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Abstract
Efficient multi-energy devices and networks will become increasingly important to meet
the global energy demand and promote the widespread use of renewable resources. The
system class of port-Hamiltonian descriptor systems (pH-DAEs) is particularly suited
to model complex multi-energy systems in a flexible and modular way. Structure-
preserving model order reduction (MOR) techniques are required to leverage this mod-
eling approach in practice and to enable more efficient simulation and control.

This thesis presents novel algorithms and software for structure-preserving MOR of
linear, time-invariant pH-DAEs that enable a simplified treatment of algebraic con-
straints commonly encountered in network modeling. We first derive a system decom-
position approach for the original model’s transfer function, which forms the basis for
novel interpolatory and optimization-based MOR methods.

An interpolatory MOR framework for pH-DAE models in staircase form is presented,
which exploits the structural properties of Rosenbrock system matrices. This Rosen-
brock framework extends H2- and H∞-inspired MOR algorithms to pH-DAE models,
which exhibit a particular block structure commonly observed in practical applications.
For H2-inspired algorithms, we propose an approach that allows the computational
costs of reduction and optimization to be decoupled using surrogate models. Numerical
experiments indicate that this accelerates existing approaches, especially if very large
models are considered.

For optimization-based MOR, we present a flexible parameterization to create reduced-
order models in pH-DAE form with minimal state-space dimension. Based on this pa-
rameterization, a new algorithm is developed which allows a direct optimization of the
H2 error using gradient methods. By utilizing the pole-residue representation of the
H2 norm, this approach only relies on samples of the original transfer function and its
derivative.

The presented achievements are implemented in the open-source software toolbox
MORpH. It supports various strategies for structure-preserving MOR and is intended to
promote collaborations among researchers and the application of the port-Hamiltonian
modeling paradigm in engineering practice.
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1 Introduction

1.1 Motivation and Scope

Climate change is one of the most significant and pressing challenges our society faces
today, threatening the natural environment and the lives of billions of people. Following
the Paris Agreement of 2015, the EU and its member states committed to actions
aimed at cutting greenhouse gas emissions by at least 40 % by 2030 compared to 1990
levels [52]. Extending renewable energy sources is crucial to achieve this goal [74, 147]
and the EU targets at least 32 % share of renewable energy in its energy consumption
by 2030 [53].

To date, the different energy networks, including electricity, gas, and district heating/-
cooling networks, are predominantly planned, operated and optimized independently.
Due to the increasing dependencies and interactions between these networks, there is
growing interest in a more holistic approach where different energy carriers (such as
electricity, gas, and heat) and sectors (such as industry, transport, and residential) are
combined into one, integrated energy system [78]. On the one hand, exploiting syner-
gies between the currently separated networks bears several potential benefits, including
increased energy efficiency, flexibility, and resilience while facilitating the integration
of renewable energy sources [99, 155]. On the other hand, this paradigm shift also
increases the complexity of future energy networks, making modeling and simulation
inevitable [99].

We can derive several requirements for modeling these networks. First, a multi-
physics modeling approach is required, which can capture the energy exchange between
different carriers. Second, since renewable energy sources such as wind turbines or
photovoltaic systems are subject to intermittencies, their efficient integration requires
a modeling approach with a high temporal resolution that can couple subsystems with
different time scales but also different accuracies [96]. Third, the modeling approach
should be flexible and modular, such that submodels can be added or changed without
jeopardizing other parts or essential properties of the network.

Integrated energy networks are an illustrative example of the multi-physics nature
of many modern technical systems for which similar requirements apply. A modeling
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approach that is well-suited for these systems and meets the above requirements is the
port-Hamiltonian (pH) modeling paradigm [48, 83, 134, 135]. It arises naturally from
port-based network modeling and supports the interconnection of submodels via power
flows while maintaining important properties such as passivity. This enables a safe cou-
pling of models from different physical domains and simplifies energy-based control. If
networks of models are considered, additional algebraic constraints in the form of con-
servation and network laws commonly arise, such as mass balances in chemical processes
and Kirchhoff’s laws in electrical networks. Incorporating algebraic constraints in the
pH paradigm yields the system class of port-Hamiltonian differential-algebraic systems
(pH-DAEs) [105]. PH-DAEs often naturally emerge in modeling practice; see [14] for
examples. These include, for instance, the graph-based modeling of passive electrical
networks [51, 55, 72, 73] and the modeling of pressure waves in pipeline networks [49,
50].

Due to the increasing complexity of modern technical systems and demands on mod-
eling accuracy, the number of equations required to describe the underlying physics
and geometry is often very large. This includes cases where distributed parameter sys-
tems with complex geometry are spatially discretized or networks with many network
components are considered. These large-scale models consume considerable computa-
tional resources for simulation, and for system analysis, optimization, or model-based
controller design, they might even be infeasible. Instead of simply increasing the pro-
cessing power and storage capacity (which is typically expensive), we focus on an algo-
rithmic solution in this thesis called model order reduction (MOR). Simply put, MOR
aims at approximating a given large-scale model (full-order model, FOM ) with a model
of much smaller dimension (reduced-order model, ROM ) that captures the important
characteristics of the original. These characteristics include, on the one hand, the model
dynamics. One is typically interested in approximating the input-output behavior, i.e.,
the ROM should produce similar output signals for predefined input signals relevant to
the specific application. On the other hand, the ROM should preserve relevant prop-
erties of its original counterpart. The most intuitive approach to achieve this goal for
pH-DAE models is structure preservation. Since many crucial system properties, such
as stability and passivity, follow directly from the port-Hamiltonian structure, they can
be preserved automatically if the pH-DAE structure is enforced for the ROM during
MOR. For network modeling, this also enables a safe coupling of the ROM with other
models of the network if the original model is replaced by the ROM for simulation,
optimization or controller design.
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Figure 1.1: Overview of three strategies for structure-preserving MOR of linear, time-
invariant pH-DAE models in state-space form. Depicted are different al-
gorithm categories (greyed out) and three model types: pH-DAE mod-
els (hatched), passive state-space models, and general state-space models
(dashed). This thesis focuses on the algorithm categories pH-MOR, pa-
MOR, and pa-ENF.

This thesis focuses on the structure-preserving model order reduction of linear, time-
invariant (LTI) pH-DAEs. Since most real-world systems are nonlinear, let us briefly
give three main reasons for this choice. First, as the remainder of this chapter shows,
the MOR of LTI pH-DAE models is only partially resolved and raises open research
questions that need to be investigated. Second, many nonlinear physical systems exhibit
a linear behavior for large ranges of operating conditions and, if the operating points
are known, can be linearized in their vicinity [11]. Third, linear MOR theory has also
proven helpful for parametric and nonlinear MOR as discussed e.g. in [112]. For the
sake of simplicity, we generally speak of pH-DAEs in the following, bearing in mind
that we always refer to the subclass of LTI pH-DAEs if not stated otherwise.

1.2 Related Work

Within the last 20 years, various algorithms have been proposed that can be utilized
for the structure-preserving MOR of pH-DAEs. They mainly fall into three categories:
pH-preserving MOR (pH-MOR), passivity-preserving MOR (pa-MOR), and passivity
enforcement (pa-ENF). From this, three possible MOR strategies can be derived that
are illustrated in Figure 1.1.
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The most intuitive strategy is to directly enforce the pH-DAE form of the ROM,
which is the case for algorithms in the category pH-MOR. Since every pH-DAE is
inherently passive, it may also be reduced using methods in the category pa-MOR, which
preserve passivity. These algorithms lead to a ROM generally not in pH-DAE form.
However, under certain conditions discussed in [39], a corresponding pH representation
can be computed by solving the associated Kalman-Yakubovich-Popov linear matrix
inequality (KYP-LMI) (see, e.g., [13]). Finally, standard MOR algorithms designed for
unstructured DAE models can also be applied; see [8, 23] for an overview. Applying
these algorithms to pH-DAE models will generally yield ROMs that are neither passive
nor in pH-DAE form and are, therefore, not in the scope of this thesis. However,
if the passivity violations are only minor, the passivity of the ROM can be enforced
in a post-processing step using algorithms in the category pa-ENF. This results in
an additional approximation error, which is, however, expected to be small for minor
passivity violations. This strategy may also require an additional transformation step
via the KYP-LMI.

PH-Preserving MOR (pH-MOR) Algorithms that directly enforce the pH-DAE
form of the ROM are either based on Petrov-Galerkin projections or an optimization of
the reduced state-space matrices. Petrov-Galerkin methods project the original state
vector onto a suitably chosen subspace. This subspace is either chosen for the balanced
truncation of the original model, i.e., to identify and extract important states measured
by controllability and observability, or to interpolate its transfer function, i.e., its input-
output relation in the frequency domain. Structure-preserving variants of the classic
balanced truncation algorithm were proposed in [118, 156, 157] based on reduced-order
Dirac structures and extended in [27, 30] to enable classical a priori error bounds
under certain conditions. Interpolatory MOR methods enforce interpolation conditions
between the original and reduced transfer function at selected complex interpolation
points (shifts). Different frameworks and algorithms for this task were studied in [50,
76, 81, 116, 117, 119, 154] and enriched with shift selection strategies in [15, 68, 69,
79]. Optimization-based techniques are directly targeted toward low errors in suitable
system norms such as the H2 or H∞ norm (see [162, Chapter 4] for details) and create
ROMs by a direct optimization of matrix entries. Algorithms for the H2 optimization
problem were formulated by a direct optimization of the reduced state-space matrices
on manifolds [91, 132] or indirectly via Petrov-Galerkin projections in [84]. An H∞-
inspired optimization of the reduced state-space matrix entries was proposed in [142,
143] using a leveled least-squares method.
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Passivity-Preserving MOR (pa-MOR) Similar to the Petrov-Galerkin methods
in the category pH-MOR, passivity-preserving MOR methods also employ system bal-
ancing or interpolation. Balancing-based approaches rely on the solution of algebraic
Riccati equations or a mixture of algebraic Riccati and Lyapunov equations (see, e.g.,
[43, 70, 75, 115, 122, 148]). With interpolatory methods, passivity of the original model
can generally be retained by interpolating the original transfer function at its spectral
zeros [10, 82, 144]. Another approach is to exploit the structural properties of mod-
els that arise in specific applications; see, e.g., the methods proposed in [56, 111] for
RLC interconnect circuit models. Frequency-weighted approaches such as [90, 163] can
be utilized if a high approximation accuracy is only required on predefined frequency
intervals. Recently, a method that relies on a spectral factorization of the Popov func-
tion, a complex-valued matrix function, was proposed, which enables the use of both
traditional balancing and interpolatory MOR methods [29].

Passivity Enforcement (pa-ENF) In order to use an unstructured ROM for our
goal, it is initially required to check whether this ROM is already passive or whether
passivity has to be enforced. Passivity validation techniques are either based on checking
positive realness, a frequency-domain property closely linked to passivity, or whether a
solution to the KYP-LMI can be found. Passivity enforcement algorithms leverage these
techniques, and a comprehensive overview of the topic is provided in [64]. A common
feature of most algorithms in this category is the perturbation of specific matrix entries
of the ROM such that the respective passivity conditions are enforced. First, positive
realness can be verified by sampling the Popov function along the imaginary axis and
checking whether its eigenvalues are non-negative. Accordingly, passivity is enforced
by nudging negative eigenvalues of the Popov function on the imaginary axis towards
positivity (see [64, Section 10.5]). Second, it can be checked if the spectral zeros of
the Popov function, which can be computed as eigenvalues of a Hamiltonian matrix,
are present on the imaginary axis. If this is the case, perturbations are applied such
that the spectral zeros move off the imaginary axis to render the model passive [63].
In both cases, a pH representation of the obtained passive ROM can be found using
the KYP-LMI. A third possible approach is to directly search for a pH representation,
either by minimal perturbations such that the KYP-LMI has a solution [64, Section
10.7] or by directly imposing a pH representation [59].
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1.3 Research Objectives and Outline

The previous overview shows that the structure-preserving MOR of pH-DAE models
has been an active research field, and various solutions are available. However, most
of these algorithms do not apply to the entire pH-DAE system class. In fact, most of
the presented work is focused on pH ordinary differential equation systems (pH-ODEs),
i.e., models which do not include algebraic constraints. Since algebraic constraints often
occur in engineering practice, particularly in network modeling (see, e.g., [14, 66, 105]),
this limits their applicability to real-world problems.

Extensions to the DAE case include the positive real balanced truncation algorithm
(PRBT) [122] in the category pa-MOR as well as the interpolatory MOR methods
[15, 76] in the category pH-MOR. Like unstructured MOR methods based on Petrov-
Galerkin projections, both approaches require a separation of algebraic and differential
equations such that the original model’s state-space matrices exhibit a particular block
structure. For the PRBT algorithm, this is required to compute spectral projectors,
which is otherwise difficult in large-scale settings [104]. The interpolatory strategies
to treat the algebraic constraints in [15, 76] vary depending on the original model’s
Kronecker index and how the input affects the algebraic constraints. In their entirety,
these strategies do not cover the whole system class of pH-DAEs, and some may not
necessarily preserve the pH structure.

Even though specific block structures of the original state-space matrices naturally
occur for many practical examples (see, e.g., [66, 105]), this is generally not guaran-
teed. Transformations to enforce these block structures may be ill-conditioned and
infeasible in large-scale settings. Optimization-based MOR methods are beneficial in
such cases because the ROM matrices are parameterized directly and, compared to
Petrov-Galerkin methods, are not generated by operations on the FOM matrices. In-
terestingly, to the best of the author’s knowledge, optimization-based methods have not
been exploited for pH-DAE models so far.

Another issue that should be more explicitly mentioned but not underestimated is
numerical software availability. Software is a key driver to promote not only scientific ex-
change but also the use of novel research advances in engineering practice. While several
software packages exist for classic (unstructured) MOR (see, e.g., [21, 34, 107]), there
is currently only few software available for the structure-preserving MOR of pH-DAEs.
Available software has been chiefly published to reproduce the numerical experiments
of selected research papers (see, e.g., [29, 59]).



1.3 Research Objectives and Outline 7

In conclusion, the identified research gaps motivate a more holistic approach to the
problem, both methodologically and in terms of implementation. In this thesis, we
summarize and discuss the work in [A1–A5], which is dedicated to this challenge. The
main contributions are as follows:

◦ The development of a system decomposition approach, which paves the way to
generalize different MOR strategies to the entire system class of pH-DAEs [A5].

◦ An interpolatory MOR framework for pH-DAE models in staircase form, which
exploits the structural properties of Rosenbrock system matrices [A4] combined
with a method to increase computational efficiency using surrogate models [A2].

◦ An optimization-based MOR method for structure-preserving H2 optimization,
which only relies on samples of the original transfer function and its derivative
[A3, A5].

◦ A novel software toolbox MORpH, which is the first to implement various soft-
ware solutions targeted explicitly at the storage, interconnection, and model order
reduction of possibly large-scale pH-DAE models [A1].

The remainder of this thesis is organized accordingly: In Chapter 2, we recapitulate
relevant results from linear systems theory and the field of model reduction that lie the
foundation for our contributions in Chapter 3. The system decomposition approach is
described in Section 3.1. In Sections 3.2 and 3.3, we illustrate how this approach can be
exploited for interpolatory and optimization-based MOR in the H2 norm, respectively.
Section 3.4 briefly summarizes the developed software toolbox MORpH. In Chapter 4,
we discuss the obtained results with respect to different key objectives and conclude
with a summary as well as a brief discussion of future research opportunities.





2 Preliminaries
In this chapter, we outline the theoretical background of our work. Section 2.1 is dedi-
cated to the closely linked theory of passivity, positive realness, and port-Hamiltonian
systems. Section 2.2 briefly summarizes relevant results from MOR. For a more compre-
hensive introduction to the topics in this chapter, the reader is referred to [42] for general
(linear) DAE systems theory, to [48, 134] for an introduction to the port-Hamiltonian
modeling paradigm, and to [8, 11, 22, 137] for model reduction fundamentals.

Notation Throughout this thesis, R and C denote the fields of real and complex
numbers, respectively. We write C− and C+ for the open left and open right complex
half-planes, respectively, and R≥0 for the set of non-negative real numbers. We denote
the ring of polynomials with coefficients in R by R[s] and the set of n × m matrices
with entries in R[s] by R[s]n×m. For a matrix A ∈ Cn×m, its transpose and conjugate
transpose are denoted by AT and AH, respectively. The image, kernel, and rank of A are
denoted by im A, ker A and rank A, and we use ∥A∥2 and ∥A∥F to denote its spectral
norm and Frobenius norm, respectively. For two Hermitian matrices A, B ∈ Cn×n,
we write A ≥ B if the matrix A − B is positive semidefinite. The identity matrix of
dimension n × n is denoted by In and the n ×m zero matrix by 0n×m, while we omit
subindices for simplicity of notation when it is clear from the context.

2.1 Linear Systems Theory

We consider linear time-invariant (LTI) models in generalized state-space form

Σ :
Eẋ(t) = Ax(t) + Bu(t), Ex(0) = Ex0,

y(t) = Cx(t) + Du(t),
(2.1)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. For all t ∈ R≥0, x(t) ∈ Rn

denotes the (generalized) state vector ; u(t) ∈ Rm and y(t) ∈ Rp are the vectors of input
and output signals, respectively. The state vector has an initial value x0 ∈ Rn, and n

denotes the order or state-space dimension of the model. The matrix D, which directly
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links inputs to outputs, is referred to as the feedthrough matrix. If the descriptor matrix
E is singular, one speaks of a differential-algebraic equation (DAE) system and of an
ordinary differential equation (ODE) system otherwise. Systems with m = p = 1 are
referred to as single-input single-output (SISO) systems and as multi-input multi-output
(MIMO) systems for m, p > 1.

Assumptions Throughout this work, we consider systems that interact with their
environment through power ports. One consequence of this energy-based viewpoint is
that the input and output signals are not independent but occur in collocated pairs, i.e.,
we assume that p = m. To guarantee the existence and uniqueness of solutions to (2.1),
we assume that the pencil sE − A ∈ R[s]n×n is regular, i.e., det(sE − A) ̸= 0 for some
s ∈ C [42]. For the system norms introduced in Section 2.2 to exist, we restrict ourselves
to asymptotically stable systems, i.e., we assume that the set of finite eigenvalues of the
matrix pencil sE −A lies in the open left half-plane C−. Finally, we assume consistent
initial conditions that are homogeneous, i.e., such that Ex0 = 0.

After a Laplace transformation of the state-space equations in (2.1), we obtain the
following equations in matrix form 0

L{y}

 =
sE − A −B

C D


︸ ︷︷ ︸

=:P(s)

L{x}
L{u}

 , (2.2)

where L{f} denotes the Laplace transform of a function f(t), t ∈ R≥0 (see [126]).
The polynomial matrix P ∈ R[s](n+m)×(n+m) is often referred to as Rosenbrock system
matrix. In the complex frequency domain, the mapping from inputs to outputs that
follows from (2.2) is given by the system’s transfer function

H(s) := C(sE − A)−1B + D. (2.3)

We also call the state-space model Σ a realization of H. Note that this realization
is not unique, i.e., one particular transfer function has an infinite number of different
realizations. Those realizations with the smallest state-space dimension n are referred
to as minimal realizations. The minimality of a model is tightly related to the system-
theoretic concepts of controllability and observability. For DAE models, there exist
different concepts which are not consistently treated in the literature; see [25] for a
comprehensive overview. Consequently, there are also different definitions of minimality.
We follow the characterization proposed in [25, 110, 149].
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Definition 2.1. [25, 110, 149] A model Σ as in (2.1) is called a minimal realization
of its associated transfer function H in (2.3) if and only if the following conditions are
satisfied:

(i) rank
[
λE − A B

]
= n for all λ ∈ C, (behaviorally controllable)

(ii) rank
[
E B

]
= n, (controllable at infinity)

(iii) rank
[
λET − AT CT

]
= n for all λ ∈ C, (behaviorally observable)

(iv) rank
[
ET CT

]
= n, (observable at infinity)

(v) A ker E ⊆ im E. (absence of nondynamic modes)

Transformations between realizations with the same transfer function can be ex-
pressed as operations on the Rosenbrock system matrix P and are characterized by the
notion of strict system equivalence.

Lemma 2.1. [126] Let X ∈ Rm×n, Y ∈ Rn×m and define invertible matrices L, M ∈
Rn×n. Suppose that two Rosenbrock system matrices P and P̃ are related by the trans-
formation

P̃(s) = T1P(s)T2 =
L 0
X Im

P(s)
M Y

0 Im

 . (2.4)

Then we shall say that P and P̃ are related by strict system equivalence (s.s.e.). The
two Rosenbrock system matrices give rise to the same transfer function.

Proof. For a proof, we refer the reader to [126, Theorem 3.1]. □

The solution behavior of regular, linear DAE models Σ can be analyzed using the
Weierstrass canonical form (see, e.g., [58]). Let nf (n∞) denote the dimension of the left
and right deflating subspaces of the pencil sE−A corresponding to the finite (infinite)
eigenvalues. Then there exists a transformation under s.s.e. that transforms the model
to Weierstrass canonical formInf

0
0 E∞

  ẋf (t)
ẋ∞(t)

 =
Af 0

0 In∞

  xf (t)
x∞(t)

 +
 Bf

B∞

 u(t),

y(t) =
[
Cf C∞

]  xf (t)
x∞(t)

 + Du(t).
(2.5)

Here, the diagonal elements of matrix Af ∈ Rnf ×nf in Jordan canonical form are the
finite eigenvalues of the pencil sE − A and E∞ ∈ Rn∞×n∞ is also in Jordan canonical
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form and nilpotent with Kronecker index ν, i.e., Eν−1
∞ ̸= 0 and Eν

∞ = 0. Using this
partitioning of the state vector, the system’s transfer function may be decomposed with
a Laurent expansion at infinity such that [89, 104]

H(s) = Cf (sInf
− Af )−1Bf + C∞(sE∞ − In∞)−1B∞ + D

=
∞∑

k=1
Lk−1s

−k

︸ ︷︷ ︸
Hsp(s)

+
ν−1∑
k=0

L−k−1s
k + D︸ ︷︷ ︸

Hpol(s)

(2.6)

with Laurent parameters

Lk =

CfAk
fBf , k = 0, 1, 2, . . . ,

−C∞E−k−1
∞ B∞, k = −1,−2, . . . .

The transfer function is called proper if lim
s→∞

H(s) <∞, and improper, otherwise. If
lim

s→∞
H(s) = 0, it is called strictly proper. In the following, the strictly proper part of

H is denoted by Hsp and Hpol is often referred to as the polynomial part of H (see,
e.g., [8, 71]). As a direct consequence of (2.6), H can only be improper if ν ≥ 2 and is
guaranteed to be proper for models with Kronecker index at most one.

2.1.1 Passivity and Positive Realness

A property that is important for the simulation and control of (multi-)physical systems
and also relevant for structure-preserving MOR is the concept of passivity.

Definition 2.2. [152] A model Σ is considered passive if there exists a non-negative,
state-dependent storage function S : Rn → R≥0 such that for any t0, t1 ∈ R≥0 with
t1 ≥ t0 the dissipation inequality

S(x(t1))− S(x(t0)) ≤
∫ t1

t0
y(τ)Tu(τ)dτ (2.7)

holds for any smooth u, x and y satisfying (2.1).

In the following, models with this property will be denoted by Σpa. It is generally
challenging to directly assess passivity via the dissipation inequality (2.7) since this
condition has to hold for all possible solution trajectories. Therefore, a related frequency
domain property called positive realness is commonly used.

Definition 2.3. [7, Theorem 2.7.2] The transfer function H of a model Σ is called
positive real if
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(i) H has no poles in C+.

(ii) The Popov function
Ψ(s) := H(s) + H(−s)T (2.8)

is Hermitian positive semidefinite for each s = iω, ω ∈ R which is not a pole of H.

(iii) Every pole iω0 ∈ iR of H is at most simple. The residue lims→iω0(s− iω0)H(s) for
finite ω0, and limω→∞

H(iω)
iω for poles at infinity, is Hermitian positive semidefinite.

Every passive system has a positive real transfer function and, vice versa, if a system
has a positive real transfer function and is behaviorally controllable, then it is also
passive [121, 123]. Therefore, the passivity of a behaviorally controllable model Σ may
be examined by evaluating the Popov function on the imaginary axis with adaptive
sampling techniques (see, e.g., [40, 65]).

Besides this external viewpoint on passivity that considers the system’s input-output
relation in the frequency domain, there exists another, internal viewpoint that is based
on the system’s state-space representation. The connection between both viewpoints,
also known as the Positive Real Lemma or Kalman-Yakubovich-Popov (KYP) Lemma,
is obtained by differentiation of the inequality (2.7). It dates back to work in the early
1960s by Kalman [85], Yakubovich [158] and Popov [120] and was extended to the DAE
case in [55, 101, 121, 123, 160].

Lemma 2.2. Given is a model Σ with associated transfer function H. If the generalized
Kalman-Yakubovich-Popov linear matrix inequality (KYP-LMI)

−ATX −XTA CT −XTB

C −BTX D + DT

 ≥ 0, XTE = ETX ≥ 0 (2.9)

has a solution X ∈ Rn×n, the system is passive and its transfer function H is positive
real.

Proof. Using S(x) = 1
2xTXTEx as a candidate for the storage function, we obtain

2 d
dt
S(x(t)) = x(t)TXTEẋ(t) + ẋ(t)TETXx(t)

= x(t)TXT(Ax(t) + Bu(t)) + (Ax(t) + Bu(t))TXx(t)

= 2y(t)Tu(t)−
x(t)
u(t)

T −ATX −XTA CT −XTB

C −BTX D + DT

 x(t)
u(t)

 ≤ 2y(t)Tu(t),
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and integration of this inequality yields the dissipation inequality (2.7). Positive realness
of the associated transfer function H follows directly since this is implied by passivity.
The reader is referred to [55] for a direct proof. □

Consequently, another option to validate passivity is the search for solutions of the
KYP-LMI. Their existence is, however, only a necessary condition in the ODE case [39,
55]. For passive DAE systems, the KYP-LMI generally holds only on certain sub-
spaces [121]. Alternatively, if the model has Kronecker index at most one, a modified
KYP-LMI can be solved to check passivity. If the model contains parts with higher
index, these can be extracted and treated separately [39].

2.1.2 Port-Hamiltonian Systems

The system class of linear port-Hamiltonian descriptor systems, as initially introduced
in [14], embeds the passivity property with an associated storage function (the Hamil-
tonian) directly in the state-space equations.

Definition 2.4. [14, 105] A regular, linear time-invariant DAE system of the form

ΣpH :
Eẋ(t) = (J −R)Qx(t) + (G− P )u(t),

y(t) = (G + P )TQx(t) + (S + N)u(t),
(2.10)

where E, J, R, Q ∈ Rn×n, G, P ∈ Rn×m, S, N ∈ Rm×m is called a port-Hamiltonian
descriptor system (pH-DAE) if the following properties are satisfied:

(i) The structure matrix

Γ :=
−QTJQ −QTG

GTQ N


is skew-symmetric, i.e., Γ = −ΓT.

(ii) The dissipation matrix

W :=
QTRQ QTP

P TQ S


is symmetric positive semidefinite, i.e., W = W T ≥ 0.

(iii) The quadratic Hamiltonian H : Rn → R defined as

H(x) := 1
2xTQTEx

is non-negative, i.e., QTE = ETQ ≥ 0.
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The system has an associated transfer function

H(s) = (G + P )TQ(sE − (J −R)Q)−1(G− P ) + S + N.

For many practical examples (see, e.g., [66, 105]), we have that Q = In. Considering
systems in this form is also advantageous in system analysis and perturbation theory
since all coefficients appear linearly in (2.10) [105]. Moreover, if Q is not the identity
matrix, it can be removed for every pH-DAE as shown in [103, 105]. For ease of notation,
we will therefore consider systems with Q = In in the remainder of this work. In this
case, E is the Hessian of the Hamiltonian, and a simple additive decomposition of the
Rosenbrock system matrix in symmetric and skew-symmetric parts yields

P(s) = s

E 0
0 0


︸ ︷︷ ︸

=:E

+
−J −G

GT N


︸ ︷︷ ︸

Γ

+
 R P

P T S


︸ ︷︷ ︸

W

(2.11)

with symmetric positive semidefinite extended descriptor matrix E ∈ R(n+m)×(n+m).
In finite precision arithmetic, the computation of canonical forms such as the Weier-

strass form in (2.5) is challenging since this generally involves ill-conditioned transfor-
mations. A compromise in this regard are so called staircase forms which are typically
not canonical but can still provide insight into the system’s solution behavior. For
(port-)Hamiltonian systems, different staircase forms have been derived in [3, 15, 105,
138], which are obtained under orthogonal transformations that preserve the internal
structure of the model. While these are still sensitive to perturbations (see [32] for a
discussion), for many practical examples, these staircase forms can be considered di-
rectly in the modeling process such that the final model already has staircase form or
the number of required transformations is significantly reduced [66, 105]. We consider
the staircase form presented in [3] for dissipative Hamiltonian descriptor systems and
extended to pH-DAEs in [15].
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Lemma 2.3. [3, 15] A regular pH-DAE model ΣpH is in staircase form if it has a par-
titioned state vector x(t) =

[
x1(t)T, x2(t)T, x3(t)T, x4(t)T

]T
, where xj(t) ∈ Rnj , nj ∈ N0

for all j = 1, . . . , 4 and with n1 = n4 such that

E :=


E11 0 0 0
0 E22 0 0
0 0 0 0
0 0 0 0

 , J :=


J11 J12 J13 J14

J21 J22 J23 0
J31 J32 J33 0
J41 0 0 0

 , (2.12)

G :=


G1

G2

G3

G4

 , P :=


P1

P2

P3

0

 , R :=


R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
0 0 0 0

 , (2.13)

where E11, E22 are symmetric positive definite, and the matrices J41 and J33 − R33

are invertible (if the blocks are nonempty). The Kronecker index ν of the uncontrolled
system satisfies

ν =


0 if and only if n1 = n4 = 0 and n3 = 0,

1 if and only if n1 = n4 = 0 and n3 > 0,

2 if and only if n1 = n4 > 0.

The fact that the Kronecker index of a pH-DAE is at most two (see [102] for a proof)
has many advantages. For instance, this limits the maximum possible degree of the
polynomial part Hpol of its transfer function to one (see (2.6)). It is also advantageous
for time-discretization and solving associated linear systems of equations; see [105,
Section 9] for an overview.

As initially mentioned, the Hamiltonian H is a storage function for the dissipation
inequality (2.7), and consequently, pH-DAEs are inherently passive (see, e.g., [14] for
a proof). Vice versa, the connection between the classes of pH-DAEs ΣpH and passive
DAE systems Σpa is also established via the KYP-LMI. As shown in [39, 48], a pH
realization ΣpH of a passive system Σpa exists if and only if the KYP-LMI (2.9) has a
solution X ∈ Rn×n that satisfies

ker X ⊆ ker C ∩ ker A. (2.14)

In particular, for passive ODE models which are behaviorally observable, the solution
X is invertible (see [39]) and a pH-ODE realization can be found, for example, by left-
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multiplication of the differential equations with XT which yields a port-Hamiltonian
descriptor matrix XTE ≥ 0, Q = In as well as

J = 1
2(XTA− ATX), R = −1

2(XTA + ATX), (2.15)
G = 1

2(CT + XTB), P = 1
2(CT −XTB), (2.16)

N = 1
2(D −DT), S = 1

2(D + DT). (2.17)

The pH structural properties in Definition 2.4 follow directly from the KYP-LMI (2.9).
This approach may, however, also be used in the DAE setting: Since every passive DAE
may be decomposed into a passive ODE part and an improper part that already has a pH
structure, one may solve a modified KYP-LMI for the ODE part and treat the index-two
part separately (see [39, A5]). We discuss this approach in more detail in Section 3.1
and conclude this section with the following statement: For minimal (and therefore
behaviorally controllable and observable) models, the concepts of passivity, positive
realness, and the existence of a pH-DAE realization are equivalent. This motivates the
different MOR strategies depicted in Figure 1.1 since any of the three properties can
be enforced for the structure-preserving MOR of pH-DAEs.

2.2 Fundamentals of Model Reduction

In the following, we recapitulate some relevant results from the field of MOR. We present
the theory for general (unstructured) state-space models Σ to highlight the differences
and challenges in the pH-DAE setting in Chapters 3 and 4.

The main goal of MOR is to approximate a large-scale model Σ with a ROM of order
r ≪ n

Σ̂ :
Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
(2.18)

where Ê, Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rp×r, D̂ ∈ Rp×m, and such that the error ∥y− ŷ∥ is
small in an appropriate norm for admissible inputs u. If a particular input signal u was
known, one could strive to minimize the error in the output signals directly. In general,
it is, however, desired that the ROM approximates the FOM well for a large class of
admissible inputs. Therefore, performance measures in MOR are typically formalized
in the frequency domain. If the transfer function H of an asymptotically stable model
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Σ is strictly proper (proper), it is an element of the Hardy space Hp×m
2 (Hp×m

∞ ). These
are defined as

Hp×m
2 :=

H : C+ → Cp×m

∣∣∣∣∣∣ H is analytic and
supσ>0

∫ ∞
−∞ ∥H(σ + iω)∥2

Fdω <∞

 , (2.19)

Hp×m
∞ :=

H : C+ → Cp×m

∣∣∣∣∣∣ H is analytic and
supλ∈C+ ∥H(λ)∥2 <∞

 . (2.20)

Hp×m
2 and Hp×m

∞ are Banach spaces and equipped with the norms

∥H∥H2
:=

( 1
2π

∫ ∞

−∞
∥H(iω)∥2

Fdω
)1/2

, ∥H∥H∞
:= ess sup

ω∈R
∥H(iω)∥2, (2.21)

respectively. These norms are natural measures of the worst-case performance for many
classes of input signals (see [162, Chapter 4] for an overview) and common metrics in
MOR. Let L2 and L∞ denote the respective Lebesgue spaces of functions defined for
t ∈ R≥0. For the class of L2-bounded inputs, the following upper bounds for the output
error can be derived (see [8, Section 2.1.1])

∥y − ŷ∥L2 ≤ ∥H − Ĥ∥H∞∥u∥L2 ,

∥y − ŷ∥L∞ ≤ ∥H − Ĥ∥H2∥u∥L2 .

Minimizing the error H−Ĥ with respect to the H2 or the H∞ norm will therefore result
in low output errors for a wide range of admissible inputs. In this thesis, we focus on
methods designed to yield low errors in the H2 norm.

2.2.1 H2 Computation Frameworks

There exist two frameworks in which the error ∥H − Ĥ∥H2 may be computed: the Lya-
punov and pole-residue framework. If the ROM is computed such that H − Ĥ ∈ Hp×m

2 ,
we have that

∥H − Ĥ∥H2 = ∥Hsp − Ĥsp∥H2 .

For the sake of notational simplicity, we present the relevant results for realizations Σ
with E = I and D = 0 since the strictly proper part of every transfer function as in
(2.3) has such a realization (see Section 2.1). Without loss of generality, we apply the
same assumptions to Σ̂.
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Lyapunov Framework The Lyapunov framework provides an internal view on the
H2 error, utilizing state-space representations. For this, define an error system realiza-
tion Σe of the form (2.1) with

Ae =
A 0

0 Â

 , Be =
B

B̂

 , Ce =
[
C −Ĉ

]
, Ee = Ine , De = 0, (2.22)

where ne = n + r and which has an associated transfer function He(s) = H(s)− Ĥ(s).
Let P , Q ∈ Rne×ne denote the symmetric positive semidefinite controllability and ob-
servability Gramians, respectively, which are the solutions to the dual Lyapunov equa-
tions

AeP + PAT
e + BeB

T
e = 0, (2.23a)

AT
eQ+QAe + CT

e Ce = 0. (2.23b)

Using Parseval’s theorem (see [8]), we obtain

∥H − Ĥ∥2
H2 = ∥He∥2

H2 = tr(BT
e QBe) = tr(CePCT

e ). (2.24)

If the Gramians are partitioned consistently with the matrices in (2.22) into

P =
P11 P12

PT
12 P22

 , Q =
Q11 Q12

QT
12 Q22

 ,

the error may be decomposed such that

∥H − Ĥ∥2
H2 = tr(BTQ11B + 2BTQ12B̂ + B̂TQ22B̂)

= tr(CP11C
T − 2CP12Ĉ

T + ĈP22Ĉ
T).

(2.25)

The necessary conditions for H2 optimality

Q22P22 +QT
12P12 = 0, (2.26a)

Q22B̂ +QT
12B = 0, (2.26b)

ĈP22 − CP12 = 0, (2.26c)

derived in [80, 153], are obtained by differentiation with respect to the reduced state-
space matrices Â, B̂, Ĉ. Note that these conditions do not depend on the submatrices
P11, Q11, which is a direct consequence of the decomposition in (2.25). The summands
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BTQ11B and CP11C
T are independent of the ROM matrices and therefore vanish in

the gradient.

Pole-Residue Framework The second framework gives an external view on the H2

error, which is purely based on the original and reduced system’s transfer function. It
exploits the fact that H2

p×m is a Hilbert space equipped with the inner product

⟨H1, H2⟩H2 := 1
2π

∫ ∞

−∞
tr

(
H1(iω)H2(iω)T

)
dω (2.27)

for H1, H2 ∈ H2
p×m [8]. For the real-rational transfer functions H, Ĥ ∈ H2

p×m, we may
decompose the H2 error such that

∥H − Ĥ∥2
H2 = ⟨H − Ĥ, H − Ĥ⟩H2

= ⟨H, H⟩H2 − 2⟨H, Ĥ⟩H2 + ⟨Ĥ, Ĥ⟩H2 .

To compute the involved inner products, let us assume that the reduced transfer func-
tion Ĥ has simple poles {λ1, . . . , λr} ⊂ C. Then, Ĥ admits the pole-residue expansion

Ĥ(s) =
r∑

i=1

lirT
i

s− λi

(2.28)

with residues lirT
i and where li ∈ Cp, ri ∈ Cm for all i = 1, . . . , r. Since tr(H(−s)Ĥ(s)T)

is analytic on C−\{λ1, . . . , λr}, the residue theorem can be applied to compute the inner
product ⟨H, Ĥ⟩H2 . Embedding the pole-residue expansion yields [67]

⟨H, Ĥ⟩H2 =
r∑

i=1
lTi H(−λi)ri. (2.29)

The same can be applied to the inner product ⟨Ĥ, Ĥ⟩ to obtain the H2 error expression
in decomposed form [19]

∥H − Ĥ∥2
H2 = ∥H∥2

H2 − 2
r∑

i=1
lTi H(−λi)ri +

r∑
j=1

r∑
k=1

lTj lkrT
k rj

−λj − λk

. (2.30)

Differentiation of this expression with respect to the reduced-order poles and residues
yields the necessary conditions for H2 optimality in the form of tangential interpolation
conditions. For SISO systems, these conditions were originally derived by Meier and
Luenberger in [106] and are therefore also referred to as Meier-Luenberger conditions.
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These results were generalized to continuous- and discrete-time MIMO systems with
simple poles in [31, 44, 67].

Theorem 2.1. [31, 44, 67] Let H ∈ H2
p×m denote the strictly proper transfer function

of a FOM as in (2.1). Consider a ROM as in (2.18) with strictly proper transfer
function Ĥ ∈ H2

p×m that admits the pole-residue expansion in (2.28). If Ĥ is a local
minimizer of H2

p×m → R, Ĥ 7→ ∥H − Ĥ∥H2, then

H(−λi)ri = Ĥ(−λi)ri, (2.31a)
lTi H(−λi) = lTi Ĥ(−λi), (2.31b)

lTi H ′(−λi)ri = lTi Ĥ ′(−λi)ri (2.31c)

holds for all i = 1, . . . , r. Here, H ′(−λi) denotes the derivative of H(s) with respect
to s evaluated at s = −λi.

Throughout this work, we retain the assumption that Ĥ allows a decomposition as in
(2.28). For a generalization of the presented results to systems with higher-order poles,
the interested reader is referred to [45].

The connection between the Lyapunov and pole-residue framework was established
in [67] by showing the equivalence of the first-order necessary conditions presented in [80,
153] and [106], respectively, to structured orthogonality conditions. Consequently, the
H2 optimization problem can also be solved in both frameworks. However, there are
differences when it comes to numerical efficiency. Gradient-based methods using the
Lyapunov framework (see, e.g., [131, 133, 145, 153, 159]) require solving a series of
coupled sparse-dense Sylvester equations which can be computationally challenging,
especially for large-scale models, and which restricts their applicability to small and
medium-scale models. On the other hand, algorithms in the pole-residue framework
only require the computation of the pole-residue expansion for the ROM and sam-
ples of the original transfer function (and its derivative) at the reduced-order poles.
The pole-residue expansion can be efficiently computed using a generalized eigenvalue
decomposition of the matrix pencil sÊ − Â (see, e.g., [8]), and sampling the original
transfer function is also feasible in the large-scale context. Therefore, we focus on MOR
methods that navigate in the pole-residue framework in this thesis and refer the inter-
ested reader to [84, 132] for H2-inspired, optimization-based MOR of pH-ODE models
in the Lyapunov framework.
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2.2.2 Projective Model Reduction

A typical way to compute ROMs is by means of Petrov-Galerkin projections. This
approach is based on the assumption that the original state vector x evolves in an r-
dimensional trial subspace V ⊂ Rn. Using a matrix V ∈ Rn×r whose columns form a
basis of V , we assume that

x(t) ≈ V x̂(t) (2.32)

with reduced state vector x̂(t) ∈ Rr for all t ∈ R≥0. Inserting this approximation into
the differential equations in (2.1) induces a residual ε ∈ Rn such that

EV ˙̂x(t) = AV x̂(t) + Bu(t) + ε(t). (2.33)

Next, a test subspace U ⊂ Rn with basis matrix U ∈ Rn×r is defined. The reduced
state vector is chosen such that the residual ε is orthogonal to U , i.e., UTε(t) = 0 for
all t ∈ R≥0. This constraint is also called Petrov-Galerkin condition. Combining this
condition with (2.33) yields the reduced dynamics

UTEV ˙̂x(t) = UTAV x̂(t) + UTBu(t). (2.34)

Finally, the insertion of approximation (2.32) into the output equation leads to the
approximate output

ŷ(t) = CV x̂(t) + Du(t)

and a reduced-order state-space realization Σ̂ as in (2.18) with

Ê = UTEV, Â = UTAV, B̂ = UTB, Ĉ = CV, D̂ = D. (2.35)

Projections with equal test and trial subspace are also referred to as Galerkin or
Ritz-Galerkin projections [8]. Here, both subspaces are usually also equipped with the
same basis. The reduced transfer function only depends on the subspaces U , V and
is invariant under a change of basis [8]. Therefore, the column vectors in U and V

are often chosen orthonormal (UTU = Ir, V TV = Ir) or biorthogonal (UTV = Ir) to
improve numerical robustness in MOR.

2.2.3 Tangential Interpolation

The challenge in projective MOR is to design the subspaces U , V such that accurate
approximations are obtained. One possible strategy is to choose these subspaces such
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that interpolation conditions between the original and reduced transfer functions are en-
forced, as initially proposed by Skelton and de Villemagne [150]. For SISO systems, this
approach is also referred to as moment matching or rational Krylov method, since the
rational Krylov subspace methods of [128] can be employed for numerical efficiency [62].
We refer the interested reader to [8, 16] for a comprehensive overview. In this work, we
only consider the more general MIMO case, where interpolation conditions are typically
enforced along selected tangential directions as initially proposed in [57].

Let {σ1, . . . , σr} ⊂ C denote a set of r complex interpolation points with associated
left and right tangential directions {c1, . . . , cr} ⊂ Cp and {b1, . . . , br} ⊂ Cm, respec-
tively. Motivated by the H2 optimality conditions in Theorem 2.1, we strive to compute
a ROM Σ̂ with associated transfer function Ĥ such that

H(σi)bi = Ĥ(σi)bi, i = 1, . . . , r, (2.36a)
cT

i H(σi) = cT
i Ĥ(σi), i = 1, . . . , r, (2.36b)

cT
i H ′(σi)bi = cT

i Ĥ ′(σi)bi, i = 1, . . . , r. (2.36c)

which can be enforced by Petrov-Galerkin projections in the following way.

Theorem 2.2. [8, Theorem 3.3.1] Consider a FOM Σ with transfer function H. Let
a ROM Σ̂ with transfer function Ĥ be constructed as in (2.35) with basis matrices
U, V ∈ Cn×r. For all i = 1, . . . , r, let interpolation points σi ∈ C with associated
tangential directions bi ∈ Cm, ci ∈ Cp be given such that σiE − A and σiÊ − Â are
nonsingular.

(i) If

(σiE − A)−1Bbi ∈ im V, i = 1, . . . , r, (2.37a)
then (2.36a) holds,

(ii) If

(σiE − A)−TCTci ∈ im U, i = 1, . . . , r, (2.37b)
then (2.36b) holds,

(iii) If

both (2.37a) and (2.37b) hold, i = 1, . . . , r,

then (2.36c) holds.

The conditions in (2.36c) are also referred to as bitangential Hermite interpolation
conditions [16]. Since all conditions in Theorem 2.2 depend on the subspaces spanned
by the columns of U and V rather than the basis matrices themselves, they can again
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be chosen orthonormal or biorthogonal. In particular, if the interpolation points and
associated tangential directions occur in complex conjugate pairs, real basis vectors
can be chosen. In this case, we will also speak of sets that are closed under complex
conjugation.

A significant advantage of interpolatory model reduction is computational efficiency.
Since most of the computational effort is spent on solving linear systems of equations
(LSEs), it is particularly suited for reducing very large models. The major challenge is
the choice of appropriate interpolation data such that low errors in the H2 or H∞ norm
are obtained, which is also discussed in the following chapter.



3 Summary of Achievements
In this chapter, we summarize the main contributions of the publications [A1–A5] which
address the H2-inspired reduction of large-scale pH-DAE models. As motivated in
Section 1.1, a central aspect of this task is structure preservation, i.e., our goal is to
construct ROMs of the form

Σ̂pH :
Ê ˙̂x(t) = (Ĵ − R̂)x̂(t) + (Ĝ− P̂ )u(t),

ŷ(t) = (Ĝ + P̂ )Tx̂(t) + (Ŝ + N̂)u(t)
(3.1)

with Ê, Ĵ , R̂ ∈ Rr×r, Ĝ, P̂ ∈ Rr×m, Ŝ, N̂ ∈ Rm×m that fulfill the structural constraints
in Definition 2.4. Given an original pH-DAE model ΣpH of dimension n with transfer
function H and a desired reduced order r ≪ n this yields the following (non-convex)
optimization problem:

minimize J (Ĥ) := ∥H − Ĥ∥H2 ,

such that Ĥ has a realization Σ̂pH.
(3.2)

We tackle this optimization problem in the computationally efficient pole-residue
framework (see Section 2.2.1) and proceed as follows. In Section 3.1, we present a high-
level overview of our approach: a system decomposition [A5] that separates the original
transfer function into a proper and improper part with specific properties. Subsequently,
two strategies are presented to create H2-inspired ROMs: either based on the work
in [A2, A4] using Petrov-Galerkin projections (Section 3.2) or using direct optimization
of parameterized reduced-order models as presented in [A3, A5] (Section 3.3). We close
the chapter with a brief discussion of the software toolbox MORpH [A1] in Section 3.4.
MORpH implements the algorithms discussed in this chapter and other state-of-the-
art methods suitable for the structure-preserving reduction of pH-DAEs. For technical
details and further information on the algorithms presented in this chapter, the reader
is referred to the respective publications reprinted in Appendix A.
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3.1 A System Decomposition Approach [A5]

Before different strategies for the optimization of the cost function J can be addressed,
the ROM has to be chosen such that it is well-defined, i.e., H − Ĥ ∈ Hm×m

2 . Since
the decomposition in (2.6) also holds for pH-DAEs as in Definition 2.4, which have a
Kronecker index of at most two, the transfer function of pH-DAEs may be decomposed
such that

H(s) = Hsp(s) + Hpol(s) = Hsp(s) + D0 + s ·D1 (3.3)

with polynomial coefficients D0, D1 ∈ Rm×m. In the following, the abbreviations
Hpol,0(s) := D0 and Hpol,1(s) := s ·D1 are used for the constant and linear polynomial
part, respectively. In Figure 3.1, this decomposition is illustrated for an exemplary
pH-DAE model with Kronecker index ν = 2, n = 1502, and m = 1. It is the model of a
passive electrical ladder network consisting of linear resistors, capacitors, inductors, and
a voltage source. Such models are typically used to simulate VLSI interconnect systems
or transmission lines. The pH-DAE model in staircase form was generated using the
port-Hamiltonian benchmark collection1 to which we refer for a more detailed physical
description. We will use this model throughout this chapter for illustration purposes.
As shown in Figure 3.1, the magnitude of the frequency response is dominated by the
constant and linear polynomial part for low and high frequencies, respectively, and by
the strictly proper part in the intermediate frequency region.

If the original model is approximated with a ROM that is also in pH-DAE form, the
transfer function error may be decomposed accordingly

H(s)− Ĥ(s) = (Hsp(s)− Ĥsp(s)) + (Hpol(s)− Ĥpol(s)).

Given our initial assumption that the finite eigenvalues of the pencils sE − (J − R)
and sÊ − (Ĵ − R̂) are in the open left half-plane, H − Ĥ ∈ Hm×m

2 holds if, and only if,
the reduced and original polynomial parts match precisely. The strategy for MOR is
the following: separate the strictly proper and polynomial parts of the original transfer
function and subsequently approximate only the strictly proper part Hsp and retain the
polynomial part Hpol that originates from the system’s feedthrough and algebraic con-
straints. While this strategy has also been used for unstructured DAEs (see, e.g., [71]),
the challenge for the system class of pH-DAEs is to implement this approach in a
structure-preserving way, such that the ROM has the form in (3.1). For this, additional

1https://port-hamiltonian.io

https://port-hamiltonian.io
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Figure 3.1: Transfer function H of an exemplary pH-DAE model with Kronecker index
two (left) and its additive decomposition (right) into strictly proper part
Hsp, constant polynomial part Hpol,0 and linear polynomial part Hpol,1.

structural properties of the decomposition in (3.3) are helpful, which were derived
in [A5].

Lemma 3.1. [A5] Given is a pH-DAE model ΣpH with transfer function H that has a
decomposition as in (3.3). Then,

(i) the proper part Hp(s) := Hsp(s) + D0 has a pH-ODE realization

ΣpH,p :
Epẋp(t) = (Jp −Rp)xp(t) + (Gp − Pp)u(t),

yp(t) = (Gp + Pp)Txp(t) + (Sp + Np)u(t)
(3.4)

with xp : R≥0 → Rn2 and Ep > 0, where n2 is obtained from the staircase form in
Lemma 2.3, and

(ii) D1 is symmetric positive semidefinite.

These results enable a two-step approach for the optimization problem in (3.2). At
first, the pH-ODE model ΣpH,p in (3.4) is reduced in a structure-preserving way to
obtain a reduced pH-ODE model

Σ̂pH,p :
Êp ˙̂xp(t) = (Ĵp − R̂p)x̂p(t) + (Ĝp − P̂p)u(t),

ŷp(t) = (Ĝp + P̂p)T
x̂p(t) + (Ŝp + N̂p)u(t)

(3.5)
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with x̂p : R≥0 → Rrp , Êp > 0 and transfer function Ĥp. Matching the constant
polynomial part Hpol,0 of the original transfer function is achieved by enforcing

Ŝp = 1
2(D0 + DT

0 ) and N̂p = 1
2(D0 −DT

0 ). (3.6)

In the second step, the improper part Hpol,1 of the original model has to be added to
Ĥp. For this, we exploit the fact that D1 is symmetric positive semidefinite and use a
rank-revealing factorization D1 = L1L

T
1 with L1 ∈ Rm×ℓ and ℓ ≤ m. As shown in [A5],

a minimal realization of Hpol,1 in pH-DAE staircase form is given by
Iℓ 0

0 0

 ẋ∞(t) =
 0 Iℓ

−Iℓ 0

 x∞(t) +
 0
LT

1

 u(t),

y∞(t) =
[
0 L1

]
x∞(t),

(3.7)

where x∞(t) =
[
x∞,1(t)T, x∞,2(t)T

]T
and where x∞,1, x∞,2 : R≥0 → Rℓ. Note that a dif-

ferent realization was presented by Cherifi et al. [39], which is, however, not minimal
for singular D1.

Since both Ĥp and Hpol,1 have pH-DAE realizations, this is also the case for their
sum. As shown in [A4], a minimal realization Σ̂pH in staircase form with state-
space dimension r = rp + 2ℓ is obtained using the partitioned reduced state vector
x̂(t) =

[
x∞,1(t)T, x̂p(t)T, x∞,2(t)T

]T
and matrices

Ê =


Iℓ 0 0
0 Êp 0
0 0 0

 , Ĵ =


0 0 Iℓ

0 Ĵp 0
−Iℓ 0 0

 , R̂ =


0 0 0
0 R̂p 0
0 0 0

 ,

Ĝ =


0

Ĝp

LT
1

 , P̂ =


0

P̂p

0

 , Ŝ = Ŝp, N̂ = N̂p.

(3.8)

Its transfer function Ĥ has the same polynomial part Hpol as the original and con-
sequently H − Ĥ ∈ Hm×m

2 . This approach’s major challenge lies in identifying the
subsystem ΣpH,p and the matrix D1. While they could theoretically be obtained by
computing canonical forms such as the Weierstraß form in (2.5), this is generally not
possible for large-scale models (see the discussion in Section 2.1.2). We present two
strategies to alleviate this problem in the following two sections.
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3.2 Interpolatory Model Reduction

The presented system decomposition approach can be utilized for interpolatory model
reduction. We derive a Rosenbrock framework in Section 3.2.1, which was initially
published in [A4] and provides a unifying MOR framework for pH-DAEs in staircase
form. The integration of shift selection strategies is demonstrated using two algorithmic
examples. In Section 3.2.2, we illustrate how surrogate models can be used to further
reduce the computational cost of iterative interpolatory MOR methods as proposed
in [A2].

3.2.1 A Rosenbrock Framework [A4]

The Rosenbrock framework derived in [A4] is based on the observation that not only
state-space transformations but also Petrov-Galerkin projections can be formulated
as operations on Rosenbrock system matrices. For general state-space models, the
ROM matrices as in (2.35) can be obtained directly from a reduced Rosenbrock matrix
P̂ ∈ R[s](r+p)×(r+m) which is computed by

P̂(s) = UT
PP(s)VP =

UT 0
0 Ip

P(s)
V 0

0 Im

 =
sÊ − Â −B̂

Ĉ D̂

 . (3.9)

The challenge for pH-DAEs is to define a similar, structure-preserving operation such
that the reduced Rosenbrock system matrix P̂ allows an additive decomposition as in
(2.11) to extract a reduced pH-DAE realization. In [A4], such an operation was defined
for pH-DAE models in staircase form. For the sake of notational simplicity, we use
A = J −R, B = G− P , C = (G + P )T and D = S + N for the state-space matrices of
the FOM ΣpH. These matrices shall be partitioned as in Lemma 2.3, i.e., A14 ∈ Rn1×n4

denotes the upper right block matrix of J −R.

Theorem 3.1. [A4] Let P denote the Rosenbrock system matrix of a pH-DAE model
ΣpH in staircase form with transfer function H. Given a set of interpolation points
{σ1, . . . , σrp} ⊂ C and corresponding right tangential directions {b1, . . . , brp} ⊂ Cm both
closed under complex conjugation, define V ∈ Rn×rp such that (2.37a) holds with
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a decomposition V = [V T
1 , V T

2 , V T
3 , V T

4 ]T with Vj ∈ Rnj×rp for all j = 1, . . . , 4 as in
Lemma 2.3. Define the matrices

UP :=



0 A−T
14 CT

4

V2 0
−A−T

33 AT
23V2 A−T

33 (CT
3 − AT

13A
−T
14 CT

4 )
0 0
0 Im


, VP :=



0 A−T
14 B4

V2 0
0 0
0 0
0 Im


. (3.10)

Then, the transfer function Ĥ associated with the reduced Rosenbrock system matrix

P̂(s) = UT
PP(s)VP

satisfies the tangential interpolation conditions (2.36a), matches the polynomial part
of H and has a pH-DAE realization.

The beauty of using structure-preserving Rosenbrock operations for MOR is that,
similar to the unstructured case in (3.9), a pH-DAE realization of the ROM can directly
be obtained from P̂ . In fact, a decomposition into symmetric and skew-symmetric parts
yields a form similar to (2.11):

P̂(s) = s

Êp 0
0 D1


︸ ︷︷ ︸

Ê

+
−Ĵp −Ĝp

ĜT
p N̂p


︸ ︷︷ ︸

Γ̂

+
R̂p P̂p

P̂ T
p Ŝp


︸ ︷︷ ︸

Ŵ

, (3.11)

where Êp > 0 [A4, Lemma 3.1]. This immediately reveals a pH realization Σ̂pH,p for the
proper part of Ĥ as in (3.5) as well as the improper part of the original transfer function
with matrix D1. Since the improper part remains unchanged during the reduction, a
minimal pH-DAE realization of the transfer function Ĥ can be computed as in (3.8).

Note that Theorem 3.1 holds irrespective of the original model’s Kronecker index. For
any j ∈ {1, . . . , 4} with nj = 0 in Lemma 2.3, the j-th block row in UP and VP is left
empty. This enables a unifying approach that can be used for all pH-DAEs in staircase
form. Similar to the MOR methods proposed for proper, semi-explicit pH-DAEs in [15,
50, 76], the interpolation conditions are enforced with only the block matrix V2 of V .
For numerical stability, V is typically chosen such that V T

2 V2 = Irp and the reader is
referred to the discussion in [50] for details.

As mentioned in Section 2.2, the major challenge of interpolatory MOR approaches
is the choice of suitable interpolation data. The use of Rosenbrock system matrices for
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MOR can indeed be interpreted as a novel interpolation framework in the sense that it
enables the integration of different shift selection strategies. In the following, we briefly
illustrate this fact utilizing the two algorithms IRKA-PH [68] and TRKSM [46, 47] and
the interested reader is referred to [A4] for technical details.

IRKA-PH The fact that the necessary H2 optimality conditions in Theorem 2.1
are formulated as tangential interpolation conditions motivates interpolatory MOR
techniques for H2 reduction. Since the optimal interpolation data, i.e., the negative
reduced-order poles and residue vectors, are not known in advance, the idea behind
the Iterative Rational Krylov Algorithm (IRKA) [67] is to compute these iteratively
employing a fixed-point iteration. For pH-DAE models, we additionally demand that
the ROM is also in pH-DAE form. Therefore, fewer degrees of freedom are available
for interpolation, and it is generally only possible to fulfill a subset of (2.31), e.g., the
conditions in (2.31a). Enforcing these conditions iteratively leads to the IRKA-PH
algorithm originally proposed for pH-ODE models in [68].

As shown in [A4], integrating this concept into the Rosenbrock framework for tan-
gential interpolation is straightforward. Starting with some initial interpolation data, a
ROM is computed in each iteration using Theorem 3.1. Assuming that the eigenvalues
of the pencil sÊp − (Ĵp − R̂p) are simple, the strictly proper part Ĥsp of Ĥ admits
a pole-residue decomposition as in (2.28). The shifts and right tangential directions
are then set to the negative reduced-order poles and right residue vectors, respectively.
Upon convergence, the improper part is integrated to obtain a ROM as in (3.8), which
satisfies the subset (2.31a) of H2 optimality conditions in (2.31). We summarize this
approach in Algorithm 3.1.

Even though it is generally only possible to satisfy a subset of H2 optimality con-
ditions with Algorithm 3.1, further degrees of freedom can still be exploited. This is
because the transfer function obtained from the Galerkin projection in Theorem 3.1
changes between the interpolation points if a different realization of the FOM transfer
function is chosen. As initially shown for ODE systems in [29], favorable realizations
for the MOR of systems with positive real transfer functions can be found by means of
the KYP lemma. In [A4], these results were extended to pH-DAEs. Here, the matrix
V2 in UP is pre-multiplied by solutions of a modified KYP-LMI for the subsystem ΣpH,p

of the FOM. This does not affect the results in Theorem 3.1 but potentially leads to
better approximations in the H2 norm as illustrated by numerical examples in [A4].
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Algorithm 3.1: IRKA-PH for pH-DAEs [A4]
Input : Original model ΣpH in staircase form with Rosenbrock matrix P; initial

interpolation data {σ1, . . . , σrp} ⊂ C and {b1, . . . , brp} ⊂ Cm (both closed
under complex conjugation).

Output: Reduced-order model Σ̂pH.
1 while not converged do
2 Compute V = [V T

1 , V T
2 , V T

3 , V T
4 ]T ∈ Rn×rp s.t. (2.37a) holds and V T

2 V2 = Irp .
3 Compute P̂(s) = UT

PP(s)VP with UP , VP ∈ R(n+m)×(rp+m) as in (3.10).
4 Decompose the strictly proper part Ĥsp of Ĥ s.t. Ĥsp(s) =

∑rp
i=1

lirT
i

s−λi
.

5 σi ← −λi and bi ← ri for all i = 1, . . . , rp
6 end
7 Decompose P̂ as in (3.11) and D1 = L1LT

1 with L1 ∈ Rm×ℓ.
8 Compute the reduced pH-DAE Σ̂pH in staircase form as in (3.8).

TRKSM In Algorithm 3.1, a new ROM must be computed in every iteration; con-
sequently, its computational effort is tightly connected to convergence speed. Adaptive
reduction algorithms also compute new interpolation data in each iteration but, in
contrast, build up the trial subspace V incrementally. This entails computational ad-
vantages compared to algorithms such as IRKA-PH since shifts from previous iterations
are retained, and large-scale LSEs only have to be solved for the new shifts. Moreover,
since the reduced order r increases iteratively until convergence, it is not necessary to
select this parameter in advance, leading to a higher degree of automation. The diffi-
culty in designing adaptive MOR methods is the following: In each iteration, from a
set of candidates, identify those shifts that create basis vectors that add rank to the
reduction matrix V , i.e., which extend the trial subspace V , without actually having to
compute these basis vectors [151]. Various methods have been proposed for unstruc-
tured state-space models to solve this problem; see, e.g., [9, 47, 54, 62, 88, 112, 151, 161]
and the references therein. Since most of these methods employ Galerkin projections
to create the ROM, they can directly be incorporated into the Rosenbrock framework.
In [A4], this was exemplarily shown for the tangential rational Krylov subspace method
(TRKSM) proposed in [46, 47] for unstructured state-space models. It uses a residual
term to identify regions in the complex plane where the accuracy of the ROM is still
poor. First numerical examples in [A4] indicate that these approaches have the po-
tential to yield comparable H2 errors as IRKA-PH combined with a significantly lower
computational cost in large-scale settings. Another option to reduce the computational
cost is by using surrogate models.
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Algorithm 3.2: Confined IRKA-PH (CIRKA-PH) for pH-DAEs [A4]
Input : Original model ΣpH in staircase form; initial interpolation data

{σ1, . . . , σrp} ⊂ C and {b1, . . . , brp} ⊂ Cm (both closed under complex
conjugation).

Output: Reduced-order model Σ̂pH, surrogate model Σµ
pH.

1 Initialize Σµ
pH.

2 while not converged do
3 Σµ

pH ← update(ΣpH, Σµ
pH, {σ1, . . . , σrp}, {b1, . . . , brp})

4 [Σ̂µ
pH, {λ1, . . . , λrp}, {r1, . . . , rrp}]← IRKA-PH(Σµ

pH, {σ1, . . . , σrp}, {b1, . . . , brp})
5 σi ← λi and bi ← ri for all i = 1, . . . , rp
6 end
7 Σ̂pH ← Σ̂µ

pH

3.2.2 Surrogate-Based Reduction [A2]

In [36, 37, 112], a modification of IRKA for general state-space models called confined
IRKA (CIRKA) was proposed that allows decoupling the cost of optimization and
reduction using a medium-sized surrogate model (also called model function). The
use of surrogate models is motivated by the fact that both interpolatory methods and
the optimization problem in (3.2) are local by nature (see [112]). On the one hand,
interpolatory methods approximate the original transfer function locally around selected
interpolation points. On the other hand, due to the non-convexity of (3.2), solvers such
as IRKA-PH typically strive to find local minima in the proximity of the initial ROM.
If the FOM of dimension n is replaced locally by a surrogate model of dimension nµ

such that nµ ≪ n, the optimization of the ROM with respect to the surrogate model
can be conducted at a significantly lower cost.

A structure-preserving variant called CIRKA-PH suitable for pH-ODE systems, was
proposed in [A2]. Here, we briefly present the generalization to pH-DAE systems in
staircase form using the Rosenbrock framework. Structure preservation is enforced
by also choosing the surrogate model as a pH-DAE model Σµ

pH with associated trans-
fer function Hµ. A high-level overview of the method is provided in Algorithm 3.2.
Initially, a surrogate model Σµ

pH is chosen such that nµ > r and we refer to [36] for
different initialization strategies. CIRKA-PH then runs an outer loop which executes
Algorithm 3.1 iteratively on the Σµ

pH. Its backbone is the update of the surrogate model
in Line 3: Since the ROM is optimized with respect to Σµ

pH, it is generally not guaran-
teed that it is also optimal with respect to the FOM. Therefore, in each iteration, Σµ

pH

is updated such that it additionally interpolates the FOM ΣpH at the optimal interpo-
lation data found by IRKA-PH in the previous iteration. The reasoning behind this
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Figure 3.2: MOR of the model depicted in Figure 3.1 to r = 6 using IRKA-PH and
CIRKA-PH. (a) Frequency responses of the FOM ΣpH, the surrogate model
Σµ

pH, and the obtained ROM Σ̂pH. (b) Entirety of shifts in the first quadrant
used by IRKA-PH and CIRKA-PH to interpolate the FOM ΣpH.

update is the following: Before convergence, i.e., when the optimal interpolation data
found by IRKA-PH still change substantially, interpolation points in new regions are
added, and therefore, Σµ

pH becomes an increasingly better approximation of ΣpH. Upon
convergence, when the optimal interpolation data is identical between two subsequent
iterations (up to a certain tolerance), we have that

Ĥ(−λi)ri = Hµ(−λi)ri = H(−λi)ri, i = 1, . . . , rp,

and the ROM fulfills (2.31a).
Note that the working principle of adaptive MOR methods such as TRKSM is very

similar. Let us consider an illustrative example to compare the computational costs of
Algorithm 3.1 to Algorithm 3.2. We apply both algorithms to the pH-DAE model whose
frequency response is shown in Figure 3.1 and compute ROMs with r = 6 (rp = 4).
For initial shifts at zero, both algorithms converge to the same local optimum, and
the frequency responses of the ROM Σ̂pH obtained by both algorithms as well as the
surrogate model Σµ

pH of CIRKA-PH are plotted in Figure 3.2a. The surrogate model
has dimension nµ = 36 and captures the input-output behavior of the FOM well over
the entire frequency range. For large n and r < nµ ≪ n, the significant computational
cost of both algorithms is solving the large-scale LSEs that are required to compute
the matrix V in Theorem 3.1. In IRKA-PH, this has to be done for rp shifts in each
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iteration. In Figure 3.2b, all shifts in the first quadrant of the complex plane are plotted.
Since all complex shifts occur in complex conjugate pairs, it is sufficient to solve one
LSE for each pair and therefore the number of blue circles in Figure 3.2b corresponds
to the number of large-scale LSEs IRKA-PH solves. For CIRKA-PH, large-scale LSEs
are only solved in the update of the surrogate model (Line 3). The gray squares in
Figure 3.2b show the locations of shifts in the first quadrant used for this update. This
illustrates that the number of large-scale LSEs solved is significantly smaller than for
IRKA-PH. Also, it can be observed that all shifts used to create the surrogate model
lie in the vicinity of the optimal shifts (depicted as red crosses), which confirms our
intuition of a local approximation of the FOM.

3.3 Optimization-Based Model Reduction [A3, A5]

The Rosenbrock framework embodies an internal viewpoint on model reduction, which
relies on the time-domain representation of the FOM, i.e., the equations in (2.10).
With the Galerkin projections used in Theorem 3.1, the ROM matrices are created by
operations on the original state-space matrices. Consequently, the algorithms presented
in the previous chapter rely on the realization, i.e., the inner structure, of the FOM.

At the same time, the cost function of the optimization problem (3.2) we are trying
to solve relies only on the transfer function of the FOM. The transfer function provides
an external viewpoint that considers the input-output characteristics of the system.
This raises the question of whether tackling the H2 optimization problem from this
external viewpoint is also possible. This section summarizes an optimization approach
developed in [A3] for pH-ODE models and extended to the DAE case in [A5]. It directly
parameterizes the ROM and can be implemented to rely only on samples of the FOM’s
transfer function and its derivative.

3.3.1 Parameterization of Reduced-Order Models

Our approach is based on a flexible, direct parameterization of the ROM matrix entries
with a parameter vector θ ∈ Rnθ that utilizes the system decomposition presented in
Section 3.1. In the first step, the subsystem Σ̂pH,p with dimension rp in the form of
(3.5) is parameterized. It has an associated structure matrix Γ̂p ∈ Rq×q and dissipation
matrix Ŵp ∈ Rq×q with q = rp + m (see Definition 2.4). These matrices govern the
system’s energy routing and dissipation and are subject to the pH structural constraints
Γ̂p = −Γ̂T

p and Ŵp = Ŵ T
p ≥ 0, respectively. From an energy-based viewpoint, it is
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therefore natural to parameterize these matrices separately, i.e., we first define two
parameter vectors θΓ and θW from which the actual state-space matrices are derived.

Let us first consider the energy routing of the system. Using θΓ = [θ1, . . . , θq(q−1)/2]T ∈
Rq(q−1)/2, we parameterize Γ̂p as the sum of a strictly-upper triangular matrix and its
negative transpose as originally proposed in [142]

Γ̂p(θΓ) :=


0 θ1 θ2 · · · θq−1

0 0 θq · · · θ2q−3

0 0 0
. . .

...
0 0 0 0 θq(q−1)/2
0 0 0 0 0

−


0 θ1 θ2 · · · θq−1

0 0 θq · · · θ2q−3

0 0 0
. . .

...
0 0 0 0 θq(q−1)/2
0 0 0 0 0


T

. (3.12)

The state-space matrices Ĵp, Ĝp and N̂p can be extracted from Γ̂p via

Ĵp(θΓ) = −
[
Irp 0

]
Γ̂p(θΓ)

[
Irp 0

]T
, (3.13)

Ĝp(θΓ) = −
[
Irp 0

]
Γ̂p(θΓ)

[
0 Im

]T
, (3.14)

N̂p(θΓ) =
[
0 Im

]
Γ̂p(θΓ)

[
0 Im

]T
. (3.15)

For the dissipation matrix Ŵp and the associated state-space matrices R̂p, P̂p and Ŝp, we
may apply a similar strategy employing a Cholesky factorization with θW ∈ Rq(q+1)/2,
see [A5] for details. Consequently, the subsystem Σ̂pH,p is parameterized by q2 degrees
of freedom, which can, however, not all be exploited for model reduction. To keep the
H2 error bounded, the matrix Ŝp (N̂p) has to match the (skew-)symmetric part of the
constant polynomial part D0 of the original transfer function (see Section 3.1). This is
achieved by fixing the last m(m− 1)/2 parameters in θΓ and the last m(m + 1)/2 pa-
rameters in θW , respectively, such that (3.6) holds. The final parameter vector θ ∈ Rnθ

contains the remaining nθ = rp(rp + 2m) degrees of freedom and parameterizes a ROM
of the form

Σ̂pH,p(θ) :


˙̂xp(t) = (Ĵp(θ)− R̂p(θ))x̂p(t) + (Ĝp(θ)− P̂p(θ))u(t),

ŷp(t) = (Ĝp(θ) + P̂p(θ))T
x̂p(t) + (Ŝp + N̂p)u(t),

(3.16)

which can be utilized for optimizing the H2 error. If the original transfer function H

has an improper part Hpol,1 ̸= 0, it can be attached to Ĥp as described in Section 3.1,
yielding a ROM of the form (3.8). Note that using an explicit state-space representation
(Êp = Irp) for the subsystem Σ̂pH,p is not restrictive since every pH-ODE model of
dimension rp can be transformed to this form.
Remark 3.1. There are alternative ways to embed the geometry of the pH structural
constraints into the optimization problem. For pH-ODE models, a formulation on Rie-
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mannian matrix manifolds was presented in the pole-residue and Lyapunov frameworks
in [A3] and [132], respectively. This requires the use of Riemannian solvers such as
the Riemannian trust-region method [2] that has also been used for stability-preserving
MOR (see, e.g., [131, 133]).

3.3.2 Structure-Preserving H2 Optimization

With the proposed parameterization of the ROM, the H2 error is bounded and can
be expressed in the pole-residue framework as shown in Section 2.2.1. Let S ⊂ Rnθ

denote the set of parameter vectors θ for which the transfer function Ĥ(·, θ) has simple
finite poles. For every θ ∈ S, the strictly proper part of Ĥ(·, θ) admits a pole-residue
expansion of the form

Ĥsp(s, θ) =
rp∑

i=1

li(θ)ri(θ)T

s− λi(θ) . (3.17)

We define the vector-valued function ϕ : S → Cnϕ with nϕ = rp(2m + 1) such that

ϕ(θ) := [l1(θ)T, . . . , lrp(θ)T, r1(θ)T, . . . , rrp(θ)T, λ1(θ), . . . , λrp(θ)]T.

To optimize the H2 error, we apply the error expression in (2.30) and neglect the term
∥Hsp∥2

H2 which is very expensive to compute for large-scale models but independent of
the parameter vector θ. With

G(ϕ; H) := −2
rp∑

i=1
lTi Hsp(−λi)ri +

rp∑
j=1

rp∑
k=1

lTj lkrT
k rj

−λj − λk

, (3.18)

the optimization problem in (3.2) can be formulated as

min
θ∈S
F(θ; H) := (G ◦ ϕ)(θ) (3.19)

with objective functional F : S → R. Evaluations of F only require samples of the
strictly proper part Hsp of the original transfer function. If the FOM has staircase form,
a realization of Hsp can be obtained by simple transformations as shown in [A4, A5].
However, this realization is generally dense and, therefore, computationally intensive to
store and evaluate. Fortunately, it is not even necessary to compute such a realization.
Since F only relies on samples of Hsp, we may use an indirect sampling approach, where
for all s ∈ C

Hsp(s) = H(s)−Hpol(s). (3.20)
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The polynomial coefficients D0, D1 of Hpol can be computed offline before the actual
optimization. This can be done, for instance, by using sampling-based approaches such
as [12, 140], which, again, rely only on samples of H. Our approach (Pole-Residue
OPTimization, PROPT) is summarized in Algorithm 3.3. In the following, we briefly
discuss the numerical solution of the optimization problem (3.19) in Line 3 and possible
strategies to choose the initial parameter vector θ0, which is crucial given that (3.19) is
non-convex.

Optimization Since for any θ̄ ∈ S, F is differentiable in a neighborhood of θ̄, it can
be optimized locally with gradient-based optimization algorithms as illustrated for the
trust-region algorithm in [A3, A5]. The derivative at θ̄ is given by

DF(θ̄) =
(
∇F(θ̄)

)T
= DG(ϕ(θ̄)) ·Dϕ(θ̄) (3.21)

with Jacobians DG(ϕ(θ̄)) ∈ C1×nϕ and Dϕ(θ̄) ∈ Cnϕ×nθ . The Jacobian DG(ϕ(θ̄)) was
derived in [19] and requires additional rp evaluations of the first derivative of Hsp which
can again be computed indirectly using (3.20). For the Jacobian DG(ϕ(θ̄)), consider
the spectral decomposition

(Ĵp(θ)− R̂p(θ))Z(θ) = Z(θ)Λ(θ), (3.22)

where Λ ∈ Crp×rp is a diagonal matrix with the poles as entries, and the corresponding
right eigenvectors are the columns in Z ∈ Crp×rp . The residual vectors are given by

li(θ) = (Ĝp(θ) + P̂p(θ))TZ(θ)ei,

ri(θ) = (Ĝp(θ)− P̂p(θ))TZ(θ)−Tei,

where ei denotes the i-th standard basis vector of Rrp . Therefore, the computation of
Dϕ(θ̄) requires differentiation of the eigenvalues and eigenvectors in (3.22) with respect
to the parameter vector θ. A large body of research exists on this topic and the in-
terested reader is referred to the literature reviews provided in [94, 109]. Non-iterative
methods generally fall into two categories [109]: adjoint methods such as [1, 97], which
use both right and left eigenvectors, and direct methods such as [109, 127] which only
require right eigenvectors. As shown in [109], the numerical efficiency of the methods
depends on the problem size, i.e., the dimension of the reduced-order model. Since nθ

is quadratic in rp, it is also crucial that the derivatives can be computed in a block-
wise fashion using Kronecker products. In [A3], the differentiation of the eigenvectors
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Algorithm 3.3: PROPT for pH-DAEs [A5]
Input : Original transfer function H; initial parameter vector θ0 ∈ S.
Output: Reduced-order model Σ̂pH.

1 Compute D0, D1 ∈ Rm×m of Hpol.
2 Solve

θfin = arg min
θ∈S

F(θ; H)

using (3.20).
3 Construct ΣpH,p(θfin) as in (3.16) s.t. Ŝp + N̂p = D0.
4 Construct Σ̂pH using D1 = L1LT

1 , L1 ∈ Rm×ℓ as in (3.8).

and eigenvalues with respect to θ was presented using the adjoint method [97], which
performed well across numerous experiments. The software toolbox MORpH discussed
in the following chapter additionally implements block formulations of the direct meth-
ods [109, 127].

In conclusion, apart from the computation and differentiation of the small-sized spec-
tral decomposition in (3.22), PROPT only relies on evaluations of H and its derivative,
which are computationally feasible also for very large models. This is demonstrated
in [A3, A5] for different numerical examples.

3.3.3 Initialization Strategies

Due to the non-convexity of (3.19), the best local optimization algorithms can aim for
is convergence to a stationary point with ∇F(θfin) = 0. The convergence speed to
and quality of this stationary point strongly depends on the initial parameter vector θ0

(see, e.g., the discussion in [35, 67]). Besides a random choice of θ0, it is also possible
to use ROMs created by other (computationally cheap) structure-preserving reduction
methods such as IRKA-PH, as suggested in [132]. However, since IRKA-PH generally
fulfills only a subset of the necessary H2 optimality conditions, its generated models
are typically far from being locally H2-optimal.

It is also possible to use unstructured ROMs of the form (2.1) for initialization. In gen-
eral, such a ROM has no pH-DAE realization since its transfer function is not positive
real. For an asymptotically stable ROM, the (real) minimum eigenvalue of the associ-
ated Popov function along the imaginary axis λmin(Ψ(iω)) is a continuous function of
ω ∈ R [64]. The maximum violation of positive realness δmax = supω∈R−λmin(Ψ(iω))
can be regarded as a measure for the “distance” of the unstructured ROM to passiv-
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Figure 3.3: H2 initialization for the strictly proper part in Figure 3.1. (a) Popov func-
tion of the ROM produced by IRKA (r = 10). (b) Frequency errors for
different models (r = 10) created by IRKA, IRKA-PH, IRKA plus subse-
quent residual optimization (IRKA-RES), and IRKA plus KYP perturba-
tion (IRKA-KYP).

ity. An estimation of δmax may be obtained quite efficiently using adaptive sampling
techniques such as [65].

If the ROM is an H2-optimal approximation and therefore approximates the original
pH-DAE well over the entire imaginary axis, violations of positive realness are expected
to be minor. For illustration, let us consider the approximation of the strictly proper
part of the transfer function in Figure 3.1 (which also has a pH-DAE realization) with
ROMs of dimension r = 10. Figure 3.3a depicts the minimum eigenvalue of the Popov
function for the ROM produced by IRKA. As expected, the ROM has only minor vio-
lations of positive realness with δmax ≈ 1.6 · 10−4 but yields a better H2 approximation
than its structure-preserving variant IRKA-PH.

One way to enforce passivity for unstructured ROMs are methods that perturb the
output matrix of the unstructured ROM (see [64, Chapter 10] for an overview). In [26],
a different approach was proposed that first lifts the minimum eigenvalue of the Popov
function above zero by introducing an additional feedthrough term and subsequently
computes an initial pH-DAE ROM using the solution of the resulting (perturbed) KYP
inequality. In Figure 3.3b, this algorithm is referred to as IRKA-KYP and yields fre-
quency errors comparable to IRKA.

In the pole-residue framework, provided that the unstructured ROM is asymptotically
stable, one possibility is to retain the poles of this model and to only optimize the
residues. This idea was proposed in [A5] for systems with a strictly proper transfer
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function and extended to systems with feedthrough terms in [26]. Due to the reduced
number of optimization parameters and the fact that the poles remain unchanged, this
optimization typically converges quickly and is, therefore, also suitable for initialization.
In Figure 3.3b, this algorithm is called IRKA-RES.

Note that if the original transfer function contains improper parts, the unstructured
ROM created by any H2-inspired algorithm matches this improper part exactly. Since
the state-space dimension of the unstructured ROM is assumed to be small, a sys-
tem decomposition approach for unstructured state-space models (see, e.g., [24, 71])
can be performed to extract the improper part and treat it separately as described in
Section 3.1.

3.4 Numerical Software [A1]

Efficient software solutions are inevitable in MOR to deal with truly large-scale models
that occur in real-world applications. On the one hand, to increase memory efficiency,
the exploitation of sparsity patterns is necessary, which typically arise in matrices orig-
inating from the spatial discretization of PDEs [129]. On the other hand, to increase
computational efficiency, solvers of large-scale LSEs and large-scale linear matrix equa-
tions such as Lyapunov or algebraic Riccati equations are required for interpolatory and
balancing-based MOR methods, respectively. In [A1], we presented a novel software
toolbox MORpH which is, to the best of our knowledge, the first software toolbox for
the sparse representation, interconnection, and structure-preserving model reduction
of port-Hamiltonian descriptor systems. The Cambridge Academic Content Dictio-
nary [33] defines the verb morph as “to change gradually in appearance or form”. In
MORpH, the overarching concept of this process is structure preservation: All trans-
formations, interconnections, and reductions are performed with the ultimate goal of
preserving the pH structure.

3.4.1 An Object-Oriented Approach

The pH modeling paradigm is most potent for network modeling, where subsystems
are modeled independently and subsequently coupled to a network of models, possibly
across different physical domains and levels of accuracy. This motivates an object-
oriented programming (OOP) approach. In MORpH, large-scale pH-DAEs are rep-
resented as instances (objects) of the phs class which embodies the pH structure via
attributes and defines methods that determine the behavior of its instances.



42 3 Summary of Achievements

The attributes that define a phs object are the state-space matrices of its pH-DAE rep-
resentation (2.10), which are saved in MATLAB’s sparse matrix format to save memory
for large-scale models. Additional logical attributes such as isMIMO or hasStaircase
provide access to model properties relevant for MOR. Upon creation of a phs ob-
ject, the pH structural constraints in Definition 2.4 are verified using the function
inputValidation.

Once a phs object is created, it can be interacted with using methods of the phs class
that enable the analysis, transformation, and interconnection of pH-DAE models. First,
methods for analysis overload functions of MATLAB’s Control System Toolbox, such as
bode to visualize the model’s bode plot or step to simulate its step response. Second,
methods for transformation enable transformations of the pH-DAE realization under
strict system equivalence (see Lemma 2.1). For instance, the method toStaircase
transforms a pH-DAE model into staircase form. Third, methods for interconnection
allow the coupling of two phs objects in a power-preserving way using different Dirac
structure representations. This includes, for example, the negative feedback intercon-
nection feedback, which can be applied to design energy-based controllers.

In MORpH, reduced-order models are considered special representatives of pH-DAE
models. We employ the OOP concept of inheritance for their definition: We define a
child class phsRed which inherits certain attributes and methods from its parent class
phs but implements some additional features. For example, since ROMs are generally
dense, their state-space matrices are stored in the full matrix format in phsRed.

3.4.2 Strategies for Model Reduction

As discussed in Section 1.2, different strategies can be pursued to reduce pH-DAE
models in a structure-preserving way. Figure 3.4 provides an overview of how the
strategies depicted in Figure 1.1 are implemented in MORpH. It shows the MATLAB
class definitions and functions (or function categories) implemented by MORpH.

For MOR methods in the category pH-MOR, the pH structural properties of the
FOM ΣpH are directly preserved, i.e., a pH-DAE realization Σ̂pH of the ROM is di-
rectly obtained. In the category pa-MOR, we summarize algorithms that are passivity-
preserving, i.e., they reduce a passive FOM Σpa in general state-space form (2.1) to a
passive ROM Σ̂pa in state-space form. In MORpH, passive FOMs are stored using the
sss class defined in the sss toolbox presented in [34] and phs objects can be converted
to sss objects via phs2sss. Since the obtained ROMs stored as ss objects are minimal
and passive, they admit a pH-DAE realization which can be found by solving the KYP-
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Figure 3.4: Overview of the classes and function categories in the software toolboxes
MORpH and sss/sssMOR. Reprinted from [A1].

LMI in (2.9) for the passive ROM. This conversion step is implemented in the function
ss2phs and yields the desired pH-DAE realization, stored as a phsRed object. Gener-
ally, classic MOR algorithms such as balanced truncation or IRKA can be exploited
for the structure-preserving MOR of pH-DAEs if combined with an additional passiv-
ity enforcement (pa-ENF) step. To apply classic MOR algorithms, MORpH provides
interfaces to the sssMOR toolbox presented in [34]. These algorithms yield LTI models
Σ̂ represented as instances of the ssRed class, the counterpart of phsRed in MORpH.
The implemented methods in the pa-ENF category perturb the output matrix of the
obtained ROM with respect to some error metric until the model is passive. Subse-
quently, a pH-DAE realization for the obtained passive ROM can again be computed
using the function ss2phs.

All methods in MORpH have been validated using various benchmarks generated
with the port-Hamiltonian benchmark collection2. A comparative study with selected
algorithms from all categories can be found in [A1], and the associated code to reproduce
the results is publicly available [108]. MORpH is open-source and available on GitHub3.
It contains several demo scripts which provide an introduction to how to use the toolbox
and guidelines on how to contribute to the project.

2https://port-hamiltonian.io
3https://github.com/MORLab/MORpH

https://port-hamiltonian.io
https://github.com/MORLab/MORpH
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3.4.3 Third-Party Software

The MORpH toolbox partially relies on third-party software, which is mainly used
for optimization and the numerical solution of large-scale problems and is gratefully
acknowledged. The optimization solvers of the software packages MANOPT [28] and
GRANSO [41] are used for optimization-based MOR methods. If the KYP-LMI in (2.9)
is formulated as a constrained optimization problem, it can be solved efficiently with
CVX [60, 61] or YALMIP [95]. To be capable of dealing with truly large-scale models,
MORpH uses several numerical software tools that are dedicated to exploiting sparsity
and typically employ iterative solvers for large-scale problems. These include the M-
M.E.S.S. toolbox [130] for the solution of large-scale algebraic Riccati and Lyapunov
equations, SADPA [125] and SAMDP [124] for computing dominant spectral zeros, and
the functions linorm_subsp [5, 141] as well as hinorm [20] to compute the H∞ norm
of large-scale models.
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In the last two decades, many advances have been made in structure-preserving MOR,
passivity-preserving MOR, and passivity enforcement. As illustrated in Figure 1.1,
the developed algorithms in these fields can be leveraged for the structure-preserving
MOR of pH-DAEs in different ways. In Section 4.1, we discuss the properties of se-
lected algorithms and the contributions presented in this thesis with respect to distinct
key objectives. We conclude with a summary and further research opportunities in
Section 4.2.

4.1 Discussion

We identify the following key objectives for algorithms that are relevant in the context
of this thesis:

(1) Applicability: The method applies to the entire system class of linear, time-
invariant pH-DAEs with the assumptions made in Section 2.1.

(2) Structure preservation: The method preserves the pH-DAE form of the FOM.

(3) Minimality: The method allows for treating algebraic constraints such that ROMs
with minimal state-space realizations are obtained.

(4) Accuracy: The ROM produced by the method accurately captures the original
input-output behavior over a wide range of admissible inputs.

(5) Computational efficiency: The method directly works with the original (typically
sparse) state-space matrices and does not rely on computationally expensive or
numerically unstable operations.

(6) Availability: An open-source implementation of the method is publicly available.

While objectives (2),(4), and (5) are often mentioned in the literature (see, e.g., [11,
67]), objectives (1) and (3) are especially relevant for systems with algebraic equations
which typically require a separate treatment. Objective (6) is relevant mainly from a
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practical point of view: The availability of software enables the application of a method
to real-world problems, which is essential for its evaluation. In the following, we discuss
the presented contributions and relevant state-of-the-art methods concerning these ob-
jectives. To raise awareness of existing tradeoffs between objectives, we combine the
topics of structure preservation and minimality as well as accuracy and computational
efficiency.

Applicability In the context of model reduction, the pH-DAE system class can be de-
composed into six relevant subclasses depending on the Kronecker index ν and whether
the transfer function contains improper parts or not. These are listed in Table 4.1 with
the corresponding properties.

Table 4.1: Six different categories of pH-DAEs that are relevant for MOR. The cate-
gories result from combinations of the model’s Kronecker index ν and the
degree of the polynomial part of its transfer function. Adapted from [A4].

Category ν n2 n3 n4/n1 D1

Index-zero (pH-ODE) 0 ̸= 0 0 0 0
Index-one 1 ̸= 0 ̸= 0 0 0
Proper index-two 2 ̸= 0 0 ̸= 0 0
Improper index-two 2 ̸= 0 0 ̸= 0 ̸= 0
Proper index-one, index-two 2 ̸= 0 ̸= 0 ̸= 0 0
Improper index-one, index-two 2 ̸= 0 ̸= 0 ̸= 0 ̸= 0

Existing interpolatory MOR methods typically require the FOM state-space matrices
to have particular block structures, such as the staircase form in Lemma 2.3. This
holds for methods proposed for general, unstructured state-space models (see [8] for
an overview) but also for structure-preserving methods proposed for pH-DAEs (see [15,
76]). While this seems like a substantial restriction at first glance, it is important to note
that in many practical cases, models in (or close to) staircase form naturally emerge; see
also the discussion in Section 2.1.2. Extensions of the structure-preserving IRKA-PH
algorithm proposed for the pH-ODE subclass in [68] to other pH-DAE subclasses were
discussed in [15, 76]. Except for the proper index-two case, which shares similarities to
the pH-ODE case from a MOR point of view, the proposed methods require the FOM
to be in staircase form. Moreover, to the author’s knowledge, the treatment of mixed
index-one and index-two constraints (n3 ̸= 0, n4 ̸= 0) has yet to be addressed.

The passivity-preserving approach proposed in [122] is more general in this sense
since it works for models with arbitrary Kronecker index. However, it relies on the
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projection of Lur’e and discrete-time Lyapunov equations. To solve these equations
efficiently in the large-scale case, iterative low-rank methods such as the Smith or
alternating direction implicit (ADI) method [146] are applied, which require knowledge
of specific spectral projectors. The explicit computation of these projectors is generally
challenging and requires the matrices E and A to have special block structures [104].

The contributions in this thesis advance the state of the art in different ways concern-
ing applicability. First, the system decomposition approach presented in [A5] enables
a generalization of existing state-of-the-art methods initially designed for pH-ODE sys-
tems to the entire system class of pH-DAEs for applications where the proper subsystem
ΣpH,p can be extracted from the original model. This is, for example, the case for models
that exhibit the staircase form in Lemma 2.3. In the large-scale case, the direct applica-
tion of the MOR methods to ΣpH,p requires that the corresponding state-space matrices
are still sparse. If the model has an index-one part (n3 ̸= 0), the state-space matrices
of ΣpH,p may become dense, which limits this approach to medium-sized models (see
the discussion in [A4, Section 3.2]).

Second, the proposed Rosenbrock framework provides a more general approach than
existing interpolatory MOR methods. While it also requires the FOM to be in staircase
form, the framework treats all system categories in Table 4.1 in a unifying way and also
covers models with mixed index-one and index-two constraints.

Third, if the original state-space matrices do not exhibit any particular structure and
transformations are not feasible, the proposed optimization-based algorithm PROPT
can be exploited. Due to its formulation in the pole-residue framework, it only relies on
the transfer function of the FOM and is, therefore, less reliant on its specific state-space
realization. This is also an advantage of this approach compared to other Riemannian
H2 optimization methods formulated in the Lyapunov framework [84, 132], which do not
have this property and have not been formulated for systems with algebraic constraints
so far.

Structure Preservation and Minimality For ODE systems, one can typically
assume that the ROM is minimal for all MOR methods since, otherwise, its state-
space dimension could be further reduced without changing the transfer function. In
the presence of algebraic constraints, the preservation of the pH structure and a ROM
realization of minimal state-space dimension seem to be conflicting goals in state-of-
the-art methods.

In interpolatory MOR, the treatment of algebraic constraints has been approached
in two ways: either by preserving the algebraic constraint structure or by matching



48 4 Discussion and Future Work

its impact on the transfer function with appropriate feedthrough terms. The former
approach requires that the algebraic equations of the model can be separated from
differential equations and was proposed for the index-one case in [15, 76]. While this
simplified treatment helps to enforce the pH structure, it does not necessarily result in
minimal ROMs since redundant algebraic equations are not reduced (see also [15, Re-
mark 2]). Suppose the product ν ·m is smaller than the dimension n∞ (see Section 2.1).
In that case, the order of the ROM can be reduced significantly by truncating states
that correspond to zero improper Hankel singular values [104]. While such a reduc-
tion can be performed by balancing the ROM using projected, discrete-time Lyapunov
equations [104], it does not generally preserve the pH structure.

If not the algebraic constraints themselves are preserved, but only their impact on
the transfer function, the polynomial part Hpol of the original transfer function must
be attached to the ROM by changing the feedthrough matrix. This approach, initially
proposed for unstructured DAE systems in [71], was adapted to index-one and improper
index-two pH-DAEs in [15]. While this second approach generally yields ROMs of
minimal dimension, preservation of the pH-DAE structure is not guaranteed.

The algorithms presented in this thesis provide a solution to this tradeoff. First, since
they belong to the algorithm group pH-MOR (see Figure 1.1), the pH structure of the
ROM is directly enforced. This may also be an advantage from a numerical point of
view. The recovery of the pH-DAE form, which is required if indirect reduction algo-
rithms of the categories pa-MOR or pa-ENF are applied, may lead to minor passivity
violations that originate from ill-conditioned solutions of the KYP-LMI. Second, by
attaching the minimal realization (3.7) of Hpol to the proper part of the ROM, the pro-
posed system decomposition approach also guarantees minimal realizations. Note that
a similar way of incorporating improper parts of the transfer function was proposed by
Cherifi et al. [39, Section 5] which, however, does not yield a minimal realization if the
polynomial coefficient D1 is singular.

Accuracy and Computational Efficiency Before comparing the different MOR
strategies with respect to approximation accuracy and computational efficiency, let us
raise awareness of some general challenges. On the one hand, the experiments typi-
cally conducted in publications of the field only provide insights for specific numerical
examples and do not allow general conclusions on approximation accuracy. This under-
pins the need for a port-Hamiltonian benchmark collection, similar to the Oberwolfach
benchmark collection for linear first- and second-order systems [87], enabling better
communication of research results and comparability across algorithms. On the other
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hand, the assessment of computational efficiency depends not only on theoretical but
also on technical aspects, for instance, how well computationally demanding tasks are
solved using concurrent programming techniques. In the following discussion, we discuss
some of the insights that the numerical experiments conducted in the attached pub-
lications of this thesis provided and focus on the theoretical aspects of computational
efficiency.

Let us first focus on interpolation-based MOR methods. Similar to other structure-
preserving methods, the proposed Rosenbrock framework only allows enforcing half of
the H2 optimality conditions. The other half is essentially “sacrificed” to preserve the
pH structural constraints. This is why the structure-preserving IRKA-PH algorithm
typically yields ROMs with larger H2 errors than the unstructured IRKA algorithm
for many numerical examples. Incorporating minimal solutions of the KYP-LMI as
originally shown for ODE systems in [29] can improve the accuracy of IRKA-PH sig-
nificantly. In [A4], we showed a simple way to extend this result to the DAE case.
However, this extension is limited to cases where the proper subsystem of the FOM
can be extracted and is still sparse, which is not necessarily the case for models with
an index-one part. An advantage of interpolatory MOR is its computational efficiency
for very large-scale models since only solutions of linear systems are required. Com-
pared to balancing-based approaches, no large-scale linear matrix equations such as
Lyapunov, algebraic Riccati, or Lur’e equations have to be solved except for the case
where minimal solutions of the KYP-LMI are used to improve approximation quality.
A way to increase the efficiency of IRKA-PH even further is by utilizing surrogate mod-
els, as in the proposed algorithm CIRKA-PH. The numerical experiments conducted
in [A2] suggest that the underlying decoupling of reduction and optimization costs is
especially beneficial if very large models are considered for which the cost of reduction
is dominant.

The conducted numerical experiments in [A1–A5] also allow us to draw some conclu-
sions regarding optimization-based MOR methods. At first, it has to be decided whether
the H2 or H∞ norm is targeted. This depends on whether a small maximum or mean
error is desired in the output signal and, therefore, on the specific application. Suppose
the FOM has many characteristic peaks in its frequency response and is challenging to
approximate. In that case, optimization-based algorithms typically perform well in the
particular error norm they are designed for while being less accurate in the other. Since
the H2 optimization problem we focused on in this thesis is non-convex, convergence to
the global optimum is not guaranteed, and the quality of the local optimum obtained
upon convergence strongly depends on the initial model. The conducted experiments
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suggest that using unstructured ROMs combined with a residual optimization step as
proposed in [A5] may be beneficial in some cases to avoid the algorithm getting stuck
in flat local optima.

Regarding computational complexity, the optimization-based method PROPT is sen-
sitive to an increase of the state-space dimension rp of the proper subsystem. With
the proposed parameterization, the length of θ grows quadratically with rp, limiting
this approach to ROMs with approximately rp < 30. On the one hand, the proposed
pole-residue framework bears computational advantages compared to recently proposed
optimization-based methods formulated in the Lyapunov framework (see [84, 132]) since
no solutions of large-scale Lyapunov equations are required to evaluate the cost function
and its gradient. This is especially beneficial when models with very large state-space
dimensions are considered. On the other hand, an eigenvalue problem of dimension rp

has to be differentiated. From a computational point of view, this makes the gradient
computation more sensitive to an increase of the reduced order compared to methods
formulated in the Lyapunov framework. Note that the presented parameterization in
(3.16) is redundant since one particular transfer function Ĥp has infinitely many real-
izations Σ̂pH,p. However, adding dimensionality to optimization problems can also be
beneficial to change the optimization landscape favorably, as typically applied in the
training of neural networks. Due to the flexible parameterization chosen for the ROM,
it is also possible to reduce the number of optimization parameters. For instance, R̂p

could also be parameterized as a diagonal or tridiagonal matrix. However, how to
use this flexibility is an open research question. Similar to the problem of choosing
a reduced order r, it is challenging to select a suitable parameterization for a specific
application in advance.

Another way to reduce the computational burden of optimization-based algorithms
is the choice of a more accurate initialization. In the conducted experiments in [A5],
using unstructured ROMs for initialization combined with a residual optimization as
described in Section 3.3.3 led to a significant speed-up in optimization. However, in this
case, the method relies on unstructured MOR methods, which revokes the advantage of
being more independent of the original system’s realization. Since passivity enforcement
methods typically retain the unstructured ROM’s dynamics and feedthrough matrix,
these are also suitable for H2 initialization. However, they typically come with a higher
computational cost than the KYP initialization method proposed in Section 3.3.3 since
the perturbations of the unstructured ROM are optimized.
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Availability When computationally demanding tasks are considered, the actual im-
plementation of an algorithm clearly sets the boundaries of its applicability. For a
brief illustration, let us consider the gradient computation in the optimization-based
algorithm PROPT. As mentioned in Section 3.3.2, this requires the differentiation of
an eigenvalue problem with respect to the matrix entries of the parameterized ROM.
While many different algorithms can be used for this task in theory, not all are suitable
for our application. Since the number of optimization parameters grows quadratically
with rp, it is crucial that the derivatives are not computed in a loopwise but blockwise
fashion. For some algorithms, we can exploit the structure of the matrices to compute
several derivatives at once using Kronecker products. In our experiments, this led to
a more than 100 times faster gradient computation for larger reduced orders, which
significantly shifts the boundaries of the method, given that the gradient has to be
computed in each iteration.

In numerical linear algebra research, the role of software can therefore not be over-
stated. Since it is often not possible to completely grasp all implementation aspects of
an algorithm simply by studying the associated research paper, it is crucial that software
is shared within but also outside the research community to promote interdisciplinary
use. With MORpH, we published an open-source software toolbox specifically designed
to tackle different availability aspects. First, it provides an overview of the three pos-
sible MOR strategies described in Section 1.2 by implementing various algorithms for
which mostly no open-source software has been available before. Second, the system
decomposition approach described in Section 3.1 extends the availability of many algo-
rithms initially designed for ODE systems to medium-sized DAEs. Third, the toolbox
is enriched with demo scripts containing different examples and detailed documentation
that are supposed to enable users with different backgrounds to get acquainted with
the topic. Last but not least, it is open to contributions from the research community,
which are highly encouraged.

4.2 Conclusion and Outlook

In this thesis, we summarized and discussed novel model reduction algorithms and soft-
ware for the system class of linear, time-invariant port-Hamiltonian descriptor systems
originally published in [A1–A5]. We proposed a system decomposition approach that
enables a simple treatment of polynomial parts in the original transfer function that
may originate from algebraic constraints. This approach is used to derive two new
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MOR methods using tangential interpolation and direct system parameter optimiza-
tion, respectively.

At first, we considered practical examples where the FOM has staircase form, i.e.,
its state-space matrices exhibit a particular block structure. For these models, we ex-
ploited the structural properties of the Rosenbrock system matrix to develop a unifying
approach using tangential interpolation that simplifies the treatment of algebraic con-
straints. We showed that different shift selection strategies can be integrated into this
framework while guaranteeing minimal ROMs in pH-DAE form.

If the FOM is not in staircase form, the transformation to such a form might require
in-depth knowledge of the problem at hand or expensive computations in the large-
scale case. For these cases, we developed a new optimization-based MOR algorithm
that directly optimizes the matrix entries of the ROM with respect to the H2 error.
Using a formulation in the computationally efficient pole-residue framework makes our
approach less dependent on the original system’s state-space realization. It only relies
on evaluations of the associated transfer function and its derivative. Compared to state-
of-the-art methods, the direct H2 optimization also applies to large-scale pH models
governed by algebraic constraints.

These contributions ultimately led to the open-source software toolbox MORpH, the
first to address the structure-preserving representation, analysis, interconnection, and
model reduction of large-scale pH-DAEs. With interfaces to the sss and sssMOR tool-
boxes for unstructured MOR and implementations of various state-of-the-art algorithms
for passivity-preserving MOR and passivity enforcement, MORpH supports the three
different strategies for model reduction outlined in Section 1.2.

The discussion in Section 4.1 motivates future work that builds upon the presented
contributions. First, the view of model reduction through the lens of Rosenbrock ma-
trices may provide further benefits than the ones presented in this work. On the one
hand, it may be beneficial to identify further degrees of freedom for the reduction via
Petrov-Galerkin projections. On the other hand, further analysis of its structure is
required to assess whether the (potentially restrictive) assumption of the FOM being in
staircase form can be relaxed for specific pH-DAE subclasses. Moreover, we proposed
a simple way to integrate solutions of the KYP-LMI, which bears the potential to im-
prove the approximation quality of interpolatory MOR algorithms significantly [29].
Our approach relies on the computation of the proper original subsystem, which may
be infeasible in the large-scale context. Therefore, it has to be investigated whether this
can also be achieved by solving a KYP-LMI for the original (sparse) state-space matri-
ces using approximate low-rank solvers such as [100]. Regarding the optimization-based
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approach PROPT, there is still potential to improve the computational costs associated
with the method. Less redundant parameterizations of the ROM should be investigated
since PROPT may suffer from slow convergence for a large number of parameters. Re-
peated cost function and gradient evaluations may be computationally demanding for
very large-scale models, even though they only rely on samples of the original transfer
function at the mirrored eigenvalues of the ROM. One possibility to reduce the cost
of this sampling would be to use inexact solutions of the involved linear systems as
discussed, e.g., in [18] for interpolatory MOR. Alternatively, the FOM could also be
replaced locally with a (significantly smaller) surrogate model, as in CIRKA-PH, at a
point in the optimization where the eigenvalues of the ROM do not change significantly
anymore. Even though optimality with respect to the FOM would generally be lost, the
surrogate model can be used to fine-tune the residual vectors at a substantially lower
cost.

The new degrees of freedom, especially for the proposed optimization-based approach,
can also be used to drop some of the assumptions made throughout this thesis. First,
as typical for most standard MOR algorithms, we assumed asymptotic stability of the
FOM. However, the pencil sE−(J−R) may also contain finite eigenvalues on the imag-
inary axis, which occur, for instance, in the port-Hamiltonian modeling of poroelastic
networks [6]. For linear, stable ODE systems, the subsystem with purely imaginary
eigenvalues has a generalized Hamiltonian structure [113], which can be reduced sep-
arately in a structure-preserving way using symplectic MOR methods (see, e.g., [98,
114]). An extension to the DAE setting with the system decomposition approach pro-
posed in this thesis could be one possible way of tackling this problem. Second, we
assumed homogeneous initial conditions for the FOM. For inhomogeneous initial con-
ditions, the output y of the FOM is a superposition of two signals: one that originates
from the input u and one that originates from the non-zero initial state vector x0 [17].
If the initial state vector is not known a priori or different initial values are relevant
for the application at hand, the initial-state-to-output map must also be approximated.
Different methods have been proposed for linear, time-invariant ODE systems; see,
e.g., [17, 77, 92, 139] and the references therein. In the pH-DAE setting, we addition-
ally require that the ROM is again in pH-DAE form and that the initial state vector
of the ROM is consistent, i.e., such that the associated initial value problem has a so-
lution. For optimization-based methods, extending the ROM parameterization may be
beneficial to enforce these additional constraints. Third, we laid our focus on linear,
time-invariant pH systems in this thesis which is also the case for most state-of-the-art
methods. The treatment of other system classes such as linear time-variant, paramet-
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ric, discrete-time, or non-linear pH systems has only received little attention so far (see,
e.g., [4, 38, 86, 93, 136]) and bears many exciting research possibilities.

Lastly, since the port-Hamiltonian modeling paradigm is still a relatively new re-
search field, it has yet to be applied more extensively in modeling practice. Technical
applications where pH-DAE models naturally emerge, such as modeling electrical cir-
cuits with modified nodal analysis, are promising starting points for collaborations
among researchers and engineers. In the long term, we envision a port-Hamiltonian
research platform for this purpose and the software toolbox MORpH as well as the
port-Hamiltonian benchmark collection can be considered as first incentives towards
this goal.
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A.1 MORpH: Model Reduction of Linear Port-Hamiltonian
Systems in MATLAB

Summary: In this article, we present MORpH: a free, open-source MATLAB toolbox
for the efficient storage, analysis, interconnection and structure-preserving MOR of pH-
DAE models. The toolbox is structured in two main parts, and the article is organized
accordingly. The first part presents the definition of the phs class to represent sparse,
large-scale pH-DAE models in MATLAB. In MORpH, pH-DAE models are represented
by phs objects and may be modified and interconnected, while the preservation of the
pH structural constraints is either directly enforced or validated if performed by the
user. The second part of MORpH is a collection of state-of-the-art MOR algorithms to
reduce large-scale pH-DAE models in a structure-preserving way. These algorithms fall
into three major categories: pH-preserving MOR, passivity-preserving MOR, and pas-
sivity enforcement. After introducing the theoretical background, the working principle
of each algorithm is briefly described. We explain how MORpH supports users with
different experience levels and how algorithms initially designed for pH-ODE models
can be extended to models with algebraic constraints using a system decomposition ap-
proach. Numerical examples using two models from the port-Hamiltonian benchmark
collection illustrate the applicability and performance of selected algorithms. The arti-
cle concludes with remarks on how to get familiar with and contribute to the MORpH
toolbox.
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Abstract: We present a novel software toolbox MORpH

for the efficient storage, analysis, interconnection and

structure-preservingmodel order reduction (MOR) of linear

port-Hamiltonian differential-algebraic equation systems

(pH-DAEs). The model class of pH-DAEs enables energy-

based modeling and a flexible coupling of models across

different physical domains. This makes them particularly

suited for the simulation and control of complex techni-

cal systems. To promote the use of recent theoretical find-

ings in engineering practice, efficient software solutions are

required. In this work, we illustrate how possibly large-

scale pH-DAEs can be efficiently stored and interconnected

in MATLAB in an object-oriented way. We discuss three

structure-preserving MOR strategies that are supported by

MORpH and demonstrate the application and performance

of selected MOR algorithms by means of two benchmark

examples.

Keywords: descriptor systems; passivity; port-Hamiltonian

systems; structure-preserving model reduction.

Zusammenfassung: In diesem Beitrag wird eine neue

Software-Toolbox MORpH vorgestellt, die eine effizien-

te Speicherung, Analyse, Vernetzung sowie struktur-

erhaltende Modellordnungsreduktion (MOR) von linearen

port-Hamiltonschen differential-algebraischen Modellen

(pH-DAEs) ermöglicht. Die Modellklasse der pH-DAEs

erlaubt eine energiebasierte Modellierung und eine flexible

Kopplung von Modellen über verschiedene physikalische
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Domänen hinweg. Hierdurch ist sie besonders für die

Simulation und Regelung komplexer technischer Systeme

geeignet. Um die Anwendung neuer theoretischer

Erkenntnisse in der Ingenieurspraxis zu fördern, sind

effiziente Softwarelösungen erforderlich. In diesem Beitrag

zeigen wir, wie potenziell große pH-DAEs effizient und

objektorientiert in MATLAB gespeichert und vernetzt

werden können. Wir diskutieren drei strukturerhaltende

MOR-Strategien, die von MORpH unterstützt werden,

und demonstrieren die Anwendung ausgewählter

MOR-Algorithmen anhand zweier Benchmarks.

Schlagwörter: port-Hamiltonsche Systeme; Differential-

Algebraische Systeme; Passivität; Strukturerhaltende

Modellreduktion.

1 Introduction

Due to the ever-increasing complexity of today’s technical

systems, modeling and simulation have become an inte-

gral part of their development. A key factor in the mod-

eling process is flexibility: It is essential that parts of the

model can be easily modified, enriched with new data or

extended without having to change other parts of themodel

or jeopardizing important system-theoretic properties. The

port-Hamiltonian (pH) modeling paradigm is particularly

suited in this regard since it enables a hierarchical mod-

eling approach where parts of the system can be modeled

separately and subsequently interconnected to a network

of models in a structured way, possibly across different

physical domains.

If one additionally deals with large-scale models,

potentially originating from the spatial discretization of

distributed-parameter systems, MOR is an effective tool to

reduce simulation times and speed up the development pro-

cess. In order to leverage the advantages of the pHparadigm

also for the reduced-order model (ROM), it is important that

these algorithms are structure-preserving, meaning that the
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ROM fulfills the same pH structural properties as its orig-

inal counterpart. Preservation of the pH structure can be

established in different ways. Traditional approaches try to

directly enforce the pH structure on the ROM (see, e.g., [1–5]

and the references therein). Due to the tight connection

between pH systems and passive systems as well as positive

real systems [6], it is also possible to apply MOR methods

that preserve passivity or positive realness to the original

model and subsequently try to find a pH representation for

the ROM (see, e.g., [7–9]). Moreover, there is a large body

of research on how to establish passivity for models that

are close to being passive by using passivity enforcement

techniques (see [10] for an overview). In the context of MOR,

these can also be exploited if the original pH model is first

reduced using standard MOR techniques and subsequently

perturbed to obtain either a passive model or directly a pH

representation.

Despite the fact that all of these areas have been very

active fields of research in the last two decades, there is

still very little software available. Compared to the MOR of

general (unstructured) systems forwhich different software

packages exist (see, e.g., [11–13]), the available software for

pH systems is usually provided to accompany and repro-

duce the numerical experiments of specific research papers

(see, e.g., [7, 14]). However, software and benchmarks can

be considered key drivers not only to develop and evaluate

novel numerical methods but also to make them accessible

to engineering practice.

In this work, we therefore propose a novel software

toolbox which is, to the best of our knowledge, the first to

implement a diverse set of algorithms specifically targeted

at the storage, analysis and MOR of linear pH systems. The

software is open-source and provides interfaces for users

with different experience levels as well as to other software

packages. It is easy to extend and therefore open to con-

tributions from the (pH-)MOR community which are highly

encouraged.

TheMORpH toolbox is structured in twomain parts: the

phs class definition to represent linear (possibly large-scale)

pH models in MATLAB as well as MOR algorithms to reduce

these models in a structure-preserving way. We organize

this paper accordingly: In Section 2 we describe how the

phs class and its corresponding functions can be used to

efficiently store, analyze and interconnect sparse pH mod-

els of possibly large state-space dimension. In Section 3 we

provide an overview of how the three mentioned structure-

preserving MOR approaches are supported in our tool-

box. We illustrate the applicability and performance of

selected MOR algorithms using two benchmark examples

in Section 4 and conclude with some remarks on how to

get started with and contribute to the MORpH toolbox in

Sections 5 and 6.

2 Sparse port-Hamiltonian systems

2.1 Preliminaries

We consider linear time-invariant (LTI) systems of the form

Σ:
{

Eẋ(t) = Ax(t)+ Bu(t), Ex(0) = 0,

y(t) = Cx(t)+ Du(t),
(1)

with state vector x(t) ∈ ℝn, inputs u(t) ∈ ℝm, outputs

y(t) ∈ ℝm for all t ∈ [0,∞) and constant matrices

E, A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝm×n and D ∈ ℝm×m. We call

systemswhere the descriptormatrix E is the identitymatrix

explicit and implicit otherwise. Systems with singular

descriptor matrix E are referred to as differential-algebraic

equation (DAE) systems and ordinary differential equation

(ODE) otherwise. In the following, we will assume that the

system is regular, i.e., the matrix pencil sE − A is invertible

for some s ∈ ℂ. Then, the input-output behavior of the

system in the frequency domain is described by its transfer

function

H(s) = C(sE − A)−1B+ D. (2)

In this work, we focus on pH-DAEs, a subclass of the

system class in (1) with additional structural properties

that allow a physical interpretation and consequently, an

energy-based viewpoint.

Definition 1. [15, 16] A linear time-invariant descriptor sys-

tem

ΣpH:

{
Eẋ(t) = ( J − R)Qx(t)+ (G− P)u(t),

y(t) = (G+ P)TQx(t)+ (S + N)u(t),
(3)

where E, Q, J, R ∈ ℝn×n, G, P ∈ ℝn×m, S, N ∈ ℝm×m, is

called a pH-DAE, if the following conditions are satisfied:

(i) The structure matrix

Γ :=
[
QT JQ QTG

−GTQ N

]

is skew-symmetric, i.e., Γ = −ΓT.

(ii) The dissipation matrix

W :=
[
QTRQ QTP

PTQ S

]

is positive semidefinite, i.e.,W = WT ≥ 0.
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(iii) The Hamiltonian is quadratic; it reads

(x) = 1

2
xTQTEx,

with QTE = ETQ ≥ 0.

Systems with invertible descriptor matrix E are

referred to as port-Hamiltonian ordinary differential

equation systems (pH-ODEs) in the following. As shown in

[15, 17], the modeling of physical systems often naturally

leads to pH-DAE realizations which are in (or close to)

staircase form derived in [18, 19]. This form reveals

further properties of the pH-DAE system, such as its

differentiation index. Conversely, every pH-DAE as in

Definition 1 can be transformed to staircase form via

orthogonal transformations that preserve the pH structure.

The staircase form is also beneficial in the context of MOR

since it enables a decomposition of the transfer function

which is discussed in more detail in Section 3.3.3.

2.2 The phs class

In MATLAB, small to medium-scale LTI models Σ can be

represented as instances of the ss class and sparse large-

scale models with the class sparss which are both part of

the Control System Toolbox. However, storing pH-DAEs ΣpH

in this way would generally result in a loss of the pH struc-

ture. In MORpH, we therefore introduce two new system

classes phs and phsRed to represent (sparse) large-scale and

(full) small to medium-scale pH-DAEs, respectively. Figure 1

provides an overview of the most important properties and

functions. The class phsRed is derived from phs with addi-

tional properties to represent ROMs. We describe this class

in more detail in Section 3.3.1. In the following, we focus on

properties and functions of the phs class and show how its

instances can be interconnected in a structure-preserving

way.

2.2.1 Properties

Each instance of the phs class stores the system matrices E,

J, R,Q, G, P, S, andN in the sparsematrix format per default

to reduce storage demands. Additionally, each instance has

a set of private variables which describe important prop-

erties of the system, such as dim, the dimension n of the

system. Further logical properties which may be relevant

for simulation andMOR include, for instance, the parameter

isMIMO to checkwhether the systemhasmultiple inputs and

hasStaircase, which is true when the system has staircase

form. These properties cannot be altered directly because

Figure 1: UML class diagram of the classes phs to represent sparse

pH-DAEs (see Section 2.2) and phsRed to represent reduced-order

pH-DAEs (see Section 3.3.1).

they depend on the system matrices. Their purpose is to

provide quick access to information which would other-

wise require the check of certain conditions every time it

is requested.

2.2.2 Object construction

A phs object can be created by passing the respective system

matrices. Supported input patterns include

sys = phs (J, R, Q, G)
sys = phs (J, R, Q, G, E, P, S, N)
sys = phs (..., Opts)

At creation of a phs object, the system matrices are

validated by the function inputValidation. Compared to
the classes ss and sparss where the matrices are checked

for correct dimensions, this additionally requires validation

of the symmetry and definiteness properties presented in

Definition 1. For instance, we need the smallest real eigen-

value ofW to determine whether it is positive semidefinite.

For this, we choose MATLAB′s built-in functions eig for

small models and eigs for large-scale models. In floating-

point arithmetic, this value can only be computed within a

certain error range and therefore, a tolerance is used for the

validity decision.
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If any of the constraints is violated, object creation will

fail and the function will throw an error indicating the

corresponding constraint violation. Users may change the

tolerance value manually or deactivate system validation

completely, which may be beneficial for very large sys-

tems to save computation time. These configurations may

be applied by passing the struct Opts to the constructor.

The respective fields are named inputValidation and

inputTolerance.

2.2.3 Functions

The phs class implements functions which facilitate inter-

action with its instances. These functions enable the user

to analyze the underlying pH system, to access instance

properties, and to transform an instance. The following is

a non-exhaustive list of examples:

1. System analysis:

– Computation of important system properties, e.g.,

with functions eig, eigs, norm, freqresp.
– Visualization of system properties, e.g., with func-

tions bode, step, impulse, pzmap.
– Most functions in this category use or behave in

a similar fashion to their counterparts from the

Control System Toolbox for better usability.

2. Property access:

– Setter methods allow the modification of the sys-

tem matrices, e.g.:

sys.S = 0
– This automatically triggers an update of the

deduced logical properties of the phs object (see

Figure 1). For example, upon changing the descrip-

tor matrix sys.E of a system from E = In to E ≠ In,

the logical property isImplicit is automatically
updated from false to true.

– The pH structural constraints are not validated

automatically but can (and should) be checked by

a manual call of the validation routine:

isPH = phs.inputValidation(sys)
3. System transformation:

– phs objects can be converted to ss objects from the

Control System Toolbox and sss objects from the

sss/sssMOR Toolbox [12] by the functions phs2ss
and phs2sss, respectively.

– phs objects may be transformed to other rep-

resentations. For example, ODE systems may

be transformed to explicit form (E = In) via

makeExplicit and DAE systems to staircase form
via toStaircase.

– All transformations in this category retain the

system’s transfer function H.

2.2.4 Power-preserving interconnection

An important property of pH models is that if they are

interconnected in a power-preserving way, the intercon-

nected model is again pH. This enables a network mod-

eling approach, where different subsystems are modeled

independently and subsequently coupled, possibly across

different physical domains. Power preservation of the inter-

connection is ensured by means of Dirac structures. Con-

sider the interconnection of two pH systems Σ1
pH

and Σ2
pH

as in (3) with power-conjugated input-output pairs (u1, y1)

and (u2, y2), respectively, using a Dirac structure I (see

Figure 2(a)). The external port of the resulting intercon-

nected system is given by (u, y).

Let us define the vectors of flows fI :=
[
yT
1
, yT

2
, yT

]T ∈ 

and efforts eI :=
[
uT
1
, uT

2
, uT

]T ∈  with  = ∗. In linear

coordinates, the matrix kernel representation of the Dirac

structureI ⊂  ×  is stated as

I :={( fI , eI ) ∈  × |FI fI + EIeI = 0},

with EI , FI ∈ ℝnI×nI that satisfy the conditions

(i) EIF
T
I
+ FIE

T
I
= 0,

(ii) rank[EI , FI] = nI ,

wherenI = dim (see [20, Chapter 2.4]). TheHamiltonian of

the interconnected system is the sum of the Hamiltonians of

its subsystems.

TheMORpH toolbox supports the intuitive construction

of pH networks by its object-oriented nature and different

Dirac structure representations. These include gyrator and

transformer interconnections as well as the negative feed-

back interconnection which is beneficial for energy-based

control of pH systems and depicted in Figure 2(b). Its Dirac

structureI is represented by

EI =
⎡⎢⎢⎣
−I 0 I

0 −I 0

0 0 0

⎤⎥⎥⎦, FI =
⎡⎢⎢⎣
0 −I 0

I 0 0

I 0 I

⎤⎥⎥⎦. (4)

with the same splitting as in fI , eI and we obtain the inter-

connected system via

sysI = feedback(sys1, sys2)

Remark 1. The MORpH toolbox also supports interconnec-

tions of pH-DAEs that are not structure preserving. Arith-

metic operations on phs objects are also possible. For

instance, the error system between two pH systems, which

is important for MOR, can simply be computed via:
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(a) (b)

Figure 2: Power-preserving interconnections of pH-DAEs supported by MORpH. (a) Schematic of the power-preserving interconnection of two pH

systems Σ1

pH
, Σ2

pH
using a Dirac structureI . The external, power-conjugated input-output pair of the interconnected system is given by (u, y). (b)

Negative feedback interconnection as an example with a Dirac structure representation as in (4).

sysErr = sys1 – sys2

In this case, the interconnected model sysErr is repre-
sented as a sparse sss object of the sss/sssMOR toolbox [12].

3 Model reduction of pH-DAEs

Before we start with the description and implementa-

tion details of the different MOR methods implemented in

MORpH, let us first recapitulate some properties of pH-DAEs

that are relevant for MOR purposes.

3.1 Preliminaries

The goal of structure-preserving MOR of pH-DAEs is to find

a ROM:

Σ̂pH:

⎧⎪⎨⎪⎩
Ê ̇̂x(t) = (̂J − R̂)Q̂x̂(t)+ (Ĝ− P̂)u(t),

ŷ(t) = (Ĝ+ P̂)TQ̂x̂(t)+ (̂S + N̂)u(t),
(5)

where Ê, Q̂, Ĵ, R̂ ∈ ℝr×r, Ĝ, P̂ ∈ ℝr×m, Ŝ, N̂ ∈ ℝm×m with

the same structural constraints (i)–(iii) as in Definition 1

and such that r ≪ n as well as y ≈ ŷ for certain inputs u.

The ROM has an associated transfer function Ĥ and its

approximation quality is typically assessed by the 2 and

∞ norm of the error function H − Ĥ (see Remark 1).

Themain difference to classicMORmethods for general

LTI systems is that we demand a preservation of the pH

structural constraints in the reduction process. For this task,

two closely related properties can be exploited: passivity

and positive realness.

3.1.1 Passivity and positive realness

A physical property which is of crucial importance for the

interconnection and time-domain simulation of LTI systems

is the concept of passivity.

Definition 2. [21] An LTI system Σ is considered passive if

there exists a state-dependent, non-negative storage func-

tion (x) :ℝn → ℝ≥0 such that for any 𝜏 ∈ ℝwith τ > 0 the

dissipation inequality

(x(𝜏))− (x(0)) ≤

𝜏

∫
0

y(t)Tu(t) dt, (6)

holds for any smooth u, y and solution trajectory x satis-

fying (1).

We will denote LTI systems with this property by Σpa.

Since it is difficult to assess passivity via the dissipation

inequality, a related property of the system’s transfer func-

tion H is frequently used.

Definition 3. [22, Theorem 2.7.2] A transfer function H is

called positive real if

(i) H has no poles for all s ∈ ℂ,Re(s) > 0.

(ii) The Popov function

Ψ(s) :=H(s)+ H(−s)T (7)

is positive semidefinite for each s = i𝜔 with 𝜔 ∈ ℝ
which is not a pole of H.

(iii) Every pole i𝜔0 ∈ iℝ of H is at most simple. The

residue matrix lims→i𝜔0
(s− i𝜔0)H(s) for finite 𝜔0, and

lim𝜔→∞
H(i𝜔)

i𝜔
for poles at infinity, is Hermitian positive

semidefinite.

All pH systems ΣpH are inherently passive and all passive

LTI systems Σpa do in turn have a positive real transfer

function. Conversely, a system Σ with positive real trans-

fer function is passive if it is behaviorally controllable, i.e.,

rank[(sE − A),B] = n for all s ∈ ℂ. The question that

remains is which passive systems Σpa admit a pH represen-

tation ΣpH.

3.1.2 The Kalman–Yakubovich–Popov inequality

As shown in [6, 20], a pH representationΣpH of a passive sys-

temΣpa exists if and only if the Kalman–Yakubovich–Popov
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(KYP) inequality

[
−ATX − XTA CT − XTB

C − BTX D+ DT

]
≥ 0, XTE = ETX ≥ 0, (8)

has a solution X ∈ ℝn×n, such that

kerX ⊆ ker C ∩ kerA. (9)

In particular, for passive ODE systems which are behav-

iorally observable, i.e., rank[(sE − A)T, CT] = n for all s ∈ ℂ,
the solutionX is invertible and a pH-ODE representation can

be found, for example, by setting Q = X and

J = 1

2
(AX−1 − X−TAT ), R = − 1

2
(AX−1 + X−TAT ),

G = 1

2
(X−TCT + B), P = 1

2
(X−TCT − B),

N = 1

2
(D− DT ), S = 1

2
(D+ DT ).

This result is also beneficial in the DAE setting: Since

every passive DAE may be decomposed into a passive ODE

part and an improper part that alreadyhas pH structure (see

[5, 6] and Section 3.3.3), it is sufficient to solve amodifiedKYP

inequality for the ODE part.

What are the consequences of these results for model

reduction? We may generally assume that a ROM Σ̂ is min-

imal (and therefore behaviorally controllable and observ-

able) since otherwise, its state-space dimension r could be

further reduced without changing its transfer function Ĥ

until a minimal representation is obtained. Consequently,

for ROMs, the concepts of passivity, positive realness and the

existence of a pH representation are equivalent and instead

of searching directly for reduced ROMs Σ̂pH in pH form one

can also search for passive (or positive real) ROMs Σ̂pa.

3.2 Overview of MORmethods

These theoretical findings unveil three different strategies

for the structure-preserving MOR of pH-DAEs which are

depicted in Figure 3:

1. PH-preserving MOR (pH-MOR).

2. Passivity-preservingMOR (pa-MOR)+KYP Transforma-

tion (ss2phs).
3. Standard MOR (sss-MOR) + Passivity Enforcement (pa-

ENF) + KYP Transformation (ss2phs).

TheMORpH toolbox supports each of these pathways with a

set of algorithms that are listed in Table 1 for each category

pH-MOR, pa-MOR and pa-ENF with their corresponding ref-

erences. In the following, we will only outline the basic

functionality of each algorithm to provide an overview and

we refer the reader to the given references in Table 1 and

to the respective functions and demo scripts in the MORpH

toolbox for further information.

3.2.1 PH-preserving MOR (pH-MOR)

There are two major approaches to directly search for a

ROM in pH form: using Petrov–Galerkin projections or an

optimization of the reduced system matrices.

Petrov–Galerkin methods are based on an approxi-

mation x(t) ≈ Vx̂(t) of the original state vector, where the

columns of V ∈ ℝn×r form a basis for a suitably cho-

sen subspace of dimension r. Similar to traditional MOR

methods, this subspace is either chosen to balance the

original system or to interpolate its transfer function.

Figure 3: Overview of different MOR strategies for pH-DAEs supported by MORpH. The goal is to find a ROM Σ̂pH which is stored as a phsRed object

and highlighted in blue. The boxes pH-MOR, pa-MOR and pa-ENF represent different algorithm categories and the function ss2phs computes a pH
representation for a passive system by solving the KYP inequality in (8). The interface to the MATLAB toolboxes sss and sssMOR is grayed out.
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Table 1:Model reduction and passivity enforcement methods supported by MORpH. Depending on their configuration, some algorithms may rely on

third-party software which is to be downloaded separately and described in more detail in the Appendix.

Category Method Function Principle References

pH-MOR

Effort-constraint method ecm Balancing [23]

PH-balancing balPH Balancing [1]

Arnoldi-PH arnoldiPH Interpolation [24]

IRKA-PH irkaPH 2-inspired interpolation [3, 19]

CIRKA-PH cirkaPH 2-inspired interpolation [25]

TRKSM-PH trksmPH Adaptive interpolation [26, 27, 33]

PROPT prOpt 2-inspired optimization [5, 29, 34]

LYAPOPT lyapOpt 2-inspired optimization [28]

SOBMOR sobmor ∞-inspired optimization [5, 30, 34]

IHA-PH ihaPH Interpolation+ feedthrough opt. [33, 35, 36]

pa-MOR

Spectral factor MOR sfmor Spectral factorization [7]

Positive real balancing prbt Balancing [31, 32]

Mixed Gramian balancing prbt Balancing [9]

Dominant spectral zero method dszm Interpolation [8]

pa-ENF

Local passivity enforcement locPasEnf Sampling+ eigenvalue perturbation [10]

Hamiltonian passivity enforcement hamPasEnf Eigenvalue perturbation [10, 37]

Positive real passivity enforcement prlPasEnf Optimization [10]

Structure-preserving variants of the classic balanced trun-

cation algorithm implemented in MORpH are the effort-

constraint method ecm [23] and a recently proposed variant
balPH [1] that enables a classical a priori error bound under
certain conditions. InterpolatoryMORmethods enforce tan-

gential interpolation conditions between the original and

reduced transfer function at selected complex interpolation

points or shifts. In arnoldiPH [24], these shifts can be cho-
senmanually. In irkaPH [3] and its adaptation cirkaPH [25]
they are chosen automatically in an 2-inspired way using

fixed-point iterations and in trksmPH [26, 27] the ROM is

built adaptively, meaning that in each iteration one or sev-

eral new shifts are chosen in regions where the approxima-

tion quality of the ROM is still poor.

Optimization-based techniques are targeted toward

low errors in either the 2 or ∞ norm. The 2 opti-

mization problem can be formulated based on Lyapunov

equations (lyapOpt) [28] or based on the pole-residue

expansion of the ROM (prOpt) [29]. An ∞-inspired opti-

mization of system parameters is implemented in sobmor
[30].

An example of how different algorithms of the MORpH

toolbox can be combined is the method implemented in

ihaPH which combines the interpolatory approach irkaPH
(or cirkaPH) with an ∞-inspired optimization of the

reduced feedthrough matrices Ŝ, N̂ . All methods in this

category directly yield reduced pH-DAEs Σ̂pH represented

by phsRed objects which are described in more detail in

Section 3.3.1.

3.2.2 Passivity-preserving MOR (pa-MOR) and KYP

transformation

Since every pH-DAE as in Definition 1 is inherently passive

(and therefore positive real), it may also be reduced byMOR

methods which preserve passivity (or positive realness).

The different approaches for passivity-preserving MOR

(pa-MOR) implemented in the MORpH toolbox are again

based on either system balancing or tangential interpola-

tion. Balancing-based approaches rely on the solution of

algebraic Riccati equations or a mixture of Riccati and

Lyapunov equations (prbt) [31, 32, 9]. With interpolatory

methods, passivity of the original model can be retained by

interpolating the original systemat its spectral zeros(dszm)
[8]. The algorithm sfmor [7] relies on a spectral factoriza-

tion of the Popov function in (7). If, instead of the original

model, the corresponding spectral factor is considered, both

traditional balancing and interpolatory techniques for gen-

eral LTI systems can be applied to find a reduced spectral

factor and subsequently compute the corresponding passive

ROM.

Then, under the assumption that the obtained ROM

Σ̂pa is minimal, a pH representation Σ̂pH can be computed
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by the function ss2phs which solves the KYP inequality

in (8).

3.2.3 Standard MOR (sss-MOR) and passivity

enforcement (pa-ENF)

The application of standard (unstructured) MOR techniques

to pH systems will generally lead to ROMs Σ̂ which are

neither passive nor in pH form. However, if the ROM accu-

rately approximates the input-output characteristics of the

passive full-order model (FOM) Σpa, one can hope that the

passivity violations are only minor. In this case, passivity

of the ROM can be enforced in a post-processing step by

slight perturbations of its system matrix entries (pa-ENF).

This step evidently introduces an additional approximation

errorwhich is, however, expected to be small if the passivity

violations are minor.

After reduction, forwhich any of the unstructuredMOR

algorithms of the sssMOR toolbox [12] can be used, this

strategy initially requires a passivity check of the obtained

unstructured ROM Σ̂ to determine whether a perturbation

is necessary. Passivity validation techniques rely on check-

ing positive realness, i.e., the conditions in Definition 3, or

whether a solution to the KYP inequality in (8) can be found.

Existing passivity enforcement techniques are closely

linked to these passivity validation techniques. Positive real-

ness is usually verified by sampling the Popov function Ψ
along the imaginary axis. Accordingly, passivity is enforced

by identifying local passivity violations on the imaginary

axis and nudging the negative eigenvalues of Ψ towards

positivity (locPasEnf) [10]. An alternative way to assess

positive realness is checking if spectral zeros of Ψ are

present on the imaginary axis. The spectral zeros can then

be calculated as eigenvalues of a Hamiltonian matrix asso-

ciated with the inverted system representation of Ψ. If this
matrix has purely imaginary eigenvalues, these are per-

turbed in hamPasEnf such that they move off the imaginary
axis to render the system passive [37]. In both methods,

the obtained passive ROM is transformed to pH form via

the function ss2phs. The third approach implemented in

prlPasEnf searches for the minimum perturbation such

that the KYP inequality in (8) has an invertible solution [10]

and therefore, a pH representation is directly obtained.

3.3 Implementation

3.3.1 The phsRed class

Since reduced pH-DAEs Σ̂pH have the same structural prop-

erties as their original counterparts ΣpH, it is reasonable to

represent them in a similar way. In MORpH, systems Σ̂pH

are represented as objects of the phsRed class (see Figure 1).

This class inherits all attributes andmethods from its super-

class phs and consequently one can, for instance, run func-

tions such as the input validation also on ROMs. This is

important since even structure-preserving algorithms may

destroy the pH structure due to numerical errors. It also

means that ROMs can be interconnected with other pH sys-

tems as described in Section 2.2.4. As shown in Figure 1,

there are, however, some differences. Compared to phs, the

system matrices are not represented sparse since the ROM

matrices are comparatively small and generally dense. In

this case, a sparse representationmay even increase storage

demands. Also, since every phsRed object has an associated

MOR method, one can store information on this method

with three public attributes:

1. method: Function handle of the generating MOR

method.

2. parameters: Struct with parameters used for the MOR
method.

3. info: Struct with information on the MOR method,

such as the number of iterations in optimization-based

methods.

This quite general definition of MOR information enables

the necessary flexibility to account for a variety of MOR

methods and also allows a straightforward nesting of infor-

mation if different methods are applied consecutively.

3.3.2 MOR functions

InMORpH, the signatures of the functions in Table 1 follow a

similar pattern as in other MOR packages (see, e.g., [12, 13]):

[sysOut, ...] = fct(sysIn, ..., Opts)

Every function fct expects at least a system sysIn as
an input. The output system sysOut is either a reduced

system (for pH-MOR and pa-MOR functions), transformed

system (for phs2sss and ss2phs), or perturbed version (for
pa-ENF functions) of the input system sysIn. The involved
system classes can be extracted from Figure 3 for each cate-

gory. For example, the algorithms of the category pH-MOR

expect phs objects as inputs and produce phsRed objects

as outputs. In addition to the system output sysOut, some
functions return variables which give more details on the

results.

Some methods may require or accept additional,

function-specific input arguments. For example, the

projection-based method arnoldiPH expects a set of points
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at which the transfer function is interpolated. Moreover,

all algorithms allow detailed configuration by the structure

array (struct) of execution parameters Opts. The structure
fields vary from function to function and are explained in

the header of each function.

Prior to execution, most of the toolbox functions per-

form a step we call input parsing. Not only is this step

responsible for interpreting different input schemes (func-

tion overloading), it also checks the given arguments for

validity and coherence and sets default values for non-

provided arguments. This allows us to reduce runtime

errors and to inform the user early on if provided argu-

ments are not applicable.

To parse the option struct Opts, we provide and employ
the implementation phsMOR_parseOpts which validates

options based on a set of default parameters. It checks input

types, compares values to constraints, sets default values

where required, and is compatible with nested options.

To illustrate the configuration process, let us consider

the following call of the IRKA-PH algorithm:

sysRed = irkaPH(sys, s0, Opts)

The (optional) input variable s0 is a vector of initial

interpolation points. The input parsing step ensures that the

length of this vector does not exceed the order of the original

system. A potential value for the (optional) parameter Opts
is a struct with fields

maxIter: positive integer
tol: non-negative double

stopCrit: string
arnoldiPH: struct

...

Here, the entries maxIter, tol, and stopCrit
define termination conditions for the iterative algorithm.

stopCrit refers to a set of convergence criteria. The option
struct with name arnoldiPH is passed on to the subroutine
with the same name. Among others, we provide default

values for maxIter and tol and a set of valid strings for

stopCrit. These are used for checking user inputs with

phsMOR_parseOpts. Execution parameters which are not

provided will be filled with default values.

3.3.3 A system decomposition approach

Not all of the algorithms listed in Table 1 are suitable for the

entire system class of pH-DAEs. In particular, many meth-

ods are proposed for pH-ODEs only, i.e., they require the

descriptor matrix E to be invertible. With the MORpH tool-

box, these methods can still be applied to pH-DAEs using a

functionwrapperwhich is based on a systemdecomposition

approach that exploits the pH structural constraints.

As shown in [5], the transfer function of every pH-DAE

ΣpH may be decomposed into the sum

H(s) = Hp(s)+1 ⋅ s, (10)

such that

(i) Hp denotes the transfer function of a pH-ODE system,

(ii) 1 ∈ ℝm×m is symmetric positive semidefinite.

Note that the ROM Σ̂pH has to match the improper

polynomial part 1 ⋅ s of the FOM ΣpH exactly in order to

keep the2 and∞ errors bounded. Using a rank-revealing

factorization1 = LLT with L ∈ ℝm×q, this polynomial part

may be represented by the following pH-DAE[
Iq 0

0 0

]
ẋpol(t) =

[
0 Iq
−Iq 0

]
xpol(t)+

[
0

LT

]
u(t),

ypol(t) =
[
0 L

]
xpol(t),

(11)

with xpol partitioned as xpol(t) =
[
x1(t)

T, x2(t)
T
]T
, where

x1(t), x2(t) ∈ ℝq for each t ∈ [0,∞).

A corresponding pH-ODE representation for the

remaining transfer function Hp can be found, for instance,

using staircase transformations as in [18] (see [5] for

details). This pH-ODE may then be reduced by any MOR

method suitable for pH-ODEs, yielding a ROM with transfer

function Ĥp. The final ROM Σ̂pH in pH-DAE form with

transfer function

Ĥ(s) = Ĥp(s)+1 ⋅ s, (12)

is obtained by interconnecting both the reduced pH-ODE

part and the system in (11) in a structure-preservingway (see

Section 2.2.4).

In MORpH, this system decomposition approach is

implemented by the function pHMOR_DAE_Wrapper. For
instance, the IRKA-PHalgorithmmaybe applied to pH-DAEs,

simply via

redSys = pHMOR_DAE_Wrapper(@irkaPH, ...

sys, s0, Opts)

We highlight that generally, and especially if the orig-

inal model does not have staircase form, the pH-ODE sys-

tem with transfer function Hp is dense, which may signif-

icantly increase the computational costs of the reduction.

Moreover, the computation of staircase forms relies on a
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series of rank conditions which may be sensitive under

perturbations (see, e.g., [17, 38]). Therefore, especially for

large-scale systems, more efficient approaches are required

which exploit the sparsity of the original system matrices

and do not rely on (possibly expensive and ill-conditioned)

transformations. This is an open research problem which

was recently addressed in, e.g., [5, 16, 19, 33, 34].

4 Numerical examples

To demonstrate the functionality of the MORpH toolbox,

we apply a selection of the methods in Table 1 to two pH-

DAE benchmark models. All computations were conducted

using MATLAB R2021b (version 9.11.0.1873467) on an Intel®

CoreTMi7-8700 CPU (3.20 GHz, 6-Core) with 32 GB RAM. The

code to compute the results presented in this section is

publicly available at [39]. AllMOR algorithmswere executed

with their default parameters, which may be obtained from

the input parsing section in each function.

4.1 Benchmark models

The first benchmark (msd_ode) is the pH-ODE model of

a large-scale mass-spring-damper chain with 10,000 states

and two inputs and outputs. To demonstrate the system

decomposition approach presented in Section 3.3.3, we addi-

tionally consider an electrical circuitmodeled by amedium-

sized pH-DAE in staircase form with differentiation index

two (rcl_dae2). The properties of bothmodels, represented
as phs objects, are summarized in Table 2 and the cor-

responding frequency responses are given in Figure 4. It

shows that the transfer function of rcl_dae2 contains a

linear improper part 1 ⋅ s (originating from the algebraic

constraints) which can be treated with the system decom-

position approach from Section 3.3.3. Both models are taken

from the port-Hamiltonian benchmark collection1 to which

we refer for a more detailed physical description. The sys-

tem matrices are publicly available at [39].

4.2 Results

We first consider model msd_ode and create ROMs with

dimension r = 10. Figure 5 shows the frequency error plots

for a selection of MOR algorithms with different func-

tionality. Figure 5(a) contains the results for different pH-

MOR algorithms. It can be observed that 2-inspired algo-

rithms produce higher errors for low frequencies while

1 https://port-hamiltonian.io.

Table 2: phs properties of the considered benchmark models.

Model dim isMIMO isDAE hasStaircase

msd_ode 10,000 1 0 0

rcl_dae2 1502 0 1 1

Figure 4: Frequency responses of the mass-spring-damper chain

msd_ode and the electric circuit rcl_dae2.

∞-inspired methods generally produce lower maximum

gains but higher errors in high-frequency regions. The

results for selected algorithms from the pa-MOR and pa-ENF

groups are plotted in Figure 5(b). The passivity enforce-

ment methods prlPasEnf and locPasEnf were applied

to a (non-passive) ROM Σ̂ created with the (unstructured)

IRKA algorithm, which was also used to reduce the spectral

factor in sfmor. Consequently, all three methods produce
errors which are very similar to the ones obtained with

IRKA (which are not plotted here). The large-scale algebraic

Riccati equations in sfmor and prbt are solved with the

iterative low-rankmethod in [40] that is implemented in the

M-M.E.S.S. toolbox [41]. In the case of prbt, the method fails
to compute an accurate solution to one of the two Riccati

equations with the default settings, which leads to larger

errors compared to the other algorithms. This is a potential

drawback of all algorithms that rely on the solution of large-

scale matrix equations.

For the medium-sized pH-DAE model rcl_dae2 we

choose the same settings and compute reduced order

models with different dimensions for each algorithm. In

Figure 6, we plot the2 and∞ errors over the dimension r

of the proper part of the ROM. Note that the final dimension

of the ROMs is always increased by two due to the attach-

ment of the improper part. Figure 6 shows that the errors

decrease for all methods if the reduced order r is increased,

which is expected. The fact that the errors decrease quite

slowly is an indication that the rcl_dae2 model is quite
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(a) (b)

Figure 5: Reduction of the large-scale mass-spring-damper model msd_ode. Frequency errors for a selection of (a) PH-MOR algorithms (b) Pa-MOR
and pa-ENF algorithms.

(a) (b)

(c) (d)

Figure 6: Reduction of the pH-DAE system rcl_dae2. Shown are the2 and∞ errors for different reduced orders r and selected algorithms from the

MOR categories pH-MOR (left) and pa-MOR/pa-ENF (right).
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difficult to approximate. One consequence is that methods

that are specifically tailored towards minimizing one of the

two error norms generally perform better in this norm but

worse in the other. Another consequence is that unstruc-

turedMORmethods typically do not yield passive ROMs and

are therefore not suited for a structure-preserving reduc-

tion. In this case, the unstructured IRKA algorithm only

delivers a ROM which is passive (and therefore has a pH

representation) for r = 8. However, the unstructured ROMs

produced by IRKA do not significantly violate the passivity

constraints which is why the passivity enforcement tech-

niques prlPasEnf and locPasEnf do not produce signifi-

cant errors in their perturbation and perform well in both

norms. A possible disadvantage of the (indirect) reduction

methods in pa-MOR and pa-ENF can be observed for r = 2.

Here, the algorithm locPasEnf produces a ROM Σ̂pa which

is very close to the passivity constraint andno solution of the

KYP inequality, and therefore no pH representation Σ̂pH, can

be found.

5 Getting started

The MORpH toolbox is available on GitHub2 and can be

cloned with Git or downloaded as a ZIP archive. After

downloading the source code, the script setup_morph helps
setting up the MATLAB environment for the toolbox. It

adds the toolbox to the MATLAB path, checks the path

for third-party software and assists with its installation if

desired.

Once the toolbox is installed, the demo files may give

a first impression on how to use the toolbox. They are

located in directory ⧵demos and are implemented in the

Live Code File Format (.mlx). This allows to enhance code

snippets on how to use an algorithm with explanations of

theoretical aspects. Additional to these introductory files,

we also provide detailed documentation to every class and

function. This information can either be directly accessed

from the file header or it can be prompted to the console

with MATLAB’s help or doc commands.
Contributions to our toolbox are welcome. In case you

would like to enhance existing code or add new algorithms,

you can do so by creating a fork of our repository and

starting a pull request. To ensure a coherent appearance of

the toolbox, coding guidelines and the header template can

be found in the ⧵src directory.

2 https://github.com/MORLab/MORpH.

6 Conclusions

We have presented MORpH – a free, open-source MAT-

LAB toolbox to store, analyze and reduce large-scale pH-

DAEs. The MORpH toolbox has similar functionalities as

toolboxes for general LTI systems but additionally considers

pH structural constraints. This includes the validation of

constraints upon creation of a pH model and the preserva-

tion of constraints during model reduction. For the latter,

we presented three different paths that can be taken, all of

which are supported by different algorithms in our toolbox.

Using a system decomposition approach, we showed that

methods which are originally designed for ODE systems

can also be applied to DAE systems with MORpH. Since

this approach may involve several transformations and is

therefore limited to medium-sized systems, future research

is devoted to the development of methods that are capable

of working with the original (sparse) system matrices. We

envision a port-Hamiltonian research platform which pro-

motes the collaboration among researchers from different

disciplines and consider this toolbox, accompanied by the

port-Hamiltonian benchmark collection, as a first incentive

towards this goal.
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Appendix

Third-party software

The MORpH toolbox partially relies on the following (open-

source) third-party software which has to be downloaded

separately and which we gratefully acknowledge:

– The optimization software MANOPT [42] and GRANSO

[43] for optimization-based MOR methods such as

lyapOpt.
– The M-M.E.S.S. toolbox [41] for the solution of large-

scale algebraic Riccati and Lyapunov equations as in

prbt.
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– SADPA [44] and SAMDP [45] for computing dominant

spectral zeros in dszm.
– The optimization software CVX [46, 47] and YALMIP [48]

for solving the KYP inequality (8) in ss2phs.
– The functions linorm_subsp [49, 50] and hinorm [51]

to compute the ∞ norm of large-scale models in

ihaPH.

Similar to the call of subroutines in a MORpH function, the

use of third-party software may be enforced and config-

ured via the Opts struct (see Section 3.3.2). In lyapOpt, for
example, the maximum number of optimization iterations

by the third-party software MANOPT can be set to 500 via

Opts.manopt.maxiter = 500

Depending on the configuration, the input parser of each

function then searches for required third-party software

and, if not yet installed, assistswith installation instructions.
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A.2 Surrogate-Based H2 Model Reduction of Port-Hamiltonian
Systems

Summary: Interpolation-based MOR methods are especially suitable for very large
pH-DAE models due to their low computational cost and memory requirements. How-
ever, H2-inspired methods such as IRKA-PH typically search for optimal interpolation
data iteratively, which may lead to increased computational costs in cases of slow conver-
gence. In this article, we propose a novel structure-preserving, H2-inspired algorithm
called CIRKA-PH, which extends the work in [36, 37, 112] to linear, time-invariant
pH-ODE models. CIRKA-PH decouples the cost of reduction and optimization by run-
ning the local H2 optimization not on the FOM but on a lower-dimensional surrogate
model. This surrogate model interpolates the FOM locally, and the associated interpo-
lation data is enriched in each iteration with interpolation data found by IRKA-PH in
the previous iteration. Before convergence, i.e., when the interpolation data found by
IRKA-PH still change substantially, the surrogate model becomes an increasingly bet-
ter approximation of the FOM. Upon convergence, the obtained ROM satisfies a subset
of H2 optimality conditions with respect to the surrogate model and the FOM. If the
final size of the surrogate model is significantly smaller than the FOM, this approach
yields computational advantages, which we first analyze theoretically and then validate
by numerical experiments.
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Surrogate-Based H2 Model Reduction of Port-Hamiltonian Systems

Tim Moser, Julius Durmann and Boris Lohmann

Abstract— Interpolatory methods for structure-preserving
model reduction of port-Hamiltonian systems are especially
suitable for very large-scale models, owing to their low compu-
tational cost and memory requirements. H2-based techniques
iteratively search for models which fulfill a subset of first-order
H2-optimality conditions. In each iteration, a new reduced-
order model is computed, which might weaken the computa-
tional advantages in cases of slow convergence. We propose
a new structure-preserving framework for port-Hamiltonian
systems based on surrogate modeling. By exploiting the local
nature of the H2-optimization problem, the cost of optimization
is decoupled from the cost of reduction. Consequently, H2-
based interpolatory methods can be accelerated significantly
and especially for very large-scale port-Hamiltonian systems,
which is illustrated by a numerical example.

I. INTRODUCTION

With today’s technical systems constantly increasing in
complexity, numerical modeling and analysis have become
an integral part of their development and maintenance. Most
of these systems are multi-physics systems, meaning they
are governed by phenomena from different physical domains
and the energy exchange between these domains. The port-
based network modeling approach provides an energy-based
way of modeling these systems. The energy serves as the
lingua franca between the different physical domains, which
exchange energy via power flows. This modeling approach
naturally leads to port-Hamiltonian system (PHS) repre-
sentations [1]. The energy-based modeling approach and
desirable system properties, such as inherent passivity, also
motivate an energy-based controller design. If controllers are
formulated as virtual port-Hamiltonian systems, they can be
interconnected with the plant and used to shape the energetic
behavior of the coupled system (see [1]–[3] and references
therein).

Depending on the physical system at hand and the desired
accuracy, models in high state-space dimension may arise in
the modeling stage, for instance during the spatial discretiza-
tion of distributed parameter systems (see e.g. [4]). These
models are computationally demanding at best and may be
even infeasible for simulation or real-time control. Model
reduction addresses this issue by generating reduced-order
models, which approximate the original model with respect
to predefined goals. In order to reduce port-Hamiltonian
systems, we identify three major goals. First, we strive
for a reduced-order model, which approximates the relevant
dynamics of the original well with respect to a certain system
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norm. We will focus on algorithms that try to minimize the
error between the reduced-order model and its original in
the H2-norm. Second, it is desirable to preserve the port-
Hamiltonian structure in the reduction process in order to
exploit its advantageous characteristics e.g. for interconnec-
tion with other subsystems or subsequent controller design.
Our third goal relates to numerical efficiency, meaning that
the computation of the reduced-order model should be both
numerically stable and computationally tractable even for
very large-scale models.

Existing methods for structure-preserving H2-inspired
model reduction of port-Hamiltonian systems can be divided
into two subgroups: interpolatory methods [5], [6] and Rie-
mannian methods [7], [8]. Algorithms in both classes are iter-
ative, meaning they compute a series of reduced-order port-
Hamiltonian models. With regard to the predefined goals,
these methods are both structure-preserving and achieve
small H2-errors upon convergence (see e.g. [8]). However,
the fact that a new reduced-order model is computed in
each iteration might lead to high computational efforts in
cases of slow convergence where the number of iterations is
large. Consequently, their computational efficiency is tightly
connected to the convergence speed.

In this contribution, we propose a new framework for
interpolatory model reduction of port-Hamiltonian systems
that is based on the work in [9]–[11] on general linear time-
invariant (LTI) systems. The port-Hamiltonian form of the
reduced-order model is guaranteed by a structure-preserving
Petrov-Galerkin projection as proposed in [6]. The cost
of optimization and reduction is decoupled via a two-step
approach, where information of previous iterations is utilized
to create a medium-sized surrogate model of the original
system on which the actual optimization is conducted. With
the application of appropriate update rules for this surrogate
model, the reduced-order model fulfills a subset of the well-
known H2-optimality conditions upon convergence similar
to existing interpolatory approaches.

The remainder of the paper is structured as follows: We
first briefly summarize the fundamentals of H2-optimal in-
terpolatory model reduction for general linear time-invariant
systems (Section II). The H2-optimization problem is for-
mulated for port-Hamiltonian systems in Section III and
a discussion of existing interpolatory solutions in Section
IV motivates the use of surrogate models for computational
purposes. In Section V, we present our new surrogate-based
framework, apply it to an existing interpolatory method and
discuss its theoretical computational advantages. Section VI
validates these theoretical considerations by a numerical
experiment.



II. PRELIMINARIES

Consider a linear time-invariant system in state-space
representation

Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

with x(0) = 0, (1)

with regular descriptor matrix E ∈ Rn×n, state vector
x(t) ∈ Rn, input u(t) ∈ Rm and output y(t) ∈ Rp. Under
the assumption that x(t = 0) = 0, its transfer function is
given by G(s) = C(sE−A)−1B + D ∈ Cp×m.

In the context of model reduction, we generally strive for
a reduced-order model

Ê ˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t) + D̂u(t)
with x̂(0) = 0, (2)

with reduced state vector x̂(t) ∈ Rr and r � n, such that
ŷ(t) ∈ Rp approximates the original output y(t) well with
respect to a certain norm.

A. Model Reduction by Tangential Interpolation

One way to generate reduced-order models is by means
of Petrov-Galerkin projections where bases V,W ∈ Rn×r
of r-dimensional subspaces are defined such that

Ê = WTEV, B̂ = WTB,

Â = WTAV, Ĉ = CV,
D̂ = D.

As the feedthrough matrix is not affected by this projection,
we assume D = D̂ = 0 without loss of generality. In
interpolatory model reduction (see [12, Ch. 3] for details), the
matrices V and W are chosen such that the reduced-order
transfer function Ĝ(s) tangentially interpolates the original
transfer function G(s) at certain interpolation points or shifts
σi ∈ C. We assume that these interpolation points are distinct
and that (A − σiE) is invertible for all i = 1, . . . , r. The
interpolation conditions

G(σi) ri = Ĝ(σi) ri for i = 1, . . . , r (3)

can then be enforced by

(σiE−A)−1B ri ∈ R(V) for i = 1, . . . , r, (4)

where ri is the right tangential direction at σi and R(V)
denotes the range of matrix V. If V is chosen as the primitive
basis

V = [(σ1E−A)−1Br1, . . . , (σrE−A)−1Brr],

then V solves the following Sylvester equation

EVSV −AV = BRV , (5)

where SV = diag(σ1, . . . , σr) and RV = [r1, . . . , rr].
On the assumption that (A − σiE) is invertible for all
i = 1, . . . , r, the regular matrix pencils (A− λE) and
(SV − λIr) have disjoint spectra and thus, matrix V is a
unique solution to (5) [13].

Remark 1: Note that the interpolation conditions are guar-
anteed by R(V) and independent of the choice of basis V.
Thus, replacing V by V̄ = VTV with invertible TV ∈ Cr×r

retains the interpolation properties in (3) and V̄ solves a
corresponding Sylvester equation with S̄V = T−1V SV TV

and R̄V = RV TV . This fact can be exploited for numerical
purposes or to keep the bases real in order to generate
reduced-order matrices that are also real, which is usually
desired in the port-Hamiltonian setting.
Dual results hold for W, which can be utilized to enforce
left tangential interpolation conditions by solving a dual
Sylvester equation [14]. However, for port-Hamiltonian sys-
tems, W is chosen differently to ensure structure preserva-
tion as shown in Section IV. For the sake of brevity, we
denote the Petrov-Galerkin projection of a port-Hamiltonian
system Σ with W and V by WTΣV.

B. H2-Optimal Model Reduction

The goal of H2-optimal model reduction is to find a
reduced-order model with dimension r and transfer function
Ĝ(s) that is a solution to the following non-convex opti-
mization problem

‖G− Ĝ‖H2 = min
dim(G̃)=r

‖G− G̃‖H2 , (6)

where

‖G‖H2
=

(
1

2π

∫ ∞

−∞
‖G(iω)‖2F dω

) 1
2

.

The following error bound in the L∞-norm exists for the
time domain error between the outputs y(t) and ŷ(t) [15]

‖y − ŷ‖L∞ ≤ ‖G− Ĝ‖H2‖u‖L2 .

Thus, H2-optimal model reduction aims for small maximum
output errors in the time domain over all L2-bounded inputs.

The H2-error ‖G − Ĝ‖H2 can be computed in two
different frameworks: the Lyapunov framework and the
pole-residue framework. In the Lyapunov framework, the
evaluation of the H2-error requires the solution of coupled
Lyapunov equations whereas in the pole-residue framework,
the H2-error is expressed with the pole-residue expansions
of G(s) and Ĝ(s). Consequently, Lyapunov-based methods
such as [16], [17] and interpolatory methods such as [18],
[19] exist for solving (6). In the pole-residue framework, the
first-order necessary optimality conditions can be formulated
as tangential interpolation conditions between G(s) and
Ĝ(s).

Theorem 1: [12, Th. 5.1.1] Let G(s) denote the transfer
function of the full-order model (1). Consider a reduced-
order model (2) with transfer function in pole-residue expan-

sion Ĝ(s) =
r∑
i=1

ĉib̂
T
i

s−λ̂i
with b̂i ∈ Cm, ĉi ∈ Cp and simple but

possibly complex poles λ̂i ∈ C. If Ĝ(s) is a local minimizer
of (6), then the following tangential interpolation conditions
hold for all i = 1, . . . , r:

G(−λ̂i)b̂i = Ĝ(−λ̂i)b̂i, (7a)

ĉTi G(−λ̂i) = ĉTi Ĝ(−λ̂i), (7b)

ĉTi G′(−λ̂i)b̂i = ĉTi Ĝ′(−λ̂i)b̂i. (7c)



III. PROBLEM STATEMENT
Consider linear port-Hamiltonian systems in input-state-

output representation without algebraic constraints

Σ

{
ẋ = (J−R)Qx + (B−P)u,

y = (B + P)TQx + (M + S)u,
(8)

with x(t) ∈ Rn, J,R,Q ∈ Rn×n, B,P ∈ Rn×m and
M,S ∈ Rm×m.

The quadratic Hamiltonian H(x) = 1
2xTQx with energy

matrix Q = QT represents the internal energy of the system.
The system matrices satisfy the following (skew-)symmetry
and non-negativity conditions

J = −JT , M = −MT , Z = ZT =

[
R P
PT S

]
≥ 0.

If these matrix properties hold and Q is symmetric positive-
definite, which we assume in the context of this paper, then
the Hamiltonian H(x) is a storage function and system Σ
is passive:

d

dt
H(x) = uTy −

[
Qx
u

]T [
R P
PT S

] [
Qx
u

]

≤ uTy.

For x(t = 0) = 0, the input-output behavior of the system
is characterized by the following transfer function:

G(s) = (B+P)TQ (sIn − (J−R)Q)
−1

(B−P)+(M+S).

Our goal is to approximate system (8) with a reduced
model in port-Hamiltonian form

Σ̂

{
˙̂x = (Ĵ− R̂)Q̂x̂ + (B̂− P̂)u,

ŷ = (B̂ + P̂)T Q̂x̂ + (M̂ + Ŝ)u,
(9)

with reduced state vector x̂(t) ∈ Rr and Ĵ, R̂, Q̂ ∈ Rr×r,
B̂, P̂ ∈ Rr×m, M̂, Ŝ ∈ Rm×m such that r � n.

Hence, the structure-preserving H2-optimal model reduc-
tion of port-Hamiltonian systems (8) can be formulated in its
most general form by the following non-convex optimization
problem

‖G− Ĝ‖H2
= min

(J̃,M̃,Q̃,Z̃,B̃)∈M
‖G− G̃‖H2

, (10)

where Ĝ(s) denotes the transfer function of Σ̂. The reduced-
order port-Hamiltonian systems of dimension r live on the
matrix product manifold (see e.g. [8])

M = Skewr × Skewm × SymP
r × SymPS

r+m × Rr×m,

where Skewr, SymP
r and SymPS

r denote the manifolds of
skew-symmetric, symmetric positive-definite and symmetric
positive semi-definite matrices in Rr×r, respectively. As
initially mentioned, solving (10) has been approached in
two different ways. Riemannian methods [7], [8] directly
solve (10) with Riemannian optimization techniques on the
manifold M. In the following, we focus on interpolatory
methods (see e.g. [5], [6]) which indirectly solve (10) using
model reduction by tangential interpolation as described in
Section II-A.

IV. INTERPOLATORY H2-BASED MODEL
REDUCTION OF PHS

Interpolation conditions and structure preservation can be
enforced in the following way.

Theorem 2: [6] Apply the Petrov-Galerkin projection with
V̄ and W = QV̄(V̄TQV̄)−1 to Σ, where V̄ is a real,
orthonormal basis of the subspace spanned by

V = [(σ1In − (J−R)Q)−1(B−P)r1, . . .

. . . , (σrIn − (J−R)Q)−1(B−P)rr],
(11)

with distinct interpolation points σi. Then the reduced-order
model Σ̂ = WTΣV̄ is in port-Hamiltonian form and fulfills

G(σi) ri = Ĝ(σi) ri for i = 1, . . . , r. (12)
Proof: Considering the fact that W and V̄ are bitangen-

tial, the projection WTΣV̄ leads to the following reduced-
order matrices:

Ĵ = WTJW, B̂ = WTB, M̂ = M, Ŝ = S,

R̂ = WTRW, P̂ = WTP, Q̂ = V̄TQV̄.

Given the fact that W has full column rank, owing to the
structure of V̄ and positive-definiteness of Q, the skew-
symmetry of Ĵ and M̂ as well as the positive-definiteness of
Q̂ is guaranteed. It holds that

Ẑ =

[
W 0
0 Im

]T [
R P
PT S

] [
W 0
0 Im

]
≥ 0.

Thus, Σ̂ is port-Hamiltonian and passive with storage func-
tion Ĥ(x̂) = 1

2 x̂T Q̂x̂. The tangential interpolation property
in (12) follows from (4), the fact that R(V) = R(V̄) and
Remark 1.

Corollary 1: The matrix V of Theorem 2 also solves the
Sylvester equation

VSV − (J−R)QV = (B−P)RV ,

where SV = diag(σ1, . . . , σr) and RV = [r1, . . . , rr].
Note that other options for structure-preserving tangential
interpolation of PHS have been proposed ([20], [5]). For
common interpolation data, they all yield an equivalent
reduced transfer function Ĝ(s) and only the coordinates of
the resulting reduced models vary. If the original model Σ is
in scaled energy coordinates, i.e. Q = In, all methods even
share the same reduced-order realization Σ̂.

Moreover, interpolatory methods for port-Hamiltonian sys-
tems share the property that while V can be chosen to fulfill
the interpolation conditions in (4), W is fully determined
by the energy matrix Q as well as V and cannot be chosen
freely, for example to enforce left tangential interpolation
conditions as in Hermite interpolation methods for general
LTI systems. Hence, only r · m degrees of freedom are
available to meet the r ·(2m) first-order necessary conditions
for H2-optimality in Theorem 1 (see [21]). This inevitably
leads to the fact that interpolatory methods generally cannot
achieve H2-optimality and structure preservation at the same
time, while exceptions are discussed in [7], [22]. This
also becomes evident if we relate those techniques to the
optimization problem (10). Within the projection framework,



Algorithm 1 IRKA-PH [6]

Input: Original model Σ of dimension n, set of initial
expansion points {σi}ri=1 and tangent directions {ri}ri=1

Output: Reduced model Σ̂ of dimension r
1: while not converged do
2: Construct V as in (11)
3: Compute real basis V̄ ∈ Rn×r with R(V) = R(V̄)
4: W = QV̄(V̄TQV̄)−1

5: Σ̂←WTΣV̄

6: Compute b̂i, ĉi ∈ Cm, λ̂i ∈ C s.t. Ĝ(s) =
r∑
i=1

ĉib̂
T
i

s−λ̂i
7: σi ← −λ̂i and ri ← b̂i for i = 1, . . . , r
8: end while

the matrices ofM cannot be optimized independently which
imposes an additional restriction to the search on the mani-
foldM. This has been shown in [7] using a simple example.

However, the optimality conditions can be partially met. A
modified version of the Iterative Rational Krylov Algorithm
(IRKA) based on Theorem 2 was developed in [6], which
preserves the port-Hamiltonian structure and also satisfies
equation (7a) upon convergence. This algorithm named
IRKA-PH is illustrated in Algorithm 1. For large dimensions
n of the original model Σ, the numerical cost of IRKA-
PH is dominated by the construction of matrix V as in
(11), which effectively requires r solves of large-scale linear
systems of equations (LSE) in each iteration [11]. The total
computational cost of IRKA-PH can thus be approximated
by

Cn(IRKA-PH) ≈ kI︸︷︷︸
optimization

· r Cn(LSE)︸ ︷︷ ︸
reduction

, (13)

where Cn(LSE) denotes the cost of solving an LSE of
dimension n and kI is the number of iterations required in
Algorithm 1 until (7a) is satisfied. It is important to note that
this cost strongly depends on the algorithm used to solve the
LSE. For instance, if an LU decomposition is used, the LU
factors can be used for pairs of complex-conjugated shifts
for which the factor r in (13) then reduces to r/2. In the
following, we generalize our theoretical considerations using
the worst-case scenario (13).

V. THE MODEL FUNCTION FRAMEWORK

In IRKA-PH, the cost of computing one full reduction
with interpolatory methods is directly coupled with the con-
stant kI that represents the performance of the optimization
algorithm. The computational efficiency of this method thus
highly depends on the convergence speed which is in turn
affected by the initial interpolation data.

We propose a new framework for port-Hamiltonian sys-
tems that enables us to decouple the costs of reduction
and optimization for interpolatory methods using surrogate
models or model functions. The creation of these model
functions is based on the work in [9]–[11] and adapted
to the port-Hamiltonian system class in order to ensure
structure preservation. Fig. 1 illustrates the notation used for

Fig. 1: Notation of involved models and interpolation data for
conventional interpolatory methods (left) and in the model
function framework (right)

direct reductions and indirect reductions via model functions.
All quantities related to model functions are denoted by a
superscript µ. Note that we loosely speak of H2-optimality
and of an H2-optimal model Σ̂ in the following, if Σ̂ fulfills
(7a) with respect to Σ, bearing in mind that it is generally
not possible to satisfy all necessary optimality conditions (7)
with interpolatory methods.

A. Definition of Model Functions

The use of surrogate models is motivated by the local
nature of both interpolatory methods and the problem of
H2-optimal model reduction. On the one hand, interpolatory
methods locally approximate the original transfer function
around chosen interpolation points. On the other hand, owing
to the non-convexity of problem (10) as mentioned above,
the best we can yield for with iterative methods is finding a
local minimum in the proximity of the initial iterate. These
properties motivate the idea of approximating the original
model Σ locally by a model function Σµ with transfer
function Gµ(s) of much smaller dimension nµ.

Definition 1: Consider a full-order port-Hamiltonian
model Σ as in (8). Let Vµ,Wµ ∈ Cn×nµ be projection
matrices that satisfy the following equations

VµSµV − (J−R)QVµ = (B−P)Rµ
V , (14a)

Wµ = QVµ((Vµ)TQVµ)−1, (14b)

where SµV = diag(σµ1 , . . . , σ
µ
nµ), Rµ

V = [rµ1 , . . . , r
µ
nµ ] with

distinct interpolation points σµj ∈ C and tangential directions
rµj ∈ Cm. The model function Σµ with transfer function
Gµ(s) is then defined by the projection Σµ = (Wµ)TΣVµ.

Assume that we find a reduced-order model Σ̂µ of dimen-
sion r with transfer function Ĝµ(s) by approximating Σµ

in an H2-optimal way

‖Gµ − Ĝµ‖H2
= min

(J̃,M̃,Q̃,Z̃,B̃)∈M
‖Gµ − G̃‖H2

. (15)

If r < nµ � n holds, we expect that this approximate
problem can be solved at a much lower computational cost
than the original problem (10) of approximating Σ.

B. H2-Optimality

However, in general, a solution Σ̂µ to the approximate
problem (15) is not a solution to the original problem (10).
Hence, we generally cannot deduce the H2-optimality of Σ̂µ

with respect to the original system Σ from its H2-optimality



with respect to the model function Σµ. We establish this
connection by choosing the intermediate model function Σµ

appropriately.
Theorem 3: Consider a full-order port-Hamiltonian model

Σ as in (8) and let G(s) denote its transfer function.
Let the model function Σµ with its corresponding transfer
function Gµ(s) be defined as in Definition 1. Additionally,
let V̂µ,Ŵµ ∈ Cnµ×r be projection matrices that satisfy the
following equations

V̂µŜµV − (Jµ −Rµ)QµV̂µ = (Bµ −Pµ)R̂µ
V , (16a)

Ŵµ = QµV̂µ((V̂µ)TQµV̂µ)−1, (16b)

where ŜµV = diag(σ̂µ1 , . . . , σ̂
µ
r ), R̂µ

V = [r̂µ1 , . . . , r̂
µ
r ] with

distinct interpolation points σ̂µi ∈ C and tangential directions
r̂µi ∈ Cm. The reduced-order model Σ̂µ with transfer func-
tion Ĝµ(s) results from the projection Σ̂µ = (Ŵµ)TΣµV̂µ

(see Fig. 1). Assume that the interpolation data (ŜµV , R̂
µ
V )

are optimal with respect to Σµ, i.e. for all i = 1, . . . , r we

have σ̂µi = −λ̂i and r̂µi = b̂i where Ĝµ(s) =
r∑
i=1

ĉib̂
T
i

s−λ̂i
is

the pole-residue expansion of the reduced model Σ̂µ.
If, for every i ∈ {1, . . . , r} there exists a j ∈ {1, . . . , nµ}

such that
σ̂µi = σµj , r̂µi = rµj , (17)

then Σ̂µ also satisfies the first-order H2-optimality condition

G(−λ̂i)b̂i = Ĝµ(−λ̂i)b̂i for i = 1, . . . , r, (18)

with respect to the original model Σ.
Proof: From the results of Theorem 2, Corollary 1 and

conditions σ̂µi = −λ̂i and r̂µi = b̂i we obtain

Gµ(−λ̂i)b̂i = Ĝµ(−λ̂i)b̂i for i = 1, . . . , r, (19)

if equation (16) holds. Combining the subset condition (17)
and Definition 1 leads to

G(−λ̂i)b̂i = Gµ(−λ̂i)b̂i for i = 1, . . . , r, (20)

Equation (18) then follows from the combination of (19) and
(20).

Consequently, if the interpolation data to generate Σµ

include the optimal shifts and tangential directions found by
solving the approximate problem, Σ̂µ is also optimal with
respect to Σ. Note that this also holds if, for instance, orthog-
onal and real projection matrices are used instead of Vµ, V̂µ

as long as they span the same subspaces, respectively (see
Remark 1).

If the primitive bases Vµ, V̂µ,V are used, we can even
show equality between the state-space realization Σ̂µ and the
realization of the model Σ̂ that we would obtain from a direct
approximation of Σ with the same optimal interpolation data,
i.e. (SV ,RV ) = (ŜµV , R̂

µ
V ).

Corollary 2: Consider a full-order port-Hamiltonian
model Σ as in (8) and let V,W ∈ Cn×r be projection
matrices that satisfy the following equations

VŜµV − (J−R)QV = (B−P)R̂µ
V , (21a)

W = QV(VTQV)−1. (21b)

If all assumptions of Theorem 3 hold, then the model
Σ̂ = WTΣV has the same state-space realization as Σ̂µ.

Proof: We prove that Σ̂ and Σ̂µ are equal by showing
that they have the same projection matrices, i.e.

V = VµV̂µ, (22a)

W = WµŴµ. (22b)

From Σµ = (Wµ)TΣVµ and (16a) we obtain that

(Wµ)T
(
VµV̂µŜµV − (J−R)QVµV̂µ − (B−P)R̂µ

V

)

is equal to zero. We assume existence and uniqueness of the
solution V̂µ to Sylvester equation (16a). For each column of
(16a) we have

(Wµ)T
(

(σ̂µi In − (J−R)Q) VµV̂µ
i − (B−P)r̂µi

)
= 0.

(23)
We now determine column V̂µ

i as a standard basis vector that
selects the j-th column of Vµ. For this column, according
to (14a), the following holds

(
σµj In − (J−R)Q

)
Vµ
j − (B−P)rµj = 0.

Owing to the subset condition (17), we can then solve (23)
by selecting those columns Vµ

j for which σµj = σ̂µi and
rµj = r̂µi holds. Repeating this procedure for all i = 1, . . . , r

leads to a matrix V̂µ of standard basis vectors such that

ŜµV = (V̂µ)TSµV V̂µ,

which uniquely solves (16a). Comparing (23) with the
columns of (21a) reveals that the product VµV̂µ is then also
a solution to (21a). From the uniqueness of V, we deduce
the necessity of V = VµV̂µ. The proof is completed by the
fact that

W = QV(VTQV)−1

= Q(VµV̂µ)((VµV̂µ)TQ(VµV̂µ))−1

= QVµ((Vµ)TQVµ)−1QµV̂µ((V̂µ)TQµV̂µ)−1

= WµŴµ,

combining V = VµV̂µ and (14b), (16b), (21b).
Remark 2: For the proof of Corollary 2, we assumed

the uniqueness of the solutions Vµ, V̂µ,V to the Sylvester
equations (14a), (16a), (21a), respectively. For instance, in
the case of V, this holds if, and only if, the regular matrix
pencils ((J − R)Q − λIn) and (ŜµV − λIr) have disjoint
spectra [13]. As the eigenvalues of pencil (ŜµV −λIr) are the
optimal frequencies {−λ̂i}ri=1 and Σ and Σ̂ are both stable
by design, this will generally hold in practice. A similar
argumentation holds for Vµ and V̂µ.

Remark 3: By choosing the model function Σµ as a port-
Hamiltonian system, we can guarantee its stability. Note that
this is not the case if the model function framework is applied
to general LTI systems as in [11].

Remark 4: The model function framework can be ex-
tended to linear time-invariant port-Hamiltonian differential-
algebraic systems (PH-DAEs). The transfer function of a



PH-DAE can be separated in a strictly proper part and a
polynomial part. The order of the polynomial part depends on
the index of the system, which is at most two for PH-DAEs
[23]. In order to apply the model function framework to these
systems, the model function has to match the polynomial part
of the original transfer function exactly in order to keep the
error bounded. This is a subject of future research.

Ensuring the subset condition (17) stated in Theorem 3
poses a challenge for practical implementations as we do
not know the optimal tangential interpolation data (ŜµV , R̂

µ
V )

in advance. We can enforce this condition in an iterative
fashion. In each iteration, we first solve the approximate
problem (15). In the following iteration, we then update the
model function Σµ such that it interpolates Σ at the optimal
interpolation data found in the previous iteration. Upon con-
vergence, i.e. when the optimal interpolation data between
two iterations are identical, the subset condition (17) is
satisfied. This strategy is also plausible before convergence,
i.e. when the optimal interpolation data changes significantly
between two iterations. In this case, Σµ is enhanced in new
regions of the frequency domain and thus becomes a better
approximation of Σ.

Note that the use of model functions provides a general
framework in the sense that any structure-preserving, H2-
based interpolatory optimization algorithm could be used to
find the optimal interpolation data that solve the approximate
problem. As an illustrative example, we apply the model
function framework to IRKA-PH (see Algorithm 1).

C. Confined IRKA-PH

Owing to the local validity of using Σµ instead of Σ
for the optimization, which is confined to the vicinity of
the interpolation frequencies in SµV , we call the combina-
tion of both approaches in Algorithm 2 confined IRKA-PH
(CIRKA-PH). Despite the fact that orthonormal, real bases
are used for Vµ, V̂µ for numerical reasons, we represent
the set of shifts {σ̂µi }ri=1 with ŜµV and tangential directions
{r̂µi }ri=1 with R̂µ

V for the sake of brevity. The same holds
for (SµV ,R

µ
V ).

Let nµk and nµ denote the dimension of the model function
in the k-th iteration and after the final iteration, respectively.
In principle, there are various strategies to initialize and
update the model function Σµ which are, however, all subject
to the condition that nµk > r and the subset condition (17)
for H2-optimality. Condition nµk > r is especially relevant
at the initialization of Σµ in the first iteration, where more
interpolation data than (Ŝ0

V , R̂
0
V ) must be used to create the

model function. For possible strategies we refer to [11]. After
the initial iteration, we also have several options to enforce
the subset condition (17) by updating the model function.
For instance, the most trivial strategy is to add the whole set
of new interpolation data (ŜV , R̂V ) to (SµV ,R

µ
V ). However,

this increases the order nµk of the model function by r in each
iteration. To keep nµ low, it might be beneficial to only add
those pairs of shifts and tangential directions that are not yet
comprised in (SµV ,R

µ
V ) and that extend the validity of Σµ

Algorithm 2 Confined IRKA-PH (CIRKA-PH)

Input: Original model Σ, set of initial interpolation data
(Ŝ0
V , R̂

0
V )

Output: Reduced model Σ̂, model function Σµ

1: Initialize Σµ to empty
2: ŜV ← Ŝ0

V , R̂V ← R̂0
V

3: while not converged do
4: [Σµ,SµV ,R

µ
V ]← updateModelFct(Σ,Σµ, ŜV , R̂V )

5: [Σ̂µ, ŜµV , R̂
µ
V ]← IRKA-PH (Σµ, ŜV , R̂V )

6: ŜV ← ŜµV , R̂V ← R̂µ
V

7: end while
8: Σ̂← Σ̂µ

to new frequency regions. We use the latter approach for the
numerical examples provided in Section VI.

Let kµ denote the total number of iterations of CIRKA-
PH. In the k-th iteration, the dimension of the model function
is increased to nµk = nµk−1 +nµ,+k where nµ,+k is the number
of new shifts used to update Σµ. The computational cost of
CIRKA-PH can be approximated by

Cn(CIRKA-PH) ≈
kµ∑

k=1

nµ,+k · Cn(LSE)

︸ ︷︷ ︸
Σµ update

+

kµ∑

k=1

r · kIk · Cnµk (LSE)

︸ ︷︷ ︸
optimization

.

(25)

Here, we again neglect the computation of the small
eigenvalue problem of dimension r and the orthogonaliza-
tion of Vµ and V̂µ. If we compare this expression with
the computational cost (13) of IRKA-PH, we observe that
the close coupling of reduction (i.e. retrieving information
from the full-order model Σ) and optimization (i.e. finding
optimal interpolation data) is loosened by introducing the
model function. In fact, for r < nµ � n, the update of the
model function accounts for the major computational cost
and is independent of the kIk steps needed to find optimal
interpolation data in the k-th iteration. Hence, for very large-
scale models Σ, we expect Cnµk (LSE) � Cn(LSE) for all
k = 1, . . . , kµ and thus we expect CIRKA-PH to be effective
as long as

kµ∑

k=1

nµ,+k < r · kI .

VI. NUMERICAL EXAMPLES

We validate our theoretical considerations for the intro-
duced CIRKA-PH algorithm by applying it to a multi-
input/multi-output (MIMO) port-Hamiltonian system and
comparing the resulting reduced-order models with those
obtained by the IRKA-PH algorithm.

We consider the mass-spring-damper (MSD) system as
described in [6], i.e. a MIMO port-Hamiltonian system with



TABLE I: Reduction of the MSD model with n = 500 and
reduced order r

CIRKA-PH IRKA-PH
r t/s nLU kµ

∑
kI nµ t/s nLU kI

10 0.3 28 6 190 58 0.1 278 54
30 0.8 58 5 121 124 0.3 1048 62
50 2.0 85 5 83 198 0.5 1214 44

n
2 coupled MSD elements with the following masses, spring
constants and damping coefficients:

mi = 4 kg, ki = 4
N
m
, ci = 1

Ns
m
, i = 1, ...,

n

2
.

We take a closer look at the original model orders n = 500
and n = 10,000.

Both systems are approximated with reduced-order models
of dimension r ∈ {10, 30, 50} obtained by IRKA-PH and
CIRKA-PH. All tests have been carried out by initializing
shifts with zeros and tangent directions by vectors with only
ones as entries. The following convergence criterion was
used

1

r

r∑

i=1

∣∣∣∣∣
σ̂µi,k − σ̂

µ
i,k−1

σ̂µi,k−1

∣∣∣∣∣ < 10−6,

where σ̂µi,k denotes the i-th optimal shift found at iteration
k. For IRKA-PH, we chose a maximum number of 200
iterations. For CIRKA-PH, we allowed 20 outer iterations
and 50 inner IRKA-PH iterations per outer iteration at most.

Tables I and II show the computational demands of reduc-
ing both sample systems. In particular, the execution time t
in seconds, the number of n-dimensional LU decompositions
nLU required for solving the large-scale LSEs of dimension
n, the number of outer iterations kµ of CIRKA-PH, and the
(total) number of IRKA iterations

∑kµ

k=1 k
I
k are displayed.

Additionally, we provide the dimension of the final model
function nµ.

In both cases, CIRKA-PH carries out more IRKA-PH iter-
ations and significantly less large-scale LU decompositions.
For n = 500, the size of the model function nµ is rela-
tively close to the original model size n. Consequently, the
approximation of Σ by Σµ does not lead to computational
advantages. However, note that for medium-sized systems,
Riemannian reduction methods as in [7], [8] proved to be
advantageous compared to interpolatory methods, as truly
H2-optimal models can be found at manageable computa-
tional costs.

For n = 10,000, we observe that the model function
framework provides a better trade-off between increasing
iterations in total and lowering costs per iteration. Signifi-
cantly smaller model functions for which nµ � n acceler-
ate convergence considerably. This supports our theoretical
considerations in Section V. In accordance with [11], we
therefore expect this framework to offer even more signifi-
cant advantages over IRKA-PH for very large original orders
n > 105.

All reduced-order models presented in this section satisfy
the first H2-optimality condition (7a). Table III shows the

TABLE II: Reduction of the MSD model with n = 10,000
and reduced order r

CIRKA-PH IRKA-PH
r t/s nLU kµ

∑
kI nµ t/s nLU kI

10 1.1 40 8 217 68 3.8 326 60
30 5.4 110 7 231 183 42.2 2091 119
50 35.8 207 10 436 340 171.7 6051 200

TABLE III: Shift deviation ∆σ̂ and relative H2-error norms
e = ‖G− Ĝ‖H2/‖G‖H2

n r eCIRKA−PH eIRKA−PH ∆σ̂

500
10 0.2422 0.2422 5.19 × 10−6

30 0.0105 0.0105 1.87 × 10−7

50 0.0004 0.0004 1.69 × 10−6

10,000
10 0.2422 0.2422 3.01 × 10−6

30 0.0102 0.0102 5.63 × 10−8

50 0.0007 0.0007 6.98 × 10−5

approximation quality of the reduced-order models by means
of the relative H2-error norms. In addition, Fig. 2 illustrates
the frequency response of the original system G(s) for
n = 500 and of the reduced-order models with r = 10
and r = 30 obtained by CIRKA-PH. Both the H2-errors
and the frequency responses in Fig. 2 indicate that the input-
output behavior of the original systems can be captured quite
accurately with relatively small reduced orders.

In all considered cases, the H2-errors of CIRKA-PH are
almost identical to those of IRKA-PH. The difference in the
vector of shifts in the 1-norm

∆σ̂ =
r∑

i=1

|σ̂µi − σ̂i|

reveals that this is no coincidence but a result of almost
identical sets of interpolation points upon convergence. Note,
however, that this is not guaranteed since both algorithms
could converge to different solutions in other scenarios [11].

Fig. 2: Frequency response of the MSD model with n = 500
and two reduced-order models with r ∈ {10, 30} obtained
by CIRKA-PH



VII. CONCLUDING REMARKS
We have presented a new framework for interpolatory

H2-inspired model reduction of linear port-Hamiltonian sys-
tems. The framework exploits the local nature of the H2-
optimization problem and tangential interpolation by the use
of surrogate models. By updating these surrogate models
iteratively, a subset of first-order H2-optimality conditions
is satisfied upon convergence and the port-Hamiltonian
structure is retained. Numerical examples indicate that the
decoupling of the cost of reduction and optimization has
the potential to accelerate existing approaches significantly
and especially in large-scale settings for which interpolatory
methods are particularly powerful.
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A.3 A New Riemannian Framework for Efficient H2-Optimal
Model Reduction of Port-Hamiltonian Systems

Summary: This article presents a new optimization framework for H2-optimal model
reduction of large-scale pH-ODE models. In contrast to traditional MOR methods,
which typically indirectly create a reduced state-space realization via Petrov-Galerkin
projections, our method is based on a direct optimization of the reduced state-space
matrices. Similar to other optimization-based MOR methods, we incorporate the pH
structural constraints by formulating the problem on a Riemannian product manifold.
We show that by using the pole-residue formulation of the H2 error, the cost function
and its Riemannian gradient can be computed efficiently and rely only on samples of
the original transfer function and its derivative. Consequently, our approach does not
require transformations of the original state-space realization or iterative solutions of
large-scale Lyapunov equations. To solve the non-convex optimization problem, we
employ a Riemannian trust-region method which guarantees the preservation of the
pH structure and local H2 optimality upon convergence. We conclude with numerical
experiments in which we demonstrate the applicability of our method to large-scale
models.
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A New Riemannian Framework for Efficient H2-Optimal Model
Reduction of Port-Hamiltonian Systems

Tim Moser and Boris Lohmann

Abstract— We present a new framework for H2-optimal
model reduction of linear port-Hamiltonian systems. The ap-
proach retains structural properties of the original system,
such as passivity, and is based on the efficient pole-residue
formulation of the H2-error norm. This makes Riemannian
optimization computationally feasible for large-scale dynamical
systems as well, which is supported by a numerical example.

I. INTRODUCTION

The port-Hamiltonian systems paradigm provides an
energy-based framework for the modeling and control of
complex finite- and infinite-dimensional physical systems.
The geometric description via (Stokes-)Dirac structures al-
lows us to easily interconnect systems of different physical
domains, which makes this approach especially suitable
for multi-physics systems [1]. By exploiting its inherent
system characteristics such as passivity, the modeling in
port-Hamiltonian form facilitates the subsequent controller
design. If controllers are also formulated as port-Hamiltonian
systems, they can be designed to shape the energetic behavior
of the coupled system consisting of plant and controller.
This approach, for instance, paved the way for a paradigm
shift in robotics towards safe interaction and human-robot
collaboration (see e.g. [2]). However, depending on the
physical system at hand and the desired accuracy of its
model, systems in high state-space dimension may arise
in the modeling stage (see e.g. [3] for structure-preserving
discretization) which are computationally infeasible for sim-
ulation or real-time control. Model reduction addresses this
issue by generating reduced-order models which approximate
the original model with respect to predefined goals. For
port-Hamiltonian systems, one goal is to preserve the port-
Hamiltonian structure in the reduction process in order to
exploit the strengths mentioned above.

Structure-preserving model reduction of linear port-
Hamiltonian systems has been addressed in several ways.
Methods based on reduced-order Dirac structures were pre-
sented in [4]. Interpolatory reduction methods for single-
input/single-output (SISO) port-Hamiltonian systems were
introduced in [5] and expanded to multi-input/multi-output
(MIMO) systems in [6]. In the context of this paper, we
would like to focus on different approaches striving for H2-
optimality in the sense that the H2-error between the original
and reduced model is as small as possible.
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search Foundation) – Project number 418612884.

T. Moser and B. Lohmann are with the Chair of Automatic Con-
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There are two main frameworks in which this non-convex
optimization problem can be formulated. In the Lyapunov-
based framework, the first-order conditions for (local) H2-
optimality result in coupled Lyapunov equations [7], [8].
The second framework may be derived from pole-residue
expansions of the reduced model and leads to interpola-
tion conditions for the reduced-order model, also known
as the Meier-Luenberger conditions [9] for SISO systems.
A connection between both frameworks was established in
[10] by showing equivalence of the corresponding first-order
conditions to structured orthogonality conditions based on
Hilbert spaces.

In the Lyapunov framework, various methods have been
developed for general linear time-invariant (LTI) SISO sys-
tems to solve this optimization problem. Gradient-based
algorithms, such as [7], [11], [12] and [13], require iter-
ative solves of coupled sparse-dense Lyapunov equations.
For large-scale dynamical systems, this is computationally
expensive despite significant improvements in the field of
solving these equations numerically during the last two
decades (see [14] for a comprehensive overview). Finding
H2-optimal approximations of port-Hamiltonian systems is
even more challenging since additional structural system
properties must be retained during the reduction. Recently,
a gradient-based method [15] has been developed in the
Lyapunov framework. The author shows that by formulating
the optimization problem on Riemannian matrix manifolds,
it is possible to achieve both structure preservation and H2-
optimality. However, the method may require an initial large-
scale Cholesky decomposition and, similar to its Euclidean
counterparts, iterative solving of coupled Lyapunov equations
which makes it less suitable for large-scale systems.

On the other hand, in the pole-residue framework, the
computation of the first-order conditions solely requires
evaluations of the original and reduced-order model at the
mirror images of reduced-order poles, which makes this
approach more applicable in large-scale settings. Beattie
and Gugercin developed gradient-based methods for general
LTI systems both in a projective [16] and non-projective
manner [17]. Formulating the problem in the pole-residue
framework as a fixed point iteration led to the even more
efficient and thus widely applied iterative rational Krylov
algorithm (IRKA) [10]. However, IRKA does not guarantee
a decrease in the H2-error in every iteration. It generates
a series of reduced models which, so far, has only been
proven to converge for symmetric state-space systems [18],
whereas port-Hamiltonian systems are, in general, non-
symmetric. In [6], a modified version of IRKA (IRKA-PH)



was proposed in order to preserve the port-Hamiltonian form
during the reduction. Since IRKA-PH is based on Petrov-
Galerkin projections, some degrees of freedom (exactly half
of them in the SISO case) must be given up in order to
preserve the port-Hamiltonian structure. This inevitably leads
to the fact that it is generally not possible to satisfy all
H2-optimality conditions in this projective framework [6].
Hence, to the best of the authors’ knowledge, there is no
H2-optimal method to reduce port-Hamiltonian systems in
the pole-residue framework.

We address this issue and propose a novel Riemannian
framework for the H2-optimal reduction of port-Hamiltonian
systems. We incorporate geometric constraints using the
Riemannian problem formulation of [15] and exploit the
computationally efficient pole-residue formulation of theH2-
error proposed in [9]. By this means, preservation of the port-
Hamiltonian structure and H2-optimality upon convergence
are guaranteed and the approach does not rely on iterative
solves of large-scale Lyapunov equations. Consequently, this
framework is also accessible for the reduction of large-scale
systems.

II. PROBLEM FORMULATION
We consider linear single-input/single-output port-

Hamiltonian systems without algebraic constraints of the
following form

ẋ = (J−R)Qx + bu

y = bTQx
(1)

with J,R,Q ∈ Rn×n and b,x ∈ Rn. The internal energy
of the system is represented by the quadratic Hamiltonian
H(x) = 1

2xTQx with energy matrix Q = QT . For Q > 0
and dissipation matrix R = RT ≥ 0, the system is pas-
sive, i.e. Ḣ(t) ≤ u(t)y(t) for all t. The internal energy
flow among energy storage elements and the flow across
its system boundary is described by the skew-symmetric
interconnection matrix J = −JT and the port matrix b,
respectively.

In the context of this paper, we are striving for a reduced
port-Hamiltonian system

˙̂x = (Ĵ− R̂)x̂ + b̂u

y = b̂T x̂
(2)

with Ĵ, R̂ ∈ Rr×r, b̂, x̂ ∈ Rr and with Ĵ = −ĴT ,
R̂ = R̂T > 0, and r � n. Note that the assumption that
Q̂ = Ir is not restrictive. We may transform every reduced-
order model with Q̃ 6= Ir (Q̃ = Q̃T > 0) to the form of (2)
by x̂ = LT x̃ without changing the transfer function, where L
is obtained via a Cholesky factorization Q̃ = LLT . However,
by using (2), we can reduce the number of optimization
parameters by the r(r+1)

2 independent entries of Q̃.
Our goal is to approximate the transfer function

G(s) = bTQ(sIn − (J−R)Q)−1b of the (stable) original
system (1) with respect to the H2-norm

‖G‖H2
=

(
1

2π

∫ ∞

−∞
|G(iω)|2dω

) 1
2

in an optimal way and, at the same time, preserve its port-
Hamiltonian structure. Hence, the following optimization
problem can be formulated [15]:

min
(Ĵ,R̂,b̂)∈M

F := ‖G− Ĝ‖2H2
(3)

where M is the product manifold Skewr × Sym+
r × Rr and

Ĝ(s) = b̂T (sIr − (Ĵ− R̂))−1b̂. Here, Skewr and Sym+
r

denote the manifolds of skew-symmetric and symmetric
positive-definite matrices in Rr×r, respectively. By formu-
lating the optimization problem on the product manifoldM,
it is guaranteed that the (stable) reduced-order model (2) is
port-Hamiltonian for any given order r � n.

In the following, we first derive the gradient of F with
respect to the optimization parameters Ĵ, R̂ and b̂ in the
Euclidean space Rr×r ×Rr×r ×Rr using the efficient pole-
residue formulation of F . We then transfer the optimization
problem to the manifold M and demonstrate the perfor-
mance of this new framework using a trust-region method.

III. COST FUNCTION AND EUCLIDEAN
GRADIENT OF H2-ERROR

We consider the pole-residue definition of the H2-error
initially proposed in [19].

Lemma 1. Assuming distinct poles λi and λ̂j for the
original system (1) and the reduced system (2), respectively,
the partial fraction decomposition of the original transfer
function is given by G(s) =

∑n
i=1

φi

s−λi
and for the reduced

system by Ĝ(s) =
∑r
j=1

φ̂j

s−λ̂j
with residues φi and φ̂j .

Then, the cost function F can be expressed as

F =
n∑

i=1

φi(G(−λi)− Ĝ(−λi))

+
r∑

j=1

φ̂j(Ĝ(−λ̂j)−G(−λ̂j)).
(4)

Using the fact that 〈G, Ĝ〉H2
=
∑r
j=1 φ̂jG(−λ̂j) [17,

Theorem 2.1] we get

F =‖G‖2H2
− 2

r∑

j=1

φ̂jG(−λ̂j) +
r∑

k,l=1

φ̂kφ̂l

−λ̂k − λ̂l
, (5)

where the first addend does not depend on the choice of the
reduced-order model. Hence, we will minimize F − ‖G‖2H2

and refer to it as F in the following. This formulation is
powerful from a computational point of view because it does
not rely on the solution of a large-scale Lyapunov equation.

Next, we derive the gradient of the cost functional F in
the Euclidean space.

Lemma 2. [16, Theorem 2.1] The partial derivatives of F
with respect to the reduced-order residues φ̂j and poles λ̂j
are

∂F
∂φ̂j

= 2(Ĝ(−λ̂j)−G(−λ̂j)), j = 1 . . . r, (6a)

∂F
∂λ̂j

= 2φ̂j(G
′(−λ̂j)− Ĝ′(−λ̂j)), j = 1 . . . r. (6b)



Remark 1. In this framework, the necessary conditions
for H2-optimality, known as the Meier-Luenberger [9]
conditions, become immediately evident. Each H2-optimal
reduced-order model with distinct poles interpolates both
G(s) and its first derivative G′(s) at all mirrored reduced-
order poles −λ̂j .

Remark 2. With interpolatory model reduction techniques
such as IRKA-PH [6], it is generally not possible to satisfy
both necessary conditions (6a) and (6b) and preserve the
port-Hamiltonian structure at the same time. IRKA-PH iter-
atively creates bases V ∈ Rn×r of Krylov subspaces which
are parameterized by r interpolation points. Consequently,
the 2r conditions in (6a) and (6b) can only be met for
particular port-Hamiltonian systems, e.g. if J = 0 [20], [15].
From a physical point of view, this limitation also becomes
evident: for Q = In the reduced-order interconnection and
dissipation matrix gained by IRKA-PH are Ĵ = VTJV and
R̂ = VTRV, respectively. Thus, the two different physical
phenomena of dissipation and energy exchange are approx-
imated by the same projection. As stated in (3), we resolve
this limitation by optimizing Ĵ, R̂ and b̂ independently.

Next, we investigate the partial derivatives of the vector-
valued functions λ̂ = [λ̂1, . . . , λ̂r]

T and φ̂ = [φ̂1, . . . , φ̂r]
T

with respect to the Euclidean optimization parameters
(Ĵ, R̂, b̂) ∈ Rr×r × Rr×r × Rr. Let q denote the parameter
vector

q = vec
([

Ĵ, R̂, b̂
])
∈ Rr(2r+1), (7)

where vec() is the vectorization operator.

A. Euclidean Jacobian Dλ̂(q)

The system matrix Ĵ − R̂ and its eigenvalue λ̂j are
implicitly related by (Ĵ−R̂)zj = λ̂jzj , where zj denotes
the corresponding right eigenvector.

Theorem 1. The partial derivative of λ̂j with respect to the
(k, l)-th matrix entry of Ĵ is given by

∂λ̂j

∂Ĵk,l
=

w∗jEk,lzj

w∗jzj
, (8)

where w∗j fulfills the eigenvalue relation

(Ĵ− R̂)∗wj = λ̂jwj and Ek,l ∈ Rr×r is the single-
entry matrix with entry 1 at position (k, l) and zeros
otherwise.
Proof. We assume distinct eigenvalues in the context of this
paper. Hence, it can be shown that a neighborhood
N (Ĵ− R̂) ⊂ Cr×r exists, on which unique C∞-
functions λ(Ĵ− R̂) and z(Ĵ− R̂) are defined, for
which λ(Ĵ− R̂) = λ̂j and z(Ĵ− R̂) = zj [21, Chapter 9].
Equation (8) then follows by differentiating the eigenvalue
relation and using the fact that ∂(Ĵ−R̂)

∂Ĵk,l
= Ek,l. �

As a result of Theorem 1, the Jacobian of the eigenvalues
with respect to R̂ is given by

Dvec(R̂)λ̂(q) = −Dvec(Ĵ)λ̂(q) ∈ Cr×r
2

.

Since the eigenvalues do not depend on the input matrix b̂,
the following holds

Db̂λ̂(q) = 0r×r.

The Euclidean Jacobian Dλ̂(q) is then given by

Dλ̂(q) = [Dvec(Ĵ)λ̂(q),Dvec(R̂)λ̂(q),Db̂λ̂(q)] ∈ Cr×r(2r+1).

Note that Dλ̂(q) solely depends on the reduced matrices of
system (2) and only requires solving two small eigenvalue
problems of dimension r.

B. Euclidean Jacobian Dφ̂(q)

Next, we examine the sensitivity of the residue vector
function φ̂ with respect to the optimization parameters q.
The eigendecomposition of matrix Ĵ− R̂ is given by

(Ĵ− R̂)Z = ZΛ,

where Z is the matrix composed of all (right) eigenvectors
zj and Λ = diag(λ̂j). If we transfer system (2) to modal
form such that Z−1(Ĵ− R̂)Z = Λ, the residue φ̂j to the
corresponding eigenvalue λ̂j is given by:

φ̂j = b̂TZEj,jZ
−1b̂. (9)

The (j, k)-th entry of the Jacobian Dφ̂(b̂) is then given by

∂φ̂j

∂b̂k
= eTj Z−1


 ∂b̂

∂b̂k
b̂T + b̂

(
∂b̂

∂b̂k

)T
Zej

= eTj Z−1
[
ekb̂

T + b̂eTk

]
Zej

(10)

for all j, k = 1, ..., r and where ej denotes the j-th standard
basis vector of Rr.

Theorem 2. The partial derivative of φ̂j with respect to the
(k, l)-th entry of the interconnection matrix Ĵ is given by

∂φ̂j

∂Ĵk,l
=eTj Z−1b̂b̂T

∂Z

∂Ĵk,l
ej

− eTj Z−1
∂Z

∂Ĵk,l
Z−1b̂b̂TZej .

(11)

The Moore-Penrose pseudo inverse of a matrix is denoted
by ()+. Then ∂Z

∂Ĵk,l
is composed of the following column

vectors

∂zj

∂Ĵk,l
=
[
λ̂jIr − (Ĵ− R̂)

]+
(

Ir −
zjw

∗
j

w∗jzj

)
Ek,lzj (12)

for all j, k, l = 1, ..., r.
Proof. We deduce the existence of the functions λ and z
on a neighborhood N (Ĵ − R̂) ⊂ Cr×r from Theorem 1
and obtain (11) by differentiating (9). Equation (12) results
from differentiating both sides of (Ĵ − R̂)zj = λ̂jzj and
substituting ∂λ̂j

∂Ĵk,l
by (8). We use the Moore-Penrose pseudo

inverse for the singular matrix pencil
[
λ̂jIr − (Ĵ− R̂)

]
. The

fact that ∂(Ĵ−R̂)

∂Ĵk,l
= Ek,l and

∂Z−1

∂Ĵk,l
= −Z−1

∂Z

∂Ĵk,l
Z−1

complete the proof. �



Similar to above, the Jacobian Dvec(R̂)φ̂(q) is given by

Dvec(R̂)φ̂(q) = −Dvec(Ĵ)φ̂(q) ∈ Cr×r
2

. (13)

Combining the results of (10), (11) and (13), we construct
the Jacobian

Dφ̂(q) = [Dvec(Ĵ)φ̂(q),Dvec(R̂)φ̂(q),Db̂φ̂(q)] ∈ Cr×r(2r+1)

Note that Dφ̂(q) only relies on computations in small
order r. If we assume that the eigendecomposition of matrix
Ĵ− R̂ has already been computed for Dλ̂(q), the computa-
tional cost of Dφ̂(q) is dominated by the r solves of (12)
which can be computed easily for small orders.

We obtain the Euclidean gradient ∇qF in its vectorized
form by

∇FTq =
[
Dφ̂F ,Dλ̂F

] [ Dφ̂(q)

Dλ̂(q)

]
∈ Rr(2r+1), (14)

where Dφ̂F =
[
∂F
∂φ̂1

, ..., ∂F
∂φ̂r

]
and Dλ̂F =

[
∂F
∂λ̂1

, ..., ∂F
∂λ̂r

]

follow from (6a) and (6b), respectively. The major computa-
tional cost of∇Fq is the evaluation of G(−λ̂j)) in (6a). Note
that for the computation of (6b), the factorizations during the
computation of (6a) can be re-used and thus, only additional
triangular solves are needed.

IV. RIEMANNIAN OPTIMIZATION

So far, we have only considered the input-output behavior
of system (2) but ignored the specific structure of the
interconnection and dissipation matrices. More specifically,
we have assumed that Ĵ, R̂ ∈ Rr×r. However, in order
to preserve the port-Hamiltonian structure, we also have to
guarantee that Ĵ ∈ Skewr and R̂ ∈ Sym+

r . We incorporate
these geometric constraints in the following by transferring
the optimization problem to the product manifoldM and by
this means obtain an unconstrained optimization problem on
a constrained search space. Iterative optimization algorithms
are based on local approximations of the cost functional
by its first (and second) order derivatives and select the
next iterate by determining an update direction and step
size. The transfer of conventional optimization algorithms in
Euclidean space to a Riemannian manifold is established by
the use of a retraction and a Riemannian metric. A retraction
Rx : TxM→M at x ∈M is a continuously differentiable
mapping between the manifold M and its tangent space
TxM at x (see [22, Definition 4.1.1]). The tangent space
TxM is a local approximation of the manifold M at x
and is an Euclidean space if it is equipped with a smoothly
varying inner product 〈·, ·〉x called the Riemannian metric.
The main concept of Riemannian optimization is to shift
the cost functional F to the Euclidean space TxM, where
it can be approximated and minimized with conventional
methods. Subsequently, we project the new iterate back onto
the manifold using the retraction.

Given the fact that Skewr and Rr are Euclidean spaces,
they can be equipped with the Frobenius inner product.
For the manifold Sym+

r we use the Riemannian metric

〈η1,η2〉R̂ = tr(R̂−1η1R̂
−1η2) [23] which leads to the

following Riemannian metric for the manifold M:

〈(ξ1,η1, ζ1), (ξ2,η2, ζ2)〉(Ĵ,R̂,b̂)
:= tr(ξT1 ξ2) + tr(R̂−1η1R̂

−1η2) + tr(ζT1 ζ2),
(15)

where tr() denotes the trace of a matrix. Note that the inverse
of R̂ exists for all R̂ ∈ Sym+

r . In Euclidean spaces the most
trivial retraction, which is also an exponential map, is simply
given by straight lines and thus, for instance, in the case of
Skewr we have ExpĴ(ξ) = Ĵ + ξ. When Sym+

r is endowed
with the Riemannian metric as in (15), the exponential map
can be derived from the geodesic in [24, Chapter 6]:

ExpR̂(η) = R̂
1
2 exp(R̂−

1
2ηR̂−

1
2 )R̂

1
2 .

In order to avoid the computational complexity and nu-
merical difficulties associated with the matrix exponential
exp(), we approximate the exponential map by a second-
order model as proposed in [25]

RR̂(η) = R̂ + η +
1

2
ηR̂−1η.

It can be shown that RR̂(η) ∈ Sym+
r for all R̂ ∈ Sym+

r

and η ∈ TR̂Sym+
r . We thus define the following retraction

for M
R(Ĵ,R̂,b̂)(ξ,η, ζ)

:= (Ĵ + ξ, R̂ + η +
1

2
ηR̂−1η, b̂ + ζ).

(16)

For the sake of brevity, we abbreviate the subscript (Ĵ, R̂, b̂)
with χ in the following. With the use of (15), the second
order approximation of F on TχM is given by

mχ(ξ,η, ζ) = F(Ĵ, R̂, b̂)

+ 〈gradF(Ĵ, R̂, b̂), (ξ,η, ζ)〉χ
+

1

2
〈HessF(Ĵ, R̂, b̂)[ξ,η, ζ], (ξ,η, ζ)〉χ,

where gradF(Ĵ, R̂, b̂) denotes the Riemannian gradient and
HessF(Ĵ, R̂, b̂) the Riemannian Hessian.

In the proposed pole-residue framework, the Euclidean
gradient has been formulated in vectorized form and we
thus simply gain the derivatives in matrix form by reshap-
ing (14). We obtain the Riemannian gradient of ∂F

∂Ĵ
by

an orthogonal projection onto Skewr using the projector
sk(X) = 1

2 (X−XT ). For Sym+
r , we refer to the derivation

in [26, Chapter III.C] and we denote the symmetric part of
a matrix by sym(X) = 1

2 (X + XT ). Using the matrix form
of (14), we obtain the Riemannian gradient of F

gradF(Ĵ, R̂, b̂) =

[
sk
(
∂F
∂Ĵ

)
, R̂sym

(
∂F
∂R̂

)
R̂,

∂F
∂b̂

]
.

This novel formulation of the Riemannian gradient of
F for port-Hamiltonian systems may be used for various
solvers such as trust-region or conjugate-gradient methods.
See e.g. [27] for structure-preserving model reduction of
port-Hamiltonian systems with a modified Fletcher-Reeves
scheme. In the following, we describe and evaluate its



Algorithm 1 H2-Optimal RTR Method for PHS

Input: Initial iterate (Ĵ0, R̂0, b̂0) ∈M
parameters r ∈ [2, n), ∆̄ > 0,∆0 ∈ (0, ∆̄), ρ′ ∈ [0, 14 )

Output: H2-optimal model (Ĵ, R̂, b̂)

1: for k = 0, 1, 2, ... do
2: Solve trust-region subproblem as in [28]
3: min

(ξ,η,ζ)∈Tχk
M
mχk

(ξ,η, ζ)

4: subject to ‖(ξ,η, ζ)‖χk
≤ ∆k

5: Evaluate ρk as in (17);
6: if ρk < 1

4 then
7: ∆k+1 = 1

4∆k;
8: else if ρk > 3

4 and ‖(ξk,ηk, ζk)‖χk
= ∆k then

9: ∆k+1 = min(2∆k, ∆̄);
10: else
11: ∆k+1 = ∆k;
12: end if
13: if ρk > ρ′ then
14: (Ĵk+1, R̂k+1, b̂k+1) = Rχk

(ξk,ηk, ζk)
15: else
16: (Ĵk+1, R̂k+1, b̂k+1) = (Ĵk, R̂k, b̂k)
17: end if
18: end for

performance in the trust-region framework which proved to
be suitable for model reduction both in Euclidean space (see
[17]) and on manifolds (see [13], [15]). However, it should
be noted that the presented framework is not dependent
on the optimization algorithm itself. For a comprehensive
review on Riemannian optimization on matrix manifolds and
implementation details, we refer to [22].

Riemannian trust-region (RTR) methods differ from trust-
region methods in Euclidean space in the sense that the
second-order approximation at a point χk is performed in
the tangent space Tχk

M and mapped back onto the manifold
via the retraction Rχk

. The quality of the model in the k-th
iteration is thus assessed with

ρk =
F(Ĵk, R̂k, b̂k)−F(Rχk

(ξk,ηk, ζk))

mχk
(0,0,0)−mχk

(ξk,ηk, ζk)
. (17)

Based on ρk, the new iterate Rχk
(ξk,ηk, ζk) is accepted

and the trust-region radius is updated.
In the pole-residue framework, the computation of the

Riemannian Hessian is quite cumbersome. Fortunately, in
order to minimize the local model mχk

, the Hessian is not
necessarily required. In fact, global convergence can be guar-
anteed under weak assumptions if HessF(Ĵ, R̂, b̂)[ξ,η, ζ] is
replaced by a uniformly bounded, symmetric linear operator
Hk [22]. In [28], a nonlinear finite-difference approximation
HFD
k of the Riemannian Hessian was proposed that is rela-

tively cheap to compute as it only requires another gradient
evaluation. The author showed that global convergence can
be retained using HFD

k as an approximation of the Hessian
if the truncated conjugate-gradient method to minimize mχk

Fig. 1: Relative H2- and H∞-error norms for different
reduced orders (n = 500)

is slightly modified. Using this approximation, we obtain
Algorithm 1.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of the
proposed approach for a medium- and large-scale port-
Hamiltonian system. As a full-order model we use the cou-
pling of n

2 mass-spring-damper elements. Each subsystem
consists of a spring ki, damper ci, mass mi and is described
by two state variables, the displacement and momentum of
the mass mi. Thus, the system has n state variables in total.
System input u is the external force applied to the first mass
and output y is the velocity of the first mass, so b = e2 and
bTQ = 1

m1
eT2 . The interconnection matrix J = diag(Ji),

dissipation matrix R = diag(Ri), and energy matrix Q all
have block diagonal structure with

Ji =

[
0 1
−1 0

]
, Ri =

[
0 0
0 ci

]
, i = 1, . . . ,

n

2
.

The (2i−1:2i+1), (2i−1:2i+1)-th elements of Q are
given by the block

Qi =



ki−1 + ki 0 −ki

0 1
mi

0

−ki 0 ki + ki+1


 , i = 1, . . . ,

n

2
−1,

where k0 = 0 and also Qn,n = 1/mn/2 holds. We
use the same parameters as in [6] and [15] in order to
compare our results to the approaches presented in those
papers. Additionally, we transform the system with state-
space transformation x = LT x̃ in order to obtain Q = In
as this is required for the Algorithm proposed in [15].

There are several options to compute an initial iterate
(Ĵ0, R̂0, b̂0) for Algorithm 1. One might for example create
a reduced model of (1) with a Krylov subspace method
choosing V ∈ Rn×r as an input Krylov subspace and
W = QV(V

T
QV)−1 (see [6]). The projection matrix V



TABLE I: Gradient norms ‖gradF(Ĵ, R̂, b̂)‖

r 6 20 40

IRKA-PH 5.9× 10−3 1.9× 10−4 6.0× 10−7

RTR-PR 1.7× 10−8 2.5× 10−6 2.8× 10−6

RTR-Lyap 4.2× 10−7 1.2× 10−6 4.1× 10−6

can be generated for instance by placing the interpolation
points logarithmically over a certain frequency range. In the
following, we use IRKA-PH to initialize our algorithm with a
stopping criterion of 10−3 in the norm of the relative change
of interpolation points. It is anticipated that the choice of
the initial iterate has a significant impact on convergence
speed and a thorough analysis is part of future work. For
the implementation, we used the MATLAB toolbox Manopt
[29] for optimization on matrix manifolds.

A. Mass-Spring-Damper Model with n = 500

First, we consider a mass-spring-damper model with 250
subsystems and 500 state variables respectively. We compare
the Riemannian trust-region method in our new pole-residue
framework (RTR-PR) with the IRKA-PH algorithm of [6]
and the Riemannian trust-region method in the Lyapunov
framework (RTR-Lyap) proposed in [15].

Fig. 1 shows the relative H2- and H∞-error norms for
each of these three algorithms and different reduced orders.
With respect to the H2-norm, our algorithm has a similar
performance as the Lyapunov-based approach RTR-Lyap.
This illustrates that the computation of the Euclidean gradient
in the pole-residue framework leads to comparable results
if the optimization parameters and the Riemannian metric
and retraction are chosen equally. Compared to IRKA-PH,
the theoretical considerations of Remark 2 are especially
supported for small reduced orders r. Here, the Rieman-
nian optimization methods perform significantly better than
IRKA-PH because, for non-symmetric systems, Galerkin-
based methods only fulfill half of the first-order conditions
for local H2-optimality. This is substantiated by the selected
gradient norms given in Table I. In this example, IRKA-
PH only manages to find local H2-optima for large reduced
orders. In the H∞-norm, the Riemannian methods perform
significantly better for small reduced orders as well and
decrease similar to IRKA-PH for r > 20.

The strengths of the proposed algorithm for small reduced
orders also hold from a computational viewpoint. The major
additional cost compared to IRKA-PH are the computation
of the pseudo inverse in (12) and the triangular solves of
(6b) for each reduced-order pole λ̂j . So in the case of
large reduced orders r, the additional computational cost
per iteration compared to IRKA-PH has a significant impact
and IRKA-PH may be the choice to go with. However, this
clearly also depends on the convergence speed of the selected
optimization algorithm. Fig. 2 illustrates the evolution of the
relative H2-error and norm of the Riemannian gradient both
for IRKA-PH and Algorithm 1 (r = 6). To sum up, in the

Fig. 2: Evolution of the relative H2-error and gradient norm
(r = 6, n = 500)

case of small reduced orders, our approach can significantly
improve the performance of IRKA-PH in the H2-norm with
relatively low computational cost.

B. Mass-Spring-Damper Model with n = 10000

To illustrate that the proposed framework is also suitable
for the efficient reduction of large-scale systems, we consider
a mass-spring-damper model of order n = 10000. For a
reduced order of r = 20, the amplitude plot of the error
system Ge(jω) = G(jω)− Ĝ(jω) is depicted in Fig. 3.
Compared to IRKA-PH, the RTR-PR model approximates
the original system significantly better over large parts of the
frequency range. In order to evaluate the computational cost
of the proposed framework, we computed the cost functional
F and the Riemannian gradient gradF(Ĵ, R̂, b̂) for 100
randomly created reduced-order models with order r = 20
on M. On an Intel Core i7-8700 (3.2 GHz, 6-Core) CPU,
both computations combined took less than two seconds on
average. While the performance optimization of our current
implementation is ongoing, this clearly demonstrates the
potential of the proposed framework for even larger systems.

VI. CONCLUDING REMARKS

We have presented a novel approach to H2-optimal model
reduction of port-Hamiltonian systems. Compared to existing
methods on Riemannian manifolds, the approach does not
require pre-processing of the original model or iterative
solves of coupled Lyapunov equations and proved to be
applicable for large-scale SISO systems as well. With respect
to the computational effort and compared to state-of-the-art
algorithms, the method is particularly powerful for small
reduced orders r. Future work will involve the derivation
of the Riemannian gradient in the pole-residue framework
for MIMO systems and a comprehensive study of different
Riemannian optimization algorithms within this framework.



Fig. 3: Amplitude plot of error system Ge(jω)
(r = 20, n = 10000)
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A.4 A Rosenbrock Framework for Tangential Interpolation of
Port-Hamiltonian Descriptor Systems

Summary: Existing strategies for interpolatory MOR of linear, time-invariant pH-
DAE models vary depending on the original model’s Kronecker index and how algebraic
constraints are affected by the input. In their entirety, these strategies do not cover the
whole system class of pH-DAEs and some may not necessarily preserve the pH struc-
ture. In this article, we investigate whether there is an interpolatory MOR framework
that allows to treat algebraic equations in a unifying way, irrespective of the original
model’s Kronecker index. We first show that the Rosenbrock system matrix exhibits a
particular structure for pH-DAE models that can be employed for this purpose. From
this, we derive a novel interpolatory MOR framework that can be used for pH-DAEs
in staircase form, which often occur in modeling practice. It covers models with arbi-
trary Kronecker index, guarantees ROMs in pH-DAE form with minimal state-space
dimension, and works with the original (typically sparse) state-space matrices. We then
illustrate how existing H2- and H∞-inspired shift selection strategies can be embedded
in this framework. Our numerical examples demonstrate the application of our method
in electrical circuit simulation, where pH-DAE models occur naturally.
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ABSTRACT
We present a new structure-preserving model order reduction 
(MOR) framework for large-scale port-Hamiltonian descriptor sys
tems (pH-DAEs). Our method exploits the structural properties of 
the Rosenbrock system matrix for this system class and utilizes 
condensed forms which often arise in applications and reveal the 
solution behaviour of a system. Provided that the original system 
has such a form, our method produces reduced-order models 
(ROMs) of minimal dimension, which tangentially interpolate the 
original model’s transfer function and are guaranteed to be again in 
pH-DAE form. This allows the ROM to be safely coupled with other 
dynamical systems when modelling large system networks, which is 
useful, for instance, in electric circuit simulation.
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1. Introduction

The port-Hamiltonian (pH) modelling paradigm provides an energy-based framework 
for constructing high-fidelity models of complex dynamical systems. The separation 
between constitutive relations and the interconnection structure enables a modular 
modelling approach, in which different subsystems are modelled independently and 
then interconnected via power flows while preserving important physical properties [1]. 
This flexibility is particularly advantageous when considering interactions between sub
systems across different physical domains or time scales [2]. Furthermore, network laws 
that govern these interactions, such as Kirchhoff’s laws in electrical circuits or position and 
velocity constraints in mechanical systems, may be incorporated via algebraic constraints, 
leading to pH differential-algebraic equation systems (pH-DAEs) [3]. PH-DAE systems 
often naturally emerge in modelling practice, e.g. when modelling electric circuits, incom
pressible fluid flow, multibody dynamics or pressure waves in gas networks (see [3,26] and 
the references therein).

If the system at hand increases in complexity, generally, the state-space dimension of 
its associated pH-DAE model does so too, which makes the simulation and design of 
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model-based controllers computationally challenging. Model order reduction (MOR) 
may be applied to approximate large-scale full-order models (FOMs) with reduced-order 
models (ROMs) of substantially smaller dimension to decrease the computational costs. 
However, this comes with two major challenges. On the one hand, the impacts of the 
algebraic equations on the model dynamics have to be reflected in the ROM as well, but 
without significantly increasing the reduced state-space dimension. On the other hand, to 
facilitate the subsequent coupling of the ROM with other subsystems, the MOR method 
should be structure-preserving, meaning that the ROM is again a pH-DAE.

Structure-preserving MOR methods for pH-DAEs fall into three major categories: 
pH-preserving MOR methods, passivity-preserving MOR methods and passivity enfor
cement techniques. For an overview of existing approaches, the interested reader is 
referred to [5]. In this work, we focus on pH-preserving, interpolatory MOR techniques 
which are particularly suited for the reduction of very large-scale models due to their 
computational efficiency. While these methods are well-established for various system 
classes, including general DAE systems (see [6] for a comprehensive overview), this is 
still only partially the case for pH-DAEs. Tangential interpolation of pH ordinary 
differential equation systems (pH-ODEs) with no algebraic constraints has been 
addressed in [8–10,11,22] and is well understood. Extensions to the DAE case with 
algebraic constraints have been proposed in [12,13]. The strategies to deal with alge
braic constraints vary depending on the original model’s Kronecker index and how the 
algebraic constraints are affected by the input. However, in their entirety, these 
strategies do not cover the whole system class of pH-DAEs and some may not 
necessarily preserve the pH structure. This motivates the following research question 
which we address in this work: Is there a unifying interpolatory MOR framework that is 
applicable to the entire system class of linear, time-invariant pH-DAEs and guarantees 
a preservation of the pH structure?

A good starting point to answer this question is the staircase forms presented in [13,14]. 
While staircase forms are generally helpful in analysing the solution behaviour of DAEs, 
they are also useful for MOR since they allow the impact of algebraic constraints on the 
system dynamics to be analysed. In general, the transformation of a pH-DAE model to 
staircase form relies on a series of rank conditions which may be sensitive under perturba
tions; see e.g [15]. Fortunately, as demonstrated in [3,26] for various physical examples, this 
can be considered directly in the modelling process such that the resulting model already 
has (or is close to) staircase form. Since DAEs often include redundant algebraic equations 
which increase the computational cost for simulation, the task of MOR is to identify 
a minimal set of equations that describes the dynamical behaviour of the system. In 
1970, Rosenbrock [16] proposed to represent dynamical systems with a polynomial matrix, 
which is beneficial to compute minimal representations and nowadays known as the 
Rosenbrock system matrix. Interestingly enough, this matrix has not extensively been 
used in the context of MOR.

In this work, we show that the Rosenbrock system matrix exhibits a particular 
structure for pH-DAEs which we exploit to derive a novel interpolatory MOR frame
work that
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(i) can be used for linear, time-invariant pH-DAEs in staircase form with arbitrary 
Kronecker index,

(ii) guarantees ROMs in pH-DAE form with a minimal state-space dimension,

(iii) works with the original (typically sparse) state-space matrices and is therefore compu
tationally efficient, and

(iv) enables a straightforward adaptation and integration of different interpolatory MOR 
strategies that have been developed for general dynamical systems.

The paper is organized as follows. In Section 2, we use the concept of the Rosenbrock 
system matrix to introduce the system class of pH-DAEs and its staircase forms and 
recapitulate the basics of tangential interpolation. In Section 3, we propose a new inter
polatory MOR framework that exploits the structural properties of pH-DAEs in staircase 
form and show how this framework naturally generalizes to several extensions proposed for 
unstructured systems in Section 4. We conclude with an application of our method to two 
electric circuits and a discussion of the above claims in Sections 5 and 6.

2. Preliminaries

We consider linear time-invariant (LTI) systems of the form 

E _xðtÞ ¼ AxðtÞ þ BuðtÞ; xð0Þ ¼ 0;
yðtÞ ¼ CxðtÞ þ DuðtÞ; (1) 

with state vector xðtÞ 2 R n, inputs uðtÞ 2 R m, outputs yðtÞ 2 R m for all t 2 ½0;1Þ and 
constant matrices E; A 2 R n�n, B 2 R n�m, C 2 R m�n and D 2 R m�m. Systems with 
a singular descriptor matrix E are referred to as DAE systems, and ODE systems 
otherwise. In the following, we will assume that the pencil λE � A is regular, i.e. 
detðλE � AÞ�0 for some λ 2 C . We denote the ring of polynomials with coefficients in 
R by R ½s� and the set of n�m matrices with entries in R ½s� by R ½s�n�m.

2.1. The Rosenbrock system matrix

After a Laplace transformation of the state-space equations in (1), we obtain the follow
ing equations in matrix form: 

P sð Þ � sð Þ
μ sð Þ

� �

¼
0

ψ sð Þ

� �

; where P sð Þ :¼
sE � A � B

C D

� �

2 R ½s� nþmð Þ� nþmð Þ
: (2) 

where �, μ and ψ denote the Laplace transforms of the state, input and output vector, 
respectively. The polynomial matrix P is also called the Rosenbrock system matrix (in the 
following: system matrix) [17]. Assuming regularity, the linear mapping between inputs 
μ and outputs ψ that follows from (2) is given by the system’s transfer function 

HðsÞ :¼ CðsE � AÞ� 1Bþ D: (3) 

Since all transformations of the state-space equations in (1) can be expressed by 
operations on P, the system matrix proved to be particularly useful for studying the 
properties of these transformations [16]. In this work, we shall focus on transformations 
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which leave the system’s transfer function H unchanged and are summarized by the 
notion of strict system equivalence.

Lemma 2.1. [16] Let XðsÞ 2 R ½s�m�n, YðsÞ 2 R ½s�n�m and define unimodular matrices 
LðsÞ;MðsÞ 2 R ½s�n�n, i.e. their determinants are nonzero constants. Suppose that two 
system matrices P and eP are related by the transformation  

ePðsÞ ¼ T 1ðsÞPðsÞT 2ðsÞ ¼
LðsÞ 0
XðsÞ Im

� �

PðsÞ MðsÞ YðsÞ
0 Im

� �

: (4) 

Then we shall say that P and eP are related by strict system equivalence (s.s.e.). The two 
system matrices give rise to the same transfer function, i.e. HðsÞ ¼ eHðsÞ for all s 2 C .

Proof. For a proof, we refer the reader to [16, Section 3.1].

The benefits of representing a dynamical system with its system matrix are by no means 
restricted to system transformations; it may also be useful in the context of model reduction.

2.2. Interpolatory model reduction

The goal of MOR is to find a reduced-order model 

Er _xrðtÞ¼ ArxrðtÞ þ BruðtÞ; xrð0Þ ¼ 0;
yrðtÞ ¼ CrxrðtÞ þ DruðtÞ;

(5) 

with reduced state vector xrðtÞ 2 R r and an associated transfer function Hr such that 
r � n and y � yr for certain u. In projection-based MOR, these models are created by 
means of Petrov-Galerkin projections. Here, we define two matrices U; V 2 R n�r with 
full column rank. The original state trajectory xðtÞ is approximated on the column space 
of V , i.e. xðtÞ � VxrðtÞ for all t 2 ½0;1Þ. The reduced system matrix is obtained by the 
following operation on the original system matrix P: 

PrðsÞ ¼
U` 0

0 Im

� �

P
V 0
0 Im

� �

¼
sU`EV � U`AV � U`B

CV D

� �

¼
sEr � Ar � Br

Cr Dr

� �

: (6) 

The matrices U;V may be chosen for different purposes, for example, to enforce the 
preservation of certain system-theoretic or structural properties of the original model. In 
interpolatory MOR methods, they are used to enforce interpolation conditions between the 
original and reduced transfer function. In particular, the column space of V may be chosen 
such that the reduced transfer function Hr tangentially interpolates the original transfer 
function H at a set of interpolation points or shifts fσ1; . . . ; σrg 2 C : 

HðσiÞbi ¼ HrðσiÞbi; i ¼ 1; . . . ; r; (7) 

where bi 2 Cm denotes the associated (right) tangential direction. For the sake of 
simplicity, we assume throughout this work that each shift is distinct while an extension 
to multiple shifts is straightforward, and we refer the interested reader to [6] for details. 
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In all cases, we require σiE � A as well as σiEr � Ar to be nonsingular for all i ¼ 1; . . . ; r, 
and that the sets of shifts and associated tangential directions are both closed under 
complex conjugation. Then, the interpolation conditions in (7) may be enforced by 
choosing 

σiE � Að Þ
� 1Bbi 2 range Vð Þ; i ¼ 1; . . . ; r; (8) 

where range Vð Þ denotes the associated column space of V . Similarly, U may be used to 
enforce additional (left) tangential interpolation conditions (see [6] for details). The 
approximation quality of a ROM is typically assessed by computing the H1 or H2 
norm of the error function H � Hr. These are defined in the Hardy spaces RHm�m

1

(RHm�m
2 ) of all proper (strictly proper) real-rational m�m matrices without poles in 

the closed complex right half-plane (see, e. g., [18] for details).
Remark 1. Note that while the conditions in (8) hold regardless of whether E has full 

rank or not, as long as σiE � A and σiEr � Ar are nonsingular for all i ¼ 1; . . . ; r, the 
interpolation of DAE systems poses additional challenges. Unlike in the ODE case, where 
H � Hr is guaranteed to be strictly proper since lims!1HðsÞ � HrðsÞ ¼ D � Dr ¼ 0, this 
is not necessarily the case for DAE systems. In fact, as we will also see in Section 3, the 
algebraic constraints may even lead to improper transfer functions with 
lims!1HðsÞ ¼ 1. It is, therefore, crucial to analyse the impact of the algebraic con
straints on H because otherwise, H � Hr may grow unboundedly large for s!1, and 
the error norms are no longer defined. For an overview of how to deal with this challenge 
for general LTI systems, the reader is referred to [6, Chapter 9].

2.3. Port-Hamiltonian descriptor systems

The system class of linear port-Hamiltonian descriptor systems with quadratic Hamiltonian 
was introduced in [19]. In this work, we focus on the subclass of constant-coefficient pH- 
DAEs, which can be characterized by a special structure of the associated system matrix.

Definition 2.2. Consider a regular LTI system of the form 

� :
E _x tð Þ ¼ J � Rð Þx tð Þ þ G � Pð Þu tð Þ; x 0ð Þ ¼ 0;
y tð Þ ¼ ðGþ PÞ`x tð Þ þ Sþ Nð Þu tð Þ;

�

(9) 

where E; J; R 2 R n�n, G; P 2 R n�m, S; N 2 R m�m. We call the system a pH-DAE system 
if its system matrix may be decomposed into the following sum of symmetric and skew- 
symmetric parts 

PðsÞ ¼ s E 0
0 0

� �

|fflfflfflffl{zfflfflfflffl}
¼:E

þ
� J � G
G` N

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼: Γ

þ
R P

P` S

� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼: W

; (10) 

such that

(i) the structure matrix Γ is skew-symmetric, i.e. Γ ¼ � Γ`,
(ii) the dissipation matrix W is symmetric positive semi-definite, i.e. W ¼W` � 0,
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(iii) the extended descriptor matrix E is symmetric positive semi-definite, i.e. E ¼ E` � 0:
The system has an associated quadratic Hamiltonian HðxÞ ¼ 1

2 x`Ex and transfer function 

HðsÞ :¼ ðGþ PÞ`ðsE � ðJ � RÞÞ� 1
ðG � PÞ þ Sþ N:

Note that the definition proposed in [19] appears to be more general since it also 
allows the representation of systems governed by a quadratic Hamiltonian of the form 
HðxÞ ¼ 1

2 x`Q`Ex with Q 2 R n�n and Q`E ¼ E`Q � 0. However, our definition does 
not impose any additional restrictions since it has been shown, e.g. in [3] that every pH- 
DAE, as defined in [19], may be reformulated to have the form in (9).

Moreover, it was shown in [13,14] that every pH-DAE may be transformed into staircase 
form. While the physical interpretation of the states is generally lost during this transforma
tion, staircase forms are useful to study the solution behaviour of pH-DAEs [3] and, as we will 
show in Section 3, also simplify model reduction. We refer to [14, Algorithm 5] for details on 
how to perform this transformation. Before we proceed, let us highlight that it may require 
several subsequent full rank decompositions, which are sensitive to perturbations. 
Fortunately, due to the structural properties of the system matrix, the number of required 
decompositions is limited to three in contrast to general (unstructured) DAE systems. 
Moreover, if this condensed form is directly considered during modelling, fewer steps are 
required, as discussed in [3,26]. In some practical cases, for example, in the modelling of 
electric circuits, the staircase form even naturally arises or can be enforced by simple structure- 
preserving permutations of the system equations, as illustrated in Section 5.

Lemma 2.3. [13,14] A regular pH-DAE system is in staircase form if it has a partitioned 
state vector xðtÞ ¼ x1ðtÞ`; x2ðtÞ`; x3ðtÞ`; x4ðtÞ`

� �`
, where xjðtÞ 2 R nj ; nj 2 N0 for all 

j ¼ 1; . . . ; 4 such that  

E :¼

E11 0 0 0
0 E22 0 0
0 0 0 0
0 0 0 0

2

6
6
4

3

7
7
5; J :¼

J11 J12 J13 J14
J21 J22 J23 0
J31 J32 J33 0
J41 0 0 0

2

6
6
4

3

7
7
5; (11) 

G :¼

G1
G2
G3
G4

2

6
6
4

3

7
7
5; P :¼

P1
P2
P3
0

2

6
6
4

3

7
7
5; R :¼

R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
0 0 0 0

2

6
6
4

3

7
7
5; (12) 

where E11; E22 are positive definite, and the matrices J41 and J33 � R33 are invertible (if the 
blocks are nonempty). The Kronecker index ν of the uncontrolled system satisfies  

ν ¼
0 if and only if n1 ¼ n4 ¼ 0 and n3 ¼ 0;
1 if and only if n1 ¼ n4 ¼ 0 and n3 > 0;
2 if and only if n1 ¼ n4 > 0:

8
<

:

As initially stated, it is beneficial to preserve the structural properties of the original 
pH-DAE model during MOR. Structure-preserving MOR methods, therefore, search for 
a reduced pH-DAE 
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�r :
Er _xr tð Þ ¼ Jr � Rrð Þxr tð Þ þ Gr � Prð Þu tð Þ;

yr tð Þ ¼ ðGr þ PrÞ
`xr tð Þ þ Sr þ Nrð Þu tð Þ;

�

(13) 

with xrðtÞ 2 R r, r � n that fulfils the pH structural constraints, i.e. the associated system 
matrix may be decomposed as in Definition 2.2 such that 

PrðsÞ ¼ sEr þ Γr þWr; (14) 

with symmetric positive semi-definite Er;Wr and skew-symmetric Γr. Note that the 
system matrix has also recently been used to derive a symplectic MOR method for LTI 
pH-ODEs without feedthrough in [20].

3. Our approach

In the following, we demonstrate how the concepts of the presented staircase form 
and the system matrix may be unified to derive a framework for tangential 
interpolation of pH-DAEs with an arbitrary Kronecker index. For this, we proceed 
in three steps. First, we apply a transformation under s.s.e. to the original system 
matrix P that enables us to decompose the original transfer function into proper 
parts and improper parts that may originate from algebraic constraints. Since all 
improper parts have to be preserved in the ROM exactly to keep the error H � Hr 
bounded (see Remark 1), we propose a new method to efficiently reduce only the 
proper part in the second step. Third, we show how to reattach the original 
improper part to the reduced proper transfer function to construct a minimal 
pH-DAE representation of the ROM in staircase form.

3.1. System matrix decomposition

Let P denote the system matrix of a full-order pH-DAE system with transfer function H 
in staircase form as in Lemma 2.3. For the sake of notational simplicity, we use 
A ¼ J � R, B ¼ G � P, C ¼ ðGþ PÞ` and D ¼ Sþ N which are partitioned as in 
Lemma 2.3: A11 2 R n1�n1 , for example, denotes the upper left block of J � R. We define 
the transformation matrices T 1; T 2 2 R ðnþmÞ�ðnþmÞ with 

T 1 :¼
L 0
X Im

� �

¼

In1 0 � A13A� 1
33 0 0

0 In2 � A23A� 1
33 � ðA21 � A23A� 1

33 A31ÞA� 1
41 0

0 0 A� 1
33 0 0

0 0 0 A� 1
41 0

C4A� 1
14 0 ðC3 � C4A� 1

14 A13ÞA� 1
33 0 Im

2

6
6
6
6
4

3

7
7
7
7
5
;
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T 2 :¼
M Y
0 Im

� �

¼

In1 0 0 0 � A� 1
41 B4

0 In2 0 0 0
� A� 1

33 A31 � A� 1
33 A32 In3 0 � A� 1

33 ðB3 � A31A� 1
41 B4Þ

0 A� 1
14 ð� A12 þ A13A� 1

33 A32Þ 0 A� 1
14 0

0 0 0 0 Im

2

6
6
6
6
4

3

7
7
7
7
5
:

It is apparent that T 1 and T 2 satisfy the conditions in Lemma 2.1 since the determinants 
of A33;A14 and A41 are constant and nonzero (see Lemma 2.3 and [13,14] for a proof). 
Note that our definitions of L and M share similarities with the state-space transforma
tion presented in [14, Lemma 6] for autonomous semi-dissipative Hamiltonian DAEs. 
We obtain a transformed s.s.e. system matrix 

~P sð Þ ¼ T 1P sð ÞT 2 ¼

s~E11 � ~A11 0 0 � In1 � ~B1
0 sEp � Ap 0 0 � Bp
0 0 � In3 0 0
� In1 0 0 0 0
~C1 Cp 0 0 Dp þ sD111

2

6
6
6
6
4

3

7
7
7
7
5
; (15) 

with nonsingular eE11; Ep. The second and fifth block column and row entries, respec
tively, are highlighted since these are the only parts that contribute to the transformed 
transfer function eH: 

eH ¼ eCðseE � eAÞ� 1eBþ Dp þ sD1 (16) 

¼ eC1 Cp 0 0
h i

0 0 0 � In1

0 ðsEp � ApÞ
� 1 0 0

0 0 � In3 0
� In1 0 0 � ðseE11 � eA11Þ

2

6
6
4

3

7
7
5

eB1
Bp
0
0

2

6
6
4

3

7
7
5þ Dp þ sD1

(17) 

¼ CpðsEp � ApÞ
� 1Bp þ Dp þ sD1 (18) 

Consequently, the transfer function of every pH-DAE may be represented as the sum 
of the transfer function of a proper ODE system with dimension n2 and an additional 
linear, improper term. Moreover, as shown in [21, Theorem 1], the proper subsystem 
again satisfies the pH structural constraints in Definition 2.2. It, therefore, admits a pH- 
ODE representation, which can be found by using its system matrix.

Lemma 3.1. A pH-ODE representation of the proper subsystem with transfer function 
Hp ¼ CpðsEp � ApÞ

� 1Bp þ Dp can be computed by simply decomposing its system matrix 

PpðsÞ :¼
sEp � Ap � Bp

Cp Dp

� �

;

into symmetric and skew-symmetric parts, respectively.
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Proof. Decomposing Pp yields 

PpðsÞ ¼ s Ep 0
0 0

� �

þ Γp þWp;

with 

Γp ¼
� Jp � Gp
G`

p Np

� �

¼
1
2
� Ap þ A`

p � Bp � C`
p

Cp þ B`
p Dp � D`

p

" #

;

Wp ¼
Rp Pp
P`

p Sp

� �

¼
1
2
� Ap � A`

p � Bp þ C`
p

Cp � B`
p Dp þ D`

p

" #

:

The fact that the system is an ODE system follows directly from Ep ¼ E22 > 0. This also 
proves condition (i) in Definition 2.2. In [21, Theorem 1], it was shown that the sum 
Γp þWp may be obtained from a series of transformations of the original Γ þW. These 
include permutations, Schur complement constructions and congruence-like transfor
mations, which all preserve the positive semi-definiteness of the symmetric part. 
Therefore, Γp;Wp fulfil the pH structural constraints (ii) and (iii) in Definition 2.2, 
which completes the proof.

We highlight that the simplicity of this result is a direct consequence of the 
staircase form and the pH structural constraints. For general DAE systems, this 
system decomposition approach generally requires the computation of spectral 
projectors onto the left and right deflating subspaces of the pencil λE � A corre
sponding to the finite eigenvalues, which are numerically challenging to compute in 
the large-scale setting [4]. In some applications, such as fluid flow problems or 
electric circuit simulation where the matrices E and A have a special block struc
ture, the computation of spectral projectors can be done more efficiently or even 
circumvented, see, e.g [4,23]. However, the proposed interpolatory MOR approaches 
for general (unstructured) DAE systems [4,6] vary for different Kronecker indices, 
and their adaptations to pH-DAE systems proposed in [12,13] do not always 
guarantee that the ROM is again in pH form. In the following, we show how the 
results in this section enable the construction of a general MOR approach that 
works irrespective of the original system’s Kronecker index and guarantees to 
produce minimal ROMs in pH form.

3.2. Tangential interpolation

As discussed in Remark 1, the ROM has to match the improper part sD1 exactly because 
otherwise, H � Hr‚RH

m�m
1 . We will therefore set this part aside for now and focus on 

the reduction of the proper part. Since the proper subsystem has only dimension n2, 
a natural approach would be to reduce the proper system matrix Pp directly. According 
to (8), this approach requires the computation of solutions vi 2 Cn2 of 
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ðσiEp � ApÞvi ¼ Bpbi; (19) 

for all i ¼ 1; . . . r. From (15), we derive 

Ep ¼ E22; Ap ¼ A22 � A23A� 1
33 A32:

For index-1 pH-DAEs (n3 > 0) with nonzero A23A� 1
33 A32, the matrix Ap might be dense, 

and therefore, the solutions in (19) may be more expensive than for the original system 
with matrices E, A and B. This is illustrated by the following example.

Example 3.2. Consider a pH-DAE with Kronecker index ν ¼ 1 in staircase form. The 
system has dimension n¼ 104 with n2 ¼ n3 ¼

n
2 and one input-output pair. As shown by 

the sparsity patterns in Figure 1(a,b), the matrices E and A have a very simple structure 
with only few nonzero entries (depicted in blue). However, the matrix Ap of the proper 
subsystem is dense, as shown in Figure 1(d).

To demonstrate the effects on interpolatory MOR, we solved (19) for the proper 
subsystem and for the original system with matrices E, A and B using 100 random 

Figure 1. Sparsity patterns of exemplary full-order matrices E; A 2 R n�n and of the matrices 
Ep; Ap 2 R n2�n2 of its associated proper subsystem.
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complex shifts σi with MATLAB’s mldivide command. All computations were conducted 
using MATLAB R2021b (version 9.11.0.1873467) on an Intel® Core™ i7–8700 CPU (3.20  
GHz, 6-Core) with 32 GB RAM. The computations of (19) for the proper subsystem took 
2:51 seconds on average versus only 0:013 seconds for the original model. Consequently, 
even though the proper subsystem is significantly smaller in size, the computation of the 
reduction matrix V takes more than 150 times longer.

Therefore, we propose another approach that works with the original (sparse) system 
matrix, irrespective of the system’s Kronecker index.

Theorem 3.3. Given a large-scale pH-DAE in staircase form with system matrix P, as 
well as interpolation points fσ1; . . . ; σrg, and corresponding right tangential directions 
fb1; . . . ; brg, let V 2 R n�r define a reduction matrix such that (8) holds with 
a decomposition V` ¼ ½V`

1 ;V`
2 ;V`

3 ;V`
4 �

` with Vj 2 R nj�r for all j ¼ 1; . . . ; 4. We 
define the reduction matrices  

U :¼

0 A� `
14 C`

4
V2 0

� A� `
33 A`

23V2 A� `
33 C`

3 � A`
13A� `

14 C`
4

� �

0 0
0 Im

2

6
6
6
6
4

3

7
7
7
7
5
; V :¼

0 A� `
14 B4

V2 0
0 0
0 0
0 Im

2

6
6
6
6
4

3

7
7
7
7
5
; (20) 

Then, the model associated with the reduced system matrix

Pr :¼ U`PV;

satisfies the tangential interpolation conditions (7), and its proper subsystem fulfils the pH 
structural constraints. The reduced system matrix admits a decomposition  

Pr ¼ s Ep;r 0
0 D1

� �

þ
� Jp;r � Gp;r
G`

p;r Np;r

� �

þ
Rp;r Pp;r
P`

p;r Sp;r

� �

:

Proof. Using the decomposition of V , the original system matrix P may initially be 
reduced in the following way: 

P2ðsÞ ¼
U` 0

0 Im

� �

P
U 0
0 Im

� �

; U :¼

In1 0 0 0
0 V2 0 0
0 0 In3 0
0 0 0 In4

2

6
6
4

3

7
7
5: (21) 

The reduced model associated with P2 satisfies the tangential interpolation conditions in 
(7) since rangeðVÞ � rangeðUÞ. Note that this approach, which was also proposed in [13] 
for index-1 pH-DAEs, produces ROMs that are still comparatively large: the ROM has 
dimension n1 þ r þ n3 þ n4. However, since the ROM is still a pH-DAE in staircase 
form, we can obtain a minimal representation by applying a transformation under s.s.e., 
as in Section 3.1, and extracting the proper system matrix without changing its transfer 
function. A combination of the reduction in (21), the transformation and extraction of 
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proper parts yields the reduction matrices U;V. Moreover, simple algebraic manipula
tions show that 

Pr ¼ U
`PV ¼

V`
2 0
0 Im

� �
sEp � Ap � Bp

Cp Dp þ sD1

� �
V2 0
0 Im

� �

;

and consequently, the proper part of Pr fulfils the pH structural constraints and may be 
decomposed to obtain a pH representation, which completes the proof.

To improve the numerical stability of Krylov subspace methods, the matrix V is 
usually orthogonalized such that V`V ¼ Ir. This orthogonalization does not 
change the moment matching conditions in (8) since these only depend on the 
subspace that is spanned by the column vectors of V , not the basis itself. 
However, note that in our case, even if V is orthogonal, this is generally not 
the case for its submatrix V2. To improve the numerical stability, we employ the 
cosine-sine decomposition, as discussed in [24]. For this, we split V into two 
parts: V2 and the remaining submatrices VT

rem ¼ ½V`
1 ;V`

3 ;V`
4 �

`
2 R nrem�r . We then 

compute the decomposition 

V2
Vrem

� �

¼
�V2 0
0 �Vrem

� �
Cs
Ss

� �

X`
s ; (22) 

with orthogonal �V2 2 R n2�r, �Vrem 2 R nrem�r , and Xs 2 R r�r , as well as diagonal 
Cs; Ss 2 R r�r such that C`

s Cs þ S`
s Ss ¼ Ir. Replacing V2 in (20) with �V2 yields the final 

reduced system matrix Pr.

3.3. Minimal pH-DAE representation

To find a pH-DAE representation for Pr, we have to incorporate the improper part sD1
that has been separated back into the model. Two different methods have been proposed 
in [21] and [25] for this purpose. Since the method in [25] only leads to a minimal ROM 
representation if D1 has full rank, we proceed similarly as in [21]. We have that 

D1 ¼ � C4A� 1
14 E11A� 1

41 B4 ¼ G`
4 A� `

41 E11A� 1
41 G4 ¼ D`

1 � 0: (23) 

Consequently, there exists a rank-revealing factorization D1 ¼ L1L`
1 with L1 2 R m�q. 

A minimal ROM representation �r in staircase form can be found with 

Er ¼

Iq 0 0
0 Ep;r 0
0 0 0

2

4

3

5; Jr ¼

0 0 Iq
0 Jp;r 0
� Iq 0 0

2

4

3

5; Rr ¼

0 0 0
0 Rp;r 0
0 0 0

2

4

3

5;

Gr ¼

0
Gp;r
L`
1

2

4

3

5; Pr ¼

0
Pp;r

0

2

4

3

5; Sr ¼ Sp;r; Nr ¼ Np;r:

We combine the obtained results of this section in Algorithm 1.
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Algorithm 1: Tangential Interpolation of pH-DAEs
Input : Large-scale pH-DAE � in staircase form with system matrix P; set of 

interpolation points fσ1; . . . ; σrg and corresponding right tangential direc
tions fb1; . . . ; brg (both closed under complex conjugation).

Output: Reduced pH-DAE �r with system matrix Pr.
1 Compute V ¼ V`

1 ;V`
2 ;V`

3 ;V`
4

� �`
2 R n�r such that (8) holds.

2 Orthogonalize V2 via the cosine-sine decomposition in (22) such that 
rangeðV2Þ ¼ rangeð�V2Þ with �V`

2
�V2 ¼ Ir.

3 Compute the reduction matrices U;V as in Section 3.2: 

U ¼

0 A� `
14 C`

4
�V2 0

� A� `
33 A`

23
�V2 A� `

33 ðC`
3 � A`

13A� `
14 C`

4 Þ

0 0
0 Im

2

6
6
6
6
4

3

7
7
7
7
5
; V ¼

0 A� `
14 B4

�V2 0
0 0
0 0
0 Im

2

6
6
6
6
4

3

7
7
7
7
5
:

4 Compute and decompose the reduced system matrix

Pr ¼ U
`PV ¼ s Ep;r 0

0 D1

� �

þ
� Jp;r � Gp;r
G`

p;r Np;r

� �

þ
Rp;r Pp;r
P`

p;r Sp;r

� �

:

5 Compute a rank-revealing factorization D1 ¼ L1L`
1 with L1 2 R m�q.

6 if q > 0 then
7 Construct ROM �r as in (13) with 

Er ¼

Iq 0 0
0 Ep;r 0
0 0 0

2

4

3

5; Jr ¼

0 0 Iq
0 Jp;r 0
� Iq 0 0

2

4

3

5; Rr ¼

0 0 0
0 Rp;r 0
0 0 0

2

4

3

5;

Gr ¼

0
Gp;r
L`
1

2

4

3

5; Pr ¼

0
Pp;r

0

2

4

3

5; Sr ¼ Sp;r;Nr ¼ Np;r:

8 else
9 Construct ROM �r as in (13) directly from Pr.
10 end

3.4. Discussion

In the following, we would like to briefly discuss the differences between the proposed 
Rosenbrock framework and other interpolatory MOR approaches that have been pro
posed for pH-DAEs. On the one hand, the approaches get more complex if the system’s 
Kronecker index ν increases. On the other hand, as revealed in this section, if the system’s 
transfer function has improper parts, these require special care since they have to be 
preserved exactly in the ROM. As shown in Lemma 2.3, the Kronecker index of LTI pH- 
DAEs is at most two, and improper parts may only occur if the Kronecker index is two 
(see (23)). Therefore, in the context of MOR, we may identify six different system 
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categories. An overview of existing methods for each category, to the best of the author’s 
knowledge, is given in Table 1.

The tangential interpolation of pH-ODEs (ν ¼ 0), as initially proposed in [22], is well 
understood and leads to minimal ROM representations in pH-ODE form. For these 
systems, our approach is equivalent since the reduction matrices simplify to 

U ¼ V ¼
�V2 0
0 Im

� �

. For index-1 pH-DAEs, methods in [12,13] have been proposed, 

which rely on different semi-explicit representations of the FOM. In [13, Theorem 1], the 
feedthrough matrix of the ROM is modified to match the polynomial part of the FOM, 
which in the index-1 case, is constant. However, this method does not guarantee that the 
ROM fulfils the pH structural constraints. A remedy to this problem is to preserve the 
algebraic constraints of the FOM as proposed in [13, Theorem 2] and [12, Theorem 5]. 
However, this does not generally yield minimal ROMs since redundant algebraic equa
tions cannot be removed, as discussed in [13, Remark 2]. In contrast, our method does 
not impose additional assumptions since it also only requires a semi-explicit FOM 
representation but guarantees the preservation of the pH form and yields minimal 
ROM representations.

For systems with ν ¼ 2 that do not have an index-1 part (n3 ¼ 0), we may distinguish 
between the proper and improper case. The proper index-2 case is comparable to the pH- 
ODE case if the system is in semi-explicit form and the method proposed in [13] yields 
minimal ROMs in pH form. Our method achieves the same goals, but may require one 
additional transformation to identify the full-rank matrix J41. The improper index-2 case 
is treated in [13, Theorem 4]. However, this method does not guarantee that the ROM 
fulfils the pH structural constraints, which is generally the case for our method, again 
under the assumption that the system is in staircase form. To the best of the author’s 
knowledge, methods for systems with index-1 and index-2 parts (n3�0, n4�0) have not 
been proposed yet. These two categories are also covered by our framework, which 
applies to all pH-DAEs in staircase form.

4. H2- and H1-inspired tangential interpolation

The question that remains is how to choose the parameters in Algorithm 1, i.e. the set of 
interpolation points and tangential directions. For unstructured ODE and DAE systems, 

Table 1. Proposed tangential interpolation methods for pH-DAEs. The six different categories are 
derived from the original system’s Kronecker index ν and whether its transfer function has improper 
parts.

Category ν n2 n3 n4=n1 D1 References

Index-0 0 �0 0 0 0 [22, Theorem 7]
Index-1 1 �0 �0 0 0 [13, Theorems 1 and 2]

[12, Theorem 5]
Proper Index-2 2 �0 0 �0 0 [13, Theorem 3]
Improper Index-2 2 �0 0 �0 �0 [13, Theorem 4]
Proper Index-1–2 2 �0 �0 �0 0 n/a
Improper Index-1–2 2 �0 �0 �0 �0 n/a
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different H2- and H1-inspired strategies have been proposed (see, e.g. [7, 28, 29, 31, 32]) 
which have also partly been adapted to the pH-ODE and pH-DAE cases in [13,22].

In the following, we demonstrate how these ideas may be incorporated into the 
proposed Rosenbrock framework, and refer to the cited work in each section for 
implementation details.

4.1. Interpolatory H2 approximation

In H2-inspired interpolation methods for general DAE systems, the transfer function of 
the FOM is typically decomposed into the sum HðsÞ ¼ HspðsÞ þHpol with a strictly 
proper part Hsp satisfying lims!1HspðsÞ ¼ 0 and a polynomial part Hpol that potentially 
grows polynomially for s!1. For the H2 error k H � HrkH2 to be bounded, we require 
H � Hr 2 RH

m�m
2 . Assuming a similar decomposition of Hr into 

HrðsÞ ¼ Hsp;rðsÞ þHpol;rðsÞ, this is only the case if Hpol;r ¼ Hpol. The necessary condi
tions for locally H2-optimal ROMs may then be formulated as interpolation conditions.

Lemma 4.1. [6, Theorem 9.2.1] Let the transfer function HðsÞ ¼ HspðsÞ þ Hpol be 
decomposed into strictly proper and polynomial parts. Let the ROM transfer function Hr 
have an analogous decomposition HrðsÞ ¼ Hsp;rðsÞ þ Hpol;rðsÞ with strictly proper part 
Hsp;rðsÞ ¼ Csp;rðsEsp;r � Asp;rÞ

� 1Bsp;r such that Asp;r 2 R r�r, nonsingular Esp;r 2 R r�r and 
Bsp;r;C`

sp;r 2 R r�m. If Hr minimizes the H2 error k H � HrkH2 over all ROMs with an r-th 
order strictly proper part, then Hpol;r ¼ Hpol and Hsp;r minimizes the H2 error 

k Hsp � Hsp;rkH2 . Let Hsp;r be represented by its pole-residue expansion Hsp;rðsÞ ¼
Pr

i¼1

lir`
i

s� λi 

where ri 2 Cm
; li 2 Cm and with simple poles λi 2 C . Then, the tangential interpolation 

conditions  

Hð� λiÞri ¼ Hrð� λiÞri; (24a) 

l`i Hð� λiÞ ¼ l`i Hrð� λiÞ; (24b) 

l`i H
0

ð� λiÞri¼ l`i H
0

rð� λiÞri; (24c) 

hold for all i ¼ 1; . . . ; r.
This connection between interpolatory and H2-optimal model reduction is the moti

vation behind the well-known iterative rational Krylov algorithm (IRKA) [7], which 
utilizes a fixed-point iteration to enforce the necessary H2 optimality conditions for 
general DAE systems. Since for pH systems, the matrix U in (6) is typically chosen to 
enforce structure preservation, fewer degrees of freedom are available for interpolation, 
and it is generally only possible to fulfil a subset of (24), e.g. the conditions in (24a). 
Enforcing these conditions in an iterative manner using (8) leads to the IRKA-PH 
algorithm proposed for pH-ODE systems in [22].

Embedding the IRKA-PH algorithm into the proposed pH-DAE framework is 
straightforward. In each IRKA-PH iteration, we first compute the reduced system matrix 

224 T. MOSER AND B. LOHMANN



Pr, using some initial interpolation data in the first iteration. We directly obtain the 
reduced strictly proper transfer function 

Hsp;rðsÞ ¼ ðGp;r þ Pp;rÞ
`
ðsEp;r � ðJp;r � Rp;rÞÞ

� 1
ðGp;r � Pp;rÞ:

Suppose that the pencil λEp;r � ðJp;r � Rp;rÞ has simple eigenvalues λi and let ti 2 Cr 

denote a left eigenvector associated with λi, i.e. 

t`
i ðλiEp;r � ðJp;r � Rp;rÞÞ ¼ 0: (25) 

The (right) residual direction is then given by ri ¼ ðGp;r � Pp;rÞ
`ti and to enforce the 

interpolation conditions in (24a), we set σi ¼ � λi and bi ¼ ri for all i ¼ 1; . . . ; r. This 
procedure is repeated, and upon convergence, the ROM satisfies the subset (24a) of H2 
optimality conditions. Afterwards, we may attach the polynomial part 
HpolðsÞ ¼ Dp þ sD1 to the strictly proper ROM as described in Section 3.3. One dis
advantage of this approach, which is summarized in Algorithm 2, is that a new ROM is 
computed in each iteration. In [27], an adaptation named CIRKA-PH was proposed, 
which has the potential to significantly accelerate IRKA-PH, especially in large-scale 
settings for which interpolatory methods are particularly powerful. Embedding CIRKA- 
PH into the pH-DAE framework works in a similar way.

Algorithm 2: IRKA-PH for pH-DAEs (based on [22])
Input : Large-scale pH-DAE � in staircase form; set of interpolation points 

fσ1; . . . ; σrg and corresponding right tangential directions  
fb1; . . . ; brg (both closed under complex conjugation).

Output: Reduced pH-DAE �r.
1 while not converged do
2 Perform steps 1-4 of Algorithm 1.
3 Compute ti 2 Cr

; λi 2 C solving (25) for all i ¼ 1; . . . ; r.
4 σi  � λi and bi  ðGp;r � Pp;rÞ

`ti for all i ¼ 1; . . . ; r
5 end
6 Perform steps 5-10 of Algorithm 1.

4.2. Adaptive interpolation

In practice, besides the computational expense of IRKA-PH, it may sometimes be 
difficult to determine a suitable reduced order r in the first place. In [28,29], an adaptive 
approach was proposed that tackles this problem by iteratively adding new interpolation 
data in a complex region S where the approximation quality of the ROM is still poor. For 
pH-DAEs, this approach initially requires the computation of the proper system matrix 
Pp, as described in Section 3.1. The approximation quality of a ROM generated in steps 
1–4 of Algorithm 1 can then be assessed at points μ 2 S with the following residual 
matrix [29]:  
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ζðμÞ :¼ ðAp � μEpÞ�V2ðJp;r � Rp;r � μEp;rÞ
� 1
ðGp;r � Pp;rÞ � Bp: (26) 

In each iteration, a new interpolation point σrþ1 is added at the point in S where the 
norm of this residual matrix reaches its maximum, and a similar approach is taken to 
compute a new corresponding tangential direction brþ1. Since σrþ1 and brþ1 are generally 
complex, their complex conjugates �σrþ1 and �brþ1 are also added to the interpolation data 
to keep it closed under conjugation. This way, the ROM dimension r increases in each 
iteration until its transfer function does not significantly change between two subsequent 
iterations or the predefined maximum dimension rmax is reached. For strategies on how 
to choose brþ1 and update the complex region S, the interested reader is referred to [29]. 
The general approach is summarized in Algorithm 3.

Algorithm 3: TRKSM-PH for pH-DAEs (based on [28,29])

Input : Large-scale pH-DAE � in staircase form; set of interpolation points 
fσ1; . . . ; σrg and corresponding right tangential directions fb1; . . . ; brg

(both closed under complex conjugation); maximum reduced order 
rmax > r0; initial complex region S.

Output : Reduced pH-DAE �r.
1 Compute and decompose Pp as in Section 3.1.
2 while not converged and r< rmax do
3 Perform steps 1-4 of Algorithm 1.
4 Solve σrþ1 ¼ arg max μ2S k ζðμÞ k.
5 Solve brþ1 ¼ arg max kdk¼1 k ζðσrþ1Þd k.
6 Add ðσrþ1; �σrþ1Þ and ðbrþ1; �brþ1Þ to the interpolation data.
7 Update the complex region S.
8 end
9 Perform steps 5-10 of Algorithm 1.

4.3. Interpolatory H1 approximation

So far, we have enforced that Sp;r ¼ Sp and Np;r ¼ Np to keep the H2 error bounded. For 
H1-inspired MOR, we only require H � Hr 2 RH

m�m
1 and thus, the reduced feed

through matrices pose additional degrees of freedom that may be exploited in a similar 
manner as proposed in [30–32] for unstructured ODE systems. We may add structure- 
preserving perturbations to the feedthrough matrices Np;r and Sp;r in the following way: 

bNp;r ¼ Np;r þ ΔN ; ΔN ¼ � Δ`
N ; (27) 

bSp;r ¼ Sp;r þ ΔS; ΔS ¼ Δ`
S � 0: (28) 

Simply adding these perturbations would only change the direct feedthrough of the ROM 
but not the dynamics and is therefore not expected to improve the H1 approximation 
quality significantly. However, as shown in [30], it is also possible to perturb the feed
through matrix of the ROM while retaining predefined interpolation conditions with the 
FOM – and the same holds for pH-DAEs.
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Lemma 4.2. Assume that we have obtained a reduced system matrix 
Pr ¼ sEr þ Γr þWr in steps 1–4 of Algorithm 1 using a set of interpolation points 
fσ1; . . . ; σrg and corresponding right tangential directions fb1; . . . ; brg, both closed 
under complex conjugation. Let F 2 R n2�m be a solution to  

F` �V2 ¼ ½b1; . . . ; br�Tv;

with Tv 2 Cr�r such that �V2 ¼ V2Tv. If the system matrix Pr is perturbed such that 

bPr ¼ sEr þ bΓr þ bWr;

with  

bΓr ¼
� bJp;r � bGp;r
bGT

p;r
bNp;r

" #

¼ Γr þ
�V`

2 F
� Im

� �

ΔN
�V`

2 F
� Im

� �`

; (29) 

bWr ¼
bRp;r bPp;r
bP`

p;r
bSp;r

" #

¼Wr þ
�V`

2 F
� Im

� �

ΔS
�V`

2 F
� Im

� �`

; (30) 

then the perturbed ROM b�r with transfer function bHr obtained by steps 5–10 in 
Algorithm 1 is a pH-DAE system, and it holds that  

HðσiÞbi ¼ HrðσiÞbi ¼ bHrðσiÞbi; (31) 

for all i ¼ 1; . . . ; r and for any ΔN ¼ � Δ`
N and ΔS ¼ Δ`

S � 0.

Proof. The fact that the perturbed system b�r fulfils the pH structural constraints 
follows directly from the properties of ΔN and ΔS. The proof of (31) follows the proof 
of Theorem 3 in [30] for general LTI systems and is therefore omitted here.

This result enables us to optimize the new degrees of freedom ΔN ;ΔS in an H1-inspired 
way. Optimizing the H1 error directly is challenging since H1 norm computations are 
computationally taxing, and the H1 norm depends non-smoothly on ΔN ;ΔS (see [33] 
Sect 3.2.1]). Instead, the SOBMOR algorithm, proposed in [33], may be employed. 
Therein, the functions vtu �ð Þ and vtu �ð Þ are introduced, which map vectors row-wise to 
appropriately sized upper triangular and strictly upper triangular matrices, respectively. 
The function names are abbreviations for vector-to-upper and vector-to-strictly-upper, 
respectively. Using these functions, we may define parameter vectors θN 2 R mðm� 1Þ=2 and 
θS 2 R mðmþ1Þ=2 and design ΔN ;ΔS in the following way: 

ΔN θNð Þ :¼ vtsu θNð Þ
`
� vtsu θNð Þ;

ΔS θSð Þ :¼ vtsu θSð Þ
`
� vtsu θSð Þ:
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Finally, a levelled least-squares approach can be taken to optimize the error 
k H � bHrð�; θÞkH1 with θ :¼ ½θ`

N ; θ
`
S �

`
2 R m2

, as described in [33,34], and to which we 
refer for implementation details. We summarize the approach in Algorithm 4.

Algorithm 4: IHA-PH for pH-DAEs (based on [32])

Input : Large-scale pH-DAE � in staircase form; set of interpolation points 
fσ1; . . . ; σrg and corresponding right tangential directions  
fb1; . . . ; brg (both closed under complex conjugation); initial  
parameter vector θ 2 R m2

.
Output: Perturbed reduced pH-DAE b�r

1 Compute the reduced system matrix Pr with steps 1-5 in Algorithm 2.
2 Solve θ� ¼ arg min θ2R m2 k H � bHrð�; θÞkH1 using the approach in [33,34]
3 Compute bPrðθ�Þ as in Lemma 4.2.
4 Construct b�rðθ�Þ with steps 5-10 in Algorithm 1.

4.4. Suitable representations for MOR

Since we apply Galerkin projections to preserve the pH structure, transformations of the 
FOM under s.s.e. will not change its transfer function, but they will have an impact on 
MOR, which raises the question of how to find suitable representations of the FOM that 
yield better approximations. This was recently examined in [35] for explicit ODE 
systems, and may be incorporated into our framework as follows.
Assume that we have computed the proper system matrix

PpðsÞ ¼
sEp � Ap � Bp

Cp Dp

� �

;

of the FOM as in Section 3.1. In Lemma 3.1, we obtained a pH representation of this 
subsystem by simply decomposing the system matrix into symmetric and skew-symmetric 
parts. However, there are other ways, and the family of pH representations for this system 
is parameterized by the Kalman-Yakubovich-Popov (KYP) inequality, as shown in [36]. If 
the proper system is behaviourally observable, i.e. rank½ðsEp � ApÞ

`
;C`

p � ¼ n2 for all 
s 2 C , which we assume in the following, the KYP inequality 

� A`
p X � X`Ap C`

p � X`Bp

Cp � B`
p X Dp þ D`

p

" #

� 0; XTEp ¼ E`
p X � 0; (32) 

has solutions X 2 R n2�n2 that are bounded such that 

0<E`
p X� � E`

p X � E`
p Xþ

with minimal and maximal solutions X� and Xþ, respectively (see [36,Theorem 1]). Now 
assume that we apply another transformation under s.s.e. on Pp using any X satisfying 
(32) in the following way 

ePp ¼
X` 0
0 Im

� �

Pp
In2 0
0 Im

� �

;
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then we obtain the decomposition 

ePp ¼ seEp þ eΓp þ eWp;

with matrices 

eEp ¼
X`Ep 0

0 0

� �

; (33) 

eΓp ¼
A`

p X � X`Ap � ðC`
p þ X`BpÞ

Cp þ B`
p X Dp � DT

p

" #

; (34) 

eWp ¼
� A`

p X � X`Ap C`
p � X`Bp

Cp � B`
p X Dp þ D`

p

" #

; (35) 

which clearly fulfils the pH structural constraints due to (32). The Hamiltonian of the 
system associated with ePp changes to 

eHpðexpÞ ¼
1
2
ex`

p X`Epexp:

where exp denotes the new state vector of the transformed proper subsystem. As discussed 
in [35], choosing the minimal solution X� for the transformation is particularly suited for 
MOR and may significantly improve the approximation quality. In our framework, we 
can include this transformation change by simply replacing U in step 3 of Algorithm 1 by 

U� ¼

0 A� `
14 C`

4
X� �V2 0

� A� `
33 A`

23X� �V2 A� `
33 ðC`

3 � A`
13A� `

14 C`
4 Þ

0 0
0 Im

2

6
6
6
6
4

3

7
7
7
7
5
:

Note that this does not affect the tangential interpolation conditions since we retain V
and also does not affect the matrices Sp;r, Np;r or D1 since we keep the second block 
column of U unchanged. However, it does indeed have an effect on the strictly proper 
part Hsp;r of the ROM’s transfer function between the interpolation points, which is 
illustrated in the next section by numerical examples. Note that, especially if the matrices 
Ep;Ap are very large or even dense (see Example 3.2), the solution of (32) may be 
computationally taxing. Therefore, efficient low-rank and/or sparse approximations of 
X� are required that ideally originate from the sparse FOM matrices, which is an open 
research problem.

5. Numerical experiments

As initially mentioned, pH-DAE models naturally arise in different engineering fields. 
A prominent example are electrical RCL networks consisting of linear resistors, capaci
tors, inductors as well as voltage and current sources. These networks are used, for 
instance, for the simulation of VLSI interconnect systems or transmission lines. RCL 
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networks are typically modelled using modified nodal analysis (MNA), which is also used 
by simulation software such as SPICE. This directly yields models of the form 

E _xðtÞ¼ ðJ � RÞxðtÞ þ GuðtÞ;
yðtÞ ¼ G`xðtÞ;

which satisfy the pH structural constraints in Definition 2.2 (see, e.g [37]).
To evaluate our MOR framework, we consider two RCL ladder networks RCL-1M1 

and RCL-12S2 whose structure is depicted in Figure 2. The number of RCL loops in the 
network is denoted by �n and the number of state-space equations obtained by MNA is 
n ¼ 3�nþ 2m where m denotes the number of voltage sources in the network. Both 
models can be transformed to pH-DAE staircase form via simple permutations of the 
state-space equations. For this, we use the port-Hamiltonian benchmark collection.3 The 
staircase dimensions and sigma plots of RCL-1M and RCL-12S are provided in Figure 3.

RCL-1M is a multiple-input multiple-output (MIMO) version with �n ¼ 10000, where 
the inputs are the voltages of both voltage sources and the outputs are the associated 
currents. For this model, the red box contains a resistor R0 which leads to a Kronecker 
index ν ¼ 1 and an approximately constant input-output gain for higher frequencies (see 
Figure 3). In the single-input single-output (SISO) configuration used for RCL-12S, we 

Figure 2. Structure of the RCL ladder networks modelled by RCL-1M and RCL-12S.

Figure 3. Model parameters and sigma plots for the RCL ladder network models RCL-1M and RCL-12S 
in pH-DAE staircase form.
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replace the second voltage source by a wire and only consider the input-to-output 
behaviour from u1 to y1. Here, we use �n ¼ 500 and the red box contains a capacitor 
C0. This leads to a Kronecker index ν ¼ 2 and an improper transfer function. The value 
of D1, i.e. the slope of the transfer function in the high-frequency region is determined 
by its capacitance.

Let us first consider the reduction of RCL-1M. We reduce the original model to 
dimension r ¼ 40 using the algorithms IRKA-PH, TRKSM-PH and IHA-PH. The 
sigma plots of the resulting ROM transfer functions and respective error systems 
H � Hr are plotted in Figure 4. For this example, the proper matrices Ep; Ap are sparse, 
and therefore, the residual ζ in TRKSM-PH can be evaluated very efficiently. This makes 
TRKSM-PH a computationally efficient alternative to IRKA-PH since it yields 
a comparable performance while requiring significantly fewer solutions to large-scale 
linear systems of equations. The additional degrees of freedom in IHA-PH, on the other 
hand, enable more accurate results in small frequency regions at the expense of a constant 
error gain at higher frequencies, which results from the perturbation of the reduced 
feedthrough matrix.

For model RCL-12S, we compute ROMs of different dimensions ranging from r ¼ 2 
to r ¼ 20. The H2 and H1 errors are plotted in Figure 5 for each MOR method presented 
in Section 4. For all methods, the errors decrease for increasing reduced orders r, which is 
expected since more interpolation conditions can be enforced. TRKSM-PH again yields 
similar H2 errors as IRKA-PH for larger ROM dimensions. For IHA-PH, only the H1
errors are plotted in Figure 5 since it produces unbounded H2 errors due to the 
perturbation of the feedthrough matrix. For most reduced orders, the H1 errors are 
only marginally smaller than those produced by IRKA-PH since the model has only one 
input-output pair and consequently, θ 2 R . However, as shown for r ¼ 18, even one 
additional parameter may improve the H1 approximation quality. Finally, we also 
illustrate the importance of choosing a suitable reduction matrix U . Replacing the matrix 
U in IRKA-PH by U� , as described in Section 4.4, yields significantly smaller errors both 
in the H2 and H1 norm. Note that a similar basis change could, of course, also be applied 
to the IHA-PH and TRKSM-PH methods which is expected to yield similar improve
ments but is omitted here.
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Figure 4. Reduction of the model RCL-1M to order r ¼ 40 using different interpolatory MOR methods. 
Given are the sigma plots of the FOM and ROMs (left) and of the respective error systems (right).
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When large-scale RCL networks are reduced, it is crucial that the ROM retains the 
passivity property of the original model to couple the ROM with other (possibly non- 
linear) parts of the system. Interpolatory reduction methods that preserve the passivity or 
MNA structure of RCL models are given by the PRIMA [38] and SPRIM [37] algorithms, 
respectively. The developed MOR framework in this work extends these methods since 
the passivity property is inherently preserved by enforcing a pH-DAE structure of the 
ROM. The models RCL-1M and RCL-12S were also used for an evaluation of optimiza
tion-based MOR methods for pH-DAEs in [39] and [21], respectively, to which we refer 
for a comparison. Similar to these methods, all ROMs in our experiments fulfill the pH 
structural constraints. This is an advantage compared to passivity-preserving methods 
for general LTI systems (see, e.g [35,40]) which yield models of the form (5). 
A subsequent transformation to pH-DAE form requires the solution of a (reduced- 
order) KYP inequality which may lead to minor violations of the pH structural con
straints caused by numerical inaccuracies (see [39, Remark 4]). We also highlight that our 
MOR framework directly yields ROMs with minimal state-space dimension which may 
require the solution of discrete-time projected Lyapunov equations for the passivity- 
preserving approaches proposed in [40].

6. Conclusion

Port-Hamiltonian descriptor systems are particularly suited for the energy-based model
ling of multiphysical systems and naturally emerge in different applications. When large- 
scale pH-DAE models are reduced for simulation or controller design, it is desired to 
preserve their structural properties and the system dynamics which may be subject to 
algebraic constraints. In this work, we showed that the Rosenbrock system matrix 
exhibits a particular structure for pH-DAE models that can be exploited for model 
reduction. We have deduced a novel interpolatory MOR framework for pH-DAEs in 
staircase form, which, compared to other structure-preserving interpolation methods, 
guarantees minimal ROMs in pH-DAE form irrespective of the original system’s 
Kronecker index. Moreover, its simple structure allows the incorporation of different 
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Figure 5. Reduction of the model RCL-12S to different reduced orders r 2 f2; 4; . . . ; 20g. Plotted are 
the H2 errors (left) and H1 errors (right) for different interpolatory MOR methods.
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strategies for choosing suitable interpolation data which were originally proposed for 
unstructured DAE systems. In applications where pH-DAE models naturally arise, our 
approach can be considered as an alternative to stability- or passivity-preserving MOR 
methods since these properties directly follow from the pH structure. As a numerical 
example, we considered the reduction of electrical circuits which are used, for instance, in 
VLSI design.

Notes

1. The FOM state-space matrices of RCL-1 M are available at https://doi.org/10.5281/zenodo. 
6497076.

2. The FOM state-space matrices of RCL-12S are available at https://doi.org/10.5281/zenodo. 
6602125.

3. https://port-hamiltonian.io.
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A.5 Optimization-Based Model Order Reduction of
Port-Hamiltonian Descriptor Systems

Summary: Projection-based MOR methods for pH-DAEs typically focus on models
with state-space matrices that exhibit a particular block structure, allowing the alge-
braic equations to be identified and treated separately. In this article, we present novel
optimization-based methods which cover the entire system class of linear, time-invariant
pH-DAEs in one framework and lead to high-fidelity ROMs with respect to the H2 or
H∞ norm. Our approach is based on a flexible parameterization of the ROM, and we
propose different approaches to match polynomial parts of the given transfer function
to keep the H2 and H∞ errors well-defined and bounded. Optimization algorithms are
derived to directly tune the parameters of the ROM such that either of the errors is
minimized in a way that only samples of the original transfer function are required.
These algorithms are based on the work in [142] for the H∞ case and [A3] for the H2
case, respectively. An experimental comparison to state-of-the-art methods shows that
our optimization-based approach leads to minimal ROMs which exhibit high fidelity in
either of these norms and are guaranteed to fulfill the pH structural constraints. The
work in this article was predominantly conducted by the first authors P. Schwerdtner
and T. Moser, focusing on the H∞ and H2 cases, respectively.
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A B S T R A C T

We present a new optimization-based structure-preserving model order reduction (MOR) method for port-
Hamiltonian differential–algebraic equations (pH-DAEs). Our method is based on a novel parameterization
that allows us to represent any linear time-invariant pH-DAE of a prescribed model order. We propose two
algorithms which directly optimize the parameters of a reduced model to approximate a given large-scale model
with respect to either the ∞ or the 2 norm. This approach has several benefits. Our parameterization ensures
that the reduced model is again a pH-DAE system and enables a compact representation of the algebraic part
of the large-scale model, which in projection-based methods often requires a more involved treatment. The
direct optimization is entirely based on transfer function evaluations of the large-scale model and is therefore
independent of the structure of the system matrices. Numerical experiments are conducted to illustrate the
high accuracy and small reduced model orders in comparison to other structure-preserving MOR methods.

1. Introduction

We present optimization-based structure-preserving model order
reduction (MOR) algorithms for models described by port-Hamiltonian
differential–algebraic equations (pH-DAEs). Differential–algebraic
equations (DAEs) naturally emerge in the modeling of complex systems
because they allow the inclusion of conservation laws and network laws
such as mass balances in chemical processes, joints in mechanical sys-
tems, or Kirchhoff’s laws in electrical circuits in the model as algebraic
constraints. The use of automatic modeling systems such as mod-
elica2 or simscape3 has further promoted the use of DAE-based
models. In recent years, DAE modeling has increasingly addressed the
physical properties of the underlying models by incorporating concepts
such as passivity or a Hamiltonian structure, leading to pH-DAEs.
The concept of pH-DAEs is particularly useful in the modeling of
large networks that are constructed from a high number of network
components such as power networks [1], gas networks [2], or district
heating networks [3]. Typically, in such networks the components have

✩ The research by P. Schwerdtner, M. Voigt, and T. Moser was supported by the German Research Foundation (DFG) within the projects 424221635 and
418612884 and that of V. Mehrmann was supported by the DFG through project B03 of SFB TRR 154.
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E-mail addresses: paul.schwerdtner@nyu.edu (P. Schwerdtner), tim.moser@tum.de (T. Moser).
1 Authors contributed equally.
2 See https://modelica.org/.
3 See https://www.mathworks.com/products/simscape.html.

widely varying dimensions and different modeling accuracies. Some
models arise from a fine discretization of partial differential equations
(PDEs) using finite element, finite difference, or finite volume methods,
and other models are surrogate models generated purely from data,
see [4] for a survey of applications.

The port-Hamiltonian paradigm is particularly suited for handling
these modeling challenges because it allows for an intuitive energy-
based interconnection of systems from different physical domains and
of different scale or modeling accuracy, see [4–6]. A classical exam-
ple of pH-DAEs are electrical circuits modeled using modified nodal
analysis as described in [7–9].

When the models resulting from the modeling process of complex
systems have a large state-space dimension, the direct simulation or
model-based control of such large-scale systems is often infeasible.
Then, typically, model order reduction is employed to determine an
approximation to the given full-order model (FOM) with a smaller
state-space dimension that enables efficient simulation and control.
However, the need for optimized operation of large networks of com-
plex systems has revealed the need for a more hierarchical modeling

https://doi.org/10.1016/j.sysconle.2023.105655
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approach, see, e. g., [2,10,11], which also changes MOR: Instead of
computing one reduced-order model (ROM) for the whole system,
separate low-order surrogate models are computed for the individual
subsystems of the model hierarchy (potentially at different accuracy
levels).

This paradigm shift from applying MOR to one (monolithic) system
to using MOR to reduce the components of network models makes the
preservation of certain structural properties of the components essen-
tial. This is because one network component may rely on the specific
properties (such as passivity, see Section 2) of other components. Fur-
thermore, the properties that result from the network structure of these
components must be preserved during MOR such that the coupling of
the reduced-order components can be performed in the same way as
the coupling of their full-order counterparts. The preservation of the
pH-DAE structure ensures the preservation of these network-relevant
properties and thus enables a hierarchical low-order network based
modeling approach.

However, structure-preserving MOR of pH-DAEs has still only been
partially resolved. MOR methods for pH models based on ordinary
differential equations (pH-ODEs), such as [12–15] have been partly
extended to pH-DAEs in [16,17], but typically the algebraic equations
have to be identified and treated separately to prevent destroying the
constraint structure, see [17, Remark 3]. An alternative MOR approach
for structure-preservation is passivity-preserving MOR (see Section 2).
However, the passivity-preserving methods, such as positive-real bal-
anced truncation (PRBT) [18], as extended to DAEs in [19], usually
require further treatment to obtain a significant reduction in the equa-
tions describing the algebraic constraints. A minimal realization of
the subsystem corresponding to the algebraic constraints can be de-
termined by solving discrete-time projected Lyapunov equations [19,
20], but without preserving the pH structure. A recently proposed
passivity-preserving MOR method for pH-ODEs based on spectral fac-
torization [21] may overcome this problem but in its current form
an extension to DAEs requires system transformations to identify and
separately deal with the constraint equations.

In this article, we address these difficulties for linear constant-
coefficient pH-DAEs, defined as follows.

Definition 1 ([16,22]). A linear constant coefficient DAE system of the
form
𝐸𝑥̇(𝑡) = (𝐽 − 𝑅)𝑄𝑥(𝑡) + (𝐺 − 𝑃 )𝑢(𝑡),

𝑦(𝑡) = (𝐺 + 𝑃 )𝖳𝑄𝑥(𝑡) + (𝑆 −𝑁)𝑢(𝑡),
(1)

where 𝐸, 𝑄, 𝐽 , 𝑅 ∈ R𝑛×𝑛, 𝐺, 𝑃 ∈ R𝑛×𝑚, 𝑆, 𝑁 ∈ R𝑚×𝑚, is called a port-
Hamiltonian differential–algebraic equation (pH-DAE), if the following
conditions are satisfied:

(i) The matrices 𝑄𝖳𝐽𝑄 and 𝑁 are skew-symmetric.
(ii) The passivity matrix

𝑊P ∶=
[

𝑄𝖳𝑅𝑄 𝑄𝖳𝑃
𝑃 𝖳𝑄 𝑆

]

and the product 𝑄𝖳𝐸 are symmetric positive semi-definite (de-
noted as ≥ 0 in the following).

The Hamiltonian (energy-storage) function  ∶ R𝑛 → R is then given by

(𝑥) = 1
2
𝑥𝖳𝑄𝖳𝐸𝑥.

It has been shown in [23], see also [4], that under weak assumptions
such a pH-DAE system can be reformulated or reduced to a system with
𝑄 = 𝐼𝑛. This transformation is sometimes numerically ill-conditioned
but for simplicity of presentation, in the remainder of this paper we
assume that 𝑄 = 𝐼𝑛. However, this is not a requirement of our algo-
rithms. Moreover, we treat systems that satisfy the following additional
assumptions: (i) the pencil 𝑠𝐸 − (𝐽 −𝑅) is regular, i. e., det(𝑠𝐸 − (𝐽 −𝑅))
is not the zero polynomial; and (ii) all finite eigenvalues of 𝑠𝐸−(𝐽 −𝑅)
have a negative real part.

Structure-preserving MOR aims at computing systems of the form

𝐸𝑟𝑥̇𝑟(𝑡) = (𝐽𝑟 − 𝑅𝑟)𝑥𝑟(𝑡) + (𝐺𝑟 − 𝑃𝑟)𝑢(𝑡),

𝑦𝑟(𝑡) = (𝐺𝑟 + 𝑃𝑟)
𝖳𝑥𝑟(𝑡) + (𝑆𝑟 −𝑁𝑟)𝑢(𝑡),

where the system matrices 𝐸𝑟, 𝐽𝑟, 𝑅𝑟 ∈ R𝑟×𝑟, 𝐺𝑟, 𝑃𝑟 ∈ R𝑟×𝑚, 𝑆𝑟, 𝑁𝑟 ∈
R𝑚×𝑚 satisfy the structural constraints given in Definition 1 with 𝑄𝑟 =
𝐼𝑟, 𝑟 ≪ 𝑛, and 𝑦𝑟(⋅) ≈ 𝑦(⋅) for all appropriate inputs 𝑢(⋅). Moreover, we
aim for regular systems and all finite eigenvalues of 𝑠𝐸𝑟 − (𝐽𝑟 − 𝑅𝑟)
having a negative real part.

The input-to-output behavior of a linear system in the frequency
domain is described by its transfer function. This transfer function is
given by

𝐻(𝑠) = (𝐺 + 𝑃 )𝖳(𝑠𝐸 − (𝐽 − 𝑅))−1(𝐺 − 𝑃 ) + (𝑆 −𝑁),

which can be decomposed as

𝐻(𝑠) = 𝐻sp(𝑠) +𝐻pol(𝑠),

where 𝐻sp is a strictly proper rational matrix function and 𝐻pol is
a matrix polynomial of degree at most 𝜈 − 1. Here, 𝜈 denotes the
Kronecker index of the uncontrolled DAE. The additional polynomial
part in a FOM transfer function poses an extra challenge for MOR
of DAEs because parts of it must be matched exactly in the ROM
transfer function. Otherwise the error between FOM and ROM can
become unbounded (see Section 2 for error measures). Therefore, in
projection-based MOR, the algebraic part of the DAE is typically treated
separately, see [16,17,20,24,25].

The Kronecker index of linear constant coefficient pH-DAEs it at
most 𝜈 = 2, which is shown in [26]. Therefore, 𝐻pol can be decomposed
as 𝐻pol(𝑠) = 0 + 𝑠1 (cf. Lemma 2). The coefficients 0 and 1 are
the first two Markov parameters of 𝐻 . For 𝜈 = 0 and 𝜈 = 1, 1 is
zero, such that the FOM can be approximated by an ODE system with
feedthrough term, but for 𝜈 = 2, 1 may be nonzero, which results in
an improper transfer function such that the FOM must be approximated
with a reduced-order DAE model that is also of index 𝜈 = 2.

In this article, we describe an optimization-based MOR approach for
structure-preserving MOR that

(i) addresses improper, proper, and strictly proper pH-DAEs in one
framework,

(ii) leads to high fidelity pH-ROMs with respect to the 2 norm or
the ∞ norm, and

(iii) preserves any polynomial part in the FOM transfer function with
the minimal possible number of states.

The paper is organized as follows. In the next section, we cover
objectives and state-of-the-art methods for structure-preserving MOR
of pH-DAEs. For this, we first provide an analysis of the structure of
pH-DAEs. In Section 3, we explain our optimization-based approach for
MOR. In particular, we extend previous work [27,28] to the DAE case,
which includes a parameterization of low-order pH-DAEs of all possible
indices and an adapted optimization strategy. The effectiveness of the
proposed methods is demonstrated by several numerical experiments
in Section 4.

2. Preliminaries

In this section, we recall some error measures and algorithms that
are typically used in MOR and present some preliminary results that
give insight into the structure of pH-DAEs and form the basis for the
construction of our MOR algorithms.
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2.1. Model order reduction background

The approximation error between the FOM and the ROM is typically
measured using their corresponding transfer functions 𝐻 and 𝐻𝑟 with
respect to the ∞ or 2 errors. These errors are given by

‖

‖

𝐻 −𝐻𝑟
‖

‖2
∶=

(

1
2𝜋 ∫

∞

−∞
‖𝐻(𝗂𝜔) −𝐻𝑟(𝗂𝜔)‖

2
F d𝜔

)1∕2
,

‖

‖

𝐻 −𝐻𝑟
‖

‖∞
∶= sup

𝜔∈R
‖𝐻(𝗂𝜔) −𝐻𝑟(𝗂𝜔)‖2.

Note that for a bounded 2 error, both 0 and 1 must be matched
exactly, while it suffices to match 1 exactly for a bounded ∞ error.
MOR methods designed for these error measures have been proposed by
many authors (for general descriptor systems), see, e. g., [20,25,29–31].

For general ODE systems, the iterative rational Krylov algorithm
(IRKA) aims at minimizing the 2 error, see [32]. A
structure-preserving variant that we denote by IRKA-PH, was derived
in [13], which is extended to DAEs in [16,17]. Here the strictly proper
part and the Markov parameters of the original transfer functions are
identified to make sure that 0 and 1 are matched exactly in the
reduced transfer function. Then the standard version of IRKA-PH can
be applied. IRKA-based algorithms use tangential interpolation of the
transfer function at iteratively determined interpolation points and
tangential directions to construct projection spaces; see [33] for an
exhaustive discussion of such interpolation methods. However, the pH-
DAE adaptations of IRKA-PH in [16,17] require a separate treatment
of the algebraic part in order not to destroy the pH structure and
often lead to a lower accuracy compared to non-structure-preserving
MOR methods. Furthermore, the method in [17] does not guarantee
preservation of the pH structure when the FOM transfer function is im-
proper and is only generally applicable to pH-DAEs where the higher-
index part of the system is uncontrolled. The passivity-preserving MOR
method PRBT [18,19] is based on the computation of the minimal
solutions of two algebraic Riccati equations (or Lur’e equations). These
minimal solutions take the role of the Gramians in classical balanced
truncation (BT) model reduction, and the balancing and truncation
procedure can be performed as in BT. This method admits an a priori
gap metric error bound [34]. However, it generally does not preserve
the pH form such that a pH realization of the resulting ROM must
be computed after performing PRBT. For details on computing a pH
realization from a passive descriptor system, we refer to [35].

2.2. Staircase form

In Lemma 1, we present a staircase form for pH-DAEs, which was
derived for general linear pH-DAE systems without input and output
in [36] and for systems with input and output in [17], see also [4]. The
staircase form allows us to determine the Kronecker index of a given
pH-DAE but is based on subsequent rank decisions which may be a
challenging task in finite precision arithmetic. Fortunately, the staircase
form often emerges naturally from the modeling process [22,37] or
can be constructed using only a few permutations of the given system
matrices. We use the real-valued version of this form as derived in [36].

Lemma 1 ([36]). Consider a regular pH-DAE system as in (1) (with 𝑄 =
𝐼𝑛). Then there exists an orthogonal matrix 𝑇 ∈ R𝑛×𝑛 such that

𝐸 ∶= 𝑇𝐸𝑇 𝖳 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐸11 𝐸12 0 0
𝐸21 𝐸22 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐽 ∶= 𝑇𝐽𝑇 𝖳 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐽11 𝐽12 𝐽13 𝐽14
𝐽21 𝐽22 𝐽23 0
𝐽31 𝐽32 𝐽33 0
𝐽41 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑅 ∶= 𝑇𝑅𝑇 𝖳 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅11 𝑅12 𝑅13 0
𝑅21 𝑅22 𝑅23 0
𝑅31 𝑅32 𝑅33 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐺 ∶= 𝑇𝐺 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐺1
𝐺2
𝐺3
𝐺4

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑃 ∶= 𝑇𝑃 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑃1
𝑃2
𝑃3
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑆 ∶= 𝑆, 𝑁̃ ∶= 𝑁,

where
[

𝐸11 𝐸12
𝐸21 𝐸22

]

is positive definite and the matrices 𝐽41 and 𝐽33 −𝑅33 are
invertible (if the blocks are nonempty).

The transformed system

𝐸 ̇̃𝑥(𝑡) = (𝐽 − 𝑅)𝑥(𝑡) + (𝐺 − 𝑃 )𝑢(𝑡),

𝑦(𝑡) = (𝐺 + 𝑃 )
𝖳
𝑥(𝑡) + (𝑆 − 𝑁̃)𝑢(𝑡)

(2)

is again a pH-DAE system with accordingly partitioned state vector 𝑥(𝑡) =
[

𝑥1(𝑡)
𝖳, 𝑥2(𝑡)

𝖳, 𝑥3(𝑡)
𝖳, 𝑥4(𝑡)

𝖳]𝖳, where 𝑥𝑖(𝑡) ∈ R𝑛𝑖 , 𝑛𝑖 ∈ N0 for all 𝑖 = 1,… , 4
and with 𝑛1 = 𝑛4. The Kronecker index 𝜈 of the uncontrolled system satisfies

𝜈 =

⎧

⎪

⎨

⎪

⎩

0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑛1 = 𝑛4 = 0 𝑎𝑛𝑑 𝑛3 = 0,
1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑛1 = 𝑛4 = 0 𝑎𝑛𝑑 𝑛3 > 0,
2 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑛1 = 𝑛4 > 0.

3. Our method

Our method is based on optimizing the parameters (i. e., the matrix
elements) of a low-order pH-DAE such that its transfer function matches
the transfer function of a given large-scale pH-DAE as well as possible.
As error measures we consider both the 2 and the ∞ norms. For this
we need to

(i) determine a parameterization that encompasses all the pH-DAE
types that are described in Lemma 1,

(ii) impose a matching of the polynomial part of the given transfer
function to keep the errors well-defined and bounded, and

(iii) define update rules for the parameters such that the 2 error or
the ∞ error is minimized.

We set up a parameterization that allows the strictly proper part
of the transfer function to be tuned independently of the polynomial
part in Section 3.1. In this way, matching of the polynomial part
and minimizing the errors can be addressed separately. We present
several alternative methods for computing the polynomial part of a
potentially large-scale pH-DAE in Section 3.2. Methods for ∞ or 2
approximation are then given in Sections 3.3 and 3.4, respectively.

3.1. Parameterization

Before we set up the parameterization, we first recall a few prop-
erties of transfer functions of port-Hamiltonian systems. Most impor-
tantly, they are always positive real. A transfer function 𝐻 is referred
to as positive real, if

(i) 𝐻 has no poles in the open right complex half-plane C+ ∶=
{𝑠 ∈ C ∣ Re(𝑠) > 0};

(ii) 𝐻(𝑠) +𝐻(𝑠)𝖧 ≥ 0 for all 𝑠 ∈ C+.

By [38, Theorem 2.7.2] these two conditions are equivalent to:

(i) The transfer function 𝐻 has no poles in C+.
(ii) All poles of 𝐻 on the extended imaginary axis iR ∪ {−∞,∞}

are simple. Moreover, if i𝜔0 ∈ iR is a finite pole of 𝐻 , then the
residue lim𝑠→i𝜔0

(𝑠 − i𝜔0)𝐻(𝑠) is symmetric positive semi-definite.
Similarly, the residue for the poles at infinity lim𝜔→∞

𝐻(i𝜔)
i𝜔 is

symmetric and positive semi-definite.
(iii) For each 𝜔 ∈ R for which i𝜔 is not a pole of 𝐻 , it holds that

𝐻(i𝜔) +𝐻(i𝜔)𝖧 ≥ 0.
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Lemma 2. Let a positive real 𝑚 × 𝑚 transfer function 𝐻 be given. We can
decompose it into the sum

𝐻(𝑠) = 𝐻sp(𝑠) +0 +1 ⋅ 𝑠,

where 𝐻sp is strictly proper (i. e., lim𝑠→∞ 𝐻sp(𝑠) = 0), 0, 1 ∈ R𝑚×𝑚, and
where

(a) 1 is symmetric positive semidefinite, and
(b) the proper part 𝐻p(𝑠) ∶= 𝐻sp(𝑠) +0 is positive real.

Proof. We refer to [39] for the proof of (a). To show (b), we decompose
𝐻 into its proper and improper parts, and for each 𝜔 ∈ R for which i𝜔
is not a pole of 𝐻 we obtain

𝐻(𝗂𝜔) +𝐻(𝗂𝜔)𝖧 = 𝐻p(𝗂𝜔) +𝐻p(𝗂𝜔)
𝖧 + 𝗂𝜔(1 −𝖳

1 )

= 𝐻p(𝗂𝜔) +𝐻p(𝗂𝜔)
𝖧 ≥ 0,

where we have used (a). Consequently, the proper part 𝐻p is positive
real. □

Remark 1. If all finite eigenvalues of the pencil 𝑠𝐸 − (𝐽 − 𝑅) have
negative real part as imposed by our assumptions, then its transfer
function 𝐻 cannot have finite poles on the imaginary axis, in particular,
𝐻p has a bounded ∞ norm.

Note that, in contrast to pH-DAEs with index one, the coefficient
1 may be non-zero for pH-DAEs with index two. Consequently, our
parameterization must accommodate improper transfer functions. The
previous result allows us to consider the improper part 1 ⋅ 𝑠 separately
from the proper part of the given transfer function, as the proper part
𝐻p is still positive real and can thus be parameterized independently.
In the following theorem, we analyze 𝐻p in more detail.

Theorem 1. The proper part 𝐻p of the transfer function of any pH-DAE
can be realized by an implicit ODE system of the form

𝐸p𝑥̇p(𝑡) = (𝐽p − 𝑅p)𝑥p(𝑡) + (𝐺p − 𝑃p)𝑢(𝑡),

𝑦p(𝑡) = (𝐺p + 𝑃p)
𝖳𝑥p(𝑡) + (𝑆p −𝑁p)𝑢(𝑡),

(3)

with 𝑥p ∶ R → R𝑛2 and 𝐸p > 0, where 𝑛2 is the corresponding dimension
as in Lemma 1.

Proof. The claim that the proper part of any transfer function of a
pH-DAE admits a realization of the form (3) follows immediately, as
any proper positive real transfer function is realizable by a passive
ODE system, which can in turn be transformed into pH form [40].
In the Appendix, we show that we can build a realization with state-
space dimension 𝑛2 by deriving it directly from the staircase form in
Lemma 1. □

In Theorem 2 we exploit the presented properties to derive a
novel approach to parameterizing pH-DAEs of all possible Kronecker
indices. Therein, the functions vtu(⋅) and vtsu(⋅) map vectors row-wise
to appropriately sized upper triangular and strictly upper triangular
matrices, respectively. The function names are abbreviations for vector-
to-upper and vector-to-strictly-upper, respectively. The function vtf𝑚(⋅) is
a simple reshaping operation, which maps a vector in R𝑛⋅𝑚 to a matrix
in R𝑛×𝑚. A detailed description of these functions can be found in [28,
Definition 3.1].

Theorem 2. Let 𝜃 ∈ R𝑛𝜃 be a parameter vector partitioned as 𝜃 =
[

𝜃𝖳𝐽 , 𝜃
𝖳
𝑊 , 𝜃𝖳𝐺 , 𝜃

𝖳
𝑁 , 𝜃𝖳𝐿

]𝖳 with 𝜃𝐽 ∈ R𝑟(𝑟−1)∕2, 𝜃𝑊 ∈ R(𝑟+𝑚)(𝑟+𝑚+1)∕2, 𝜃𝐺 ∈ R𝑟⋅𝑚,
𝜃𝑁 ∈ R𝑚(𝑚−1)∕2, and 𝜃𝐿 ∈ R𝑚⋅𝓁 with 𝓁 > 0. Furthermore, define the
matrix-valued functions

𝐽p,𝑟(𝜃) ∶= vtsu (𝜃𝐽 )
𝖳 − vtsu(𝜃𝐽 ), (4a)

𝑊 (𝜃) ∶= vtu(𝜃𝑊 ) vtu (𝜃𝑊 )𝖳, (4b)

𝑅p,𝑟(𝜃) ∶=
[

𝐼𝑟 0
]

𝑊 (𝜃)
[

𝐼𝑟 0
]𝖳 , (4c)

𝑃p,𝑟(𝜃) ∶=
[

𝐼𝑟 0
]

𝑊 (𝜃)
[

0 𝐼𝑚
]𝖳 , (4d)

𝑆𝑟(𝜃) ∶=
[

0 𝐼𝑚
]

𝑊 (𝜃)
[

0 𝐼𝑚
]𝖳 , (4e)

𝐺p,𝑟(𝜃) ∶= vtf𝑚(𝜃𝐺), (4f)

𝐿(𝜃) ∶= vtf𝓁(𝜃𝐿), (4g)

𝑁𝑟(𝜃) ∶= vtsu (𝜃𝑁 )𝖳 − vtsu(𝜃𝑁 ). (4h)

Then the parameter-dependent DAE

𝛴𝑟(𝜃) ∶

{

𝐸𝑟𝑥̇𝑟(𝑡) = (𝐽𝑟(𝜃) − 𝑅𝑟(𝜃))𝑥𝑟(𝑡) + (𝐺𝑟(𝜃) − 𝑃𝑟(𝜃))𝑢(𝑡),
𝑦𝑟(𝑡) = (𝐺𝑟(𝜃) + 𝑃𝑟(𝜃))

𝖳𝑥𝑟(𝑡) + (𝑆𝑟(𝜃) −𝑁𝑟(𝜃))𝑢(𝑡),
(5)

with 𝑥𝑟(𝑡) partitioned as 𝑥𝑟(𝑡) =
[

𝑥1(𝑡)
𝖳, 𝑥2(𝑡)

𝖳, 𝑥3(𝑡)
𝖳
]𝖳, where 𝑥1(𝑡) ∈ R𝑟,

𝑥2(𝑡) ∈ R𝓁 , 𝑥3(𝑡) ∈ R𝓁 for each 𝑡 ∈ R and

𝐸𝑟 =
⎡

⎢

⎢

⎣

𝐼𝑟 0 0
0 𝐼𝓁 0
0 0 0

⎤

⎥

⎥

⎦

,

𝐽𝑟(𝜃) =
⎡

⎢

⎢

⎣

𝐽p,𝑟(𝜃) 0 0
0 0 −𝐼𝓁
0 𝐼𝓁 0

⎤

⎥

⎥

⎦

, 𝑅𝑟(𝜃) =
⎡

⎢

⎢

⎣

𝑅p,𝑟(𝜃) 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

,

𝐺𝑟(𝜃) =
⎡

⎢

⎢

⎣

𝐺p,𝑟(𝜃)
0

𝐿(𝜃)𝖳

⎤

⎥

⎥

⎦

, 𝑃𝑟(𝜃) =
⎡

⎢

⎢

⎣

𝑃p,𝑟(𝜃)
0
0

⎤

⎥

⎥

⎦

,

satisfies the pH structure conditions in Definition 1 (with 𝑄 = 𝐼𝑟+2𝓁). Its
transfer function 𝐻𝑟 is given by

𝐻𝑟(𝑠, 𝜃) = 𝐻p,𝑟(𝑠, 𝜃) + 𝐿(𝜃)𝐿(𝜃)𝖳 ⋅ 𝑠,

where 𝐻p,𝑟(𝑠, 𝜃) denotes the transfer function of the pH-ODE system

𝛴p,𝑟(𝜃) ∶

{

𝑥̇1(𝑡) = (𝐽p,𝑟(𝜃) − 𝑅p,𝑟(𝜃))𝑥1(𝑡) + (𝐺p,𝑟(𝜃) − 𝑃p,𝑟(𝜃))𝑢(𝑡),
𝑦p,𝑟(𝑡) = (𝐺p,𝑟(𝜃) + 𝑃p,𝑟(𝜃))

𝖳𝑥1(𝑡) + (𝑆𝑟(𝜃) −𝑁𝑟(𝜃))𝑢(𝑡).

(6)

Proof. For ease of notation, we omit the argument 𝜃 in the system
matrices of (4). The fact that (5) is a pH-DAE system of index two
follows directly from the composition of the reduced-order matrices
and the parameterization in (4). Under the assumption that 𝑢 is dif-
ferentiable, which is necessary for the solution to be impulse-free, the
system contains the subsystem (in 𝑥1)

𝑥̇1(𝑡) = (𝐽p,𝑟 − 𝑅p,𝑟)𝑥1(𝑡) + (𝐺p,𝑟 − 𝑃p,𝑟)𝑢(𝑡),

𝑦p,𝑟(𝑡) = (𝐺p,𝑟 + 𝑃p,𝑟)
𝖳𝑥1(𝑡) + (𝑆𝑟 −𝑁𝑟)𝑢(𝑡) + 𝐿𝐿𝖳𝑢̇(𝑡),

where we have used the fact that 𝑥3(𝑡) = −𝑥̇2(𝑡) = 𝐿𝖳𝑢̇(𝑡). This leads to
the transfer function

𝐻𝑟(𝑠) = 𝐻p,𝑟(𝑠) + 𝐿𝐿𝖳 ⋅ 𝑠,

with the proper part

𝐻p,𝑟(𝑠) = (𝐺p,𝑟 + 𝑃p,𝑟)
𝖳(𝑠𝐼𝑟 − (𝐽p,𝑟 − 𝑅p,𝑟))

−1(𝐺p,𝑟 − 𝑃p,𝑟) + (𝑆𝑟 −𝑁𝑟).

The assertion follows from the fact that 𝐻p,𝑟 is the transfer function of
the system in (6), which clearly fulfills the pH structure conditions. □

Remark 2. We highlight that this parameterization naturally carries
over to pH-DAEs with a proper transfer function, i. e., with either index
𝜈 < 2 or 𝐺4 = 0. For these systems we have that 𝓁 = rank(𝐿) = 0 and
therefore it is sufficient to parameterize the system with a pH-ODE as
in (6).

Remark 3. Note that for the subsystem corresponding to the proper
part of the transfer function of 𝛴p,𝑟(𝜃), we assume that 𝐸p,𝑟(𝜃) = 𝐼𝑟,
which reduces the number of optimization parameters. This is not a
restriction, since every pH-ODE system may be transformed into such
a form using, for instance, the Cholesky factor of 𝐸p,𝑟(𝜃).
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3.2. Computation of 0 and 1

To keep the ∞ error between the FOM and ROM transfer functions
bounded, the Markov parameter 1 of the FOM transfer function must
be matched exactly in the ROM. To obtain a bounded 2 error, both
0 and 1 must be matched exactly. Since our parameterization allows
for the polynomial coefficients to be assigned and the remaining free
parameters to be independently optimized, it remains to compute 0
and 1 efficiently for the FOM transfer function.

One approach is to determine 0 and 1 by the method outlined
in [20], where these coefficients can be read off a block-Hankel matrix
constructed using the solutions of two projected discrete-time Lyapunov
equations. Another approach consists in transforming the FOM to the
almost Kronecker canonical form derived in [36], see also Lemma 4 in
the Appendix.

Alternative approaches determine 0, 1 by sampling the original
transfer function 𝐻 ; hence these are independent of the specific rep-
resentation of the FOM. Assume that two distinct imaginary sampling
points 𝑠1 = i𝜔1, 𝑠2 = i𝜔2 with two sufficiently large values 𝜔1 ≠ 𝜔2 are
given. As shown in [41], we have that

𝐻(i𝜔1) −𝐻(i𝜔2) = 𝐻sp(i𝜔1) −𝐻sp(i𝜔2) + (i𝜔1 − i𝜔2)1

≈ (i𝜔1 − i𝜔2)1,

which follows from lim𝑠→∞ 𝐻sp(𝑠) = 0. We can then obtain an approxi-
mation for 1 as

̂1 = Re
(

𝐻(i𝜔1) −𝐻(i𝜔2)
i𝜔1 − i𝜔2

)

.

Similarly, we have that
i𝜔1𝐻(i𝜔1) − i𝜔2𝐻(i𝜔2)

i𝜔1 − i𝜔2
≈ 0 + i(𝜔1 + 𝜔2)1,

which yields an approximation for 0 given by

̂0 = Re
(

i𝜔1𝐻(i𝜔1) − i𝜔2𝐻(i𝜔2)
i𝜔1 − i𝜔2

)

.

The approximation quality generally depends on the choice of 𝜔1, 𝜔2,
and we can adapt these sampling points in an iterative manner as
in [42], until a certain tolerance is met. Another way of enhancing
the accuracy is to include more than two sampling points, using the
Loewner framework [41].

3.3. ∞ Approximation

Since we assume that the pencil 𝑠𝐸−(𝐽 −𝑅) is regular and its finite
eigenvalues are in the open left half-plane, we can proceed as in [28]
and obtain a good ∞ approximation by minimizing, for decreasing
values of 𝛾 > 0, the function

(𝜃;𝐻, 𝛾,) ∶= 1
𝛾
∑

𝑠𝑖∈

𝑚
∑

𝑗=1

(

[

𝜎𝑗
(

𝐻(𝑠𝑖) −𝐻𝑟(𝑠𝑖, 𝜃)
)

− 𝛾
]

+

)2
(7)

with respect to 𝜃, where

[⋅]+ ∶ R → [0,∞), 𝑥 ↦

{

𝑥 if 𝑥 ≥ 0,
0 if 𝑥 < 0.

Here,  ⊂ iR is a set of sample points at which the original and reduced
transfer functions are evaluated and 𝜎𝑗 (⋅) denotes the 𝑗th singular value
of its matrix argument.

Our procedure for the ∞ approximation of pH-DAEs is described
in Algorithm 1. It is based on repetitively minimizing  in conjunction
with a bisection over 𝛾. Note that (⋅;𝐻, 𝛾,) attains its global mini-
mum at zero when the error ‖𝐻(𝑠𝑖)−𝐻𝑟(𝑠𝑖)‖2 at all sample points 𝑠𝑖 ∈ 
is smaller than 𝛾. The tolerance 𝜀2 that is used in line 7 of the algorithm
is the maximum value of , which is still numerically interpreted as
zero, such that 𝛾 is reduced in the subsequent bisection step. With
appropriately chosen sample points (an adaptive sampling procedure is

proposed in [43]), this in turn is an indication of ‖𝐻 −𝐻𝑟(⋅, 𝜃)‖∞
< 𝛾.

Thus, finding the minimal 𝛾 (up to our bisection tolerance 𝜀1) such
that (⋅;𝐻, 𝛾,) can be minimized to zero (as in Algorithm 1) is a
reasonable strategy for determining a ROM with a small ∞ error.
In [28], we discuss the further benefits of this general approach, also
in comparison to a direct minimization of the ∞ norm.

Algorithm 1: SOBMOR-∞.
Input : FOM transfer function 𝐻 , initial ROM transfer

function 𝐻𝑟(⋅, 𝜃0) with parameter 𝜃0 ∈ R𝑛𝜃 , initial
sample point set  ⊂ iR, upper bound 𝛾u > 0, bisection
tolerance 𝜀1 > 0, termination tolerance 𝜀2 > 0.

Output: Reduced order model as in Theorem 2 with parameter
𝜃f in.

1 Set 𝑗 ∶= 0 and 𝛾l ∶= 0.
2 Compute 1 using either method in Section 3.2.
3 while (𝛾u − 𝛾l)∕(𝛾u + 𝛾l) > 𝜀1 do
4 Set 𝛾 = (𝛾u + 𝛾l)∕2.
5 Update the sample point set  using [43, Alg. 3.1].
6 Solve the minimization problem

𝛼 ∶= min
𝜃∈R𝑛𝜃

(𝜃;𝐻, 𝛾,)

s. t. vtf𝓁 (𝜃𝐿)𝖳 vtf𝓁(𝜃𝐿) = 1

with minimizer 𝜃𝑗+1 ∈ R𝑛𝜃 , initialized at 𝜃𝑗 .
7 if 𝛼 > 𝜀2 then
8 Set 𝛾l ∶= 𝛾.
9 else
10 Set 𝛾u ∶= 𝛾.
11 end
12 Set 𝑗 ∶= 𝑗 + 1.
13 end
14 Set 𝜃f in ∶= 𝜃𝑗 .
15 Construct the ROM with 𝜃f in as in Theorem 2.

3.4. 2 Approximation

For 2-optimal model reduction, we first have to ensure that
𝐻 −𝐻𝑟(⋅, 𝜃) has a bounded 2 norm (see Section 3.2). Consequently,
the polynomial parts of the FOM and the ROM transfer function must
be equal. In addition to the condition that 𝐿(𝜃)𝐿(𝜃)𝖳 = 1, we also
require that

𝑁𝑟(𝜃) =
1
2
(𝖳

0 −0) = 𝑁p, (8a)

𝑆𝑟(𝜃) =
1
2
(𝖳

0 +0) = 𝑆p. (8b)

Once 0 and 1 have been obtained using any of the methods in
Section 3.2, we first have to fix all parameters in 𝜃𝑁 to enforce con-
dition (8a). Once again we want to emphasize, that an exact matching
of 1 is required to avoid an unbounded ∞ error, and matching 0
and 1 exactly is necessary for a bounded 2 error. Since we indirectly
parameterize 𝑆𝑟(𝜃) via 𝜃𝑊 , let us analyze which parameters in 𝜃𝑊
have an impact on 𝑆𝑟(𝜃). For this, consider a partition of 𝜃𝑊 ∈ R𝑛𝑊

into 𝜃𝑊 =∶
[

𝜃𝖳𝑊1
, 𝜃𝖳𝑊2

]𝖳
, where 𝜃𝑊1

∈ R𝑛𝑊 −𝑚(𝑚+1)∕2 and 𝜃𝑊2
∈ R𝑚(𝑚+1)∕2.

Then we can decompose

vtu(𝜃𝑊 ) =
[

𝛯1 𝛯2
0 𝛯3

]

, (9)

where the matrices 𝛯1, 𝛯2 depend only on 𝜃𝑊1
, and 𝛯3 depends only

on 𝜃𝑊2
. Since 𝑆𝑟(𝜃) = 𝛯3𝛯𝖳

3 , we can fix 𝜃𝑊2
to enforce condition (8b)

and the parameter vector which is subject to optimization reduces to
𝜃 ∶=

[

𝜃𝖳𝐽 , 𝜃
𝖳
𝑊1

, 𝜃𝖳𝐺
]𝖳

. The remaining 𝑛𝜃 − 𝑚(𝑚 + 𝓁) parameters in 𝜃 can
be tuned to minimize the error ‖𝐻 − 𝐻𝑟(⋅, 𝜃)‖2

in the pole-residue
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framework as originally proposed in [44] for unstructured LTI systems
and extended to pH-ODE systems in [27].

Assume that the eigenvalues of 𝐽p,𝑟(𝜃) − 𝑅p,𝑟(𝜃) are simple, and
consider the spectral decomposition

(𝐽p,𝑟(𝜃) − 𝑅p,𝑟(𝜃))𝑍(𝜃) = 𝑍(𝜃)𝛬(𝜃), (10)

where 𝛬(𝜃) = diag(𝜆1(𝜃), … , 𝜆𝑟(𝜃)) and 𝑍(𝜃) is continuous in 𝜃 and
contains the normalized right eigenvectors as columns. The trans-
fer function 𝐻𝑟(⋅, 𝜃) may then be represented by the partial fraction
expansion

𝐻𝑟(𝑠, 𝜃) =
𝑟
∑

𝑖=1

𝑐𝑖(𝜃)𝑏𝑖(𝜃)
𝖳

𝑠 − 𝜆𝑖(𝜃)
+ 𝑆𝑟(𝜃) −𝑁𝑟(𝜃) + 𝐿(𝜃)𝐿(𝜃)𝖳 ⋅ 𝑠,

where 𝑐𝑖(𝜃), 𝑏𝑖(𝜃) ∈ C𝑚 with

𝑐𝑖(𝜃) = (𝐺p,𝑟(𝜃) + 𝑃p,𝑟(𝜃))
𝖳𝑍(𝜃)𝑒𝑖,

𝑏𝑖(𝜃) = (𝐺p,𝑟(𝜃) − 𝑃p,𝑟(𝜃))
𝖳𝑍(𝜃)−𝖳𝑒𝑖,

and where 𝑒𝑖 denotes the 𝑖th standard basis vector of R𝑟. As shown
in [44, Theorem 2.1], we may then express the 2 error by

‖𝐻 −𝐻𝑟(⋅, 𝜃)‖
2
2

= ‖𝐻sp‖
2
2

− 2
𝑟
∑

𝑖=1
𝑐𝑖(𝜃)

𝖳𝐻sp(−𝜆𝑖(𝜃))𝑏𝑖(𝜃)

+
𝑟
∑

𝑗,𝑘=1

𝑐𝑗 (𝜃)
𝖳𝑐𝑘(𝜃)𝑏𝑘(𝜃)

𝖳𝑏𝑗 (𝜃)
−𝜆𝑗 (𝜃) − 𝜆𝑘(𝜃)

,

where 𝐻sp again denotes the strictly proper part of 𝐻 . For an extension
of the 2 optimization problem to higher-order poles, see [45].

Since ‖𝐻sp‖
2
2

does not depend on 𝜃, it can be neglected in the
optimization. Consequently, we define the objective functional

 (𝜃;𝐻) ∶= ‖𝐻 −𝐻𝑟(⋅, 𝜃)‖
2
2

− ‖𝐻sp‖
2
2

∶= ̂
(

[

𝑐1(𝜃)
𝖳,… , 𝑐𝑟(𝜃)

𝖳, 𝑏1(𝜃)
𝖳,… , 𝑏𝑟(𝜃)

𝖳, 𝜆1(𝜃)
𝖳,… , 𝜆𝑟(𝜃)

𝖳]𝖳
)

=
(

̂◦𝑞
)

(𝜃),

where

𝑞(𝜃) ∶=
[

𝑐1(𝜃)
𝖳,… , 𝑐𝑟(𝜃)

𝖳, 𝑏1(𝜃)
𝖳,… , 𝑏𝑟(𝜃)

𝖳, 𝜆1(𝜃),… , 𝜆𝑟(𝜃)
]𝖳 ∈ C𝑛𝑞 .

The eigenvalues 𝜆𝑖(𝜃) and rank-one residues 𝑐𝑖(𝜃)𝑏𝑖(𝜃)𝖳 are functions
of the parameter vector 𝜃. If 𝜃̄ ∈ R𝑛𝜃 is chosen such that all eigenvalues
of 𝐽𝑝,𝑟(𝜃̄)−𝑅𝑝,𝑟(𝜃̄) are simple, then  is differentiable in a neighborhood
of 𝜃̄. Its derivative is obtained by applying the chain rule, i. e., with the
differentiation operator D we obtain

D (𝜃̄) =
(

∇ (𝜃̄)
)𝖳 = D̂ (𝑞(𝜃̄)) ⋅ D𝑞(𝜃̄),

with

D̂ (𝑞(𝜃̄)) =
[

D𝑏1 ̂ (𝑞(𝜃̄)),… ,D𝑏𝑟 ̂ (𝑞(𝜃̄)),D𝑐1 ̂ (𝑞(𝜃̄)),… ,D𝑐𝑟 ̂ (𝑞(𝜃̄)),…

D𝜆1 ̂ (𝑞(𝜃̄)),… ,D𝜆𝑟 ̂ (𝑞(𝜃̄))
]

∈ C1×𝑛𝑞 ,

and

D𝑞(𝜃̄) =
[

D𝜃1𝑞(𝜃̄),… ,D𝜃𝑛𝜃
𝑞(𝜃̄)

]

∈ C𝑛𝑞×𝑛𝜃 .

For all 𝑖 = 1, … , 𝑟 it holds that

D𝑏𝑖 ̂ (𝑞(𝜃̄)) = 2𝑐𝑖(𝜃̄)
𝖳(𝐻𝑟(−𝜆𝑖(𝜃̄)) −𝐻(−𝜆𝑖(𝜃̄))

)

,

D𝑐𝑖 ̂ (𝑞(𝜃̄)) = 2𝑏𝑖(𝜃̄)
𝖳(𝐻𝑟(−𝜆𝑖(𝜃̄)) −𝐻(−𝜆𝑖(𝜃̄))

)𝖳,

D𝜆𝑖 ̂ (𝑞(𝜃̄)) = −2𝑐𝑖(𝜃̄)
𝖳(𝐻 ′

𝑟 (−𝜆𝑖(𝜃̄)) −𝐻 ′(−𝜆𝑖(𝜃̄))
)

𝑏𝑖(𝜃̄),

and we refer to [27] for the derivation of D𝑞.

Remark 4. The partial derivatives in D𝑞(𝜃̄) may be computed efficiently
with block-wise expressions. For instance, the derivative D𝜃𝐺 𝑐𝑖(𝜃̄) ∈
C𝑚×𝑟⋅𝑚 can be computed as

D𝜃𝐺 𝑐𝑖(𝜃̄) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑧𝑖(𝜃̄)
𝖳 0 … 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 𝑧𝑖(𝜃̄)

𝖳

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐼𝑚 ⊗ 𝑧𝑖(𝜃̄)
𝖳,

where 𝑧𝑖(𝜃̄) ∈ C𝑟 denotes the 𝑖th column in 𝑍(𝜃̄). This is also the case
for the other parts of D𝑞(𝜃̄).

Let us highlight some important advantages of the pole-residue
framework compared to recently proposed methods that are formulated
in the Lyapunov framework (see [46,47]), in particular for pH-DAEs.
These methods require the solution of large-scale Lyapunov equa-
tions for the evaluation of  and its gradient. Currently no structure-
preserving Lyapunov-based methods exist for pH-DAEs; see [48] for
new Lyapunov-based formulations of pH-DAEs. If the strictly proper
part of the transfer function can be easily decoupled from the poly-
nomial part, the existing methods for pH-ODEs may be applied to this
part. However, if the splitting into the strictly proper and polynomial
part must first be computed via a factorization method (see, e.g., [36]),
then the sparsity patterns of the original pH-DAE may be lost which
complicates the repetitive solution of Lyapunov equations for these
systems in the large-scale setting. In contrast, an optimization in the
pole-residue framework only requires the solution of the reduced-
order eigenvalue problem in (10) as well as 𝑟 evaluations of 𝐻sp at
−𝜆𝑖(𝜃). Note that to evaluate 𝐻sp, we do not require a state-space
representation of the strictly proper part. Instead, we indirectly evaluate
𝐻sp by

𝐻sp(𝑠) = 𝐻(𝑠) −0 −1 ⋅ 𝑠 (11)

for all 𝑠 ∈ C. Consequently, we may work directly with the sparse
matrices of the original pH-DAE and do not require the solution of
large-scale matrix equations.

Algorithm 2: PROPT-2

Input : FOM transfer function 𝐻 , reduced order 𝑟 ∈ N.
Output: Reduced-order model as in Theorem 2 with parameter

𝜃f in.
1 Compute 0, 1 (see Section 3.2).
2 Initialize 𝜃0 s. t. 𝑆𝑟(𝜃0) −𝑁𝑟(𝜃0) = 0 and 𝐿(𝜃0)𝐿(𝜃0)

𝖳 = 1.
3 Solve

𝜃f in = arg min
𝜃∈R𝑛𝜃

 (𝜃;𝐻)

s. t. 𝑆𝑟(𝜃) −𝑁𝑟(𝜃) = 0, 𝐿(𝜃)𝐿(𝜃)
𝖳 = 1.

Construct the ROM with 𝜃f in as in Theorem 2.

We summarize our approach for 2 optimization called
Pole-Residual Optimization (PROPT) in Algorithm 2. Since the 2 op-
timization problem is non-convex, the choice of the initial parameter
vector 𝜃0 will generally impact the fidelity of the final ROM obtained by
Algorithm 2. Simple initialization strategies are, for instance, choosing
𝜃0 randomly or using IRKA-PH (see [27,46]), which generally con-
verges very quickly. Here, we propose another approach that may use
unstructured ROMs for initialization which is based on the following
parameterization.

Lemma 3. Let (𝐴,𝐵, 𝐶, 𝐷̃) be a reduced-order ODE system with state-space
dimension 𝑟 such that 𝐷̃ = 𝑆p−𝑁p and 𝐴 has eigenvalues 𝜆𝑖 in the open left
half of the complex plane for all 𝑖 = 1, … , 𝑟. Let 𝜃𝐺 ∈ R𝑟⋅𝑚 and 𝜃𝐾 ∈ R𝑟⋅𝑝

be two parameter vectors and define the matrix-valued functions

𝐺p,𝑟(𝜃𝐺) ∶= vtf𝑚(𝜃𝐺),

𝐾p,𝑟(𝜃𝐾 ) ∶= vtf𝑝(𝜃𝐾 ).

Let 𝐸p,𝑟(𝜃𝐾 ) > 0 solve the Lyapunov equation

𝐴𝖳𝐸p,𝑟(𝜃𝐾 ) + 𝐸p,𝑟(𝜃𝐾 )𝐴 +𝐾p,𝑟(𝜃𝐾 )𝐾p,𝑟(𝜃𝐾 )
𝖳 = 0, (12)

and define

𝐽p,𝑟(𝜃𝐾 ) =
1
2

(

𝐸p,𝑟(𝜃𝐾 )𝐴 − 𝐴𝖳𝐸p,𝑟(𝜃𝐾 )
)

,
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𝑅p,𝑟(𝜃𝐾 ) = −1
2

(

𝐸p,𝑟(𝜃𝐾 )𝐴 + 𝐴𝖳𝐸p,𝑟(𝜃𝐾 )
)

.

Then the parametric system

𝐸p,𝑟(𝜃𝐾 )𝑥̇1(𝑡) =
(

𝐽p,𝑟(𝜃𝐾 ) − 𝑅p,𝑟(𝜃𝐾 )
)

𝑥1(𝑡) + 𝐺p,𝑟(𝜃𝐺)𝑢(𝑡),

𝑦p,𝑟(𝑡) =𝐺p,𝑟(𝜃𝐺)
𝖳𝑥1(𝑡) + (𝑆p −𝑁p)𝑢(𝑡),

is an implicit pH-ODE system and the matrix pencil 𝑠𝐸p,𝑟(𝜃𝐾 ) −
(

𝐽p,𝑟(𝜃𝐾 ) − 𝑅p,𝑟(𝜃𝐾 )
)

has the same eigenvalues as 𝐴.

Proof. The proof follows immediately from [49, Lemma 2]. □

Let 𝐻̃ denote the transfer function of the (possibly unstructured)
ROM

(

𝐴,𝐵, 𝐶, 𝐷̃
)

with 𝐻̃(𝑠) =
∑𝑟

𝑖=1
𝑐𝑖 𝑏̃𝖳𝑖
𝑠−𝜆𝑖

+ 𝑆p −𝑁p and 𝑐𝑖, 𝑏̃𝑖 ∈ C𝑚.
Based on the parameterization in Lemma 3, we can then compute an
initial pH model by minimizing the weighted sum of squared errors
between the residuals in the Frobenius norm, i. e.,

0(𝜃𝐺 , 𝜃𝐾 ) ∶=
𝑟
∑

𝑖=1

1
|𝜆𝑖|

‖

‖

‖

𝑐𝑖𝑏̃
𝖳
𝑖 − 𝑐𝑖(𝜃𝐺)𝑏𝑖(𝜃𝐺 , 𝜃𝐾 )

𝖳‖
‖

‖

2

F
,

where

𝑐𝑖(𝜃𝐺) = 𝐺p,𝑟(𝜃𝐺)
𝖳𝑍𝑒𝑖,

𝑏𝑖(𝜃𝐺 , 𝜃𝐾 ) = 𝐺p,𝑟(𝜃𝐺)
𝖳𝐸p,𝑟(𝜃𝐾 )

−𝖳𝑍−𝖳𝑒𝑖,

for 𝑖 = 1, … , 𝑟 and 𝑍 is, again, under a generic diagonalizability
assumption, obtained from the spectral decomposition

𝐴𝑍 = 𝑍𝛬,

with 𝛬 = diag(𝜆1, … , 𝜆𝑟).
Note that the computation of the gradient of 0 is very simple, since

it does not involve a differentiation of the eigenvalues or eigenvectors.
While the partial gradients of 𝑐𝑖(⋅) and 𝑏𝑖(⋅, ⋅) with respect to 𝜃𝐺 are
straightforward, the partial gradients of 𝐸p,𝑟(⋅) with respect to the 𝑙th
entry in 𝜃𝐾 is the solution of the (reduced-order) Lyapunov equation

𝐴𝖳
𝜕𝐸p,𝑟(𝜃𝐾 )
𝜕𝜃𝐾,𝑙

+
𝜕𝐸p,𝑟(𝜃𝐾 )
𝜕𝜃𝐾,𝑙

𝐴 vtf𝑝(𝑒𝑙)𝐾p,𝑟(𝜃𝐾 )
𝖳 +𝐾p,𝑟(𝜃𝐾 ) vtf𝑝 (𝑒𝑙)

𝖳 = 0,

where 𝑒𝑙 denotes the 𝑙th standard basis vector of R𝑟⋅𝑝. As the number
of optimization parameters is reduced to 𝑟(𝑝 + 𝑚), this initialization
generally converges very quickly. Note that improper parts of the
original transfer function can be incorporated as in Theorem 2. In
combination with Algorithm 2, this enables a two-step approach with
a more restrictive (yet simpler) pre-optimization of only the residues
and a subsequent (more complex) optimization of all system matrices.

Remark 5. The computational burden of our two different methods
is influenced by different factors. Similar to IRKA-PH, in large-scale
settings the computational cost of PROPT-2 is dominated by 𝑟 solves
of sparse, large-scale linear systems per iteration to evaluate the FOM
transfer function. For SOBMOR-∞, the transfer function evaluations
can be cached for subsequent iterations since the sample set  only
changes as 𝛾 is updated. Here the main computational cost is the
repeated evaluation of the ROM transfer function for each iteration of
the optimization in line 6 of Algorithm 1 for all sample points in .

4. Numerical examples

We illustrate the properties of our new methods using several
numerical tests based on well-known benchmark examples. We test our
methods for systems with 𝜈 = 1 and 𝜈 = 2 as well as strictly proper,
proper, and improper transfer functions. Our numerical examples are
published via Zenodo4 and the algorithms used in this comparison are
provided as part of a MATLAB toolbox.5

4 Available at: https://zenodo.org/record/7636424.
5 Available at: https://github.com/MORLab/MORpH.

Fig. 1. RCL ladder network.

Table 1
Dimensions of benchmark systems.

Model name 𝑛2 𝑛3 𝑛4 = 𝑛1 𝑛 𝑚

Oseen-2-S 81 0 99 279 1
Oseen-2-L 2401 0 2499 7399 1
RCL-1-SISO 999 503 0 1502 1
RCL-1-MIMO 19 999 10 005 0 30 004 2
RCL-2-SISO 999 501 1 1502 1

4.1. Benchmark models

The first type of systems that we consider model the instationary
flow of incompressible fluids on the spatial domain 𝛺 = (0, 1)2 with the
boundary 𝜕𝛺 and time interval [0, 𝑇 ] as in [50]. The flow is modeled
by the Oseen equation

𝜕𝑡𝑣 = −(𝑎 ⋅ ∇)𝑣 + 𝜇𝛥𝑣 − ∇𝑝 + 𝑓, in 𝛺 × (0, 𝑇 ],

0 = div 𝑣, in 𝛺 × (0, 𝑇 ],

with velocity vector 𝑣, pressure 𝑝, viscosity 𝜇 > 0, external forces
𝑓 and a convective term with driving velocity 𝑎. As shown in [50],
spatial semi-discretization of the Oseen equations by a finite difference
method with associated no-slip boundary conditions and initial velocity
𝑣0 ∈ R2, i. e.,

𝑣 = 0 on 𝜕𝛺 × (0, 𝑇 ],

𝑣 = 𝑣0 in 𝛺 × {0},

leads to a pH-DAE of index two. However, a transformation to the
staircase form of Lemma 1 reveals that 𝑛3 = 0. Additionally, we have
that 𝐺4 = 0, which makes the transfer function 𝐻 strictly proper. We
consider two models: Oseen-2-S with 𝑛 = 279 and Oseen-2-L with
𝑛 = 7399.

Our second type of systems are RCL circuits modeled by directed
graphs as described in [51]. These relate to RCL ladder networks as
shown in Fig. 1, which are part of the software package PortHamil-
tonianBenchmarkSystems.6 Here, 𝑛̄ denotes the number of loops in
the system. If we choose the supplied voltages [𝑢1, 𝑢2]𝖳 as inputs and
the currents [𝑦1, 𝑦2]𝖳 as outputs, we directly obtain a pH-DAE model as
in (1), where the algebraic equations of the model reflect Kirchhoff’s
voltage law. We generate different types of systems with the setup in
Fig. 1. To generate single-input single-output systems, we remove the
voltage source 𝑢2 and corresponding output 𝑦2. To generate systems
with index 𝜈 = 1, we replace the red box next to the voltage source
𝑢1 by a resistor 𝑅0 and to obtain a system with index 𝜈 = 2, we
use a capacitor 𝐶0 in its place. Our index-one RCL systems have a
proper transfer function and our index-two RCL system has an improper
transfer function.

The properties of our benchmark systems are described in Fig. 2
and Table 1. The maximum singular values of the transfer functions
of the FOMs are shown in Fig. 2. The dimensions of our benchmark

6 https://algopaul.github.io/PortHamiltonianBenchmarkSystems.jl/
RclCircuits/
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Fig. 2. Maximum singular values of considered FOM transfer functions.

systems partitioned according to the staircase form from Lemma 1 are
given in Table 1. In the following, we compare the approximation errors
obtained with our methods SOBMOR-∞ and PROPT-2 to the DAE
variants of IRKA-PH in [17] and PRBT [19].

4.2. Results

Let us first consider the results for the strictly proper Oseen-2-
S model, shown in Figs. 3(a) and (b). It can be observed that both
PROPT-2 and SOBMOR-∞ lead to more accurate models in both
the 2 and the ∞ norms compared to IRKA-PH, especially when the
reduced model order is increasing. Compared with PRBT, SOBMOR-
∞ leads to slightly smaller ∞ errors except for 𝑟 = 10, while
PROPT-2 leads to slightly smaller 2 errors up to reduced orders
of 8. Note that SOBMOR-∞ computes ROMs with an unbounded 2
error,7 since it does not match 0 and allows for an optimization of
the (constant) feedthrough. Only 1 must be matched exactly, when
∞ approximations are computed.

Fig. 4 shows the results for the Oseen-2-L model; we show the
maximum singular values of the error transfer functions, which we call
frequency response errors, since the high FOM system dimension makes
a computation of the ∞ and 2 errors computationally prohibitively
expensive. Our findings are comparable to the smaller Oseen-2-S
model: The error transfer functions of IRKA-PH, PRBT, and PROPT-2
are similar for the small reduced model order 𝑟 = 5, while for 𝑟 = 10,
the PROPT-2 and PRBT errors are clearly smaller than the error of
the IRKA-PH model across a wide frequency range. SOBMOR-∞ aims
at minimizing the maximum error across all frequencies and it can be

7 More precisely, the error transfer function is not in the Hardy space 𝑚×𝑚
2 .

observed that the frequency response errors of the SOBMOR-∞ ROMs
are well below the maximum errors of the ROMs obtained with the
other methods for both reduced orders. The frequency response errors
are in fact nearly constant, which is a sign for a good rational ∞
approximation; see [52].

We continue with the results on the RCL systems RCL-1-SISO and
RCL-1-MIMO that have proper transfer functions. We report the ∞
accuracy of the considered methods for RCL-1-SISO in Figs. 5(a). It
can be seen that SOBMOR-∞ achieves the highest ∞ accuracy for
all reduced model orders. The second best overall accuracy is obtained
by PRBT. The 2 methods PROPT-2 and IRKA-PH have a worse ∞
performance, as it is to be expected. However, we note that there is
a huge difference in terms of accuracy, when comparing IRKA-PH to
all the other methods for larger reduced model orders. The 2 errors,
reported in Figs. 5(b), exhibit a less distinct behavior but PROPT-2
leads to the lowest 2 errors for all reduced model orders. Again, it can
be clearly seen that IRKA-PH has the worst accuracy for larger reduced
model orders.

In Fig. 6, we report the error transfer functions between RCL-1-
MIMO and the ROMs obtained with IRKA-PH, PRBT, and our proposed
methods. Again, the exact computation of ∞ or 2 errors is computa-
tionally prohibitive due to the vast system dimension of RCL-1-MIMO.
The error transfer functions indicate that our methods continue to
work as intended also in the MIMO case. In particular, SOBMOR-∞
leads to a flat error curve in the sigma plot, which has its highest
peak value well-below the other errors and PROPT-2 and PRBT have
error transfer functions that are below the error of IRKA-PH over the
entire imaginary axis and below the error of SOBMOR-∞ for higher
frequencies.

Finally, we report the results of our experiments on RCL-2-SISO,
which has an improper transfer function. Therefore, we only compare
our methods to PRBT, since IRKA-PH is not applicable to improper
systems. The results are shown in Figs. 7(a) and (b). Again, SOBMOR-
∞ leads to the smallest ∞ errors for all reduced model orders, while
PROPT-2 leads to the smallest 2 errors for all reduced model orders
except 𝑟 = 20.

5. Conclusion

We have presented a flexible MOR approach for 2 and ∞ approx-
imation of higher index pH-DAEs. Our approach is based on a novel
parameterization that can provide a pH realization for any pH descrip-
tor system with an efficient representation of the algebraic part. An
adaptation of previously developed optimization-based MOR methods
allows for the approximation of potentially improper transfer functions.
A comparison to state-of-the-art methods shows that our optimization-
based approach leads to accurate ROMs that are guaranteed to fulfill
the pH structural constraints.
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Fig. 3. ∞ and 2 error comparison for the Oseen-2-S model.

Fig. 4. Frequency response errors (measured by the maximum singular value) for the
Oseen-2-L model.
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Appendix

The following Kronecker-like form was derived in [36], based on
the staircase form.

Lemma 4. Consider a regular pH-DAE in staircase form (2) and de-
fine 𝐴 ∶= 𝐽 − 𝑅, 𝐵 ∶= 𝐺 − 𝑃 , 𝐶 ∶= (𝐺 + 𝑃 )

𝖳, 𝐷̃ ∶= 𝑆 − 𝑁̃ . Then there
exist nonsingular matrices 𝑇1, 𝑇2 ∈ R𝑛×𝑛 such that the pH-DAE may be
transformed to a general linear time-invariant system of the form

𝐸̌ ̇̌𝑥(𝑡) = 𝐴̌𝑥̌(𝑡) + 𝐵̌𝑢(𝑡),

𝑦(𝑡) = 𝐶̌𝑥̌(𝑡) + 𝐷̌𝑢(𝑡),
(13)

where

𝐸̌ ∶= 𝑇1𝐸𝑇2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐸̌11 0 0 0
0 𝐸̌22 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐴̌ ∶= 𝑇1𝐴𝑇2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 𝐼𝑛1
0 𝐴̌22 0 0
0 0 𝐼𝑛3 0

−𝐼𝑛4 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐵̌ ∶= 𝑇1𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̌1
𝐵̌2
𝐵̌3
𝐵̌4

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶̌ ∶= 𝐶𝑇2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶̌𝖳
1

𝐶̌𝖳
2

𝐶̌𝖳
3

𝐶̌𝖳
4

⎤

⎥

⎥

⎥

⎥

⎦

𝖳

and 𝐷̌ = 𝐷̃. The matrices are partitioned in the same way as in Lemma 1
and, if present, the diagonal block matrices 𝐸̌11, 𝐸̌22 are symmetric positive
definite.

Proof of Theorem 1. Considering the transformed system (13) and a
block diagonalization of 𝑠𝐸̌ − 𝐴̌ yield the transfer function

𝐻(𝑠) = 𝐶̌2(𝑠𝐸̌22 − 𝐴̌22)
−1𝐵̌2 +0 +1 ⋅ 𝑠,

where

0 = 𝐷̌ + 𝐶̌1𝐵̌4 − 𝐶̌3𝐵̌3 − 𝐶̌4𝐵̌1,

1 = 𝐶̌4𝐸̌11𝐵̌4,

which reveals the split into the proper and improper parts, respectively.
From the definition of 𝑇1, 𝑇2 in [36] we have that

𝐸̌11 = 𝐸11 − 𝐸12𝐸
−1
22 𝐸21 > 0,

𝐵̌4 = −𝐴−1
41𝐵4 = 𝐽−𝖳

14 𝐺4,

𝐶̌4 = 𝐶4𝐴
−1
14 = 𝐺𝖳

4 𝐽
−1
14 = 𝐵̌𝖳

4 ,

which proves that 1 = 𝐶̌4𝐸̌11𝐵̌4 = 𝖳
1 ≥ 0. For 𝑛2 = 0, the claim

follows immediately from 𝐻(0) + 𝐻(0)𝖧 = 0 + 𝖳
0 ≥ 0. Now let us

consider the case where 𝑛2 > 0. We first assume that 𝑛3 > 0. The
remaining block matrices from (13) are then given by

𝐸̌22 = 𝐸22,
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Fig. 5. ∞ and 2 error comparison for the RCL-1-SISO model.

𝐴̌22 = 𝐴22 − 𝐴23𝐴
−1
33𝐴32,

𝐵̌1 = 𝐵1 − 𝐴13𝐴
−1
33𝐵3 + (−𝐴11 + 𝐴13𝐴

−1
33𝐴31)𝐴−1

41𝐵4,

𝐵̌2 = 𝐵2 − 𝐴23𝐴
−1
33𝐵3 + (−𝐴21 + 𝐴23𝐴

−1
33𝐴31)𝐴−1

41𝐵4,

𝐵̌3 = 𝐴−1
33𝐵3 − 𝐴−1

33𝐴31𝐴
−1
41𝐵4,

𝐶̌1 = 𝐶1,

𝐶̌2 = 𝐶2 − 𝐶3𝐴
−1
33𝐴32 + 𝐶4𝐴

−1
14 (−𝐴12 + 𝐴13𝐴

−1
33𝐴32),

𝐶̌3 = 𝐶3,

which again follows from the definition of 𝑇1, 𝑇2 in [36]. Define the
matrices 𝛤 ,𝑊 ∈ R(𝑛+𝑚)×(𝑛+𝑚)

𝛤 ∶=
[

−𝐽 −𝐺
𝐺𝖳 −𝑁̃

]

= −𝛤 𝖳,

𝑊 ∶=
[

𝑅 𝑃
𝑃 𝖳 𝑆

]

= 𝑊 𝖳 ≥ 0,

and let the matrices be partitioned as in Lemma 1. Our proof is based
on the observation that
[

−𝐴 −𝐵
𝐶 𝐷̃

]

=

[

−(𝐽 − 𝑅) −(𝐺 − 𝑃 )
(𝐺 + 𝑃 )

𝖳
𝑆 − 𝑁̃

]

= 𝛤 +𝑊 .

This is a natural generalization of a similar observation for linear
dissipative Hamiltonian systems (see [37]) to port-Hamiltonian systems
with power-collocated input–output pairs. We will now show that such
a decomposition into skew-symmetric and symmetric positive semidef-
inite parts not only exists for the proper subsystem as well but may be
obtained by structure-preserving manipulations of the sum 𝛤 +𝑊 .

At first, let 𝑃𝜋 ∈ R(𝑛+𝑚)×(𝑛+𝑚) define a permutation matrix which
permutes the third and fifth block rows and columns in the sum 𝛤 +𝑊
such that

𝛹 = 𝑃 𝖳
𝜋
(

𝛤 +𝑊
)

𝑃𝜋 =
[

𝛹uu 𝛹ul
𝛹lu 𝛹ll

]

,

with 𝛹ll = −𝐽33 + 𝑅33 = −𝐴33. Since the matrix 𝐴33 is nonsingular,
we may block-diagonalize 𝛹 with invertible matrices 𝑋1 =

[

𝐼𝑛 𝛹ul𝛹−1
ll

0 𝐼𝑚

]

,

𝑋2 =
[ 𝐼𝑛 0
𝛹−1
ll 𝛹lu 𝐼𝑚

]

∈ R(𝑛+𝑚)×(𝑛+𝑚) such that

𝛯 = 𝑋1𝛹𝑋2 =
[

𝛹uu − 𝛹ul𝛹−1
ll 𝛹lu 0

0 𝛹ll

]

.

Note that 𝛯 still has a positive semidefinite symmetric part since the
Schur complement preserves this property [37, Corollary 4.3]. Finally,
it is easy to show that we may compute the proper system matrices via

Fig. 6. Frequency response errors (measured by the maximum singular value) for the
RCL-1-MIMO model.

a transformation of 𝛯 with the full-rank matrix 𝑈 ∈ R(𝑛+𝑚)×(𝑛2+𝑚) such
that

[

−𝐴̌22 −𝐵̌2
𝐶̌2 0

]

= 𝑈𝖳𝛯𝑈, where 𝑈 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝐵̌4
𝐼𝑚 0
0 𝐼𝑛2
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Hence, we obtain the proper system matrices by a series of permu-
tations, block-diagonalization via Schur complements and congruence
transformations of 𝛤 + 𝑊 . Since each of these manipulations pre-
serves the positive semidefiniteness of the symmetric part, we obtain
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Fig. 7. ∞ and 2 error comparison for the RCL-2-SISO model. Here we denote by 𝑟 the order of the dynamic parts of the ROMs.

a port-Hamiltonian representation of the proper subsystem via
[

−𝐽p −𝐺p
𝐺𝖳
p −𝑁p

]

= 1
2

(

[

−𝐴̌22 −𝐵̌2
𝐶̌2 0

]

−
[

−𝐴̌22 −𝐵̌2
𝐶̌2 0

]𝖳
)

,

[

𝑅p 𝑃p
𝑃 𝖳
p 𝑆p

]

= 1
2

(

[

−𝐴̌22 −𝐵̌2
𝐶̌2 0

]

+
[

−𝐴̌22 −𝐵̌2
𝐶̌2 0

]𝖳
)

.

The fact that 𝐸p = 𝐸̌22 > 0 proves the claim for 𝑛3 > 0. For 𝑛3 = 0,
similar arguments apply. Here we encounter pH-DAEs of Kronecker
index two, where we have that

[

−𝐴̌22 −𝐵̌2
𝐶̌2 0

]

= 𝑈𝖳(𝛤 +𝑊 )𝑈, where 𝑈 =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝐵̌4
𝐼𝑛2 0
0 0
0 𝐼𝑚

⎤

⎥

⎥

⎥

⎥

⎦

.

This concludes the proof. □
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