
Real-Time and Robust 3D Object Detection Within Roadside LiDARs
Using Domain Adaptation

Walter Zimmer1 ID , Marcus Grabler1,2 ID and Alois Knoll1 ID

Abstract— This work aims to address the challenges in do-
main adaptation of 3D object detection using roadside LiDARs.
We design DASE-ProPillars, a model that can detect objects
in roadside LiDARs in real-time. Our model uses PointPillars
as the baseline model with additional modules to improve the
3D detection performance. To prove the effectiveness of our
proposed modules in DASE-ProPillars, we train and evaluate the
model on two datasets, the open source A9 dataset and a semi-
synthetic roadside A11 dataset created within the Regensburg
Next project. We do several sets of experiments for each
module in the DASE-ProPillars detector that show that our
model outperforms the SE-ProPillars baseline on the real A9
test set and a semi-synthetic A9 test set, while maintaining
an inference speed of 45 Hz (22 ms) that allows to detect
objects in real-time. We apply domain adaptation from the
semi-synthetic A9 dataset to the semi-synthetic A11 dataset
from the Regensburg Next project by applying transfer learning
and achieve a 3D mAP@0.25 of 93.49% on the Car class of
the target test set using 40 recall positions.

I. INTRODUCTION

High quality and balanced data is crucial to achieve high
accuracy in deep learning applications. The creation of la-
beled data of roadside LiDARs is a difficult task. Considering
the high labor cost of manually labeling 3D LiDAR point
clouds, we need to find a solution to deal with small datasets.
Publicly available LiDAR datasets were recorded and labeled
from a vehicle perspective which makes is difficult to apply
these trained detectors on roadside LiDARs. The focus of
this work lies in the area of domain adaptation to tackle
the domain shift problem. How can a neural network that
was trained in one operational design domain (ODD), e.g.
an urban area like in the A9 dataset [1], be adapted to a
slightly different domain, e.g. an intersection in a different
city with different LiDAR sensors and mounting positions?
This process is known as transfer learning – training a model
on a large dataset (source domain) and fine-tuning it on
another dataset (target domain). Another challenge is real-
time 3D object detection on roadside LiDARs, i.e. to detect
objects at a high frame rate to prevent accidents. This highly
depends on the LiDAR type, the rotation rate, and the number
of 3D points. The final challenge this work is dealing with
is a robust 3D detection of all traffic participants. Detecting

*This research was supported by the Federal Ministry of Education and
Research in Germany within the project AUTOtech.agil, Grant Number:
01IS22088U.

1The authors are with the Informatics Faculty, Technical
University of Munich (TUM), 85748 Garching-Hochbrueck,
Germany walter.zimmer@cs.tum.edu, {grabler,
knoll}@tum.de

2Autonomous Reply, Riesstraße 22, 80992 Munich, Germany
m.grabler@reply.de

Fig. 1: Labeled 3D objects in the semi-synthetic proSynthSemi
dataset.

small and occluded objects at different weather conditions
and rare traffic scenarios is a highly important research area
to increase safety of automated vehicles.

We create and open source a large semi-synthetic roadside
dataset with 7,000 labeled point cloud frames (see Fig. 1).
This dataset is balanced in terms of object classes and
contains a high variety so that objects can be detected in
different scenarios and different environment conditions. We
analyze whether transfer learning from a larger roadside
LiDAR dataset, such as the A9 dataset, can improve the
model performance on other roadside datasets. The first
batch of the published A9 dataset includes 459 manually
labeled point cloud frames and contains 3,104 labeled 3D
objects. In this work we propose a single-stage 3D object
detector, train it in one domain and finetune it on a different
domain. An intersection, that is part of the A9 Test Stretch
for Autonomous Driving [5], [6], [7], is equipped with five
LiDAR sensors (see Fig. 3), in order to represent a real-
time digital twin of the traffic. This work provides a domain
adaptation solution for the single LiDAR detection task. The
main contributions in this work are summarized as follows:

• We propose a robust single-stage LiDAR-only detector
based on PointPillars. We introduce five extensions to
improve PointPillars and evaluate the performance of
the model on the test set of the A9 [1], the A11 and
D16 dataset from the Regensburg Next project [8].

• We introduce a synthetic data generation module for
the CARLA simulator [9], that converts the labels to
the OpenLABEL format [10].

• We propose a novel domain adaptation technique, the
semi-synthetic data generation method, which decreases
the sim-to-real gap, as shown in experiments.

• We create a semi-synthetic dataset, called proSynthSemi,
with 7,000 labeled LiDAR point cloud frames using the

ar
X

iv
:s

ub
m

it/
49

67
19

7
 [

cs
.C

V
]

 2
1

Ju
n

20
23

https://orcid.org/0000-0003-4565-1272
https://orcid.org/0000-0001-8984-2551
https://orcid.org/0000-0003-4840-076X
mailto:walter.zimmer@cs.tum.edu
mailto:grabler@tum.de
mailto:knoll@tum.de
mailto:m.grabler@reply.de

Shape-Aware Data
Augmentation

Self-Ensembling
Training

Architecture

Point Cloud Predictions
Stacked Triple

Attention

Attentive
Hierarchical

Middle Layers
Multi-task

Head
Pillar Feature

Net

CONV

CONV

CONV

DECONV

DECONV

DECONV

DECONV

DECONV

Attentive
Addition

Input Softmax Function

Real + synthetic point cloud
Predictions

Fig. 2: Overview architecture of DASE-ProPillars, a LiDAR-only single-stage pillar-based 3D object detector. The detector is based on
PointPillars [2], with the following five extensions. 1) Data Augmentation (Shape-Aware [3], Dropout, upsampling and Gaussian Noise).
2) Stacked Triple Attention Mechanism [4]. 3) Attentive Hierarchical Middle Layers. 4) Multi-task detection head. 5) Self-Ensembling
Training Architecture [3]. The stacked triple attention module extracts features from the semi-synthetic point cloud using the triple
attention mechanism, including channel-wise, point-wise, and voxel-vise attention to enhance the learned features. The pillar feature net
turns point-wise features into pillar features and scatters the pillar features into a pseudo image. The hierarchical middle layers perform
2D convolution operations on the pseudo image. Hierarchical feature maps are concatenated with attentive addition. Finally, the multi-task
head is used for the final prediction, that includes an IoU prediction to alleviate the misalignment between the localization accuracy
and classification confidence. In addition, we introduce two new training techniques: the shape-aware data augmentation module and the
self-ensembling teacher and student training framework.

CARLA simulator [9] and train our model on that. In
addition, we provide two synthetic datasets, A11 and
D16, with 2,581 and 3,315 labeled frames respectively.

• Experiments show that our DASE-ProPillars model out-
performs the SE-ProPillars [11] model by 30.56% 3D
mAP on the A9 test set (Car class), while the inference
speed is maintained at 45 Hz (22 ms).

II. RELATED WORK

First, we compare one-stage and two stage methods,
types of point cloud representations, single- and multi-frame
approaches, supervised and unsupervised as well as center
and anchor-based methods. In the second part we analyze
the importance of data augmentation and the generation of
synthetic data to solve the domain shift problem.

A. 3D Object Detection Models

According to the form of feature representation, LiDAR-
only 3D object detectors can be divided into four main
streams, i.e. point-based, voxel-based, range-view based and
multi-view-based methods [12]. In point-based methods,
features maintain the form of point-wise features, either
by a sampled subset or derived virtual points. PointRCNN
[13] uses a PointNet++ backbone [14] to extract point-wise
features from the raw point cloud, and performs foreground
segmentation. For each foreground point, it generates a

3D proposal followed by a point cloud ROI pooling and
a canonical transformation-based bounding box refinement
process. Point-based methods usually have to deal with
a huge amount of point-wise features, which leads to a
lower inference speed. To accelerate point-based methods,
3DSSD [15] introduces feature farthest-point-sampling (F-
FPS), which computes the feature distance for sampling,
instead of Euclidean distance in traditional distance farthest-
point-sampling (D-FPS). The inference speed of 3DSSD is
competitive with voxel-based methods.

SECOND [16] proposes a sparse convolutional middle
extractor [17] to speed up inference time. In PointPillars
[2], the point cloud is divided into pillars (vertical columns),
which are special voxels without partition along the z-
direction. The feature map of pillars is a pseudo-image so
that 2D convolutions can be used. PointPillars runs with 62
FPS using TensorRT.

SA-SSD [18] adds a detachable auxiliary network to the
sparse convolutional middle layers to predict a point-wise
foreground segmentation and a center estimation task to
provide a point-level supervision. It also proposes a part-
sensitive warping (PS-Warp) operation as an extra detection
head. It can alleviate the misalignment between predicted
boxes and classification confidence maps, since they are gen-

Fig. 3: a) Birds-eye view (BEV) of the S110 intersection that is part of the A9 test stretch. b) S110 intersection modeled in the CARLA
simulator and Unreal Engine. c) Intersection in Regensburg that was used to create the A11 and D16 synthetic datasets. d) Reconstruction
of the intersection in Regensburg.

erated by two different convolutional layers in the detection
head.

CIA-SSD [19] designs an IoU-aware confidence rectifica-
tion module, using an additional convolutional layer in the
detection head to make IoU predictions. The predicted IoU
value rectifies the classification score. By introducing only
one additional convolutional layer, it is more lightweight than
SA-SSD.

SE-SSD [3] proposes a self-ensembling one-stage post-
training framework, where a pre-trained teacher model pro-
duces predictions that serve as soft targets in addition to the
hard targets from the label. These predictions are matched
with student’s predictions by their IoU and supervised by
the consistency loss. Soft targets are closer to the predictions
from the student model and therefore help the student model
to finetune its predictions. The Orientation-Aware Distance-
IoU Loss (OD-IoU) is proposed to replace the traditional
smooth-L1 loss of box regression in the post training, in
order to provide a fresh supervisory signal. This OD-IoU loss
emphasizes the orientation of the bounding boxes as well as
the alignment of the center points. SE-SSD also designs a
shape-aware data augmentation module to improve the gener-
alization ability of the student model. This module performs
dropout, swapping and sparsification of points. This data
augmentation is applied to the point cloud data the student
model is trained on. In this way, by using both a teacher and a
student single-stage object detector, the framework can boost
the precision of the detector significantly without incurring
extra computation during the inference.
Pyramid R-CNN [20] concentrates on handling the sparsity
and non-uniform distribution of point clouds. The authors
propose a novel pyramid RoI-head second-stage module,
that extracts the features from sparse points of interest.
Utilizing features only inside the RoIs performs well in 2D
detection models mainly for two reasons. First, the input
feature map is dense and second, the collected pixels have
large receptive fields. However, in 3D models, the points of
interest are sparse and non-uniformly distributed inside the
RoIs. Therefore, accurately inferring the sizes and categories
of objects becomes hard when collecting features of few
individual points and not gathering enough information from
neighbours. Pyramid RoI effectively solves this problem by
constructing a pyramid grid structure that contains the RoI-
grid points both inside and outside RoIs, so that both fine-

grained shape structures for accurate box refinement as well
as large context information for identifying incomplete ob-
jects can be captured by grid points inside RoIs and outside
RoIs, respectively. The authors performed experiments on
the KITTI Dataset and the Waymo Open Dataset [21]. They
showed that Pyramid R-CNN outperforms other 3D detection
models on these two datasets. On the Waymo Open Dataset
their Pyramid-PV model achieves 81.77% L1 mAP.
As conventional 3D convolutional backbones in voxel-based
3D detectors are not able to efficiently capture extensive con-
text information, Voxel Transfomer (VoTr) [22] is proposed
to resolve this issue by introducing a voxel-based transformer
backbone for 3D object detection from point clouds. It
consists of a series of sparse voxel modules, which extract
features at empty locations and thus are responsible for
the downsampling of the voxel-grids and submanifold voxel
modules, which perform multi-head self attention strictly on
non-empty voxels to keep the original 3D structure with
increasing the receptive fields. The attention mechanism is
split up into two components, called local attention and
dilated attention. Local attention focuses on the neighboring
region to preserve detailed information. Dilated attention
obtains a large attention range with only a few attending
voxels by gradually increasing the search step. VoTr can be
applied to single-stage and two-stage detectors. Comparing
with the backbone of the respective module, the AP results
on the KITTI test set, calculated by 40 recall positions for
the car class, are slightly increased.
Signal miss, external and self occlusion often cause shape
misses for disordered point clouds. Behind the Curtain De-
tector (BtcDet) [23] deals with this problem by learning the
object shape priors and estimate the complete object shapes
including the partially occluded points. Therefore, points
are filled into the labeled bounding boxes and using the
recovered shape miss, the detection results are improved. For
the training process, the complete object shapes are approx-
imated using the ground truth labels of the corresponding
objects. For cars and cyclist, the objects points are mirrored
against the middle section plane of the bounding box and a
heuristic H(A,B) determines if a source object B covers most
parts of a target object A. The heuristic also provides points
that can fill the target object’s shape miss. The detection
pipeline of BtcDet is built up as followed: First, the regions
of occlusion and signal miss have to be identified after the

spherical voxelization for the point cloud. Then, a shape
occupancy network estimates the probability of object shape
occupancy using the created training targets, which consists
of the approximated complete object shapes. The extracted
point cloud 3D features are then sent to a region proposal
network to generate 3D proposals, which are refined in the
last step, the proposal refinement step.

B. Domain Adaptation

Domain adaptation is a type of transfer learning and aims
to transfer knowledge from a source domain, for which
annotated data is available to a target domain, for which
no or only less annotated data is available. Semi-supervised
domain adaptation uses a few labeled examples from the tar-
get domain to learn a target model and unsupervised domain
adaptation exploits only the labeled data from the source
domain without having any annotated target domain data
[24]. The domain adaptation methods can be divided into
four different approaches, which are either data-driven, such
as domain-invariant data representation, domain mapping,
and normalization statistics or model-driven like the domain-
invariant feature learning [25]. With the use of these domain
adaptation methods, the gap between the source and the
target domain should be mitigated [26].

Wang et al.[27] propose a dataset-to-dataset, semi-
supervised domain adaptation for 3D object detection and
provide a baseline for 3D object detection adaptation across
countries using normalization statistics domain adaptation
methods. As only annotated datasets are considered, few-shot
fine-tuning enables to increase the accuracy by selecting 10
labeled scenes from the target domain, which are added to
the source domain during training. As the car sizes vary in
several countries, the object sizes of the source domain differ
from the object sizes of the target domain. Therefore, the
already trained object detector is modified that the predicted
box sizes can better match the previously determined target
statistics. To fit the adjusted box size, the corresponding
labels are scaled up or shrunk down. New point clouds with
the associated labels whose sizes are similar to the target
domain data are generated. This step is called statistical
normalization.

ST3D [28] provides a self-training pipeline for unsuper-
vised domain adaptation on 3D object detection from point
clouds, where no annotated data in the target domain is
available. As the sizes of the objects vary in different datasets
due to the geographical location in which the data were
recorded, ST3D proposes pre-training of the 3D detector on
source domain with random object scaling (ROS) strategy
to mitigate the negative effects of source domain bias. Using
the 3D object detector, pseudo labels for the unlabeled target
data are generated. The quality-aware triplet memory bank
(QTMB) modules parses the object predictions to the pseudo
labels. However, the negative impacts on pseudo labeled
objects lead to noisy supervisory information and instability
for self-training. The memory bank updates the pseudo labels
that also serve as labels for subsequent model training.
The curriculum data augmentation (CDA) module allows to

generate gradually increasingly diverse and potentially hard
examples to improve the model. This enables the model to
learn from challenging samples while making the examples
more difficult during training.

III. APPROACH

We design a real-time LiDAR 3D object detector (DASE-
ProPillars) to solve the domain shift problem. The architec-
ture of our DASE-ProPillars model is shown in Fig. 2.

Data Generation. We created a semi-synthetic dataset
(proSynthSemi) with 7,000 point cloud frames using the
CARLA simulator and train our DASE-ProPillars model on
it. Fig. 3 shows the intersection with generated traffic in the
CARLA simulator. A simulated LiDAR sensor represents a
real Ouster OS1-64 (gen. 2) LiDAR sensor with 64 channels
and a range of 120 m. In the simulation, we add Gaussian
noise (see Eq. (1)) N(µ, σ2) with mean µ = 0 and standard
deviation σ = 0.1 to disturb each point along the vector of
its raycast.

p(z) =
1

σ
√
2π

e
(z−µ)2

2σ2 (1)

The LiDAR emits 1.31M points per second and runs at 10
Hz (131,000 points per frame). We store the extracted point
clouds in .pcd files and labels in .json files according to
the OpenLABEL standard [10]. To get more realistic point
clouds, the points of the objects in the simulated point clouds
are extracted and included into a background of a point cloud
captured by a real Ouster OS1-64 (gen.2) LiDAR, which
does not contain any objects. Before the simulated object
points are inserted into the real background point set, those
points in the real point cloud are cut out, which are inside
the simulated objects or below, respectively the points of
the ground plane. As the height profiles of simulated and
real data do not coincide, the z-coordinate of the objects
must be adjusted in order to place the objects on the ground
plane. We use the RANSAC algorithm [29] to determine the
ground plane of the real point cloud and thus, calculating
the corresponding height profile. Subsequently, a pipeline is
applied to the background points using both Gaussian noise
and drop out of points in order to get more variance in the
point clouds. This gives the advantage to get more realistic
point clouds and having labeled objects from the simulation.

Normalization. As the bounding boxes of the classes
differ between the semi-synthetic and real A9 dataset, the
boxes are normalized to an average size of the bounding
boxes for each class. Since manually labeled data can often
result in incorrect sizes of the length, width and height
of the bounding box, normalized bounding boxes of the
synthetic labels are used instead. For synthetic data, the exact
dimensions can be extracted directly from the simulation.
With normalization, the distinction between the individual
classes can be improved, which is useful, e.g. for the Van
and Car classes. In addition, the normalized sizes are used
in a domain adaptation to adjust the source domain data to
the target domain data.

Voxelization. We divide the raw point cloud into vertical
pillars before feeding them into a neural network. These are

special voxels that are not split along the vertical axis. Pillars
have these advantages over voxels: A pillar-based backbone
is faster than a voxel-based backbone due to fewer grid cells.
Time consuming 3D convolutional middle layers are also
being eliminated and instead 2D convolutions are being used.
We also do not need to manually tune the bin size along the
z-direction hyperparameter. If a pillar contains more points
than specified in the threshold, then the points are being
subsampled to the threshold using farthest point sampling
[30]. If a pillar contains fewer points than the threshold, then
it is padded with zeros to make the dimensions consistent.
Due to the sparsity issue most of the pillars are empty.
We record the coordinates of non-empty pillars according
to the pillar’s center index. Empty pillars are not being
considered during the feature extraction until all pillars are
being scattered back to a pseudo image for 2D convolution.
For experiments, we set the voxel size to (0.2, 0.2, 6.0) m, for
which the height (6.0 m) must correspond to the detection
range in the z-axis. The maximum number of points per
voxel is set to 40 and if a voxel contains more, the points
are subsampled using the farthest sampling method. We also
limit the number of voxels to 20,000.

Stacked Triple Attention. The Stacked Triple Attention
module is used for a more robust and discriminative feature
representation. Originally introduced in TANet [4] by Liu
et al., the stacked triple attention module enhances the
learning of hard to detected objects and deals better with
noisy points. This method can be applied on both, voxel
and pillar-based point clouds. The attention mechanism in
this module follows the Squeeze-and-Excitation pattern [31].
If channel-wise attention is applied to an input tensor with
shape (H×W×C), then first a global pooling operation (max
pooling) is used to pool the tensor to shape (1×1×C), called
squeeze operation. Then, two fully connected (FC) layers
are applied to the squeezed tensor attention score, called
excitation operation. Between the two FC layers, the feature
dimension is reduced and then recovered with a reduction
ratio which forms a bottleneck structure. After that, a sigmoid
function is applied to get the attention score. Finally, the
(1 × 1 × C) tensor is multiplied element-wise to get the
original (H ×W × C) feature.

The input to the module is a (P × N × C) tensor,
where P is the number of non-empty pillars, N is the
maximum number of points in each pillar, and C is the
dimension of the input point-wise feature. At the begin-
ning, we have a 9-dimensional (C = 9) feature vector
(x, y, z, r, xc, yc, zc, xp, yp), where x, y, z are the coordinates
of the point, r is the intensity, xc, yc, zc are the distance to
the arithmetic mean of all points inside the pillar, xp, yp are
the location of the pillar from the pillars center. The triple
attention (TA) module extracts features inside each pillar,
using point-wise, channel-wise and voxel-wise attention. All
three attention scores are combined to form the final output
feature. To further exploit the multi-level feature attention,
two triple attention modules are stacked with a structure
similar to the skip connections in ResNet [32]. The first
module takes the raw point cloud 9-dim features as input,

while the second one works on the extracted high dimen-
sional features. For each TA module the input is concatenated
or summed to the output to fuse more feature information.
Each TA module is followed by a fully connected layer to
increase the feature dimension. Inside the TA modules, the
attention mechanism only re-weights the features, but does
not increase their dimensions.

Pillar Feature Net. We choose PointPillars [2] as our
baseline and improve its 3D detection performance at the
expense of inference time. PointPillars runs at 42 Hz without
the acceleration of TensorRT. Since there is a trade-off be-
tween speed and accuracy, we can further boost the accuracy
by incorporating additional modules without sacrificing the
inference speed too much. The pillar feature net (PFN) shown
in Fig. 2 takes pillars as input, extracts pillar features, and
scatters pillars back to a pseudo image for 2D convolution
operations in the middle layers. The pillar feature net acts as
an additional feature extractor to the stacked triple attention
module. The point-wise pillar-organized features from the
stacked TA module with shape (P × N × C) are fed to a
set of PFN layers. Each PFN layer is a simplified PointNet
[33], which consists of a linear layer, Batch-Norm [34],
ReLU [35], and max pooling. The max-pooled features are
concatenated back to the ReLU’s output to keep the point-
wise feature dimension inside each pillar, until the last FPN
layer. The last FPN layer makes the final max pooling and
outputs a (P ×C) feature as the pillar feature. Pillar features
are then scattered back to the original pillar location, forming
a (C×H×W) pseudo image, where H and W are the height
and width of the pillar grid. Here the location of empty pillars
is padded with zeros.

Attentive Hierarchical Middle Layers. We exchange the
default backbone of PointPillars with an Attentive Hierar-
chical Backbone to perform 2D convolution on the pseudo
image from the pillar feature net. In the first stage, the spatial
resolution of the pseudo image is gradually downsampled
by three groups of convolutions. Each group contains three
convolutional layers, where the first one has a stride of two
for downsampling, and the two subsequent layers act only
for feature extraction. After downsampling, deconvolution
operations are applied to recover the spatial resolution.
Deconvolutional layers (marked with an asterix) recover the
size of feature maps with stride 2 and element-wise add
them to upper branches. The remaining three deconvolutional
layers make all three branches have the same size (half
of the original feature map). Then the final three feature
maps are combined by an attentive addition to fuse both,
spatial and semantic features. The attentive addition uses the
plain attention mechanism. All three feature maps are being
passed through a convolutional operation and are channel-
wise concatenated as attention scores. The softmax function
generates the attention distribution and feature maps are
multiplied with the corresponding distribution weight. The
element-wise addition in the end gives the final attention
output, a (C ×H/2×W/2) feature map.

Multi-task Head. The multi-task head outputs the final
class (based on a confidence score), the 3D box position

(x, y, z), dimensions (l, w, h), rotation (θ) and the direction
of the detected object. The direction (front/back) is being
classified to solve the problem that the sine-error loss [36]
cannot distinguish flipped boxes. Four convolutional layers
operate on the feature map separately. One of the four heads
is the IoU prediction head that predicts an IoU between the
ground truth bounding box and the predicted box. It was
introduced in CIA-SSD [19] to deal with the misalignment
between the predicted bounding boxes and corresponding
classification confidence maps. The misalignment is mainly
because these two predictions are from different convolu-
tional layers. Based on this IoU prediction, we use the con-
fidence function (CF) to correct the confidence map and use
the distance-variant IoU-weighted NMS (DI-NMS) module
post-process the predicted bounding boxes. The distance-
variant IoU-weighted NMS is designed to deal with long-
distance predictions, to better align far bounding boxes with
ground truths, and to reduce false-positive predictions. If the
predicted box is close to the origin of perspective, we give
higher weights to those box predictions with high IoU. If the
predicted box is far, we give relatively uniform weights, to
get a more smooth final box.

Data Augmentation. Data augmentation has proven to be
an efficient way to better exploit the training dataset and help
the model to be more generalized. We use the shape-aware
data augmentation method proposed by SE-SSD [3]. This
module simplifies the handling of partial occlusions, sparsity
and different shapes of objects in the same class. Some
traditional augmentation methods are also applied before the
shape-aware augmentation, e.g. rotation, flipping, and scal-
ing. For the generation of semi-synthetic data, several data
augmentation techniques are also implemented to increase
the variance of the point clouds. Therefore, in every second
frame, 0-20% of all points are dropped out and Gaussian
noise with σ = 0.2 is added to 20-40% of all points. These
techniques increase the variance of point clouds and provide
more robust and diverse data. Data augmentation plays an
important role for domain adaptation methods, as it is used
by several methods [28], [37],[38]. It is noticeable, that the
point density of the target domain is more important than
the point density of the source domain [28]. Subsequently,
cropping and drop out of points, respectively point cloud
upsampling is an important step to adjust the number of
points of the source set to the target set. Statistics for both,
the source and the target domain dataset, are calculated with
respect to the number of points of the total point cloud and,
if annotated data is available for the target domain data,
the average number of points per object. Then, the data
augmentation techniques drop out and upsampling are used
to match the source domain dataset to the target domain
dataset. To better illustrate this effect, a domain adaptation
is applied in Sec. IV from the synthetic A9 dataset (source
domain) to the A11 and D16 dataset of the Regensburg
Next project (target domain). Note that the number of points
for the target domain set is reduced by a factor of 2.72
compared to the source domain set, whereas the average
number of points for the Car class is increased by a factor

of 1.83 compared to the source dataset. Due to the different
LiDARs used for both smart intersections, there is more
overlap between the four permanently installed Blickfeld
Cube 1 LiDARs in the Regensburg Next project. This sensor-
to-sensor domain adaptation is considered in more detail in
Sec. IV.

Self-Ensembling Training Framework. We introduce the
self-ensembling training framework [3] to do a post training:
We first train the model without self-ensembling, and then
we take the pre-trained model as a teacher model to train
the student model that has the same network structure.
Predictions of the teacher model are used as soft supervision.
Combined with the hard supervision from the ground truth,
we can provide more information to the student model. The
student and teacher model are initialized with the same pre-
trained parameters. The generated soft targets are obtained
by the teacher SSD. They include a global transformation
that performs translation, flipping and scaling as data aug-
mentation techniques. After a global transformation, shape-
aware data augmentation is performed on input points with
the corresponding ground truth annotations (hard targets).
The augmented input is fed into the student SSD together
with the consistency loss that is obtained by the teacher and
student predictions in order to align the student predictions
with the provided soft targets.

Furthermore, the student is supervised with the
orientation-aware distance-IoU loss to better exploit
hard targets for regression bounding boxes. The overall loss
for training the student model consists of:

Lstudent = Ls
cls+ω1Ls

OD−IoU +ω2Ls
dir +µtLconsist, (2)

where Ls
cls is the focal loss [39] for box classification,

Ls
OD−IoU is the OD-IoU loss for bounding box regression,

Ls
dir is the cross-entropy loss for direction classification,

Lconsist is the consistency loss, that is a sum of the bounding
box loss and the classification loss, ω1, ω2, λ and µt are
weights of losses. During post-training, the parameters of
the teacher model are updated with the ones of the student
model using the exponential moving average (EMA) strategy.

IV. EVALUATION

To prove the effectiveness of our proposed modules in
DASE-ProPillars, we evaluate the model on the A9 dataset
which is a novel roadside dataset in the autonomous driving
domain with labeled roadside sensor data. Furthermore, we
finetune and evaluate the model on two further roadside
LiDAR datasets, the synthetic A11 and D16 datasets from
the Regensburg Next project. The training and evaluation was
performed on 3 x NVIDIA GeForce RTX 3090 GPUs.

A. A9 dataset

We use the DASE-ProPillars model to train on the training
set of the A9 dataset for 80 epochs with a batch size of 8,
and evaluate on the test set. As optimizer, Adam is used
with a weight decay of 0.01. The learning rate is of type
”one cycle” with a maximum of 0.003. We report our result
using 3D and BEV under IoU threshold 0.5 and 0.25 like in

[11]. The confidence score is limited with threshold 0.1, but
we again decrease the NMS IoU threshold to 0.2, exactly
the same setting as the convention in nuScenes [40]. The
LiDAR frames of the second batch of the A9 dataset are
labeled on the intersection. We test the case of using 0.1
as the NMS threshold. The inference time is 22.0 ms that
still provides real-time object detection results. The result is
shown in Tab. I.

Metric 3D mAP BEV mAP
IoU threshold 0.5 0.25 0.5 0.25
SE-ProPillars 30.13 50.09 40.21 51.53
DASE-ProPillars (Ours) 54.38 80.65 55.10 83.38

TABLE I: 3D object detection results of DASE-ProPillars on the
A9 test set. We report the 3D and BEV mAP of Car under 0.5 and
0.25 IoU threshold, with 40 recall positions.

B. A11 and D16 dataset

The results of the DASE-ProPillars model trained on the
semi-synthetic proSynthSemi dataset are used to improve
the results on similar roadside datasets, the A11 and D16
datasets from the Regensburg Next project [8], which con-
sist of 2,581 and 3,315 synthetic frames respectively. The
simulation environment Gazebo was used to randomly place
objects in a predefined region of an intersection to generate
annotated data. The LiDARs in the real A9 dataset and the
semi-synthetic A9 dataset are mounted on traffic sign gantry
bridges, whereas the LiDAR sensors in the synthetic A11
dataset are mounted on roadside rooftops in a height of
approximately 7 m above the ground plane. We use our
DASE-ProPillars model to train on the training set of the
synthetic A9 dataset for 80 epochs and finetune on the A11
dataset for 40 epochs, with a decrease of the learning rate
of 50%. For comparison reasons we also trained our DASE-
ProPillars model directly on the A11 dataset for 40 epochs
using the same hyperparameters as above. The NMS IoU
threshold is decreased to 0.2 for both models. As mentioned
above, the average number of points per object is increased
by a factor of 1.83 compared to the synthetic A9 dataset.
Therefore, point upsampling was used, to match the number
of average points per objects for both domains. Since the
average number of points of the total point cloud in the
target set is significantly lower (factor 2.72) compared to the
source set, only points of the objects are upsampled. In order
to reduce the difference in terms of total number of points of
the respective point clouds simultaneously, drop out is used
to reduce the number of total points of the source set. Table II
shows the impact of several data augmentation techniques
of a DASE-ProPillars model trained only on the source set
and evaluated directly on the target set without the use of
any finetuning. Upsampling object points improved the 3D
object detection, whereas the subsequent drop out had led
to a slight deterioration, contrary to expectations. However,
the drop out rate was set to 0.5, meaning that 50% of all
points were dropped. Using a smaller drop out rate of 0.25,
the results compared to the higher rate increased. Table III
shows the results for the models trained only on the A11

dataset of the Regensburg Next project compared with the
model which was trained on the synthetic A9 dataset and
finetuned on the target domain set.

Metric 3D mAP BEV mAP
upsampling + drop out (0.5) 49.64 61.14
drop out (0.25) 60.92 69.05
original 61.72 72.83
upsampling 63.11 76.65

TABLE II: 3D object detection results of DASE-ProPillars on the
test set of the A11 dataset. We report the 3D and BEV mAP of the
Car class under an IoU threshold of 0.25, with 40 recall positions
including several data augmentation techniques.

Metric 3D mAP BEV mAP
IoU threshold 0.5 0.25 0.5 0.25
DASE-ProPillars 23.26 89.87 27.61 93.42
DASE-ProPillars + fine-tuning 33.73 93.49 38.81 94.79

TABLE III: 3D object detection results of DASE-ProPillars on the
test set of the A11 dataset. We report the 3D and BEV mAP of Car
under 0.5 and 0.25 IoU threshold, with 40 recall positions.

V. CONCLUSION

In this work we presented our DASE-ProPillars 3D object
detector that is an improved version of the PointPillars
model. We show generalization ability of our model and
make it more robust via domain adaptation. We replace
the detection head with a more lightweight multi-task head.
We add two training techniques to our baseline: the shape-
aware data augmentation module and the self-ensembling
training architecture. Sufficient data collection is key to train
a model and achieve a good accuracy. We do several sets
of experiments for each module to prove its accuracy and
runtime performance.
To sum up, the DASE-ProPillars 3D object detector is a
significant contribution within the area of LiDAR-based 3D
perception to support self-driving vehicles and improve road
traffic safety.

APPENDIX

VI. DETAILED MODULE ARCHITECTURE

A. Attentive Hierarchical Middle Layers

We exchange the default backbone of PointPillars with an
Attentive Hierarchical Backbone to perform 2D convolution
on the pseudo image from the pillar feature net. Figure
4 depicts the structure of the attentive hierarchical middle
layers.

In the first stage, the spatial resolution of the pseudo image
is gradually downsampled by three groups of convolutions.
Each group contains three convolutional layers, where the
first one has a stride of two for downsampling, and the two
subsequent layers act only for feature extraction. After down-
sampling, deconvolution operations are applied to recover
the spatial resolution. Deconvolutional layers (marked with
an asterix) recover the size of feature maps with stride 2 and
element-wise add them to upper branches. The remaining
three deconvolutional layers make all three branches have the

CONV
(1, 64, 128, 1)

CONV
(1, 128, 128, 1)

CONV
(1, 256, 128, 1)

DECONV
(3, 128, 128, 1)

DECONV *
(3, 256, 128, 2)

DECONV *
(3, 128, 128, 2)

DECONV
(3, 128, 128, 2)

DECONV
(3, 128, 128, 4)

Attentive
Addition

Input
CONV

(1, 128, 1, 1)

CONV
(1, 128, 1, 1)

CONV
(1, 128, 1, 1)

C

·

·
·

· C

S

Element-wise
Multiplication Concatenation

Softmax Function
Element-wise
Addition

S

Fig. 4: Left: Structure of the attentive hierarchical middle layers. Right: Structure of the attentive addition operation.

same size (half of the original feature map). Then the final
three feature maps are combined by an attentive addition
to fuse both, spatial and semantic features. The attentive
addition uses the plain attention mechanism. All three feature
maps are being passed through a convolutional operation
and are channel-wise concatenated as attention scores. The
softmax function generates the attention distribution and fea-
ture maps are multiplied with the corresponding distribution
weight. The element-wise addition in the end gives the final
attention output, a (C ×H/2×W/2) feature map.

B. Self-Ensembling Training Framework

In addition, we introduce the self-ensembling training
framework [3] to do a post training: We first train the model
shown in Fig. 5 but without the self-ensembling module, and
then we take the pre-trained model as a teacher model to train
the student model that has the same network structure.

VII. SEMI-SYNTHETIC DATA GENERATION

In the CARLA simulator, the frequency of a simulated
LiDAR has to be set to 20 Hz due to CARLA time syn-
chronization problems. Using 10 Hz, the generated point
cloud is cut off at half for each frame. The data acquisition
with 20 Hz solves this problem to generate a complete point
cloud. However, not as expected 20 frames per second, but
only 10 frames per second are captured, what coincides
with a data acquisition at 10 Hz. With an initial horizontal
resolution of 2, 048, the number of points have to be doubled
to 2, 621, 480. To reduce the sim-to-real gap, noise with
a standard deviation of 0.1 and a general drop-off of 10
% is included to the generated point cloud directly in the
acquisition process. The characteristics of the simulated
LiDAR are depicted in Tab. IV.

Using a semi-synthetic data generation pipeline, a
synthetically generated point cloud containing automatically
annotated data can be included into a point cloud which
is captured in real world. The main concept of the semi-
synthetic data generation is to insert synthetically generated
points of an object, for which the annotation is available,
into a real point cloud. In this context, one has to ensure,

that the real world and the simulated LiDAR cover the
same map region. Furthermore, the proportions of the
environment must match between real world and simulation.
Using OpenDRIVE, roads can be well integrated into the
simulation and GPS measured points can be transferred to
the CARLA simulation, which guarantees, that the LiDAR
positions in real world and simulation are identical. If these
conditions for the simulation are met, the advantages of
synthetic and real data can be combined and only synthetic
generated point clouds and a minimal real point cloud,
which does not contain any objects, is required. To add more
variance to the data, multiple real point clouds without any
objects can be included. The semi-synthetic data generation
can be split up into the following steps:

1) Extraction of synthetic object points from synthetic
data

2) Identifying the ground plane via RANSAC
3) Creation of a height profile
4) Removal of ground points
5) Including of synthetic objects point into real point

cloud
6) Application of data augmentation
7) Adjustment of annotations

VIII. ADDITIONAL ABLATION STUDIES

Table V lists the 3D, BEV and AOS mAP of the car
class on the s110 v01 dataset under 0.25 IoU threshold
with 40 recall positions for both, the initial baseline without
any domain adaptation and the step-by-step enabling of all

Actor attribute Value
Channels 64
Range 120 m
Points per Second 2,621,480
Rotation Rate 20 Hz
Vertical FOV 45◦ (±22.5◦)
Horizontal FOV 360◦

Noise 0.1
Dropoff general rate 0.1

TABLE IV: Characteristics of the simulated OS1-64 (gen. 2).

Predictions

Consistency Loss

Teacher Model

Student Model

Ground Truth

Soft Targets

Hard Targets

Predictions

Matching

Soft Supervision

Parameters Update

Hard Supervision
Input Point Cloud

Fig. 5: Self-ensembling training architecture.

(a) MonoDet3D (b) PointPillars
(c) InfraDet3D

Fig. 6: Top row: Example frames of the target domain (A11 dataset) including predictions produced by the DASE-ProPillars object
detector using cross-sensor domain adaptation. Bottom row: Corresponding ground truth annotations (car: red; bus: blue; pedestrian:
yellow, motorbike: black).

domain adaptation modules. It can be seen, that including all
domain adaptation processes outperforms the initial baseline
approach in all metrics significantly, having the same run-
time of 20 ms. The transformation of the synthetic to semi-
synthetic data increases the BEV and AOS metric by 51.19
and 35.02 respectively.

mAP40@0.25 BEV 3D AOS
proSynthLiDAR 3.03 1.84 1.50
baseline (proSemiSynthLiDAR) 54.22 7.84 36.52
baseline + VA 63.65 12.40 41.15
baseline + VA + FT 65.12 51.60 44.32
baseline + VA + FT + BN 67.69 61.84 46.09

TABLE V: Ablation study synthetic-to-real domain adaptation. The
modules of the synthetic-to-real domain adaptation are enabled step
by step. First, the impact of the semi-synthetic data is highlighted.
Afterwards, the voxel-alignment (VA), fine-tuning (FT) and the
bounding box normalization (BN) modules are investigated. We
report the BEV, 3D and AOS mAP for the class car under 0.25 IoU
threshold, with 40 recall positions.

IX. QUALITATIVE EVALUATION RESULTS

Figure 6 provides several examples of the target domain
set including the predictions of the DASE-ProPillars model
and the corresponding ground truths. In the first frame, the
bus and the motorbike are detected wrongly as a car and also
a part of the environment is predicted and therefore denotes
one false positive. The remaining two frames also include
one false positive as a bush on the roadside is detected as a
car. However, in all frames, all annotated cars are detected
correctly and also the rotation fits accurately for most objects.
The visual representation of the predictions emphasizes the
results of the proposed DASE-ProPillars object detector.

REFERENCES

[1] C. Creß, W. Zimmer, L. Strand, M. Fortkord, S. Dai, V. Lakshmi-
narasimhan, and A. Knoll, “A9-dataset: Multi-sensor infrastructure-
based dataset for mobility research,” arXiv preprint arXiv, 2022.

[2] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 697–12 705.

[3] W. Zheng, W. Tang, L. Jiang, and C.-W. Fu, “Se-ssd: Self-ensembling
single-stage object detector from point cloud,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 14 494–14 503.

[4] Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou, and X. Bai, “Tanet:
Robust 3d object detection from point clouds with triple attention,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 07, 2020, pp. 11 677–11 684.

[5] A. Krämmer, C. Schöller, D. Gulati, V. Lakshminarasimhan, F. Kurz,
D. Rosenbaum, C. Lenz, and A. Knoll, “Providentia-a large-scale
sensor system for the assistance of autonomous vehicles and its
evaluation,” Journal of Field Robotics, 2022.

[6] V. Lakshminarasimhan and A. Knoll, “C-v2x resource deployment
architecture based on moving network convoys,” in 2020 IEEE 91st
vehicular technology conference (VTC2020-Spring). IEEE, 2020, pp.
1–6.

[7] C. Creß and A. C. Knoll, “Intelligent transportation systems with
the use of external infrastructure: A literature survey,” arXiv preprint
arXiv:2112.05615, 2021.

[8] V. R. Torunsky, “Pilotprojekt mit Vorbildcharakter,” p. 1.
[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:

An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[10] “Asam e.v. openlabel v1.0.0 standardization project.”
https://www.asam.net/project-detail/asam-openlabel-v100/.

[11] J. Wu, W. Zimmer, and A. Knoll, “Real-time lidar-based 3d object
detection on the providentia++ test stretch using a single-stage ar-
chitecture,” Master’s thesis, Technische Universität München, 2021,
unpublished thesis.

[12] W. Zimmer, E. Ercelik, X. Zhou, X. Jair Diaz Ortiz, and A. Knoll, “A
survey of robust 3d object detection methods in point clouds,” arXiv
preprint arXiv:submit/4161670, 2022.

[13] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 770–
779.

[14] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++ deep hierarchical
feature learning on point sets in a metric space,” in Proceedings of
the 31st International Conference on Neural Information Processing
Systems, 2017, pp. 5105–5114.

[15] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single
stage object detector,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 11 040–11 048.

[16] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[17] B. Graham, M. Engelcke, and L. Van Der Maaten, “3d semantic
segmentation with submanifold sparse convolutional networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 9224–9232.

[18] C. He, H. Zeng, J. Huang, X.-S. Hua, and L. Zhang, “Structure aware
single-stage 3d object detection from point cloud,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 11 873–11 882.

[19] W. Zheng, W. Tang, S. Chen, L. Jiang, and C.-W. Fu, “Cia-ssd:
Confident iou-aware single-stage object detector from point cloud,”
arXiv preprint arXiv:2012.03015, 2020.

[20] J. Mao, M. Niu, H. Bai, X. Liang, H. Xu, and C. Xu, “Pyramid
r-cnn: Towards better performance and adaptability for 3d object
detection,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 2723–2732.

[21] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 2446–2454.

[22] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and C. Xu,
“Voxel transformer for 3d object detection,” 2021.

[23] Q. Xu, Y. Zhong, and U. Neumann, “Behind the curtain: Learning
occluded shapes for 3d object detection,” CoRR, vol. abs/2112.02205,
2021. [Online]. Available: https://arxiv.org/abs/2112.02205

[24] A. Xiao, J. Huang, D. Guan, F. Zhan, and S. Lu, “Synlidar:
Learning from synthetic lidar sequential point cloud for semantic
segmentation,” CoRR, vol. abs/2107.05399, 2021. [Online]. Available:
https://arxiv.org/abs/2107.05399

[25] L. T. Triess, M. Dreissig, C. B. Rist, and J. M. Zöllner,
“A survey on deep domain adaptation for lidar perception,”
CoRR, vol. abs/2106.02377, 2021. [Online]. Available: https:
//arxiv.org/abs/2106.02377

[26] D. Jia, A. Hermans, and B. Leibe, “Domain and modality gaps
for lidar-based person detection on mobile robots,” CoRR, vol.
abs/2106.11239, 2021. [Online]. Available: https://arxiv.org/abs/2106.
11239

[27] Y. Wang, X. Chen, Y. You, L. E. Li, B. Hariharan, M. E. Campbell,
K. Q. Weinberger, and W. Chao, “Train in germany, test in the USA:
making 3d object detectors generalize,” CoRR, vol. abs/2005.08139,
2020. [Online]. Available: https://arxiv.org/abs/2005.08139

[28] J. Yang, S. Shi, Z. Wang, H. Li, and X. Qi, “ST3D: self-
training for unsupervised domain adaptation on 3d object detection,”
CoRR, vol. abs/2103.05346, 2021. [Online]. Available: https:
//arxiv.org/abs/2103.05346

[29] K. G. Derpanis, “Overview of the ransac algorithm,” Image Rochester
NY, vol. 4, no. 1, pp. 2–3, 2010.

[30] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest
point strategy for progressive image sampling,” IEEE Transactions on
Image Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[31] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

https://arxiv.org/abs/2112.02205
https://arxiv.org/abs/2107.05399
https://arxiv.org/abs/2106.02377
https://arxiv.org/abs/2106.02377
https://arxiv.org/abs/2106.11239
https://arxiv.org/abs/2106.11239
https://arxiv.org/abs/2005.08139
https://arxiv.org/abs/2103.05346
https://arxiv.org/abs/2103.05346

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[33] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 652–660.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

[35] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

[36] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[37] L. Yi, B. Gong, and T. A. Funkhouser, “Complete & label:
A domain adaptation approach to semantic segmentation of lidar
point clouds,” CoRR, vol. abs/2007.08488, 2020. [Online]. Available:

https://arxiv.org/abs/2007.08488
[38] M. Jaritz, T. Vu, R. de Charette, É. Wirbel, and P. Pérez, “xmuda:

Cross-modal unsupervised domain adaptation for 3d semantic
segmentation,” CoRR, vol. abs/1911.12676, 2019. [Online]. Available:
http://arxiv.org/abs/1911.12676

[39] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[40] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 621–11 631.

https://arxiv.org/abs/2007.08488
http://arxiv.org/abs/1911.12676

