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Abstract

Perfusion CT (CTP) imaging is crucial in acute ischemic stroke for assessing brain
tissue viability and guiding reperfusion treatments. Deconvolution algorithms enable
the quantification of brain perfusion status and the identification of the salvageable
penumbra and the irreversibly damaged core. However, the accuracy of deconvolution
algorithms heavily relies on the selection of two input parameters: the arterial input
function (AIF) and the venous output function. Therefore, their precise selection
is crucial to ensure the accurate quantification of perfusion metrics and reliable
treatment decision-making. This thesis investigates the characterization of vascular
functions in acute ischemic stroke using data-driven machine-learning models. Three
research questions (Q1, Q2, Q3 ) are addressed. Firstly, Q1 challenges the concept
of the “optimal” AIF in perfusion imaging and leverages machine-learning methods
to identify it. A differentiable deconvolution algorithm is integrated within a deep-
learning framework, enabling the estimation of perfusion biomarkers during training
stages and, therefore, enhancing the learning process. The proposed model shows
superior performance compared to manually or clinically selected AIFs in core tissue
segmentation. Secondly, Q2 targets the development of machine-learning models
that can select vascular functions from clinical and real-world CTP scans. A novel
approach called AIFNet is introduced, utilizing convolutional neural networks to
accurately identify vascular functions from clinical CTP scans. The method is
end-to-end trainable and can be easily fit using sparse annotations. Furthermore,
AIFNet achieves comparable performance to experts in selecting vascular functions
across various CTP data and quality scenarios. Lastly, Q3 aims to devise machine-
learning models that use information from vascular functions to detect unreliable
CTP scans affected by truncation artifacts. The method outperforms the suggested
baseline, which solely relies on the scan duration, improving the interpretability of
CTP analysis and enabling neurointerventionalists to make safer and more reliable
treatment decisions. In summary, this dissertation explores the selection, estimation,
and applicability of vascular functions in acute ischemic stroke, contributing to the
development of more robust and reliable CTP software packages.
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Zusammenfassung

Die CT-Perfusionsbildgebung (CTP) ist bei einem ischämischen Schlaganfall entschei-
dend, um die Viabilität des Hirngewebes zu beurteilen und Reperfusionsbehandlungen
anzuleiten. Dekonvolutionsalgorithmen ermöglichen die Quantifizierung des Hirnper-
fusionsstatus und die Identifizierung der Penumbra und des irreversibel beschädigten
Kerns. Die Genauigkeit der Dekonvolutionsalgorithmen ist jedoch erheblich von
der Auswahl zweier Eingangsparameter abhängig: der arteriellen Eingangsfunktion
(AIF) und der venösen Ausgangsfunktion. Die präzise Auswahl dieser Parameter ist
somit entscheidend, um die genaue Quantifizierung der Perfusionsmetrik und eine
zuverlässige Entscheidungsfindung für die Behandlung sicherzustellen. Diese These un-
tersucht die Charakterisierung vaskulärer Funktionen bei einem akuten ischämischen
Schlaganfall unter Verwendung datengestützter Maschinenlernmodelle. Es werden drei
Fragen (F1, F2, F3) adressiert. F1 hinterfragt zunächst das Konzept der

”
optimalen“

AIF in der Perfusionsbildgebung, und ermittelt dies mithilfe von Methoden aus dem
Bereich des maschinellen Lernens. Ein differenzierbarer Dekonvolutionsalgorithmus
ist in einen Deep-Learning-Framework integriert, um eine Echtzeit-Einschätzung von
Perfusions-Biomarkern zu ermöglichen, welche den Trainingsprozess verbessern. Die
vorgeschlagenen Modelle zeigen eine überlegene Leistung im Vergleich zu manuell
oder klinisch ausgewählten AIFs bei der Segmentierung von Kerngewebe. F2 visiert
daraufhin die Entwicklung von Maschinenlernmodellen an, die vaskuläre Funktionen
von klinischen und realen CTP-Scans selektieren können. Es wird ein neuartiger
Ansatz mit der Bezeichnung AIFNet vorgestellt, der gefaltete neuronale Netzwerke
für die genaue Identifizierung vaskulärer Funktionen von klinischen CTP-Scans nutzt.
Die Methode kann

”
Ende-zu-Ende“ trainiert werden und lässt sich mit wenigen

Ergänzungen ohne Weiteres anpassen. AIFNet erzielt überdies bei der Selektion
vaskulärer Funktionen im Rahmen verschiedener CTP-Daten und -Qualitätsszenarien
eine Leistung, die mit der von Sachverständigen vergleichbar ist. F3 widmet sich
schließlich der Gestaltung von Maschinenlernmodellen, die Informationen von vas-
kulären Funktionen nutzen, um unzuverlässige CTP-Scans zu detektieren, die von
Trunkationsartefakten beeinträchtigt sind. Die Methode übertrifft die Leistung der
vorgeschlagenen Baseline, die sich allein auf die Scandauer stützt, sodass die In-
terpretierbarkeit der CTP-Analyse verbessert wird und Fachkräfte im Bereich der
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Neurointervention sicherere und zuverlässigere Behandlungsentscheidungen treffen
können. Zusammenfassend erforscht diese Dissertation die Auswahl, Einschätzung und
Anwendbarkeit vaskulärer Funktionen bei einem akuten ischämischen Schlaganfall,
um zur Entwicklung robusterer und zuverlässigerer CTP-Softwarepakete beizutragen.
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INTRODUCTION
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Foreword

In recent years, the medical imaging field has witnessed remarkable advancements
through the integration of machine-learning techniques. These cutting-edge method-
ologies have revolutionized the analysis and interpretation of medical scans, leading
to improved diagnosis, treatment, and patient outcomes. Applications of these
techniques are diverse, targeting a wide range of anatomical regions, organs, and
pathologies. Machine-learning developments have significantly impacted most medical
imaging modalities used in healthcare centers.

Stroke remains a leading cause of mortality and morbidity worldwide, necessi-
tating urgent and accurate diagnosis for optimal treatment. Traditional methods
of interpreting stroke images heavily rely on the radiologist’s manual assessment,
interaction, and quality control, which are time-consuming, subjective, and prone
to errors. Machine-learning algorithms have introduced a new paradigm in stroke
imaging analysis, enabling automated, objective, and quantitative evaluation with
unprecedented precision.

Machine-learning techniques have shown exceptional capabilities for extracting
complex patterns and features from data, even under scenarios with high data vari-
ability. The characterization of data through these techniques is informative and rich,
leading to successful solutions for a wide range of tasks, including data classification,
regression, and segmentation. In the field of medical imaging, convolutional neural
networks (CNNs) have emerged as notable techniques, leveraging their hierarchical
feature learning and pattern recognition abilities. By training CNNs on large amounts
of medical data, researchers have achieved remarkable results on different tasks rel-
evant to the clinical stroke workflow. For example, stroke lesion segmentation has
been investigated in different imaging modalities such as MRI [34], non-contrast CT
[45], and perfusion CT [23], considering various phases of the pathology, including
acute [23, 45], sub-acute [34], and chronic [32]. Additionally, machine learning-based
prediction of clinical outcomes in acute ischemic stroke has been explored, aiding in
treatment decision-making and patient stratification [66].

During the acute stage of stroke, perfusion imaging plays a vital role in assessing
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1. Foreword

the perfusion status of brain tissue. This imaging technique enables the quantification
of perfusion biomarkers, which help estimate brain abnormalities. The primary
objective for neurointerventionalists is to determine the presence of salvageable brain
tissue and identify the appropriate treatment options for the patient.

In the literature, several computational methods, commonly known as “deconvo-
lution” models, are available to quantify the brain perfusion status. These techniques
rely on perfusion data parameters that serve as reference information to solve a
challenging and mathematically ill-posed problem. The two parameters of interest
are the arterial input function (AIF) and the vascular output function (VOF).

In this doctoral dissertation, I develop data-driven methodologies for studying,
selecting, and characterizing the AIF and VOF parameters. One might argue that,
given the widespread use of machine-learning in various tasks, applying these tech-
niques to the problem at hand should be a straightforward and quickly solvable task.
Unfortunately, this ideal scenario is far from reality for two main reasons. The first
reason is the inherent complexity and intricacy of the perfusion imaging modality
and the post-processing algorithms required to make the images interpretable. This
complexity arises from several factors, such as the 4D nature of the modality, the
significant image variability among scanners and protocols used in different healthcare
centers, and the diverse anatomical and physiological characteristics of patients’
brains, among others. The second reason that adds to the complexity of this problem
is the high sensitivity of deconvolution algorithms to variations in vascular functions.

Thesis organization

The thesis is organized into three sections, each divided into chapters. These sections
are:

• Section I: Introduction

• Section II: Contributions

• Section III: Concluding Remarks

Section I - Chapter 2 provides an overview of the clinical background of the
field under study, focusing on stroke as a neurovascular disorder and its associated
imaging techniques. In Section I - Chapter 3, I describe the machine-learning and
deep-learning techniques that serve as the foundations for the research experiments
conducted within this thesis.
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Section II: Contributions consists of two chapters. In Chapter 4, I present the
goals pursued within this thesis, including the research questions being addressed.
The most significant contributions of my work are discussed in this chapter. Chapter
5 includes the publications produced during this thesis, which are self-contained.

Section III: Concluding Remarks is divided into two chapters. In Chapter 6, I
discuss the results and outputs of this thesis, as well as their future perspectives and
ongoing challenges. In Chapter 7, I present the conclusions of this thesis.

Additionally, there is an Appendix (Part IV) that includes supplementary material
supporting the research publications of Chapter 5. The appendix also contains a
peer-reviewed conference publication that, while not directly related to the goals of
this thesis, contains findings of interest for the neuroimaging community.
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Background

Over thousands of years of evolution, our brain has developed a remarkable vascula-
ture that is finely tuned to maintain its health and functionality, allowing for optimal
functioning of the organ. The brain’s circulatory system is a complex structure
consisting of a vast network of arteries, veins, and capillaries. This network serves
to transport essential nutrients, such as glucose and oxygen to every corner of the
organ. One of the most interesting capabilities of this intricate system is its fail-safe
mechanism, which guarantees nutrient delivery even in scenarios where blood flow
may be compromised. In other words, nature has equipped our brains with a backup
plan in the form of collateral circulation. Collateral arteries act as alternative routes,
redirecting blood to affected brain areas and ensuring their continued nourishment.
Thanks to these biological, physiological, and anatomical adaptations, our brain has
become remarkably resilient and adaptive to a wide range of circumstances.

In this chapter, I will present a pathology that is highly skilled at sabotaging
the brain’s network vasculature goals by hindering the delivery of nutrients and
oxygen to the entire organ: ischemic stroke. The purpose of this chapter goes beyond
understanding the pathology itself and aims to describe how we can utilize medical
imaging technologies for optimal treatment decision-making. I will explore brain
perfusion imaging, the algorithms involved in handling these images, and finally, I
will demonstrate how we can estimate ischemic stroke lesions from these images.
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2. Background

2.1 Stroke

Stroke is a cerebrovascular event characterized by the sudden interruption or significant
reduction of blood flow to a specific brain region, resulting in insufficient supply of
oxygen and nutrients to the affected tissue. There are two types of stroke: hemorrhagic
and ischemic. Among these, ischemic stroke is the most prevalent, accounting for
87% of all stroke cases [63]. Ischemic strokes are generally caused by the blockage or
occlusion of a blood vessel within the brain, commonly caused by a thrombus (i.e.,
blood clot) or an embolus (dislodged clot or other material). The restricted blood flow
caused by the occlusion triggers a cascade of molecular and cellular events, including
major pathogenic mechanisms such as excitotoxicity, peri-infarct depolarizations,
inflammation, and programmed cell death [14]. As a result of these pathophysiological
conditions, brain tissue becomes compromised, ultimately leading to tissue death
(i.e., infarction).

At the cellular level, the ischemic cascade begins with a reduction in oxygen
and glucose supply, leading to a decrease in adenosine triphosphate production
and subsequent failure of energy-dependent cellular processes. The lack of energy
compromises neuronal function and triggers excitotoxicity, a process characterized by
the over-activation of glutamate receptors that leads to dendrite degeneration and
later cell death [36]. Excitotoxicity results in an excessive influx of calcium ions into
neurons, activating various enzymes that promote cell damage, including proteases
and lipases. These enzymes contribute to the breakdown of cellular components and
membrane damage, exacerbating oxidative stress and further cellular injury [14].

The underlying risk factors for acute ischemic stroke include high blood pressure,
diabetes, smoking, obesity, and high cholesterol [65]. These risk factors can contribute
to the development of vascular pathologies, such as atherosclerotic plaques or the
formation of blood clots, which can eventually obstruct cerebral arteries and trigger
an ischemic stroke event. Acute ischemic stroke affects approximately 700,000 people
per year and is among the leading causes of death and disability in the United States
[65]. According to [63], a person in the United States suffers a stroke attack, on
average, every 40 seconds.

2.1.1 Reperfusion Therapies

Thrombolysis and mechanical thrombectomy are medical interventions aimed at restor-
ing blood flow to the brain by removing or dissolving a blood clot that is obstructing
a brain vessel.
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2.1. Stroke

Thrombolysis, also known as intravenous thrombolysis or systemic thromboly-
sis, involves the administration of a medication as a thrombolytic agent, such as
tissue plasminogen activator (tPA or alteplase). The medication is typically given
intravenously within a few hours of the onset of stroke symptoms. Thrombolytic
agents work by breaking down the blood clot, promoting the restoration of blood
flow in the affected blood vessel. Besides alteplase, another prominent thrombolytic
drug is tenecteplase. According to the European Stroke Organization guidelines,
tenecteplase is preferred over alteplase when considering times from stroke onset less
than 4.5 hours and when the patient is eligible for mechanical thrombectomy [6]. It
is important to note that thrombolysis carries some risks, including an increased risk
of bleeding, and it may not be suitable for all patients, depending on several factors
such as the time from symptom onset and the patient’s age.

Mechanical thrombectomy, on the other hand, consists of an invasive procedure
in which a specialized catheter or stent retriever is used to physically remove the
blood clot from the occluded vessel. The catheter is typically introduced through
the patient’s groin or arm and placed in the occluded artery using X-ray imaging.
Typically, thrombectomy is reserved for patients with large vessel occlusions and can
be effective within a certain time window, usually up to 6 to 24 hours from symptom
onset under certain clinical conditions. Mechanical thrombectomy has been shown to
be a highly effective treatment and has significantly improved outcomes for eligible
patient populations [41, 1].

In previous attempts, a third method for acute ischemic stroke therapy involved
trying to hinder the progression of the ischemic cascade, referred to in the literature as
neuroprotection. Neuroprotection aims to protect against neuronal damage under dif-
ferent conditions. Although showing efficacy in experimental studies, neuroprotection
has proven to be unsuccessful in several clinical trials [71, 52].

2.1.2 Time is Brain

The concept of “time is brain” was introduced by Dr. Camilo Gomez in 1993 and
emphasizes the urgency of timely intervention in acute stroke. Early recognition of
stroke symptoms, rapid activation of emergency medical services, and prompt access
to specialized stroke care are essential to minimize brain damage, preserve neuronal
function, and improve patient prognosis.

In acute ischemic stroke, the rapid restoration of blood flow to the affected brain
region is crucial to limit the extent of ischemic damage and preserve neurological
function. Time plays a critical role in determining the eligibility and effectiveness
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2. Background

Figure 2.1: Time-dependent progression of the lesion. Green: hypoperfused (salvage-
able) tissue. Red: infarcted (irreversibly damaged) tissue. This image was generated
using a scan from ISLES’18 [9, 23].

of various treatment options, such as thrombolysis and mechanical thrombectomy.
The longer the wait for treating the patient, the larger the portion of irreversibly
damaged brain tissue. In other words, timely intervention in acute ischemic stroke is
the cornerstone for limiting neuronal damage in the hypoperfused ischemic penumbra
[21]. A pictorial visualization of time-dependent lesion progression is shown in Figure
2.1. It is worth mentioning that the rate of infarct progression is influenced by several
factors, such as the extent of collateral arterial circulation, duration of the insult, and
the functional and metabolic state of the cells [5]. All these factors collectively impact
the effectiveness of therapeutic interventions commonly used for acute ischemic stroke
[40].

Intravenous thrombolysis with tPA is a time-sensitive therapy used in the treatment
of acute ischemic stroke. Several clinical trials have demonstrated the benefits of
intravenous tPA when administered within a specific time window after symptom
onset and for certain patients [39, 60]. The European Stroke Organization (ESO)
guidelines consider the administration of alteplase under different scenarios, including
known or unknown time from stroke onset, as well as different brain imaging criteria.
A summary of these recommendations is shown in Table 2.1. It can be observed
that the success of thrombolysis treatment is time-dependent, and the benefit of
this reperfusion therapy diminishes over time [15]. Therefore, timely recognition of
stroke symptoms, prompt activation of the emergency response, and treatment of
the patient are crucial for increasing the chances of a better patient outcome and
reducing the potential disability resulting from the ischemic attack.

10



2.1. Stroke

Time from onset Imaging criteria Recommendation
Intravenous Thrombolysis (IVT)

0-4.5 hs plain CT IVT with alteplase

4.5-9 hs plain CT No IVT

4.5-9 hs
perfusion mismatch

(CT/MR)

IVT with alteplase
when thrombectomy

is not indicated or planned

Wake-up stroke /
unknown onset

DWI-FLAIR
mismatch (MR)

IVT with alteplase
when thrombectomy

is not indicated or planned

Mechanical thrombectomy (MT)

0-6 hs *
MT + BMM with anterior

circulation LVO

6-24 hs from
last known well

Fulfilling DAWN [41]
or DEFUSE-3 [1]

MT + BMM with anterior
circulation LVO

Table 2.1: ESO recommendations guidelines for thrombolysis and mechanical
thrombectomy treatment [6, 61]. BMM: Best medical management. LVO: Large
vessel occlusion. *Although not explicitly mentioned in the ESO guidelines [61],
ASPECTS (Alberta Stroke Program Early CT Score) scoring using plain CT has
been utilized in clinical trials [22].

Like thrombolysis, mechanical thrombectomy is also a time-sensitive intervention
used for large vessel occlusions in acute ischemic stroke. The DEFUSE-3 clinical trial
has demonstrated that the combination of endovascular thrombectomy and standard
medical therapy provided superior functional outcomes compared to standard medical
therapy alone when performed within 6 to 16 hours after the patient was last known
to be well [1]. The DAWN clinical trial extended the time window for thrombectomy
to 24 hours in patients who exhibited a mismatch between their clinical deficit and
infarct. It demonstrated that thrombectomy, when combined with standard care, led
to less disability at 90-day outcomes in comparison to standard care alone [41]. A
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summary of the ESO recommended time windows for the treatment of patients with
mechanical thrombectomy is shown in Table 2.1.

It is worth mentioning that the concept of “time is brain” extends beyond reper-
fusion therapies. Early assessment, diagnosis, and management of stroke, including
supportive care and secondary prevention measures, are also critical for optimal
outcomes. Rapid identification of stroke symptoms, initiation of stroke protocols,
and timely access to stroke expertise through telemedicine or regional stroke centers
contribute to reducing treatment delays and improving patient outcomes.

2.2 Imaging modalities in acute stroke

Imaging of the brain status in acute stroke is performed with computed tomography
(CT) and/or magnetic resonance imaging (MRI). Choosing one modality over the
other depends mostly on scanner availability and also on its affordability by the
country’s healthcare system. Considering this availability-affordability criterion, CT
is a more widespread modality than MRI in the clinical setting, and therefore, most
acute stroke research and clinical trials have preferred it over MRI. For the aims of
this thesis, imaging of acute stroke will be described in the context of CT. Nonetheless,
most of the concepts considered in this chapter completely (or at least partially)
translate to MRI. Please note that perfusion CT also possesses technical advantages
over perfusion MRI. Firstly, it is less susceptible to motion artifacts. Secondly, patient
eligibility is simplified as there is no need to check for metallic implants or gadolinium
allergies. Thirdly, perfusion CT benefits from a linear relationship between contrast
agent concentration and brain tissue attenuation, making perfusion measurements
easier to obtain. Perfusion MRI, instead, relies on a non-linear relationship between
the contrast agent concentration and the induced T2* effect. Consequently, perfusion
MRI requires heavier and more complex data preprocessing in order to convert the
measured signal intensities into contrast agent concentrations.

Imaging in acute ischemic stroke aims to answer, at least, the following four major
questions [27]:

1. Is there hemorrhage?

2. Is there a thrombus that can be targeted through reperfusion therapies?

3. Is there salvageable tissue (a.k.a. penumbra)?

4. Is there irreversibly damaged, infarcted tissue (a.k.a. core)?
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2.2. Imaging modalities in acute stroke

Figure 2.2: A commonly used acute stroke CT imaging workflow.

While the first question can be addressed through non-contrast-enhanced CT
(NCCT), insights about the second question can be obtained through CT angiography
(CTA). The last two questions, instead, can be answered through a single imaging
modality which is perfusion CT (CTP). Please note that the order in which the scans
are performed matters: under the presence of a hemorrhagic stroke, there is no longer
a need to answer questions 2-4, and as such, CTA and CTP could be avoided. Figure
2.2 shows the acute stroke imaging workflow in the clinical setting.

2.2.1 Perfusion imaging

The beginnings of perfusion imaging date back to the early 80s with experiments using
CT scanners by Leon Axel [4, 42]. At that time, CT scanners were technically much
more limited than current machines, particularly in terms of speed and anatomical
coverage. Despite these constraints, the experiments conducted by Axel and his team
were groundbreaking as they provided the first insights into hemodynamics at the
capillary level, significantly expanding the usage of CT machines. Within a short
period of time, these perfusion concepts were translated to MRI technology.

Perfusion imaging in acute stroke aims to quantify blood flow at the brain tissue
(capillary) level. Image acquisition is achieved through serial brain CT scanning
after intravenous administration of an iodinated contrast bolus. This contrast bolus
is intravenously injected into the patient over a period of 7-10 seconds, and image
acquisition is later continued for approximately 60-70 seconds. As a result, a temporal
sequence of 3D brain volumes is obtained, commonly referred to in the literature as
a (spatio-temporal) 4D imaging modality. Figure 2.3 shows the temporal perfusion
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Figure 2.3: Temporal perfusion profiles within an artery (AIF), a vein (VOF), a
healthy brain area, and a necrotic (core) tissue area.

profiles over different brain tissue areas, including an artery, a vein, a healthy brain
area, and a necrotic brain area.

Current guidelines for CTP acquisition in the context of acute ischemic stroke
recommend [10]:

i) Scan order: CTP after CTA (with a 60-second delay in between)

ii) Scan duration: 60-70 seconds, with 5-10 seconds of pre-contrast acquisition

iii) Contrast injection: 40 mL of contrast at 4-6 mL/s, followed by 40 mL of saline
at 4-6 mL/s

iv) Radiation dose: ≥ 300 mGy

v) Kilovoltage peak: 70-80 kV

vi) Brain coverage: at least 8 cm of z-axis coverage
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2.2. Imaging modalities in acute stroke

vii) Frame rate: 2 seconds or faster

2.2.2 Quantification of brain tissue status

Understanding whether a patient may benefit from recanalization techniques relies on
the imaging measurements of the core-penumbra volumetric mismatch. Therefore, it is
important to understand how the acquired CTP images help us answer this question.
It should be noted that the acquired CTP images can be extremely complex and
challenging to interpret radiologically due to the 4D nature of the imaging modality.
However, the main difficulty in analyzing these 4D images lies in the fact that they are
greatly influenced by patient-specific biological and physiological variables, as well as
by differences in the contrast injection protocols used in clinical routine. Well-known
variables that affect the measured time-attenuation curves include patient size and
cardiovascular system dynamics (such as cardiac output), which alter the contrast
delivery through the brain tissue [12]. Similarly, specific pathophysiological conditions
(e.g., patients with multiple intracranial emboli or intravascular narrowing [35]) may
prolong the delivery of the contrast agent in the brain. Therefore, it seems natural
to assume that removing the effect of these confounders would make the subsequent
image interpretation and quantification much easier.

To address the aforementioned issue, we can extract information about the blood
flow in the brain from the CTP data. To this end, we introduce the indicator dilution
equation, given by:

ctissue(t) = cart(t)⊛ h(t) (2.1)

where ctissue(t), cart(t), and h(t) represent the contrast increase in the tissue voxel under
consideration, the contrast increase measured in a large feeding artery (referred to as
the arterial input function or AIF), and the flow-scaled residue function, respectively.
The symbol ⊛ denotes the convolutional operator. The goal is, therefore, to estimate
perfusion markers that are unaffected or less influenced by confounding factors. In
this direction, a solution of the indicator dilution equation for h(t) can be found
through deconvolution methods. For the sake of simplicity, this thesis focuses on the
most investigated and widely implemented approach in clinical software packages
[62]: the delay-invariant Singular Value Decomposition (SVD) deconvolution. The
SVD-based deconvolution has been validated using experimental [38] and clinical data
[1, 41], and it can be considered, according to Fieselmann et al. [17], as the current
standard approach for perfusion image analysis. It is important for the reader to
note that the conclusions drawn in this thesis are applicable to other deconvolution
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2. Background

Figure 2.4: Perfusion parameter maps. The top row shows a healthy subject, while
the bottom row shows a subject with acute ischemic stroke. The red arrow indicates
abnormal perfusion areas in the pathological brain. The scans used to generate these
images belong to the ISLES’18 dataset [9, 23].

methods as well, albeit to some extent. Other deconvolution algorithms encompass
models assuming specific data distributions (e.g., exponential [30]), models based
on the fast Fourier transform [43, 20], or using maximum likelihood expectation
maximization [64], among others.

After image deconvolution, it is possible to quantify brain perfusion parameters
using a physical model. These parameters, commonly referred to as perfusion maps
or parameter maps, include cerebral blood flow (CBF), cerebral blood volume, mean
transit time (MTT), and time-to-maximum to the flow-scaled residue function (Tmax).

For example, CBF and Tmax can respectively be calculated as CBF = max(h(t)
ρ

and

Tmax = argmax(h(t), where ρ represents the mean density of the volume under
consideration [g/ml]. The mathematical derivation of these perfusion maps is beyond
the scope of this thesis; for more details, interested readers can refer to [17]. Other
parameter maps, such as time-to-peak (TTP), are directly measured from the time-
attenuation curves. Figure 2.4 shows an example of perfusion maps for a healthy
brain and a brain affected by acute ischemic stroke due to middle cerebral artery
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2.2. Imaging modalities in acute stroke

occlusion.

The implementation of the SVD deconvolution algorithm can be obtained by
first discretizing Eq. 2.1. In the experiments conducted in this thesis, the Volterra
discretization approach has been used, although different techniques can be used to
tackle the problem [57]. After discretization, deconvolution is performed using singular
value decomposition. It is important to mention that the problem at hand is ill-posed,
meaning that small variations in the input can lead to significant variations in the
deconvolution solution of the equation. This sensitivity to input perturbations can
be particularly influenced by image quality factors, such as the signal-to-noise ratio.
To address the challenges associated with ill-posedness, regularization techniques are
employed. These techniques play a crucial role in obtaining physiologically plausible
solutions by mitigating issues related to instability and noise amplification [17]. The
goal of regularization is to strike a balance between mathematical and physical
solutions, ultimately enhancing the robustness of perfusion estimation measurements
and ensuring that the results align with expected physiological behaviors. Examples
of regularization techniques include the Tikhonov approach and the generalized
cross-validation approach [17, 58].

2.2.3 The arterial input and the venous output functions

In this thesis, the term “vascular functions” refers to the arterial input and venous
output functions. These functions, particularly the arterial input function (AIF),
play a crucial role in deconvolution-based perfusion imaging. The positioning of the
AIF within the brain, along with its profile, explicitly shapes the flow-scaled residue
function described in Equation 2.1, thereby impacting the quantified perfusion maps
and, ultimately, the perfusion lesion volumes. Vascular functions are fundamental
to this doctoral dissertation, and I will now proceed to introduce them and describe
what they are, why they are important, and how they are used. The AIF is
the time-attenuation or contrast concentration curve within an arterial vessel that
supplies blood to the brain tissue. It is typically measured in large brain arteries
such as the internal carotid or middle cerebral arteries, as they are less prone to
partial volume effects. Given its significance in dilution theory and as one of the most
crucial input parameters for deconvolution algorithms, AIFs have been extensively
studied. Questions have been raised about from which location it should be estimated,
whether in the ipsilesional or contralesional brain hemisphere, and whether a single
global AIF or multiple local AIFs should be used [7]. To understand the need for
using the AIF in deconvolution models, it is important to explain why direct analysis
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of the time-attenuation curves is not feasible. The main reason is the presence of
confounding factors. As mentioned earlier in Section 2.2.2, the time-attenuation
curves measured by the scanner result from complex interactions of various variables,
including biological, physiological, and anatomical patient-specific conditions, as well
as the contrast injection protocols. In other words, the time-attenuation curves do
not reflect the true microvasculature information specific to the tissue. However,
measuring the contrast bolus entering the tissue under study (i.e., the AIF) allows us
to isolate the true and desired tissue microvasculature status through deconvolution.

Similar to the AIF, the venous output function (VOF) represents the time-
attenuation or bolus concentration curve within a large feeding vessel, which in
this case is a vein. Thus, unlike the AIF, the VOF represents the bolus concentration
leaving the brain tissue, its “output”. Figure 2.3 shows the arterial, venous, healthy
tissue, and necrotic tissue time-concentration curves. Note the ordered, sequential
timing of the events: the AIF (input to the tissue) reaches its maximum value first,
followed by the contrast arrival in the healthy tissue, the delayed contrast arrival in
the damaged tissue, and finally, the contrast reaching the vein, which functions as a
collector of the tissue’s blood. The VOF, like the AIF, is measured by selecting a
large vessel structure such as the superior sagittal sinus.

Up to this point, we have established similarities between the AIF and VOF in
terms of their shape, what they represent, and the appropriate vessel to measure them.
However, the most important difference between them is their relevance. The VOF
is a much less critical parameter than its arterial counterpart in the deconvolution
phase. The VOF is primarily used to rescale the perfusion metrics obtained through
deconvolution. The idea behind this is that large venous structures, like the sagittal
sinus, are usually wider (i.e. have larger diameters) than large arteries. As a result,
the X-ray attenuation measured in those voxels is less likely to include non-venous
structures, thereby reducing partial volume effects. In short, the VOF is used to
rescale the absolute values of cerebral blood flow (CBF). It is important to note
that in software packages where hypoperfused and core volumes are measured based
on Tmax and rCBF, the VOF has no influence on the measured volumes. Only in
software packages using absolute CBF or CBV values, the selection of the VOF may
lead to misleading estimates of perfusion lesions.
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2.2. Imaging modalities in acute stroke

Figure 2.5: Example of a perfusion CT report using the software package icobrain
cva. This image was generated using a scan from ISLES’18 [9, 23].

2.2.4 Quantification of stroke lesions

Once perfusion parameter maps have been obtained, we can address the key questions
of interest: How much of the brain is already infarcted, and how much can be saved
through reperfusion therapies? To answer these questions, this thesis follows the
conventional approach used in clinical practice: thresholding of the perfusion maps.

To determine the core and penumbra volumes, I will introduce a related but
slightly different volume of interest: the hypoperfused volume. This term refers to the
total brain tissue experiencing an ischemic stroke attack, regardless of its tissue status
(i.e., including both salvageable and irreversibly damaged tissue). In other words, the
hypoperfused volume is the combination of the core and penumbra volumes. Typically,
software packages used in clinical practice quantify the hypoperfused and core volumes,
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with the penumbra representing the mismatch between the two. It is important to
note that the perfusion mismatch volume (difference between the hypoperfused and
core volumes) is a crucial volumetric marker for determining a patient’s eligibility for
mechanical thrombectomy. Another marker used to identify patients who may benefit
from recanalization is the perfusion mismatch ratio (hypoperfused/core), which can
range from a unitary value (indicating that the entire hypoperfused volume is already
necrotic) to infinity (meaning that the entire hypoperfused volume is potentially
salvageable).

Estimating the hypoperfused and core volumes involves thresholding the parameter
maps at specific cutoff values. Common parameter maps used in clinical practice
for quantifying the core are cerebral blood flow (CBF) and cerebral blood volume
(CBV). In the DAWN and DEFUSE-3 trials [41, 1], the core was determined using
a relative CBF (rCBF) threshold of 30%. It is worth noting that rCBF is the CBF
map normalized by healthy tissue perfusion values, which makes the perfusion map
cutoffs more generalizable and robust to patient-specific perfusion differences. The
hypoperfused volume, on the other hand, can be quantified using Tmax or TTP
maps. Following the DEFUSE-3 study, a hypoperfused volume can be obtained by
considering Tmax values greater than 6 seconds. Figure 2.5 shows an example of a
clinical report generated from perfusion CT using the commercial software package
icobrain cva. In this report, perfusion volumes are obtained by thresholding the
Tmax and rCBF parameter maps at the aforementioned cutoff values. It illustrates
various components relevant to radiological reading and quality control of perfusion
imaging data, including the parameter maps, overlaid perfusion lesions, markers
of interest (absolute perfusion volumes, perfusion mismatch ratio, and perfusion
mismatch difference), and the vascular functions used as input for the software.

It is important to consider that thresholds are highly sensitive to the type and
implementation of deconvolution algorithms and, therefore, depend on the specific
parameter maps and software packages used. The lack of standardization in CTP
deconvolution procedures has resulted in the use of various algorithms (not only for
deconvolution but also for pre-processing and post-processing of images), different
parameter maps, and different cutoff values for determining perfusion volumes. A
limitation of this algorithmic variability and lack of standardization is the significant
volumetric differences observed when using different software packages, particularly
in quantifying the hypoperfused volumes [29, 47].
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In recent years, machine learning has made significant strides, driven by the abun-
dance of data and improvements in computing power. Within the field of medical
imaging, this technology has brought about a revolution in how images are understood
and interpreted, greatly benefiting healthcare practitioners in their decision-making
process. Machine learning applications have expanded to encompass various organs,
pathologies, and imaging techniques, with some algorithms even matching or surpass-
ing the performance of human experts in specific tasks.

This chapter delves into the fundamental concepts and algorithms of machine-
learning that underpin the investigation of vascular functions in perfusion imaging.
These techniques serve as the bedrock of this doctoral dissertation, as the contri-
butions made in this work rely on these principles. The chapter provides a com-
prehensive overview of machine-learning algorithms, with a particular emphasis on
neural networks and their optimization. Additionally, it sheds light on the challenges
encountered when dealing with the intricacies and computational demands associated
with 4D imaging data, such as those found in perfusion imaging.
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3.1 Neural networks back in history

Machine-learning dates back to the 1940s and 1950s when researchers began exploring
the concept of creating machines that could learn from data. During this time,
Warren McCulloch and Walter Pitts introduced the concept of artificial neurons,
which formed the foundation for neural networks. These artificial neurons aimed
to mimic the behavior of biological neurons, enabling information processing and
learning.

One significant development in the field of neural networks came in the late 1950s
with the introduction of the perceptron by Frank Rosenblatt [51]. The perceptron
was an early form of artificial neural network capable of learning from labeled data. It
showed promise in pattern recognition tasks but had limitations due to its single-layer
structure, restricting its ability to solve complex problems.

The field of artificial intelligence experienced a downturn in the 1970s, often
referred to as the (first) “AI Winter”, which had an impact on neural network
research. In the 1980s, the earlier introduced backpropagation algorithm gained
attention. The algorithm allows efficiently training multi-layer neural networks by
propagating errors backward through the network (see section 3.3.3), thus, enabling
the training of deeper architectures, addressing the limitations of perceptrons, and
sparking renewed interest in neural networks.

The 1990s witnessed the rise of neural networks, with applications emerging in
various domains such as image and speech recognition. Researchers developed new
types of neural networks, including radial basis function networks, recurrent neural
networks, and convolutional neural networks (CNNs). These architectures expanded
the capabilities of neural networks and paved the way for their successful application
in different fields.

The 2010s marked a significant turning point for neural networks with the advent
of deep-learning. Deep-learning leverages deep neural networks with many layers,
enabling the extraction of hierarchical representations from large datasets. Break-
throughs in deep-learning, such as the ImageNet competition won by AlexNet in 2012,
showcased the superior performance of deep neural networks in image classification
tasks [13, 28]. This triggered a revolution in various domains, including computer
vision, medical image analysis, natural language processing, etc.

Current goals in the field revolve around advancing the capabilities and under-
standing of deep neural networks. Researchers aim to improve model performance
and generalization, reduce training time and resource requirements, and develop tech-
niques for handling real-world challenges such as small datasets, model interpretability,
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and adversarial attacks. One trend is the exploration of novel network architectures,
including attention mechanisms, transformers, and graph neural networks, to tackle
specific tasks and domains. Another trend is the integration of deep-learning with
other fields such as reinforcement learning, meta-learning, and generative modeling.
Additionally, there is a growing focus on ethical considerations, fairness, and trans-
parency in deep-learning algorithms. Despite the remarkable progress, challenges
persist, including the need for more robust training algorithms, addressing biases
and limitations of large-scale datasets, and improving the interpretability and ex-
plainability of deep-learning models. Overall, machine-learning is evolving at an
unprecedented speed, driven by the pursuit of advancing the state-of-the-art and
addressing the practical challenges of deploying deep neural networks in real-world
applications.

3.2 Learning paradigms

Machine- and deep-learning can be categorized into three main types: supervised
learning, unsupervised learning, and reinforcement learning. In Figure 3.1, a summary
of the learning paradigms used in vascular function selection is shown. Supervised
learning, models are trained using labeled data examples, where both the input data
and the desired output are provided. The model learns to map the input to the output
by minimizing a predefined loss function. This type of learning is commonly used for
tasks such as regression and classification, which are introduced in the section 3.3.2.
Some traditional examples of supervised learning algorithms are random forests and
support vector machines.

Unsupervised learning involves, instead, training models on unlabeled data without
any predefined output to guide the learning process. The goal is to discover patterns,
relationships, and structures within the data. Unsupervised clustering, where data
points are grouped based on their similarity, and dimensionality reduction, which
reduces the number of features while preserving important information, are common
tasks in unsupervised learning. Typical algorithms for clustering are K-means and
hierarchical clustering. Principal component analysis and autoencoders are examples
of dimensionality reduction techniques.

Reinforcement learning focuses on training agents to make sequential decisions
in an environment to maximize a reward signal. The agent interacts with the
environment and learns through trial and error, receiving feedback in the form of
rewards or penalties. The objective is to learn an optimal policy that leads to the
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Figure 3.1: Types of machine-learning paradigms used in vascular function analysis.

highest cumulative reward. Reinforcement learning algorithms employ exploration
and exploitation strategies to balance the trade-off between discovering new actions
and exploiting known rewarding actions.

The various paradigms of machine-learning provide unique approaches for ad-
dressing diverse problem types. An interesting aspect to consider is that deep neural
networks can be trained using any of the three learning paradigms mentioned earlier.
This characteristic distinguishes neural networks from certain algorithms that were
specifically designed to operate exclusively with labeled or unlabeled data (e.g., unsu-
pervised K-means). Neural networks offer versatility by being adaptable to different
learning scenarios, making them a powerful tool in machine-learning.

In this thesis I mostly exploit supervised learning techniques. The selection
of algorithms and training strategies are determined based on the inherent nature
of the problems and the suitability of the different algorithms in addressing them.
Consequently, a combination of deep neural networks and traditional machine-learning
algorithms IS utilized.

3.3 Building deep learning algorithms

Neural networks are a type of machine-learning model inspired by the structure
and functioning of the human brain. They are composed of interconnected layers of
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artificial neurons. These neurons (also known as nodes or units) work together to
process input data and produce output predictions.

The basic building block of a neural network is a neuron, which takes in multiple
inputs, applies weights to these inputs, sums them up, and passes the result through an
activation function. The activation function introduces non-linearity to the network,
allowing it to learn complex patterns in the data.

The output of a neuron can be represented as follows:

y = f

(
n∑

i=1

wixi + b

)
(3.1)

where y is the output of the neuron, f is the activation function, wi are the weights
associated with the inputs xi, b is the bias term. The weights and bias terms in the
network are learned during the training process, where the network adjusts them to
minimize the difference between its predictions and the true output values.

Neural networks consist of multiple layers, including an input layer, one or more
hidden layers, and an output layer. The hidden layers receive the outputs from
the previous layers as input, process them, and generate, as output, intermediate
representations of the data. The output layer, instead, produces the final model
predictions.

The computations in a neural network can be represented as follows:

y = f (W ·X+ b) (3.2)

where: y is the vector of outputs, W is the matrix of weights connecting the layers,
X is the vector of inputs, b is the vector of bias terms.

Training a neural network involves an optimization process called backpropagation,
where the network adjusts its weights and biases using optimization algorithms and
the so-called chain rule of calculus. This allows the network to update its parameters
in a way that reduces the difference between its predicted outputs and the true
outputs.

3.3.1 Activation functions

Activation functions play a crucial role in deep learning by introducing non-linearity
to the neural network architecture. They transform the input of a neuron into its
output and allow modeling complex data relationships that overcome the limitations
of linear transformations. Popular activation functions are summarized in Table 3.1,
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including the sigmoid function, the hyperbolic tangent function, the Rectified Linear
Unit (ReLU) function [18] and variations of the latter one (e.g. Leaky ReLU [33] and
the Parametric ReLU [25]).

Function Equation Description
Sigmoid sigmoid(xi) =

1
1+e−xi

Maps the input to the range [0, 1].
Common in binary classification.

Tanh tanh(xi) =
exi−e−xi

exi+e−xi
Maps the input to the range [-1,
1], symmetric and zero-centered
output.

ReLU ReLU(xi) = max(0, xi) Devised to help mitigating the
vanishing gradient problem.

Leaky
ReLU

LReLU(xi) =

{
xi if xi > 0

0.01xi otherwise
Introduces a small slope for nega-
tive inputs.

Parametric
ReLU

PReLU(xi) =

{
x if xi > 0

βixi otherwise
Flexible extension of LReLU in-
troducing βi ∈ [0, 1] .

Table 3.1: Overview of common activation functions used in deep learning.

3.3.2 Model optimization

Machine-learning optimization aims to find the optimal values for the set of parameters
of a model that minimize a given loss function. The process involves iteratively
adjusting the set of those parameters to minimize the discrepancy between the
predicted outputs of the model (ŷ) and the true values (y) in a training data subset.
The optimal set of model parameters θ∗ that minimizes the loss function L(θ) can be
written as:

θ∗ = argmin
θ

L(θ) (3.3)

In order to find θ∗, optimization algorithms are used. A widely common used
optimization algorithm is gradient descent. The algorithm iteratively updates the
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parameters in the (opposite) direction of the loss function gradient with respect to
the set of parameters. The update rule can be written as:

θ(t+1) = θ(t) − α∇L(θ(t)) (3.4)

where θ(t) represents the parameter values at iteration t, α is the learning rate
determining the step size, and ∇L(θ(t)) is the gradient of the loss function with
respect to the model parameters. The gradient provides the direction of the steepest
descent, indicating how the parameters should be adjusted to reduce the loss function.
This iterative process continues until convergence, typically defined by a stopping
criterion (e.g., reaching a certain number of iterations or achieving a small change
in the loss function). Upon convergence, the parameters θ∗ represent the optimized
values that best fit the training data and minimize the targetted loss. It is worth
mentioning that optimization algorithms operate at a local level and cannot guarantee
to reach the global optimum.

Stochastic gradient descent (SGD) is a variant of the standard gradient descent
algorithm that randomly selects a subset of training samples at each iteration to
estimate the gradient. This algorithm introduces randomness in the gradient es-
timation process, which can lead to faster convergence and better generalization
performance, especially in large-scale datasets. The gradient ∇Li(θ

(t)) is computed
in SGD on a randomly selected mini-batch i consisting of a random subset of training
samples. Note that in SGD there is a faster computation and more frequent update
of the parameters. The SGD algorithm also provides a solution when fitting machine-
learning models over large and heavy datasets, which is sometimes challenging given
computational processing constraints.

3.3.3 Backpropagation

The backpropagation algorithm adjusts the weights and biases of the network based
on the error between the predicted outputs and the true outputs. It involves two main
steps: forward propagation and backward propagation. During forward propagation,
the input data is fed through the network, and the activations of each neuron are
computed layer by layer until the output is obtained. Considering the input to the
network as x, the activation of a neuron in layer l can be computed as:

a(l) = f(W(l)a(l−1) + b(l)) (3.5)
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where a(l) is the activation vector of layer l and a0 = x, W(l) is the weight matrix of
layer l, a(l−1) is the activation vector of the previous layer, b(l) is the bias vector of
layer l, and f(·) is the activation function.

After forward propagation, the predicted outputs of the network are compared
with the true outputs to compute the error. The goal of backpropagation is to
minimize this error by adjusting the weights and biases.

During backward propagation, the error is propagated back through the network
to compute the gradients of the weights and biases. Let’s denote the error vector as
e, which is the difference between the predicted outputs and the true outputs. The
gradients of the weights and biases can be computed as:

∂E

∂W(l)
=

∂e

∂a(l)

∂a(l)

∂W(l)
(3.6)

∂E

∂b(l)
=

∂e

∂a(l)

∂a(l)

∂b(l)
(3.7)

where ∂e
∂a(l) is the derivative of the error with respect to the activations of layer l, and

∂a(l)

∂W(l) and ∂a(l)

∂b(l) are the derivatives of the activations with respect to the weights and
biases of layer l, respectively. These gradients are then used to update the weights and
biases of the network using any optimization algorithm, such as the earlier introduced
SGD.

3.3.4 Supervised learning: Regression

Machine-learning regression is a type of supervised learning algorithms that is used
to predict continuous numeric values based on a set of input features. In regression
tasks, the goal is to establish a relationship between the input variables (also known
as independent variables or features) and the output variable (also known as the
dependent variable or target). The idea is to find a mathematical function or model
that can accurately represent the relationship between the input and output variables.

In mathematical terms, let’s consider a domain set X ∈ IRd, with corresponding
label outputs Y ∈ IR. The problem is then constrained to the finding of a model or
function h: X → Y (IRd → IR). The different existing algorithms will make use of
different learning functions h to map the input feature vector to an output space.
The choice of the regression algorithm depends on the available data and the problem
tackled. Some common regression algorithms include linear regression, random forests,
support vector machines, and neural networks.
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Regression loss

A typical regression loss function based on the l2 norm is the mean-squared-error loss,
defined as:

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.8)

where yi and ŷi represent the ground truth and predicted values for the sample i,
respectively. Other loss functions are, for instance, the absolute mean error or the
Huber loss.

3.3.5 Supervised learning: Classification

In classification tasks, the algorithm learns to predict the sample’s output class from
a set of input features. Thus, similar to the regression case, the goal is to find a
mathematical function or model that can represent the mapping of the input variables
into the output class space.

In the simplest classification scenario, binary classification, the data samples are
allocated into one of two possible classes. In mathematical terms, lets consider a
domain set X ∈ IRd, with corresponding (binary) label outputs Y ∈ {0, 1}. The idea
is to find a model or function h: X → Y. As for the regression problem, different
algorithms will make use of different learning functions h to map the input feature
vector in the output class space. Typical classification algorithms are random forests,
support vector machines, neural networks, etc.

Classification loss

Among the available classification loss functions, a commonly used one is catego-
rial cross-entropy. In the simplest scenario having only two classes (i.e., binary
classification), the categorial cross-entropy is defined as:

LCE = −
N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (3.9)

where N represents the number of instances in the dataset, yi is the ground truth
label for instance i (0 for the negative class, 1 for the positive class), and pi is the
predicted probability of instance i to belong to the positive class.
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3.3.6 Supervised learning: Segmentation

Segmentation refers to the process of partitioning input data (typically an image)
into multiple distinct regions based on specific criteria or properties. It involves
assigning a label (class) to each pixel or voxel in the input image, that indicates to
which segment or region it belongs to. Image segmentation can be considered as an
extension of the classification task introduced above, where multiple samples (pixels
or voxels) from an image or volume are assigned to a specific region (class).

Segmentation loss

Loss functions based on overlap metrics are used. The categorical cross-entropy loss
function of Equation 3.9 can be used for image segmentation. An alternative widely
used segmentation loss function is the soft-Dice loss, defined as:

LDice = 1− 2 ∗∑i yiŷi∑
i yi
∑

i ŷi
(3.10)

where in this case ŷi and yi are the predicted output and the ground truth values for
sample i, and

∑
i represents the summation over all pixels/voxels in the image.

3.3.7 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specific type of neural network used
in computer vision tasks. They are designed to automatically learn hierarchical
representations of visual data (i.e., images) through a series of convolutional operations
and pooling layers. CNNs excel at capturing spatial relationships and local patterns
in images, making them highly effective in tasks such as image classification, object
detection, and segmentation.

The CNN architectures that have made crucial contributions in the field are
LeNet-5 [31], AlexNet [28], VGGNet [55], GoogLeNet [59] (Inception), ResNet [24],
and the U-Net [49]. Figure 3.2 shows a pictorial representation of some of these
architectures. LeNet-5, proposed by LeCun et al. in 1998, laid the foundation for
CNNs and introduced the concept of convolutional layers. AlexNet demonstrated
the power of deep CNNs by winning the ImageNet Large Scale Visual Recognition
Challenge [13] with a significant margin. VGGNet, proposed by Simonyan and
Zisserman in 2014, introduced a deeper architecture with smaller filter sizes, achieving
impressive performance on various vision tasks. GoogLeNet was presented by Szegedy
et al. in 2014 and introduced the concept of inception modules, which allowed for
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Figure 3.2: Relevant CNN architectures.

efficient and parallel processing at multiple scales. It showcased the benefits of network
depth and computational efficiency. ResNet, proposed by He et al. in 2015, addressed
the issue of vanishing gradients in deep networks by introducing skip connections,
enabling the training of much deeper architectures.

The U-Net is a popular deep-learning architecture commonly used in medical
imaging for tasks such as image segmentation. It was introduced by Ronneberger
et al. in 2015 [49], specifically designed for 2D biomedical image analysis. The
U-Net architecture consists of a contracting path (encoder) and an expansive path
(decoder), with skip connections that help preserve spatial information. The encoder
captures contextual information, while the decoder combines it with high-resolution
features to generate detailed segmentation maps. Çiçek et al. [11] extended the
U-Net architecture to its 3D version, allowing volumetric image analysis through 3D
convolutional layers. More recently nnUnet was presented as a generalized end-to-end
pipeline for training U-Net models in medical image datasets [26]. nnUnet showed
remarkable performance in various image tasks, as shown in the Decathlon challenge
[2].

3.4 Learning from perfusion imaging data

3.4.1 Data challenges

Perfusion imaging is a complex and heterogeneous modality that poses challenges
for downstream post-processing tasks. Developing data-driven algorithms that can
effectively handle this complexity is crucial for the success and robustness of machine
learning methods. During my experimental work in this thesis, I have encountered
these challenges and I have grouped them into three sources: i) real-world perfusion
data is heterogeneous, ii) perfusion imaging involves the handling of large 4D images
with limited computational resources and iii) perfusion imaging post-processing
algorithms are susceptible to changes in the vascular functions.
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Firstly, the heterogeneity in perfusion CT imaging data arises from various sources,
including variations in scanner technologies, scanning protocols, and patient char-
acteristics. Different scanner vendors and models incorporate distinct technological
advancements that can influence the output images. For instance, the number of CT
detectors and tube rotation speeds constrain the CTP acquisition, with the former
determining the z-axis anatomical coverage and the latter affecting the temporal sam-
pling resolution. While optimal acquisition entails whole-brain CTP coverage, this is
not universally available. Modern clinical scans involve machines with z-axis coverage
varying from 4 to 16 cm [10]. In scanners with limited z-axis coverage, the CTP
can be obtained by moving the table during the acquisition or by scanning adjacent
anatomical regions using separate injection protocols. In any case, the differences in
the number of detectors (and, therefore, the anatomical coverage) and tube rotation
speeds affect the scanned brain area, the number and thickness of the slices, and the
frame rate of the CTP scan. Moreover, the scanning and contrast injection protocols
employed in clinical practice are not standardized, leading to a wide range of image
variability and quality. Parameters influencing image quality are typically listed in
the recommended guidelines outlined in Chapter 2. For example, the CTP frame
rate, which is recommended to be equal to or faster than 2 seconds per frame, may
vary across centers, with some utilizing slower acquisitions (e.g., 3 seconds per frame)
or employing faster frame rates during the contrast wash-in phase and lower frame
rates during the contrast wash-out phase. Contrast injection protocols also impact
the degree of tissue contrast enhancement, with some scans producing significantly
higher contrast in vessels (a couple of hundred Hounsfield Units) while others exhibit
poor vessel enhancement with the contrast agent. Furthermore, image variability
also considers the inherent anatomical, physiological, and pathological differences
among patients. Brain volume, shape, and structures naturally differ throughout an
individual’s lifespan. Age also influences cardiac output, resulting in a slower distri-
bution of the contrast agent within the brain and broader time-attenuation curves
measured on CTP. Additionally, various brain conditions, disorders, and pathologies
can significantly impact brain anatomy and physiology. Consequently, developing
machine learning models that can effectively capture this extensive variability is
extremely challenging. Such models require large amounts of data and are highly
dependent on the characteristics and variability of the data, making them data-hungry
and data-dependent.

Secondly, perfusion imaging data is computationally intensive due to its 4D nature,
encompassing three-dimensional (3D) spatial information combined with temporal
sampling. This involves capturing multiple 3D brain volumes at various time points
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during the passage of the contrast agent. The recommended acquisition duration for
CT perfusion is approximately 60-70 seconds, resulting in the generation of 60-70
3D brain volumes when the sampling frequency is one frame per second. In some
centers, longer acquisitions are performed, leading to twice the number of temporal
acquisitions. The z-axis coverage of brain images also exhibits consistent differences
based on the CT scanner technology. For example, in the open ISLES’18 dataset, the
number of slices in a scan ranges between 2 and 20. However, modern CT scanners
can achieve a very high z-axis resolution, allowing some centers to acquire CTP
images with hundreds of axial slices. Consequently, the voxel resolution, number of
z-slices, temporal sampling rate, and acquisition length contribute to a substantial
amount of data that needs to be processed. When working on machine learning tasks
related to vascular functions, utilizing the entire dataset as input for the models
may be necessary. This is because vascular functions are typically selected based
on an “optimal” criterion. Thus, when considering a set of possible AIF/VOF
candidates, only the best one (or a few) should be retained. In other words, the
problem is inherently dependent on the entire available dataset information, as the
optimal vascular function criterion demands a comparison among multiple (if not all)
candidate options. Consequently, patch-based deep-learning approaches, commonly
used to address memory constraints in tasks such as image segmentation, are not
easily applicable to this problem. Therefore, alternative solutions are necessary to
tackle these challenges effectively.

Thirdly, achieving voxel-level accuracy in perfusion imaging is crucial, particularly
when analyzing vascular functions. Even a single suboptimal voxel can completely
undermine the accuracy of downstream perfusion data analysis. This limitation
applies not only to the use of a “global” vascular function but also to region-of-
interest or subsets of voxels defining the AIF or VOF. An ideal AIF should exhibit
the earliest bolus arrival time and the highest contrast increase among all candidate
AIF voxels. Therefore, the presence of just one suboptimal AIF voxel can alter
the resulting average curve, causing it to no longer represent the earliest or the
most contrast-enhanced curve. It is worth noting that deconvolution algorithms,
as described by the dilution theory, are extremely sensitive to the shape of the
AIF curve (Equation 2.1). Consequently, even a slight deviation from the optimal
AIF choice, such as a time delay, increased noise levels, or a wider profile due to
partial volume effects, can significantly impact the quantification of perfusion lesion
volumes. Interestingly, for many other machine learning tasks in medical imaging,
achieving voxel-level accuracy may not be necessary or may not significantly affect
the downstream radiological analysis. For example, a few false positives or negatives
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in the segmentation of large structures or large lesions might be tolerable. However,
when it comes to learning from vascular curves, machine-learning models need to be
optimally tailored to handle the low error margins and deliver voxel-level accuracy
performance.

In conclusion, the research problem under investigation presents challenges en-
compassing the highly heterogenous clinical data, the computational constraints for
handling complex 4D imaging modalities, and the necessity for precise and reliable
machine learning models.

3.4.2 Selecting vascular functions with machine-learning

Initial software packages based on deconvolution performed manual vascular function
selection. The process consisted of choosing a group of artery/vein candidate voxels
based on their anatomical location (e.g., large vessels, contra-lateral to the ischemic
region, etc.), signal-profile characteristics (like bolus arrival time or contrast increase)
and signal quality (high SNR and as little contaminated with artifacts as possible)
criteria. Alternatives to the voxel-by-voxel selection approach included drawing a
region of interest within a specific vessel. Whatever the manual voxel selection
approach was, the temporal signals of the chosen candidates were later averaged and
used as vascular function inputs to the deconvolution algorithm. In the early times of
perfusion imaging, these kinds of approaches seemed to be feasible. CT images were
very limited in anatomical spatial coverage and in voxel resolution, which allowed the
selection of optimal voxel candidates through exhaustive manual search. Alongside,
computers were several orders of magnitude more limited in computational processing
power than current machines. Furthermore, data-driven algorithms (such as machine-
learning ones) were not as advanced as nowadays. Consequently, automatic and fast
processing of large amounts of data was less feasible than now.

Improvements in CT scanner technologies (such as faster rotation speeds, larger
head coverage, and higher image resolution) came with an increase in the amount of
generated imaging data. For instance, initial CTP protocols for acute stroke imaging
used to solely acquire a couple of slices around the middle cerebral artery. Nowadays,
full brain coverage with a hundred axial slices is no longer rare. All these fantastic
technological improvements came together with increasing difficulties to continue
doing exhaustive manual search for the vascular functions, especially after research
showed the importance of having time-efficient clinical practice protocols (as explained
in section 2.1.2, reminder: Time is brain! ). Larger computation capabilities and the
fast development and deployment of data-centric algorithmic solutions opened the

34



3.4. Learning from perfusion imaging data

possibility of automating the vascular function selection process in different ways.
In Figure 3.1, a schematic representation of different families of algorithms used for
the vascular function selection problem are shown. Please note that this section
does not aim to detail algorithmic strategies, though a brief explanation is needed to
understand their usage in the problem under study.

The first algorithms to be used for tackling the problem were heuristics. With
heuristics I refer in this thesis to algorithmic rules based on expert’s knowledge and
practical experience that allow a fast and acceptable estimation of the entity being
searched - in this case, the vascular functions. Most of these methods define different
rules based on the Hounsfield Units contrast increase of the temporal signals, the
bolus arrival time, the noise measured in it, etc., to select good arterial/vein voxel
candidates. The works of Rempp et al. [48] and Carroll et al. [8] are examples of such
approaches.

More sophisticated methods to tackle this problem are based on different machine
learning paradigms. We show in Figure 3.1 a classification of learning paradigms used
for AIF/VOF selection. Unsupervised clustering methods have been widely explored.
In a nutshell, unsupervised clustering algorithms aim to split data into a (known
or unknown) number of groups (i.e., clusters) based on extracted features. Later
on, vascular functions can be selected by applying heuristic rules over the cluster
of interest, and finally, choose the voxels most likely to belong to an artery or vein.
Examples of clustering methods for AIF selection include affinity propagation [54],
normalized cuts clustering [72], and fuzzy clustering [37].

Among the supervised learning approaches, classification algorithms have also
been used. For the training of classification algorithms that can choose vascular
functions from the CT data, the image needs to be split into classes. Additionally, it
is necessary to determine the type of samples (such as voxels, regions, clusters, etc.)
that will be provided to the algorithm. A simple strategy for doing so would be, for
instance, to label the AIF voxels as belonging to one class and to label ‘all-the-rest’
voxels as belonging to another class. Then, the algorithm’s aim is to find the ‘AIF’
class. Examples of such methods are the works of [67, 16].

Lastly, segmentation methods -a specific classification algorithm subtype- have
also been used. In [16], a 3D-Unet is used to segment arterial voxels and later estimate
the AIF. Considering the image processing definition of segmentation algorithms,
we can see that labels might not always be necessary to split an image into regions.
This is commonly known as unsupervised segmentation, a family of algorithms with
common points with unsupervised clustering methods but exclusively working with
imaging data. These types of algorithms are not discussed nor explored within this
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thesis. Therefore, I leave details about this family of methods as optional and external
homework for curious minds.
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Contributions
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Summary of Contributions

In the previous chapters I have introduced the role of the arterial and venous functions
for acute stroke perfusion analysis. It has been exhibited that their suboptimal
selection and estimation may critically impact the quantification of brain perfusion
biomarkers and, therefore, the treatment decision-making. Furthermore, machine-
learning strategies that can help characterize these vascular functions have been
introduced and stratified according to different learning paradigms (supervised and
unsupervised). The goal of this thesis is to characterize the perfusion vascular
functions derived from real-world CTP scans by using data-driven machine-
learning models. In this chapter, I introduce the specific goals pursued within my
thesis and the contributions made in the field under study. I would like to inform
the reader that the research questions were strategically chosen to be as close as
possible to the clinical routine and, hence, having high applicability and transferability
potential.

The first research question targeted in this thesis challenges the optimal AIF
concept and approaches it from a different perspective:

Q1: What is the best AIF that maximizes the deconvolution algorithm
performance? And can I automatically estimate it with machine-learning

models?

Talking about the best AIF can lead to a long debate about what is considered
best. For this work, the optimal AIF has been assumed as the temporal function that,
through SVD deconvolution, led to the best estimate of the necrotic core. Note that
in CTP imaging, the penumbra and core regions are estimated through deconvolution
analysis, meaning there is no way (not even manually) to delineate the lesions’ ground
truth. Consequently, to have a better insight into this research question, I used a
very useful but rarely available clinical dataset where concomitant CTP acquisitions
and DWI scans with manually annotated core ground truth were available. In
Chapter 5.1 the proposed methodology is detailed through a peer-reviewed conference
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article. In a nutshell, I proposed a differentiable implementation of the time-invariant
SVD deconvolution integrated within a deep-learning scheme. The method allows
fitting an AIF-generating CNN by turning the SVD deconvolution algorithm into
an optimization (performance maximization) problem. Through this approach, I
show that it is possible to find the best AIF (following the above-mentioned ‘best’
criteria) for each CTP scan. These AIFs produced better estimates of the core
lesions than the results obtained when using AIFs chosen by a manual rater or by a
clinical CTP software package, thus reducing the core delineation performance gap
between CTP and DWI modalities. Furthermore, the presented work is also novel
from a machine-learning perspective since it tackles a regression task by optimizing a
segmentation loss function instead.

The second topic addressed in this thesis was the selection of vascular functions
from clinical and real-world CTP scans. The question that I investigated was:

Q2: Can I automatically select vascular functions from clinical CTP scans?
In that case, how close to a manual expert performance can I get?

As shown in Chapter 2 this problem has been widely explored in previous works.
The key question that I asked myself was: Has this problem been solved? The short
answer that I found was negative. Failures in the AIF selection are frequent in
clinical software packages [70, 56] and, therefore, may lead to completely unusable
and uninterpretable deconvolution results. Under these circumstances the CTP
study might be discarded or, in some cases, would require an extra manual AIF
correction step. In any case, a wrong AIF selection delays the acute stroke workflow
and may need repeating the acquisition, thus increasing the radiation dose and
contrast agent delivered to the patient. On one hand, algorithms used in commercial
software packages are rarely described in the literature, and limited descriptions
can only be accessed through their patent description. On the other hand, open
approaches available in the literature are limited on several fronts. For instance, most
of them have been devised for perfusion MRI but have not been validated in CTP.
Moreover, most of these methods have been tested over synthetic data or over small,
homogenous, and/or quality-selected scans. Therefore, the challenge here was to
devise an automatic AIF-VOF selection method that can work over real-world CTP
data and under different image quality scenarios. Chapter 5.2 describes the proposed
methodology AIFNet through its peer-reviewed manuscript. In this work, I show that
vascular function selection can be accurately achieved (almost at expert level) through
convolutional neural networks. The method is also very different from previous works
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as it is not approached as a clustering or classification problem. Moreover, AIFNet
is trained using sparse annotations, thus allowing faster data labeling and faster
deployment. The reader may note that the work’s novelty goes beyond its clinical
application. The method combines different learning strategies as a segmentation
task is optimized through a regression loss function (Regression loss ⇒ Segmentation
task). Hence, the proposed mixed learning scheme inverts the strategy used to tackle
question Q1 (Segmentation loss ⇒ Regression task). AIFNet has been implemented
in the CTP software package (FDA-cleared and CE-marked) icobrain cva (icometrix,
Leuven, Belgium) and is currently clinically used in several countries. Furthermore,
the method’s novelty led to a patent [50].

Thirdly, I extended the applicability of the vascular functions to a different and
common problem in stroke clinical setting: the truncation (i.e., early interruption of
the scanning) of the CTP series. The question that I raised in this matter was:

Q3: Can I exploit the deconvolution-available vascular functions in order to
detect truncated CTP scans automatically?

As discussed in chapter 2, the accurate and reliable estimation of acute stroke
perfusion lesions is crucial for reperfusion treatment decision-making. However,
short CTP acquisitions not satisfying the guidelines’ recommended duration are still
common in clinical practice and may, sometimes, lead to inaccurate quantification of
the perfusion lesions. In this last chapter of my thesis, I study and quantify CTP
truncation artifacts by synthetically shortening the duration of the scans. First,
the study allowed reporting statistical metrics describing those truncation artifacts,
shedding some light on questions like ‘How long should a scan be in order to quantify
perfusion volumes reliably?’ or ‘How many seconds from the AIF’s peak are necessary
to avoid truncation errors?. Second, after measuring the impact of those errors, I
moved the research towards detecting scans impacted by truncation. Therefore, I
propose machine-learning models that allow the detection of unreliably short CTP
scans when fed with features extracted from the AIF and the VOF. The results show
that such an approach based on the vascular functions is more accurate in detecting
truncated scans than solely considering the scan duration. Through the proposed
methodology, radiologists and neurointerventionalists could be warned of misleading
perfusion volumes due to short CTP acquisitions. Details about this research are
available in the peer-reviewed manuscript of Chapter 5.3.
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Publications

The publications product of this thesis are included in the next chapters.

43



5. Publications

5.1 Differentiable Deconvolution for Improved

Stroke Perfusion Analysis

Ezequiel de la Rosa, David Robben, Diana M. Sima, Jan S. Kirschke & Bjoern
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Synopsis: Perfusion imaging is the current gold standard for acute ischemic stroke
analysis. It allows quantification of the salvageable and non-salvageable tissue regions
(penumbra and core areas respectively). In clinical settings, the singular value
decomposition (SVD) deconvolution is one of the most accepted and used approaches
for generating interpretable and physically meaningful maps. Though this method
has been widely validated in experimental and clinical settings, it might produce
suboptimal results because the chosen inputs to the model cannot guarantee optimal
performance. For the most critical input, the arterial input function (AIF), it is still
controversial how and where it should be chosen even though the method is very
sensitive to this input. In this work we propose an AIF selection approach that is
optimized for best performance of core lesion segmentation. The AIF is regressed
by a neural network optimized through a differentiable SVD deconvolution, aiming
to maximize the agreement of the core lesion segmentation with ground truth data.
To our knowledge, this is the first work exploiting a differentiable deconvolution
model with neural networks. We show that our approach can generate AIFs without
any manual annotation, thus avoiding manual raters’ intervention, which may lead
to inter-rater variability. The method achieves manual expert performance in the
ISLES18 dataset. We conclude that the methodology opens new possibilities for
improving perfusion imaging quantification with deep neural networks.
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Abstract. Perfusion imaging is the current gold standard for acute
ischemic stroke analysis. It allows quantification of the salvageable and
non-salvageable tissue regions (penumbra and core areas respectively). In
clinical settings, the singular value decomposition (SVD) deconvolution
is one of the most accepted and used approaches for generating inter-
pretable and physically meaningful maps. Though this method has been
widely validated in experimental and clinical settings, it might produce
suboptimal results because the chosen inputs to the model cannot guar-
antee optimal performance. For the most critical input, the arterial input
function (AIF), it is still controversial how and where it should be chosen
even though the method is very sensitive to this input. In this work we
propose an AIF selection approach that is optimized for maximal core
lesion segmentation performance. The AIF is regressed by a neural net-
work optimized through a differentiable SVD deconvolution, aiming to
maximize core lesion segmentation agreement with ground truth data. To
our knowledge, this is the first work exploiting a differentiable deconvo-
lution model with neural networks. We show that our approach is able to
generate AIFs without any manual annotation, and hence avoiding man-
ual rater’s influences. The method achieves manual expert performance
in the ISLES18 dataset. We conclude that the methodology opens new
possibilities for improving perfusion imaging quantification with deep
neural networks.
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1 Introduction

Perfusion imaging techniques are the clinical standard for acute ischemic stroke
lesion assessment. They acquire images of the passage of a contrast agent bolus
through the brain tissue. Since the perfusion series are not directly clinically
interpretable, they require the computation of physically meaningful parameter
maps. Although different approaches may be used for their computation (e.g.
compartmental models, which are mainly used over long acquisition time perfu-
sion MRI), the preferred technique in perfusion CT analysis is the singular value
decomposition (SVD) deconvolution [11,25]. The technique has been well vali-
dated in experimental [16] and clinical [1] settings and is widely implemented in
perfusion CT software [7,25]. Cerebral blood flow (CBF) and time to the max-
imum residue function (Tmax) are typically used maps, though cerebral blood
volume and time-to-peak maps are often considered as well. Parameter maps
are critical for treatment decision making. They allow assessing the salvageable
penumbra and irreversible core necrotic lesions, and hence determining if reper-
fusion techniques may reduce the disease damage severity.

The SVD deconvolution method requires as input an arterial input function
(AIF), defined as the concentration time-curve inside an artery feeding the tissue
under study. In practice, the AIF is mostly selected by a physician, a demanding,
highly variable and poorly reproducible process. Its correct selection is the cor-
nerstone for generating accurate maps, as has been shown that minimal changes
in its location and/or shape may strongly impact the deconvolution process [13].
Although several works studied how and where the AIF should be chosen [4],
the subject is still very controversial. Thus, AIF selection is suboptimal, since
we do not know which function will maximize the deconvolution performance.
Besides, the AIF’s concept is defined based on the SVD-deconvolution theoreti-
cal model, which relies on several assumptions violated in clinical practice. For
instance, limited voxel resolution, partial volume effect, time-curve delays, noise
and other confounders are typically limiting the model’s performance. Conse-
quently, it is not straightforward to define which AIFs are the best to use in
practice.

In this work we use neural networks to generate the AIF, aiming to find
the best AIFs in core lesion segmentation terms. Through experiments on the
ISLES18 database we show that the method is able to learn from scratch to
generate AIFs that maximize the segmentation agreement with manually delin-
eated ground truth. Thus, the AIFs are learned without any expert annotations
of the AIFs themselves, hence avoiding potential rater’s bias. We show, as well,
that the approach is able to yield manual expert performance in the ISLES18
database.

2 Method

2.1 Differentiable Deconvolution

We propose the optimizable framework of Fig. 1 which generates the best AIF
for SVD deconvolution. We define the best AIF as the one yielding the highest
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agreement between the estimated core lesion and the ground truth core lesion.
The input to the framework is 4D perfusion data and the output is a lesion map.
It consists of a CNN that generates the AIF cart(t). The generated AIF together
with the 4D input perfusion series pass through a differentiable SVD deconvolu-
tion block, which outputs relative CBF (rCBF) maps after image deconvolution.
Finally, rCBF is transformed into the lesion probability map ypred. The frame-
work is end-to-end trainable, which means that gradients are backpropagated
through all blocks including the SVD deconvolution, thus allowing to generate
the best AIF candidate that maximizes the segmentation performance.

AIF Generating CNN. Unlike most previous works that use unsupervised
clustering [14,15,18,19,21] or supervised segmentation [6] approaches, we pro-
pose a regression CNN for obtaining an AIF cart(t) from the 4D perfusion series.
The architecture is fairly straightforward: the only particularity is that the input
size varies in the z-axis from 2 to 8 slices. Therefore, it consists of 3D convolu-
tional layers followed by an average pooling over the z-axis. Subsequently, there
are 2D convolutional layers and finally a fully connected layer with the same
number of output neurons as the number of time-points in the perfusion data.
This final 1D vector represents cart(t). After each convolution, average pooling
and dropout [23] are used. ReLU [10] activations are applied in all layers except
for the final AIF output layer, where a linear activation is employed. For fit-
ting 4D data into the CNN, we encode volume time-points as channels in the
network.

SVD Deconvolution. For generating interpretable and physically-meaningful
maps, perfusion series are deconvolved using the well-validated delay-invariant
SVD deconvolution. Our GPU implementation of the algorithm uses Volterra
discretization [22]. Differentiability of the SVD algorithm was studied in [17,24].
Through analytical methods it was shown that the Jacobian of the SVD is com-
putationally feasible [17]. Even more, in [8] a differentiable SVD was used in
neural network layers for a variety of tasks including image segmentation. In
this work, we take advantage of current deep learning libraries that support
auto-differentiation and allow backpropagating SVD gradients. Given the fact
that deconvolution is an ill-conditioned problem [7,20], we use a Tikhonov reg-
ularization scheme. The output of the deconvolution block of Fig. 1 is rCBF.

SVD

Deconvolution

DWI 

ℒ

AIF Generating CNN  Lesion Map Ground Truth

4D
 P

er
fu

si
o

n
 

cart (t)
ypred ytrue

Fig. 1. Differentiable SVD deconvolution pipeline.
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Although in clinical practice the Tmax and rCBF maps are typically used for
identifying core lesions, we only consider rCBF since the differentiability of Tmax
is not fully clear.

In a nutshell, the analysis of perfusion data can be described by the following
convolution product:

cvoi(tj) =
∫ t

0

cart(τ)k(tj − τ)dτ (1)

where cvoi is the agent concentration in the voxel under consideration, cart is the
concentration curve measured in an artery feeding the volume (i.e., the AIF), and
k is the impulse response function that characterizes the tissue of interest [7,22].
Note that here t = 0 is taken prior to the arrival of the contrast agent (such that
k(t) = 0 for t < 0). For solving Eq. 1 (i.e., finding k) we rely on discretization
methods, since in practice the measured AIF cart and the agent concentration in
the tissue volume cvoi are discretized at specific time points. Considering these
time points as tj = (j − 1)Δt (for j = 1, ..., N), and assuming that cart(t) is
negligible for t > NΔt, the discretization of Eq. 1 can be approximated as:

cvoi(tj) =
∫ t

0

cart(τ)k(tj − τ)dτ ≈ Δt

N∑
i=1

cart(ti)k(tj−i+1) (2)

which can be rewritten as a linear system:

c = Ak (3)

where A is the Volterra matrix with the following Aij elements [22]:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ai0 = (2cart(ti) + cart(ti−1))/6 (0 < i ≤ N − 1)
Aii = (2cart(ti) + cart(ti+1))/6 (0 < i ≤ N − 1)
Aij = 2

3cart(ti) + cart(ti−1)
6 + cart(ti+1)

6 (1 < i ≤ N − 1, 0 < j < i)
Aij = 0 elsewhere

(4)

We assume, without loss of generality, that Δt = 1s, which is usually the case in
clinical practice. For the derivation of A and for a more in-depth understanding
of discretization methods in perfusion imaging, the reader is referred to [22].

A classical way of solving Eq. 3 is by means of SVD as:

A = UΣVT =
r∑

i=1

uiσivT
i (5)

where r = rank(A), U = [u1, ...,ur] and v = [v1, ...,vr] are the left and right
singular vectors, respectively, and Σ = diag(σ1, ..., σr) is the diagonal matrix
containing singular values in decreasing order. The least squares solution of
Eq. 3 for k is:

k =
r∑

i=1

uT
i c
σi

vi (6)
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Nonetheless, in cases where A is ill-conditioned, Eq. 6 is not a suitable solution of
the linear system since a small variability in c may generate very large variability
in k [7]. Thus, regularization is required for having a stable result as:

kλ =
r∑

i=1

(
fλ,i

uT
i c
σi

)
vi (7)

where fλ,i = σ2
i

σ2
i+λ2 are Tikhonov regularization parameters with λ = λrelσi. The

parameter λrel should be chosen in the interval (0, 1). In our implementation we
empirically set λrel = 0.3. Finally, it can be proven that the cerebral blood flow
can be obtained as:

CBF =
1

ρvoi
max(k(tj)) (8)

where ρvoi [ g
ml ] stands for the mean tissue density in the voxel. For a math-

ematical demonstration of this statement the reader is referred to [7]. Finally,
following current clinical practice, CBF is normalized with mean healthy CBF
values for obtaining a map in a subject-independent scale.

Ischemic Lesion Map. Generated rCBF maps require some sort of transfor-
mation to obtain lesion probability maps ypred that can be compared with the
binary ground truth masks. With this aim, we use sigmoid activations centered
at rCBF = 0.38 for mapping the ypred probability values. This cutoff previously
was found to be optimal for this dataset [5]. It is worth to mention that it is
possible to allow the network to choose the best cutoff, but we preferred to keep
a fixed threshold as mostly used in clinical practice. In such a way, our proposed
method is directly comparable with the results of a manual AIF selection using
the same cutoff value, assuring that differences in results are only driven by the
choice of AIF.

2.2 Implementation and Optimization

The framework is implemented using TensorFlow and Keras, where we ensure
effective gradient propagation by only using differentiable operations. Given the
class imbalance between healthy and necrotic brain tissue, a soft-Dice loss func-
tion is used as follows:

L = 1 − 2
∑

ytrueypred∑
ytrue +

∑
ypred

(9)

where ypred is the framework’s output lesion map and ytrue the ground truth
manually delineated lesion mask.

Optimization is conducted using stochastic gradient descent with momentum,
with a unitary batch size. In order to improve the network’s learning stage and to
overcome data limitations, two types of data augmentation are conducted. First,
perfusion specific data augmentation [20] is implemented at an image level, which
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allows mimicking AIF bolus delay arrivals and AIF peak concentration scaling.
Second, traditional segmentation data augmentation is used, including image
rotation, translation, flipping and random Gaussian noise addition.

2.3 Data and Experiments

The free and open ISLES18 database is used [9,12]. It consists of 4D CT per-
fusion series with ground truth core lesion delineations obtained from diffusion
weighted imaging (DWI). From the total amount of scans provided in the chal-
lenge (n = 156), only the training set (n = 94) includes ground truth data and
hence was used for our experiments. The dataset is multi-scanner and multi-
center, obtained from different institutions from the U.S. and Australia. All
provided images are already motion-corrected, co-registered for matching CTP
with DWI modalities, and spatio-temporally resampled (with 256 × 256 images
and 1 volume/second).

To compare our proposed method against the current clinical approach, an
expert provided manual AIF annotations for the entire ISLES18 training set.
A single global AIF was selected per case, following recommendations found in
the literature [4]. Moreover, our results are compared with the automatic AIF
selection approach included in icobrain cva (icometrix, Leuven, Belgium), an
FDA cleared CTP analysis software package. In both cases, the CTP images are
deconvolved with the chosen AIF. The same data preprocessing and deconvo-
lution algorithm of Sect. 2.1 are used. As such, any difference in results is only
caused by the AIFs themselves. rCBF maps are generated and the core lesions
are quantified. For all our experiments and methods a fixed threshold rCBF =
0.38 is used for defining the core lesions [5].

Since the dataset is already preprocessed, the preprocessing on our side is
limited to a spatio-temporal smoothing before the CTP data is deconvolved.
The method’s performance is assessed through 5-fold cross-validation. Results
are evaluated at parameter map and lesion segmentation levels. The discrimi-
nant power of the rCBF maps for differentiating healthy and necrotic tissue are
assessed through the area under the ROC curve (AUC). The lesion segmentation
is assessed by means of Dice and Jaccard indexes, 95% Hausdorff distance and
volumetric Bland-Altman analysis [3].

3 Results

Training of our model takes ∼2.5 h on an Nvidia K80 GPU with 12 GB dedicated
memory. During testing, the entire process of AIF selection, SVD deconvolution
and lesion quantification takes ∼1.15 s per case. On the other hand, the expert
annotation of an AIF takes around one minute per case.
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Fig. 2. Qualitative results. Top: rCBF maps; Bottom: Core-lesion segmentations.

In Fig. 2, the resulting rCBF maps generated with the different methods
are shown for an example case. The corresponding AIFs selected or generated
by these methods are included in the supplementary material. The automatic
algorithm yields results that are visually similar to the ones generated with
the expert AIF selection. However, our generated map better matches the DWI
ground truth lesions than both other approaches. When assessing the ROC AUC
values of rCBF for discerning healthy and necrotic tissue, our proposed method
shows better performance than the other methods (Table 1). In all segmentation
metrics the methods achieve comparable performance, with our new method
outperforming the others, but the differences are not statistically significant
(paired t-test).

Figure 3 shows the lesion volume quantification performance in Bland-
Altman plots. Volumetric overestimation is found for all methods when com-
paring with results reported by [5], which shows better agreement with ground
truth. This can be explained by their use of an extra Tmax criterion and
due to their use of a modified ground truth, that excluded tissue with a
low Tmax. The manual rater and the automatic AIF software yield compa-
rable results, with the expert annotations having the best agreement with
the ground truth (p-value non-statistically significant between these methods,

Table 1. Mean (standard deviation) of various segmentation metrics for the different
methods. rCBF: relative cerebral blood flow; AUC: area under the ROC curve; HD:
Hausdorff distance.

Method rCBF AUC Dice Jaccard 95% HD (mm)

Expert 0.856 0.353 (0.201) 0.233 (0.157) 54.136 (19.449)

Automatic AIF 0.856 0.351 (0.202) 0.232 (0.158) 55.015 (18.790)

Ours 0.868 0.359 (0.201) 0.238 (0.157) 53.747 (18.875)
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Fig. 3. Volumetric Bland-Altman plots. GT: Ground truth.

Mann-Whitney U test). Our approach shows a larger volumetric bias than these
methods, that was only statistically significant when compared with manual
results (p-value = 0.04 and p-value 0.09 when compared with manual and auto-
matic methods respectively, Mann-Whitney U test). The reason for our method’s
mismatch in segmentation and volumetric performance may be driven by the
optimized loss function. As explained in [2], soft Dice loss can lead to volumetric
bias.

4 Discussion and Conclusion

We present a neural network that regresses the AIF for CT perfusion analysis.
Unlike previous methods that aim to imitate the AIF selection of a human
rater, the training of our network requires no manual annotations. To this end,
we implement a differentiable SVD deconvolution, allowing the AIF generating
network to be optimized for generating the most discriminative rCBF maps with
reference to DWI images.

There are no previous studies that use CNNs to regress the AIF. Moreover,
we are first in applying SVD deconvolution differentiability for perfusion applica-
tions. Unlike previous works, our approach does not require manual annotations.
This is a crucial finding for devising automatic methods free from manual rater’s
influence. From a scientific point, it is interesting that our approach generates
the ‘best’ AIF: current guidelines for the manual selection of AIFs do not have
that guarantee.

Our experiments with the ISLES18 data yielded results matching expert
segmentation performance. The rCBF maps that we obtained are slightly more
informative for finding core-lesions than the ones an expert generates, as shown
in the ROC analysis. In all segmentation metrics considered our method is com-
parable to an expert or an FDA-cleared software.

In future work, we aim to work with extra datasets and incorporate additional
perfusion parameters. We currently only have 94 subjects and since each subject
corresponds to a single regression, we effectively have only 94 samples. We expect
that a larger dataset will further improve results. Similarly, additional data is
needed to increase confidence in the method’s performance.

This work only optimizes the rCBF map. In future work, we also intend
to optimize the Tmax parameter map (which is defined as argmaxtk(t)).
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Tmax estimation is crucial for the applicability of the method and for improv-
ing the lesion quantification since an increased Tmax is indicative for tissue at
risk. This will require finding a differentiable substitute for the argmax and a
ground truth for tissue at risk (e.g. the final infarct in patients that did not have
reperfusion).
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ton database: an open access repository for biomedical research and collaboration.
J. Med. Internet Res. 15(11), e245 (2013)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

11. Lin, L., Bivard, A., Krishnamurthy, V., Levi, C.R., Parsons, M.W.: Whole-brain
CT perfusion to quantify acute ischemic penumbra and core. Radiology 279(3),
876–887 (2016)

12. Maier, O., et al.: ISLES 2015-a public evaluation benchmark for ischemic stroke
lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)

13. Mlynash, M., Eyngorn, I., Bammer, R., Moseley, M., Tong, D.C.: Automated
method for generating the arterial input function on perfusion-weighted MR imag-
ing: validation in patients with stroke. Am. J. Neuroradiol. 26(6), 1479–1486 (2005)

14. Mouridsen, K., Christensen, S., Gyldensted, L., Østergaard, L.: Automatic selec-
tion of arterial input function using cluster analysis. Magn. Reson. Med.: Off. J.
Int. Soc. Magn. Reson. Med. 55(3), 524–531 (2006)



602 E. de la Rosa et al.

15. Murase, K., Kikuchi, K., Miki, H., Shimizu, T., Ikezoe, J.: Determination of arterial
input function using fuzzy clustering for quantification of cerebral blood flow with
dynamic susceptibility contrast-enhanced mr imaging. J. Magn. Reson. Imaging:
Off. J. Int. Soc. Magn. Reson. Med. 13(5), 797–806 (2001)

16. Murphy, B., Chen, X., Lee, T.Y.: Serial changes in CT cerebral blood volume
and flow after 4 hours of middle cerebral occlusion in an animal model of embolic
cerebral ischemia. Am. J. Neuroradiol. 28(4), 743–749 (2007)

17. Papadopoulo, T., Lourakis, M.I.A.: Estimating the Jacobian of the singular value
decomposition: theory and applications. In: Vernon, D. (ed.) ECCV 2000. LNCS,
vol. 1842, pp. 554–570. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45054-8 36

18. Peruzzo, D., Bertoldo, A., Zanderigo, F., Cobelli, C.: Automatic selection of arte-
rial input function on dynamic contrast-enhanced MR images. Comput. Methods
Programs Biomed. 104(3), e148–e157 (2011)

19. Rausch, M., Scheffler, K., Rudin, M., Radü, E.: Analysis of input functions from
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Synopsis: Perfusion imaging is crucial in acute ischemic stroke for quantifying
the salvageable penumbra and irreversibly damaged core lesions. As such, it helps
clinicians to decide on the optimal reperfusion treatment. In perfusion CT imaging,
deconvolution methods are used to obtain clinically interpretable perfusion parameters
that allow identifying brain tissue abnormalities. Deconvolution methods require
the selection of two reference vascular functions as inputs to the model: the arterial
input function (AIF) and the venous output function, with the AIF as the most
critical model input. When manually performed, the vascular function selection is
time demanding, suffers from poor reproducibility and is subject to the professionals’
experience. This leads to potentially unreliable quantification of the penumbra and
core lesions and, hence, might have negative impact on the treatment decision process.
In this work we automatize the perfusion analysis with AIFNet, a fully automatic and
end-to-end trainable deep learning approach for estimating the vascular functions.
Unlike previous methods using clustering or segmentation techniques to select vascular
voxels, AIFNet is directly optimized for the estimation of the vascular function,
which allows to better recognise the time-curve profiles. Validation on the public
ISLES18 stroke database shows that AIFNet approaches inter-rater performance for
the vascular function estimation and, subsequently, for the parameter maps and core
lesion quantification obtained through deconvolution. We conclude that AIFNet has
potential for clinical transfer and could be incorporated in perfusion deconvolution
software.

Contributions of thesis author: Manual annotation of the entire dataset. Prepro-
cessing of the dataset using in-house developed software. Exploration of different deep
learning models (architectures and optimization functions) targeting the problem.
Implementation of the proposed AIFNet deep learning architecture. Integration of
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AIFNet in a deep learning pipeline. Experiment design, planning and conduction.
Evaluation of results: performance analysis and statistical analysis. Comparison
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a b s t r a c t 

Perfusion imaging is crucial in acute ischemic stroke for quantifying the salvageable penumbra and irre- 

versibly damaged core lesions. As such, it helps clinicians to decide on the optimal reperfusion treatment. 

In perfusion CT imaging, deconvolution methods are used to obtain clinically interpretable perfusion pa- 

rameters that allow identifying brain tissue abnormalities. Deconvolution methods require the selection of 

two reference vascular functions as inputs to the model: the arterial input function (AIF) and the venous 

output function, with the AIF as the most critical model input. When manually performed, the vascular 

function selection is time demanding, suffers from poor reproducibility and is subject to the profession- 

als’ experience. This leads to potentially unreliable quantification of the penumbra and core lesions and, 

hence, might harm the treatment decision process. In this work we automatize the perfusion analysis 

with AIFNet, a fully automatic and end-to-end trainable deep learning approach for estimating the vas- 

cular functions. Unlike previous methods using clustering or segmentation techniques to select vascular 

voxels, AIFNet is directly optimized at the vascular function estimation, which allows to better recog- 

nise the time-curve profiles. Validation on the public ISLES18 stroke database shows that AIFNet almost 

reaches inter-rater performance for the vascular function estimation and, subsequently, for the param- 

eter maps and core lesion quantification obtained through deconvolution. We conclude that AIFNet has 

potential for clinical transfer and could be incorporated in perfusion deconvolution software. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Stroke is currently the second leading cause of mortality and 

the third leading cause of disability worldwide ( Stroke Unit Trial- 

ists Collaboration, 2013 ). In physio-pathological terms, it is defined 

as an ‘acute neurologic dysfunction of vascular origin with sudden 

(within seconds) or at least rapid (within hours) occurrence of symp- 

toms and signs corresponding to involvement of focal areas in the 

brain’ ( Force, 1989 ). Two main types of the disease can be recog- 

nised: ischemic and hemorrhagic, representing 85% and 15% of to- 

tal cases respectively ( Hinkle and Guanci, 2007 ). We focus on the 

ischemic case, where there is a shortage in the blood supply to the 

brain tissue, cutting the provision of oxygen and glucose. During 

the ischemic event, brain tissue might become necrotic (i.e., cells 

∗ Corresponding author. 

E-mail address: ezequiel.delarosa@icometrix.com (E. de la Rosa). 

are dead and the tissue is irreversibly damaged, known as core ) or 

in a hypo-perfused but salvageable state (i.e., tissue is at risk but 

could return to a healthy condition, known as penumbra ). 

1.1. Perfusion CT in acute ischemic stroke 

Acute ischemic stroke therapies rely on reperfusion techniques, 

where the main goal is to reestablish the blood flow supply in 

the affected territories by thrombolysis or thrombectomy. Identify- 

ing which patients might benefit from these treatments is critical 

for clinical decision making ( Campbell and Parsons, 2018; Albers 

et al., 2016 ). To this end, assessment and quantification of the core 

and penumbra tissues are required. In the acute scenario, com- 

puter tomography (CT) is the most widely used imaging technique, 

where perfusion CT (CTP) enables the determination of the core 

and penumbra areas. An iodinated contrast agent is intra-venously 

injected in the patient for 7–10 s, and continuous CT acquisition 

https://doi.org/10.1016/j.media.2021.102211 

1361-8415/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Contrast enhancement curves for different brain tissues. Left: a perfusion CT 

example from ISLES18. Right: Corresponding time curves at the indicated locations. 

Healthy and diseased brain areas have been identified through diffusion weighted 

imaging. The healthy and core time-curves are scaled by a factor of six for visual- 

ization. HU: Hounsfield units. 

is followed for around 50 s ( Fieselmann et al., 2011 ). As such, 4D 

data is generated, resulting in a brain volume imaged during the 

agent passage through the brain vessels and parenchyma. The pro- 

cess for evaluating brain tissue status is performed by firstly ob- 

taining parameter maps from the CTP time series and by later 

applying a tissue discrimination rule (mainly, thresholding). Typ- 

ical maps include cerebral blood flow (CBF), cerebral blood vol- 

ume (CBV), time to peak (TTP) and time to the maximum of the 

residue function (Tmax). It is worth saying that there is no gold

standard for quantifying perfusion metrics ( Lorenz et al., 2006 ), 

and all methods found in literature provide merely non-exact solu- 

tions. Experimental studies have shown that CBV and CBF discrim- 

inate ischemic and oligemic tissue with 90.6% and 93.3% sensitivity 

and specificity, respectively, when using histological measurements 

as ground truth ( Murphy et al., 2007 ). The most widely used meth- 

ods for CTP parameter map estimation are based on deconvolution 

( Konstas et al., 2009 ), which provides a solution to the indicator 

dilution theory described by: 

c tissue (t) = c art (t) � h (t) (1) 

where c tissue (t) represents the CTP contrast enhancement in a 

voxel of tissue, c art (t) is the contrast enhancement in the arter- 

ies (known as arterial input function, from now on ‘AIF’), h (t) 

is the flow-scaled residue function and � represents the convo- 

lution operator. The delay-invariant singular value decomposition 

deconvolution is the preferred technique for algebraically solv- 

ing Eq. (1) and it is widely implemented in software packages 

( Fieselmann et al., 2011; Konstas et al., 2009; Kosior and Frayne, 

2007; Kudo et al., 2010; Vagal et al., 2019 ). The method has been 

extensively validated in clinical practice, showing better perfor- 

mance compared to similar techniques ( Konstas et al., 2009; Fiesel- 

mann et al., 2011 ) like the maximum slope approach ( Konstas 

et al., 2009; Klotz and König, 1999 ), non-delay invariant decon- 

volution ( Østergaard et al., 1996a,b ), etc. Deconvolution methods 

require as input to the algorithm the CTP series and two vascu- 

lar functions: the AIF and the venous output function (VOF). These 

vascular functions are reference time-curves representing the con- 

trast concentration inlet and outlet to the tissue under consider- 

ation c tissue (t) . Fig. 1 shows an example case of vascular functions 

(i.e. AIF and VOF) and contrast enhancement curves for healthy and 

core tissue areas. In clinical practice the AIF and VOF are gener- 

ally selected by a radiologist, a time demanding and highly vari- 

able process that implies selecting in the CTP series the optimal 

candidate voxels. Frequently, a single voxel per vascular function is 

selected, which leads to low SNR curves. Voxel selection is, more- 

over, subject to the professionals’ training and experience, which 

not only introduces human bias ( Lorenz et al., 2006 ) but it may 

also affect CBF maps depending which side of the brain the AIF 

is chosen from ( Wu et al., 2003; Thijs et al., 2004 ). The AIF is so 

critical for generating accurate maps that very small changes in 

its shape and/or location may produce a profound effect over the 

generated maps ( Mlynash et al., 2005; Mouridsen et al., 2006 ). Be- 

sides, given the acute context of the disease, a fast voxel selection 

has to be performed. It has been shown that for every 30-minute 

delay in reperfusion, the probability of good outcome decreases by 

20% ( Khatri et al., 2014 ). Given these limitations, automatic, fast 

and reproducible core and penumbra quantification are highly de- 

sired. 

1.2. Automatic core and penumbra segmentation 

Automatic machine and deep learning approaches for core and 

penumbra quantification have been explored in two ways: 1) by 

direct parameter maps estimation and 2) by direct lesions seg- 

mentation. On one hand, automatic parameters maps estimation 

(i.e., bypassing deconvolution) was explored in ( McKinley et al., 

2018; Meier et al., 2019; Robben and Suetens, 2018; Ulas et al., 

2018a,b ). However, the main drawback of these methods is the 

fact that silv er standard maps obtained through deconvolution or 

other methods (e.g. compartmental models in the case of perfu- 

sion MRI) are approximated. Note that in these approaches there is 

also an AIF assumption behind the parameter maps ground truth. 

As such, these methods do not improve the perfusion gold stan- 

dard, but aim to reproduce it with a different model. On the other 

hand, direct lesion segmentation approaches use native CTP data 

with or without perfusion maps as model inputs. Thus, the neu- 

ral networks are used for finding a non-linear transformation from 

CTP and/or CBF, CBV, MTT and Tmax that estimates brain lesions. 

For instance, in ( Bertels et al., 2018 ) and ( Robben et al., 2020 ) di- 

rect lesion segmentation is conducted by only using CTP images. 

While the former work exploits contralateral brain information 

into a U-Net based architecture, the latter work includes metadata 

and vascular functions into a multiresolution DeepMedic-based 

( Kamnitsas et al., 2017 ) architecture. Other works include param- 

eter maps obtained through deconvolution as inputs to the model 

( Clèrigues et al., 2019; Abulnaga and Rubin, 2018; Song and Huang, 

2018; Wang et al., 2020 ). Similarly as in Bertels et al. (2018) , 

Clèrigues et al. (2019) exploit brain symmetry information with U- 

nets. Song and Huang (2018) and Wang et al. (2020) propose, in- 

stead, to synthesize pseudo diffusion weighted imaging (DWI) data 

to improve core lesion segmentation. While deep learning based 

approaches showed good overall performance, their main limita- 

tion is the poor model’s explainability and lack of quality control. 

Since these fully ‘black-box’ methods do not allow AIF or perfusion 

maps inspection, they preclude physicians to recompute the pa- 

rameter maps with a manually corrected AIF in clinically or tech- 

nically challenging cases. As such, the clinical transferability poten- 

tial of these models is limited. In this work we aim to automatize, 

instead, the well validated deconvolution process by the automatic 

selection of vascular functions. In this way, we avoid approximat- 

ing parameters that can be directly estimated through a physical 

model while also preserving explainability and quality control in 

clinical settings. 

1.3. Automatic vascular function selection 

Automatic vascular function selection has been explored for 

perfusion MRI in ( Murase et al., 2001; Mouridsen et al., 2006; 

Peruzzo et al., 2011; Shi et al., 2014; Shi and Malik, 20 0 0; Yin 

et al., 2015; Fan et al., 2019; Winder et al., 2020 ). These meth- 

ods mainly rely on clustering techniques, where fuzzy c-means 

( Murase et al., 2001 ), K-means ( Mouridsen et al., 2006 ), hier- 

archical clustering ( Peruzzo et al., 2011 ), gamma-variates based 

clustering ( Rausch et al., 20 0 0 ) and affine propagation clustering 

( Shi et al., 2014 ) were explored. Heuristic approaches have also 
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been traditionally used, where some rules are defined for finding 

the best-matching curve, such as in ( Mlynash et al., 2005; Rempp 

et al., 1994 ). Other techniques use normalized cuts ( Shi and Ma- 

lik, 20 0 0; Yin et al., 2015 ) and independent component analy- 

sis ( Calamante et al., 2004 ). Moreover, vascular function estima- 

tion using deep neural networks can be conducted through seg- 

mentation approaches aiming to detect arterial voxels candidates. 

Fan et al. (2019) proposed a deep learning segmentation approach 

for delineating AIF candidates in perfusion MRI. The method uses 

two independently optimized 3D CNNs for conducting arterial tis- 

sue segmentation: one extracting spatial information in the x −
y − z axis, and another one extracting temporal-information in the 

x − y − t axis (with t representing the temporal domain). After- 

wards, the networks’ results are merged using a late-fusion sup- 

port vector machine. More recently, Winder et al. (2020) proposed 

a binary output CNN for classifying arterial v s non-arterial vox- 

els in CTP and perfusion MRI. The AIF is then estimated by ge- 

ometrically averaging the most probable arterial voxels. Though 

segmentation or classification methods can identify potential good 

curves, they have some limitations: i) They require complete man- 

ual annotation of all “good-looking” voxel curves, which is very 

time demanding and ii) They could not always guarantee optimal 

AIF curve selection (for a possible definition of optimal AIF selec- 

tion, see Methods 3.1.2 ) since the algorithms are mainly optimized 

to perform selection based on spatial information rather than on 

time profiles. Segmentation methods may lead, for instance, to the 

undesired selection of noise-corrupted, low contrast enhanced or 

time delayed AIFs, which introduce errors in the deconvolution al- 

gorithms. In CTP imaging, however, vascular function selection is 

under-explored. Excepting the work of Winder et al. (2020) the few 

existing methods are mostly private and patented. Besides, most of 

the methods developed for perfusion MRI have not been validated 

for CTP. Despite perfusion CT and perfusion MRI having common 

working points, there are still technical differences that may affect 

the automatic selection of CTP vascular functions (such as lower 

tissue-density contrasts and lower SNR of CT compared to MRI). 

Moreover, additional challenges in CTP include overlapping den- 

sity distribution of bone, artifacts and calcifications with the iodine 

contrast. 

In this work we propose AIFNet, an end-to-end supervised con- 

volutional neural network devised for estimating vascular func- 

tions (i.e. AIF and VOF) in perfusion imaging. The model is easy 

to train and deploy given the minimal data annotation required, 

which can be as little as a single voxel per vascular function. 

AIFNet receives 4D CTP series as input and generates as output 

i) the estimated AIF and VOF curves and ii) a voxel-wise, inter- 

pretable probability map representing the voxelwise contribution 

to the estimated vascular signal. Unlike other approaches, AIFNet 

is optimized at a vascular function level, which helps the network 

to better learn the time-curve profiles. The method preserves clin- 

ical interpretability and also enables quality control of the selected 

AIF/VOF brain vasculature, thus enhancing its clinical transferabil- 

ity potential. Through an extensive analysis at signal, parameter 

maps and lesion quantification levels, we show that our method 

performs almost as good as manual raters on the open ISLES18 

acute stroke database. 

2. Methods 

2.1. Function estimation with deep learning 

AIFNet is a fully end-to-end deep learning approach for vascu- 

lar function estimation. It works by estimating a 3D probabilistic 

volume that represents the voxelwise contribution to the vascular 

signal. The advantage of having an averaged curve using multiple 

voxels lies on the higher function’s SNR as well as on the method 

robustness. The network receives as input the 4D perfusion se- 

ries x (t) and outputs the predicted arterial and venous functions 

as ˆ y (t) = AIF Net (x (t )) , being x (t ) = { x t ; t = 1 , 2 , . . . , T } with x t rep- 

resenting the sampled time point volumes of dimension M×N×Q . 

We want to find for the considered volume, its corresponding vas- 

cular functions (AIF and VOF, for simplicity not differentiated in 

the notation) represented by ˆ y (t) = { ̂  y t ; t = 1 , 2 , . . . , T } , where ˆ y t 
is the estimated signal at time t (in Hounsfield units). For find- 

ing ˆ y (t) , we represent each time point ˆ y t as a weighted average of 

all voxels of the volume x t at that t time point as: 

ˆ y t = 

Q ∑ 

q =1 

N ∑ 

n =1 

M ∑ 

m =1 

x t (m, n, q ) ∗ P v ol (m, n, q ) (2) 

where P v ol is the 3D probabilistic volume containing the voxelwise 

contribution to the vascular function and fulfilling: 

Q ∑ 

q =1 

N ∑ 

n =1 

M ∑ 

m =1 

P v ol (m, n, q ) = 1 (3) 

Our problem is hence confined to finding P v ol . With this aim, 

AIFNet receives as input native CTP series, and generates as out- 

puts P v ol and its associated vascular function. To find ˆ y t it is impor- 

tant to optimize the similarity of the shape rather than the ampli- 

tude. This is due to two facts: 1) the absolute contrast values of 

the AIF can be disregarded, since given the high partial volume 

effect in the arteries, the AIF is later recalibrated with the VOF 

( Fieselmann et al., 2011 ) (also see Section 2.4.1 ) and 2) a subop- 

timal deconvolution might occur by selecting delayed input func- 

tions. The penalty in the time domain is introduced by using Pear- 

son’s correlation as loss function as follows: 

L (y (t) , ̂  y (t)) = −
∑ T 

t=1 (y t − y )( ̂  y t − ˆ y ) 
√ ∑ T 

t=1 (y t − y ) 2 
√ ∑ T 

t=1 ( ̂  y t − ˆ y ) 2 
(4) 

where y (t) and ˆ y (t) are the ground truth and predicted vascu- 

lar functions with respective mean values y = 

1 
T 

∑ T 
t=1 y t and ˆ y = 

1 
T 

∑ T 
t=1 ˆ y t . 

2.2. Architecture 

AIFNet architecture is shown in Fig. 2 . It uses 3D convolutional 

layers for volumetric feature extraction, which are finally trans- 

lated into a probabilistic volume through a 3D softmax opera- 

tion. After finding P v ol , a voxelwise multiplication and 3D average 

pooling blocks are used for obtaining ˆ y (t) , by means of Eq. (2) . 

Each convolutional layer L k = { k = 1 , 2 , . . . , K} has 2 3+ k filters with 

a 3 × 3 × 3 kernel with exception of L 1 , which uses a 3 × 3 × 1 one 

with the aim of compensating the lower image resolution along 

the z-axis. The CTP time points are incorporated as channel infor- 

mation into the network. A fixed number of T time points are used 

for all scans. In our experiments we use a T equal to the smallest 

number of time points found among all scans. Rectified linear units 

are used as activation functions ( Krizhevsky et al., 2012 ). For map- 

ping the convolutional layers to a single probabilistic volume, we 

add an extra convolution block ( L out ) with only one filter in be- 

tween L K and the softmax operator. 

2.3. Training phase 

The network is optimized using stochastic gradient descent 

with momentum. A batch size of one sample is used. Regulariza- 

tion of the model is reached using a perfusion-specific data aug- 

mentation approach. 
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Fig. 2. AIFNet architecture. The CTP time points x t ( t = 1 , 2 , . . . , T ) are incorporated as channels in the network. All convolutional layers use 3 × 3 × 3 kernels except L 1 , 

which uses 3 × 3 × 1 . L k is the k − th convolutional layer (with k = 1 , 2 , . . . , K). Inside each feature block the number of channels used is indicated. P v ol is the probabilistic 

volume. The 3D average pooling block averages the volumetric information along the x − y − z axes, such that the predicted vascular function ˆ y (t) is a 1D vector of length 

T . 

2.3.1. Perfusion specific data augmentation 

We adapt the data augmentation strategy proposed in 

( Robben and Suetens, 2018 ) for working at an image level. Two 

perfusion specific phenomena are modelled: i ) the variability of 

the contrast bolus arrival, which depends on the injection proto- 

col and the patient’s cardiovascular system and ii ) the variability 

of the curve’s peak-to-baseline (PTB) values, which depends on the 

iodine concentration in the contrast agent. Bolus arrival changes 

are simulated by randomly shifting the time attenuation curves, for 

which the first or last CT volumes are replicated (late or early sim- 

ulated arrivals respectively). On the other hand, curve PTB changes 

are simulated in a three-step approach. Firstly, the pre-contrast av- 

eraged volume is subtracted from the perfusion series. Secondly, a 

random scaling is applied. Thirdly, the pre-contrast volume is re- 

added to the perfusion series. Uniform distributions are used for 

simulating the random time shifts and the random PTB scaling. 

2.4. Testing phase 

In the testing scenario, vascular function predictions are ob- 

tained by feeding the parametrized AIFNet model with the unseen 

CTP scans. The voxelwise multiplication and 3D average pooling 

blocks of AIFNet are performed over the full-length CTP perfusion 

series, with the aim of obtaining vascular function predictions that 

preserve the same number of time points as the native CTP scan. 

For VOF a signal recalibration step is also applied, as detailed be- 

low. 

2.4.1. VOF signal recalibration 

Our multiple signal averaging approach has the disadvan- 

tage of underestimating the VOF peaks. Since the VOF’s role in 

deconvolution-based perfusion analysis is to compensate for par- 

tial volume effect in the AIF by its recalibration, it is important that 

its PTB matches the same amplitude as single CTP candidate vox- 

els. Ideally, a suitable VOF curve has the highest PTB value among 

all venous voxel candidates. Therefore, we use a probabilistic vol- 

ume that encodes voxelwise contribution to the function estima- 

tion. Firstly, we generate a 3D volume encoding the voxelwise PTB 

values. Secondly, we scale this volume with P v ol in order to ob- 

tain probabilistic-weighted PTB values. The VOF is finally recali- 

brated with the maximal value found in the weighted PTB distri- 

bution. We prefer using weighted PTB instead of only considering 

P v ol , since the highest probability voxel of P v ol might have a low 

PTB, thus leading to an underestimation of the VOF PTB value. 

3. Experiments 

3.1. Data 

3.1.1. ISLES18 

The large public multi-center and multi-scanner ISLES18 dataset 

is used for our experiments ( Maier et al., 2017; Kistler et al., 2013; 

Cereda et al., 2016 ). It consists of 156 CTP acquisitions acquired 

from 103 acute stroke patients from three US centers and one Aus- 

tralian center. In the ISLES challenge, data is split into a train (94 

CTP volumes scanned from 63 patients) and a test (62 CTP volumes 

scanned from 40 patients) sets. The mismatch between patients 

and scans is due to the limited field of view of some scanners, 

which leads to two independent CTP acquisitions from different 

brain regions in some cases. We have directly accessed the clean 

and preprocessed data through the ISLES challenge site ( http:// 

www.isles-challenge.org/) . For each acquisition, CTP and DWI data 

were performed within 3 hours of each other. The open database 

provides CTP scans for the whole dataset and infarct core lesion 

masks (delineated in DWI images) for the training set only. Sub- 

jects having more than 50% of the DWI lesion with normal per- 

fusion at the moment of the CTP acquisition were excluded, as 

well as those subjects with bad quality of the baseline CTP data 

and/or with inappropriate image coregistration due to distortions 

( Cereda et al., 2016 ). CTP volumes have been motion corrected 

and coregistered for matching the DWI lesion masks. Finally, scans 

have been spatio-temporally resampled (with a 256 × 256 dimen- 

sion matrix and with a temporal resolution of one volume per sec- 

ond). For a more detailed description of this database the reader is 

referred to ( Cereda et al., 2016 ). 

3.1.2. Vascular function annotation 

All training and testing scans are in-house annotated by two 

independent raters (DR & EdlR). A single global AIF and VOF 

per scan is selected (i.e., functions are measured from a major 

artery/vein and used as global inputs for the tissue in the whole 

brain ( Calamante, 2013 )), where the following AIF time attenuation 

curves are preferred: i ) contralateral voxels to the affected area 

(rather than ipsilateral ones) ( Kealey et al., 2004; Calamante, 2013 ), 

ii ) Early bolus arrival AIF curves with a large and narrow peak 

enhancement ( Calamante, 2013 ) iii ) Curves with high contrast-to- 

noise ratio and, ideally, less affected by partial volume effect (qual- 

itatively assessed) ( Calamante, 2013 ). The best voxel candidate (fol- 

lowing the just mentioned criterion) among the anterior cerebral 

arteries, middle cerebral arteries, internal carotid arteries or the 

basilar artery are chosen as AIF. On the other hand, VOF curves 

are located in the superior sagittal, transverse or sigmoid sinuses, 

which are large vessels less affected by partial volume effect than 

other vessels. All vascular function annotations are provided as 

supplementary material. 
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Fig. 3. Vascular function metrics. FWHM: Full width at half maximum; PTB: Peak 

to baseline; T peak : Time at which the curve peak occurs. 

3.2. Performance assessment 

In order to evaluate the performance of AIFNet, we conduct a 

5-fold (train 70%, validation 10%, test 20%) cross-validation exper- 

iment using the annotations of rater #1. All training and testing 

cases of the ISLES18 database are used in this experiment. In each 

fold, the train set is used to parametrize the network, the vali- 

dation set to apply an early-stopping criterion (with the aim of 

avoiding overfitting) and the test set is independently used for pre- 

dicting unseen cases. For an in-depth evaluation of the proposed 

method, results are assessed at a signal, parametric map and le- 

sion quantification level. 

3.2.1. Vascular function 

Since there is no ground truth for the vascular functions we 

compare the predictions ˆ y (t) against the manual annotations y (t) 

of both the raters (from now on, we specifically refer to our 

method as ˆ y AIF Net (t) , to rater # 1 as y r1 (t) and to rater # 2 as 

y r2 (t) ). The agreement between y (t) and ˆ y AIF Net (t) is only com- 

puted over the time domain since the AIF absolute contrast val- 

ues rely on the VOF rescaling (see sections 2.3 and 2.4.1 ). To this 

end, we measure the time at which the curve peak occurs (namely 

T peak ), which should indicate potential time shifts of the predic- 

tions with respect to ground truth. Moreover, as a measure of 

the function’s width, we quantify the full-width at half-maximum 

(FWHM) interval. FWHM points are preferred to the curve’s on- 

set/offset since these are more difficult to measure and in many 

cases the offset point is missing. Besides, for evaluating the VOF 

recalibration strategy, we assess the whole signal agreement using 

mean squared error and the measured PTB values. All signal met- 

rics are illustrated in Fig. 3 . 

3.2.2. Parameter maps and lesion quantification 

Parameter maps (CBF, CBV, MTT, Tmax) are computed using the 

well known time-delay invariant singular value decomposition de- 

convolution. The method is the most commonly found in (clinical) 

software. Since deconvolution is a mathematically ill-conditioned 

problem, regularization techniques are necessary. We use Tikhonov 

regularization over the singular values under a Volterra discretiza- 

tion scheme ( Sourbron et al., 2007 ). Absolute and relative parame- 

ter maps are computed, where the relative ones are calculated by 

the voxelwise normalization of the absolute ones with the mean 

control tissue region value. Control tissue is defined as the region 

with normal perfusion (i.e., T max < 6 s ( Lin et al., 2016 )). 

To understand the impact of the vascular functions on the per- 

fusion metrics we compare the parameter maps (obtained through 

deconvolution) between the automatically and manually annotated 

vascular functions. The same deconvolution strategy is adopted in 

both cases. In this way we are sure that variations are only due 

to the vascular functions. The assessment of the method in terms 

of lesion quantification is conducted by comparing i ) the hypoper- 

fused and core masks obtained from CTP with automatically anno- 

tated vascular functions against the ones obtained using the curves 

labeled by the two experts and ii ) by comparing the obtained core 

masks against the ISLES18 DWI masks. Note that this latter com- 

parison is only done for the ISLES18 training set, since DWI lesion 

masks are not available for the test set. Hypoperfused tissue was 

defined as brain tissue with T max > 6 s ( Lin et al., 2016 ) and core 

tissue was defined within the hypoperfused area as rCBF < 38% (a 

cutoff previously found to be optimal by Cereda et al. (2016) ). 

3.2.3. Comparison with other methods 

Besides the comparison with the two manual raters, our 

method is compared with an unsupervised clustering AIF selec- 

tion approach ( Mouridsen et al., 2006 ) and with two similar CNNs: 

a regression and a segmentation network, both of them modi- 

fied versions of AIFNet. For having comparable deep learning ap- 

proaches, we keep the network’s architecture and configuration as 

close as possible to AIFNet. The same perfusion-specific data aug- 

mentation of Section 2.3.1 is used for both the segmentation and 

regression networks and a unitary batch size is used. The networks 

are tested following the same 5-fold cross-validation experiments 

used for AIFNet by assuring that for all the models the same train- 

validation-test splits are preserved. 

Unsupervised clustering AIF selection We use an in-house 

reimplementation of the unsupervised clustering approach of 

( Mouridsen et al., 2006 ). Firstly, non-arterial voxels are discarded 

using the area under the curve (with a threshold set at the 

90th percentile of candidates) and the roughness (defined as ∫ T 
0 [ C 

′′ (t )] 2 dt , with a threshold set at the 25 % most irregular can- 

didates) of each voxels’ time curve C(t) . Secondly, a two-steps K- 

means (with 5 clusters) is performed for separating other tissues 

and venous voxels from the arterial cluster. In each K-means iter- 

ation, the arterial cluster is selected as the one having lowest first 

moment of its mean curve. The final AIF is the mean curve with 

lowest first moment obtained after applying K-means twice. 

Regression AIFNet The regression CNN has been introduced by 

our group in ( de la Rosa et al., 2020 ). It consists of a 3D + 2D neu- 

ral network equipped with six convolutional layers with average 

pooling and with two fully connected layers at the end. The last 

fully connected layer is a 1D vector with same number of neurons 

as time points in the perfusion CTP and represents the vascular 

function prediction ˆ y Reg (t) . The 3D to 2D data transformation in 

the network is conducted by squeezing the z-axis information by 

means of average pooling. Homogenizing the z-axis dimension is 

required for dealing with the variable CTP coverage (varying be- 

tween 2 and 16 slices per scan). The 3D convolution kernels have 

dimension 3 × 3 × 3 and the 2D convolution ones have dimension 

3 × 3 . Unlike the original work where optimization was carried out 

with a segmentation loss for the core tissue, in this work the Pear- 

son’s correlation coefficient is preserved as loss function. The net- 

work is optimized with RMSprop gradient descent ( Hinton et al., 

2012 ). 

Segmentation AIFNet This network is fed with AIF binary masks 

as ground truth. It is similar to AIFNet by preserving the whole 

architecture except the voxelwise multiplication and 3D average 

pooling blocks (see Fig. 2 ). Besides, the last convolutional block 

( L out ) has two kernels followed by a softmax operation for conduct- 

ing background and foreground segmentation. For compensating 

the large class imbalance, this network is trained using weighted 

categorical cross-entropy as loss function and is optimized using 

stochastic gradient descent with momentum. The AIF is then esti- 
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Table 1 

AIF agreement among methods and rater # 1 for the AIF signals as a whole, as well as for their T peak and FWHM parameters. Pearson’s correlation coefficients are 

computed between pairs of AIF signals; the mean (standard deviation) and 5 th - 95 th percentile interval are provided. For the T peak and FWHM parameters, Pearson’s 

correlation coefficients and errors (in seconds) are reported across all scans as mean (standard deviation). y r1 (t) , y r2 (t) : AIF annotated by raters # 1 and # 2; ˆ y Kmeans (t) , 

ˆ y Seg (t) , ˆ y Reg (t) , ˆ y AIFNet (t) : AIF estimated with the K-means approach ( Mouridsen et al., 2006 ), with the regression CNN ( de la Rosa et al., 2020 ), with the segmentation 

CNN and with AIFNet, respectively; r: Pearson’s correlation coefficient; T peak : time at which the peak of the curve occurs; FWHM: full-width at half-maximum. P5 th : 

5 th percentile; P95 th : 95 th percentile. Paired significance tests are performed between AIFNet and the other approaches. ∗: p-value < 0.05; † : p-value < 0.01. The values 

in bold indicate the outperforming method for the metric under consideration. 

Signal T peak FWHM 

r r (P5 th , P95 th ) r Error [s] r Error [s] 

Inter-rater 0.971 (0.075) † (0.883, 1) 0.964 –0.14 (1.29) † 0.902 –0.08 (1.74) † 

y r1 (t) vs ˆ y Kmeans (t) 0.610 (0.315) † (–0.101, 0.955) 0.678 –5.37 (5.55) † 0.369 –1.95 (6.27) † 

ˆ y Seg (t) 0.677 (0.15) † (0.393, 0.897) 0.851 –3.95 (3.43) † 0.587 –4.43 (5.03) † 

ˆ y Reg (t) 0.837 (0.260) † (0.563, 0.986) 0.740 –0.30 (3.30) 0.419 –2.86 (3.65) † 

ˆ y AIFNet (t ) 0.965 (0.05) (0.838, 0.997) 0.940 –0.55 (1.75) 0.854 –0.89 (2.14) 

mated as the average function among the top ranked voxels, such 

that the AIF Pearson’s correlation is maximized. 

3.2.4. Statistical analysis 

For evaluating the vascular signals, Pearson’s correlation coeffi- 

cients are computed between pairs of signals and across all scans 

for the considered metrics (i.e. T peak , FWHM and PTB). Mean, stan- 

dard deviation and (5th, 95th) percentiles are provided. Addition- 

ally, to assess a potential bias of the different metrics, we compute 

the mean and standard deviation of the errors. The assessment of 

the parameter maps is performed using Pearson’s correlation co- 

efficients computed per scan within the brain masks (excluding 

background, skull, ventricles and vessels). Hypoperfused and core 

tissue segmentations are evaluated by comparing the CTP masks 

obtained by the different methods with the CTP masks obtained 

by the experts. Additionally, for the core tissue we compare the ex- 

perts and the different methods CTP masks with the ground truth 

DWI masks from ISLES18. The mean volume error and the mean 

absolute volume error are used for evaluating lesion volumetric 

agreement with the ground truth. The Dice coefficient is used as 

a general segmentation performance metric. In all cases, paired 

t-tests are performed after visual inspection of the data distribu- 

tions. Under the presence of non-normal distributions, outliers, or 

heteroskedasticity, a paired Wilcoxon-test is preferred. The signifi- 

cance level is set in all cases to α = 0.05. 

4. Results and discussion 

All models are trained on a machine with a Tesla K80 Nvidia 

GPU (12 Gb dedicated), with 64 gb RAM and an Intel Xeon E5- 

2686 v4 multiprocessor. The training stage takes ∼11 hours for an 

AIF/VOF model. Manual annotations take between 2 and 4 minutes 

for both functions per scan, depending on the number of slices of 

the volume. On the other hand, predictions take ∼6 seconds per 

each vascular function per scan. 

4.1. Signal agreement 

4.1.1. AIF 

Table 1 shows a summary of the different methods’ perfor- 

mance compared to rater # 1. Likewise, the comparison with rater 

# 2 is shown in Table S1 (supplementary materials). The automatic 

predictions of AIFNet obtain high agreement with both raters in all 

the metrics considered. There is an overall better agreement with 

y r2 (t) , even when the network is trained using the y r1 (t) anno- 

tations, suggesting good generalization at inter-rater level. When 

the entire vascular signal is evaluated, the method obtains Pear- 

son’s r values reaching the raters range. A slightly lower 5 th per- 

centile is observed in the agreement between ˆ y AIF Net (t) and y r1 (t) 

when compared with the inter-rater agreement. This discordance 

is, however, not found when comparing ˆ y AIF Net (t) with y r2 (t) , 

which obtains fully overlapping ranges with the inter-rater perfor- 

mance. The 95 th percentile obtained between AIFNet and the raters 

is, as expected, close to r = 1 but never reaching perfect agree- 

ment, due to the weighted multivoxel selection strategy proposed. 

When the method performance is assessed in terms of T peak , 

a high correlation with the manual annotations is found. It can 

be observed from the inter-rater comparison that the T peak an- 

notations of y r2 (t) are slightly delayed when compared with the 

ones of y r1 (t) . The AIF functions that AIFNet selects are on aver- 

age ∼ 0.5 seconds delayed when compared with the raters. This 

temporal trend toward delayed events explains the slight overall 

lower agreement between AIFNet and both raters. Similarly, the 

agreement that is obtained for the FWHM between AIFNet and the 

raters is slightly lower than the inter-raters level. The predicted 

FWHM windows are on average ∼ 1 second longer than the man- 

ual ones. These time differences found in T peak and FWHM with 

our method are below the temporal CTP resolution (one frame, 

the minimal possible). The main reason behind these differences 

is the flip side of the coin of the multivoxel selection strategy. 

Thus, vascular function estimation based on multiple voxels could 

not always provide the earliest bolus arrival with the highest and 

narrowest curves, but averaged values over the activated voxels. Se- 

lecting vascular functions with these characteristics is, hence, not 

always fully possible with our strategy, since generally a single or 

just a few voxels fulfill these requirements for AIF. 

The comparison of the different methods shows that AIFNet 

has a much better agreement with the raters than the other ap- 

proaches. While the segmentation CNN slightly outperforms the 

K-means method, the regression CNN outperforms both the seg- 

mentation CNN and the K-means approach ( Table 1 ). The regres- 

sion CNN not only correlates better with the raters at signal level 

but also localized with less delay T peak than these two other meth- 

ods. There are no statistically significant differences in the T peak 

errors of the regression CNN and the ones of AIFNet. An explana- 

tion to this observation could be in the optimized loss function: 

the regression network, likewise AIFNet, is optimized at the pre- 

dicted time-curve level instead of at the image spatial level (which 

is the case for the segmentation CNN). Another observation is that 

the segmentation CNN (which comprises almost the same archi- 

tecture as AIFNet but optimized with a segmentation loss) ob- 

tained a much worse performance than our proposal. The segmen- 

tation CNN fails in localizing properly the AIF peaks, and provides 

delayed and much wider curves. These results suggest that the 

used Pearson loss function enhances the task performance by i ) 

mostly activating arterial voxels with good AIF curves and by ii ) 

selectively discarding suboptimal arterial voxels whose AIFs are de- 

layed, highly noise-corrupted or with poor contrast enhancement. 

6 



E. de la Rosa, D.M. Sima, B. Menze et al. Medical Image Analysis 74 (2021) 102211 

Fig. 4. Predicted arterial input functions (AIF) on diverse quality ISLES18 scans. First image: a noise-free scan. Second image: a head-motion corrupted scan. Third image: an 

early bolus arrival scan (the pre-contrast increase signal is missing). Forth image: a truncated perfusion scan (the curve tale is missing). y r1 (t) , y r2 (t) : AIF annotated by raters 

1 and 2; ˆ y Kmeans (t) , ˆ y Seg (t) , ˆ y Reg (t) , ˆ y AIFNet (t) : AIF estimated with K-means ( Mouridsen et al., 2006 ), with the regression CNN ( de la Rosa et al., 2020 ), with the segmentation 

CNN and with AIFNet, respectively. 

Table 2 

VOF agreement between AIFNet and both the raters for the VOF signals as a whole, as well as for their T peak , FWHM and PTB parameters. Pearson’s correlation 

coefficients are computed between pairs of VOF signals; the mean (standard deviation) and 5 th - 95 th percentile interval are provided. For the T peak , FWHM and PTB 

parameters, Pearson’s correlation coefficients and errors (in seconds for T peak and FWHM and in Hounsfield units for PTB) are reported across all scans as mean 

(standard deviation). y r1 (t) − y r2 (t) : annotated VOF signals by raters # 1 and # 2; ˆ y AIFNet (t) : predicted VOF signals with AIFNet; r: Pearson’s correlation coefficient; 

MSE: Mean squared error; HU: Hounsfield units; T peak : time at which the peak of the curve occurs; FWHM: full-width at half-maximum; PTB: Peak-to-baseline; P5 th : 

5 th percentile; P95 th : 95 th percentile. A paired significance test is performed between the inter-rater results and the AIFNet-raters ones. ∗: p-value < 0.05; † : p-value < 

0.01. 

Inter-rater y r1 (t) vs ˆ y AIFNet (t) y r2 (t) vs ˆ y AIFNet (t) 

Signal 

r 0.985 (0.047) 0.981 (0.069) 0.983 (0.051) 

r (P5 th , P95 th ) (0.944, 1) (0.914, 0.999) (0.925, 0.999) 

MSE [HU] 1424 (3622) 1235 (2623) 1558 (3740) 

MSE (P5 th , P95 th ) (0, 7148) (17, 7024) (25, 8213) 

T peak 

r 0.980 0.955 0.963 

Error [s] 0.27 (1.14) –0.07 (1.69) † –0.33 (1.51) † 

FWHM 

r 0.829 0.827 0.911 

Error [s] 0.12 (2.28) –0.04 (2.42) –0.15 (1.74) 

PTB 
r 0.921 0.953 0.919 

Error [HU] 11 (55) 9 (44) –2 (58) 

In Fig. 4 , AIF predictions with the different methods over different 

quality scans are shown. As it can be seen, AIFNet closely follows 

the manual rater annotations even under challenging scenarios. 

4.1.2. VOF 

In Table 2 a summary of the performance of our method for 

VOF estimation is shown. A high agreement with the manual an- 

notations is obtained, which is better than the performance ob- 

tained for the AIF estimation. These results can be expected since 

VOF compared to AIF is less affected by partial volume effect, 

has higher SNR and hence provides lower inter-rater variability 

( Table 2 ). 

For all the considered metrics excepting T peak there are no sta- 

tistically significant differences between the inter-rater agreement 

and the AIFNet v s raters agreement. When the entire VOF sig- 

nals are considered, a high correlation with the manual annota- 

tions is achieved, reaching inter-rater variability ranges. In terms 

of T peak , a good performance is obtained though the same delay- 

ing effect previously described for AIF is found. In this case, how- 

ever, the delays are within the inter-rater range. For FWHM, the 

agreement between our method and rater # 2 is much higher than 

among raters. Unlike the AIF analysis, it is worth noticing that 

there is no flattening or widening of the VOF curves predicted with 

AIFNet. The evaluation of the recalibration strategy using the curve 

mean squared error and the PTB metric shows a high agreement 

and high correlation between AIFNet and the manual annotations 

reaching inter-rater ranges. In the assessment of the mean squared 

error, the inter-rater’s 5th percentile is zero, which implies that the 

raters have sometimes selected the exact same voxel. The evalua- 

tion of the PTB errors shows no clear trend of our method towards 

under/over-estimation of the VOF signals, suggesting a good overall 

performance of the recalibration strategy. 

4.1.3. Arterial localization 

The anatomical localization that AIFNet conducts can be as- 

sessed from the voxelwise activation encoded in P v ol . Unlike most 

AIF selection approaches selecting only few candidates, AIFNet al- 

lows multiple voxel contribution for building the vascular func- 

tions. 

In Fig. 5 the best and worst AIF (in correlations terms) among 

all predictions are shown. While the prediction with higher agree- 

ment achieves a Pearson’s r = 0.999 (left-side of the figure), the 

case with poorest agreement achieves an r = 0.674 (right-side of 

the figure). Both raters have chosen the same AIF voxel in the 

best performance scenario. In the top-left part of Fig. 5 it can be 

seen that just a few voxels are activated in the displayed CT slice, 

having high activation values. The AIF voxel selected by the raters 

( y r 1 ,r 2 (t) ) is also being activated by AIFNet, being the second high- 

est value of P v ol . Mainly voxels belonging to the anterior cerebral 

artery are chosen. Besides, the AIF that our method predicts fol- 

lows closely the raters’ function, with no observable delays and 

with almost no differences in the curves’ shape. On the other hand, 

localization results from the worst Pearson’s correlation case shows 

a different behaviour. Several voxels belonging to different arter- 

ies are enhanced by the network with a homogeneous activation 

distribution. The anterior cerebral artery and middle cerebral ar- 

teries are mainly selected. When assessing y r1 (t) and ˆ y AIF Net (t) , it 

is noticeable that the low Pearson’s r is driven by the time shift 

between the functions (which is 4 seconds measured at the curve 

peaks). In this case, AIFNet outperforms rater # 1 by estimating a 

vascular function with high agreement in morphology, which oc- 
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Fig. 5. Best (left) and worst (right) prediction performance in terms of Pearson’s correlation between AIF functions. Above, the voxels selected by rater #1 ( y r1 (t) ), rater #2 

( y r2 (t) ) and AIFNet ( ̂ y AIFNet (t) ) as arterial input functions. Below, their corresponding vascular function. Note that in the best performance case, both raters have chosen the 

exact same voxel as AIF. In the worst performance case, the selected voxel location for y r2 (t) is not shown since was annotated in a different volume slice. 

Table 3 

Parameter maps agreement among methods in terms of Pearson’s correlation. Mean (standard deviation) values are provided. Correlation has been computed per scan 

using all the voxels within the brain tissue (excluding background, skull, ventricles and vessels). y r1 : Parameter maps obtained after deconvolving the images with the 

AIF of rater 1; ˆ y Kmeans , ˆ y Seg , ˆ y Reg , ˆ y AIFNet : Parameter maps obtained after deconvolving the images with the AIF predicted with K-means ( Mouridsen et al., 2006 ), with the 

regression CNN ( de la Rosa et al., 2020 ), with the segmentation CNN and with AIFNet, respectively. CBF: cerebral blood flow; CBV: cerebral blood volume; MTT: mean 

transit time; T max : time to the maximum of the residue function. The values in bold indicate the outperforming method (in terms of Pearsons’ r) for each parameter 

map. 

Pearson’s r coefficient 

CBF CBV T max MTT 

Inter-rater 0.998 (0.016) 0.987 (0.157) 0.944 (0.086) 0.927 (0.204) 

y r1 vs ˆ y Kmeans 0.967 (0.098) 0.960 (0.274) 0.786 (0.217) 0.772 (0.291) 

ˆ y Seg 0.974 (0.118) 0.947 (0.315) 0.781 (0.237) 0.758 (0.310) 

ˆ y Reg 0.990 (0.027) 0.972 (0.160) 0.809 (0.179) 0.791 (0.253) 

ˆ y AIFNet 0.998 (0.007) 1.000 (0.003) 0.921 (0.094) 0.908 (0.188) 

curs much earlier than the manually selected one. We consider the 

annotation of rater # 1 suboptimal, probably because the voxel was 

chosen from an artery branch already affected by the occlusion. 

However, our prediction follows more closely y r2 (t) (Pearson’s r = 

0.980). There is no observable function delay between y r2 (t) and 

ˆ y AIF Net (t) , though a slightly wider FWHM can be appreciated for 

ˆ y AIF Net (t) . 

4.2. Parameter maps and lesion quantification 

The parameter maps correlation between rater #1 and the dif- 

ferent approaches is shown in Table 3 . Similar results are obtained 

when comparing the parameter maps with rater #2 (Table S2). Cor- 

relation values are computed for each scan within the brain tis- 

sue (excluding background, skull, ventricles and vessels). Among 

all the compared methods AIFNet obtains the best agreement with 

the rater for each of the parameter maps, showing consistency 

with the experts’ results. An outstanding agreement is observed 

between the raters and AIFNet for CBF and CBV, reaching inter- 

rater performance. For T max and MTT, however, the agreement is 

still high but marginally under the inter-rater performance. We 

hypothesize that the found lower consistency in these parameter 

maps could be driven by the ∼ 0.5 seconds delay in T peak and by 

the ∼ 1 second wider FWHM of AIFNet predictions. It is worth 

to notice that the other automatic AIF selection methods also ob- 

tained better performance for CBF and CBV than for T max and MTT. 

Parameter maps and lesion masks obtained with all methods are 

shown in Fig. 6 for the scan with median AIF Pearson correlation 

( y r1 vs ˆ y AIF Net comparison). There is a high qualitative correspon- 

dence between raters and AIFNet at all levels. It is also seen here 

that there is a better correspondence between rater # 1 and all au- 

tomatic AIF selection methods for estimating rCBF than estimating 

T max . 

In Fig. 7 the hypoperfused and core volumes between rater # 1 

and all the methods are shown. Likewise, the methods’ agreement 

with rater # 2 follows a similar pattern (please see the Supplemen- 

tary material, Fig. S1). In Table 4 (Table S3), the lesion volumes 

quantification performance is shown for all the methods when 
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Fig. 6. Estimated parameter maps and brain lesions for all the methods, obtained after deconvolving the CTP images with the annotated or predicted vascular functions. 

The shown example is the scan with median AIF Pearson correlation ( y r1 vs ˆ y AIFNet comparison). Hypoperfused tissue is obtained after thresholding T max < 6 s. Core tissue 

is obtained after thresholding the rCBF map at 38% over the entire hypoperfused region. y r1 , y r2 : Results obtained after deconvolving the images with the AIF of rater 1 

and rater 2; ˆ y Kmeans , ˆ y Seg , ˆ y Reg , ˆ y AIFNet : Results obtained after deconvolving the images with the AIF predicted with K-means ( Mouridsen et al., 2006 ), with the regression 

CNN ( de la Rosa et al., 2020 ), with the segmentation CNN and with AIFNet, respectively. rCBF: relative cerebral blood flow map; T max : time to the maximum of the residue 

function map. DWI: Ground truth delineated over DWI in ISLES18. 

Fig. 7. Lesion volume agreement among methods. y r1 , y r2 : Lesion volumes obtained after deconvolving the images with the AIF of rater 1 and rater 2; ˆ y Kmeans , ˆ y Seg , ˆ y Reg , 

ˆ y AIFNet : Lesion volumes obtained after deconvolving the images with the AIF predicted with K-means ( Mouridsen et al., 2006 ), with the regression CNN ( de la Rosa et al., 

2020 ), with the segmentation CNN and with AIFNet, respectively. 

9 



E. de la Rosa, D.M. Sima, B. Menze et al. Medical Image Analysis 74 (2021) 102211 

Table 4 

Brain l esion quantification performance for all the methods, obtained after deconvolving the CTP images with the manual and automatic vascular functions. Mean 

(standard deviation) values are provided. Hypoperfused tissue is obtained after thresholding T max < 6 s. Core tissue is obtained after thresholding the rCBF map at 

38% over the entire hypoperfused region. y r1 : Lesion volumes obtained after deconvolving the images with the AIF of rater 1; ˆ y Kmeans , ˆ y Seg , ˆ y Reg , ˆ y AIFNet : Lesion volumes 

obtained after deconvolving the images with the AIF predicted with K-means ( Mouridsen et al., 2006 ), with the regression CNN ( de la Rosa et al., 2020 ), with the 

segmentation CNN and with AIFNet, respectively. DWI: Agreement obtained when comparing the different CTP approaches with the diffusion weighted imaging ground 

truth provided in ISLES18. VE: Volume error; AVE: Absolute volume error. A paired significance test is performed between AIFNet and the other approaches. ∗: p-value 

< 0.05; † : p-value < 0.01. The values in bold indicate the outperforming method for the metric under consideration. 

Hypoperfused Core 

Dice [ % ] VE [ml] AVE [ml] Dice [ % ] VE [ml] AVE [ml] 

Inter-rater 91.7 (13.8) † 0.5 (13.5) † 6.3 (12.0) † 91.8 (14.1) † 0.1 (2.5) † 0.9 (2.3) † 

y r1 vs 

ˆ y Kmeans 48.3 (28.2) † –36.9 (174.3) 82.7 (157.8) † 58.3 (27.0) † –2.6 (55.2) † 13.3 (53.6) † 

ˆ y Seg 51.3 (19.4) † 26.5 (80.8) † 45.5 (71.8) † 61.9 (20.7) † 1.7 (53.9) † 12.0 (52.6) † 

ˆ y Reg 70.1 (23.4) † –78.5 (198.2) † 94.2 (191.3) † 72.3 (23.3) † –32.0 (136.4) 35.7 (135.5) † 

ˆ y AIFNet 87.3 (13.0) 8.8 (20.3) 12.7 (18.2) 88.3 (13.6) 0.5 (2.3) 1.3 (1.9) 

DWI vs 

y r1 38.3 (19.4) 6.8 (20.0) 14.3 (15.6) 

y r2 38.3 (19.5) 6.6 (20.2) † 14.2 (15.7) 

ˆ y Kmeans 31.5 (19.9) † 1.2 (72.9) † 25.1 (68.4) † 

ˆ y Seg 32.7 ( 19.0 ) † 12.7 (22.2) † 16.4 (19.6) ∗

ˆ y Reg 35.1 (19.8) ∗ –34.2 (154.3) † 52.6 (149.0) † 

ˆ y AIFNet 38.1 (19.5) 7.2 (20.5) 14.5 (16.2) 

compared with rater # 1 ( # 2). AIFNet consistently outperforms the 

other approaches (i.e., with statistically significant comparisons for 

almost all the core and hypoperfused metrics) and reaches a high 

agreement with the experts slightly below the inter-rater perfor- 

mance (there are statistically significant differences between raters 

and AIFNet as well). While the agreement with the raters for the 

core volumes is very high, a slight bias in the hypoperfused vol- 

umes can be appreciated, suggesting that AIFNet tends to under- 

estimate these tissue areas. This bias is a consequence of the AIF 

differences obtained with AIFNet (described in Section 4.1 ) that 

impact over T max . 

Furthermore, Table 4 compares the predicted core volumes with 

the ground truth DWI core masks. In this comparison, AIFNet 

closely follows the manual raters performance: except the volume 

error comparison between AIFNet and rater # 2, there are no statis- 

tically significant differences with the raters in the quantified met- 

rics. Our results suggests that AIFNet estimates the acute brain in- 

farcts as good as manual raters do. The core volume correlation 

between the different CTP methods and the DWI ground truth is 

depicted in Figure S2. When comparing the core CTP volumes of 

all the investigated approaches (raters and automatic algorithms) 

with the DWI ones, there are statistically significant differences 

for all the methods (p-values < 0.01, Wilcoxon test). Nonetheless, 

this cross-modality (i.e. CTP-DWI) performance evaluation should 

be carefully judged, since external source of errors are being in- 

troduced (such as brain perfusion changes due to time acquisition 

differences, modality co-registration errors, etc). These limitations 

in cross-modality correspondences explain the low overall Dice co- 

efficients even found for the raters in the CTP-DWI comparison. 

Overall, the parameter maps and lesion quantification analysis 

show that the small AIF differences found with AIFNet (mainly in 

T peak and FWHM) do not produce a large impact over the decon- 

volution process. The main observation related to these AIF dif- 

ferences is the bias found in the hypoperfused volumes, showing 

a trend in AIFNet to slightly underestimate this tissue. There are 

no important differences in the core predictions of AIFNet in com- 

parison to the ones of the manual raters. There are neither dif- 

ferences in the CTP-DWI core agreement: the raters and AIFNet are 

both equally consistent compared to the ISLES18 DWI ground truth. 

Overall, our analysis of the vascular functions, of the parameters 

maps and lesion volumes obtained after CTP deconvolution show 

that AIFNet obtaines state-of-the art performance in automatic AIF 

selection. The method almost behaves as a manual expert in all 

the considered deconvolution stages and its performance is close 

to the inter-rater one. 

4.3. Comparison with other methods 

The comparison of different AIF selection methods shows that 

our innovative CNN is the most suitable approach among the in- 

vestigated ones for performing the task. Unlike AIFNet, the other 

automatic algorithms predict AIFs that consistently compromise 

the parameter maps quality and, hence, the estimation of the brain 

lesions. We also observe that our method can robustly work under 

challenging perfusion cases, as shown for different quality scans in 

Fig. 4 . 

The K-means method ( Mouridsen et al., 2006 ) shows several 

limitations and provides a large performance variability among the 

computed AIFs (large standard deviations of the AIF metrics). These 

results could be expected since the method has been originally 

devised for perfusion MRI, which accounts with higher signal-to- 

noise ratio and smoother perfusion curves than CTP. As such, the 

AIF unsupervised clustering might better perform in perfusion MRI 

than in CTP. The results from the segmentation CNN show similar 

performance to the K-means method and, as such, worse than the 

AIFNet performance. Our approach not only shows to be quanti- 

tatively better than the segmentation CNN, but also provides the 

advantage of requiring minimal data labels: while classification or 

segmentation approaches would ideally annotate most of the tar- 

get class samples for their training, AIFNet can be trained with 

a single voxel annotation. It is worth reminding the reader that 

the only difference between the segmentation CNN and AIFNet is 

the optimized loss function. The segmentation network works at 

a spatial level by recognising similar anatomical/shape areas to 

the target class, but it fails in selecting good AIF candidate vox- 

els. We show that the AIF selection task is consistently improved 

when the network learns from the predicted AIF (as happens with 

the proposed Pearson correlation loss) rather than from the se- 

lected voxels only, as happens when using segmentation loss func- 

tions. While arterial voxels can be extremely similar in terms of 

density values, localization and/or anatomical context, their per- 

fusion curves can differ significantly. As such, segmentation-based 

methods can misleadingly activate arterial voxels whose perfusion 

curves are suboptimal. These findings are also supported by the 

better results obtained with the regression CNN (whose training 

loss is also the Pearson correlation, as for AIFNet) compared to 
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the segmentation CNN. Nonetheless, the regression CNN results are 

much worse than the ones of our method. Moreover, fully AIF re- 

gression CNNs as earlier proposed in ( de la Rosa et al., 2020 ) have 

some drawbacks. First, from a qualitative point of view, the model 

does not provide voxelwise arterial localization, making it less in- 

terpretable than other approaches and less transferable to clinical 

settings. Second, the model requires that the scans’ duration is ho- 

mogeneous. As such, truncation artifacts might be introduced dur- 

ing this process ( Kasasbeh et al., 2016 ). It is interesting to observe 

that AIFNet overcomes the segmentation and regression CNN lim- 

itations by working as a hybrid segmentation-regression network. 

Its architecture allows voxelwise activation and selection like most 

segmentation approaches, but its optimization is performed like a 

regression CNN, which shows to enhance the performance. In other 

words, AIFNet explores the advantages of segmentation and regres- 

sion models for improving the AIF estimation. 

Another successful deep learning approach for AIF selection has 

been presented by Winder et al. (2020) . Similar to AIFNet, the ap- 

proach achieves close agreement with the manual raters in the 

selection of AIF and in the estimated perfusion lesions. The ap- 

proach differs from AIFNet in several ways. First, the CNN is a 1D 

model receiving as input single voxel perfusion curves (i.e., there 

is no spatial/contextual information considered but only temporal 

information). Second, the method is a binary classifier CNN (AIF 

v s all-the-rest) and hence it is optimized with a classification loss 

function. Third, the method estimates the AIF by means of a so- 

phisticated geometric averaging approach. It is worth noting that 

both the methods (AIFNet and ( Winder et al., 2020 )) avoid delayed 

AIF curves in different ways. On one hand, ( Winder et al., 2020 ) 

isolates potential AIF candidates with the classification CNN and 

then corrects the time curves with the geometric averaging tech- 

nique. On the other hand, our proposal discards delayed AIF candi- 

dates by restricting the CNN learning through a suitable loss func- 

tion. Some advantages on the usage of AIFNet over the work of 

Winder et al. (2020) are i ) the number of manual annotations re- 

quired for the model training (around < 20 times labeled data), ii ) 

almost no pre-processing required, iii ) the automatic selection of 

the number of voxels to average (which is a parameter to set in 

( Winder et al., 2020 )) and i v ) its full end-to-end framework, which 

makes our approach easier and faster to deploy. 

4.4. Ablation analysis 

We ablate our network for finding the optimal architecture 

and training strategy for computing ˆ y AIF Net (t) . The ablation is con- 

ducted for the AIF since it is the most critical input to the decon- 

volution model and it is much more difficult to estimate than the 

VOF. These experiments are performed using the original train-test 

data split of the ISLES18 challenge ( n train = 94, n test = 62). For 

training purposes we randomly exclude 10% of the training data 

and use it as validation set, assuring that in all the ablation exper- 

iments the same train-validation-test sets are used. 

Results for the ablation analysis are shown in Table 5 . Our ex- 

periments show that K = 5 convolutional layers are optimal for AIF 

prediction. The usage of less convolutional blocks leads not only to 

lower mean performance but also to higher variability. Besides, re- 

sults do not improve when considering more than K = 5 convolu- 

tional layers. It is worth to point out the considerable improvement 

in robustness when problem-specific data augmentation is consid- 

ered for training the models. Overall, a much higher 5 th percentile 

is obtained with rather than without data augmentation, showing 

better generalization over challenging cases. For VOF prediction, K

= 2 convolutional layers are enough to estimate the function at 

inter-rater performance. Thus, less features are required for find- 

ing good VOF voxel candidates. These results are expected given 

the higher task difficulty for selecting AIF over VOF, as shown in 

Table 5 

AIFNet ablation performance. K : Number of convolutional layers in the CNN. 

Given GPU memory constrains, the AIFNet experiment with K = 6 is conducted 

with 2 2+ k kernels per layer instead of 2 3+ k (such as the first layer has 8 ker- 

nels and the sixth one 256). DA: Data augmentation; std: Standard deviation; 

Perc: Percentile. The values in bold indicate the outperforming approach for the 

metric under consideration. 

AIFNet #Layers (K) Pearson’s r 

Mean (std) (5th, 95th Perc) 

3 4 5 6 DA 

x 0.943 (0.133) (0.661, 0.999) 

x 0.947 (0.107) (0.669, 0.999) 

x 0.950 (0.088) (0.694, 0.999) 

x 0.946 (0.094) (0.682, 0.999) 

x x 0.957 (0.057) (0.870, 0.999) 

Tables 1 and 2 , where a better agreement between raters is shown 

for VOF than for AIF. 

4.5. Limitations and future perspectives 

A limitation of this work is the lesion ground truth used, since 

currently there is no gold standard for the penumbra and for the 

ischemic core. We use, as provided in ISLES18, the core masks de- 

lineated in DWI. However, the acquisition delay between CTP and 

DWI imaging may introduce ischemic core modifications. Another 

source of mismatch between the imaging modalities might be in- 

troduced by the reperfusion therapy, since reversal of the DWI le- 

sion may happen after reperfusion ( Campbell et al., 2012 ). Even 

more, mismatch errors could also appear during the cross-modality 

image registration. Consequently, a full correspondence between 

CTP and DWI core lesions is unlikely to happen. In our experi- 

ments, this mismatch could explain the statistically significant dif- 

ferences found when comparing all CTP volumetric core predic- 

tions (from raters and AIFNet) against the delineated DWI ground 

truth. For a better understanding of the different methods’ perfor- 

mance, we include a CTP-CTP analysis by considering as hypoper- 

fused and core ground truth the volumes obtained by using the 

manual rater annotations in the CTP deconvolution. In such a way, 

the aforementioned cross-modality limitations are no longer affect- 

ing the analysis. 

As future perspectives for this work we could consider the vali- 

dation of AIFNet over a larger database, as well as over other imag- 

ing modalities, such as perfusion MRI and PET images. Given the 

challenging task behind vascular estimation over CTP, we expect 

the method to be easy to adapt to images of better quality (such 

as MRIs). Exploring whether the technique is generalizable to other 

organs and pathologies where perfusion analysis is used (such as 

in brain tumors, myocardial infarction, etc.) also constitutes poten- 

tial research lines. 

5. Conclusions 

We have presented AIFNet, a new automatic method for vas- 

cular function estimation in brain perfusion imaging. It is devel- 

oped and validated over the public ISLES18 database, which con- 

sists of stroke perfusion CT cases. To our knowledge, this is one 

of the first automatic methods described in literature fully de- 

veloped and validated over perfusion CT data. Most of the ap- 

proaches previously described have been devised and tested over 

perfusion MRI instead. For tackling the problem, we make use of 

a fully end-to-end trainable CNN, that is optimized for the pre- 

diction of vascular functions. We exploit prior knowledge by per- 

forming modality-specific data augmentation during the training 

stage. Our approach consistently differs from the previous ones, 
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which mainly rely on clustering or statistical techniques. Addition- 

ally, most of these techniques require the definition of a decision 

rule (mainly a cutoff) for selecting the optimal voxels, a strategy 

that might be dataset-dependent and, hence, requires parameters 

tuning. Unlike these methods, we present a non-heuristic function 

estimation strategy that combines information from multiple vox- 

els by means of a 3D probabilistic volume. AIFNet allows arterial 

localization and, hence, clinical interpretability. The method is eas- 

ier to train and deploy compared to other approaches due to its 

architecture and due to the minimal voxel annotations required 

as ground truth (one single voxel per vascular function and per 

scan is enough to parametrize the network). As a consequence, the 

database labeling process is very fast. This is a clear advantage of 

AIFNet when compared against segmentation approaches, since the 

latter are more time consuming by requiring a vessel region anno- 

tation and multiple vascular functions checks. We show, as well, 

that using a suitable loss function enhances the task performance. 

After validating AIFNet in the ISLES18 dataset, the method outper- 

formed existing methods and achieved results close to the inter- 

rater agreement, being able to make predictions of vascular func- 

tions, parameter maps and perfusion lesions with similar perfor- 

mance as human experts. Besides, the approach shows to be robust 

under poor quality-scan scenarios. Our results suggests that AIFNet 

could be implemented in clinical scenarios and, hence, could po- 

tentially be included in future brain perfusion deconvolution soft- 

ware. For better reproducibility and direct comparison against fu- 

ture methods, we provide both raters’ vascular annotations as sup- 

plementary material. 
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5.3 Detecting CTP Truncation Artifacts in Acute

Stroke Imaging from the Arterial Input and

the Vascular Output Functions
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Robben
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Synopsis: Background : Current guidelines for CT perfusion (CTP) in acute stroke
suggest acquiring scans with a minimal duration of 60-70 s. But even then, CTP
analysis can be affected by truncation artifacts. Conversely, shorter acquisitions are
still widely used in clinical practice and may, sometimes, be sufficient to reliably
estimate lesion volumes. We aim to devise an automatic method that detects scans
affected by truncation artifacts. Methods: Shorter scan durations are simulated
from the ISLES’18 dataset by consecutively removing the last CTP time-point until
reaching a 10 s duration. For each truncated series, perfusion lesion volumes are
quantified and used to label the series as unreliable if the lesion volumes considerably
deviate from the original untruncated ones. Afterwards, several features from the
arterial input function (AIF) and the vascular output function (VOF) are derived and
used to fit machine-learning models with the goal of detecting unreliably truncated
scans. Methods are compared against a baseline classifier solely based on the scan
duration, which is the current clinical standard. The ROC-AUC, precision-recall
AUC and the F1-score are measured in a 5-fold cross-validation setting. Results:
The best performing classifier obtained an ROC-AUC of 0.982, precision-recall AUC
of 0.985 and F1-score of 0.938. The most important feature was the AIFcoverage,
measured as the time difference between the scan duration and the AIF peak. When
using the AIFcoverage to build a single feature classifier, an ROC-AUC of 0.981,
precision-recall AUC of 0.984 and F1-score of 0.932 were obtained. In comparison,
the baseline classifier obtained an ROC-AUC of 0.954, precision-recall AUC of 0.958
and F1-Score of 0.875. Conclusions : Machine learning models fed with AIF and VOF
features accurately detected unreliable stroke lesion measurements due to truncated
CTP acquisitions. The AIFcoverage was the most predictive feature of truncation and
identified unreliable short scans almost as good as machine learning. We conclude that
AIF/VOF based classifiers are more accurate than the scans’ duration for detecting
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truncation. These methods could be transferred to perfusion analysis software in
order to increase the interpretability of CTP outputs.

Contributions of thesis author: Preprocessing of the data using in-house perfusion
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Quantification of the data-features used in the proposed algorithm. Experiment design,
planning and conduction. Evaluation of results: performance analysis and statistical
analysis. Comparison against different machine learning approaches. Manuscript
writing.
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use, distribution, and reproduction in any medium, provided the original author and
source are credited.
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Abstract

Background

Current guidelines for CT perfusion (CTP) in acute stroke suggest acquiring scans with a

minimal duration of 60-70 s. But even then, CTP analysis can be affected by truncation arti-

facts. Conversely, shorter acquisitions are still widely used in clinical practice and may,

sometimes, be sufficient to reliably estimate lesion volumes. We aim to devise an automatic

method that detects scans affected by truncation artifacts.

Methods

Shorter scan durations are simulated from the ISLES’18 dataset by consecutively removing

the last CTP time-point until reaching a 10 s duration. For each truncated series, perfusion

lesion volumes are quantified and used to label the series as unreliable if the lesion volumes

considerably deviate from the original untruncated ones. Afterwards, nine features from the

arterial input function (AIF) and the vascular output function (VOF) are derived and used to

fit machine-learning models with the goal of detecting unreliably truncated scans. Methods

are compared against a baseline classifier solely based on the scan duration, which is the

current clinical standard. The ROC-AUC, precision-recall AUC and the F1-score are mea-

sured in a 5-fold cross-validation setting.

Results

The best performing classifier obtained an ROC-AUC of 0.982, precision-recall AUC of

0.985 and F1-score of 0.938. The most important feature was the AIFcoverage, measured as

the time difference between the scan duration and the AIF peak. When using the AIFcoverage

to build a single feature classifier, an ROC-AUC of 0.981, precision-recall AUC of 0.984 and

F1-score of 0.932 were obtained. In comparison, the baseline classifier obtained an ROC-

AUC of 0.954, precision-recall AUC of 0.958 and F1-Score of 0.875.
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Conclusions

Machine learning models fed with AIF and VOF features accurately detected unreliable

stroke lesion measurements due to insufficient acquisition duration. The AIFcoverage was the

most predictive feature of truncation and identified unreliable short scans almost as good as

machine learning. We conclude that AIF/VOF based classifiers are more accurate than the

scans’ duration for detecting truncation. These methods could be transferred to perfusion

analysis software in order to increase the interpretability of CTP outputs.

Introduction

Treatment decision making in acute ischemic stroke is mostly guided by computed tomogra-

phy (CT) imaging, as the technique allows to answer (at least) four crucial questions regarding

the patient brain’s condition: 1) Is there hemorrhage? 2) Is there any thrombus that could be

targeted? 3) Is there already irreversibly damaged tissue (a.k.a. core)? 4) Is there salvageable tis-

sue (a.k.a. penumbra, tissue at risk but potentially recoverable)? [1]. While the first two ques-

tions can be answered with non-contrast CT and CT angiography, respectively, the last two

questions are typically addressed through CT perfusion (CTP). CTP is of major importance

for neuroradiologists as it allows the identification of patients that could benefit from recanali-

zation therapies [2]. In this context, distinguishing potentially salvageable brain tissue from

already necrosed areas drive the therapheutical decision making.

In clinical routine, CTP post-processing software is used to estimate perfusion maps

and to quantify perfusion lesion volumes. The perfusion maps used in acute ischemic

stroke are derived from the CTP contrast attenuation curves and are cerebral blood vol-

ume, cerebral blood flow (CBF), mean transit time and time to the maximum of the residue

function (Tmax). There exist several different techniques implemented in clinical and/or

research software packages to estimate these perfusion metrics. Among the most widely

used are the Fourier transform and the delay-invariant singular value decomposition

deconvolution techniques using time-shift [3] or block-circulant approaches [4, 5]. Inde-

pendently of their functioning, the end goal of CTP software packages is the accurate quan-

tification of perfusion maps and, consequently, the reliable volumetric quantification of

the brain lesions. Despite the vast adoption of CT perfusion software in clinical routine,

there are well known and persistent pitfalls of these techniques that hamper the brain lesion

quantification and hence their interpretation, as described in [6–9]. This work focuses

on the so called truncation of the time attenuation curves, which could be defined as the

early ending of the CTP acquisition that precludes the entire capture of the tissue perfusion

phases [8].

CTP truncation artifacts have extensively been observed in previous works [10–17] and are

related to several sources: i) the type of deconvolution used to process the CTP images, ii) the

biological and physiological variability of the patients (e.g. patient size and the cardiac output

alter the contrast delivery through the brain [16]), iii) physiopathological conditions that pro-

long the contrast-agent passage through the affected tissue, which happens in the hypoper-

fused tissue due to the ischemic occlusion [10, 13] or in patients with severe intracranial

vascular narrowing or multiple intracranial emboli [6], and iv) the contrast injection and CTP

acquisition protocols (e.g. contrast injection rate, the pre-contrast scanning duration, synchro-

nization between contrast injection and acquisition, etc.).
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As described in practical acute stroke imaging recommendations, the CTP analysis

should include a quality control step that checks for complete acquisition of the perfusion

curves including both the contrast agent wash-in and wash-out phases [8, 9, 18]. Visual iden-

tification of truncated AIF/VOF and/or time attenuation curves has been conducted in

previous studies [14, 15]. Despite the fact that visual quality control could easily detect trun-

cated perfusion curves, it is not straightforward to understand the implications of such

curves truncations over the quantified lesion volumes. Thus, finding whether the truncation

effects are strong enough to considerably perturb the quantified perfusion volumes could

only be assessed through quantitative analyses. A major step in understanding the quantita-

tive impact of truncation artifacts over the perfusion maps was done in [16]. The work

showed that truncation artifacts depend on the truncation degree and affect the perfusion

metrics differently depending on the used deconvolution algorithm. Moreover, the CTP

truncation effects over the brain lesion volumes were studied in [17]. The authors found that

a 60 second scan duration is enough to avoid volumetric errors in 95% of their analyzed

scans. These results have later been adopted as a practical recommendation for the imple-

mentation of CTP in acute stroke [18]. In clinical routine, however, different centers or

scanner operators make use of post-processing software from different vendors (and with

diverse deconvolution algorithms), as well as different contrast injection and CTP acquisi-

tion protocols. Shorter acquisitions are frequently adopted by centers in order to reduce the

exposure of the patient to ionizing radiation under the ALARA (i.e. as low as reasonably

achievable) principle. Based on these considerations, it is possible that scans with shorter

than 60 second scan duration could reliably estimate lesion volumes while scans with differ-

ent characteristics could suffer from truncation errors even while having a 60–70 second

acquisition duration.

In this work we propose a tool for the automatic identification of unreliable perfusion

volumes due to insufficient scan duration. Our proposal makes use of simple and easy to

extract features derived from the vascular perfusion curves (i.e. the arterial input function,

AIF, and the vascular output function, VOF). Experiments on the public ISLES’18 dataset

show that truncation artifacts impact the perfusion-derived features, hence allowing their

identification with machine learning models. The proposed approach increases the

interpretability of acute ischemic stroke outputs obtained in clinical practice with CTP post-

processing software.

Materials and methods

Data

The ISLES’18 dataset is used for our experiments [19, 20]. The database is multi-center and

multi-scanner and includes 156 CTP scans obtained from 103 acute stroke patients. For our

experiments, we have used the preprocessed scans from the ISLES 2018 challenge (http://

www.isles-challenge.org/). The CTP volumes have been motion corrected, coregistered and

spatio-temporally resampled (256 × 256 matrix, 1 volume per second). A full dataset descrip-

tion can be found in [19].

Simulating shorter CTP scans

We simulate shorter CTP scan durations by repeatedly discarding a 1 second timepoint from

the end of the series until reaching the 10 first seconds of it. Note that the number of truncated

simulated series varies from scan to scan, depending on its original total duration.
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CTP post-processing

Each truncated CTP series is analyzed using a research version of icobrain cva 1.4.1 (icome-

trix, Leuven, Belgium), an FDA-cleared and CE-marked software for acute stroke CTP post-

processing. Each truncated series is processed using experts’ manually annotated vascular

functions available in [21]. Please note that the manual AIF/VOF does not change location for

all shorter versions of a same scan. The vascular functions from each truncated scan are

retained for the subsequent experiments.

Perfusion maps (Tmax, CBF, cerebral blood volume and mean transit time) are obtained

through delay-invariant singular value decomposition deconvolution. Absolute and relative

CBF maps are computed, where the relative rCBF map is obtained after normalization of the

absolute one using mean control tissue values. Control tissue is defined by the software as

Tmax < 6s [22]. Quantification of the hypoperfused and core lesion volumes is automatically

obtained by the software using Tmax > 6s [22] and rCBF < 0.38 (within the hypoperfused tis-

sue area), respectively. The used rCBF cutoff (which is set in the software just for the purpose

of these experiments) has been identified as optimal for the ISLES’18 dataset [19].

Defining truncation artifacts

In order to label each shorter scan version as reliable or unreliable (i.e., considerably suffering

from truncation artifacts), we first check that the original unshortened scan does not already

suffer from truncation artifacts. As such, scans are labeled to be stable if truncation of the final

6 frames or less did not impact the computed volumes by more than 2.5 ml [17]; otherwise,

scans are labelled as unstable ones. For our experiments, all unstable scans have been discarded

from further analyses.

The truncated series from all stable scans are labelled as reliable if the corresponding hypo-

perfused and core volumes deviated< 10% or< 5 ml from the untruncated volume estimates.

Otherwise, the truncated scan (and all its shorter versions) are labelled as unreliable. Scans

with a stable hypoperfused lesion smaller than 5 ml are excluded from the analysis as their reli-

ability can not be trusted. Besides, for each CTP series, the optimal scan duration (OSD) is

defined as the shortest scan duration providing reliable volume estimates. Fig 1 shows a stable

CTP scan example with its corresponding reliability truncation labels.

Machine learning for CTP truncation detection

Machine learning algorithms have been widely used to assess the quality of medical images

[23–25]. We explore different machine learning models that could detect unreliably truncated

scans by solely using information extracted from the vascular functions. The benefits of using

the AIF and VOF to detect truncation artifacts are two-fold. First, the perfusion curves are

always available in this imaging modality. Second, as they cover the entire perfusion event

(note that these curves represent the contrast concentration inlet and outlet to the brain), they

contain rich information for the problem under study. Consequently, it is needed to extract

meaningful perfusion features that are impacted by an insufficient scan duration and that are,

also, predictive of the truncation artifacts. Those features should capture the perfusion phases

of the contrast-agent wash-in and wash-out and, ideally, they should be unaltered by the differ-

ent CTP protocols used in clinical routine.

Feature extraction. All the explored machine learning algorithms are fed with the follow-

ing 9 AIF/VOF derived features:

• Scan duration

• AIF/VOF time to the peak of the function (argmax{AIF}, argmax{VOF})

PLOS ONE Detecting CTP truncation artifacts in acute stroke imaging
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• The AIF/VOF coverage, defined as the time difference between the peak of a signal and the

scan duration:

* AIFcoverage = scan duration—argmax{AIF}

* VOFcoverage = scan duration—argmax{VOF}

• AIF/VOF upward and downward contrast increase

* AIFUCI = AIFt=argmax{AIF}—AIFt=0

* AIFDCI = AIFt=argmax{AIF}—AIFt=scan duration

* VOFUCI = VOFt=argmax{VOF}—VOFt=0

* VOFDCI = VOFt=argmax{VOF}—VOFt=scan duration

All features are visually represented in Fig 2.

Classifiers & model fitting. We train six statistical/machine learning classifiers with the

aim of detecting reliable and unreliable truncated scans. The trained models make use of linear

or non-linear decision functions and are: i) random forests, ii) multivariate logistic-regression,

iii) support vector machines with linear kernel, iv) support vector machines with radial basis

kernel, v) Adaptive boosting (aka, Adaboost [26]) and vi) Gradient boosting [27]. In order to

find the optimal set of parameters to fit a model, a Bayesian search is conducted by sampling

over the parameter-space of each model and by evaluating its performance in a train set, 3-fold

Fig 1. Reliable/unreliable lesion volumes computed at various scan durations. The arterial input function (AIF) and the vascular output

function (VOF) are displayed as reference.

https://doi.org/10.1371/journal.pone.0283610.g001
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cross-validation setting. The final set of parameters chosen to parametrize the model is the one

maximizing the area under the precision-recall curve (PR-AUC). All models are trained and

optimized using the scikit-learn Python library [28].

Data augmentation. We augment the training sets by generating synthetic samples in

order to model different perfusion scenarios, such as the variable pre-contrast agent duration

and the variable contrast increases of the perfusion curves. Note that a different timing in the

contrast bolus arrival alters the CTP scan duration but does not alter the presence of trunca-

tion artifacts. Likewise, the AIF and VOF contrast increase depends on the contrast agent

iodine concentration. However, as the deconvolution algorithm is independent from the AIF/

VOF absolute amplitudes, a variable vascular contrast increase does not alter the presence of

truncation artifacts.

Simulation of contrast injection protocol variations is conducted by perfusion-specific data

augmentation as similarly done in [21, 29]. Uniform distributions are used to randomly mod-

ify the pre-contrast agent duration and vascular contrast increases. When simulating variable

pre-contrast duration, pre-contrast timing dependent features are increased or decreased by

the same random factor (argmax{AIF}, argmax{VOF} and scan duration). For modelling vari-

able contrast increases, the features AIFUCI, AIFDCI, VOFUCI and VOFDCI are scaled by a ran-

dom factor.

Experiments. We perform a 5-fold cross-validation experiment using an 80–20% train-

test data split. The data splitting is conducted at the scans level, assuring that i) all untruncated

and truncated versions of a same scan belong to the same fold and ii) the same data-splits are

used to fit all the considered models. Only the training data is used parametrise the models

and to select the classifiers’ operating point. Truncation predictions are later inferred over the

unseen test data.

Besides, we compare the machine learning models against a baseline classifier which solely

uses the scan duration as discriminant-rule. The classifier g operates as follows:

gðscan duration; yÞ ¼
reliable if scan duration >¼ y

unreliable if scan duration < y

(

ð1Þ

Fig 2. AIF and VOF derived features used to feed the machine learning algorithms. AIF: arterial input function; VOF: venous output function; HU:

Hounsfield units; UCI: upward contrast increase; DCI: downward contrast increase.

https://doi.org/10.1371/journal.pone.0283610.g002
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with θ a scan duration cutoff. This baseline is motivated by the CTP guidelines, which only

consider the duration of a scan to avoid truncation artifacts during CTP acquisition [18]. Spe-

cifically, these guidelines suggest a cutoff of θ = 60 seconds in Eq 1.

In order to understand the relevance of the AIF-VOF extracted features to discriminate reli-
ably and unreliably truncated scans, we conduct a bootstrapping experiment by resampling

100 times the original database. In each iteration, a sample was drawn with replacement and

was used to fit a classifier as described in Section Classifiers &Model Fitting. The relative fea-

ture importance is measured as defined in [27] for decision tree ensembles. Briefly, the feature

importance is calculated at the classifiers’ tree level as the impurity decay across all the nodes

where that feature was used to create a split [30]. The final feature importance is computed as

the average feature importance over all the considered trees. The mean and standard deviation

feature importance for all features are reported. The chosen classifier for this experiment is the

best performing one in terms of precision-recall AUC.

Performance evaluation. The mean, standard deviation, 5th-95th percentiles and mini-

mum and maximum of the scan duration and the optimal scan duration are reported for the

entire dataset. The different algorithms’ performance are evaluated by conducting ROC and

precision-recall (PR) analysis. The area under the ROC and precision-recall curves are used as

general classifier performance metrics. Besides, we measure the binary classification perfor-

mance at the operating point closest to an ideal classifier with precision = recall = 1. The oper-

ating point is chosen from the fitted classifier as argminf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðprecisiont � 1Þ
2
þ ðrecallt � 1Þ

2

q

g,

with t different classifier thresholds. Performance is measured in terms of precision ( TP
TPþFP),

recall ( TP
TPþFN) and F1-score ( 2∗TP

2∗TPþFPþFN), where acronyms represent TP: true positives, TN: true

negatives, FP: false positives and FN: false negatives. The same binary classification metrics are

reported for our baseline scan duration classifier, by making use of cutoffs θ = [30, 40, 50, 60]

s. For these defined metrics, an unreliable truncation sample is considered as positive and a

reliable truncation sample as negative.

Results & discussion

From the 156 analyzed scans, 123 scans (78.8%) are retained for further analysis. The remain-

ing scans are discarded since 18 (11.5%) are unstable, 14 (8.9%) have hypo-perfused

volumes < 5 ml or are free from CTP lesions, and 1 scan (0.6%) is corrupted by motion arti-

facts. A total of 4621 synthetically truncated scans are obtained from the retained stable cases,

from which 2353 (50.9%) are labelled as reliable and 2268 (49.1%) as unreliable.
Descriptive statistics about the optimal scan duration are summarized in Table 1. It can be

appreciated that* 40 s scan duration suffices to get accurate perfusion volumes in 95% of the

dataset and 43 s scan duration avoids truncation in the entire ISLES’18 dataset. At first sight

these OSD values might seem much shorter than the 60-second recommended duration in the

CTP guidelines [18]. However, the used ISLES’18 dataset has very short pre-contrast acquisi-

tions that does not always reach the guidelines’ recommended 5–10 s. Note that the median

Table 1. Descriptive statistics of the stable CTP scans. SD: Scan duration; OSD: Optimal scan duration. Std: standard

deviation; P: percentile. AIF: arterial input function. All metrics are reported in seconds.

SD OSD (OSD—argmax{AIF})

Mean (std) 46.6 (5.3) 28.4 (5.7) 12.9 (3.7)

(Min, Max) (31.0, 64.0) (19.0, 43.0) (8.0, 30.0)

(P5th, P95th) (43.0, 60.2) (20.0, 39.8) (10.0, 19.9)

https://doi.org/10.1371/journal.pone.0283610.t001
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AIF peak (i.e. argmax{AIF}) across all scans is 15.6 ± 4.5 s, with a minimum AIF peak at 5 s.

Thus, some ISLES’18 scans have no pre-contrast acquisition at all, as seen in S1 Fig. Therefore,

compensating for the short pre-contrast duration would increase the 95th percentile OSD

value of Table 1 to a* 45–50 s scan acquisition. This result is in line with earlier research: it

was shown that in scans with 10 s of pre-contrast duration a* 53 s acquisition is needed to

get reliable perfusion volumes in 90% of the scans [17].

The optimal scan duration reported in Table 1 depends on the pre-contrast scan duration,

which is not standardized in clinical practice. In order to have a more informative metric less

biased by the different CTP protocols, we compute the time difference between the OSD and

the AIF peak (argmax{AIF}). In Table 1 this metric is reported for our entire database. Results

show that on average our scans require * 13 s following the AIF peak to obtain reliable perfu-

sion volumes. In [17] the median OSD for scans with a 10 s baseline is * 33 s. Let’s assume an

average AIF peak of * 15–20 s in a standard CTP acquisition protocol. Then * 13–18 s fol-

lowing the AIF peak are needed in [17] to get reliable volumes in 50% of their scans. Thus,

these results are comparable to our finding of * 13 s on average following the AIF peak to get

reliable volumes.

These OSD analyses of ISLES’18 show that an acquisition protocol using 60–70 s scan dura-

tion, with 5–10 s of pre-contrast acquisition, avoids truncation errors in the whole analyzed

dataset. Thus, supporting the recommended scan duration of the CTP guidelines. Depending

on the patients’ physiology, the contrast injection and/or the CTP acquisition protocols, even

shorter acquisitions may, sometimes, reliably quantify CTP lesion volumes. However, from a

risk-benefit perspective it is strongly inadvisable to shorten CTP scan durations since i) it is

not possible to know a-priori the OSD needed for a particular patient/scan, and ii) the risk of

inaccurately estimating the lesion volumes due to a short acquisition is significantly larger

than exposing the patient to an additional radiation exposure. Thus, an unreliable estimation

of the core-penumbra mismatch may lead to a change in the treatment decision, which may

have a drastic impact on the patient’s outcome. In a different scenario, an insufficient CTP

acquisition may lead to the full re-scanning of the patient, thus significantly increasing the

exposure to ionizing radiation and to the iodine contrast and, ultimately, delaying the treat-

ment of the patient.

Effect of the AIF choice

In order to understand the impact of different AIFs over the computed optimal scan duration,

an inter-rater analysis is performed. In this experiment, we simulate truncation artifacts as

described in section Simulating Shorter CTP Scans but using vascular functions selected by a

different expert. The used annotations are the ones available in [21] and labelled in the work as

Rater #2.

In Fig 3 a histogram and a Bland-Altman plot of the inter-rater OSD values are shown (left

and right figures, respectively). The majority of the scans (n = 78,* 64%) show no time differ-

ences in the OSD obtained with vascular functions selected by the two raters. The 5th and 95th

percentiles of the absolute OSD differences are respectively 0 s and 2.30 s. The maximum OSD

difference between the raters is 8 s.

Truncation artifacts detection

Fig 4 shows the ROC and precision-recall curves obtained with the different classifiers when

differentiating reliable from unreliable truncated acquisitions. Overall it can be seen that classi-

fiers yielded a similar high performance for both the considered metrics. The gradient boost-

ing algorithm outperformed the remaining classifiers yielding an ROC-AUC of 0.982 and a
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precision-recall AUC of 0.985. When assessing the classifiers capability for detecting trunca-

tion artifacts at the chosen operating point, the results of Table 2 are obtained. The Gradient

boosting method obtained the highest performance for detecting unreliable perfusion volumes

(F1-Score = 0.938). All machine learning models have considerably outperformed the baseline

classifier g in terms of ROC-AUC, PR-AUC and F1-Score (Table 2).

For the baseline classifier g, the highest detection performance is obtained at the optimal
operating point θ = 27 s (F1-score = 0.875). When using the standard cutoff θ = 60 s, the base-

line classifier showed the maximal recall of 1.0 with a low precision of 0.493 and low F1-score

of 0.660. These results are expected as all the analyzed scans have OSD values much lower than

60 s (Table 1). The ROC and precision-recall operating points at θ = 60 s are shown in Fig 4. It

Fig 3. Optimal scan duration (OSD) inter-rater analysis. Left: Histogram of the OSD absolute differences between raters. Right: Bland-Altman plot of

the OSD values for the raters. R1: Rater #1. R2: Rater #2.

https://doi.org/10.1371/journal.pone.0283610.g003

Fig 4. Receiver operating characteristic (left) and precision-recall (right) curves. AUC: area under the curve; SVM_linear: support-vector machine

with linear kernel; SVM_rbf: support-vector machine with radial basis function kernel; RF: Random forests; LR: Logistic-regression; Adaboost:

Adaptive boosting; Gradboost: Gradient boosting.

https://doi.org/10.1371/journal.pone.0283610.g004
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can be appreciated that this operating point falls on the boundaries of the classifiers’ ROC and

precision-recall curves. These results suggest that using a 60 s scan duration is a safe and

needed recommendation for acquiring CTP images, but it is a poor criterion in order to iden-

tify truncation errors at CTP post-processing stages.

Effect of the data augmentation. We evaluated the impact of the perfusion specific data

augmentation strategy over the best performing machine learning model. For this experi-

ment, a Gradient boosting classifier is trained using the original, un-augmented dataset

as described in the section Classifiers & Model Fitting. While an ROC-AUC = 0.982,

PR-AUC = 0.985 and F1-Score = 0.938 are obtained when using data augmentation, an

ROC-AUC = 0.980, PR-AUC = 0.983 and F1-Score = 0.933 are obtained when training the

model without augmenting the dataset. Our results show that simulating different perfusion

scenarios (namely, variable contrast-increases and variable bolus arrival times) improves the

model’s performance.

Importance of the AIF and VOF features

Fig 5 summarizes the different features’ relevance obtained when fitting 100 Gradient boosting

classifiers in a resampling with replacement bootstrapping fashion. The AIFcoverage shows to be

the most crucial feature for detecting unreliable perfusion volumes due to truncated acquisi-

tions. Besides, the VOFDCI and the VOFcoverage also result to be important features for the

machine learning model. The large predictive value of the AIFcoverage and the VOFcoverage fea-

tures can be related to their robustness to variable pre-contrast agent duration. The scan dura-
tion feature, instead, is affected by the CTP acquisition protocols and as such, shows slightly

less relevance for the fitted models.

We also explore for each single AIF/VOF feature its discriminant power to detect trunca-

tion artifacts. To this end, we generate new classifiers g0 that operate as described in Eq 1 by

using the considered AIF/VOF feature instead of the scan duration feature. The selection of

the operating points and the validation of the classifiers are performed with the same criteria

described in section Performance evaluation for the machine-learning models. In Table 3 the

detection performance metrics achieved with the different feature classifiers g0 are summa-

rized. It is worth noting that the top-ranked features in the bootstrapping experiment (namely

Table 2. Classifiers’ performance for detecting truncation artifacts. The used operating points are θ = [27, 30, 40, 50, 60] s for the baseline classifier g. Note that 27 s is

the optimal operating point for g, defined as the closest point to the ideal classifier with precision = recall = 1. Reported metrics for the machine learning approaches are

obtained at the optimal operating points. Outperforming values for each metric are shown in bold. SVMLinear: support-vector machine with linear kernel; SVMRBF: sup-

port-vector machine with radial basis function kernel; RF: Random forests; LR: Logistic regression; Gradboost: Gradient boosting classifier. Baseline classifier: threshold

on scan duration.

Classifier ROC-AUC PR-AUC Recall Precision F1-Score

SVMLinear 0,975 0,982 0,929 0,942 0,9305

SVMRBF 0,971 0,979 0,918 0,942 0,930

RF 0,977 0,981 0,898 0,964 0,929

Adaboost 0,980 0,984 0,922 0,945 0,934

LR 0,979 0,983 0,926 0,936 0,931

Gradboost 0,982 0,985 0,930 0,946 0,938

Baseline classifier 0,954 0,958 [0,885 0,864 0,875]θ=27s

[0,926 0,813 0,866]θ=30s

[0,997 0,597 0,747]θ=40s

[1,000 0,503 0,670]θ=50s

[1,000 0,493 0,660]θ=60s

https://doi.org/10.1371/journal.pone.0283610.t002
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AIFcoverage, VOFDCI and, VOFcoverage, see Fig 6) are the ones achieving the highest discrimi-

nant performance for detecting truncation artifacts. The best classifier g0(AIFcoverage) yielded a

much better performance than the baseline classifier g(scan duration) (Tables 2 and 3). These

results evidence that AIFcoverage is a strong discriminant feature for detecting truncation arti-

facts. Similar to our results [17], has observed that the VOFcoverage is an important feature

Fig 5. Relative feature importance for 100 bootstraps with a Gradient boosting classifier. Bars (error-bars) represent mean (standard

deviation). AIF: arterial input function; VOF: venous output function; UCI: upward contrast increase; DCI: downward contrast increase.

https://doi.org/10.1371/journal.pone.0283610.g005

Table 3. Single features’ classification performance. The used cutoff is always the optimal operating point, defined as the closest point to the ideal classifier with

precision = recall = 1. AIF: arterial input function; VOF: venous output function; UCI: upward contrast increase; DCI: downward contrast increase; ROC: receiver operat-

ing characteristic curve; PR: precision-recall curve; AUC: area under the curve.

Feature ROC-AUC PR-AUC Precision Recall F1-score

AIFDCI 0.842 0.879 0.815 0.724 0.767

AIFUCI 0.597 0.631 0.571 0.465 0.513

argmax{AIF} 0.509 0.525 0.502 0.484 0.493

argmax{VOF} 0.693 0.752 0.649 0.592 0.619

AIFcoverage 0.981 0.984 0.936 0.928 0.932

VOFcoverage 0.956 0.962 0.874 0.880 0.877

VOFDCI 0.958 0.969 0.929 0.901 0.915

VOFUCI 0.765 0.816 0.765 0.597 0.671

https://doi.org/10.1371/journal.pone.0283610.t003
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impacted by truncation artifacts. Although AIFcoverage and VOFcoverage are strongly correlated

features, our experiments show that AIFcoverage carries more truncation predictability than

VOFcoverage (Table 3). The reason for this finding is that in severely truncated CTP series

where the scan acquisition does not reach the VOF peak but it does reach the AIF peak, only

the AIFcoverage can detect a truncation, as the VOFcoverage feature can not be reliably estimated.

However, in cases where the CTP acquisition reaches the VOF signal peak, both the AIFcoverage

and VOFcoverage carry similar truncation predictability. We have confirmed this statement

after discarding very short CTP scans (e.g. with scan durations lesser than 15 and 20 s) from

the database and after re-measuring the single features detection performance. The obtained

ROC-AUCs for the AIF and VOF coverages were, respectively, 0.972 and 0.962 when discard-

ing scans with durations shorter than 15 s, and 0.955 and 0.952 when discarding scans shorter

than 20 s. Our results showed that the performance agreement between AIFcoverage and VOF-

coverage increased while discarding short CTP series that did not cover the VOF signal peak. In

clinical routine, a short duration scan not covering the AIF peak would lead to completely

unreliable perfusion volumes and, as such, would hardly be used for treatment decision mak-

ing. However, in practice it is still common to find CTP scans where the VOF peak has not

been reached. Hence, we can conclude that both the AIFcoverage and VOFcoverage are features

with good overall truncation predictability, though the AIFcoverage is a more robust feature as it

works in a wider range of CTP truncation scenarios.

Scan duration, AIF coverage or machine-learning?

We compare the three classifiers outlined in this work: the baseline classifier g using the

scan duration, the classifier g0 based on the AIF coverage and the Gradient boosting classifier

which uses multiple AIF and VOF features. It is evident that both the AIF coverage g0 and the

Fig 6. Histograms showing the difference between optimal scan duration and the scan duration for each classifiers’ predicted samples. Correct
predictions comprises scans properly labelled as reliable or unreliable. Incorrect predictions comprises samples wrongly labelled as reliable or unreliable.

Inter-rater variability lines are drawn at the 95% inter-rater values (± 2.30 s).

https://doi.org/10.1371/journal.pone.0283610.g006
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Gradient-boosting classifier considerably outperform the baseline approach g based on the

scan duration. However, when comparing the Gradient boosting method with g0, a marginal

improvement in performance is found (as seen from Tables 2 and 3). Moreover, the study of

the feature’s importance has shown that the Gradient boosting method predicts outputs mostly

using the AIFcoverage feature, together with some other features as VOFDCI and VOFcoverage

(see Fig 2). Thus, it is valid asking whether there is any benefit of using machine learning over

a (simpler) classifier as g0.
In order to address this question we evaluate, for the three considered models, the distribu-

tion of the predicted samples in terms of their scan duration to optimal scan duration differ-

ence, as shown in Fig 6. While g misclassifies samples in a [-15, 8] s vicinity of OSD, g0 and the

Gradient boosting classifier do it in a vicinity of [-19, 3] s and [-14, 8] s, respectively. Thus,

within these temporal windows the classifiers struggled the most to correctly detect reliable/

unreliable volumes and, outside this temporal window, the classifiers correctly predicted all

samples. At their optimal operating points, all the three models are more accurate predicting

truncation over very short scans (i.e. OSD>> scan duration) rather than over long duration

ones (OSD<< scan duration). Besides, the closer a scan duration is to its OSD, the harder for

the models is to correctly classify a sample. It is worth to point out that g0 and the Gradient

boosting classifier generate most of the mis-classifications within the inter-rater OSD variabil-

ity, a ‘gray zone’ interval where the reliable and unreliable labels suffer from larger uncertainty.

With the aim of measuring the method’s performance over AIF-choice unbiased samples, we

have quantified the classifiers’ error rates (100�
# incorrect samples

# all samples ) outside the inter-rater variabil-

ity range ([-2.30, 2.30] s). While g yielded an error rate outside the inter-rater interval of 7.8%

(n = 314 misclassified samples), g0 and the Gradient boosting method yielded, respectively, a

2.5% (n = 102 misclassifications) and 2.4% (n = 98 misclassifications) error rates.

Our results show that both the Gradient boosting and the AIFcoverage based classifiers pro-

vide a good overall truncation predictability and consistently outperform the scan duration

based approach. These models could increase the interpretability of CTP post-processing soft-

ware by warning clinicians about potentially misleading and/or unreliable perfusion lesion

volumes (i.e., volumetric errors greater than 10% or greater than 5 ml), which should be taken

into account during treatment decision making. Additionally, such methods help identify reli-

able perfusion lesion measurements in scans not reaching the recommended 60–70 s acquisi-

tion. Considering their implementation in clinical routine CTP deconvolution packages, the

AIFcoverage classifier might be preferred as i) it is more robust to the variable scan quality than

the multi-feature machine learning (i.e., it requires measuring an always available and easy to

extract feature, the AIF peak) ii) its implementation is straightforward (the model is free from

hyper-parameters fitting) and iii) it has the advantage of being interpretable by radiologists

and neurointerventionalists.

Limitations and future directions

There are some considerations about this research that should be cautiously taken. Firstly,

there is no consistent definition for a scan to be reliable and, as such, its definition is somehow

arbitrary. In this work, in order to define reliability we have adopted a quantitative criterion

based on the perfusion volumes as similarly done in [17]. Alternative definitions of scan reli-

ability could be based on changes on the treatment eligibility criteria used in the DAWN or

DEFUSE-3 trials [31, 32]. An advantage of using a volumetry based criterion over a treatment

eligibility one is the capability to identify subtle lesion changes due to inaccurate perfusion

measurements that may not impact the treatment decision (e.g. in patients with a large perfu-

sion lesion mismatch).
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Secondly, it is worth to mention that our conclusions only hold for CTP analysis using

time-invariant singular value decomposition deconvolution. Other techniques used for perfu-

sion analysis might behave differently under truncation scenarios. Still, the delay-invariant sin-

gular value decomposition deconvolution is the most widespread and used algorithm in

software packages [8, 33, 34]. Readers interested in the effect of CTP truncation over different

parameter map estimation methods are referred to the work of [16], as such inter-algorithm

comparisons are out of the scope of this research. It is worth saying that while the devised

models only hold for the ISLES’18 database characteristics and for the deconvolution algo-

rithm used in this study, the extracted features are generalizable and allow the adaptation of

these models to other deconvolution algorithms or imaging modalities (as perfusion MRI).

Thirdly, the deployment of a truncation artifacts detection method in automatic CTP evalu-

ation software is limited to the AIF/VOF selection performance. In this work, all the experi-

ments have been conducted using manually annotated vascular functions. As such, failures in

the CTP curves selection could produce a misleading truncation analysis using our proposed

methodology. Nonetheless, recent approaches using dedicated artificial intelligence methods

show efficacy and robustness to select vascular functions even under low quality CTP scenarios

[21, 35].

Finally, future directions for this work might involve the machine-learning prediction of

missing CTP time-points at the end of the series. As such, reconstructing the ending perfusion

phase of the vascular functions could help improve the detection of truncation artifacts.

Conclusion

We observe that acquiring 60 s CTP scans is sufficient to avoid truncation artifacts in the entire

multi-center/scanner ISLES’18 dataset. However, at CTP post-processing stages, using the

scans’ duration to detect truncation errors is sub-optimal. Depending on the patients’ physiol-

ogy, the contrast injection and/or the CTP acquisition protocols, even shorter acquisitions

may sometimes provide reliable lesion volumes. In order to identify unreliable short scans we

extract AIF and VOF features that are impacted by truncation errors. These features are sim-

ple, robust to extract even in low quality acquisitions and are independent from the contrast

injection and CTP acquisition protocols. The AIFcoverage proves to be the most predictive fea-

ture of truncation. Furthermore, when training classifiers with AIF/VOF derived features a

high truncation detection performance is obtained. We conclude that these methods could

be transferred to perfusion analysis software and may increase the interpretability of CTP

outputs.

Supporting information

S1 Fig. Example case of an ISLES’18 scan with no pre-contrast acquisition. AIF: Arterial

input function; VOF: Venous output function.

(TIF)
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of clinical brain tumor MR spectra judged by humans and machine learning tools. Magnetic resonance

in medicine. 2018; 79(5):2500–2510. https://doi.org/10.1002/mrm.26948 PMID: 28994492

25. Wei L, Rosen B, Vallières M, Chotchutipan T, Mierzwa M, Eisbruch A, et al. Automatic recognition and

analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Phys-

ics and imaging in radiation oncology. 2019; 10:49–54. https://doi.org/10.1016/j.phro.2019.05.001

PMID: 33458268

26. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to

boosting. Journal of computer and system sciences. 1997; 55(1):119–139. https://doi.org/10.1006/jcss.

1997.1504

27. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;

p. 1189–1232.

28. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-

ing in Python. the Journal of machine Learning research. 2011; 12:2825–2830.

29. Robben D, Suetens P. Perfusion parameter estimation using neural networks and data augmentation.

In: International MICCAI Brainlesion Workshop. Springer; 2018. p. 439–446.

PLOS ONE Detecting CTP truncation artifacts in acute stroke imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0283610 March 30, 2023 16 / 17



30. Kazemitabar J, Amini A, Bloniarz A, Talwalkar AS. Variable importance using decision trees. Advances

in neural information processing systems. 2017;30.

31. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24

hours after stroke with a mismatch between deficit and infarct. New England Journal of Medicine. 2018;

378(1):11–21. https://doi.org/10.1056/NEJMoa1706442 PMID: 29129157

32. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for

stroke at 6 to 16 hours with selection by perfusion imaging. New England Journal of Medicine. 2018;

378(8):708–718. https://doi.org/10.1056/NEJMoa1713973 PMID: 29364767

33. Fieselmann A, Kowarschik M, Ganguly A, Hornegger J, Fahrig R. Deconvolution-based CT and MR

brain perfusion measurement: theoretical model revisited and practical implementation details. Journal

of Biomedical Imaging. 2011; 2011:14.

34. Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, et al. Differences in CT perfu-

sion maps generated by different commercial software: quantitative analysis by using identical source

data of acute stroke patients. Radiology. 2010; 254(1):200–209. https://doi.org/10.1148/radiol.

254082000 PMID: 20032153

35. Winder A, d’Esterre CD, Menon BK, Fiehler J, Forkert ND. Automatic arterial input function selection

in CT and MR perfusion datasets using deep convolutional neural networks. Medical Physics. 2020.

https://doi.org/10.1002/mp.14351 PMID: 32583617

PLOS ONE Detecting CTP truncation artifacts in acute stroke imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0283610 March 30, 2023 17 / 17



PART III

CONCLUDING REMARKS

91





Discussion

In the previous chapters, I have described the research contributions of this doctoral dis-
sertation. In Chapters 5.1-5.3, the peer-reviewed conference and journal manuscripts
produced within this thesis were presented. These works are self-contained and pro-
vide a technical, detailed discussion of the targeted research questions, including their
limitations and possible improvements. In this chapter, I will provide a big-picture
analysis of these contributions, discussing their impact and what comes next.

Chapter 5.1 - Differentiable Deconvolution for Improved Stroke Perfusion
Analysis

In Chapter 5.1, I provided insights about the question, “What is the best arterial
input function (AIF) that maximizes the deconvolution algorithm’s performance?
Can it be automatically estimated with machine-learning models?” The proposed
model generated temporal functions that led to more discriminative CBF perfusion
maps and, consequently, improved the delineation of core tissue. These results suggest
that although SVD deconvolution has been widely investigated for over two decades,
there is still room for improving its optimization. Beyond searching for the optimal
AIF for SVD deconvolution, the proposed methodology could be adapted to improve
the fitting of other parameters of the model. For instance, in Chapter 2, I mentioned
that the regularization of the algorithm is impacted by the quality of the analyzed
images. Under this consideration, regularization could be performed on a scan-custom
basis rather than using a fixed, global value. Through machine-learning models,
one could select the optimal regularization term that maximizes perfusion lesion
segmentation based on the input image, thus leading to a personalized CTP analysis
for each patient and scan.

The type of AIF-generating approach used in this work has advantages for research
purposes but has clinical applicability drawbacks. On one hand, since the proposed
AIF is formulated as an unconstrained regression problem, it does not impose any
prior knowledge on the type and profile of the temporal curve that maximizes core
segmentation performance. This allows, for instance, pushing the boundaries of
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SVD deconvolution performance and hitting its sweetest optimization spot. On
the other hand, the AIF-generating CNN proposes temporal curves that might be
unrealistic from a physiological point of view, or ‘invent’ information that is not
actually present in the CTP scan. In other words, they are mathematical solutions
to the maximization problem that may not be physically plausible. Additionally,
the CNN used in this study is non-interpretable (as the curve does not come from
the temporal average of specific voxels), and its fixed-length output is a recipe for
truncation errors. A potential solution to overcome these drawbacks is to replace the
AIF-generating CNN with AIFNet (the method proposed in Chapter 5.2). In such a
case, the SVD deconvolution maximization performance could be obtained using a
realistic AIF selection method.

Moreover, the methodology proposed in this chapter proved that the time-invariant
SVD deconvolution is fully differentiable and, therefore, it can be end-to-end integrated
and used within deep-learning frameworks. The possibilities that the differentiable
SVD deconvolution opens are endless, as it allows neural networks to be aware of per-
fusion biomarkers and, as such, allows models to ensure certain brain hemodynamics
behaviors. In other words, quantifying perfusion biomarkers (e.g., Tmax, CBF, etc.)
and perfusion lesions (core and penumbra) during the training phase of deep-learning
models can be advantageous. Relevant (non-exclusive) applications that could benefit
from this work are:

• Low-dose CT perfusion imaging. Reducing the radiation dose delivered to the
patient is of high interest to radiologists and neuroradiologists [73]. Reducing
the radiation in CTP scans can be achieved in different ways. For instance,
by diminishing the CTP acquisition sampling rate (recommended to be 2s
or faster) or by reducing the CT tube current. In both scenarios, altering
these parameters encompasses degraded image quality that could impact the
perfusion volumes and the endovascular treatment decision-making. Hence,
machine-learning models can be used in this context to improve or restore
high-fidelity CTP scans from low-dose quality ones. Such approaches are not
new and were studied, for instance, in [68, 69, 74]. The proposed methodology
in Chapter 5.1 could be integrated within such approaches, aiming to devise
perfusion-aware CTP restoration models.

• Truncated CTP scan restoration. As shown in Chapter 5.3, the short acquisition
of CTP series significantly impacts the perfusion lesion volumes estimated
through deconvolution. Restoring the truncated time-attenuation curves is a
complex problem that may convert unusable and uninterpretable CTP results
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into clinically useful ones. Such a problem could be tackled using supervised or
unsupervised machine-learning models that propose a synthetic restoration of
the missing CTP time points. The differentiable deconvolution algorithm may
play a key role by constraining these algorithms to restore the image series by
ensuring physiologically feasible results.

• Synthetic CTP generation. Generative artificial intelligence, such as generative
adversarial networks and diffusion models, is revolutionizing medical imaging
by yielding realistic-looking synthetic samples. Generating synthetic 4D CTP
images will allow an increase in perfusion imaging databases. It is noteworthy
that perfusion imaging is not easily accessible, as it is mainly restricted to high-
complexity healthcare centers. As far as I know, there are only two open acute
ischemic stroke CTP datasets, namely ISLES18 [9, 23] and UniToBrain [44, 19].
Consequently, creating synthetic CTP data may considerably impact perfusion
imaging research. In this sense, the proposed differentiable deconvolution
algorithm may serve to generate brain perfusion plausible datasets.

There are also challenging aspects that should be overcome to investigate some of
the works mentioned above. On one hand, access to concomitant CTP and DWI is not
easy. Therefore, similar data to ISLES’18 might not be available as it does not follow
the recommended acute stroke clinical workflow (typically, either CTP or perfusion
MRI with DWI is performed, but rarely both of them). An alternative solution could
be to use follow-up imaging (DWI or NCCT) as ground truth. However, in such
a case, more sources of variability influence the final infarct ground truth (such as
the time to endovascular treatment or the grade of reperfusion achieved through
thrombectomy). Furthermore, ground truth for the tissue at risk (i.e., penumbra) is
hard to obtain as there is currently no gold standard for it. A solution could be to
use follow-up imaging in non-recanalized patients, which provides ground truth for
the perfusion lesion and, after subtraction of the core, gives the penumbra [46].

Chapter 5.2 - AIFNet: Automatic Vascular Function Estimation for
Perfusion Analysis Using Deep Learning

In this chapter of my dissertation, I provided a novel vascular function selection
method based on CNNs by devising a new approach to target the question Q2 (Can
I automatically select vascular functions from clinical CTP scans? In that case,
how close to a manual expert performance can I get?). AIFNet showed outstanding
performance for the considered task and produced results close to those achieved
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by experts for a wide range of heterogeneous scenarios, including different scanners,
vendors, centers, injection protocols, and image quality. This closes the academic-
clinical transferability gap for working with real-world data.

An essential next direction for the vascular function selection problem is quality
control. Checking the AIF-VOF profile and its anatomical placement is highly
recommended in the CTP analysis workflow. Hence, the next steps in this matter
should consider algorithms that provide uncertainty metrics about their performance.
This way, quality control could be improved by warning the medical staff of potentially
misleading perfusion outputs.

Considering the way that AIFNet operates, the method could be extended to other
imaging modalities (such as brain perfusion MRI or PET imaging) and potentially
to other organs and pathologies (such as myocardial blood-flow quantification from
stress perfusion MRI [53]).

Chapter 5.3 - Detecting CTP Truncation Artifacts in Acute Stroke
Imaging from the Arterial Input and the Vascular Output Functions

In Chapter 5.3, I recycled the available vascular functions used for deconvolution to
provide insights about question Q3 (Can I exploit the deconvolution-available vascular
functions to automatically detect truncated CTP scans?). I studied the impact of
short CTP acquisitions on the quantified perfusion volumes by using synthetically
shortened CTP samples. In this study, I also fit machine-learning models that can
identify potentially unreliable, insufficient CTP acquisitions. The proposed models
exploited the available AIF and VOF information and provided better truncation
detection performance than a baseline model solely considering the scan duration.

A next step for enriching question Q3 and continuing to improve the performance
of these models could be the inclusion of patient-specific information. Several factors,
such as the patient’s age and weight or certain pathophysiological conditions, impact
the profile of the time-attenuation curves (see Chapter 2 for details). Therefore,
devising strategies that consider this information may improve truncation detection
performance. It is worth mentioning that in most CTP software packages, the vascular
functions are automatically detected. As such, there is a clear risk of failing to detect
truncation problems when the AIF/VOF curves are suboptimally chosen. Under
these situations, the baseline model using the scan duration information could provide
a backup strategy.

Another important topic for future research is the quantitative estimation of the
truncation impact over the quantified lesion volumes: How much do the unreliable

96



perfusion volumes deviate from their real values? The current truncation detection
algorithm has limitations, as it only alerts about unreliable perfusion volumes that
deviate by more than 5 ml or more than 10% from the expected real lesion volumes.
However, the impact of these errors on endovascular treatment decisions can vary.
While they may change treatment decisions in certain cases, they may not impact
treatment in others. By providing volumetric error ranges, radiologists and neuroint-
erventionalists can better assess the clinical utility of short acquisitions, despite their
unreliability.

Lastly, a natural and challenging next step for question Q3 is restoring truncated
CTP series using data-driven techniques, as discussed earlier in this chapter. In this
sense, turning unusable scans into interpretable images with clinical utility can be
groundbreaking. Various methods, such as supervised machine-learning or generative
models, could be explored to tackle this task. The differentiable deconvolution method
proposed in Chapter 5.1 could provide perfusion information to such models and
constrain the restoration to plausible perfusion results.
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Outlook

Overall, this thesis provides insights into the vascular function components used
in stroke perfusion imaging pipelines. The work contributed to the study and
characterization of vascular functions using data-driven learning techniques. Three
main contributions with high clinical transferability potential are described.

The first contribution addresses the optimal arterial input function selection for
deconvolution algorithms. A differentiable implementation of the SVD deconvolution
algorithm integrated within a deep-learning scheme is proposed. It demonstrates
the possibility of finding a scanner-custom “best” AIF, leading to improved core
lesion estimates compared to manual or clinical software-selected AIFs. The second
contribution focuses on the automatic selection of vascular functions from clinical CTP
scans. A novel methodology called AIFNet, based on convolutional neural networks,
achieves accurate vascular function selection comparable to expert performance. The
method already entered the clinical routine workflow by being implemented in the
CTP software package icobrain cva (icometrix, Leuven, Belgium). The third
contribution deals with the detection of truncated CTP scans. Machine-learning
models using vascular functions (AIF and VOF) information are used to detect
unreliably short CTP scans. This approach proves more accurate than considering
scan duration alone.

Nonetheless, there are significant challenges that need to be addressed to further
enhance the utility of perfusion imaging in stroke and in neurovascular pathologies in
general. Firstly, a notable limitation of perfusion imaging arises from the absence
of clear gold standards for core and penumbra tissue. This lack of well-defined
ground truth data increases the complexity of the problem and potential solutions.
Consequently, end-to-end supervised learning methods may not always be suitable
for this imaging modality, given the weak or uncertain nature of the available data.
Secondly, current deep-learning models require a large amount of data for training.
However, meeting this requirement is challenging since perfusion imaging is not
universally available in healthcare centers and, as mentioned earlier, the limited
available data is prone to uncertain labeling. Thirdly, perfusion imaging involves
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4D imaging data, which is computationally intensive to process. Training current
deep-learning models with such data may be constrained by the need for larger GPUs.
It is important to note that a perfusion CT scan can be more than 60 times larger
than a comparable 3D CT or MRI scan.

These challenges highlight the need for innovative machine-learning approaches in
perfusion imaging that are less data-hungry and can effectively learn from uncertain
data scenarios. Providing these models with better guidance for the specific task at
hand can be immensely helpful. An example of such an approach is the incorporation
of perfusion-awareness guidance in the models, as demonstrated in Chapter 5.1. By
leveraging complementary feedback information, these models can be optimized even
with limited and/or weakly labeled data. There are several other perspectives that
can also contribute to addressing these challenges. For example, one approach is to
incorporate 4D convolutional blocks, which can better capture the spatio-temporal
characteristics of perfusion data. However, extending the 3D convolution operation
to include a fourth dimension significantly increases the number of model parameters,
which, as previously mentioned, is undesirable. Therefore, an alternative approach
is the development of efficient and learnable layers, such as those based on matrix
factorization [3], which can facilitate the creation of lighter models. These lighter
models would require fewer data for training while still leveraging the inherent
4D nature of the modality. Other machine-learning paradigms, such as generative
modeling with techniques like generative adversarial networks or diffusion models,
can also play a crucial role. These approaches can help overcome data scarcity by
generating synthetic data. Self-supervised learning techniques, instead, can leverage
larger amounts of unlabeled and unused data to learn specific perfusion imaging tasks.
In conclusion, by exploring these avenues, the above-mentioned technical limitations
could be better managed, thus allowing a deeper understanding of acute ischemic
stroke and its better management in the clinical workflow.
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“Exposing hidden truncation-related errors in acute stroke perfusion imaging.”
In: American Journal of Neuroradiology 36.4 (2015), pp. 638–645.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Ima-
genet: A large-scale hierarchical image database.” In: 2009 IEEE conference on
computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[14] Ulrich Dirnagl, Costantino Iadecola, and Michael A Moskowitz. “Pathobiology
of ischaemic stroke: an integrated view.” In: Trends in neurosciences 22.9 (1999),
pp. 391–397.

[15] Jonathan Emberson, Kennedy R Lees, Patrick Lyden, Lisa Blackwell, Gregory
Albers, Erich Bluhmki, Thomas Brott, Geoff Cohen, Stephen Davis, Geoffrey
Donnan, et al. “Effect of treatment delay, age, and stroke severity on the effects
of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-
analysis of individual patient data from randomised trials.” In: The Lancet
384.9958 (2014), pp. 1929–1935.

[16] Shengyu Fan, Yueyan Bian, Erling Wang, Yan Kang, Danny JJ Wang, Qi Yang,
and Xunming Ji. “An automatic estimation of arterial input function based on
multi-stream 3D CNN.” In: Frontiers in neuroinformatics 13 (2019), p. 49.

102



Bibliography

[17] Andreas Fieselmann, Markus Kowarschik, Arundhuti Ganguly, Joachim Horneg-
ger, and Rebecca Fahrig. “Deconvolution-based CT and MR brain perfusion
measurement: theoretical model revisited and practical implementation details.”
In: Journal of Biomedical Imaging 2011 (2011), pp. 1–20.

[18] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural net-
work.” In: Biological cybernetics 20.3-4 (1975), pp. 121–136.

[19] Umberto Gava, Federico D’Agata, Bennink Edwin, Enzo Tartaglione, Daniele
Perlo, Annamaria Vernone, Francesca Bertolino, Eleonora Ficiarà, Alessandro
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Fig. S1. Selected and generated AIFs for the example case displayed in the main
text (i.e., Fig. 2). AIF: Arterial input function. Note that our generated AIF has
consistently different shape and is shifted in time when compared against the manual
and automatically chosen ones.
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 Signal Tpeak FWHM 
 r r (P5th, P95th) r Error (s) r  Error (s) 

Inter-rater 0.971 (0.075)† (0.883, 1) 0.964 -0.14 (1.29) 0.902 -0.08 (1.74)† 

yr2 vs 

𝑦#$%&'() 0.612 (0.329)† (-0.108, 0.974) 0.657 -5.24 (5.69) † 0.421 -1.88 (6.05)† 

 

𝑦#*&+ 0.683 (0.155)† (0.419, 0.879) 0.846 -3.81 (3.47) † 0.564 -4.35 (5.14)† 

𝑦#,&+ 0.843 (0.240)† (0.545, 0.981) 0.747 -0.15(3.25) † 0.471 -2.77 (3.51)† 
 

𝒚.𝑨𝑰𝑭𝑵𝒆𝒕 0.969 (0.04)†       (0.884, 0.997) 0.951 -0.41(1.60) 0.853   -0.81 (2.14)† 

 
Table S1. AIF agreement among methods.  Mean (standard deviation) provided.  Note that the AIF agreement 
is measured over the time domain only, since a posterior signal recalibration using the VOF is required due to the 
high partial volume effect in the arteries. yr2(t):  AIF annotated by raters 1 and 2;	𝑦#$%&'(), 𝑦#*&+, 	𝑦#,&+, 𝑦#789:&;:  
AIF estimated with the Kmeans approach (Mouridsen et al., 2006), with the regression CNN (de la Rosa et al., 
2020), with the segmentation CNN and with AIFNet, respectively. r:  Pearson’s correlation coefficient; Tpeak:  time 
at which the peak of the curve occurs; FWHM: full-width at half-maximum.  P5th:  5th percentile; P95th:  95th 
percentile. Paired significance tests are performed between AIFNet and the other approaches. ∗: p-value < 0.05; †: 
p-value < 0.01. The values in bold indicate the outperforming method for the metric under consideration. 

 

 



 
 Pearson’s r coefficient 

 CBF CBV Tmax MTT 

yr2 vs 

𝑦#$%&'() 0.968 (0.098)  0.973 (0.224) 0.785 (0.217) 0.784 (0.266) 

𝑦#*&+ 0.976 (0.115)  0.960 (0.273) 0.784 (0.236) 0.758 (0.294) 

𝑦#,&+ 0.991 (0.018)  0.984 (0.025) 0.809 (0.174) 0.796 (0.213) 

𝒚.𝑨𝑰𝑭𝑵𝒆𝒕 0.998 (0.006)    0.988 (0.148)    0.917 (0.087)    0.878 (0.248) 

 
Table S2. Parameter  maps  agreement  among  methods.   Mean  (standard  deviation)  values  provided.   
Correlation  has  been computed per scan within the brain region (excluding background, ventricles and vessels). 
yr2:  Parameter maps obtained after deconvolving the images with the AIF of rater 2;  𝑦#$%&'(), 𝑦#*&+, 	𝑦#,&+,
𝑦#789:&;:  Parameter maps obtained after deconvolving the images with the AIF predicted with Mouridsen et al. 
(2006), with the regression CNN (de la Rosa et al.,2020),  with the segmentation CNN and with AIFNet,  
respectively.  CBF: cerebral blood flow;  CBV: cerebral blood volume; MTT: mean transit time; Tmax:  time to 
the maximum of the residue function. The values in bold indicate the outperforming method (in terms of Pearsons’ 
r) for each parameter map. 
 
 
 

 Hypoperfused Core 

 Dice (%) VE (ml) AVE (ml) Dice (%) VE (ml) AVE (ml) 
Inter-rater 91.7 (13.8)† 0.5 (13.5)† 6.3 (12.0)† 91.8 (14.1)† 0.1 (2.5)† 0.9 (2.3)† 

yr2 vs 

𝑦#$%&'() 48.8 (28.4)† -37.4 (170.8) 80.5 (155.2)† 58.4 (27.2)† -2.7 (54.3)† 13.0 (52.8)† 

𝑦#*&+ 51.2 (19.6)†  26.1 (81.2)† 45.7 (72.0)† 62.0 (20.9)† 1.6 (53.9)† 11.9 (52.6)† 

𝑦#,&+ 70.0 (23.5)† -79.0 (198.4)† 94.6 (191.4)† 71.7 (23.8)† -32.1 (136.8) 35.9 (135.8)† 

𝒚.𝑨𝑰𝑭𝑵𝒆𝒕 87.5 (12.9)   8.4 (19.7)    11.5 (18.0)   87.8 (14.1)   0.4 (1.9) 1.2 (1.5) 

 
Table S3. Brain lesion quantification performance for all the methods, obtained after deconvolving the CTP 
images with the annotated and predicted vascular functions.  Mean (standard deviation) values are provided.  
Hypoperfused tissue is obtained after thresholding Tmax < 6 s.  Core tissue is obtained after thresholding the 
rCBF map at 38% over the entire hypoperfused region. yr2:  Lesion volumes obtained after deconvolving the 
images with the AIF of rater 2;  𝑦#$%&'(), 𝑦#*&+, 	𝑦#,&+, 𝑦#789:&;: Lesion volumes obtained after deconvolving the 
images with the AIF predicted with Mouridsen et al. (2006), with the regression CNN (de la Rosa et al., 2020), 
with the segmentation CNN and with AIFNet, respectively. VE: Volume error; AVE: Absolute volume error. 
Paired significance tests are performed between AIFNet and the other approaches. ∗: p-value < 0.05; †: p-value < 
0.01. The values in bold indicate the outperforming method for the metric under consideration. 
 
 
 
 

 

 



 
 
Figure S1. Lesion volume agreement among methods. yr1- yr2: Volumes obtained after deconvolving the images 
with the AIF of raters 1 and 2; 𝑦#$%&'(), 𝑦#*&+, 	𝑦#,&+, 𝑦#789:&;: Volumes obtained after deconvolving the images 
with the AIF predicted with Mouridsen et al. (2006), with the regression CNN (de la Rosa et al. (2020)), with the 
segmentation CNN and with AIFNet, respectively.  
 
 
 
 
 

 
 
Figure S2. Lesion volume agreement among methods. yr1- yr2: Volumes obtained after deconvolving the images 
with the AIF of raters 1 and 2; 𝑦#$%&'(), 𝑦#*&+, 	𝑦#,&+, 𝑦#789:&;: Volumes obtained after deconvolving the images 
with the AIF predicted with Mouridsen et al. (2006), with the regression CNN (de la Rosa et al. (2020)), with the 
segmentation CNN and with AIFNet, respectively. DWI: Ground truth delineated in diffusion weighted imaging 
and provided in ISLES18. 
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Fig. S1. Example case of an ISLES’18 scan with no pre-contrast acquisition.
AIF: Arterial input function; VOF: Venous output function.
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Ezequiel de la Rosa1,2, Diana M. Sima1, Thijs Vande Vyvere1, Jan S. Kirschke2, Bjoern Menze2

1icometrix, Leuven, Belgium
2Department of Computer Science, Technical University of Munich, Germany

ABSTRACT

Computer Tomography (CT) is the gold standard tech-
nique for brain damage evaluation after acute Traumatic Brain
Injury (TBI). It allows identification of most lesion types and
determines the need of surgical or alternative therapeutic
procedures. However, the traditional approach for lesion
classification is restricted to visual image inspection. In this
work, we characterize and predict TBI lesions by using CT-
derived radiomics descriptors. Relevant shape, intensity
and texture biomarkers characterizing the different lesions
are isolated and a lesion predictive model is built by using
Partial Least Squares. On a dataset containing 155 scans (105
train, 50 test) the methodology achieved 89.7% accuracy over
the unseen data. When a model was built using only texture
features, a 88.2% accuracy was obtained. Our results suggest
that selected radiomics descriptors could play a key role in
brain injury prediction. Besides, the proposed methodology
is close to reproduce radiologists lesion labelling. These
results open new possibilities for radiomics-inspired brain
lesion detection, segmentation and prediction.

Index Terms— Traumatic Brain Injury, CT, Radiomics

1. INTRODUCTION

Traumatic Brain Injury (TBI) is a complex disease process
that encompasses a whole spectrum of different patholo-
gies. In the acute phase after injury, non-contrast Com-
puted Tomography (CT) is the most commonly used imaging
modality. It can detect most abnormalities, but is espe-
cially important for identifying the presence of large extra-or
intra-axial space-occupying lesions (i.e, subdural hematomas,
epidural hematomas or contusions). For instance, extra-axial
hematomas that cause mass effect (i.e, basal cistern com-
pression and midline shift) may need urgent neurosurgical
evacuation. On the other hand, contusions may require a
non-surgical treatment approach. In this regard, detection
and classification of these lesions is of paramount importance
in the medical decision-making process [1].
Radiomics, “the conversion of digital medical images into
mineable high-dimensional data” [2] takes advantage of
image analysis techniques for describing underlying phys-
iopathology in medical scans. As a result, a descriptive

feature vector is obtained and subsequent interpretation by
computer driven techniques is performed. For dealing with
the high-dimensional space, dimensionality reduction meth-
ods turns crucial. In the last few years, the multivariate Partial
Least Squares (PLS) method for analyzing radiomics-derived
descriptors has been explored. The technique is extensively
used in the OMICS field, since it is suitable for problems
where the number of features is larger than the number of
samples.
In this work, we aim to characterize and predict TBI lesions
using CT-derived descriptors. Previous works detect them us-
ing basic density and shape features [3] or classify TBI scans
using deep-learning [4]. However, the multivariate characteri-
zation and interpretation of these lesions remain unaddressed.
The main contributions of this work are i) identification of
distinctive radiomic biomarkers characterizing brain lesions,
ii) fitting of PLS models that accurately predict lesion classes
and iii) exploring whether texture-based models outperform
shape and intensity-based ones for the desired task.

2. MATERIALS AND METHODS

2.1. Database

In this work, data from the CENTER-TBI study (www.center-
tbi.com, NCT02210221) coming from more than 50 academic
and non-academic centres in 20 countries was used. CT vol-
umes were obtained from several scanners from all major
manufacturers, including General Electric, Siemens, Philips
and Toshiba. Images were acquired following several acqui-
sition and reconstruction parameters, with variations on slice
thickness, pixel spacing and scanner settings, among others.
A sub-cohort of 3D volumes was randomly chosen, including
three type of brain mass lesions: i) epidural hematoma (class
1), ii) acute subdural hematoma (class 2) and iii) contusion
(class 3). 105 scans (train set) were used for data analysis,
characterization, and model fitting. Besides, we included 50
extra scans (test set) for validating our models. The training
(test) set contains 170 (69) annotated lesions, with 49 (20) in
class #1, 54 (20) in class #2 and 67 (29) in class #3. Volume’s
slices were delineated in 3D Slicer (https://www.slicer.org/)
by three trained operators, supervised by an experienced
neuroradiologist.
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2.2. Radiomics Feature Extraction

With the aim of extracting robust biomarkers insensitive to
scan acquisition and reconstruction parameters, all scans
were resliced into an homogenous voxel dimension of [1x1x1
mm3]. As demonstrated in [5], voxel resampling is a strongly
recommended step for obtaining reproducible radiomic de-
scriptors. For each lesion present in the scan we extracted
radiomic features using the ground truth segmentations. With
this aim, the open-source PyRadiomics [6] library was used
and 105 features from the original volumes were obtained
grouped as follows: i) Shape (13), ii) First Order Statistics
(FOS, 18), iii) Gray-level Co-occurrence Matrix (GLCM,
23), iv) Gray level Difference Matrix (GLDM, 14), v) Gray-
level Run Length Matrix (GLRLM, 16), vi) Gray-level Size
Zone matrix (GLSZM, 16) and vii) Neighborhood Gray-Tone
Difference Matrix (NGDM, 5). Afterwards we built the so
called feature X (N ×105) and responses Y (N ×3) matrices
(N being the number of lesions in the training set).

2.3. Data Analysis: Partial-Least-Squares

With the aim of characterizing brain lesions using radiomics
and generating a predictive TBI model, we used the multivari-
ate PLS technique. PLS discriminant analysis (PLS-DA) is a
flexible tool used for descriptive and predictive modelling, as
well as for discriminant feature selection. The algorithm in-
corporates dimensionality reduction with discriminant analy-
sis for high-dimensional data interpretaion. In a nutshell, the
algorithm involves two steps: i) PLS latent variables (LVs)
construction and ii) predictive model building [7]. The LVs
are computed as linear combinations of the independent X
variables, XW, where the loading weights in W are chosen
in such a way that the corresponding LVs have maximal co-
variance with the responses in the Y matrix. For multiclass
problems, Y is a dummy matrix encoding the class member-
ship information. After building the model, the responses of
unknown class data can be predicted from their independent
variables [8].

2.3.1. Feature Selection

For finding informative and distinctive markers allowing
classes discrimination, the Variables Importance on Predic-
tion (VIP) criterion was used. VIP scores help in detecting
and ranking those features contributing in the model fitting.
For each variable, the VIP score is equal to the accumulated
weights (w) over all selected LV’s. For feature selection it
has been widely suggested to retain those features with VIP’s
greater than the unity [8].

2.3.2. Model Fitting

In this work, firstly a model using all the considered features
was fitted. Secondly, by using the above explained VIP crite-

rion, the model was retrained with the retained features only.
Model fitting was performed over the training set in a 10-fold
cross-validation strategy by changing the number of LV’s and
by assessing the classification error rate. The model that mini-
mized the classification error was preferred. Afterwards, PLS
models were validated by predicting the unseen test samples.

2.4. Experiments

With the aim of assessing the feature-class effect for pre-
dicting the lesions, PLS models were assessed under differ-
ent feature combinations, as indicated in Table 1. Selected
experiments were chosen on the basis of comparing radiolo-
gist’s observable descriptors (shape and FOS) and assessing
their importance on lesion labelling. On the other hand, we
explore as well the models behaviour under the inclusion of
more complex computational descriptors (texture ones).

Table 1. Experiments.
Feat\Exp #1 #2 #3 #4 #5 #6 #7 #8
Shape

√ √ √ √ √
FOS

√ √ √ √ √
Texture

√ √ √ √ √
Note: Exp: Experiment; Feat: Features used. Colored fields
indicate that feature selection was applied.

2.5. Performance and statistics

The most relevant per-class descriptors in terms of VIP scores
were assessed by means of the non-parametric Kruskal-Wallis
test. When p-values exhibited statistical significance, the
Dunn’s test for multiple comparisons was performed. The
Benjamini & Hochberg procedure for controlling the false
discovery rate was applied. Two-tailed tests with a 0.05 sig-
nificance level were used. For addressing mass lesion classi-
fiers using PLS-DA, accuracy, sensitivity and specificity were
used as performance metrics.

3. RESULTS

A summary of the predictive models fitness obtained for each
experiment is shown in Table 2. As expected, the model
where feature selection was conducted considering all de-
scriptors (Exp #2) obtained the lowest error-rate. Besides,
it outperformed the model where no feature selection was
applied (Exp #1), suggesting that non-explanatory features
have been discarded.
The worst performing model in terms of errors was the one
fitted in Exp #4 (only FOS information considered), sug-
gesting that these features are not sufficient for distinctively
characterizing the lesion classes. However, when FOS an
shape features were jointly considered, the error-rate con-
siderably decreased. It is worth mentioning that these are
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Table 2. Fitted models summary and number (%) of selected features.
Features

Model Considered Selected
Exp ER LV Total Total Shape FOS GLCM GLDM GLRLM GLSZM NGDM
#1 0.12 5 105 105 (100) 13 (100) 18 (100) 23 (100) 14 (100) 16 (100) 16 (100) 5 (100)
#2 0.10 7 105 40 (38.1) 12 (92.3) 8 (44.4) 8 (34.7) 1 (7) 7 (43.7) 4 (25) 0 (0)
#3 0.25 4 13 4 (30.7) 4 (30.7)
#4 0.3 8 18 11 (61.1) 11 (61.1)
#5 0.15 7 31 11 (35.5) 6 (46.1) 5 (27.7)
#6 0.13 15 74 17 (22.9) 6 (26.1) 1 (7) 6 (37.5) 4 (25) 0 (0)
#7 0.08 13 87 30 (34.4) 11(84.6) 7 (30.4) 1 (7) 5 (31.2) 6 (37.5) 0 (0)
#8 0.09 18 92 30 (32.6) 10 (55.5) 3 (13) 4 (28.9) 6 (37.5) 1 (20)

Note: Exp: Experiment; ER: Error Rate.
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Fig. 1. Common selected features boxplots. Classes 1, 2 and 3 belong to epidural hematoma, acute subdural hematoma
and contusion. NU: Non-uniformity. *: significant p-value.

observable features for radiologists, having a valuable mean-
ing for lesion labelling.
When texture features were only used for fitting the model
(Exp #6), a low error-rate was obtained. Among all feature
classes, GLSZM and GLCM features were preferred. The
NGDM features have never been selected, suggesting non
informative descriptors for the considered task. The inclusion
of shape (Exp #7) and FOS (Exp #8) to the texture model
decreased the error-rate.
Boxplots of the shared retained features among the differ-
ent models are shown in Fig. 1. It is possible to appreciate
that all these features exhibited statistical significance among
some or all groups. Considering radiological interpretable
descriptors, Sphericity showed to be a distinctive one. The
results are supported by lesion morphology configurations,
namely that subdural ones are less spherical than epidural and

contusion ones [1]. On the other hand, Surface Areas were
greater for subdural hematoma when compared against the
other lesions.
Table 3 shows achieved classification performance on the
unseen data. The best performance was obtained for model
#2, which improved by ∼ 7% on accuracy the model without
feature selection. While models using independently shape
or FOS information provided low performances, the model
considering both features was able to considerably improve
the classification by performing ∼ 10% better on accuracy
terms. For Exp #6, texture features were able to almost
reproduce the best performing model by achieving 88.2%
accuracy. Besides, adding FOS or Shape descriptors to the
texture model (Exp #7 and Exp #8) has not improved the
task performance. These results suggest that texture fea-
tures encode relevant information for differentiating among
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TBI lesions. The importance of these results relies on the fact
that texture analysis can be performed patch-wise, suggesting
potential for lesion detection, segmentation and classification.

Table 3. Classification performances.
Se Sp

Exp Acc C #1 C #2 C #3 C #1 C #2 C #3
#1 82.3 85 89.5 75.9 89.6 89.8 94.9
#2 89.7 80 94.7 93.1 100 89.8 94.9
#3 72.1 60 94.7 65.5 95.8 73.5 89.7
#4 72.1 65 42.1 96.5 85.4 89.8 82.1
#5 83.8 75 89.5 86.2 97.9 85.7 92.3
#6 88.2 85 94.7 86.2 95.8 93.9 92.3
#7 88.2 80 94.7 89.6 100 89.8 92.3
#8 77.9 70 89.5 75.9 85.4 91.8 89.7

Note: Exp: Experiment; Acc: Accuracy (%); Se: Sensitivity
(%); Sp: Specificity (%); C#: Classes.

4. DISCUSSION AND CONCLUSIONS

In this work several PLS models using radiomic CT features
were compared. Three different brain lesion types were con-
sidered and characterized by means of different descriptors.
We isolated several radiomarkers that may play a key role
in discrimination of TBI lesions, all behaving differentially
among classes (p-val significant). We devised, as well, an
automatic method for classifying the lesions. When using
selected descriptors chosen over all feature types, a 89.9%
classification accuracy over the test set was achieved. Our
results suggest that radiomic features are very close to repro-
duce radiologists lesion labelling. When only using shape
descriptors, it was found that Sphericity, Surface and the
Surface to V olume Ratio play an important role. However,
neither shape nor FOS features were enough to accurately
discriminate the lesion types. When considering both feature
classes together, even by achieving a consistent improvement
(∼ 10% greater accuracy) these features were not able to re-
produce the obtained results with the whole database. An
important result of this work regards the potential and ca-
pability of texture descriptors for characterizing the lesions.
We were able to build a model using only texture informa-
tion which predicts the test set with 88.2% accuracy, behav-
ing almost as the model that included all features. This re-
sult is relevant since it suggests texture CT information might
help in lesion detection, multi-class segmentation and classi-
fication. Besides, it suggests the existence of non-observable
data structures helping in discriminating TBI damage. Poten-
tially, the developed models could be used for performing au-
tomatic quality control of segmented and predicted lesions. It
is important to keep in mind that radiological inspired mark-
ers might be preferred for clinical applications when conduct-
ing these tasks. In future work other radiomics features and
classification methods will be explored.
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