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Abstract

Attempts to systematically characterize and understand how living organisms react to
complex stimuli are not new. Until recently, however, most approaches have either relied
on observational studies, which prevent researchers from testing specific hypotheses,
or in overly simplified and laborious laboratory settings, that are too far from real-
world scenarios. Along these lines, a recent trend has been to recreate semi-naturalistic
scenarios in a controlled manner, and use new technologies to extract information from
freely moving animals such as motion tracking, neural activity, and vocalization, among
others.
In the field of motion tracking, and leveraging advances in machine learning, partic-

ularly in neural networks used for computer vision, several openly available software
packages have recently started to provide tools that require little effort to accurately
track multiple body parts over time, without the need for physical markers. This has
opened the way for researchers to obtain large amounts of data with little effort, which
has in turn helped developers come up with novel ways to analyze and extract insight
from this novel data source.
Thus and so, the current thesis aims to provide three main contributions. First,

to develop novel deep clustering algorithms specifically tailored to this type of time
series, that can be used to explore the behavioral repertoire of animals without the
need of human labels. Second, the deployment of these algorithms in an open-source
Python package, which includes them alongside other tools to annotate the behavior of
laboratory rodents. Third and last, to use the deployed algorithms to characterize a real
world animal model.
Moreover, this is a publication-based dissertation, which presents the accomplished

results as two papers accepted for publication in peer-reviewed journals. The first two
mentioned goals are addressed in an article published in the Journal of Open Source
Software (JOSS), titled “DeepOF: a Python package for supervised and unsu-
pervised pattern recognition in mice motion tracking data”. Here, we present
an originally developed software tool called DeepOF (Deep Open Field), which includes
several deep clustering algorithms alongside other tools, and is ready for researchers to
use.
The second paper was published in Nature Communications, and is titled “Auto-

matically annotated motion tracking identifies a distinct social behavioral
profile following chronic social defeat stress”. Here, we present a characteriza-
tion of Chronic Social Defeat Stress (CSDS), an animal model widely used in stress and
depression research, using the novel software presented in the first article.
All in all, this thesis provides a set of novel contributions to both the behavioral

research field in general, and the analysis of motion tracking data in particular. The
next few chapters will describe these contributions in detail, and how I believe they hold
the potential to positively impact future research.
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Zusammenfassung

Versuche, systematisch zu charakterisieren und zu verstehen, wie lebende Organismen
auf komplexe Reize reagieren, sind nicht neu. Bis vor kurzem stützten sich die mei-
sten Ansätze jedoch entweder auf Beobachtungsstudien, die es den Forschern unmöglich
machen, spezifische Hypothesen zu testen, oder auf allzu vereinfachte und mühsame
Laborsituationen, die zu weit von realen Szenarien entfernt sind. In diesem Sinne geht
der Trend in letzter Zeit dahin, halbnatürliche Szenarien kontrolliert nachzustellen und
neue Technologien einzusetzen, um Informationen von sich frei bewegenden Tieren zu
extrahieren, wie z.B. Bewegungsverfolgung, neuronale Aktivität und Vokalisierung.
Auf dem Gebiet der Bewegungsverfolgung und unter Ausnutzung der Fortschritte im

Bereich des maschinellen Lernens, insbesondere bei neuronalen Netzen, die für das Com-
putersehen verwendet werden, haben mehrere frei verfügbare Softwarepakete in letzter
Zeit begonnen, Tools bereitzustellen, die mit geringem Aufwand eine genaue Verfolgung
mehrerer Körperteile über die Zeit ermöglichen, ohne dass physische Marker erforderlich
sind. Dies hat Forschern die Möglichkeit eröffnet, mit geringem Aufwand große Daten-
mengen zu erhalten, was wiederum Entwicklern geholfen hat, neue Wege zu finden, um
diese neuartige Datenquelle zu analysieren und Erkenntnisse daraus zu gewinnen.
Die vorliegende Arbeit zielt also darauf ab, drei Hauptbeiträge zu leisten. Erstens

die Entwicklung neuartiger Deep Clustering-Algorithmen, die speziell auf diese Art von
Zeitreihen zugeschnitten sind und mit denen sich das Verhaltensrepertoire von Tieren
ohne menschliche Kennzeichnung erforschen lässt. Zweitens, die Bereitstellung dieser Al-
gorithmen in einem Open-Source-Python-Paket, das sie zusammen mit anderen Tools
zur Annotation des Verhaltens von Labornagern enthält. Drittens und letztens, die Ver-
wendung der eingesetzten Algorithmen zur Charakterisierung eines realen Tiermodells.
Darüber hinaus handelt es sich um eine publikationsbasierte Dissertation, in der die

erzielten Ergebnisse in Form von zwei zur Veröffentlichung in begutachteten Fachzeit-
schriften angenommenen Artikeln präsentiert werden. Die ersten beiden genannten Ziele
werden in einem im Journal of Open Source Software (JOSS) veröffentlichten Artikel
mit dem Titel “DeepOF: a Python package for supervised and unsupervised
pattern recognition in mice motion tracking data”behandelt. Hier stellen wir ein
ursprünglich entwickeltes Software-Tool namens DeepOF (Deep Open Field) vor, das ne-
ben anderen Tools auch mehrere Deep-Clustering-Algorithmen enthält und für Forscher
einsatzbereit ist.
Die zweite Arbeit wurde in Nature Communications veröffentlicht und trägt den Titel

“Automatically annotated motion tracking identifies a distinct social beha-
vioral profile following chronic social defeat stress”. Hier stellen wir eine Cha-
rakterisierung von Chronic Social Defeat Stress (CSDS) vor, einem in der Stress- und
Depressionsforschung weit verbreiteten Tiermodell, bei dem die im ersten Artikel vorge-
stellte neue Software zum Einsatz kommt.
Alles in allem liefert diese Arbeit eine Reihe neuartiger Beiträge sowohl zur Verhaltens-

forschung im Allgemeinen als auch zur Analyse von Motion-Tracking-Daten im Besonde-
ren. In den nächsten Kapiteln werden diese Beiträge im Detail beschrieben und wie ich
glaube, dass sie das Potenzial haben, die zukünftige Forschung positiv zu beeinflussen.
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1 Introduction

1.1 Clinical and preclinical research: altered behavior in
psychiatric conditions

1.1.1 Defining behavior

Behavior is a fascinating and complex phenomenon which lies at the core of our existence
as living organisms. The term refers to the manifestation of an individual’s actions and
reactions in response to external or internal stimuli, ultimately shaping interactions with
the environment and other living things. Our understanding of behavior has evolved over
time, and from a biological perspective, it encompasses an intricate interplay between
genetic, neurobiological, and physiological processes [1].

To fully grasp the concept of behavior, it is essential to recognize the diverse nature
of biological systems involved in its regulation. At the genetic level, heredity and indi-
vidual variations in genetic makeup play a crucial role in shaping behavioral traits [2].
Genes can influence behavior through the expression of specific proteins, which in turn
participate in the development, structure, and function of the nervous system [3]. While
it is important to consider the impact of genetic factors, it is also necessary to acknowl-
edge the interaction between genetics and environmental influences on behavior. This
interplay, referred to as gene-environment interaction, highlights the dynamic nature of
behavior and the continuous adaptation of living organisms to their surroundings [4].

Moreover, a central component of behavior is the nervous system, responsible for re-
ceiving, processing, and transmitting information. It constitutes a highly organized net-
work of specialized cells, such as neurons, which communicate with one another through
complex electrochemical signaling, allowing for the integration and processing of sensory
inputs, generation of responses, and modulation of behavior. Along these lines, neuro-
transmitters, the chemical messengers facilitating communication between neurons, also
play a vital role in the regulation of behavior. These molecules, released by neurons,
bind to specific receptors on the receiving cell, initiating a cascade of events that may
either excite or inhibit the cell [5].

Furthermore, another critical aspect of behavior is the interplay between the nervous
and the endocrine systems. The latter is responsible for the production and release
of hormones: chemical messengers secreted by endocrine glands that travel through
the bloodstream and exert their effects on target cells [6]. Hormones can influence
behavior by acting on the brain and other tissues, modulating emotions, mood, and
stress responses [7]. Examples of hormones with significant impact on behavior include
cortisol, which is involved in the stress response [8], and oxytocin, which plays a role in
social bonding and attachment [9].

All in all, the delicate balance of neurotransmitters such as dopamine, serotonin, and
glutamate, and hormones such as those mentioned above, is essential for maintaining
normal behavioral functions. Disruptions in this balance can thus result in altered
behavior, as seen in various psychiatric disorders [10].
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1.1 Clinical and preclinical research: altered behavior in psychiatric conditions

1.1.2 A brief history of psychiatry

The study of these altered behaviors, encompassed by the field of psychiatry, has a rich
and storied history, marked by evolving theories and approaches to understanding and
treating altered behavior in the context of mental health. The beginnings of psychiatry
can be traced back to ancient civilizations, where mental disorders were often attributed
to supernatural forces or divine intervention [11]. However, the modern understanding
of psychiatry truly emerged during the Age of Enlightenment in the 18th century, when
the focus shifted towards a more scientific and humane approach to mental health [12].

One of the pioneers of this era was Philippe Pinel, a French physician who advocated
for a compassionate approach to treating individuals with mental disorders. He empha-
sized the importance of understanding the root causes of altered behavior, paving the
way for the development of modern psychiatric theories and therapies [13]. As psychia-
try evolved throughout more recent periods of history, the field expanded its knowledge
of the underlying biological processes influencing behavior, drawing upon the aforemen-
tioned discoveries in genetics, neurobiology, and endocrinology.

The 20th century marked significant advances in psychiatric research and treatment,
driven by the emergence of psychoanalysis, behaviorism, and psychopharmacology. Sig-
mund Freud’s psychoanalytic theory, which focused on unconscious processes and in-
ternal conflicts, had a profound impact on the understanding of human behavior [14].
Simultaneously, behaviorism, led by figures such as John Watson and B. F. Skinner, em-
phasized the role of observable behaviors and environmental influences in shaping human
behavior [15]. Psychopharmacology, the study of how drugs affect the mind and behav-
ior, opened new avenues for treating psychiatric disorders by targeting the imbalances
in neurotransmitters and hormones associated with them [16].

Despite the progress made in understanding and treating psychiatric disorders through-
out history, however, challenges remain in fully elucidating the complex biological pro-
cesses underlying altered behavior [17]. To address these challenges, researchers have
increasingly turned to animal models as invaluable tools for studying the genetic, neu-
robiological, and physiological aspects of behavior [18, 19, 20, 21, 22]. These models
provide controlled environments in which researchers can manipulate specific factors,
such as genetic mutations or environmental stressors, and measure their impact, typi-
cally in specific relevant variables [23].

Animal research has thus yielded essential insights into the neurobiology of psychiatric
disorders, such as the role of neurotransmitter systems, neural circuitry, and genetic
factors in the manifestation of altered behavior. For instance, rodent models have been
crucial in understanding the role of dopamine in reward-related behaviors and addiction
[24], as well as the involvement of serotonin in mood regulation and the pathophysiology
of depression [25]. Additionally, animal models of stress have helped to elucidate the
biological underpinnings of stress-related psychiatric disorders, such as anxiety and post-
traumatic stress disorder (PTSD) [21, 22]. These findings highlight the importance
of accurate behavioral quantification in understanding the etiology and progression of
psychiatric disorders, as well as in the development of novel therapeutic strategies.
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1.1.3 Bridging the translational gap: from animal models back to humans

While animal models have been instrumental in advancing the understanding of the
neurobiology of psychiatric disorders, a translation gap persists when applying these
findings to improve the lives of human patients. This gap arises from various factors,
including differences in species, the complexity of human behavior, and the limitations
of animal models in capturing the full spectrum of psychiatric symptoms [23, 26]. In
addition, the often fuzzy symptom-based definition of psychiatric disorders in humans
makes it hard to disentangle unique biological mechanisms underlying disorders that
fall into the same classification [27]. Along these lines, initiatives such as the Research
Domain Criteria (RDoC) have opened the field for discussion about more comprehensive,
multimodal definitions of psychiatric disorders, which could have a positive impact in
the future [28].

Thus, one of the primary challenges in bridging the aforementioned translation gap
relates to the inherent differences between species. Although rodent models share some
genetic, neurobiological, and physiological similarities with humans, there are significant
differences in brain structure, function, and complexity. Consequently, the behavioral
responses and underlying neurobiological mechanisms observed in animals may not fully
mimic those in humans [29].

Moreover, human behavior is shaped by a multitude of factors, including culture,
personal experiences, and social interactions [30]. Animal models, although useful for
studying basic biological processes, may not adequately capture the intricacies of human
behavior and the unique environmental contexts that influence it. For instance, animal
models of depression may rely on stress-induced behaviors, but these may not encom-
pass the full range of cognitive and emotional symptoms experienced by humans with
depression [31].

Additionally, the validity of animal models in psychiatry depends on their ability
to accurately mimic the clinical features of psychiatric disorders. While some animal
models have been successful in recapitulating certain aspects of human disorders, they
often do not cover the entire spectrum of symptoms or the heterogeneity observed in
clinical populations. This limitation can hinder the development of effective treatments
that address the diverse presentations of psychiatric conditions [23, 30].

To minimize this translation gap, researchers are continuously refining animal mod-
els and developing new experimental paradigms that better reflect the complexity of
human behavior and psychiatric symptoms. Along these lines, recent models, such
as depression-like syndrome (DLS) in mice (Figure 1.1), leverage new technologies on
comprehensive measuring to mix clinical criteria and RDoC to provide bio-behavioral
reference syndromes for preclinical rodent models [31].

In parallel, the evolution of behavioral quantification has played a pivotal role in
advancing psychiatric research using both animal models and patients. From classical
ethology to virtual reality and multi-modal tracking, the next sections explore the science
behind translating such a complex phenomenon as behavior into meaningful quantitative
variables.
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Figure 1.1: Depression-like syndrome in mice: Presented by von Mücke-Heim et al. in
2022, this model aims to bridge the gap between murine and human depression
models. Beginning with the DSM/ICD definition of depression, the provided ma-
trix illustrates the process of reverse translation, which takes criteria from human
clinical settings and seeks to apply them to mice. There are, of course, certain
symptoms of depression, such as feelings of worthlessness, that cannot be trans-
lated due to the evolutionary distance and species-specific barriers. However, many
other symptoms, as well as key biological markers, socio-functional issues, and a
certain minimum duration, can be effectively measured in mice. Examples of these
include a decrease in appetite or significant weight loss. Both human and mouse
measurements can then be sorted into RDoC domains. (Created with BioRen-
der.com, adapted from [31]).

1.2 Quantifying behavior

The field of animal behavior quantification has evolved considerably since its early days
in the discipline of ethology. Pioneers such as Konrad Lorenz and Niko Tinbergen laid the
foundation for systematic observations of animals in their natural environments, helping
to establish fundamental principles and patterns of behavior [32]. As the field progressed,
researchers began to conduct controlled experiments in laboratory settings, allowing for
more precise measurements and manipulations of experimental variables [33]. These
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advancements in methodology provided valuable insights into the underlying mechanisms
of animal behavior, which have in turn informed the development of novel technologies
and computational techniques for quantifying and analyzing complex behavioral data
[34].

1.2.1 Endless forms most beautiful: from ethology to controlled behavioral
experiments

When the brain encounters external stimuli, it triggers specific patterns of cellular re-
sponses that ultimately shape behavioral outcomes. In the past, the foundational prin-
ciples of behavior were typically derived from observational studies, where animals were
left undisturbed in their natural environments [32]. Early influential work in this area
was carried out by Charles Darwin in the 19th century. In his seminal work, “On the
Origin of Species” (1859) [35], he introduced the concept of natural selection, which pro-
vided an explanation for the diverse array of shapes and behaviors observed in the animal
kingdom. Moreover, his book “The Expression of the Emotions in Man and Animals”
(1872) [36] further delved into the subject, investigating the evolution and adaptive value
of emotional expressions in both humans and animals. Thus, Darwin’s work established
a foundation for subsequent ethologists, arguably shaping the discipline’s core principles.

Thus and so, ethology was set to primarily work through observational methods, a
core assumption of the discipline being that the most comprehensive understanding of
behavior can be achieved by observing animals in natural or semi-natural environments.
This approach allows researchers to study behavior descriptively, generating hypotheses
and uncovering new behavioral concepts [37]. A notable example of exceptional etholog-
ical achievement is the work led by Konrad Lorenz (1903–1989), an Austrian zoologist
who is best known for his research on imprinting, a rapid learning process that occurs
early in an animal’s life, during which it forms strong attachments to certain stimuli.
Through his work with greylag geese, Lorenz discovered that newly hatched goslings
would imprint onto him, treating him as their parent. This observation revealed the
innate nature of certain behavioral patterns, and emphasized the role of critical periods
in the development of species-typical behaviors [38]. Along these lines, Niko Tinbergen
(1907–1988), a Dutch biologist, set the grounds for a more comprehensive understand-
ing of animal behavior with his “four questions” framework, which is used to analyze
animal behavior from four different perspectives: mechanism (or proximate causation),
function (or ultimate causation), ontogeny, and phylogeny [39]. Ultimately, Tinbergen
and Lorenz were awarded the Nobel Prize in Physiology or Medicine in 1973 (along with
Karl von Frisch) for their discoveries concerning animal behavioral patterns.

While ethology and observational research have produced remarkable findings, how-
ever, there are significant limitations to these study designs. For instance, observational
studies depend on the researcher’s ability to accurately assess behavior, which can result
in misinterpretation and differing interpretations among researchers. Additionally, the
absence of control over environmental variables can lead to poorly reproducible results
due, for example, to high variability between experimental conditions.
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To address these limitations, the field of comparative psychology emerged, where re-
searchers sought to uncover general principles of learning, cognition, and behavior within
tightly controlled environments [33]. The emphasis then shifted towards deconstruct-
ing the overall behavior into distinct, measurable elements, thus reducing its complexity
through controlled laboratory settings, and enabling the isolation of the effects of specific
factors on behavior (Figure 1.2). These lab tasks are characterized by their high degree
of environmental control and standardized behavioral readouts, making causal inference
and hypothesis-driven research questions possible [40]. Pioneering researchers like Ed-
ward Thorndike, Ivan Pavlov, Burrhus Frederic Skinner, and others demonstrated the
potential and power of this field. Along these lines, Thorndike illustrated the concept
of trial-and-error learning by showing that animals became more efficient at escaping a
device and obtaining rewards with an increasing number of trials [41]. Skinner, subse-
quently, developed one of the earliest and most popular laboratory behavioral tasks, the
operant conditioning chamber (or “Skinner box”), which can be used for both negative
and positive reinforcement learning and still remains widely used in research [42]. This
development initiated a trend to standardize and simplify various behavioral disciplines
using laboratory tasks, a trend that continues to this day (Figure 1.3). Laboratory tasks
are of undeniable value for investigating the effects of external stimuli (e. g., the stress
response system) and interventions (e. g., pharmacological) on behavior. Furthermore,
the unparalleled possibilities of using various genetic mouse models have facilitated the
study of specific target genes on behavior [23].
However, no behavioral tasks are flawless, and they carry assumptions and particular

concerns that must be addressed. First and foremost, the general laboratory setups
involve intensive interaction between the researcher and the test animals, raising con-
cerns that inter-individual differences among researchers, such as sex, could impact the
animals’ behavioral performance [43, 44, 45]. Moreover, the current laboratory housing
settings are highly unnatural, preventing rodents from engaging in species-typical be-
haviors and causing problematic behavior such as extreme aggression in group-housed
animals [46]. Lastly, the use of inbred mice presents challenges when investigating nat-
uralistic behaviors. Although genetic models have provided valuable insights into the
genome, they have also resulted in animal models that behave quite differently from their
wild counterparts, calling into question the validity of these models and, unfortunately,
reducing the reproducibility of behavioral research [30].
All in all, taking a reductionist approach in laboratory tasks can be advantageous

for many behavioral disciplines; however, it may also be detrimental for behavioral
constructs that rely on multiple outputs and more naturalistic environments, making
them more complex to evaluate. Recently, new technologies have enabled researchers
to track animals in semi-naturalistic open-field settings in decreasingly invasive ways.
By extracting reliable information from less restricted environments, experimenters can
increase efficiency (by yielding multiple automatic read-outs per experiment) and ex-
plore more natural settings while retaining control over experimental variables (such as
genetics or drug administration). Along these lines, the next section will delve into the
computer science and machine learning (ML) advances that enabled this trend, and how
they came to be.
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Figure 1.2: From ethology to modern behavioral quantification: The upper section
of the figure depicts key methodologies used in behavioral neuroscience research,
showing ethology on the left and comparative psychology on the right. The next
generation of social behavioral tests, signified by the central arrow, utilize a semi-
naturalistic environment. This combines the strengths of both ethology, providing
a naturalistic setup free of experimenter interference, and comparative psychology,
maintaining some level of environmental control by restricting space and exter-
nal influences. Various elements, including exposure to stress, gender, motivation,
recording duration, age-related changes, and living conditions, will have an impact
on the results of the social behavioral evaluation. (Adapted from [47]).

1.2.2 Deep learning and the advent of markerless pose estimation

The idea of tracking animals in more naturalistic experimental settings is not new. For
example, in 2013 Shemesh et al. created an automatic phenotyping system based on
video color recognition called the “Social Box” [48]. The authors described how social
behavior in mice develops in a semi-natural environment, using techniques that quan-
tify behavioral traits automatically, thus liberating researchers from laborious manual
quantification. The authors automatically tracked several groups of mice in their home
environment and investigated how individual behavior is strongly interdependent in their
groups. In a follow-up study in 2019, Forkosh and colleagues developed a model, us-
ing the same system, that captures and outlines stable personality traits in mice [49].
While insightful, this work and subsequent studies were limited to tracking each animal’s
central position. Moreover, in these and other contemporary approaches, animal iden-
tification relied on dedicated (and often expensive or invasive) physical markers, such
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elevated plus maze

Barnes maze open-field test

forced-swimming testa.

c.

b.

d.

Figure 1.3: Common univariate laboratory behavioral tasks: a. Elevated plus mazes
are commonly used setups to test for anxiety-like behavior. As anxious animals
will tend to spend less time in the open arms, the ratio between time spent in
open versus closed arms is typically reported. b. Forced-swimming tests are often
used to measure anhedonic-like behavior, which is reported through helplessness
time (the time the animals spend without trying to actively leave the pool where
they are submerged). c.. Barnes’ mazes are common tools to measure memory
in rodents, where their ability to remember the location of specific target zones
is tested. d. Open-field tests, typically used to assess locomotion, are becoming
increasingly popular for automated feature extraction following pose estimation.
(Created with BioRender.com).

as radio frequency identifiers (RFID) or color hair dyes. Over the last decade, however,
advancements in computer science, especially machine learning and deep learning-based
computer vision, have sparked a revolution in animal motion tracking, enabling non-
invasive markerless pose estimation of multiple body parts, which opened the floor for
innumerable and creative ways of extracting behavioral information from more natural-
istic (albeit controlled) environments.

To understand how this came to be, let us start from the beginning. Machine learning,
a subfield within artificial intelligence (AI) which deals with methods that leverage data
to improve computer performance on some set of tasks [50], arguably has its origins in
the mid-20th century. One of the earliest proposed algorithms was the perceptron, intro-
duced by Frank Rosenblatt in 1957 [51], which could be seen as a simple linear classifier
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that could learn to recognize patterns in data. Although limited in its capabilities, it
laid the foundation for more advanced techniques, such as support vector machines and
more complex neural networks. The 1980s subsequently marked the beginning of the
modern era of machine learning with the emergence of decision trees, k-nearest neighbors
(KNNs), and other algorithms that enabled computers to learn from data more effec-
tively [52]. Furthermore, the development of the backpropagation algorithm by Geoffrey
Hinton and his colleagues in 1986 allowed for more efficient training of neural networks,
setting the stage for the rise of deep learning [53].

Deep learning is born then as a subfield of machine learning, which involves the use of
artificial neural networks (ANNs) with multiple hidden layers to learn complex, hierarchi-
cal representations of data [50]. The first breakthrough of deep learning arguably came
in 2012 when Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed AlexNet,
a deep convolutional neural network (CNN) that significantly outperformed other meth-
ods in the ImageNet Large Scale Visual Recognition Challenge [54]. This success marked
the beginning of the “deep learning revolution” and led to rapid advancements in vari-
ous AI applications, including computer vision, natural language processing, and speech
recognition. In computer vision in particular, deep learning enabled the departure from
hand-crafted feature extraction methods popular in since the 1960s, which proved to
be insufficient for complex, real-world tasks [55]. Since then, there have been numerous
breakthroughs, including Faster R-CNN for object detection [56], Generative Adversarial
Networks (GANs) and diffusion models for image synthesis [57, 58], and the introduction
of the Transformer architecture, which has further enhanced the capabilities of natural
language processing and computer vision systems [59], among others. Moreover, the
development of increasingly performant models for multi-class image classification led to
the rise of effective transfer learning, where models that had been pre-trained in large
datasets, such as ImageNet, can be used for feature extraction, and fine-tuned or repur-
posed altogether for a different downstream task, without the need for full retraining
[60].

It is in this context that tools like DeepLabCut [61], SLEAP [62], and SIPEC [63], were
developed in the last few years. By leveraging deep neural networks (DNNs) pre-trained
in ImageNet, base versions of these models are capable of detecting the position of a set of
user-defined body parts in each frame of a given video dataset, upon fine-tuning with very
little human labelling. While several architectures have been developed to date, the basic
idea consists of replacing the classification layers of a chosen pre-trained model (typically
ResNet50 [64]) with deconvolutional layers that output a probability mass map for each
body part, and each pixel on the original image (Figure 1.4). Furthermore, the argmax
of the output for each body part can then be interpreted as a confidence value, enabling
further downstream filtering or processing of defective tracks. The incorporation of
deep learning techniques into animal motion tracking has not only simplified the data
collection process, but also improved the quality and granularity of the information
gathered, providing researchers with unparalleled opportunities to investigate intricate
behavioral patterns and their underlying neural mechanisms, both while retaining control
on experimental variables and in the wild [65].
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In this fashion, these approaches have made it possible to gather vast amounts of
time series data on multiple body parts with human-level accuracy [66]. Additionally,
some models can now retain individual identification in social settings without dedicated
hardware, making it possible to track multiple animals at once, which paves the way for
social behavioral analysis [62, 67].
Moreover, and in contrast to instances where experimental breakthroughs have trig-

gered an increase in data volume (thereby sparking the need for new computational
approaches) the case of behavioral analysis has followed the opposite trend [68]. Here,
the deliberate application of recent computational techniques has led to a rapid increase
in data collection, enabling even more technical breakthroughs (such as foundation mod-
els for particular species [69]), and ultimately changing how research is conducted and
the types of questions people can ask [34]. In the next section, we discuss how precision
tracking data can be analyzed, to gain new insights into animal behavior and answer
scientific questions that were much harder to address before this field came to be.

1.3 Automated annotation of motion tracking data

As previously discussed, deep learning based pose estimation made a strong impact in
the amount of information that can be extracted from raw animal experiment video. In
this section, we will explore the plethora of methods that became available to annotate,
analyze, and ultimately extract meaning from this novel and rich paradigm. These meth-
ods will be mostly described as falling into one of two big families, namely supervised
classification (aiming to extract pre-determined and characterized traits) and unsuper-
vised embedding and clustering (seeking to explore data and extract patterns without
explicit external input). Combinations between the two, such as clustering-powered
active learning platforms, will also be touched upon.

1.3.1 Supervised annotation

Either by observational research or as the result of controlled experiments, behavioral
neuroscience has had time to develop and describe detailed ethograms for specific animal
models [70]. That is, descriptions of typical actions these experimental animals conduct
in the environments in which they are typically observed. The supervised annotation
of motion tracking time series, then, aims to use classification models to detect, upon
being fed with labelled examples, the moments in time where animals perform certain
actions, that may or may not be related to a specific experimental condition.
Along these lines, a current common-use package that requires minimal coding to

create supervised behaviors from DLC and other pose-estimation packages is SimBA
(Simple Behavioral Analysis [71]). SimBA enables users to label behaviors of interest
in a graphical user interface, training machine learning models that can learn the rules
underlying certain behaviors directly from data, thus automating the quantification of
arbitrarily complex traits. Moreover, the provided models (typically ensemble classi-
fiers such as Gradient Boosting Machines—GBMs) are trained on extracted static and
dynamic features describing animal motion, rather than the sequences themselves [72].
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Figure 1.4: DeepLabCut overview: a. The process begins with the extraction of images
displaying distinct postures that are representative of the specific animal behav-
ior. To enhance computational efficiency, the region of interest (ROI) should be
minimized, while still encompassing the behavior under study, which in this case is
reaching. b. Next, the user is required to manually identify and label various body
parts. In this context, different joints of the digits and the wrist were pinpointed as
features of interest. c. A deep neural network (DNN) architecture is then trained
to predict the locations of the labeled body parts based on the associated image.
A unique readout layer is produced for each body part, designed to predict the
likelihood of a body part appearing in a specific pixel. Training adjusts the readout
and DNN weights, which are stored post-training. d. The trained network can
then be utilized to determine the positions of the body parts from video footage.
The images depict the most probable locations for the 13 labeled body parts on a
mouse’s hand. (Adapted from [61]).

This approach makes the models lighter to train and doesn’t require a dedicated graphics
processing unit (GPU). Additionally, certain packages, such as the previously mentioned
SIPEC [63] or MARS [73], integrate a custom tracking system with a supervised behav-
ioral annotation pipeline, offering benefits over combining different packages for the same
purpose since users do not need to worry about software compatibility within different
frameworks.

All these approaches work very well at detecting previously defined patterns. However,
their generalizability across behavioral setups is rather limited for complex behaviors,
forcing users to relabel data and retrain models almost every time a new dataset comes
along. Nonetheless, some behaviors can be accurately reduced to a set of hard-coded
rules, without the need for model training [74]. These include, but are not limited to,
time-in-zone quantification, specific individual interactions (e. g., nose to nose and nose
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to tail contacts), or interactions with objects. Simple approaches in this case can help
reduce overfitting in some very relevant scenarios [75]. Moreover and leaving gener-
alizability issues aside, while supervised classification models can drastically increase
annotation throughput when compared to classical univariate behavioral tasks, they are
still restricted to a set of pre-defined and labelled patterns. This can result in leaving
out meaningful yet undescribed animal behaviors, which could be better captured with
a different set of methods.

1.3.2 Unsupervised annotation and behavioral embeddings

An alternative approach to annotating behavior involves analyzing pose-estimation data
without pre-established ethograms. This can be achieved through unsupervised learning
techniques, a branch of machine learning that seeks to extract insights from data without
prior information about the outcomes of interest [52].

By retrieving behavioral clusters or syllables expressed at particular points in time,
unsupervised algorithms in this context have the potential to help create automatic com-
prehensive ethograms, bypassing the limitations of the previously described classification
methods, and hinting by themselves at new knowledge [76].

Additionally, these approaches facilitate hypothesis generation, as they can identify
behavioral patterns indicative of previously unknown behaviors within a specific context.
Since unsupervised methods allow for exploration of the behavioral space without the
need for labeling, they can serve as an initial screening for behaviors of interest. For
instance, clustering can be employed to pinpoint at particular behavioral patterns dis-
playing the most significant differences between predefined experimental conditions [75].
Subsequently, researchers can train supervised classifiers to more directly and accurately
measure the behaviors of interest. In this regard, new approaches have been published
recently in which unsupervised clusters are used to initialize supervised classifiers, which
are in turn fine-tuned using an active learning framework [77].

Along these lines, several packages and pipelines have been developed that automati-
cally segment behavior using unsupervised methods. For example, the software system
B-SOiD [78] annotates motion data with feature sets that help describe behavior over
time without directly using sequential data. Another software system, MoSeq [76, 79],
leverages the time component of motion with autoregressive hidden Markov models,
which can directly capture probabilistic relationships between input variables. Other
packages, like VAME [80], employ neural networks that process motion sequences di-
rectly, and apply post-hoc clustering techniques on the resulting latent space, yielding
more meaningful clusters of specific behaviors with less noise from other patterns [81].
Thus and so, an added benefit of neural network models is their ability to embed mo-
tion trajectories into interpretable latent spaces that can be, for example, analyzed dif-
ferentially across experimental conditions [75]. Moreover, understanding the retrieved
patterns is crucial for comprehending the underlying behaviors. The ability to interpret
the models’ outputs can not only enhance transferability across datasets in the case of
supervised learning, but also aid the meaningful interpretation of unsupervised clusters.
In this context, both visual exploration (taking advantage of video data and mapping
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back to snippets assigned to specific patterns) and machine learning explainability tools,
such as Shapley Additive Explanations (SHAP) [82], are suitable approaches.
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Experimental design and video collection

Motion tracking (DLC, SLEAP, SIPEC)

Supervised learning

1. Data labeling

Unsupervised learning

Active learning

Pattern integration and downstream analysis

2. Classifier training

3. Performance evaluation

Tools: SimBA, DeepOF, MARS

1. Dimensionality reduction

2. Clustering

3. Cluster interpretation

Tools: DeepOF, VAME, B-SOiD,
MoSeq

Tools: A-SOiD

Figure 1.5: Automatic behavioral annotation via motion tracking: Once the experimen-
tal design is established and videos are gathered, keypoints from one or multiple
animals are extracted over time as time series, using tools like DeepLabCut, SLEAP,
or SIPEC. Predetermined behaviors can be identified with supervised learning tools
such as SimBA, or MARS, which typically require data labeling, classifier train-
ing, and an evaluation of the performance of the extracted behaviors. However,
tools like DeepOF offer pre-trained models, eliminating these steps. An alternative
method for obtaining a wider scope of information is through unsupervised learning,
which doesn’t require labeling, and aims to derive behavioral syllables or clusters
following a dimensionality reduction step. The interpretation of these clusters is
also a crucial step, which can be done via visual video inspection or using model
explainability techniques like SHAP. This category includes tools such as DeepOF,
VAME, B-SOiD, and MoSeq, to name a few. In addition, the results from unsuper-
vised learning can serve as a starting point for supervised models with active human
feedback, as demonstrated in the A-SOiD framework. Lastly, the expression and
dynamics of all acquired patterns can be compared across different experimental
conditions to gain insights into behavioral changes. (Adapted from [47]).
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In summary, the use of supervised and unsupervised methods in automated behavioral
analysis is key to leverage new tracking technologies, and holds the potential to signifi-
cantly contribute to our understanding of animal behavior in the near future, revealing
new patterns and helping to streamline research efforts. New and innovative methods
that can help analyze these data in meaningful ways can thus positively impact the
current state of the field. An overview of this pipeline can be found in figure 1.5.

The next section of this introduction will delve into the fundamental biology and
behavioral implications of chronic stress, which serves as the case study for applying the
algorithms and analyses developed in this thesis.

1.4 Chronic stress as a case study

Chronic stress serves as an ideal illustration of the complex connections between animal
behavior and psychiatric disorders. It has been associated with the development or wors-
ening of numerous psychiatric conditions, including major depressive disorder (MDD),
post-traumatic stress disorder (PTSD), anxiety disorders, and even neurodegenerative
diseases like Alzheimer’s and Parkinson’s [83]. In animal models, chronic stress expo-
sure can lead to behavioral changes similar to those observed in human patients, such
as heightened anxiety-like behavior, cognitive impairments, and disruptions in social in-
teractions [84, 85, 86]. Examining the effects of stress on animal behavior has not only
deepened our understanding of the intricate relationship between stress and psychiatric
disorders but has also provided insights into underlying neurobiological mechanisms and
potential therapeutic interventions. In this section, we explore the basic biology behind
stress, and the Chronic Social Defeat Stress (CSDS) model in mice, which will serve as
a case study for the models presented in this thesis.

1.4.1 A primer on stress biology

Stress is an integral part of our daily lives, affecting our mood and motivation. Bio-
logically speaking, it refers to the body’s response to external or internal stimuli that
challenge its equilibrium, known as stressors. This response involves the complex in-
terplay of neural and endocrine structures to help the organism adapt to particularly
demanding situations. Along these lines, central to the stress response is the activation
of the hypothalamic-pituitary-adrenal (HPA) axis, which leads to the release of cortisol,
a hormone central to energy, blood pressure, and mood regulation. As a consequence,
the sympathetic nervous system (SNS) is activated, resulting in the secretion of cate-
cholamines, such as adrenaline and noradrenaline, from the adrenal medulla [87]. These
neuroendocrine changes prepare the body for the “fight or flight” response, a concept
introduced by Walter Cannon to describe the physiological adaptations that enable an
individual to confront or evade a perceived threat [88]. This response includes increased
heart rate, blood pressure, and respiration, as well as heightened alertness and the mo-
bilization of energy resources. While short-term activation of the stress response can
be beneficial for survival, chronic stress can lead to detrimental effects on physical and
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mental health, highlighting the significance of understanding the biological mechanisms
underlying its regulation [85].

Notably, chronic stress has increasingly become a societal burden, with the incidence
of stress-related disorders steadily growing over the past decades [89]. Furthermore,
our understanding of the behavioral and neurobiological mechanisms related to these
disorders is limited, which contributes to the moderate success of current drug treatments
[90]. Furthermore, the adopted symptom-based classification of these disorders, and
the resulting heterogeneity, makes it often difficult to uncover their potential common
biological causes [91, 27].

Along these lines, deciphering the complexity of neurobiological circuits and molecular
pathways underlying healthy or abnormal stress responses requires the integration of cel-
lular, molecular, and behavioral data [68] (Figure 1.6). While traditional approaches may
lack the necessary spatial and temporal resolution, recent technological advancements
have considerably improved these aspects. For example, single-cell transcriptomics en-
abled the investigation of thousands of genes simultaneously and the dissection of the
contributions of different cell types involved in the stress response [92]. Similarly, the use
of activity-dependent labeling methods combined with brain-clearing techniques allows
for the identification of activated cells following specific stressors and the reconstruction
of the involved brain circuits in a particular stress response [93]. As with most high-
throughput techniques, these strategies generate vast amounts of data, necessitating the
use of appropriate computational and statistical tools. Consequently, advancements in
molecular and cellular neuroscience techniques have spurred growth in computational
science and the development of suitable data analysis software. This way, the previously
discussed novelties in behavioral phenotyping have also enabled researchers to efficiently
assess the specific effects of different types of stressors, stress paradigms, developmental
ages, and sex on behavior, while significantly reducing manual scoring-related bias [90].
Moreover, advances in virtual reality (VR) have also allowed researchers to test therapies
and track behavioral responses in human patients [94, 95].

Furthermore, and as previously discussed, to understand the cellular and molecular
mechanisms responsible for the pathophysiology of psychiatric disorders, it is crucial to
develop and implement preclinical animal models. A common model used in current
neurobiological research, namely Chronic Social Defeat Stress (CSDS) is presented in
the next section.

1.4.2 Chronic Social Defeat Stress (CSDS)

In this context, the CSDS paradigm is a widely used animal model, predominantly in
rodents, for studying the effects of chronic stress on behavior and its potential contri-
bution to the development of stress-related psychiatric disorders, such as MDD, anxiety
disorder, and PTSD [96]. The model aims to simulate territorial dominance, and involves
repeated exposure to social stress through daily confrontations between a test subject,
typically a mouse, and a more aggressive and dominant conspecific [97]. These encoun-
ters generally include physical aggression, which leads to subordination and submission
in the test animal. Thus, and while far from perfect, the CSDS paradigm is designed
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Figure 1.6: From macro to micro: increasing resolution in stress neurobiology. The
field of stress neurobiology is benefiting from the increasing resolution offered by
cutting-edge molecular and computational advancements. This focus on enhanced
spatiotemporal resolution is affecting cell biology, behavioral science, and their
interaction. The stress response can be studied from various perspectives, such as
the nature of the stressor (physical versus psychological), the duration of the stressor
(acute or chronic), the stage of development (from early life through adolescence,
adulthood, and old age), or even the sex of the subject (male or female). (Created
with BioRender.com, adapted from [68]).

to mimic aspects of chronic stress experienced by humans and induce behavioral, neu-
robiological, and physiological changes that resemble those observed in stress-related
psychiatric conditions.

In most commonly used CSDS protocols, test animals undergo a series of daily stress
exposures, usually lasting between 10 and 21 days [97]. After each confrontation with
the conspecific, the test subject and the aggressor are housed in the same cage but
separated by a mesh-like barrier, allowing continuous sensory contact while preventing
further physical aggression. This continuous exposure to the stressor promotes the de-
velopment of stress-related behaviors in the test animal, such as anhedonia, anxiety-like
behavior, reduced motivation, and social avoidance [98, 99, 100]. Following the chronic
stress exposure, researchers typically assess these behaviors using various tests, aiming to
quantify differences in social interaction and avoidance, sucrose preference, or locomotion
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(among others), to evaluate the effects of CSDS on the animal. Additionally, and in line
with what was previously discussed about animal models, the CSDS paradigm enables
the investigation of the underlying neurobiological and molecular mechanisms involved
in stress-induced behavioral changes, as well as the evaluation of potential therapeutic
interventions for stress-related disorders [101, 102].

Figure 1.7: A paradigm shift in translational psychiatry through rodent neuroethol-
ogy: So far, the use of animal models in the translational research of mental
disorders hasn’t managed to live up to the hopes of discovering new treatments.
Human mental illnesses like anxiety disorders are complex, shaped by genetic fac-
tors, environmental influences past and present, and the interplay between these
elements. In this context, disease diagnosis relies on categorized behavioral criteria
(indicated in the figure by ‘+’ symbols). In contrast, constructs like anxiety in
mice are typically modeled using brief tests that identify ‘disease-like’ phenotypes.
Despite the high level of control, this behavioristic approach falls short in cap-
turing the complexity of human mental illnesses. Automated tracking of complex
behavior in mouse groups (in a semi-natural setup) can disclose individual coping
mechanisms, so that the integration of univariate tests and semi-natural setups in
the study of endophenotypes shared across mammalian species holds promise for
narrowing this existing gap. (Adapted from [90]).
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While a widely adopted framework, however, the reduction of the overall shifts in
behavior induced by this protocol can lead to an oversimplification of the associated be-
havioral repertoire, as well as to increasing the risk for cross-over effects with other types
of behavior, such as anxiety. Moreover, due to technological limitations, the analysis of
the interaction between multiple freely moving animals remained historically difficult,
which further limited the complexity of the behavioral assessment [90]. Along these
lines, social behavior is a complex entity that relies on many different types of behav-
ioral interactions, which often are too complicated, time-intensive, and repetitive to
assess manually [75]. Ultimately, this makes CSDS an optimal scenario for the develop-
ment of new tools, since any newly developed methods should recapitulate the available
knowledge (which acts as a positive control) and room for improvement both in terms of
throughput and behavioral insight is clear. As previously discussed, and while it remains
impossible to fully replicate human disorders in animal models, the systematic devel-
opment and thorough characterization of existing and new models can not only benefit
basic research, but also help to bridge the overarching translational gap that exists in
psychiatry today [90] (Figure 1.7).
In this context, this thesis aims to develop and present novel methods to analyze and

describe behavior in experimental mice, deploy them at scale, and apply them to increase
resolution in current descriptions of CSDS. Before addressing these goals, chapter 2 will
delve into the technical state of the art of the field.
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2.1 Time series clustering

Aside from motion tracking, time series data is prevalent in numerous data mining
applications, from weather forecasting to energy consumption predictions. In many
scenarios, clustering techniques serve as a wonderful exploratory tool to group either
similar time series altogether, or to obtain segments in single instances in which the
data behaves in consistently similar ways [52].

In the general case, we consider a set of N objects represented as:

X = {x1, . . . , xN} (2.1)

Taking a measure of dissimilarity between objects xi and xj that can be expressed as
d(xi, xj), the goal of clustering is to divide X into a partition C = c1, ..., ck consisting
of K clusters, which maximizes both the similarity between objects within the same
cluster, and the dissimilarity between objects in different clusters [103].

The overall objective of clustering in the context of this thesis, therefore, is to find
a mapping function fΘ that enables the obtaining of a relevant partition C for time
series data. Unlike many other data types, however, time series have some peculiarities
that make this problem exceptionally hard, and render traditional algorithms unsuitable
without either pertinent modification or data preprocessing. To explore why this is the
case, let us represent a time series of length T as:

xi = [xi,1, xi,2, . . . , xi,T ] (2.2)

Here, xi ∈ R(d×T ), where d is the number of features for each time step. Series
with d = 1 are considered univariate, and series with d > 1 (as virtually all cases
explored in this thesis) are deemed multivariate. That said, the unique nature of the
time dimension presents challenges when employing traditional clustering methods. For
starters, each time step cannot be regarded as an independent feature, with observations
displaying varying degrees of autocorrelation [104]. Furthermore, two time series may
represent similar objects, but their time signals could be delayed, stretched, or affected
by noise (Figure 2.1). Consequently, these time series may exhibit significant differences
in Euclidean space, despite representing similar signals [103]. As a result, researchers
have proposed a plethora of time series-specific clustering methods in the literature.

Along these lines, more classical methods tend to rely on adapting time series to the
Euclidean space through time-aware feature extraction [105], or to design alternative
distance metrics that can take care of alignment issues [106]. While these methods are
widely used for their simplicity and interpretability, they may struggle with high dimen-
sional or noisy data (such as motion tracking), and can be computationally expensive
for large datasets.
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2.1 Time series clustering

As an intermediate methods’ family, probabilistic models, such as Hidden Markov
Models (HMMs) retain some interpretability capabilities, while excelling at time seg-
mentation even for time series with several dimensions. They typically exhibit difficulties
handling long-range dependencies, however, due to the underlying Markovian assump-
tion [104], and are in general less robust to noise than other alternatives, requiring
specific tweaks tailored to each specific situation [76].

On the other hand, neural network-based methods have gained popularity for their
ability to automatically learn complex features from the data [103]. These methods
excel at handling high dimensional and noisy time series, and are capable of capturing
long-range dependencies. However, they can be more challenging to interpret, require
larger datasets for training, and may be prone to overfitting if not properly regularized.

In the following sections, we discuss in detail the primary time series clustering meth-
ods available in the literature, as well as their advantages and disadvantages in general
and for motion tracking data in particular. A set of specific behavioral segmentation
examples across many of these categories are provided, and the main ideas to explore in
the algorithms presented in this thesis are introduced.

2

1

0

1

2

3

4

Si
gn

al

Shift Stretch Noise

0 50 100 150 200 250
Time

2

1

0

1

2

3

4

Si
gn

al

0 50 100 150 200 250
Time

0 50 100 150 200 250
Time

Figure 2.1: Issues with time series clustering in Euclidean space: Examples of time
series belonging to the same class with time shifts (left-most column) stretches
(central column) or varying noise (right-most column). (Adapted from [103]).
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2.1.1 Classical methods

As previously mentioned, unsupervised learning methods in machine learning provide a
way to explore and understand the intrinsic structure of data without labeled information
or predetermined categories. For time series in particular, special care must be taken to
deal with issues such as autocorrelation in the time dimension. In this section, we explore
classical approaches (that is, algorithms that do not rely on neural networks) to take
care of this issue in time series segmentation, including time-aware feature extraction,
specific distance metrics (such as DTW) and HMMs.

2.1.1.1 Classical clustering using time-aware feature extraction

The first approach to explore aims to collapse the time dimension using feature extraction
techniques, thus reducing two-dimensional matrices (where dimensions correspond to
time and features) to vectors that can be fed to classical dimensionality reduction and
clustering algorithms.

This is accomplished by extracting meaningful and representative features that capture
the essential patterns and characteristics of the data. Some commonly used feature
extraction methods include statistical measures (such as mean, variance, skewness, and
kurtosis), frequency domain features (such as Fourier and wavelet transforms), and time-
domain features (such as autocorrelation, trend, and seasonality) [107].

Once features are extracted, classical clustering algorithms, such as K-means, hier-
archical clustering, or density-based spatial clustering of applications with noise (DB-
SCAN), can be applied to group similar time series based on their extracted features
[52]. As customary with non-time-series data as well, and given the vast number of
extracted features in some cases [105] high-dimensional vectors are usually reduced to
lower-dimensional manifolds using dimensionality reduction techniques such as Princi-
pal Component Analysis (PCA), or Uniform Manifold Approximation and Projection
(UMAP) [108, 109]. This helps deal with the so-called “curse of dimensionality”, a phe-
nomenon describing how common distance metrics are not suitable for grouping patterns
in high-dimensional spaces [104].

Thus and so, this approach enables the use of well-established clustering techniques
on time series data while reducing computational complexity and mitigating challenges
associated with the time-dependent nature of the data. However, the success of these
kinds of pipelines largely depends on the choice of features and their ability to represent
the intrinsic structure of the time series data effectively [110, 111]. Moreover, for large
datasets feature extraction itself can become cumbersome in terms of computational
complexity, deeming other methods usually more suitable [111].

The standard pipeline included in the python package tsfresh (Time Series FeatuRe
Extraction on basis of Scalable Hypothesis tests) is a good example of this kind of
approaches in practice. It applies 63 time series characterization methods, which (using
default parameters) output a series of 794 features per dimension. Furthermore, it offers
domain specific subsets of features, and task-specific feature selection pipelines such
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as statistical testing for supervised learning, and variance-based methods for clustering
[105] (Figure 2.2).

Figure 2.2: An overview of the tsfresh feature extraction pipeline: Starting with the
analysis of time series, the algorithm uses established feature mappings and includes
extra meta-information features. When focused on supervised learning tasks, each
feature is individually assessed to gauge its predictive importance for the target in
question. The process involves statistical testing and p-value adjusting for multiple
comparisons, which helps decide which features should be retained. In contrast,
for unsupervised learning tasks, the algorithm applies variance-based filters on the
features. (Adapted from [105]).

2.1.1.2 Dynamic Time Warping and temporal K-Means

While the approach described so far aimed to adapt time series to work with already
established clustering methods, this section deals with the arguably opposite approach:
by defining suitable distance metrics, algorithms can be adapted to work with time series
data without the need for custom feature extraction pipelines. This eliminates the need
for domain knowledge or extensive experimentation to identify the most representative
features, which can be a time-consuming process.

Along these lines, Dynamic Time Warping (DTW) is a powerful technique for measur-
ing the similarity between two time series, allowing for non-linear alignments that can
account for variations in the timing and speed of patterns within the data. DTW works
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by dynamically aligning the sequences and calculating the optimal distance between
them, taking into account potential time shifts and warping of the series (Figure 2.3).

Formally, let us consider two time series x and x′, where all elements xi and x′j lie
in the same d-dimensional space. The exact points in time where patterns occur are
ignored, and just the ordering of the sequence matters.

The algorithm then searches for the alignment that minimizes the Euclidean distance
between two time series:

DTWq(x, x
′) = min

π∈A(x,x′)

 ∑
(i,j)∈π

d(xi, x
′
j)

q

 1
q

(2.3)

where π is an alignment path of length K (a sequence of K index pairs), and A(x, x′) is
the set of all admissible paths (where indices are monotonically increasing, and start and
end of both time series match) [106, 112, 113, 114]. All in all, the algorithm returns dis-
tances that are always positive (DTWq(x, x

′) ≥ 0) for any time series x and x′. Moreover,
the DTW distance between any time series and itself is always zero (DTWq(x, x) = 0).

When applied to clustering, the most commonly used algorithm is known as temporal
K-means, which is an adaptation of the K-means algorithm that (among other modifi-
cations, such as DTW Barycenter Averaging) uses DTW as a distance metric instead
of its Euclidean counterpart [115]. Interestingly, when compared to the previously de-
scribed approaches, DTW-based methods tend to be less sensitive to noise in the data.
However, they are also less prone to detecting changes in amplitude, as they focus on
the overall shape of the time series. Furthermore, DTW-based methods can be compu-
tationally expensive, particularly for large datasets or long time series, as they require
calculating pairwise distances between all data points in the sequences (although this
can be mitigated by applying bounding techniques to prune the search space [116]). All
in all, DTW remains a popular choice for time series clustering due to its flexibility and
ability to capture complex relationships within the data.

Finally, it is worth mentioning that the approaches described so far aim in principle
to group time series rather than to find segments within them. This can be solved,
however, by extracting sliding windows within a given time series, as will be explored in
more detail later in this and the following chapter [78, 80]. The next section deals with
Hidden Markov Models (HMMs), a set of approaches which can, among other things,
handle segmentation tasks directly, without the need for sliding window extraction.

2.1.1.3 Hidden Markov Models

Hidden Markov Models fall in the category of probabilistic graphical models (PGMs),
which model sets of (observed or latent) variables as a joint probability distribution in a
way that aims to encode conditional independence assumptions using a graph structure
[104].
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Figure 2.3: Comparison between DTW and Euclidean distance: Comparison between
two time series using either Euclidean distance (shown on the left) or Dynamic
Time Warping (DTW, shown on the right), the latter being a classic example
of an alignment-based metric. In both scenarios, the computed similarity is the
cumulative distance between corresponding features (indicated by the gray lines).
It is noteworthy how DTW aligns distinctive patterns in the time series, which
results in a method that is likely to provide a more reliable evaluation of similarity
for time series than the Euclidean distance approach, which aligns timestamps
irrespective of their feature values. (Adapted from [106]).

The fundamental concept in PGMs is that every node in the graph symbolizes a
random variable, and each edge signifies a direct dependency. Furthermore, the absence
of an edge indicates conditional independence between two variables. In the case of a
directed acyclic graph (DAG, often referred to as a Bayesian network), the nodes can
be arranged in topological order (with parents preceding their children) and connected
in such a way that each node is conditionally independent of its predecessors, given its
parent nodes:

Yi ⊥ Ypredi\pai | Ypai (2.4)

where pai are the parents of node i, and predi are the predecessors of node i in the given
ordering. The joint distribution can thus be represented as follows:

p(Y1 : NG) =

NG∏
i=1

p(Yi|Ypai) (2.5)

where NG is the number of nodes in the graph.

Along these lines, an HMM is a graphical model that models observations across time
(y) as coming from a set of latent discrete states (z). Once trained, the model will
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assign a state to each time point in the series, which depends both on the observations
available for that time point, and on the state assigned to the time point that came
just before (Figure 2.4, a). This last statement corresponds to the Markov assumption,
which applies to the latent (hidden) variables, hence the name of the models. Formally,
the joint probability of the model can be represented as:

p(y1 : T, z1 : T ) = p(z1)
T∏
t=2

p(zt|zt−1)
T∏
t=1

p(yt|zt) (2.6)

where zt are the hidden variables, and yt are the observations (outputs) at time t. In
practice, training such models requires learning probability distributions describing each
of the states (called emission distributions), as well as a transition matrix describing the
probability of any given state transition. As an example, a hidden Markov model with
two states could be applied to represent the rolls of a fair and a loaded dice (respectively)
in a casino. By estimating the transition probabilities between the states, a model like
this could enable the identification of possible cheating or unfair play given a sequence
of dice rolls [104] (Figure 2.4, b).

a. b.

Figure 2.4: Hidden Markov Models (HMMs): a. An HMM represented as a graphical
model, where zt are the hidden variables at time t, and yt are the observations
(outputs). b. State probabilities for a fair and a loaded dice (left and right,
respectively), alongside transition probabilities between them (light blue arrows).
(Adapted from [117]).

As previously introduced, an advantage of these models when compared to the previ-
ously discussed approaches is that HMMs segment each time series directly, without the
need to discretize the time dimension using sliding windows. Moreover, the parametric
nature of the models has strong advantages when it comes to interpretability, as each
state is described by probability distributions that can be mapped back to the data.
However, these advantages come at the expense of flexibility, as long range dependencies
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in the data are lost by definition. While extensions to these models have been developed
to mitigate this issue, their correct implementation requires domain expertise and may
not be applicable to all scenarios [76, 118].

In strong contrast to this idea, the next section delves into the use of neural networks
to model time dependencies, and into the existing deep learning algorithms for time
series clustering and segmentation. Interestingly, these models follow the opposite trend
as HMMs: while neural networks are universal function approximators that arguably
champion flexibility, their interpretation often requires significantly more effort [50].

2.1.2 Deep clustering

Representation learning is a subfield of machine learning that focuses on finding trans-
formations that can automatically discover abstract, meaningful features from raw data
[50]. These features can then be used to improve the performance of various tasks such
as classification, regression, and clustering. Moreover, deep neural networks (DNNs) are
capable of capturing complex patterns and hierarchical structures in the data, making
them extremely useful for learning meaningful representations.

Thus and so, and in contrast to the methods presented so far, deep learning approaches
for clustering typically involve learning a representation of the data and performing
clustering on the result of this transformation rather than on the raw data, either jointly
or in a post-hoc fashion [103]. This representation is obtained by encoding the data with
a DNN (referred to as an encoder) capable of acting as a non-linear mapping function
fΘ : X → Z, where Θ represents all learnable parameters. These models can thus learn
Z as a representation of X, which is called the latent (or hidden) space. The clustering
task then involves partitioning the set Z, such that:

Z = {z1, . . . , zN} = {fΘ(x1), . . . , fΘ(xN )} (2.7)

where the partition is defined over Z (which in turn is a function of X) instead of over
X directly as presented in equation 2.1. Moreover, network architectures, the data and
its processing, as well as training schemes used are crucial to a successful representation.

Along these lines, an extremely popular architecture for representation learning has
been the deep autoencoder. Its basic architecture consists of two parts: an encoder that
maps the input data to a lower-dimensional latent space fΘ : X → Z, and a decoder
that reconstructs the input data from the latent representation gΘ : Z → y [81]. The
objective of an autoencoder is then to minimize the reconstruction error of the input
given the output p(X|y) while forcing the data through a series of bottleneck layers that
impose constraints in the model, preventing it from learning trivial solutions such as
the identity function. Moreover, adaptations such as the Variational Autoencoder [119]
enabled its effective use for representation learning and data generation, since the latent
space can be interpreted as a probability distribution.
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Another popular approach for representation learning is contrastive learning, which
works using an encoder only, by optimizing a contrastive loss function that encourages
the model to pull together positive pairs (similar instances) and push apart negative
pairs (dissimilar instances). This set of approaches has been particularly successful in
self-supervised learning scenarios, where large amounts of unlabeled data are leveraged
to learn useful representations [120].

Furthermore, and while representation learning is a crucial step of the pipeline, deep
clustering goes a step further by aiming to segment the learned manifolds into meaningful
subgroups. Either by learning representations that facilitate clustering and segmenting
afterward or by training a clustering solution jointly with the representation, these ap-
proaches have several advantages. Besides the ability to learn non-linear transformations
of the data, which can lead to better cluster separation, they can automatically discover
hierarchical structures in the data, and be more robust to noise and irrelevant features
due to the hierarchical nature of the learned representations. Moreover, end-to-end mod-
els allow for back-propagation of the clustering structure through the encoder, priming
the network as a whole to yield representations that have a cluster structure [103].

Before delving into deep clustering itself in the following chapters, the next sections
aim to establish a common ground on the building blocks of working with time series and
deep neural networks. Three architectural paradigms are presented, including Recurrent
Neural Networks (RNNs), Temporal Convolutional Networks (TCNs), and Transformer
networks.

2.1.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of deep learning models specifically de-
signed to handle sequential data, which makes them highly applicable for tasks involving
time series analysis [121]. The core feature of an RNN is its ability to maintain a hidden
state that captures information from previous time steps, allowing any given model to
effectively process and learn from temporal dependencies within the data. This struc-
ture enables RNNs to excel in a wide range of applications, such as natural language
processing, speech recognition, and, as this section suggests, time series representation
in general.

They have the particularity that the sequence is fed step by step to the layer, updating
a common hidden state, which serves as a memory of preceding steps. Thus, the layer
consists of a recursive function g that takes the current data step xt and the previous
hidden state ht to generate the new updated hidden state:

ht = g(xt, ht−1) (2.8)

where h0 is typically initialized with zeros. The original recursive function was defined
as:
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ht = tanh(Wxt + Uht−1 + b) (2.9)

where ht is a vector of size u, with W ∈ Ru×d and U ∈ Ru×u representing the weights,
and b ∈ Ru denoting the bias vector learned during training. While useful in many cases,
this cell type often results in vanishing gradients, making training difficult and long-range
dependency learning hard [50]. Alternative formulations, such as Gated Recurrent Units
(GRU) and Long Short-Term Memory (LSTM) cells [122, 123], have been then proposed
(Figure 2.5).

In a GRU layer there are three subunits, also called gates, controlling the hidden state
update and output called the update gate, the reset gate, and the candidate gate. They
are calculated respectively as:

zt = σ(Wzxt + Uzht−1 + bz) (2.10)

rt = σ(Wrxt + Urht−1 + br) (2.11)

ĥt = tanh(Whxt + Uh(rt ◦ ht−1) + bh) (2.12)

where σ represents the sigmoid function, and ◦ denotes the element-wise product. The
hidden state is then updated by combining these gates using a specific recursive function:

ht = (1− zt) ◦ ht−1 + zt ◦ ĥt (2.13)

An LSTM unit has in turn more parameters, and it consists of four gates, called the
input gate, output gate, forget gate, and candidate memory gate. These subunits are
calculated as follows:

it = σ(Wixt + Uiht−1 + bi) (2.14)

ot = σ(Woxt + Uoht−1 + bo) (2.15)

ft = σ(Wfxt + Ufht−1 + bf ) (2.16)

c̃t = tanh(Wcxt + Ucht−1 + bc) (2.17)

The memory cell is computed using these gates in yet another recursive function:

ct = ft ◦ ct−1 + it ◦ c̃t (2.18)
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The hidden state is then updated as:

ht = ot ◦ tanh(ct) (2.19)

Once these layers are trained, the hidden state hT at the end of the sequence is
typically considered a learned representation which, in the cases of the autoencoding and
contrastive architectures explored in the previous section, can act as inputs to decoder
networks or be the target of the contrastive loss, respectively.

Moreover, traditional RNNs process the data sequentially and therefore have no access
to future events when processing a given time point. While in many situations this is
a desirable property, a successful representation often benefits from bidirectional layers,
which involve training two parallel RNN layers with one processing the time steps in the
time order (1 to T ) and the other processing them backward (T to 1).

All in all, recurrent neural networks are a widely spread architecture for deep se-
quence processing, including time series. While outperformed by other alternatives in
many scenarios, it is worth noting that the recycled parameters across time points re-
sult in relative small models in comparison to those that follow, which can have strong
advantages when data size is limited.

Figure 2.5: Recurrent Neural Networks (RNNs): Schemes representing LSTM and GRU
cells. Both show their input xt and the computation of the new hidden state ht;
the LSTM on the left also depicts the additional computation of the cell state ct.
(Adapted from [103]).

2.1.2.2 Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) are another type of neural network architec-
ture that are designed to handle sequence data, but with a distinctly different approach
than RNNs. Instead of maintaining a hidden state over time, TCNs leverage a special-
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ized form of 1-dimensional convolution, which is applied across the temporal dimension
of the input data. A key feature of classical TCNs is the use of causal padding to
ensure that future data does not influence the current output, thereby preserving the
temporal ordering of the sequence. This contrasts with the bidirectional recurrent layers
mentioned above, but can be modified in situations in which looking into the future is
not necessarily a problem, such as offline time series segmentation. All in all, TCNs
are highly versatile and have been used successfully in a variety of applications, such as
audio generation and machine translation [124].

While a simple causal convolution is only able to look back at a history with size
linear in the depth of the network, there are several architectural modifications that can
be added to solve this issue (Figure 2.6). For starters, the use of dilated convolutions
enables the model to have an exponentially large receptive field [125]. Formally, for a
1-D sequence input X ∈ Rn and a filter f : {0, . . . , k − 1} → R, the dilated convolution
operation F on an element s of the sequence is defined as

F (s) =
k−1∑
i=0

f(i) · xs−d·i (2.20)

where k is the filter size, d is the dilation factor, and s − d · i refers to previous time
points. The dilation operation is then equivalent to introducing a fixed step between
every two adjacent filters. When d = 1, a dilated convolution is equivalent to a regular
convolution. Using larger dilations can thus effectively expand the receptive field of the
layer. As a corollary, there are two ways to increase the receptive field of the TCN:
choosing larger filter sizes k and increasing the dilation factor d, where the effective
history of one such layer is (k − 1)d.

Another popular modification to this architecture is the addition of residual blocks
[64]. These consist of branches in the network leading out to a series of transformations
F , whose outputs are added to the input x of the block: y = Activation(x+ F (x)) This
effectively allows layers to learn modifications to the identity mapping rather than the
entire transformation, which has repeatedly been shown to benefit very deep networks.
Within a given residual block, the TCN architecture has two layers of dilated causal
convolutions and a non-linearity. Weight normalization and is typically added to the
convolutional filters, and dropout is introduced for regularization purposes [124].

While a powerful framework that is perfectly suitable for the task presented in this
thesis, RNNs and TCNs are increasingly being outperformed by models based on self-
attention, such as Transformers. In the next section, we will explore what these are
and the advantages they offer in terms of receptive field and interpretability, and the
disadvantages they may pose when it comes to computing power and data requirements.
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Figure 2.6: Architectural elements of a Temporal Convolutional Network (TCN):
Left: A causal convolution with dilation factors of d = 1, 2, 4, and a filter size of
k = 3 is shown. This receptive field can cover all input sequence values. Center:
This is a Temporal Convolutional Network (TCN) residual block. When the residual
input and output have different dimensions, a 1x1 convolution is introduced. Right:
This illustrates a residual connection in a TCN. The blue lines represent filters in
the residual function, and the green lines symbolize identity mappings. (Adapted
from [124]).

2.1.2.3 Transformer Networks

The Transformer architecture, introduced by Vaswani et al. in the paper “Attention is
All You Need” [126] is a novel approach to sequence-to-sequence tasks that significantly
improves over traditional Recurrent Neural Networks (RNNs) and (Temporal) Convo-
lutional Neural Networks (TCNs), especially for scenarios where large amounts of data
are available.

Transformers are based on the concept of self-attention mechanisms, which allows
them to process input sequences in parallel rather than sequentially. This means that
sequential information is not directly available to them, and explicit positional encodings
are needed to retain order information. The input is thus embedded together with these
encodings, and the result is passed through multiple stacked layers of multi-head self-
attention and position-wise feed-forward networks. Each layer has residual connections
and is followed by layer normalization.

The so called self-attention mechanism works by computing a weighted sum over the
input elements and calculating attention scores using a scaled dot-product attention
(Figure 2.7, left):

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.21)

Here, Q, K, and V are the query, key, and value matrices, respectively, and dk is the
key dimension. This mechanism has several advantages over traditional sequence-aware
deep learning methods, since the model can effectively model global dependencies by
weighting all time points simultaneously. Moreover, the retrieved attention scores can
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aid with model interpretability, since they provided a direct measure of features that the
model considers important for a particular task.

Furthermore, Transformer networks use a mechanism called Multi-head attention,
which applies self-attention multiple times in parallel, concatenating the outputs, and
linearly transforming the result (Figure 2.7, right):

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O (2.22)

headi = Attention(QWQ
i ,KWK

i , V W V
i ) (2.23)

Here, WQ, WK , W V , and WO are learnable weight matrices.

The Transformer architecture consists of an encoder-decoder structure. The encoder
is composed of a stack of identical layers with multi-head self-attention and position-wise
feed-forward networks. The decoder has a similar structure but includes an additional
multi-head attention mechanism that attends to the encoder’s output.

The final output of the Transformer is then produced by a linear layer followed by a
softmax layer, yielding a series of probabilities over a set of tokens.

Transformers have demonstrated exceptional performance in various natural language
processing tasks, such as machine translation, text summarization, and question an-
swering. Moreover, they are showing promising results in multi-animal motion tracking
models that require complex deidentification of individuals [67].

While efficient due to its highly parallelizable architecture, Transformers are well
known for requiring vast amounts of data and computing power to work in practice.
While the current thesis includes experiments using models akin to these, data sizes
achieved in behavioral experiment setups are arguably too small for the task. Now that
several time series processing architectures and clustering methods have been presented,
the next sections will delve into deployed algorithms for motion time series segmentation
that use some of the discussed approached.

2.2 Segmenting behavior: exploring available approaches

Since the advent of DeepLabCut and SLEAP, a significant number of tools designed to
leverage marker-less pose estimation have been introduced. The subsequent sections ex-
plore three such tools, all of which provide approaches to behavioral segmentation. These
are B-SOiD [78], which utilizes traditional clustering techniques on features extracted
over time, MoSeq [76] which relies on Hidden Markov Models, and VAME, which takes
advantage of post-hoc clustering on embeddings generated through deep neural networks.

2.2.0.1 B-SOiD: time series clustering using guided representations

B-SOiD was presented in 2021 by Alexander Hsu and Eric Yttri [78]. It works by
extracting a series of descriptive kinematic features from the motion tracking time series
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Figure 2.7: Details on the transformer architecture. The Scaled Dot-Product Atten-
tion operation is depicted on the left, with Queries, Keys, and Values as inputs.
The right panel shows the Multi-Head Attention mechanism, which parallelizes
several attention heads, in a fashion that can be compared to ensemble learning.
(Adapted from [126]).

obtained with DeepLabCut or SLEAP, including displacement, angular change, and
distances between body parts. These features are then aggregated over a sliding window
of 60ms (30ms before and 30ms after the frame of interest). Furthermore, the original
data is downsampled to 10 frames per second (FPS), which the authors claim helps
increase the signal-to-noise when it comes to distinguishing real movement from label
jittering.

Once these features are extracted, their dimensionality is reduced using PCA, with
a number of components such that they explain 70% of the variance in the motion
tracking data. UMAP is then applied with the same number of components to get a
representation that enforces local aggregation, and motion clusters are obtained using
HDBSCAN. This algorithm is a particularly good approach when it comes to detecting
outliers, since it can remove subthreshold densities [127]. Moreover, it does not require
the user to select the number of clusters ad-hoc.

Once the clusters are obtained, B-SOiD trains a multi-class random forest from the
original statistics to the cluster labels assigned by HDBSCAN, which is shown to improve
generalizability to unseen data. The trained models can then quickly assign data points
to clusters and enable further analysis (Figure 2.8).

While a simple approach, B-SOiD is shown to work quite well in many popular sce-
narios including not only rodents, but also flies and humans, to name a few. Moreover,
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2.2 Segmenting behavior: exploring available approaches

it does not require expensive hardware to train in small or medium datasets, and further
developments use the obtained clusters as the starting point to train even more generaliz-
able classifiers in an active learning framework [77]. The simplicity of the pipeline has its
limitations, however, as the extracted features are assumed to capture most variation in
the detected animal’s dynamics. In rodents, this means that direct access to paw move-
ment is needed to achieve good results, which is only achieved with bottom-up videos
(where the animals are filmed from below through a glass floor). This is non-standard
practice in many labs, since it requires special hardware and it was shown to stress the
animals [68]. Furthermore, no explicit information about dynamics is used, which can
hurdle the flexibility of the retrieved clusters, and only single animals are supported.

Figure 2.8: Overview of the B-SOiD pipeline. Once the pose relationships that character-
ize behaviors are extracted, B-SOiD applies a non-linear transformation (UMAP)
to preserve high-dimensional postural time-series data in a lower-dimensional space,
and HDBSCAN is subsequently used for cluster identification. The spatiotempo-
ral features that have been clustered serve as inputs for training a random forest
classifier, which can then be employed to promptly predict behavioral categories in
any comparable data set. Once trained, the model will segment any dataset into
the same classes. (Adapted from [78]).

2.2.0.2 MoSeq: motion clustering with Autoregressive Hidden Markov Models

MoSeq (motion sequencing) is a Hidden Markov Model approach for behavioral segmen-
tation introduced by Sandeep Robert Datta and collaborators back in 2019 [128]. To
solve the short range dependencies introduced by the Markov assumption, the authors
use an Autoregressive Hidden Markov Model (AR-HMM) approach, which relies on an
HMM where the observation model (the model that generates the outputs from the hid-
den states) is an autoregressive model in itself. In other words, the models are designed
so that each hidden state has an autoregressive (AR) model associated with it, which
means that the current output not only depends on the current hidden state, but also
on previous outputs.
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While the authors originally demonstrated high capabilities of this approach for depth
sensing camera setups, the original algorithms were not capable of dealing with keypoint
estimation data coming from regular video. In a recent preprint [76], the group behind
MoSeq introduced a variant which decouples keypoint motion to actual animal motion
and label jitter, which the authors identify as the main culprit of previous versions’ poor
performance in these settings (Figure 2.9).

Figure 2.9: MoSeq: motion clustering with Autorregressive Hidden Markov Models.
a: Graphical models showcasing both MoSeq and a new hierarchical model known
as “keypoint-MoSeq” are presented. In both models, a discrete syllable sequence
dictates the dynamics of a low-dimensional pose state. The pose state is either
determined using PCA (as demonstrated in “MoSeq”, left) or inferred from keypoint
observations in relation to the animal’s centroid and heading, as well as a noise scale
to account for keypoint detection errors (as demonstrated in “keypoint-MoSeq”,
right). b: This is an example of keypoint jitter from three distinct keypoint tracking
methods during a 5-second interval when the mouse was stationary. The left side
shows keypoint trajectories aligned egocentrically, whereas the right side shows the
path traced by each keypoint during the interval. (Adapted from [76]).

2.2.0.3 VAME: Variational Animal Motion Embeddings

Finally, Kevin Luxem and colleagues introduced VAME (Variational Animal Motion
Embeddings) in 2022 (Figure 2.10). The package, implemented in Python and PyTorch,
relies on deep neural networks to embed motion tracking time series. In their pipeline,
a variational autoencoder maps the input to an unimodal multivariate Gaussian latent
space, and post-hoc clustering is applied to the embeddings using a Hidden Markov
Model. Moreover, the architecture has two decoders: one trained to minimize the re-
construction error with the input (reconstruction decoder), and one that aims to predict
the next unseen timepoint (prediction decoder), which helps to regularize the obtained
embeddings. In their paper [80], the authors show how their models can robustly detect
shifts in behavior in rodents with beta amyloidosis. While results are promising, the
authors only demonstrate the capabilities of the software using bottom-up videos with
access to the paws’ positions at all times.
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Figure 2.10: VAME: Variational Animal Motion Embeddings. Frames are aligned ego-
centrically, and trajectory samples are fed to a recurrent variational autoencoder
model. The fully trained model functions like a dynamical system, from which
motifs are deduced using a Hidden-Markov-Model. (Adapted from [80]).
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2.3 Main contributions of this thesis to the field

All in all, this thesis aims to build on the presented state of the art in three main ways.

2.3.1 Implementation and testing of novel deep clustering algorithms for
unsupervised behavioral segmentation

As a first goal, this thesis aims to present new variants of deep clustering algorithms (that
is, models that couple deep neural network embeddings and clustering) for multivariate
time series data, specifically tailored to work with rodent motion tracking.

2.3.2 Deployment of the developed algorithms to the community

Aside from implementing and testing these developed algorithms, an important goal of
this work is to deploy them in a packaged manner for the community to use with their
own data. Along these lines the DeepOF (Deep Open Field) package was born, a Python
suite with tools for processing, annotation, and deep clustering of rodent motion tracking
data. Chapter 4 will delve into the design philosophy of DeepOF, its inner workings,
and include a paper published in the Journal of Open Source Software (JOSS), which
included detailed code, documentation, and testing pipeline reviews.

2.3.3 Application of the developed algorithms to the characterization of
Chronic Social Defeat Stress

As introduced earlier in chapter 1, all developed algorithms were applied to the charac-
terization of Chronic Social Defeat Stress as a case study. Chapter 5 will delve into this,
presenting the deployed algorithms in detail, and showcasing the application of DeepOF
to the supervised and unsupervised characterization of the provided animal model, as a
paper published in Nature Communications.
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While most methods are detailed in the papers presented in the following chapters,
these sections aim to fill certain gaps and delve into the developed algorithms included
in DeepOF that were not applied in the results presented in chapter 5.

3.1 Software architecture and deployment

The software package presented in this thesis, called DeepOF, was developed using a
modular approach consisting of three primary modules designed for user interaction
(called deepof.data, deepof.post hoc, and deepof.visuals), and five modules for
internal calculations. A comprehensive list and description of all modules follows:

• deepof.data - Includes tools for data loading, preprocessing, and pattern extrac-
tion

• deepof.post hoc - Includes tools for post-hoc analysis tools for results obtained
with annotation pipelines

• deepof.visuals - Includes a comprehensive set of visualization functions

• deepof.utils - Includes general utilities

• deepof.models - Contains code for the deep clustering model architectures

• deepof.hypermodels - Contains hypermodels for hyperparameter tuning of the
deep clustering models

• deepof.annotation utils - Contains utilities for the supervised annotation pipe-
line

• deepof.model utils - Contains utilities for the unsupervised pipeline (including
model training and evaluation)

Furthermore, DeepOF also features a suite of automated tests with continuous integra-
tion (CI) to ensure the proper functioning of all deployed code. These were implemented
using the hypothesis package for Python, a suite that enables property-based testing,
where synthetic examples are created on the fly to test all functions while following a
set of defined constraints [129]. Test coverage is reported automatically, and computed
using the coverage package for Python [130].
Documentation was written and deployed using read-the-docs [131], and automatic

API pages were created using autodoc. Contributing guidelines and a code of conduct
are also included.

3.2 Data loading and input

DeepOF takes a set of two files per experiment that was carried out, including a video
(various standard formats are accepted) and a table containing the tracking output
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generated with DeepLabCut (which can be in either CSV or HDF). Upon importing
the package, the project is initialized as an instance of the Project class available in
deepof.data, and excecuted using the .create() method, which applies all parameters
and processing and stores the results in an instance of the Coordinates class, also
in deepof.data. From here, many sets of features can be extracted as instances of the
TableDict class (also in deepof.data), and the supervised and unsupervised annotation
pipelines can be excecuted (see full documentation for more details).

3.3 Time series processing

All relevant details on time series processing can be retrieved from the publication “Au-
tomatically annotated motion tracking identifies a distinct social behavioral
profile following chronic social defeat stress”, included as part of chapter 5.

3.4 Supervised annotation of pre-defined traits

All relevant details on the supervised annotation of pre-defined traits can be retrieved
from the publication “Automatically annotated motion tracking identifies a dis-
tinct social behavioral profile following chronic social defeat stress”, included
as part of chapter 5.

3.5 Unsupervised annotation: exploring the behavioral space

As previously mentioned, DeepOF includes a pipeline for motion tracking time series
segmentation, which retrieves behaviors that are expressed consistently throughout the
filmed animal experiments. This pipeline provides a series of architectures and data
input objects to choose from according to the nature of the captured video. To start
with, let us explore how the input for time series segmentation can be represented.

3.5.1 Matrix input/output representations

The simplest way to arrange time series as input for the unsupervised pipeline is the
same used by the models from the literature presented in chapter 2. That is, as ma-
trices of features over time, where different attributes are assumed to be independent.
Moreover, sliding windows are cross-correlated with these time series, to end with a
three-dimensional tensor representation where dimensions correspond to sliding window
instances, time within each window, and features, respectively (Figure 3.1, left).

3.5.2 Graph input/output representations

While sufficient in many cases (as in the packages mentioned in chapter 2, where paws are
accessible when experimenters are filming from below), matrix representations assume
that features are spatially independent, which is not the case. To examine the possibility
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of including spatio-temporal relationships between the features, we included in DeepOF
the option to represent tracking data as dynamic graphs (Figure 3.1, right). While
connectivity in these graphs (whose adjacency matrix links body parts that are spatially
adjacent) remains static, features are organized as node and edge attributes that vary
across time. Moreover, this enables the program to incorporate more features naturally:
this way, not only coordinates but also velocities are included as node attributes, and
distances between pairs of body parts are used to annotate edges. Furthermore, this
representation can be expanded to accommodate multiple animals, where separate graph
representations for each animal are connected via nose-to-nose, nose-to-tail, and tail-to-
tail edges, enabling the models to include relative distances between animals. When
this is the case, an L1 penalization over the node embeddings controls the influence
social interactions should have in the results, over the posture of individual animals.
When using graph representations, inputs to the segmentation models are three fold,
and include:

• A four dimensional tensor with node attributes, with dimensions corresponding
to sliding window instances, time within each window, nodes in the graph, and
features in each node.

• A four dimensional tensor with edge attributes, with dimensions corresponding
to sliding window instances, time within each window, edges in the graph, and
features in each node.

• the adjacency matrix of the graph to embed, which remains static throughout
time.

3.6 Unsupervised annotation: deep clustering models

As part of the first goal of this thesis, as defined in the last section of chapter 2, DeepOF
includes three families of deep representation models for time series segmentation. Each
of these families (described in the following sections) can be used with matrix or graph in-
put representations. Moreover, their encoder (and decoder, when applicable) structures
can be selected from a set of recurrent, TCN, and transformer-based architectures.

When a graph representation is selected as input, these temporal blocks are coupled
with graph neural network (GNN) spatial blocks capable of embedding both node and
edge attributes [132], building what is known as spatio-temporal graph neural network
(ST-GNN) structures [133, 134]. This gives DeepOF flexibility to adapt to different
data scenarios and hardware systems, as will be discussed in chapter 6. The next few
sections introduce the three families of deep representation models included in DeepOF,
which are based in Variational Deep Embeddings (VaDE), Vector Quantization Vari-
ational Autoencoders (VQVAE), and self-supervised contrastive learning architectures,
respectively. Schematic representations of all three can be found in Figure 3.2.
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A- Sliding window B- Graph representation

Figure 3.1: Time series input representation for deep clustering of motion tracking
data: A: Prior to segmentation model training, time series are split using a sliding
window approach. The length and stride of the windows are hyperparameters that
the user can modify, and default to the frame rate of the videos (so that each
window includes one second of motion data) and one, respectively. B: To leverage
spatial correlations between the features, and allow for the natural inclusion of
features other than coordinates, input time series can be represented as dynamic
graphs. Here, connectivity remains static, while node and edge attributes vary
through time. Moreover, this representation paves the way to include multiple
animals in a single model, since edges between body parts of different animals can
be incorporated.

3.6.1 Variational Deep Embeddings (VaDE)

The first segmentation architecture available in DeepOF is based on Variational Deep
Embeddings (VaDE) [135, 136], a deep clustering algorithm that consists of an encoder-
decoder architecture similar to that of a Variational Autoencoder (VAE) [119]. Here, an
encoder neural network maps the inputX to a latent vector z, and a decoder architecture
maps such vector to the output y. As the traditional VAE, the model is trained to
minimize the evidence lower bound (ELBO) which is a composite loss function that aims
to minimize both the reconstruction error given the input, and the Kullback-Leibler (KL)
divergence between the latent vectors and a prior distribution. Unlike the traditional
VAE, however, VaDE architectures map the input vectors to a mixture of (in this case
Gaussian) distributions, with each component representing a given cluster. Formally,
the training process aims to minimize the equation:

LELBO(x) = Eq(z,c|x)[log p(x|z)]−DKL(q(z, c|x)||p(z, c)) (3.1)

where the first term corresponds to the reconstruction loss, which encourages the latent
space (z) to represent the data (x) well over a set of clusters (c). The second term is the
aforementioned KL divergence (DKL) between a Gaussian mixture prior (p(z, c)) and the
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Figure 3.2: Deep clustering architectures implemented within DeepOF: A: Variational
Deep Embeddings (VaDE): the model follows an encoder-decoder architecture sim-
ilar to a variational autoencoder, with the key difference that both latent space
and prior distribution are mixtures of multivariate Gaussians instead of unimodal
distributions. This not only imposes a clustering structure in the latent space
Z, but also allows to directly extract soft cluster assignments at inference time,
as the normalized likelihood under each component of the mixture. B: Vector-
Quantization Variational Autoencoders (VQVAE): similar to VaDE, the model fol-
lows an autoencoder-like architecture. Instead of having a probability distribution
as a prior, there is a discrete codebook being maintained in parallel to the model,
whose columns represent cluster centroids on the latent space. At training time,
the closest entry in the codebook to the current embedding vector is selected and
passed through the decoder instead of the vector itself. The model is trained to
reconstruct the input and to minimize the Euclidean distance between each latent
vector z and its closest codebook entry. At prediction time, clusters are assigned
to the closest codebook entry for the embedding obtained for each input instance.
C: Contrastive learning: this architecture consists only of an encoder that maps
each input instance to a latent space Z. A contrastive loss pulls together similar
embeddings (represented with colored arrows between points of the same color, and
pushes apart dissimilar embeddings (represented with black arrows between points
of different colors). The definition of what similar and dissimilar mean in this con-
text depends on the loss function of choice. This is the only provided architecture
that requires post-hoc clustering of the latent space.

variational posterior for each cluster (q(z, c|x)). This serves the purpose of regularizing
the embeddings to also follow a Gaussian mixture distribution, where each component is
associated with a particular cluster. A schematic overview of the model can be found in
Figure 3.2A. Importantly, this loss function imposes a clustering structure directly within
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the latent space, eliminating the need for post-hoc clustering of embeddings required by
other existing tools. This end-to-end approach offers several benefits, with the primary
advantage being that the clustering structure back-propagates to the encoder during
training.

After the models are trained, cluster assignments are obtained as the argmax of the
posterior distribution given the data, as outlined in equation 3.2:

q(c|x) = p(c|z) ≡ p(z)p(z|c)∑K
c′=1 p(c

′)p(z|c′)
(3.2)

where c′ ∈ (1,K) is an iterator over all clusters in the model. In practice, this unsuper-
vised pipeline can retrieve consistent patterns of animal motion in a flexible, non-linear,
and fully unsupervised way. Moreover, training is stable for all encoder-decoder archi-
tectures and input structures included in the package. This makes it the ideal default
for the unsupervised segmentation pipelines. All results presented in chapter 5 use this
architecture.

3.6.2 Vector Quantization Variational Autoencoders (VQVAE)

The second implemented segmentation model to visit is an adapted version of the vector
quantization variational autoencoder architecture (VQVAE) [137]. This also follows
an encoder-decoder architecture, minimizes the mean squared error reconstruction loss
between input and output, and enforces a clustering structure in the latent space in an
end-to-end fashion. The main difference with VaDE is that this clustering structure is
approached using vector quantization, which enforces a discrete latent space instead of
a continuous probability distribution [137]. In practice, the input X is passed through a
sequence-aware encoder onto an embedding vector zp, which is compared to the columns
of a separately maintained codebook (represented as a matrix whose column vectors are
cluster centroids). The closest codebook column vector (zq) is then selected (Eq. 3.4)
and passed on to the decoder instead of zp itself:

q(z = k|x) =

{
1 for k = argminj∥zp(x)− ej∥2,
0 otherwise.

(3.3)

zq(x) = ek, where k = argminj∥zp(x)− ej∥2 (3.4)

where ej is a given column of the codebook. The model is then trained to maximize
the conditional log-likelihood of the data, log(p(X|zq(x)), and minimize the Euclidean
distance between zp and zq (often referred to as commitment loss).

Moreover, a key aspect of the VQVAE setting is that the described lookup operation
is non-differentiable, which prevents gradients from flowing through the encoder during
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backpropagation, preventing proper training. In the original paper, this problem is over-
come by copying the gradients through the lookup (from zp to zq). Later work, however,
suggested that while such an approximation works well in the image compression setting
originally presented, it is not ideal for clustering since the required number of codes is
much smaller, which increases the average distance between zp and zq during training,
making the gradients less informative and leading to a suboptimal encoder [138]. To
mitigate this issue, we followed existing approaches and added a second reconstruction
loss, which connects zp with the decoder, bypassing the lookup operation and enabling
gradient flow. A scheduler decreases the weight (α) of the loss assigned to this term
as training progresses, once the average distances between zp and zq are close. The
complete loss function is thus defined as:

L = log p(x|zq(x)) + α log p(x|zp(x)) + β ∥zp(x)− zq(x)∥22 (3.5)

Once the models are trained, cluster assignments can be obtained using the same
lookup operation described in equation 3.4. Moreover, soft counts can be obtained using
the fuzzy-c means approach, where confidence is inversely proportional to the distance
to the closest centroid [139].

In practice, this model is faster to train than VaDE when all other parameters are left
equal, and it is still end-to-end. While this may make it preferable in some hardware-
constrained situations, training was shown to be unstable when coupled with graph
inputs, making it a poorer overall default choice, especially in top-down video settings.
All results presented in the original DeepOF preprint [75], posted in bioRxiv, make use
of this architecture.

3.6.3 Contrastive representation learning (CRL)

A third representation and segmentation pipeline is included in DeepOF as an option
that, although not end-to-end, I believe deserves to be mentioned. Contrastive learn-
ing is a set of representation learning approaches that fall into what the literature has
called self-supervised learning. In contrast to the two models presented above, which
are generative approaches to representation learning (since they directly model the data
distribution, and their decoders can explicitly be used to generate data), self-supervised
approaches use discriminative models instead. This eliminates the need for a potentially
wasteful decoder, making learning more efficient when representations are the only goal
[120].

Contrastive representation learning in particular works by applying a loss function
directly to the latent space, and following a simple principle: similar samples (denoted
as positive pairs) should be pulled together, whereas dissimilar samples (negative
pairs) should be pulled apart. The trick lies in defining what similarity means in this
case: given a sample, these approaches sample a positive pair from a positive distribution
(x+ ∼ p+( · |x)), and a negative pair from a negative distribution (x− ∼ p−( · |x)). In
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DeepOF, positive and negative sampling are based on recently introduced time-series
change-point detection contrastive models [140], where samples closer in time have a
higher probability of being called a positive pair, and vice versa. Once positive and
negative pairs are defined, the default algorithm applies the InfoNCE (Noise Contrastive
Estimation) loss [141], which maximizes the mutual information between consecutive
time windows. Thus, a single positive pair of time adjacent intervals (hi, fi, where hi is
called the history window, and fi the future window), and a set of K − 1 negative pairs
where the intervals hi and fj are well separated in time across the sequence, can be used
to calculate the normalized similarity ρi across all pairs:

ρi =
exp(Sim(hi, fi)/τ)∑K
j=1 exp(Sim(hi, fj)/τ)

(3.6)

where τ is a scaling parameter and Sim is the cosine similarity between each pair of data
embeddings [140]. The final loss is then computed by applying the binary cross-entropy
function over the similarities of all pairs:

L = −
∑
i,j

yij log(ρi) + (1− yij) log(1− ρi) (3.7)

This model has several advantages over the previous two when it comes to learning
representations. For starters, it has substantially fewer parameters since it lacks a de-
coder, which can make training substantially faster. Moreover, the success of contrastive
representation learning so far has been linked to improved abstraction (the extraction
of concepts that are invariant to local or small changes in the data) and disentangle-
ment (with uncorrelated latent dimensions representing qualitatively different concepts)
of representations in many scenarios [120]. However, no noticeable improvements in this
regard were obtained so far in DeepOF. Moreover, and as mentioned at the beginning of
this section, the provided contrastive models do not enable end-to-end clustering, with
cluster assignments needing to be obtained in a post-hoc fashion. DeepOF does this
by fitting a Gaussian HMM to the trained latent space [142]. While it does not escape
my attention that HMM parameters could be learned jointly with the neural network in
theory, thus making the model truly end-to-end, all attempts so far resulted in unsta-
ble training. Further efforts in this direction for future releases of the package are not
discarded.

3.6.4 Semi-supervised post-hoc reclustering

While both VaDE and VQVAE models offer end-to-end clustering, they do so by group-
ing similar sliding window instances on a shuffled dataset, without a clear explicit idea
of how the sliding windows are ordered across time. While significantly overlapping
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windows mitigate this issue, in practice there are sections in the experiments where
low-confidence cluster assignments often switch between states, requiring the user to
discard them for further analysis. To avoid this problem altogether, DeepOF can train a
semi-supervised HMM to the latent space [142], where prior probabilities are assigned to
each sample as the VaDE / VQVAE soft counts, and posteriors are obtained by fitting a
Gaussian HMM. The overall effect leads to cleaner cluster assignments across time, and
longer average times on each cluster.

3.7 Characterization of Chronic Social Defeat Stress (CSDS)

Details on animal handling, CSDS protocols, behavioral testing, datasets used, and
experimental design can be retrieved from the publication “Automatically annotated
motion tracking identifies a distinct social behavioral profile following chronic
social defeat stress”, included as part of chapter 5.

3.8 DeepOF in practice and post-hoc analysis of annotation
results

All relevant details on the post-hoc analysis of both supervised and unsupervised annota-
tion results can be retrieved from the publication “Automatically annotated motion
tracking identifies a distinct social behavioral profile following chronic social
defeat stress”, included as part of chapter 5.

3.9 Statistics

Statistical analyses and graphs were made in R (v 4.1.1), python (v 3.9.13), and DeepOF
(v0.4.6). Details on tests and assumptions when comparing samples, as well as multiple
testing corrections and notation, can be retrieved from the publication “Automati-
cally annotated motion tracking identifies a distinct social behavioral profile
following chronic social defeat stress”, included as part of chapter 5.
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4.1 Overview

As previously stated, the first two main goals of this thesis are to implement and de-
ploy tools for deep clustering of motion tracking time series. In this context, DeepOF
(deep Open Field) is a Python package that implements tools for loading, processing,
and analyzing motion-tracking data. In particular, it provides two analysis pipelines
for users to explore: a supervised pipeline, which aims to extract a set of pre-defined
patterns from tracked animal trajectories, and an unsupervised pipeline, which applies
state-of-the-art deep clustering to segment behavior over time. Moreover, the tool also
includes a set of functions to explore the output of these analyses, including pattern
expression enrichment and dynamics across experimental conditions, fitting normative
models, exploring global shifts in behavior across time, and more. The current chapter
includes a paper published in the Journal of Open Source Software (JOSS), accepted for
publication after a peer-review process that tested both the content of the paper and the
proper functioning and writing of the deployed code [143]. At the moment of submitting
this thesis, the latest stable version of the package is 0.4.6.

4.2 Package design

DeepOF was implemented following a modular design, with three modules intended
for user interaction, called deepof.data, deepof.post hoc, and deepof.visuals. The
first one deals with data loading, preprocessing, and pattern extraction. The second
one provides a set of tools for post-hoc analysis of results obtained with the provided
annotation pipelines, and the third one includes a plethora of visualization functions. A
set of five extra modules contain models and utilities that are not intended for the user
to access directly, but are consistently loaded by classes and functions in the public API.
Moreover, DeepOF includes a set of automatic tests deployed with continuous integra-

tion (CI), which makes it easier to make sure that all deployed code works as intended.
Test coverage is reported automatically as well, to make it easier for maintainers to
keep track of what is being tested if the codebase is extended. Extensive documentation
is included too (both automatic for the API and manually generated for installation,
examples, and tutorials), as well as contributing guidelines and a code of conduct. The
language of choice (Python) was selected as the gold standard and most familiar tool for
both data science libraries used to implement our models, and the behavioral analysis
community as a whole.
All in all, DeepOF was implemented following best practices to make it maintainable

and extensible in the future, and we believe it has the potential required to last in the
field as a useful and easily accessible tool.

4.3 Contribution to the work

I am to date the sole contributor to the API design and code implementation of the
DeepOF package. I also wrote the entirety of the included paper.
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Summary
DeepOF (Deep Open Field) is a Python package that provides a suite of tools for analyzing
behavior in freely-moving rodents. Specifically, it focuses on postprocessing time-series data
extracted from videos using DeepLabCut (Mathis et al., 2018). The software encompasses a
diverse set of capabilities, such as:

• Loading DeepLabCut data into custom objects and incorporating metadata related to
experimental design.

• Processing data, including smoothing, imputation, and feature extraction.
• Annotating behavioral motifs in a supervised manner, such as recognizing huddling and

climbing, and detecting fundamental social interactions between animals.
• Embedding motion tracking data in an unsupervised manner using neural network models,

which also facilitate end-to-end deep clustering.
• Conducting post-hoc analysis of results and visualization to compare patterns across

animals under different experimental conditions.

The package is designed to work with various types of DeepLabCut input (single and multi-
animal projects), includes comprehensive documentation, and offers interactive tutorials.
Although many of its primary functionalities (particularly the supervised annotation pipeline)
were developed with top-down mice videos in mind, tagged with a specific set of labels, most
essential functions operate without constraints. As demonstrated in the accompanying scientific
application paper (Bordes et al., 2022), DeepOF has the potential to enable systematic and
thorough behavioral assessments in a wide range of preclinical research settings.

Statement of need
The field of behavioral research has experienced significant advancements in recent years,
particularly in the quantification and analysis of animal behavior. Historically, behavioral
quantification relied heavily on tests that were designed with either one or a few readouts
in mind. However, the advent of deep learning for computer vision and the development of
packages such as DeepLabCut, which enable pose estimation without the need for physical
markers, have rapidly expanded the possibilities for non-invasive animal tracking (Mathis et al.,
2020).

By transforming raw video footage into time series data of tracked body parts, these approaches
have paved the way for the development of software packages capable of automatically
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annotating behavior following a plethora of different approaches, increasing the number of
patterns that can be studied per experiment with little burden on the experimenters.

For example, several tools offer options to detect predefined behaviors using supervised machine
learning. Along these lines, programs like SimBA (Nilsson et al., 2020), MARS (Segalin et al.,
2021), or TREBA (Sun et al., 2021), allow users to label a set of behaviors and train classifiers
to detect them in new videos. They employ different labelling schemes which require different
amounts of user input, and offer high flexibility in terms of the number of behaviors that
can be detected. On the other hand, packages such as B-SOiD (Hsu & Yttri, 2021), VAME
(Luxem et al., 2022), and Keypoint-MoSeq (Weinreb et al., 2023), aim for a more exploratory
approach that does not require user labelling, but instead relies on unsupervised learning to
segment time series into different behaviors. These packages are particularly useful when the
user is interested in detecting novel behaviors, or when the number of behaviors is too large to
be annotated manually. Moreover, some approaches have been developed to combine the best
of both worlds, such as the the A-SOiD active learning framework (Schweihoff et al., 2022),
and the semi-supervised DAART (Whiteway et al., 2021). While a thorough discussion on
the advantages and disadvantages of each package is beyond the scope of this paper, further
information can be found in this recent review (Bordes et al., 2023).

In contrast to other available options, DeepOF offers both supervised and unsupervised
annotation pipelines, that allow researchers to test hypotheses regarding experimental conditions
such as stress, gene mutations, and sex, in a flexible way (Figure 1).

Figure 1: Scheme representing DeepOF workflow. Upon creating a project, DLC data can be loaded
and preprocessed before annotating it with either a supervised pipeline (which uses a set of pre-trained
models and rule-based annotators) or an unsupervised pipeline, which relies on custom deep clustering
algorithms. Patterns retrieved with either pipeline can be passed to downstream post-hoc analysis tools
and visualization functions.

The included supervised pipeline uses a series of rule-based annotators and pre-trained machine
learning classifiers to detect when each animal is displaying a set of pre-defined behavioral
motifs. The unsupervised workflow uses state-of-the-art deep clustering models to extract
novel motifs without prior definition. DeepOF then provides an interpretability pipeline to
explore what these retrieved clusters are in terms of behavior, which uses both Shapley
Additive Explanations (SHAP) (Goodwin et al., 2022) and direct mappings from clusters to
video. Moreover, regardless of whether the user chose the supervised annotation pipeline,
the unsupervised one, or both, DeepOF provides an extensive set of post-hoc analysis and
visualization tools.

When it comes to comparing it to other individual packages that use supervised and unsupervised
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annotation, DeepOF stands out in several ways. First of all, it is the first package, to the best
of our knowledge, to offer both options. Second, the supervised pipeline in DeepOF follows an
opinionated philosophy, in the sense that it provides a set of pre-trained models that cannot
be customized, but do not require user labels. This trades flexibility for ease of use, aiming
at being a quick exploratory tool that can provide information on key individual and social
behaviors with just a few commands. Furthermore, when it comes to the unsupervised pipeline,
DeepOF provides three custom deep clustering algorithms capable of segmenting the behavioral
time series, as well as the aforementioned built-in interpretability pipeline. If a user runs both
pipelines, supervised annotations can be incorporated into this interpretability pipeline in quite
a unique way, to detect associations between supervised and unsupervised patterns.

All in all, DeepOF is a comprehensive, end-to-end tool designed to transform DeepLabCut
output into relatively quick, exploratory insights on behavioral shifts between experimental
conditions, and pinpoint which behaviors are driving them.

Related literature
The DeepOF package has been used to characterize differences in behavior associated with
Chronic Social Defeat Stress (CSDS) in mice, as presented in our preprint (currently in revision
at the time of writing (Bordes et al., 2022)). There are several other ongoing projects involving
the software, although none of them are published to this date.
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5 Characterizing CSDS using automatically annotated motion tracking data

5.1 Overview

Once the presented algorithms were implemented and packaged in DeepOF, there came
the time to apply them to a real-world dataset. The model of choice, as introduced in
chapter 1, was Chronic Social Defeat Stress (CSDS), a widely adopted animal model
on chronic stress and depression research. This acted as a positive control, where we
had a clear idea of the expected shifts to detect, which would serve as validation for the
provided package. Moreover, as significant symptoms of MDD are the deterioration of
social functionality and a decline in social motivation, it also served as a good platform
to test the detection of social interaction alterations in several ways.

Along these lines, the current chapter includes our paper titled Automatically anno-
tated motion tracking identifies a distinct social behavioral profile following chronic so-
cial defeat stress, published in Nature Communications [75]. In short, we here show how
DeepOF can identify distinct stress-induced social and individual behavioral patterns,
relying on both the annotation of pre-defined traits, and on unsupervised segmentation
using the models presented in chapter 3 1. Moreover, analyzing how global embedding
shifts evolve over time reveals how these patterns are particularly noticeable at the onset
of a novel social interaction, though they tend to diminish over time due to habituation
in social settings.
We apply DeepOF to a variety of experimental settings, including single-animal open

fields, social interaction (for which we use both single and multi-animal embeddings),
and social avoidance tasks, and compare and interpret how the detected patterns vary
across settings. Furthermore, while traditional social avoidance tasks (a set of univariate
measures introduced in chapter 1) can detect stress-induced social behavioral differences,
both supervised and unsupervised DeepOF pipelines offer a more comprehensive and
detailed profile, which in addition requires lower experimental effort. Last but not least,
a comprehensive statistical and visual interpretation of retrieved clusters is included.

5.2 Contribution to the work

I was the sole contributor of the DeepOF package, whose implementation was presented
in the previous chapter and application is presented here. Moreover, I had the leading
role in analyzing all the data presented in this chapter. Main figures 1 (except for mice
drawings), 6, 7, as well as supplemental figures 1, 2, and 5–17 were conceived, designed,
and coded by me. I did not take part in any of the animal experiments involved. I also
wrote the full text in the manuscript (together with co-lead Joeri Bordes). First author
order in the authors’ list was randomized.

1As introduced already in previous chapters, DeepOF offers three different encoder-decoder architec-
tures (recurrent, TCN, transformers) and three time series segmentation approaches (VaDE, VQVAE,
Contrastive+HMM). All results presented in this paper, however, relied on VaDE models with graph-
like inputs and recurrent encoders/decoders. Results using other models did not substantially modify
what was obtained, except for graph-input VQVAEs, which often diverged during training.
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Severe stress exposure increases the risk of stress-related disorders such as
major depressive disorder (MDD). An essential characteristic of MDD is the
impairment of social functioning and lack of social motivation. Chronic social
defeat stress is an established animalmodel forMDD research,which induces a
cascade of physiological and behavioral changes. Current markerless pose
estimation tools allow for more complex and naturalistic behavioral tests.
Here, we introduce the open-source tool DeepOF to investigate the individual
and social behavioral profile in mice by providing supervised and unsu-
pervised pipelines using DeepLabCut-annotated pose estimation data.
Applying this tool to chronic social defeat in male mice, the DeepOF super-
vised and unsupervised pipelines detect a distinct stress-induced social
behavioral pattern, whichwas particularly observed at the beginning of a novel
social encounter and fades with time due to habituation. In addition, while the
classical social avoidance task does identify the stress-induced social beha-
vioral differences, both DeepOF behavioral pipelines provide a clearer and
more detailed profile. Moreover, DeepOF aims to facilitate reproducibility and
unificationof behavioral classificationbyproviding anopen-source tool,which
can advance the study of rodent individual and social behavior, thereby
enabling biological insights and, for example, subsequent drug development
for psychiatric disorders.

Stress is an essential aspect of our daily lives, which contributes to our
mood and motivation. However, exposure to severe stress can have
negative consequences and has become an increasing burden on
society. In particular, stress-related disorders, such as major depres-
sive disorder (MDD), have been steadily on the rise for the last decade1.
Our understanding of the behavioral and neurobiological mechanisms

related to MDD is limited, which is part of the reason for the only
moderate success of current drug treatments2. MDD is a complex and
heterogeneous disorder, and its classification is dependent on a
widespread set of symptoms. An important characteristic of MDD is
the impairment of social functioning and lack of social motivation,
which can lead to social withdrawal from society in extreme cases3. In
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addition, disturbances in social behavior are an important risk factor
for developing MDD, as poor social networks are linked to lowered
mental and physical health4,5. The impact of social interactions was
highlightedduring theCOVID-19 pandemic,where a substantial part of
society experienced little to no social interactions for a sustained
period. An increasing number of studies are now reporting the enor-
mous impact of the pandemic, emphasizing a dramatic increase in the
prevalence of stress-related disorders, in particular MDD6,7. Unfortu-
nately, there is still a lack of awareness of the importance of social
interactions and their role in stress-related disorders. Therefore, it is
crucial to increase the understanding of the biological and psycholo-
gicalmechanisms behindMDD, and the influence of social behavior on
the development of MDD.

Along these lines, animal models have an important role in MDD
research. Although unable to recreate the exact nature of the disorder
in humans, they provide a controlled environmentwhere symptoms of
MDD can be investigated8,9. The well-established chronic social defeat
stress (CSDS) paradigm is continuously used for studying symptomsof
MDD in animals10,11. In the CSDS model, mice are subjected daily to
severe physical and non-physical stressors from aggressive mice for
several weeks, which results in the chronic activation of the physiolo-
gical stress response system, leading to bodyweight differences,
enlarged adrenals, and elevated levels of corticosterone12. In addition,
animals subjected toCSDS show stress-related behaviors such as social
avoidance, anhedonia, reduced goal-directed motivation, and anxiety-
like behavior10,13–16. EspeciallyCSDS-induced social avoidance behavior,
which is the avoidance of a novel conspecific, is a recognized phe-
nomenon that is used to investigate the social neurobiological
mechanisms related to chronic stress exposure and stress-related
disorders11,17,18.

Currently, several social behavioral tasks can assess different
constructs of social behavior, particularly the social avoidance task18. It
is important that these behavioral tasks are conducted with control
over the environment to investigate the effects of external stimuli,
such as stress exposure. For decades there has been a trend to stan-
dardize and simplify these tests to allow for greater comparability and
higher throughput. Unfortunately, this has led to an oversimplification
of the social behavioral repertoire and increased the risk for cross-over
effects by other types of behavior, such as anxiety-related behavior.
Moreover, due to limitations in tracking software, the analysis of the
interaction betweenmultiple freelymoving animals remained difficult,
which further limited the complexity of the behavioral assessment.
Social behavior is a complex behavioral construct, which relies on
many different types of behavioral interactions, that often are too
complicated, time-intensive, and repetitive to assess manually19–21.
Ultimately, this can lead to poor reproducibility of the social beha-
vioral construct, as observed for social approach behavior22.

The current advancement in automatically annotated behavioral
assessment, however, allows for high-throughput analysis using pose
estimation, involving both supervised classification (intending to
extract pre-defined and characterized traits) and unsupervised clus-
tering (which aims to explore the data and extract patterns without
external information)23–28. Importantly, the open-source tool Dee-
pLabCut has provided a robust and easily accessible system for deep-
learning-based motion tracking and markerless pose estimation29,30.
The use of supervised classification, by defining the behavioral pat-
terns of interest a priori, is a powerful tool that simplifies the analysis
by using predefined relevant behavioral constructs without losing the
complexity of social behavior. Furthermore, recent studies have shown
the value of unsupervised clustering in addition to a supervised ana-
lysis, which can reveal novel and more complex structures of
behavior19,26,31–33. By acting in a more exploratory fashion, these prac-
tices can not only assist the discovery of novel traits but also direct
researchers toward the main behavioral axes of variation across
cohorts of interest. In addition, both the supervised and unsupervised

analysis approaches can providemore transparency for the behavioral
definition and can easily be shared via online repositories, which
contributes to a more streamlined definition of behavior across dif-
ferent labs21,34. These computational tools can elevate the current
understanding of the influences of stress exposure on behavior, by
increasing the resolution of the observed behavioral output35.

Therefore, the current study provides an application of our open-
source tool DeepOF36, which enables users to delve into the individual
and social behavioral profiles of mice using DeepLabCut-annotated
pose estimation data (Fig. 1). DeepOF provides two main workflows; a
supervised behavioral analysis pipeline, which applies a set of anno-
tators and pre-trained classifiers todetectdefined individual and social
traits, and an unsupervised analysis pipeline, capable of embedding
themotion-tracking data of one ormore animals in a latent behavioral
space, pointing toward differences across experimental conditions
without any label priming. Furthermore, DeepOF can retrieve unsu-
pervised clusters of behavior that can be compared across conditions
and therefore hint at previously unrecognized behavioral patterns that
trigger newhypotheses.Wedescribe adistinct social behavioral profile
following CSDS inmice that can be recapitulated with both supervised
and unsupervised workflows. Moreover, the current study observes a
clear state of arousal upon exposure to a novel social conspecific that
fades over time, which provides crucial insights for the quantification
of optimal behavioral differences across time and experimental
conditions.

Results
The supervised pipeline provided by DeepOF yields general-
izable annotations
As expected, all rule-based behaviors show high performance when
compared to manual labeling, which constitutes an argument in favor
of simple behavioral tagging (Supplementary Fig. 1).

When evaluating the performance of the huddle classifier,
balanced accuracy in the training set (0.78 ±0.005) was marginally
higher than in both validation settings (suggesting no overfitting), and
performance on the internal validation (0.75 ± 0.046) was not sig-
nificantly higher than performance on the external validation
(0.75 ± 0.04) suggesting excellent generalization to new datasets
(independent samples t-test: T(7.34) = −0.03, p =0. 51, Supplementary
Fig. 2A). In addition, pseudo-labeling conducted on the external
dataset showed a strong and significant correlation between total
behavior duration acrossmanual and predicted labels (Supplementary
Fig. 2B). Finally, the SHAP analysis of the deployed classifier revealed
low head movement, low spine stretch, low body area, and low loco-
motion speed as themost important features of themodel, which goes
in line with the accepted definition of the behavior (Supplemen-
tary Fig. 2C).

The physiological and behavioral hallmarks of stress are repro-
duced by CSDS
The CSDS paradigm was performed to maintain stress exposure for
several weeks (Fig. 2A), which induced dysregulation of the
hypothalamic-pituitary-adrenal axis (HPA-axis) and a stress-related
behavioral profile. Male mice that were subjected to CSDS showed
clear hallmarks of stress exposure, as observed by a significant
increase in body weight during the stress paradigm, which was espe-
cially apparent towards the end of the stress (Fig. 2B, C), an increase in
relative adrenal weight (Fig. 2D), reduced locomotion and time spent
in the inner zone of the OF (Fig. 2E, F), and a significantly reduced SA-
ratio in the SA task (Fig. 2G). Notably, no bodyweight difference was
observed at the beginning of the CSDS paradigm (Fig. 2B).

Further exploration of the OF data using PCA across four 2.5min
consecutive time bins showed that all time bins were significantly
different from each other, suggesting that they all should be included
in further behavioral analysis of the OF data (Supplementary Fig. 3A,
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Fig. 1 | DeepOFworkflow. A 11 labels were tagged on each annotatedmouse using
DeepLabCut. B DeepOF preprocessing pipeline. One or two mice (a C57Bl/6N
experimental subject and a CD1 social companion depending on the dataset) were
tagged using the provided DeepLabCut models. After tracking body parts with
DeepLabCut, DeepOF was used to smooth the retrieved trajectories, interpolate
outliers, and extract features (including coordinates, distances, angles, areas,
speeds and accelerations). C Set of predefined behaviors that the DeepOF super-
vised pipeline can retrieve. These include dyadic motifs (such as nose-to-nose
contacts) and individual motifs (such as climbing), which are reported individually
for all tracked mice. The stopped-and-huddled classifier28 is abbreviated as “hud-
dle” in DeepOF output (not to be confused with group huddling behavior67).
D Schematic representation of the supervised pipeline in DeepOF. A set of
extracted motion features (only three dimensions are shown for visualization
purposes) are fed to a set of rule-basedannotators andpre-trained classifiers, which
report the presence of each behavioral trait at each time by learning how the
corresponding trait is distributed in the feature space (red dots). The set of

classifiers then yields a table indicating the presence of each motif across time,
which can be used for further analysis. Note that annotators are not necessarily
mutually exclusive, as several predictors can be triggered at the same time. EGraph
representation of animal trajectories used byDeepOF in the unsupervised pipeline.
All 11 body parts per animal are connected using a pre-designed (but customizable)
adjacency matrix. Nodes are annotated with x, y coordinates and speed of each
body part at each given time, and edges with the corresponding distances. This
representation can also handle multi-animal settings, where the graphs of indivi-
dual animals are connected with nose-to-nose, nose-to-tail, and tail-to-tail edges.
F Schematic representation of the deep neural network architecture used for the
unsupervised clustering of behavior. Data is embedded with a sequence-aware
spatio-temporal graph encoder, and clustered at the same time by selecting the
argmax of the likelihood of the components of a mixture-of-Gaussians latent pos-
terior. Unidirectional black arrows indicate forward propagation, and gray arrows
indicate the reconstruction and KL divergence terms of the loss function, the latter
of which minimizes the distance to an also mixture-of-Gaussians prior.
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B). The OF PCA between conditions revealed a significant difference
and showed the importance of the OF parameters, in which total dis-
tance, look-around, and sniffing came out as the top contributing
behaviors (Supplementary Fig. 3C, D). A significant stress effect was
observed for the total distance, look-around, and inner–zone time
throughout the different time bins, whereas sniffing was altered, but
not in all time bins (Supplementary Fig. 3E–J). Importantly, even
though a stress-induced effect can be found in the OF task, a general
habituation effect to the OF in both NS and CSDS can be observed, as
total distance reduces over time, while look-around and sniffing
increase. The successful habituation to the novel environment is cru-
cial for the subsequent SI task to allow full attention to the novel social
conspecific (Supplementary Fig. 3E–G).

DeepOF social behavioral classifiers show a stronger PCA
separation for stress exposure than social avoidance
The social behavioral pattern during the SI task was investigated in
four non-overlapping time bins of 2.5min each to match the time
frame in the SA task. Principal component analysis (PCA) was per-
formed to show the difference between time bins in the social beha-
vioral profile regardless of the animal’s stress condition (Fig. 3A).
Interestingly, the PCA showed a significant effect between the time
bins, in which the first 2.5min time bin was significantly different from
the subsequent ones (5, 7.5, and 10min). In contrast, the subsequent
time bins did not show variation between one another (Fig. 3B). This

suggests that the different time bins in the SI task are an important
variable, and that the first 2.5min time bin should be specifically
investigated. Next, the SA and SI tasks were compared on their ability
to distinguishbetweenNS andCSDSanimals. PCAswereperformed for
the SA task (Fig. 3C) and the 2.5min timebin SI data (Fig. 3D, E), both of
which showed a significant difference between the conditions in the
principal component (PC) 1 eigenvalues (Fig. 3C–E). However, the SI
task showed a clearer separation of the conditions than the SA task,
suggesting that the SI task is a more powerful tool for identifying
stressed animals than the SA task. In addition, the PC1 top contributing
behaviors for the 2.5min time bin SI data were calculated using the
corresponding rotated loading scores (Fig. 3F). The top five con-
tributing behaviors were reported as essential behaviors for identify-
ing the stressed phenotype, which consisted of B-huddle, B-look-
around, B-nose-to-tail, B-speed, andB-nose-to-body from theC57Bl/6N
animal, whereas the other behaviors within the top 10 were either
contributing to the CD1 animal or had a low rotated loading score
(Fig. 3F). Here, “B-” indicates behaviors related to or initiated by the
C57bl/6N animals, whereas “W-” refers to the CD1.

DeepOF social behavioral classifiers are strongly altered
by CSDS
Next, the influence of the CSDS on the top five contributing behaviors
in the SI task was investigated. In accordance with the PCA time bin
analysis, a clear stress-induced effect was observed, with elevated

Fig. 2 | Classical hallmarks for chronic social defeat stress. A Experimental
timeline for the CSDS paradigm and behavioral testing, including the open field
(OF) and social interaction (SI) task onday 15–16 (animals weredividedbetween the
two days) and social avoidance (SA) task on day 17. B Significant increase of body
weight after CSDS exposure (two-way ANOVA: within-subject effect of time:
F(6,406) = 13.58, p = 4.59e-14, as well as time×condition interaction effect:
F(6,406) = 6.13, p = 3.65e-6, but no between-subject effect on condition:
F(1,406) = 0.20, p =0.653). Post-hoc analysis with Benjamini Hochberg revealed no
significant difference on day 1, 11, 15, and 18, but there was a significant difference
on day 4 (T(1,58) = 6.36, p =0.033, 8 (T(1,58) = 6.55, p =0.033, and 21 (T(1,58) = 11.57,
p =0.007). C The delta body weight during the CSDS paradigm (day 21–day 1) was

significantly increased in CSDS-exposed animals (Two-tailed independent samples
t-test: T(58) = −6.09, p = 9.8e-8). D Increase of relative adrenal weight after CSDS
exposure (Two-tailed independent samples t-test: T(57) = –5.44, p = 1.15e-6). E The
total locomotion in the OF was reduced after CSDS exposure (Two-tailed inde-
pendent samples t-test:T(51) = 6.15,p = 1.18e-7).FThe inner zone time in theOFwas
reduced after CSDS exposure (Two-tailed independent samples t-test: T(51) = 3.37,
p =0.0015). G The SA-ratio was reduced in the SA task after CSDS exposure (Two-
tailed wilcoxon test:W = 617, p =0.006). The timeline and bar graphs are presented
asmean ± standard errorof themeanand all individual samples as points.N = 30 for
NS and CSDS for (B–G). Source data are provided as a Source Data file.
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duration in the CSDS animals for B-look-around (Fig. 4A, B) and
B-huddle (Fig. 4C, D),while lowered for the B-speed (Fig. 4E, F), B-nose-
to-tail (Fig. 4G, H), and B-nose-to-body (Fig. 4I, J). The total duration
per time bin for the top contributing behaviors showed the strongest
CSDS-induced effect in the 2.5min time bin data (supplemental Fig. 4,
timeline graphs), compared to the 5, 7.5, and 10 min time bins. In
addition, supplemental Fig. 4 shows the 10min total duration and time
bin analyses for all other DeepOF behavioral classifiers, in which a
significant stress effect is observed for B-sniffing, B-wall-climbing, and
Side-by-side.

Z-score for DeepOF social interaction correlateswith Z-score for
stress physiology
The Z-score of stress physiology was calculated using the relative
adrenal weight and body weight on day 21 of the CSDS. The stress
physiology Z-score provides a strong CSDS profiling tool andwas used
for correlation analysis between the SA and SI tasks. Even though the
behavioral and physiological readouts were not obtained at the same

time, the former can be used as a proxy of the impact of the stress
exposure, and are expected to be stable during the last week of the
CSDS pipeline. No significant correlation was observed between the
Z-score of stress physiology and the SA ratio (Fig. 5A). Subsequently,
the Z-score of SI was calculated by using the 2.5min timebin of the top
five contributing behaviors in the SI task (Fig. 4). Stress physiology and
SI Z-score showed a significant positive correlation (Fig. 5B), which
indicates that the SI Z-scoreprovides a stronger tool forCSDSprofiling
compared to the SA ratio. Next, correlation analyses were performed
between the Z-score of SI and all other behavioral and physiological
measurements which indicated a strong correlation with several OF
parameters. Highly affected OF parameters, such as speed, distance,
inner zone entries, and look-aroundmight be directly related to social
anxiety and warrant further investigation. Interestingly, no correlation
with the SA ratio was observed (Fig. 5C).

Notably, the SA task is extensively used to distinguish resilient and
susceptible animals in the CSDS paradigm10,17, and depending on the
protocol and stress severity this can give a distinction between

Fig. 3 | Social interaction binning yields more separable PCA projections than
the social avoidance task. A In the SI data a PCA revealed that the first 2.5min time
bin is significantly different from the other time bins. (Kruskal-Wallis test:
H(3) = 19.90, p =0.0002. B The PC1 eigenvalues of the SI time bin PCA. Post-hoc
Wilcoxon: 2.5min vs. 5min (W = 957, p =0.01), 2.5min vs. 7.5min (W = 860,
p =0.0018), 2.5min vs. 10min (W = 811, p =0.0011). C The SA task PCA showed a
significant difference in the PC1 eigenvalues between conditions. The PCA data
consisted of the SA-ratio, total time spent with the non-social stimulus, and total
time spent with the social stimulus. Two-tailed independent samples t-test:
T(57) = –2.84, p =0.006. D The SI 2.5min time bin PCA showed a significant dif-
ference in the PC1 eigenvalues between conditions. The PCA data consisted of all
the SI DeepOF behavioral classifiers, as listed in Fig. 1C. Two-tailed independent

samples t-test: T(51) = 8.28, p = 5.39e-11. E The PC1 eigenvalues of the 2.5min time
bin SI task. F The top contributing behaviors of the SI 2.5min time bin in PC1 using
the corresponding rotated loading scores. The top five behaviors were reported as
the essential behaviors for identifying stress exposure (B-huddle (–0.41), B-look-
around (–0.40), B-nose-to-tail (0.39), B-speed (0.36), B-nose-to-body (0.33). “B-”
indicates C57Bl/6N behaviors and “W-” indicates CD1 behaviors. The PCA graphs
(Fig. 3A, C, D) are provided with a 95% confidence ellipse and all individual samples
as points. Further PC1 analyses (Fig. B, E) are represented with a violin plot and all
individual samples as points. In Fig. 3F the absolute score of the PC1 value is
represented by the point.N = 26 for NS and n = 27 forCSDS in (A,B,D–F) andn = 30
for NS and CSDS in (C). Source data are provided as a Source Data file.
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resilient and susceptible animals (Fig. 5D–F). Interestingly, while
clearly differentiating affected and non-affected individuals, the Dee-
pOF module does not find a distinction between SA-ratio-defined
susceptibility and resiliency on the 2.5min bin SI DeepOF behavioral
classifiers (Fig. 5G–M), indicating that the DeepOF behavioral classi-
fiers represent a unique and distinguished set of resilience-linked
phenotypes.

The DeepOF unsupervised pipeline can be flexibly applied
across different experimental settings
The unsupervised pipeline within DeepOF was applied to three data-
sets and four settings. These included both single and multi-animal
embeddings on the SI dataset, single-animal embeddings on the OF
dataset, and single-animal embeddings on the SA dataset. When
applying this workflow to a new dataset, the number of clusters is a
hyperparameter the user must tune. In this study, an optimal solution
was found by selecting the number of clusters that explains the largest
difference between experimental conditions (in terms of the area
under the ROC curve of a classifier to distinguish between them, see
methods for details). While DeepOF could be used to describe the
behavioral space of a single condition, this model selection procedure
aims at maximizing the power to detect behavioral differences
between experimental conditions. An optimum of 10 clusters was
measured for both single- and multi-animal SI settings (Fig. 6A and

Supplementary Fig. 5A), whereas the single-animal OF setting showed
an optimum of 11 clusters (Supplementary Fig. 6A), and the SA setting
of 17 clusters (Supplementary Fig. 7A). Timepoint UMAPprojections of
the latent space depicting all clusters can be found in Fig. 6B, and
Supplementary Figs. 5B, 6B, and 7B for all four settings, respectively.

DeepOF can quantify behavioral differences over time in an
unsupervised way
Once the number of clusters was fixed, the stress-induced phenotype
was investigated over time in both SI and OF settings. SA was excluded
of this analysis due to the shorter length of the videos (2.5min), in
which no decay of arousal should be observed in the animals. To this
end, a growing time window spanning an increasing number of
sequential seconds was analyzed. For each analysis, the discrimin-
ability between conditions was tested by evaluating the performance
of a linear classifier to distinguish between them in the global animal
embedding space, for which each experiment is represented by a
vector containing the time spent per cluster (see methods for details).
The bin size for which discriminability was maximized was then
selected as optimal and used for further analysis. In this case, we
observed an optimum of 126 and 124 s for the single-animal andmulti-
animal SI tasks respectively, indicating that differences between con-
ditions are maximized early in the 10-min-long experiments, which is
compatible with habituation. Furthermore, performance across

Fig. 4 | Top contributing behaviors in the social interaction task for 10min
total duration and time bins. A The total duration of B-look-around. Two-tailed
Welch: T(34.1) = –3.71, p =0.0007. B Time bin for B-look-around. Benjamini Hoch-
berg (BH) posthoc for the 2.5min time bin: (T(51) = 33.46, p = 1.78e-6) and the 5min
timebin (T(51) = 6.84,p =0.024), but not for the 7.5 and 10min timebins (p =0.067,
p =0.093, respectively), two-way ANOVA: condition effect: F(1,208) = 37.45,
p = 4.59e-9, time effect: F(1,208) = 4.02, p =0.046, and condition × time effect:
F(1,208) = 8.87, p =0.003). C The total duration of B-huddle. Two-tailed indepen-
dent samples t-test: T(51) = –6.40, p = 4.8e-8. D Time bin for B-huddle. Wilcoxon
posthoc for the 2.5min time bin (W(26,27) = 63.5,p = 1.3e-6), and the 5min time bin
(W(26,27) = 204, p =0.018), but not for the 7.5- and 10min time bins (p =0.52,
p =0.52, respectively), Kruskal-Wallis: 2.5min: p = 1.25e-6, 5min: p =0.018, 7.5min:
p =0.51, and 10min: p =0.51. E The total duration of B-speed. Two-tailed Welch:
T(35.04) = 2.84,p =0.0074.FTime bin for B-speed. BHposthoc for the 2.5min time
bin (T(51) = 22.41, p = 7.16e-5), but not for the 5-, 7.5-, and 10min time bins

(p =0.076, p =0.20, p =0.24, respectively), two-way ANOVA: condition effect:
F(1,208) = 22.60, p = 3.72e-6, time effect: F(1,208) = 7.51, p =0.007, and condi-
tion × time effect: F(1,208) = 6.34, p =0.013). G The total duration of B-nose-to-tail.
Two-tailed Welch: T(36.70) = 2.18, p =0.036. H Time bin for B-nose-to-tail. Wil-
coxon posthoc for the 2.5 min time bin (W(26,27) = 660, p = 1.5e-7), but not for the
5-, 7.5-, and 10min time bins (p =0.19, p =0.49, p =0.49, respectively), Kruskal-
Wallis: 2.5min: p = 1.43e-7, 5min: p =0.18, 7.5min: p =0.48, 10min: p =0.48. I The
total duration of B-nose-to-body. Welch: T(35.85) = 1.18, p =0.24. J Time bin for B-
nose-to-body. Wilcoxon posthoc for the 2.5min time bin (W(26,27) = 626.5,
p = 3.97e-6), but not for the 5, 7.5 and 10min time bins (p =0.85, p =0.85, p =0.85,
respectively), Kruskal-Wallis: 2.5min: p = 3.8e-6, 5min: p =0.85, 7.5min: p =0.85,
10min: p =0.85. The timeline and bar graphs are presented as mean± standard
error of the mean and all individual samples as points. N = 26 for NS and n = 27 for
CSDS in (A–J). Source data are provided as a Source Data file.
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consecutive, non-overlapping bins retaining the optimal size was also
reported (Fig. 6C and Supplementary Fig. 5C). Here, decaying perfor-
mance across bins in the SI setting is also compatible with a state of
arousal, where conditions become less distinguishable over time after
the behavior of the C57Bl/6Nmicebecomes less influenced bynovelty.
The largest difference between NS and CSDS animals can thus be
observed during this period. In line with this finding, the optimal
distance in the single animal OF data was reached at 595 s, suggesting
that no binning is necessary since behavior between conditions
remains consistently distinguishable across the videos (Supplemen-
tary Fig. 6C).

Interestingly, global animal embeddings showa clearer separation
between conditions in both single and multi-animal embeddings for
the SI setting (Fig. 6D and Supplementary Fig. 5D), whereas the dif-
ference is milder in the OF setting, as the projected distributions are
less separable (Supplementary Fig. 6D). In the SA setting, projections

show, as expected, a higher separation between conditions in trial two,
which includes the encaged conspecific (Supplementary Fig. 7C, D).

These global embeddings also capture how distributions merge
over time in the SI settings, as the behavioral profiles of NS and CSDS
mice become closer (Supplementary Figs. 8, 9).

Individual unsupervised clusters reveal differences in behavior
enrichment
Going beyond global differences in behavior, the aggregated embed-
dings depicted so far are the result of summarizing the expression of
the set of detected behavioral clusters. Once obtained, DeepOF
enables the user to test the differential expression between conditions.
To this end, the time spent on each cluster across all videos for each
condition is recorded for each time bin. Importantly, DeepOF has no
knowledge of the assigned animal conditions at the time of training
and assigning clusters.
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The expressionbetweenNSandCSDSanimalswas then compared
using 2-wayMann-WhitneyU tests for each cluster independently, and
p values were corrected for multiple testing using the BH method
across both clusters and time bins, when applicable. We observed
significant differences in eight out of ten and six out of ten clusters for
the first time binof the single andmulti-animal SI settings, respectively
(Fig. 6E and Supplementary Fig. 5E). Interestingly, and in line with
habituation to the environment, these differences also fade across
time. The single-animal setting still shows some (although less) sig-
nificant differences in all time bins, albeit with reduced effect sizes
(Supplementary Fig. 10). Interestingly, also in the single-animal
embeddings, cluster 8 remains highly significant during the entire
course of the experiments. The multi-animal setting yields in contrast
almost no significant results beyond the first time bin (Supplemen-
tary Fig. 11).

In the OF setting, 7 out of 11 clusters showed a significant differ-
ential expression in the first 595 s (Supplementary Fig. 6E). The SA test,
in turn, is an interesting setting to test DeepOF given that its main axis
of variation is the distance to the cage with the conspecific, which
constitutes information that is not available to DeepOF in its current
form (which only looks at the posture of the tracked animals). Inter-
estingly, and while the analysis shows no significant results in trial one
(without the conspecific, Supplementary Fig. 7E), 6 out of 17 clusters
show significant differential expression in trial two (with the con-
specific, Supplementary Fig. 7F), suggesting thatDeepOF can correctly
detect behavioral differences even without absolute location
information.

Finally, we also explored the spatial distribution of cluster
expression across all three settings. We obtained heatmaps depicting
the global exploration of the arena by the C57Bl/6N across all videos
(for both conditions). Along these lines, our results show how, while,
as shown, CSDS animals tend to occupy the center of the arena sig-
nificantly less (Fig. 2F) there is no spatial preference across animals
for individual clusters (Fig. 6F and Supplementary Figs. 5F, 6F show
the overall locomotion distribution, while a comprehensive overview
of individual clusters is presented in Supplementary Figs. 12, 13,
and 14).

Individual unsupervised clusters reveal differences in behavior
dynamics
Aside from comparing cluster enrichment, DeepOF can help gain
insight into how cluster transitions and sequences differ across con-
ditions. To accomplish this, an empirical transition matrix was
obtained for each condition by counting how many times an animal
goes from one given cluster to another (including itself). Since all
transitions were observed to have non-zero probability, the Markov
chains obtained from simulations canbeproven to reach a steady state
over time (where probabilities to go from one behavior to another
stabilize). The entropy of these steady state distributions was reported
for both conditions, with higher values corresponding to a less pre-
dictable exploration of the behavioral space. Interestingly, CSDS ani-
mals showed a significantly lower behavioral entropy in the social
interaction task than their NS counterparts, retrievable in both single
andmulti-animal embeddings (Fig. 6F andSupplementaryFig. 5F). This
goes in line with the NS animals exploring the behavioral space more
thoroughly, while CSDS animals are more conditioned by the con-
specific. In line with this hypothesis, no significant differences across
conditions were found in the single-animal OF experiments (Supple-
mentary Fig. 6F). Moreover, to validate these results, the obtained
behavioral entropy score was correlated with the physiology Z-score
presented earlier (Supplementary Fig. 15). As expected, significant
negative correlations were found for the SI setting both when
exploring the single andmulti-animal behavioral spaces. No significant
correlation was observed for the single-animal OF setting.

Shapley additive explanations reveal a consistent profile across
differentially expressed clusters
An important aspect of any machine learning pipeline using highly
complexmodels is its explainability. In this study, we aimed to explain
cluster assignments by fitting a multi-output supervised classifier (a
gradient boosting machine) that maps statistics of the initial time
series segments (including locomotion and individual body part areas,
speeds, distances, and angles) to the subsequent cluster assignments.
Performance and generalizability of the constructed classifiers across
the dataset were assessed in terms of the balanced accuracy on a 10-

Fig. 5 | Z-score correlation analysis and the exploration of susceptibility and
resiliency. A Pearson correlation analysis between the SA-ratio and the Z-score of
stress physiology (R = –0.23, p =0.089).B Pearson correlation analysis between the
SI task 2.5min time bin top five contributing behaviors and the Z-score of stress
physiology (R =0.43, p =0.0014). C Pearson correlation analyses between the
Z-score of SI and all other parameters. A strong correlation was observed with
several OF parameters, such as speed (R = –0.56, p = 1.76e-5), total distance
(R = –0.54, p = 4.27e-5), look-around (R =0.48, p =0.0004), and inner zone: entries
(R = –0.47, p =0.0004), but not with the SA-ratio (R = –0.13, p =0.37). D The SA-
ratio shows a significant main effect with the Kruskal-Wallis: H(2) = 21.22,
p <0.0001). Wilcoxon posthoc shows that SUS animals (SI-ratio <1) have a sig-
nificantly lower SI-ratio compared to NS animalsW(9,30) = 249, p = 4.1e-5 and RES
animals W(9,24) = 216, p = 1.56e-7. There is no difference between NS and RES ani-
malsW(30,24) = 270, p =0.12. E The PCA for SA shows a significantmain effect with
the one-way ANOVA: F(2,60) = 10.90, p = 9.19e-5. F The PC1 eigenvalues of the SA
show a significant difference between SUS and NS animals Post-hoc Benjamini
Hochberg (BH): T(9,30) =p =0.0005 and between SUS and RES animals
T(9,24) =p = 5.88e-5. There is no significant difference between NS and RES animals
T(30,24) =p =0.196. G The PCA for the 2.5min SI ratio shows a significant main
effect with the Kruskal-Wallis: H(2) = 24.83, p = 4.06e-6. H The PC1 eigenvalues of
the 2.5min bin SI show a significant difference between NS and RES animals Post-
hoc Wilcoxon: W(30,24) = 92, p = 1.82e-6), and between NS and SUS animals
W(30,9) = 41, p =0.0015. There is no difference between RES and SUS animals
(W(24,9) = 117, p =0.736). I B-look-around shows a significant main effect with the
one-way-ANOVA: F(2,60) = 19.23, p = 3.53e-7. Post hoc BH shows a significant dif-
ference between NS and RES (T(30,24) =p = 9.86e-7), and NS and SUS
(T(30,9) =p =0.0002), but no difference between RES and SUS T(24,9) =p =0.94.

JB-huddle shows a significantmain effect with the one-way-ANOVA: F(2,60) = 12.35,
p = 3.23e-5. Post hoc BH shows a significant difference between NS and RES
(T(30,24) =p =0.0003), and NS and SUS (T(30,9) =p =0.0004), but no difference
between RES and SUS (T(24,9) =p =0.39. K B-speed shows a significant main effect
with theone-way-ANOVA: F(2,60) = 18.63,p = 5.1e-7. Post hocBHshows a significant
difference between NS and RES (T(30,24) =p = 3.12e-6), and NS and SUS
(T(30,9) =p = 7.62e-5), but no difference between RES and SUS T(24,9) =p =0.67.
LB-nose-to-tail shows a significantmain effectwith the Kruskal-Wallis:H(2) = 26.70,
p = 1.59e-6. Post hoc Wilcoxon shows a significant difference between NS and RES
(W(30,24) = 628, p = 1.82e-6), and NS and SUS (W(30,9) = 236, p =0.0005), but no
difference between RES and SUS W(24,9) = 152.5, p =0.075. M B-nose-to-body
shows a significantmain effectwith the Kruskal-Wallis:H(2) = 19.61, p = 5.52e-5. Post
hoc Wilcoxon analysis shows a significant difference between NS and RES
(W(30,24) = 567,p =0.0003), andNS and SUS (W(30,9) = 230, p =0.0009), and RES
and SUS W(24,9) = 167, p =0.018. The correlation analyses (A, B) are represented
with a regression line and a 95% confidence interval window and all individual
samples as points. C has the correlation value (R) represented by the red line
(positive) or blue line (negative), black circles around the points are identified as
significant correlations, p <0.05. The bar graphs are presented as mean ± standard
error of the mean and all individual samples as points. The PCA graphs (E, G) are
provided with a 95% confidence ellipse and all individual samples as points. Further
PC1 analyses are represented with a violin plot and all individual samples as points
(F, H). The bar graphs are presented as mean± standard error of the mean and all
individual samples as points. N = 30 for NS and CSDS in (A), and n = 26 for NS and
n = 27 for CSDS in (B,C),n = 30 forNS,n = 24 for RES,n = 9 for SUS in (D–M). Source
data are provided as a Source Data file.
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fold stratified cross-validation loop, which was designed so that seg-
ments coming from the same video were never assigned to both train
and test folds. Data for SI (single and multi-animal) and OF settings
were standardized, and the minority class was oversampled using the

SMOTE algorithm to correct for class imbalance. Performance per
cluster is shown by means of the confusion matrices per task and the
balanced accuracy per cluster (Fig. 7A, B and Supplementary Figs. 16A,
B and 17A, B for all three settings, respectively). Importantly, classifier

Fig. 6 | Single-animal unsupervised analyses identify different behavioral pat-
terns between stressed and non-stressed mice during the SI task. A Cluster
selection pipeline results reporting the area under the ROC curve from a logistic
regression classifier discriminating between conditions. A 10-component solution
(from a range between 5 and 25) was selected as optimal in a fivefold (N = 5) cross-
validation loop (see methods for details). B Embeddings by time point obtained
using DeepOF’s unsupervised pipeline. Different colors correspond to different
clusters. Dimensionality was further reduced from the original 8-dimensional
embeddings using UMAP for visualization purposes. C Optimal binning of the
videos was obtained as the Wasserstein distance between the global animal
embeddings of both conditions across a growing window, between the first
10–600 s for each video at one-second intervals (gray curve). Higher values cor-
respond to larger behavioral differences across conditions. A maximum was
observed at 126 s, close to the stipulated 150 s selected based on the SA task lit-
erature. The dark green curve depicts the Wasserstein distance across all sub-
sequent non-overlapping bins with optimal length. The decay observed across time
is consistent with the hypothesized arousal period in the CSDS cohort.
D Representation of the global animal embeddings for the optimally discriminant
bin (126 s) per experimental video colored by condition (see methods for details).

E Cluster enrichment per experimental condition (N = 26 for NS and N = 27 for
CSDS) in the first optimal bin (first 126 s). Reported statistics correspond to a 2-way
Mann-Whitney U non-parametric test corrected for multiple testing using Benja-
mini-Hochbergs’s method across both clusters and bins (significant differences
observed in clusters 0: U = 1.6e+2, p = 7.7e-4, 1: U = 1.1e+2, p = 1.3e-5, 2: U = 6.3e+2,
p = 1.1e-6, 4: U = 6.4e+2, p = 3.3e-7, 5: U = 1.6e+2, p = 6.3e-4, 7: U = 5.3e+2, p = 1.3e-3,
8: U = 6.2e+2, p = 1.9e-6, 9: U = 1.9e+2, p = 4.4e-3). Bar graphs represent mean ±
standard deviation of the time proportion spent on each cluster. F Example heat-
mapdepicting spatial distribution across all experiments (in both conditions) for all
clusters. Specific heatmaps for all individual clusters are available in Supplementary
Fig. 12).G Behavioral entropy scores per condition. NS animals show a significantly
higher entropy than CSDS animals, which can be attributed to a less predictable
exploration of the behavioral space (U = 5.3e+2, p = 1.68e-3,N = 26 for NS andN = 27
for CSDS). Moreover, and in accordance with these results, behavioral entropy
shows a significant negative correlation with the presented stress physiology
Z-score (Supplementary Fig. 15A). Source data are provided as a Source Data file.
Box plots in (A,G) show themedian and the inter-quartile range.Whiskers show the
full range, excluding outliers as a function of the inter-quartile range.
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Fig. 7 | SHAP analysis of unsupervised cluster assignments in the single-animal
social interaction task. Gradient boosting machines were trained to map from a
predefined set of time series statistics (including body part speeds, distances,
distance speeds, areas, area speeds, and supervised annotations) to the previously
obtained cluster assignments. A Confusion matrix obtained from the trained gra-
dient boosting machine classifying between clusters. Aggregated performance
over the validation folds of a fivefold cross-validation is shown. B Validation per-
formance per cluster across a fivefold (N = 5) cross-validation loop. Balanced
accuracy was used to correct for cluster assignment imbalance. The dashed line
marks the expected performancedue to chance, considering all outputs. Bars show

mean ± 95% confidence interval. C Overall feature importance for the multi-output
classifier using SHAP. Features in the y-axis are sorted by overall absolute SHAP
values across clusters. Classes on the bars are sorted by overall absolute SHAP
values across features. D–F Bee swarm plots for the three most differentially
expressed clusters between NS and CSDS mice (1, 2, and 5), identified with the
unsupervised DeepOF pipeline on the SI experiments using single-animal embed-
dings. The depicted plots display the first eight most important features for each
classifier, in terms of the mean absolute value of the SHAP values. Source data are
provided as a Source Data file.
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performance is substantially greater than random in all cases for all
three settings,meaning that all clusters are highlydistinguishable from
one another by the set of summary statistics employed.

The result of this analysis is thus a set of feature explainers for
each retrieved cluster, which can be used to interpret, alongside visual
inspection of the corresponding video fragments (included as Sup-
plementary files), what the obtained behavioral motifs represent. Both
global (Fig. 7C, Supplementary Figs. 16C, 17C) and cluster-specific
feature importance values can be retrieved. In this context, we found
consistent descriptions of clusters that are differentially represented
across conditions for all three tasks.

In the single-animal SI task, for example, cluster 1 (Fig. 7D, enri-
ched in CSDS animals) is consistently explained by low locomotion
speed, low head movement, and low spine stretch, and is positively
associated with the huddle classifier. Visual inspection reveals a
behavior close to freezing. Cluster 2 (Fig. 7E, enriched in NS animals) is
in contrast explained by high locomotion speed, exploratory behavior,
low headmovement, and spine stretch. Close visual inspection depicts
active locomotion and engagement with the conspecific. Interestingly,
cluster 8 (Fig. 7F, enriched in NS animals across all time bins) is
explained by increased speed, head movement, and negatively asso-
ciated with sniffing. Visual inspection suggests engaging in motion
(shifting from a still position to active locomotion).

In the case of the multi-animal SI setting, the explainability pipe-
line reveals how themodels work differentlywhen taking both animals
into account. In this case, the two-animal system is embedded as a
whole, and features including both animals are considered when run-
ning SHAP. As mentioned in the methods section, a regularization
hyperparameter allows the system to focus more on interactions
between the animals or in joint individual behaviors. In this case, we
used amoderated value of the parameter that enables the contribution
of both, which becomes apparent when analyzing the explainability
profiles of the retrieved behaviors. Cluster 3, for example (Supple-
mentary Fig. 16D, highly enriched in CSDS), is explained not only by
low speed on the C57Bl/6N animal, but also by increased speed of the
CD1, among others. Upon visual inspection, one can observe exactly
that the CD1 is exploring the arena while the C57Bl/6N stands still, in a
posture usually associated with the stopped and huddled trait. Cluster
5 (Supplementary Fig. 16E, also enriched in CSDS) closely captures an
interaction between the two animals, where the CD1 is typically more
engaged in movement. The SHAP pipeline eloquently reveals negative
correlations with spine stretch and back, torso, body and head areas,
as well as speed in both mice. Conversely, cluster 8 (Supplementary
Fig. 16F, enriched in NS) is well explained by increased speed in both
animals, which can be confirmed by visual inspection.

Finally, this pipeline was also used to interpret clusters in the OF
setting. In this case, cluster 0 (Supplementary Fig. 17D, enriched in
CSDS animals) is explained by a decreased overall speed, positive
correlations with mid and back spine stretch, back area, and left leg
extensions, and negative association with right leg extensions. Visual
inspection indeed reveals a cluster highly enriched in digging. Cluster
8 (Supplementary Fig. 17E, also enriched in CSDS animals), is in turn
explained by decreased speed, mid, and back spine stretch, increased
head area and extended right legs. Visual inspection shows a cluster
enriched in slow walking, often including head movement and inter-
action with the walls. Finally, cluster 9 (Supplementary Fig. 17F, enri-
ched in NS animals) is positively correlated with speed and head
movement, and negatively correlated with spine stretch, among oth-
ers. Visual inspection depicts an exploratory behavior with active
movement.

All in all, the provided cluster explainability pipeline is a useful
tool to interpret all reported patterns. Moreover, visual inspection of
cluster snippets is also made possible with a single command within
DeepOF, which makes the interpretation process more effective.

Discussion
For decades there has been a trend to standardize and simplify social
behavioral tests, which has led to an oversimplification of the
description of the social behavioral repertoire. The current develop-
ments of open-source markerless pose estimation tools for tracking
multiple animals have provided the possibility for more complex and
socially relevant behavioral tests. The current study provides an open-
source tool, DeepOF, which can investigate both the individual and
social behavioral profiles in mice using DeepLabCut-annotated pose
estimation data. Applying this tool, the current study identified a dis-
tinct social behavioral profile following CSDS using a selection of five
traits annotated by DeepOF on the C57Bl/6N animal. In addition, a
similar social behavioral profile was identified using an unsupervised
workflow, which could detect behavioral differences in different
experimental settings, including social interaction and single-animal
open field tests, and a social avoidance task. Moreover, DeepOF
allowed to study behavioral dynamics in unprecedented detail and
identified the 5 min during the interaction with a novel conspecific as
crucial for the socialprofilingof CSDSexposure inboth supervised and
unsupervised workflows. Overall, this study demonstrates the high
utility and versatility of DeepOF for the analysis of complex individual
and social behavior in rodents.

DeepOF as part of a markerless pose estimation toolset
The initial release of DeepLabCut in 201829 provided a reliable and
accessible tool for researchers around the globe to process marker-
less pose estimation data, which has undoubtedly changed the field
of behavioral neuroscience. This has set in motion a rapid growth of
tools for analyzing pose estimation data that are increasing the range
of possibilities in the field, which were unimaginable using classical
tracking approaches or manual scoring. An important distinction
between these pose estimation analysis tools is whether they intend
to extract pre-defined and characterized traits (supervised) or to
explore the data and extract patterns without external information
(unsupervised). The DeepOF module is designed to provide both
analysis pipelines. The supervised behavioral classifiers offer a quick
and easy-to-use analysis to detect individual and social behavioral
traitswithoutmanual labeling. In addition, whendifferences between
the conditions are not reflected in these traits, or the researcher aims
to obtain behavioral embeddings, the DeepOF package can encode
the data in a time-aware way that can report differentially expressed
patterns in an unsupervised manner, taking single and multi-animal
inputs.

The supervised framework: spotting recognizable patterns
The supervised pipeline within the DeepOF package can be used on
single anddyadic behavioral data inmultiple-shaped arenas.DeepOF is
capable of reporting a pre-defined set of behavioral traits without any
extra labeling or training required. To accomplish this, it relies on both
simple rule-based annotations and machine learning binary classifiers
whosegeneralizability has been tested, trading offflexibility for easeof
use. This makes it user-friendly for researchers without computational
expertise to apply this supervisedpipeline,without having tomake any
modifications. To further detect unsupported patterns, using a more
involved and flexible tool (such as SimBA37 or MARS27) could be a
reasonable next step to take. These tools include a supervised
approach that requires the user to label and train classifiers, providing
the freedom to train powerful classifiers and recognize behavioral
traits, which is especially beneficial for labs without computational
expertise. However, in contrast to DeepOF, this approach also dele-
gates to the user the responsibility of testing the generalizability of the
results (howwell the trainedmodels can be applied to newlygenerated
data, even in similar settings), which requires careful practices from
the experimenters.
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The DeepOF module provides a more complete social beha-
vioral profile than the social avoidance task
The social behavioral profile in CSDS-subjected animals has been mea-
sured extensively using the SA task, which is based on the separation of
social behavioral traits between non-stressed and stressed animals11,17,38.
Previous research has shown that rodents have a social interaction
preference towards a novel conspecific compared to a familiar
conspecific39. However, the duration of this social behavioral arousal
state has not been well documented. In this context, and by replicating
the time the SA task typically lasts for10, the current study shows that the
CSDS-related social behavioral profile, obtained with the DeepOF
supervised classifiers, was increasingly observed during the first 2.5min
of the 10min SI task. Furthermore, the presented unsupervised work-
flow was used to determine an optimal binning of our experiments by
measuring how different both conditions were across time for a linear
classifier. This yielded an optimal separation at ~2.1min (126 and 124 s
when testing with single and multi-animal embeddings, respectively),
which then decayed over subsequent time bins in a manner consistent
with the arousal hypothesis. The fact that this result was not seen in the
absence of a conspecific strengthens this argument. Taking this into
account, we argue that the introduction of a novel conspecific induces a
state of arousal, which coincides with a distinct social behavioral profile
that disappears over time after 2–3 min due to habituation.

Along these lines, this study shows that the DeepOF social beha-
vioral classifiers provide a stronger separation of the social behavioral
profile between stressed and non-stressed animals compared to the
classical SA task, which also correlates better to physiological stress
parameters.

Furthermore, the identification of stress-susceptible and resilient
animals is often performed using the SA-ratio of the SA task10,17 and for
this DeepOF offers unique advantages. While the SA ratio clearly dis-
tinguishes stress-affected individuals, especially following more severe
CSDS paradigms, the DeepOF module will significantly advance the
possibilities and sensitivity of this distinction, by investigating the
degree of resilience based on multiple behavioral classifiers with high
sensitivity and in freely moving animals, which enables uncovering a so-
far undescribed set of resilience-linked phenotypes that are different
from the univariate SA task. Taken together, it can be concluded that
using the DeepOF social behavioral classifiers provides a more robust
and clearer social behavioral profile in animals subjected to CSDS
compared to the SA task. An important reason for the superiority of
DeepOF in social behavioral profiling depends on the experimental set-
up: theSA task relieson the confinementof ananimal (for exampleusing
a wired mesh cage), which means that no natural interaction between
freely moving animals is possible, whereas the SI task is based on a
naturally occurring interaction between freely moving animals18. More-
over, in the SA task, the confined animal can show symptoms of anxiety-
related behavior, which influences the physiological state and the social
interaction and approach behavior of the conspecific40–42. Differences in
anxiety-related behavior between experimental animals can still con-
tribute to alterations in social behavior and recent data suggest distinct
neurobiological circuits driving both phenotypes43, therefore sufficient
habituation and the ability to observe behavior in freelymoving animals
will lead to improved discrimination. Moreover, a further crucial
advantage of the DeepOF module is the many different behavioral
classifiers that can be investigated at the same time without increasing
the labor intensity. The combined analysis of multiple behavioral clas-
sifiers into a Z-score of social behavior provides a more complete social
behavioral profile than solely investigating social avoidance behavior.

DeepOF can detect and explain differences across experimental
conditions in a fully unsupervised way, embedding data from
one or more animals
The supervised pipeline within DeepOF follows a highly opinionated
philosophy, which focuses on ease of use and relies on predefined

models. As an alternative, DeepOF offers an unsupervised workflow
capable of representing animal behavior across experiments without
any label information. In its most basic expression, this involves
obtaining a representation for each experiment in a time-aware man-
ner: unlike other dimensionality reduction algorithms like PCA, UMAP,
and T-SNE26, DeepOF, when applied to the raw dataset, relies on a
combination of convolutional and recurrent neural networks capable
ofmodeling the sequential nature ofmotion. Each input to themodels
consists of a subsequence across a non-overlapping sliding window of
each experiment. Although this idea has been explored before33,
DeepOF introduces several novelties to the field, such as unified
embedding and clustering, the support for multi-animal embeddings,
and graph representations that integrate not only coordinates by also
body-part-specific speed and distance information, which makes it
ideal for settings where informative body parts (such as paws) are
occluded, as is the case for commonly used top-down videos.

In addition, these global embeddings can be decomposed into a
set of clusters representing behavioral motifs that the user can then
inspect both visually and with machine learning explainability meth-
ods. Moreover, by comparing cluster enrichment and dynamics across
conditions, it is possible to answer questions that are relevant to
understanding what the observed difference might be based on,
without any previous knowledge: Which behaviors are most or least
expressed in each condition? Is the set of behaviors expressed differ-
ently in experimental conditions? Are they expressed differentially
across space and time? This constitutes a complementary approach
that can be beneficial to further direct hypotheses when little knowl-
edge is available. In addition, by not only showing overall differences
between cohorts but also reporting which motion primitives might be
driving them, it is possible to test hypotheses by training novel
supervised classifiers based on thosemotion primitives. This can allow
researchers to distinguish new, meaningful patterns that have not
been reported before and that may be significantly associated with a
given condition.

Taken together, the current study exemplifies that the unsu-
pervised pipeline provided in DeepOF does not only recapitulate
results previously obtained with the supervised analysis, but also
shows how this tool can be used to detect habituation and overall
differences in behavioral exploration. We also show that detected
differences are significantly stronger when a conspecific is present,
although also detectable during single animal arena exploration alone.

Towards an open-source behavioral analysis ecosystem
One of themain advantages of DeepOF, SimBA37, VAME33, MARS27, and
many other packages cited in this manuscript, is that they are open
source. This means that their inner workings are transparent, and that
it is possible for the community to contribute to their development.
We strongly believe that the adoption of open-source frameworks can
not only increase transparency in the field but also incentivize a feeling
of community, in which researchers and developers can share ideas,
code, and solve bugs and problems together. Moreover, the open
source framework facilitates beneficial feedback loops, where the data
generated using these tools can be published, thus increasing the
opportunity to produce better software. A good example of this is
zero-shot pose estimation44, which enables motion tracking without
labeling, by cleverly leveraging information from several publicly
available datasets. In addition, new technologies are starting to enable
joint learning from multiple modalities, such as neural activation and
behavior45, which enables the exploration of how these modalities are
influencing each other.

In addition to the software, an equally important problem to
tackle is the need for open-source benchmarks. As platforms for
testing and validating pose estimation and detection algorithms
become available, it becomes easier to clearly show and compare the
performance of different software options for different tasks. An
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example of this is the Caltech Mouse Social Interactions (CalMS21)
dataset, a pioneer in the field that provides benchmarking for classic
detection of social interactions, annotation style transfer, and detec-
tion of rare traits46. While unsupervised learning benchmarking
remains highly unexplored to the best of our knowledge, it would be
crucial to compare the DeepOF pipeline with other available methods
in this context when the tools become available.

Finally, and in contrast to several other options that offer exten-
ded functionality but rely onproprietary algorithmsand/or specialized
hardware23, these tools have the potential to make otherwise expen-
sive software available to a larger audience.

In conclusion, the current study provides a novel approach for
individual and social behavioral profiling in rodents by extracting pre-
defined behavioral classifiers and unsupervised, time-aware embed-
dings using DeepOF. Furthermore, while the tool provides means of
customization, it is uniquely optimized for the most common beha-
vioral setup: top-down video recordings.Moreover, we show evidence
for the validation of the provided behavioral annotators and offer an
open-source package to increase transparency and contribute to the
further standardization of the behavioral constructs. We also show
that, while differences across conditions are detectable during single
animal exploration, they are enhanced in the SI task involving a com-
panion mouse. Furthermore, while the classical SA task does identify
the social behavioral profile induced by CSDS, the DeepOF behavioral
classifiersprovide amore robust and clearer profile. DeepOF is thereby
a highly versatile tool that can also be applied to other research
questions, e.g., to study sex differences in social behavior or analyze
home-cage behavior throughout the lifespan of animals using long-
itudinal recordings. In addition, the DeepOF module contributes to a
more specific classification of the affected individual and social
behaviors in stress-related disorders, which could contribute to the
study of drug development for psychiatric disorders.

Methods
Time series extraction from raw videos
Time series were extracted from videos using DeepLabCut version
2.2b7 (single animal mode). 11 body parts per animal were tagged,
including the nose, left and right ears, three points along the spine
(including the center of the animal), all four extremities, and the tail
base (Fig. 1A). The DeepLabCut model was trained to track up to two
animals at once (one CD1mouse and one C57Bl/6Nmouse) and canbe
found in the Supplementary material (see code and data availability
statement). Using the multi-animal DeepLabCut30, extending the
tracking to animals from the same strain is also possible. Next, Dee-
pLabCut annotated datasets were processed and analyzed using Dee-
pOF v0.4.636.

Time series data preprocessing
All videos and extracted time series undergo an automatic pre-
processing pipeline that is included within the DeepOF package, con-
sisting of smoothing and two sequential imputation levels, applied to
all body parts of all tracked animals independently. For smoothing
DeepOF applies a Savitzky-Golay filter47 to each independent tracked
variable by fitting an n/2-degree polynomial over an n-frame sliding
window, where n is the frame rate of the corresponding videos.

To identify and correct any artifacts in the time series, a moving
average model is then fitted to the time-based quality scores of each
tracked variable (as reported by DeepLabCut’s output likelihood). By
detecting divergences (of at least three standard deviations) from the
moving average model, DeepOF can detect sudden and consistent
drops in tracking quality, often correlated with body-part occlusions.
Body parts with low quality are thus removed from the data, and fur-
ther imputed using sci-kit learn’s iterative imputer with default
parameters48, which predicts missing values based on all available

features at a given time point using a Bayesian ridge regression
method. A second imputation method is then conducted, aiming to
remove spatial jumps in the tracked body parts. To do this, another
moving average model is fitted, this time to the body part coordinates
themselves, and any data point located at least three standard devia-
tions from the model is replaced by the predicted values.

Time series feature extraction
After preprocessing the time series independently, DeepOF extracts a
set of features aiming to describe how entire animals move and
interact. These include centered and aligned coordinates, distances
between body parts, angles, and areas of specific regions of each
available body (Fig. 1B), as well as their speeds, accelerations, and
higher-order derivatives. The value for each feature is reported per
time point.

Coordinates. Raw coordinates for each body part are centered (the
cartesian origin is set to the center of each animal) and vertically
aligned so that the y-axis matches with the line delimited by the center
of each animal and spine 1 (see Fig. 1A for reference). This is done so
that both translational and rotational variances are not considered in
further processing steps (in principle, and except for some annota-
tions such as wall climbing and sniffing—see below—DeepOF extracts
posture patterns that are invariant to where in the arena and in which
rotational orientation they are expressed).

Distances and angles. Distances and angles over time between all
body parts within and across all animals are computed by DeepOF by
default, and available for retrieval.

Areas. The full area of the animal over time is computed byDeepOF by
defining a polygon on all external body parts (nose, ears, legs, and tail
base). The head area is delimited by the nose, ears, and spine 1. The
Torso area is delimited by spine 1, both forward legs, and spine 2. The
back area is delimited by the center, both back legs, and the tail base.

Finally, speeds, accelerations, jerks, and larger-order derivatives
of each extracted feature are also computed using a sliding window
approach. Importantly, the detailed 11-body-part labeling scheme
suggested and provided by DeepOF plays a crucial role here. While
parts of the pipeline can still work with fewer labels, the comprehen-
sive set of features that DeepOF is able to extract with this set of labels
enhances not only supervised annotations, but also data representa-
tions and model interpretability.

Supervised behavioral tagging with DeepOF
The supervised pipeline within DeepOF aims to provide a set of
annotators that work out of the box (without user labeling) for several
behaviorally relevant traits. The workflow supports both dyadic
interactions and individual traits, which are reported for each mouse
individually (Fig. 1C). Furthermore, annotated traits fall into one of two
categories:
1. Traits annotated based on pre-defined rules. Several motifs of

interest are annotated using a set of rules that do not require a
trained model. For example, contact between animals can be
reported when the distance between the involved body parts is
less than a certain threshold.

2. Traits annotated following a supervised machine learning pipeline.
While rule-based annotation is enough for some traits, others are
too complex or might bemanifested in subtly different ways, and
machine learning models are often a better option. In this case, a
rigorous validation pipeline has been applied to measure the
performance of the classifier not only in a separate test data set,
but also across datasets comprehending different arenas and
laboratories.

Article https://doi.org/10.1038/s41467-023-40040-3

Nature Communications |         (2023) 14:4319 13



Rule-based annotated traits. Among the rule-based annotated dyadic
traits, nose-to-nose and nose-to-tail depend on single distance
thresholds between specific body parts of the animals involved. In the
case of nose-to-body, a single threshold is used between the nose of
one animal and any body part of the other (except nose and tail base).
Side-by-side and side-reverse-side are computed using two equal
thresholds, measuring the distance between both noses and two tails
in the former, and both nose-to-tail distances in the latter.

Of the individual traits, “look around” requires the animal to stand
still (speed to bebelow a defined threshold) and the head to bemoving
(nose and ear speeds to be above a defined threshold). Finally, sniffing
and wall climbing rely on the interaction of each animal with the arena
(which can be detected automatically in certain settings, or indicated
manually by the user using a GUI—graphical user interface—when
creating a DeepOF project). An animal is annotated as sniffing thewalls
when speed is below a defined threshold, the distance between the
nose and thewall is below a defined threshold, and the head ismoving.
Consequently, wall climbing is detected when the nose of an animal
goes more than a certain threshold beyond the delimited arena. All
mentioned thresholds can be specified (in millimeters) by the user. All
analyses presented in this article were conducted with default values,
which can be seen in Supplementary Table 1.Moreover, all annotations
require a reported tracking likelihood of at least 0.85 on all involved
body parts.

Annotation using pre-trained machine learning models. In the case
of stopped and huddled, we trained a gradient boosting machine
(scikit-learn, v1.2.0, default parameters) to detect the trait per frame,
using a set of 26 variables including distances between body parts,
speeds, and areas. Data were preprocessed by standardizing each
animal’s trajectories independently (controlling for body size), and the
training set as a whole. Furthermore, to deal with the imbalanced
nature of the dataset (as only 8.48 % of the frames were positively
labeled) we applied Synthetic Minority Over-sampling Technique
(SMOTE)49 to oversample theminority class (using imblearn v0.10.150).

Performance was then evaluated using a tenfold stratified cross-
validation (to keep approximately the same number of positive labels
in each validation fold) on a single dataset formodel development and
tested externally using a leave-one-dataset-out approach. Four inde-
pendent datasets were used, collected in four different settings and
across two different labs (see dataset details in Supplementary
Table 2). Three of them (SI, OF, and SA) were tagged with manual
labeling only, whereas the fourth (EX, obtained externally) combined
manual labels and automatic pseudo-labeling using SimBA (Supple-
mentary Fig. 2). The final classifier deployed with the latest version of
DeepOF was then trained on a set of more than half a million labeled
frames (567.367), coming from all four mentioned independent data-
sets, and global feature importancewas obtained using SHAP (Shapley
additive explanations).

After applying the annotators, a Kleinberg burst detection
algorithm37,51 is applied to all predictions. This step smoothens the
results bymerging detections that are close in time (called bursts) and
removing isolated predictions, which an infinite hiddenMarkovmodel
deems as noise. Moreover, rather than having a fixed detection win-
dow, the filter will be less likely to ignore isolated or less frequent
events if they are far enough from higher frequency bursts but will be
more prone to removing isolated events closer to a region where
annotations are more frequent. In addition, it is important to notice
that the annotatorswork independently, somore than one label can be
assigned to an animal at a given time point (Fig. 1D).

Overall, while the provided behavioral set may not cover all sce-
narios, this out-of-the-box pipeline can be used to detect differences in
behavior across experimental conditions without the need for further
programming. More complex behaviors, involving user definition and
labeling can thus be extracted using other available tools if required37.

Graph representations
To analyze complex spatio-temporal data involving features such as
coordinates, speed, and distances, the unsupervised pipeline within
DeepOF can structure the variables as an annotated graph (Fig. 1E).

In this representation, each node is annotated with three values,
corresponding to both coordinates of each body part, as well as their
speeds. Edges are in turn annotated with distances between both
connected body parts. The adjacencymatrix describing connectivity is
provided by DeepOF for top-down videos, but can also be defined by
the user. Moreover, this representation can be extended to a multi-
animal setting, where independent graph representations for each
animal are connected through nose-to-nose, nose-to-tail, and tail-to-
tail edges, allowing the models to incorporate relative distances
between animals. It is worth mentioning that the provided repre-
sentation works best when adjacent body parts are being tracked so
that propagation through space is not too coarse. One of the main
assumptions behind spatio-temporal graph embeddings is that con-
nected body parts are sufficiently correlated in space, which may not
be the case if too little tracking labels are included52.

Unsupervised deep embeddings with DeepOF
Unsupervised analysis of behavior was conducted using an integrated
workflow within DeepOF, which enables both the deep embedding of
animal trajectories and their clustering, to retrieve motion motifs that
are consistent across time.

To this end, node and edge features (for either single or multiple
animals) are processed using a sliding window across time, and stan-
dardized twice: once per animal, to remove size variability, and a
second time on the entire training set.

The resulting data is then embedded using a deep clustering
neural network architecture based on Variational Deep
Embeddings53,54, a deep clustering algorithm that can be adapted to
sequential data. During training of the models, DeepOFminimizes the
ELBO (evidence lower bound), represented in Eq. (1):

LELBOðxÞ ¼ Eqðz;cjxÞ½logpðxjzÞ� � DKLðqðz; cjxÞjjpðz; cÞÞ ð1Þ

The first term corresponds to the reconstruction loss, which
encourages the latent space (z) to represent the data (x) well over a set
of clusters (c). The second term is the Kullback-Leibler divergence
(DKL) between a mixture-of-Gaussians prior (p(z,c)) and the variational
posterior for each cluster (q(z,c|x)), which regularizes the embeddings
to followamixture-of-Gaussians distributionwhere each component is
associated with a particular behavior. A schematic overview of the
model can be found in Fig. 1F.

Importantly, this loss function enforces a clustering structure
directly in the latent space, removing the need for post-hoc clustering
of the embeddings required by other available tools33. This has several
advantages, the main one being that the clustering structure back-
propagates to the encoder during training, improving clustering
performance55.

The main contribution of the provided architecture lies however
in the encoder-decoder layers, which are designed to handle spatio-
temporal graphdata (inwhich connectivity is static, but node and edge
attributes change over time)56. To accomplish this, features corre-
sponding to each body part are first processed independently by a
temporal block, which consists of a one-dimensional convolutional
neural network (CNN) and two gated recurrent unit (GRU) layers).
Subsequently, the outputs of these layers are passed by a spatial block,
that shares information across adjacent body parts. This is accom-
plished using CensNet convolutions, a graph convolution architecture
capable of embedding node and edge attributes at the same time57.
This allows DeepOF to take advantage of several data modalities
related to motion with a single data structure as input.
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Once the models are trained, cluster assignments are obtained as
the argmax of the posterior distribution given the data, as described in
Eq. (2):

q c∣xð Þ=p c∣zð Þ � p zð Þp z∣cð Þ
PK

c0 = 1p c0ð Þp z∣c’ð Þ ð2Þ

where c’∈ (1, K) is an iterator over all clusters in the model.
In practice, this unsupervised pipeline can retrieve consistent

patterns of animal motion in a flexible, non-linear, and fully unsu-
pervised way. Moreover, as body part speeds and distances can be
naturally included, this workflow works even when critical body parts
(such as the paws) are occluded, which makes it ideal for top-down
videos.

In addition, DeepOF is capable of training multi-animal embed-
dings by usingmulti-animal graphs (see graph representations section
above). When more than one animal is detected, DeepOF allows the
user to control how much these embeddings should consider inter-
actions between the animals over the multi-animal system. This is
achieved with an L1 penalization over the node embeddings in the
aforementioned CensNet layers: larger values will prime themodels to
prioritize animal interactions, whereas smaller values will increase the
contribution of the individual behavior of each animal. All experiments
included in this study used a moderated parameter (0.25) which
allowed the model to consider both interactions and joint individual
behaviors.

Unsupervised model training and hyperparameters
All unsupervised models used default values (as specified in DeepOF
version 0.4.6). On each dataset, 10% of the available videos were used
as a validation set to evaluate performance during training. Data were
processed using sliding windows with a length matching the video
frame rate of each dataset and stride of 1, mapping to eight-
dimensional latent spaces. The training was conducted using the
Nadam optimizer58 (with a learning rate of 0.001 and gradient-based
clipping of 0.75) over 150 epochs with early stopping based on the
total validation loss and patience of 15 epochs. Upon training end,
weights of the models are restored to those obtained in the best per-
forming epoch using the same metric. The number of populated
clusters over time, confidence in selected clusters (as the argmax of
the produced soft counts), regularizers, and individual components of
the loss function (see unsupervised deep embeddings with DeepOF
section above) are tracked over time by DeepOF.

Global animal embeddings
Aside from embedding time points individually, global animal
embeddings (where each data point corresponds to the trajectory of
an entire animal rather than to a single time point) were obtained by
constructing a k-dimensional vector with the time proportion each
animal spent on each cluster, where k is the number of clusters in the
given model.

Cluster number selection
For each dataset that was analyzed with the unsupervised pipeline,
models ranging from 5 to 25 clusters were trained five times, resulting
in a total of 120 models per explored setting. All model hyperpara-
meters were set to DeepOF defaults (see section below and API doc-
umentation for additional details). Global animal embeddings were
thenused as input to a logistic regressionclassifier (scikit-learn, default
parameters) aiming to discriminate CSDS from non-stressed animals.
The model with the smallest number of clusters that reached a per-
formancewithin one standarddeviation of the globalmaximumacross
the whole range (in terms of the area under the ROC—receiver oper-
ating characteristic—curve) was selected for further processing.

Time binning and habituation quantification
A key aspect of DeepOF is that it allows for quantification of behavioral
differences between cohorts over time in an unsupervised way. In this
context, this is done by measuring the Wasserstein distance over time
between the multivariate distributions describing global animal
embeddings for CSDS and non-stressed animals.

By measuring this distance across a growing window, we can
quantify how important additional information is to discriminate
between conditions. This way, a peak in the distance curvewouldmark
the point in time inwhich behavioral differences aremaximized. In this
study, we used a range between 10 and 600 s for each experiment,
computing the Wasserstein distance between conditions every sec-
ond. The time point at which the maximum was reached was selected
as the optimal size for consecutive (non-overlapping) time bins. By
reporting the behavioral distance along these bins, DeepOF can report
behavioral habituation (which would involve behavioral differences
between conditions decreasing over time).

Unsupervised cluster interpretation using Shapley additive
explanations (SHAP)
When applying the unsupervised pipeline, and quantifying which fea-
tures DeepOF deems relevant for the unsupervised models to deter-
mine the assignment of a given time segment to a given cluster, all
obtained sequence-cluster mappings were analyzed using Shapley
additive explanations59,60.

To this end, a comprehensive set of 52 distinct features (111 for
two-animal embeddings) was built to describe each sliding window in
the training set, including mean values of distances, angles, speeds,
and supervised annotators.

Gradient boosting machines (using Catboost v1.1.161, which offers
models specifically optimized for non-binary classification) were then
trained to predict cluster labels from this set of statistics after nor-
malization across the dataset and oversampling theminority classwith
the SMOTE algorithm49. Performance is reported as the validation
balanced accuracy across a 10-fold stratified cross-validation loop, and
feature importance (global and for each cluster) is reported in terms of
the average absolute SHAP values, obtained using a permutation
explainer.

Animals for chronic social defeat stress experiments
Eight-week-old experimental male C57Bl/6N mice were bred in-house.
The CD1 male mice (bred in-house) were used in the social avoidance
and social interaction task as social conspecifics (CD1 animals were
4–6 weeks old) and as aggressors in the CSDS paradigm (CD1 animals
were at least 16 weeks old). The study was conducted with male ani-
mals as a proof of principle, and for comparability to widely available
data on chronic social defeat. All animals were housed in individually-
ventilated cages (IVC; 30 cm× 16 cm× 16 cm connected by a central
airflow system: Tecniplast, IVC Green Line—GM500) at least 2 weeks
before the start of the experiment to allow acclimatization to the
behavioral testing facility. All animals were kept under standard
housing conditions; 12 h/12 h light-dark cycle (lights on at 7 a.m.),
temperature 23 ± 1 °C, humidity 55%. Food (Altromin 1324, Altromin
GmbH,Germany) andwaterwere availablead libitum. All experimental
procedures were approved by the committee for the Care and Use of
Laboratory Animals of the government of Upper Bavaria, Germany. All
experiments were in accordance with the European Communities
Council Directive 2010/63/EU.

Chronic social defeat stress
At 2 months of age, male mice were randomly divided into the CSDS
condition (n = 30) or the non-stressed condition (NS) (n = 30) (Sup-
plementary Table 2, experiment code 1). TheCSDSparadigmconsisted
of exposing the experimental C57Bl/6N mouse to an aggressive CD1
mouse for21 consecutivedays, aspreviously described62. An additional
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cohort (NS: n = 30, CSDS: n = 33, subdivided into susceptible animals
n = 9, and resilient animals n = 24) was used to test the DeepOF social
interaction classifiers on the resiliency and susceptibility division of
the social avoidance ratio (Supplementary Table 2, experiment code
2). The prolonged 3-week CSDS paradigm was specifically chosen to
elicit a more profound passive defeat phenotype, as originally repor-
ted by Kudryavtseva et al. 13, and to allow multiple behavioral assess-
ments under stress conditions. In short, the CD1 aggressor mice were
trained and specifically selected on their aggression prior to the start
of the experiment. The experimental mice were introduced daily to a
novel CD1 resident’s territory, who attacked and forced the experi-
mental mouse into subordination. Defeat sessions lasted until the
stress-exposed mouse received two bouts of attacks from the CD1
aggressor or at 5min in the rare instances when two bouts were not
achieved within this duration. Animal health was monitored through-
out the experiment to ensure that any minor injuries healed prior to
the subsequent defeat session. Between daily defeats, stressed mice
were housed in the resident’s home cage but physically separated from
the resident by a see-through, perforated mesh barrier, allowing sen-
sory exposure to the CD1 aggressor mouse while preventing further
attacks. The defeat time of day was randomized between 11 a.m. and
6p.m. to avoid habituation and anticipatory behaviors in defeated
mice. NS mice were single-housed in the same room as the stressed
mice. All animals were handled daily and weighed every 3–4 days.
Behavioral testingwas performed after 14 days of the defeat paradigm,
wherebehaviorwas observed in themorning and the defeat continued
in the afternoon. The animals were sacrificed a day after the CSDS
ended under deep isoflurane anesthesia by decapitation, which was at
3 months of age. Then, the adrenals were obtained, and the relative
adrenal weight was calculated by dividing the adrenal weight by the
body weight before sacrifice.

Behavioral testing
Behavioral tests were performed between 8 a.m. and 11 a.m. in the
same roomas the housing facility.Onday 15 of the CSDSparadigm, the
animals were tested on the social avoidance (SA) task, while on day 16,
the animals were tested on the combined open field (OF) and social
interaction (SI) task. The SA task was analyzed using the automated
video-tracking software AnyMaze 6.33 (Stoelting, Dublin, Ireland),
whereas theOF and SI tasks were analyzed usingDeepLabCut 2.2b7 for
pose estimation29,30, after which DeepOF module version 0.4.6 was
used for preprocessing, supervised, and unsupervised analyses of
behavior.

Social avoidance
The SA task was performed in a square OF arena (50 × 50cm) to
observe the social behavioral profile after CSDS, as well-established in
previous studies13,62–64. The SA task consisted of two phases: the non-
social stimulus phase and the social stimulus phase. During the non-
social stimulus phase, which was the first 2.5min, the experimental
mouse was allowed to freely explore the OF arena with a small empty
wired mesh cage against the wall of the OF. Then, the empty wired
mesh cage was replaced with a wired mesh cage including a trapped
unfamiliar young CD1 mouse (4–6 weeks old). During the following
2.5min, the social-stimulus phase, the experimental mouse could
freely explore the arena again. The SA-ratio was calculated by calcu-
lating the amount of time spent with the social stimulus, which was
then divided by the time spent with the non-social stimulus. The
identification of CSDS susceptibility and resiliency was obtained using
a SA-ratio score of lower than “1” for susceptible animals, and an SI-
ratio score higher than “1” for resilient animals.

Open field and social interaction task
TheOF and SI tasks were performed in a roundOF arena (diameter of
38 cm). The bottom of the arena was covered in sawdust material to

minimize the cross-over effects of stress and anxiety by the novel
environment. First, the OF task was performed, during which the
experimental animal was allowed to freely explore the arena for
10min. Subsequently, for the SI task, an unfamiliar young CD1
(4–6 weeks old) was introduced inside the arena and both animals
were allowed to freely explore the arena for 10min. The DeepOF
module can identify five behavioral traits during the single animal OF
task, which include wall-climbing, stopped-and-huddled, look-
around, sniffing, and speed (locomotion), whereas in the SI task, all
behavioral traits can be identified (Fig. 1C). During the analysis, the
10min OF and SI tasks were analyzed in the total duration of
the behavioral classifiers, and in time bins of 2.5min to match the
time frame in the SA task.

Z-score stress physiology and social interaction calculation
The Z-scores combine the outcome of multiple tests via mean nor-
malization and provide an overall score for the related behavior of
interest. Z-scores were calculated as described previously65. The Z-
score indicates for every observation (X), the number of standard
deviations (σ) above or below the mean of the control group (μ). This
means that for each individual observation Eq. (3) is calculated:

Z =
X � μ

σ
ð3Þ

Then, the obtained values need to be corrected for the direc-
tionality, such that an increased score will reflect the increase of the
related behavior of interest. This means that per test, the scores were
either already correct or were adjusted in the correct directionality by
multiplyingwith “–1”. Finally, to calculate thefinal z-score, thedifferent
z-scores per test were combined and divided by the total number of
tests, as in Eq. (4).

Ztotal =

Pi
1 ztesti

Number of tests
ð4Þ

The Z-score analysis of stress physiology is based on the relative
adrenal weight and the body weight at day 21 of the CSDS, which are
both strongly influenced by CSDS exposure12. The directionality of
both tests did not require additional adjustment. Then, the Z-score of
SI was calculated based on five DeepOF behavioral classifiers from the
C57Bl/6N mouse, which were B-look-around, B-speed, B-huddle, B-
nose-to-tail, and B-nose-to-body. The directionality was adjusted for B-
speed, B-nose-to-tail, and B-nose-to-body.

Behavioral entropy calculation
Shannon’s entropy of the behavioral cluster space was obtained
directly using DeepOF, as a measure of how predictable the sequence
of behaviors expressed by a given animal is. To accomplish this, Dee-
pOF obtains transitionmatrices across clusters using the unsupervised
cluster assignments per animal. Stationary distributions for each
transitionmatrix are then obtained by simulation through thematrices
until convergence, and Shannon’s entropy is computed for each sta-
tionary distribution. Entropy scores obtained for NS and CSDS animals
were then compared. Overall entropy scores were also compared to
the stress physiology Z-score for validation purposes.

External dataset for validation of the DeepOF huddle classifier
An additional experiment was performed using different conditions
and behavioral set-up, to assess the transferability of the DeepOF
huddle classifier (Supplemental Table 2, experiment code 3) to data
produced by a different lab. 12 weeks old C57BL/6J mice (n = 24, pur-
chased from the Jackson Laboratory (catalog number 000664), Bar
Harbor, ME, USA) were paired in a home-cage environment
(19 × 19 cm) with 12 weeks old ovariectomized CFW female mice
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(purchased from Charles River Laboratories (catalog number 024),
Wilmington, MA, USA) and were allowed to freely explore each other
for 1.5min. The animals were housed under standard laboratory con-
ditions with a 12 h light–dark cycle (lights on from 07:00 to 19:00),
temperature 22 ± 1 °C, humidity 50%, in clear Plexiglas cages
(19 × 29 × 13 cm) with unrestricted access to food (Purina Laboratory
Rodent Diet 5001) and water. Procedures were approved by the
McLean Hospital Institutional Animal Care and Use Committee and
complied with the National Institutes of Health guidelines.

Statistics
Statistical analyses and graphs were made in RStudio (R 4.1.166) and
python (v 3.9.13). All data were used for further statistical analysis
unless stated otherwise. During the DeepLabCut tracking, seven
animalswere excludeddue to technical difficulties (fourNS and three
CSDS were excluded). Statistical assumptions were then checked, in
which the data were tested for normality using the Shapiro-Wilk test
and QQ-plots and for heteroscedasticity using Levene’s test. Data
that violated these assumptions were analyzed using non-parametric
tests. The time-course data was analyzed using the two-way ANOVA
(parametric) or Kruskal-Wallis test (non-parametric) with time (days)
as a within-subject factor and condition (NS vs. CSDS) as a between-
subject factor, further posthoc analysis was performed using the
Benjamini-Hochberg (BH) test (parametric) or the Wilcoxon test
(non-parametric). P-values were adjusted for multiple testing using
the Benjamini-Hochberg (BH) method. Three-group comparisons
were analyzed using the one-way ANOVA (parametric) or Kruskal-
Wallis test (non-parametric), and further posthoc analysis was
performed using the BH test (parametric) or the Wilcoxon test (non-
parametric). Two-group comparisons were analyzed using indepen-
dent samples t-tests (parametric), Welch’s tests (data are normalized
but heteroscedastic), or Wilcoxon tests (non-parametric). Correla-
tion analyses were performed using the Pearson correlation coeffi-
cient; outliers deviatingmore than 5 standard deviations froma fitted
linear model were excluded from the analysis. The timeline and bar
graphs are presented asmean ± standard error of themean. Data was
considered significant at p < 0.05 (*), with p < 0.01 (**), p < 0.001 (***),
p < 0.0001 (****).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are
available within the Article and Supplementary Information. Source
data are provided with this paper.

Code availability
All data and the accompanying code to perform the analyses and
creating the figures are available for download via the Max Planck
DataShare services. The most recent version of DeepOF is hosted in a
GitHub repository, and a Zenodo release of the version used in this
manuscript (v0.4.6) is found under https://doi.org/10.5281/zenodo.
8013401. Themost recent stable version of DeepOF is available in PyPI.
Full documentation and tutorials are available on read the docs.
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Automatically annotated motion tracking identifies a distinct 

social behavioral profile following chronic social defeat stress  

Supplemental material 

 

 

Supplemental figure 1. Validation of rule-based annotated behaviors. 10 out of 53 videos were manually 

labeled for all annotators (excluding stopped-and-huddled, see supplemental figure 2) using the Colabeler 

software (v2.0.4). Balanced accuracy between manual labels and predicted binary outcomes (presence or 

absence of a given trait at a given time) is reported. Bars represent the mean ± standard deviation across 

all 10 videos (N=10). Source data are provided as a Source Data file. 
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Supplemental figure 2. Validation of stopped-and-huddled classifier. A) Bar charts (mean ± standard 

deviation) showing balanced accuracy performance for the huddle classifier provided with the supervised 

pipeline within DeepOF. A total of 567367 video frames were either manually labeled (for the SI, OF, and 

SA datasets) or pseudo-labeled using SimBA (EX dataset) for the stopped-and-huddled trait using the 

labeling tool provided with SimBA v1.31.1. Labelling was conducted in four independent datasets (SI, OF, 

SA, and EX; see the animals' section in materials and methods for details), and two validation tasks were 

conducted, marked as “Validation” and “External” respectively. First, a 10-fold stratified cross-validation 

loop was executed within the SI dataset (which has the most labels, see supplemental table 2 for details), 

to test for overfitting and generalization within a single dataset. Balanced accuracy results were 

0.78±0.005 and 0.75±0.046 for the training and validation sets, respectively (N=10). Second, a leave-one-

dataset out cross-validation was conducted across all four datasets, to test whether the model can 

generalize to novel settings (different bedding, different arenas, different labs). A balanced accuracy of 

0.75±0.04 was reported (N=4). B) SimBA validation of the classifiers used for pseudo-labelling in the 

external dataset. Correlation between total behavior duration (in seconds) in manual and predicted labels 

shown for all 24 videos (N=24). Both sets show a Pearson correlation coefficient ρ=0.81, which significantly 

deviates from zero (p-value=1.5e-6). Error bands represent the 95% confidence interval. C) SHAP analysis 

of the deployed model (trained in the whole dataset, with all concatenated four sites). The top 8 features 

are displayed of a total of 26 features including distances between body parts, speeds, and areas. Results 

show low head movement, low spine stretch, low body area, and low locomotion speed as the most 

important features for the model, which goes in line with the accepted definition of the behavior. Source 

data are provided as a Source Data file.  
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Supplemental table 1. Default thresholds used by the annotation pipeline in DeepOF 

Annotated trait Rule Default threshold in DeepOF 
Nose-to-nose Nose to nose distance < 25 mm 

Nose-to-tail Nose to tail distance < 25 mm 

Nose-to-body Nose to any other body part < 25 mm 

Side-by-side Nose to nose distance < 45 mm 

Tail to tail distance < 45 mm 

Side-reverse-side Nose to tail distance < 45 mm 

Wall-climbing Nose reach beyond walls > 10 mm 

Sniffing Nose distance to object < 10 mm 

Nose speed > 50 mm/s 

Locomotion speed < 50 mm/s 

Look-around Locomotion speed < 50 mm/s 

Nose speed > 50 mm/s 

 

Supplemental table 2. Datasets used in the current study 

Dataset name Experiment 
code 

Number 
of 

videos 

Frame 
rate 

Video length Labeled frames 
 (stopped-and-huddled) 

Prevalence 
(stopped-and-huddled) 

Social interaction 
(SI) 

1 53 25 10 min  
15000 frames 

299.350 10.83% 
 

Open field (OF) 1 53 25 10 min  
15000 frames 

179.979 2.75% 
 

Social avoidance 
(SA) 

1 120 13 2.5 min  
1950 frames 

22.488 4.36% 
 

Social interaction 
for SA resiliency 
(figure S6) 

2 64 30 10 min 
18000 frames 

0 - 

Social interaction 
(external) 

3 20 30 1.5 min  
2730 frames 

65.550 14.95% 
 

Total - 310 - - 567.367 8.49% 
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Supplemental figure 3. DeepOF behavioral classifiers in the open field task. A) The OF PCA time bins 

show a significant main effect (one-way ANOVA: F(3,208)=129.12, p=2.97e-47). B) Benjamini-hochberg 

(BH) posthoc shows that the time bins are significantly different from each other (2.5vs5, p=3.93e-14; 

5vs7.5, p=0.0003, 7.5vs10, p=3.1e-12. C) The 10min OF PCA analysis shows a significant difference 

between conditions; independent samples t-test: T(51)=–7.23, p=2.37e-9. Data consisted of all the 

individual DeepOF behavioral classifiers, as listed in Figure 1C. D) The ranked behaviors on the PC1 using 

the corresponding rotated loading scores. E) The total distance was lower in CSDS animals; posthoc BH: 

2.5 min T(51)=16.89, p=0.0001, 5 min T(51)=28.28, p=3.13e-6, 7.5 min (T(51)=39.59, p=2.86e-7, and 10 

min (T(51)=33.77, p=8.1e-7). Two-way ANOVA on condition: F(1,208)=92.586, p=2.31e-18, time: 

F(1,208)=265.77, p=4.85e-39, condition×time: F(1,208)=0.10, p=0.75). F) Look-around was higher in CSDS 
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animals; posthoc BH: 2.5 min (T(51)=14.08, p=0.0004, 5 min (T(51)=14.84, p=0.0004), 7.5 min 

(T(51)=21.65, p=4.7e-5, and 10 min (T(51)=23.25, p=4.7e-5). Two-way ANOVA on condition: 

F(1,208)=74.04, p=1.9e-15, time: F(1,208)=356.65, p=5.4e-47, condition×time: F(1,208)=1.90, p=0.17). G) 

Sniffing was higher in CSDS animals for the 2.5- and 10 min time bins; posthoc Wilcoxon: W=199.5, 

p=0.023; W=210, p=0.023, respectively. The 5- and 7.5 min were not altered (W=258, p=0.13, and W=307, 

p=0.44, respectively). Kruskal-Wallis test 2.5 min: H(1)=7.27, p=0.024, 5 min: H(1)=2.74, p=0.13, 7.5 min: 

H(1)=0.6, p=0.43, and 10 min: H(1)=6.29, p=0.024. H) The inner zone time was lowered in CSDS animals 

for the 2.5, 5, and 10 min time bins; posthoc BH: T(51)=7.70, p=0.016, (T(51)=5.16, p=0.036, (T(51)=12.74, 

p=0.0032, respectively). The 7.5 min was not altered (p=0.24). Two-way ANOVA on condition: 

F(1,208)=24.04, p=1.9e-6, time: F(1,208)=2.07, p=0.15, condition×time: F(1,208)=0.53, p=0.47). I) 

Climbing did not reveal any difference using the Kruskal-Wallis test. J) Huddle did not reveal any difference 

using the Kruskal-Wallis test. The PCA graphs are provided with a 95% confidence ellipse and all individual 

samples as points. Further PC1 analyses are represented with a violin plot and all individual samples as 

points. The timeline graphs are presented as mean ± standard error of the mean. N=26 for NS and n=27 

for CSDS in panels A-J. Source data are provided as a Source Data file. 
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Supplemental Figure 4. DeepOF other behavioral classifiers in the social interaction task for 10 min 

duration. A) B-sniffing is lower in CSDS animals. Independent samples t-test: T(51)=2.99, p=0.004. B) 

Wilcoxon posthoc analysis revealed that B-sniffing was lower in CSDS animals for the 2.5 min (W=538, 

p=0.002), 5 min (W=576, p=0.0003), and 7.5 min (W=499, p=0.012), but not the 10 min (W=456, p=0.06). 

Kruskall-Wallis test: 2.5 min: p=0.002, 5 min: p=0.0003, 7.5 min: p=0.012, and 10 min: p=0.06. C) B-wall-

climbing is lower in stressed animals. Wilcoxon test: W=540, p=0.0004. D) Wilcoxon posthoc analysis 

revealed that B-wall-climbing was lower in stressed animals for the 2.5 min (W=441, p=0.03), the 5 min 

(W=435, p=0.03), and the 7.5 min (W=506, p=0.002), but not the 10 min (W=393, p=0.37). Kruskall-Wallis 

test: 2.5 min: p=0.03, 5 min: p=0.03, 7.5 min: p=0.002, and 10 min: p=0.37. E) Side-by-side is lower in CSDS 

animals. Wilcoxon test: W=522.5, p=0.0023. F) Wilcoxon posthoc analysis revealed that Side-by-side was 

lower in CSDS animals for the 2.5 min (W=581, p=5.48e-5), the 5 min (W=521.5, p=0.003), and the 10 min 

(W=491.5, p=0.02), but not the 7.5 min (W=405, p=0.32). Kruskall-Wallis test: 2.5 min: p=5.28e-5, 5 min: 

p=0.003, 7.5 min: p=0.32, and 10 min: p=0.02. G) Side-reverse-side is not altered between conditions. 

Wilcoxon test: W=365, p=0.81. H) Wilcoxon posthoc analysis revealed that Side-reverse-side was lower in 

CSDS animals for the 2.5 min time bin (W=628, p=3.36e-6), but not the 5-, 7.5-, and 10 min time bins 

(W=337.5, p=1; W=292.5, p=0.60; W=351, p=1, respectively). Kruskall-Wallis test: 2.5 min: p=3.21e-6, 5 

min: p=1, 7.5 min: p=0.60, and 10 min: p=1. I) Nose-to-nose is not altered between conditions. Wilcoxon 

test: W=326, p=0.67. J) No further significant differences were observed in the Nose-to-nose time bins. 

The timeline and bar graphs are presented as mean ± standard error of the mean and all individual 

samples as points. N=26 for NS and N=27 for CSDS in panels A-J. Source data are provided as a Source 

Data file.  
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Supplemental Figure 5. Multi-animal unsupervised analyses identify different two-mice behavioral 
patterns between arenas containing stressed and non-stressed mice during the SI task. A) Cluster 
selection pipeline results, reporting the area under the ROC curve from a logistic regression classifier 
discriminating between conditions. A 10-component solution (from a range between 5 and 25) was 
selected as optimal in a 5-fold (N=5) cross-validation loop (see methods for details). B) Embeddings by 
time point obtained using DeepOF's unsupervised pipeline. Different colors correspond to different 
clusters. Dimensionality was further reduced from the original 8-dimensional embeddings using UMAP for 
visualization purposes. C) Optimal binning of the videos was obtained as the Wasserstein distance 
between the global animal embeddings of both conditions across a growing window, between the first 10 
to 600 seconds for each video at one-second intervals (grey curve). Higher values correspond to larger 
behavioral differences across conditions. A maximum was observed at 124 seconds, close to the 126 
seconds obtained with the single-animal embeddings, and to the stipulated 150 seconds selected based 
on the SA task literature. The dark green curve depicts the Wasserstein distance across all subsequent 
non-overlapping bins with optimal length. The decay observed across time is consistent with the 
hypothesized arousal period in the CSDS cohort, which can be detected also embedding the two-mice 
system as a whole. D) Representation of the global animal embeddings for the optimally discriminant bin 
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(124 seconds) per experimental video colored by condition (see methods for details). E) Cluster 
enrichment per experimental condition (N=26 for NS and N=27 for CSDS) in the first optimal bin (first 124 
seconds). Reported statistics correspond to a 2-way Mann-Whitney U non-parametric test corrected for 
multiple testing using the Benjamini-Hochberg method across both clusters and bins (significant 
differences observed in clusters 0: U=1.7e+2, p=1.2e-3, 1: U=4.9e+2, p=8.5e-3, 3: U=1.4e+2, p=1.4e-
4, 5: U=8.4e+1, p=2.1e-6, 8: U=5.3e+2, p=1.2e-3, 9: U=6.7e+2, p=1.4e-8). Bar graphs represent mean 
± standard deviation of the time proportion spent on each cluster. F) Example heatmap depicting spatial 
distribution across all experiments (in both conditions) for all clusters. Specific heatmaps for all individual 
clusters are available in supplemental figure 13). G) Behavioral entropy scores per condition. NS animals 
show a significantly higher entropy than CSDS animals, which can be attributed to a less predictable 
exploration of the behavioral space (U=5.44e+2, p=6.15e-4, N=26 for NS and N=27 for CSDS). Moreover, 
and in accordance with these results, behavioral entropy shows a significant negative correlation with the 
presented stress physiology Z-score (supplemental figure 15B). Source data are provided as a Source Data 
file. Box plots in panels A and G show the median and the inter-quartile range. Whiskers show the full 
range, excluding outliers as a function of the inter-quartile range.  
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Supplemental Figure 6. Single-animal unsupervised analyses identify different behavioral patterns 

between stressed and non-stressed mice during the OF task. A) Cluster selection pipeline results, 

reporting the area under the ROC curve from a logistic regression classifier discriminating between 

conditions. An 11-component solution (from a range between 5 and 25) was selected as optimal in a 5-

fold (N=5) cross-validation loop (see methods for details). B) Embeddings by time point obtained using 

DeepOF's unsupervised pipeline. Different colors correspond to different clusters. Dimensionality was 

further reduced from the original 8-dimensional embeddings using UMAP for visualization purposes. C) 

Optimal binning of the videos was obtained as the Wasserstein distance between the global animal 

embeddings of both conditions across a growing window, between the first 10 to 600 seconds for each 

video at one-second intervals (grey curve). Higher values correspond to larger behavioral differences 

across conditions. A maximum was observed at 595 seconds (green dot), which is consistent with the 

hypothesized lack of an arousal period in the CSDS cohort in an open field setting with no conspecific. D) 

Representation of the global animal embeddings for the optimally discriminant bin (595 seconds) per 

experimental video colored by condition (see methods for details). E) Cluster enrichment per 
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experimental condition (N=26 for NS and N=27 for CSDS) in the first optimal bin (first 595 seconds). 

Reported statistics correspond to a 2-way Mann-Whitney U non-parametric test corrected for multiple 

testing using the Benjamini-Hochberg method across both clusters and bins (significant differences 

observed in clusters 0: U=2.2e+2, p=2.02e-2, 4: U=6.1e+2, p=5.7e-6, 5: U=5.7e+2, p=1.3e-4, 7: 

U=5.4e+1, p=9.9e-4, 8: U=1.8e+2, p=2.3e-3, 9: U=5.5e+2, p=3.7e-4, and 10: U=1.5e+2, p=2.6e-4. 

Bar graphs represent mean ± standard deviation of the time proportion spent on each cluster. F) Example 

heatmap depicting spatial distribution across all experiments (in both conditions) for all clusters. Specific 

heatmaps for all individual clusters are available in supplemental figure 14). G) Behavioral entropy scores 

per condition. No significant differences are detected between conditions (U=4.44e+2, p=9.98e-2, N=26 

for NS and N=27 for CSDS). Moreover, and in accordance with these results, no significant correlation with 

the presented stress physiology Z-score was found (supplemental figure 15C). Source data are provided 

as a Source Data file. Box plots in panels A and G show the median and the inter-quartile range. Whiskers 

show the full range, excluding outliers as a function of the inter-quartile range. 
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Supplemental Figure 7. Single-animal unsupervised analyses identify mild behavioral differences 

between stressed and non-stressed mice during the SA task. A) Cluster selection pipeline results. Models 

ranging from 5 to 25 clusters were trained in a 5-fold (N=5) cross-validation loop using data from both 

trials together. Area under the ROC curve from a logistic regression classifier discriminating between 

conditions on the global animal embeddings representing the differential population of each cluster 

across trials is reported is reported. A 17-component solution was selected as the smallest whose median 

performance deviated less than one standard deviation from the maximum reached median across all 

clusters. Boxes in the box plots show the median performance and the inter-quartile range of the data. 

Whiskers show the full range of the data, excluding outliers as a function of the inter-quartile range. B) 

Embeddings by time point obtained using DeepOF's unsupervised pipeline. Different colors correspond to 

different clusters. Dimensionality was further reduced from the original 8-dimensional embeddings using 

UMAP for visualization purposes. C-D) Representation of the global animal embeddings per experimental 

video colored by condition, for SA trials one (without conspecific in the cage) and two (with conspecific in 

the cage).  In panel C, as expected, the distributions are further apart. E-F) Cluster enrichment per 

experimental condition for both SA trials (N=30 for NS and N=30 for CSDS). As expected, trial one shows 

no significant differences, whereas trial two yields six significantly differentially expressed clusters. 

Reported statistics correspond to a 2-way Mann-Whitney U non-parametric test corrected for multiple 

testing using the Benjamini-Hochberg method across both clusters (significant differences for trial two 

observed in clusters 2: U=6.1e+2, p=1.4e-2, 4: U=2.6e+2, p=7.3e-6, 8: U=7.01e+2, p=2.1e-4, 10: 

U=2.8e+2, p=1.4e-2, 11: U=6.1e+2, p=1.7e-2, and 13: U=6.1e+2, p=1.8e-2. Bar graphs represent 

mean ± standard deviation of the time proportion spent on each cluster. Source data are provided as a 

Source Data file. 



   

 

  12/23 

 

 

 

Supplemental figure 8. Global single-animal embeddings across non-overlapping time bins in the SI 

dataset. A-D) 10-dimensional global single-animal embeddings were obtained as the time proportion 

spent on each of the 10 clusters in the selected model for the single-animal SI task. Panels A to D show 

how the distributions matching NS and CSDS animals get closer and closer across non-overlapping 

consecutive time bins (as quantified using Wasserstein distance in the first four points shown in dark green 

in figure 6B). The last bin was excluded for visualization purposes. Source data are provided as a Source 

Data file. 

  



   

 

  13/23 

 

 

 

Supplemental figure 9. Global multi-animal embeddings across non-overlapping time bins in the SI 

dataset. A-D) 10-dimensional global single-animal embeddings were obtained as the time proportion 

spent on each of the 10 clusters in the selected model for the multi-animal SI task. Panels A to D show 

how the distributions matching NS and CSDS animals get closer across non-overlapping consecutive time 

bins (as quantified using Wasserstein distance in the first four points shown in dark green in supplemental 

figure 9B). The last bin was excluded for visualization purposes. Source data are provided as a Source Data 

file. 
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Supplemental figure 10. Cluster enrichment per experimental condition in the second to fourth optimal 

bins for the single-animal embeddings on the SI task. Reported statistics correspond to a 2-way Mann-

Whitney U non-parametric test corrected for multiple testing using the Benjamini-Hochberg method 

across both clusters and bins. In all cases, N=26 for NS and N=27 for CSDS. A) Second bin (126 to 252 

seconds). Significant differences observed in clusters 3: U=1.9e+2, p=6.3e-10, 4: U=5.9e+2, p=1.4e-5, 

7: U=1.6e+2, p=6.9e-4, and 8: U=6.55e+2, p=6.3e-8 B) Third bin (252 to 378 seconds). Significant 

differences observed in clusters 2: U=1.8e+2, p=1.8e-3, 3: U=1.7e+2, p=1.2e-3, 5: U=4.9e+2, p=8.5e-

3, 6: U=1.9e+2, p=7.01e-3, 7: U=1.7e+2, p=9.6e-4, and 8: U=6.3e+2, p=6.6e-7. C) Fourth bin (378 to 

504 seconds). Significant differences observed in clusters 4: U=5.2e+2, p=2.5e-5, and 8: U=6.02e+2, 

p=6.5e-6. Bar graphs represent mean ± standard deviation of the time proportion spent on each cluster. 

Source data are provided as a Source Data file. 
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Supplemental figure 11. Cluster enrichment per experimental condition in the second to fourth optimal 

bins reported for the multi-animal embeddings on the SI task. Reported statistics correspond to a 2-way 

Mann-Whitney U non-parametric test corrected for multiple testing using the Benjamini-Hochberg 

method across both clusters and bins. In all cases, N=26 for NS and N=27 for CSDS. A) Second bin (124 to 

248 seconds). No significant differences observed. B) Third bin (248 to 372 seconds). Significant 

differences were observed in clusters 0: U=5.2e+2, p=3.3e-3, and 5: U=5.3e+2, p=1.6e-3. C) Fourth bin 

(372 to 496 seconds). No significant differences were observed. Bar graphs represent mean ± standard 

deviation of the time proportion spent on each cluster. Source data are provided as a Source Data file. 
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Supplemental figure 12. Spatial distribution of clusters obtained using single-animal embeddings in the 

SI task. Heatmaps include full trajectories of all experiments in both conditions, filtering time points 

belonging to each obtained cluster, and without filtering (labelled as "all"). White background indicates 

null population of the area. All clusters enriched in CSDS show lower occupation of the center of the arena 

than those enriched in NS animals. 
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Supplemental figure 13. Spatial distribution of clusters obtained using multi-animal embeddings in the 

SI task. Heatmaps include full trajectories of all experiments in both conditions, filtering time points 

belonging to each obtained cluster, and without filtering (labelled as "all"). White background indicates 

null population of the area. All clusters enriched in CSDS show lower occupation of the center of the arena 

than those enriched in NS animals. 
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Supplemental figure 14. Spatial distribution of clusters obtained in the OF task. Heatmaps include full 

trajectories of all experiments in both conditions, filtering time points belonging to each obtained cluster, 

and without filtering (labelled as "all"). White background indicates null population of the area. All clusters 

enriched in CSDS show lower occupation of the center of the arena than those enriched in NS animals. 
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Supplemental Figure 15. Correlation between behavioral entropy and stress physiology Z-score. A) 

Behavioral entropy of the cluster space obtained with single animal embeddings during the social 

interaction (SI) task shows a significant negative Pearson correlation with the stress physiology Z-score 

(R=-0.40, p=3.8e-3, N=53). Error bands represent the 95% confidence band around the mean of the linear 

model. B) Behavioral entropy of the cluster space obtained with multi-animal embeddings during the 

social interaction (SI) task shows a significant negative Pearson correlation with the stress physiology Z-

score (R=-0.41, p=2.5e-3, N=53). Error bands represent the 95% confidence band around the mean of the 

linear model C) Behavioral entropy of the cluster space obtained during the open field (OF) task shows no 

significant Pearson correlation with the stress physiology Z-score (R=-0.20, p=0.15, N=53). Error bands 

represent the 95% confidence band around the mean of the linear model. All three tests are two-sided. 

Source data are provided as a Source Data file. 
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Supplemental Figure 16. SHAP analysis of unsupervised cluster assignments in the multi-animal social 

interaction task. Gradient boosting machines were trained to map from a predefined set of time series 

statistics (including body part speeds, distances, distance speeds, areas, area speeds, and supervised 

annotations for each of the two animals and their interaction) to the previously obtained cluster 

assignments. A) Confusion matrix obtained from the trained gradient boosting machine classifying 
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between clusters. Aggregated performance over the validation folds of a 5-fold cross-validation is shown. 

B) Validation performance per cluster across a 5-fold (N=5) cross-validation loop. Balanced accuracy was 

used to correct for cluster assignment imbalance. The dashed line marks the expected performance due 

to chance, considering all outputs. Bars show mean  95% confidence interval. C) Overall feature 

importance for the multi-output classifier using SHAP. Features in the y-axis are sorted by overall absolute 

SHAP values across clusters. Classes on the bars are sorted by overall absolute SHAP values across 

features. D-F) Bee swarm plots for the three most differentially expressed clusters between NS and CSDS 

mice (3, 5, and 9), identified with the unsupervised DeepOF pipeline on the SI experiments using single-

animal embeddings. The depicted plots display the first 8 most important features for each classifier, in 

terms of the mean absolute value of the SHAP values. Source data are provided as a Source Data file. 
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Supplemental Figure 17. SHAP analysis of unsupervised cluster assignments in the open field task. 

Gradient boosting machines were trained to map from a predefined set of time series statistics (including 

body part speeds, distances, distance speeds, areas, area speeds, and supervised annotations) to the 

previously obtained cluster assignments. A) Confusion matrix obtained from the trained gradient boosting 

machine classifying between clusters. Aggregated performance over the validation folds of a 5-fold cross-

validation is shown. B) Validation performance per cluster across a 5-fold (N=5) cross-validation loop. 

Balanced accuracy was used to correct for cluster assignment imbalance. The dashed line marks the 
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expected performance due to chance, considering all outputs. Bars show mean  95% confidence interval. 

C) Overall feature importance for the multi-output classifier using SHAP. Features in the y-axis are sorted 

by overall absolute SHAP values across clusters. Classes on the bars are sorted by overall absolute SHAP 

values across features. D-F) Bee swarm plots for the three most differentially expressed clusters between 

NS and CSDS mice (4, 9, and 10), identified with the unsupervised DeepOF pipeline on the SI experiments 

using single-animal embeddings. The depicted plots display the first 8 most important features for each 

classifier, in terms of the mean absolute value of the SHAP values. Source data are provided as a Source 

Data file. 
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6 Discussion

6.1 There and back again: towards systematic quantification
of natural behavior

Understanding how living organisms (humans included), interact with and react to the
environments they are exposed to has captured scientific curiosity since antiquity. As
introduced in chapter 1, modern science has come a long way since then, and a plethora
of approaches have been proposed, from observational ethological studies to extremely
reductionist and question-specific settings.

The advent of machine-learning-based tracking and quantification approaches is par-
ticularly exciting because it evolves in a way that is applicable across the entire board.
First off, automatic quantification methods pose a unique opportunity to systematize
observational studies in the wild in non-invasive ways, even without human presence.
This can have tremendous impact not only in our understanding of ethology itself, but
also pave the way for innovations in ecology and wildlife conservation.

Along these lines and starting broad, the current rapid decline of animal diversity (ge-
netic, ecological, and behavioral) underscores the urgent need for tools that can conduct
swift and comprehensive assessments of wildlife diversity and population dynamics [144].
Traditional data collection methods, which rely heavily on human fieldwork, present nu-
merous challenges including time and cost, potential threats to wildlife and human safety,
and the inevitable generation of biased datasets. These limitations significantly hinder
our understanding of global ecological dynamics and the effectiveness of our conservation
efforts.

However dismal the landscape may look, technological advancements show some light
at the end of the tunnel. Alongside hardware breakthroughs, such as trap or on-animal
cameras and automatic drones, the advancements in freely available markerless pose
estimation tools presented earlier in this thesis can help in a number of ways, such
as individual identification, detection of migration patterns with static sensors, injury
detection, and quantification of social dynamics in the wild, to name a few [65].

The potential of these technologies to enhance our understanding of animal ecology,
streamline conservation efforts, and even illuminate new paths for wildlife preservation is
enormous. The promise they hold, coupled with their integration with machine learning,
could play a significant role in turning the tide on the alarming decline in animal diversity.

Moreover, the current thesis is an example of how the opposite trend can be executed:
instead of relying on artificially simplistic models that enable simple quantification in
laboratory settings, richer environments can be put in place without sacrificing rigor, by
leveraging markerless pose estimation and automated quantification methods.

Thus and so, and after exploring the state of the art in chapter 2, chapters 3 and 4
introduced a novel open-source tool, called DeepOF, capable of examining both individ-
ual and social behavioral patterns in rodents using data annotated through DeepLabCut
pose estimation, in supervised and unsupervised ways. Furthermore, chapter 5 delved
into how, by applying this tool, we characterized unique individual and social behavioral
profiles following CSDS, identified through traits annotated by DeepOF on C57Bl/6N
subjects. Also, comparable results were obtained with our unsupervised pipeline, capa-
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ble of recognizing behavioral shifts across various experimental contexts, including social
interaction, single-animal open field tests, and social avoidance tasks. Furthermore, by
exploring behavioral dynamics, DeepOF allowed us to systematically pinpoint how the
initial moments of interaction with a new same-species partner are crucial for the social
profiling of CSDS exposure in both supervised and unsupervised pipelines.

In this final chapter, we will delve into the impact that our tool can represent on the
field it is immersed in, both in terms of technology development and knowledge discovery.

6.2 DeepOF in context: the current landscape of open-source
software for behavioral analysis

The release of DeepLabCut in 2018 was arguably the cornerstone of a methodological
revolution in the field of behavioral neuroscience. Since then, a plethora of tools have
enabled researchers not only to quickly automate previously laborious manual quan-
tification, but to think outside the box and design more complex and naturalistic new
experimental settings altogether. While empowering, the current software landscape
has quickly become little short of daunting: packages for pose estimation itself [61, 62],
supervised annotation [71, 77], unsupervised analysis [78, 76, 80], and so on, propose
constant innovation in a field that is still to stabilize to a new status quo, in a rapid
turnover fashion that mimics the current state of other AI-dependent scenarios [145].
In this context, DeepOF offers the (to date) unique advantage of being an easy-to-use,
label-free exploratory tool capable of annotating and analyzing motion-tracking data
with just a few well-documented commands. This makes it easy for new users to adopt
and try the software without big commitments, which we believe is key to success in
such a rapidly changing field. Moreover, far from being a mere compilation of previously
established methods, most algorithms presented are custom and adapted specifically to
the tasks they are deployed to be used for. This way, easy adoption is contrasted with
choice and customization, if a given user desires to take advantage of it. DeepOF is
not designed to beat other available modules in their own game, but rather to act as a
complement: after running an unsupervised pipeline and obtaining results that hint at
particular (although non-pure) behaviors, a researcher could use the acquired knowledge
to label and train supervised models using a tool like SimBA [71], for example, in order
to confirm their suspicions.

Moreover, a significant advantage of DeepOF, SimBA [71], VAME [80], and many
of the tools mentioned in this thesis is their open-source nature. Besides increasing
transparency, which is always key to reproducibility, one must not forget that all these
packages are being developed by (and mostly for) non-profit research organizations that
thrive by interacting, debugging, and building on top of each other. This sort of syner-
getic, interdependent competition is a core aspect of modern science, and having access
to code (including models, training schemes, and data) is crucial. Furthermore, a side
effect of the overwhelming adoption of motion tracking software such as DeepLabCut is
the increasing number of public datasets that are being released, which in turn enable
not only the training of more powerful architectures that need less supervision [69], but
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also the creation of open-source competitions and benchmarks. The Caltech Mouse So-
cial Interactions (CalMS21) dataset, for example, is a pioneer in providing benchmarks
for the detection of social interactions, annotation style transfer, and identification of
rare traits [146]. Although unsupervised learning benchmarking is largely uncharted
territory so far, it will be crucial to compare the DeepOF pipeline with other available
methods in this area as the tools become accessible. Finally, although requiring specific
hardware in many cases, such as increasingly powerful GPUs, all mentioned software is
free to use, which makes it broadly accessible for research groups with limited resources.
This is a huge advantage over the proprietary, often expensive, previous state-of-the-art
[147].

Moreover, several extremely recent developments introduced significant progress on
foundation models for markerless, one-shot video tracking. Efforts such as TAPIR
(Tracking Any Point with per-frame Initialization and temporal Refinement , from Deep-
Mind) [148] and OmniMotion [149] allow users to track any point in a given video upon
labelling a single frame. While integration attempts into DeepOF have shown that track-
ing accuracy is yet to match DeepLabCut and other neuroscience-oriented programs, ease
of use could lead to massive adoption of these pipelines as soon as models get better,
with efforts in fine-tuning these general-purpose pretrained models to more specific tasks
probably playing a big role in the near future.

A word of caution should be stated, however, since these models (as many others) have
also increasing malicious potential if falling into the wrong hands: lightweight, powerful
models for tracking and identifying individuals could be used for illegal surveillance, for
example. As is currently the case in other fields, such as large language models (LLMs)
[150, 151], I believe ethical considerations need to be thoroughly taken into account when
open-sourcing, especially as datasets become larger and models more capable and easier
to tune.

6.3 Perspectives on supervised learning on behavioral data

Going back to the supervised pipeline provided within DeepOF, we should highlight that
it offers a set of rule-based annotators and pre-trained models that free the user from
the need to manually label their data. While convenient and easy to use, this approach
is extremely limited to simple behaviors that can be either reduced to simple but stable
rules (such as nose-to-nose contacts or climbing behaviors) or robustly generalizable
across datasets (such as the huddle classifier presented in chapter 5). With the increasing
popularity of these tools in the research community and the aforementioned rapidly
growing corpus of datasets and related competitions, it is to be expected that more
complex traits will achieve similar transfer learning results in the near future. This
would dramatically simplify the process of labeling and detecting specific, pre-defined
behaviors, potentially eliminating the need for training new models altogether, in a
fashion that would resemble the current discussion on foundation models [152].

Furthermore, the current developments in Large Language Models (LLMs) and text
interfaces for image processing and generation [153, 154] suggest that a future where
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describing specific, unlabeled behaviors with text to an LLM-video model capable of
automatically recognizing patterns is (although far from the current state of the art)
within reach, and an interesting path forward.

6.4 Perspectives on unsupervised learning on behavioral data

As introduced in chapter 1, even if adopting a purely mechanistic definition, behavior
is not inherently discrete, but arguably hierarchical. Complex actions can always be
decomposed into simpler ones (typically referred to as primitives) whose repetitive nature
makes them simpler to detect. Discretizing motion tracking data is therefore (as is often
the case in other fields too) an ill-defined problem: with no natural solution present, a
given set of clusters will focus on some aspects of behavior, leaving others behind. This
renders discretization a utility problem that serves the purpose of allowing researchers
to test hypotheses related to a broader scope, but which is arguably only secondary to
learning robust representations.

While in DeepOF we have focused primarily on learning useful discretization models
of motion, I believe future work in this direction should focus on understanding the
underlying learned representations better. Along these lines, the field of representation
learning has set the core principles a good and robust representation should be able to
follow [120]. First, representations should be expressive, in the sense that they should
be able to represent an exponential amount of configurations for their size. This would
contrast, for example, with other representations such as one-hot encodings or mere hard
cluster assignments. Second, good representations should be robust to small and local
variations in input data. As an example, behavioral representations in DeepOF should
vary neither with the position of the animals in the arena nor with their rotational
orientation, hence these sources of variance are removed during processing. Third, good
representations should be disentangled, meaning that learned dimensions should be
uncorrelated and represent distinguishable factors with identifiable meanings. Despite
not being perfect, this set of principles serves as a rule of thumb to design interpretability
tests and analyses, and their usefulness in this context remains to be explored.

This type of analysis, together with the development of systematic benchmarks for
unsupervised learning on motion tracking, would be an ideal framework to formally com-
pare all the models provided within DeepOF. So far, comparisons were purely functional
to choose a good default for the deployed package while exploring different variants
that extended the state of the art in the field. Thus, metrics such as training time
and compute resources needed, and discrimination capabilities between global animal
embeddings across experimental conditions (as presented in chapter 5), were the main
model selection criteria. The exception is the introduction of contrastive learning mod-
els, which were included in the package after the submission of the paper, and yielded
comparable results with shorter training times and fewer parameters. This is exciting
news moving forward and sets self-supervised alternatives as the most likely course for
further immediate model development.
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Thus and so, unsupervised (and self-supervised) representation learning evaluation
remains, in my opinion, the most critical point for research in the immediate future.
This would not only enable robust hypothesis testing and latent manipulation, but also
alignment across modalities, as will be explored in the next sections.

6.5 Increasing resolution in neurobiological research:
behavioral quantification in context

A living system is far more than the sum of its parts, with different biological lev-
els interacting and regulating one another constantly in complex ways. From genetics,
transcriptomics, epigenetics, and proteomics, to neural signaling, behavior, and environ-
mental factors, being able to capture information from different biological levels in clever
ways can be key to understanding any phenotype [68].

Along these lines, the presented breakthroughs in motion tracking are not isolated.
Recent years have seen remarkable progress in other areas relevant for neurobiological
research, following a common trend of increasing experimental resolution, also outside
the temporal domain [68]. Interestingly, in many fields other than motion tracking,
breakthrough developments came mostly from the hardware side, which in turn allowed
researchers to collect more data and raised the stakes of data analysis and software
development in specific domains.

As a representative example, we can explore the field of transcriptomics, where de-
velopments in single-cell resolution sequencing technologies sparked a plethora of tools
and methods that innovate how data are analyzed. Here, programs like SCANPY [155]
and SEURAT [156] have earned recognition as the state of the art in the field, providing
high-quality sets of tools, workflows, benchmarks, tutorials, and user support. They
also have grown an extensive user community, which creates feedback loops with con-
tributions and extensions which improve the software constantly. A flagrant example of
such an extension is SquidPy [157], a package that focuses on the forefront of spatial
transcriptomics, which is greatly helping to improve our understanding of how cells in
tissues are organized and interact with each other.

All in all, this standardization offers many benefits for several connected fields (in-
cluding stress research, as explored in our published commentary on STRESS [68]), and
has a big impact not only on our basic understanding of cell makeup and gene activity
in key tissues, but also on the discovery of new drug targets and development of new
treatments. As a concrete example, in 2022 Lopez et al. used a mix of automatic be-
havior tracking methods and single-cell RNA-sequencing techniques to discover specific
molecular patterns in different stress-related cell types, and reported a new way in which
the long-lasting antidepressant effects of ketamine work in a certain type of nerve cell
in a specific part of adult mice’s brains [102]. In this paper, motion tracking technology
is used to automatically assess shifts in behavior across different experimental groups,
illustrating how automated behavioral drug screenings can be carried out.

Moreover, transcriptomics is far from being the only case. Proteomics, for example, is
being positively impacted by new developments in techniques such as mass spectrometry
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[158], and by AI-powered tools such as AlphaFold [159], which are solving biochemical
problems that until a few years ago were deemed unreachable. Brain imaging and neural
activity measuring are other relevant fields that have seen recent relevant advances, such
as resolution improvements for functional MRI [160], and real time joint behavioral-
motion capture using miniscopes and calcium sensors [161, 162].

As illustrated in the aforementioned paper, the combination of motion tracking quan-
tification with many of these tools holds a lot of potential to measure the impact of
genetic and biochemical changes in behavior systematically. However, these techniques
often describe different (albeit non-orthogonal) axes of the same phenomena. Although
learning from and interpreting each on its own can already be useful to expand our
knowledge in many ways, much information is lost in the process.

6.6 Beyond motion tracking: integrating multimodal data

The science of learning how to better integrate these different sources of data, which
can lead to a more holistic understanding of the underlying, common phenomena under
study, is often referred to as multimodal integration (or multimodal learning, in
the context of ML). As a side note, it is important to highlight that behavior itself is more
than motion alone, and adopting a broad definition would require integrating additional
variables that cannot (at least to date) be extracted from video. These include, for
example, things like heart rate, respiratory rate, vocalization, and neural activity.

At a basic level, multimodal integration thus requires researchers to draw conclusions
from experiments describing multiple (complementary) axes of the same problem and
drawing conclusions explaining all observed patterns. While a näıve approach may be
to align the raw variables themselves (over time, for example, in the case of behavior,
or as concatenated input to a model, in what is called early integration), there are
several inherent problems that would need to be solved. For starters, different data
modalities may rely on different hardware, with different collection rates, artifacts that
would need to be removed, sensitivities, and overall limitations [163]. This renders raw
data alignment extremely hard, and forces researchers to often analyze modalities sepa-
rately and draw joint conclusions manually. This separate processing is often called late
integration, and while it solves many of the presented limitations, it carries the strong
disadvantage of disregarding joint distributions across modalities, focusing exclusively
on the marginals. When modalities are uncorrelated, however, this can be an extremely
powerful framework, as illustrated by multimodal ensemble learning [164].

Building on the previous section, the main focus of current approaches to multimodal
integration deals with aligning data representations (in what is known as middle in-
tegration) instead of the data themselves. By learning robust representations that
extract features invariant to hardware noise and timescale nuances, these approaches
hold the promise of having the best of both worlds: good alignment, while retaining and
learning joint distributions. Thus and so, self-supervised approaches such as those pre-
sented in chapter 3 are showing promising results, since they allow several crucial levels
of flexibility, such as having modality-specific encoders (which can deal with different
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types of data naturally), and specifically crafted contrastive positive and negative sam-
pling schemes. Along these lines, the recently published package CEBRA [165] offers a
representation learning framework to learn joint embeddings using motion tracking and
neural activity data with contrastive approaches. By aligning both modalities at the
embedding level, CEBRA is capable of reporting non-linear neural correlates of motion,
directly enabling questions regarding how one affects the other in complex ways that
may be difficult to detect without computer assistance. Moreover, and in line with what
was explored before in this section, two main positive and negative sampling schemes are
provided: a purely unsupervised one, based on time alone and similar to that presented
for DeepOF in chapter 3, and a supervised one based on annotated labels. This makes it
easier for researchers to choose between a more exploratory embedding of neural-motion
interactions, or a hypothesis-driven one that can answer specific questions.

All in all, as both hardware and software technology advance, new methods are being
developed that enable researchers to get a more holistic view of living organisms as sys-
tems, instead of independent collections of unrelated features. As time advances, I expect
these approaches to become more prevalent and lead to better representations. While
multimodal integration holds an exciting and extremely useful potential for research
moving forward, however, motion tracking has the advantage of relying on relatively
affordable hardware (video cameras) which enabled its wide adoption in the first place.
It should thus not escape our attention that including more data modalities can be pro-
hibitively hard, both in terms of labor intensity for data collection and elevated costs,
especially in resource-constrained labs. This renders parallel efforts in representation
learning on motion tracking data alone (such as DeepOF) extremely relevant too.

6.7 Impact of the presented results in chronic stress research

With the deeper understanding of the current status of behavioral analysis (and motion
tracking in particular) built over the last few sections, we can now explore the impact
of the presented research in our understanding of the model introduced as a case study:
Chronic Social Defeat Stress. As explored in chapters 1 and 5, the individual and social
behavior of animals exposed to CSDS has been extensively researched using models such
as elevated plus mazes and social avoidance tasks, which can distinguish anxiety-like and
altered social behaviors between cases and controls. This thesis has displayed several
ways in which DeepOF has improved the state of the art in this regard, both reducing
experimental effort and enabling greater analysis detail.

For starters, the observation that after exposure to the aggressive conspecific during
the CSDS pipeline, experimental subjects’ behavior follows an arousal pattern that fades
over time due to habituation is, to the best of our knowledge, novel. The first relevant
contribution of this thesis to CSDS research is then the supervised and unsupervised
quantification of this arousal period, which in all our datasets was between two and two
and a half minutes (and therefore close to the typical duration of a social avoidance
task [98]). These results were moreover absent in single animal settings, which further
supports this interpretation.
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In line with these findings, our study showcases how the behavioral annotation pro-
vided within DeepOF leads to a more effective distinction of the social behavioral profile
between stressed and non-stressed animals compared to the traditional SA task. This
is a non-trivial finding: while capable of more detail, DeepOF is a general purpose tool,
whereas the aforementioned task was specifically designed to detect this phenotype. I
believe this is a great example of how overfitting specific measurements to our experi-
mental designs may not always be optimal, and of how carefully tested exploratory tools
can take us extremely far already.
Another result worth revisiting in this section is the differential entropy between

stressed and non-stressed animals reported from our unsupervised pipeline. The fact
that stressed animals display lower entropy in the discrete behaviors they explore is also
non-trivial, and it highlights how reduced and focused on avoiding a potential stressor
behavior becomes in stressful situations, arguably in line with the fight-or-flight response
[166].
Besides these specific contributions, DeepOF holds potential to explore in even more

depth this model, such as for the identification of animals susceptible to stress and those
resilient to it, which are often determined using oversimplified outcomes in the aforemen-
tioned social avoidance test, such as the fraction of time experimental animals spent close
to their conspecific. While this variable (known in the literature as SA ratio) effectively
distinguishes individuals affected by stress, especially in more severe CSDS conditions,
our approach seems to significantly enhance the scope and sensitivity of this distinction,
although more research is needed in this regard. Moreover, a tool included in DeepOF
that was not put to use in this thesis and can work well in this context is the possibility
to train control normative models. These work by fitting Gaussian kernel densities to the
global animal embeddings of control animals, and reporting differences in the likelihood
under the model between conditions. Stressed animals with embeddings that are closer
to the control population could then be tagged as resilient. The next and final section
on translational research applications will further explore this idea, showcasing its po-
tential for more complex settings, such as the detection of the depression-like syndrome
presented in chapter 1.
In conclusion, the annotation pipelines implemented in DeepOF provide a more com-

prehensive and precise individual and social behavioral profile of animals exposed to
CSDS when compared to the previous state of the art in the field. This has several im-
plications moving forward, such as the potential adoption of DeepOF (or similar tools)
for CSDS quantification as a standard procedure, and the deeper exploration of the tool
for other aspects not discussed here. Moreover, an important factor contributing to the
overall success of DeepOF in the presented social behavioral profiling lies in its exper-
imental setup. While the social avoidance task relies on confined animals (typically in
wired mesh cages, which prevent natural interaction between freely moving animals),
open field settings allow for a much more natural interaction. Moreover, in the SA task,
confined animals may display anxiety-related behaviors that influence their physiological
state and their social interaction and approach behaviors with the conspecific.
Finally, and while we believe that our contributions to CSDS are significant and worth

mentioning, we should not lose sight of the broader scope. Chronic stress is just one
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example setting in which such pipeline can be applied, and much more remains to be
explored in other equivalent or more complex models. The next and final section will
explore this in detail, focusing on how translational research can be positively affected
with tools such as these.

6.8 Frontiers of the field: between translational research and
knowledge discovery

As thoroughly explored in chapter 1, the current state of research in applied neurobiology
and psychiatry research lies far from the clinic. While many studies present innovations
in drug development, genetic markers, and more, little is translated to real patients,
in a phenomenon that has been described as the translational gap [90]. Moreover,
despite animal models being adopted decades ago, their use to mimic mental disorders
hasn’t managed to live up to the expectations. This is due to many reasons, such as
the complexity of mental disorders per se and their prominent environmental causes,
which are to date difficult to replicate in animals [31]. On top of this, and the lack of
biologically-driven definitions of mental disorders makes the problem harder, as currently
described entities could correspond to more than one etiologically relevant entity [27].

Even when taking all these issues into account, I believe there is light at the end of
the tunnel, and that the potential of modern behavioral quantification in this regard is
significant. Firstly, because it allows for finer-grain measurements that can be used to
get more disentangled and data-driven definitions of the diseases under study, as seen
with the RDoC initiative [28]. Second, because once these definitions are agreed upon,
this technology could simplify the accurate assignment of labels to subjects under study,
decreasing the focus on more subjective measurements [27]. Moreover, as seen with the
depression-like syndrome introduced in chapter 1, these disentangled definitions are key
to improving back-translation [31]. That is, the definition of human-equivalent diseases
in animal models that are as close as possible to the clinically relevant phenotype. In
this regard, the normative modelling pipeline introduced in the previous section can play
a key role: as a follow-up study to what was presented in chapter 5, we are currently
using DeepOF to build domain specific normative models for DLS. This way, animals
can be scored on each behavioral domain that escapes the species barrier (which are loss
of energy and fatigue, lack of concentration and indecisiveness, psychomotor agitation
or retardation, disturbed sleep with hyper or hyposomnia, apetite or weight changes,
and diminished interest or pleasure in activities). By detecting shifts on each of these
domains, many of which are carried out with DeepOF, we can get individual profiles
for each experimental mouse. This way, DeepOF can be used in two stages, first to
select individuals that meet stricter inclusion criteria for follow-up studies, and second
to detect shifts in behavior upon applying a treatment (such as a drug).

Moreover, these technologies are not limited to animal models. Given that the ultimate
goal of clinical research is to comprehend and enhance the quality of life for humans,
assigning humans to the correct labels, and study their shifts in behavior systemati-
cally, is also crucial. In this context, advancements in comprehending human behavior
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through virtual reality (VR) are noteworthy. Presently, VR enables researchers to ac-
curately monitor movement in meticulously designed settings, facilitating the transfer
of paradigms like fear conditioning to human participants noninvasively [95, 81]. Tools
such as DeepOF can be applied to this type of data as well [134].
Finally, and while translation to the clinic is set as the final goal in this context,

these technologies can also be of great help to acquire new knowledge. For example, the
use of unsupervised learning in motion tracking data has the potential to uncover new
behaviors that are systematically expressed in certain conditions, although more research
in novel situations is needed in this regard [34]. Moreover, detecting unsupervised shifts
in behavior can be of great use in many high-throughput and hypothesis-free situations,
such as Quantitative Trait Loci (QTL) mapping [167]. This refers to a statistical method
that aims to link two types of information, namely phenotypic data (quantitative traits,
as behavior in this case) and genotypic data in the cohorts under study. This way,
researchers can identify regions in the genome that can influence the variation of a given
trait.
Even though in the context of DeepOF and similar tools these quantitative traits

could be any measured parameter (such as speed, locomotion, social interactions, etc.),
I believe the unsupervised animal embeddings introduced earlier are the most interesting
opportunity in this regard. By detecting global shifts in behavior that are not associated
with any particular hypothesis, researchers can increase throughput and scope massively.
Moreover, detected shifts can then be analyzed individually, to dissect the differentially
expressed patterns in a hypothesis-driven manner with the same tool. A similar idea is
already being applied (although relying on supervised learning models detecting specific
traits) for high-throughput drug discovery [168].
Linking together everything discussed in this section, DeepOF and similar tools are

already being used today to revolutionize research in animal and human behavior, and
hold increasing potential to have a positive impact on the current definitions of psychi-
atric conditions, improve pre-clinical and clinical trials, and aid relevant biological and
drug discovery. The future of the field looks increasingly promising, and our contribution
is but a grain of sand.
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This thesis delved into the state of the art of animal motion tracking using key point
estimation, and its further analysis using different annotation approaches. Three main
goals were defined, including the implementation of novel deep clustering algorithms
for the unsupervised analysis of motion tracking data, their deployment alongside other
tools as part of a Python package, and their application to characterize a real-world
behavioral model.
Along these lines, chapter 1 introduced the broad topics under discussion, including

definitions of behavior, history of its quantification and application, and chronic stress as
a case study. Moreover, it explored the broad technical foundations for what the thesis
aimed to present.
Chapter 2 explored the technical aspects of behavioral analysis in more detail and

presented state-of-the-art tools to analyze motion-tracking data in both supervised and
unsupervised ways.
Subsequently, chapter 3 explored the methodological aspects of the newly introduced

algorithms, and all analyses that were carried out for the presented results.
Chapter 4 then moved to introduce DeepOF, our novel Python package, as published

in the Journal of Open Source Software (JOSS). This paper, although short, serves as an
entry point to the DeepOF ecosystem, its documentation, and contribution guidelines.
Moreover, this publication included a code peer-review process of vital importance to
what this thesis aims to stand for: open science, both in terms of methods and code.
We believe this small paper is an important milestone for our vision of what DeepOF
and similar tools represent in the field.
Next, chapter 5 demonstrated how the developed tools can be applied to a real world

animal model, such as Chronic Social Defeat Stress. This set of results, published in
Nature Communications, explores both supervised and unsupervised pipelines included,
and how they yield overlapping yet complementary insights into the shifts in behavior
that chronic stress causes in male laboratory mice. We hope this is but a kick-start
example of what can be accomplished with this tool, and expect to gain insight into other
animal models in the future, both with experiments carried out by direct colleagues and
external users.
Finally, chapter 6 attempts to put the presented developments in context, delving

into the potential impact of the provided tools in several related fields, such as ecology,
integration with other data modalities, and QTL discovery. Moreover, a perspective on
how the field is likely to evolve in the near future is discussed.
All in all, the current thesis is but an example of an evolving field, in which (as in

many other areas currently powered by machine learning) novel tools are enabling both
automation and discovery in ways that were not thought possible a decade ago. When
putting these developments in context and as both technology and biological knowledge
progress, from single cells to social behavior [68], the dream of jointly mapping behavioral
responses to stimuli in a holistic manner is closer than ever.
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Ramirez, J. C. Hernández-Mondragón, M. P. de la Mora, H. Schellekens, and
K. Fuxe. The Role of Central Serotonin Neurons and 5-HT Heteroreceptor Com-
plexes in the Pathophysiology of Depression: A Historical Perspective and Future
Prospects. International journal of molecular sciences, 22(4):1–13, 2 2021. URL:
https://pubmed.ncbi.nlm.nih.gov/33672070/, doi:10.3390/IJMS22041927.

[26] A. Gururajan, A. Reif, J. F. Cryan, and D. A. Slattery. The future of rodent models
in depression research. Nature Reviews Neuroscience 2019 20:11, 20(11):686–701,
10 2019. URL: https://www.nature.com/articles/s41583-019-0221-6, doi:10.
1038/s41583-019-0221-6.
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