
InfraDet3D: Multi-Modal 3D Object Detection

based on Roadside Infrastructure Camera and

LiDAR Sensors

Walter Zimmer ID , Joseph Birkner ID , Marcel Brucker ID , Huu Tung Nguyen ID ,

Stefan Petrovski ID , Bohan Wang ID , Alois C. Knoll ID

Abstract—Current multi-modal object detection approaches fo-
cus on the vehicle domain and are limited in the perception range
and the processing capabilities. Roadside sensor units (RSUs)
introduce a new domain for perception systems and leverage
altitude to observe traffic. Cameras and LiDARs mounted on
gantry bridges increase the perception range and produce a full
digital twin of the traffic. In this work, we introduce InfraDet3D,
a multi-modal 3D object detector for roadside infrastructure
sensors. We fuse two LiDARs using early fusion and further
incorporate detections from monocular cameras to increase the
robustness and to detect small objects. Our monocular 3D
detection module uses HD maps to ground object yaw hypotheses,
improving the final perception results. The perception framework
is deployed on a real-world intersection that is part of the A9
Test Stretch in Munich, Germany. We perform several ablation
studies and experiments and show that fusing two LiDARs with
two cameras leads to an improvement of +1.90 mAP compared
to a camera-only solution. We evaluate our results on the A9
infrastructure dataset and achieve 68.48 mAP on the test set.
The dataset and code will be available at https://a9-dataset.com to
allow the research community to further improve the perception
results and make autonomous driving safer.

Index Terms—3D Perception, Camera-LiDAR Fusion, Road-
side Sensors, Infrastructure Sensors, Autonomous Driving

I. INTRODUCTION

Roadside perception is vital to improve the situation aware-

ness and to provide a far-reaching view for automated ve-

hicles. Roadside sensors installed on infrastructure systems

like the A9 Test Stretch [2], [3] increase the perception range

drastically. They perceive objects around the corner, e.g. to

warn drivers performing a left or right turn. A cost-effective

solution is needed to process perception models in real-time

and provide accurate results at the same time.

Positional data captured from roadside sensors is sent

through high performance units to all traffic participants to

decrease blind spots and prevent accidents. It has been shown

that roadside sensors increase the situation awareness by

sending important notifications and warnings to vulnerable

road users (VRUs) and drivers [4]–[6]. In this work, we

contribute to the challenge of sparse point clouds in the domain

of roadside perception in the following way:

1The authors are with the School of Computation, Information and Tech-
nology (CIT), Department of Informatics, Technical University of Munich,
TUM, 85748 Garching-Hochbrueck, Germany.
Contact: walter.zimmer@tum.de

Fig. 1: Early and late fusion of two roadside cameras and

LiDARs. We register point clouds from two LiDARs using

G-ICP [1] and project them with the camera-LiDAR detec-

tions into the image. Left column: Night detection results in

more and better classified LiDAR detections. Right column:

Detections during day time demonstrate a 41.67% increase in

detections using the fusion approach. Moreover, even occluded

objects, like the car behind the trailer (right) or the truck

behind the gantry bridge (left), can be detected with our

InfraDet3D Fusion Framework.

• We propose a real-time point cloud registration algorithm

to register infrastructure LiDARs which enhances the

point density. Our experiments show that early fusion of

point clouds leads to an increase of +1.32 mAP.

• Fusing supervised and unsupervised LiDAR 3D object

detectors increases the robustness and reduces the number

of false positive detections.

• We connect our perception module to real HD maps (+2.7

mAP) of the A9 Testbed to extract road information, as

well as to validate and filter the perception results.

• Our camera-LiDAR fusion module further enhances the

robustness of our whole perception toolbox (+1.62 mAP)

by providing perception results during day and night time.

• Finally, we evaluate all 3D detectors on the A9-I dataset

and introduce a leaderboard to allow the research com-

munity to benchmark their models on our dataset.

20
23

 IE
EE

 In
te

lli
ge

nt
 V

eh
ic

le
s S

ym
po

si
um

 (I
V

) |
 9

79
-8

-3
50

3-
46

91
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IV
55

15
2.

20
23

.1
01

86
72

3

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 02,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

Camera-LiDAR Fusion Framework

Early Fusion

Late Fusion

LiDAR 3D Object

Detection
LiDAR 3D Object

Detection (supervised)

LiDAR 3D Object

Detection (unsupervised)
LiDAR 3D Object

Detection (unsupervised)

Instance Segmentation

Network

Instance Segmentation

Network

Point Cloud Registration Monocular 3D

Perception

Monocular 3D

Perception

VirtualizationVirtualization

Automatic Roadside Camera-LiDAR Calibration Toolbox

Fig. 2: InfraDet3D Perception Framework Architecture. Our proposed model is deployed on a real intersection (S110) part of

the A9 Test Stretch for Autonomous Driving in Munich, Germany.

II. RELATED WORK

Much research has been done in the area of roadside 3D

perception. Traditional approaches [7] increase the robustness

of roadside LiDAR perception systems because of the simi-

larity and the lack of diversity in the background point cloud.

Furthermore, they do not require labeled data and process point

clouds efficiently. In [8] a 3D vehicle detection approach is

proposed that uses a single camera. First, they segment the

instance mask in the image, extract the bottom contour and

project it on the road plane to get the 3D position. Then,

they cluster the projected points into objects by applying K-

means clustering. Afterwards, they estimate the dimensions

(length and width) and orientation (heading angle) of vehicles

by fitting a box for each cluster. Finally, they refine the 3D

box to fit it within the 2D box by maximizing the posterior

probability. Bai et al. proposes a learning-based approach

[9] that requires huge labeled datasets and performs poorly

in domains where no labeled data is available. The authors

introduce a real-time LiDAR-based traffic surveillance system

to detect objects in 3D. They develop 3DSORT, a 3D multi-

object tracker by extending DeepSORT [10]. The limitation of

all mentioned approaches is that they have no labeled training

data of roadside LiDARs and use open-source datasets like

nuScenes [11] to train the model. To the best of our knowledge

there is no roadside 3D perception framework available that

is able to fuse data from multiple road side sensor units.

Furthermore, there is no solution that combines different

fusion levels (early and late fusion), as well as traditional and

learning-based approaches into a single framework.

III. A9 INTERSECTION DATASET

The A9 Intersection (A9-I) dataset is an extension of the A9

Dataset [12]. It contains labeled data (in OpenLABEL format)

of two cameras and two LiDAR sensors mounted on the S110

gantry bridge that is part of the A9 Test Stretch for Autonomous

Driving. It contains 9,600 labeled point clouds and images

with 57,743 labeled 3D objects (∅12/frame) and is split into

a training (80%), validation (10%), and test set (10%). The test

set contains a sequence with labeled track IDs and sampled

frames from four different scenarios. We applied stratified

sampling to balance the dataset among sensor types and

scenarios. The set contains 25% night data with severe weather

conditions like heavy rain which allows the model to perform

well under challenging weather conditions. Our dataset was

created by labeling experts and some improvements were done

to further enhance the label quality using the proAnno labeling

toolbox which is based on [13].

IV. SENSOR CALIBRATION

In our framework multiple roadside LiDAR and camera

sensors are fused and processed together for the detection

task. Our automatic calibration of infrastructure LiDARs and

cameras, which outputs the precise pose of these sensors, is the

most fundamental part of the framework. In order to calibrate

the sensors in the real world, we propose an automatic target-

less LiDAR-camera calibration model. We use the calibration

method proposed in [14] as a baseline and extend it to

outdoor scenes captured by infrastructure roadside sensors of

a different manufacturer. To improve the robustness of the

model under different external conditions, such as different

scene complexities, lighting conditions, or sensor conditions,

we introduce various automatic preprocessing submodules (see

Figure 3).

First, we undistort the input images. After that, an automatic

background cropping (based on monocular depth estimation

[15]) is employed to remove the background objects. If there is

shadow on the ground, the automatic shadow filtering module

will be activated to filter the shadow. After the preprocessing,

the Canny edge detector [16] is adopted to extract 2D edges

in images.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 02,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

Input Image

Undistortion

Background Filtering

and Cropping

Shadow

Filtering (in grey scale)

Registration

Processed Point Cloud

Dimension Reduction

and Cropping

Scattering Adaptive Voxelization

Initial Extrinsic and

Intrinsic

Optimization and

Projection

Image Preprocessing and Edge Extraction

Outlier Removal

Upsampling

Point Cloud Preprocessing and Edge Extraction

Random Offset

Calibration

Input Point Cloud

Canny Edge Detection

Voxel Building and

Edge Extraction

Voxel Building and

Edge Extraction

Correspondence Building

Edge Pairs

Calibration Result

Fig. 3: Automatic calibration pipeline. We integrate four

camera image and seven LiDAR point cloud preprocessing

modules into our pipeline in order to increase the robustness

of real-world outdoor calibration of roadside sensors. The

algorithm takes the image and point cloud that is published

continuously on the live system as input and outputs both, the

calibration results and qualitative projections of point clouds

into camera images.

For LiDAR preprocessing, point clouds from three LiDARs

are registered to the target LiDAR. The input point cloud is

cropped and only four dimensions are preserved (x,y,z and

intensity). Scattering is applied to increase the density of

single frame point cloud scans. Afterwards, the point cloud

is automatically subdivided into ground and non-ground point

clouds. Outlier removal is applied to the ground point cloud to

filter the noise in order to preserve more points of the gantry

bridge. We also use point upsampling [17] to improve the

surface texture of point clouds. After the preprocessing, voxels

are extracted from the point clouds. For faster extraction,

adaptive voxelization [18] is introduced. RANSAC plane fitting

is applied to extract planes within the voxel. The intersections

among planes are extracted as LiDAR edge clouds.

After the edges are extracted from the point cloud, they are

projected into the image and correspondences between LiDAR

and camera edges are established. A cost based on maximum

likelihood estimate is optimized and the qualitative result

is generated. Our automatic calibration model demonstrates

good robustness against different weather conditions and traffic

scenarios in the intersection and provides accurate extrinsic

calibration values for the perception framework.

V. MONOCULAR 3D OBJECT DETECTION

Due to their low cost and high output information density,

monocular RGB cameras are incorporated as sensors into the

InfraDet3D architecture. The monocular detection pipeline is

based on an augmented L-Shape-Fitting algorithm as pro-

posed by [19]. The basic L-Shape-Fitting algorithm has also

been used in other recent roadside infrastructure perception

architectures, such as the detector for the MONA dataset

[20] and the Cooperative Vehicle Infrastructure System 3D

detector [8]. However, the augmentation of this algorithm with

object tracking, to score yaw hypotheses based on historical

plausibility, is novel. Furthermore, we propose the integration

of the High-Definition (HD) map to limit yaw hypotheses

with regard to matching lanes. Both features are inspired by

TrafficNet [21] and UrbanNet [22] architectures. An overview

of the full monocular detection pipeline is given in Figure 4.

A. From 2D Instance Masks to 3D Bottom Contours

We use the YOLOv7 Instance Segmentation model [23]

on RGB camera frames. The RGB frames are downscaled to

1280x720 pixels size, to accelerate the instance segmentation

runtime. The instance masks, which are output from the

model, are processed to extract the bottom image contour

from the masks. The 2D bottom contour coordinates for each

mask are then projected from screen-space to 3D intersection

space via raycasting. Finally, the DBSCAN (Density-Based

Spatial Clustering of Applications with Noise) [24] algorithm

is applied to denoise each detection’s 3D bottom outline.

B. HD Map Yaw Candidate Lookup

Using lane geometry from an HD map of the sensor-

covered areas, each lane’s road surface is rasterized into

a heading lookup grid, covering the field of view of the

respective camera. The heading lookup grids are rendered to

a resolution of 10x10 cm grid cells. Each grid cell Cij is a

set {(lane idk, θk)}
k≤Nij

k=0
of lane ID and heading pairs which

apply to the respective cell. The heading for a lane at the

position of the grid cell is interpolated from the direction

of the surrounding lane borders. At inference time, for each

3D bottom contour point of a detected object, the grids

are queried to compute a set L = {(lane idi, θi)}
i≤N
i=0

of

possible heading values along the bottom contour. This set

is aggregated into a histogram with hit counts and average

heading angle per lane ID. The hit counts for each lane ID

are normalized into confidence values in the range of [0, 1]
through division over the maximum hit count value. This

yields one Hj = {(lane idi, θi, confidencei)}
i<M
i=0

three-tuple-

set of possible heading values for each instance j.

C. Augmented L-Shape-Fitting

The L-Shape-Fitting (LSF) algorithm searches for a

rectangle that fits a specific bottom contour by maximizing a

score value1, which is calculated as a function of a rectangle

yaw (θ) hypothesis and the 3D bottom contour points. In the

basic form, the algorithm simply goes through several θ values

from the range [0, π] at fixed increments. In our augmented

version of the algorithm, we only run LSF for θ values as

present in the HD map lookup histogram for each 3D bottom

contour. Furthermore, we multiply the calculated score value

for each yaw hypothesis with the respective confidence value

from the normalized map lookup histogram. Finally, the score

is also multiplied with a historical plausibility factor. The

calculation of this factor is explained in the following.

Using a screen-space SORT tracker [25], we match a

detected object’s bounding box to detections from previous

1Such as negative average variance

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 02,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

Tracked ObjectsFrame at Time t

Instance Mask n

Map- and Tracking-Guided L-Shape Fitting (LSF)

RGB Image
YOLOv7 Instance Segmentation

Bottom Contour Extraction and 3D Projection

Iterative Height and Position Refinement

Yaw Option Scoring: S(?, map_confidence, bottom_contour, bbox_2d)

Yaw Option Histogram

Match 2D BB to tracked objects via SORT

3D Bottom Contour

2D Mask Bounding Box

Category

Outlier Filtering

Detected 3D Object Publish detected object

HD Map

Heading Lookup Grid

Fig. 4: Monocular 3D object detection pipeline, grounding shape hypotheses via tracking and the HD map.

frames. For a successfully matched detection, historical 3D

position values L = {⃗lt−1, . . . , l⃗t−T } are retrieved. Given

the historical positions L and a position hypothesis l⃗t(θt),
the historical plausibility score HP for a yaw hypothesis θt
is calculated as in the following equation:

HP =

δt≤T∏

δt=1

π/2−∆∠(|θt − atan2(⃗lt(θt)− l⃗t−δt)| mod π)

The Delta-Angle function ∆∠ : [0, π) → [0, π/2) converts

the passed raw angular difference, which is already less than

π, into a value less than π/2 by returning angular deltas

δ>π/2 larger than π/2 as π − δ>π/2. This ensures that a

yaw hypothesis, which is parallel, yet opposed to a historical

orientation, is not erroneously punished. In practice, we have

implemented a threshold of six historical positions that are

evaluated to determine the plausibility of a yaw hypothesis.

D. Height Estimation and Dimension Filtering

The height for each detection is initialized from a fixed

value for the object type of the detection. Both the height and

the location are then jointly optimized through binary search,

until the estimated projected 2D object height and the original

mask height are the same by ϵ < 1px. The length and width

values, as estimated by the L-Shape-Fitting algorithm for each

3D bottom contour, are limited to minimum and maximum

values, which are also looked up per object category.

VI. LIDAR 3D OBJECT DETECTION

A. Unsupervised 3D Object Detection

LiDAR sensors are a popular choice for roadside object

detection as they provide accurate 3D information in a large

field of view and are lighting invariant. Studies on roadside

LiDAR object detection favor traditional approaches based

on clustering. Before clustering an extracted foreground point

cloud into individual objects, these studies discard the ground,

walls, trees, and other background artifacts from the raw

point cloud. To discard the irrelevant background, our first

3D LiDAR object detector uses a fast four step procedure.

First, the detector crops a predefined region of interest, which

always remains the same as the LiDAR sensor is installed

statically on roadside infrastructure. This first step removes

69.9% of points on average. Second, the detector finds points

belonging to the ground by considering the Euclidean distance

to a predefined plane model together with a threshold of 0.2m.

Third, the detector filters background artifacts within the

region of interest based on the coarse-fine triangle algorithm

[26]. The fourth step is radius outlier removal (n = 15,

r = 0.8), which refines the extraction of the foreground point

cloud. The remaining foreground point cloud represents all

traffic objects, including stationary ones. It is divided into

distinct point clusters, each corresponding to a potential road

user, by DBSCAN (ϵ = 0.8, nmin = 3). Around each point

cluster, the detector fits an oriented 3D bounding box using

its convex hull and principal component analysis. Finally, the

detector classifies the localized objects by means of object

dimensions and point density.

B. Supervised 3D Object Detection

For the data-driven approach, we are using PointPillars [27]

which runs with a fast inference rate of 38 FPS. In comparison

to the unsupervised approach, we can input the registered

point cloud (262k points) directly into the model, consisting of

three modules. In the first step the PillarFeatureNet converts

the point cloud into a sparse pseudo-image. After obtaining

the pseudo-image, the 2D backbone produces features at a

small spatial resolution. Theses features are then upsampled

and concatenated. In the last step, an anchor-based detection

head tries to match the bounding boxes to the ground truth.

We used the PointPillars implementation of OpenPCDet

[28] and adapted it to our A9 intersection dataset. For training,

we limited the point cloud range from −64m to 64m in x-y

direction and from −8m to 0m in z direction. In the feature

extraction step, we set the voxel size to [0.16, 0.16, 0.8]. The

model was trained on 10 classes for 160 epochs and optimized

using Adam with a learning rate of α = 0.003, weight decay

of 0.01 and cyclic momentum of β = 0.9.

VII. MULTI-MODAL 3D OBJECT DETECTION

For the fusion of both modalities (LiDAR and camera

detections) a late fusion technique is applied (see Fig. 5).

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 02,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Multi-modal 3D object detection pipeline. We apply a

camera field-of-view filtering for all detections.

A. Data Association

A widely adopted method for combining and matching

sensor data at the later stage is through data association, also

defined as the linear assignment problem (LAP). It finds a

one-to-one mapping between two sets of elements, such that

the sum of the assigned pairwise costs is minimized.

The Jonker-Volgenant algorithm [29] is a method for solving

the LAP and is based on augmenting paths. The algorithm

starts by finding an initial feasible solution, e.g. by using

the Hungarian algorithm [30]. Then, it repeatedly searches

for an augmenting path, a path of alternating unmatched

and matched elements that starts and ends at an unmatched

element, and increases the number of assigned elements by

one. The algorithm stops when no augmenting path can be

found - the solution is optimal.

The modified Jonker-Volgenant algorithm [31] is a variation

of the original one that improves its performance by using a

heuristic search strategy. The heuristic builds on the idea of

prioritizing the search for augmenting paths that are expected

to have a high gain in terms of reducing the total cost.

In this work, the modified Jonker-Volgenant algorithm is

chosen due to its increased speed (O(n3) [31]) in comparison

to its variants. It also works well with non-integer costs. In

our case, the matching process took 0.008 ms on average per

frame on the test set on a AMD Ryzen 5800X 8-Core CPU

with an average number of 14.55 objects per frame.

B. Early Fusion of LiDAR Sensors

Our first fusion module combines multiple point cloud scans

from different LiDAR sensors at time step t into a single dense

point cloud. We preprocess the point clouds, as described

in [5]. First, we downsample the point cloud and estimate

point normals. Then, we compute a 33-dimensional FPFH2

feature vector [32] for each point. This feature describes the

local geometric property of each 3D point. Afterwards, we

register several point clouds from roadside LiDARs that are

time-synchronized with an NTP time server. The point cloud

registration algorithm makes use of Fast Global Registration

2Fast point feature histogram

[1] to provide an initial transformation. For the refinement of

the transformation, we use point-to-point ICP [33] as it leads

to a lower RMSE value (0.448 m) than point-to-plane ICP.

The full registration pipeline of two Ouster OS1-64 LiDARs

takes 18.36 ms (54 FPS) on an Intel Core i7-9750H CPU and

a voxel size of 2m.

C. Late Fusion of LiDAR Sensors

For the LiDAR-to-LiDAR late fusion, we operate in LiDAR

coordinate space. We transform the detections obtained by

the unsupervised LiDAR detector and the supervised LiDAR

detector into a common coordinate system. We match de-

tections based on a distance of 3m between their central

positions. Matched detections are merged by selecting the

central position and yaw vector of the detected object from

the LiDAR sensor closest to the detection. Dimensions of

the merged detections are computed by calculating the mean

average of the detections from both detectors. Additionally,

all unmatched detections are also included in the final result,

resulting in an increase of 12.93% in the number of detections

compared to using only a single LiDAR sensor.

D. Camera-LiDAR Late Fusion

For the camera-LiDAR fusion, we transform the LiDAR

detections into the base coordinate system of the gantry

bridge, which serves as the coordinate system for obtaining

the monocular detections. This step is crucial for computing

the inter-detection distances between camera and LiDAR

instances based on their respective center positions. After the

linear sum assignment, the matched detections are further

filtered by a distance threshold of 3m. The attributes of

the matched detections are merged by eliminating matched

camera detections and retaining only matched LiDAR

detections, as they demonstrate greater accuracy on average

during evaluation. The integration of the HD map leads to a

substantial improvement (see Table III) in the camera yaw

result, however it remains inferior to the results obtained

from LiDAR. Table II displays the dependence of the mAP

increase on the various attributes.

VIII. EVALUATION

A. Monocular Perception - L-Shape-Fitting Augmentations

To determine the impact of the aforementioned augmenta-

tions on the quality of the 3D pose estimation, we evaluated

the L-Shape-Fitting algorithm in several configurations on the

categories (Car, Bus, Truck, Motorcycle) of the A9 infrastruc-

ture dataset. The ablation study results of the L-Shape-Fitting

augmentation evaluations are presented in Table III.

The ablation study confirms that tracking and historical

plausibility alone are not useful to improve over basic L-

Shape-Fitting. With the addition of the HD map, however,

the risk that an earlier bad yaw choice propagates into the

future is greatly reduced, and the historical plausibility further

increases the gain in mAP from +2.7 to +5.64.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 02,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

Model Modality Fusion Level Dataset Precision Recall mAP3D

MonoDet3D (Ours) Image south1 - A9-I south1 48.12 59.23 49.01

Image south2 - A9-I south2 27.84 29.11 26.33

Image south1+south2 LF A9-I full 37.98 44.17 37.67

LidarDet3D (Ours) Point Cloud S+N EF A9-I full 8.40 6.32 8.13

Point Cloud S+N LF A9-I full 6.34 5.43 6.10

PointPillars* [27] Point Cloud N - A9-I south1 56.66 57.44 56.10

Point Cloud N - A9-I south2 20.96 31.79 20.62

Point Cloud S - A9-I south2 36.32 48.93 35.75

Point Cloud S - A9-I south1 35.37 50.01 34.81

Point Cloud S+N EF A9-I full 62.85 51.22 62.11

Point Cloud S+N LF A9-I full 46.97 51.23 46.10

InfraDet3D (Ours): Image south1 + Point Cloud S+N LF of (Image + Point Cloud EF) A9-I south1 68.83 74.89 (+12.38) 68.48

MonoDet3D + PointPillars Image south2 + Point Cloud S+N LF of (Image + Point Cloud EF) A9-I south2 33.52 44.57 (-2.54) 33.21

Image (south1+south2) + Point Cloud S+N LF of (Image LF + Point Cloud LF) A9-I full 38.93 49.94 38.58

Image (south1+south2) + Point Cloud S+N LF of (Image LF + Point Cloud EF) A9-I full 39.28 48.12 38.86

TABLE I: Evaluation results on the A9-I intersection test set (N=North, S=South, EF=Early Fusion, LF=Late Fusion).

We report the mAP3D@0.1 results for the following six classes: Car, Truck, Bus, Motorcycle, Pedestrian, Bicycle. * PointPillars

inference score threshold is set to 0.3.

TABLE II: Ablation study for matched camera-LiDAR de-

tections calculated for south1 camera using early and late

fusion. Taking LiDAR detection attributes leads to mAP3D

score improvements in all cases.

Fused Attribute Improvement in mAP3D

Center position +2.96
Yaw +0.16
Dimensions +1.65
Category +13.10

Total improvement +17.87

TABLE III: Ablation study of L-Shape-Fitting (LSF) augmen-

tations on the vehicle category superset of the A9-I dataset.

Configuration mAP3D IoU3D

Basic L-Shape-Fitting (LSF) 62.01 0.29

LSF with HD map yaw confidence 64.71 0.43

LSF with hist. plausibility via SORT tracking 48.42 0.31

LSF with both augmentations 67.65 0.44

B. Monocular 3D Perception - Performance Considerations

As presented, the monocular 3D object detection pipeline

achieves a throughput of 22 FPS in our test bench setup using

an RTX 2080S GPU with 1280x720 24-bit RGB input frames.

This is limited by the performance of the YOLOv7 instance

segmentation inference time. At 640x480 resolution, the frame

rate increases to 66 FPS using TensorRT.

C. LiDAR 3D Perception - Runtime Evaluation

Our unsupervised 3D detector achieves a processing speed

of 47 FPS as Table IV demonstrates.

Table V shows the runtime of PointPillars on the A9-I

dataset.

D. Quantitative Results

All four object detection modules were evaluated on the

A9-I south1, south2 and full intersection test set (see Table

TABLE IV: Runtime evaluation of detector modules on the

A9-I test set. All modules are implemented in Python 3.8 and

run on a 2.9 GHz dual-core Intel Core i5 CPU.

Module ∅ Runtime in ms

Region of Interest Selection 4.05

Ground Segmentation 0.83

Background Filtering 1.05

Outlier Removal 4.82

Clustering 8.00

Bounding Box Fitting 2.15

Classification 0.18

Total runtime 21.08 (47 FPS)

TABLE V: Runtime evaluation of PointPillars on the A9

intersection dataset with a single and registered point clouds.

Tested in Python 3.8 and run on a NVIDIA RTX 4090.

Point cloud type ∅ Runtime in ms FPS

Single LiDAR point cloud 23.84 42

Registered point cloud 26.11 38

I). The performance on the south1 sub set is 80% higher on

average because of better lighting conditions and 2.5x less

occlusions. PointPillars performs much better on the test set

compared to LidarDet3D since it was trained on the A9-I

dataset. The south LiDAR has 2.74x more overlapping with

the south2 camera which leads to higher mAP value (+15.13),

compared to the north LiDAR. Using registered point clouds

(early fusion) we achieve the highest results (68.48 mAP) with

our InfraDet3D fusion model on the A9-I south1 test set by

fusing the camera and LiDAR detections on a late fusion level.

Table VI demonstrates that among all classes, the Bus class

exhibits the highest average precision in terms of detection

accuracy since it is covered well by all LiDARs.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 02,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

a) b) c) d) e)

Fig. 6: Qualitative results for south1 camera (first and second row) and south2 camera (third and fourth row). We show the

perception results during day time (first and third row) and night time (second and fourth row). The detections are colored

by their class color. Column four shows the fusion results in the following colors: green (unmatched camera detections), blue

(unmatched LiDAR detections) and red (fused detections). From left to right: a) Instance segmentation, b) MonoDet3D, c)

PointPillars, d) InfraDet3D, e) Visualization of the fused perception results in CARLA (using early and late fusion).

Class Car Truck Motorcycle Bus Pedestrian Bicycle

Precision 71.75 91.20 82.72 99.93 31.37 36.02
Recall 87.33 85.03 70.71 100.00 25.49 80.77

AP 71.64 91.03 82.37 99.93 30.00 35.93

TABLE VI: Average Precision (AP) results across classes in

the A9-I dataset of the best performing InfraDet3D model.

E. Qualitative Results

The qualitative results are shown in Figure 6. Note that even

objects outside of the sensor’s field-of-view, like the black

car in the first row, can be detected by fusing camera and

LiDAR detections. The final perception results are visualized

in the CARLA simulation environment, that contains a full

reconstruction of the A9 Test Stretch.

IX. CONCLUSION

InfraDet3D is a novel perception architecture that increases

situation awareness and range of traditional single-sensor

systems by combining data from multiple sensors distributed

on a 20m long infrastructure gantry bridge. We show that our

multi-modal perception framework, fusing multiple roadside

LiDARs and cameras, is able to achieve better results (+1.62
mAP) than object detectors using only the camera input.

The distributed sensors combine their perception results and

allow to detect partially and even fully occluded objects.

Our solution is deployed on high performance edge units

and is very cost-effective, since it is distributed among the

CPU (calibration, unsupervised point cloud detection, fusion)

and the GPU (instance segmentation, supervised detection in

point clouds). Future trends and challenges include a better

perception in adverse weather conditions such as heavy rain,

snow, and fog. These conditions reduce the range, reflection

intensity, resolution of point clouds, increase the noise, and

produce outliers. In [34] and [35], a method to filter snow

points is proposed that will be incorporated in the future.

A point cloud compression module will be integrated for

real-time communication and data sharing between RSUs and

vehicles. In the future, we plan to extend our framework into

a deep fusion architecture. Finally, our goal is to evaluate our

models on other infrastructure roadside datasets like DAIR-

V2X-I [36], Rope3D [37], LUMPI [38], and IPS300+ [39].

We will also label more roadside sensor data and apply few-

shot and active learning [40] to deal with small datasets

and limited information. To improve domain adaptation, we

will adapt our solution to other roadside LiDAR sensors and

different domains (ODDs) to achieve a domain-invariant data

representation.

ACKNOWLEDGMENT

This research was supported by the Federal Ministry of

Education and Research in Germany within the project AU-

TOtech.agil, Grant Number: 01IS22088U. We thank Christian

Creß, Venkatnarayanan Lakshminarasimhan, and Leah Strand

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 02,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

for the collective work on the A9 infrastructure system.

Moreover, we thank 3D Mapping Solutions for providing the

HD map.

REFERENCES

[1] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in Com-

puter Vision–ECCV 2016: 14th European Conference, Amsterdam, The

Netherlands, October 11-14, 2016, Proceedings, Part II 14. Springer,
2016, pp. 766–782.

[2] A. Krämmer, C. Schöller, D. Gulati, V. Lakshminarasimhan, F. Kurz,
D. Rosenbaum, C. Lenz, and A. Knoll, “Providentia-a large-scale sensor
system for the assistance of autonomous vehicles and its evaluation,”
Journal of Field Robotics, pp. 1156–1176, 2022.

[3] C. Creß and A. Knoll, “Intelligent transportation systems using external
infrastructure: A literature survey,” arXiv preprint, 2021.

[4] W. Zimmer, E. Ercelik, X. Zhou, X. J. D. Ortiz, and A. Knoll, “A survey
of robust 3d object detection methods in point clouds,” arXiv preprint

arXiv:2204.00106, 2022.

[5] W. Zimmer, J. Wu, X. Zhou, and A. C. Knoll, “Real-time and robust 3d
object detection with roadside lidars,” arXiv preprint arXiv:2207.05200,
2022.

[6] W. Zimmer, M. Grabler, and A. Knoll, “Real-time and robust 3d
object detection within road-side lidars using domain adaptation,” arXiv

preprint arXiv:2204.00132, 2022.

[7] Z. Gong, Z. Wang, B. Zhou, W. Liu, and P. Liu, “Pedestrian detection
method based on roadside light detection and ranging,” SAE Interna-

tional Journal of Connected and Automated Vehicles, vol. 4, no. 12-04-
04-0031, pp. 413–422, 2021.

[8] E. Guo, Z. Chen, S. Rahardja, and J. Yang, “3d detection and pose
estimation of vehicle in cooperative vehicle infrastructure system,” IEEE

Sensors Journal, vol. 21, no. 19, pp. 21 759–21 771, 2021.

[9] Z. Bai, G. Wu, X. Qi, Y. Liu, K. Oguchi, and M. J. Barth, “Cyber
mobility mirror for enabling cooperative driving automation in mixed
traffic: A co-simulation platform,” IEEE Intelligent Transportation Sys-

tems Magazine, pp. 2–15, 2022.

[10] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international

conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[11] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[12] C. Creß, W. Zimmer, L. Strand, M. Fortkord, S. Dai, V. Lakshmi-
narasimhan, and A. Knoll, “A9-dataset: Multi-sensor infrastructure-
based dataset for mobility research,” in 2022 IEEE Intelligent Vehicles

Symposium (IV), 2022, pp. 965–970.

[13] W. Zimmer, A. Rangesh, and M. Trivedi, “3d bat: A semi-automatic,
web-based 3d annotation toolbox for full-surround, multi-modal data
streams,” in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2019, pp. 1816–1821.

[14] Y. Chongjian, X. Liu, X. Hong, and F. Zhang, “Pixel-level extrinsic
self calibration of high resolution lidar and camera in targetless envi-
ronments,” IEEE Robotics and Automation Letters, vol. PP, pp. 1–1, 07
2021.

[15] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun,
“Towards robust monocular depth estimation: Mixing datasets for
zero-shot cross-dataset transfer,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 44, no. 3, pp. 1623–1637, 2022. [Online]. Available:
https://doi.org/10.1109/TPAMI.2020.3019967

[16] J. Canny, “A computational approach to edge detection,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679–698, 1986.

[17] Daniel, “Point cloud upsampling,” visited on 13/1/2022. [Online].
Available: https://github.com/danielTobon43/upsamplingCloudPCL

[18] X. Liu, C. Yuan, and F. Zhang, “Targetless extrinsic calibration of
multiple small fov lidars and cameras using adaptive voxelization,” IEEE

Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12,
2022.

[19] X. Zhang, W. Xu, C. Dong, and J. M. Dolan, “Efficient l-shape fitting
for vehicle detection using laser scanners,” in 2017 IEEE Intelligent

Vehicles Symposium (IV). IEEE, 2017, pp. 54–59.

[20] L. Gressenbuch, K. Esterle, T. Kessler, and M. Althoff, “Mona: The mu-
nich motion dataset of natural driving,” in 2022 IEEE 25th International

Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022,
pp. 2093–2100.

[21] M. Rezaei, M. Azarmi, and F. M. P. Mir, “Traffic-net: 3d traffic
monitoring using a single camera,” arXiv preprint arXiv:2109.09165,
2021.

[22] J. Carrillo and S. Waslander, “Urbannet: Leveraging urban maps for
long range 3d object detection,” in 2021 IEEE International Intelligent

Transportation Systems Conference (ITSC). IEEE, 2021, pp. 3799–
3806.

[23] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
arXiv preprint arXiv:2207.02696, 2022.

[24] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan
revisited, revisited: why and how you should (still) use dbscan,” ACM

Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21,
2017.

[25] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE international conference on image

processing (ICIP). IEEE, 2016, pp. 3464–3468.
[26] T. Zhang and P. J. Jin, “Roadside LiDAR vehicle detection and

tracking using range and intensity background subtraction,” Journal

of Advanced Transportation, vol. 2022, pp. 1–14, apr 2022. [Online].
Available: https://doi.org/10.1155%2F2022%2F2771085

[27] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, 2019, pp. 12 697–12 705.
[28] O. D. Team, “Openpcdet: An open-source toolbox for 3d object detection

from point clouds,” https://github.com/open-mmlab/OpenPCDet, 2020.
[29] R. Jonker and T. Volgenant, “A shortest augmenting path algorithm

for dense and sparse linear assignment problems,” in DGOR/NSOR:

Papers of the 16th Annual Meeting of DGOR in Cooperation with

NSOR/Vorträge der 16. Jahrestagung der DGOR zusammen mit der

NSOR. Springer, 1988, pp. 622–622.
[30] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
[31] D. F. Crouse, “On implementing 2d rectangular assignment algorithms,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 4,
pp. 1679–1696, 2016.

[32] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in 2009 IEEE international conference on

robotics and automation. IEEE, 2009, pp. 3212–3217.
[33] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”

in Sensor fusion IV: control paradigms and data structures, vol. 1611.
Spie, 1992, pp. 586–606.

[34] M.-H. Le, C.-H. Cheng, D.-G. Liu, and T.-T. Nguyen, “An adaptive
group of density outlier removal filter: Snow particle removal from lidar
data,” Electronics, vol. 11, no. 19, p. 2993, 2022.

[35] J.-I. Park, J. Park, and K.-S. Kim, “Fast and accurate desnowing
algorithm for lidar point clouds,” IEEE Access, vol. 8, pp. 160 202–
160 212, 2020.

[36] H. Yu, Y. Luo, M. Shu, Y. Huo, Z. Yang, Y. Shi, Z. Guo, H. Li,
X. Hu, J. Yuan et al., “Dair-v2x: A large-scale dataset for vehicle-
infrastructure cooperative 3d object detection,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 21 361–21 370.

[37] X. Ye, M. Shu, H. Li, Y. Shi, Y. Li, G. Wang, X. Tan, and E. Ding,
“Rope3d: The roadside perception dataset for autonomous driving and
monocular 3d object detection task,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp.
21 341–21 350.

[38] S. Busch, C. Koetsier, J. Axmann, and C. Brenner, “Lumpi: The
leibniz university multi-perspective intersection dataset,” in 2022 IEEE

Intelligent Vehicles Symposium (IV). IEEE, 2022, pp. 1127–1134.
[39] H. Wang, X. Zhang, Z. Li, J. Li, K. Wang, Z. Lei, and R. Haibing,

“Ips300+: a challenging multi-modal data sets for intersection perception
system,” in 2022 International Conference on Robotics and Automation

(ICRA). IEEE, 2022, pp. 2539–2545.
[40] A. Hekimoglu, M. Schmidt, A. Marcos-Ramiro, and G. Rigoll, “Efficient

active learning strategies for monocular 3d object detection,” in 2022

IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 295–302.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 02,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

