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Abstract

The rapid growth of the sharing economy has spurred an increase in research on on-
demand service platforms, including a wide range of topics such as optimization and
fairness. However, providing prescriptive design guidelines based on empirical stud-
ies proves to be challenging due to the complex interplay of multiple design factors.
Economic research has increasingly focused on developing novel modeling analysis, par-
ticularly for platforms with dynamic supply and demand, enabling a comprehensive un-
derstanding of market dynamics while maintaining tractability and extensibility. This
thesis addresses design issues within on-demand service platforms and provides manage-
rial implications.

Regarding the information disclosure policy about service delays, specifically the avail-
ability of current queue-length information in a two-sided marketplace, we illuminate
how this disclosure influences user behavior, thereby impacting platform revenues. Uti-
lizing queueing theory, we investigate the preferred information policy to maximize the
expected revenue. In a model of multiple platforms, we incorporate an endogenous user
arrival rate to capture the increased correlation between service quality and user arrivals.
Our findings indicate that while the recommendation for selecting information policies
remains qualitatively the same, the revenue difference between these policies increases.

We investigate the joint effect of pricing and service delay information disclosure poli-
cies on the platform’s expected profit. The pricing policy may be dynamic or static,
depending on the current queue length state in the market. Optimal prices under both
dynamic and static pricing policies are derived by applying uniformization to the un-
derlying Semi-Markov decision processes. By comparing optimal prices under different
pricing and information policies, we propose a strategy to maximize the expected profit.
Our results demonstrate that implementing a dynamic pricing policy and disclosing ser-
vice delay information result in a higher expected profit, whereas a static pricing policy
and concealing service delay information increase throughput.

Finally, this thesis discusses the background of the research question, conducts a com-
prehensive literature survey, outlines the modeling approach, analyzes results, and offers
managerial insights regarding platform pricing and information disclosure policies. These
studies are poised to deepen our understanding of the mechanisms governing on-demand
service platforms and inspire further research in the field of economics.
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Zusammenfassung
Das rasante Wachstum der Sharing Economy hat zu einer Zunahme von Forschung zu
On-Demand-Serviceplattformen geführt, die eine Vielzahl von Themen wie Optimie-
rung und Fairness abdeckt. Die Bereitstellung präskriptiver Designempfehlungen auf-
grund empirischer Studien erweist sich jedoch aufgrund des komplexen Zusammenspiels
mehrerer Designfaktoren als herausfordernd. Die Wirtschaftsforschung konzentriert sich
zunehmend auf die Entwicklung innovativer Modellanalysen, insbesondere für Plattfor-
men mit dynamischem Angebot und Nachfrage, um ein umfassendes Verständnis der
Marktdynamik zu ermöglichen und gleichzeitig Handhabbarkeit und Erweiterbarkeit zu
gewährleisten. Diese Dissertation behandelt Designfragen innerhalb von On-Demand-
Serviceplattformen und liefert damit verbundene managementbezogene Implikationen.

Hinsichtlich der Informationsweitergabepolitik bezüglich Serviceverzögerungen, insbe-
sondere der Verfügbarkeit von aktuellen Warteschlangeninformationen in einem zweisei-
tigen Markt, beleuchten wir, wie die Offenlegung das Nutzerverhalten beeinflusst und
die Einnahmen der Plattform beeinflusst. Unter Verwendung der Warteschlangentheo-
rie untersuchen wir die bevorzugte Informationspolitik zur Maximierung der erwarte-
ten Einnahmen. In einem Modell mehrerer Plattformen integrieren wir eine endogene
Benutzerankunftsrate, um die gesteigerte Korrelation zwischen Servicequalität und Be-
nutzerankünften zu erfassen. Unsere Ergebnisse deuten darauf hin, dass, obwohl die
qualitative Empfehlung für die Auswahl von Informationsrichtlinien gleich bleibt, die
Einnahmenunterschiede zwischen diesen Richtlinien zunehmen.

Wir untersuchen den gemeinsamen Effekt von Preis- und Informationsrichtlinien zur
Offenlegung von Serviceverzögerungen auf den erwarteten Gewinn der Plattform. Die
Preispolitik kann dynamisch oder statisch sein, abhängig vom aktuellen Zustand der
Warteschlangenlänge auf dem Markt. Optimale Preise unter sowohl dynamischen als
auch statischen Preisrichtlinien werden durch Anwendung der Uniformisierung auf die
zugrunde liegenden Semi-Markov-Entscheidungsprozesse abgeleitet. Durch den Vergleich
optimaler Preise unter verschiedenen Preis- und Informationsrichtlinien schlagen wir eine
Strategie vor, um den erwarteten Gewinn zu maximieren. Unsere Ergebnisse zeigen, dass
die Implementierung einer dynamischen Preispolitik und die Offenlegung von Service-
verzögerungsinformationen zu einem höheren erwarteten Gewinn führen, während eine
statische Preispolitik und die Verheimlichung von Serviceverzögerungsinformationen die
Durchsatzrate erhöhen.

Abschließend diskutiert diese Dissertation den Hintergrund der Forschungsfrage, führt
eine umfassende Literaturübersicht durch, skizziert den Modellierungsansatz, analysiert
Ergebnisse und bietet managementbezogene Einblicke zu Plattformpreisen und Informa-
tionsweitergaberichtlinien. Diese Studien sind darauf ausgerichtet, unser Verständnis der
Mechanismen von On-Demand-Serviceplattformen zu vertiefen und weitere Forschung im
Bereich der Wirtschaftsforschung anzuregen.
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1. Introduction

On-demand service platforms have experienced significant growth across diverse indus-
tries, driven by advancements in information technology and the widespread adoption
of smartphones. This transformative phenomenon is often referred as the platform
revolution (Parker et al. 2016). Some examples include: i), Ride-hailing: Platforms
like Uber and Lyft connect passengers with drivers, allowing users to request rides on-
demand through a mobile app; ii), Food delivery: Services like DoorDash, Uber Eats,
and Grubhub enable users to order food from local restaurants and have it delivered
to their doorstep; iii), Freight exchange: platforms such as Timocom, Trans EU, and
Uber Freight facilitate the connection between shippers and carriers, enabling them to
negotiate and arrange services; iv), Grocery Delivery: Apps like Instacart and Shipt al-
low users to order groceries online from their favorite stores and have them delivered to
their homes; v), Healthcare: Telemedicine platforms like Doctor on Demand and Amwell
connect patients with healthcare providers via video consultations, enabling convenient
access to medical advice and prescriptions; vi), Professional Services: Platforms such
as Upwork and Freelancer connect businesses with freelance professionals across various
fields, including graphic design, programming, writing, and marketing; vii), Beauty and
Wellness: On-demand beauty services like Glamsquad and StyleBee provide users with
professional hairstyling, makeup, and other beauty services at their desired location;
among others. These examples represent just a few of the many industries that have
embraced on-demand service platforms to meet the evolving needs and expectations of
customers.

Typically, these platforms follow a similar service process: attracting both customers
and suppliers, facilitating matchmaking between heterogeneous requests and services
to form a market segment, and generating profits through commission collection. This
business model presents many interesting and challenging questions about design factors.
The analysis of these factors is constrained by the specificity of application scenarios in
empirical studies, thus limiting the understanding of market mechanisms. For instance,
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1. Introduction

user behavior is influenced by multiple factors concurrently, making it challenging to
comprehend the impact of a single factor based solely on posteriori observations, with
the underlying process proving not easily explicable. Consequently, economic research
has increasingly emphasized innovative modeling analyses, particularly within platforms
with dynamic supply and demand.

Stochastic modeling is a promising approach for capturing market features in analysis.
Firstly, it can accommodate uncertain behaviors in markets, exemplified by user arrival
rates through random processes. Secondly, the methodology of stochastic modeling
enhances the approach to analyzing research questions, as seen in techniques like Markov
decision processes. Lastly, the conclusions and theorems derived from this approach
are extensible, making them applicable to a broader range of scenarios and algorithm
designs. Stochastic modeling relies on the intersection of informatics, computer science,
management, and economics, with the aim of designing reliable models that facilitate
the practical and robust analysis of real-world problems.

This thesis adopts a queueing theoretical approach to address design issues in on-demand
service platforms and offer relevant managerial implications. In our modeling framework,
we account for uncertainty in user behaviors, encompassing not only the user’s arrival
and platform selection but also their feedback on the implemented policies. Our findings
offer prescriptive design guidelines for platform development. We anticipate validating
and expanding upon these models and results to address additional challenges in the
field of platform design.

1.1. Contributions of this thesis

This thesis addresses fundamental design challenges for on-demand platforms, specifi-
cally focusing on information disclosure policies about service delays and the determi-
nation of pricing policies, whether static or dynamic. To accomplish this, we explore
these issues within a model framework for a two-sided marketplace using queueing the-
ory. Chapter 3 focuses on the impact of information disclosure policies on the market
and identifies the preferred policy among the proposed ones that maximizes expected
revenue. Chapter 4 delves into the joint effect of pricing policy and information policy
on the platform’s expected profit. In the following, we offer detailed explanations of our
contributions and present the key results we have obtained.

2



1.1. Contributions of this thesis

Information disclosure policy about queue length

The disclosure of queue-length information by a platform can have a significant impact
on user behavior, thereby influencing the platform’s net revenue through commission
collection. The empirical literature identifies two primary types of user abandonment
behaviors associated with different information disclosure policies. If the queue length
is displayed, arriving users may balk at joining the queue when they see a large queue
length, indicating long wait times for service. If the queue length is concealed, arriving
users may randomly renege the queue while waiting. These two types of user aban-
donment behavior differ fundamentally: balking behavior is a rational decision based
on informed judgment due to the availability of visible information, whereas reneging
behavior is a random action resulting from a lack of visible information. Selecting an
appropriate disclosure policy can, on one hand, increase the matching rate of the system,
resulting in higher revenue, and on the other hand, increase the matching probability
of the system, leading to greater user satisfaction and improving the platform’s reputa-
tion.

In Chapter 3, we analyze the information disclosure policy in both single- and double-
sided queueing models within a market segment, considering that customers and suppli-
ers on both sides have homogeneous requests. For example, on a ride-hailing platform,
passengers in the same region are assigned to drivers who can pick them up. This service
system is modeled as a single-sided queueing model. Conversely, in a freight exchange
platform, shippers and carriers must be matched for a specific origin-destination route,
and this service system is modeled as a double-sided queueing model. For both the
customer and supply side, we propose two information disclosure policies: visible and
invisible. Therefore, in a double-sided queueing model, we analyze four different informa-
tion policies: both-visible, only-demand-visible, only-supply-visible, and both-invisible.
Our goal is to understand the difference among these four information policies by ana-
lyzing the underlying Markov chains. Subsequently, we identify the market conditions
under which a specific policy is preferred in terms of expected net revenue.

We then expand our model into the non-monopoly case, considering scenarios where
multiple platforms are available for selection in a service. Users possess the flexibility
to switch between platforms if dissatisfied, with service quality directly influencing user
arrival rates. We introduce an endogenous arrival rate in our model, where users’ arrival
rates and their perceived long-term matching probabilities mutually depend on each

3



1. Introduction

other. We find that the selection of the preferred information policy remains qualitatively
the same, while the revenue effect of the information policy is increased. Our theoretical
findings highlight the significance of information design and provide prescriptive design
guidelines.

Joint effect of pricing and information design

Pricing policy is a vital element in platform design, with the option to implement dy-
namic pricing to attract customers and suppliers based on the level of queue congestion,
indicated by the current queue length. While dynamic pricing increases net revenue,
it may potentially decrease user loyalty compared to a static price. The dissatisfaction
could stem from issues such as price discrimination, incurring extra costs associated
with calculating the platform’s profit. The disclosure of queue-length information, as
another vital element in platform design, significantly influences user behavior, impact-
ing the platform’s net revenue. When examining its joint effect with the pricing policy,
we consider that customers may exhibit balking behavior when they see long queue-
length information, while some of they may hesitate and balk when the queue-length
information is concealed. This perspective differs from Chapter 3, where we investigate
the influence of information disclosure on users’ queueing behavior, now focusing on
users’ ability to estimate the expected waiting time. We analyze the interplay between
pricing and information policies, proposing the preferred strategy to select pricing and
information policies for maximizing expected profit.

In Chapter 4, we analyze a market segment wherein customers queue and suppliers serve,
using an M/M/1 queueing model. The platform can choose between a dynamic price,
based on the current queue length, or a static price, to attract customers and suppliers.
The platform can also decide whether to display the queue-length information to cus-
tomers, which can trigger corresponding balking behaviors. We obtain the optimality
equations of the underlying Markov decision processes through uniformization and com-
pare the optimal pricing solution under the proposed information policy. We provide
unique thresholds to determine the preferred strategy of pricing policy and information
policy for maximizing the platform’s expected profit.

Our results reveal the complementary and substitute ways in which pricing and informa-
tion policies interact: Dynamic pricing and visible information policies increase expected
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profit, while static pricing and invisible information policies increase throughput. Dy-
namic pricing achieves higher profits by increasing the average transaction price and,
consequently, commissions. Under the visible queue-length information policy, a trun-
cation point occurs due to customer balk behavior, negatively impacting net revenue
under dynamic pricing. This prompts a strategy of dynamic pricing and visible infor-
mation attracting fewer customers and suppliers, leading to lower throughput. Conceal-
ing queue-length information eliminates this truncation but results in decreased arrival
rates and throughput, ultimately lowering expected profit. Additionally, high commis-
sion rates diminish the effectiveness of concealing queue-length information in increasing
throughput.

1.2. Bibliographic notes

Chapter 3 is based on joint work with Stefan Minner and Martin Bichler. A preliminary
version of this work was presented in the Manufacturing and Service Operations Man-
agement (MSOM) Conference 2022 (Zhu et al. 2023). Chapter 4 is based on a working
paper with Stefan Minner and Martin Bichler.
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2. Preliminaries

In this chapter, we provide necessary theoretical background for the modeling, method-
ology, and other technical aspects throughout this thesis. The symbols used in this
chapter are intended for descriptive purposes. Notations specific to business models are
defined in their respective chapters. We summarize the notations used in Chapter 3 in
Appendix A and those used in Chapter 4 in Appendix B.

2.1. Markov chain

The Markov chain provides a powerful framework for describing the transitions between
stochastic states in the market. In this section, we introduce the definitions of Markov
chains and fundamental concepts that are essential for understanding their behavior.
For a deeper understanding of Markov chain theory, we recommend interested readers
to refer to the textbook by Norris (1998).

Stochastic process A stochastic process is a mathematical model that describes the
evolution of a system over time, where the system’s behavior is subject to randomness
or uncertainty. Let Xt be the state of a market at time t, which can be viewed as a
random variable. A discrete-time stochastic process describes the relationship between
a sequence of random variables X0, X1, X2, and so on. Each random variable in the
sequence corresponds to the state of the market at a specific discrete time point. A
continuous-time stochastic process describes the relationship between any pair of ran-
dom variables Xt1 and Xt2 at different time points t1 and t2. This type of process is
particularly useful for modeling markets that evolve continuously over time, without
discrete intervals. In both cases, the behavior of the stochastic process is described
using probability distributions, which provide insights into the potential outcomes of
the random variable Xt at each time point. These distributions help us understand the
likelihood of various market states occurring at different times.

7



2. Preliminaries

Poisson process and exponential distribution A Poisson process Poi(·) is a stochastic
process that models the occurrence of discrete events over time, where the average time
between events is known, but the exact timing of events is random. The time interval
between two adjacent events, denoted by x, in a Poisson process follows an exponential
distribution Exp(·). The probability density function of an exponential distribution is
given by

f(x; λ) =

λe−λx x ≥ 0

0 x < 0.

Here, λ is the parameter of the distribution, often referred as the rate parameter. The
value of λ represents the average rate of occurrence of discrete events per unit time in the
corresponding Poisson process. The cumulative distribution function of an exponential
distribution is given by

F (x; λ) =

1 − e−λx x ≥ 0

0 x < 0.

The mean of a random variable X following an exponential distribution is 1
λ , which is

the reciprocal of the rate parameter in the corresponding Poisson process.

The memoryless property of the Poisson process is an important feature in the applica-
tion of economic models. This means that the probability distribution of future events
is not influenced by the past events. In other words, the occurrence of events in the
future is independent of the occurrence of events in the past. This is indicated by the
memorylessness property of an exponential random variable, which is rigorously defined
as follows:

Pr (X > t1 + t2 | X > t1) = Pr (X > t1 + t2 ∩ X > t1)
Pr (X > t1)

= Pr (X > t1 + t2)
Pr (X > t1)

= e−λ(t1+t2)

e−λt1

8



2.1. Markov chain

= e−λt2

= Pr (X > t2) .

Continuous-time Markov chain A continuous-time Markov chain is a stochastic pro-
cess where the system’s state transitions from one state to another at random times
according to exponential random variables. The transition rates determine the proba-
bilities of transitioning between states. A continuous-time Markov chain Xt is charac-
terized by two components: a jump chain and a set of holding time parameters λi. The
jump chain consists of a countable set of states, e.g., denoted as S ⊂ {0, 1, 2, . . .}, along
with transition probabilities pij . When the system is in state Xt = i, the time until the
state changes follows an exponential distribution with rate λi, represented as Exp(λi).
The next state it transitions to, denoted as j, occurs with a probability pij .

Stationary distribution The steady-state behavior of a Markov chain refers to the
long-term probabilities of the system being in each state, which are described by a
distribution known as the stationary distribution {πi | i ∈ S}. A Markov chain is
considered irreducible if it is possible to transition from any state to any other state
with a positive probability, without any disjoint subsets of states that are inaccessible
to each other. A Markov chain is considered aperiodic if it lacks any regular pattern
or periodicity in its state transitions, meaning there are no fixed intervals at which the
chain returns to specific states or sets of states. In an aperiodic chain, states can be
revisited at irregular intervals.

Theorem 1 (Theorem 3.8.1, Ergodic theorem, Norris (1998)). A unique stationary
distribution exists for a Markov chain when it is both irreducible and aperiodic.

In this thesis, all Markov chain models used are both irreducible and aperiodic, guaran-
teeing the existence of unique steady-state distributions. More specifically, our models
are birth-death processes, which are known to possess unique stationary distributions.
We will introduce the concept of birth-death processes in the next sections.

Balance equations Balance equations in a Markov chain are a set of equations that
describe the long-term behavior of the chain. They represent the equilibrium conditions
or steady-state conditions of the Markov chain that the chain converges to. Global

9



2. Preliminaries

balance equations are a set of equations that describe the overall balance of probabilities
in a Markov chain, given by

πi =
∑
j∈S

πjpij

for each i ∈ S and j ∈ S. These equations ensure that the flow of probabilities into a
state is equal to the flow out of that state, establishing the equilibrium conditions of the
chain.

2.2. Markov decision process

Markov decision process A Markov decision process (MDP) is a mathematical frame-
work used to model decision-making problems in situations where outcomes are uncer-
tain and influenced by both random events and the decisions made by an agent. It is
a discrete-time stochastic control process that involves a set of states S, actions a ∈ A,
transition probabilities pij(a), and rewards Rij(a). At each discrete time step t, an agent
observes the current state i ∈ S and selects an action a ∈ A that transitions the system
to another state j ∈ S (which can be the same as i) based on the probability pij(a).
After each transition, the agent receives a reward Rij(a).

Semi-Markov decision process A semi-Markov decision process (SMDP) is an exten-
sion of the Markov decision process framework that incorporates the concept of sojourn
time being a general continuous random variable. SMDP is a continuous-time stochas-
tic control process that provides a modeling approach for systems with variable state
duration.

Methodical process For the information disclosure and pricing issues addressed in this
thesis within the on-demand service platform, we apply the aforementioned methodology
to model them separately. This involves defining random behaviors, such as the impact
of information disclosure itself on users’ balking and reneging behaviors, as well as the
influence of pricing levels on users’ average arrival rates. Specifically, we treat the
number of users in the market waiting in the queue for service as the state of the
market, which is uncertain and influenced by user behavior. The information disclosure
and pricing policies, conceptualized as transition probabilities, are modeled as influential
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factors governing transitions in the market state. Consequently, we employ the Markov
decision process to analyze the problem. Our model demonstrates a unique steady-state
distribution, allowing us to analyze and derive preferred policies.

2.3. Uniformization

Uniformization is a technique used in the analysis of semi-Markov decision processes to
transform them into equivalent discrete-time models. The following example illustrates
the concept of uniformization and outlines the derivation of its optimality equations.

Example 1. Consider an M/M/1 queue where customers arrive by a Poisson process
with fixed rate λ. The service time follows an exponential distribution with rate µ,
which can be selected from a continuous set [0, µ]. The service rate remains constant
after being selected; it does not change with the queue state. We assume µ > λ. This
indicates that the maximum service rate exceeds the arrival rate, resulting in a bounded
queue length. The service rate can be dynamically adjusted based on the queue length i,
changing at the times when a customer arrives or departs. We denote the service rate µ

at queue length i by µi. There is a service cost Cs(µ) per unit time for using the service
rate µ, and a waiting cost Cw(i) per unit time when the queue length is i. We assume
that Cs(µ) is continuous on [0, µ] and Cs(0) = 0. Additionally, we assume that Cw(i) is
monotonically non-decreasing and convex with the queue length i. How can the service
rate be selected to minimize the expected cost of service and waiting?

The transition rate of the Markov chain at state i is

ri→j,∀j∈S =

λ if i = 0

λ + µ if i ≥ 1.

We can uniform the Markov chain by using λ + µ. The transition probabilities of the
Markov chain and the corresponding uniformized version are depicted in Figure 2.1.
Derived from Bellman’s equations, we get

V (0) = 1
λ + µ

min
µ∈[0,µ]

{Cw(0) + γ + µV (0) + λV (1)} (2.1)
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......

(a)

......

(b)

Figure 2.1.: Top: Markov chain for Example 1. Bottom: Uniformized Markov chain for
Example 1.

V (i) = 1
λ + µ

min
µ∈[0,µ]

{Cw(i) + Cs(µ) + γ + µV (i − 1) + (µ − µ) V (i) + λV (i + 1)}

i = 1, 2, .. (2.2)

Here, γ is interpreted as a guess of the maximum average value, which is achievable
within the restricted class of policies (Ata and Shneorson 2006). By solving the joint
equations of (2.1) and (2.2) for each state i, we can determine the optimal value of µi

at each queue length i. For detailed proofs, we recommend interested readers refer to
the textbook by Bertsekas (2012).

In Chapter 4 of this thesis, we consider a pricing factor as a design element into the
queueing system, influencing both the queue arrival rate and service rate. In contrast
to the simplicity of Example 1, the model in Chapter 4 involves dynamic changes in
the arrival rate and service rate based on the queue state, specifically the current queue
length, due to the implementation of a dynamic pricing policy. To address the under-
lying semi-Markov decision process, we apply the uniformization technique explained
in Example 1 and determine optimal prices for the model. Consequently, we analyze
the recommended strategy for information disclosure and pricing policies based on the
computed solutions.
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2.4. Queueing theory

In an on-demand service platform, a user joins a queue to await their turn for service.
In this section, we describe the queueing process using mathematical terminology. For
a more in-depth understanding of queueing theory, we recommend interested readers to
refer to the textbook by Winston (2022).

Arrival and service process The input process of the queue is called the arrival process.
We call them customers. In all the models discussed in this thesis, we assume that at
most one arrival can occur at any given instant, such as in a Poisson process. In queueing
theory, when more than one arrival can occur at a given instant, we refer this as the
allowance of bulk arrivals.

The output process of the queue is known as the service process, which is typically
specified by a probability distribution referred as the service time distribution. This
indicates that the server’s work speed does not increase when there are more customers
present. In queueing theory, servers in parallel refers to the scenario where multiple
homogeneous servers work simultaneously to serve the customers in the queue. On the
other hand, servers in series implies that a customer must go through several servers
sequentially before completing the service.

In the models presented in Chapters 3 and 4, we consider a single server, not servers
in parallel. Additionally, a single server can complete the service without the need for
customers to pass through a series of servers.

Queue discipline The queue discipline defines the method for determining the order in
which customers are served. There are four commonly used queue disciplines:

1. First-come-first-served (FCFS) discipline: Customers are served in the order of
their arrival.

2. Last-come-first-served (LCFS) discipline: The most recent arrivals are served first.
One example is job scheduling, where the most recently submitted jobs are given
priority for execution.

3. Serve-in-random-order (SIRO) discipline: Customers waiting in the queue are
served in a random order. One example of its application is load balancing in
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distributed systems. Tasks or requests are assigned to servers in a random manner
to prevent overloading of specific servers.

4. Priority queueing disciplines: A priority discipline categorizes customers and serves
them based on their assigned priority. In the field of healthcare, patients are
prioritized in emergency rooms based on the severity of their condition.

In this thesis, we use the FCFS principles as the queue disciplines in Chapter 3 and
4. This implies that customers and suppliers on each side of the queueing system are
considered homogeneous entities.

The Kendall-Lee notation Kendall (1951) introduced a notation for describing queue-
ing systems based on six characteristics:

Arrival/Service/Servers/Discipline/Customers/Population.

The first and second characteristics describe the arrival and service process using stan-
dard abbreviations: i), M : Intervals between arrivals or service times are independent,
identically distributed random variables (iid) and follow an exponential distribution; ii),
D: Intervals between arrivals or service times are iid and deterministic; iii), Ek: In-
tervals between arrivals or service times are iid Erlang random variables with a shape
parameter k; iv), G: Intervals between arrivals or service times are iid and follows some
general distribution. The third characteristic describes the number of parallel servers.
The fourth characteristic describes the queue discipline. The fifth characteristic de-
scribes the maximum capacity or limit on the number of customers allowed in the queue
at any given time. The sixth characteristic describes the size of the population from
which the customers are drawn. In this thesis, we focus on queueing models that adhere
to the FCFS principle and assume an infinite population size. We omit the last three
characteristics: Discipline/Customers/Population.

Birth-death process The birth-death process is a specific case of a continuous-time
Markov process in which state transitions occur in only two forms: “births,” which
increment the state variable by one, and “deaths,” which decrement the state by one.
A Markov chain is considered reversible if, in the steady state, the sequence of states in
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reverse order is statistically indistinguishable from the sequence in forward order. The
birth-death process is reversible and detailed balance equations apply, given by

πipij = πjpji.

for each i ∈ S and j ∈ S. The queueing models considered in this thesis are based on
birth-death processes.
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Abstract: Information design in on-demand service platforms matters in applications
such as taxi services, ride-hailing platforms, and freight exchanges. Displayed service
delay information significantly affects platform revenues, leading users to balk or renege.
Information design is crucial for platforms with dynamic supply and demand; however,
the effects of various information policies on user behavior are unclear. User arrival rates
are not only influenced by the platform’s information policy, but also by the perceived
long-term matching probability in a model with multiple platforms. We use queueing
theory to examine information disclosure policies for maximizing platform revenue in a
marketplace featuring single- and double-sided queueing service systems. In a single-
sided model, forming the queue on the side with the higher arrival rate generates higher
expected revenue. The preferred information policy depends on the arrival rate and
system load. In a double-sided model, hiding the queue-length information is preferred
for the side with a lower arrival rate, whereas displaying it on both sides proves advan-
tageous when both sides have high arrival rates. Considering the long-term influence
of matching probability on user arrival rates, the recommendations for selecting the
information policy remain qualitatively the same, but the revenue difference between
information policies increases.

3.1. Introduction

Information design is important for facilitating matching for online on-demand service
platforms that connect supply and demand. With the rapid rise of service platformiza-
tion in various fields, competition and promotion among multiple platforms have made
information design a critical factor in gaining user reputation and market share. The
service systems for these applications can be classified into two categories based on their
structure. 1) Markets featuring a single-sided service queue, where customers are as-
signed services by a centralized center, encompassing scenarios such as ride-hailing plat-
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forms like Uber, DiDi, and Lyft; food delivery services like DoorDash and Uber Eats;
and online customer support, including live chat and email support. For these plat-
forms, once a customer arrives, the platform preselects service providers who compete
for this customer at that moment. Although there are multiple customers and service
providers, to study information design, such platforms are often modeled as single-sided
queues (Banerjee et al. 2015; Feng et al. 2021; H. Wang and Yang 2019). For instance,
in Lyft and Uber, riders join the system’s pool at a certain rate during some period in
a specific region. Nearby drivers queue up in the region and wait for dispatched orders.
A static pricing policy is considered in each region for the simplicity and fairness of the
platform’s operation. 2) Markets featuring a double-sided service queue, where both cus-
tomers and suppliers need to be matched, including scenarios such as peer-to-peer (P2P)
car-sharing platforms like Turo and Getaround; freight exchanges, such as Timocom,
Raaltrans, Trans EU, Full Truck Alliance, and Uber Freight; and freelance platforms
like Upwork and Fiverr, among others. On these platforms, customers simultaneously
interact with multiple service providers, while each provider engages with several cus-
tomers for service negotiation at a given moment. For instance, on Timocom, carriers
near Hamburg may negotiate with multiple shippers for a trip to Cologne, while ship-
pers engage with various carriers listed on the freight exchange. These systems are best
represented as double-sided queues.

In recent years, platform designers have increasingly focused on the research question of
how to effectively disclose current service delay information in two-sided marketplaces.
A good disclosure policy not only attracts more users to the platform but also enhances
the platform’s reputation and perceived service quality in the long run, while a poor
disclosure policy can have adverse effects. In practice, three categories of queue-length
information disclosure policies are observed among online service platforms, where users
on both sides of the platform are referred to as customers on the demand side and
suppliers on the supply side.

1. Full information: The platform provides both customers and suppliers with
queue-length information. This information can be used to calculate the expected
waiting time for incoming users, which may cause them to balk at joining the queue
and explore alternative options if they perceive the current queue length as too
long. In a single-sided queueing service system, we refer as the visible information
policy. In a double-sided queueing service system, we refer as the both-visible (BV )
information policy since both customers and suppliers receive the information.
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Company Specialities Information policy Daily transactions

Timocom EU BV 800,000
Raaltrans Czech Republic BV 160,000
Wtransnet South EU BV 40,000 (only Iberia)
Trans EU eastern EU SV 200,000

Full Truck Alliance China SV 200,000
Uber Freight EU/US BI (Before 2021) n.a.

Note. The market size is defined by the number of daily transactions. Data source:
Hänel (2021).

Table 3.1.: Comparison of information disclosure policies and daily transactions among
European Online Freight Exchange Platforms (Hänel 2021). One such
platform, Uber Freight, has been working to enhance the transparency of
its displayed information in recent years (Ligon 2021).

2. No information: Under this policy, neither customers nor suppliers receive in-
formation about the queue length. In a single-sided queueing service system, we
refer as the invisible information policy. In a double-sided queueing service sys-
tem, we refer as the both-invisible (BI) information policy. Although this approach
can help attract more users to the service queue and increase the matching rate
between both sides, it may also result in waiting users becoming impatient and
reneging from the queue.

3. Differentiated information: The platform displays the queue-length informa-
tion to one side while withholding it from the other. This includes two symmet-
ric information policies in a double-sided queueing service system, namely only-
demand-visible (DV ) and only-supply-visible (SV ). This type of information pol-
icy is not considered in a single-sided queueing service system, as suppliers or
customers on the server side do not exhibit abandonment behavior in response to
queue-length information.

We use freight exchanges as an illustrative example of a double-sided queueing service
system. We consider shippers and carriers as customers and suppliers, respectively.
Table 3.1 provides an overview of information policies used by some large online freight
exchange platforms in Europe. Two noteworthy observations arise in the field of freight
exchange in the European region. Firstly, they offer similar services, i.e., deliveries,
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but implement different queue-length disclosure policies. Secondly, there are numerous
platforms offering comparable services, with over one hundred freight exchanges in the
European region alone (Hänel 2021).

While the difference between platforms’ information policies remain an area that needs
further exploration, our study aims to address this gap. Empirical analyses often face
challenges due to confounding factors such as pricing and interface design. To overcome
these limitations, we propose a theoretical model that isolates the queue-length infor-
mation disclosure factor. We characterize different user abandonment behaviors under
different information policies and determine the preferred policy based on its impact on
platform revenue.

3.1.1. Literature review

We first review the relevant empirical literature that illuminates various behaviors of
users in the platform. Our model incorporates user behavior responses to information
design to understand their impact on platform revenue. We then review the relevant
analytical literature, comparing our models with the methodological approaches utilized
in previous studies. We highlight that our model both aligns with and distinguishes
itself from the literature by addressing assumptions about user behavior in information
design and considering the long-term impact of platform service quality in a model with
multiple platforms.

Empirical literature Numerous experimental and empirical studies have explored queue-
ing behaviors under various information disclosure policies. For example, Aksin et al.
(2019), Pazgal and Radas (2008), and Akşin et al. (2017) demonstrated that user aban-
donment mainly occurs upon market entry (balking) and while awaiting services (reneg-
ing). In queueing systems where users can access real-time service delay information,
Batt and Terwiesch (2015) and Akşin et al. (2013) analyzed abandonment data from
a hospital emergency department and a call center, respectively. Both studies discov-
ered that the probability of abandonment increases linearly with expected waiting time.
Intriguingly, Batt and Terwiesch (2015) found that both queue length and estimated
waiting time effectively indicate user abandonment. They investigated the impact of
visible queue-length information on the long-term arrival rate, assuming a collinearity
between queue length, user waiting time, abandonment rate, and arrival rates at different
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times of the day. They highlight that the perceived service quality, influenced by differ-
ent levels of patient acuity, affects the users’ long-term arrival rate. In situations with
unobservable queues, reneging behavior is highly non-trivial (Hassin 2016). For instance,
Maglaras et al. (2014) noted that reneging occurs when customers join the queue without
a clear understanding of service speed. Miscalibration is another factor; for example,
overly optimistic customers might become impatient and renege, while other customers
remain patient and willing to wait. However, empirical studies face challenges in fully
understanding the impact of user behavior on platforms solely due to disclosure policies,
as user behavior can be influenced by various factors. Consequently, several types of
theoretical models have been developed in this field to enhance our understanding of
these issues.

Analytical literature Research on information design can be traced back to several
seminal studies by Naor (1969), Parkan and Warren Jr (1978), and Martin and Pankoff
(1982). Naor (1969) investigated an observable M/M/1 queueing system in which users
balk at joining the queue based on a self-determined, exogenously given admission level,
considering the visibly observed queue length. In an exclusive examination of user balk-
ing behavior leading to abandonment, Simhon et al. (2016) concluded that displaying
queue-length information when the queue is short and turning off the display when the
queue is long is not optimal. B. Kim and J. Kim (2017) further investigated this M/M/1
queueing system and identified the optimal threshold for queue length. The queue-length
information is displayed when it is below this threshold and hidden when it exceeds it.
Their optimization aims to reduce the steady-state probability of the system being an
empty queue. Therefore, the key to selecting an information policy is to increase the
system load when the queue is short. Amidst the trade-offs in information disclosure
policies, Hassin and Koshman (2017) proposed the optimal pricing mechanism for im-
plementing a static pricing policy. Different from previous studies, our model, when
the queue length is displayed, does not assume that users’ admission levels concerning
displayed queue length are exogenously fixed. In our model, the displayed informa-
tion affects user behaviors in two primary ways: firstly, it instigates balking behavior,
prompting users to make informed decisions about joining the queue; secondly, it induces
greater user tolerance for longer queue lengths when the service rate is higher.

Parkan and Warren Jr (1978) and Martin and Pankoff (1982) utilized a Bayesian frame-
work to model users’ reneging behavior in an unobservable M/M/1 queueing system.
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They assumed that users, given an a-priori distribution of the market, would decide
whether to renege or not after entering the market, based on their individual waiting
time and utility functions. Recent game-theoretical literature on invisible service de-
lay information policies examines the ways in which information provision can impact
agent behavior (Bergemann and Morris 2019). Assuming such equilibrium behavior,
neither a purely display-only nor a hide-only information policy is optimal. The disclo-
sure policy influences the process by which users form their beliefs. Applying this game
theory framework, Lingenbrink and Iyer (2019) studied the disclosure of queue-length
information in a single-sided queueing service system and designed a binary signaling
mechanism, proven to be optimal for maximizing platform revenue. Gur et al. (2023)
studied the combined decisions of pricing and information disclosure for a product be-
tween sellers and buyers. They broadened the understanding of how information design
interacts with other elements in platform development.

Game theory attributes a high level of rationality to users’ reneging behavior, assum-
ing that users hold prior beliefs about the market state distribution and update their
beliefs as Bayesians (Allon et al. 2019; Jian and Sami 2010). The high level of rational-
ity in decision-making might also be a too strong assumption for this domain (Bisiere
et al. 2015). In contrast, our modeling framework, similar to Cui et al. (2022), cap-
tures reneging behavior through a Poisson process, indicating a progressive increase in
user reneging as waiting time lengthens (Armony et al. 2009). Our model makes fewer
assumptions about user rationality and serves as a complement to game-theoretical ap-
proaches. We differentiate between balking behavior triggered by displayed information
(e.g., long queue length) and reneging within the queue when information is not dis-
played. By comprehensively considering both types of user behavior in the marketplace,
our methodology enables a deeper understanding of the impact of information disclosure
on expected revenue while accounting for service quality.

Our work relates to the stream of queueing papers that study the platforms in a compet-
itive environment, where a platform’s reputation and quality of service can enhance its
attractiveness to potential users over the long term (Parker et al. 2016). Bai et al. (2019)
and Ke et al. (2020) found that pricing can influence endogenous user behavior to avoid
the Wild Goose Chase (WGC) phenomenon and increase platform revenue. Bai et al.
(2019) suggested that if the arrival rates of both sides are high, the platform should apply
the same policy on both sides, a finding that aligns with one of our observations in the
two-sided queueing model. Bernstein et al. (2021), Jeitschko and Tremblay (2020) and
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Bimpikis and Mantegazza (2023) discovered that if all users simultaneously use multiple
platforms, social welfare may decrease. Related to information design, Bimpikis et al.
(2020) emphasized its role in regulating supply-demand composition and attracting users
during early stages. Anunrojwong et al. (2022) explored its effect in congested social
service systems. However, all the papers mentioned above only investigate the short-
term impact of platform design on user behavior. Our model considers both types of
user behaviors influenced by information disclosure. More importantly, it examines the
role of information design in a market with multiple platforms, taking into consideration
the impact of perceived long-term matching probabilities on user arrival rates. Our find-
ings reveal the impact of endogenous arrival rates on the preferred information policy,
specifically the extent of information disclosure by platforms in an environment where
users have alternative options, and emphasize the significance of information design in
a multi-platform context compared to a monopoly platform.

3.1.2. Results and contributions

We introduce two queueing models for single-sided and double-sided queueing service
systems in a segmented market with homogeneous supply and demand requests. For
instance, customers with similar needs form a queue to find suppliers capable of per-
forming the work, while homogeneous suppliers on the other side provide the service.
To model user abandonment behavior, we analyze two behavioral assumptions that how
have been analyzed in previous works (Banerjee et al. 2015; Cui et al. 2022; Taylor
2018). When a user can see queue-length information, she may choose to balk at joining
the service queue; while if she cannot see the information, she may renege during the
waiting process.

Our study examines the impact of the two user abandonment behaviors on the plat-
form’s revenue and offers strategic implications for platform information design. The
preferred information policy depends on arrival rate and system load, which is the ratio
of demand and supply arrival rates. We show that in the one-sided queueing model,
forming the queue on the side with the larger arrival rate and concealing information in
an expected longer queue is preferred for higher expected revenue. In the double-sided
queueing model, we show that a differentiated information policy is preferred when the
arrival rates on both sides are sufficiently different. For a large market, meaning high
arrival rates on both sides, the system load determines the preference of displaying in-
formation on one side, both sides, or none at all. Our results offer an explanation for the
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information policies adopted by freight exchanges. For instance, platforms with higher
daily transaction rates tend to display the real-time queue length information, as shown
in Table 3.1. Conversely, platforms like Trans EU in specialized regions utilize a differ-
entiated information policy. Uber Freight, in its early stage as a relatively new online
freight exchange platform, did not disclose queue-length information before 2021 due to
its small early market. Our model’s predictions are consistent with Uber Freight’s ap-
parent consideration of changing its information disclosure policy now that it has gained
popularity (Ligon 2021).

An extension of our model incorporates an endogenous arrival rate that takes into ac-
count the user’s perceived long-term matching probability, a feature that captures the
increasing sensitivity of users to service quality in the context of multiple platforms, as
discussed in previous research (Bernstein et al. 2021; Jeitschko and Tremblay 2020). If
users perceive a low matching probability, they may switch to a competing platform.
We find that the recommendations regarding the preferred information policy remain
qualitatively the same in the endogenous model compared to the exogenously given ar-
rival rate. However, the revenue difference resulting from the right information policy
is much larger in the endogenous model. This indicates that higher service quality not
only boosts arrival rates but also amplifies the difference between information policies,
leading to increased revenue. This underscores the importance of information design in
the context of multiple platforms.

3.2. Single-sided queue

3.2.1. Model and notation

We utilize an M/M/1 queue to examine a single-sided queueing service system within
a segmented market, where customers request homogeneous supplier capacities (e.g.,
shippers and carriers share the same origin-destination pair in online freight exchanges)
and they are matched on a first-come-first-served basis. This is referred to as the single-
sided queueing model. The model represents a demand market when customers queue
and suppliers provide service, and a supply market in the opposite scenario. Our analysis
in the following section focuses on the demand market, given the structural symmetry
between both markets.
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(a) (b)

Figure 3.1.: The single-sided queueing model for a demand market. Left: K model.
Right: R model.

We assume that customers on the demand side and suppliers on the supply side arrive
independently in the market, following Poisson processes with respective arrival rates
of Λd and Λs. In a demand market, customers’ service time is an independent and
identically distributed exponential random variable with mean 1/Λs. The arrival rate
of the server side, i.e., Λs, is referred to as the service rate. We define the system load
as ρ = Λd/Λs. We define the size of the market at steady state as the market size,
measured by the corresponding user arrival rate. Specifically, the demand market size
is considered larger when the arrival rate of customers is higher while that of suppliers
remains constant; the supply market size is larger when the arrival rate of suppliers
is higher while that of customers remains constant; the full market size is larger when
both arrival rates of customers and suppliers are higher while maintaining a fixed system
load.

Two information policies named visible and invisible, defined by whether or not the real-
time queue length for customers is displayed, are considered in the demand market. A
diagram illustrating the queueing service systems under both information policies can be
found in Figure 4.1. Under the visible information policy, a customer balks at entering
the system if the indicated waiting time, based on queue length, exceeds the truncation
time t. In this context, we use an integer k := ⌈tΛs⌉, representing the corresponding
queue length for tolerance, as the truncation size for the customer queue. Consequently,
the queueing system is an observable M/M/1/K queue, referred to as the K model.
Under the invisible information policy, customers renege from the queue during their
wait, following an independent Poisson process with a reneging rate δ. The queueing
system is an unobservable M/M/1 queue with reneging behavior under the invisible
information policy, known as the R model. Notably, this rate is smaller than the arrival
and service rates, i.e., δ < Λϖ for each ϖ ∈ {d, s}, which is a mild assumption in practice.
The parameters t and δ represent user patience. Thus, if users are more patient, the
value of t is larger, or the value of δ is smaller. In the following, we use ℓ ∈ {K, R} to
represent the information policy.
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(a) (b)

Figure 3.2.: Transitions diagrams of Markov chains for a demand market. Left: K
model. Right: R model.

The platform generates net revenue by charging a fixed commission on each matched
pair of customers and suppliers, aiming to maximize its expected net revenue. Without
causing any ambiguity, the revenue mentioned in Chapter 3 is referring to net revenue.
To specifically analyze the impact of information disclosure independently of pricing, we
assume the platform implements a static pricing policy. The expected revenue depends
on the matching rate, which serves as an indicator of the system’s throughput. Accord-
ingly, the platform’s expected revenue is denoted as Revℓ := Λϖξℓ

ϖ for each ϖ ∈ d, s.
Here, ξℓ

ϖ signifies the matching probability of side ϖ under information policy ℓ, repre-
senting the long-term ratio of matches to entrants. The matching probability serves as
an evaluation of service quality for each side.

3.2.2. Markov chain models

We consider the queue length as the market state, and a uni-chain Markov chain can
capture the features of a single-sided queueing service system. The transition diagrams
for the Markov chains of both K and R models are provided in Figure 3.2. Formally,
the state space for both models are SK := {0, 1, .., k} and SR := N. The transition rates
are

rK
ij =


Λd if j = i + 1

Λs if j = i − 1

0 otherwise

and rR
ij =


Λd if j = i + 1

Λs + iδ if j = i − 1

0 otherwise

for each i ∈ Sℓ and j ∈ Sℓ where ℓ ∈ {K, R}.

We solve the steady-state probabilities of Markov chains for K and R models in system
load ρ to compare models that have the same arrival rates for customers and suppliers.
The steady-state distributions are
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πK
0 = 1 − ρ

1 − ρk+1 and πK
i = ρiπK

0 for each i ∈ SK , (3.1)

πR
0 = 1

1 +
∞∑

i=1

i∏
j=1

ρ
1+jδ/Λs

and πR
i =

i∏
j=1

ρ

1 + jδ/Λs
πR

0 for each i ∈ SR. (3.2)

The matching probabilities of customers and suppliers are

ξℓ
d = (1 − πℓ

0)/ρ and ξℓ
s = 1 − πℓ

0 (3.3)

for each ℓ ∈ {K, R}. The expected revenue is Revℓ = Λs(1 − πℓ
0).

3.2.3. Monotonicity of revenue and user patience

The expected revenue is monotonically increasing with user patience.

Proposition 2. The higher the user patience, the higher the expected revenue. Under
the visible information policy, the expected revenue increases with increasing truncation
size, i.e., RevK(k + 1) > RevK(k). It increases with increasing truncation time, i.e.,
dRevK

dt > 0. Under the invisible information policy, it decreases with the reneging rate,
i.e., dRevR

dδ < 0.

Proof. K model. Since πK
0 = 1−ρ

1−ρk+1 , πK
i = ρiπK

0 and RevK = Λs

(
1 − πK

k

)
=

Λs
1−ρk

1−ρk+1 where k is an integer, the revenue increment in k is

RevK(k + 1) − RevK(k) = Λs

(
1 − ρk+1

1 − ρk+2 − 1 − ρk

1 − ρk+1

)
= Λsρk

(
ρ2 − 2ρ + 1

)
(1 − ρk+1) (1 − ρk+2) > 0.

We also show that dk
dt = d(Λst)

dt > 0. As dk
dt ≥ 0, it implies that the truncation size

increases monotonically with the truncation time for fixed arrival rates of customers and
suppliers. Therefore, the expected revenue increases monotonically with the truncation
time, i.e., dRevK

dt ≥ 0.
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R model. Since πR
i =

i∏
j=1

ρ
1+jδ/Λs

πR
0 , πR

0 = 1
1+ζ and RevR =

(
1 − πR

0

)
Λs, the first

derivative of RevR in δ is

dRevR

dδ
= Λs

1
(1 + ζ)2 · dζ

dδ
= Λs

(1 + ζ)2

∞∑
i=1

i∏
j=1

ρ

1 + jδ/Λs
·

i∑
j=1

−j

Λs + jδ
< 0.

■

In our models, user patience parameters are estimated and provided in the market, and
the platform planner subsequently determines the preferred information policy. Propo-
sition 2 illustrates that both balking and reneging behaviors result in a decrease in
expected revenue, highlighting that maximizing revenue occurs when fewer customers
exhibit these behaviors. Specifically, under the visible information policy, when con-
sidering the service rate of the system, the truncation size can be interpreted as the
truncation time. Proposition 2 establishes the monotonic relationship between expected
revenue and user patience parameters (k, t, and δ) under each information policy. This
suggests the uniqueness of a threshold for determining the preferred information policy
in user patience under the ceteris paribus condition for fixed arrival rates of customers
and suppliers.

3.2.4. Queue side for increased revenue

In the single-sided model, we address queueing which side has a higher expected revenue.
This analysis adds to the question about comparing customer and supplier markets:
which one has a higher expected revenue? We compare the expected revenue of the
single-sided queueing model for different sides to queue. For the same arrival rates of
customers and suppliers, we denote the expected revenue in a demand market by Revℓ

d

and that in a supply market by Revℓ
s.

Proposition 3. In a single-sided model, queueing the side with a higher arrival rate has
a higher expected revenue. Specifically, for each ℓ ∈ {K, R}, if the system load satisfies
ρ ≥ 1, then the expected revenue in a demand market is higher than or equal to that in
a supply market, i.e., Revℓ

d ≥ Revℓ
s. Otherwise, if ρ < 1, then Revℓ

d < Revℓ
s.

Proof. We discuss the case where the arrival rate of customers is higher than that of
suppliers, i.e., Λd ≥ Λs and ρ ≥ 1. We omit the case where Λd < Λs, as the model setting
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3.2. Single-sided queue

is symmetric. We compare the expected revenues of single-sided models with different
queue sides. Recall that the expected revenue of queueing customers (i.e., a demand
market) is denoted by Revd = Rev, and the expected revenue of queueing suppliers (i.e.,
a supply market) is denoted by Revs.

K model. The expected revenue of queueing customers is RevK
d = Λs(1 − πK

0 ) =
Λs

ρ−ρk+1

1−ρk+1 , and the expected revenue of queueing suppliers is RevK
s = Λd

1−ρks

1−ρks+1 , where
ks := tΛd is the truncation size in the supplier market. It holds that

RevK
d − RevK

s = Λsρ
1 − ρρk

1 − ρρk+1 − Λd
1 − ρks

1 − ρks+1 = Λd

(
1 − ρk

1 − ρk+1 − 1 − ρ⌈k/ρ⌉

1 − ρ⌈k/ρ⌉+1

)
ρ≥1
≥ 0.

R model. Denote ζ :=
∞∑

i=1

i∏
j=1

ρ
1+jδ/Λs

and ζs :=
∞∑

i=1

i∏
j=1

(
1

ρ+jδ/Λs

)
. The expected

revenues of queueing different sides are RevR
d = Λs(1−πR

0 ) = Λs
ζ

1+ζ and RevR
s = Λd

ζs

1+ζs .
It holds

RevR
d − RevR

s = Λs

(
ζ

1 + ζ
− ρ

ζs

1 + ζs

)
= Λs

(1 + ζx) (1 + ζs) (ζ − ρζs − (ρ − 1)ζζs) . (3.4)

Let us denote fr = ζ − ρζs − (ρ − 1)ζζs. In the following analysis, we demonstrate that
fr ≥ 0. To do so, we seek specific different ad-hoc intervals corresponding to different
degrees of relaxation for fr. We first divide the domain of ρ into three segments: (i)
ρ ∈ [1.8, ∞), (ii) ρ ∈ [1.06, 1.8), and (iii) ρ ∈ [1, 1.06). We then show that fr ≥ 0 in each
of the three cases. The magnitude of these values does not impact the generality of our
conclusions.

Case (i): ρ ∈ [1.8, ∞). In this segment, we derive a lower bound equation for fr (i.e.,
(3.5)), which is shown to be larger than zero for any ρ ∈ [1.8, ∞). Denote z := δ/Λs.
We have:

fr ≥
∞∑

i=1

i∏
j=1

ρ

1 + jz
− ρ

∞∑
i=1

i∏
j=1

1
ρ + z

− (ρ − 1)
∞∑

i=1

i∏
j=1

ρ

1 + jz

∞∑
i=1

i∏
j=1

1
ρ + z

= z

ρ + z − 1

∞∑
i=1

i∏
j=1

ρ

1 + jz
− ρ

ρ + z − 1 = z

ρ + z − 1

 ∞∑
i=1

i∏
j=1

ρ

1 + jz
− ρ

z

 (3.5)
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where

d

dρ

 ∞∑
i=1

i∏
j=1

ρ

1 + jz
− ρ

z

 =
∞∑

i=1

i

ρ

i∏
j=1

ρ

1 + jz
− 1

z
≥

∞∑
i=1

i1.8i−1
i∏

j=1

1
1 + jz

− 1
z

> 0.

This indicates that the term
∞∑

i=1

i∏
j=1

ρ
1+jz − ρ

z monotonically increases with ρ for any

ρ ∈ [1.8, ∞). As shown by the inequality

d

dz

 ∞∑
i=1

i∏
j=1

ρ

1 + jz
− ρ

z

 ≤ d

dz

 ∞∑
i=1

i∏
j=1

1.8
1 + jz

− 1.8
z


= 1.8

z2 −
∞∑

i=1

 i∏
j=1

1
1 + jz

 i1.8i < 0,

the term
∞∑

i=1

i∏
j=1

ρ
1+jz − ρ

z monotonically increases with z for any ρ ∈ [1.8, ∞) and z ∈

(0, 1). Therefore,

(3.4) ≥ Λs

(1 + ζx) (1 + ζs)
z

ρ + z − 1

 ∞∑
i=1

i∏
j=1

1.8
1 + j

− 1.8

 > 0.

Here, we can see that the RHS of the inequality is larger than zero, since all terms in
the expression are positive.

Case (ii): ρ ∈ [1.06, 1.8). In this segment, we introduce the lower bound equation
fυ := ζ − υζs − (υ − 1)ζζs, which is a function of an independent variable υ. Since
dfυ

dυ ≤ 0, it follows that fr ≥ fυ if ρ ≤ υ. Furthermore, we have already shown in Case
(i) that fυ ≥ 0 if υ = 1.8. Moving forward, we demonstrate that fυ is monotonically
increasing with ρ and monotonically decreasing with z for any υ ∈ [1.06, 1.8). Before
demonstrating this, we define a function gυ := ζ

1+ζ − υ ζs

1+ζs . It holds

dgυ

dρ
= d

dρ

( Λs

(1 + ζ) (1 + ζs)fυ

)
= d

dρ


∞∑

i=1

i∏
j=1

ρ
1+jz

1 +
∞∑

i=1

i∏
j=1

ρ
1+jz

− υ

∞∑
i=1

i∏
j=1

1
ρ+jz

1 +
∞∑

i=1

i∏
j=1

1
ρ+jz

 ≥ 0.
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We find

d

dρ
(ζζs)

=
∞∑

i=1

i

ρ

i∏
j=1

ρ

1 + jz
·

∞∑
i=1

i∏
j=1

1
ρ + jz

−
∞∑

i=1

i∏
j=1

ρ

1 + jz
·

∞∑
i=1

i∑
j=1

1
ρ + jz

i∏
j=1

1
ρ + jz

≥ 0

which indicates

d

dρ

Λs

(1 + ζ) (1 + ζs) ≤ 0, and hence dfυ

dρ
≥ 0.

We find

d

dz

ζ

ζs
=

∞∑
i=1

i∏
j=1

ρ
1+jz ·

∞∑
i=1

i∏
j=1

1
ρ+jz

i∑
j=1

j
ρ+jz −

∞∑
i=1

i∏
j=1

ρ
1+jz

i∑
j=1

j
1+jz ·

∞∑
i=1

i∏
j=1

1
ρ+jz

(ζs)2 ≤ 0,

which indicates

d

dz

( 1
ζs

− ρ

ζ
+ 1 − ρ

)
≤ 0, and hence dfr

dz
≤ 0 and dfυ

dz
≤ 0.

The monotonicity of fυ in ρ and z implies that if we solve for ρ such that fυ(z = 1) = 0
and denote the solution as ε, then for any ρ ∈ [ε, ∞) and z ∈ (0, 1), it holds that
fr ≥ fυ ≥ 0. In other words, if we can find a value of ε smaller than 1.06, we can prove
Case (ii). To do so, we can recursively calculate fυ(z = 1) = 0 by updating υ to ε. After
the fifteenth round, we can find a solution ε ≤ 1.06.

Case (iii): ρ ∈ [1, 1.06). In this section, we derive a lower bound for fr (i.e., (3.6)) and
demonstrate that this lower bound is higher than zero for any ρ ∈ [1, 1.06). For (3.4), it
holds

(3.4) =
Λs

(
1
ζs − ρ

ζ − (ρ − 1)
)

ζζs (1 + ζ) (1 + ζs)

≥ Λs

ζζs (1 + ζ) (1 + ζs)

 1
∞∑

i=1

i∏
j=1

1
ρ+j

− ρ
∞∑

i=1

i∏
j=1

ρ
1+j

− ρ + 1

 (3.6)
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where

d

dρ

 1
∞∑

i=1

i∏
j=1

1
ρ+j

− ρ
∞∑

i=1

i∏
j=1

ρ
1+j

− ρ + 1



=

∞∑
i=1

i∏
j=1

1
ρ+j

i∑
j=1

1
ρ+j(

∞∑
i=1

i∏
j=1

1
ρ+j

)2 +

∞∑
i=1

(
i∏

j=1

ρ
1+j

)
i(

∞∑
i=1

i∏
j=1

ρ
1+j

)2 − 1
∞∑

i=1

i∏
j=1

ρ
1+j

− 1

≥

∞∑
i=1

i∏
j=1

1
1.06+j

i∑
j=1

1
1.06+j(

∞∑
i=1

i∏
j=1

1
1+j

)2 +

∞∑
i=1

(
i∏

j=1
1

1+j

)
i(

∞∑
i=1

i∏
j=1

1.06
1+j

)2 − 1
∞∑

i=1

i∏
j=1

1
1+j

− 1 > 0.

Hence it holds

(3.6) ≥ Λs

ζζs (1 + ζ) (1 + ζs)

 1
∞∑

i=1

i∏
j=1

1
1+j

− 1
∞∑

i=1

i∏
j=1

1
1+j

− 1 + 1

 = 0.

■

In the single-sided model, users on the server side are equivalent to users queueing with
absolutely no patience. For instance, in a demand market, suppliers on the server side
will leave immediately without waiting if they cannot be matched upon arrival at the
platform. Consequently, the side with a lower arrival rate performing the service can
reduce the number of users who choose not to wait if they cannot be matched upon
arrival and depart immediately.

3.2.5. Threshold to determine information disclosure

We define an indifference curve to determine the preferred information policy. On the
indifference curve, f

(A,B)
x = RevA − RevB ≜ 0 signifies that if the market parameters

satisfy this condition, information policies A and B have the same expected revenue.
This implies that the platform is indifferent to the choice of information policy, as the
same expected revenue is attained regardless of the policy implemented. Consequently, it
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3.2. Single-sided queue

Figure 3.3.: The preferred information policy in a single-sided queueing model:
Λs ∈ [10, 100] and ρ ∈ [0.5, 1.8].

determines the preferred information policy, with each policy being preferred on one side

of the curve. Let ζ :=
∞∑

i=1

i∏
j=1

ρ
1+jδ/Λs

. In a single-sided queueing model, the indifference

curve f
(K,R)
x = 0 is given by:ρtΛs+1 + ζ − ρ − ρζ = 0 if ρ ̸= 1

tΛs − ζ = 0 if ρ = 1
(3.7)

For a fixed service rate Λs, if the customer arrival rate is low, it implies that the expected
queue length in the system is short, and all ζ, ρ, and t satisfying (3.7) are small. In
this case, the visible information policy is preferred, and vice versa. This also implies
that when the truncation size is larger than the one satisfying the indifference curve, few
customers balk upon entering the system if they see the current queue-length informa-
tion. As a result, the visible information policy is preferred for higher expected revenue.
Conversely, if the expected queue length is long, hiding the information attracts more
users to the system, even if some users renege while waiting in the queue, ultimately in-
creasing the expected revenue. Under different arrival rates and system loads, Figure 3.3
provides an example that illustrates the preferred policy through indifference curves.

Proposition 4. In a demand market, if the system load ρ exceeds a threshold 1 < Tρ < 2,
then the invisible information policy is preferred.
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3. Information Disclosure Policy Design

Proof. Value of Tρ. The value of Tρ satisfies the condition lim
Λs→∞

f
(K,R)
x = 0, when ρ is

substituted with Tρ in the function f
(K,R)
x .

We first prove the threshold Tρ > 1. Then we show that if the arrival rate of suppliers
is sufficiently large (i.e., Λs → ∞) and a fixed ρ, the value of t is too small to satisfy the
indifference curve f

(K,R)
x = 0 for a large ρ (e.g., ρ ≥ 2). Since the t satisfying f

(K,R)
x = 0

is monotonically increasing with ρ and Λs (refer to Case (i) and Case (iii) of Theorem 5),
this indicates that for fixed t and δ, ρ converges to Tρ (where 1 < Tρ < 2) as Λs increases.

Lower bound for Tρ. We suppose Tρ < 1 (i.e., ρ < 1) and find a contradiction. The
indifference curve f

(K,R)
x = 0 is

δt = δ

Λs

ln
(

ρ + (ρ − 1)
∞∑

i=1

i∏
j=1

ρ
1+jδ/Λs

)
ln ρ

− δ

Λs
. (3.8)

It holds

lim
Λs→∞

RHS of (3.8) = lim
ϵ→0

ϵ ln
(

ρ + (ρ − 1)
∞∑

i=1

i∏
j=1

ρ
1+jϵ

)
ln ρ

≤ lim
ϵ→0

ϵ ln
(

ρ + (ρ − 1)
∞∑

i=1

(
ρ

1+ϵ

)i
)

ln ρ

ρ<1
≤ lim

ϵ→0

ϵ ln ϵρ
1+ϵ−ρ

ln ρ
= 0 (3.9)

where ϵ is a variable. However, in the LHS of (3.8), the value δt > 0, which contradicts
(3.9).

Upper bound for Tρ. Since the LHS of (3.8) is a constant value as Λs increases
sufficiently, we show the RHS of (3.8) increases to infinity if ρ ≥ 2. It holds

lim
Λs→∞

RHS of (3.8) = lim
ϵ→0

ϵ ln
(

ρ + (ρ − 1)
∞∑

i=1

i∏
j=1

ρ
1+jϵ

)
ln ρ

≥ lim
ϵ→0

ϵ ln
(

ρ + (ρ − 1)
∞∑

i=1

(
ρ

1+ϵ

)i
)

ln ρ

ρ≥2
≥ lim

ϵ→0

ϵ ln
(
ρ
(

ρ
1+ϵ − 1

)∞/
(ρ − ϵ − 1)

)
ln ρ

= ∞.
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This indicates that the indifference curve f
(K,R)
x = 0 cannot get satisfied if ρ ≥ 2 as Λs

is sufficiently large. ■

Proposition 4 reveals that an invisible information policy is preferred in a demand market
with a high system load (e.g., ρ = 1.7 in Figure 3.3), regardless of market size. Because
the system load is high, i.e., ρ > Tρ, the service rate is lower than the arrival rate of
the queue side. The queue length keeps relatively long, and it is preferable to conceal
the queue-length information. Theorem 5 illustrates how two different types of larger
market sizes affect the preferred information policy.

Theorem 5. In a demand market, the preferred information policy is determined as
follows:

1. If one side’s market size is large and the arrival rate of customers Λd is below a
unique threshold Td, then the visible information policy is preferred, and vice versa.

2. If the full market size is large with a fixed system load ρ < Tρ and the arrival rate
of suppliers Λs is below a unique threshold Tf , then the invisible information policy
is preferred, and vice versa.

Proof. Values of Td and Tf . The value of Td satisfies the condition f
(K,R)
x = 0, when

Λs is held constant and Λd is substituted with Td in the function f
(K,R)
x . The value of

Tf satisfies the condition f
(K,R)
x = 0, when ρ is held constant and Λs is substituted with

Tf in the function f
(K,R)
x .

We prove the uniqueness of the threshold Tϖ for each ϖ ∈ {d, f} by establishing the
monotonicity of the indifference curve in three cases: (i) arrival rate of customers is
larger; (ii) arrival rates of both customers and suppliers are larger. We omit the case
that the arrival rate of suppliers is larger since the setting is symmetric to (i).

Case (i). When the arrival rate of customers is larger, we consider that Λs remains
fixed and ρ increases. The value of t satisfying the indifference curve f (K,R) = 0 is

t = ln

ρ + (ρ − 1)
∞∑

i=1

i∏
j=1

ρ

1 + jδ/Λs

/ (Λs ln ρ) − 1
Λs

. (3.10)
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To demonstrate the monotonicity of the indifference curve, we prove that t is monoton-
ically increasing with ρ. It holds

dt

dρ
= d

dρ

ln
(

ρ + (ρ − 1)
∞∑

i=1

i∏
j=1

ρ
1+j

)
Λs ln ρ

≥ d

dρ

ln
(
ρ + (ρ − 1)ρ

2
)

Λs ln ρ
= d

dρ

ln
(

ρ
2 + 1

2

)
Λs ln ρ

≥ 0.

(3.11)

Case (ii). When arrival rates of both customers and suppliers are larger, we consider
that both Λd and Λs increase and a fixed system load ρ. For (3.10), it holds

dt

dΛs
= d

dΛs

 1
Λs

ln

ρ + (ρ − 1)
∞∑

i=1

i∏
j=1

ρ

1 + jδ/Λs

/ ln ρ − 1


= 1

δ ln ρ

d

dΛs

 δ

Λs
ln

1 +
(

1 − 1
ρ

) ∞∑
i=1

i∏
j=1

ρ

1 + jδ/Λs

 . (3.12)

For simplification in the following equations, we use z = δ/Λs and z ∈ (0, 1). Since

d

dz

z ln

1 +
(

1 − 1
ρ

) ∞∑
i=1

i∏
j=1

ρ

1 + jz


≥ d

dz

(
z ln

(
1 +

(
1 − 1

ρ

)
ρ
2

))
≥ 0 if ρ ≥ 1

< d
dz

(
z ln

(
1 +

(
1 − 1

ρ

)
ρ
2

))
< 0 if ρ < 1

, (3.13)

this indicates (3.12) ≤ 0. ■

As illustrated in Figure 3.3, there exists a unique threshold that determines the preferred
information policy, as stated in the first part of Theorem 5. Essentially, the expected
queue length becomes a key determinant of the preferred information policy. A large
arrival rate on the queue side results in a long expected queue length, indicating that an
invisible policy is preferred. For a large full market size with a relatively low system load
(for instance, ρ = 1.1 as shown in Figure 3.3), the second part of Theorem 5 establishes
a threshold Tf . This threshold, based on the arrival rate of suppliers, indicates whether
the queue length will remain relatively long or short, thereby informing the choice of the
preferred information policy.
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3.3. Double-sided queue

(a) (b)

(c) (d)

Figure 3.4.: Transitions diagrams of Markov chains under four information policies.
Top Left: BV model. Top Right: DV model. Bottom Left: SV model.
Bottom Right: BI model.

3.3. Double-sided queue

3.3.1. Model and notation

In this section, we establish a double-sided queueing model to examine the impact of
two information policies, visible and invisible, for each side. Consequently, we have
four information policies to consider: the both-visible (BV ) policy, where both sides can
see the queue-length information; the only-demand-visible (DV ) policy and only-supply-
visible (SV ) policy, where only one side can see the queue-length information; and the
both-invisible (BI ) policy, where neither side can see it. We denote the truncation sizes
and reneging rates as kϖ and δϖ, respectively, where ϖ ∈ {d, s} corresponds to the
demand side (customers) and the supply side (suppliers), respectively. When the queue-
length is visible, the truncation size can be converted into truncation time, taking into
account the service rate of each side. We denote the truncation time by tϖ. We represent
the set of all four information policies by M := {BV, DV, SV, BI}.

3.3.2. Markov chain models

Since customers and suppliers are matched based on the first-come-first-served principle,
one of the two queues is always empty, enabling the construction of a uni-chain Markov
chain for analysis. The transition diagrams for the Markov chains of the double-sided
queueing models are provided in Figure 3.4. Without loss of generality, the state of this
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Policy ℓ = BV ℓ = DV

Sℓ {−ks, .., kd} {−∞, .., kd}
rℓ

ij , j = i + 1 Λd max{Λd, Λd − iδs}
rℓ

ij , j = i − 1 Λs Λs

ℓ = SV ℓ = BI

{−ks, .., +∞} Z
Λd max{Λd, Λd − iδs}

max{Λs, Λs + iδd} max{Λs, Λs + iδd}

Table 3.2.: State space and transition rate of Markov chain.

Markov chain (i.e., i) is defined as the absolute difference between the lengths of the
customer and supplier queues. The transition rates are determined by the corresponding
arrival rates. For example, if customers are queueing in the market, the transition rate
of state i increasing by 1 is the arrival rate of customers Λd, whereas it decreasing by 1 is
the arrival rate of suppliers Λs. Particularly, when the queue-length information is not
visible to customers, the transition rate of decreasing by 1 is the arrival rate of suppliers
plus the reneging rate of queueing customers, i.e., Λs + iδd. Table 3.2 summarizes the
definitions of the state space Sℓ and the transition rate rℓ

ij for each ℓ ∈ M .

The steady-state distribution of the Markov chain under a BV policy is as follows:

πBV
i =


1

1+ ρ−ρkd+1
1−ρ

+ ρks −1
ρks+1−ρks

= 1
1+ϕBV

d
+ϕBV

s
if i = 0

ρiπBV
0 if i > 0

for each i ∈ SBV . Here, ϕBV
d and ϕBV

s are two auxiliary variables defined as ϕBV
d :=

ρ−ρkd+1

1−ρ and ϕBV
s := (1/ρ)−(1/ρ)ks+1

1−(1/ρ) = ρks −1
ρks+1−ρks

. The matching probability of customers
or suppliers is defined as the ratio of the sum of their arrival rates while the opposite
side is in queue, divided by their own arrival rate. The expressions for ξBV

d and ξBV
s are

as follows:

ξBV
d =

Λs

kd∑
i=1

πBV
i + Λd

−ks∑
i=−1

πBV
i

Λd
=

1
ρϕBV

d + ϕBV
s

1 + ϕBV
d + ϕBV

s
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Policy πℓ
0 πℓ

i , ∀i < 0 πℓ
i , ∀i > 0 ξℓ

d ξℓ
s

ℓ = BV 1
1+ϕℓ

d
+ϕℓ

s
ρiπℓ

0 ρiπℓ
0

1
ρ

ϕℓ
d+ϕℓ

s

1+ϕℓ
d
+ϕℓ

s

ϕℓ
d+ρϕℓ

s

1+ϕℓ
d
+ϕℓ

s

ℓ = DV 1
1+ϕℓ

d
+ζℓ

s

−i∏
j=−1

1
ρ−jδs/Λs

· πℓ
0 ρiπℓ

0
1
ρ

ϕℓ
d+ζℓ

s

1+ϕℓ
d
+ζℓ

s

ϕℓ
d+ρζℓ

s

1+ϕℓ
d
+ζℓ

s

ℓ = SV 1
1+ζℓ

d
+ϕℓ

s
ρiπℓ

0
i∏

j=1

ρ
1+jδd/Λs

· πℓ
0

1
ρ

ζℓ
d+ϕℓ

s

1+ζℓ
d
+ϕℓ

s

ζℓ
d+ρϕℓ

s

1+ζℓ
d
+ϕℓ

s

ℓ = BI 1
1+ζℓ

d
+ζℓ

s

−i∏
j=−1

1
ρ−jδs/Λs

· πm
0

i∏
j=1

ρ
1+jδd/Λs

· πℓ
0

1
ρ

ζℓ
d+ζℓ

s

1+ζℓ
d
+ζℓ

s

ζℓ
d+ρζℓ

s

1+ζℓ
d
+ζℓ

s

Table 3.3.: Steady-state probability and matching probability for four information
policies.

and

ξBV
s =

Λs

kd∑
i=1

πBV
i + Λd

−ks∑
i=−1

πBV
i

Λs
= ϕBV

d + ρϕBV
s

1 + ϕBV
d + ϕBV

s

.

We present the Markov chain steady-state distributions and matching probabilities for
the other information policies, i.e., DV , SV and BI, in a similar manner in Table 3.3.
Here, ϕℓ

ϖ and ζℓ
ϖ for each ϖ ∈ {d, s} are auxiliary variables defined as ϕDV

d := ϕBV
d ,

ϕSV
s := ϕBV

s , ζℓ
d :=

∞∑
i=1

i∏
j=1

ρ
1+j(δd/Λs) for each ℓ ∈ {BI, SV } and ζℓ

s :=
∞∑

i=1

i∏
j=1

1/ρ
1+j(δs/Λd) =

∞∑
i=1

i∏
j=1

1
ρ+j(δs/Λs) for each ℓ ∈ {BI, DV }. The expected revenue can be expressed as

Revℓ := Λd
∑

i∈S+
ℓ

πℓ
i + Λs

∑
i∈S−

ℓ

πℓ
i for each ℓ ∈ M , and S+

ℓ := {i|i ∈ Sℓ, i > 0} and

S−
ℓ := {i|i ∈ Sℓ, i < 0}.

3.3.3. Indifference curves to determine information policy

We extend the monotonicity results concerning expected revenue and user patience in
the double-sided queueing model.

Proposition 6. The expected revenue increases with truncation size on the side dis-
playing visible information, i.e., for each (ℓ, ϖ) ∈ {(BV, d), (BV, s), (DV, d), (SV, s)},
we have Revℓ(kϖ + 1) > Revℓ(kϖ). It increases with truncation time, i.e., dRevℓ

dtϖ
> 0.
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It decreases with reneging rate on the side with invisible information, i.e., for each
(ℓ, ϖ) ∈ {(BI, d), (BI, s), (SV, d), (DV, s)}, we have dRevℓ

dδϖ
< 0.

Proof. The expected revenue, denoted by Revℓ, can be calculated as Revℓ = Λs
∑

i∈S+
ℓ

πℓ
i +

Λd
∑

i∈S−
ℓ

πℓ
i = Λsξℓ

s for each ℓ ∈ M . Table 3.3 summarizes the solution of ξℓ
s, which

involves auxiliary variables ϕℓ
ϖ and ζℓ

ϖ where ϖ ∈ {d, s}. In the following, we establish
the monotonicity of the auxiliary variables ϕℓ

ϖ and ζℓ
ϖ with respect to user patience

(i.e., truncation size kϖ, truncation time tϖ, and reneging rate δϖ for each ϖ ∈ {d, s}).
Subsequently, we show that the expected revenue is monotonic with respect to the
auxiliary variables ϕℓ

ϖ and ζℓ
ϖ, indicating the monotonicity of the expected revenue with

respect to user patience.

Note that 1/
(
1 + ϕℓ

d

)
for each ℓ ∈ {BV, DV } and 1/

(
1 + ϕℓ

s

)
for each ℓ ∈ {BV, SV }

have a structure similar to πK
0 . Meanwhile, ζℓ

d for each ℓ ∈ {BI, SV } and ζℓ
s for each

ℓ ∈ {BI, DV } have a structure similar to πR
0 . We define the sign function by

sgn(f) :=


−1 if f < 0

0 if f = 0

1 if f > 0.

It is indicated by Proposition 2 that

sgn
(
πK

0 (k + 1) − πK
0 (k)

)
= sgn

( 1
1 + ϕℓ

ϖ (kϖ + 1) − 1
1 + ϕℓ

ϖ (kϖ)

)
= −sgn

(
ϕℓ

ϖ (kϖ + 1) − ϕℓ
ϖ (kϖ)

)
< 0

and

sgn

(
d

dt
πK

0

)
= sgn

(
d

dtϖ

(
1
/(

1 + ϕℓ
ϖ

)))
= −sgn

(
d

dtϖ
ϕℓ

ϖ

)
< 0

for each (ℓ, ϖ) ∈ {(BV, d), (BV, s), (DV, d), (SV, s)}. It also indicates that

sgn
(
πR

0

)
= sgn

(
ζℓ

ϖ

)
> 0
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3.3. Double-sided queue

for each (ℓ, ϖ) ∈ {(BI, d), (BI, s), (DV, s), (SV, d)}.

For the impact of the auxiliary variables ϕℓ
ϖ and ζℓ

ϖ on the expected revenue, it holds

sgn

(
dRevℓ

dϕℓ
ϖ

)
= sgn

(
dRevℓ

dζℓ
ϖ

)
> 0

for each ℓ ∈ M . ■

We remark that the indifference curve f
(A,B)
x = 0 is the same as f

(B,A)
x = 0 for infor-

mation policies A and B. In our double-sided queueing model, there are six different
indifference curves representing all possible combinations of two different information
policies from the four available policies

(
since

(|M |
2
)

=
(4

2
)

= 6
)
. For instance, the

indifference curve for BV and SV information policies is given by

f (BV,SV )
x = RevBV − RevSV = Λs

(
ϕBV

d + ρϕBV
s

1 + ϕBV
d + ϕBV

s

)
− Λs

(
ζSV

d + ρϕSV
s

1 + ζSV
d + ϕSV

s

)

= Λs + (Λs − Λd) ϕBV
s(

1 + ϕBV
d + ϕBV

s

) (
1 + ζSV

d + ϕSV
s

) (ϕBV
d − ζSV

d

)
= 0.

Simplifying this expression yields

ϕBV
d − ζSV

d = 0.

Since the model is symmetric, we omit the derivation of closed forms for all other in-
difference curves associated with the four information policies. The closed form for all
indifference curves are summarized in Table 3.4.

3.3.4. Preferred information policy to maximize revenue

The preferred information policy is determined by the market size and system load, as
illustrated in Figure 3.5.

Proposition 7. For a double-sided queueing model with a relatively unbalanced system
load:

1. If the system load ρ is below a unique threshold 1
2 < Tρ < 1, then a DV information

policy is preferred for a high arrival rate Λd ≥ Tl, while a BI information policy
is preferred for a low arrival rate Λd < Tl.
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Indifference curve Closed form

f
(BV,BI)
x = 0 ϕBV

d + ϕBV
s = ζBI

d + ζBI
s

f
(SV,BI)
x = 0 ϕSV

s = ζBI
s

f
(BV,SV )
x = 0 ζSV

d = ϕBV
d

f
(DV,BI)
x = 0 ϕDV

d = ζBI
d

f
(BV,DV )
x = 0 ζDV

s = ϕBV
s

Note. For any two information policies A and B, the closed form of the indifference
curve is obtained by simplifying the equation RevA − RevB = 0.

Table 3.4.: Indifference curves in the double-sided queueing model.

2. If the system load ρ exceeds a unique threshold 1 < Tρ < 2, then a SV information
policy is preferred for a high arrival rate Λd ≥ Tl, while a BI information policy
is preferred for a low arrival rate Λd < Tl.

Proof. Values of Tρ and Tρ. The value of Tρ satisfies the condition lim
Λd→∞

f
(DV,BV )
x = 0,

when ρ is substituted with Tρ in the function f
(DV,BV )
x . The value of Tρ satisfies the

condition lim
Λd→∞

f
(BV,SV )
x = 0, when ρ is substituted with Tρ in the function f

(BV,SV )
x .

Assuming a constant ρ, if ρ ≤ 1, then the value of Tl satisfies the condition f
(DV,BI)
x = 0

when Λd is substituted with Tl in the function f
(DV,BI)
x . Conversely, if ρ < 1, it satisfies

the condition f
(BI,SV )
x = 0 when Λd is substituted with Tl in the function f

(BI,SV )
x .

We establish the existence of the threshold values Tρ and Tρ by demonstrating that
lim

Λs→∞
ρ=1

fx(BV, BI) > 0, which proves that the BV policy is preferred for sufficiently large

arrival rates on both sides when ρ = 1. This result implies that Tρ < 1 and Tρ > 1.
Furthermore, we show that lim

Λs→∞
ρ=2

fx(BV, SV ) > 0, indicating that Tρ < 2. Therefore,

when the system load is ρ ≥ 2, the SV policy becomes preferable for a sufficiently large
arrival rate. We do not analyze the case where Tρ > 1

2 as the model is symmetric to the
case of Tρ < 2.
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3.3. Double-sided queue

Figure 3.5.: The preferred information policy in a double-sided queueing model:
Λs ∈ [10, 100] and ρ ∈ [0.5, 1.8].

Upper bound (resp. lower bound) of Tρ (resp. Tρ). With ρ = 1, it holds

lim
Λs→∞

ρ=1

fx(BV, BI) ≥ lim
Λs→∞

ρ=1

t − 1
2Λs

∞∑
i=1

2 ·
i∏

j=1

1
1 + jδb/Λs

 ≥ 0.

Upper bound of Tρ. We suppose Tρ ≥ 2 (i.e., ρ ≥ 2) and find the contradictory. The
difference curve f

(BV,SV )
x = 0 is

δbtb = δ

Λs

ln
(

ρ + (ρ − 1)
∞∑

i=1

i∏
j=1

ρ
1+jδb/Λs

)
ln ρ

− δb

Λs

which is consistent to (3.8), indicating that the indifference curve f
(BV,SV )
x = 0 cannot

get satisfied if ρ ≥ 2 as Λs increases sufficiently. ■

Proposition 7 provides insights into the preferred information policy for a market with
relatively high or low system load (i.e., ρ ≥ Tρ and ρ ≤ Tρ). For a large full market
size, the preferred information policy changes from BI to SV in a high system load
scenario, as illustrated in Figure 3.5 with ρ = 1.3. On the other hand, in a low system
load scenario, as shown in Figure 3.5 with ρ = 0.7, the preferred information policy
changes from BI to DV . This is because, with a larger full market size maintaining an
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unbalanced system load, the expected queue length on one side increases significantly,
while the other side experiences only a minor increase in its expected queue length. This
large difference in expected queue lengths leads to a significant difference in the service
rate for each other (i.e., the arrival rate of the opposite side), making a differentiated
information policy preferable for a large full market size.

The following theorem provides conditions and thresholds to quantitatively determine
the preferred information policy, both for one side’s market size and for the full market
size, particularly when the system load is relatively balanced.

Theorem 8. In a double-sided model, the preferred information policy is determined as
follow:

1. For a large market size on one side:

a) If the arrival rate of suppliers Λs is below the threshold Tl, then a SV infor-
mation policy is preferred.

b) If the arrival rate Λϖ of one side ϖ ∈ {d, s} lies between thresholds Tl and
Tu and the arrival rate Λµ of the other side µ ∈ {d, s}, µ ̸= ϖ is below the
threshold Tb, then a BI information policy is preferred; otherwise, a BV

information policy is preferred.

c) If the arrival rate of suppliers Λs exceeds the threshold Tu, then a DV infor-
mation policy is preferred.

2. For a large full market size and a fixed system load Tρ ≤ ρ ≤ Tρ:

a) If the arrival rate of suppliers Λs is below the threshold Tl, then a BI infor-
mation policy is preferred.

b) If the arrival rate of suppliers Λs lies between thresholds Tl and Tu and the
system load ρ is below 1, then a DV information policy is preferred; otherwise,
a SV information policy is preferred.

c) If the arrival rate of suppliers Λs exceeds the threshold Tu, then a BV infor-
mation policy is preferred.

Proof. Values of Tl, Tu and Tb. For a larger market size on one side, the value of
Tb satisfies the condition f

(BV,BI)
x = 0 when Λd and Λs both are substituted with Tb

in the function f
(BV,BI)
x . Assuming a constant Λs, if Λd ≤ Tb, then the values of Tl
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and Tu satisfy the conditions f
(DV,BI)
x = 0 and f

(BI,SV )
x = 0 respectively, when Λd

is substituted with Tl in the function f
(DV,BI)
x and with Tu in the function f

(BI,SV )
x .

Conversely, if Λd < Tb, then the values of Tl and Tu satisfy the conditions f
(DV,BV )
x = 0

and f
(BV,SV )
x = 0 respectively, when Λd is substituted with Tl in the function f

(DV,BV )
x

and with Tu in the function f
(BV,SV )
x . For a larger full market size and a fixed system

load, assuming a constant Λd, if ρ ≤ 1, then the values of Tl and Tu satisfy the conditions
f

(DV,BI)
x = 0 and f

(DV,BV )
x = 0 respectively. The is the case when Λs is substituted with

Tl in the function f
(DV,BI)
x and with Tu in the function f

(DV,BV )
x . Conversely, if ρ < 1,

then the values of Tl and Tu satisfy the conditions f
(BI,SV )
x = 0 and f

(BV,SV )
x = 0

respectively. The is the case when Λs is substituted with Tl in the function f
(BI,SV )
x and

with Tu in the function f
(BV,SV )
x .

The results for the two different types of larger market sizes exhibit structural symmetry,
as the preferred information policy is determined by thresholds on two dimensions. We
examined only the scenario where the full market size is larger, as the other cases are
symmetrical to this scenario in the model setting. We demonstrate that the system
load establishes candidate preferred information policies, and the preferred information
policy chosen from the candidates is determined by the threshold on the arrival rate of
customers.

The candidate preferred information policy is determined by the system load ρ. Specif-
ically, if ρ > 1, the candidate preferred information policy is in {BI, SV, BV }, while if
ρ < 1, it is in {BI, DV, BV }. We only analyze the case of ρ > 1 and omit the other since
the model setting is symmetric. To establish the candidate preferred information policy,
we only need to show two results. First, if the truncation size of suppliers kd is small,
the BI policy has higher expected revenue than the DV policy. Second, if kd is large,
the BV policy has higher expected revenue than the DV policy. Therefore, DV is not
a candidate preferred information policy for any kd. The determination of the preferred
information policy is completed by calculating the threshold values Tl, Tu, and Tb based
on the corresponding indifference curves, as proven in Theorem 5.

Case (i). If kd is small and it satisfies ρ + ρ2 + .. + ρkd ≤ ζDV
d , then it holds for the DV

policy that ξDV
s = 1 + (ρ−1)ζDV

s −1
1+ζDV

s +ρ(1−ρkd)/(1−ρ) ≤ 1, which indicates

(ρ − 1)ζDV
s − 1 < 0. (3.14)
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It holds for the BI policy that

ξBI
s = 1 + (ρ − 1)ζBI

s − 1
1 + ζBI

s + ζBI
d

(3.14)
≥ 1 + (ρ − 1)ζDV

s − 1
1 + ζDV

s + ρ (1 − ρkd) / (1 − ρ) = ξDV
s .

Case (ii). If kd is large and it satisfies ρ + ρ2 + .. + ρkd > ζDV
d , i.e., ρkd > ρ−1

ρ ζDV
d + 1,

then we show

ρkd − 1
ρkd+1 − ρkd

> ζDV
s (3.15)

which indicates ξBV
s ≥ ξDV

s . A sufficient and necessary condition for (3.15) is ρkd >
1

1−(ρ−1)ζDV
s

. To prove it, it is sufficient to show ρ−1
ρ ζDV

d + 1 ≥ 1
1−(ρ−1)ζDV

s
by proving

h ≥ 0 where h := −ρζDV
s + ζDV

d ζDV
s + ζDV

d

(
1 − ρζDV

s

)
. It is obvious that the first term

of h, i.e., −ρζDV
s , increases with ρ. For the second term of h, it holds

d
(
ζDV

d ζDV
s

)
dρ

= ζDV
s

∞∑
i=1

i

ρ

i∏
j=1

ρ

1 + jδb/Λs
− ζDV

d

∞∑
i=1

i

ρ + jδb/Λs

i∏
j=1

1
ρ + jδb/Λs

>
1
ρ

ζDV
s

∞∑
i=1

i∏
j=1

ρ

1 + jδb/Λs
· i − ζDV

d

∞∑
i=1

i∏
j=1

1
ρ + jδb/Λs

· i

 ρ>1
> 0.

For the third term of h, it holds

d
(
1 − ρζDV

s

)
dρ

=
∞∑

i=1

i∏
j=1

1
ρ + jδb/Λs

i∑
j=1

ρ

ρ + jδb/Λs
− ζDV

s

=
∞∑

i=1

i∏
j=1

1
ρ + jδb/Λs

 i∑
j=1

ρ

ρ + jδb/Λs
− 1


>

∞∑
i=1

i∏
j=1

1
ρ + j

 i∑
j=1

ρ

1 + j
− 1

 ≥ 0.

Since dh
dρ ≥ 0 and h(ρ = 1) = 0, we show h ≥ 0 and prove (3.15). Hence for BV policy,

it holds

ξBV
s =

(
ρ − ρkd+1

)
/ (1 − ρ) + ρ ρkd −1

ρkd+1−ρkd

1 + (ρ − ρkd+1) / (1 − ρ) + ρkd −1
ρkd+1−ρkd
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(3.15)
>

(
ρ − ρkd+1

)
/(1 − ρ) + ρζDV

s

1 + (ρ − ρkd+1) /(1 − ρ) + ζDV
s

= ξDV
s .

■

As depicted in Figure 3.5, when one side of the market, such as customers, is larger,
the preferred information policy transitions from DV to either BV or BI – dependent
on the arrival rate of suppliers – before ultimately shifting to SV . On the other hand,
for a large supply market size, the preferred information policy transitions from SV

to either BV or BI – dependent on the arrival rate of customers – before ultimately
shifting to DV . The first part of Theorem 8 states these changes using thresholds that
are applicable to any system load. For a large full market size maintaining a relatively
balanced system load (i.e., close to 1), the preferred information policy transitions first
from BI to either DV or SV – dependent on the system load – and eventually to BV

when the arrival rates of both customers and suppliers are larger. The second part of
Theorem 8 describes these changes using thresholds.

Theorem 8 demonstrates that the theoretical results for the two types of larger market
sizes exhibit structural symmetry, as the preferred information policy is determined by
thresholds on two dimensions. For example, if the demand market size is larger, the
candidate preferred information policies are determined by the arrival rate of suppliers,
using the threshold Tb, and the preferred information policy is determined by the arrival
rate of customers, using the thresholds Tl and Tu. On the other hand, if the full market
size is larger, the candidate preferred information policies are determined by the system
load, using the threshold of one, and the preferred information policy is determined
by the arrival rate of suppliers, using the thresholds Tl and Tu. Essentially, this is
determined by the difference in expected queue lengths due to different arrival rates
on both sides. When one side’s arrival rate is larger and the other side’s arrival rate
is fixed, the expected queue length of the former side increases monotonically. As a
result, the preferred information policy is to conceal information on the side with a long
expected queue length and display information on the side with a short expected queue
length (i.e., a differentiated information policy). If both arrival rates are larger while
maintaining a fixed system load closed to one, the expected queue lengths of both sides
are larger, indicating high service rates on both sides. The system load determines the
rate at which the expected queue length increases on both sides when arrival rates are
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high, as well as whether it is preferable to display information on both sides or only one
side for sufficiently high arrival rates on both sides.

3.3.5. Asymmetry in user patience

The asymmetry in user patience within the double-sided queueing model influences the
preferred selection of information policy. We introduce a patience coefficient α, which
represents the ratio of patience parameters for customers and suppliers, i.e., td = αts and
δd = 1

αδs. An increase in α suggests that customers are more patient than suppliers.

Proposition 9. For asymmetric user patience, i.e., α ̸= 1, hiding the information on
the side with lower user patience increases expected revenue. Specifically, if the arrival
rate of suppliers Λs and patience coefficient α satisfy the indifference curves f

(BV,DV )
x = 0

or f
(SV,BI)
x = 0 for fixed customer patience (td, δd) and system load ρ, then dΛs

dα ≥ 0.

Proof. We examine the sign of dΛs
dα for (Λs, α) that satisfies the indifference curve f

(BV,DV )
x

= 0 for fixed (td, δc) and ρ. We do not discuss the case of (Λs, α) that satisfies the indif-
ference curve f

(SV,BI)
x = 0 since the model setting is symmetric. The indifference curve

f
(BV,DV )
x = 0 holds

∞∑
i=1

i∏
j=1

1
ρ + jδc/(Λs/α) = ρρtd·Λs/α − 1

ρρtd·Λs/α+1 − ρρtd·Λs/α

which has a unique solution for Λs/α to get satisfied for fixed (td, δc) and ρ. Hence it
holds dΛs

dα ≥ 0.

■

Proposition 9 states that if suppliers become more impatient while customers’ patience
remains fixed, then the supply side’s preferred information policy changes from visible
to invisible. This is because concealing information about the queue length on the side
with lower user patience can boost expected revenue by attracting more users to join
the queue. This occurs as the truncation size of the suppliers’ queue decreases while
the expected queue length remains constant. The advantage of DV and BI information
policies over BV and SV policies, respectively, increases monotonically with customers’
patience in cases of asymmetric user patience.
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3.4. Endogenous arrival rate

In Sections 3.2 and 3.3, we examined queueing models featuring exogenously given ar-
rival rates of customers and suppliers, represented by the Poisson rates Λd and Λs. In
real-world scenarios, especially in the context of multiple platforms offering alternative
options (e.g., with over one hundred freight exchanges in Europe), potential users might
hesitate to join the same service system due to perceived concerns about long-term
service quality (Parker et al. 2016). Incorporating a behavioral model that endogenizes
agent behavior with both visible and invisible queue lengths presents challenges and may
result in an excessively complex general model. Instead of pursuing a model where agent
behavior is endogenized, our approach in the multi-platform context involves assessing
service quality on each side using the matching probability (Kritikos et al. 2013; Sivaku-
mar et al. 2014). The user’s arrival rate is influenced by this matching probability. For
clarity, we refer to models with exogenously given user arrival rates as exogenous models,
and refer to Λd and Λs as potential arrival rates. In the exogenous model, all potential
arrivals of customers and suppliers are assumed to effectively enter the service system
and exhibit abandonment behaviors driven by the information policy. Conversely, in the
endogenous model, some potential arrivals of customers and suppliers may refrain from
entering the service system due to the perceived platform’s long-term service quality,
even before exhibiting abandonment behaviors driven by the information policy.

Although it is recognized that user perceptions of service quality can affect arrival rates
over the long term, few studies have examined the implications of this endogeneity
in a model with multiple platforms. By extending the exogenous model, our endoge-
nous model explores this research question, taking into account the interdependence of
matching probability and arrival rate. The endogenous arrival rates of customers (on
the demand side) and suppliers (on the supply side) are represented as:

λϖ := Λϖξϖ for each ϖ ∈ {d, s} (3.16)

where the linear multiplication of Λϖ and ξϖ is based on the model of Batt and Terwiesch
(2015). In the following, we use the symbol n to represent the endogenous arrival
assumption. The system load in the endogenous model is denoted by ρn := λd/λs.

Lemma 10. The system load is determined by the potential arrival rates of customers
and suppliers, as indicated by ρn = √

ρ =
√

Λd/Λs.
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Proof. In the exogenous model, ρ = Λd/Λs. Since the matching rates of both sides are
equal, it holds

ξℓ
dλℓ

d = ξℓ
sλℓ

s (3.17)

for each information policy ℓ ∈ {K, R, BV, DV, SV, BI}. In the endogenous model under
information policy ℓ, we have ρn = λℓ

d/λℓ
s = Λdξℓ

d/
(
Λsξℓ

s

) (3.17)= Λd
Λs

/
λℓ

d

λℓ
s

= (Λd/Λs)/ρn.
■

When the potential arrival rates of both sides differ, the side with a higher potential
arrival rate experiences a lower matching probability, resulting in a lower system load
in the endogenous model. Lemma 10 reveals that in an endogenous model, the system
load is determined independently by potential arrival rates. Consequently, we can solve
the steady-state probabilities of Markov chains in both single-sided and double-sided
endogenous models using system load ρn to compare information policies with identical
potential arrival rates for customers and suppliers.

3.4.1. Endogenous single-sided queueing model

In the endogenous single-sided queueing model, the value of π
(ℓ,n)
0 for each ℓ ∈ {K, R}

can be determined by solving (3.1)-(3.3) while replacing all variables with those cor-
responding to the endogenous model and using (3.16). With the value of π

(ℓ,n)
0 , we

can then obtain the value of π
(ℓ,n)
i for any i ∈ Sn

ℓ for each ℓ ∈ {K, R} in the steady-
state distribution by utilizing (3.1) and (3.2). Specifically, π

(K,n)
0 is the solution to the

equation:

π
(K,n)
0

(
1 − ρn

tΛs

(
1−π

(K,n)
0

)
+1
)

+ ρn = 1, (3.18)

while π
(R,n)
0 can be obtained by solving the equation:

1 +
∞∑

i=1

i∏
j=1

ρn

1 + jδ
/(

Λs

(
1 − π

(R,n)
0

)) = 1
π

(R,n)
0

. (3.19)

In the endogenous model, obtaining direct solutions for π
(ℓ,n)
0 for each ℓ ∈ {K, R} using

(3.18) and (3.19) is challenging due to the presence of transcendental terms. The results
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3.4. Endogenous arrival rate

presented below demonstrate the monotonic relationship between match probability and
potential user arrival rate under both visible and invisible information policies.

Lemma 11. In an endogenous K model, dξ
(K,n)
s
dt > 0 (resp. dπ

(K,n)
0
dt < 0).

Proof. In an endogenous K model, ξ
(K,n)
s = ρn−ρn

Λsξ
(K,n)
s t+1

1−ρn
Λsξ

(K,n)
s t+1

. Define hp := ρn−ρn
Λsξ

(K,n)
s t+1

1−ρn
Λsξ

(K,n)
s t+1

−ξ
(K,n)
s . By applying the implicit function theorem, it holds that dξ

(K,n)
s
dt = −dhp

dt

/
dhp

dξ
(K,n)
s

where dhp

dt > 0 is obvious. For dhp

dξ
(K,n)
s

, it holds

dhp

dξ
(K,n)
s

=
(ρn − 1)

(
ρn

Λsξ
(K,n)
s t+1Λst ln ρn

)
(
1 − ρn

Λsξ
(K,n)
s t+1

)2 − 1 <
(ρn − 1)Λst ln ρn

ρn
Λst+1 + 1/ρn

Λst+1 − 2 − 1 ≤ 0.

Hence, we can show that dξ
(K,n)
s
dt > 0 and, as π

(K,n)
0 = 1 − ξ

(K,n)
s , we can infer that

dπ
(K,n)
0
dt < 0. ■

Lemma 12. In an endogenous R model, dξ
(R,n)
s
dδ < 0 (resp. dπ

(R,n)
0
dδ > 0).

Proof. In an endogenous R model, (1 − ξ
(R,n)
s )

(
1 +

∞∑
i=1

i∏
j=1

ρn

1+jδ/(Λsξ
(R,n)
s )

)
= 1. Define

fp(ξ(R,n)
s , δ) := (1 − ξ

(R,n)
s )

(
1 +

∞∑
i=1

i∏
j=1

ρn

1+jδ/(Λsξ
(R,n)
s )

)
− 1. By applying the implicit

function theorem, it holds that dξ
(R,n)
s
dδ = − dfp

dδ

/
dfp

dξ
(R,n)
s

where dfp

dδ < 0 is obvious. For
dfp

dδ , it holds

dfp

dξ
(R,n)
s

= − 1 −
∞∑

i=1

i∏
j=1

ρn

1 + jδ/(Λsξ
(R,n)
s )

+
(
1 − ξ(R,n)

s

) d

dξ
(R,n)
s

∞∑
i=1

i∏
j=1

ρn

1 + jδ/(Λsξ
(R,n)
s )

= − 1 −
∞∑

i=1

i∏
j=1

ρn

1 + jδ/(Λsξ
(R,n)
s )

+
(
1 − ξ(R,n)

s

) ∞∑
i=1

exp

log
i∏

j=1

ρn

1 + jδ/(Λsξ
(R,n)
s )


= − 1 −

∞∑
i=1

i∏
j=1

ρn

1 + jδ/(Λsξ
(R,n)
s )
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+
(

1
ξ

(R,n)
s

− 1
) ∞∑

i=1

i∏
j=1

ρn

1 + jδ/(Λsξ
(R,n)
s )

i∑
j=1

jδ/Λs

1 + jδ/
(
Λsξ

(R,n)
s

) . (3.20)

If 1
2 ≤ ξ

(R,n)
s < 1, it is obvious that dfp

dξ
(R,n)
s

< 0 since every term in (3.20) is negative. If

0 < ξ
(R,n)
s < 1

2 , it holds

(3.20) < − 1 −
∞∑

i=1

i∏
j=1

ρn

1 + jδ/(Λsξ
(R,n)
s )

+

∞∑
i=1

i∏
j=1

ρn

1+jδ/(Λsξ
(R,n)
s )

i∑
j=1

jδ/(Λsξ
(R,n)
s )

1+jδ/

(
Λsξ

(R,n)
s

)
∞∑

i=1

i∏
j=1

ρn

1+jδ/(Λsξ
(R,n)
s )

(3.21)

where
∞∑

i=1

i∏
j=1

ρn

1+jδ/(Λsξ
(R,n)
s )

= ξ
(R,n)
s

1−ξ
(R,n)
s

≤ 1 indicating ρn < 1. We denote y := δ

/
(
Λsξ

(R,n)
s

)
for simplification in the following equations. By solving

∞∑
i=1

i∏
j=1

ρn

1+jy = 1

where y ∈ (0, 1), it holds ρn

1+jy ≤ 1
2 for any j ≥ 2. To prove (3.21) ≤ 0, it is sufficient to

show

∞∑
i=1

i∏
j=1

ρn

1 + jy
−

∞∑
i=1

i∏
j=1

ρn

1 + jy

i∑
j=1

jy

1 + jy
≥ 0 (3.22)

for any y ∈ (0, 1) and ρn ∈ (0, 1).

In the following analysis, we demonstrate that (3.22) ≥ 0 for any ρn ∈ (0, 1) and y ∈
(0, 1). To do this, we seek different ad-hoc intervals corresponding to different degrees of
relaxation for (3.22). We first obtain a lower bound equation of (3.22) (i.e., (3.25)) and
solve it to show (3.22) ≥ 0 for any ρn ∈ (0, 0.393] and y ∈ (0, 1). Next, we demonstrate
(3.22) ≥ 0 for any ρn ∈ (0.393, 1) by discussing three cases: (i) y ∈ (0, 0.2665]; (ii)
y ∈ (0.2665, 1√

2 ]; (iii) y ∈ ( 1√
2 , 1). The magnitude of these values does not affect the

generality of our conclusions.

For (3.22), it holds

(3.22) = ρn

1 + y
− ρn

1 + y

y

1 + y
−

N∑
i=2

i∏
j=1

ρn

1 + jy

i∑
j=1

jy

1 + jy
+ 1
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−
∞∑

i=N+1

i∏
j=1

ρn

1 + jy

 i∑
j=1

jy

1 + jy
− 1

 (3.23)

≥ρn

2 −
N∑

i=2
ρn

i

 i∑
j=1

j

1 + j
− 1


− ρn

N+1

1 + (N + 2)
1 − ρn

N+1∑
j=1

j

1 + j
− 1

+ (1 + (N + 2))ρn

(1 − ρn)2

 (3.24)

for any N ≥ 2 since we get the lower bound (3.24) by decreasing the value of ρn

1+y − ρn

1+y
y

1+y

and increasing the values of
N∑

i=2

i∏
j=1

ρn

1+jy

( i∑
j=1

jy
1+jy −1

)
and

∞∑
i=N+1

i∏
j=1

ρn

1+jy

( i∑
j=1

jy
1+jy −1

)
in (3.23). The lower bound (3.24) becomes tighter if N increases. Hence, for one case
N = 8, it holds

(3.24)
N=8 in (3.24)

≥ ρn

2 −
8∑

i=2
ρn

i

 i∑
j=1

j

1 + j
− 1


− ρn

9

 11
1 − ρn

 9∑
j=1

j

1 + j
− 1

+ 11ρn

(1 − ρn)2

 . (3.25)

By solving (3.25) ≥ 0, it holds ρn ≤ 0.393. This indicates that for any ρn ∈ (0, 0.393] and
y ∈ (0, 1), (3.22) ≥ 0. Next, we show for any ρn ∈ (0.393, 1) and y ∈ (0, 1), (3.22) ≥ 0.

Case (i): y ∈ (0, 0.2665]. Note that the value 0.2665 is the solution of 1/(1 + y) +
1/(1 + 2y) + 1/(1 + 3y) = 2. Hence it holds

(3.22) = ρn

1 + y

 1
1 + y

+
∞∑

i=2

i∏
j=2

ρn

1 + jy

 i∑
j=1

1
1 + jy

− i

 (3.26)

≥ ρn

1 + y

 1
1 + y

+
3∑

i=2

i∏
j=2

0.393
1 + jy

 i∑
j=1

1
1 + jy

− i

−
∞∑

i=4

(1
2

)i−1
(i − 1)


y≤0.2665

≥ ρn

1 + y

(
1

1 + 0.2665 +
3∑

i=2

 i∏
j=2

0.393
1 + 0.2665j


 i∑

j=1

1
1 + 0.2665j

− i

− 1
)

> 0.
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Case (ii): y ∈ (0.2665, 1√
2 ]. Note that the value 1√

2 is the solution of 1/(1+ y)+1/(1+
2y) = 2. Hence it holds

(3.26) ≥ ρn

1 + y

 1
1 + y

+ 0.393
1 + 2y

( 1
1 + y

+ 1
1 + 2y

− 1
)

−
9∑

i=3

(1
2

)i−1
i −

i∑
j=1

1
1 + jy


−

∞∑
i=9

(1
2

)i−1
i − 1 −

9∑
j=1

1
1 + 1√

2j


≥ ρn

1 + y

(
1

1 + y
+ 0.393

1 + 2y

( 1
1 + y

+ 1
1 + 2y

− 1
)

−
9∑

i=3

(1
2

)i−1
i −

i∑
j=1

1
1 + jy

− 0.03
)

. (3.27)

By solving (3.27) ≥ 0, it holds y ≤ 0.584. This indicates for ρn ∈ (0.393, 1) and
y ∈ (0, 0.584], (3.22) ≥ 0. We then show for any y ∈ (0.584, 1√

2 ], (3.22) ≥ 0. For (3.26),
it holds

(3.26) ≥ ρn

1 + y

(
1

1 + y
+ 0.393

1 + 2y

( 1
1 + y

+ 1
1 + 2y

− 1
)

−
5∑

i=3

i∏
j=2

1
1 + 0.584j

i −
i∑

j=1

1
1 + jy

−
∞∑

i=6

i − 1 −
6∑

j=1

1
1 + 1√

2j

)
y≤ 1√

2
≥ ρn

1 + y

(
1

1 + 1√
2

+ 0.393
1 + 2 · 1√

2

 1
1 + 1√

2
+ 1

1 + 2 · 1√
2

− 1


−

5∑
i=3

i∏
j=2

1
1 + 0.584j

i −
i∑

j=1

1
1 + 1√

2j

− 0.251
)

≥ 0.

Case (iii): y ∈ ( 1√
2 , 1). For (3.26), it holds

(3.26) ≥ ρn

1 + y

 1
1 + y

−
6∑

i=2

i∏
j=2

1
1 + 1√

2j
−

∞∑
i=7

i − 1 −
7∑

j=1

1
1 + 1√

2j

 y<1
> 0.

■
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3.4. Endogenous arrival rate

By replacing all variables with those corresponding to the endogenous single-sided queue-
ing model, the conclusions of Proposition 2-4 and Theorem 5 apply. We provide extended
analytical results for endogenous single-sided models in the following.

Proposition 13. In the endogenous single-sided model under the visible information pol-
icy, the expected revenue increases with increasing truncation size, i.e., Rev(K,n)(kn +
1) > Rev(K,n)(kn). It increases with increasing truncation time, i.e., dRev(K,n)

dt > 0. Un-
der the invisible information policy, it decreases with the reneging rate, i.e., dRev(R,n)

dδ < 0.

Proof. Endogenous K model. Since π
(K,n)
0 = 1−ρn

1−ρn
kn+1 , π

(K,n)
i = ρn

iπ
(K,n)
0 and

Rev(K,n) = Λs

(
1 − π

(K,n)
kn

)2
= Λs

(
1−ρn

kn

1−ρn
kn+1

)2
where kn := ⌈tλK

d ⌉ is an integer, the
revenue increment in kn is

Rev(K,n)(kn + 1) − Rev(K,n)(kn) = Λs

(
2 − π

(K,n)
kn+1 − π

(K,n)
kn

) (
π

(K,n)
kn

− π
(K,n)
kn+1

)
=

Λs

(
2 − π

(K,n)
kn+1 − π

(K,n)
kn

) (
ρn

kn(ρn − 1)2
)

(1 − ρn
kn+2) (1 − ρn

kn+1) > 0.

We also show that dkn
dt =

d

(
Λsξ

(K,n)
s t

)
dt = Λd

(
dξ

(K,n)
s
dt + ξ

(K,n)
s

)
> 0, as we have already

shown in Lemma 11 that dξ
(K,n)
s
dt > 0. As dkn

dt ≥ 0 for fixed potential arrival rates of
customers and suppliers, it implies dRev(K,n)

dt ≥ 0.

Endogenous R model. Since π
(R,n)
i =

i∏
j=1

ρn

1+jδ
/(

Λsξ
(R,n)
s

)π
(R,n)
0 and π

(R,n)
0 = 1

1+ζn
,

the first derivative of Rev(R,n) in δ is

dRev(R,n)

dδ
= 2Λsξ(R,n)

s

d(1 − π
(R,n)
0 )

dδ
= −2Λsξ(R,n)

s

dπ
(R,n)
0
dδ

< 0 (3.28)

where in the last step of (3.28), dπ
(R,n)
0
dδ > 0 is shown in Lemma 12. ■

Proposition 14. In an endogenous single-sided model, queueing the side with a higher
potential arrival rate has a higher expected revenue. Specifically, for each ℓ ∈ {K, R}, if
the system load satisfies ρn ≥ 1, then the expected revenue in a demand market is higher
than or equal to that in a supply market, i.e., Rev

(ℓ,n)
d ≥ Rev

(ℓ,n)
s . Otherwise, if ρn < 1,

then Rev
(ℓ,n)
d < Rev

(ℓ,n)
s .
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Proof. We replace all the variables in the proof of Proposition 3 by those in the endoge-
nous model, and derive the important steps that align with the original ones. We discuss
the case where the arrival rate of customers is higher than that of suppliers, i.e., λℓ

d ≥ λℓ
s

for each ℓ ∈ {K, R} and ρn ≥ 1. We omit the case where λℓ
d < λℓ

s, as the model setting is
symmetric. We compare the expected revenues of endogenous single-sided models with
different queue sides.

Endogenous K model. The expected revenues of queueing different sides are

Rev
(K,n)
d − Rev(K,n)

s = λK
d

(
1 − ρn

kn

1 − ρn
ρnkn+1 − 1 − ρn

⌈ks
n/ρn⌉

1 − ρn
⌈ks

n/ρn⌉+1

)
≥ 0.

Endogenous R model. The difference between the expected revenues when queueing
on different sides is

Rev
(R,n)
d − Rev(R,n)

s ≥ min
{

λR
s , λ(R,qs)

s

}( ζn

1 + ζn
− ρn

ζs
n

1 + ζs
n

)

= min{λR
s , λ

(R,qs)
s }

(1 + ζn) (1 + ζs
n)fn

r ≥ 0

where λ
(R,qs)
s is the endogenous arrival rate of suppliers in a supplier market and fn

r :=
ζn −ρnζs

n − (ρn −1)ζnζs
n. We omit the proof for demonstrating fn

r ≥ 0, as all steps follow
the same approach used in the proof of Proposition 3. ■

Proposition 15. In a demand market and endogenous arrival rate, if the system load
ρn exceeds a threshold 1 < Tρ < 2, then the invisible information policy is preferred.

Proof. The value of Tρ satisfies the condition lim
Λs→∞

f
(K,R)
n = 0, when ρn is substituted

with Tρ in the function f
(K,R)
x .

We show that if the potential arrival rate of suppliers is sufficiently large (i.e., Λs → ∞)
and a fixed ρn, the value of t is too small to satisfy the indifference curve f

(K,R)
n = 0 for

a large ρn (e.g., ρn ≥ 2). It holds

δt = lim
Λs→∞

δ

λK
s

ln
(

ρn + (ρn − 1)
∞∑

i=1

i∏
j=1

ρn

1+jδ/λR
s

)
ln ρn

− δ

λK
s
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= lim
ϵ→0

ϵ ln
(

ρn + (ρn − 1)
∞∑

i=1

i∏
j=1

ρn

1+jϵ

)
ln ρn

ρ≥2= ∞.

We omit the proof of demonstrating that the threshold Tρ > 1 in the endogenous model,
as all steps follow the same approach used in the proof of Proposition 4. ■

Theorem 16. In a demand market and endogenous arrival rate, the preferred informa-
tion policy is determined as follow:

1. If one side’s market size is large and the potential arrival rate of customers Λd is
below a unique threshold Td, then the visible information policy is preferred, and
vice versa.

2. If the full market size is large with a fixed system load ρn < Tρ and the arrival
rate of suppliers Λs is below a unique threshold Tf , then the invisible information
policy is preferred, and vice versa.

Proof. The value of Td satisfies the condition f
(K,R)
n = 0, when Λs is held constant and

Λd is substituted with Td in the function f
(K,R)
n . The value of Tf satisfies the condition

f
(K,R)
n = 0, when ρn is held constant and Λs is substituted with Tf in the function

f
(K,R)
n .

We prove the uniqueness of the threshold Tϖ for each ϖ ∈ {d, f} by establishing the
monotonicity of the indifference curve in three cases: (i) potential arrival rate of cus-
tomers is larger; (ii) potential arrival rates of both customers and suppliers are larger.
We omit the case that the potential arrival rate of suppliers is larger since the setting is
symmetric to (i).

Case (i). When the potential arrival rate of customers is larger, we consider that Λs

remains fixed and ρn increases. The value of t satisfying the indifference curve f
(K,R)
n = 0

is

t = ln

ρn + (ρn − 1)
∞∑

i=1

i∏
j=1

ρn

1 + jδ/λR
s

/(
λK

s ln ρn

)
− 1

λK
s

. (3.29)
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It holds

dt

dρn
≥ d

dρn


ln
(

ρn + (ρn − 1)
∞∑

i=1

i∏
j=1

ρn

1+j

)
Λs ln ρn

− 1
λK

s


= 1

Λs

 d

dρn

ln
(

ρn

2 + 1
2

)
ln ρn

−
d 1

ξ
(K,n)
s

dρn

 (3.11), Lemma 12
≥ 0.

Case (ii). When potential arrival rates of both customers and suppliers are larger, we
consider that both Λd and Λs increase and a fixed system load ρn. For (3.29), it holds

dt

dΛs
= d

dΛs


ln
(

ρn + (ρn − 1)
∞∑

i=1

i∏
j=1

ρn

1+jδ/λR
s

)
λK

s ln ρn
− 1

λK
s


= 1

δ ln ρn

d

dΛs

 δ

λK
s

· ln

1 +
(

1 − 1
ρn

) ∞∑
i=1

i∏
j=1

ρn

1 + jδ/λR
s


(3.13)

≤ 1
δ ln ρn

d

dΛs

(
δ

λK
s

ln
(1

2 + ρn

2

))
Lemma 11

≤ 0.

■

3.4.2. Endogenous double-sided queueing model

The steady-state distribution and matching probability under the four proposed infor-
mation policies can be obtained by replacing all variables in Table 3.3 with those corre-
sponding to the endogenous models. Close forms for all indifference curves of endogenous
models are summarized in Table 3.5. In the endogenous double-sided queueing model,
the information policy not only influences the matching probability and user arrival rate,
but also affects the truncation size of both sides of the queue by altering the respective
service rates on each side, and consequently, the respective queue lengths. Despite the
complexity and difficulty in tracing this endogeneity within the service system, we con-
tend that the recommendation of the preferred information policy in the double-sided
queueing model is qualitatively consistent with that in the exogenous model. By re-
placing all variables with those corresponding to the endogenous double-sided queueing
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Indifference curve Closed form

f
(BV,BI)
n = 0 ϕ

(BV,n)
d + ϕ

(BV,n)
s = ζ

(BI,n)
d + ζ

(BI,n)
s

f
(SV,BI)
n = 0 ζ

(SV,n)
d

+ρnϕ
(SV,n)
s

1+ζ
(SV,n)
d

+ϕ
(SV,n)
s

= ζ
(BI,n)
d

+ρnζ
(BI,n)
s

1+ζ
(BI,n)
d

+ζ
(BI,n)
s

f
(BV,SV )
n = 0 ϕ

(BV,n)
d

+ρnϕ
(BV,n)
s

1+ϕ
(BV,n)
d

+ϕ
(BV,n)
s

= ζ
(SV,n)
d

+ρnϕ
(SV,n)
s

1+ζ
(SV,n)
d

+ϕ
(SV,n)
s

f
(DV,BI)
n = 0 ϕ

(DV,n)
d

+ρnζ
(DV,n)
s

1+ϕ
(DV,n)
d

+ζ
(DV,n)
s

= ζ
(BI,n)
d

+ρnζ
(BI,n)
s

1+ζ
(BI,n)
d

+ζ
(BI,n)
s

f
(BV,DV )
n = 0 ϕ

(BV,n)
d

+ρnϕ
(BV,n)
s

1+ϕ
(BV,n)
d

+ϕ
(BV,n)
s

= ϕ
(DV,n)
d

+ρnζ
(DV,n)
s

1+ϕ
(DV,n)
d

+ζ
(DV,n)
s

Note. For any two information policies A and B, the closed form of the indifference
curve is obtained by simplifying the equation Rev(A,n) −Rev(B,n) = 0 in the endogenous
model.

Table 3.5.: Indifference curves in the double-sided queueing model with endogenous
arrival rates.

model, the conclusions of Proposition 6-9 and Theorem 8 apply. We provide extended
analytical results for endogenous double-sided models in the following.

Proposition 17. In an endogenous double-sided model, the expected revenue increases
with truncation size on the side displaying visible information, i.e., for each (ℓ, ϖ) ∈
{(BV, d), (BV, s), (DV, d), (SV, s)}, we have Rev(ℓ,n)(kn

ϖ+1) > Rev(ℓ,n)(kn
ϖ). It increases

with truncation time, i.e., dRev(ℓ,n)

dtϖ
> 0. It decreases with reneging rate on the side with

invisible information, i.e., for each (ℓ, ϖ) ∈ {(BI, d), (BI, s), (SV, d), (DV, s)}, we have
dRev(ℓ,n)

dδϖ
< 0.

Proof. In the endogenous double-sided models, we present the Markov chain steady-
state distributions and matching probabilities for four information policies in Table 3.6,
where auxiliary variables are defined by

ϕ
(ℓ,n)
d := ρn − ρn

k
(ℓ,n)
d

+1

1 − ρn
for each ℓ ∈ {DV, BV }

ϕ(ℓ,n)
s := (1/ρn) − (1/ρn)k

(ℓ,n)
s +1

1 − (1/ρn) = ρn
k

(ℓ,n)
s − 1

ρn
k

(ℓ,n)
s +1 − ρn

k
(ℓ,n)
s

for each ℓ ∈ {SV, BV }

ζ
(ℓ,n)
d :=

∞∑
i=1

i∏
j=1

ρn

1 + j(δd/λℓ
s) for each ℓ ∈ {SV, BI}
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Model πm
0 πm

i , ∀i < 0 πm
i , ∀i > 0

m = (BV, n) 1
1+ϕm

d
+ϕm

s
ρiπm

0 ρiπm
0

m = (DV, n) 1
1+ϕm

d
+ζm

s

−i∏
j=−1

1
ρ−jδs/Λs

· πm
0 ρiπm

0

m = (SV, n) 1
1+ζm

d
+ϕm

s
ρiπm

0
i∏

j=1

ρ
1+jδd/Λs

· πm
0

m = (BI, n) 1
1+ζm

d
+ζm

s

−i∏
j=−1

1
ρ−jδs/Λs

· πm
0

i∏
j=1

ρ
1+jδd/Λs

· πm
0

ξm
d ξm

s

1
ρ

ϕm
d +ϕm

s

1+ϕm
d

+ϕm
s

ϕm
d +ρϕm

s

1+ϕm
d

+ϕm
s

1
ρ

ϕm
d +ζm

s

1+ϕm
d

+ζm
s

ϕm
d +ρζm

s

1+ϕm
d

+ζm
s

1
ρ

ζm
d +ϕm

s

1+ζm
d

+ϕm
s

ζm
d +ρϕm

s

1+ζm
d

+ϕm
s

1
ρ

ζm
d +ζm

s

1+ζm
d

+ζm
s

ζm
d +ρζm

s

1+ζm
d

+ζm
s

Table 3.6.: Steady-state probability and matching probability for four information
policies in an endogenous model where m = (ℓ, n) and ℓ ∈ M .

ζ(ℓ,n)
s :=

∞∑
i=1

i∏
j=1

1/ρn

1 + j(δs/λℓ
d)

=
∞∑

i=1

i∏
j=1

1
ρn + j(δs/λℓ

s) for each ℓ ∈ {DV, BI}

where k
(ℓ,n)
s := ⌈tsλℓ

d⌉ and k
(ℓ,n)
d := ⌈tdλℓ

s⌉. We note that the definitions of these auxil-
iary variables are symmetric to those corresponding to exogenous models. Additionally,
1/
(
1 + ϕ

(ℓ,n)
d

)
for each ℓ ∈ {BV, DV } and 1/

(
1 + ϕ

(ℓ,n)
s

)
for each ℓ ∈ {BV, SV } have a

structure similar to π
(K,n)
0 . Meanwhile, ζ

(ℓ,n)
d for each ℓ ∈ {BI, SV } and ζ

(ℓ,n)
s for each

ℓ ∈ {BI, DV } have a structure similar to π
(R,n)
0 . We omit the following steps, as they

follow the same approach used in the proof of Proposition 6. ■

Proposition 18. For an endogenous double-sided queueing model with a relatively un-
balanced system load:

1. If the system load ρn is below a unique threshold 1
2 < Tρ < 1, then a DV infor-

mation policy is preferred for a high potential arrival rate Λd ≥ Tl, while a BI

information policy is preferred for a low potential arrival rate Λd < Tl.
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3.4. Endogenous arrival rate

2. If the system load ρn exceeds a unique threshold 1 < Tρ < 2, then a SV information
policy is preferred for a high potential arrival rate Λd ≥ Tl, while a BI information
policy is preferred for a low potential arrival rate Λd < Tl.

Proof. The value of Tρ satisfies the condition lim
Λd→∞

f
(DV,BV )
n = 0, when ρn is sub-

stituted with Tρ in the function f
(DV,BV )
n . The value of Tρ satisfies the condition

lim
Λd→∞

f
(BV,SV )
n = 0, when ρn is substituted with Tρ in the function f

(BV,SV )
n . Assuming

a constant ρn, if ρn ≤ 1, then the value of Tl satisfies the condition f
(DV,BI)
n = 0 when

Λd is substituted with Tl in the function f
(DV,BI)
n . Conversely, if ρn < 1, it satisfies the

condition f
(BI,SV )
n = 0 when Λd is substituted with Tl in the function f

(BI,SV )
n .

Upper bound (resp. lower bound) of Tρ (resp. Tρ). With ρn = 1, it holds

lim
Λs→∞
ρn=1

fn(BV, BI) ≥ lim
Λs→∞
ρn=1

t − 1
2Λs

∞∑
i=1

2 ·
i∏

j=1

1
1 + jδb/Λs

 ≥ 0.

Upper bound of Tρ. We suppose Tρ ≥ 2 (i.e., ρn ≥ 2) and find the contradictory. The
difference curve f

(BV,SV )
n = 0 is

δbtb = δb

λBV
s + λBV

d − λSV
d

ln
(

ρn + (ρn − 1)
∞∑

i=1

i∏
j=1

ρn

1+jδb/λSV
s

)
ln ρn

− δb

λBV
s + λBV

d − λSV
d

(3.30)

where it holds lim
Λs→∞
ρn≥2

(
δb

λBV
s +λBV

d
−λSV

d

)
= 0 and lim

Λs→∞
ρn≥2

δb

λSV
s

= 0. Hence it holds

lim
Λs→∞
ρn≥2

RHS of (3.30) = lim
ϵ→0

ϵ ln
(

ρn + (ρn − 1)
∞∑

i=1

i∏
j=1

ρn

1+jϵ

)
ln ρn

= ∞

while the LHS of (3.30) is constant. ■

Theorem 19. In an endogenous double-sided model, the preferred information policy is
determined as follow:
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1. For a larger market size on one side:

a) If the potential arrival rate of suppliers Λs is below the threshold Tl, then a
SV information policy is preferred.

b) If the potential arrival rate Λϖ of one side ϖ ∈ {d, s} lies between thresholds
Tl and Tu and the potential arrival rate Λµ of the other side µ ∈ {d, s}, µ ̸= ϖ

is below the threshold Tb, then a BI information policy is preferred; otherwise,
a BV information policy is preferred.

c) If the potential arrival rate of suppliers Λs exceeds the threshold Tu, then a
DV information policy is preferred.

2. For a larger full market size and a fixed system load Tρ ≤ ρn ≤ Tρ:

a) If the potential arrival rate of suppliers Λs is below the threshold Tl, then a
BI information policy is preferred.

b) If the potential arrival rate of suppliers Λs lies between thresholds Tl and Tu

and the system load ρn is below 1, then a DV information policy is preferred;
otherwise, a SV information policy is preferred.

c) If the potential arrival rate of suppliers Λs exceeds the threshold Tu, then a
BV information policy is preferred.

Proof. For a larger market size on one side, the value of Tb satisfies the condition
f

(BV,BI)
n = 0 when Λd and Λs both are substituted with Tb in the function f

(BV,BI)
n .

Assuming a constant Λs, if Λd ≤ Tb, then the values of Tl and Tu satisfy the conditions
f

(DV,BI)
n = 0 and f

(BI,SV )
n = 0 respectively, when Λd is substituted with Tl in the func-

tion f
(DV,BI)
n and with Tu in the function f

(BI,SV )
n . Conversely, if Λd < Tb, then the

values of Tl and Tu satisfy the conditions f
(DV,BV )
n = 0 and f

(BV,SV )
n = 0 respectively,

when Λd is substituted with Tl in the function f
(DV,BV )
n and with Tu in the function

f
(BV,SV )
n . For a larger full market size and a fixed system load, assuming a constant

Λd, if ρn ≤ 1, then the values of Tl and Tu satisfy the conditions f
(DV,BI)
n = 0 and

f
(DV,BV )
n = 0 respectively. The is the case when Λs is substituted with Tl in the func-

tion f
(DV,BI)
n and with Tu in the function f

(DV,BV )
n . Conversely, if ρn < 1, then the

values of Tl and Tu satisfy the conditions f
(BI,SV )
n = 0 and f

(BV,SV )
n = 0 respectively.

The is the case when Λs is substituted with Tl in the function f
(BI,SV )
n and with Tu in

the function f
(BV,SV )
n .
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We follow the same steps as those presented in the proof of Theorem 8. We demonstrate
that as the full market size is larger, the system load establishes candidate preferred
information policies. For example, if ρn > 1, the candidate preferred information policy
is in {BI, SV, BV }. To demonstrate this, we discuss two cases. Case (i): if the truncation
size of suppliers k

(DV,n)
d is small and satisfies ρn + ρn

2 + .. + ρn
k

(DV,n)
d ≤ ζ

(DV,n)
d , then the

BI policy has higher expected revenue than the DV policy. Case (ii): if the truncation
size of suppliers k

(DV,n)
d is large and satisfies ρn + ρn

2 + .. + ρn
k

(DV,n)
d > ζ

(DV,n)
d , then

the BV policy has higher expected revenue than the DV policy. Therefore, DV is not
a candidate preferred information policy for any value of k

(DV,n)
d . ■

Proposition 20. For asymmetric user patience in an endogenous model, i.e., α ̸= 1,
hiding the information on the side with lower user patience increases expected revenue.
Specifically, if the potential arrival rate of suppliers Λs and patience coefficient α satisfy
the indifference curves f

(BV,DV )
n = 0 or f

(SV,BI)
n = 0 for fixed customer patience (td, δd)

and system load ρn, then dΛs
dα ≥ 0.

Proof. There exists a unique solution for
(
λBV

s /α, λDV
s /α

)
that satisfies the indifference

curve f
(BV,DV )
n = 0 for fixed (td, δc) and ρn. Since the effective arrival rate is weakly

increasing with the potential arrival rate, i.e., dλBV
s

dΛs
≥ 0 and dλDV

s
dΛs

≥ 0, it follows that
dΛs
dα ≥ 0. ■

3.4.3. Impact of endogeneity

We define the relative revenue difference between different information policies. In the
exogenous model, the relative revenue difference is denoted by v := a−b

a , where

a :=

max
{

RevK , RevR
}

max
{

RevA|A ∈ M
} and b :=

min
{

RevK , RevR
}

single-sided

min
{

RevA|A ∈ M
}

double-sided.
(3.31)

In the endogenous model, the relative revenue difference is denoted by vn := an−bn
an

,
where all variables are replaced with those corresponding to the endogenous models.
Specifically, RevB is replaced with Rev(B,n) for an information policy B ∈ {K, R} ∪ M

in (3.31). This metric quantifies the varying effects of different information policies
on the platform’s revenue, highlighting the significance of information design for the
platform’s performance.
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(a) (b)

Figure 3.6.: Comparisons of information policies in terms of relative revenue difference:
Λd = Λs = 20. Left: Exogenous model. Right: Endogenous model.

Figure 3.6 provides an example of comparing information policies in terms of relative
revenue difference for a balanced market (i.e., Λd = Λs) with symmetric user patience
(i.e., td = ts and δd = δs). It shows that the BV policy is preferred for (td, δd) values
above the indifference curve, while the BI policy is preferred otherwise. The relative
revenue advantage of the preferred information policy in the market increases as the
market parameters move further away from the indifference curve. For instance, in
the region of Figure 3.6 where both td and δd are larger, the BV policy is darker,
indicating a larger relative revenue difference and a greater relative advantage among
the different information policies. This occurs when the user’s patience level varies
significantly between information policies, and the user is sensitive to the displayed
queue-length information.

Proposition 21. The relative revenue difference is larger in the endogenous model.

Proof. We compare exogenous and endogenous models under ceteris paribus, considering
the shift in the indifference curve. Specifically, we consider those market parameters that
maintain the same preferred and least preferred information policies in both models.

Single-sided queueing model. The market with the same preferred information
policy in both exogenous and endogenous models has either large or small values for
both k and δ. Thus, we consider four cases: (i) ρ ≥ 1 and both k and δ are large, (ii)
ρ ≥ 1 and both k and δ are small, (iii) ρ < 1 and both k and δ are large, and (iv) ρ < 1
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and both k and δ are small. The ratio of the relative revenue differences between the
information policies of the endogenous model and the exogenous model is

vn

v
=Rev(K,n) − Rev(R,n)

RevK − RevR
·

max
{

RevK , RevR
}

max
{
Rev(K,n), Rev(R,n)}

≥
(
2 − π

(K,n)
0 − π

(R,n)
0

)
·
∣∣∣∣∣π

(K,n)
0 − π

(R,n)
0

πK
0 − πR

0

∣∣∣∣∣ (3.32)

=
(

2 − 1 − ρn

1 − ρn
kn+1 − 1

1 + ζn

)
·
∣∣∣∣∣ρn

kn+1 − ρn + (1 − ρn) ζn

ρk+1 − ρ + (1 − ρ) ζ

·

(
1 − ρk+1

)
(1 + ζ)

(1 − ρn
kn+1) (1 + ζn)

∣∣∣∣∣. (3.33)

We show the ratio vn
v ≥ 1 in the above four cases.

Case (i). If ρ ≥ 1 and k, kn and δ are large, then

(3.33) =
(

2 − O

(( 1
ρn

)kn
)

− π
(R,n)
0

)

·
∣∣∣∣∣O
(

max
{( 1

ρn

)k+1
,
ζn

ζ

})
O

(
ρn

k+1 ζ

ζn

)∣∣∣∣∣ ≥ 1

where ζ
ζn

> 0 is upper bounded by a constant and k and kn are large.

Case (ii). If ρ ≥ 1 and k, kn and δ are small, then

(3.33) =
(

2 − 1 − ρn

1 − ρn
kn+1

) ∣∣∣∣∣ρn
kn+1 − ρn

∞

ρk+1 − ρ∞ · ρ∞ − 1
ρn

∞ − 1 · ρk+1 − 1
ρn

kn+1 − 1 · 1 − ρn

1 − ρ

∣∣∣∣∣ ≥ 1.

Case (iii). If ρ < 1 and k, kn and δ are large, recall that we denote z = δ/Λs and
z ∈ (0, 1), it holds

(3.33) =
(

1 + ρn − 1
1 + ζn

)
· ρn − (1 − ρn) ζn

ρ − (1 − ρ) ζ
· 1 + ζ

1 + ζn

≥

ρn +

∞∑
i=1

i∏
j=1

ρn

1+jz

1 +
∞∑

i=1

i∏
j=1

ρn

1+jz

 · 1
ρn

·
1 +

∞∑
i=1

i∏
j=1

ρn
2

1+jz

1 +
∞∑

i=1

i∏
j=1

ρn

1+jz

(3.34)
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where we use the fact that ρn−(1−ρn)ζn

ρ−(1−ρ)ζ ≥
ρn−(1−ρn)

∞∑
i=1

i∏
j=1

ρn
1+jz

ρn
2−(1−ρn

2)
∞∑

i=1

i∏
j=1

ρn2
1+jz

≥ 1
ρn

(indicated by

d
dz

∞∑
i=1

i∏
j=1

ρn
1+jz

∞∑
i=1

i∏
j=1

ρn2
1+jz

≤ 0 and hence

∞∑
i=1

i∏
j=1

ρn
1+jz

∞∑
i=1

i∏
j=1

ρn2
1+jz

≤

∞∑
i=1

ρn
i

∞∑
i=1

ρn
2i

≤ 1 + 1
ρn

). Hence to show (3.34) ≥ 1,

it is equivalent to showing
(1 + 1

ρn

)1 +
∞∑

i=1

i∏
j=1

ρn

1 + jz

− 1
ρn

1 +
∞∑

i=1

i∏
j=1

ρn
2

1 + jz

 ≥

1 +
∞∑

i=1

i∏
j=1

ρn

1 + jz

2

which is proven since

( 1
ρn

− 1
)

+
∞∑

i=1

i∏
j=1

ρn
2

1 + jz

/ ∞∑
i=1

i∏
j=1

ρn

1 + jz
+
(

1 + 1
ρn

) ∞∑
i=1

i∏
j=1

ρn
2

1 + jz
−

∞∑
i=1

i∏
j=1

ρn

1 + jz

≥ 1 − ρn

ρn
+ 1

1 + ρn
+
(

1 + 1
ρn

) ∞∑
i=1

i∏
j=1

ρn
2

1 + jz
−

∞∑
i=1

i∏
j=1

ρn

1 + jz
≥ 0.

Case (iv). If ρ < 1 and k, kn and δ are small, then

(3.33) =
(

2 − 1 − ρn

1 − ρn
kn+1 − 1

1 + ρn

1−ρn

)
∣∣∣∣∣∣
ρn

kn+1 − ρn + (1 − ρn) ρn

1−ρn

ρk+1 − ρ + (1 − ρ) ρ
1−ρ

(
1 − ρk+1

) (
ρ

1−ρ + 1
)

(1 − ρn
kn+1)

(
ρn

1−ρn
+ 1

)
∣∣∣∣∣∣

=
(

1 − 1 − ρn

1 − ρn
kn+1 + ρn

) ∣∣∣∣∣ρn
kn+1

ρn
2k+2

1 − ρn
2k+2

1 − ρn
kn+1

1 − ρn

1 − ρn
2

∣∣∣∣∣
≥2 − ρn

kn − ρn
kn+1

1 − ρn
kn+1

∣∣∣∣∣ 1 + ρn
k+1

ρk
n + ρn

k+1

∣∣∣∣∣ ≥
2
(
1 − ρn

kn

)
1 − ρn

kn

∣∣∣∣∣ 1 + ρn
k+1

ρk
n + ρn

k+1

∣∣∣∣∣ ≥ 1.

Double-sided queueing model. The same preferred and least preferred information
policies for both exogenous and endogenous models in a double-sided queueing model
can be categorized into four cases: (i) If both user patience tb and δb are large, then
the BV policy is the preferred one, and the BI policy is the least preferred; (ii) If both
user patience tb and δb are small, then the BI policy is the preferred one, and the BV
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policy is the least preferred; (iii) If the system load ρ > 1 is large, then the SV policy
is preferred, and the DV policy is the least preferred; (iv) If the system load ρ < 1 is
small, then the DV policy is preferred, and the SV policy is the least preferred. For
Case (i) and (ii), the ratio vn

v can be calculated as:

vn

v
= Rev(BV,n) − Rev(BI,n)

RevBV − RevBI

max
{

RevBV , RevBI
}

max
{
Rev(BV,n), Rev(BI,n)}

≥
(
2 − π

(BV,n)
0 − π

(BI,n)
0

) ∣∣∣∣∣π
(BV,n)
0 − π

(BI,n)
0

πBV
0 − πBI

0

∣∣∣∣∣ ≥ 1

and for Case (iii) and (iv), the ratio vn
v is

vn

v
= Rev(SV,n) − Rev(DV,n)

RevSV − RevDV

max
{

RevSV , RevDV
}

max
{
Rev(SV,n), Rev(DV,n)}

≥
(
2 − π

(SV,n)
0 − π

(DV,n)
0

) ∣∣∣∣∣π
(SV,n)
0 − π

(DV,n)
0

πSV
0 − πDV

0

∣∣∣∣∣ ≥ 1.

These ratios align with (3.32) as demonstrated in the single-sided queueing model anal-
ysis above. The analysis of these cases is omitted as they can be shown by referring to
the above analysis. ■

Comparing Figure 3.6(a) and (b), it becomes evident that the endogenous model ex-
hibits a larger relative revenue difference between different information policies than the
exogenous model, due to the scale effect. In this model, a side with a higher poten-
tial arrival rate has a lower matching probability than the one with a lower potential
arrival rate. As a result, the gap in demand and supply arrival rates narrows in the
endogenous model, leading to a smaller absolute difference in expected revenue between
information policies. In other words, the long-term influence of matching probability
on effective arrival rates decreases the absolute revenue difference between information
policies, while heightening the relative revenue difference. We introduce the following
theorem to demonstrate that, in a sufficiently large market, there exists a lower bound
on the increase in the difference between information policies stemming from the scale
effect.

Theorem 22. For a sufficiently large balanced market, the relative revenue difference
between information policies is asymptotically twice as large in the endogenous model as
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in the exogenous model. Specifically, we have lim
Λd→∞

ρ=1

vn
v = 2. In an unbalanced market,

the asymptotic difference is strictly greater than two, i.e., lim
Λd→∞

ρ ̸=1

vn
v > 2.

Proof. Single-sided queueing model. To analyze the ratio vn
v , we only consider the

case where the K model has a higher expected revenue in both exogenous and endogenous
models. We omit the case where the R model has a higher expected revenue since the
model setting is symmetric. The ratio vn

v is

vn

v
= Rev(K,n) − Rev(R,n)

RevK − RevR
·

max
{

RevK , RevR
}

max
{
Rev(K,n), Rev(R,n)}

=
(
ξ(K,n)

s + ξ(R,n)
s

) ξ
(K,n)
s − ξ

(R,n)
s

ξK
s − ξR

s

· ξK
s(

ξ
(K,n)
s

)2 . (3.35)

Balanced market. For (3.35), if arrival rates of both customers and suppliers are suffi-
ciently large, then it holds

lim
Λs→∞

ρ=1

vn

v
= lim

Λs→∞
ρ=1

2 · π
(K,n)
0 − π

(R,n)
0

πK
0 − πR

0
= lim

Λs→∞
ρ=1

2 ·
1 +

∞∑
i=1

i∏
j=1

1
1+jδ/Λs

1 +
∞∑

i=1

i∏
j=1

1
1+jδ

/(
Λs

(
1−π

(R,n)
0

)) = 2

where lim
Λs→∞

ρ=1

ξ
(ℓ,n)
s = 1 for each ℓ ∈ {K, R}.

Unbalanced market. For a fixed system load ρ < 1 (i.e., Λd < Λs) in a demand market,
if arrival rates of both customers and suppliers are sufficiently large, indicating that Λs

approaches infinity, we have lim
Λs→∞

ξℓ
d = lim

Λs→∞
ξ

(ℓ,n)
d = min{Λd,Λs}

Λd
= 1 and lim

Λs→∞
ξℓ

s =

lim
Λs→∞

ξ
(ℓ,n)
s = min{Λd,Λs}

Λs
= Λd

Λs
for each ℓ ∈ {K, R}. Hence, for (3.35), we get

lim
Λs→∞

ρ<1

vn

v
= 2

∣∣∣∣∣∣∣∣∣∣∣∣

1
/ρn +

∞∑
i=1

i∏
j=1

1
1+jδ

/(
Λs

(
1−π

(R,n)
0

))−
(
1 − Λd

Λs

)
(

1
/(

ρ +
∞∑

i=1

i∏
j=1

1
1+jδ/Λs

))
−
(
1 − Λd

Λs

)
∣∣∣∣∣∣∣∣∣∣∣∣

≥ 2.

We do not analyze the case where Λd > Λs since the model setting is symmetric.
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3.4. Endogenous arrival rate

Double-sided queueing model. Balanced market. In a balanced double-sided market
with a sufficiently large arrival rates on both sides, the BV policy is the preferred
information policy while the BI policy is the least preferred information policy. The
ratio vn

v is

vn

v
= Rev(BV,n) − Rev(BI,n)

RevBV − RevBI
· RevBV

Rev(BV,n)

=
(

2 − 1
1 + k

(BV,n)
d + k

(BV,n)
s

− 1
1 + ζ

(BI,n)
d + ζ

(BI,n)
s

)

ζ
(BI,n)
d + ζ

(BI,n)
s − k

(BV,n)
d − k

(BV,n)
s

ζBI
d + ζBI

s − kd − ks
· tb + tb

tbξ
(BV,n)
s + tbξ

(BV,n)
d

1 + ζBI
d + ζBI

s

1 + ζ
(BI,n)
d + ζ

(BI,n)
s

.

(3.36)

Since in a balanced market lim
Λs→∞

ρ=1

ξ
(ℓ,n)
s = 1 for each ℓ ∈ {BV, BI}, it holds

lim
Λs→∞

ρ=1

λℓ
d = Λd. (3.37)

Hence it holds

lim
Λs→∞

ρ=1

vn

v

(3.37)= lim
Λs→∞

ρ=1

2tbΛs + 2tbΛd + 1
tbΛs + tbΛd + 1 = 2.

Unbalanced market. If Λs > Λd (i.e., ρ < 1) and a fixed ρ > Tρ (defined in Proposition 7),
then it holds

lim
Λs→∞

ρ<1

λℓ
s = Λsξ(ℓ,n)

s = Λd and lim
Λs→∞

ρ<1

λℓ
d = Λd (3.38)

for each ℓ ∈ {BV, BI}. Hence for (3.36), it holds

lim
Λs→∞

ρ<1

vn

v

(3.38)= lim
Λs→∞

ρ=1

(
2
∣∣∣∣ 2
1 + ρn

∣∣∣∣
∣∣∣∣∣ζ

(BI,n)
d + ζ

(BI,n)
s − 2tbΛd

ζBI
d + ζBI

s − 2tbΛd
· 1 + ζBI

d + ζBI
s

1 + ζ
(BI,n)
d + ζ

(BI,n)
s

∣∣∣∣∣
)

> 2.

The case where ρ ≤ Tρ has been omitted. Here, the DV policy is preferred and the SV

policy is the least preferred, and the ratio vn
v is symmetric to (3.36). We also omit the

case of Λs < Λd since the model setting is symmetric. ■
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3. Information Disclosure Policy Design

Both Proposition 21 and Theorem 22 suggest that a higher matching probability has two
effects: it increases effective arrival rates by stimulating more long-run arrivals, leading
to higher revenue, and it increases the difference between information policies through
a scale effect.

3.5. Conclusions

We examine different user abandonment behaviors associated with different informa-
tion disclosure policies and evaluate their impact on platform revenue. Our queueing-
theoretical results offer an explanation for why platforms prefer specific information
policies in practice. Additionally, we demonstrate that the significance of information
design becomes more pronounced in the context of multiple platforms. Dissatisfied users
may churn in the long run if they perceive low service quality. For example, with over
100 platforms operating in Europe’s online freight exchange market (Hänel 2021) in-
formation design becomes even more important than in markets with a monopolistic
platform provider.

In chapter 4, we investigate the joint effects of pricing policy and information design.
The analysis of information policy provides a valuable foundation for such extensions.
Note, that prices are often determined exogenously and our results are valuable in their
own right. Another avenue to explore considers the heterogeneity of user requests. In
our model, we conducted an analysis of a market segment with homogeneous supply and
demand to obtain insights into the strategic implications of information design. Moving
forward, we could examine platforms with heterogeneous customer demands and supplier
capacities.
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4. Joint Effect of Pricing and Information
Design

Abstract: Online service platforms, such as ride-hailing and freight exchanges, generate
net revenues from commissions. Pricing and queue-length information are strategically
used to attract users and maximize profit after considering platform costs. Dynamic
pricing based on queue length can increase net revenue but might decrease user loyalty,
incurring extra costs. Disclosing the queue length impacts customer balking behav-
ior which influences user arrival rates. When displayed, customers balk at entering if
they perceive the queue as too long. If concealed, balking is probabilistic, driven by
the customers’ uncertainty about the waiting time. Using an M/M/1 queueing model,
we examine different pricing and information disclosure policies to maximize the ex-
pected profit of the platform. Optimizing the underlying semi-Markov decision process
requires solving a non-convex quadratically constrained quadratic program. Through
uniformization, we derive optimality equations and compare optimal prices, profits, and
throughput. We identify unique thresholds for pricing and information policies. The
preferred pricing policy depends on the extra cost of implementing dynamic pricing ver-
sus a static price. If this cost is low, then dynamic pricing is preferred; otherwise, a
static pricing policy is preferred. The preferred information policy depends on the user’s
sensitivity to queue-length information. Our results reveal that pricing and information
policies are complementary. Specifically, both dynamic pricing and visible information
policies increase expected profit, while static pricing and invisible information policies
increase throughput.

4.1. Introduction

Online service platforms function as intermediaries, connecting customers (representing
the demand) and suppliers (representing the supply) on digital marketplaces. Their gross
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4. Joint Effect of Pricing and Information Design

Table 4.1.: Different strategies of pricing policy and service delay information policy
utilized by platforms, sourced from their official websites, documentation,
and mobile applications, with updates in Sep. 2023.

Strategy Examples of platforms

S&V Amazon Prime Now, Fiverr, ...

S&I Grubhub, Timocom, Wtransnet, Trans EU, ...

D&V Uber, Lyft, Uber Freight, Full Truck Alliance, Shipt, Uber Eats, ...

D&I Instacart, Upwork, ...

revenue comes from customer payments, collected for the services rendered. Platforms
then compensate suppliers for the services they provide. Notable examples of such plat-
forms span various sectors: (i) ride-sharing platforms, including Uber, Lyft, DiDi, and
Grab; (ii) food delivery platforms like DoorDash, Grubhub, and Uber Eats; (iii) freight
exchanges such as Timocom, Raaltrans, Full Truck Alliance, and Uber Freight; (iv) free-
lance service platforms like Upwork, Fiverr, and Freelancer, among others. Typically,
these platforms generate net revenue through commissions. Profits are determined by
subtracting platform costs from net revenue.

For these platforms, both the pricing policy (whether static or dynamic) and the service
delay information disclosure policy (whether visible or invisible) play critical roles in
attracting users. These factors significantly influence the platform’s key performance
metrics, including net revenue, profit, and throughput (Akşin et al. 2017; Lee et al.
2023; H. Wang and Yang 2019). The combination of the adopted pricing policy and
service delay information disclosure policy results in four primary strategies: static-
pricing-and-visible-information (S&V ), static-pricing-and-invisible-information (S&I),
dynamic-pricing-and-visible-information (D&V ), and dynamic-pricing-and-invisible
-information (D&I). These strategies are not fully understood, partly due to the com-
putational complexity of finding optimal solutions for dynamic pricing, as highlighted by
J. Kim and Randhawa (2018) and Varma et al. (2023). Obviously, platform profit and
throughput are also influenced by factors beyond pricing and information, including user
interface or customer service, which makes empirical studies challenging. Mertikopoulos
et al. (2020) highlight that a clearing schedule achieving both rapid service speed and an
optimal price proves challenging in a two-sided market. Our analytical model analyzes
the interplay between pricing and information as key strategic platform decisions.
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4.1. Introduction

In practice, service delay information is often conveyed through real-time queue length
data (Batt and Terwiesch 2015; Hassin and Roet-Green 2020). Recent research con-
ducted by Zhu et al. (2023) (the main reference for Chapter 3), Guo et al. (2022), and
Lingenbrink and Iyer (2019) has delved into disclosure policies regarding queue-length
information disclosure within the queueing systems of two-sided marketplaces. Their
findings indicate that improving the visibility of information in larger markets leads to
increased revenue. These studies concentrated on the implications of information dis-
closure only, examining markets that implement static pricing. In static pricing, prices
remain fixed irrespective of the service queue’s length. We study the impact of informa-
tion policies when dynamic pricing is implemented, a policy that sets state-dependent
prices to balance supply and demand. In contrast to Banerjee et al. (2015), we examine
a fully dynamic pricing policy, rather than a two-price dynamic pricing policy. In the
two-price dynamic pricing policy, prices were set as either high or low from a two-element
set based on a queue length threshold. Dynamic pricing also comes at a cost for plat-
form providers. Apart from implementation costs, it has negative consequences for user
perception (Bharath 2022). The same holds for excessively long queues (Bimpikis and
Mantegazza 2023; R. Zhang et al. 2023). In our model, we consider such costs explicitly.
Overall, our analysis investigates the combined effects of pricing and information policies
on a given platform. Specifically, we focus on the optimal prices derived to maximize
the platform’s expected profit under different information policies.

Research questions and methodology We establish an analytical model to examine
the effects of both pricing and information policies, giving priority to maximizing the
platform’s expected profit under a specific information policy. Our model addresses two
questions:

1. Preferred strategy: What is the preferred strategy to maximize expected profit?

2. Efficiency: How do different pricing and information policies impact both profit
and throughput?

We use a M/M/1 queueing system to capture the dynamics and features of a market.
Customers and suppliers dynamically enter the platform. Customers can either join a
queue or balk, while suppliers always serve customers. Within a specific market seg-
ment, the platform adopts a first-in-first-out (FIFO) principle to match homogeneous
customers and suppliers. The price may fluctuate based on the current queue length,
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4. Joint Effect of Pricing and Information Design

depending on the pricing policy implemented. Solving the underlying semi-Markov de-
cision process (SMDP) for each pricing policy under the proposed information policy
can be challenging, because it requires solving a nonconvex quadratically constrained
quadratic program (NQCQP). We derive the optimality equations for this SMDP by
uniformization, as detailed in Bertsekas (2012). This approach transforms the original
NQCQP into a system of quadratic equations, as demonstrated by Ata and Shneorson
(2006) and Vulcano (2008). Subsequently, we obtain optimal prices within our proposed
information policy frameworks and compare the results.

4.1.1. Literature review

Our study focuses on the examination of pricing and service delay information disclosure
policies within the context of on-demand service platforms. These platforms typically
adopt a queueing model as their fundamental business structure, encompassing a wide
range of double-sided queueing models, double-sided queueing systems, queueing net-
works, and more. Our literature review primarily focuses on the queueing literature
related to a specific market segment. This allows us to gain insights into the effects of
pricing and information disclosure while establishing connections between our research
and relevant papers. Table 4.2 offers a summary of the relevant literature.

Our study considers both static and fully dynamic pricing policies, alongside an explo-
ration of the consequences of displaying or concealing queue-length information. This
distinguishes our paper from others in the field. We do not review the broader literature
on on-demand service platforms, as it encompasses studies that go beyond the scope of
pricing and service delay disclosure policies, which are not directly relevant to our study.
See, for example, H. Wang and Yang (2019), for a more extensive review of papers on
online ride-hailing platforms.

Static and dynamic pricing policies The literature on optimal static pricing policies
for queues is considerably more extensive than that on dynamic pricing policies. Naor
(1969) studied optimal static pricing for revenue maximization in queues with visible
queue-length information. However, addressing optimal dynamic pricing poses greater
challenges. As highlighted by J. Kim and Randhawa (2018), calculating an optimal dy-
namic pricing solution is intricate and comes with concerns related to model complexity,
computational costs, and practical implementation. One approach to designing dynamic
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4. Joint Effect of Pricing and Information Design

pricing policies involves classifying user into different classes, with each assigned a cor-
responding price (Mendelson and Whang 1990; Paschalidis and Tsitsiklis 2000). Within
this framework, studies like Maglaras (2006) and Çil et al. (2011) have investigated
sequential rules for large-scale queueing systems.

Dynamic pricing incorporating both price and service delay sensitivities was explored in
studies such as those by Chen and Frank (2001) and Ata and Shneorson (2006). These
studies considered the impact of visible queue-length information on customers’ balking
behavior and formulated optimality equations for pricing. In particular, Chen and Frank
(2001) analyzed revenue maximization, while Ata and Shneorson (2006) analyzed social
welfare maximization. Haviv and Randhawa (2014) and Lin et al. (2023) studied a fully
dynamic pricing policy in a queue while concealing queue-length information. Haviv
and Randhawa (2014) compared static and dynamic pricing policies and discovered
that when customers’ waiting costs are high, a static pricing policy is not only nearly
optimal for revenue maximization but also highly effective in maximizing social welfare.
On the other hand, Lin et al. (2023) found that a high waiting cost for a long queue
results in a non-monotonic optimal dynamic pricing function that depends on the queue
length. Afèche and Ata (2013) examined a queue that accommodates both patient and
impatient customers. While these customers had access to queue-length information,
the suppliers were unaware of the proportions of each customer type. They developed
an optimal Bayesian pricing policy as a function of queue length, involving a two-price
policy. Banerjee et al. (2015) examined a two-price policy implemented in a queueing
system with visible queue-length information for revenue maximization. They found that
this pricing policy is asymptotically optimal for sufficiently large markets. J. Kim and
Randhawa (2018) observed that the variability of queue lengths resulting from a pricing
policy negatively affects revenue maximization, with dynamic pricing leading to lower
variability compared to static pricing. The reduction of this variability by a two-price
policy explained why it achieves nearly maximal revenue in large-scale queueing systems.
F. Huang et al. (2019) examined a two-price cyclic policy in a queue that accommodated
both well-informed service-quality customers and naive customers. They found that a
simple two-price policy did not achieve near-optimality in their model.

In this literature, dynamic pricing offers both advantages and disadvantages compared
to static pricing. On the positive side, dynamic pricing increases the revenue and profit
of platforms. It regulates market supply and demand through price adjustments, as ev-
idenced by the widespread adoption of dynamic pricing policies, also known as surging
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4.1. Introduction

price, within online ride-hailing platforms (Phillips 2021). For instance, J. C. Castillo
(2022) analyzed data from Uber in Houston and revealed a 3.53% increase in gross rev-
enue as a result of implementing dynamic pricing. In ride-hailing platforms, drivers often
engage in a “wild goose chase” (WGC) phenomenon, constantly relocating to different
regions in the city in pursuit of higher-priced orders during periods of sudden demand
surges. This phenomenon can ultimately lead to a decrease in the overall efficiency of the
platform. Both Ke et al. (2020) and J. Castillo et al. (2022) highlighted that dynamic
pricing can effectively mitigate this WGC phenomenon. However, dynamic pricing can
also be controversial concerning user experience. For example, discriminatory pricing
based on the time and location of accessing the service system can lead to decreased
user loyalty and potentially tarnish the platform’s reputation, as discussed by Caillaud
and De Nijs (2014), Z. Wang (2016), and J. Huang et al. (2022). And Feng et al.
(2021) found that the implementation of a dynamic pricing policy in online ride-hailing
platforms could result in increased average waiting times for passengers compared to
traditional street-hailing systems, with the outcome dependent on market parameters.
Based on data from Uber in Houston, J. C. Castillo (2022) observed that the advan-
tages of implementing a dynamic pricing policy primarily benefit customers, engendering
fairness concerns among suppliers.

Our paper examines a fully dynamic pricing policy, building upon the optimality equa-
tions presented in Chen and Frank (2001) and Ata and Shneorson (2006). Optimal
pricing are determined under different queue-length information disclosure policies. To
compare static and dynamic pricing, we incorporate an extra cost associated with im-
plementing dynamic pricing when calculating the platform’s profit based on net revenue.
While several papers have explored static and dynamic pricing, primarily concentrat-
ing on revenue maximization and identifying conditions under which static pricing is
near-optimal, our paper extends these findings by taking fully dynamic pricing and in-
formation policy into account.

Queue-length information disclosure policy Both empirical studies have demon-
strated the significant impact of queue-length information display on user behavior. For
instance, Lu et al. (2013) and Batt and Terwiesch (2015) analyzed balking behavior
using data from a hospital emergency department and a retail store. In these settings,
people queued while also having the ability to observe queue length. These studies re-
vealed that when users can see queue-length information, they tend to balk at joining the
queue if the estimated wait time exceeds their expectations. Naor (1969) and Banerjee
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et al. (2015) examined this in an M/M/1 queueing model, where balking decisions were
based on a self-determined admission level. Zhu et al. (2023) (the main reference for
Chapter 3) considered that users observe the queue length, and if it appears too long,
they balk, resulting in a truncated queue. Their study investigated the endogeneity of
this truncation size on queue length concerning the queue’s service rate. These studies
argue that for homogeneous users within a market segment, the queue does not increase
beyond a certain threshold due to the truncated balking behavior exhibited by users.
As a result, revenue is influenced by the level of user patience.

Concealing queue-length information has been shown to result in lower arrival rates
since some customers may balk at joining the queue due to the uncertainty about wait-
ing times. However, this concealment may lead to longer queues, as observed by Veer-
araghavan and Debo (2009). Hassin and Roet-Green (2020) studied customer behavior
regarding queue joining using a parking model as an illustrative example. Their find-
ings indicate that concealing queue-length information leads to higher throughput when
the system congestion is low. Customers waiting in the queue without knowing the
service rate and delays can incur costs on the platform. These costs include managing
long queues (Kostami and Ward 2009), the loss of impatient customers through reneg-
ing (Akşin et al. 2013), and reduced customer loyalty (Allon et al. 2011). These factors
can ultimately drive customers to choose competing platforms.

Our study focuses on understanding the joint effect of pricing and information disclosure
policies. We primarily consider different user behaviors influenced by the certainty of
waiting times, driven by the visibility of queue-length information. We do not examine
the many different user behaviors resulting from the display of queue-length information.
For a more extensive review of papers on this topic, we refer the reader to literature such
as Hassin and Roet-Green (2020) and Zhu et al. (2023) (the main reference for Chapter
3). In essence, we are comparing the consequences of truncated balking behavior when
queue length is visible with the effects of reduced arrival rates resulting from invisible
queue length.

4.1.2. Results and contributions

Dynamic pricing increases platform profit, but it decreases efficiency. Key results are
summarized in Table 4.3. We analyze different strategies of pricing and information
policies, aiming to maximize the platform’s expected profit. Our results reveal the
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Table 4.3.: Influence of different strategies on platform performance.

Performance of different platform strategies Reference

Profit D&V > D&I Result 26

Throughput
For a low commission rate, D&V < D&I

Result 27
For a high commission rate, D&V > D&I

complementary and substitute ways in which pricing and information policies inter-
act: Dynamic pricing and visible information policies increase expected profit, while
static pricing and invisible information policies increase throughput. Dynamic pricing
achieves higher profits by increasing the average transaction price and, consequently,
commissions. Under the visible queue-length information policy, the queue truncates as
customers balk at joining, perceiving it as too long. At this truncation point, although
no additional customers join, the platform still attracts suppliers to provide services and
clear the queue, causing the corresponding net revenue function to be negative. There-
fore, for dynamic pricing, the price is set low at this truncation point, decreasing supplier
payouts to increase profits. Consequently, this increases the likelihood of the queue being
at the truncation point, resulting in the dynamic-pricing-and-visible-information (D&V )
strategy attracting fewer customers and suppliers, i.e., lower throughput. By concealing
queue-length information, customers do not balk based on queue length but probabilis-
tically based on the uncertainty in the waiting time. This nullifies the queue truncation,
resulting in an increase in throughput. However, an invisible information policy also
leads to lower arrival rates for both customers and suppliers, ultimately resulting in a
decrease in expected profit. Furthermore, we find that when the commission rate is high,
concealing queue-length information does not effectively increase throughput. This is
due to the decreased influence of truncated balking behavior on throughput under a
visible information policy. In such cases, the negative effect of concealing queue-length
information on both arrival rates and throughput becomes more pronounced.

We identify unique thresholds that determine the preferred pricing and information poli-
cies. Dynamic pricing generates higher net revenue than static pricing, but it may result
in user dissatisfaction and extra costs for the platform during profit calculation. Our
preferred pricing policy takes into account the extra cost of implementing dynamic pric-
ing compared to static pricing. When this cost is low, dynamic pricing is preferred;
otherwise, static pricing is preferred. Regarding the information policy, we use an indif-
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ference curve to identify the preferred one based on customer patience. If customers are
insensitive to queue-length information, leading to similar expected profits regardless of
the information policy, the platform is indifferent to its choice. However, if customers are
sensitive to this information, the indifference curve partitions markets into four differ-
ent regions based on customer patience parameters, indicating the preferred information
policy for each setting regarding platform profit. Within each region, a specific strategy
is preferred.

4.2. Model formulations and optimality equations

4.2.1. Model and notation

We use an M/M/1 queuing system to model a segmented market, where homogeneous
customers on the demand side either join or balk a queue, while homogeneous suppliers
on the supply side, serve. A “first-in-first-out” principle is applied to match customers
with suppliers. Customers and suppliers independently arrive at the queue and server
sides, respectively, following Poisson processes with rates λd and λs, where the service
rate is defined as λs. Both arrival rates, λd and λs, are determined by the linear price
response functions:

λd := α − βdp and λs := βs((1 − ϵ)p − ν). (4.1)

The parameters α, βd, βs and ν represent the market potential, the price sensitivity
for customers and suppliers, and the minimum wage for suppliers. The arrival rates
of customers and suppliers are lower than the market potential, indicating that p ∈
P :=

(
0, min

{
α
βd

, α
βs(1−ϵ) + ν

1−ϵ

})
. We denote the price sensitivity ratio of customers to

suppliers as β := βd/βs. The minimum wage sets a price floor for supplier compensation
since suppliers are unwilling to offer services for a payout below ν. For the platform, the
commission is ϵp, where ϵ represents the commission rate. The platform’s net revenue
(NR) is obtained by subtracting the supplier payout (SP ) of (1 − ϵ)p from the gross
revenue (GR), which is collected from customer payments at price p. For customers
waiting in the queue, the service time is an independent and identically distributed
exponential random variable with a mean of 1/λs.
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The platform implements a dynamic pricing policy when the price is state-dependent,
adjusting according to the current queue length in the system. In contrast, a static
pricing policy is implemented if the price remains constant, regardless of the queue
length. Despite its potential for increased net revenue, a dynamic pricing policy may
raise concerns about user satisfaction, particularly in terms of price discrimination within
specific market segments. The fluctuation in prices for identical services, depending on
the system’s state, may lead to user dissatisfaction and extra implementation costs for
dynamic pricing. This is observed from empirical studies and reports (see e.g., Fisher
et al. 2018, Gibbs et al. 2018 and Bharath 2022), as well as insights modeled in analytical
papers (see, e.g., Zhao and Zhang 2019). To account for this, we introduce an extra cost,
denoted as Cd, associated with implementing a dynamic pricing policy in comparison
to a static one. We convert this extra cost to a fixed relative value in the subsequent
derivation, specifically as a percentage of net revenue relative to a static pricing policy.
This approach helps establish the threshold for determining the preferred pricing policy
in the following analysis. In the following, we use χ ∈ {stat, dyn} to represent the
corresponding pricing policy.

The platform’s information policy determines whether the queue-length information is
disclosed to customers. We consider two types of information policies: visible and invis-
ible. Under a visible information policy, customers balk at joining the queue if the queue
length reaches a truncation size of k. This queueing model is an observable M/M/1/K

queue, called vi model. Under an invisible information policy, customers hesitate and
may balk at joining the queue based on a probability denoted as the balking probability
δ, leading to a reduced demand arrival rate of (1 − δ)λd. This queuing model is an
unobservable M/M/1 queuing model with a reduced arrival rate, called in model. A
fundamental difference in customer behavior lies in truncated balking in the former and
progressive balking in the latter, influenced by the customer’s ability to estimate the
expected waiting time. The parameters k and δ represent customer patience; thus, a
larger k or a smaller δ implies that customers exhibit greater patience. In the following,
we use ℓ ∈ {in, vi} to represent the information policy.

However, a long queue is never in the interests of the platform. A long waiting time
experience can lead to customer disloyalty, prompting users to seek alternative platforms
for their future service needs (see, e.g., Bimpikis and Mantegazza 2023 and Zhang et. al.
2023). Our models take into account that the platform incurs a customer attrition cost
for a lengthy queue. When the queue exceeds the length of k, the customer attrition cost
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(a) (b)

Figure 4.1.: The flow diagram of the queueing models. Left: vi model. Right: in
model.

is incurred at a rate of Ca per waiting customer. For example, if a customer is waiting
in a queue at a position i > k, then the customer attrition cost is (i − k)Ca. We assume
the effect of customer attrition cost on the platform’s profit is negligible, implying that
Ca → 0. However, the presence of this customer attrition cost prevents the queue length
from becoming infinitely long.

Figure 4.1 illustrates a flow diagram of both queuing models. The arrival rates λ
(i,ℓ)
d and

λ
(i,ℓ)
s depend on the price p(i,ℓ) at queue length i under a dynamic pricing policy. The

system load is defined as ρ(i,vi) := λ
(i−1,vi)
d

/
λ

(i,vi)
s and ρ(i,in) := (1 − δ)λ(i−1,in)

d

/
λ

(i,in)
s .

For a static pricing policy, we simplify the symbols of the arrival rates to λℓ
d and λℓ

s, which
depend on the state-independent price pℓ. The corresponding system load is simplified
as

ρvi := λvi
d

/
λvi

s and ρin := (1 − δ)λin
d

/
λin

s .

The platform selects a strategy that combines both pricing and information policies,
consisting of four options: static-pricing-and-visible-information (S&V ), static-pricing-
and-invisible-information (S&I), dynamic-pricing-and-visible-information (D&V ), and
dynamic-pricing-and-invisible-information (D&I). The platform maximizes its expected
profit across the four strategies, which is defined as the net revenue minus the extra cost
associated with implementing a dynamic pricing policy if applied, given by

Proχ
ℓ :=

NRstat
ℓ χ = stat

(1 − Cd)NRdyn
ℓ χ = dyn.

(4.2)
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for each ℓ ∈ {vi, in}. This implies that for a constant Cd, the optimal price under
a specific pricing policy for maximizing profit is the same as that for maximizing net
revenue.

4.2.2. Semi-Markov decision process

The optimal prices under different information policies can be determined by solving the
corresponding semi-Markov decision processes. The state space of the vi model includes
all non-negative integers up to the truncation size k, denoted as Svi = {0, 1, . . . , k}. The
state space of the in model is represented by the set of all non-negative integers, as there
is no truncation imposed. It is denoted as Sin = N0. The transition rates for the vi and
in models are:

rvi
ij =


λ

(i,vi)
d if j = i + 1

λ
(i,vi)
s if j = i − 1

0 otherwise

and rin
ij =


(1 − δ)λ(i,in)

d if j = i + 1

λ
(i,in)
s if j = i − 1

0 otherwise.

The action space for the price is p(i,ℓ) ∈ P for every i ∈ Sℓ.

The gross revenue rate function, denoted as GRℓ(·), is defined as the product of the
payment collected from customers and their arrival rate at queue length i:

GRvi(p(i,vi)) :=

λ
(i,vi)
d p(i,vi) if i < k

0 if i = k

and

GRin(p(i,in)) := (1 − δ)λ(i,in)
d p(i,in).

The supplier payout rate function, denoted as SPℓ(·), is defined as the product of the
payout paid to suppliers and their arrival rate at queue length i:

SPvi(p(i,vi)) :=

0 if i = 0

(1 − ϵ)p(i,vi)λ
(i,vi)
s if 1 ≤ i ≤ k

(4.3)
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and

SPin(p(i,in)) :=


0 if i = 0

(1 − ϵ)p(i,in)λ
(i,in)
s if 1 ≤ i ≤ k

(1 − ϵ)p(i,in)λ
(i,in)
s + (i − k)Ca if k < i.

(4.4)

On the server side, the platform provides payouts to suppliers when the queue is not
empty. The expected net revenue function is calculated by subtracting the total supplier
payout from the expected gross revenue for each queue length i. This is denoted by:

NRℓ :=
∑

i∈Sℓ−{k}
πℓ

i GRℓ(p(i,ℓ)) −
∑

i∈Sℓ−{0}
πℓ

i SPℓ(p(i,ℓ)) (4.5)

for each ℓ ∈ {vi, in}, where πℓ
i denotes the steady-state probability of queue length i

under an information policy ℓ. The optimal expected net revenue is denoted by NRχ
ℓ

∗ :=
max

p(i,ℓ),∀i∈Sℓ

{
NRχ

ℓ

}
for each pricing policy χ ∈ {stat, dyn} and information policy ℓ ∈

{in, vi}. The expected profit function, as defined in (4.2), depends on the expected
net revenue function for a constant Cd. The corresponding optimal expected profit is
denoted by Proχ

ℓ
∗ := max

p(i,ℓ),∀i∈Sℓ

{
Proχ

ℓ

}
.

4.2.3. Optimal static pricing

For implementing a static pricing policy, we can simplify (4.5) to:

NRstat
vi =(1 − πvi

k )λvi
d pvi − (1 − πvi

0 )(1 − ϵ)pviλ
vi
s (4.6)

NRstat
in =(1 − δ)λin

d pin − (1 − πin
0 )(1 − ϵ)pinλin

s −
∞∑

i=k+1
(i − k)Caπin

i . (4.7)

Under a visible information policy, the expected net revenue function NRstat
vi is calculated

as the sum of the expected customer payments collected at each queue length, excluding
the truncation, since no additional customers are attracted to join. This sum is then
subtracted by the total expected payout to suppliers across each queue length. Under
an invisible information policy, the expected net revenue function NRstat

in is calculated
as the sum of the expected customer payments collected across each queue length with a
lower arrival rate, minus the total expected payout to suppliers across each queue length,
and further minus the total expected customer attrition cost across each queue length
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over the truncation size defined in the vi model. The optimal price is denoted as p∗
ℓ :=

argmax
pℓ

NRstat
ℓ , and the corresponding optimal system load are ρ∗

vi := α−βdp∗
vi

βs((1−ϵ)p∗
vi−ν) and

ρ∗
in := (1−δ)(α−βdp∗

in)
βs((1−ϵ)p∗

in−ν) .

Proposition 23. The optimal system load under an invisible information policy ρ∗
in

is lower than 1, implying that p∗
in ≥ α+βsν

βd+βs(1−ϵ) . The expected net revenue functions
(4.6) and (4.7) are quasi-concave with respect to the price pvi ∈

(
0, α

βd

)
and pin ∈(

α+βsν
βd+βs(1−ϵ) , α

βd

)
.

Proof. For an invisible information policy, a system load exceeding 1 could trigger an
infinite increase in the queue length, leading to near-infinite customer attrition cost.
Therefore, the optimal system load in this case is lower than 1.

Next, we demonstrate the quasi-concavity of (4.6) and (4.7) by reformulating them into
equations that solely depend on the system load variable. Through analyzing the first-
order and second-order derivatives of these reformulated equations, we establish that
the net revenue functions exhibit quasi-concavity in the system load. Consequently, this
implies quasi-concavity in price.

The vi model. We reformulate (4.6) into the equation depending on the system load:

NRstat
vi = νϵ

(
α

1 − ϵ
− βdν

(1 − ϵ)2

)
·

α
βsν + ρvi(
βd

βs(1−ϵ) + ρvi

)2

(
1 − ρvi − 1

ρvi
k+1 − 1

)
, (4.8)

which can further be reformulated as

(4.8) = νϵ

(
α

1 − ϵ
− βdν

(1 − ϵ)2

)
·

α
βsν + ρvi(
βd

βs(1−ϵ) + ρvi

)2

1 − 1
k∑

i=0
ρvi

i

 . (4.9)

The first-order derivative of Prostat
vi is

d(4.9)
dρvi

=
νϵ
(

α
1−ϵ − βdν

(1−ϵ)2

)
(

βd
βs(1−ϵ) + ρvi

)3 ·


(

α
βsν + ρvi

) (
βd

βs(1−ϵ) + ρvi

) k∑
i=1

iρvi
i−1

(
k∑

i=0
ρvi

i

)2
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−
( 2α

βsν
− βd

βs(1 − ϵ) + ρvi

)1 − 1
k∑

i=0
ρvi

i


 =

νϵ
(

α
1−ϵ − βdν

(1−ϵ)2

)
(

βd
βs(1−ϵ) + ρvi

)3 · (h1 − h2)

(4.10)

where h1 :=

(
α

βsν
+ρvi

)( βd
βs(1−ϵ) +ρvi

) k∑
i=1

iρvi
i−1(

k∑
i=0

ρvi
i

)2 and h2 :=
(

2α
βsν − βd

βs(1−ϵ) + ρvi

)1 − 1
k∑

i=0
ρvi

i

.

For h2, it holds that

dh2
dρvi

= 1 +

(
2α
βsν − βd

βs(1−ϵ) + ρvi

) k∑
i=1

iρvi
i−1 −

k∑
i=0

ρvi
i

(
k∑

i=0
ρvi

i

)2 ≥ 1. (4.11)

For h1, it is increasing and then decreasing with ρvi and h1 > 0. Since dh1
dρvi

ρvi=0
> 0, d2h2

dρvi
2 <

0 and (4.11), these indicate that d(h1−h2)
dρvi

follows one of: i) it is increasing the decreasing

with ρvi; ii) it is decreasing with ρvi. Since h1 − h2
ρvi=0

> 0 and lim
ρvi→∞

(h1 − h2) < 0,
these indicates that h1 −h2 is positive for ρvi is small and it decreases to a negative term
with ρvi. This indicates that (4.9) is increasing and then decreasing with ρvi.

The in model. We reformulate (4.7) into the equation depending on the system load:

NRstat
in =νϵ

((1 − δ)α
1 − ϵ

− (1 − δ)βdν

(1 − ϵ)2

)
·

(1−δ)α
βsν + ρin(

(1−δ)βd

βs(1−ϵ) + ρin

)2 · ρin

− ρin
k+1 (−kρin + k + 1)

1 − ρin
· Ca. (4.12)

The first-order derivative of Prostat
in is

d(4.12)
dρin

=
νϵ
(

(1−δ)α
1−ϵ − (1−δ)βdν

(1−ϵ)2

)
(

(1−δ)βd

βs(1−ϵ) + ρin

)3 ·
(

(1 − δ)α
βsν

((1 − δ)βd

βs(1 − ϵ) − ρin

)
+ 2(1 − δ)βdρin

βs(1 − ϵ)

)

− Ca · ρin
k
(
k2(ρin − 1)2 + k(ρin

2 − 3ρin + 2) + 1
)

(ρin − 1)2 . (4.13)
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When ρin = 0, it holds that

(4.13) ρin=0=
νϵ
(

(1−δ)α
1−ϵ − (1−δ)βdν

(1−ϵ)2

)
(

(1−δ)βd

βs(1−ϵ)

)3

((1 − δ)α
βsν

(1 − δ)βd

βs(1 − ϵ)

)
> 0. (4.14)

When ρin → 1, it holds that

lim
ρin→1

(4.13) =
νϵ
(

(1−δ)α
1−ϵ − (1−δ)βdν

(1−ϵ)2

)
(

(1−δ)βd

βs(1−ϵ) + 1
)3

·
(

(1 − δ)α
βsν

((1 − δ)βd

βs(1 − ϵ) − 1
)

+ 2(1 − δ)βd

βs(1 − ϵ)

)
− ∞ < 0. (4.15)

The second-order derivative of (4.12) is

d2(4.12)
dρin

2 =
2νϵ

(
(1−δ)α

1−ϵ − (1−δ)βdν
(1−ϵ)2

)
(

(1−δ)βd

βs(1−ϵ) + ρin

)4

·
(

(1 − δ)α
βsν

(
ρin − 2(1 − δ)βd

βs(1 − ϵ)

)
+
((1 − δ)βd

βs(1 − ϵ)

)((1 − δ)βd

βs(1 − ϵ) − 2ρin

))

+ Ca ·
(k(ρin − 1) − 1) ρin

k−1
(
k2 (ρin − 1)2 + k (ρin − 1)2 + 2ρin

)
(ρin − 1)3 . (4.16)

Since Ca · (k(ρin−1)−1)ρin
k−1(k2(ρin−1)2+k(ρin−1)2+2ρin)

(ρin−1)3 is decreasing with ρin ∈ (0, 1), these
indicate that

(4.16) <
2νϵ

(
(1−δ)α

1−ϵ − (1−δ)βdν
(1−ϵ)2

)
(

(1−δ)βd

βs(1−ϵ)

)4

·
(

(1 − δ)α
βsν

+
((1 − δ)βd

βs(1 − ϵ)

)2
− 2(1 − δ)βd

βs(1 − ϵ) − 2(1 − δ)2αβd

βs
2(1 − ϵ)ν

)
< 0. (4.17)

Hence, (4.14), (4.15) and (4.17) indicate that (4.12) is increasing then decreasing with
ρin. ■

Under an invisible information policy, if the system load ρin exceeds 1, it results in
an infinitely long queue and a high customer attrition cost, which is not an optimal
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solution. Since Proposition 23 states that the revenue functions for both visible and
invisible information policies are quasi-concave in price, this indicates the existence of a
unique optimal price that maximizes the expected profit. Economically, this implies the
existence of an optimal equilibrium among gross revenue, supplier payout, and platform
profit, leading to a peak point in net revenue generation for the platform.

4.2.4. Optimal dynamic pricing

By applying uniformization to the underlying SMDP, we transform it into a discrete-
time MDP. This transformation allows us to utilize Bellman’s equation to derive the
optimality equations (Bertsekas 2012) (pp. 288). We outline the steps to uniformize
SMDPs for both visible and invisible information policies, and the corresponding optimal
price solutions in the following.

Uniformization for visible information policy

Step 1: Uniformize Markov chain of SMDP for vi model For each transition
associated with a specific state of the SMDP, we divide their transition probabilities
within the same range by a specific value, converting the SMDP into a discrete-time
MDP. For the states 0 and k, we can uniformize the Markov chain by dividing transition
probabilities by a factor of α. For other states 0 < i < k, we can uniformize the Markov
chain by dividing transition probabilities by a factor of 2α. The transition probabilities of
the Markov chain and the corresponding uniformized version are depicted in Figure 4.2.
In the uniformized version of the corresponding Markov chain, the transition probability
from each state to another state lies within the same range (0, 1). Hence, it can be
viewed as a discrete-time MDP as the sojourn time of each state being uniformized.

Step 2: Derive optimality equations

Let vi denote the relative value function corresponding to a queue length of i. We apply
Bellman’s equation to derive the corresponding optimality equations:

v0 = max
p(0,vi)

GRvi

(
p(0,vi)

)
− γ

α
+ λ

(0,vi)
d

α
v1 + α − λ

(0,vi)
d

α
v0

 (4.18)

vi
i=1,..,k−1 = max

p(i,vi)

{
GRvi(p(i,vi)) − SPvi(p(i,vi)) − γ

2α
+ λ

(i,vi)
d

2α
vi+1
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......

(a)

(b)

Figure 4.2.: Markov chain and its uniformized version of vi model. Left: Markov chain
of SMDP. Right: Uniformized version of a discrete-time MDP.

+ λ
(i,vi)
s

2α
vi−1 + 2α − λ

(i,vi)
d − λ

(i,vi)
s

2α
vi

}
(4.19)

vk = max
p(k,vi)

{
−SPvi(p(k,vi)) − γ

α
+ λ

(k,vi)
s

α
vk−1 + α − λ

(k,vi)
s

α
vk

}
(4.20)

Here, γ is a guess at the maximum average value. This implies that there are unique
values for γ and vi for i ∈ Svi that satisfy equations (4.18)-(4.20), which is proven by
Ata and Shneorson (2006). These unique values correspond to the optimal prices for
maximizing the expected net revenue.

Step 3: Determine optimal prices

By maximizing the right-hand side (RHS) of equations (4.18)-(4.20) and introducing an
intermediate variable yi := vi−1 − vi for each i = 1, 2, .., k, we can reformulate these
equations as follows:

γ = (α + βdy1)2

4βd
− αy1 (4.21)

γ =
(α + βs(1 − ϵ)(ν + yi) + βdyi+1)2

4 (βd + βs(1 − ϵ)2) − αyi+1 − βsνyi for each i = 1, .., k − 1

(4.22)

γ =
βs (ν + yk)2

4 − βsνyk. (4.23)
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The corresponding values of optimal prices are

p∗
(i,vi) =



α + βdy1

2βd
if i = 0

α + βs(1 − ϵ)(ν + yi) + βdyi+1

2 (βd + βs(1 − ϵ)2) if 0 < i < k

ν + yk

2(1 − ϵ) if i = k.

(4.24)

Here, (4.21)-(4.23) constitute a system of multivariate quadratic equations, and a unique
solution exists for γ, y1, y2, ..., yk. After solving the equation system (4.21)-(4.23) to
obtain the value of yi for each i = 1, 2, .., k, we integrate these yi values into (4.24) to
get optimal prices.

Uniformization for Invisible Information Policy

We follow the same steps outlined in the visible information policy case above to trans-
form the SMDP model into a Discrete-Time MDP.

Step 1: Uniformize Markov chain of SMDP for in model

In the in model, when considering a lower arrival rate (1 − δ)λd, we have (1 − δ)λd ∈
(0, (1 − δ)α) and λs ∈ (0, α). Hence, for the first state 0, we can uniformize the Markov
chain by using (1 − δ)α. For a state 0 < i < N , we can uniformize the Markov chain
by using (2 − δ)α. For the last state N , we can uniformize the Markov chain by using
α. The transition probabilities of the Markov chain and the corresponding uniformized
version are depicted in Figure 4.3. In the uniformized version of the corresponding
Markov chain, the transition probability from each state to another state lies within
the interval (0, 1). Hence, it can be viewed as a discrete-time MDP as the sojourn time
of each state being uniformized. Specifically, in the in model, the value of N is set to
a large number because the queue reaching lengths beyond this point has a negligible
impact on the expected revenue. This is due to the queue avoiding such long lengths to
prevent incurring infinite customer attrition costs.

Step 2: Derive optimality equations

Recall vi denote the relative value function corresponding to a queue length of i. We
apply Bellman’s equation and derive the corresponding optimality equations:
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......

(a)

(b)

Figure 4.3.: Markov chain and its uniformized version of in model. Left: Markov chain
of SMDP. Right: Uniformized version of a discrete-time MDP.

v0 = max
p(0,in)

GRin

(
p(0,in)

)
− γ

(1 − δ)α + λ
(0,in)
d

α
v1 + α − λ

(0,in)
d

α
v0

 (4.25)

vi
i=1,..,N−1 = max

p(i,in)

{
GRin(p(i,in)) − SPin(p(i,in)) − γ

(2 − δ)α + (1 − δ)λ(i,in)
d

(2 − δ)α vi+1 + λ
(i,in)
s

(2 − δ)αvi−1

+ (2 − δ)α − (1 − δ)λ(i,in)
d − λ

(i,in)
s

(2 − δ)α vi

}
(4.26)

vN = max
p(N,in)

{
−SPin(p(N,in)) − γ

α
+ λ

(N,in)
s

α
vN−1 + α − λ

(N,in)
s

α
vN

}
(4.27)

Here, γ is a guess of the maximum average value. This implies that there exists a unique
value for γ that satisfies equations (4.25)-(4.27), and the solutions to these equations, as
proven by Ata and Shneorson (2006), correspond to the optimal prices for maximizing
the expected revenue.

Step 3: Determine optimal prices

By maximizing the RHS of equations (4.25)-(4.27) and introducing an intermediate
variable yi := vi−1 − vi for each i = 1, 2, .., N , we can reformulate these equations as
follows:
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γ = (1 − δ) (α + βdy1)2

4βd
− (1 − δ)αy1 (4.28)

γ =
((1 − δ)α + βs(1 − ϵ)(ν + yi) + (1 − δ)βdyi+1)2

4 (βd(1 − δ) + βs(1 − ϵ)2) − (1 − δ)αyi+1 − βsνyi

i = 1, .., k (4.29)

γ =
((1 − δ)α + βs(1 − ϵ)(ν + yi) + (1 − δ)βdyi+1)2

4 (βd(1 − δ) + βs(1 − ϵ)2) − (i − k)Ca − (1 − δ)αyi+1 − βsνyi

i = k + 1, .., N − 1 (4.30)

γ =
βs (ν + yk)2

4 − NCa − βsνyk. (4.31)

The corresponding values of optimal prices are

p∗
(i,in) =



α + βdy1

2βd
if i = 0

(1 − δ)α + βs(1 − ϵ)(ν + yi) + (1 − δ)βdyi+1

2 (βd(1 − δ) + βs(1 − ϵ)2) if 0 < i < k

ν + yk

2(1 − ϵ) if i = k

(4.32)

Here, (4.28)-(4.31) form a system of multivariate quadratic equations, and there exists
a unique solution for γ, y1, y2, ..., yk. After solving the equation system (4.28)-(4.31) to
obtain the value of yi for each i = 1, 2, .., N , we integrate these yi values into (4.32) to
get optimal prices.

Figure 4.4 provides an example illustrating the optimal prices for both static and dy-
namic pricing policies.

Proposition 24. When implementing a dynamic pricing policy under a visible infor-
mation policy, the optimal price decreases with the queue length. Specifically, p∗

(i,vi) >

p∗
(i+1,vi) holds for any i < k. Under an invisible information policy, the optimal price

decreases when the queue transitions from empty to non-empty, and then increases with
the queue length. Specifically, p∗

(0,in) > p∗
(1,in) and p∗

(i,in) < p∗
(i+1,in) for any i ≥ 1.
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4.2. Model formulations and optimality equations

(a) (b)

Figure 4.4.: Optimal prices of static and dynamic pricing policies for a market with
α = 40, βd = βs = 1, ν = 10 and ϵ = 10%: Setting truncation size and
balking probability as k = 10 and δ = 0.067 to satisfy Prostat

vi
∗ = Prostat

in
∗.

Left: Visible information policy. Right: Invisible information policy.

Proof. We prove the monotonicity of the optimal price and queue length under a visible
information policy. We show that p∗

(i,vi) > p∗
(i+1,vi) holds for any i < k.

The vi model. For the results calculated in (4.21)-(4.23), we show that yi > yi+1

for i < k. We first show that y1 > yk. By calculating (4.21) and (4.23), it holds
y1 = α

βd
−
√

4γ
βd

and yk = ν +
√

4γ
βd

, which indicating y1 > yk since α ≫ βdν. By the
first-order derivation of the RHS of (4.22), it holds

dRHS of (4.22)
dyi

= (α + βs(1 − ϵ)(ν + yi) + βdyi+1) (βs(1 − ϵ))
2 (βd + βs(1 − ϵ)) − βsν > 0 (4.33)

dRHS of (4.22)
dyi+1

= (α + βs(1 − ϵ)(ν + yi) + βdyi+1) βd

2 (βd + βs(1 − ϵ)) − α < 0. (4.34)

Since the RHS of (4.21)-(4.23) are equal, this indicates that yi ∈ (yi−1, yi+1). We
illustrate by (4.22) with k = 1 and k = 2, it holds

γ =
(α + βs(1 − ϵ)(ν + y1) + βdy2)2

4 (βd + βs(1 − ϵ)2) − αy2 − βsνy1 (4.35)

γ =
(α + βs(1 − ϵ)(ν + y2) + βdy3)2

4 (βd + βs(1 − ϵ)2) − αy3 − βsνy2. (4.36)

Given that y1 > y3, and considering (4.33) and (4.34), if y2 > y1 or y2 < y3, then the
RHS of (4.35) cannot equal to the RHS of (4.36). Hence, it indicates that y1 > y2 > y3.
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4. Joint Effect of Pricing and Information Design

To compare p∗
(0,vi) and p∗

(1,vi). Joint equations (4.21) and (4.22), it holds

(α + βdy1)2

4βd
=

(α + βs(1 − ϵ)(ν + y1) + βdy2)2

4 (βd + βs(1 − ϵ)2) + (α − βsν)y1 − αy2

>
(α + βs(1 − ϵ)(ν + y1) + βdy2)2

4 (βd + βs(1 − ϵ)2) .

This indicates that

(α + βdy1)2

(α + βs(1 − ϵ)(ν + y1) + βdy2)2 >
βd

βd + βs(1 − ϵ)2 >

(
βd

βd + βs(1 − ϵ)2

)2

which implies that

(α + βdy1)2

4βd
2 >

(α + βs(1 − ϵ)(ν + y1) + βdy2)2

4 (βd + βs(1 − ϵ)2)2 .

By (4.24), it indicates p∗
(0,vi) > p∗

(1,vi).

To compare p∗
(i,vi) and p∗

(i+1,vi) for 0 < i < k. By the first-order derivation of the RHS
of (4.24), it holds

dRHS of (4.24)
dyi

= βs(1 − ϵ)
2 (βd + βs(1 − ϵ)2) > 0

and

dRHS of (4.24)
dyi+1

= βd

2 (βd + βs(1 − ϵ)2) > 0.

This indicates that p∗
(i,vi) > p∗

(i+1,vi) since, for the RHS of (4.24) with k = i + 1, the
values of yi and yi+1 in the RHS of (4.24) with k = i are substituted by yi+1 and yi+2,
and yi > yi+1 > yi+2.

To compare p∗
(k−1,vi) and p∗

(k,vi). For (4.24) with i = k − 1, it holds

p∗
k−1 = α + βs(1 − ϵ)(ν + yk−1) + βdyk

2 (βd + βs(1 − ϵ)2)
yk−1>yk=0

>
α + βs(1 − ϵ)(ν + yk) + βdyk

2 (βd + βs(1 − ϵ)2) . (4.37)

It holds that

p∗
(k−1,vi) − p∗

(k,vi) > (4.37) − p∗
(k,vi) = α + βs(1 − ϵ)(ν + yk) + βdyk

2 (βd + βs(1 − ϵ)2) − ν + yk

2(1 − ϵ)
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4.2. Model formulations and optimality equations

= (1 − ϵ)α + (1 − ϵ)βdyk − νβd − βdyk

2 (βd + βs(1 − ϵ)2) (1 − ϵ) > 0.

Next, we prove the monotonicity of the optimal price and queue length under an invisible
information policy. We show that p∗

(0,in) > p∗
(1,in) and p∗

(i,in) < p∗
(i+1,in) holds for any

i ≥ 1.

The in model. For the results calculated in (4.21)-(4.23), we show that yi < yi+1 for
i ∈ Sin. We first show that y1 < yN where N is a large number. By calculating (4.28) and
(4.31), it holds y1 = α

βd
−
√

4γ
βd(1−δ) and yk = ν +

√
4(γ+NCa)

βd
, which indicating y1 < yN

for a large number N . By the first-order derivation of the RHS of (4.29) and (4.30), it
holds d(4.29)

dyi
> 0, d(4.29)

dyi+1
< 0, d(4.30)

dyi
> 0 and d(4.30)

dyi+1
> 0. Since the RHS of (4.21)-(4.23)

are equal, this indicates that yi ∈ (yi+1, yi−1). Specifically, it holds yi+1 < yi < yi−1. By
(4.32), it implies that p∗

(i,in) < p∗
(i+1,in) for any i ≥ 1. We note that, given N is a large

number and y1 and yN are fixed, the difference |yi − yi+1| is very small. This indicates
that |y0 − y1| is very small. Hence, it holds

lim
|y0−y1|→0

p∗
(0,in) − p∗

(1,in)

= lim
|y0−y1|→0

α + βdy1

2βd
−

(1 − δ)α + βs(1 − ϵ)(ν + y1) + (1 − δ)βdy2

2 (βd(1 − δ) + βs(1 − ϵ)2)

= lim
|y0−y1|→0

(
αβs(1 − ϵ)2 + βd

2y1(1 − δ) + βdβsy1(1 − ϵ)2 − βdβs(1 − ϵ)ν − βdβs(1 − ϵ)y1

− βd
2(1 − δ)y2

)

= αβs(1 − ϵ)2 − βdβs(1 − ϵ)ν − ϵβdβs(1 − ϵ)y1
2βd (βd(1 − δ) + βs(1 − ϵ)2) > 0.

■

Under the visible information policy, as observed in Figure 4.4 (a), the price decreases
with the queue length. When the queue length reaches the truncation size, no additional
customers are attracted to join the queue, yet the platform continues to pay to attract
suppliers for service. Consequently, this situation results in negative net revenue for the
queue at the truncation. The decrease in price with the queue length is for minimizing the
probability of the queue reaching the truncated size, thereby maximizing expected profit.
We note that, when the queue transitions from empty to non-empty, i.e., comparing
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4. Joint Effect of Pricing and Information Design

p∗
(0,vi) and p∗

(1,vi), the decrease in price is relatively large. This is because in our model,
when the queue is empty, the platform sets a price to attract customers but does not
payout to suppliers since there is no customer in the queue to serve. Therefore, when the
queue is empty, the gross revenue is equal to the net revenue, so the platform increases
the price to maximize the expected profit. When the queue length is at the truncation
size, the price decreases relatively largely, i.e., comparing p∗

(k−1,vi) and p∗
(k,vi), responding

to customer balking behavior. The platform decreases the price at the truncation point
to reduce the negative net revenue for maximizing the expected profit.

Under the invisible information policy, as observed in Figure 4.4 (b), the price decreases
when the queue transitions from empty to non-empty, and then it increases with the
queue length. The reason why the price decreases when the queue transitions from
empty to non-empty is similar to that under the visible information policy. The plat-
form increases the price to increase both gross revenue and corresponding net revenue,
ultimately maximizing expected profits. As more customers join the queue, the price
increases, on the one hand, to attract more suppliers to serve, ultimately clearing the
queue and resulting in a higher expected profit. On the other hand, the platform in-
creases the price to decrease the system load, avoiding the queue being too long and
incurring high user attrition costs.

4.3. Determining preferred pricing and information policy

In this section, we identify the unique thresholds that determine the preferred pricing and
information policies, respectively. By combining these thresholds, we provide strategies
that are preferred for the platform. We then conduct a sensitivity analysis of these
thresholds on main market parameters.

4.3.1. Threshold to determine pricing policy

A dynamic pricing policy results in higher net revenue than a static pricing policy. How-
ever, the complexity of how incremental net revenues vary with main market parameters
and user patience makes it challenging to generalize the thresholds that determine the
preferred pricing policy. We define the parameter ηℓ := NRdyn

ℓ

∗

NRstat
ℓ

∗ − 1 as the incremental
net revenue ratio for each information policy ℓ ∈ {in, vi}. This metric ηℓ quantifies the
percentage increase in the expected net revenue from using a dynamic pricing policy

96



4.3. Determining preferred pricing and information policy

(a) (b)

Figure 4.5.: Incremental net revenue ratio ηℓ in a market with α = 40, βd = βs = 1,
ν = 10, ϵ = 10%, Cd = 0.3, k ∈ [4, 20] and δ ∈ [0.04, 0.82]. Left:
Incremental net revenue ratio ηℓ. Right: Optimal expected profit Proχ

ℓ
∗.

compared to a static pricing policy. The extra cost of implementing dynamic pricing is
a defined measure, expressed as a percentage of net revenue relative to static pricing.
Therefore, by comparing this metric ηℓ with the extra cost Cd associated with using a dy-
namic pricing policy, we determine the preferred pricing policy for maximizing expected
profit.

Proposition 25. Given that the incremental net revenue ratio decreases as customer
patience increases (i.e., dηvi

dk < 0 and dηin
dδ > 0),

1. Under a visible information policy, if the truncation size k is below a unique thresh-
old Tk, then a dynamic pricing policy is preferred over a static pricing policy, and
vice versa. The threshold Tk is the truncation size at which the incremental net
revenue ratio ηvi equals the extra cost Cd, and it monotonically decreases with the
extra cost Cd.
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4. Joint Effect of Pricing and Information Design

2. Under an invisible information policy, if the balking probability δ is below a unique
threshold Tδ, then a static pricing policy is preferred over a dynamic pricing policy,
and vice versa. The threshold Tδ is the balking probability at which the incremental
net revenue ratio ηin equals the extra cost Cd, and it monotonically increases with
the extra cost Cd.

Proof. As lim
k→∞

Prostat
vi

∗ = lim
k→∞

Prodyn
vi

∗
and lim

δ→0
Prostat

in
∗ = lim

δ→0
Prodyn

in

∗
, this implies

that lim
k→∞

NRstat
vi

∗ = lim
k→∞

NRdyn
vi

∗
and lim

δ→0
NRstat

in
∗ = lim

δ→0
NRdyn

in

∗
. Therefore, for the

incremental net revenue ratio ηℓ, it is evident that lim
k→∞

ηvi = 0 and lim
δ→0

ηin = 0. Given
our assumption of monotonicity in the truncation size k and balking probability δ for
ηℓ, unique thresholds Tk and Tδ exist to determine the optimal pricing policy. ■

Figure 4.5 illustrates an example of the relative net revenue ratio when determining
the preferred pricing policy. If customers are impatient (e.g., k < Tk and δ > Tδ in
Figure 4.5 (a)), the incremental net revenue ratio of using a dynamic pricing policy
is high, indicating the significant advantages of using a dynamic pricing policy. As the
level of customer patience is higher, this advantage is lower. When customers are patient
(e.g., k > Tk and δ < Tδ in Figure 4.5 (a)), the incremental net revenue ratio of using
a dynamic pricing policy is low, indicating the significant advantages of using a static
pricing policy. This result is due to the scale effect associated with customer patience.
Figure 4.5 (b) implies that the incremental net revenue of using a dynamic pricing policy
over a static one remains relatively constant across different levels of customer patience,
whether it is represented by k or δ. As customer patience is higher, both the net revenues
of static and dynamic pricing policies are higher, resulting in a lower incremental net
revenue ratio. This monotonicity implies the uniqueness of thresholds Tk and Tδ for
determining the preferred pricing policy.

4.3.2. Threshold to determine information policy

The higher the patience of customers, the higher the expected net revenue for the plat-
form. With higher patience, customers are less likely to balk at joining the queue under
both visible and invisible information policies at a given price, resulting in higher ex-
pected net revenue. For a fixed extra cost Cd, this demonstrates the monotonic impact
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4.3. Determining preferred pricing and information policy

of customer patience on expected profit. We define an indifference curve to determine
the preferred information policy. The function is defined as

fCd
:= max

{
Prostat

vi
∗
, P rodyn

vi

∗}
− max

{
Prostat

in
∗
, P rodyn

in

∗}
= max

{
NRstat

vi
∗
, (1 − Cd)NRdyn

vi

∗}
− max

{
NRstat

in
∗
, (1 − Cd)NRdyn

in

∗}
≜ 0

This function compares the maximum profit from implementing static and dynamic pric-
ing policies under a visible information policy with that under an invisible information
policy. If the market parameters satisfy this function and it equals zero, it implies that
the platform is indifferent to which information policy is implemented because the ex-
pected profits are the same. If the market parameters lead to fCd

> 0, then a visible
information policy is preferred, and vice versa.

4.3.3. Preferred strategy to maximize profit

Based on the thresholds Tk and Tδ for determining the preferred pricing policy and
the indifference curve for determining the preferred information policy, we can provide
recommendations on the preferred strategy for the platform to maximize its expected
profit. Specifically, for a market

1. If δ < Tδ and fCd
(k, δ) < 0, then S&I is preferred.

2. If δ > Tδ and fCd
(k, δ) < 0, then D&I is preferred.

3. If k < Tk and fCd
(k, δ) > 0, then D&V is preferred.

4. If k > Tk and fCd
(k, δ) > 0, then S&V is preferred.

Figure 4.6 graphically illustrates the preferred strategy as outlined, based on the cus-
tomer patience. Specifically, it determines the preferred strategy based on the truncation
size k under the visible information policy and the balking probability δ under the in-
visible information policy. A higher truncation size k indicates that customers are more
patient under a visible information policy, while a lower balking probability δ indicates
the same under an invisible information policy. When customers are patient, a static
pricing policy is preferred regardless of the information policy, while a dynamic pricing
policy is preferred when customers are impatient. It reveals that the preferred strategy
depends on the sensitivity to the displayed queue-length information. If customers are
not sensitive to the displayed queue-length information, meaning that they are patient
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4. Joint Effect of Pricing and Information Design

Figure 4.6.: The preferred strategy of pricing and information policies for α = 40,
βd = βs = 1, ϵ = 10%, ν = 10, Cd = 0.3, k ∈ [2, 16] and δ ∈ [0.05, 0.4].

under both visible and invisible information policies, or impatient under both, then the
indifference curve determines the preferred strategy. If customers are sensitive to the
displayed information, there are two cases: (i) customers are patient under a visible
information policy, while they are impatient under an invisible information policy; and
(ii) customers are impatient under a visible information policy, while they are patient
under an invisible information policy. In both cases, the preferred information policy
is the one where customers are more patient. This corresponds to a high truncation
size under the visible information policy or a low balking probability under the invisible
information policy. In either case, the static pricing policy is preferred.

4.3.4. Sensitivity analysis of market parameters

We analyze the impact of main parameters on the thresholds of pricing and information
policies numerically. Table 4.4 summarizes the parameter ranges changed for sensitivity
for Cd = 10% and Ca = 0.05. With an extra cost of Cd = 10%, a dynamic pricing
policy is preferred only if the incremental net revenue ratio surpasses 10%. The user
attrition cost prevents the queue length from increasing infinitely but has a negligible
impact on platform profits. In our numerical experiments, we set Ca = 0.05 to ensure
it remains relatively small compared to market potential α, specifically Ca

α < 1%. We
systematically vary main market parameters within the base case (i.e., α, βs, βd, ν

and ϵ), sampling points in the range for numerical experiments to observe sensitivity.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7.: Change of thresholds Tk and Tδ in accordance with market parameters α,
βd, βs, ν and ϵ. (a): Market potential α; (b): Minimum wage ν; (c): For
fixing ν

α = 0.2; (d): Commission ratio ϵ; (e): Price sensitivity of customers
βd; (f): Price sensitivity of suppliers βs.

To standardize sensitivity comparisons and ensure consistent ranges for variations in
thresholds Tk, Tδ , and δk when varying different market parameters, we set different
parameter change ranges for sensitivity analysis under pricing and information policies,
as outlined in Table 4.4.

Pricing policy threshold (Tk and Tδ)

We examine the impact of main market parameters α, βd, βs, ν and ϵ, on the two
thresholds Tk and Tδ, as shown in Figure 4.7. We summarize the observations that (i) A
higher market potential α, a lower minimum wage ν, or a lower commission rate ϵ make
a dynamic pricing policy more preferable under both visible and invisible information
policies. (ii) A higher supplier price sensitivity βs, and conversely, a lower customer
price sensitivity βd make a dynamic pricing policy more preferable under both visible
and invisible information policies.

Market potential α, minimum wage ν and commission rate ϵ A higher market
potential α, a lower minimum wage ν, or a lower commission rate ϵ leads to increased
arrival rates of both customers and suppliers, as indicated by (4.1) (a)-(d). This results
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(a) (b) (c)

(d) (e) (f)

Figure 4.8.: Change of parameter δk (a sample point for the indifference curve fδ = 0
at k = 6) in accordance with market parameters α, βd, βs, ν and ϵ. (a):
Market potential α; (b): Minimum wage ν; (c): For fixing ν

α = 0.2; (d):
Commission ratio ϵ; (e): Price sensitivity of customers βd; (f): Price
sensitivity of suppliers βs.

in a higher incremental net revenue for implementing a dynamic pricing policy, con-
sequently leading to a higher incremental net revenue ratio. Therefore, this implies a
higher threshold Tk under the visible information policy and a lower threshold Tδ under
the invisible information policy. Given that the effects of increasing market potential α

and decreasing minimum wage ν on thresholds Tk and Tδ are opposite, we maintain a
fixed ratio of α and ν in Figure 4.7 (c) while increasing the market potential α. It is
observed that when both factors change simultaneously, their effects on the thresholds
can be counterbalanced.

Price sensitivities of customers βd and suppliers βs The effects of price sensitivities
of customers and suppliers are opposite. A higher price sensitivity of customers βd or a
lower price sensitivity of suppliers βs leads to lower arrival rates of both customers and
suppliers. This results in a lower incremental net revenue for implementing a dynamic
pricing policy, consequently leading to a lower incremental net revenue ratio. Therefore,
this implies a lower threshold Tk under the visible information policy and a higher
threshold Tδ under the invisible information policy.

103



4. Joint Effect of Pricing and Information Design

Information policy threshold (fCd
= 0)

Define δk as the value of δ that satisfies the indifference curve fCd
= 0 for a given value

of k. The parameter δk indicates the position of the indifference curve fCd
= 0. An

increase in δk signifies an upward shift of the indifference curve on the graph, implying
that the invisible information policy is more preferred, and vice versa. We examine the
impact of main market parameters α, βd, βs, ν and ϵ on δk to indicate their effects on
the indifference curve fCa , as shown in Figure 4.8.

Market potential α, minimum wage ν and commission rate ϵ. A higher market
potential α, a lower minimum wage ν, or a lower commission rate ϵ results in higher
arrival rates for both customers and suppliers, as indicated by (4.1). This leads to a
longer corresponding queue length, causing more customers to balk when the queue is
at the truncation size under the visible information policy. Since, under the visible
information policy, customers balk at joining the queue based on a balking probability,
more customers are attracted to join the queue compared to that under the invisible
information policy. Hence, the invisible information policy is more preferable.

Price sensitivity of customers βd and suppliers βs. The effects of price sensitivities
of customers and suppliers are opposite. A higher price sensitivity of customers βd or a
lower price sensitivity of suppliers βs leads to lower arrival rates of both customers and
suppliers. Consequently, the queue length becomes shorter, resulting in fewer customers
balk when the queue is at the truncation size under the visible information policy. Hence,
the visible information policy is more preferable.

4.4. Profit, throughput and price

The throughput represents the expected matching rate of the platform, i.e., the rate at
which customers arrive at the market without balking and enter the queue, waiting for a
match. The throughput metric serves as an indicator of the social welfare of customers
and suppliers, reflecting the change in the number of successful matches between them.
It is denoted by
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ςχ
ℓ :=



λvi
d

(
1 − πvi

k

)
if χ = stat and ℓ = vi∑

i∈Svi−{k}
λ

(i,vi)
d πvi

i if χ = dyn and ℓ = vi

(1 − δ)λin
d if χ = stat and ℓ = in∑

i∈Sin

(1 − δ)λ(i,in)
d πin

i if χ = dyn and ℓ = in.

We first analyze the influence of strategies on expected profit and throughput.

4.4.1. An illustrative market example

User patience is measured differently for markets under different information policies,
specifically the truncation size k for a visible information policy and the balking probabil-
ity δ for an invisible information policy. Standardizing user patience under different in-
formation policies is crucial for comparing the impacts of different strategies. To achieve
this, we examine an illustrative market where, with the same main market parameters,
truncation size k and balking probability δ are set to result in the same expected net
revenue under different information policies, satisfying Prostat

vi
∗ = Prostat

in
∗ for static

pricing. This is to ensure the consistency of market measurement under different in-
formation policies, meaning that the market is indifferent to the choice of information
policy when implementing a static pricing policy. In doing so, we can address the follow-
ing equations: (i) How does price change for different strategies? (ii) Which information
policy increases profit when using a dynamic pricing policy? (iii) What impact does the
information policy have on throughput?

4.4.2. Profit analysis

When comparing the expected profits of the D&V and D&I strategies in Figures 4.9
(a)-(d), we observe the following

Result 26. Implementing a dynamic pricing policy under a visible information policy
results in higher expected profit. Specifically, if Prostat

vi
∗ = Prostat

in
∗, then Prodyn

vi

∗
>

Prodyn
in

∗
.
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(a) (b)

(c) (d)

Figure 4.9.: Expected profit with market parameters α, β, ν and ϵ. The base case uses
parameter values outlined in Table 4.4. (a): Market potential α; (b): Price
sensitivity ratio β; (c): Minimum wage ν; (d): Commission rate ϵ.

This is due to the fact that under the invisible information policy, the invisibility of
queue-length information directly leads to a proportional decrease in the arrival rates
of both customers and suppliers. When comparing a dynamic pricing policy to a static
pricing one, the dynamic pricing policy results in a proportional increase in the expected
profit based on the arrival rates of customers and suppliers. However, due to the lower
arrival rates under the invisible information policy compared to the visible one, the
incremental net revenue for using a dynamic pricing policy is lower. Consequently, the
expected profit is higher under a visible information policy.

4.4.3. Throughput analysis

When comparing the throughput of the D&V and D&I strategies in Figures 4.10 (a)-(d),
we observe the following
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(a) (b)

(c) (d)

Figure 4.10.: Expected profit with market parameters α, β, ν and ϵ. The base case
uses parameter values outlined in Table 4.4. (a): Market potential α; (b):
Price sensitivity ratio β; (c): Minimum wage ν; (d): Commission rate ϵ.

Result 27. Implementing a static or dynamic pricing policy under a invisible informa-
tion policy results in higher throughput, especially for a low commission rate. Specifically,
if Prostat

vi
∗ = Prostat

in
∗, then ςχ

vi
∗

< ςχ
in

∗ for each χ ∈ {stat, dyn}.

By comparing Result 27 and Result 26, we observe a trade-off regarding the visibility
of queue-length information under a dynamic pricing policy. For a dynamic pricing
policy, displaying the queue-length information results in a higher expected profit, while
concealing it leads to a higher throughput for markets with a low commission rate.
However, as shown in Figure 4.10 (d), in markets with a high commission rate, displaying
the queue-length information results in both a higher expected profit and throughput.
The difference in how dynamic pricing policies affect throughput is due to different
customer balking behaviors under different information policies. In particular, these
different balking behaviors result in different stationary distributions of the market under
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(a) (b)

Figure 4.11.: Stationary distribution under different information policies with
Prostat

vi
∗ = Prostat

in
∗ in a market with α = 40, βd = βs = 1, ν = 10, k = 10,

δ = 0.1 and ϵ = 10%. Left: Visible information policy. Right: Invisible
information policy.

different pricing policies, consequently affecting throughput. We analyze this in cases
including low and high commission rates.

When the commission rate is low As illustrated in Figure 4.10 (a)-(d), the con-
cealment of queue-length information results in a higher throughput ςχ

in
∗

> ςχ
vi

∗ for each
χ ∈ {stat, dyn}. Figure 4.11 shows the corresponding stationary distribution of the case
ϵ = 10% under both visible and invisible information policies. As shown in Figure 4.11
(a), under a visible information policy,the steady-state probability of reaching the trun-
cation (i.e., a queue length where i = k) is higher when implementing a dynamic pricing
policy compared to implementing a static pricing policy. As indicated by (4.1), when
the commission rate is relatively low, the arrival rates for both customers and suppliers
are high. This, in turn, implies that the arrival rate of suppliers at the truncation point
is also relatively high. Previously, we pointed out that the platform’s net revenue is
negative at the point of truncation. Although lowering the price at queue truncation
may decrease the supplier arrival rate, the consequential significant decrease in negative
net revenue (4.3) ultimately works to increase the platform’s expected profit. In con-
trast, Figure 4.4 (b) shows that under an invisible information policy, a dynamic pricing
policy, as compared to a static pricing policy, progressively increases the price to avoid
excessively long queues and the corresponding high customer attrition costs. As a result,
the steady-state distribution is more concentrated on shorter queue lengths, as shown in
Figure 4.11 (b). This suggests that a larger proportion of customers tend to join queues
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(a) (b)

Figure 4.12.: Optimal price and stationary distribution of different pricing policies
under a visible information policy in a market with α = 40, βd = βs = 1,
ν = 10, k = 10 and ϵ = 35%. Left: Optimal price. Right: Stationary
distribution.

of shorter lengths and receive service, while no truncation occurs for a very long queue,
collectively contributing to a higher throughput.

When the commission rate is high As illustrated in Figure 4.9 (d), the concealment
of queue-length information results in a lower throughput ςdyn

in

∗
< ςdyn

vi

∗
when the com-

mission rate is high. Figure 4.12 shows the optimal price and stationary distribution of
the case ϵ = 35%, encompassing both static and dynamic pricing policies under a visible
information policy. As shown in Figure 4.12 (b), when implementing a dynamic pricing
policy in a market with a relatively high commission rate, the stationary distribution
concentrates on shorter queue lengths. This contrasts with Figure 4.11 (a), where the
stationary distribution concentrates on the truncation size and an empty queue length.
Consequently, the steady-state probability of reaching the truncation size is lower for
a dynamic pricing policy because, as shown by (4.3), when the commission rate is rel-
atively high, the net revenue function is minimized at the point of queue truncation.
The corresponding negative net revenue at the queue truncation point has a relatively
smaller impact on the expected profit compared to a market with a low commission rate.
As a result, reducing the price at the queue truncation point is not as advantageous in
increasing the platform’s expected profit. This dynamic can also be observed in Fig-
ure 4.12 (a), where despite a decrease in the price at queue truncation p∗

(k,vi) compared
to the preceding queue length p∗

(k−1,vi), this reduction in price is less pronounced when
compared to Figure 4.11 (a), where the commission rate is lower. Since the steady-state
probability of the queue being at truncation is low under a visible information policy,

109



4. Joint Effect of Pricing and Information Design

this contributes to a higher throughput when using a dynamic pricing policy under a
visible information policy.

4.4.4. Impact of queue-length display on price

We define the average transaction price for customers and suppliers as

ϱℓ
d :=

∑
i∈Sℓ

πℓ
i GRℓ(p(i,ℓ))

/ςdyn
ℓ

and

ϱℓ
s :=

∑
i∈Sℓ

πℓ
i SPℓ(p(i,ℓ))

/ςdyn
ℓ ,

calculated as the ratio of the gross revenue and supplier payout to the throughput for
each information policy ℓ ∈ {in, vi}. We define the volatility of a dynamic pricing policy
as

σℓ :=

√√√√√ 1
|Sℓ| − 1

|Sℓ|∑
i=0

πℓ
ℓ

(
p∗

(i,ℓ) − ϱℓ
s

)2

for each information policy ℓ ∈ {in, vi}. The metric σℓ is estimated based on the standard
deviation, providing insights into the level of price discrimination. In this section, we
examine the optimal price, average transaction price, and price volatility as shown in
Figure 4.13, shedding light on their impacts on the interests of both the platform and
its users. Our results indicate that concealing the queue-length information results in a
higher price when implementing a static pricing policy, as shown in Figure 4.13 (a)-(d).

Proposition 28. In a market implementing a static pricing policy the optimal price
is higher under a visible information policy. Specifically, if Prostat

vi
∗ = Prostat

in
∗, then

p∗
vi > p∗

in.

Proof. For the optimal static price, the invisible information policy differs from the
visible policy in two ways. First, there is no truncation size k of the queue under the
invisible information policy. Second, when the queue is too long, our model takes into
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.13.: Optimal price, average transaction price and price volatility with market
parameters α, β, ν and ϵ. Parameter ranges for sensitivity follow
Table 4.13. (a): Static pricing with α; (b): Static pricing with β; (c):
Static pricing with ν; (d): Static pricing with ϵ; (e): Dynamic pricing
with α; (f): Dynamic pricing with β; (g): Dynamic pricing with ν; (h):
Dynamic pricing with ϵ; (i): Price volatility with α; (j): Price volatility
with β; (k): Price volatility with ν; (l): Price volatility with ϵ.

account the user attrition cost Ca. Observe from (4.12) that not considering this user
attrition cost under the invisible information policy, i.e., Ca → 0, leads only to an
increase in price. Therefore, we consider that if the price is higher under the visible
information policy when Ca → 0, then we can complete the proof. In the following,
we show that the optimal static price under the visible information policy decreases
with the queue length. Therefore, the price under the visible information policy with a
truncation size should be lower than that of the invisible information policy.

From (4.10), it holds that the optimal static price satisfies
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(
α

βsν + ρ∗
vi

) (
βd

βs(1−ϵ) + ρ∗
vi

) k∑
i=1

iρ∗
vi

i−1

(
k∑

i=0
ρ∗

vi
i

)2 −
( 2α

βsν
− βd

βs(1 − ϵ) + ρ∗
vi

)1 − 1
k∑

i=0
ρ∗

vi
i

 = 0

(4.38)

where
(

α
βsν + ρ∗

vi

) (
βd

βs(1−ϵ) + ρ∗
vi

) α≫βsν
< 2α

βsν − βd
βs(1−ϵ) + ρvi. It holds


k∑

i=1
iρ∗

vi
i−1 + (k + 1)ρ∗

vi
k

(
k∑

i=0
ρ∗

vi
i + ρ∗

vi
k+1

)2 −

k∑
i=1

iρ∗
vi

i−1

k∑
i=0

ρ∗
vi

i

−


k∑

i=1
ρ∗

vi
i + ρ∗

vi
k+1 − 1

k∑
i=0

ρ∗
vi

i + ρ∗
vi

k+1
−

k∑
i=0

ρ∗
vi

i − 1

k∑
i=0

ρ∗
vi

i



=


k∑

i=1
iρ∗

vi
i−1 + (k + 1)ρ∗

vi
k

k∑
i=0

ρ∗
vi

i + ρ∗
vi

k+1
· 1

k∑
i=0

ρ∗
vi

i + ρ∗
vi

k+1
−

k∑
i=1

ρ∗
vi

i + ρ∗
vi

k+1 − 1

k∑
i=0

ρ∗
vi

i + ρ∗
vi

k+1



+


k∑

i=0
ρ∗

vi
i − 1

k∑
i=0

ρ∗
vi

i

−

k∑
i=1

iρ∗
vi

i−1

k∑
i=0

ρ∗
vi

i

 ρ∗
vi<1
< 0. (4.39)

For (4.39), it indicates that the LHS of (4.38) < 0 if k increases by 1 while the price
remains constant for a given k. We show in Proposition 23 that the net revenue func-
tion (4.8) is quasi-concave with respect to the system load ρvi. Therefore, this implies
that the optimal static price for a given k + 1 is lower than that for a given k. ■

Under the visible information policy, the price set by the platform when the queue is
empty attracts customers to pay to join the queue, while suppliers are compensated since
there are no customers in the current queue for them to provide their services. When the
queue length reaches the truncation size, the net revenue equation is negative because
there are no more customers joining the queue. Therefore, the platform increases the
price. On one hand, this makes it more likely that the queue is empty at the steady-
state distribution, thereby increasing the platform’s gross revenue when the queue is
empty. On the other hand, it decreases the likelihood that the queue length will reach
the truncated size. Under an invisible information policy, the platform can increase net
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revenue when the queue is long by lowering the price. This is evident in our throughput
analysis, where the platform increases throughput and, consequently, expected profits
by decreasing the price.

As shown in Figure 4.13 (e)-(h), under the visible information policy, the average trans-
action price for the customer ϱvi

d increases, while the average transaction price for the
supplier ϱvi

s decreases compared to the optimal price p∗
vi for a static pricing strategy in a

dynamic pricing strategy. These changes are due to balking behavior at the truncation
of the queueing system. When the queue length is long enough to reach the truncation
size, no new customers enter the queue, resulting a higher average transaction price per
customer. However, the platform will continue to attract suppliers, leading to a lower
average transaction price per supplier. Under the invisible information policy, the av-
erage transaction prices for both customers ϱin

d and suppliers ϱin
s are approximately the

same as the optimal price p∗
in for a static pricing strategy. These observations illustrate

that under a dynamic pricing strategy, displaying queue-length information leads to a
decrease in benefits for both customers and suppliers, consequently increasing the plat-
form’s profit. Conversely, concealing queue-length information can increase the benefits
for both customers and suppliers.

As shown in Figure 4.13 (i)-(l), price volatility is lower when implementing a dynamic
pricing policy under the invisible information policy compared to the visible information
policy. When comparing optimal prices for different information policies, as illustrated
in Figure 4.4 (a) and (b), we see that the queue increases considerably under the invisible
information policy compared to the visible information policy. Under the visible infor-
mation policy, the queue exhibits a truncation size due to the truncated balking behavior
of customers. At this truncation point, the optimal price decreases compared to when
the queue length is shorter, as analyzed in Section 4.4.3. Consequently, the combination
of a long queue and a more gradual price change under the invisible information policy
leads to a lower price volatility, reflecting a lower level of price discrimination. While
a visible information policy is effective in increasing the platform’s profit, considering
the extra cost associated with implementing dynamic pricing, the platform can opt to
mitigate price discrimination by concealing queue-length information, thus increasing
benefits for users.
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4.5. Conclusions

Pricing and the disclosure of queue-length information are two key factors in platform
design, but their joint effects on profit are still not well understood. We address this
gap by using a M/M/1 queueing model to capture a market segment in an on-demand
service platform. In our model, customers’ balking behavior is influenced by the uncer-
tainty surrounding waiting times resulting from the disclosure of current queue-length
information. We derive optimal prices that maximize expected profit under the proposed
information policy for both static and dynamic pricing, solving the underlying Markov
decision process using the uniformization method. Our model encompasses different
strategies for both pricing and information policies. We compare the resulting solutions
and investigate their influence on the platform.

We find that pricing and information policies are complementary: Both dynamic pricing
and visible information policies result in higher expected profit, whereas static pricing
and invisible information policies result in higher throughput. Dynamic pricing, when
the current queue-length information is visible, triggers more customers to balk. It is
designed to increase the platform’s profit by increasing the average price per transaction,
achieving higher commissions, albeit at the cost of reduced throughput. Under the visi-
ble information policy, the service queue is truncated at a certain length, as customers
perceive it as lengthy and balk at joining. Concealing queue-length information nulli-
fies this queue truncation, attracting more customers and improving throughput, thus
benefiting both customers and suppliers. However, an invisible information policy may
lead to lower profits, as customer prices decrease while supplier prices increase (resulting
in lower arrival rates) compared to the average transaction prices observed under the
visible information policy.

This study focuses on a single market segment. Our model simplifies the scenario by con-
sidering homogeneous customers and suppliers, employing a “first-in-first-out” matching
principle. It can be regarded as a benchmark model for the development of queuing
networks. For example, taxi drivers on ride-hailing platforms often move to different
regions to pick up orders when their current location is idle. Consequently, an upsurge
in orders within one region can influence neighboring regions. Future research could
focus on developing a queueing network that accommodates heterogeneous demand and
supply, considering the interplay between different market segments.
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In this thesis, we investigate two important factors in platform design: information
disclosure policy and pricing policy. In Chapter 3, we analyze the impact of different
queue-length information disclosure policies on platform revenues, taking into account
the different balking and reneging behaviors exhibited by customers and suppliers. The
preferred information policy is identified under different market parameters, highlighting
its significance in platform design. Additionally, we emphasize the importance of infor-
mation design in the context of multiple platforms, where the impact of information
policy on service quality can have long-term implications for the platform’s expected
revenue. In Chapter 4, we investigate the joint effect of pricing policy and information
policy. We identify unique thresholds for pricing and information policies. We reveal
that pricing and information policies are complementary. Specifically, both dynamic
pricing and visible information policies increase expected profit, while static pricing and
invisible information policies increase throughput.

The business models studied in this paper operate within a market segment character-
ized by homogeneous customers and suppliers on both the demand and supply sides.
We separate and examine the disclosure and pricing policies, allowing us to single out
multiple market factors. This approach helps us to concentrate on the design factor
of interest. However, it simultaneously overlooks the endogenous influence of certain
other aspects. For instance, Chapter 3 uncovers that the revenue effect of information
policies increases in a multi-platform model when there are endogenous effects on service
quality and user arrival rates, compared to a single-platform model. Similarly, Chapter
4 reveals that the information policy can influence the platform’s pricing policy and,
consequently, its performance metrics such as throughput. Therefore, it is worthwhile to
consider developing a model that is both realistic and technically tractable. This model
should be able to account for the impact of various elements on design factor within a
complex market environment.
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Beyond information and pricing policies, there are numerous other elements of platform
design that warrant exploration based on our models. These include, but are not lim-
ited to: i), Service matching and scheduling aims to efficiently match heterogeneous
customers and suppliers, such as drivers or carriers in freight exchange, with customers
based on factors like location, availability, and preferences. This process optimizes re-
source allocation and minimizes waiting times to enhance overall operational efficiency.
ii), Management involves the development of effective strategies to handle sudden surges
in demand and prevent system overload, thereby ensuring a smooth user experience dur-
ing peak periods. iii), Developing robust mechanisms to establish and maintain trust
between customers and suppliers, such as implementing rating systems, reviews, and ef-
ficient dispute resolution processes. iv), Service quality assurance: Establishing effective
mechanisms to monitor and uphold service quality standards, encompassing customer
feedback, performance metrics, and rigorous quality control processes. The queuing the-
ory model presented in this thesis establishes a foundational framework for addressing
these compelling problems. We eagerly anticipate future research that expands these
models to encompass an even greater array of intriguing issues.
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A. Table of Notations in Chapter 3

Notation Description

ϖ demand side with customers (ϖ = d) and supply side with suppliers
(ϖ = s)

Λϖ potential arrival rate of side ϖ ∈ {d, s}
λϖ effective arrival rate of side ϖ ∈ {d, s}
ξϖ matching probability of side ϖ ∈ {d, s}
n endogenous arrival rate model
ρ system load in an exogenous model
ρn system load in an endogenous model
k truncation size in a single-sided model
kϖ truncation size of side ϖ ∈ {d, s} in a double-sided model
t truncation time in a single-sided model
tϖ truncation time of side ϖ ∈ {d, s} in a double-sided model
δ reneging rate in a single-sided model
δϖ reneging rate of side ϖ ∈ {d, s} in a dboule-sided model
M defined as M := {BV, DV, SV, BI}
S state space
rij transition rate
πi steady-state probability
f

(A,B)
x indifference curve function for policies A and B in an exogenous model

f
(A,B)
n indifference curve function for policies A and B in an endogenous model

Tρ threshold used in Proposition 4 and Theorem 5
Td threshold used in Theorem 5
Tf threshold used in Theorem 5
Tρ threshold used in Proposition 7
Tρ threshold used in Proposition 7
Tl threshold used in Proposition 7 and Theorem 8
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A. Table of Notations in Chapter 3

Tu threshold used in Theorem 8
Tb threshold used in Theorem 8
Rev expected revenue
Revϖ expected revenue for queueing on the side ϖ ∈ {d, s} in a single-sided

model
v relative revenue difference between information policies
a maximum revenue among all four information policies
b minimum revenue among all four information policies
ϕℓ

d auxiliary variables defined by ϕBV
d = ϕDV

d := ρ−ρkd+1

1−ρ

ϕℓ
s auxiliary variables defined by ϕBV

s = ϕSV
s := ρks −1

ρks+1−ρks

ζ auxiliary variable defined by ζ :=
∞∑

i=1

i∏
j=1

ρ
1+jδ/Λs

ζℓ
d auxiliary variables defined by ζBI

d = ζSV
d :=

∞∑
i=1

i∏
j=1

ρ
1+j(δd/Λs)

ζℓ
s auxiliary variables defined by ζBI

s = ζDV
s :=

∞∑
i=1

i∏
j=1

1
ρ+j(δs/Λs)

α patience coefficient defined by α := td
ts

= δs
δd

hp auxiliary function defined in the proof of Lemma 11
fp auxiliary function defined in the proof of Lemma 12
ξ

(ℓ,n)
ϖ matching probability of side ϖ ∈ {d, s} under information policy ℓ in an

endogenous model
y auxiliary variable defined by y := δ/(Λsξ

(R,n)
s ) in the proof of Lemma 12

λℓ
ϖ endogenous arrival rate of side ϖ ∈ {d, s} under information policy ℓ

ζn auxiliary variable defined by ζn :=
∞∑

i=1

i∏
j=1

(
ρn

1+jδ/λR
s

)
kn truncation size in an endogenous single-sided model defined by kn :=

⌈tλK
d ⌉

ks truncation size in an exogenous model for a supply market
ks

n truncation size in an endogenous model for a supply market

ζs auxiliary variable defined by ζs :=
∞∑

i=1

i∏
j=1

(
1

ρ+jδ/Λs

)
ζs

n auxiliary variable defined by ζs
n :=

∞∑
i=1

i∏
j=1

(
1

ρn+jδ/λR
s

)
z auxiliary variable defined by z := δ/Λs

fr auxiliary function defined in the proof of Proposition 3
fυ auxiliary function defined in the proof of Proposition 3
gυ auxiliary function defined in the proof of Proposition 3
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λ
(R,qs)
s endogenous arrival rate of suppliers in a supply market with ℓ = R

υ variable used in the proof of Proposition 3
ε variable used in the proof of Proposition 3
fn

r auxiliary functions defined in the proof of Proposition 14
sgn(·) sign function
ϵ variable used in the proof of Proposition 4 and Proposition 7

ϕ
(ℓ,n)
d auxiliary variable defined by ϕ

(ℓ,n)
d := ρn−ρn

k
(ℓ,n)
d

+1

1−ρn
for each ℓ ∈

{DV, BV }

ϕ
(ℓ,n)
s auxiliary variable defined by ϕ

(ℓ,n))
s := ρn

k
(ℓ,n)
s −1

ρn
k

(ℓ,n)
s +1−ρn

k
(ℓ,n)
s

for each ℓ ∈

{SV, BV }
k

(ℓ,n)
d demand side’s truncation size in an endogenous double-sided model

k
(ℓ,n)
s supply side’s truncation size in an endogenous double-sided model

ζ
(ℓ,n)
d auxiliary variables defined by ζ

(ℓ,n)
d :=

∞∑
i=1

i∏
j=1

ρn

1+j(δd/λℓ
s) for each ℓ ∈

{SV, BI}

ζ
(ℓ,n)
s auxiliary variables defined by ζ

(ℓ,n)
s :=

∞∑
i=1

i∏
j=1

1
ρn+j(δs/λℓ

s) for each ℓ ∈

{DV, BI}
tb symmetric truncation time defined by tb := td = ts

δb symmetric truncation size defined by δb := δd = δs

h auxiliary function defined in the proof of Theorem 8

ϕ
(ℓ,n)
d auxiliary variable defined by ϕ

(ℓ,n)
d := ρn−ρn

k
(ℓ,n)
d

+1

1−ρn
for each ℓ ∈

{DV, BV }

ϕ
(ℓ,n)
s auxiliary variable defined by ϕ

(ℓ,n))
s := ρn

k
(ℓ,n)
s −1

ρn
k

(ℓ,n)
s +1−ρn

k
(ℓ,n)
s

for each ℓ ∈

{SV, BV }
k

(ℓ,n)
d demand side’s truncation size in an endogenous double-sided model

k
(ℓ,n)
s supply side’s truncation size in an endogenous double-sided model

ζ
(ℓ,n)
d auxiliary variables defined by ζ

(ℓ,n)
d :=

∞∑
i=1

i∏
j=1

ρn

1+j(δd/λℓ
s) for each ℓ ∈

{SV, BI}

ζ
(ℓ,n)
s auxiliary variables defined by ζ

(ℓ,n)
s :=

∞∑
i=1

i∏
j=1

1
ρn+j(δs/λℓ

s) for each ℓ ∈

{DV, BI}
tb symmetric truncation time defined by tb := td = ts

δb symmetric truncation size defined by δb := δd = δs
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h auxiliary function defined in the proof of Theorem 8
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B. Table of Notations in Chapter 4

Notation Description

ϖ demand side with customers (ϖ = d) and supply side with suppliers
(ϖ = s)

ℓ visible information policy (ℓ = vi) and invisible information policy (ℓ =
in)

χ static pricing policy (χ = stat) and dynamic pricing policy (χ = dyn)
S&V static-pricing-and-visible-information combination decision
D&V dynamic-pricing-and-visible-information combination decision
S&I static-pricing-and-invisible-information combination decision
D&I dynamic-pricing-and-invisible-information combination decision
λℓ

ϖ arrival rate of side ϖ under a static pricing policy and for an information
policy ℓ

ρℓ system load under a static pricing policy for an information policy ℓ

defined by ρℓ := λℓ
d

λℓ
s

λ
(i,ℓ)
ϖ arrival rate of side ϖ at queue length i for an information policy ℓ under

a dynamic pricing policy
α market potential
βϖ price sensitivity of customers (ϖ = d) or suppliers (ϖ = s)
β ratio of price sensitivities defined by β := βd

βs

ϵ commission rate
ν minimum wage for suppliers
pℓ the price under a static pricing policy for an information policy ℓ

p(i,ℓ) the price at queue length i under a dynamic pricing policy for an infor-
mation policy ℓ

k truncation size under a visible information policy
δ balking probability
Ca customer attrition cost per customer for a long queue
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B. Table of Notations in Chapter 4

Cd extra cost of implementing a dynamic pricing policy compared with a static
one

S state space
rij transition rate
πi steady-state probability

ρ(i,ℓ) system load under a dynamic pricing policy defined by ρ(i,ℓ) := λ
(i−1,ℓ)
d

λ
(i,ℓ)
s

for
each i ∈ Sℓ\{0}

GRℓ(·) gross revenue rate function for an information policy ℓ

SPℓ(·) supplier payout function for an information policy ℓ

NRℓ(·) expected net revenue function for an information policy ℓ

Proχ
ℓ expected profit function for a pricing policy χ and an information policy ℓ

∗ as the superscript denotes the optimal
vi relative value function corresponding to a queue length of i

γ guess of the maximum average value
yi intermediate variable defined by yi := vi−1 − vi for i = 1, .., k

fCd
≜ 0 indifference curve for extra cost Cd of implementing a dynamic pricing

policy
ςχ
ℓ throughput under a pricing policy χ and for an information policy ℓ

δk the value of δ that satisfies the indifference curve fδd
= 0 for a given value

of k

σℓ price volatility of a dynamic pricing policy under an information policy ℓ

ϱℓ
ϖ average transaction price of side ϖ for an information policy ℓ

ηℓ incremental net revenue ratio of using a dynamic pricing policy over a static
one for an information policy ℓ

Tk unique threshold to determine the preferred pricing policy for a visible
information policy

Tδ unique threshold to determine the preferred pricing policy for an invisible
information policy
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