−hk2

)
ai(t) +

τi
h
ai−1(t),

(6)

with k1, k2 > 0 arbitrary, and the other gains designed as
k3 := 1− τi

h − hk2, k4 := τi
h . Remarkably, the design of (6)

attains other properties beyond disturbance decoupling.

Proposition 1 (Externally positive CACC). Consider the
predecessor-follower system (1) with spacing error (2). The

1In longitudinal platooning, disturbance decoupling aims to make the
controlled variable ei(·) decoupled from the disturbance ai−1(·).



disturbance-decoupling CACC law (6) solves item a) of Prob-
lem 1 for any h > 0.

Proof. By direct calculation from (5), it can be verified that
the closed loop with the law (6) gives a Hurwitz state matrix,
and the transfer function from ai−1 to ai is

G(s) =
k4

τi
s2 + k2

τi
s+ k1

τi

s3 + 1−k3

τi
s2 + hk1+k2

τi
s+ k1

τi

=
h−1

s+ h−1
, (7)

which is externally positive for any h > 0. In fact, being G(s)
a first-order system, its impulse response is g(t) = h−1e−h−1t,
t ≥ 0 which satisfies Definition 1.

String stability is verified by Definition 2 as (7) satisfies
∥G∥∞ = 1. Finally, implication (4) holds from standard input-
output properties of stable systems [20, Cor. 3.3.1].

Although external positivity in ACC has been shown in [1],
[2], let us propose a different approach here, which later (Sect.
IV) allows to integrate CACC and ACC.

Theorem 1 (Externally positive ACC). Consider the
predecessor-follower system (1) with spacing error (2). The
ACC control law

ui(t) = k1ei(t) +
4τi
h2

νi(t) +

(
1− k1h

2

4
− 4τi

h

)
ai(t), (8)

with k1>0 arbitrary, solves item b) of Problem 1 for any h>0.

Proof. By direct calculation from (5), it can be verified that
the closed loop with the law (8) gives a Hurwitz state matrix,
with transfer function from ai−1 to ai being

G(s) =
k2

τi
s+ k1

τi

s3 + 1−k3

τi
s2 + hk1+k2

τi
s+ k1

τi

=
4h−2

(s+ 2h−1)
2 , (9)

which is externally positive for any h > 0. The control gains in
(8) have been obtained as follows: to attain external positivity,
let us seek a transfer function in the form

G(s) =
p

s+ w
+

q

(s+ w)2
+

r

s+ v
, (10)

with (p, q, r, w, v) and (k1, k2, k3) to be found by equating
(10) with (9). We obtain (intermediate steps are omitted)

v = k1k
−1
2 , w2 = k2τ

−1
i ,

2k1√
τik2

+
k2
τi

=
hk1 + k2

τi
⇒ k2 =

4τi
h2

,

τi
k1
k2

+ 2
√
τik2 = 1− k3 ⇒ k3 = 1− k1h

2

4
− 4τi

h
,

where k1 remains an arbitrary parameter. Being G(s) in (9)
a second-order critically-damped system, external positivity is
verified as the impulse response is g(t) = h−2te−h−2t, t ≥ 0.

As (9) satisfies ∥G∥∞ = 1, string stability is also attained
for any h > 0. Finally, implication (4) holds from standard
input-output properties of stable systems [20, Cor. 3.3.1].

Remark 3 (String stable ACC). String stability of ACC in
Theorem 1 for any h > 0 seems to contradict known results
about string instability of ACC [21], [22], [23], [24]: however,
such results use h = 0. Meanwhile, as some literature reports
string instability of ACC for small h [4], [25], [26], let us

remark that there is no contradiction as well: there, a different
ACC control law with less degrees of freedom is adopted

hu̇i(t) = −ui + k1ei(t) + k2νi(t)− hk2ai(t). (11)

As gain −hk2 in (11) is merely chosen to obtain a derivative
action k2 (νi − hai) = k2ėi, the degree of freedom of k3 is
lost in the design, making ACC string unstable for small h.

IV. EXTERNAL POSITIVITY: GRACEFUL DEGRADATION

Recall from Fig. 1 that communication failures trigger
switches between CACC and ACC. A question arises if CACC
and ACC can be seamlessly integrated in the presence of
such failures: an answer is found by exploiting the freedom to
choose arbitrary k1, k2>0 in (6) and arbitrary k1>0 in (8).

Theorem 2 (Seamless CACC/ACC integration). Consider the
predecessor-follower system (1) with spacing error (2). The
integrated CACC-ACC law

ui(t) =
4τi
h3

ei(t) +
4τi
h2

νi(t) +

(
1− 5τi

h

)
ai(t)

+

{
τi
h ai−1(t) in CACC mode

0 in ACC mode
(12)

solves item c) of Problem 1 for any h > 0.

Proof. The result is obtained noting that (12) is constructed
to satisfy both the CACC design (6) (Proposition 1) and the
ACC design (8) (Theorem 1). We need k4 = τi

h in CACC and
k4 = 0 in ACC. Meanwhile, we need k2 = 4τi

h2 in both CACC
and ACC, possible as k2 is arbitrary in (6). Then, k1 and k3
remain to be determined. For CACC, we need

k3 = 1− τi
h

− hk2 = 1− τi
h

− 4τi
h

, (13)

where we have substituted k2 = 4τi
h2 . For ACC, we need

k3 = 1− k1h
2

4
− 4τi

h
. (14)

As k1 is arbitrary in (6) and (8), there is freedom to impose
k1h

2

4 = τi
h , i.e. k1 = 4τi

h3 . To prove stability for arbitrary
transitions, closing the loop with (12) gives

ẋi =

 0 1 −h
0 0 −1
4
h3

4
h2 − 5

h


︸ ︷︷ ︸

A

xi +



0
1
1
h

 ai−1 in CACC01
0

 ai−1 in ACC

(15)

Being the state matrix A Hurwitz and common to CACC and
ACC modes, a common Lyapunov function can be adopted

V
(
xi

)
=

1

2
x⊤
i Pxi, (16)

where P > 0 solves the Lyapunov equation

A⊤P + PA = −Q, Q > 0 (17)

whose solution exists as A is Hurwitz. Stability of the origin
of (15), not shown due to space limits, follows from stan-
dard results on common Lyapunov functions [27, Sect. 2.1],
noticing that V

(
xi

)
is continuous at any arbitrary transition

between CACC and ACC modes.



V. EXTERNAL POSITIVITY: ADAPTIVE DESIGN

In case τi is unknown, none of the laws (6), (8), (12)
can be implemented. The works [11], [12] recently studied
adaptive control tools to handle uncertainty in τi. These tools
are extended here in a switched-systems sense, to account for
transitions between CACC and ACC as in Theorem 2. The
adaptive switched design is the result of a three-step procedure.

Step 1) Reference dynamics: Define a reference engine time
constant τ̄i, used to form vehicle reference dynamics

˙̄ei(t) = vi−1(t)− v̄i(t)− hāi(t),

˙̄vi(t) = āi(t), (18)
τi ˙̄ai(t) = −āi(t) + ūi(t),

with control law in the same structure as (12)

ūi(t) =
4τ̄i
h3

ēi(t) +
4τ̄i
h2

ν̄i(t) +

(
1− 5τ̄i

h

)
āi(t)

+

{
τ̄i
h ai−1(t) in CACC mode

0 in ACC mode
(19)

but with τ̄i in place of τi. Note that vi−1 = νi−1 + vi is
available with on-board sensing. Define the reference model
state x̄i = [ēi ν̄i āi]

⊤ with ν̄i = vi−1 − v̄i.
Step 2) Ideal model matching: By design, x̄i has dynamics

as in (15). We find now an ideal control u∗
i making the

predecessor-follower (1) match the reference predecessor-
follower dynamics (18)-(19): direct calculations give

u∗
i (t) = k∗1ei(t) + k∗2νi(t) + k∗3ai(t)

+

{
k∗4ai−1(t) in CACC mode

0 in ACC mode
(20)

with k∗1 = 4τi
h3 , k∗2 = 4τi

h2 , k∗3 = 1 − 5τi
h , k∗4 = τi

h . With (1)
and (20), xi has also dynamics as in (15).

Step 3) Adaptive model matching: As u∗
i in (20) cannot be

implemented, an adaptive version is designed hereafter.

Theorem 3 (Adaptive design). Consider the predecessor-
follower system (1) with spacing error (2) and adaptive law

ui(t) = k̂1(t)ei(t) + k̂2(t)νi(t) + k̂3(t)ai(t)

+

{
k̂4(t)ai−1(t) in CACC mode

0 in ACC mode
(21)

where k̂1, k̂2, k̂3, k̂4 are adaptive gains updated as

˙̂
k1(t) = −γ1B

⊤Px̃i(t)ei(t),

˙̂
k2(t) = −γ2B

⊤Px̃i(t)νi(t),

˙̂
k3(t) = −γ3B

⊤Px̃i(t)ai(t),

˙̂
k4(t) =

{
−γ4B

⊤Px̃i(t)ai−1(t) in CACC mode
0 in ACC mode

(22)

where γ1, γ2, γ3, γ4 > 0 are update gains, x̃i = xi − x̄i is the
error between the system and the reference model state, B⊤ =[
0 1 h−1

]
and P > 0 solves the Lyapunov equation (17).

Then, the adaptive law (21)-(22) solves item d) of Problem 1
for any h > 0. In particular,

lim
t→∞

x̃i(t) = 0, (23)

i.e. the adaptive closed loop converges to the externally
positive and string stable reference model dynamics.

Proof. To get the dynamics of x̃i, close the loop of (1) with
(21): then, add and subtract the ideal control (20). We obtain

˙̃xi(t) = Ax̃i(t) +B
1

k∗4

(
k̃1(t)ei(t) + k̃2(t)νi(t) + k̃3(t)ai(t)

+

{
k̃4(t)ai−1(t)

)
in CACC mode

0
)

in ACC mode
(24)

with k̃1 = k̂1−k∗1 , k̃2 = k̂2−k∗2 , k̃3 = k̂3−k∗3 , k̃4 = k̂4−k∗4 .
Consider the Lyapunov function (common to CACC and ACC)

V
(
x̃i, k̃

)
=

1

2
x̃⊤
i Px̃i+

k̃21
2γ1k∗4

+
k̃22

2γ2k∗4
+

k̃23
2γ3k∗4

+
k̃24

2γ4k∗4
(25)

with k̃⊤ =
[
k̃1 k̃2 k̃3 k̃4

]
. The time derivative of V gives

V̇
(
x̃i, k̃

)
=

1

2
x̃⊤
i

(
A⊤P + PA

)
x̃i +

k̃1
˙̃
k1

γ1k∗4
+

k̃2
˙̃
k2

γ2k∗4
+

k̃3
˙̃
k3

γ3k∗4

+
k̃4

˙̃
k4

γ4k∗4
+B⊤Px̃i

1

k∗4

(
k̃1ei + k̃2νi + k̃3ai

+

{
k̃4ai−1

)
in CACC mode

0
)

in ACC mode
(26)

where the dynamics (24) is used. Substitution of the Lyapunov
equation A⊤P + PA = −Q and rearranging terms gives

V̇
(
x̃i, k̃

)
= −1

2
x̃⊤
i Qx̃i +

k̃1
k∗4

(B⊤Px̃iei +
˙̂
k1
γ1

)

+
k̃2
k∗4

(B⊤Px̃iνi +
˙̂
k2
γ2

) +
k̃3
k∗4

(B⊤Px̃iai +
˙̂
k3
γ3

)

+


k̃4

k∗
4
(B⊤Px̃iai−1 +

˙̂
k4

γ4
) in CACC mode

k̃4

k∗
4

˙̂
k4

γ4
in ACC mode

(27)

where we have also used the fact that the ideal gains in (20)
are constant. Substitution of the adaptive laws (22) gives

V̇
(
x̃i, k̃

)
= −1

2
x̃⊤
i Qx̃i ≤ 0. (28)

As the Lyapunov function (25) is common to CACC and ACC,
it is continuous at any arbitrary transition instants. Continuity
and (28) imply that the origin (x̃i, k̃) = 0 is stable, i.e. the
signals x̃i(·), k̃(·) are bounded (x̃i, k̃ ∈ L∞).

We obtain convergence of x̃i using Barbalat’s Lemma2.
Recall that ai−1(·) ∈ L∞ (cf. Problem 1), implying x̄i ∈ L∞
as a result of the stable reference model (18). It follows that
xi = x̄i + x̃i ∈ L∞. Then, ˙̃xi ∈ L∞ from the error dynamics
(24). To apply Barbalat’s Lemma, we need x̃i ∈ L2. This can
be shown by integrating V (t) = V (x̃i(t), k̃(t)) in (28)

1

2

∫ ∞

0

x̃⊤
i (t)Qx̃i(t) dt = V (0)− V∞, (29)

where V∞ = limt→∞ V (t) is bounded. Consequently, x̃i ∈
2if a signal g(·) and its time derivative satisfy g, ġ ∈ L∞ and g ∈ L2,

then g(t) → 0 as t → ∞.
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(a) State-of-the-art ACC design with external positivity.
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(b) Proposed ACC design with external positivity.

Fig. 2: Spacing errors, inter-vehicle distances, velocities and accelerations with different ACC designs. Note the strong initial braking of the state
of the art as compared to the proposed design. For both designs, positive inter-vehicle distances validate collision avoidance.
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(a) Non-adaptive CACC-ACC design with uncertainty in τi.
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(b) Adaptive CACC-ACC design with uncertainty in τi.

Fig. 3: CACC-ACC designs with different knowledge of τi. The shaded area indicates that CACC mode is active. Spacing errors, inter-vehicle
distances, velocities and accelerations for non-adaptive and adaptive designs. The proposed adaptive design improves the spacing error behavior.

L2, which implies from Barbalat’s Lemma that x̃i → 0 as
t → ∞. This finally implies that the system state xi converges
to the state x̄i of the reference model, which is externally
positive and string stable by design.

Remark 4 (Degradation in terms of disturbance decoupling).
Differently from CACC, no ACC design (8) can achieve dis-
turbance decoupling [7]. Thus, ei in ACC shows performance
degradation for non-vanishing disturbances.

VI. NUMERICAL EXAMPLES

Let us first validate ACC, to allow a comparison with
the state-of-the-art externally positive design [2]. For the
homogeneous scenario in the numerical example of [2], i.e.
h = 1, τi = 0.1, ∀i, the state-of-the-art design is

ui(t) = −k⊤

vi(t)ai(t)
ϵi(t)
zi(t)

 ,
k = [18.225 1.3 − 5.625 50.625]

żi(t) = hvi(t)− ϵi(t)

(30)

We compare (30) with the design (12) in Theorem 2, spe-
cialized to ACC (k4 ≡ 0). The other gains are θ1 = 1.167
and θ1 = 0.816. We consider a platoon with 1 leading and 3
following vehicles. We let the leader accelerate in a sinusoidal
fashion with u0 = sin(0.1t) + 0.5 sin(0.5t) up to 5π seconds,
followed by a braking phase with u0 = −5.5 up to 6.5π sec-
onds, an acceleration phase with u0 = 1 up to 7.5π seconds,
and u0 = 0 thereafter. The braking phase is designed to check
collision avoidance. The initial conditions of the vehicles,
reported in Table I, have also been selected to induce an initial
braking phase. Although the zoomed spacing errors ei in Fig. 2
show the same response at regime, the velocity response in
Fig. 2a shows a strong initial braking phase for the state-of-
the-art design (30), in contrast with the smooth response of the
proposed design in Fig. 2b. The acceleration responses suggest
a more comfortable behaviour for the proposed design. Yet, the
positive inter-vehicle distances validate collision avoidance for
both designs. As long as u0 is non-vanishing, no ACC design
can regulate ei to zero, cf. Remark 4: regulation becomes



possible at the end of the scenario when u0 = 0.

TABLE I: Initial conditions and ideal engine constants

i 0 1 2 3
si(0) 0 -2 -4 -6
vi(0) 10 12 8 11
ai(0) 0 0 0 0
τi 0.2 0.1 0.3 0.25

We now consider an integrated CACC-ACC scenario, using
another platoon with 1 leading and 3 following vehicles, with
the same initial conditions as before and heterogeneous engine
constants as in Table I and h = 0.7. To simulate uncertain
engine time constants, we consider

1) the non-adaptive CACC-ACC design wrongly assuming
that τi = τ0 = 0.2, for i ∈ {1, 2, 3};

2) the adaptive CACC-ACC design in Theorem 3, with γ =
0.1 and Q = 103I .

The leading vehicle has the same u0 as before. The com-
parative results are in Fig. 3 for various transitions between
CACC and ACC (the shaded area indicates active CACC
mode): one of such transitions occurs during braking. By
comparing Fig. 3a with Fig. 3b, it can be seen that uncertainty
in τi creates non-zero spacing errors ei in the non-adaptive
design, even when CACC is active. In the adaptive design,
thanks to the disturbance decoupling property, the spacing
errors ei converge to zero when CACC is active, despite
u0 ̸= 0: ACC makes ei converge to zero only at the end of
the scenario when u0 = 0. Despite performance degradation of
ACC, collision avoidance is achieved, even in the non-adaptive
design. The comparison between Fig. 2 and Fig. 3 show better
vehicle-following behaviour of CACC-ACC, with smoother
acceleration/deceleration than the state-of-the-art ACC in [2].

VII. CONCLUSIONS

This work provided an external positivity framework for
longitudinal platooning where in the transitions between co-
operative adaptive cruise control (CACC) and adaptive cruise
control (ACC) desirable properties of collision avoidance and
string stability can be guaranteed. Such graceful transitions
have been studied also in the presence of vehicle parameter
uncertainty, via a suitable adaptive control design.

As the adopted external positivity framework is rooted
in linear systems theory, interesting future work includes
extending this framework in a nonlinear setting, e.g., to explic-
itly account for acceleration or velocity constraints. Another
relevant aspect is to let such constraints be heterogeneous,
which would likely require heterogeneous time-headways, e.g.,
accounting for different braking capabilities.
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